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Preface

Although we might not be aware of this, compression methods are used on a 
daily basis to store or transmit data. We can find examples of this by looking at our 
computers (which compress large folders with a simple click of the mouse), our 
mobile phones (which integrate Codecs), our digital and video cameras (including 
post-compression recording on flash memory or others), our CD and MP3 players 
(which are capable of storing hundreds or thousands of songs), our High Definition 
digital televisions (using the MPEG-2/MPEG-4 compression standards) and our 
DVD players (which allow us to visualize data in various formats, such as the 
MPEG-4 format).  

Consideration of these can lead us to ask the following question: how does this 
apply to the medical field? 

Although some of the thousands of observations made by physicians are still 
recorded on paper using radiological film, much of the data acquired (signals, 
images) are now digital. In order to properly manage the huge amount of medical 
information, it is essential to exploit all of this digital data efficiently. 

It is obvious that most doctors, wherever they are located, would appreciate 
efficient and fast access to the medical information pertaining to their patient. For 
instance, suppose that the doctor uses some type of mobile imaging system (for 
instance, an ultrasound system) for the purpose of analysis. As a consequence, the 
main clinical observations can be transmitted to a medical center for a preliminary 
check-up. Of course, in this case, secure data might be transmitted by telephone line 
or simply through the Internet. In fact, this acquisition/transmission protocol can be 
established so that the patient could be directed efficiently to the most appropriate 
clinical service in order to pursue the medical examination further. 

Written by Amine NAÏT-ALI and Christine CAVARO-MÉNARD.
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For such changes to take place, data compression will be necessary both for the 
transmission as well as for the storage of all medical information. In fact, many 
authors have been interested in the medical compression field, and numerous 
techniques have been dedicated to this purpose. However, as the title Compression 
of Biomedical Images and Signals suggests, we have aimed to work collectively on 
this topic while giving detailed consideration to the use of recent technology in 
medicine, focusing particularly on compression. 

This book will address questions such as the following: should bioelectric or 
physiological signals be compressed as audio signals? Should we compress a 
medical image as if it had been acquired by a simple camera? What about three-
dimensional images? In other words, should we directly apply common compression 
methods to medical data? Should we compress the images with or without losing 
any information at all? Is there a compression method specific to medical data? In 
order to answer questions on such a sensitive and delicate topic, we have gathered 
the skills of over 20 researchers from all corners of France and from various medical 
and scientific communities including: the signal and image community and the 
medical community. Such a topic cannot simply be seen from the perspective of a 
single community, in the sense that one community cannot provide objective 
judgment on the topic whilst at the same time being involved in its activity. 
Moreover, a multi-disciplinary reflection is enriching and produces more fruitful 
work. We therefore hope that this piece of work will serve as a starting point for all 
young researchers in scientific and medical communities wishing to engage in this 
particular field. It should thus be used as additional reading to any specialized course 
module at a Masters level (in science or in medicine). 

This book is organized into 11 chapters and structured in the following way. 

Chapter 1 describes how important the role of compression is in the medical 
field. It is built on the observations and points of view of medical experts in images 
and signals. Their experiences as doctors working in imaging poles have helped us 
outline the function of medical information compression. It is important to note 
however that the views upon which our argument is based are specifically relevant 
to the current state of technological developments (2006) and that innovations in this 
field are recognized and significant. 

Chapter 2 deals with the state of compression methods, and more generally the 
different compression norms. Some of them can be used to compress medical data 
while others cannot. Throughout the following nine chapters we will be making 
constant references to this particular chapter, most notably when comparing the 
different methods applied to medical data. 
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Chapter 3 is an introduction to the subsequent chapters. It outlines important 
features of medical signals and images that are used throughout the discussion in the 
rest of the book and in various descriptions of certain specific compression methods. 

Chapter 4 describes the role of compression norms applied to medical images. 
This chapter will introduce standardization committees present in the field of 
medical information exchange as well as the DICOM standard which encompasses 
almost all medical images. This standard is undergoing constant improvement and 
incorporates a variety of different compression methods. 

Strong compressions with a high risk of information loss are not used in clinical 
routine for the simple reason that such possible degradations may thwart the medical 
diagnosis. Chapter 5 outlines the different approaches commonly used to evaluate 
the quality of reconstructed medical images following lossy compression. 

Chapter 6 specifically concerns the compression of physiological signals. 
Specific attention will be given to electrocardiogram (ECG) compression. 

Chapter 7 reviews the different techniques applied (and often adapted) to 
medical images. It will look at lossless, lossy and progressive compression methods. 

Chapter 8 will look into the compression methods of image sequences, 
represented as videos (2D+t) or as a non-geometrical volume (3D). The use and 
popularity of this type of imaging is growing rapidly. 

Chapter 9 deals more particularly with geometrical (3D) and (3D+t) compression 
methods. These techniques are particularly interesting today as they have become 
the main subjects of various studies and practices on organs such as the heart and 
lungs. This chapter will conclude with a look at potential prospects and 
opportunities for the use of such methods. 

The security aspects of medical imageries will be looked at in Chapter 10. This 
chapter will also address encrypting techniques. 

The final chapter, Chapter 11,  looks at wireless transmission of medical images 
as well as the potential problems that may arise linked to transmission channels. 
Various solutions will then be suggested as a possible answer to such problems. 
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Various medical images used as illustrations throughout this work have been 
taken from the MeDEISA1 database Medical Database for the Evaluation of Image 
and Signal Processing, created in 2006. This evolving database can be accessed 
freely through the Internet and gathers a number of images obtained by different 
acquisition methods (based on recent acquisition systems). Researchers are 
encouraged to use this database in order to evaluate their own algorithms. 

We would like to thank everyone who has participated in the creation of this 
work. Special thanks go to Christian Olivier and William Puech for their precious 
help with planning the structure of the book. We would also like to thank Marie 
Lamy and Helen Bird for the translation and Sophie Fuggle and Amitava Chattejee 
for their corrections. Thank you all. 

1 Accessible at http://www.medeisa.net. 



Chapter 1 

Relevance of Biomedical Data Compression

1.1. Introduction 

Medical information, composed of clinical data, images and other physiological 
signals, has become an essential part of a patient’s care, whether during screening, 
the diagnostic stage or the treatment phase. Data in the form of images and signals 
form part of each patient’s medical file, and as such have to be stored and often 
transmitted from one place to another. 

Over the past 30 years, information technology (IT) has facilitated the 
development of digital medical imaging. This development has mainly concerned 
Computed Tomography (CT), Magnetic Resonance Imaging (MRI), the different 
digital radiological processes for vascular, cardiovascular and contrast imaging, 
mammography, diagnostic ultrasound imaging, nuclear medical imaging with Single 
Photon Emission Computed Tomography (SPECT) and Positron Emission 
Tomography (PET). All these processes (which will be examined in Chapter 3) are 
producing ever-increasing quantities of images. The same is true for optical 
imaging: video-endoscopies, microscopy, etc. 

The development of this digital imaging creates the obvious problem of the 
transmission of the images within healthcare centers, and from one establishment to 
another, as well as the problem of storage and archival. Compression techniques can 
therefore be extremely useful when we consider the large quantities of data in 
question. 

Chapter written by Jean-Yves TANGUY, Pierre JALLET, Christel LE BOZEC and Guy
FRIJA.
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Ten years ago, physicians were hostile towards the compression of data. The risk 
of losing a piece of diagnostic information does not sit well with medical ethics. 
Failing to identify a life-threatening illness in its early stages due to lost information 
is unthinkable, given the importance of early diagnosis in such cases. The evolution 
of digital imaging, retrieval systems and Picture Archiving and Communication 
Systems (PACS), alongside compression systems, has resulted in changing attitudes, 
and compression is now accepted and even desired by medical experts. 

In this chapter, we will begin by presenting the IT systems which enable the safe 
archival and communication of medical data, their usefulness and their limitations 
(section 1.2). Next, with the help of three examples, we will look at the increase – 
which has been considerable over the past 30 years – in digital data collected in 
health centers (section 1.3). The problem of the archival and communication of data 
will then be examined in section 1.4 in relation to clinical practice and legal issues. 
Each of these areas of comment and debate will help to establish the advantages of 
compressing medical data, which is the key objective of this chapter. The concerns 
of the medical community regarding compression, and the ways to tackle these 
objections, are discussed in section 1.6. The conclusion aims to present possibilities 
for the foreseeable future, as enabled by compression. 

1.2. The management of digital data using PACS 

A PACS is composed of an archival system, a quantity (variable in size) of 
examinations available in real-time from a storage space reachable at high-speed, a 
system allowing these data to be accessed by those carrying out the examinations, 
and also a system for the communication of examination results, including images, 
within a healthcare center and also externally. This communication is generally 
carried out by a server, on demand, with Internet technology as its basis. 

The European countries where this equipment is most prolific are Austria, 
Norway and Sweden [FOO 01]. In North America and Scandinavia, some 
establishments are already at the stage where they are re-equipping themselves with 
these systems. 

1.2.1. Usefulness of PACS 

There are many reasons to support a system for the archival and communication 
of medical data. 

The quality of analyses made can be significantly improved compared to the 
quality achieved by data stored on film [REI 02]. With PACS, clinicians and 
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radiologists have easy access to data from previous examinations (e.g. images and 
results), which leads to more reliable hypotheses thanks to the ability to compare a 
patient’s symptoms over time with the known progression of an illness. The time it 
takes to access and file images is reduced, which allows medical professionals to 
devote more of their energy to studying the images. Evaluating the progression of a 
disease – so crucial for chronic illnesses such as cancer – is also made easier. 

The time an analysis takes can, thus, be significantly reduced. Some tasks are 
simply made redundant, such as making telephone calls in order to pass on results, 
the steps previously needed to display data or check the quality of films, or the 
searching within medical records to retrieve previous results and to display them 
alongside the latest data. All of these steps are carried out automatically by a PACS. 
This leads to two possible benefits: the freeing-up of time to be spent on other tasks 
or increased productivity. Due to this, it has been observed that productivity 
increases, leading to a return on the investment in a PACS within three and a half 
years and real savings to be made from this point onwards [CHA 02]. In this way, 
the time it takes for the clinician responsible for the patient to receive the 
examination results is greatly reduced. 

A PACS also allows teaching materials to be created more quickly and 
efficiently than a system that works using copies of films [TRU 05]. 

1.2.2. The limitations of installing a PACS 

The main reasons cited for an unwillingness to install a PACS have been: a lack 
of sufficiently powerful machines for the management of large volumes of medical 
data, the space required to house such equipment, the time taken to transfer data and 
the extremely high cost of installation in medical centers. Over time, progress made 
in the IT field has improved the ratios between the cost and the power of machines 
on the one hand, and the cost and the storage and transmission capabilities on the 
other. 

Today, the emergence of new techniques such as multi-sectioning scanners and 
virtual slides in anatomic pathology, and the development of existing techniques 
such as high resolution digital radiographs, and 3D MRI, have resulted in a 
significant increase in data quantities, at the very moment when PACS finally 
seemed to present a feasible ratio of cost to technological advantages. 

Nevertheless, sending information outside of the PACS via a low-rate connection 
remains fraught with problems. The electronic transmission of the results from a 
biological examination, composed of text and digital data, can be easily carried out, 
whereas sending image results outside of hospitals or imaging centers is more 
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difficult for numerous reasons. First of all, the DICOM 3 images have to be 
converted to a commonly-used format, or alternatively a multi-platform image 
display program must be included with the documents. When dealing with 
confidential information, security is an issue, as is extranet access. Finally, sending 
images electronically over a low-rate connection is problematic due to the sheer 
volume of data, which leads to a very slow transmission speed. However, the need 
for medical images in the field of telemedicine is great. It can prevent, for example, 
the need to move a patient from one hospital to another, if a decision can be made 
based on results in the form of images and signals sent from one physician to 
another [HAZ 04]. It can also minimize the number of radiological screenings which 
a patient undergoes, thereby avoiding exposing the patient to excessive quantities of 
radiation. 

1.3. The increasing quantities of digital data 

In order to carry out a quantitative analysis of the digital data produced  
in health centers, three representative fields – each a source of digital data – have 
been studied: radiology, anatomic pathology and cardiology including the 
ElectroCardioGram (ECG). The specifics of these fields and others (such as MRI 
and diagnostic ultrasound) will be presented in Chapter 3. 

1.3.1. An example from radiology 

In radiology, the most obvious example used to demonstrate the increase in the 
quantity of data collected is that of computed tomography. At the beginning of the 
1990s, a scan of the thorax was typically composed of 25 contiguous slices (512 x 
512 x 16 bits each), with a thickness of 10 mm, after the injection of a contrast 
media. The time necessary to acquire and reconstruct a slice on a machine 
commonly used at the time (CGR CE10000) was approximately 30 seconds. The 
emergence at the end of the decade of the continuous rotation technique and the 
spiral computed tomography scanner was incredible progress: scanners can now 
capture a slice per second. Single-slice devices, thus, collect a quantity of 
information allowing for the reconstruction of a series of slices of 5 mm, 
overlapping at 3 mm intervals i.e. 80 slices. At the beginning of the 21st century, 
multi-slice scanners appeared. For the same clinical condition, today’s scan on a 
model running on 16 channels can carry 600 overlapping slices of 1 mm each, with a 
matrix of 768 x 768. The quantity of electronic data produced from the same 
examination, thus, has risen in a few years from 12.5 to 40, and then to 675 MB. As 
we can see in the trend curve given in Figure 1.1, this increase is nothing short of 
exponential. 
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Figure 1.1. The evolving quantities of image data produced by a thoracic CT examination. 
The trend curve is given with its equation and the correlation coefficient R²

The quantity of data produced by the various sources of medical imaging is thus 
ever-increasing due to the parallel progress being made in IT and in capture 
techniques. The number of slices to be studied after each examination is growing at 
the same rate for every modality. At the same time, the quality of images has been 
enhanced both in terms of contrast as well as spatial resolution for most modalities. 
The diagnoses made based on these examinations are therefore becoming more 
accurate. The price to pay for this improvement is that medical imaging services are 
carrying out a far greater number of examinations than was previously the case. 

In two studies carried out in the radiology departments of 23 US medical centers 
from 1996 to 2003, using an average workload estimate in a Relative Value Unit 
form (RVU), and considering both the time required and the difficulty of each 
procedure, Lu and Arenson [ARE 01] [LU 05] reported that in five years, the 
number of examinations had increased by 17% Full-Time Equivalent. This increase 
goes hand-in-hand with a greater average workload for each examination, as shown 
by a 32% increase in RVU from 1998 to 2003, and as much as 55% when compared 
with 1996. Indeed, the RVU average per examination increases by 13%, reflecting 
the developments in slide imaging and in interventional radiology, which have led to 
a greater complexity in the standard radiological procedure. We can attribute part of 
this evolution to the need for a posteriori use of image treatment software, in order 
to display the image data in a format accessible to clinicians. If we are to 
compensate for this extra time spent, we need to reduce the amount of time 
physicians spend physically organizing the images, whether these images are on film 
or CD-R, which is where the role of a PACS comes in. 
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1.3.2. An example from anatomic pathology 

An anatomic pathology examination can lead to a diagnosis as well as providing 
prognostic indications, in cases where lesions are present in the areas covered by a 
tissue or cell sample. These examinations play an essential role in deciding what 
other tests may be necessary, and what course of treatment should be followed. They 
are common practice in the process of clinical testing and treatment. 

Examinations made under a microscope lead to the study of extremely large 
quantities of information. A tissue sample measuring 5 cm2 when observed at a 
magnification of x 40 (0.25 microns resolution per pixel), takes up an equivalent 
space of 80,000 x 100,000 pixels. The total mass of a piece of data depends upon the 
number of color plans (three plans for Red, Green, Blue images and more than 10 
for multispectral images) and the number of layers needed to explore the sample’s 
depth, bearing in mind that this is a very limited dimension. Each image layer, thus, 
takes up 8 or 16 GB, depending on whether it is coded in 8 or 16 bits. This raises the 
question of how to store and transmit such large quantities of data [WEI 05]. Until 
recently, there was no effective, practical and repeatable solution for digitizing such 
material. 

Today, the recent development of techniques allowing the quick digitization of 
whole slides (between one and 20 minutes per slide) (Figure 1.2) allowing for the 
creation of “virtual slides”, alongside the development of viewing systems which are 
equally effective in situ as over a network, have allowed clinicians to increase their 
productivity through the management of the workflow in the laboratory. It has 
become possible to relocate the task of examining slides onto the laboratory’s 
network, to carry out quality controls easily, to keep detailed and up-to-date 
documentation, and to make use of IT for the retrieval of specific elements and for 
quantification [KAY 06] [GIL 06]. 

a) b)

Figure 1.2. Whole slide image showing a liver sample: 
a) whole slide image (14,000 x 19,000 pixels coded in 3 x 8 bits); 

b) detail from the image (256 x 256) equivalent to a x20 zoom
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Certain studies have already claimed that diagnoses made based on digital 
imaging are reliable [HEL 05], but it is only with the most recent technological 
developments leading to the production of whole slide images which give a closer 
reproduction of anatomic pathological material that digital imaging can begin to 
play a more significant role in the diagnostic process [KAY 06] [GIL 06]. Thus, the 
speed at which scanning can be performed, and even more importantly, storage 
volumes, will be key questions in the future. 

In the field of anatomic pathology, therefore, we have moved beyond the analog 
era and into the era of a proliferation of digital data. 

1.3.3. An example from cardiology with ECG 

As current clinical practice shows, studying a signal produced by an ECG on 
paper is a practice which is beginning to disappear; being replaced by digital 
displays. Moreover, in some cases the cardiac data needs to be stored on Holter1

devices or similar systems, in order for physicians to acquire long recordings (e.g. 
24 hours) at the patient’s home. The aim of this technique is to observe and diagnose 
problems which are not constant, and so may not be observed on a shorter recording. 
The digital information gathered (with recent models of the Holter device) is stored 
via flash memory. 

If we consider, for example, an ECG signal sampled at 180 samples per second 
(180 Hz) and we suppose that each sample is coded on 12 bits, a simple calculation 
will show us that 24 hours worth of information will amount to 22.8 MB. This figure 
increases at a rapid rate in accordance with, on the one hand, the number of channels 
and, on the other, the length of the recording. Table 1.1 displays the quantity of data 
(rounded values) gathered during recordings of 24 to 96 hours, using 1, 3 or 12 
channels.

1 channel 3 channels 12 channels 

24 hours 22 MB 68 MB 269 MB 

48 hours 45 MB 135 MB 538 MB 

72 hours 67 MB 202 MB 806 MB 

96 hours 90 MB 269 MB 1 GB 

Table 1.1. The quantities of data (rounded values) stored depending 
upon the length of a recording and the number of channels

1 Invented by Norman Holter in the late 1940s, this portable system is used to record a 
patient’s cardiac activity over a long period of time.
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It is also important to remember that some computer applications work with 
mapping systems, which gather 64 or even 256 simultaneous recordings, leading to 
an increase of the same magnitude in the quantity of data acquired. 

1.3.4. Increases in the number of explorative examinations 

Along with these developments in the fields of images and signals, the number 
of examinations carried out upon patients is growing constantly, particularly in 
disciplines such as cancer research, where the staging of an illness and the follow-up 
treatment can lead to large amounts of images. Thankfully, the capacities of storage 
and transmission systems have increased in recent years, yet they remain limited: to 
10 GB per DVD. The challenge now is to acknowledge the need for patients’ 
medical files, including related images, to be stored, while finding a way to deal 
with the huge quantities of digital data which are currently being gathered. 

1.4. Legal and practical matters 

Legislation on the archival of medical images manages to be both clear and 
ambiguous. For public healthcare centers – in France for example – the law insists 
upon the storage of a patient’s medical file for at least 20 years, and more often than 
not 70 years (in the domains of paediatrics, neurology, stomatology, chronic 
illnesses, etc.). In the case of hereditary diseases, the files must be stored 
indefinitely. A patient’s medical file can include diagnoses, notes, test results, 
radiographs and electrocardiograms. This means that images are part of the material 
which goes to make up a medical file. The recent project of the Personal Health 
Record, shared by healthcare professionals and stored by selected hosts, promises to 
result in recommendations on the archival of images [ZOR 06]. 

The issue of compressing images with a potential loss of detail has not yet been 
tackled. On a day-to-day basis, medical professionals adhere as closely as possible – 
bearing in mind practical, technical and financial requirements and limitations – to 
the recommendations drawn up by academic bodies. They refer particularly to the 
American College of Radiology’s report on teleradiology [AME 05]: 

– the compression process must be carried out under the supervision of a 
qualified physician, and must not result in any significant reduction in the diagnostic 
usefulness of data; 

– the hardware used for the transmission of data must meet the DICOM standard, 
and be up-to-date; 
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– the display method must allow the images to be viewed as they will be 
habitually needed, including windowing, and density calculations for CT images; 

– patient confidentiality must be retained. 

Currently at the majority of imaging centers, numerous examinations – 
particularly CT scans – are transferred via CD-R, alongside a selection of key 
images which are chosen to be printed out. Without a PACS, digital images which 
have not been archived are typically lost after a few days or weeks, depending on the 
hard-drive capacities of the machines or the capabilities of the image treatment 
centers concerned. Examination results which are used in teaching are often stored 
at teaching hospitals, on physical media such as optomagnetic discs or compact 
discs. In fact, the legislation serving to protect individuals who undergo biomedical 
studies (the French Huriet Law) specifically requires that examination results be 
stored, although no details are given on the format in which these archives should be 
created. In such cases, imaging centers store the digital data accordingly. 

At this point we feel it necessary to highlight the limitations of archival methods, 
which are heavily dependent upon physical media. Managing these items is no easy 
task, and they are not always reliable, which results all too frequently in the loss of 
data. Furthermore, the fact that technology is always advancing leads to problems, 
since new systems for reading data frequently emerge, which can turn archives into 
“data graveyards” which cannot be accessed. 

1.5. The role of data compression 

PACS can resolve, at least in part, the problems of storage and communication, 
but the ever-growing quantities of information needing to be managed also have to 
be taken into consideration. Compression, by reducing the volume of data needed to 
display an image or other signal, seems, then, to offer an effective solution which 
would allow the introduction of a PACS. Compression presents a less costly 
alternative to the repeated updating and increasing of storage capacities and lines of 
communication. It would be possible, for example, to use a compression technique 
in order to maximize the quantity of data available for quick access online in a 
health center, thereby avoiding too great and too costly an investment in storage 
space [AVR 00]. This would improve the performance of the establishment’s image 
distribution systems [BER 04]. 

Compression is also vital in telemedicine, whether it be for images or other 
signals, daily practice or for research and teaching. In teaching, compression will 
allow for the easier creation of more complete banks of images and other reference 
information required for medical training, and transferred via a digital medium (CD-
ROM or the Internet) [LUN 04] [ZAP 02]. In clinical practice, the exchange of 
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images between medical teams occurs every day, in order to compare or examine 
certain results in detail, or to draw-up images for use as reference tools. In the field 
of research, the sharing of digital data will revolutionize certain practices, allowing, 
for example, the analysis of preliminary examination results from a distance, which 
may prevent unnecessary journeys. Similarly, it will be possible to obtain quick 
second opinions from national or international experts working in a certain field. 
Until recently, telemedicine had not extended beyond small, often local, networks of 
varying levels of experience and expertise. Compression, by reducing the amount of 
data to be stored and communicated, allows for faster and less expensive 
transmission, and thus makes it possible to use telemedicine on a daily basis. 

For legal and ethical reasons, lossless (or reversible) compression techniques are 
preferable because they can produce an exact reproduction of the original image. 
Such are the techniques which are currently present in PACS (as described in 
Chapter 4). However, lossless systems are only of limited usefulness due to their 
compression rate (between 3:1 and 6:1 depending on the image involved) [KIV 98], 
and thus do not present a long-term solution. Only lossy (or irreversible) 
compression techniques, i.e. those involving a permanent loss of data, allow for 
more significant compression rates. However, as the American College of Radiology 
points out, compression should only be carried out if it results in no loss of 
diagnostic information [AME 05]. The compression-decompression process must 
avoid, at all costs, creating any distortion which may lead to a change in the 
qualitative and diagnostic interpretation of the images involved. 

1.6. Diagnostic quality 

How are we to measure diagnostic quality? The answer is that the pathological 
condition is what determines the information which must be retained in any given 
medical data. This information may be large in volume, but not contrast greatly with 
the surrounding tissue, or perhaps small, linear or punctiform details are needed; 
varying only very slightly if at all from the original noise or resolution gathered by 
the initial technique. In fact, both of these categories of information may be required 
within one image, for diagnostic purposes. Diagnostic quality is therefore heavily 
dependent upon the protocol of both the respective gathering technique and the 
pathological condition concerned. 

1.6.1. Evaluation 

The evaluation of compression techniques is therefore a difficult task. The data 
gathering techniques vary, and the images produced by each are different; whether 
in spatial resolution, contrast or type and quantity of noise. For this reason, we often 
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refer to studies evaluating the legibility of the diagnosis by a radiologist. Receiver 
Operating Characteristic (ROC) curves are widely used, but such studies are 
laborious and difficult to organize [PRZ 04]. In practice, it is no easy task to 
assemble a selection of examinations representing an accurate sample of different 
pathological conditions and/or a sample which allows for the analysis of each type 
of data, in order to make significant comparisons. The loss of detail which 
accompanies a lossy compression technique is more apparent for certain types of 
lesions, as Ko showed in the case of different categories of pulmonary nodules 
[KO 03] [KO 05]. We examine this area in depth in Chapter 5. 

1.6.2. Reticence 

Reversible compression techniques are of limited usefulness. Lossy compression 
techniques are a worry for physicians. This is because they cannot accept the 
possibility of losing any parts of an image which are “useful” for diagnosis 
[RIT 05]. In fact, the compression algorithms in common use lead quite quickly to a 
visible loss of quality, when applied at high frequencies. It is therefore essential, in 
order to retain the visual quality and diagnostic usefulness of an image, to limit the 
compression rates; for example around 10:1 for JPEG images [SLO 03]. The 
progress first of home computing, and then of the Internet, have presented 
physicians with limitations in image compression, when it comes to the legibility of 
diagnostic information. 

The fear of destroying evidence with the threat of legal action makes the idea of 
lossy compression very unattractive. However, the current practice, which relies 
upon printed films, which set the gray level of each pixel, also greatly reduces the 
amount of information available. The number of slices produced by certain 
examinations is so great that not all can be printed, so radiology teams produce a 
selection of relevant images and a series of images reconstructed from the whole, 
through modifications in the format, or averaging techniques. If the current practice, 
recommended by academic bodies, could work towards a compromise – with the 
law agreeing that the necessary protocol had been adhered to – then we can envisage 
a mutually-agreed solution. For example, we could imagine using compression 
techniques on a large part of the data acquired in an examination, but avoiding any 
loss for the images judged the most important. On an international level, current 
thinking among the academic bodies in medical imaging is directed towards the 
sophisticated application of compression methods: tailored to each image gathering 
technique, and even each pathological condition involved. 

Ideas constantly evolve with the emergence of promising new compression 
techniques. Opinions are thus gradually changing, as a result of numerous studies 
assessing the efficiency of methods of compression by wavelets [ERI 02] [SUN 02] 
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[PEN 05]. The current situation however is still rather complicated and we must 
therefore remain cautious. Detailed studies on a variety of pathologies must be 
carried out so as to determine the compression thresholds that are not to be exceeded 
for each examination technique [ERI 02]. 

1.7. Conclusion 

When we consider the large quantities of digital data which go into making up a 
patient’s medical file, the usefulness of compression is quite clear. Therefore, the 
implementation of data compression methods allows for numerous benefits, 
including: 

– “new generation” PACS: extremely user-friendly, allows for longer-term 
storage on a quick-access storage platform, before transferral to a slower-access 
archival system; 

– the medical record of each patient stored on an individual memory card, which 
could soon hold all their images and other clinical data. 

Current lossless (i.e. reversible) compression methods are of limited usefulness, 
and only lossy (i.e. irreversible) will allow us to achieve very significant 
compression rates. The compression techniques used in medical imaging should not 
only allow for high compression rates, but more importantly they should retain the 
diagnostic usefulness of the original image. It seems essential, then, that the losses 
brought about by any given compression technique should be evaluated before the 
implementation of such compression within a storage and communication system. 
Moreover, these methods should include a way of tackling the demands raised by 
interoperability and durability in the healthcare sector. There is still progress to be 
made, therefore, if a compression system perfectly-suited to the medical needs of 
tomorrow is to be developed. 
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Chapter 2 

State of the Art of Compression Methods

2.1. Introduction 

The development of new techniques in the fields of IT and communications has a 
great impact on our daily lives. In parallel to the constant evolution of information 
systems, the increase of bandwidths allows us to access and share huge quantities of 
data proposed by innovative services and uses. Exciting scientific problems arise 
concerning multimedia content, network architecture and protocols, services and 
uses, information-sharing and security issues. In this context, data compression 
remains an essential step both for transmission and for archiving. 

Since the 1980s, a wide community of researchers has been working on 
compression techniques. Their work has led to significant advances: the 
broadcasting of digital television at home using a reduced bandwidth ADSL; the 
archival of high quality digital images on the reduced memory of a digital camera; 
the storage of hours of music in MP3 format on a flash drive player. To give a well 
known example, the JPEG standard for the compression of still images is the result 
of the efforts of a large scientific community between 1987 and 1993, when the 
standard was set. The work that led to the creation of this standard was instigated 
even earlier, with the proposal of a discrete cosine transform in 1974 by [AHM 74]. 

The collaboration of the international research community has continued with 
developments of quite interesting techniques for the compression of video, audio 
and 3D files. All these compression methods attempt to find an optimal 
compromise: minimize the bitrates whilst retaining the maximum visual or audio 
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quality. In parallel to these developments, the community of researchers working on 
network protocols has proposed specific protocols for multimedia. These protocols, 
called RTP and RTCP, allow for the real-time transmission of data with a 
guaranteed quality of service. The Internet is a very good example of the 
convergence of data, image and video applications on networks. 

Among the numerous compression techniques suggested in the literature, some 
aim for a perfect reconstruction of the original data. These methods are described as 
lossless. However, such techniques lead to relatively small compression ratios and 
are used in some delicate application domains such as for medical or satellite 
images, as well as the compression of computer files. Examples are entropic coding 
such as Huffman coding, arithmetic coding or LZW coding (the encoding of 
computer files such as ZIP, PDF, GIF, PNG, etc.). The general aim of these coding 
techniques is to get as close as possible to the real entropy of a given image. To 
learn more about these lossless methods, see section 2.3. 

When an application requires limited bitrates, we use methods which enable a 
supervised loss of information (a loss often so small that it cannot be detected by the 
human eye). These so-called “lossy” methods combine high compression ratios with 
an acceptable visual quality (a rate of 8-10 for the JPEG standard and 20-30 for the 
JPEG 2000 standard). These losses can take the form of blocking effects, reduced 
color quality, blurriness, or step effect around the contours, oscillations in the 
transition areas, etc. We can see why the levels of loss and/or distortion need to be 
limited for certain applications. 

In this chapter, which looks at the current state of compression techniques, we 
will focus mainly on the methods which have led to the accepted standards. Section 
2.2 presents an outline of a generic compression technique and summarizes some 
information theory, quantization and coding tools which are required to understand 
the existing standards. The standards for compressing 2D still images and video are 
presented in detail in sections 2.3 and 2.4 respectively. We also give useful 
references regarding the techniques applied to 1D signals (audio, spoken word) in 
section 2.5, and those applied to 3D objects in section 2.6. The chapter ends with a 
conclusion and some thoughts on the evolution of the techniques, as well as the 
evolving nature of their usages. For a more detailed analysis, we refer you to 
[BAR 02], which looks at the compression and coding of images and video, and also 
the section “multimedia in computer systems” in the encyclopaedia [AKO 06]. 

2.2. Outline of a generic compression technique 

A generic compression method can easily be represented in the form of a 
functional scheme composed of three blocks: reducing redundancy, quantization, 
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and coding (see Figure 2.1). These three blocks are not always distinct or 
independent from each other. For example, in the case of a fractal method, the 
fractal model incorporates all the elements: the reduction of redundancy by detection 
and modeling the autosimilarity in the image, the implicit quantization using the 
compact fractal model and the coding of the model’s parameters. 

Original information
Redundancy

reduction

Decorrelated
information

Loss of imperceptible information

Quantized decorrelated
information

CodingQuantization

pixels Transformed
coefficients

Quantized
values

Bit stream

Original information
Redundancy

reduction

Decorrelated
information

Loss of imperceptible information

Quantized decorrelated
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CodingQuantization
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Quantized
values

Bit stream

Figure 2.1. Generic compression method scheme

2.2.1. Reducing redundancy 

Compression aims to quantify and code the source information using a number 
of bits close to the entropy of this source (the entropy is the average quantity of 
information contained in one of the source’s messages) by exploiting the 
redundancy of the data representing a natural phenomenon as in medical imagery. 
We have Shannon [SHA 49] to thank for the mathematical definitions of these 
information, entropy and redundancy concepts. These definitions are looked at in 
detail in section 2.2.3. 

Redundancy in this sense must be understood as the similarity of messages or 
symbols when they are analyzed one after another, or next to each other. This 
redundancy may be spatial (in neighboring pixels or between blocks or areas of 
pixels); spectral (between the different bands created by a multispectral system or 
the Red, Green and Blue (RGB) components); or temporal (between successive 
images in a video). Compression methods use these different types of redundancy 
and reduce the average number of bits required to code a source symbol (a pixel of 
the image). This step is undoubtedly that which appeals most to researchers in this 
field, as it involves analyzing the content of the data, detecting redundancy through 
the use of innovative tools adapted to the content, and then proposing a compact and 
decorrelated representation of the information. Although pixel-based methods do 
exist and can be effective, the key methods use orthogonal transform (Discrete 
Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) most commonly) 
in order to change the representation space and aim at an optimal representation in 
terms of decorrelation/compactness with transformed coefficients. We should also 
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note that a color transformation of RGB to YCbCr belongs to the step of the 
reduction of redundancy (spectral redundancy in this case). 

2.2.2. Quantizing the decorrelated information 

Decorrelated information may take the form of integer, real, complex, vector 
values or forms. It is represented in a certain dynamic range. The data formats 
quoted above, and the dynamic range associated with the information, are often 
incompatible with the average number of bits per symbol with which we aim to 
quantify and code. In such cases, we make use of quantization methods. 

Let us consider a continuous real variable to be quantized. Quantization methods 
allow us to make this variable discrete over its entire dynamic range by defining a 
finite number of intervals (according to a quantization step which may be either 
uniform or not), and by assigning a value to each of these intervals (for example the 
middle value of each interval). We should note the importance of the choices of the 
quantization step and the value assigned to each interval. The strategy behind the 
quantization method will determine the optimal values of these two parameters, 
generally based on the statistics of the source to be quantized. 

The performance of the quantization is measured in terms of minimization of 
global distortion (total error after quantization) for a given bitrate to allocate to this 
source (for example, an average of 3 bits/pixel to quantize a digital mammography 
numerized at 12 bits/pixel). 

We can define two main classes of quantization: scalar quantization and vector 
quantization. The first is applied to scalars such as the intensity of a pixel or the 
value of a coefficient, whereas the second is applied to blocks of neighboring pixels 
or coefficients. It is at this stage of the quantization that the loss of information (and 
thus a lower quality of the restored image) is introduced into the compression 
process. This loss is of course irreversible. In this chapter, we have opted not to 
detail quantization methods. These methods can be studied in the references 
[MAX 60], [LIN 80] and [GRA 84]. However, when we detail the norms, the 
quantization stage will also be looked at in further detail. 

2.2.3. Coding the quantized values 

The values which emerge from the quantization process are generally 
represented by a binary code of fixed length (N bits/symbol). The coding stage 
allows us to reduce the average number of bits allocated to each quantized value. 
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The established techniques are based on the information theory presented below. 
They involve no loss of information. 

It was Shannon [SHA 49] who in 1949 developed information theory, with a 
global vision of communication systems, and opened the door for coding techniques. 
The developments he made have led to an optimization in the representation of 
messages generated by the information source given the entropy of this source (for 
example, the values of pixel gray levels are the messages, the image is the 
information source, the entropy is calculated from the normalized histogram of the 
image’s gray levels). This theory proposes the notion of quantity of information I
associated with a symbol generated by a source S, of the entropy HS of S and the 
redundancy RS.

Let us take a source S, emitting N different symbols noted as si with a probability 
pi. The quantity of information I(si) associated with an emitted symbol is measured 
by: 

)(log)( 2 ii psI  [2.1] 

It is measured in bits. The lower the probability of a symbol appearing, the 
greater quantity of information this symbol will transmit. In order to characterize 
source S globally, we can calculate its entropy which estimates the average quantity 
of information emitted by S in bits/message or bits/symbol: 
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The entropy is positive and restricted by Hmax=log2(N) which corresponds to the 
entropy of a source with a uniform probability density (i.e. all the symbols have the 
same probability of appearing). In calculating the entropy, for example on a 
mammography, if we get 3.5 bits/pixel, this means that theoretically we should be 
able to code this image’s pixels with binary codes with an average length of 
3.5 bits/pixel (rate) and this code will be lossless. In practice, entropy coders will go 
towards this minimal rate by the upper limit, without being able to reach it. 

We should note that thanks to the entropy calculation and the associated 
information rate, we can decide upon the appropriate transmission channel. These 
channels must offer a capacity (bitrate) at least equal to the information rate as 
measured by the entropy. 

Let a source S be coded on b bits with 2b=N possible symbols and let there be 
HS=h bits/symbol, and the entropy of S. Theoretically, this means that excessive (b-
h) bits/symbol have been used to code the symbols of this source: this difference 
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identifies the redundancy RS of S. The source coding methods will try to remove this 
redundancy, in order to obtain the most compact representation of the information 
generated by a source. Well-established coding methods called “entropic coders” 
will be used in order to reduce the average number of bits allocated to each 
quantized value. These coders are based on the a priori knowledge of the probability 
density of the source, either without taking account of the spatial context of a pixel 
or coefficient (coding without memory) such as the Huffman or arithmetic coder, or 
by integrating knowledge of the surrounding area (coding with memory or 
contextual coding) such as the LZW coder. This stage is lossless. The different 
formats used for computer file storage use these coders, particularly the LZW coder 
for PDF or PNG formats. 

Readers can study these techniques in further detail: Huffman coding [HUF 52], 
arithmetic coding [RIS 76], Lemple, Zip, Welch (LZW) coding [WEL 84] and in the 
global works [BAT 97] and [BAR 02]. 

2.2.4. Compression ratio, quality evaluation 

The compression ratio is defined as the total number of bits necessary to 
represent the original information divided by the total number of bits of the binary 
file which will be stored. In practice, we tend to use the bitrate to measure the 
compacting capabilities of a method. The bitrate is expressed in bits per element. 
The latter is a “pixel” if we are compressing a still or animated image, a “sample” if 
we are treating a signal or a vertex if we are dealing with a 3D chain. 

In order to attain a quantitative measurement of the quality of the decoded 
image, the Mean Square Error (MSE) between the original image and the decoded 
image is given by: 
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where NM is the size of the original image, with pixels varying between 0 and 255. 

According to the literature, the quality tends to be expressed in dB with a peak 
signal-to-noise ratio PSNR: 
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We should note that this evaluation is purely mathematical and is not necessarily 
associated with the visual quality as perceived by an observer. Many works have 
been carried out on the estimation of visual quality, such as the ROC methods or the 
methods based on “consensus”. They are presented in Chapter 5. 

2.3. Compression of still images 

For many years now, the compression of still images has been a very active area 
of research. The work carried out has led to the establishment of the JPEG and JPEG 
2000 standards. The latter sets a very high standard in terms of rate/distortion. This 
has encouraged the research community to focus on this area, and improve their 
approach with new functionalities (watermarking, indexing and retrieval), and a 
greater adaptability for the relevant domains (such as medical or satellite imaging). 

Usual compression methods are those which allow a controlled and invisible 
distortion level. They attain high compression ratios with an acceptable visual 
quality (a compression rate of 8-10 for the JPEG standard, and 20-30 for the JPEG 
2000 standard). 

The numerous different approaches can be classified into two categories: spatial 
methods and methods using transforms. Spatial methods directly manipulate the 
pixels. The best example is predictive coding or Differential Pulse Code Modulation
(DPCM) [JAI 81]. One pixel is predicted from its neighborhood by a linear 
combination of the values of several pixels which are already known. Rather than 
the pixel, it is the difference of this prediction which is quantized and coded. The 
gain is due to the fact that the entropy of this difference is smaller than that of the 
pixel itself. This method was retained as one of the three methods in the JPEG study, 
along with the Block Truncation Coding approach (another spatial approach coding 
a block of pixels), and the DCT technique. The latter falls into the second category, 
which changes the representation space before quantization and coding. The 
different standards 2D, 2D+t, 3D are based on different orthogonal transform. This 
does not mean that methods such as DPCM have been abandoned. We find them in 
the standards, every time we need to reduce redundancy in a neighborhood (for 
example to code the average value of blocks in JPEG or to predict the spatial 
position of the vertices in 3D meshes in MPEG4). 

In this chapter, we begin by presenting a description of JPEG. This is followed 
by a summary of the evolution of the wavelet transform based approaches is given, 
up to the JPEG 2000 standardization. 
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2.3.1. JPEG standard 

The JPEG became an international standard in 1993, following a long period of 
research and development involving a very large scientific community. The standard 
gives a complete specification of the coder and decoder. Figure 2.2 shows a block 
diagram. 

Original 
8 x 8

blocks DCT Quantization Coding

Transmission
or

storage

DecodingDCT-1
Decoded

8 x 8
blocks

Original 
8 x 8

blocks DCT Quantization Coding

Transmission
or

storage

DecodingDCT-1
Decoded

8 x 8
blocks

Figure 2.2. JPEG: each 8 x 8 block is treated separately in three stages: DCT, 
quantization and Huffman entropic coding

The image is subdivided into blocks of a reduced size of 8x8 in order to take into 
account the local properties. We should note that the large number of calculations 
necessary to carry out processings on the whole image is reduced thanks to this local 
approach. Each block is transformed by the DCT, independently of the other blocks 
which can be considered as a local spectral analysis using no overlapping windows. 
This leads to an 8x8 block of frequency coefficients. These coefficients are then 
qualified by a scalar quantization and are coded by Huffman entropic coding. The 
“.jpg” file is finally achieved by linking the bitstream associated with each of the 
original blocks. In order to reconstruct the decoded image, a reverse scheme is 
applied. 

2.3.1.1. Why use DCT? 

Like the vast majority of current standards, JPEG uses DCT. The Cosine 
Transform was proposed by J. Fourier (1822) and is defined as the representation of 
a continuous function by a linear combination of cosinus functions (the equivalent 
exists with sinus functions and is called sinus transformation). It is also defined as 
the Fourier transformation of the even part of the analyzed continuous function. 
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This reversible transformation has been especially known in the signal and image 
community since the proposition of its discrete version in 1D: DCT in 1974 
[AHM 74]. Its 2D definition is given as: 
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and the inverse transform is defined as: 
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where X(i,j) and XDCT(k,l) represent the DCT pixels and coefficients. C is a 
normalization function. The DCT transforms a matrix of pixels into a matrix of 
frequency coefficients, leading to another way of representing an image’s 
characteristics. DCT has two key advantages [RAO 90]: the decorrelation of the 
information by generating coefficients which are almost independent of each other 
and the concentration of this information in a greatly reduced number of 
coefficients. It reduces redundancy while guaranteeing a compact representation (see 
section 2.2.1). DCT’s efficiency in terms of the compacting of energy has been 
compared to that of the Karhunen-Loève transformation (KLT) [ROS 82], known as 
the optimal transform, and used for the principal components analysis (PCA). In 
practice, for images presenting a strong inter-pixel correlation, the characteristics of 
decorrelation and compacity of DCT are very similar to the characteristics of KLT. 
Figure 2.3 illustrates these properties. 
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Figure 2.3. Example of an image block with heterogeneous content 
and its DCT which concentrates the information in few coefficients  

(the peak is the coefficient associated with the mean value of the block – DC coefficient)
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2.3.1.2. Quantization 

Each 8x8 DCT block corresponds to the local spectral content of the image. As 
an image is a bidimensional non-stationary signal, these local spectral signatures are 
very different from one another. A block with homogenous gray levels will have a 
DCT domain with very few significant coefficients, whereas a pixel block with high 
variations will lead to a DCT domain with more spectral coefficients (Figure 2.4). 

Figure 2.4. Local spectral DCT domains of the image Lena 
(with absolute values of the coefficients shown in false color): 

we can see the real difference between the local spectral signatures

This has led to a quantization strategy which is adapted to the content of each 
DCT domain in order to retain all the significant coefficients, regardless of their 
position or number. A normalization matrix allows this selection to be carried out. 
Psychovisual studies have made it possible to define the contents of this matrix with 
regard to the eye’s sensitivity to 64 frequency stimuli of the DCT plane. Thus, 
quantization will favor those spectral coefficients to which the human eye is the 
most sensitive. Each coefficient is divided by an integer located in the same spatial 
position in the matrix and is rounded to the nearest integer value. 

2.3.1.3. Coding 

Each quantized spectral domain is composed of a few non-zero quantized 
coefficients, and the majority of zero coefficients eliminated in the quantization 
stage. The positioning of the zeros changes from one block to another. As shown in 
Figure 2.5, a zigzag scanning of the block is performed in order to create a vector of 
coefficients with a lot of zero runlengths. The natural images generally have low 
frequency characteristics. By beginning the zigzag scanning at the top left (by the 
low frequency zone), the vector generated will at first contain significant 
coefficients, and then more and more runlengths of zeros as we move towards the 
high frequency coefficients. Figure 2.5 gives us an example. 
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26 -3 1 -3 -2 6 2 -4 1 -4 1 1 5 0 2 0 0 1 2 0 0 0 0 0 -1 -1 EOB

(0,-3);(0,1);….;(1,2);(2,1);(0,2);(5,-1);(0,-1);EOB

Generation (runlength of zeros, DCT coefficient)

26 -3 1 -3 -2 6 2 -4 1 -4 1 1 5 0 2 0 0 1 2 0 0 0 0 0 -1 -1 EOB

(0,-3);(0,1);….;(1,2);(2,1);(0,2);(5,-1);(0,-1);EOB

Generation (runlength of zeros, DCT coefficient)

Figure 2.5. Zigzag scanning of a quantized DCT domain, the resulting coefficient vector, and 
the generation of pairs (zero runlength, DCT coefficient). EOB stands for “end of block”

Couples of (zero runlength, DCT coefficient value) are then generated and coded 
by a set of Huffman coders defined in the JPEG standard. The mean values of the 
blocks (DC coefficient) are coded separately by a DPCM method. Finally, the “.jpg” 
file is constructed with the union of the bitstreams associated with the coded blocks. 

2.3.1.4. Compression of still color images with JPEG 

Color images are represented by three RGB components generated by captors 
visualizing the same scene through filters whose bandwidths are associated 
respectively with the colors red, green and blue. These components are correlated 
for natural scenes. The first stage consists of transforming the RGB space into 
another representation space in which the three resulting components are 
decorrelated amongst themselves. In the JPEG standard, this concerns the YCbCr
color space which is obtained through the transformation: 

5.0
6.1

5.0
2

1.06.03.0

YRC

YBC

BVRY

r

b

 [2.7] 

where Y represents the achromatic channel (the luminance), while Cb and Cr are the 
two chromatic channels (the chrominance). This reduces the spectral redundancy. It 
is followed by a sub-sampling by 2 of the components Cb and Cr. Psychovisual 
studies show that the human eye is three times more sensitive to variation in 
luminance compared to variation in chrominance. It is therefore unnecessary to 
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retain the same spatial resolution for Cb and Cr. JPEG compression is then applied 
independently to each of the three images obtained (Figure 2.6). 
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Figure 2.6. Scheme of the JPEG for RGB images

2.3.1.5. JPEG standard: conclusion 

The JPEG standard is currently widely used for coding the majority of digital 
images available on the Internet. It is also the format used in digital cameras. It is 
well adapted to natural scenes and to compression ratios which do not exceed 8-10 
(a rate of 0.8-1 bits per pixel). For greater ratios, artefacts (blocking effects in 
homogenous zones) will appear. The new JPEG 2000 standard provides a solution to 
this problem by combining a high visual quality with high compression ratios. This 
standard is detailed in the following section. For a more detailed study, see [JAI 81] 
for DCT, or the website http://www.jpeg.org for JPEG. 

Figure 2.7. Undesirable blocking effects appear at low resolution 
(0.2 bits/pixel in this example, or compression ratio=40)
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2.3.2. JPEG 2000 standard 

2.3.2.1. Wavelet transform 

The JPEG 2000 standard for the compression of still images is based on the 
Discrete Wavelet Transform (DWT). This transform decomposes the image using 
functions called wavelets. The basic idea is to have a more localized (and therefore 
more precise) analysis of the information (signal, image or 3D objects), which is not 
possible using cosine functions whose temporal or spatial supports are identical to 
the data (the same time duration for signals, and the same length of line or column 
for images). Wavelet functions enable this detailed analysis, since they have a finite 
support (e.g. a sinusoid modulated with a Gaussian function). Moreover, the length 
of this support can be modified to obtain a multiresolution analysis. Let us imagine 
the wavelet function dilating (a long support in time associated with a narrow 
frequency band or a local analysis in time corresponding to a global high frequency 
content). With a fixed support length, the information will be analyzed at a fixed 
resolution and so on to cover all the possible resolutions. We will not present in 
detail the relatively recent wavelet theory – rich and exciting as it is – but instead see 
the following works: [MEY 92], [DAU 92], [MAL 98], and [BRE 02]. 

2.3.2.2. Decomposition of images with the wavelet transform 

By applying DWT, the image is decomposed into a subimage pyramid revealing 
the collection of details at different resolution levels. The details of an image are 
defined as the information difference between two consecutive resolution levels. 
Thus, given a resolution sequence rj, the details at resolution rj correspond to the 
information difference between the approximations of the image at resolution rj and 
rj-1. The subimages of “approximations” and “details” of the initial image at 
different resolutions are obtained via consecutive filtering and subsampling 
operations. Each subimage corresponds to the contents of a specific frequency band. 
This is why they are also called subbands [WOO 86]. Figure 2.8 presents the 
decomposition scheme (analysis) of the Barbara image into four subbands with a 
separable DWT (applied first to the lines, and then to the columns). 
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Figure 2.8. DWT decomposition: four subimages of lower resolution, 
representing the contents of four complementary subbands of frequency. 
The LF and HF are the low frequency and high frequency analysis filters 

applied to the rows and columns. S2 represents the subsampling by 2

The subband LF corresponds to the approximated image at the lower resolution 
rj-1. The three other subbands represent the details lost in this approximation at the 
same resolution rj-1: horizontal, vertical and diagonal variations. This scheme can be 
applied to the approximated image if we wish to analyze the lower resolution rj-2 and
so on. The decomposition is of course reversible, applying the reconstruction filters 
to the subbands (these filters are deducible from the analysis filters). This 
reconstruction stage leads to a perfect reconstruction of the original image. It is 
indeed important to have a reversible transform for image compression. 

Let us now analyze these schemes from a “digital filtering” point of view. The 
choice of the analysis and reconstruction filters is very important. The filters used 
can be characterized by several properties, in particular the exact reconstruction. 
Without proceeding to the quantization and the coding of the subbands, the 
transform used should not induce an information loss. In literature on the subject, 
several filters have been proposed such as quadrature mirror filters [EST 77], 
conjugate quadrature filters [SMI 86] and biorthogonal filters [ANT 92]. The latter 
represent some of the most frequently-used filters in wavelet theory, particularly in 
the field of compression. 
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2.3.2.3. Quantization and coding of subbands 

A set of subbands is obtained after the decomposition. Each detail subband is 
composed of wavelet coefficients at different resolutions. Figure 2.9 presents an 
angiography and the contents of the subbands obtained at two different resolution 
levels. 

8 3

3 2

1.25

1.25

0.5

8 3

3 2

1.25

1.25

0.5

Figure 2.9. Example of bitrate allocation in different subbands 
with respect to the information content of the subbands

The problem to be resolved is as follows: given the total number of bits available 
to quantify and code the subbands, how many bits should be allocated to each of the 
subbands in order to minimize the overall distortion? Figure 2.9 gives one example 
of binary allocation per subband. In this example, the subband LF (image 
approximated at resolution j-2, if the original image has a resolution of j) is 
quantized and coded with 8 bits/coefficient and the diagonal subband j-1 with only 
0.5 bits/coefficient, as it contains less information. 

The quantization and coding of the subbands will therefore be preceded by a 
binary allocation stage. This stage will lead us to the number of bits allocated to 
each of the subbands, which minimizes the overall distortion. The global 
minimization method proposed in [RAM 93] and based on a Lagrangian 
minimization function, is a good candidate to resolve this problem. Related 
algorithms adapted to the type of data (2D, 2D+t, 3D) will be used in the majority of 
wavelet-based compression techniques. 
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Once the number of bits/coefficient has been allocated to a subband, it is 
necessary to determine a quantization strategy, be it scalar [MAX 60] or vectorial 
[LIN 80], [GRA 84] (see section 2.2.2). The quantization technique can be chosen 
independently for each subband. It is generally followed by an entropic coding (see 
section 2.2.3). This is discussed in the following section. 

2.3.2.4. Wavelet-based compression methods, serving as references 

Three wavelet-based compression methods have served, and continue to serve, 
as references: the algorithms Embedded Zerotree Wavelets (EZW) [SHA 93]; Set 
Partitioning on Hierarchical Trees (SPIHT) [SAI 96] and Embedded Block Coding 
with Optimized Truncation (EBCOT) [TAU 00]. These methods differ in their 
wavelet coefficient selection procedure, before the quantization stage. Two key 
approaches enable the elimination of insignificant coefficients: 

– multiresolution selection, which applies thresholds through the subbands 
separately in each direction (inter-band technique) [SHA 93], [SAI 96]; 

– selection in each subband, which consists of setting to zero all the insignificant 
coefficients below a given threshold (intra-band technique) [TAU 00]. 

2.3.2.4.1. Inter-band techniques 

Even though wavelet transform generates subbands which correspond to 
orthogonal projections in disjoint vector subspaces, structural similarities remain in 
the subbands. These details are associated with consecutive resolutions and 
directions. This can be seen clearly in Figure 2.9. Inter-band techniques make use of 
this inter-subband similarity of wavelet coefficients by defining a tree of 
coefficients. This important development was proposed by Shapiro in 1993 
[SHA 93]: the EZW algorithm (zerotree approach) groups insignificant coefficients 
using a tree of zeros in the horizontal, vertical and diagonal directions. This structure 
enables the identification of those zones of the image which contain no significant 
information. The EZW algorithm can be summarized as follows: 

– the zerotree is constructed from significance maps showing the position of the 
significant coefficients for a given quantization step; 

– the successive approximation of the significant coefficients allows a 
progressive coding according to a given rate-distortion stopping criterion; 

– a dynamic arithmetic coder codes the chain of symbols. 

The binary chain obtained has a very interesting property. It is an embedded 
code. This means that the decoding of the image at a given compression rate T can 
be initiated, and continue with consecutive decodings, with regularly-growing rates 
up to the value T (progressive transmission). 
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The EZW algorithm has since been improved upon by the SPIHT algorithm 
[SAI 96]. The latter is today considered as the reference method in the compression 
of still images. However, visually, certain details or textures are not always as well-
preserved as in intra-band techniques, examined below. 

2.3.2.4.2. Intra-band techniques 

These techniques treat the subbands independently from one another. The inter-
band correlation is therefore not taken into account. The selection of the coefficients 
is carried out by the EBCOT algorithm (selection by context) [TAU 00]. This 
approach is used in the JPEG 2000 standard presented below. 

2.3.2.5. JPEG 2000 standard 

The aim of this standard is to enable the compression of different types of digital 
documents (natural, synthetic, binary, multi-channel images), with or without loss. It 
offers a unified solution for the numerous needs generated by new applications (the 
Internet, digital photography, space imaging, medical imaging, the digitization and 
conservation of old documents, mobile-related services, PDAs, etc.). The standard is 
based on the DWT. Pyramidal representation with different resolutions leads to the 
progressive transmission of information. This allows the introduction of new 
functionalities, previously impossible with DCT: 

– progressive decoding: this functionality targets transmission which may be 
progressive in quality or in resolution. A low resolution image of acceptable quality 
can be sent first to the end-user. Then, the details can be progressively transmitted in 
order to improve the quality; 

– ability to define regions of interest (ROI): the user can allocate greater bitrate 
to a ROI (e.g. a tumour in a medical image, or a face in a video) in order to obtain a 
higher image quality in this ROI, while the rest of the image will be coded at a lower 
visual quality (Figure 2.10); 

– random access to the data: this allows the decoding of only a specific zone of 
an image, without requiring a complete decoding. 
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Figure 2.10. Coding of ROI with JPEG 2000: the image Gold is coded at a global 
compression ratio of 128 (ROI at the top left coded at a rate of 16); the image Lena is 

coded at a global compression ratio of 80 (the central ROI is coded at a rate of 16)

Figure 2.11 presents the simplified schema of JPEG 2000. We can see the three 
steps of the general compression scheme: transformation, quantization and coding. 
The latter is applied to the whole image or on certain portions (tiles): 

– each tile is decomposed into subbands; 

– the wavelet coefficients of each subband are quantized in a scalar manner via a 
quantization step which is dependent upon the subband’s dynamic (this step can be 
adjusted by a feedback in order to match the bitrate constraints); 

– in each subband, the quantized coefficients are grouped in codeblocks with a 
size of either 64x64 or 32x32. Each codeblock formed is then processed 
independently; 

– the coding of a codeblock: the codeblock is divided into bit planes ranging 
from the most significant (MSB) to the least (LSB). Each bit plane is coded in three 
passes: significance, refinement and cleanup. Each of these steps collects contextual 
information on the different planes. This information, associated with each binary 
plane, is coded by a contextual arithmetic coder; 

– a second coding stage generates layers of consecutive bitstreams to build the 
image with an increasing rate. Each layer is composed of : 

- a set of passes per bit plane, 

- a set of bit planes, 

- the contribution of all the codeblocks of all the subbands associated with a tile. 
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This fine analysis of the information allows for great flexibility in terms of 
compression ratio. A bitrate allocation algorithm optimizes the global rate-
distortion. 

Wavelet
transform

Codeblock codingScalar quantization
Partition with codeblocks

Subband quantizationImage divided into tiles

tile

Figure 2.11. JPEG 2000 block schema

We should note that the bit stream associated with a codeblock can be decoded at 
different levels of progressive quality. Further information can be found at 
http://www.jpeg.org/JPEG2000.html, where all the documents linked to this 
standard can be accessed. 

2.4. The compression of image sequences 

Image sequences are made up of consecutive planes acquired at high speed, for 
example 25 images/second. In addition to any intra-plane spatial redundancy, video 
compression methods seek to detect inter-plane temporal redundancy. We can well 
imagine that consecutive images may look alike. Furthermore, they generally 
include many regions which are almost identical. There is no need to transmit these 
regions for every image. It is enough to code these common regions only once (in 
the first image of a group of images, for example). However, there is still one 
problem which remains: although they are identical, these regions move spatially 
from one image to another. The temporal redundancy detection step allows us to 
estimate such motions. We refer to “motion compensation”. Two types of region can 
be distinguished: 
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– the regions whose motion is determined and compensated: here, we only 
transmit the characteristics of this motion, and any possible slight modifications to 
the region’s content; 

– the regions whose compensation is impossible: those associated with new 
objects or regions in a scene. This is new information to be quantized, coded and 
transmitted. 

This section details the video compression scheme based on DCT. This scheme 
forms the basis of all current video compression standards. 

2.4.1. DCT-based video compression scheme 

Figure 2.12 presents a simplified generic DCT-based scheme. First proposed for 
the H.261 standard, this schema has constantly evolved to give us today the current 
standard H.264. This evolution is detailed in section 2.4.2. 
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Figure 2.12. Simplified MPEG1 scheme

Let us explain in detail the MPEG1 approach. The sequence is divided into 
groups of planes (GOP). An example is given in Figure 2.13 with 12 images in such 
a group. Each GOP is divided into three types of images: I, P and B. Image I serves 
as the reference image for the group. The P images are predicted from I- or P- 
(mono-directional prediction) type images. The B images are predicted from I- and 
P- (bi-directional prediction) type images. Figure 2.13 details these two types of 
prediction of blocks or macroblocks. 
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Figure 2.13. Example of a group of 12 pictures: IBBPBBPBBPBB (at the top); 
prediction of a block P from a block I and bi-prediction of a block B 

from a block I and a block P (at the bottom)

In order to speed up the motion prediction, we suppose it to be linear and 
identical for all the pixels within one block. Given a “child” block corresponding to 
the image i+1 to code, the motion is compensated by finding a similar “parent” 
block in the preceding image i already transmitted. The similarity is often measured 
by the quadratic distance. The search occurs in the neighborhood of the same spatial 
position of the child block. The compensation results in a motion vector. The 
difference between the parent and child blocks can thus be calculated. This 
difference corresponds to the variation in luminance and chrominance as the block 
of pixels is moved (due to the motion of the object including this block, or the 
movement of the camera). In addition to the vector, this difference is quantized and 
coded. This operation is carried out for each block within the image i+1 to code and 
so on for all the images in the sequence. In Figure 2.12, we can identify a feedback 
loop which reconstructs the preceding picture i. The original picture i+1 is predicted 
with the reconstructed plane i. The aim is to create a perfect symmetry between the 
coding and decoding schemes: the same prediction step in order to only use the 
reconstructed images for prediction. 

The compression methods for each type of image are detailed below: 

– image I: this reference image serves as a synchronization point. It is coded in 
JPEG with a normalization matrix adapted to video sequences; 
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– image P: is predicted from an I or P image. After the motion compensation, the 
difference between the parent and child blocks is coded with a JPEG whose 
normalization matrix is almost constant and at a high compression ratio; 

– image B: is predicted from 2 I and P images, with bi-directional prediction. It 
is coded as a P image. 

2.4.2. A history of and comparison between video standards 

For detailed presentations of the different standards of video compression, see 
the studies [BAR 02], [RIC 03], and [SYM 04]. Here, we will take a brief look at the 
evolution of the techniques with a comparison in terms of goals, bitrates, video 
formats, visual quality and functionalities: 

– H.261 (1993) [CCI 90]: this first video standard concerns visiophony 
applications for the RNIS network at multiple rates of 64 kbit/s. The image formats 
are the QCIF (144x176 pixels) and the CIF (352x288 pixels); 

– H.263 (1995) [ITU 96]: this standard is based on H.261 and targets very low 
bitrates (visiophony and visioconference on RTC and RNIS). The image formats are 
multiples and sub-multiples of the CIF. The coder H.263 enables us to compensate 
motion at a precision of ½ a pixel; 

– MPEG-1 (1992) [ISO 93]: a standard for compressing video and associated 
audio channels. It allows the storage of videos at a rate of 1.2 Mbps at a quality 
similar to VHS cassettes, but on CD supports. The technique is based on H.261 and 
improves on the motion compensation (½ pixel), and introduces the two types of 
prediction with the images I, P and B. The standard includes functionalities such as 
random access to the video, and the ability to search forwards or backwards, and to 
display the video in rewind (like VHS); 

– MPEG-2 (1994) [ISO 95]: this standard was adopted by the Digital Video 
Broadcasting (DVB) consortium for digital TV services via Hertzian channels both 
terrestrial (DVB-T) and satellite (DVB-S). It is also used as a coding format for 
Digital Video Discs (DVD). It takes up the principals of the MPEG-1, while adding 
functionalities for televisual applications: treating interlaced formats, optimizing 
MPEG-1 tools (dynamic of movement vectors, etc.), controlling the stream to allow 
the client to adjust the video stream to their own configuration of rate and quality. 
This last addition is called scalability, which may be: 

- temporal, acting upon the number of images, 

- spatial, acting upon the size of the images, 

- qualitative, acting upon the quantization step, 
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- regarding the hierarchy of DCT coefficients: transmission of the BF, then the 
HF;

– H.264 (2002) [JVT 02]: this new standard called Advanced Video Coding 
(AVC) is a result of the combined study of the groups ITU-T VCEG (at the origin of 
H.261 and H.263) and ISO MPEG (at the origin of MPEG1 and MPEG2). Still 
based on a DCT schema, AVC makes the key additions of: 

- a directional prediction stage for the coding of intra macroblocks, 

- a vertical and horizontal filtering of the compensated images in the coding 
scheme in order to improve the visual quality by erasing the blocking effects, 

- a process of motion compensation different from those of the previous 
standards, with a wide variety of shapes and sizes of blocks (16x16, 16x8,…, 
8x4,…, 4x4, etc.) and with a precision of up to ¼ pixel, 

- a Network Adaptation Layer (NAL) which adds headers adapted to the 
transmission supports. AVC is the first standard to integrate this network constraint. 

With all these improvements, AVC makes it possible to achieve the same visual 
quality as the MPEG2, for 2-3 times less bitrate. Imagine DVD quality at only  
2 Mbits/s over ADSL. On the other hand, there is a price to pay for these 
improvements in terms of the calculations. The complexity of the calculations for 
AVC is four times greater than that of MPEG2. As a result, this standard is currently 
intended for use in offline applications such as Video on Demand (VOD) or indeed 
storage of films on DVD. AVC is also likely to be used for the DVD’s successor: 
HD-DVD. 

For the MPEG4 standard, see [MPE 98]. This standard introduces the notion of 
audio and video objects so that the user can interact with the content by 
manipulating these objects (cutting the “sound” object, changing the “audio 
language” object, moving a 3D object, changing the viewpoint, etc.). This standard 
makes the hypothesis of an acquisition independent of the objects, or the hypothesis 
of a segmentation method capable of distinguishing all the objects going to make up 
a scene. Segmentation remains an unanswered question in audio-visual processing. 
As a result, the vast majority of MPEG4 functionalities cannot currently be 
exploited. 
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Standards Aims Rate Video format 

H.261 

H.263 

- visiophony and 
videoconference on RTC 
and RNIS 

- low video quality 

P x 64 kbits/s  - CIF (352x288) 

- QCIF (144x176) 

MPEG1 - compression of video and 
audio channels 

- near-VHS quality 

1.5 Mbits/s 
(1.2 Mbits/s for video) 

Formats up to 
4096x4096 

at 30 images/s 

MPEG2 - compression for digital 
TV, HDTV, and DVD 

- high visual quality 

- digital TV (2 to 4 Mbits/s) 

- HDTV, DVD 
(from 1.5 to 10 Mbits/s) 

Formats up to 
16384x16384 at 

30 images/s 

H.264 - compression for DVD, 
HD-DVD and VOD 

- high visual quality 

2-3 times lower than MPEG2 
for the same visual quality 
4 times more complex than 
MPEG2 

Formats up to 
16384x16384 at 

30 images/s 

Table 2.1. Comparison of video standards

2.4.3. Recent developments in video compression 

DCT-based techniques have proven their effectiveness. They nevertheless 
remain limited in terms of scalability and do not offer flexibility of frequency, 
resolution or quality layers (see section 2.3.2.4 on JPEG 2000). This is possible with 
the recent approaches which use wavelet transform. The generic scheme of Figure 
2.12 remains valid when DCT is replaced by DWT. However, as for H.264, 
flexibility results in a complexity of calculation which currently limits the use of 
DWT into the video standards. 

2.5. Compressing 1D signals 

Speech signals used on phones or on mobile networks, as well as all the musical 
signals stored in MP3 players, and sent over the Internet are digital in form. The rate 
constraints associated with the transmission or storage supports and the sound 
quality constraints due to services or uses, vary widely. In telephony, for example, a 
reasonable voice signal is achieved at a sampling frequency of 8 kHz and 13 bits per 
sample (a bitrate equivalent to 100 kbits/s). For music, the sound quality required 
needs wide bandwidths, as well as greater precision during the quantization of the 
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signal’s samples: for the CD format, the sampling frequency is fixed at 44.1 kHz and 
the resolution is at 16 bits per sample (a bitrate equivalent to 1.4 Mbits/s in stereo). 

The transmission or storage supports cannot generally allow such large bitrates, 
hence the need to code the audio information. For further details on the different 
standards and recommendations for audio signals, see [LEG 00]. 

2.6. The compression of 3D objects 

Three-dimensional objects are becoming more and more present in the fields of 
industry, medicine, cultural heritage, video games, etc. The initial data is very 
diverse in its nature: clouds of dots, surface data and volume data. Numerous models 
of 3D representation have been proposed to represent this variability. From the point 
of view of compression, these models need to be compact, easy to manipulate, and 
have to allow for a high quality representation for the greatest variety of 3D shapes. 

The widespread use of polygon meshes for the visualization of 3D objects has 
led many researchers to investigate the compression of the structure of the 
associated data: the connectivity of a mesh vertex and its geometry (spatial positions 
of these vertices). Other researchers have focused on new surface models 
(subdivision surfaces, geometric wavelets, etc.) and volume models (superquadrics, 
supershapes, etc.) which are generally very compact, and thus very efficient for 
compression. These scientific activities combine complementary methods of two 
communities: image processing and geometric modeling. We will not detail these 
promising techniques in this chapter. Instead, you may wish to refer to [LAV 05] 
and [AKO 06] for a complete review of the compression of 3D objects. 

Concerning the standardization, the MPEG4 standard in its second version 
includes various 3D mesh compression methods. The extension MPEG4 AFX 
(Animation eXtension Framework) includes a wavelet-based approach. It also 
proposes the use of implicit surfaces, NURBS and subdivision [MPE 03]. 

2.7. Conclusion and future developments 

This chapter has presented the compression techniques which have become 
current standards. All the multimedia supports have been covered, with priority 
given to image and video. It is important to note that the existence of standards is an 
essential step towards making technological transfer more dynamic and 
democratizing multimedia services and usages. Today, who doesn’t use a digital 
camera with “.jpg” files? Who does not watch DVD films coded in MPEG4? We 
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make use of digital technology in our daily lives and, as a result, we use all the 
associated compression standards. 

Nevertheless, multimedia research continues with as much energy and 
enthusiasm as ever. If research and development teams had ceased to conceive of 
new image compression methods in the 1980s or 1990s, perhaps because of the 
existence of a standard such as JPEG, then today we would not have the JPEG 2000. 

The future continues to look promising: the key trend is clearly the development 
of new functionalities to be added to the existing compression methods. This trend is 
driven by innovative ideas in multimedia services and usages. It should open up 
many research and development directions. Principal examples include: 

– taking into consideration network and transmission needs (source-channel 
coding) as well as receiver needs (man-machine interfaces, innovation in 
visualization, etc.); 

– taking into consideration the growing size of databases (real-time access, real-
time processing, etc.); the need for innovative approaches combining indexing and 
compression; 

– the security of multimedia content with hybrid methods: compression-
watermarking-encryption; 

– collaborative work between the “compression” communities and those 
focusing on “knowledge modeling”, in order to better understand the semantic 
content of images and thus to open up new perspectives for image compression. 
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Chapter 3 

Specificities of Physiological Signals
and Medical Images

3.1. Introduction 

This chapter will broadly cover the specific features of the signals and images 
most commonly used in clinical procedures. Of course, we may wonder if  
such analysis is essential when designing compression schemes dedicated to 
physiological signals and medical images. In other words, are these data so different 
from common signals and images (e.g. audio signals or images acquired by a digital 
camera)? 

Physiological signals should not be considered as audio signals for the simple 
reason that they are provided by uncommon sources, having particular features. 
They differ from audio signals by their frequency content, by the correlation 
between samples and above all, by their dynamic. In fact, the quality of audio 
signals can be measured through regular auditory systems; this measurement 
procedure however cannot be applied to physiological signals. Consequently, an 
efficient coding device, in terms of compression rates and diagnostical quality, 
which will take into account the specific features of those signals, must therefore be 
employed. 

Chapter written by Christine CAVARO-MÉNARD, Amine NAÏT-ALI, Jean-Yves 
TANGUY, Elsa ANGELINI, Christel LE BOZEC and Jean-Jacques LE JEUNE. 
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Likewise, the specificities of medical images are found in the way that the 
meaning and hence the values of the pixels are represented. Most compression 
systems are tested on natural monochromatic or color images (e.g. the most 
commonly used image being the “Lena” image). The pixel intensity of those images 
corresponds to the reflection coefficient of natural light. In fact, images acquired for 
clinical procedures reflect very complex physical and physiological phenomena, of 
many different types, hence the wide variety of images. 

This chapter will begin by introducing the characteristics of physiological signals 
(section 3.2) followed by the characteristics of medical images (section 3.3) and 
conclude by highlighting the necessity of an adequate compression system adapted 
to these features. Section 3.2 will first of all describe those physiological signals 
most commonly used in clinical procedures (electroencephalogram (EEG), evoked 
potential (EP), electromyogram (EMG) and electrocardiogram (ECG)). It will then 
outline the characteristics of the most recent acquisition systems as well as the 
properties of the different signals acquired thus. Section 3.3 will detail some laws of 
physics, the various applications used in clinical procedures as well as today’s 
technological improvements in the principal fields of medical imaging such as 
radiology (X-ray imaging), magnetic resonance imaging (MRI), ultrasound (US), 
nuclear medicine (NM) and anatomic pathology imaging. In this same section we 
will then outline the most relevant features (especially for information encoding) of 
the images. 

3.2. Characteristics of physiological signals 

Although many physiological signals are used in clinical routines, in this section 
we have limited our analysis to the most commonly used signals, specifically those 
that require most storage and transmission capacity. 

3.2.1. Main physiological signals 

3.2.1.1. Electroencephalogram (EEG) 

The EEG is a physiological signal related to the brain’s electrical activity. This 
signal is remotely recorded using electrodes placed on the scalp. The EEG helps 
detect potential brain dysfunctions, such as those causing sleep disorders. It may 
also be used to detect epilepsies known as “paroxysmal attacks” identified by peaks 
of electrical discharges in the brain. Using EEG during the monitoring process is a 
common practice in clinical routines. In this particular process, the information is 
usually recorded over an extended period of time (24 hours). 
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3.2.1.2. Evoked potential (EP) 

When stimulating a sensory system, the corresponding recorded response is 
called “evoked potential” (EP). Nerve fibers generate synchronized low-amplitude 
action potentials (i.e. spikes) and the sum of these action potentials provides an EP 
that should be extracted from the EEG, considered here as noise. Generally, EPs are 
used to diagnose certain anomalies linked to the visual or the auditory system or 
even the brain stem. 

There are three major categories of evoked potentials: 

– somatosensory evoked potentials (SEP), obtained through the stimulation of 
muscles; 

– visual evoked potentials (VEP) for which a source of light is used as a 
stimulus; 

– auditory evoked potentials (AEP) generated by stimulating the auditory system 
with acoustic stimuli (Figure 3.1). 
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Figure 3.1. Auditory evoked potential generated by a stimulus.  
Wave I: action potential; Wave II, III, IV, V: brain stem potential (BAEP); 

Waves N0, O0, Na, Pa, and Nb: thalamic/cortical potentials; 
Waves P1, N1, P2 and N2: late potentials (cortical origin)

3.2.1.3. Electromyogram (EMG) 

EMG is a recording of potential variations related to voluntary or involuntary 
muscle activity. The artefact’s amplitude (5 μV) resulting from muscular contraction 
is higher than that of the EEG and the time period varies between 10 and 20 ms. 
Experiments on volunteers have shown that for muscular contractions of 40 s, 
muscle “spikes” (impulsional signals) appear by intermission approximately every 
20 ms. This phenomenon is often modeled by a “Poisson” process. 
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3.2.1.4. Electrocardiogram (ECG) 

The ECG is an electrical signal generated by the heart’s muscular activity. It is 
usually recorded by a series of surface electrodes placed on the thorax. An 
electrocardiographic examination is entirely painless. It provides effective 
monitoring of the heart by detecting irregular heart rhythms. It is also used to 
prevent myocardial infarction. 

Monitoring using EGG signals is a common process in clinical routines. 
Recordings made over a long period of time (e.g. approximately 24 hours or more) 
are often necessary. In some cases, recordings can take place at the patient’s 
residence by using a “Holter” monitor. This device efficiently records all cardiac 
activity using “flash” memory. In other applications, remote monitoring is 
performed by transmitting the ECG signal (e.g. one or various leads) using a given 
network, such as the Internet or an intranet. 

3.2.2. Physiological signal acquisition 

Unlike acquisition systems used 20 or 30 years ago, collecting physiological 
signals is nowadays achieved by more efficient and cheaper methods. Before dealing 
with a digitized physiological signal, the acquisition system should include analog 
filters (e.g. anti-aliasing) or other filters to eliminate some drifts, such as those 
caused the 50/60 Hz interferences. Analog amplifiers are also necessary, especially 
for low energy signals, such as Brainstem Auditory Evoked Potentials (BEAP). The 
dynamic of the recorded signals varies according to their types. Nevertheless, when 
dealing with EGG, this range can sometimes reach several millivolts. The 
digitization process of physiological signals often requires 12-14 bit quantization. In 
fact, this level of accuracy seems sufficient for most applications. Since 
physiological signal energy lies in low frequencies instead, low rate samplings are 
then required. Finally, in order to prevent any additional interference, it is usually 
recommended to use cable shielding. 

3.2.3. Properties of physiological signals 

3.2.3.1. Properties of EEG signals 

A considerable amount of energy in EEG signals is located in low frequencies 
(between 0 and 30 Hz). This energy is largely dominated by the following rhythms: 

– the  rhythm consists of frequencies below 4 Hz; it characterizes cerebral 
anomalies or can be considered as a normal rhythm for younger patients; 

– the  rhythm (5 Hz) often appears amongst children or young adults; 
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– the  rhythm: frequencies around 10 Hz are usually generated when the patient 
closes his eyes; 

– the  rhythm: frequencies around 20 Hz may appear during a period of 
concentration or during a phase of high mental activity; 

– the  rhythm: its frequency is usually above 30 Hz, it may appear during 
intense mental activity including perception. 

Above 100 Hz, we can note that the EEG energy spectrum varies roughly 
according to the function 1/f, where f stands for the frequency. As already 
mentioned in section 3.2.1.1, peaks and waves may appear on random epochs while 
recording the EEG signal. In fact, this is a common characteristic of epileptic cases. 
Moreover, it is important to note that other physiological signals may interfere with 
the EEG signal during the acquisition process. This is the case with ECG or EMG 
signals. The amplitude of the EEG signals varies from a few microvolts up to about 
100 μV. The 10/20 system is often used for acquisition purposes. This system 
standardizes the position of the 21 required electrodes. In some applications, the 
acquisition process however does not use this standard. Instead, a higher or lower 
number of electrodes are used. Different EEG signals are represented in the diagram 
below (Figure 3.2). 

Figure 3.2. Recorded EEG signals: a) in a healthy patient (eyes open); 
b) in a healthy patient (eyes closed); c) in an epileptic patient
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3.2.3.2. Properties of ECG signals 

A typical ECG beat has 5 different waves (P, Q, R, S and T), as shown in  
Figure 3.3. Each wave can be defined as follows: 

– the P wave corresponds to the right and left heart auricles’ sequential 
depolarization: its amplitude is usually lower than 300 μV and its duration is of less 
than 120 ms, its frequency varies between the following range: 10 to 15 Hz; 

– the QRS complex is produced after the depolarization process in the right and 
left ventricles; usually, its duration is of 70 to 110 ms and its amplitude is around 
3 mV. It should also be noted that the QRS complex is often used by algorithms of 
automatic heart beat detection; 

– the T wave corresponds to ventricular polarization: it is once again 
characterized by a low frequency; 

– the ST segment corresponds to the time period during which the ventricles 
remain in a depolarized state; 

– the RR interval is often used as an indicator for some arrhythmias; it may also 
be integrated into some ECG classification algorithms; 

– the PQ and QT intervals are also two important indicators that could be used 
for diagnostic purposes. 

Figure 3.3. Normal heartbeats

3.2.3.2.1. Cardiac rhythms 

It is well known that the heart rhythm varies according to the person’s health 
(fatigue, effort, emotion, stress, pathologies, etc.). The most common rhythms 
observed during the analysis of cardiac activities are summarized as follows: 

– sinus rhythms: a normal sinus rhythm (corresponding to the sinus node) 
usually has a frequency of 50-100 beats/minute. A low beat rhythm is known as a 
bradycardia; however if the rate is higher than a certain limit, it would be considered 
as a tachycardia; 
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– extrasystole: in some cases, the sinus rhythm mixes with an extrasystole, also 
called Premature Ventricular Contraction (PVC). The PVC is a premature 
contraction of the heart that is usually followed by a longer pause. In some cases, it 
can also occur between normal pulsations without affecting their regular occurrence. 
The origin of an extrasystole may be auricular, nodal or ventricular. Its morphology 
changes according to the pathology (Figure 3.4); 

– supraventricular arrhythmia: its origin is either the atria or the atrioventricular 
node. The P wave is often distorted or even non-existent; 

– ventricular arrhythmia: this heart rhythm complication arises from the 
ventricles including the ventricular tachycardia (i.e. characterized by extrasystoles 
that appear rapidly and repetitively), the ventricular “flutter” (i.e. a very rapid and 
regular cardiac rhythm, where the QRS complex and the T wave cannot be 
perceived) and ventricular fibrillation (i.e. a chaotic rhythm often followed by heart 
failure). 

Figure 3.4. Cardiac rhythm containing extrasystoles

3.2.3.2.2. ECG noise 

Other physical or physiological signals can often interfere while recording the 
ECG signal, or all other signals. For example: 

– the 50/60 Hz signal: this classical interference can be removed easily by using 
some advanced methods like adaptive filters. For a well-known example of this, the 
reader can refer to the scheme proposed by Widrow et al.; 

– electrode artifacts: these may appear when electrodes are moved on the skin’s 
surface. Their frequencies range between 1 and 10 Hz, which might cause an 
overlapping with the QRS complex; 

– the EMG: this signal (previously cited) can be considered a real nuisance 
during the ECG acquisition process. It can sometimes be eliminated by averaging 
methods or other approaches explained in [MOR 93] and [PAU 00]; 
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– respiratory activity may sometimes cause changes in the morphology of QRS 
complexes. Some proposed techniques, found in the literature, enable the efficient 
estimation of the frequency of respiratory activity [LEN 03]; 

– etc. 

More information related to the properties of physiological signals as well as 
processing techniques may be found in recent works [SOR 05]. 

3.3. Specificities of medical images 

Medical imaging was initiated and developed due to the diversity of physical 
phenomena being used (X-rays, -rays, ultrasound waves, magnetic nuclear 
resonance). Medical imaging was further developed with the increased use of 
computers in the acquisition process (real-time treatment of a large amount of 
information) as well as for image reconstruction (tomography). 

Each medical imaging modality (digital radiology, computerized tomography 
(CT), magnetic resonance imaging (MRI), ultrasound imaging (US)) has its own 
specific features corresponding to the physical and physiological phenomena 
studied, as shown below in Figure 3.5. 

 a) b) c) d) 

Figure 3.5. Sagittal slices of the brain by different imaging modalities: 
a) magnetic resonance imaging (MRI), b) computed tomography (CT), 

c) positron emission tomography (PET), d) ultrasound (US)

3.3.1. The different features of medical imaging formation processes 

The pixel or voxel values depend on the chemical and physical characteristics of 
the tissues studied. These characteristics often correspond to a physiological 
phenomenon. This intensity tallies with: 

– an attenuation coefficient of X-rays for radiology and CT; 
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– a local concentration of radioactive markers in nuclear medicine giving for 
example access to information on the body glucose consumption or the metabolic 
activity within the body; 

– a local concentration of contrast agent in radiology or MRIs; 

– a density of protons or the speed of paramagnetic proton relaxation for MRI; 

– an anisotropic movement of water molecules for diffusion MRI; 

– a concentration change in oxyhemoglobin for functional MRI; 

– a reflective and scattering coefficient for ultrasound; 

– a local speed vector depicting blood flow during Doppler ultrasound, etc. 

Imaging mechanisms based on spontaneous contrasts often provide anatomic 
information, while imaging mechanisms known as “functional” often use markers 
reflecting fluid motion or metabolic exchanges. These mechanisms efficiently depict 
important details on how well the body functions. 

3.3.1.1. Radiology 

Radiology is still widely used in clinical routines. However, digital radiology is 
gradually replacing analog radiology producing radiographic films. 

3.3.1.1.1. Guiding principles 

Radiology uses X-ray attenuation properties and maps out the cumulated 
absorption process of an X-ray during its path along the tissues (transmission 
imaging) [GIR 93]. X-ray absorption is very high if the body structure studied 
contains calcium. It is less significant if it is made up mainly of soft tissues and 
lower still if the body structure contains fat. It is zero in water (Hounsfield scale). In 
digital radiology, an image is obtained by using flat matrix panels or 
radioluminescent storage phosphor plates. 

When the phosphor plates are exposed, the X-ray’s intensity dispersion is 
recorded as electrons captured within semi-stable layers. Once the exposure is 
carried out, the panel is placed in an appropriate reader. In this reader, a laser beam 
scans over the panel and sends out for each pixel a luminous signal proportional to 
the X-ray’s intensity level received on this pixel. This light transmission is then 
detected by a photomultiplier tube for which the signal is digitized. 

Flat matrix detectors are made of one large surface active matrix. This matrix 
contains receptors that are able to convert X-rays into an electric charge. The electric 
charge at the level of each pixel is read by a low noise electronic system (thin 
transistor film) and then converted into numerical data. Converting X-rays into 
electric charges may be performed either directly or indirectly. For a direct 
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conversion, a photoconductor must be used (amorphous selenium). Once the X-rays 
interact with the photoconductor, electrons are released. The quantity of electrons 
released is proportional to the intensity of the X-rays. For an indirect conversion, a 
phosphorescent layer is used to absorb the X-rays. The resulting luminous photons 
are then detected by a large photodetector usually made of photodiodes. Detectors 
such as the one described above can obtain a single projection plane of an anatomic 
region. The entire volume of the X-rayed body part is projected onto a plan. 

To make slice images with X-rays, CT is used. CT scanners (X-ray tubes and 
detectors) revolve around the patient so as to obtain a variety of projections from 
many different angles. In practice, the X-ray beams are aimed so as to radiate over a 
small part of the body. The X-ray projection comes out in the form of lines. In 
tomography the set of projections is then used to reconstruct a map indicating all the 
regions where attenuation coefficients have been calculated [GRA 02]. 

CT delivers anatomic information but is unable to take metabolic rate into 
account. An iodinated substance may be injected to increase the contrast between 
the different tissues. The distinction will appear depending on the level of 
vascularization of each tissue, or depending on how fast the substance reaches the 
interstitial space. With multislice scanners we can obtain perfusion imaging, a slight 
incursion into functional imaging. However, we still need to control the amount of 
ionizing radiation used. 

3.3.1.1.2. Images acquired in clinical routine 

Digital projection radiology is widely used in clinical routines for the study of 
bones, as well as to examine breasts (mammography) or lungs. It is also used in 
cardiology for coronary angiography with a contrast agent injected in the coronaries 
through a catheterization process (Figure 3.6). 
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Figure 3.6. Radiological images. 1st row: projection images;
from left to right: mammography, pulmonary radiography, coronary angiography; 

2nd row: thorax and abdomen CT scan (after injection of contrast agent)

A cardiac angiography examination is made up of a dozen sequences so as to 
observe the ventricles and the coronary arteries at various angles. The set of 
sequences gathers a total of 2,000 to 3,000 images (512*512*8 bits) corresponding 
to about 500 to 800 MB in terms of disc storage space. Projection digital radiology 
is widely used on a daily basis in all imaging centers, which thus requires a large 
storage capacity for the considerable quantities of information transmitted and 
saved. For example, using this type of imaging, Angers hospital in France (1,600 
beds) accumulates 4.5 TB a year, i.e. 35% of the production of all its imaging 
systems. Nevertheless, the increase in volume of projection images is most 
considerable. The CT scanner is very useful for visualizing complicated fractures, or 
for examining organs in the neck, the thorax or the abdomen; a contrast agent is 
often injected in the patient’s veins so as to better distinguish the different structures 
in the body (Figure 3.6). 

3.3.1.1.3. Recent developments 

The recent upgrades of the multi-detector (or multi-slice) CT scanner 
considerably increased the speed at which images are acquired, and improved the 
quality of those images. Such developments now allow quasi-isometric 3D images 
on any layout plan space. The more detecting channels there are in the system, the 
better both temporal and spatial resolution will be. These upgrades led to the 
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introduction of a new vascular imaging that is less intrusive and highly efficient. The 
volumes possible now allow us to explore the aorta and the arteries of the lower 
limbs through a single acquisition – hence, we are now able to visualize over a total 
length of more than one meter, constituted by a series of sub-millimeter slices. In 
cardiology, the multi-slice technique allows us to reconstruct a 3D image of the 
coronary tree almost as detailed as an arteriography imaging [NIK 04], thanks to the 
increased acquisition speed and the ECG synchronization. For example, we are now 
able to obtain a reconstruction of 10 or more phases, each made of 80 slices, to 
transfer them and observe them in real-time in an oblique reformatted or three-
dimensional reconstruction (volume rendering) [ROS 06] (Figure 3.7). 

a) b)

Figure 3.7. Helical scanner: a) angioscanner of the coronary arteries (curvilinear 
reformatting in thick cuttings, maximum intensity point projection); b) reconstruction  

of a heart in volume rendering (reconstruction at 75% of the cardiac cycle)

3.3.1.2. Magnetic resonance imaging (MRI) 

Over 30 years, MRI has become widely used, especially to observe organ 
anatomy; their lesions as well as their performance. This particular type of imaging 
explores the cardiac or cerebral anatomy for example, in great detail. It also 
examines cerebral, cardiac or pulmonary activity. 

3.3.1.2.1. Guiding principles 

For a very precise frequency called a resonance frequency, an electromagnetic 
wave is sent through the tissues and topples the magnetization of some atom cores 
(such as that of hydrogen, a chemical element found in great quantities in all human 
tissues): this is known as the magnetic resonance phenomenon. The resonance 
frequency is proportional to the magnetic field applied (1.5 Teslas for the most 
commonly used appliances). During its return to a state of stable equilibrium, the 
magnetization of the proton is animated by a rotating movement around the 
magnetic field (precession). Its frequency equates the resonance frequency. If the 
body is placed inside a static magnetic field, by the precession process, the 
magnetization induces a current oscillating at the resonance frequency in a detecting 
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coil rolled around the patient. The current’s intensity is proportional to the density of 
the hydrogen atoms (or density of the protons) in the volume studied. By applying a 
varying magnetic field (gradient) in the space, a specific resonance frequency is 
captured for each of the volume elements. Measuring frequencies is a particularly 
meticulous process in physics, which is why the magnetization’s distribution is 
measured by units smaller than millimeters. In practice, the magnetization’s 
intensity once in a state of stable equilibrium does not allow us to obtain a sufficient 
contrast between the different anatomic structures. Images are therefore often 
measured over the relaxation time constants of longitudinal (T1 relaxation) or 
transversal (T2 relaxation) components, which characterize each biological tissue. 
The cartography of these parameters lets us obtain a highly detailed anatomic 
imaging (Figure 3.8). 

a) b)

Figure 3.8. Sagittal slice of the brain for different MRI acquisition parameters: 
a) T1-weighted image; b) T2-weighted image

Phase magnetization within a volume can also provide functional information. In 
fact, this phase is proportional either to the speed (when applying a bipolar 
gradient), or the acceleration (when applying a tripolar gradient) of the voxel 
movement in the gradient direction. This phase is therefore measured using the 
Fourier transform which provides the magnetization intensity as well as the phase 
for each of the frequencies making up the current measures in the surrounding coil, 
as well as for each voxel. This is the reason why the cartography of phases becomes 
a map of speeds and accelerations. This is due to the fact that the reference phase is 
that of the fixed tissues. The microscopic movements of water can also be observed; 
leading us to the subject of MRI diffusion (Figure 3.9). Perfusion imaging uses a 
contrast agent and allows us to examine their dynamics when passing through the 
capillary network (Figure 3.9). Finally, functional MRI (fMRI) is aimed at observing 
cerebral surfaces activated when carrying out motor, sensitive, sensorial or cognitive 
activities. fMRI is based on the idea that activating the cerebral zone leads to a local 
increase in cerebral blood flow as well as an increase in oxygen consumption. 
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A B

Figure 3.9. Brain map in MRI. Patient A: echo sequence of a spin-echo  
planar weighted in diffusion and the diffusion’s apparent coefficient map;  

Patient B: parametric map of cerebral blood flow and perfusion delay 

A very detailed and instructive overview on the complex principles of spatial 
measures and coding of the NMR signal and the image reconstruction process as 
well as of numerous imaging sequences is presented in [KAS 03]. 

3.3.1.2.2. Imaging carried out in clinical routines 

MRI is an essential appliance for medical diagnosis due to its resolution being 
less than a millimeter, its innocuousness (in certain situations) and its ability to 
produce images in whichever layout plan, as well as its many sequences adapted to 
both anatomic and functional imaging. 

MRI is now commonly used in neurology to obtain detailed images of the brain 
(detection and identification of cerebral injuries or lesions). Moreover, MRI 
diffusion dynamically probes the cerebral tissues in a microscopic scale so as to 
detect changes in nerve cell size. MRI diffusion also shows how nerve fibers are 
organized and connected to one another, which enables us to study the neuron 
interconnections of the brain [LEB 03]. 

MRI is also a reference in cardiology due to its spatial resolution. In this case, 
MRI is used to study the myocardial perfusion from the evolution in contrast 
following the injection of a small dose of an agent (gadolinium). The phase map also 
allows us to determine the dynamic characteristics of the cardiac mechanism 
(measuring cardiac flow for example). Tagged MRI methods allow us to study 
cardiac muscle deformation during contraction (Figure 3.10). 

Figure 3.10. Tagged cardiac MRI, small-axis slices
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3.3.1.2.3. Recent developments1

Mutli-component antennas (8, 16 or 32 components) are now available for 
recording systems. They reduce recording time while maintaining a high image 
resolution, by increasing the spatial and/or temporal resolution or the recording 
volume for a steady recording time span. The amount of image acquired in clinical 
routines has therefore increased. 

Moreover, since the arrival of “high magnetic field” magnets (from 3 to  
11 Teslas), the MRI potential, and especially that of MRI diffusion, will increase in 
terms of spatial and temporal image resolution (10 to 100 times greater than that of 
current images). Such systems allow us to reduce the thickness of each slice, and 
hence to achieve 3D viewings in clinical routines. In cardiology, it is now possible 
to have MRI angiographies of coronary arteries allowing us, without radiation or 
contrast agent, to search for coronary lesions as well as the consequences of such 
lesions on the perfusion and on the contractile pump (Figure 3.11). 

At the same time, new MRI sequences have been developed, mainly in 
functional MRI (for the brain as well as the abdomen in the study of liver fats). 
More common sequences have also been improved such as diffusion tensor imaging 
for which it is now possible to observe over 150 directions (instead of 9 with the 
usual sequence) (Figure 3.11). 

 a) b) c) 

Figure 3.11. Recent MRI developments: a) MRI angiogram of the coronary arteries; 
b) axial slice of the brain (presence of a tumour in the left hemisphere); 

c) visualization by diffusion imaging of white matter tracts (presence of lesions in the right 
hemisphere); image sources: General Electric Systems 3T

1 We would like to thank Mr. Guillaume Calmon, General Electric Healthcare for all the 
information and images. 
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Finally, it is possible to acquire images with a low magnetic field using an ultra 
sensitive detector (SQUID – Superconducting Quantum Interference Device) working 
at very low temperatures. SQUIDs are used for a new type of imaging that has endured 
spectacular improvements in the fields of Cerebral Imaging and Magneto 
Encephalography (MEG), enabling us to measure low magnetic fields emitted by ionic 
currents running through the neurons [VOL 04] [JAN 02] (Figure 3.12). 

a) b)

Figure 3.12. a) MEG auditory dipole fused with 3D MRI 
b) MEG language dipole fused with 3D MRI [JAN 02]

3.3.1.3. Ultrasound 

Fetus ultrasound scans are always stirring experiences as the first visual 
encounter between the future parents and the coming baby. However, ultrasound 
scans are also used in many other cases. 

3.3.1.3.1. Guiding principles 

Ultrasound imaging probes the acoustic properties of body tissues. A sound 
wave (ultrasound) propagates inside the body along with local pressure variations, 
and is partly absorbed and partly reflected along its path, depending on the tissues’ 
biological compressibility and density [BUS 01]. This sound wave is generated by 
piezoelectric captors which also measure the reflected waves (echoes) generated by 
specular reverberations at the interface between different tissues. The echo arrival 
times and their intensity enable the reconstruction of an image picturing biological 
issues up to a depth of a few centimeters and with a resolution down to a few 
millimeters. The intensity of echoes at tissue interfaces depends on the difference in 
acoustic impedance (a function of the biological properties of the tissue). The range 
of ultrasound frequencies used in medicine extends between 1 and 15 MHz for axial 
resolution ranges between 100 and 1,500 micrometers and for an ultrasound depth of 
several centimeters (e.g. 5 MHz used for a scan depth of 15 cm). Lower frequencies 
(bearing less attenuation) are mainly used for the study of innermost organs in the 
body. Higher frequencies (delivering a better spatial resolution) are used for the 
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study of superficial organs. Absorption and dispersion phenomena (non-specular 
reflection) alleviate and deviate ultrasound waves. Moreover, when running through 
soft tissues, heterogenities produce diffusion echoes that create an ultrasound 
textured image and introduce some “speckle” noise. 

The transducer is the active part of the ultrasound probe and is made of 
piezoelectric material (ceramic or polymer) that changes shape and generates an 
acoustic wavelength [CHR 88] when placed under an electrical potential. This same 
device receives the wave’s echoes and transforms the ultrasound waves into an 
electrical signal. An array of piezoelectric elements with simultaneous transmission 
or recording of several ultrasound waves is used to create a wavefront, which can be 
oriented and focused at various depths. 

Ultrasound scans also enable us to measure the speed of blood flow in cardiac 
cavities and large vessels by measuring changes in frequencies by the Doppler 
Effect between the ultrasound wave transmitted and the reflected echoes [JEN 96]. 
During an ultrasound exam, red blood cells are sufficiently large (spheres of about 
7 m in diameter) compared to the dimension of the wavelength (150-770 m for 
frequencies of 2-10 MHz) and are thus seen as echo reflectors producing spherical 
waves. A particular speed of flow in a vessel will create, using the Doppler Effect, 
echoes with modified frequencies. This effect is characteristically defined by the 
power spectrum density, directly proportional to the speed of blood flow. The range 
of frequency changes measured physiologically extends between 1-26 kHz for a 
range of ultrasound frequencies of 2-10 MHz and a range of blood flow speeds of 
50-200 cm/s. The Doppler signal is often represented in three different forms:  

– a spectrogram signal reproducing the speed of blood flow, in a given direction; 
through time and according to the energy of the signal received (Doppler power); 

– an anatomical color image visually overlaying the information on speed values 
(Doppler imaging); 

– an audio signal when the Doppler range of frequency shift is within the audible 
spectrum (Doppler audio). 

3.3.1.3.2. Imaging produced in clinical routines 

In a clinical routine, ultrasounds are used to analyze the morphology of organs as 
well as to detect potential anomalies. Each type of ultrasound examination is carried 
out with a specific ultrasound probe whose shape, size and working frequency is 
adapted to the organ examined. The echoes received in different orientations of 
auscultation, defining a sector (auscultation zone), are displayed on a fan-shaped 
diagram, whose echo lines need to be reconstructed in order to go from a series of 
registered measures with spherical coordinates to a regular pixel display grid with 
Cartesian coordinates. The reconstructed ultrasound images can be viewed on a 
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video screen in A (amplitude according to a fixed direction), B (gray intensity 
according to a set of directions creating an image) or M (combination of modes B 
and A to portray organ movements) mode. 

Each sector must function at a rate of 50 images per second so as to provide 
images in real-time. The spatial axial resolution, directly related to the frequency at 
which the ultrasound probe functions, sits between 100 and 1,500 m. The lateral 
resolution depends on the echo’s depth as well as on the focal systems used, and 
varies between 1 and 5 mm. However, the image’s thickness varies between 2 and 
12 mm, according to the size of all active elements in the ultrasound probe. 

In cardiology, ultrasound imaging (echocardiography) is widely used. It is in fact 
the only type of cardiac imaging that operates in real time, while being transportable 
and not too expensive to purchase or operate. An echocardiography examination 
includes a series of acquisitions for the orientation of different probes and different 
acoustic windows. For each position of the ultrasound probe, a series of images is 
obtained to cover several cardiac cycles. 

Widely used in obstetrics, ultrasound imaging allows us to diagnose potential 
morphological anomalies (Figure 3.13). By measuring morphologies on different 
parts of the skeleton and on certain internal organs such as the heart, we are able to 
determine the fetus’ gestational age and to follow its development. 

Abdominal ultrasound scans can be used to examine various soft organs located 
in the abdomen (liver, spleen, kidneys and ganglions) as well as organs containing 
liquid (gall bladder, principal biliary tracks, urinary bladder). Such scans can also be 
used to examine organs that are harder to observe due to the gases that they contain 
(stomach, small intestine, colon and appendix). When it comes to pathologies, 
ultrasound scans can be used to specify the size and echo structure determining 
benign or malignant tumours, cysts, abscesses and liver cirrhosis. An ultrasound 
scan of the pelvis helps us evaluate the general state of the organs it contains 
(urinary bladder, uterus, prostate and genital organs), to measure their dimensions 
and to detect the presence of potential anomalies (tumours, cysts, fibroma, 
haematomas). 

Finally, Doppler ultrasound is used to study arterial hypertension and vascular 
anomalies (thrombosis, aneurysm, venous angioma and haematoma). Exploration by 
Doppler ultrasound enables the analysis of arterial walls by telling us whether they 
are homogenous and regular and how to characterize artherosclerosis plaques. It is 
also used to carry out and monitor vascular interventions in the case of a stenosis 
(Figure 3.13). A Doppler ultrasound can be combined with morphometric analysis 
evaluating the minimal diameter of the vessel with blood flow speed at the location 
of the stenosis, during a full cardiac cycle. 
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 a) b)

Figure 3.13. Ultrasound images: a) fœtus; b) Doppler of the carotid artery with a colored 
image and a power spectrum (General Electric Healthcare)

Some organs cannot be visualized by ultrasound, the reason being that 
ultrasound waves cannot travel through air or bones. It is therefore impossible to 
examine the lungs or the brain using this type of imaging. Ultrasound brain imaging 
can only be performed on infants through their fontanels. 

3.3.1.3.3. Recent developments 

There also exists 3D ultrasound imaging techniques originating from a series of 
2D acquisitions, either using specific volumetric medical probes, or with common 
ultrasound probes equipped with spatial positioning sensors. With these probes we 
are able to examine 3D volumes of organs, with a limited temporal resolution (1 to 5 
volumes/second), lower than for traditional 2D examination. New real time 3D 
ultrasound medical probes have also recently been developed. They are made of a 
matrix of active components. By using these, we can acquire a volume of 
information with the probe in a fixed position (Figure 3.14). The rate of acquisition 
for these medical probes, for a traditional cardiac examination, varies from 10 to 20 
volumes/second, for an information output of 45 MB by examination and a 
resolution of 1 mm3 per voxel. 
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a) b)

Figure 3.14. 3D ultrasound scan: a) fetus face; 
b) hepatic vascularization (Philips Medical Systems)

Other recent advances to ultrasound acquisition methods allow additional 
information of clinical significance to be stored. Hence, elastrography imaging 
(tissue Doppler, measures of displacements or relative compressions) and high-
frequency imaging are all major improvements in terms of physiological 
information, even if it means that the total volume of information has largely 
increased. High-frequency ultrasound scans unveil structural anomalies in cells that 
could be due to a growth of the membrane or to the nuclei dimensions. With the 
generation of shear waves we are now able to analyze tumour structures within a 
certain depth of tissue material [BER 04]. It is also possible to record non-stop 
ultrasound information in the form of radiofrequency wavelengths, so as to deal with 
the signal before the images are formed. A recent innovation of great importance is 
that of ultrasound harmonic imaging. When echoes are created in the human body 
the ultrasound wavelength includes the main interfering wavelength as well as a 
harmonic frequency component. Harmonic imaging works by filtering the echo so as 
to record and enhance this harmonic component. Using this technique we are able to 
obtain images benefiting from reduced reverberation, visual distortion or border 
effect, as well as a better image quality and a better penetration. 

3.3.1.4. Nuclear medicine 

Nuclear medicine gives us information on the function and the metabolism of the 
body, which is why it is known as a functional imaging. 

3.3.1.4.1. Guiding principles 

The purpose of nuclear medicine is to detect  rays emitted by radioactive tracers 
and administered either through the veins or orally (emission imaging). Such tracers 
produce photons that are detected by gamma-cameras, we are therefore talking about 
Single Photon Emission Computed Tomography (SPECT). Other tracers produce 
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positrons which annihilate in 511 KeV photons that are detected in PET (Positron 
Emission Tomography) imaging. For this type of imaging, a radio-pharmaceutical 
tracer made of functional molecules is used. The tracer is adapted to the organ 
and/or the pathology to be studied 

The gamma camera detector is made up of a collimator (a lead plate pierced by 
several holes that only allows those gamma rays through that are perpendicular to 
the collimator), a sparkling crystal that converts  photons into UV or visible 
photons as well as a photomultiplicator pipe that then converts them into electric 
signals. 

In PET imaging, the events that are to be detected are not the  photons produced 
by the radionuclide but those resulting from the encounter between the positrons and 
electrons. The collision between a positron and an electron leads to the 
transformation of both particles into two gamma photons that move apart in 
diametrically opposed directions, along a feedback line. A ring of detectors (PET 
camera) detects each photon pair arriving simultaneously on opposite detectors. The 
system treats the multiple coinciding couples so as to reconstitute the different pairs 
that are then assembled into an image, after a mathematical analysis (tomographic 
reconstruction [GRA 02]). Since the energy level of the photons is considerably 
high, the sparkling crystals must be dense and have a powerful output as well as a 
rapid relaxation so that they can detect new elements. 

A lot less information is required in order to make up an image in nuclear 
medicine (also known as scintigraphy) than in radiology or MRI imaging. This leads 
to an important statistical blur. Moreover, the spatial resolution of the cameras is 
rather mediocre (sitting between 7 and 10 mm). Scintigraphic images are therefore 
not viable for a morphological study of the organ, as shown by the images in Figure 
3.15. They are useful however for what is functional or pertains to the metabolism. 
[CHE 03] gives a detailed overview of the basic principles of radioactivity and 
detection methods, measurements or ways of analyzing information in nuclear 
medicine. 

3.3.1.4.2. Imaging produced in clinical routines 

Scintigraphy applications vary greatly according to the radiopharmaceutical 
given to the patient. Figure 3.15 displays some of these applications. 
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 a) b)

Figure 3.15. Clinical applications of nuclear medicine: a) cardiac  
scintigraphy, long and short axis slices (myocardial ischemia); b) PET whole  

body (malignant concentration in the mediastinum) – General Electric Healthcare 

In cardiology, scintigraphy is the main imaging technique used to examine 
myocardial perfusion (Figure 3.15). The radioactive tracer used in this case is 
technetium 99 harnessed by cells according to tissue perfusion; the more efficient 
the perfusion is, the more tracers are fixed. Cardiac PET helps us obtain images of 
the metabolism at the cellular level. For example, to study the sugar consumption in 
a cell and analyze the tissue’s viability (using glucose stained by fluor 18). 

In cancer research, the PET with fluorodeoxyglucose (FDG) (cancerous cells 
consume more glucose than other cells) is used to detect small tumours (Figure 
3.15). It is today the most sensitive examination to detect lung cancers, colon 
cancers, breast cancer and lymphoid cancer. Moreover, the FDG-PET exam is an 
essential tool for the premature evaluation and follow-up of chemotherapy 
treatments and radiotherapy. 

In fact, sintigraphic imaging is used together with anatomic imaging. Both types 
complete one another. Scintigraphic imaging allows us to detect dysfunction before 
a morphological anomaly appears, since all pathologies start with such abnormal 
events, first in the molecules, and then in the cells. 

3.3.1.4.3. Recent developments 

PET and SPECT detectors are now more often used along with X scanners. The 
reason is that this allows us to obtain both anatomic and functional information in 
one single examination. The individual under examination must stay still, and both 
images overlay one another. The physician can then determine the location of the 
tracer fixation on PET images by using the anatomic image provided by the CT 
(Figure 3.16). 
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 a) b) c)

Figure 3.16. Axial slice at heart level: a) CT scan (anatomic information); 
b) PET (functional information); c) fusion of both images; 

General Electric Healthcare

Numerous research projects still aim at improving each key component of 
emission tomography. Thus, researchers are seeking more specific tracers of 
physiological phenomena able to detect pathologies. Moreover, technologies that 
involve detectors keep improving, with greater spatial resolution and higher 
sensitivity. Finally, important advances have been brought to 3D tomographic 
reconstruction, including a series of a priori information available when using 
bimodal PET/CT or SPECT/CT systems (Figure 3.17). All these medical 
developments in nuclear medicine create a functional imaging of good quality, now 
being widely used. 

Figure 3.17. Fused 3D PET images/CT scan (pulmonary tumour) – GE Healthcare
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3.3.1.5. Anatomopathological imaging 

This type of imaging differs greatly from the previous one we have just dealt 
with, because the images are colored and are obtained using a CCD camera. 
Nevertheless, we have chosen to include it in this chapter partly due to its interest in 
terms of diagnostic process, and also because of the recent developments of 
techniques providing a large quantity of data to be inserted in a PACS. In 
anatomopathological applications, the information useful for the diagnosis is located 
in the image at a macroscopic level corresponding to photographs of samples or 
specimens, and at a microscopic level corresponding to tissue slices (histology) or 
cell layers (cytology) examined with a microscope. 

3.3.1.5.1. Guiding principles2

The acquisition method for macroscopic images is similar to the replication 
process of a document using a white panel lit up by a white light and equipped with 
a photo camera. 

There are two different digitization methods for microscopic images: stations 
using both a motorized microscope and a camera, and a slide scanner. This system 
works mainly through a lighting system (spectrum, open field, lighting, contrast) and 
its multiple lenses each having a different numerical aperture, zooming effect, as 
well as a choice between a flat field and apochromatism. The camera translates the 
observer’s vision through the microscope, by favoring resolution aspects, restoring 
undertones to the maximum and restoring shades. It is characterized by the 
following elements: 

– the resolution compromise of details/noises: detail resolution requires small-
sized pixels in the sensor. On the other hand, these generate an unfavorable signal-
to-noise ratio interfering with the image undertones, especially in shady areas. With 
today’s CDD technology, this compromise is set at about 7 microns. We must note 
that this compromise is coherent with high zooming power lenses, and that 
resolution is insufficient when using a low zooming power lens, and lenses of a high 
digital aperture; 

– the number of pixels in lines or columns determining the field of view; 

– the pixel intensity’s dynamics: capacity to reduce light and dark zones while 
avoiding saturation; 

– the sensitivity curve of color components (red, green, blue) which is more or 
less adapted to the microscope’s light source; we must note that a more refined 
approach has not been explored extensively yet; such a multispectral approach, 
would allow us to drop coloring under certain circumstances [YAG 05]. 

2 We would like to thank Jacques Klossa for the technical information.
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3.3.1.5.2. Images produced in clinical routine  

Anatomopathological examination is used to observe, identify and describe 
structural changes in tissues in order to diagnose some pathology. 
Anatomopathological imaging thus has an incredibly important role in cancer 
research, dermatology, gynaecology and forensic medicine. 

Nowadays, most anatomopathological labs using digital imaging are equipped 
with a single station producing fixed images used in staff discussions or when 
requesting opinions and advice. Only some sites have tried out a strategy of 
systematic screening (Figure 3.18) and sharing of image records in the laboratory or 
the health institution managed by the lab’s administration services. 

Figure 3.18. Anatomopathological image record: macroscopy, microscopy and virtual slide
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Nevertheless, some studies to define sampling and acquisition procedures are 
necessary [KLO 04]. Once the images are digitized, additional technical, clinical and 
biological information must be included to create an image record. The definition 
procedure of such information is regulated by international rules set by a DICOM 
work group dedicated to pathological anatomy (DICOM WG26). Moreover, we 
must first adopt exchange standards (such as the DICOM format presented in 
Chapter 4) dedicated to PACS, for image recording [GAR 04] [LEB 04]. In France, 
the Association for the Development of Informatics in Cytology and Pathological 
Anatomy promotes the use of international standards within the framework of the 
International IHE (Integrating the Healthcare Enterprise) initiative. IHE participants, 
users and sellers of information systems to health departments, coordinate the way 
that standards are applied. They also organize connectivity tests [LEB 06]. 

3.3.1.5.3. Recent developments 

In digital microscopic imaging, the procedure of selecting key images 
corresponding to areas of interest on the slide has long been deemed necessary. 
However, there are limits to this approach. This selection process considerably 
lengthens the imaging production time and introduces (by selecting certain elements 
over others) the risk that certain important morphological structures are not 
digitized. This situation often leads to an additional further digitization of other 
images on the slide. The limits of “fixed microscopic images” have restricted their 
use in diagnosis or expertise. Recent technologies of “virtual slide” production have 
helped to partly overcome the obstacles of fixed images such as the lengthy 
production time and the risks of selection [WEI 05]. 

Slide scanners allow us to digitize a continuous series of wide fields and to 
reconstruct a “virtual slide” (or a whole slide image (WSI)) (Figure 1.2 of Chapter 
1) that can be examined on its entire surface and has various zooming effects, thanks 
to its appropriate interface. Slide scanners use the same architecture as motorized 
microscopes and a camera combined. However, they are different when it comes to 
their system of linear sensors that brush over the entire surface that is to be digitized 
after having taken its marks on the area of interest through a macroscopic view. The 
computer unit receives rough information that it is then intended to treat according 
to the users’ particular needs: lighting, color or noise correction by averaging the 
images, inter-image processing to improve image resolution or the depth of the field, 
creating a “mosaic” to increase the field of view. 

3.3.1.6. Conclusion 

Not only do usual medical in vivo imaging techniques keep evolving towards 
more rapid imaging techniques of better spatial and/or temporal resolution, but 
additional methods are also being developed, such as: 
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– optical imaging based on the study of light propagation in tissues; amongst all 
these new methods we can name a few: 

- optical coherence tomography (OCT) uses non-diffused photons or ballistics. 
This type of imaging allows us to visualize structures present in a layer of a few 
millimeters, with an image of a high resolution that often reaches micrometers when 
carried out in real time and without contact [DUB 04], 

- retinal imaging using adaptative optics that works with distorting mirrors and 
improves the resolution of images so as to observe the retina at a cellular level 
(retinal photoreceptors as well as the blood cells flow in the retinal capillaries 
become visible in vivo) [DOB 05], 

- imaging using diffuse optics works by diffusing photons, and allows us to 
observe in greater depth; most imaging systems using diffuse optics function solely 
by measuring variations in absorption coefficients linked to the chemical 
composition of the tissue; this technique offers a very high temporal resolution up to 
a hundredth of a second [GIB 05], 

- acoustico-optics imaging helps us acquire optical images at greater depth (a 
few centimeters) with a resolution of a few millimeters thanks to a marking by the 
luminous ultrasound waves coming from a given region in the screened tissue 
[WAN 04]; 

– imaging using T-rays (terahertz waves) sensitive to the tissue malignancy and 
to the mineral content of tissues; it allows us to detect skin cancers and tooth cancers 
at their earliest stage [WAL 04]. 

These new imaging methods are not only harmless, non-invasive and not too 
expensive, but they are also sensitive to other types of contrasts and constitute 
additional visual in vivo imaging techniques. 

Along with these new imaging techniques come new tracers that target the 
genetic information in cells, or intelligent tracers that guide the action of a 
therapeutic substance in a patient. 

All of this leads to a multiplicity of specific techniques. It is now very common 
to combine various imaging techniques so as to improve the diagnosis. Medical 
imaging systems keep evolving, which increases the amount of information that can 
be acquired in a clinical routine. 

3.3.2. Properties of medical images 

The properties of medical images vary greatly from one image to another 
depending on the method of acquisition used, the organ studied and the acquisition 
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protocol applied. Here, we will only deal with the specificities linked to 
compression. We will therefore be considering the size of images, the amount of 
coding bits, the spatial and temporal resolutions and the noise present in those 
images. The image files are commonly available in DICOM format on acquisition 
systems, detailed in Chapter 4. 

3.3.2.1. The size of images 

Table 3.1, as a rough guide, presents the average sizes of image and image files 
(made up of numerous images during voluminous and synchronized acquisitions) 
acquired during clinical routine using different methods and for different organs. 

Modality Organ Image size Number of
bits per pixel

Number of 
slices File size 

Radiography Thorax 2,060*2,060 16 - 8 MB 

Brain 512*512 16  300 150 MB 

Abdomen 512*512 16  500 250 MB CT

Heart 512*512 16 126*16 frames 1 GB 

Brain 512*512 16  20*6 sets 10 to 60 MB 

Abdomen 512*512 16  30 15 MB 

Abdomen
3D

512*512 16 104 50 MB MRI

Heart 256*256 16 20*20 frames 50 MB 

MPET Whole body 256*1024 16 - 0.5 MB 

Whole body 128*128 16 350 10 MB 

Heart 128*128 16 47*16 frames 24 MB PET 

Brain 256*256 16 47 6 MB 

Standard 512*512 8 50 images/sec 12.5 MB/sec 
US

Doppler 512*512 (RGB) 3*8 50 images/sec 37.5 MB/sec 

Anatomo 
pathology 

Virtual slide Around
15,000*20,000

(RGB) 3*8 - 858 MB 

Table 3.1. Table summarizing the typical properties of images and image files acquired in 
clinical routine through various methods and on different organs

Medical images have a larger range of gray levels than in natural images. The 
amplitude of each pixel or voxel is coded on 16 bits while often in radiology only 12 
bits are used (4,096 gray levels). This is an important point when talking about 
compression. In fact, some widely known standards (such as most JPEG versions) 
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cannot compress monochrome images coded on 16 bits. The question is why do we 
use so many different gray levels, knowing that the eye is unable to differentiate as 
many tones and that most visualization screens are 8-bit LCD screens? In fact, for 
any diagnosis with silver film, radiologists are used to dealing with the entire range 
of 4,096 levels of gray. When the radiologist uses 8-bit screens, he carries out a 
windowing of the image gray levels so as to increase the contrasts on the organ or 
the pathology and display it prominently, as illustrated in Figure 3.19. 

Figure 3.19. Using gray level windowing so as to increase the contrasts on the pulmonary 
structure. Values are indicated in the left hand corner of the image

A recent study has compared the performance in terms of interpretation time and 
in terms of the radiologists’ diagnosis reliability when projected on 8-bit screens and 
11-bit screens for various types of digital radiology [SID 04]. Authors have 
concluded that 11-bit monitors improve the reliability of the diagnosis, especially 
diagnoses related to soft tissue on X-rays. Interpreting an image on 11-bit screens is 
also a lot faster. 

3.3.2.2. Spatial and temporal resolution 

The spatial resolution of an image is largely linked to the acquisition method 
used: down to centimeters in nuclear medicine, and below millimeters for MRIs, or 
even less (100 micrometers) for ultrasound or X-rays. During volume acquisition 
procedures, the voxels are rarely isotropes. Often, the volume is divided into a set of 
not very thick slices that cannot always be linked to one another. In fact, the relation 
between the signal and the noise is proportional to the slice thickness and the 
acquisition time is proportional to the number of slices. The thickness of the slice 
and the space between each slice should be taken into account especially in 3D 
compression [SIE 04]. In ultrasound examinations, information is obtained under a 
spherical geometry (angular depth and positions) with axial and lateral resolutions 
that depend on the depth of each acquisition. It is therefore necessary to carry out an 
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interpolation stage on a Cartesian grid of pixels to form images. In order to respect 
average spatial resolutions (measured in millimeters) obtained during acquisition 
procedures, the pixel resolution is chosen randomly. A “speckle” noise inevitably 
interferes with that resolution level. This prominent “speckle” noise produces a 
block effect in homogenous structures. 

For temporal sequences we can distinguish between videos and synchronized 
sequences. Videos usually apply to ultrasound images and angiographies in 
radiology. For ultrasounds, a series of images are obtained in real time at the fast 
rate of about 50 images per second. 3D ultrasounds with electronic control allow us 
to obtain a volume of information in only 2 seconds. Real time 3D ultrasounds allow 
us to obtain 15 volumes per second with a resolution of almost 1mm3 per voxel, but 
on a limited field of view (a quarter of the myocardium for example). 

Synchronized sequences however are often used to study the heart through MRI, 
nuclear medicine and with multi-slice scanners. They are also sometimes used for 
dynamic examination of cerebrospinal fluid during MRI. In cardiology, 
synchronizing the acquisition system on electrocardiograms helps to split up and 
analyze the cardiac cycles and its many frames (usually 20 in MRI and 16 in nuclear 
medicine). The movement of the cardiac structures from one image to another in the 
sequence largely depends on the number of frames captured as well as the number of 
frames studied (the myocardium changes shape very rapidly during contraction) as 
illustrated in Figure 3.20. 

Figure 3.20. Temporal cardiac MRI sequence on a cardiac cycle (16 phases)

3.3.2.3. Noise in medical images 

The amount of noise in medical images depends on the acquisition method used, 
as well as on the parameters and acquisition rules applied. This noise is not only due 
to the random nature of the physical phenomena studied, but also, to a lesser extent, 
to the set of acquisition and reconstruction systems used. When looking at the 
physical phenomenon, the noise may be qualified as Poisson in nuclear medicine, 
Rayleigh in MRI and Rayleigh or Gamma in ultrasound. 
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Physicians are used to this noise and would doubt the acquisition quality if that 
noise was turned down, for example by increasing the wavelet compression. The 
images would then be considered as “washed” images [CAV 01]. Nevertheless, we 
must not mix up image noise with image texture or artefacts that appear with the 
pathology in the studied organ and lead to a physiological change such as increased 
roughness. Usually, the relationship between signal and noise depends on the spatial 
and temporal resolutions. This relation can be improved during the acquisition 
process by averaging spatial and temporal resolutions out of numerous acquisition 
procedures (compounding) so as to diminish the risks of random interferences. 

3.4. Conclusion 

The characteristics of physiological signals (frequency content evolving 
according to the signal being studied but also to the pathology, the noise, the 
repetition of a signal-type modified by alterations (ECG)) must be exploited so as to 
develop optimal compression systems, the best in terms of compression rate and in 
terms of the diagnotic quality of the reconstructed signal (these systems are 
explained in Chapter 6). It is important to note however that protecting the 
physiological signal against that contaminating noise is essential, so that 
components containing no information would not be coded. This protection can be 
applied differently for each acquisition method, either technically by reinforcing the 
system or by treating the signal itself (digital filtering). 

Taking the characteristics of medical images into account also enables us to 
define an optimal use of all compression systems, as we will explain in Chapters 7, 8 
and 9. Moreover, medical image systems keep improving, leading to an increase in 
the data quantity obtained in clinical routine. This progress in the volume of 
information acquired may be qualified as exponential (as indicated in Figure 1.1). 
This can also be said of the technical developments brought to archiving and storage 
systems. Figure 3.21, taken from Erickson’s article [ERI 02], clearly shows that over 
the last 25 years, both elements have evolved in parallel. Erickson [ERI 02] 
concludes that it is not sufficient to rely solely on technical progresses for the 
reduction of storage and transmission costs. 
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Figure 3.21. Comparison of increases in disk density (thick solid line), 
speed of wide area networks (thin solid line), the number of bytes of image data 

produced by CT (dashed line) and MRI (dotted line) in a working day

Compression is thus a useful additional tool and a low-cost alternative to 
increase the capacity of archiving and storage systems and transmission networks 
[BAN 00]. Nevertheless, we must evaluate all deteriorations caused by the 
compression system before applying it in clinical routine (evaluation methods are 
described in Chapter 5). Moreover, this system will have to include a standard 
exchange format such as the DICOM format (Chapter 4). 
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Chapter 4 

Standards in Medical Image Compression

4.1. Introduction 

A standard (or norm) is a specification which has been adopted by those working 
within a particular field, in order to describe a process in an organized manner. In 
the case of data compression, the use of standards is particularly important as the 
compression process aims at the creation of an intermediary form of the information, 
which is more compact, and therefore easier to send over communication networks, 
to store and to receive. In other words the compressed form is not an end in itself; it 
is only an intermediary between a creation process and usage. It is therefore 
essential that this intermediary form or, if required, the means of access to this form 
conforms to specifications which ensure a smooth interaction between creation and 
usage. 

A second motivating factor is the necessary life-span of the information. The 
existence of standards recognized by international bodies is a guarantee of the 
endurance of compressed data, and the continuation of the programs which create 
and read them. 

Here, it is of interest to look specifically at medical data (see Chapter 3), 
compared to other computerized data. Does this field require the creation of specific 
standards, uniquely for the compression of medical data, in particular images? We 
can anticipate two different views on this matter. 

Chapter written by Bernard GIBAUD and Joël CHABRIAIS. 
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Firstly, from a theoretical perspective, it seems desirable to keep the use of 
specific standards to a minimum, both for reasons of efficiency – to avoid repeating 
work which has already been carried out in part in other research circles – and also 
to minimize the cost of components. The latter argument is the more pertinent: the 
most general information treatment mechanisms lead to uses on a very large scale, in 
the form of specialized processors, with optimal performance, reliability and cost, 
which is impossible to achieve with products specific to one particular field. 

Secondly, in practice, choices are clearly not made based on purely rational 
criteria, but rather emerge from a wider context. A determining factor concerns in 
particular the ability to identify common needs within a given context. Thus, for 
example, it is to be expected that the standards within medical image compression 
should be tackled by DICOM (Digital Imaging and COmmunications in Medicine), 
and that the solutions most widely-used today should have been defined within this 
particular context, bringing together the key industrial and academic professionals in 
the field, rather than in a wider circle such as the ISO (International Standards 
Organization). In this chapter it will become apparent, however, that adopting 
specific solutions by no means excludes the use of the most general standards and 
technology.

The implementation of standards is therefore essential in this field, in order to 
meet the needs for interoperability and life-span which arise from the healthcare 
sector. This brings with it certain side-effects. It can be frustrating for researchers 
working in data compression to know that if the advances they make are to be 
widely-used, not only will they have to offer a significant advantage over currently 
existing standards, but they will also have to be recognized by the standardization 
bodies, a process which can take several years. Nevertheless, this research is 
essential in order to achieve progress within the standards (JPEG 2000 became a 
standard only after considerable fundamental research into discrete wavelet 
transform). 

In this chapter, we begin with a look at standardization and the bodies which set 
these norms in the field of medical data. Here, we will introduce the DICOM 
standard and will consider some key ideas in order to achieve a thorough 
appreciation of the implementation of image compression in this standard. The 
following section will detail the different types of compression available in the 
DICOM standard, as well as the methods of accessing compressed images. Finally, 
we will conclude by highlighting the key points within the use of image 
compression standards, particularly within the context of healthcare networks. 
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4.2. Standards for communicating medical data 

4.2.1. Who creates the standards, and how? 

We can generally distinguish three categories of standards. 

The de jure standards are those created by official standardization bodies such as 
the International Standards Organization (ISO) or in Europe, the European 
Committee for Standardization (Comité Européen de Normalisation or CEN). The 
representation of the principal players is organized by country. This means that the 
selected experts represent the official standardization body of their country, for 
example, AFNOR (Association Française de Normalisation) for France. The issues 
in question are therefore defined at this level by “mirror groups” of the international 
committees concerned. This approach has the advantage of guaranteeing free access 
to the creation of a standard by all interested parties, whether they are from industry, 
from academia, consumer associations, public bodies, etc. One of the two main 
criticisms of this approach is that it leads to a rather long standardization process – 
around 5 to 10 years – despite the fact that in fields such as IT and communications, 
technological advances happen at a very fast rate, meaning that a standard, once 
approved, can be out of pace with market needs, simply due to technological 
advances. Another criticism is that this approach does not give a sufficiently 
important role to the industrial players within the field. In fact, many norms are 
defined without ever being used in products. Some see this as the consequence of 
the unnecessary complexity of the solutions offered, imposed by academics or 
consultants, who are more concerned with the scientific quality of the solutions than 
the economic viability of products which use these norms. The European 
Community’s procurement rules require that contracting bodies are obliged to define 
their specifications with reference to European standards, where available. 

Industrial standards are created by associations of developers or academic bodies 
such as, for example, the World Wide Web Consortium (W3C), the Internet 
Engineering Task Force (IETF) – two bodies who play a key role in Internet 
standards – or the DICOM committee regarding the DICOM standard. These 
organizations set industrial standards, usually via very well-defined procedures, 
which are accepted by national standards bodies. These associations operate on a 
voluntary basis. In general, free access to standardization records is available online. 

Unlike those produced in either of the two contexts given above, “de facto”
standards do not arise from a formal agreement between interested parties, but rather 
from a process of market selection. Into this category fall Word and the Rich Text 
Format (RTF, Microsoft™), the Portable Document Format (PDF, Adobe™), which 
have become standards only as a result of endorsement from huge communities of 
users, which has led to their standardization. 
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4.2.2. Standards in the healthcare sector 

4.2.2.1. Technical committee 251 of CEN 

Within Europe, the technical committee 251 of CEN, “Health Informatics” 
(http://www.centc251.org) was founded in 1991 to develop a group of standards for 
the exchange of health data in conditions which guarantee interoperability, security 
and quality. This committee is organized into four working groups focusing on 
information models (WG I), terminology and knowledge representation (WG II), 
security and quality (WG III), and technologies of interoperability (WG IV). This 
committee has produced a significant number of technical reports, experimental 
norms (ENV), as well as some European Norms (EN). The most important is ENV 
13606 “Electronic healthcare record communication”, itself divided into four parts: 
1) architecture, 2) domain term list 3) distribution rules and 4) messages. 

We can also cite norms or pre-norms on communication security (ENV 13608 – 
1 to 3), the recording of coding systems (ENV 1068), messages for the exchange of 
information on medical prescriptions (ENV 13607), blood transfusion related 
messages (ENV 13730 – 1 and 2) and a system of concepts to support the continuity 
of care (ENV 13940). 

4.2.2.2. Technical committee 215 of the ISO 

Technical committee 215 of the ISO (website accessible from 
http://www.iso.org), also called “Health Informatics”, was created in 1998, with a 
very similar objective to Technical Committee 251 of CEN, but for the world stage. 
This committee is organized into eight working groups: data structure (WG 1), 
information exchange (WG 2), semantic content (WG 3), security (WG 4), health 
cards (WG 5), pharmacy and medical products (WG 6), devices (WG 7) and 
business requirements for electronic health records (WG 8). The key standardization 
documents produced since the creation of Technical Committee 215 of the ISO 
concern the communication between medical devices (ISO/IEEE series 11073), the 
interoperability of telemedicine systems and networks (ISO/TR 16056 1-2), public 
key infrastructure (ISO/TR 16056 1-2), web access for DICOM persistent objects 
(ISO 17432) and patient healthcare data (ISO 21549 1-3). 

4.2.2.3. DICOM Committee 

A recap of its history: the DICOM Committee (http://medical.nema.org) in its 
current organization has existed since the early 1990s. This Committee is the 
successor of the ACR-NEMA Committee, formed in 1983 by the American College 
of Radiology (ACR) and the National Electrical Manufacturers Association 
(NEMA), with aims of internationalization. Today it incorporates around 40 players 
from academia and industry, working in the field of biomedical imagery (Table 4.1). 
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Industrial Bodies Academic Bodies 

AGFA U.S. Healthcare 
Boston Scientific 

Camtronics Medical Systems 
Carl Zeiss Meditec 

DeJarnette Research Systems 
Dynamic Imaging 
Eastman Kodak 

ETIAM
FujiFilm Medical Systems USA 

GE Healthcare 
Heartlab
Hologic 

IBM Life Sciences 
Konica Minolta Medical Corporation 

MatrixView 
McKesson Medical Imaging Company 

MEDIS 
Merge eMed 

Philips Medical Systems 
RadPharm 

R2 Technology, Inc. 
Sectra Imtec AB 

Siemens Medical Solutions USA, Inc. 
Sony Europe 

Toshiba America Medical Systems 

American Academy of Ophthalmology 
American College of Cardiology 
American College of Radiology 

American College of Veterinary Radiology 
American Dental Association 

College of American Pathologists 
Deutsche Röntgengesellschaft 

European Society of Cardiology 
Healthcare Information and Management 

Systems Society 
Medical Image Standards Association of Taiwan 

Societa Italiana di Radiologia Medica 
Société Française de Radiologie 

Society for Computer Applications in Radiology 
Canadian Institute for Health Informatics 
Center for Devices & Radiological Health 

Japan Industries Association of Radiological 
Systems (JIRA) 

Korean PACS Standard Committee 
National Cancer Institute 

National Electrical Manufacturers Association 

Table 4.1. List of organizations present in the DICOM Committee

All the key players in medical imagery actively contribute to the development of 
the standard. Today there are 26 working groups, bringing together around 750 
technical or medical experts. These groups are listed in Table 4.2. 
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DICOM Committee working groups 

WG-01: Cardiac and Vascular Information WG-14: Security

WG-02: Projection Radiography and 
Angiography 

WG-15: Digital Mammography and CAD 

WG-03: Nuclear Medicine WG-16: Magnetic Resonance 

WG-04: Compression WG-17: 3D 

WG-05: Exchange Media WG-18: Clinical Trials and Education 

WG-06: Base Standard WG-19: Dermatologic Standards 

WG-07: Radiotherapy WG-20: Integration of Imaging and 
Information Systems 

WG-08: Structured Reporting WG-21: Computed Tomography 

WG-09: Ophthalmology WG-22: Dentistry 

WG-10: Strategic Advisory WG-23: Application Hosting 

WG-11: Display Function Standard WG-24: Surgery 

WG-12: Ultrasound WG-25: Veterinary Medicine 

WG-13: Visible Light WG-26: Pathology 

Table 4.2. List of the DICOM Committee’s working groups

The DICOM 3.0 standard was published in 1993, following preliminary work 
carried out over the previous decade, and which led to the ACR-NEMA standards 
1.0 and 2.0 (published in 1985 and 1988 respectively). 

Field covered: the DICOM standard [DIC 06] covers many areas, including: 

– the communication of related images and data (over a network or using 
physical media), for almost every existing technique (image modality); 

– the printing of images onto physical media; 

– the communication of reports on imaging procedures; 

– the management of activities related to the acquisition, treatment and 
interpretation of images, through the management of “work lists”; 

– the security of data exchange, via a service called “storage commitment”, and 
various mechanisms for digital signature of documents; 

– the coherence of image rendering on hardcopy and softcopy (monitor display). 
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The standard is modular, so as to effectively meet general or specific needs 
concerning the numerous modalities within imagery and medical specialities making 
use of imagery. It is organized into 18 relatively independent sections (Figure 4.1). 

Part 2:
Conformance

Part 1: Introduction and overview

Part 4: Definition of Services

Part 3: Definition of
information objects

Part 5: Encoding

Part 6:
Data Dictionary

Part 7: Message Exchange

Part 8:
Network support for
message exchange

Parts 10, 11 & 12:
Communication using

physical media

Part 13:

Print

Part 14:

Greyscale
Visualization

Part 15:

Security

Part 16:

Content
Mapping
Resource

Part 17:

Explanatory
Information

Part 18:

Web
A.D.O.

Figure 4.1. The different sections of the DICOM standard

Key principles of the DICOM standard: the following elements focus on the key 
notions which must be grasped in order to understand the implementation of 
compression in the DICOM standard. For a more detailed look at the standard, see 
[CHA 04]. 

DICOM is, above all, a protocol for image exchange, over a network or with the 
aid of physical media (CD ROM, DVD, etc.). Taking into account the diversity of 
image modalities, the standard is organized in such a manner as to allow both the 
specificities of each modality to be respected, and to create common ground between 
many data elements. 

Thus, the standard is organized in a modular manner, particularly through the 
“Service Object Pair” (SOP) principle, linking a class of images of a certain kind, 
for example CT (Computed Tomography) images or X-ray tomography images, to a 
specific exchange service (for example the “image storage” service). This idea of 
“classes”, inspired by the “object” paradigm, leads us to discover the notion of an 
“SOP class” – an abstraction of all the images of a certain type, CT for example – 
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and the notion of an “SOP Instance”, which refers to a concrete image example, 
identified thanks to a unique identifier. One essential function of this notion of SOP 
class concerns conformance to the standard. It is by referring to the different SOP 
classes that developers claim that their products conform, using a “DICOM 
conformance statement”, compiled following the prescriptions contained in Part 2 of 
the standard. For a given SOP class, we determine the Service Class Provider (SCP) 
and the Service Class User (SCU). For example, in the case of the SOP class “CT 
Image Storage”, the application entity playing the role of the SCU is the application 
which “pushes” the image, whereas the application that takes the role of the SCP is 
the one that receives the image. 

The specification of the data elements to be transmitted corresponds in DICOM 
to the idea of Information Object Definition (IOD). An IOD specifies a list of data 
elements, giving: 1) the general context of image acquisition (essential information 
on the patient, the study, and the series), 2) the acquisition procedures (particularly 
the physical acquisition methods, the reconstruction algorithm, etc.), 3) the image’s 
characteristics (size, resolution, etc.) and 4) the pixel data itself. The “module” 
concept, by gathering together data elements relating to the same information entity 
(for example “Patient Module” or “General Study Module”), makes it easier to reuse 
them in different IODs. These information entities are defined via information 
models, following the “entity-relationship” formalism. In this chapter, we need think 
no further than the idea of a simple hierarchy along the lines of: patient – study – 
series – composite object, represented in Figure 4.2. 

Patient level

Study level

Series level

Composite object
level

Figure 4.2. Hierarchical model of DICOM entities
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This notion of composite objects, initially introduced to express the aggregation 
of information which concern different real-world entities, allows us to generalize, 
in management terms, all DICOM entities which have a persistent character. This 
concerns in particular images, but also “presentation states”, which allow us to 
choose a specific appearance for the images (for example, a particular window or 
zoom rate), structured reports, able to reference images and waveforms, used to 
represent physiological signals such as the ECG. 

As for the image data itself, DICOM decided from the outset to give a classical 
definition of the image: as a simple 2D representation of values, each image in a 
series representing an individual dataset, and carried by an individual message. Thus 
a series of 100 CT images results in the sending of 100 separate messages. 
Meanwhile, the principle of a “multi-frame” image was conceived, particularly 
when representing ultrasound images. Today it is becoming more widespread, with 
the specifications of Enhanced MR and Enhanced CT objects, designed to cope with 
the growing needs of MRI and CT imagery. 

4.2.2.4. Health Level Seven (HL7) 

HL7 (http://www.hl7.org) was initially an American organization for standards 
definition, accredited by the American National Standards Institute (ANSI), and 
which is now internationally recognized, with national groups in many different 
countries. The name of this standard refers to the seventh application layer of the 
OSI (Open System Interconnection) model of the ISO. HL7 was created to develop 
standardized messages allowing health information system applications to 
communicate between one another. Table 4.3 summarizes the different versions 
which have been published. The current version is 2.5 (March 2005). HL7 uses 
Arden Syntax, a syntax devoted to the representation of medical information in 
professional systems. Version 1.0 was developed and published in 1999 by the 
American Society for Testing and Materials (ASTM), before being taken up by 
HL7. HL7 has also integrated the Clinical Context Object Working Group (CCOW), 
whose aim is to synchronize desktop applications with a given context (user, patient, 
etc.). Alongside HL7 v3, HL7 has developed a Clinical Document Architecture 
(CDA), which in its second version, CDA release 2, has been an ANSI standard 
since April 2004. This architecture was initially in competition with that proposed 
by the CEN (ENV 13606), but now the groundwork has been carried out alongside 
the CEN experts, to merge the two architectures. Aside from its collaboration with 
the CEN, HL7 works closely with the ISO/TC 215, a pilot project which has been 
approved with the aim of having certain HL7 standards approved by the ISO. 
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Version Publication date Notes 

Version 1.0 1987 Prototype standard 
2.0 1988 
2.1 1990 
2.2 1994 

2.3.1 1997 
2.4 12/2000 
2.5 06/2003 

Version 2.x1

2.6 2008 

Acceptable standard, arbitrary data 
conditioning. 

No information model use. 

Version 3.0 
10/2003 

for the first elements 

Formal methods, based on information 
model, the Reference Information Model or 

RIM. 
Modular standard; publication in successive 

blocks since 2003. 

Table 4.3. The different versions of the HL7 standard

4.2.2.5. Synergy between the standards bodies 

Each standards body develops its standards in relation to its own objectives and 
rules. Thus, we note that the official organizations (ISO, CEN) have a top-down 
approach to problems, whereas industry associations generally have shorter-term 
approaches, with more pragmatic attitudes, guided by the market (a bottom-up 
approach) [GIB 98]. We also often observe a widening of the area covered by a 
body, going beyond its initial remit. Thus, the DICOM standard, which was very 
much focused on imagery when it first began, has come to take an interest in the 
structure of medical documents, such as structured reports, thereby coming across 
problems encountered by other organizations, in this case the CEN (ENV 13606 part 
1), and particularly HL7, with the architecture of CDA documents. This leads, 
therefore, to collaboration between standards bodies, by various different means. For 
example, there was an active collaboration from 1994 to 1997 between DICOM and 
CEN TC 251, serving to define collaboratively DICOM extensions affecting 
imagery workflow (managing working lists, storage commitment, etc). In the end, 
the entirety of the DICOM standard was recognized by the CEN as a European norm 
(CEN EN 12052) [CEN 04]. Similarly, an active collaboration was begun shortly 
after between CEN TC 251 and HL7 for the creation of Version 3 of this standard, 

1 The differences between the sub-versions arise from the longevity of the standard and its 
permanent ability to meet needs (addition of missing messages or fields, or deletion of 
obsolete ones). 
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concerning in particular the Reference Information Model (RIM) to draw all 
possible lessons from the work on the pre-norms ENV 13606. There is also a joint 
working group between DICOM and HL7 (DICOM’s WG 20), to harmonize data 
exchange concerning imaging procedures and reports (structured or not) between 
these two standards. Lastly, there is also a type A liaison between the ISO TC 215 
and the DICOM Committee, which renders official the acknowledgement of the fact 
that biomedical imagery is specifically studied in the DICOM Committee, then 
formally adopted by the ISO via a fast-track process. Thus, part 18 of the DICOM 
standard on the access to DICOM persistent objects has been adopted by the ISO 
(ISO 17432-2004). 

4.3. Existing standards for image compression 

4.3.1. Image compression 

The general standards in the field of data compression can be divided into two 
categories:

– those relying on a particular spatio-temporal organization (2D image, or series 
thereof); 

– those which do not make such a hypothesis. 

The first have been developed chiefly by the ISO, to meet the needs encountered 
in photography (still images), cinema and television (animated images): these are the 
JPEG and MPEG families of standards, from the names of the working groups 
created by the ISO to work on these issues, the Joint Photographic Experts Group 
and the Moving Picture Experts Group respectively. The applications targeted at the 
outset were mainly linked to e-commerce (online catalogues), the press and tourism. 
The expansion into professional imagery occurred naturally in the fields using 
visible light (satellite imagery, the controlling of industrial processes, CCTV, etc.). 

Common ground between general standards and specific standards: emerged 
perfectly organically. Two main approaches can be distinguished, as shown in 
Figure 4.3. The first approach uses compression techniques making no hypothesis 
about the nature of the information to be coded; into this category fall the 
compression tools distributed with UNIX/Linux such as “compress” or “gzip”, or 
used by programs such as “WinZip™” (Figure 4.3, approach 1). The second 
approach focuses the compression task on the data of the signal image (in the widest 
sense), exploiting the redundancy present in the different spatial or temporal 
dimensions. The representation of this data can either be based on the general 
standards of data compression (as in Figure 4.3, approach 2a and 2b), or not (see 
Figure 4.3, approach 2c). 
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Spatio-temporal signal

Associated parameters
(header)

Compressed spatio-temporal
signal (lossless)

Associated parameters
(header)

Approach 1

Associated parameters
(header)

Compressed
spatio-temporal signal

Associated parameters
(header)

Associated parameters
(header)

Approach 2a

Approach 2b

Approach 2c

Compressed
spatio-temporal signal

Compressed
spatio-temporal signal

Figure 4.3. General and specific approaches to image compression; the left-hand part  
of the figure represents the image data and header; the right-hand part describes  

each of the four possible approaches, numbered 1, 2a, 2b, and 2c respectively.  
The borders of the boxes represent the type of standard containing the data, i.e. general 

standards (e.g. JPEG, MPEG), represented by a dotted border or specific coding  
(e.g. DICOM), represented by a continuous line

The advantages and disadvantages of the two approaches are summarized in 
Table 4.4. The first approach is used for lossless coding. It has the distinct advantage 
of being unspecific, i.e. it can be applied to any file, whatever its format or size. The 
disadvantage is that of limited effectiveness, dependent upon the data itself. Thus, 
noisy image data (without large uniform areas) is difficult to compress at a 
compression rate greater than 3:1. In contrast, the second approach can use image 
spatial and temporal structure in order to optimize the elimination of redundancy. 
The resulting compression rates – when lossy coding is acceptable – can be very 
significant, with factors ranging between 8:1 and 20:1, or even higher. The use of 
standard compression methods and formats makes the use of general decompression 
and visualization programs (e.g. web browsers) much easier. 
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 Advantages Disadvantages 

Approach 1 
“general compression” 
(e.g.. gzip, compress) 

Generality 
Ease of operability 
Very inexpensive 

Poor performance 

Approach 2a 
“general image 
compression” by 
encapsulation 
(e.g. JPEG, MPEG) 

Reuse of existing applications for 
compression/decompression and 
image visualization 
Very good performance 
Takes medical context into account 
(header containing patient name, 
acquisition methods, etc.) 

May not be well adapted 
to very specific needs, or 
sub-optimal 
performances 

Approach 2b 
“general image 
compression” 
(e.g. JPEG, MPEG) 

Makes wide distribution easy 
(outside imaging departments, 
throughout the hospital and to out-
patients) and cost-effective (web 
browsers) 

No header taking 
medical context into 
account

Approach 2c 
“specific image 
compression” 

Can allow optimal performance to be 
achieved, due to a very good 
adaptation to the structure of the data 

Development costs high 
due to specific nature 

Table 4.4. Advantages and disadvantages of general versus specific standards

4.3.2. Image compression in the DICOM standard 

As we have seen, the DICOM standard plays a dominant role in the field of 
medical imagery. DICOM included very early on in its standard a possible recourse 
to data compression methods. The main aim of this section is to show how DICOM 
integrates the use of image compression, and particularly how DICOM has 
integrated the general approaches to compression provided by the ISO. For ease of 
comprehension, we will begin with a few reminders about the coding of data in the 
DICOM standard. 

4.3.2.1. The coding of compressed images in DICOM 

General aspects: the coding of data elements is described in part 5 of DICOM, 
called “coding”. It is carried out in binary, following a structure of the “type – length 
– value” type. The type field is expressed in the form of a pair of unsigned integers 
(represented on 16 bits) called a Tag. This is a simple unique ID (UID) for the 
element in question. For example, the Tag (0028,0010) Rows represents the number 
of lines in an image. The field length is represented in unsigned binary on two bytes 
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– it denotes the number of bytes occupied by the value field. The value field 
contains the value of the data element in question. 

The data elements are defined in part 3 of DICOM, at the semantic level, in 
tables corresponding to the different modules. Each line of these tables details: 

– the Tag of each element; 

– its name; 

– its mandatory or optional nature: type 1: mandatory (i.e. present and not 
empty), type 2: present (but possibly empty), type 3: optional; 

– the free text definition of the element. 

This information is complemented in Part 6 of DICOM (the data dictionary), 
which defines for each data element: 

– its Tag; 

– its name; 

– its value representation (VR); DICOM defines (at the start of Part 5, “coding”) 
27 types of element, including: Unsigned Long (UL), Unsigned Short (US), Person 
Name (PN), etc.; 

– its multiplicity value (the number of possible occurrences). 

The data elements are then listed in increasing order to form a dataset, the body 
of the message. An example is given in Figure 4.4. There are different transfer 
syntaxes, taking into account different coding options, the main ones being: 

– whether or not the data element type is explicitly given (Explicit Value 
Representation, for example); 

– the order of the representation of the bytes: big-endian (the most significant 
byte is represented first, and then the others in decreasing order of significance), or 
little-endian (the less significant byte is represented first, and the others are listed in 
growing order of significance); 

– the data compression usage, which we will look at in detail below. 
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Figure 4.4. The organization of data elements, following the Tag – length – value triplet

The pixel data is represented in the data element (7FE0,0010) Pixel Data, which 
can be of the Other Word String (OW) or Other Byte String (OB) type. As a general 
rule, the data is packed taking into account the elements (0028,0100) Bits Allocated
and (0028,0101) Bits Stored. We can in fact distinguish two different cases: the first 
concerns the native format (without compression), and the second is the format with 
encapsulation (with compression). In the first case, the pixel data is subject to 
compacting in which the last bit of a pixel stored is immediately followed by the 
first bit of the following pixel, following a constant order (the pixels follow on from 
left to right, and from top to bottom, meaning that the first pixel transmitted is that 
situated at the top left, followed by the rest of the first line, then the first pixel in the 
second line, and so on). Depending on whether the OW or OB type is used, the 
coding will or will not (respectively) be affected by the choice of a big-endian or 
little-endian ordering. 

Encapsulation of compressed images: coding by encapsulation involves the 
inclusion in the data element (7FE0,0010) Pixel Data of the bit stream expressing 
the compressed image. In this case the transfer syntax used has to be of the explicit 
VR type, which means that the specification of the element type is present in the bit 
stream. Also in this case, the data element (7FE0,0010) Pixel Data is necessarily of 
the type OB, and the ordering has to be little-endian. Different compression 
techniques can be used, using the corresponding choice of transfer syntax. 
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As a general rule, the values given in the data elements specifying the coding of 
the pixel data (Photometric Interpretation, Samples per Pixel, Planar Configuration, 
Bits Allocated, Bits Stored, High Bit, Pixel Representation, Rows, Columns, etc.) 
must be consistent with those which appear in the bit stream of the compressed 
image. If there is inconsistency, it is advisable for the decoding process to use the 
parameters given in the bit stream representing the compressed data. 

4.3.2.2. The types of compression available 

JPEG image compression: the International Standards Organization ISO/IEC 
JTC1 has developed two international standards called respectively ISO/IS-10918-1 
(JPEG Part 1) and ISO/IS-10918-2 (JPEG Part 2), and known as the JPEG standard 
of compression and coding of still images [ISO 95]. The standard specifies both 
lossy and lossless coding processes. This standard uses Discrete Cosine Transform 
(DCT), which allows an adjustment of the compression rate (see Chapter 2). The 
lossless coding process uses the Differential Pulse Code Modulation (DPCM). From 
the many modes available in the JPEG standard, the DICOM standard eventually 
retained four. Their principal characteristics are shown in Table 4.5. 

UID of the transfer syntax JPEG coding process Description  

1.2.840.10008.1.2.4.50 1 “baseline”, lossy 
1.2.840.10008.1.2.4.51 2 (8 bits), 4 (12 bits) “extended”, lossy 
1.2.840.10008.1.2.4.57 14 lossless, non-hierarchical 
1.2.840.10008.1.2.4.70 14 (Selection Value 1) lossless, non-hierarchical, 

first-order prediction 

Table 4.5. Transfer syntaxes implementing the JPEG standard

The compression modes are referenced thanks to four different transfer syntaxes. 
The first corresponds to the baseline mode, applied to images on 8 bits, lossy and 
using Huffman coding. The second corresponds to the JPEG 2 and 4 modes, known 
as “extended”, also lossy, which are applied respectively to images on 8 and 12 bits. 
The third corresponds to the JPEG 14 mode, lossless, based on the DPCM method, 
still with Huffman coding. Lastly, the fourth differs from the third in that it involves 
an order 1 prediction (i.e. horizontal). 

In order to facilitate the interoperability of applications using JPEG transfer 
syntaxes, the standard explicitly states that: 

– applications using lossless JPEG must support JPEG mode 14 (the fourth given 
in Table 4.5); 
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– applications using lossy JPEG for images on 8 bits must support JPEG mode 1 
(the first given in Table 4.5); 

– applications using lossy JPEG for images on 12 bits must support JPEG 4 
mode (the second given in Table 4.5). 

Lastly, the developer must note in his or her DICOM conformance statement 
whether it is only capable of receiving compressed images, or whether it can also 
treat them. 

Run Length Encoding (RLE) compression is a very simple coding algorithm 
based on the removal of repetitive patterns, used in the TIFF 6.0 format, called 
PackBits [TIF 92]. Note that in this case the data element (0028,006) Planar 
Configuration takes the value color-by-plane, in order to maximize the size of the 
uniform patterns. The corresponding transfer syntax carries the UID 
1.2.840.10008.1.2.5. It can be used for both single images and multi-frame images. 
In the latter case, each frame leads to a separate fragment in the bit stream. 

JPEG-LS image compression: JPEG-LS, i.e. ISO/IS-14495-1 (JPEG-LS Part 1) 
presents another standard proposed by the International Standards Organization 
ISO/IEC JTC1 to represent compressed still images, whether lossy or lossless [ISO 
99]. It specifies a unique compression mode, founded upon a predictive method 
using a statistic model, modeling the differences between pixels and their 
neighborhood. This method is considered to be more effective than that given in 
JPEG, i.e. ISO 10918-1. It should also be noted that JPEG-LS can treat images up to 
a depth of 16 bits. Two DICOM transfer syntaxes have been defined: the first, which 
has the ID 1.2.840.10008.1.2.4.80 references the usage of JPEG-LS in lossless 
mode. The second, with the ID 1.2.840.10008.1.2.4.81, references lossy JPEG-LS 
usage, with absolute error limited to a precise value, specified in the bit stream. 

JPEG 2000 image compression: JPEG 2000 is the most commonly-used name 
for the standard ISO/IEC 15444 (JPEG 2000), still dedicated to the representation of 
compressed still images [ISO 04a] [ISO 04b]. It introduces new compression 
schemes based upon Discrete Wavelet Transform and multi-component transforms, 
notably applicable to color images. Part 2 of the standard (ISO/IEC 15444-2) 
complements Part 1 (ISO/IEC 15444-1) by extending the multi-component 
transforms ICT (Irreversible Color Transform) and RCT (Reversible Color 
Transform). These extensions represent in part DPCM-type prediction schemes, and 
also more complex transforms such as the Karhunen-Loève Transform. All these 
schemes are adapted to black and white or color image compression, up to a depth of 
16 bits; signed or unsigned, lossy or lossless. 

DICOM references this standard thanks to four transfer syntaxes, the first two 
based on ISO/IEC 15444-1, and the other two based on ISO/IEC 15444-2: 
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– the first, which carries the ID 1.2.840.10008.1.2.4.90 references the usage of 
JPEG 2000 Part 1 in lossless mode. It uses a compression scheme using Discrete 
Wavelet Transform or a multi-component transform in reversible mode, without 
quantification; 

– the second, which bears the ID 1.2.840.10008.1.2.4.91 references the usage of 
JPEG 2000 Part 1 in lossy mode. This can use either reversible or irreversible 
transforms, with or without quantification. 

– the third and fourth, which respectively bear the IDs 1.2.84.10008.1.2.4.92 and 
1.2.840.10008.1.2.4.93, extend the possibilities of the first two transfer syntaxes, 
making use of the possibilities offered by JPEG 2000 Part 2. There is a 
generalization of the multi-component coding, which is applied in Part 1 of JPEG 
2000 to color images, considering that any image sequence can be seen as a multi-
component image. A flexible mechanism allows for the organization and grouping 
of the components into component groups, for optimum efficiency. Applied to 
multi-frame DICOM images, these syntaxes therefore allow for the elimination of 
inter-image redundancy, independently from the semantic associated with this third 
dimension (space variable for 3D sequences, time variable for temporal sequences, 
etc.). These should therefore be used more and more extensively, with the diffusion 
of the new Enhanced CT and Enhanced MR IODs, which make extensive use of 
multi-frame images. 

JPIP progressive image compression: this possibility was created in response to 
the need to send images progressively, i.e. allowing data display with growing 
precision as the transfer progresses. It therefore allows the user to see the image 
before the transfer is complete, or even to stop the transfer, if it is no longer what the 
user requires. The implementation of this mechanism is based on the Interactive 
Protocol proposed with JPEG 2000 (JPEG Interactive Protocol, or JPIP). 

It is used in DICOM to replace the bit stream usually present in the data element 
(7FE0,0010) Pixel Data with reference to a data provider for this bit stream, given in 
data element (0028,7FE0) Pixel Data Provider URL, for example: 

Pixel Data Provider URL (0028,7FE0) = 
http://server.xxx/jpipserver.cgi?target=imgxyz.jp2 

The JPIP server must return a dataset of Content-type image/jp2, image/jpp-
stream or image/jpt-stream. It is also possible to specify a particular bit stream sub-
set thanks to the modular nature of the coding, for example, the following URL 
allows for frame number 17 of a multi-frame image sequence to be restored at a 
resolution of 200x200: 

Pixel Data Provider URL (0028,7FE0) = 
http://server.xxx/mframe.jp2?fsiz=200,200&stream=17 
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These possibilities use two particular transfer syntaxes, JPIP referenced transfer 
syntax, with the ID 1.2.840.10008.1.2.4.94, and JPIP referenced deflate transfer 
syntax, with the ID 1.2.840.10008.1.2.4.95. The difference between the two lies in 
the fact that the second also adds a lossless coding of the JPIP bit stream, based on 
the deflate algorithm (RFC 1951). 

MPEG2 image compression: the MPEG2 standard (ISO/IEC 13818-2) was 
developed by the ISO for the compression of video or animated images, and any 
associated sound signal [ISO 00] (see Chapter 2). Reference to this standard uses a 
unique transfer syntax, with the ID 1.2.840.10008.1.2.4.100. It references MPEG2’s 
MPEG option MP@ML (MainProfile@MainLevel). MPEG2 MP@ML uses a 
source code in 4:2:0 reducing the input data rate to 162 Mbits/sec. The Main Profile
(MP) indicates an MPEG sequence composed of images which may be intra (I), 
predictive (P) or bidirectional (B) and the Main Level (ML) at a definition 
equivalent to television standards. The output rate is not set by the standard – 
between 1.5 and 15 Mbits/sec. 

This can be applied to single- or multi-component data represented on 8 bits 
(which can present a problem for the compression of medical images, often 
represented on more than 8 bits); in the case of single-component data, the data 
element (0028,0004) Photometric Interpretation has to take the value 
MONOCHROME2, whereas for multi-component data, it has to take the value 
YBR_PARTIAL_420. In both cases, the MPEG bit chain includes both a luminance 
signal and two chrominance signals. The spatial and temporal resolution of the 
images, i.e. the data elements (0028,0010) Rows, (0028,0011) Columns, (0018,0040) 
Cine Rate and (0018,1063) Frame Time must be in conformity with the values 
specified for MP@ML, shown in Table 4.6. 

Video type Frame rate Frame time 
Max. number 

of rows 
Max. number 

of columns 

525-line NTSC 30 33.33 ms 480 720
625-line PAL 25 40 ms 576 720

Table 4.6. Spatial and temporal resolution of images in the MPEG2 standard MP@ML; 
in practice, it is advised to follow a 4:3 ratio

4.3.2.3. Modes of access to compressed data 

There are four exchange modes offered in the DICOM standard: 1) network 
exchange, using the STORAGE and QUERY & RETRIEVE services; 2) exchange 
using physical supports, for example CDROM or DVD; 3) email attachments; and 
4) WADO (Web access to DICOM persistent objects). They were successively 
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introduced into the standard to meet the needs of different applications. This section 
gives a brief introduction to the specificities of each of the exchange modes, and 
gives the part of the standard which details them. 

Network exchange: this exchange mode (with the STORAGE and QUERY & 
RETRIEVE services) was already present in the 1985 and 1988 versions of the 
ACR-NEMA standard, and was taken up again in the DICOM 3.0 standard of 1993. 
It involves “pushing” the images one by one, by means of a C-STORE type message 
(defined in Part 7 of DICOM). These simple transfer operations can be integrated 
into wider transactions including search capabilities via criteria such as patient name 
or study number (QUERY & RETRIEVE): this uses other services defined in Part 7 
of DICOM, i.e. the services C-FIND, C-GET and C-MOVE. 

The use of exchanges over a network between two application entities requires 
the prior negotiation of services (SOP Class) and the transfer syntaxes to be used. 
This is called association negotiation. This negotiation is initiated by the requestor 
of the association, which gives the list of SOP Classes which it supports, specifying 
the role of each (SCU or SCP) as well as the potential transfer syntaxes. This SOP
triplet Class – Role – Transfer Syntax is called the presentation context. The second 
application entity replies, giving in turn the supported presentation contexts, so that 
this negotiation can serve to define the list of services and syntaxes which can be 
used in the exchange. 

It is at this stage therefore that the use of transfer syntaxes involving image 
compression techniques can be introduced. Next we must determine the ways of 
identifying the images, according to their original or compressed nature, as well as 
the rules which govern the conversions between an original, uncompressed format 
and a compressed format. 

A general principle (below we will look at how it can be modified) is that the 
image exists independently of its encoding. Thus if an image is transferred from an 
image source to an image server using a transfer syntax A, this same image can be 
restored – via QUERY & RETRIEVE for example – by a work station using a 
transfer syntax B. All it takes is for transfer syntax B to have been given preference 
over syntax A during the association negotiation between the work station and the 
image server. We should remember that the choice of transfer syntax is determined 
by the order of presentation contexts proposed and accepted by those involved in the 
exchange, and it is not a specific choice made during a C-GET or a C-MOVE. 

However, we do have to add some caveats. In the case of images compressed 
with a lossy method, it is possible that several copies of one image could be 
managed by an image server application in order to differentiate between the 
uncompressed images and the images compressed using various different 
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compression techniques and therefore represented in different transfer syntaxes. 
There is therefore a data element (0028,2110) Lossy Image Compression, which 
when positioned at the value 01 indicates that the image has been subjected – at 
some point in its life – to a lossy compression. In this case the value 1 (i.e. the first 
field) of the data element (0008,0008) Image Type has to contain a DERIVED 
value, to indicate that it is a derived image. The application which creates such a 
derived image has to create a new instance of the image, called “derived”, giving it a 
new unique SOP Instance UID. A mechanism exists so that, following a QUERY & 
RETRIEVE query about an original image (not compressed), the service provider 
can indicate, via element (0008,3001) Alternate Representation Sequence, the 
existence of another (compressed) version of the image, in case the original image 
has not been saved. 

Exchange via physical media: the communication of images via physical media 
was introduced into the DICOM standard in 1995, with the publication of 
supplements 1, 2 and 3 (Parts 10, 11, and 12 of the standard). Naturally, in this case 
no negotiation of the transfer syntaxes is possible. Thus, the copy of the image 
present on the physical medium explicitly states the transfer syntax used during the 
encoding. The choice of potential transfer syntaxes is determined by the “application 
profiles”, particular to a clinical field and the technology of a given physical 
medium. These are defined in Part 11 of the standard, Media Storage Application 
Profiles. Thus, for example, the profiles STD-XA1K-CD and STD-XA1K-DVD 
give the SOP Classes and the transfer syntaxes to use for exchange by CD and DVD 
respectively for angiographic images up to resolutions of 1024x1024 on 12 bits. 

Email attachments: The ability to send images in the DICOM format as email 
attachments was introduced into the standard in 2001 with the publication of 
supplement 54. This extension defines a new application profile STD-GEN-MIME 
allowing the use of all DICOM composite objects and all existing transfer syntaxes. 
A group of DICOM files is contained in a new MIME (Multipurpose Internet Mail 
Extensions) entity called the DICOM file set, of the Multipart/mixed or 
Multipart/related type. Each file is coded in the form of a MIME component called 
DICOM File, of the Application/dicom type. It is advisable to use the extension 
“.dcm”. These specifications are dealt with in the RFC 3240 [RFC 02]. 

WADO access: Web access to DICOM persistent objects meets the increasingly 
present need to retrieve – via the Internet protocols http and https – DICOM 
persistent objects, whatever they may be (images, structured reports, etc.). It also 
tackles the need to reference these information objects very easily in the form of 
URL/URI (Uniform Resource Locator/Identifier) in all sorts of text or hypertext 
documents. This tool was introduced into the DICOM standard in 2003 with 
supplement 85, in the form of part 18 of the standard. It was also recognized by the 
ISO TC 215 (ISO 17432) [ISO 04c]. 
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The DICOM persistent objects concerned can be divided into four categories: (1) 
images, (2) multi-frame images, (3) text objects and (4) other objects. Table 4.7 
gives an exhaustive list of the MIME types that can be used in each of these four 
cases.

Single images Multi-frame 
images Text objects Others 

MIME
types 
that 
can be 
used

application/dicom
image/jpeg
image/gif
image/png
image/jp2

application/dicom
video/mpeg
image/gif

application/dicom
text/plain
text/html
text/xml
application/pdf
text/rtf
application/x-
hl7-cda-level-
one+xml

application/dicom

Table 4.7. MIME types that can be used in response messages with DICOM WADO

As we can see in this table, it is not only a question of allowing the use of access 
methods other than the traditional DICOM exchange protocols (QUERY & 
RETRIEVE), but also of making data retrieval easier in general syntaxes such as 
JPEG, GIF or MPEG, without encapsulation into the traditional DICOM syntaxes. 

The format of the requests is based on the standard format of URL/URI specified 
in the RFC 2396. The main parameters are as follows: 

– requestType (obligatory value: WADO); 

– studyUID, series UID, objectUID, corresponding to the three levels of 
DICOM’s “study – series – composite object” hierarchy; 

– contentType, containing the list of MIME types which can be used. 

Other optional parameters can also be defined, including: 

– charset, to determine the set of characters to use, in order of preference (this is 
just as relevant to text objects as DICOM objects represented with the MIME type 
Application/dicom); 

– anonymize, to state that the object must be anonymized; 

– annotation, to state that annotations (concerning the patient and the technique) 
must be burnt into the pixel data (only relevant for images, and with a MIME type 
other than Application/dicom);

– rows, columns, region, windowCenter, windowWidth, frameNumber, to specify 
the image or section of image to return. 
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4.4. Conclusion 

Bearing in mind the large volumes of data which result from medical imagery, 
the use of compression techniques – lossy or lossless – is clearly desirable. The need 
to share these images – within a hospital, but especially over a healthcare network – 
creates a strong need for standards, to guarantee the interoperability of applications 
and give long life spans to the data in question. Lastly, the context of national-level 
usage of the Personal Medical File will lead to the fundamental question of the role 
of medical imagery within these files. It is evident today that having standards 
adapted to the representation of compressed images is essential for the images to be 
correctly represented in these files. Faced with these needs, numerous possibilities 
exist, offering performance levels which can be qualified as satisfactory today, in 
both lossy and lossless compression [CLU 00]. 

Nevertheless, the ever-increasing volume of image data in existence represents a 
challenge for the future. This increase is in part due to new multi-slice CT scanners, 
but also to the development of dynamic imagery (X-ray imagery, ultrasound, 
dynamic MRI, endoscopy) and to the progress of digitization in anatomopathology 
(virtual slices). This evolution always calls for an improved performance within the 
fields of image compression and the communication of compressed data. Therefore, 
the ball is in the court of technical experts working in the field of image 
compression, who will undoubtedly rise to the challenge. The experience of the past 
10 years has shown that the algorithmic progress achieved in lab results in 
international standards, both via the ISO and other standards committees such as 
DICOM. This requires time and effort, but it is essential if a standard is to be 
recognized and benefit from wide-spread usage in the industry. 
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Chapter 5 

Quality Assessment of Lossy 
 Compressed Medical Images

5.1. Introduction 

Lossy compression techniques do not leave an original medical image 
unimpaired. It is therefore necessary to evaluate the degradations caused on the 
image. For natural images, coding techniques must keep to one single criterion 
relating to visual quality of the reconstructed image. For medical images, it is 
essential that the compression avoids any distortions that could modify the 
diagnostic interpretation of the image and the value of anatomic and/or functional 
parameters that are supposed to indicate the state of the organ being studied. The 
American College of Radiology pointed out in its practical guide on radiology that 
this compression must be carried out without losing any information useful to the 
diagnosis [AME 05]. 

Defining the amount of distortion accepted that could preserve the reliability of 
the diagnosis of the reconstructed image is a complex problem and an open debate in 
the medical imaging field. In fact, the eligible compression rate does not only 
change according to the compression method applied, but also largely depends on 
the characteristics of the image being studied; characteristics that are linked to the 
gathering techniques as well as to the nature of the organ being explored and to the 
pathology itself [ERI 02]. 

Chapter written by Christine CAVARO-MÉNARD, Patrick LE CALLET, Dominique 
BARBA and Jean-Yves TANGUY. 
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In this chapter, we will start by outlining the consequences of any degradations 
generated by the two compression norms, JPEG and JPEG 2000, in medical 
imaging. We will then describe in further detail the different subjective evaluation 
methods that are most often used in medical imaging, as well as the more recent 
objective methods. 

5.2. Degradations generated by compression norms and their consequences in 
medical imaging 

5.2.1. The block effect 

It is widely known that compressing an image using the JPEG norm causes the 
appearance of blocks. This is a direct consequence of the structure of the algorithm 
that cuts an image into blocks before independently processing each one of them. In 
the case of medical images, various problems may arise:  

– discontinuities in linear details: such as the fine lines of a rectangular 
interstitial syndrome that could appear in a pulmonary X-ray (Figure 5.1); 

– bad visibility of nodular details; for the pneumoconiosis disease, the reticular 
syndrome of micro-nodular type is made up of millimetric nodular images that may 
be less visible when cut by juxtaposing two or more blocks; 

– change of texture; trabecular bones form a reticular network of thin infra-
millimetric meshes with an alignment which is dominant to a varying degree 
depending on the bone type. Their image on an X-ray or a CT scanner, must 
maintain the same visual aspect as it is important for the diagnosis of a fracture or of 
a tumorous lesion for example (Figure 5.2). 

Figure 5.1. Effects of JPEG compression on a linear detail observed on a pulmonary X-ray. 
On the left: original image, on the right: compressed image with CR=10:1 
(small fissure: line formed by the separation between two right-lung lobes)
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Figure 5.2. Trabecular texture change of neck of the thighbone by 12:1 JPEG compression 
blocks (on the right). It would be impossible to detect the presence of a bone fracture

5.2.2. Fading contrast in high spatial frequencies

Some compression methods (such as those based on a decomposition of the 
image signal by wavelets, the JPEG 2000 norm for example) cause a fade in contrast 
in the high spatial frequency zones of the image. This reduces the clarity of the 
image’s contours or its linear details (fibrous aspects). The final product represents a 
smoothed surface on certain areas of the image which sometimes causes the texture 
of the image to change, such as that of zones representing lesions, for example the 
“salt and pepper” aspect of a glomic tumor, or the finely striated, radial or granular 
aspect of tumourous tissue. The spatial resolution may be insufficient compared to 
the amount required in order to render all details of the image correctly. When the 
size of a particular detail is smaller or equal to that of the pixel, the only thing 
visible is the layout, for example the local linear layout made up of a repeating series 
of pixels, one next to the other and of close amplitudes. If a particular treatment 
reduces the noise of the image, it may also reduce the visibility of the details in the 
image. It is therefore better to preserve the noise of an image and its spatial structure 
that covers high two-dimensional frequencies, rather than reduce the structured 
textures of the fine tissues being observed that interfere with the use of pathological 
objects when establishing a diagnosis. The texture of these details is not always 
structurally described in radiological semiology studies. It is taken into account 
however, perhaps unconsciously, by experienced physicians, when analyzing and 
detecting the existence of a lesion.  
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The following image is a frontal slice of the brain showing an olfactory 
meningioma. This image illustrates how visible linear details are, knowing that their 
width is close to that of the pixel. It also shows the loss of clarity in the radial plot at 
the base of the lesion, after a JPEG 2000 compression (Figure 5.3). 

Figure 5.3. Olfactory meningioma on a frontal slice of a T1-weighted spin echo MRI 
(acquired on a 1.5 Tesla system): (a) original image; (b) smoothed image after 21:1 JPEG 
2000 compression; the 21:1 rate of compression preserved a good global visibility of the 
lesion; (c) original image, zoom x5, the arrows point at linear details linked to the fibro-

vascular architecture of the lesion, the width of which is close to the pixel width; 
(d) JPEG 2000 21:1 compression, zoom x5: reduced visibility of details
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5.3. Subjective quality assessment 

Subjective quality assessment methods are run by a group of experts who rate the 
quality of the diagnosis as well as the visual quality of the image. They work in the 
adapted conditions, similar to those applied during clinical routine, allowing them to 
observe all the necessary detail. 

In fact, the choice of assessment method depends on the task that is to be 
evaluated. In other words, it depends on the information that can be extracted from 
the images themselves. Usually, there are two different types of task: 

– detection tasks that call upon a binary answer (presence or absence of 
pathology); 

– estimation tasks that lead to an estimation of a quality grade according to 
specific diagnosis criteria. 

Thus, for every detection task, the appropriate assessment method is the one 
which allows for effective calculation to test the sensibility and specificity of the 
technique to be evaluated. In this case, the most common and most efficient method 
used is one based on the ROC (Receiver Operating Characteristics) analysis. For 
estimation tasks, the appropriate assessment approach requires the regression study 
or the Bland and Altman type of study, of inter- and intra-observer analysis. Two 
important subjective assessment approaches are then suggested to judge on the 
quality of compressed medical images: 

– the assessment of diagnosis reliability, classified as an assessment of detection 
task; 

– the assessment of the diagnosis criteria quality, classified as an assessment of 
estimation task. 

5.3.1. Protocol evaluation 

Images must be evaluated by at least three physicians (a practical compromise 
between what is feasible and the strength of statistical tests) selected from amongst 
senior radiologists specialized in the analysis of the organ being studied. The more 
motivated the physicians are on the subject of compression, the more efficient, 
rational and productive the assessment will be. The number of images used must be 
sufficient for a statistical evaluation (minimum 30). For the diagnosis quality 
assessment, the pathologies being studied will be selected according to the 
probability that they can represent different degrees of subtlety, and the probability 
that they are to be influenced by degradations caused by the compression system 
(smoothing, block effect, etc.). For example, in thoracic digital radiology, the most 
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commonly studied pathology is interstitial syndrome (subtle anomalies characterized 
in the frequency-plane by high frequencies) [CAV 01] [SUN 02]. 

In order to avoid drifts during the statistical analysis of results, the conditions of 
observation must be standardized and remain close to the conditions applied during 
clinical practice. Assessment sessions are therefore often carried out in the form of a 
double-blind test, unlimited by time. Certain actions such as zooming, contrast 
changes and luminosity changes are not allowed for the simple reason that they are 
specific actions directed by the physician. They may also have an impact on the 
visibility of compression artifacts. These factors, usually specific to the physician, 
are not reproducible and may therefore bias the analysis of results. In order to reduce 
the contextual effect during an evaluation, images are presented in a random order. 
Moreover, to obtain stable results, it is best to initiate a practice session on images 
that will not be incorporated in the final study, so that all experts agree on the 
anatomic and/or pathological criteria applied, on the psycho-visual evaluation scale, 
and on the reading conditions. 

5.3.2. Analyzing the diagnosis reliability 

During a diagnosis otherwise known as a binary decision (patients being either 
normal or pathological), four different situations may occur, depending on whether 
the observer takes one or the other decision according to the established reality of 
the gold standard1. These four situations are summarized below in Table 5.1. 

Disease

Present Absent 

Positive TP FP Physician’s 
Answer Negative FN TN 

Table 5.1. Diagnostic test with TP the True Positive fraction  
(disease correctly classified as positive), FP the False Positive fraction, 

FN the False Negative fraction and TN the True Negative fraction

1 Gold standard: diagnostic test indicating the formal diagnosis of each patient in the 
experiment.
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In order to analyze the diagnosis reliability, it is not enough to simply count the 
percentages of correct answers, for two different reasons: 

– in case of low prevalence of the disease, for example; for a disease affecting 
about 5% of the population, a systematic negative response would judge the test as 
correct in 95% of all cases; 

– the percentage of correct responses gives no indication whatsoever on false 
positive or false negative fractions that play an important part in clinical practice. 

Four diagnostic indices have been defined that characterize how correct the 
answers on classification are: sensitivity Se, specificity Sp, the Positive Predictive 
Value PPV and the Negative Predictive Value NPV.

FNTP
TPSe  [5.1] 

FPTN
TNSp  [5.2] 

FPTP
TPPPV  [5.3] 

FNTN
TNNPV  [5.4] 

All the above values hold between 0 and 1. The Se, Sp, PPV and NPV values are 
directly related to the prevalence of the disease, according to the Bayes theory. They 
therefore remain coherent even when the disease is only slightly present. 

Nevertheless, every assessment method using these four diagnostic values 
requires a gold standard that provides the reference diagnosis. This is not always an 
easy task, especially when the images being studied normally form the gold standard 
(such as X-ray images of the coronary arteries and numerous MRI, etc.). To solve 
this problem, a commonly used approach is to call upon a group of physicians who 
are then asked to establish, according to consensus, a diagnosis on the images being 
studied. It is also possible to ask these physicians to give their individual opinions 
on the image, and then keep only the images on which all physicians raise a similar 
diagnosis. 
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5.3.2.1. ROC analysis 

ROC analysis works by observing the entire set of images coded by different 
compression rates. Radiologists perform this observation task and must then issue a 
diagnosis (normal or pathological) from these images. We must note that this 
method is also used to judge the general diagnostic performances of new protocols 
or new clinical parameters. 

In the medical field, there is no set way to distinguish a normal subject from a 
pathological one. In practice, the physician works spontaneously using a density 
guide outlining the probabilities of having normal or pathological cases according to 
a law looked upon as a Gaussian function, as indicated in Figure 5.4. 

Figure 5.4. Distribution of medical diagnosis

The sensitivity and specificity values vary according to two different 
phenomena: where the decision threshold settled by the physician lies and the 
detailed precision of the pathology (the more subtle it is, the more overlapping there 
is between the Gaussian probability density curves (in Figure 5.4)). The ROC 
approaches solve the problem concerning the decision threshold for the simple 
reason that they specifically allow the evaluation of a system without considering 
the chosen decision threshold. In other words, the ROC approach consists of 
representing the sensitivity value as a function of the specificity for all threshold 
values possible, and then joining these two points on the curve, as shown in Figure 
5.5. Each point on the curve therefore represents a compromise between 
sensitivity/specificity corresponding to a particular decision threshold. The ROC 
curve summarizes the entire range of sensitivity/specificity compromises for all the 
different threshold values. 
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Figure 5.5. ROC curve

In order to artificially vary the decision threshold, the most common technique in 
medical imaging is to ask a question relating to how confident the physician is in 
noting the presence or absence of the disease in the image: the disease is most 
certainly present (1), probably present (2), the case is being disputed (3), the 
pathology is probably absent (4), certainly absent (5). There are thus 5 possible 
levels of answer. Amongst these responses, 4 couples (Se, 1-Sp) are created by 
simulating different decision thresholds that a physician could have had if the 
answer was strictly binary. For example, when a physician answers (3), the 
responses number (1), (2) and (3) can all be considered positive in the context of a 
binary answer, while the responses number (4) and (5) will be negative. Adding 
answers (1), (2) and (3) gives us the sensitivity level and adding (4) and (5) gives the 
specificity. A point (Se, 1-Sp) corresponding to the level of answer number (3) is 
then established. The four couples now being determined, we can add them to the 
couples (0,0) and (1,1) to obtain the points defining the ROC curve. Numerous 
solutions enable the curve to pass through these 6 different points. The most 
commonly used approach is a parametric approach: it is based on the method of 
maximum likelihood so that it corresponds to a binormal curve [MET 89]2.

It is possible to interpret an ROC curve in a qualitative manner. The shape of the 
curve only characterizes the detection performances. A curve that has merged within 
the diagonal of the two axes (Figure 5.6a) corresponds to a non-discriminating 
system. In other words, the answer given by the observer is in no way related to the 
presence or absence of an anomaly. A curve shape like the one represented in Figure 
5.6.b corresponds to a perfectly discriminating system, for which there exists a 

2 This approach is at the root of the free software “Rockit”, available on the following 
website: http://www-radiology.uchicago.edu/krl/KRL_ROC/software_index.htm.
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specific decision threshold that separates both groups distinctly. In practice, 
effective ROC curves have a shape halfway between these limits. For example in 
Figure 5.6c, the curve corresponds to system A that reveals better detection 
performance than those corresponding to system B. 

 (a) (b) (c)

Figure 5.6. Interpretation of ROC curves: (a) non-discriminating system, 
(b) perfectly discriminating system, (c) usual system (system A > system B) 

When we come to classifying the compression methods being studied by 
increase in performance, it is then possible to objectively compare the areas under 
the ROC curves otherwise known as the AUC (Area Under Curve) areas. The AUC 
represents the probability that we can correctly identify the image containing an 
anomaly when both an image with and another without an anomaly are 
simultaneously presented to the observer. 

During the evaluation of a compression system, a ROC curve is first established 
from the set of original images, and then compared to a second curve drawn from 
images compressed at a given rate. If the compression causes a reduction in the 
diagnostic performance, the second curve appears under the first. Various ROC 
curves corresponding to images compressed at different rates may be compared as 
shown in Figure 5.7. 

Figure 5.7. Example of ROC curves; from [SUN 02]



Quality Assessment of Lossy Compressed Medical Images     111 

The ROC analysis is widely used to validate compression algorithms on medical 
images. This method has the advantage of receiving a general consensus, and is 
often considered as a reference amongst radiologists for quality assessment 
[SUN 02][ZHI 05]. 

Nevertheless, ROC analysis is appropriate mainly for binary diagnostic 
assignments (normal/pathological). The traditional ROC analysis therefore cannot 
apply in the case of a diagnosis involving multiple pathologies on a same image. 
With the FROC (Free Response Operating Characteristic) and AFROC (Alternative 
FROC) approaches it is possible to analyze the location of potential anomalies by 
indicating on the ordinate the number of anomalies correctly detected and located, 
and on the abscissa, either the average number of false positives in each image for 
the FROC curves [PEN 05] or the fraction of images that contained at least one false 
positive (abscissa of ROC) for the AFROC curves [CHA 90]. However, there is no 
specific statistical test allowing for the comparison of two FROC curves. 

5.3.2.2. Analyses that are not based on the ROC method 

If the diagnostic task is not binary (determining the amount of nodules for 
example), it is also possible to statistically analyze the diagnostic indices Se and 
PPV according to the compression rate of the images [COS 94]. 

In the case of cardiac angiograms, not only are the sequences considered as gold 
standard in the study of coronary cardiopathies, but the diagnostic task also 
combines the location (depending on a rigorous lexicon), the detection, as well as 
the classification of the anomaly. Beretta thus suggests that the evaluation be based 
on the estimation of intra and inter-observer concordances between all the visual 
interpretations of the sequences with or without compression [BER 97]. Since the 
gold standard is absent, that concordance is statistically estimated by a kappa test 
[COH 60] if the answers characterize a certain category. All these concordances 
must be associated with a threshold of statistical significance often marked as p or 

: if p < 0.01, the concordance between them is not the result of pure chance. The 
inter-observer concordance obtained on the original images is then compared with 
the one obtained on the compressed version of these images. Similarly, the intra-
observer concordance tested between two replicas of the original image is compared 
to the one tested between the two replicas of the compressed image. 

5.3.3. Analyzing the quality of diagnostic criteria 

The analysis of the diagnosis reliability is often rather “general”. This is because 
it refers to a set of test images. This analysis is also “unique” because it focuses on 
analyzing one specific pathology. In clinical practice, each diagnosis is very specific 
and may deal with more than one pathology. Thus, all local information (often 
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anatomic information) in the image is analyzed according to specific criteria in order 
to best integrate the diagnostic process. Evaluating local attributes of an image is 
therefore an important part of the diagnosis that reflects the clinical practice and is 
often useful in the decision process (by physicians) on whether to use irreversible 
compression methods in clinical routine. 

For this type of analysis it is crucial to define both the grading scale and the 
diagnostic criteria that are to be evaluated. Moreover, they must be defined very 
precisely (as indicated in Figure 5.8) in order to avoid inaccuracies. The criteria 
selected are specific to the organ being studied. The notation scale is also adapted to 
the characteristics of the acquisition system. 

Figure 5.8. Anatomic criteria defined in [CAV 01] for quality  
assessment of normal PA chest radiographs

Since the answers are evaluated by a quantitative score; we are able to measure 
the proportion of concordance. The correlation between all observations can be 
evaluated qualitatively by graphical analysis and by displaying the answers of the 
first observation on one axis and those of the second observation on the second axis, 
as shown in Figure 5.9. 
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Figure 5.9. Example of a graphical analysis of the correlation  
between all observations [BER 97]

The greater the difference between the first and the second observation, the more 
dispersed the points will appear around the straight line representing the response 
couples. The concordance correlation coefficient defined by Lin [LIN 89] then 
allows us to quantify the degree by which these pairs of measurements are on the 
straight line (first diagonal). This coefficient can be estimated using the bootstrap 
technique, when the overall dispersion of measurements is not Gaussian and/or 
when the number of studied images is relatively small [CHE 99]. 

Regarding the quality assessment of compressed images, the first observation 
corresponds to the results obtained on the original images by one physician and the 
second observation corresponds to the results obtained on the same images after 
compression by the same physician. The correlation coefficient can then be 
compared to the coefficient obtained first by the intra-observer analysis (the original 
images are evaluated twice by the same observer at sufficiently distant times so as to 
avoid what is often called the learning effect) and then by the inter-observer analysis 
(the original images are evaluated independently by at least two observers). 

This notation of anatomic criteria useful to any diagnosis (defined as Diagnostic 
Quality Pattern or DQP in [PRZ 04]) allows us to determine a local score (and thus 
a quality map) or a global score (an average), for every compression rate. This 
average score is often referred to in literature as the “Mean Opinion Score” or MOS 
[YAM 01]. 
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5.3.4. Conclusion 

In order to analyze the diagnosis reliability and the quality of specific diagnostic 
criteria, we need to ask physicians to assess the diagnosis legibility on a particular 
set of images. In practice, studies such as these are difficult to set up [PRZ 04]. It is 
indeed very complicated to gather different images making up a representative 
sample of the studied pathology, and/or a sample enabling us to judge the result on 
each type of criteria given for each compression technique. 

Nevertheless, these studies are still, up to this day, the only method on which 
physicians agree to evaluate compression systems. Moreover, these studies help 
physicians to accept lossy compression of medical images as they are often surprised 
to see no difference between an original and a compressed image (under specific 
conditions of course). In the case of cardiac angiogram compression, Beretta notes 
that physicians cannot determine the difference between MPEG compressed 
sequences at a compression rate of 12:1 and the original corresponding sequences 
[BER 97]. 

5.4. Objective quality assessment 

Objective quality assessment methods are carried out by calculating a value 
representing the local or global quality of an image using mathematical algorithms 
known as “objective quality criteria” and without any human intervention. This 
value must best reveal the visual appreciation of a human observer. For this purpose, 
this value may be defined as a linear combination of various distortion factors 
(based either only on a difference between the amplitude of pixels, or preferably on 
a human visual system model). Adjustment of the weights of each factor could be 
performed by linear regression, in order to best reproduce the MOS [MIY 98] 
[PRZ 04]. 

In literature, three main objective approaches are used in medical imaging when 
judging the quality of reconstructed images: 

– measuring the signal-to-noise ratio (SNR) or any other measurement based on 
pixel values; 

– calculating a set of parameters based on a model version of the Human Visual 
System (HVS); 

– analyzing the change of clinical semantic parameters, knowing that they are 
calculated automatically or semi-automatically (for example, the degree of stenosis). 
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5.4.1. Simple signal-based metrics 

The Mean Square Error (MSE) evaluates the importance of the distortions in a 
reconstructed image after an irreversible coding, by an Euclidean distance. The SNR 
metric is another widely used technique directly linked to the MSE. It evaluates the 
quality of image reconstruction through a quality measurement based on contrast. 
We must note that these two measurements are full reference metrics (called FR 
metrics), as they need the original image version (non-distorted by the coding 
process) corresponding to the coded image to be evaluated. The coded image must 
be perfectly spatially aligned with the original to make sure that the measurements 
are not biased. 

Nevertheless, during the quality assessment of an image it is very often found 
that these two measurements fail [ERI 02] [PRZ 04]. The reasons for this will be 
further explained in this chapter. We must note however that the HVS does not 
directly compare the original and coded values of each individual pixel. Instead, the 
HVS uses a more complex way of representing the observed images. It is important 
to know that the observation conditions are essential when looking at an image: 
ambient lighting, visualization screen, observing distance, etc. In addition, for 
medical imaging and other types of imaging, the image field must cover both 
regions of interest and the peripheral zones that are considered less useful. However, 
the PSNR and MSE criteria are global average measures that do not take into 
account all local variations of interest. In medical imaging, if important anatomic 
details have been degraded by compression while the rest of the image is generally 
well reproduced, then the MSE will remain low, but the medical expert will evaluate 
the image as bad in terms of quality. Finally, during a diagnostic task, the physician 
uses on one hand his knowledge of anatomy, function and potential pathologies of 
each organ, and the acquisition protocol characteristics on the other hand. 

5.4.2. Metrics based on texture analysis 

Some studies have aimed at evaluating one particular type of degradation by 
texture analysis. The works shown next have looked at the loss of contrast in high 
spatial frequency on medical images (indeed, this degradation largely interferes with 
the diagnosis, as explained in section 5.2.2). 

The Moran test consists of calculating a coefficient (a Moran coefficient) 
corresponding to the spatial autocorrelation observed between the pixels in an image 
block [CHE 06]. For a smoothed area, when the pixel intensities are close, there will 
be a high coefficient. The histogram of normalized Moran coefficients therefore 
presents a high peak while the spatial correlation (and hence the smoothing) will 
increase (Figure 5.10). 
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Figure 5.10. Histogram of Moran coefficients for different compression  
rates according to the JPEG 2000 norm [CHE 03] (the higher the  
compression rate is, the more significant the smoothing will be)

In [HIS 02], a frequency analysis reveals the smoothing being introduced by a 
JPEG 2000 compression chain. The radial information extracted from the Fourier 
spectrum of a compressed image (by adding the frequency coefficients located on a 
given radius circle – and thus a given frequency) outlines the significant loss of high 
frequencies after compression (Figure 5.11). In order to characterize the low-pass 
filter, a transfer function is calculated for each compression rate according to the 
following formula: 

Image Original
1:iCR Image tedReconstruclog20

rad

rad

FFT
FFT  [5.5] 

The cut-off frequency at -0.5 dB (because of the low initial gain) of each filter 
quantifies the smoothing effect (Figure 5.11). 
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Figure 5.11. (a) Frequency analysis of radial information for two different compression rates; 
(b) transfer function for a given compression rate; (c) variation of the cut-off frequency at  

-0.5 dB of the filters according to CR (significant gradient between 20:1 and 30:1) [HIS 02]
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5.4.3. Metrics based on a model version of the HVS 

Metrics based on the HVS usually use an approach based on a visual 
discrimination model. Two images are therefore analyzed simultaneously by an 
algorithm providing a Just Noticeable Difference (JND) map between these two 
images. The JND values vary according to the observing conditions (general 
lighting, screen, observation distance, etc.). It is then necessary to gather all of these 
visual differences to establish an overall score for the image quality. Transforming 
the JNDs into an overall score is not an easy task, and must be performed while 
taking into consideration both the observation context and the final task to be 
accomplished. In medical imaging, whether we are dealing with detection or 
estimation tasks, this last step in the process remains an open field of investigation 
that requires high-level treatment by the observers themselves. In fact, this synthesis 
procedure depends on the shapes that have been identified or that are to be identified 
in the image as well as on the semantics of the content being observed, according to 
the expert. In medical literature, this spatial pooling of visible errors is often 
performed using a simple approach such as a Minkovski summation (Lp norm with 
p sometimes equal to 2, and often greater than 2). We will therefore be looking only 
at the best-known approaches that detect JNDs and leave the pooling stage aside. 

Many physiological studies of the human visual system have led to numerous 
properties and a variety of assumptions. All of these properties must be taken into 
account when trying to understand how our visual system translates and represents all 
the information it comes across. Nevertheless, this system remains a complex one, 
and we have not understood every single one of its aspects. Thus, the models based 
on our visual system are still often incomplete. In this section, we review the main 
visual factors relating to the quality assessment of an image. We will then outline 
the criteria present in the literature.  

5.4.3.1. Luminance adaptation 

The human visual system is able to adapt to a great dynamic of different light 
intensities, thanks to the anatomic structure of the eye and its retina. This capacity to 
adapt to different luminosities enables humans to distinguish light variations, even if 
the luminosity varies considerably. There are three different mechanisms by which 
the system adapts to luminosity: size variation of the pupil by the iris (response time 
of a few seconds), variations in the concentration of chemical products in 
photoreceptors (response time is very slow: a few minutes) and adaptation of 
neurons involving all the cells of the different layers of the retina that adapt to 
changes in light intensity by increasing or reducing their exit signal (fast adaptation: 
less than a second). 
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5.4.3.2. Contrast sensivity 

It is well known that the human visual system is more sensitive to local light 
variations compared to the average luminosity than it is to full variations. The 
Weber-Fechner theory is best adapted to explain this dependence. It confirms that a 
luminous stimulus’ sensibility to differences in light intensity is proportional to the 
average luminosity of that stimulus (the contrast threshold remains constant when 
the levels of light increase). This theory is correct for background luminosities of 
about 10 cd/m2, under which the contrast threshold increases as the luminosity 
decreases. Additionally, the theory is invalid when dealing with a high average 
luminosity. 

There are many different models that take into consideration this adaptation 
process. The most commonly used model uses a non-linear compressive structure, 
usually a log function or a cube root. Daly [DAL 93] brings forth the idea that using 
a non-linear logarithm over-estimates the visual sensibility in areas of low intensity, 
and that a cube root is instead, the best possible approximation. Peli [PEL 90] and 
Lubin [LUB 93] give a definition of contrast based on the ratio between the energy 
of a spatial frequency band and the local mean luminance obtained by a low-pass 
filter applied to the image. 

The background luminance is not the only value acting upon the visibility of a 
signal. Other characteristics are also important, such as for example, the spatial 
frequency content. Contrast sensitivity functions (CSF) are generally used to measure 
these dependencies. The CSF is defined as the inverse of the contrast threshold. It is a 
function of the signal spatial frequency to be detected (it must be noted that, often, it 
is the radial spatial frequency that applies; in fact, it is also a function of the 
orientation). In a medical context, various more or less complex CSF models translate 
the relation between the contrast threshold and the stimulus spatial frequency. These 
models are almost all established from experimental results regarding the detection of 
sinusoidal signals, using Michelson’s definition of contrast. Peli et al. [PEL 93] provide 
a rather complete set of function curves displaying the sensibility to achromatic 
signals for different stimuli configurations. These results suggest that differences in 
stimuli greatly influence the shape of the CSF. The assumption that the CSF can be 
assimilated to a function of a bandpass filter transfer in spatial frequency is only 
verified for sinusoidal signals limited to a specific spatial extension. It is clear that the 
gain at spatial frequency (0,0) could not be zero otherwise it means no sensitivity to 
the general luminance of an image.  

5.4.3.3. Spatio-frequency decomposition 

Various physiological facts reveal that most of the cells in the visual system are 
responding to particular magnitude types fundamentally determining visual signals 
such as the color, orientation or spatial frequency. This has been confirmed by 
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results of psycho-physical experiments that suggest the existence of a spatio-
frequency deconstruction in visual channels to deal with the information. Thus, 
Sakrison [SAK 77] notes that when representing a stimulus containing various 
frequency components, such as for example a sawtooth, the fundamental component 
is the only one to stabilize the stimulus visibility threshold. Simulating these visual 
channel phenomena leads to the definition of numerous filters that then characterize the 
subbands or visual channels. The construction of a bank of filters modeling this 
decomposition with precision is often criticized. While many authors [DAU 84] 
[PHI 84] disprove the existence of independent channels in a polar representation, 
the decomposition characteristics are usually defined in terms of radial or angular 
selectivity. Regarding the achromatic component, the width of the bands varies, 
according to the authors, from 1 to 2 octaves in radial frequency sensibility, and 20 
to 60 degrees in angular selectivity. 

5.4.3.4. Masking effect 

The contrast masking effect is a phenomenon known to translate the change in 
visibility of a signal by the presence of another signal. This change may be a 
reduction of the visibility threshold, in which case we are dealing with the 
facilitation effect. The visibility threshold may increase, in which case we are 
talking about the masking effect. The masking effect is a sensitive step in visual 
quality metrics procedures because bad modeling of the masking effects means that 
the general appreciation of visible errors will be not good. The main problem is that 
the implied phenomena are all very complex. There are several experimental 
conditions and different models available. Experimental results are strongly 
dependent on the signals used. The masking effects vary according to the frequency 
content, phase and color orientation of signals, or even according to the degree of 
familiarity that the observer has with the signals involved. 

Traditional experiments measure the capacity to detect sinusoidal signals in the 
presence of another sinusoidal signal masking the first. Such experiments deal with 
the masking of signals oriented differently [FOL 94a] or of a different spatial 
frequency [LEG 80]. Most experiments lead to a model type similar to that defined 
by Legge and Foley. This model, now widely used for questions relating to the 
contrast masking effect, predicts the degree with which a second masking sinusoidal 
signal hides the presence of a target sinusoidal signal. This type of model has been 
improved over time [FOL 94b] following the introduction of a new spatio-frequency 
decomposition concept. We can observe that the masking effect depends on the 
energy present in a channel as well as on the energy in adjacent channels in terms of 
orientation. Models used to control the increase in contrast have gained in 
popularity. This is because they are able to predict the visibility thresholds of simple 
signals equally well. Initiated by Teo and Heeger [TEO 94], these models are 
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constantly being improved. The more specific they become the better they can 
explain the multiple interactions occurring between visual channels. 

Other experiments [LEG 87] [GEG 92] look at the masking effect of a signal by 
a spectrum noise limited by a frequency band. These experiments deal with masking 
effects that are considerably more significant than those occurring with simple 
signals. However, Swift and Smith [SWI 83] have shown that, if the observers are 
given enough time to familiarize themselves with a noise type masking signal, the 
results will be similar to those obtained with sinusoidal masking signals. Watson et
al. [WAT 97] have studied this phenomenon using different masking signals: white 
noise, colored noise, sinusoidal and natural images. Results have shown that 
familiarization can work to reduce the masking effect linked to noise down to the 
effect deriving from a sinusoidal signal. This confirms the results presented by Swift 
and Smith. Finally, how important the contrast masking effect is, depends on the 
degree of familiarity that the observer has with the image. In the case of medical 
images, physicians are usually very familiar with the images that they are given to 
evaluate.

5.4.3.5. Visual distortion measures 

The first visual distortion measure with the visual capacity to evaluate the quality 
of an image was defined by Mannos and Sakrison [MAN 74]. The visual system was 
then known as a mono-channel (filtered by a contrast sensibility function after a 
treatment by a non-linear function of adaptation to luminance). This approach has 
been extended to include the study of masking effects in order to increase the 
visibility of errors. Various authors ([LUK 82], [XU 94], [HAN 94], [KUS 01]) have 
suggested such an extension for a mono-channel metric. These mono-channel 
metrics involving masking effects are a great improvement from the simple mono-
channel metrics. However, since masking effects are taken into account, it is not 
possible to include aspects of the visual system’s receptor fields. As a result, the 
models are under constant evaluation and improvement. They are based on 
magnitudes that are indirectly representative of those treated by the HVS. 

Zetzsche and Hauske were the first to introduce a metric using a multi-channel 
model [ZET 89] to evaluate the quality of fixed monochrome images. Various 
authors have taken an interest in what is known as aperiodic masking linked to the 
structures of natural images (lines and outline), as opposed to the masking 
phenomenon measured in psychophysics with sinusoidal signals. Since the model is 
optimized using results of an experiment on the visibility of a line masked by a 
contour according to the distance between both, the masking effects are kept in a 
degradation configuration that is far too specific. Comes suggested two additional 
multi-channel criteria [COM 90] [COM 95] based on the idea that the original image 
is the actual signal masking the errors in the distorted image. This suggestion may 
however turn out to be a disaster if distortions are simultaneously masked. The most 
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reasonable measures are those based on a visual representation of a reference image 
as well as of the distorted one that use psychophysical tests detecting simple signals. 
The two widely known measures fitting these descriptions are the Visible Difference 
Predictor (VDP) defined by Daly [DAL 93] and the Visible Discrimination Model
(VDM) defined by Lubin [LUB 95] and considered as one of the standards of 
quality assessment. The structure of the VDM model is similar to the criterion 
established by Daly, yet with a few interesting differences. A study [LI 98] is still 
unable to depict the significant performance differences between both criteria. 
Nevertheless, Lubin’s VDM is most widely known and largely used for medical 
applications. We will therefore focus in greater detail on the VDM.  

The main specificity of the measure holds at its first level, modeling the optical 
part of the retinal visual system. The optical filtering carried out by the eye takes 
place at first on the image signal by applying a filter with a two-dimensional 
Gaussian convolution kernel. It is then sampled a second time in order to model the 
filtering and the sampling linked to the dispersion of cones in the retina. This 
approach is very different to Daly’s model, as it includes extra foveal vision 
phenomena. Each resulting signal, coming from both the original and the distorted 
image, is decomposed according to a Laplacian multi-resolution pyramid, creating a 
hierarchy of 7 different levels of filtered signals. The central frequencies vary 
between 32 and 0.5 cycles/degree and are separated from one another by an octave. 
A 5-level contrast pyramid is then constructed, in which the level k contrast on each 
site is calculated according to a technique similar to Peli’s technique [PEL 90]: 
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where k varies between 0 and 4, and the offset parameters  equals 0.025 in order to 
avoid a division by zero. The Gi

k+1 image derives from the Gk+1 image by 
interpolation with a filter, so that Gk and Gi

k+1 have the same size and scale. By 
applying the filter twice on Gk+2, we obtain Gii

k+2. Using this definition of contrast is 
another original aspect of the Lubin method compared to the Daly criterion. 

The Ck contrast signals are then filtered by four pairs of angular selectivity filters of 
a 65 degree band-width. Each Rkl response corresponding to level k and orientation l,
is normalized by the detection threshold Mt ( , L, W), given by Barten’s CSF at the 
central frequency  of each filter, for an image of a mean luminosity L and width W.
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The intra channel masking is taken into account, by applying, on each 
normalized response Rnkl, a non-linearity of sigmoid type: 
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The parameters have been optimized from the results of psychophysical 
experiments found in medical literature. Other authors give  = 0.5,  = 1.1, 

 = 0.068 and k = 0.1. After having gathered all images of similar resolution, we can 
calculate at each point the figure D12 using the Minkowsky summation:
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with  = 2.4 and where T1
kl and T2

kl correspond to the responses of the original and 
degraded images. The model allows us to obtain distortion maps in the same way as 
the Daly model provides probability determining how likely we are to detect the 
differences between two images at each spatial site. 

On the basis of this mode, it is possible to engage some improvements both in 
terms of subband definition and regarding the masking model. Various authors 
[JAC 96], [JOH 99], [KRU 03], [CHA 04] have suggested using such an approach in 
medical imaging. The results are often similar to those obtained in ROC studies, 
even if there is not yet a technique to construct a general quality score. 
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5.4.4. Analysis of the modification of quantitative clinical parameters 

Using images is not only about displaying them. Images may be processed in a 
variety of ways: for improvement, segmentation, three-dimensional visualization, 
quantification, etc. It is crucial to carefully study the potential influence that 
compression could have on the image, and the distortions it may engender. Such 
analyses are about calculating clinical semantic parameters (surface of an organ as 
shown in Figure 5.12, surface of an anomaly, ejection fraction, degree of stenosis, 
etc.) and then comparing the results obtained on the original image with those 
obtained on the same images after compression [KON 97] [CAV 99]. 

CR=20:1    CR=60:1 

Figure 5.12. Modification of myocardial surface on cardiac MRI after  
compression based on wavelets (SPIHT) and after JPEG [CAV 99]

Descriptive and quantitative statistical methods are used to test whether 
compressing the image significantly reduces its reliability. Using this approach it is 
however impossible to compare the measured values with the real unknown values 
(notion of accuracy). It is possible to check whether compressing the image would 
cause discordances between different measures (notion of reliability). For this 
verification to take place where a gold standard is absent, Bland and Altman suggest 
the use of a graphic method [BLA 86]. This graphic method clearly outlines the 
narrow concordance between two measures by tracing the differences between a pair 
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of measurements (in this case, the original and the compressed version) according to 
the average of each one of those pairs as shown in Figure 5.13. The straight line 
representing the average value of these differences is surrounded by two other 
straight lines that account for the interval of distortion tolerance. The average of 
differences indicates the mean bias between the two methods. 

Figure 5.13. Example of Bland and Altman analysis for the evaluation of  
degradations caused by a wavelet compression and a JPEG compression on  

the myocardial surface calculated on cardiac MRIs [CAV 99]

When the calculation is semi-automatic (common in clinical routine), the 
parameter value that is being calculated depends on the choice of the expert 
(selection of points or zones). The measuring process must therefore include 
[KON 97]: 

– a replica of all measures, separated by a few weeks to avoid the learning effect 
that could bias the statistical study; 

– a calibration of the calculation process of the original image (and for each 
replica). This calibration is then reapplied on the corresponding compressed images. 
Thus, we can blame clinical parameter errors solely on the compression process. 

When analyzing the data we look to answer two main questions: 

– does compression reduce the clinical parameters accuracy? We therefore need 
to analyze whether the values measured on the compressed images are significantly 
different to the values measured on the original image; 

– does compression make measurements of clinical parameters less precise? To 
answer this question we must find out whether the gap between two replicated 
measures is significantly different for compressed and original images. 
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5.5. Conclusion 

Quality assessment must demonstrate the fact that losing information is not 
always linked to a loss of diagnosis quality and reliability. There are numerous new 
methods for quality image assessment that depict any loss of information. Such 
assessment methods reduce our apprehensions and help us to point out potential 
stains and algorithms, and determine which compression processes and compression 
rates are most appropriate. 

In fact, the image quality assessment methods described in this chapter are 
essential when deciding on which lossy compression method (giving better 
compression rates compared to lossless compression method) to use in clinical 
routine. In this case, lossy compression methods could be used during the first 
diagnostic process. This progress (often referred to as a true revolution) in terms of 
controlling compression of medical images will enable us to make optimal use of 
PACS in health services. 
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Chapter 6 

Compression of Physiological Signals

6.1. Introduction 

The aim of this chapter is to provide the reader with a general overview of the 
compression of physiological signals. The specificities of these signals have been 
covered in Chapter 3; whereas, in this chapter, the EEG compression is discussed 
and special attention will be given to the ECG signal. This is explained by the fact 
that the ECG is somehow, more concerned with compression, especially when used 
for monitoring purposes. Moreover, a huge number of research publications are 
dedicated to the compression of this type of signal. In fact, some specific and 
various requirements, i.e. transmission by Internet, wireless transmission, long-term 
storage on Holter monitors (i.e. for 24 hours or more), make the compression of the 
ECG an important tool. 

For the reasons outlined above, this chapter is organized as follows: in section 
6.2, the main standards used for coding the physiological signals are presented. 
Section 6.3 is dedicated to EEG compression, while in section 6.4, various ECG 
compression techniques are described. 

Chapter written by Amine NAÏT-ALI. 
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6.2. Standards for coding physiological signals 

Unlike the DICOM standard, devoted to medical images, as discussed in Chapter 
4, it is important to specify that an exclusive norm or standard does not exist for 
coding physiological signals. In other words, the few available norms are not 
systematically accepted by both the European and American communities. 
Nevertheless, it seems to us to be essential to look at the main existing norms, which 
are summarized below. 

6.2.1. CEN/ENV 1064 Norm 

This European standard, also known as “SCP-ECG”, has been specially 
developed to code the ECG. Using this norm, coding the signals can be achieved 
either in compressed mode or non-compressed mode [ENV 96]. It includes the 
information related to the sampling frequency, filtering as well as other useful 
specifications. This norm is usually suggested for use with ECG databases. It allows 
the user to share the same utility software for reading and analyzing the data. 

6.2.2. ASTM 1467 Norm 

This norm is mainly appropriate to neuro-physiological signals such as the 
electroencephalogram (EEG), evoked potentials (EP), electromyogram (EMG) 
[ASM 94]. It is also used for monitoring using ECG, gastrointestinal signal, etc. In 
addition, this norm specifically includes a set of useful clinical information such as: 

– sampling frequency; 

– channel identification; 

– filter parameters; 

– electrode positions; 

– stimulation parameters; 

– types of drugs used during the acquisition process, etc. 

6.2.3. EDF norm 

The EDF (European Data Format) norm was introduced in the last decade by a 
team of engineers actively working in the field of biomedical engineering 
[KEM 92]. The format which has been used allows an important flexibility for both 
exchange and storage of multichannel physiological signals. As in the previous 
norm, it includes clinical information related to both the patient and the acquisition 
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protocol. This norm is commonly used in Europe and it was extended in 2002 with 
the proposed format EDF+. 

6.2.4. Other norms 

Finally, we can cite other norms such as the CEN-TC251/FEF [CEN 95], the 
EBS (extensible biosignal format) for EEGs and EMGs, the SIGIF for 
neurophysiological signals including the compression option, the MIT arrhythmia 
database format and finally the DICOM supplement 30, proposed by the DICOM 
committee following clinician recommendations. 

The compression of physiological signals has not been systematically included in 
the codecs mentioned above. However, it seems obvious that the standardization of 
compression has now become an important target to be attained. 

6.3. EEG compression 

6.3.1. Time-domain EEG compression 

Generally, most of the techniques proposed in the literature devoted to EEG 
compression are mainly prediction based. This can be explained by the fact that the 
EEG is a low-frequency signal, which is characterized by a high temporal 
correlation. Some of these techniques are in fact a direct application of classical 
digital signal processing methods. For instance, we can point out the Linear 
Prediction Coding (LPC), the Markovian Prediction, the Adaptive Linear Prediction 
and Neural Network Prediction based methods. On the other hand, some approaches 
include the information related to the long-term temporal correlation of the samples. 
In fact, if we analyze the correlation function of an EEG segment, we will note that 
spaced samples present a non-neglected correlation that should be taken into account 
during processing. This information might be integrated into various dedicated 
codecs. Finally, we can also evoke the techniques which consist of correcting the 
errors of the prediction using information intrinsic to the EEG. For more details, the 
reader can refer to the following reference [ANT 97]. 
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6.3.2. Frequency-domain EEG compression  

The compression of the EEG in the frequency domain did not come from 
classical techniques such as Karhunen-Loève Transform (KLT) or the Discrete 
Cosine Transform (DCT). As has already been mentioned, the EEG signal is 
dominated by low frequencies, mainly lower than 20 Hz. In fact, it is considered that 
the main energy is located around the  rhythm (between 8 Hz and 13 Hz). 

6.3.3. Time-frequency EEG compression  

Among the time-frequency techniques, the wavelet transform has been 
commonly used to compress the EEG [CAR 04]. In this technique, the signal is 
segmented and decomposed using Wavelet Packets. The coefficients are coded 
afterwards. Other algorithms such as the well known EZW (Embedded Zerotree 
Wavelet) have also been successfully applied to compress the EEG signal [LU 04]. 
Even if the obtained results seem significant, we think that the various codecs can be 
improved by pre-processing the EEG signal by reducing or eliminating the artefacts, 
which contaminate the EEG. 

6.3.4. Spatio-temporal compression of the EEG   

These approaches have the advantage of combining two aspects. The first aspect 
consists of taking into consideration the temporal correlation using the techniques 
pointed out previously, whereas the second aspect includes the spatial correlation 
due to a multichannel record [ANT 97]. In this method, a lossless compression 
technique is used. 

6.3.5. Compression of the EEG by parameter extraction  

This last approach is different from the techniques introduced previously. In fact, 
the EEG is compressed using an uncommon method in the sense that only the main 
parameters which allow an objective diagnostic are extracted. They can either be 
stored or transmitted but cannot under any circumstances be used to reconstruct the 
temporal signal [AGA 01]. However, this approach involves three stages: 

– segmentation: this consists of isolating the stationary EEG segment of interest; 

– feature extraction: each EEG segment is modeled as a statistical process (AR, 
MA, ARMA, etc.); 

– classification: the analysis of the extracted parameters allows the identification 
of the different phases of anomalies. 
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6.4. ECG compression 

As pointed out in the introduction to this chapter, the EEG compression field has 
been somehow less critical than the ECG compression. However, in this section, 
some ECG compression techniques will be described. Some of them are appropriate 
for real time transmission, whereas others are more suitable for storage, basically 
when Holter monitors are used. 

6.4.1. State of the art 

For purposes of clarity, we have gathered in Table 6.1 the most recent research 
pertaining to the ECG compression field. This has been highlighted, on one hand by 
specifying the country of each concerned research team working in this field and on 
the other hand the corresponding methods used. In fact, if we consider the number of 
articles published over the past six years, we will observe that not less that 20 papers 
have been published in international journals. This clearly demonstrates the 
importance of this field of research. 

The ECG compression techniques can be classified into three broad categories: 
direct methods, transform-based methods and parameter extraction methods. In the 
direct methods category, the original samples are compressed directly. In the 
transformation methods category, the original samples are transformed and the 
compression is performed in the new domain. Among the algorithms which employ 
the transforms, we can hold up several algorithms based on the discrete cosine 
transform, and the wavelet transform. In the category of the methods using the 
extraction of parameters, the features of the processed signal are extracted and then 
used a posteriori for the reconstruction. 

In this chapter, the scheme (i.e. of three categories) presented above will not be 
taken as reference. In fact, this section is structured so that the ECG compression 
techniques dedicated to real time transmission are first presented in section 6.4.4, 
whereas in section 6.4.5, the techniques designed mainly for storage purpose are 
described. Both of these techniques will be preceded by two sections describing, on 
the one hand, the evaluation of the performances (section 6.4.2), and on the other 
hand, the pre-processing techniques of the ECG signal (see section 6.4.3). 
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Research team 
(countries) 

Approaches 
Year of 

publication
References 

USA Wavelet packet 2001 [HAN 01] 

Jordan 
Wavelet transform of the 

prediction error 
2001 [AHM 01] 

Jordan Wavelet transform 2001 [ALS 01] 

Brazil 
Optimal quantization of the 

DCT
2001 [BAT 01] 

Norway 
Minimization of the 

distortion rate 
2001 [NYG 01] 

Taiwan Vectorial quantization 2001 [MIA 01] 
Taiwan SVD 2001 [WEI 01] 
Finland R-R lossless compression 2002 [GIU 02] 
Jordan Wavelet transform 2002 [RAJ 02] 
Taiwan Vectorial quantization 2002 [MIA 02] 

USA JPEG 2000 2003 [BIL 03] 
Taiwan Shape adaptation 2004 [CHE 04] 
Spain Max-Lloyd quantization 2004 [ROD 04] 

Finland “Review” 2004 [KOS 04] 

Taiwan
Vectorial quantization-

wavelets 
2005 [MIA 05] 

France 

Neural networks, 
polynomial projection, 

Hilbert transform, 
Lorentzian modeling, radon 

transform, interleaving. 

2005-2007

[CHA 05] 
[BOR 05] 
[NUN 05] 
[OUA 07] 
[NAI 07a] 
[NAI 07b] 

Table 6.1. Recent research work related to ECG compression

6.4.2. Evaluation of the performances of ECG compression methods  

The performance of the proposed algorithm is evaluated using the Compression 
Ratio (CR) and the Percent Root-Mean-Square Difference (PRD) in % which is 
commonly used to measure the distortion resulting from ECG compression. 

These two definitions are given by equations [6.1] and [6.2] respectively. 
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xN  denotes the number of bits used to code the original signal; 

x̂N  denotes the number of bits used to code the reconstructed signal. 
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where:  

( )x n is the original signal to be compressed, recorded on N samples; 

ˆ( )x n represents the reconstructed signal, recorded on N samples. 

It is also important to point out that the PRD does not provide a significant 
evaluation, especially when the DC-component is included in the calculation; for 
more information, see [ALS 03]. In addition, even if the PRD and CR are considered 
as two important criteria for the evaluation of a given ECG compression technique, 
it is important to take into consideration other significant parameters, i.e. the 
calculation complexity for both coding and decoding as well as the robustness of the 
technique with respect to noise. In addition, we must specify whether the technique 
is more appropriate for real-time transmission or for storage. 

6.4.3. ECG pre-processing 

Based on the above comments, the first ECG pre-processing consists of 
suppressing the DC-component. This component can be added at the reception 
during the reconstruction process. A second important pre-processing technique 
consists of segmenting the ECG in order to isolate the different beats before the 
coding phase. In this case, the ECG signal is processed segment by segment. 
However, it is also important to know that if the segmentation is performed by a 
non-supervised approach, a border effect can be observed after the reconstruction 
phase. 

Several ECG segmentation techniques have been studied in the literature for 
purposes of either compression or classification. The reader can refer for instance to 
various techniques using hidden Markov chains, wavelets [CLA 02] or genetic 
algorithms [GAC 03]. 
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6.4.4. ECG compression for real-time transmission 

In this section we present a certain number of techniques, classified according to 
their domain of processing, i.e. the time-domain or the frequency domain. These 
approaches are mainly based on parametrical modeling. The quantization and 
entropic coding will not be detailed in this chapter since these classical 
functionalities should be integrated into the final compression scheme. However, the 
time-domain approaches are described in section 6.4.4.1, while the frequency-
domain approaches are presented in section 6.4.4.2. 

6.4.4.1. Time domain ECG compression 

6.4.4.1.1. Gaussian modeling of the ECG beat 

If we consider x(1), x(2),…, x(N), N samples of a measured ECG beat, denoted 
by x(n); modeling this signal using a sum of M Gaussians consists of approximating 
it by a set of Gaussians allowing the best fitting in the sense of least squares. 

The model is defined as follows: 

ˆ( )
2

M
i

i 2
i=1 i

- n -
x n = A .exp

i=1…M and n=1…N [6.3] 

where Ai is the amplitude, i (points along a temporal scale) is the mean value and 
i is the standard deviation of Gaussian i.

Since, it is not evident to explicitly calculate the parameters of the model, this 
could be fitted using a non-linear least squares optimization technique. 

It is clear that the choice of the Gaussian model is intuitive in the sense that the 
shape of each wave constituting a normal ECG beat can be approximated by a 
Gaussian. Therefore, in order to identify the parameters of equation 6.3, several 
optimization techniques can be used. For example, we can use any classical 
optimization technique suited to non-convex criteria, including the metaheuristic 
approaches. Of course, it is well known that these methods are time consuming, but 
if we consider that the ECG is a low frequency signal (i.e. one beat per second on 
average) and that the compression of the kth beat is achieved during the acquisition 
of the (k+1)th beat, the processing time generally becomes sufficient. In fact, some 
specific processors dedicated to Digital Signal Processing, like DSPs (Digital Signal 
Processors) or FPGAs (Field Programmable Gate Fields), can meet the real time 
requirements. 
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Let us reconsider our equation 6.3 for which we have to identify the parameters 
described above. These parameters can be determined simply by minimizing the 
following criterion: 

ˆ
N 2

n=1

J = x n - x n
 [6.4] 

This can also be expressed by: 

2
2

N M
i

i 2
n=1 i=1 i

- n -
J = x n - A .exp

 [6.5] 

It is also evident that the number of Gaussians (M) to be used is of great 
importance. If M is under-estimated, the quality of the reconstructed signal 
decreases, whereas if the M is over estimated, the calculation increases. Thus, we 
can for example use some information criteria to identify the optimal order. 

In practice, an empirical approach can be used to determine the most appropriate 
order. For example, experiences on normal and abnormal (for instance PVCs) beats 
show that an order of 5 or 6 can be suitable for modeling each ECG beat. It is also 
obvious that if the recorded ECG contains some specific significant high 
frequencies, we have to increase the order to fit the signal properly.  

Figures 6.1 and 6.2 represent two typical ECG beats (normal/PVC) as well as 
their corresponding parametrical models. The PVC beat is reconstructed using 5 
Gaussians, whereas the normal ECG beat is obtained using 6 Gaussians. 

Using these approaches, the compression ratio depends of course on the 
following parameters: 

– M: number of Gaussians (model order) used to reconstruct an ECG beat; 

– Ne: number of samples of a single ECG beat (this depends on the frequency 
sampling); 

– Be: number of bits used for coding each ECG beat; 

– Bp: number of bits used for coding the parameters (Ai, μi , i) of the M
Gaussians. 
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Figure 6.1. [-] normal ECG beat (original 
signal); [..] normal ECG beat reconstructed 

using 6 Gaussians

Figure 6.2. [-] PVC (original signal); 
[..] PVC reconstructed using 5 Gaussians

The compression ratio (without taking into account the quantization and the 
entropic coding) is given by: 

3. .
e e

p

N B
CR

M B
 [6.6] 

When the model order is invariant (i.e. does not vary dynamically from one beat 
to another), the transmission mode is performed in a fixed bitrate. In addition, using 
this mode of transmission, we should transmit parameter eN  in each frame. This is 
dependent of course on the duration of each segment and the duration depends on 
the cardiac rhythm, (i.e. long durations for bradycardia and short durations for 
tachycardia). Furthermore, the parameters in each frame are considered to be coded 
using a fixed number of bits. For a static model, we have to note that parameters M
and Bp should be included only in the first frame. 

By compressing the ECG beats without taking into account the redundancy intra-
beats, experiments show that on average, a compression ratio of 15 can be achieved. 
In fact, this performance can be improved if we include the information related to 
the redundancy. For instance, this can occur when an arrhythmia signal is recorded. 

The validation of the ECG compression techniques is generally achieved using 
international databases, such as the following: 

– MIT-BIH Arrhytmia Database; 

– MIT-BIH Atrial Fibrillation; 

– MIT-BIH Long-Term Database; 

– MIT-BIH Noise Stress Test Database. 
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If we explore the articles dedicated to ECG compression, in most of cases, the 
MIT-BIH Arrhytmia Database is the most widely-used. This database contains 234 
signals where each one is identified by a single reference. 

6.4.4.1.2. ECG compression using the deconvolution principle 

In this approach, we consider that each ECG beat is the impulsional response of 
a linear system (see Figure 6.3). When the ECG beats are stationary (i.e. no 
modification of the shape), the deconvolution process provides an impulsional 
signal. In such a situation, we have to transmit only the position and the amplitude 
of each impulse. Therefore, in order to reconstruct the ECG signal at reception, a 
simple convolution is performed. This problem is considered as an inverse problem 
for which several approaches can be used to solve it (see Figure 6.4). 

Generally, the ECG beats are not stationary and the recorded signal is not 
periodic. In addition, the shape of each beat can change with time. Since the 
proposed approach is still under consideration, we will attempt, in this chapter to 
present the principles of this technique as well as some preliminary results. 

Cardiac system

Cardiac system

(a)

(b)

Figure 6.3. (a) Model to generate an ECG beat; 
(b) generating an ECG signal using the same principle

Let us consider that 1 2( ), ( )... ( )Nx n x n x n  represent M ECG beats of an ECG 
signal. Each ith beat is expressed by a vector ix .

The first beat is considered as a reference. It is denoted mx :

1mx x  [6.7] 

Thus, each beat    =2,...  i Mix  is considered obtained from the convolution 

between an impulsional signal iz and the reference signal mx .
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This can be expressed as follows: 

i m i ix X z b  [6.8] 

where mX  is a matrix having a Toeplitz structure, obtained from mx and ib is a zero-
mean Gaussian noise vector. 

The problem then consists of identifying iz . In fact, the more significant the 
correlation is between ix and mx , the more iz  converges to an impulsional signal. 
The idea of the compression then consists of concentrating the information of a 
given ECG beat in a pseudo-impulse. 

From equation [6.8], iz  can be estimated using the least squares by minimizing 
the Euclidian distance. In this case, the solution is given by: 

2ˆ arg mini i m iz x X z
 [6.9] 

?
nth beat

1st beat

The first beat is used as impulsional response for  the deconvolution of successive beats

Dirac impulse 

This is a typical inverse problem for which a regularization is required

Figure 6.4. Using the first ECG beat as an impulse response of the cardiac system, each 
recorded beat is deconvolved using the reference beat in order to estimate the pseudo-impulse 

(this is a typical inverse problem which necessitates regularization)

Figure 6.5 represents an original ECG signal. Using the first beat as a reference, 
the deconvolution of this signal, represented in Figure 6.6, clearly shows the 
impulsional aspect. In the next step, a simple thresholding of the low amplitudes is 
achieved as shown in Figure 6.7. This allows us to increase the number of zero 
values. For transmission purposes, only the non-zero samples are coded.  
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On reception, the ECG signal is reconstructed using a simple convolution with 
the reference beat (see Figure 6.8). It is obvious that for such a transmission mode, 
the reference signal should be transmitted before transmitting the impulsional signal. 

0 200 400 600 800 1000 1200
Sample

0 200 400 600 800 1000 1200

Sample

Figure 6.5. Original ECG signal Figure 6.6. Signal obtained after  
deconvolution using the first beat

0 200 400 600 800 1000 1200
Sample

0 200 400 600 800 1000 1200
Sample

Figure 6.7. Thresholding of the  
deconvolved signal

Figure 6.8. Reconstruction of the ECG 
signal using the thresholded  

impulsional signal

6.4.4.2. Compression of the ECG in the frequency domain 

As presented in section 6.4.4.1, the proposed approaches are based on the 
parametrical modeling of the ECG signal in the time domain. In this section, the idea 
consists of modeling the transform of the ECG signal such as the DCT or the Fourier 
transform. 
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In Figures 6.9 and 6.10, we represent respectively the DCT of a normal ECG 
beat and the DCT of the PVC. We can observe that the obtained curves have a 
damped sinusoid aspect. Thus, the idea consists of modeling them mathematically as 
follows: 

m
1

( )  exp( )  sin(2 )      1,...
M

m m m
m

X k A k kf k N
 [6.10] 

where: 

– X(k) is the DCT of a segment of an ECG signal; 

– M is the order of the model;  

– N is the number of samples;  

– *Am  are the amplitudes;  

– m  are the damping factors;  

– mf  are the frequencies; 

– ,m  are the initial phases; 

These parameters can be determined by minimizing the following criterion using 
any non-linear optimization technique. For instance, we can use a metaheuristic such 
as the genetic algorithms (GA). 

2

m
1

( )  exp( )  sin(2 )  1,...
M

m m m
m

J = X k A k kf k N
 [6.11] 

After the convergence of the optimization algorithm, the estimated parameters 
are used to reconstruct the DCT model (Figure 6.11). Using the inverse Discrete 
Cosine Transform, we obtain the temporal ECG signal as shown in Figure 6.12. 
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Figure 6.9. DCT of a normal ECG beat Figure 6.10. DCT of a PVC

Figure 6.11. [-] original DCT; 
[..] reconstructed DCT using 12  

damped sinusoids

Figure 6.12. [-] original ECG beat; 
[..] reconstructed ECG beat

On the other hand, when calculating the Fourier transform of an ECG beat, we 
show that the curves corresponding to both the real part and the imaginary one, 
present as previously a damped sinusoid aspect. In this case, the problem is 
processed in the complex-domain without using any global optimization technique. 
In fact, some methods such as Prony are very appropriate for such situation. 

The Discrete Fourier Transform of a given ECG signal is modeled as follows: 

m m
1

( )  exp(j )  exp( 2 )        1,...
M

m m
m

X k A k j kf k N
 [6.12] 
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where as in the real case: 

– M denotes the model order; 

– N is the number of samples; 

– *
mA  are the amplitudes; 

– m are the damping factors; 

– 2
1,2

1
mf  are the frequencies; 

– ,m  are the initial phases. 

The problem consists of identifying the set of parameters 
1

, , ,
M

m m m m m
A f  . 

The numerical results obtained from this approach applied to signals from the 
MIT-BIH database can be found in [OUA 06]. 

6.4.5. ECG compression for storage 

As we have seen previously, the techniques presented so far are more appropriate 
to real time transmission than to storage. The compression ratio attained by these 
techniques varies from 15 to 20, depending of course on the required quality, the 
frequency sampling, the signal type (periodic, aperiodic, noisy, specific anomalies, 
etc.).

In this section, the presented approaches have been developed specifically for 
ECG storage. Thus, we will show how we can achieve very impressive compression 
ratios (i.e. 100 or more). 

The first approach is presented in the section 6.4.5.1 and is based on the 
synchronization and the polynomial modeling of the dynamic of the ECG beats, 
whereas the second approach is based on the principle of the synchronization and 
interleaving (see section 6.4.5.2). Finally, an ECG compression technique that uses 
the standard JPEG 2000 will be presented in section 6.4.5.3. 

When using these three techniques, the first step requires the separation of the 
ECG beats using any appropriate segmentation algorithm. Since the ECG signal is 
basically not periodic, the different segmented beats do not necessarily have the 
same duration. Therefore, in order to gather the set of ECG beats in a same matrix 
X  so that each line contains one ECG beat, it is essential to perform an 
extrapolation of the different segments in order to equalize the durations. The 
variable N denotes here the size of the larger segment. 
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It is also important to be aware that the beats included in matrix X  are highly 
correlated to each other. However, in order to minimize the fast transitions (i.e. high 
frequencies), the beats should be aligned (i.e. synchronized). In other words, we 
have to reduce the high frequencies which can occur between successive beats as 
shown respectively in Figures 6.13 and 6.14 representing one column of matrix X ).
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Figure 6.13. Low frequencies after 
synchronizing the ECG beats

Figure 6.14. High frequencies for non-
synchronized ECG beats

Synchronization can be obtained easily using some basic correlation techniques. 

6.4.5.1. Synchronization and polynomial modeling 

The transform which leads to matrix X  allows us to represent the ECG signal as 
an image. The non-stationarity of the ECG generally due to arrhythmias leads to a 
desynchronized surface as depicted in Figure 6.15. Since for an abnormal ECG 
signal, the shape of some beats might be time-variant, it is then essential to include a 
pre-processing phase which consists of gathering similar shapes in the same matrix. 
For example, suppose an ECG signal contains both normal beats and PVCs. In such 
a situation, the original matrix should be decomposed into two matrices so that each 
matrix contains only one specific beat type. The beats in each matrix should be 
synchronized; see Figure 6.16 for normal beats and Figure 6.17 for PVCs. 

Now, since each row of the obtained matrixes contain a single beat, the 
processing technique consists of projecting each column on a polynomial basis as 
follows: 
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2
0 1 2ˆ( , ) ( ) ( ) . ( ) . ... ( ) . p

px m n a n a n m a n m a n m
 [6.14] 

 1,...   0,1,... 1m M n N

where ( )ia n  represents the ith coefficient of the p order polynomial at instant n.

Figure 6.15. Image representation of the ECG signal. Each row contains one ECG beat. 
Since the signal is not periodic, the obtained surface is desynchronized

These coefficients can be easily estimated using a least squares criterion: 

2ˆ( , ) ( , )J x m n x m n
 [6.15] 

Using a vectorial representation, the coefficients of each polynomial 
corresponding to the nth column are estimated by: 

2ˆ ˆarg minn n na x x
 [6.16] 

where: 

0 2 1

t

n p pa a a aa

(1, ) (2, ) ( , ) t

n x n x n x M nx
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(1, ) (2, ) ( , ) t

n x n x n x M nx

The final solution is given by: 

1
ˆ t t

n na xC C C  [6.17] 

where C is the classical Vandermonde matrix, expressed as follows:  

p

p

NN )1(11

111
001

C

The polynomial ˆ nx  is calculated using the following equation:  

ˆˆ
n nx aC  [6.18] 

By projecting matrix X on the same polynomial basis, another matrix of 
coefficients, denoted A is derived. This is given by:  

10 11 1( 1)

20 21 2( 1)
1 2 3

0 1 ( 1)

...

N

N

N

M M M N

a a a
a a a

a a a

A a a a a

 [6.19] 

From this equation, we can note that the size of the matrix is A p N  whereas it 
is M N  for matrix X. Therefore, we can only store matrix A with the possibility of 
estimating the elements of matrix X allowing of course the reconstruction of the 
ECG signal. 

The compression ratio obtained by this technique depends of course on the 
polynomial order as well as the number of samples of the longest segment. 

As mentioned previously, when the ECG beats are synchronized, the variance in 
each column is considerably small. This also leads to a reduced polynomial order. In 
Figure 6.18, we show one column of a matrix composed of 480 ECG beats, 
projected on a six order polynomial basis. In fact, these six coefficients can 
reproduce up to “infinity” the tendency of whatever the number of ECG beats. 
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Consequently, high compression ratios can be achieved with this technique. On the 
other hand, when the shape of the beats change, the approach becomes less 
interesting as shown in Figure 6.19. In fact, the reduced polynomial order cannot 
reproduce some abrupt changes. Therefore, a classification (as mentioned 
previously) of beats becomes in this case the most appropriate solution in order to 
overcome this disadvantage.  

Figure 6.16. The alignment of the ECG beats reduces the high frequencies 

Figure 6.17. Alignment of PVCs
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Figure 6.18. Polynomial modeling of the 
low frequencies after ECG beat 

synchronization

Figure 6.19. Polynomial modeling with a 
reduced order (non-synchronized case)

6.4.5.2. Synchronization and interleaving 

This technique is simple in the sense that it uses matrix X [6.13] after 
synchronizing the ECG beats (in each row). However, an interleaving of these rows 
is then achieved in order to obtain a single signal denoted z, having the following 
structure:

1 2 1 2(0) (0) (0) ( 1) ( 1) ( 1) t

M Mx x x x N x N x Nz
 [6.20] 

Since the ECG beats have correlated shapes, the resulting signal z has a 
M N size. Therefore, the shape of the obtained signal becomes very close to that 
of a single beat (Figure 6.20). Signal z seems to be noisy due to the variations 
between each beat. At this stage of processing, no compression is performed since it 
is only a transformation matrix-vector. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 6.20. Signal obtained after ECG beat interleaving



150     Compression of Biomedical Images and Signals 

A decomposition of signal z on a wavelet basis using three levels, allows an 
interesting separation of low frequencies (approximations 3cA ) and high frequencies 
(details 3 2 1, ,cD cD cD ). Signal wz  is then obtained by: 

3 3 2 1

t

w cA cD cD cDz
 [6.21] 

Signal 3cA  can easily be characterized using a parametrical Gaussian model 
(section 6.4.4.1.1). Moreover, the low amplitudes related to the details 3 2 1, ,cD cD cD
should be thresholded in order to create zero value blocks which can easily be 
coded. The numerical results obtained by applying those approaches on real signals 
are presented in [NAI 06].

6.4.5.3. Compression of the ECG signal using the JPEG 2000 standard 

The most recent techniques for compressing the ECG signal consist of 
transforming the signal to an image before the coding operation. However, the 
standard JPEG 2000, initially dedicated to compressing images, has been 
successfully used to compress ECG signals. As in the previous technique, a 
preprocessing technique is required which consists of synchronizing the beats 
initially stored in a matrix X. Decoding the data requires of course the use of the 
parameters (delays) used for synchronization purposes; for more details about this 
technique, see [BIL 03]. 

6.5. Conclusion  

Throughout the course of this chapter, several recent compression techniques 
basically dedicated to the ECG signal have been presented. The choice of method of 
course depends on the condition of recording.  

Based on the results published, the compression ratio changes from 15 to 20. 
These rates can be significantly exceeded when the compression is performed for 
storage rather than for real-time transmission. In fact, this seems to be logical 
because when storage is required, past and future correlations can be taken into 
account.

Finally, it seems important to point out that the standardization of the techniques 
of compression dedicated to physiological signals seems to be delayed in relation to 
the progress achieved for the image. This might be a challenge for the future.  
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Chapter 7

Compression of 2D Biomedical Images 

7.1. Introduction 

On a daily basis, large amounts of medical images are acquired using 2D 
acquisition imaging systems (e.g., vertebra and lung digital X rays, mammography). 
Moreover, it is possible to compress temporal sequences (i.e. 2D+t), volume 
sequences (i.e. 3D) or even spatio-temporal sequences (i.e. 3D+t) by encoding each 
image separately and independently of all others (i.e. in clinical routine, physicians 
do not always keep all images but instead select the most relevant and accurate 
ones). Thus, 2D compression is widely applied to medical images. It is also included 
in the DICOM format (described in Chapter 4), within various PACS. 

This chapter is a review of some basic 2D compression methods which are 
frequently applied to medical images. Although the common compression 
techniques and the traditional standards of compression do apply to medical images, 
some specific methods applied to specific images have been specially developed in 
order to optimize both the compression rates and the quality of the re-constructed 
image. 

 This chapter is made up of three main parts. Section 7.2 will look at the 
compression of medical images using reversible methods (i.e. lossless). This will be 
followed by an examination of lossy techniques in section 7.3, and finally, 
progressive compression methods will be described in section 7.4. Thus, we will 
show that this type of compression is highly appropriate to the transmission of 
medical information. 

Chapter written by Christine CAVARO-MÉNARD, Amine NAÏT-ALI, Olivier DEFORGES 
and Marie BABEL.
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7.2. Reversible compression of medical images 

As is well known, reversible compression methods produce an exact duplicate of 
the original image and are often incorporated by constructors within some 
acquisition systems. In the medical field, the lossless nature of these methods is of 
paramount importance for ethical reasons. 

The general scheme of reversible compression methods occurs in two stages: a 
transformation in order to reduce the inter-pixel correlation, and an entropic coding 
(e.g. Huffman or arithmetic encoder). The transformation must result in integer 
values for the encoder to function. It can be a transformation by block, by filter 
banks or a predictive transformation. 

7.2.1. Lossless compression by standard methods

A 1998 study [KIV 98] has drawn a detailed comparison of different reversible 
compression methods using a medical image database made up of 3,000 images 
from 125 patients. In this study, 10 different gathering techniques have been used: 
X-ray (lungs), CT (abdomen and head), MRI (abdomen and spine), SPECT (head, 
heart and total body) and ultrasound. The methods that were tested are the 
following: 

– general compression software such as GZIP, PKZIP, JAR, RAR, YAC, etc.; 

– specific methods for the compression of monochrome images: 

- methods that are based on the coding algorithm LZW (derived from the 
inventors’ names Lempel, Ziv and Welch), the PNG standard (Portable Network 
Graphics) and GIF standard (Graphics Interchange Format),

- a method based on a contextual model and RICE coding: the FELICS 
algorithm (Fast, Efficient, Lossless Image Compression System) [HOW 93], 

- methods based on predictive encoding with a fixed predicator: the LJPEG 
standard (Lossless JPEG), the CLIC algorithm (Context-based Lossless Image 
Compression) [TIS 93], 

- methods based on adaptive predictive encoding: the LOCO-I standard (Low 
Complexity Lossless Compression for Images) also known as JPEG-LS [WEI 00], 
the CALIC algorithm (Context-based Adaptive Lossless Image Compression)
[WU 97], and the TMW algorithm (a reference derived once again from the authors’ 
names) [MEY 97], 

- methods based on hierarchical predictive encoding: the CPM algorithm 
(Central Prediction Method) [HUA 91], and the BTPC algorithm (Binary Tree 
Predictive Coding) [ROB 97], 
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- methods based on integer-to-integer wavelet transform (S transform): the 
SPIHT algorithm (Set Partitioning in Hierarchical Trees) [SAI 96a]. 

To conclude, Kivijärvi et al. have suggested that the BTCP and GIF standards 
are not well-suited to medical images because they only apply to images encoded on 
8 bits and because compression rates are directly related to the image type. The best 
compression rates are obtained by methods specific to images and in particular, 
using the CALIC algorithm for most of the images, TMW for CT (average 
compression rates lying between 2.7:1 and 3.8:1), SPIHT for MRI (between 2:1 and 
3:1) and JPEG-LS for SPECT (between 2.7:1 and 5:1). Overall, when it comes to 
medical imaging, the compression rates achieved using reversible compression 
techniques vary between 2:1 and 5:1. In some cases, they can reach the compression 
rate 10:1 on specific images that represent large homogenous areas. In terms of 
execution time, the TMW method was found to be rather time consuming and the 
JPEG-LS method (lasting about 0.2 to 14 seconds per image) is faster than the 
CALIC method (lasting between 0.3 and 60 seconds per image) and the SPIHT 
method (between 0.4 and 90 seconds per image). Of course the execution time 
depends on the calculation platform.  

Similar conclusions have been reached by Adamson following his study on 
various cerebral CT [ADA 02]. 

Recently, Clunie [CLU 06] has evaluated the latest versions of the JPEG-LS 
standard (ISO/IEC 14495-1) (this version links the RLE encoding to the LOCO-I 
standard) and the lossless mode of JPEG 2000 (ISO/IEC CD15444-1) (using the 
integer-to-integer 5.3 wavelet transform) which may be incorporated within the 
DICOM, on 3,679 images of different organs and obtained using different gathering 
techniques. The average compression rates obtained for these methods are similar 
and of the order of 3.8:1. Depending on the gathering technique, JPEG-LS gives on 
average the following compression rates: 4:1 for CT images, 3.6:1 for MRI images, 
6:1 for SPECT and 3.4:1 for ultrasound. 

7.2.2. Specific methods of lossless compression 

In order to optimize the compression rates it is possible to make use of the 
similitude between two T1-weighted MRIs of the abdomen and two CTs of the 
thorax. The method defined hereafter will be advantageous for the type of image 
given: the same modality, acquisition parameters, organ and using similar 
acquisition systems. For predictive encoding methods it is possible to proceed as 
follows:   

– define specific fixed predictors adapted either by adaptable algorithm LMS 
(Least Mean Squares) [NIJ 96] or by pseudo-linear recursive regression [CHE 99]; 
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– define for a given predictor, a statistical model of the prediction error on 
different regions of the image (such as the image background and the studied area). 
Thus, a specific codebook will be associated with each region of the image during 
the statistical encoding [MID 99]. 

7.2.3. Compression based on the region of interest

Each region of the image may have more or less importance in the diagnostic 
process. For example, a brain slice can be separated into two distinct regions: the 
brain area that is useful to establish a medical diagnosis and the image background 
which provides no useful information. In order to improve the global compression 
rates of the image, methods based on regions of interest coding (ROI coding) adjust 
the encoding accuracy to fit the diagnosis information present in the image (i.e. the 
data in ROI is subject to reversible encoding while other areas are coded using lossy 
techniques). Regions of interest are either defined manually or after segmentation.  

Halpern et al. have manually depicted the ROI of 75 CT images of the abdomen 
[HAL 90]. The data present in the ROI is encoded by a quad-tree reversible process 
and external data is subject to lossy compression method at different compression 
rates. Whatever the compression rate (i.e. lower than 50:1) applied on the outside of 
the ROI, the sensitivity (as defined in Chapter 5) is almost always satisfactory (over 
90%) and close to that obtained by reversible compression (96%). On this type of 
image, compression based on ROI allows us to reach compression rates of up to 
28:1, (with a maximum compression rate outside the ROI) when the average 
compression rate for most reversible compression processes is of 3:1. 

The latest JPEG 2000 version allows a manual determination of various ROI of 
circular shape and allows us to perform a reversible compression of data contained 
within the ROI (Chapter 2).  

The different regions to be coded can be defined after a segmentation phase. 
Then the coding strategy for each region can be adapted to the content of the 
information included in this type of region. This coding method works by separating 
the image into two parts (its contours and its texture) and represents an image 
symbolically in the form of a mosaic of adjacent regions with continuous variations 
in their internal pixel amplitudes. The borders of the regions represent the image’s 
contours and can be coded by a reversible process known as the Freeman differential 
coding method or by a lossy process which consists of approximating its borders by 
straight lines for example. The luminance signal in each region corresponds to the 
texture of each object within the image and can be encoded using various methods 
with compression rates the levels of which vary according to the information 
contained in that object. 
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In medical imaging, a reversible compression of images that hold fine diagnosis 
information is required. Improving the global compression rate of the image can 
then be obtained without coding the image’s background [CAV 96] (Figure 7.1). 

a) b) c) 

Figure 7.1. a) Original abdominal MRI (512x512x16 bits); b) fuzzy classification  
into 3 sets based on pixel intensity (the background set of the image in black  
holding 56% of pixels);c) reconstructed image after a predictive reversible  

compression of the pixels in all the other sets TC=7.4

Adaptive or optimal predictive encoding on each region to be coded can be 
performed according to a specific exploration adapted to any kind of region’s shape 
(Figure 7.2). 

P0

P1

P2P2

P1

P2

 a) b) c)

Figure 7.2. Exploration of a region with a shape: a) exploration from top to bottom starting 
at point P0; b) exploration from bottom to top starting at P1; c) exploration from top to 

bottom starting at P2; from [CAV 96]

The benefits in terms of compression rate largely depend on the image being 
studied (i.e. the amount of non-coded data), but according to [CAV 96], coding 
methods based on the contour-texture approach resulted in improvements of 10 to 
30% in compression rates. Such methods are truly promising and can be further 
improved by re-adapting the process to new diagnostic signal models.  



160     Compression of Biomedical Images and Signals 

Nevertheless, when a storage process is required, it is impossible to determine 
which details will be useful in the future [KIV 98]. An initially unimportant detail 
during the acquisition process may become of great informative value for a 
pathologic follow-up to determine when a certain disease first appeared. Moreover, 
many pathologies can spread out over the entire image studied and a single detail 
during the acquisition process may be an important element to take into 
consideration for the diagnosis or the treatment. 

7.2.4. Conclusion

As we have seen in the above section, strictly reversible systems have limited 
efficiency in terms of compression rates and do not provide a long-term solution to 
increasingly important storage and transmission problems. Lossy compression 
techniques are thus the only solution which allows high compression rates. 

7.3. Lossy compression of medical images 

Although reversible compression of medical images provides physicians with 
resulting images of high analytical quality, the compression rates obtained through 
these methods are low in comparison with the compression rates obtained using 
irreversible methods, also known as lossy compression methods. As mentioned in 
Chapter 1, mindsets have changed over the last few years, and physicians, now 
generally agree, under certain conditions (presented in Chapters 1 and 5), to analyze 
compressed images using lossy compression methods. This new move towards 
accepting lossy compression methods is becoming increasingly widespread thanks 
to the numerous publications now available in this field. 

In this section, we will introduce different standard compression methods, i.e., 
quantization, DCT-based compression, JPEG 2000 compression, fractal 
compression, and finally some specific compression methods applied to medical 
images, respectively in sections 7.3.1, 7.3.2, 7.3.3, 7.3.4 and 7.3.5.  

7.3.1. Quantization of medical images

As pointed out in Chapter 2, there are two main forms of quantization: scalar 
quantization often used at the end of an encoding scheme, and vector quantization 
(VQ). These methods are described in further detail in [BAR 02], Chapter 2. This 
section will only address vector quantization, a method which might be appropriate 
to some specific types of images including medical images. 
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7.3.1.1. Principles of vector quantization

Vector quantization is a lossy compression technique which consists of 
allocating a code from a specific dictionary to each block or pixel vector constituting 
the original image. Using this technique, a given block in the image is compared to a 
set of dictionary codes. Consequently, the code chosen will be that which minimizes 
a distance with respect to the original block of the image to be coded. As a result, 
the image can be stored or transmitted very simply by storing and transmitting the 
index of each code. To reconstruct an image, the decoder uses the indices from 
which it extracts the appropriate dictionary codes (Figure 7.3). It seems obvious that 
the performances of this method depend on the number of codes contained in the 
dictionary. On the other hand, the complexity in terms of code-search could be 
increased significantly.  

Index

Code 0
Code 1
Code 3

Index

Code 0
Code 1
Code 3

Transmission/storage

Original image

Reconstructed image

Code M

Code M

Figure 7.3. Vector quantification scheme

7.3.1.2. A few illustrations

Figure 7.4 shows various results obtained from a vector quantization of a brain 
MRI image, having a size of 256x256 (Figure 7.4a). Each pixel in this image is 
coded on 8 bits. In this example, three dictionaries have been tested. The vectors 
used are in fact, 4x4 or 2x2 matrices. Figures 7.4b, 7.4c and 7.4d show images 
quantized at a fixed rate. Although the results obtained at 0.3 bpp (CR=25:1) are 
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obviously unacceptable, the coding 2 bpp (CR=4:1), or even 0.75 bpp (CR=10.5:1) 
offer an acceptable visual quality. 

(a)   (b) 

(c)   (d) 

Figure 7.4. Vector quantization applied to a brain MRI:  
(a) original image; (b) reconstructed image after vector quantization (2x2), at 0.31 bpp 
(CR=25:1), PSNR= 24.2 dB; (c) reconstructed image after vector quantization (4x4), 

at 0.75 bpp (CR= 10.5:1), PSNR= 30.0 dB; (d) reconstructed image after vector quantization 
(2x2), at 2 bpp (CR= 4:1), PSNR= 33.6 dB 

As mentioned previously, one of the disadvantages of the vector quantization is 
the significant calculation time required for such schemes. More specifically, while 
searching for a code in the dictionary, the encoder carries out a polling process. 
Search procedures related to the compression of medical images using rich 
dictionaries, have often included alternative methods such as the well known tree-
structured vector quantization. This can be either balanced or unbalanced. 
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7.3.1.3. Balanced tree-structured vector quantization

As mentioned above, vector quantization involves complex calculations (in order 
to access codes). This complexity increases in proportion to M, where M stands for 
the number of codes used in the dictionary. To overcome this problem, tree-
structured vector quantization (TSVS) has been developed in [BUS 80] and 
effectively used in [COS 93] to quantify X-ray and MRI images [RIS 90]. This 
method enables them to access codes whose complexity increase in proportion to the 
dictionary size logarithm (Figure 7.5a). 
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Dictionary code
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Figure 7.5. Comparison of (a) balanced vector quantization and  
(b) unbalanced vector quantization 

7.3.1.4. Pruned tree-structured vector quantization

During vector quantization of medical images, different regions of the image 
must sometimes be encoded by a higher or lower number of bits, depending on how 
useful the information is in each of those regions. This is performed by placing the 
tree-structured leaves at different depths. This method is known as pruned tree-
structure vector quantization or PTSVQ (Figure 7.5b). The PTSVQ always results in 
variable rates. For more information, the reader can refer to other alternatives, such 
as EPTSVQ and ECVQ [RIS 90]. 

7.3.1.5. Other vector quantization methods applied to medical images

Table 7.1 shows a set of different approaches applied to medical images and 
provides a general overview of the different techniques that are developed and 
evaluated in this context. In this table, the second column indicates the type of 
medical images used during the evaluation of the given algorithms. The 
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performances that are recorded in this table will not remain consistent once these 
techniques are applied to other types of images. In fact, the performance of an 
encoder is directly related to the specificities of the images being processed.  

Methods/approaches Image Type Year Reference 

PTSVQ, EPTSVQ, ECVQ MRI 1990 [RIS 90] 

TSVQ X-rays 1993 [COS 93] 

SVQ MRI 1996 [MOH 96] 

VQ on ROI Ultrasound 1998 [CZI 98] 

DI-VLTSVQ MRI 1999 [HAN 99] 

Quantification by Genetic 
Algorithms

Ultrasound, X-rays, MRI 2004 [WU 04] 

Table 7.1. Different vector quantization methods applied to medical images

7.3.2. DCT-based compression of medical images

The consequences of block effect from the JPEG norm on the diagnosis are 
explained in section 5.2. This artefact limits the acceptable compression rate in 
medical imaging to 10:1 [BER 94] [CAV 99]. 

Based on the DCT transformation of the entire image, Full-Frame DCT 
compression avoids creating any such artefact. For this reason, it has been widely 
used in the medical imaging field [CHA 89] [LO 91] [BER 94]. However, it is 
necessary to adapt the quantization of the DCT coefficients to the specificities of the 
image being coded. For example, Béretta [BER 94] has segmented the DCT plan 
into circular frequency zones according to the distribution of frequency components 
of cardiac angiograms on the DCT plane. The circular zones have been separated 
according to their direction (horizontal or vertical) (Figure 7.6). 
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Figure 7.6. Splitting of the DCT map into circular zones with vertical direction  
(above the diagonal) and horizontal direction (below the diagonal)

Within circular zones, the DCT coefficients generally have low variances. Thus, 
the same number of bits can be allocated to all coefficients of a circular zone, and 
the same quantization step can be applied. A truncated Laplacian analytical model 
can be used to design an optimal midtread uniform quantizer. For an a priori
number of bits per coefficient and with the observed dynamics and variance of a 
zone, the optimal quantization step can be calculated, with minimum quantization 
error. This evaluation can be used in an integer bit allocation algorithm based on the 
theory of marginal analysis. 

On digital cardiac imaging systems, images are enhanced in order to outline the 
edges of vessels and ventricles. Edge enhancement filters emphasize the visibility of 
diagnostic information as well as the possible compression artefacts in the image. 
Therefore, Béretta [BER 95] has suggested incorporating unsharp masking in the 
DCT domain before performing the quantization (i.e. pre-enhancement) or during 
the quantization process (i.e. post-enhancement). The table representing the bit 
allocation will differ if the image edges are enhanced either before or after the 
quantization process (Figure 7.7). 
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a) b) 

Figure 7.7. a) Bit allocation of the post-enhanced coronary image at CR=12.6:1; 
b) bit allocation of the pre-enhanced coronary image at CR=12.8:1; from [BER 95]

An inverse filter method has been introduced for calculating a de-enhanced 
image from the enhanced-compressed one. In fact, images which have not been 
enhanced are needed for other types of treatments, such as for quantitative measures 
for example. A regularized restoration can be used to improve the quality of the 
decompressed de-enhanced image. The results show a significant improvement in 
the quality of the enhanced image compressed with a Full-Frame DCT 
transformation, whereas the JPEG coded image shows a blocking effect. 

a) b) c) 

Figure 7.8. a) Original enhanced cardiac angiogram; 
b) pre-enhanced Full-Frame DCT coded image (CR=12.8:1); 
c) enhanced JPEG coded image (CR=12.8:1); from [BER 95]
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7.3.3. JPEG 2000 lossy compression of medical images

Recent works have studied the use of JPEG 2000 compression on a variety of 
medical images. Table 7.2 shows the range of acceptable compression rates defined 
after analyzing the accuracy of the diagnosis. Section 5.2 outlines the effects of the 
smoothing effect caused by the JPEG 2000.  

Image Type Acceptable  
compression rate Reference 

Digital chest radiograph 20:1 (so that lesions can  
still be detected) 

[SUN 02] 
[CAV 01] 

Mammography 20:1 (detecting lesions) [SUR 04] 

Lung CT image 10:1 (so that the volume of 
nodules can still be measured) 

[KO 05] 

Ultrasound 12:1 [CHE 05] 

Coronary angiogram 30:1 (after optimizing  
JPEG 2000 options)  

[ZHA 04] 

Table 7.2. Applying JPEG 2000 compression to different medical images

7.3.3.1. Optimizing the JPEG 2000 parameters for the compression of medical 
images

In this section we will be looking at a compression approach which has been 
applied to medical images. This technique is based on the optimization of the 
options of the JPEG 2000 standard (Table 7.3) with respect to a given objective 
function. Zhang et al. [ZHA 04] applied this approach to angiograms. In their study, 
Zhang et al. have determined the best set of parameters (JPEG 2000 options), which 
guarantee optimal compression rates while allowing, at the same time, the detection 
of useful information from the considered image, initially compressed using a lossy 
technique (Figure 7.9). 
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JPEG 2000 
codec

Compression rate

Detection model

Original image Reconstructed image 
after decompression

JPEG 2000 options

Figure 7.9. Generalized block diagram illustrating the approach proposed in [ZHA 04]

Genes Coder options Range 

Gene 1 Size: tile 
32, 64, [88-92], [108-114], 128, [148-152], [216-240], 

256, [436-484], 512 (by default) 

Gene 2 Resolution 2, 3, 4, 5, 6 (by default), 7, 8 

Gene 3 Mode Int (by default), real 

Gene 4 Size: codeblocks 
32x64, 32x32, 64x32, 64x64 (by default), 256x16, 

16x256, 16x128, 128x16, 128x32, 32x128, 128x8, 8, 
256x8, 8x256 

Gene 5 Size: Precinct 
256x256, 128x128, 512x256, 64x64, 32x32, 

256x512 (by default) 

Table 7.3. JPEG 2000 options to be optimized 

It is important to note that with such an approach, the type of anomaly to be 
identified, as well as its approximate location within the image, are assumed to be 
known a priori (Figure 7.10). 



Compression of 2D Biomedical Images     169 

Figure 7.10. Angiogram: the type of anomalies to be detected as well as their location is 
supposedly already known (between the dark lines, according to [ZHA 04]) 

The detection model used is known as the NPWE (None-Pre-whitening matched 
filter With an Eye filter) model. It is based on the performance of the human visual 
system, and acts as a meta-heuristic optimizing technique. This model applies 
genetic algorithms (GA), widely used to minimize (or maximize) non-convex 
criteria; for further information on how this method works, see [SIA 03]. It is worth 
noting that the GA uses a stochastic search technique based on the principle of 
crossover, mutation and reproduction. Figure 7.11 shows a diagram that evaluates 
the objective function for a fixed a priori compression rate. 

Random generation of M chromosomes (a population)

Evaluation of the objective function (NPWE)

Operations: crossover/mutation/reproduction

Generation of a new population

Ending criterion: achieved?

JPEG 2000 optimal options

Figure 7.11. Using the GA to optimize JPEG 2000 options
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This particular algorithm performs iteratively until the appropriate conditions of 
convergence are reached. Since five different JPEG 2000 parameters must be 
optimized, each chromosome of the GA should include five genes (Figure 7.12). 

0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0

Gene 1                             Gene 2    Gene 3    Gene 4              Gene 5             

S 1 S 2 S 3 S 4 S 5

Figure 7.12. Structure of a chromosome used in GA

Although this method is fairly efficient, due to its optimal mode, we must take 
into consideration the time required by the GA to converge. This process often 
requires the use of a powerful computer (e.g. multiprocessor system) to overcome 
the problem of calculation complexity. Nevertheless, this technique can be used to 
identify an optimal range of options that fits a given type of image for a given 
detection model. In other words, a learning phase can be used in order to 
approximate the optimal values of JPEG 2000 options which can be used a
posteriori to compress any image of the same type and under the same conditions.  

7.3.4. Fractal compression

Fractal compression is widely used on natural images and has been the subject of 
many publications. However, its use in medical imaging is still rather limited 
[RIC 98] [KOT 03]. Analyses using ROC curves outlined in these texts clearly show 
that the quality of the reconstructed image when compressed at a given rate is lower 
for fractal compressions compared to the results obtained using the DCT-based (e.g. 
JPEG) method or the wavelet-based one (e.g. JPEG 2000). 

The problem of fractal compression can be explained by analyzing the results 
obtained from cardiac MRIs using the non-optimal FRAP software [RUH 97]. It is 
clear that the quality of reconstructed images after fractal compression is 
considerably lower than that obtained using the JPEG 2000 standard at rates below 
40:1. Beyond this compression rate, the JPEG 2000 standard provides low quality 
images while fractal algorithms are able to maintain a constant image quality even if 
it is also considered inappropriate for diagnostic purposes. Figure 7.14 illustrates 
this point. 
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Figure 7.14. Fractal compression of 2 successive phases on a similar cardiac MRI slice. 
Above, original images. Below, reconstructed images after fractal  

compression at a compression rate of 60:1

7.3.5. Some specific compression methods

7.3.5.1. Compression of mammography images

The encoding method based on regions of interest is widely used for the lossy 
compression of digital mammography. As an example to illustrate this case, we may 
refer to the works of Penedo et al. [PEN 03], in which they test and compare two 
techniques with traditional compression methods. One of those techniques is the 
OB-SPIHT (Object-Based extension of the Set Partitioning In Hierarchical Trees)
and the other is the OB-SPECK technique (Object-Based extension of the Set 
Partitioning Embedded block Coding algorithm). Since digital mammography is 
often set against a black background, a segmentation phase is obviously necessary to 
isolate the tissue from the backdrop as shown in Figure 7.13. The various processing 
steps following segmentation are: 



172     Compression of Biomedical Images and Signals 

– encoding of the edges: the edge is often encoded either with or without losses. 
For further information see [KAN 85] and [EDE 85]; 

– decomposing the region of interest by wavelets [BAR 94]; 

– encoding phase using OB-SPIHT or OB-SPECK [SAI 96b], [ISL 99]. 

Figure 7.13. Digital mammography in Penedo et al. [PEN 03] (independent  
encoding of the tissue, edge and background) 

7.3.5.2. Compression of ultrasound images

Ideally, it would be best to find a way of combining compression techniques 
with methods reducing the speckle noise which is specific to ultrasound images. One 
of the recent works published on this topic deals with ultrasound images using the 
following distinct steps [GUP 04]: 

– calculating the logarithm of the original image (while taking the speckle noise 
into consideration); 

– decomposing the obtained image using wavelets; 

– establishing a threshold (after estimation) for the coefficients that correspond 
to the speckle noise and that are located in different subbands; 

– classification of the coefficients organized into subbands in different classes; 
each class is modeled by a generalized Gaussian; 

– carrying out an adaptive quantization of each class; 

– carrying out an entropic coding. 
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For further references see [CHE 05] in which the edges of ultrasound images are 
restored a posteriori by a post-processing technique using morphologic filters.  

7.4. Progressive compression of medical images 

The design of new encoding techniques is no longer aimed solely at improving 
performances in terms of compression rates. The development of digital image 
transmission solutions using different communication media naturally implies new 
services requiring the adaptation of the coding process to this purpose. Scalable 
encoding allows the user to download the images progressively; from low quality up 
to the desired more refined quality. The loading time required for a given image 
depends on its size, on the transmission rate, on the number of users sharing the 
same network, etc. 

Said has summarized in [SAI 99] the ideal properties of a still image encoding 
scheme. Among them, we can specifically mention: compression efficiency, 
scalability, good quality at low bitrates, flexibility and adaptability, rate and quality 
control, algorithm uniqueness (with/without losses), reduced complexity, error 
robustness (for instance in a wireless transmission context) and region of interest 
(ROI) decoding at decoder level. 

In the medical imaging context, the use of progressive encoding methods 
increases network fluidity especially when transmitting over PACS networks or over 
the Internet. It would be far too ambitious for us to list all the works that have been 
published in this domain within a single chapter. Nevertheless, section 7.4.1. 
presents some of the more recent major works relative to this topic. As an example, 
section 7.4.2 exposes the LAR (Locally Adaptive Resolution) progressive 
compression technique principles. This particular technique has been developed by a 
French research group. 

7.4.1. State-of-the-art progressive medical image compression techniques 

As we have seen in Chapter 2, the JPEG 2000 standard was specified in such a 
way that it includes a scalable description of the image. This feature is obtained 
thanks to on one hand the particular properties of wavelets which allow the 
decomposition of an image at different resolutions and, on the other hand, the use of 
codestreams in order to organize the transmitted information. 

Before wavelets were incorporated into the JPEG 2000 standard, many 
researchers were dealing with the problem of progressive compression, defining 
methods as lossy to lossless or even, lossy to near losseless compression techniques. 
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From all the progressive compression solutions that incorporate wavelets, we can 
cite the one designed by Cristea et al. [CRI 98] and applied to MRI images and the 
one outlined in Munteano et al. [MUN 99] and applied to coronary angiograms. 
These authors propose an approach based on an integer wavelet decomposition 
scheme (designed through a lifting scheme) and based on intra-band exploration (or 
non-inter-band) of transformed coefficients. In their respective works, the results 
have been compared to those obtained by JPEG, SPHIT, and CALIC standards, etc. 

In [RAM 06], the SPHIT encoder has been tested on X-ray images, for a 
progressive transmission on low bitrate networks. Data is first stored in the DICOM 
format (Chapter 4). This method involves the modification of the TSUID (Transfer 
Syntax Unique Identification) field inserted in DICOM files header, so as to 
determine which type of encoder has to be applied on the image. During 
transmission, the header is first transmitted, followed by the SPHIT compressed 
image. In this particular study, evaluation is achieved using the following 
references: JPEG, JPEG-LS and JPEG 2000. The authors’ conclusions tend to 
highlight the advantages of the SPHIT compression method; however, the results 
obtained in this study cannot be generalized to apply to all types of medical images. 

In addition to wavelet-based solutions, Grüter et al. designed subband 
decomposition schemes based on non-linear polynomial prediction models 
[GRU 00]. Evaluations of this particular ROPD (Rank-Order Polynomial 
Decomposition) technique have been performed on MRI, X-ray and ultrasound 
images. Comparisons have been established using the JPEG methods, SPHIT, 
WTCQ, etc. 

7.4.2. LAR progressive compression of medical images

In this section we describe the LAR method, an encoding technique that tends to 
fit all the aforementioned characteristics. Section 7.4.2.1 presents the main 
principles of LAR encoding scheme, as a basis of advanced algorithms. The rest of 
this presentation deals with the process of encoding medical images only. Section 
7.4.2.2 outlines the global progressive scheme and the LAR applications for lossless 
coding purposes. Section 7.4.2.3 briefly describes the principles of ROI encoding 
process and its use on medical images. More detailed descriptions, particularly for 
LAR low bitrate encoding scheme, are available in [DEF 04] and [BAB 05a]. 

7.4.2.1. Characteristics of the LAR encoding method

Classically, an image can be described as the superposition of a local texture 
(fine details) over some low bitrate global image information (coarse details). The 
LAR compression method is based on this concept which results in the successful 
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processing of these two types of data. Thus, the overall scheme of this approach 
consists of two scalable layers (Figure 7.15): an initial one to encode an image at 
low bitrates, and a second one for visual quality enhancement at medium/high 
bitrates.

Figure 7.15. General scheme of 2-layer LAR encoding 

The first layer of the LAR scheme, called the flat LAR coder, provides a low-
resolution image of high visual quality. This image relies on the definition of a 
specific “quadtree” partitioning process. The size of each block is estimated using a 
specific criterion measuring local activity, so that smaller blocks are located on the 
image’s contours, and larger blocks are located in homogenous areas. Figure 7.16 
shows the resulting variable-size block representation. The LAR low-resolution 
image is obtained when filling each block by its mean luminance value. To enhance 
the visual quality, and taking into consideration the model used to describe block 
content, a low-complexity post-processing adapted to the variable size-block 
representation is applied to smooth uniform zones while not damaging contours. 

Figure 7.16. Visual representation of the quadtree partitioning proper to the flat LAR coder 

The LAR flat coder produces a low bitrate image. This being so, the main feature 
of the FLAT coder consists of preserving contours while smoothing homogenous 
parts of the image. Adapting block sizes to the image content enables high 
compression ratios together with a satisfactory visual result. Enhancing the low-
resolution image is realized using the second layer encoding process (texture layer). 
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When no quantification is applied, it is thus possible to losslessly encode the image. 
This feature is particularly relevant when dealing with medical images.  

7.4.2.2. Progressive LAR encoding

The scalability concept is particularly relevant in the field of telemedicine; its 
numerous related uses are indeed naturally useful to most physicians. The simplest 
version of LAR coding method (two-layer encoding) brings forward an initial notion 
of scalability. Using an adapted pyramidal decomposition process, the encoding 
method is transformed into a scalable scheme in terms of distortions and visual 
quality. The aim is to design a unified coding system able to efficiently address low 
bitrates up to lossless compression. For that purpose, three methods have been 
developed: LAR-APP (Pyramidal LAR approach) [BAB 03], Interleaved S+P 
[BAB 05b], RWHaT+P (Reversible Walsh-Hadamard Transform + Prediction)
[DEF 06]. The overall approach used in these three techniques is identical. 

To fit the Quadtree partition, dyadic decomposition is carried out. The first and 
second layers of the flat LAR are replaced by two successive pyramidal descent 
processes, but the image representation content is preserved: the first decomposition 
reconstructs the low-resolution image (LAR-image) while the second one processes 
the local texture information. As shown in Figure 7.17, the first pyramid pass 
performs a conditional decomposition in accordance with the quadtree partition 
depicted in Figure 7.16. Consequently the local content-adapted resolution of the 
image is successively enhanced, naturally increasing the scalability of the method. 

Figure 7.17. Conditional pyramidal decomposition according  
to the quadtree flat LAR partition 



Compression of 2D Biomedical Images     177 

The second pyramidal decomposition, as a dual process, makes it possible to 
recover the local texture of the image. Blocks that are not decomposed during the 
first pass are processed during the second one. 

As a consequence, pyramidal methods, exploiting the properties of the LAR 
coding scheme, can be seen as highly scalable methods, in the sense that progressive 
transmission of data according to resolution or image quality is made feasible. 
Figure 7.18 shows a typical multi-resolution representation. 

Figure 7.18. Multi-resolution representation

Although the three scalable LAR algorithms are based on the same principles, 
they differ in terms of decomposition stages and pixel encoding processes. The 
LAR-APP works in the spatial domain using an enriched inter and intra-level 
prediction. The Interleaved S+P and RWHaT+P methods perform transformation 
(respectively 1D S-Interleaved transform and 2D Walsh-Hadamard transform) 
before encoding transformed coefficients using a prediction step. 

Performances obtained using the Interleaved S+P method on a large range of 
medical images are recorded in [BAB 05a]. This particular method largely 
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outperforms the CALIC method in terms of zeroth-order entropy [WU 95]. 
Nevertheless, the RWHaT+P algorithm produces better results, in comparison to 
those obtained by the Interleaved S+P method. 

Table 7.4 displays several compression results from the RWHaT+P and 
Interleaved S+P methods: when compared to CALIC, these results clearly indicate 
the efficiency of the proposed scheme. Moreover, besides the quantitative aspect of 
this analysis, the RWHaT+P method offers a scalable solution able to transmit 
information progressively. Once again this does not apply to the CALIC method.  

Original
Entropy (bpp) 

Entropy (bpp) 
CALIC 

Entropy (bpp) 
Interleaved S+P 

Entropy (bpp) 
RWHaT+P 

Abdomen1 5.30 3.39 3.11 2.92 

MR2DBrain100001 3.55 3.33 2.84 2.76 

MR2DBrain100002 3.50 3.30 2.83 2.74 

MR2DBrain100003 3.48 3.31 2.83 2.73 

MR2DBrain100004 3.53 3.27 2.80 2.69 

MR2DBrain100005 3.58 3.29 2.82 2.71 

MR2DBrain100006 3.63 3.33 2.88 2.77 

XR2DLung1 7.14 2.37 2.45 2.39 

XR2DLung2 7.05 2.45 2.51 2.44 

XR2DLung3 7.21 2.42 2.49 2.43 

Table 7.4. Results of the RWHaT+P and the Interleaved S+P method application  
on medical images (zero-order entropies – bits per pixel)

7.4.2.3. Hierarchical region encoding

Image encoding methods that operate using region representation are highly 
usefully in the sense that they associate both compression and fine descriptions of 
images. Nevertheless, designing such approaches encounters two recurrent 
difficulties: 

– shape description, using polygons, produces an information overhead, which 
can be fairly significant at low bitrates. To reduce this overhead, we need to limit the 
number of regions to obtain rudimentary simplified regions; 

– region-based methods mainly preserve the “shape” component and often 
neglect the “content” component. Consequently, for a given representation, an 
encoded shape becomes independent of its content. 
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To gradually enhance the quality of reconstructed images while using scalable 
coding, the idea is to insert a segmentation stage calculated at both the coder and the 
decoder. This stage uses only first-layer rebuilt images and is efficient because the 
low bitrate LAR images keep their global content, in particular object contours. It 
leads to a fine hierarchical region representation at no cost, as no further information 
is transmitted to describe region shapes. 

In fact, the flat layer can be interpreted as a pre-segmentation phase in a split-
and-merge segmentation scheme, where small blocks are located on the contours, 
and larger blocks represent smooth areas. Figure 7.19 illustrates the general LAR 
region encoding scheme. The choice of resolution level used in the flat LAR coder 
determines how fine the segmentation will be. 

Figure 7.19. General scheme of LAR region encoding 

The segmentation algorithm is built upon the intrinsic properties of the LAR  
low bitrate image. It involves an iterating, merging process of regions, the initial 
regions being the blocks from the low-resolution image. Merging is controlled by a  
single threshold parameter. By iteratively increasing thresholds, a hierarchical 
segmentation is obtained and enables an efficient description of the image content 
from finest to coarsest scale. The resulting representation tree can then be scanned 
globally by level, or locally by region. Figure 7.20 illustrates this type of 
hierarchical representation obtained at different levels of that tree. 
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a)

d)

b)

c)

a)

d)

b)

c)

Figure 7.20. Hierarchical region representation from a low bitrate image
of level L1: a) starting level (block representation): 16,202 regions;

 b) 876 regions; c) 124 regions; d) 18 regions 

The main benefit of such a method is that there is immediate, total compatibility 
between the shape of regions and their coding content. Consequently, one direct 
application is found in a coding scheme with local enhancement in Regions Of 
Interest (ROI). From the segmentation map simultaneously available in both coder 
and decoder, either device can define its own ROI as a set of regions. Thus, an ROI 
will simply be specified by the labels of its regions. 

The method provides a semi-automatic tool for ROI selection. Each region, and 
consequently each ROI, consists of a set of blocks defined in the initial partition. 
Then the enhancement of an ROI is straightforward as it merely requires execution 
of the texture codec for the validated blocks, i.e. those inside the ROI: the ROI acts 
simply as a direct on/off control for block-level enhancement. This type of 
application can easily be implemented using a simple graphic interface that enables 
us to select the concerned regions. Figure 7.21 illustrates this procedure. 
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a) b)

Figure 7.21. ROI encoding: a) 124 regions representation and ROI selection; 
b) low bitrate encoding of the image background  

(first pass, 0.55 bpp), ROI losslessly coded 

7.5. Conclusion 

Numerous image compression methods have been developed. They may be 
defined either as reversible methods (offering low compression ratios but 
guaranteeing an exact or near-lossless reconstruction of the image), irreversible 
methods (designed for higher compression ratios at the cost of a quality loss that 
must be controlled and characterized) or scalable methods (fully adapted to data 
transmission purposes and enabling lossy to lossless reconstructions). Choosing one 
method mainly depends on the use of images. In the case of the needs of a first 
diagnosis, a reversible compression would be most suitable. However, if compressed 
data has to be stored on low-capacity data supports, an irreversible compression 
would be necessary. Finally, scalable techniques clearly suit data transmission. 

All compression solutions presented in this chapter have been applied, or even 
adapted for the purposes of medical images. The expression “medical images” 
represents images of various modalities (X-ray, MRI, ultrasound images, etc.) 
despite the fact that, as we have seen in Chapter 3, the image specificities and 
properties differ according to these modalities. As a consequence, the following 
question remains: why should they all be compressed using the same algorithm? The 
term “medical image” alone may not and should not justify the use of a particular 
method. At this stage, we are convinced that it is most pertinent to apply algorithms 
that are adapted to each type of image. Unsurprisingly, this discussion still remains 
open. 
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Chapter 8 

Compression of Dynamic and Volumetric 
Medical Sequences

8.1. Introduction 

Most of the current medical imaging techniques produce three-dimensional (3D) 
data distributions. Some of them are intrinsically volumetric and represented as a set 
of two-dimensional (2D) slices, such as magnetic resonance imaging (MRI), 
computerized tomography (CT), positron emission tomography (PET) and 3D 
ultrasound, while others (such as angiography and echography) describe the 
temporal evolution of a dynamic phenomenon as a time sequence of 2D static 
images (frames), and thus are more correctly labelled as 2D+t. When displayed in 
rapid succession, these frames are perceived as continuous motion by the human 
eye.

The most commonly used digital modalities of medical volumetric data generate 
multiple slices in a single examination. One slice is normally a cross-section of the 
body part. Its adjacent slices are cross-sections parallel to the slice under 
consideration. Multiple slices generated this way are normally anatomically or 
physiologically correlated to each other (Figure 8.1). In other words, there are some 
image structural similarities between adjacent slices. Although it is possible to 
compress an image set slice by slice, more efficient compression can be achieved by 
exploring the correlation between slices. 

Chapter written by Azza OULED ZAID, Christian OLIVIER and Amine NAÏT-ALI. 
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Medical 2D+t and 3D images have had a great impact on the diagnosis of 
diseases and surgical planning. The limitations in storage space and transmission 
bandwidth on the one hand, and the growing size of medical image data sets on the 
other, have pushed the design of ad-hoc tools for their manipulation. The increasing 
demand for efficiently storing and transmitting digital medical image data sets has 
triggered a vast investigation of volumetric and dynamic image compression. More 
importantly, compression may help to postpone the acquisition of new storage 
devices or networks when these reach their maximal capacity. 

A common characteristic of digital images is that neighboring pixels have a high 
degree of correlation. To enhance the coding performance, data compression aims to 
reduce the spatial or temporal redundancy by first decreasing the amount of 
correlation in the data and then encoding the resulting data. 

3D medical image 

Figure 8.1. Example of volumetric medical image data set

The two major types of medical image data set compression are lossless and 
lossy. Lossless techniques allow an exact reconstruction of the original image. 
Unfortunately, the tight constraints imposed by lossless compression usually limit 
the compression ratio to about 2 or 4:1. Lossy techniques can reduce images by 
arbitrarily large ratios but do not perfectly reproduce the original image. However, 
the reproduction may be good enough that no image degradation is perceptible and 
diagnostic value is not compromised. 

When lossless compression is used, 3D image data can be represented as 
multiple two-dimensional (2D) slices, it is possible to code these 2D images 
independently on a slice-by-slice basis. Several methods have been proposed for 
lossless (medical) 2D image compression, such as predictive coding like Differential 
Pulse Code Modulation (DPCM), Context-based Adaptive Lossless Image Coding 
(CALIC), Hierarchical INTerpolation (HINT) or simply a variable length coder, for 
example arithmetic coding, Huffman and Lempel-Ziv. However, such 2D methods 
do not exploit the data redundancy in the third dimension, i.e. the property that 
pixels in the same position in neighboring image frames are usually very similar. As 
pixels are correlated in all three dimensions, a better approach is to consider the 
whole set of slices as a single 3D data set. Although dynamic medical sequences 
differ in nature to volumetric ones, it is difficult to distinguish between lossless 
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compression techniques applied to the two families. This aspect will be considered 
in detail in section 8.2. 

While further research into lossless methods may produce some modest 
improvements, significantly higher compression ratios, reaching 60:1, can be 
achieved using lossy approaches. Unfortunately, lossy compression schemes may 
only achieve modest compression before significant information is lost (see Chapter 
5). The choice of the compression rate is consequently adjusted in a way which will 
reduce the volume of data without discarding visually or diagnostically important 
information. 

The development of a lossy compression algorithm adapted to (2D+t) sequences 
is a critical problem. For example, the ultrasound images are corrupted by a random 
granular pattern, called a “speckle” pattern. This noise is generated by physical 
phenomena related to the acquisition technique and can be considered as a texture 
representing information about the observed medium. Furthermore, in the case of 
angiogram sequences, images obtained from projection radiography may reveal 
lesions by image details that are extremely sensitive to lossy compression since they 
are small or have poorly defined borders (e.g. the edge of coronary arteries), and are 
only distinguishable by subtle variations in contrast. The lossy (irreversible) 
compression approaches to 2D+t medical images will be considered in section 8.3. 

 a) b)

Figure 8.2. Example of dynamic medical images, from left to right:  
angiographic image; echographic (ultrasonic) image

Section 8.4 deals with the irreversible compression methods of the 3D medical 
data sets. As will be discussed later, the direct use of dynamic data compression 
approaches is not appropriate for volumetric medical images. These coding 
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techniques are usually based on object motion estimation approaches. When applied 
to volumetric images, the inter-image correlation is considered as a temporal one. 
The assumption of object motion is not realistic in 3D image sets, where image 
frames are not snap shots of moving objects but instead plane slices of 3D objects. It 
should be noted that fully 3D wavelet-based coding systems are very promising 
techniques in the field of volumetric medical data compression. 

8.2. Reversible compression of (2D+t) and 3D medical data sets 

As mentioned earlier, in order to efficiently compress volumetric or dynamic 
medical sequence, it is important to use spatial and temporal redundancy. Image 
sequence coding can use redundancies at both intra-frame (within a frame) and inter-
frame (between frames) levels. At the inter-frame level the redundancy between 
successive images across time or along the third spatial dimension, is used. As 2D+t
and 3D data can be represented as sets of 2D images, it is possible to code these 2D 
images independently on an image-by-image basis. Several excellent 2D lossless 
compression algorithms are in existence, which are presented in Chapters 2 and 7. 
Some of these reversible 2D compression techniques, such as the JPEG-LS or 
CALIC algorithm, are applied independently on each 2D image of a dynamic or 
volumetric data set. However, as mentioned by Clunie [CLU 00], such 2D methods 
are still limited in terms of compression ratio since they do not use the dependencies 
that exist among pixel values across the third scale. 

Lossless video coding techniques have been investigated to compress volumetric 
and dynamic medical image sequences. Those that have been proposed in the 
literature are often essentially 2D techniques, such as the CALIC algorithm, which 
have been modified to use some information from the previously encoded frame(s). 
Other approaches combine the intra-frame prediction and modeling steps that 
typically occur in 2D techniques with inter-frame context modeling. On the other 
hand, some techniques adapt predictive 2D image coders by providing several 
possible predictors and encoding each pixel using the predictor that performed best 
at the same spatial position in the previous frame. These techniques also use Motion 
Compensation (MC). The principle of MC is simple: when a video camera shoots a 
scene, objects that move in front of the camera will be located at slightly different 
positions in successive frames. Block MC considers a square region in the current 
frame and looks for the most similar square region in the previous frame (motion 
estimation). The pixels in that region are then used to predict the pixels in the 
current frame. 

Existing 2D lossless coders [ASS 98] have been extended in order to exploit the 
inter-image correlation in 3D sequences. These extended coders use an intra-frame 
predictor, but they incorporate inter-frame information in the context model. A 
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simplified description of this technique is shown in Figure 8.3; for each pixel a fully 
intra-frame prediction is made. Then, after subtracting this prediction from the 
original pixel value, a residual is obtained (and stored for later use in the 
compression of the next frame). In the context modeling step, the context parameter 
for encoding the current pixel is a quantized version of the intra-frame prediction 
error in the previous frame at the same position. The underlying idea is that in 
smooth regions, where intra-frame prediction works well, the context parameter will 
be low. On the other hand, near moving or static edges, the context parameter will 
be high. Thus, the context model effectively forces the use of different probability 
tables in both of these region types. It was experimentally shown that this inter-
frame context modeling leads to an additional 10% increase in compression ratio 
compared to 2D fully predictive techniques. 

Figure 8.3. Combination of intra-frame prediction and inter-frame context modeling

The GRINT (Generalized Recursive Interpolation) coding approach [AIA 96], 
which is an extension of HINT algorithm [AIA 96], is a progressive inter-frame 
reversible compression technique of tomographic sections that typically occur in the 
medical field. An image sequence is decimated by a factor of 2, first along rows 
only, then along columns only, and possibly along slices only, recursively in a 
sequel, thus creating a gray level hyper-pyramid whose number of voxels halves at 
every level. The top of the pyramid (root) is stored and then directionally 
interpolated by means of a 1D kernel. Interpolation errors with the underlying 
equally-sized hyper-layer are stored as well. The same procedure is repeated, until 
the image sequence is completely decomposed. The advantage of the novel scheme 
with respect to other non-causal DPCM schemes is twofold: firstly, interpolation is 
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performed from all error-free values, thereby reducing the variance of residuals; 
secondly, different correlation values along rows, columns and sections can be used 
for a better decorrelation. 

8.3. Irreversible compression of (2D+t) medical sequences 

Due to the limited performance of lossless compression techniques, in terms of 
compression ratio, there has been significant interest in developing efficient lossy 
(irreversible) image compression techniques that achieve much higher compression 
ratios without affecting clinical decision making. Similar to reversible compression 
schemes, the developed irreversible compression algorithms are also classified as 
either intra or inter-frame. 

8.3.1. Intra-frame lossy coding 

Similar to reversible compression, it is naturally possible to compress each frame 
of the dynamic sequence using a 2D coding method. For example, three 
angiographers reviewed the original and the Joint Photographic Experts Group 
(JPEG) compressed format of 96 coronary angiographic sequences in a blind fashion 
to assess coronary lesion severity [RIG 96]. The obtained results have shown that at 
small compression ratios, of about a 10:1 to 20:1, the variability in assessing lesion 
severity between the original and compressed formats is comparable to the reported 
variability in visual assessment of lesion severity in sequential analysis of cine film. 

The high performance that characterizes wavelet-based 2D compression 
algorithms, such as SPIHT and JPEG 2000 coders, has triggered their use on 
dynamic medical sequences. However, when applied to video angiographic 
sequences the efficiency of wavelet-based encoding schemes is hampered by the 
comparatively small valued transform coefficients in the high frequency subbands. 
The high frequency subbands can be broadly subdivided into regions containing 
diagnostically important information, and regions which do not. Regions which 
contain diagnostically important information tend to contain far more structure in 
the high frequency subbands detailing, for example, the precise position of an 
artery’s boundary. In contrast, regions not containing diagnostically important 
information tend to be noise-like in texture [GIB 01b]. Significant amounts of noise-
like texture reduce the effectiveness of the wavelet coding approaches, especially at 
the relatively high bitrates required for diagnostically lossless images. This higher 
bitrate results in a much larger number of significant wavelet coefficients in the high 
frequency subbands which in turn must be encoded in the final bit stream. This is 
inconvenient as it weakens the key quality of energy compaction, requiring the 
transmission of significant amounts of information to identify the locations of 
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significant wavelet coefficients. To overcome this problem, region-based approaches 
have been investigated to distinguish between the two different types of regions. 

Despite the improvement in efficacy of object-based frameworks, which 
integrate ROI-based functionalities [RAB 02], to assign high priority to the 
semantically relevant object, to be represented with up to lossless quality and lower 
priority to the background, these frameworks are not adapted to angiographic 
images. In fact, the ROI is generally assimilated to square blocks of fixed size that 
do not necessary fit to medical image structures. In order to improve the diagnosis 
quality of reconstructed angiographic sequences, the method developed in [GIB 01a] 
proposes making a distinction between the two different types of regions, with the 
regions containing diagnostically important information encoded using a standard 
wavelet encoding algorithm, and the remaining area encoded more efficiently using 
a wavelet parameter texture modeling approach. This procedure is applied to the two 
highest frequency subbands, with the remaining levels of the wavelet pyramid 
encoded in their entirety using a modified version of the SPIHT coder (see Figure 
8.4). Despite its compression efficiency, as well as the main concern with important 
diagnostic information, this method has the disadvantage of not exploiting the 
temporal correlations between successive frames. 

Wavelet 
Transform 

Texture  
Modeler 

Shape
Coder 

Modified 
SPIHT 
Coder 

Original 
 Image 

Region 
map

Output 
Data 

Figure 8.4. Alternation between MC and intra-image prediction

Recently, compression systems that support ROI coding using a pre-
segmentation approach have been investigated in many image applications. 
However, segmentation is one of the most significant and difficult tasks in the area 
of image processing. If a segmentation algorithm fails to detect the correct ROIs 
then the result would be disastrous since the important diagnostic data in the original 
image would risk being lost. To solve the problems associated with the pre-
segmentation approach, a region scalable coding scheme, based on a post-
segmentation approach, has been developed [YOO 04] for interactive medical 
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applications such as telemedicine. Its principle can be described as follows: lossless 
compression is applied to the whole image and stored in the server. By applying 
special treatment (set partitioning and rearrangement) to the transformed data, small 
regions of an image are identified and compressed separately. This will allow a 
client to access a specific region of interest efficiently by specifying the ROI. 

8.3.2. Inter-frame lossy coding 

8.3.2.1. Conventional video coding techniques 

The conventional video coding methods have much in common, usually being 
centered on a combined motion estimation-compensation strategy and followed by 
an often frequency-based, residual coding method in order to carry out a good 
prediction which takes into account the motion present between consecutive images. 
Several approaches have been suggested in order to take this movement into 
account:

– block matching MC, which is adopted in MPEG1 [GAL 91], MPEG2, H.261, 
H.263 and H.264 coding schemes; 

– region-based MC [KAT 98], such as MPEG4, which belongs to region-based 
coding schemes. 

To compress the residual images, the quantization process is directly applied to 
the prediction error in the spatial or frequency domain, after a Discrete Cosine 
Transform (DCT). 

Conventional video coding techniques can give impressive compression ratios 
(100:1) with relatively small amounts of image quality degradation. Unfortunately, 
most of them are principally based on a block-based DCT method, in conjunction 
with block-based motion estimation. As a result, blocking artefacts, often visible 
when using block-based DCT, could potentially be mistaken as being diagnostically 
significant or interpreted erroneously as pathological signs. Furthermore, the 
effectiveness assessment results of MC, applied to dynamic medical sequences have 
shown that conventional MC strategies are not optimal for this type of data, 
specifically angiogram video sequences. This is largely due to the particular 
structure of this type of data, i.e. the unusual motion patterns and large amounts of 
background texture. Unlike High Definition Television (HDTV), individual frames 
from an angiogram sequence may be extracted and closely scrutinized. All of these 
requirements have triggered the development of compression methods, specifically 
designed for dynamic medical data. 
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8.3.2.2. Modified video coders 

In angiogram video sequences, temporal correlation in the high frequency image 
bands results partially from the high frequency noise and partially from the layered 
nature of the data in which multiple overlaid, semi-transparent layers all move 
differently. For this reason, constructive use of temporal redundancy in angiogram 
sequences is an absolute necessity. One solution has been suggested in [GIB 01b] by 
integrating a low-pass spatial filtering process to the MC feedback loop in 
conventional DCT based video coders. The two key stages in the modified feedback 
loop are the MC block and the low-pass spatial filter. The low pass filter employs a 
Gaussian operator which removes the majority of the high frequency spatial texture. 
This is essential for angiogram images, because in its absence the MC proves 
completely counter productive. The MC block is selected according to one of the 
following schemes: block matching, global compensation or no compensation. 

To reduce blocking artefacts often visible when DCT is used in conjunction with 
block-based motion estimation methods, some solutions [TSA 94] [HO 96] propose 
using a block-matching approach, to estimate image motion, followed by a global 
wavelet compression method, instead of the more conventional block-based DCT 
arrangement. Nevertheless, wavelet-based coding functionalities enable, not only the 
avoidance of blocking effects, but also the support of object-based bit allocation 
[BRE 01] and progressive decoding, at the cost of a fuzzy or smoothing effect (see 
section 8.3.2.3). 

In their comparative study, Gibson et al. [GIB 01b] have shown that the use of 
MC is not beneficial in the case of 2D+t medical image compression. This is 
principally due to the displacement nature of the considered organs; the amount of 
motion present in dynamic medical sequences is relatively small compared to the 
motions present in standard video scenes. Furthermore, block-based MC depends on 
the assumption that objects only move from frame to frame but do not deform or 
rotate. This assumption is not always satisfied in video applications since, for 
example, objects may rotate or shrink as they move away from the camera. In the 
same study, efficiency of 2D DCT and wavelet approaches has been reviewed. 
Experimental results for these intra-frame compression techniques have shown that 
wavelet and DCT based algorithms gave very similar results, both numerically and 
visually. All of these reasons led researchers to define new compression approaches 
more adapted to 2D+t medical sequences [GIB 04]. 

8.3.2.3. 2D+t wavelet-based coding systems limits 

More recent studies were oriented towards scalable 2D+t wavelet based coding 
techniques, inspired by 3D wavelet based coding approaches [LOW 95]. To reduce 
the computational complexity and the huge amount of memory space, needed to 
calculate the 2D+t wavelet coefficients, dynamic image sequences are divided into 
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groups of images (GOP: Group Of Picture). These groups are compressed 
independently. 

Although they are well adapted to natural video scenes, wavelet-based coding 
techniques are not suitable for dynamic medical data sets, such as video angiograms 
[MEN 03]. These images are highly contrasted: very sharp edges are juxtaposed 
with a smooth background. The edges spread out in the whole subband structure 
generating a distribution of non-zero coefficients whose spatial arrangement cannot 
be profitably used for coding. This is principally due to the fact that wavelets are not 
suitable descriptors of images with sharp edges. 

8.4. Irreversible compression of volumetric medical data sets  

8.4.1. Wavelet-based intra coding 

With the widespread use of the Internet, online medical volume databases have 
gained popularity. With recent advances in picture archiving communication 
systems (PACS) and telemedicine, improved techniques for interactive visualization 
across distributed environments are being explored. Typically, data sets are stored 
and maintained by a database server, so that one or more remote clients can browse 
the datasets interactively and render them. In many cases, the client is a low-end 
workstation with limited memory and processing power. An interactive user may be 
willing to initially sacrifice some rendering quality or viewing field in exchange for 
real-time performance. Thus, one of the fundamental needs of a client is breadth in 
terms of interactivity (such as reduced resolution viewing, ability to view a select 
subsection of the volume, view select slices, etc.) and a pleasant and real-time 
viewing experience (immediate and progressive refinement of the view volume, 
etc.). Such a setup enforces the use of hierarchical coding schemes that allow 
progressive decoding. Out of all the lossless compression methods presented in 
section 8.2, only HINT and GRINT approaches allow progressive reconstruction. 
However, since no binary allocation process is made in these two compression 
schemes, the compression ratios attained are considerably low. 

The wavelet transform has many features that make it suitable for progressive 
transmission (or reconstruction). The implementation via the lifting steps scheme is 
particularly advantageous in this framework. It provides a very simple way of 
constructing non-linear wavelet transforms mapping integer-to-integer values. This 
is very important for medical applications because it enables a lossy-to-lossless 
coding functionality; i.e. the capability to start from lossy compression at a very 
high compression ratio and to progressively refine the data by sending detailed 
information, up until the point where a lossless decompression is obtained. We will 
not return to the description of 2D compression algorithms, supporting progressive 
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transmission. At present, we only mention 2D wavelet-based embedded image 
coding algorithms, which have extended our knowledge of 3D coding of the 
volumetric medical images: 

– EZW and SPIHT coders; 

– SPECK algorithm; 

– QT-L algorithm; 

– EBCOT coder. 

It is important to note that these techniques support lossless coding, all the 
required scalability modes, as well as ROI coding. 

8.4.2. Extension of 2D transform-based coders to 3D data  

8.4.2.1. 3D DCT coding 

To take into account the inter-image correlation in volumetric images, DCT-
based coding systems have been extended to 3D coding [VLA 95]. A 3D image can 
then be seen as a volume of correlated content to which 3D DCT transformation is 
applied for decorrelation purposes. The 3D JPEG-based coder is composed of a 
discrete cosine transform, followed by a scalar quantizer and finally a combination 
of run-length coding and adaptive arithmetic encoding. The basic principle is 
simple: the volume is divided into cubes of 8x8x8 pixels and each cube is separately 
3D DCT-transformed, similar to a classical JPEG-coder. Thereafter, the DCT 
coefficients are quantized using a quantization matrix. In order to derive this matrix, 
we have to consider two options. One option is to construct quantization tables that 
produce an optimized visual quality based on psycho-visual experiments. It is 
worthwhile mentioning that JPEG uses such quantization tables, but this approach 
would require elaborate experiments in order to come up with reasonable 
quantization tables for volumetric data. The simplest solution is to create a uniform 
quantization matrix. This option is motivated by the fact that uniform quantization is 
optimal or quasi-optimal for most of the distributions. Currently, the uniform 
quantizer is optimal for Laplacian and exponential input distributions; otherwise the 
differences with respect to an optimal quantizer are marginal. A second possibility 
involving quantizers that are optimal in the rate-distortion sense is discussed 
elsewhere. 

The quantized DCT-coefficients are scanned using a 3D space-filling curve, i.e. 
a 3D instantiation of the Morton-curve, to allow for the grouping of zero-valued 
coefficients and thus to improve the performance of the run-length coding. This 
curve was chosen due to its simplicity compared to that of 3D zigzag curves. The 
non-zero coefficients are encoded using the same classification system as for JPEG. 
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The coefficient values are grouped into 16 main magnitude classes (ranges), which 
are subsequently encoded with an arithmetic encoder. Finally, the remaining bits to 
refine the coefficients within one range are added without further entropy coding.  

The adopted entropy coding system shown in Figure 8.5 is partially based on the 
JPEG architecture, except that the Huffman coder is replaced by an adaptive 
arithmetic encoder which tends to have a higher coding efficiency. The DC 
coefficients are encoded with a predictive scheme: apart from the first DC 
coefficient the entropy coding system encodes the difference between the current 
DC coefficient and the previous one. The AC coefficients are encoded in the form of 
pairs (RUN, BEEN WORTH), where “RUN” specifies the amount of zeros 
preceding the encoded symbol, designated by the “BEEN WORTH” term. The range 
of the encountered significant symbol is encoded, using an arithmetic encoder with a 
similar (AC) model as in the case of the DC coefficients. Nevertheless, similar to 
their 2D counterparts, 3D DCT-based compression techniques are not able to satisfy 
the requirements of progressive transmission and perfect reconstruction. 

Figure 8.5. 3D DCT-based coder

8.4.2.2. 3D wavelet-based coding based on scalar or vector quantization 

Before describing the 3D wavelet-based coding techniques, it is important to 
note that these techniques support lossless coding, all the required scalability modes, 
as well as ROI coding and this is a significant difference with respect to the 3D DCT 
technique presented above, which is not able to provide these features.

For all 3D wavelet based coders adapted to medical applications, a common 
wavelet transform module was designed that supports lossless integer lifting 
filtering, as well as finite-precision floating-point filtering. Different levels of 
decomposition for each spatial direction (x-, y-, or z- direction) are supported by the 
wavelet module. In [LOW 95] [WAN 95], a 3D separable wavelet transform is used 
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to remove inter-slice redundancy, while in [WAN 96], different sets of wavelet 
filters are used in the (x,y) plane and z direction, respectively, to account for the
difference between the intra- and inter-slice resolution. In fact, the distance between 
adjacent pixels in the same 2D image varies from 0.3 to 1 mm, while the distance 
between two successive images in IRM or CT sequences varies from 1 to 10 mm. 
This has led to the common consensus that the use of the full 3D data correlation 
potentially improves compression. The obtained wavelet sub-volumes are 
independently quantized, either by uniform scalar quantization or vector 
quantization, and finally entropy coded. It is worth noting that many works have 
been investigated in order to define a quantization policy which ensures the highest 
decoding quality, for a given rate, over the entire image volume. 

8.4.2.3. Embedded 3D wavelet-based coding 

Since contemporary transmission techniques require the use of concepts such as 
rate scalability, quality and resolution scalability, multiplexing mechanisms need to 
be introduced to select from each slice the correct layer(s) to support the currently 
required Quality-of-Service (QoS) level. However, a disadvantage of the slice-by-
slice mechanism is that potential 3D correlations are neglected. Evaluation of 
wavelet volumetric coding systems that meet the above-mentioned requirements has 
shown that these coder types deliver the best performance for lossy-to-lossless 
coding. 

3D wavelet-based embedded image coding algorithms typically apply successive 
approximation quantization (SAQ) to provide quality scalability and facilitate the 
embedded coding. The resolution scalability is a direct consequence of the multi-
resolution property of the DWT. Both resolution and quality scalability are provided 
by the multi-layered organization of the code-stream into packets. In what follows, 
we will restrict ourselves to the description of 3D wavelet-based embedded coding 
techniques that employ zero tree- or block-based structures. It is worth mentioning 
that 3D SPIHT (Set Partitioning into Hierarchical Trees) [KIM 00] and 3D SB-
SPECK (SuBband-based Set Partitioned Embedded bloCK coding) [WHE 00] are 
the well-known representatives of the family of inter-band embedded 3D coding 
approaches. 

In the case of 2D images, these strategies use the inter-band dependencies of the 
wavelet coefficients to provide a progressive improvement of the reconstructed 
image quality. More recently, other 3D wavelet-based coding algorithms have been 
developed, taking into account the intra-band dependencies between wavelet 
coefficients. Among these algorithms, a new coder called the 3D Quadtree Limited 
(3D QT-L) combines the basic principles of quadtree and block-based coding. 

The investigations performed in the context of the new standard for 2D image 
coding, JPEG 2000 (based on the wavelet transform), like random access to regions 
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of interest and lossy-to-lossless coding, triggered the ISO/IEC JTC1/SC29/WG1 
committee to develop the JP2000 3D coder equipped with a 3D wavelet transform. 
The latter is one of the functionalities provided by the latest Verification Model 
software (from V7.0 on), which was added to support multi-spectral image coding. 
More recently, the ISO/IEC JTC1/SC29/WG1 committee decided to develop JP3D 
(i.e. Part 10 of JPEG 2000 standard), which gives support to 3D encoding 
mechanisms. The MLZC (Multi Layered Zero Coding) algorithm was proposed 
recently in [MEN 03] and provides high coding efficiency, fast access to any 2D 
image of the dataset and quality scalability. Its structural design is based principally 
on the layered zero coding (LZC) algorithm coder [TAU 94] designated to video 
coding. The main differences between LZC and the MLZC algorithm concern the 
underlying subband structure and the definition of the conditioning terms. 

8.4.2.3.1. 3D set partitioning in hierarchical trees  

The 3D SPIHT [KIM 00] implementation uses balanced 3D spatial orientation 
trees (Figure 8.6). Therefore, the same number of recursive wavelet decompositions 
is required for all spatial orientations. If this is not respected, several tree nodes are 
not linked within the same spatial location, and consequently the dependencies 
between different tree-nodes are destroyed and thus the compression performance is 
reduced. The examined 3D SPIHT algorithm follows the same procedure as its 2D 
homologous algorithm, with the exception that the states of the tree nodes, each 
embracing eight wavelet coefficients, are encoded with a context-based arithmetic 
coding system during the significance pass. The selected context models are based 
on the significance of the individual node members, as well as on the state of their 
descendants. 

Figure 8.6. Parent descendant inter-band dependency
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8.4.2.3.2. Cube splitting  

The cube splitting technique is derived from the 2D square partitioning coder 
(SQP) applied to the angiography sequences [MUN 99]. In the context of volumetric 
encoding, the SQP technique was extended to a third dimension: from square 
splitting towards cube splitting. Cube splitting is applied to the wavelet image in 
order to isolate smaller entities, i.e. sub-cubes, possibly containing significant 
wavelet coefficients. Figure 8.7 illustrates the cube splitting process. 

During the first significance pass S, the significance of the wavelet image 
(volume) is tested for its highest bit-plane. The wavelet image is spliced into eight 
sub-cubes (or octants). When a significant wavelet coefficient, in a descendent cube, 
is encountered, the cube (Figure 8.7a) is spliced into eight sub-cubes (Figure 8.7b), 
and so on (Figure 8.7c) up until the pixel level. The result is an octree structure 
(Figure 8.8d), with the SGN symbol indicating the significant node and the NS 
symbol designating the non-significant node. In the next significance pass, the non-
significant nodes that contain significant wavelet coefficients are refined further. As 
we may observe, all branches are accorded equal importance. 

Figure 8.7. Cube splitting according to the wavelet coefficients significance

When the complete bit-plane is encoded with the significance pass, the 
refinement pass R is initiated for this bit-plane, refining all coefficients marked as 
significant in the octree. Thereafter, the significance pass is restarted in order to 
update the octree by identifying the new significant wavelet coefficients for the 
current bit-plane. During this stage, only the previously non-significant nodes are 
checked for significance, and the significant ones are ignored since the decoder has 
already received this information. The described procedure is repeated, until the 



202     Compression of Biomedical Images and Signals 

complete wavelet image is encoded or until the desired bitrate is obtained. To 
encode the generated symbols efficiently, a context-based arithmetic encoder has 
been integrated. 

8.4.2.3.3. 3D QT-L 

The QT-L coder has also been extended towards 3D coding. The octrees 
corresponding to each bit-plane are constructed following a similar strategy as for 
the cube splitting coder. However, the partitioning process is limited in such a way 
that once the volume of a node becomes smaller than a predefined threshold, the 
splitting process is stopped, and the entropy coding of the coefficients within such a 
significant leaf node is activated. Similar to the 2D version, the octrees are scanned 
using depth-first scanning. In addition, for any given node, the eight descendant 
nodes are scanned using a 3D instantiation of the Morton curve. For each bit-plane, 
the coding process consists of the non-significance, significance and refinement 
passes. For the highest bit-plane, the coding process consists of the significance pass 
only. The context-conditioning scheme and the context-based entropy coding are 
similar to their 2D counterparts. 

8.4.2.3.4. 3D CS-EBCOT 

The CS-EBCOT coding [SCH 00] combines the principles utilized in the cube 
splitting coder with a 3D instantiation of the EBCOT coder. The interfacing of the 
cube splitting coder with a version of EBCOT adapted to 3D is outlined below: 

– firstly, the wavelet coefficients are partitioned EBCOT-wise into separate, 
equally sized cubes, called codeblocks. Typically, the initial size of the codeblocks 
is 64x64x64 elements (Figure 8.8); 

– the coding module, CS-EBCOT, consists of two main units, the Tier 1 and Tier 
2 parts: Tier 1 of the proposed 3D coding architecture is a hybrid module combining 
two coding techniques: cube splitting and fractional bit-plane coding using context-
based arithmetic encoding. Tier 2 part is identical to the one used in the 2D coding 
system. Its concerns the layer formation in a rate-distortion optimization framework. 
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Figure 8.8. Cube-splitting based on wavelet coefficient significance

To use pixel correlation with its neighborhood, according to the three spatial 
directions, CS-EBCOT uses 3D context models for the adaptive arithmetic coding 
which is identical to those utilized in the previously mentioned encoders.  

8.4.2.3.5. JP3D 

Part 10 of JPEG 2000 (JP3D) [BIS 03] is a work item that provides extensions of 
JPEG-2000 for rectangular 3D hyper-spectral and volumetric medical data sets with 
no time component. It provides a specification for the coding of 3D data sets that are 
as isotropic as possible; i.e. identical processing capabilities will be provided in all 
three dimensions. The proposed volumetric coding mechanism is based on a 3D 
instantiation of the EBCOT coder. To assure the adoptability of the Part 10 
extension of the JPEG 2000 standard, two important requirements are imposed; i.e. 
the backward compatibility requirement and the isotropic functionality requirement. 
The backward compatibility requirement demands that any compliant Part 1 or Part 
2 code-stream needs to be recognized as a compliant JP3D code-stream, respecting 
the original semantic interpretation of all markers, parameters and bit-streams. In 
particular, when given a compliant Part 1 or Part 2 code-stream and legal decoding 
options, a JP3D decoder will produce the same reconstructed image as a Part 1 or 
Part 2 reference decoder. Secondly, the new or extended technology, included for 
JP3D, shall provide the same, i.e. isotropic functionality in all 3 coordinate 
directions, while remaining compatible with the syntax used in Part 2 that describes 
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volumetric images as enumerated sets of 2D image components. It is evident that 
typical requirements such as quality and resolution scalability and ROI, apart from 
additionally improved rate-distortion behaviour, should also be supported by JP3D 
in an isotropic fashion. The proposed volumetric coding mechanism is based on a 
3D instantiation of the EBCOT coder [SCH 05]. All of the mentioned requirements 
have had a great impact on JP3D coding technology: consisting of rate control and 
rate-distortion modeling for 3D data, 3D rate/distortion optimization, coding and 
code-stream formation for 3D data, provision of 3D arithmetic coding contexts and 
coding passes, enabling the signalling of user-specified anisotropic context models. 

8.4.2.4. Object-based 3D embedded coding 

Medical images usually consist of a region representing the part of the body 
under investigation (i.e. the heart in a CT or MRI chest scan, the brain in a head 
scan) on an often noisy background of no diagnostic interest. It seems very natural 
therefore to process such data in an object-based framework [BRE 01] assign high 
priority to the semantically relevant object, to be represented with up to lossless 
quality, and lower priority to the background. The texture modeling perfectly fits 
into the framework of object modelling-based coding. 

In the context of object-based coding, this means that texture modeling can be 
applied only to objects for which the constraint of being able to recover the original 
data without loss can be relaxed. This naturally maps onto the medical imaging 
field: objects which are diagnostically relevant should be selectively encoded by one 
of the methods mentioned above with the remaining objects (or even the 
background) replaced by a suitable synthetic model. Although local structures and 
regular edges can be effectively coded, it is worth pointing out that similar to other 
pre-segmentation approaches where ROIs are identified and segmented before 
encoding, this method does not allow direct access to the regions of interest. To 
alleviate the pre-segmentation problem, region scalable coding schemes, based on 
post-segmentation approaches have been developed. The 3D MLZC (Multi Layered 
Zero Coding) algorithm [MEN 03] proposes a fully 3D wavelet-based coding 
system allowing random access to any object at the desired bitrate. Continuous 
wavelet-based segmentation is used to select objects that should be coded 
independently. Although this approach, also referred to as the spatial approach, has 
the advantage that the ROI information coincides with the physical perception of the 
ROI, extra complexity is inserted at the level of the wavelet transform (shape-
adaptive transform). 

Although it is possible to compress an image set in intra mode, which uses the 
intra image correlation, a more efficient compression can be achieved by exploring 
the correlation between slices. However, the experiments carried out in [MEN 00] 
have shown that the benefit of an inter-image correlation depends on the slice 
distance of the image set. The smaller the slice distance, the better the correlation in 
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the slice direction, and the better the compression performance. In general, effective 
results are produced for image sets with slice distances smaller than 1.5 mm. The 
same experimental results have demonstrated that the use of 3D context models is 
not profitable if it is integrated into a 3D wavelet compression scheme. 

8.4.2.5. Performance assessment of 3D embedded coders  

The lossy and lossless compression performances of the embedded  
wavelet-based coders, described previously, were evaluated according to a set of  
volumetric data obtained with different imaging modalities [SCH 03a], including: 
positron emission tomography, PET (128x128x39x15bits), computed tomography,  
CT1 (512x512x100x12bits), CT2 (512x512x44x12bits), ultrasound, US 
(256x256x256x8bpp), and MRI data, MRI (256x256x200x12bpp). Lossless coding 
results are reported for most of the techniques discussed so far: CS, 3D QT-L, 3D 
SPIHT, 3D SB-SPECK (only for the CT2 and MRI data-based), CS-EBCOT and 
JPEG 2000. For obvious reasons the 3D DCT coder was not included in the lossless 
compression test due to the lossy character of its DCT front-end. Additionally, the 
coding results obtained with the JPEG 2000 coder equipped with a 3D wavelet 
transform (JPEG2K-3D) are reported. For all the tests performed in lossless coding 
(as well as for lossy coding later), typically a 5-level wavelet transform (with a 
lossless 5x3 lifting kernel) was applied to all spatial dimensions, except for the low-
resolution PET image (4 levels). The same number of decompositions in all 
dimensions was used to allow fair comparison with the 3D SPIHT algorithm. Table 
8.1 shows the increase in percentage of the bitrate achieved in lossless compression, 
with the reference technique taken as the algorithm yielding the best coding results 
for each test volume. 

US PET CT1 CT2 MRI 
CS-EBCOT 0.59 0.49 0.0 0.0 0.0 

3D QT-L 0.0 0.0 0.82 0.37 0.43 
CS 1.7 2.2 1.29 1.34 1.83 

JPEG 2000 3D 6.24 2.12 3.11 2.16 5.70 
3D SPIHT 1.52 6.87 3.21 4.60 2.48 
SB-SPEK    4.15 10.44 

JPEG 2000 15.62 18.81 7.05 4.01 19.49 
Best coder 3D QT-L 3D QT-L CS-EBCOT CS-EBCOT CS-EBCOT 

Table 8.1. The increase of the lossless bitrate in terms of percentage, with the reference 
technique taken as the algorithm yielding the best coding results for each test volume
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Based on Table 8.1, we can observe that for the US and PET volumes, the 3D 
QT-L coder delivers the best coding performance, while for the other three 
volumetric data, the CS-EBCOT performs best. If we refer to the average increase in 
percentage taking the CS-EBCOT coder as the reference, then we will observe that 
the 3D QT-L yields a similar performance, since the average difference between the 
two is only 0.1%. The CS coder follows it, with a difference of 1.45%. The 3D 
SPIHT and the JPEG2K-3D coders provide similar results, with an average 
difference of 3.56% and 3.65% respectively. Finally, the average difference 
increases up to 7.07% and 12.78% for the 3D SB-SPECK and JPEG 2000 coders. 
We also observe from Table 8.1 that the relative performance of several techniques 
is heavily dependant on the data set involved. For example, 3D SPIHT delivers 
excellent results for the US, CT1 and MRI sets, while for the other ones the 
performance is relatively poor. JPEG 2000 yields the worst coding results of all, 
except for the CT2 image, which has a low axial resolution. The results of the 3D 
SB-SPECK have been reported only for the CT2 and MRI data sets, and the results 
are situated in between JPEG2K and JPEG2K-3D for the MRI volume. 

In summary, these results lead to the following important observations for 
lossless coding: 

– CS-EBCOT and 3D QT-L deliver the best lossless coding results on all 
images; 

– the 3D wavelet transform as such significantly boosts the coding performance; 

– as spatial resolution and consequently inter-slice dependency diminishes, the 
benefit of using a 3D de-correlating transform and implicitly a 3D coding system 
decreases. 

Lossy coding experiments were carried out on the five volumetric data sets for 
the aforementioned coders, and in addition, the 3D DCT-based coding engine is 
included [SCH 03b]. The peak signal-to-noise ratio (PSNR) is measured at seven 
different bitrates: 2, 1, 0.5, 0.25, 0.125, 0.0625 and 0.03125 bits-per-pixel (bpp). 
Similar to the lossless coding experiments, the performance of the lossy wavelet 
coders is evaluated. In a first evaluation, we observe that the 3D QT-L coder 
outperforms all the other wavelet coders in the whole range of bitrates. For example, 
the 3D QT-L coder yields on the US data set at 1.00 bpp a PSNR of 38.75dB, which 
is 0.5 dB better than the JPEG 2000 3D, and 1.43 dB better than CS-EBCOT. At 
higher rates (2bpp) the differences between them increase up to 0.88 dB and 1.45 dB 
for the JPEG 2000 3D and CS-EBCOT coders respectively. The 3D  
QT-L and the JPEG 2000 3D algorithms perform equally well at low rates (0.125 
bpp) on the US data set, and outperform the CS-EBCOT coder with 0.37 dB and 
0.25 dB respectively. A similar ranking according to their performance can be 
achieved by taking into account the result obtained on the MRI data set. At 0.125bpp 
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the results are in order 52.01 dB, 51.61 dB and 51.17 dB for the 3D QT-L,  
JPEG 2000 3D, and CS-EBCOT respectively. Note that at lower rates CS-EBCOT 
gives slightly better results (0.03125bpp – 46.52 dB) than JPEG 2000 3D 
(0.03125bpp – 46.22 dB) but still less than those provided by 3D QT-L with  
46.75 dB at the same rate. Similarly, the 3D QT-L outperforms on the CT1 data set 
the next rated wavelet coder JPEG 2000 3D, but the differences between them are 
smaller: from 0.27 dB at 1bpp, to 0.57 dB at 0.03125bpp. 

The results obtained on the PET volumetric data indicate that at rates below  
0.25 bpp the 3D QT-L coder outperforms all the other coders. However, at higher 
rates the JPEG 2000 3D outperforms the 3D QT-L coder on this data. If we look at 
the JPEG 2000 standard, we note that this coder typically delivers poor coding 
results on the PET, US volumes and MRI data; on CT1 it yields good results at rates 
higher than 0.25bpp, but the results are modest at lower rates. However, for CT2, 
JPEG 2000 is the best coder at high bitrates, and is only beaten by JPEG 2000 3D 
and SB-SPECK at low-bitrates. 

8.5. Conclusion  

This chapter provides an overview of various state-of-the-art lossy and lossless 
image compression techniques, which were applied to dynamic and volumetric 
medical images. Although both of the datasets considered are composed of 2D 
image sequences, the coding performance of lossy compression has been shown to 
be heterogenous with the image representation or characteristics. For example, since 
video angiogram sequences are highly contrasted, very sharp edges are juxtaposed to 
a smooth background. Wavelet-based coding techniques are not suitable for this 
kind of data. The edges spread out in the whole subband structure generating a 
distribution of non-zero coefficients whose spatial arrangement cannot be profitably 
used for coding. 

Conversely, in the case of volumetric medical sequences, the combination of the 
3D wavelet transform with an ad-hoc coding strategy provides a high coding 
efficiency. Another important advantage of 3D wavelet transforms is the ability to 
produce a scalable data stream which embeds subsets progressing in quality all the 
way up to a lossless representation which is very important for medical applications. 
The zero-trees principle, as well as other set partitioning structures such as quad-
trees, allow for the grouping of zero-valued wavelet coefficients, taking into account 
their intra or inter-band dependencies. Therefore, by using such models, we can 
isolate interesting non-zero details by immediately eliminating large insignificant 
regions from further consideration. Before passing through the entropy coding 
process, the significant coefficients are quantized with successive approximation 
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quantization to provide a multiprecision representation of the wavelet coefficients 
and to facilitate the embedded coding. 

It is obvious that diagnostic zone selection according to the “ROI” principle 
supported by cubic splitting compression systems is not very reliable. This is mainly 
due to the fact that the particular structures that characterize them are not modeled 
with sufficient precision. The hybrid compression techniques recently implemented 
propose hybrid coding systems of embedded object oriented type. 

The progressive compression systems highlighted in this chapter can be 
approved by different strategies developed in [KIM 98], [XIO 03] and [KAS 05]. 
The latter reference also integrates a novel MC technique that addresses respiratory 
and cardiac activity movement. Cardiac image compression is a more complex 
problem than brain image compression, in particular because of the mixed motions 
of the heart and the thorax structures. Moreover, cardiac images are usually acquired 
with a lower resolution than brain images. This highlights certain problems induced 
by the spatio-temporal image acquisition that hamper MC in dynamic medical image 
compression schemes. The integration of multiple complementary data, generated in 
“listmode” acquisition mode, into a common reference provides information 
relevant to compression research. For example, in a cardiac image coding 
framework, based on MC, additional physiological signals such as ECG-gated film 
sequences as well as the respiration movement are required to take account of heart 
motion and deformation; for more details, see [VAN 05]. 
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Chapter 9 

Compression of Static and Dynamic 
3D Surface Meshes

9.1. Introduction 

Static and dynamic volume data has been used in fluid mechanics, aeronautics, 
and geology for a long time now, and nowadays it is becoming more widely used in 
medical imagery to analyze the complex functions such as those in the lungs 
[PER 04], [FET 03], [FET 05], [SAR 06] and the heart [ROU 05], [ROU 06], 
[DIS 05] (Figure 9.1). 

3D medical imagery is generally visualized by volume rendering [LEV 88]. An 
observer point of view is selected, its viewing rays cut through the 3D volume 
perpendicularly to the visualization plane, which is a 2D projection of the volume. 
The voxels with the same gray level make an isosurface of the same opacity, chosen 
according to the tissue we wish to view. The gray level gradient allows us to know 
the normal to the isosurface. Shading based on the transmission, reflection and 
diffusion of light, gives the desired volume rendering (Figure 9.2a). 

An alternative is surface rendering also known as “geometric”. Here, we 
visualize an isosurface with a predefined gray level. This isosurface is extracted by 
segmentation of the volume of the data (voxels): a binary volume is constructed. In 
comparison, volume rendering can display weak surfaces without binary decision. 
Geometric rendering generally considers the isosurface to be opaque. It reflects the 
ray according to the normal to the surface, with light diffusion displaying volume 
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rendering. This technique can be used for non-overlapping embedded surfaces, these 
surfaces being semi-transparent. 

Isosurfaces are generally triangulated (Figures 9.2b and 9.2c). A triangular mesh 
is generally constructed by scanning the adjacent slices of the binary volume 
[LOR 87] or by covering the surface by a wave front propagation starting from a 
seed voxel [WOO 00], or by deforming an initial low-resolution mesh and refining 
the triangles through subdivisions [LOT 99]. The Marching Cubes (MC) algorithm 
is the most widely-used in the medical imaging field [LOR 87], (see Appendix A in 
section 9.6). 

(a)  (b) (c)

(d) (e) (f) 

Figure 9.1. Examples of 3D visualizations in medical imaging: (a) semi-transparent 
rendering of the lungs and bronchial tree in computed tomography [PER 04], 

(b) pathological bronchial tree [SAR 06], (c) 3D pressure map of the airway mesh model 
[FET 05], (d) volume rendering of the heart, (e) visualization of myocardial function 

[ROU 05], and (f) myocardial radial contraction in tagged MRI [ROU 05]

Volume rendering requires careful management of the region opacity and 
relatively complex calculations, but it has the advantage of requiring no 
segmentation. Surface rendering is quick, particularly when the triangular mesh has 
been calculated and stored in advance. Computer graphics hardware is developed for 
fast processing of this type of data. Storing or sending a 3D object is much cheaper, 
in terms of bits, for a surface than for a volume. Nevertheless, the cost of storing 
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meshed surface data remains prohibitive, especially in the case of animated 3D 
meshes, where hundreds of frames are required to describe a short sequence lasting 
only a few seconds. Therefore the development of efficient compression techniques 
based on compact and hierarchical representations is essential to allow 3D meshes 
transmission, management and visualization. 

(a) (b)  (c) 

Figure 9.2. 3D visualization of a cerebral vascular artery with an aneurism [BON 03]: 
a) volume rendering, b) surface rendering of (a), c) wire rendering of (b)

This chapter is devoted to the compression of static and dynamic 3D meshes. 
After a summary of the definitions and properties of 3D triangular meshes (section 
9.2), the key approaches for static mesh compression are presented and the 
multiresolution geometric wavelet techniques are examined closely (section 9.3). 
Section 9.4 presents a critical analysis of dynamic mesh compression techniques 
(sequences of meshes). After a description of the mathematical methods underlying 
the four main types of approach, their respective performances are compared and 
contrasted on the criteria of their computational complexity, genericity and 
functionalities such as progressive transmission or scalability. Finally, an application 
to the pulmonary function analysis in high resolution computed tomography 
illustrates and concludes this method overview. 

9.2. Definitions and properties of triangular meshes 

The representation of a 3D object using a surface mesh requires storing two 
types of information: 

– geometry: the coordinates of the vertices; 

– connectivity: the description of how the vertices are connected, which takes the 
form of a list of triangles, therefore describing the surface of the mesh. 

The connectivity is described by a graph – which may or may not be planar – 
with corresponding vertices and edges. The connectivity is the topological data 
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which should not be confused with the topology of the surface represented or 
approximated by the mesh. 

These two types of data are sufficient to represent the shape of the underlying 
object. Additional information can enrich this representation, such as vertices or 
triangles colors, or texture information. In this chapter, we will focus on geometric 
and connectivity information, which are the most crucial in the field of medical 
imaging. 

The naive cost for storing mesh data is estimated below: 

– geometry: this cost depends on the precision required by the user. In most 
cases, the vertex coordinates are represented by integers coded with 10 or 16 bits; 

– connectivity: unlike geometry, the cost of storing connectivity is not fixed, and 
depends on the number of vertices of the mesh. Thus, the minimum cost for storing 
a mesh connectivity is approximately: 

VFc 2log3
 [9.1] 

where |F| is the number of triangles and |V| is the number of vertices. 

Here, we will restrict our discussion to 2-manifold triangular meshes, i.e. those 
where an edge is shared by one (boundary triangle) or two triangles. 

EULER-POINCARE FORMULA– This formula links the number of vertices 
|V|, the number of edges |E|, the number of triangles |F| and the number of 
boundaries |B| to the Euler number  of the surface: 

BFEV
 [9.2] 

g12  [9.3] 

where g is the genus of the surface. 

For example, we have (g = 0, B = 0), (g = 1, B = 0), (g = 0, B = 2) for a surface 
homeomorphic to a sphere, a torus and an open cylindrical tub, respectively. 

THE VALENCY (DEGREE) OF A VERTEX– The number d(v) of neighbors of 
a given vertex v is called the valency (or degree) of v (Figure 9.3). We should note 
that d(v) is equal to the number of triangles adjacent to v, if v is an interior vertex, 
and exceeds this number by one for boundary vertices. 
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The valency of a vertex is between two (three for a closed mesh) and infinity. 
However, its value is limited by the number of edges. For a mesh without 
boundaries, homeomorphic to a sphere, we have a relationship known as 
“handshaking”: 

2i
i

d v E
 [9.4] 

and

2 3E F  [9.5] 

By expressing the number of edges in the handshaking formula according to the 
number of vertices, using the latter relationship and the Euler-Poincare formula, then 
dividing by the number of vertices, the average valency is achieved: 

1 126i
i

d v
V V  [9.6] 

Thus, the average valency of large meshes is asymptotically six. We can note 
that the valency of vertices of meshes constructed using the MC algorithm cannot 
exceed 12 [LEE 06]. 

REGULAR AND IRREGULAR VERTICES– The interior vertices v, with 
Id(v ) 6  and the outer vertices Bv with Bd(v ) 4 will be called “regular”. All others 

will be called “irregular” (Figure 9.3). 

REGULAR MESH– A mesh is referred to as regular if all its vertices have a 
valency of 6 (respectively 4). Only meshes topologically equivalent to a torus or an 
open cylinder can be regular. 

MESH WITH REGULAR SUBDIVISION CONNECTIVITY ONE TO FOUR– 
A mesh with regular subdivision connectivity 1 to 4, which we will write as 1:4, is a 
mesh constructed from an initial mesh called the “base mesh”, all of whose triangles 
are subdivided into four triangles. This mesh is often described as “subdivision 
mesh”, without mentioning 1:4. 

VALENCY OF VERTICES OF ONE TO FOUR SUBDIVISION MESHES – 
The valency of the vertices of the base mesh remains unchanged by the 
subdivisions; for the inner vertices it is 6 (regular vertices) and it is 4 for the 
boundary vertices (regular vertices). 
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SEMI-REGULAR MESHES– 1:4 subdivision meshes are known as “semi-
regular”. 

IRREGULAR MESHES– A mesh is described as irregular if it is neither regular 
nor semi-regular. This is the case in practice for the vast majority of meshes, such as 
– for example – those constructed using the MC algorithm. 

GEOMETRIC QUALITY OF MESHES– Well shaped triangles are important, 
so we generally desire triangles whose shape is as close as possible to the equilateral 
triangle. Nevertheless, this depends greatly upon the application in question. The 
equilateral triangle is desirable for digital calculations using finite element methods, 
the processing of geometric signals, calculation of discrete curvature, whereas in 
terms of surface approximation, triangles elongated in the direction of the minimal 
curvature are, for example, better adapted. There are many objective criteria for 
measuring the quality of a triangle [FRE 99]. We should note that on a plane, a 
vertex neighbored only by equilateral triangles has a valency of six. 

Resolution 2Resolution 1

2d(v) 2d(v)

4d(v)
4d(v)

2d(v)

6d(v)

Resolution 0

Figure 9.3. 1 to 4 subdivision mesh and valency of the vertices

9.3. Compression of static meshes 

An overview of recent compression algorithms is presented in [ALL 05a]. The 
different approaches share a common feature to make the coding effective: they 
consider together the description of the mesh connectivity with the description of its 
geometry. These two types of information are strongly linked: a vertex 1v , having as 
its neighbors (in terms of connectivity) a group of vertices 1 2 3, , ,v v v , will be 
located in the 3D space close to these same neighbors. The geometric description of 
the mesh (the coordinates of the vertices) can therefore be effectively transmitted 
according to the connectivity description. 
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We can classify the compression algorithms for 3D meshes into two categories: 

– single resolution approaches: the mesh connectivity is coded only once, 
following a compact code; 

– multiresolution approaches: the original mesh is repeatedly simplified until a 
minimum resolution mesh is reached. A compact code is used for progressive 
reconstruction of the original mesh, from the low resolution mesh. 

9.3.1. Single resolution mesh compression 

Single-resolution compression methods are usually based on coding the 
adjacency graph of the mesh simultaneously with the contextual coding of the 
vertices coordinates. The coding of the graph at full resolution is generally carried 
out by a deterministic scanning of the mesh. The encoding therefore consists of 
generating successive codes, allowing for the reproduction of this scanning at the 
decoder end. 

9.3.1.1. Connectivity coding 

From a theoretical point of view, an enumeration of planar graphs [TUT 62] has 
shown that the minimum theoretical limit of the cost of coding the connectivity of 
planar graphs, with uniform probability distribution of the possible triangulations, is 
3.245 bits per vertex. 

For a mesh obtained by 1:4 regular subdivisions of all the triangles of a base 
mesh, the cost of coding the connectivity is that of the base mesh. For example, for a 
0-genus surface, the smallest base mesh is a tetrahedron (four vertices and four 
triangles), the cost of coding its connectivity is: 12log2(4)=24 bits. At each 
subdivision level, the number of triangles is multiplied by 16. Thus at the 
subdivision level j, j > 0, the resulting number of triangles is: 4j+1 and the coding 
cost per triangle is 6/4j. Finally, it follows from this that the coding cost per vertex 
vanishes as the subdivision level grows. 

The pioneering works in connectivity coding were carried out by Deering et al.
[DEE 95], who propose a single scan of the mesh to convert triangle data into a 
triangle strip (“orange peeling” method). It results in a non-linear coding cost versus 
the number of vertices in the mesh. 

Touma and Gotsman [TOU 98] proposed mesh connectivity encoding by visiting 
all the vertices. The binary flow generated is therefore made up quite exclusively of 
the valency of the visited vertices, to which are added some incident codes, 
generally of very low frequency. Although this approach offers no guarantee about 
the coding cost, because of the unpredictable incident codes, it gives very good 
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results. It has been shown that the results achieved are very close to optimal 
[GOT 03]. 

Rossignac [ROS 99] introduced Edgebreaker, a coder based on a canonical 
scanning of the edges. The data flow is made up of five symbols, guaranteeing a 
coding of 2 bits/triangle for a mesh homeomorphic to a sphere. 

More recently, Poulalhon and Schaeffer [POU 03] proposed a coding algorithm 
whose results meet the optimal limit (3.245 bits per vertex). This approach has the 
advantage of guaranteeing a constant coding cost. However, applied to the meshes 
generally encountered, the performance of this algorithm remains below the 
valency-based coders [TOU 98]. 

9.3.1.2. Geometry coding 

Compressing the geometry is generally carried out using differential coding, 
where the canonical path of the graph allows for an effective prediction of the 
coordinates of the vertices. For example, the prediction rule known as 
“parallelogram prediction” [TOU 98] predicts the coordinates of the vertex of the 
triangle adjacent to the triangle already coded (seed triangle at the fist step of the 
algorithm) (Figure 9.4) by the following formula: 

4 1 2 3v̂ v v v  [9.7] 

where T
i i i ix y zv represents the coordinates of the vertex j

iv .

The prediction error 4 4ˆv v  is quantized, and then coded with an entropic 
coder. We should note that this error is zero if triangle two is in the plane of triangle 
one, i.e., if the two triangles form a parallelogram. 

v1

v3 v2

v4

4v̂

t1

t2

Figure 9.4. Prediction for the parallelogram method



Compression of Static and Dynamic 3D Surface Meshes     219 

9.3.2. Multi-resolution compression 

9.3.2.1. Mesh simplification methods 

Multiresolution compression of 3D meshes allows progressive transmission, via 
repeated refinement of the mesh. The careful choice of the refinement methods 
allows a low coding cost of the relationship between the obtained resolution levels. 
Several coarsening/refinement models have been used. 

The “progressive meshes” algorithm [HOP 96] is used by [PAR 00]. This 
compression involves edge collapses merged into batches in order to create several 
resolution levels. 

In [COH 99], some vertices are deleted, and their neighborhood is remeshed. A 
deterministic remeshing technique enables a reconstruction of the mesh with a low 
coding cost, at around 3 bits per triangle. This algorithm has recently been improved 
in [ALL 01], where the authors use two distinct vertex removal stages. The first 
stage deletes vertices whose valency lies between three and six, and the second 
deletes only those with a valency equal to three. The combination of these two steps 
keeps the mesh close to regular during the simplifications, and gives an average 
connectivity coding cost of the of 3.7 bits/vertex and 11.4 bits/vertex on average for 
the geometry of meshes natively coded at 10 bits/vertex. 

New advances [GAN 02], [PEN 05] suggest the multi-resolution coding of 
meshes with fewer constraints on the mesh genus. These coders are in fact as 
capable of processing arbitrary topology meshes as “triangle soups”. 

9.3.2.2. Spectral methods 

The spectral approach has similarities with orthogonal transform coding (discrete 
cosine transform, for example), which is widely used in image and signal coding. 
Karni and Gotsman [KAR 00] apply a spectral decomposition by projecting the 
geometry of the mesh on the eigenvectors taken from the diagonalization of the 
Laplacian operator of the connectivity graph. Although the irregular sampling of 
meshed surfaces does not enable an exact analogy with discrete cosine transform 
(DCT) – which is applied to regularly-sampled signals – the authors say that a 
geometric decorrelation is sufficient. The results show a progressive representation 
with a satisfactory rate/distortion function for smooth objects. This method does, 
nevertheless, have some drawbacks: to limit the eigenvectors calculation cost, the 
mesh must be split into blocks (similar to images split into blocks for DCT in 
JPEG), which results in a distortion between the different blocks. Finally, only the 
geometry is progressively reconstructed; the connectivity remains unchanged during 
data transmission. 
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9.3.2.3. Wavelet-based approaches 

9.3.2.3.1. Subdivision surfaces and wavelets 

The approaches based on wavelet expansion are fundamentally linked to 
subdivision surfaces, which are introduced in order to smooth the meshes [CAT 78], 
[DOO 78], [LOO 87]. An arbitrary mesh 0M is subdivided, which increases its 
number of vertices. Then a smoothing follows, depending upon the type of 
subdivision, as shown in the example of Figure 9.5. 

Figure 9.5. Example of mesh subdivision followed by smoothing

Moreover, surface subdivisions allow the mesh to be represented as a sum of 
scaling functions suitable for refinement [STO 96], and well-suited for multi-
resolution wavelet analysis (see Chapter 2). 

In this way, Lounsbery et al. extended the wavelet expansion to triangular 
meshes, allowing a multi-resolution analysis [LOU 97] (see also [STO 96]). 
Lounsbery considers meshes with subdivision connectivity (section 9.2). The 
coarsening of a mesh at the level j spatial resolution is achieved by merging all of its 
triangles, by groups of four (noted 4:1); the inverse process of subdivision. Thus, a 
mesh with the resolution j-1 is built, and its number of triangles is a quarter that of 
the mesh with resolution j. The mesh with the lowest resolution is called the “base 
mesh” (the coarsest mesh). The coefficients of the wavelets are related to the loss of 
geometric details due to the 4:1 triangles merging. 

9.3.2.3.2. Multiresolution analysis by geometric wavelets 

In this section, the background on wavelet representation is summarized (see 
also Chapter 2), and after we will detail its extension to meshes, using the notation 
by Lounsbery et al.

We will first consider a nested set of vector spaces, called “approximation 
spaces”:

0 1 j JV V V V
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where the geometric resolution of the functions of the vector spaces jV  grows with 
j. The basis functions j

i x  of jV are called scaling functions. 

Next we define the vector space jW  for each vector space jV , as the complement 
jV  of in 1jV :

1j j jV W V  [9.8] 

j jV W  [9.9] 

The basis functions j
i x for jW are the wavelets. In order for a function of the 

space jV to be the best approximation of a function of the space 1jV in the least 
squares sense, the wavelets must all be orthogonal to all the scale functions of jV .
Lounsbery et al. decided to represent the surface of a triangular mesh as a sum of 
“hat” scale functions (B-Spline of order 1). A hat function takes the value 1 on a 
vertex and vanishes at its neighbors (1-neighborhood). It interpolates linearly the 
surface between two vertices (Figure 9.6a). 

 (a) (b) 

Figure 9.6. (a) Lazy wavelet and (b) lazy wavelet after 1-ring lifting

In this way, they are defined on a space defined by the connectivity of the 
processed mesh. The hat functions fit well with mesh representation, since the 
surface of triangular meshes is linear between the vertices. 

For a mesh jM  made up of jV vertices, represented by a function ( )jS x , the 

corresponding vector space jV will be of dimension jV .
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Given j j j j T
i i i ix y zv  as the coordinates of the vertex j

iv , we have: 

j j jS x x C  [9.10] 

with

0 1 1j

j j j j

V
x x x x

 [9.11] 

0 1 1j

T
j j j j

V
C v v v

 [9.12] 

where jC is the vector of scaling coefficients. 

The vector space 1jV is a sub-space of jV which implies that the scale functions 
of 1jV are a linear combination of those of jV . There is therefore a matrix jP of 
size 1xj jV V satisfying: 

1j j jx x P  [9.13] 

The scale functions, at resolution j-1, are carried by the triangles of the mesh at 
resolution j, merged into groups of four. 

The vector space 1jW is a sub-space of jV , which means that the wavelets are a 
linear combination of the scale functions of jV :

1j j jx x Q  [9.14] 

where jQ  is a matrix of size 1xj j jV V V and

1

1 1 1 1
0 1 1j j

j j j j

V V
x x x x

 [9.15] 

Lounsbery uses, at first, wavelets which are the basis functions of the odd index 
of jV  (scale functions). These wavelets are known as “lazy wavelets”. Lazy 
wavelets are orthogonal between themselves, but not orthogonal to the scale 
functions, as shown in Figure 9.7 in 1D. Scale functions and lazy wavelets are the 
primal base functions of a bi-orthogonal base, where the dual base functions are 
Dirac functions [SCH 95] (Figure 9.7). 
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The approximation 1( )jS x of ( )jS x on the space 1jV is written as in [9.10] 

1 1 1j j jS x x C  [9.16] 

The details lost in this approximation – i.e. the details lost during coarsening 
from the resolution j of the mesh ( jM ) to the resolution j-1 – belong to 1jW and 
are represented on the wavelet basis of this vector space: 

1 1 1j j j jS x S x x D  [9.17] 

where 1jD  represents the vector of the wavelet coefficients. 

From [9.16] and [9.17] it follows: 

1 1 1 1j j j j jS x C D  [9.18] 

1 1j j j j j jS x P C Q D
 [9.19] 
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Figure 9.7. 1D illustration of wavelet bases
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By comparing with [9.10], we can obtain a formula for reconstructing the scale 
coefficients at the resolution j, knowing those of the lower resolution j-1 and the 
corresponding wavelet coefficients: 

1 1j j j j jC P C Q D  [9.20] 

Matrices jP and jQ correspond, respectively, to the lowpass and highpass 
synthesis filters used in image wavelet-based compression techniques. 

The complementary spaces 1jV and 1jW mean that the scale functions at 
resolution j are a unique linear combination of the scale functions at the resolution  
j-1 and the wavelets, which we write as follows: 

j j 1 j j 1 jx = x + xA B  [9.21] 

Thus, we have, following [9.10]: 

j j j j 1 j j j 1 j jS x = x = x + xC A C B C  [9.22] 

Comparing equation [9.18] with [9.22], we can obtain the “analysis” formulae, 
i.e., the formulae for the scale coefficient and the wavelet coefficient calculation at 
resolution j-1, knowing the scale coefficients at resolution j: 

1j j jC A C  [9.23] 

1j j jD B C  [9.24] 

Matrices jA and jB correspond, respectively, to the lowpass and highpass 
analysis filters for the images. We should note that, as for synthesis filters, these 
filters depend upon the resolution level because they are linked to the mesh 
connectivity. It is therefore necessary to construct them for each new mesh. 

We should note that equations [9.20], [9.23] and [9.24] can be written, 
respectively, with the help of block matrices, as: 

1

1

j

j j j

j

C
C P Q

D
 [9.25] 

and
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1 1

1 1

j j

j

j j

C A
C

D B
 [9.26] 

From this, we obtain the relationship linking the synthesis and analysis filters: 

1

1

1

j

j j

j

A
P Q

B
 [9.27] 

Figure 9.8 illustrates the geometric meaning of the lazy wavelet coefficients. 

With the lazy wavelet, coarsening from resolution j to j-1 is simply a sub-
sampling of the meshed surface (hence the name “lazy” wavelet). The obtained 
approximation is of poor quality because the scaling functions and the lazy wavelets 
are not orthogonal. 

A better approximation – in the least squares sense – of jM by 1jM can be 
achieved if the wavelets are orthogonal to the scaling functions. It is therefore 
necessary to define an inner product coherent with the formalism of geometric 
wavelets. Lounsbery et al. defined the inner product between two functions f and g, 
defined on the surface of a mesh M, by the following equation: 

,
j

M

kf g f s g s ds
area  [9.28] 

where  is a triangle, M  the set of triangles forming the mesh M and 4j jk
is a constant which translates the division of the area of a triangle by four when we 
change the resolution level using a subdivision 1:4 of all the triangles. We should 
note that this definition assumes that the mesh triangles all have the same area, 
which is not the case for usual subdivision meshes. Therefore, the use of this 
definition in the following calculations will be more accurate if the mesh’s triangles 
have similar areas. 
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0M

1M

Surface 

Wavelet 
coefficient

Figure 9.8. Illustration of the lazy wavelet coefficients

In order to achieve an optimal approximation, Lounsbery et al. used the lifting 
scheme [SWE 96], so as to make the wavelets orthogonal (as much as possible) to 
the scaling functions. This is performed by subtracting from each wavelet a 
weighted sum of all the scaling functions (or a fraction of them), in order to create a 
new base of wavelets which we will write as ( )j

lift x :

1 1 1( ) ( ) ( )j j j j
lift x x x  [9.29] 

where j  is the matrix of the weighting coefficients. 

The coefficients are calculated in such a way as to cancel out all (or a fraction of) 
the inner products between the scaling functions and the wavelets at a given 
resolution level. We therefore obtain matrix j:

11j j jT j jI P I Q
 [9.30] 

where jI is the following inner product matrix: 

,
,j j j

m nm n
I

 [9.31] 

The lifting scheme leads to a new analysis and synthesis filterbank: 

j j j j
liftA A B  [9.32] 
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j j
liftB B  [9.33] 

j j
liftP P  [9.34] 

j j j j
liftQ Q P  [9.35] 

In order to reduce the computer load the orthogonalization procedure of wavelets 
is only calculated in the vicinity of each vertex, generally in the 2-ring. It only 
results in a small approximation quality loss for the mesh jM at the resolution j-1. 
Figure 9.6.b illustrates a lifted lazy wavelet. 

Note that the base mesh topology (j=0) is the same as that of the full resolution 
mesh. For example, if the full resolution mesh topology is equivalent to a sphere 
(g=0) the base mesh will be a tetrahedron. In addition, it can be noted that the full 
resolution level j index is only known after coarsening up to the base mesh. 

9.3.2.3.3. Compression 

The wavelet transform has proved to be an effective tool for signal and image 
compression. In geometry compression, wavelets are also very effective. To 
compress a subdivision mesh, the base mesh is coded at a low cost in terms of 
connectivity and geometry, and only wavelet coefficients for each level j should be 
coded. Note that the connectivity of the successive meshes jM is implicit at the 
decompression step due to the 1:4 subdivision connectivity. 

Many coding techniques have been proposed in the literature. Khodakovski et al.
[KHO 00] proposed to code the wavelet coefficients using bit planes in a similar 
way to [SAI 96]. Using this approach the progressive transmission of mesh is very 
effective by sending the highest order bits of the largest magnitude coefficients first. 
In a single resolution scheme Payan and Antononi [PAY 05] adapt the quantization 
of the wavelet coefficients to the target bitrate. The set of quantization steps 
minimizes the distortion defined by the mean square error of the reconstructed mesh 
geometry, at a given bitrate by a Lagrangian minimization. 

9.3.2.3.4. Drawbacks and extension 

Lounsberry’s wavelet approach only applies on regularly subdivided meshes 
(mesh with a subdivision connectivity; see section 9.2). This constraint corresponds 
to the image processing field where wavelet expansion applies on a regular sampling 
grid (square separable or quincunxes) with power of two size (128, 256, 512, etc.) 
due to the dyadic decomposition used. Thus, a mandatory requirement to apply 
Lounsberry’s wavelet approach to irregular meshes is remeshing this mesh to a 
subdivision mesh. Figure 9.9 shows an example: the left mesh represents the left 
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ventricle of a dog’s heart. Its connectivity is irregular and cannot be expanded on a 
wavelet basis. A remeshing (see for example [ALL 05b]) allows its connectivity to 
be changed into a subdivision connectivity preserving its shape (geometry). 

Remeshing an object with complex shape or topology is a difficult problem. The 
pioneering work for remeshing into a semi-regular mesh is proposed by Lee et al.
[LEE 98]. The first step in remeshing is generally a parameterization of the input 
mesh. The parameterization flattens (maps) a 3D mesh having a disk topology on a 
closed plane surface (2D), a disk or a square, by means of a conformal transform 
(angles preserving transform) or an harmonic transform (elastic transform). Lee et
al. [LEE 98] propose applying this parameterization by patches. Note that deleting 
only one edge of sphere topology input mesh is sufficient to obtain a mesh with disk 
topology. However, cutting an input mesh with complex topology into a disk is a 
difficult task. The second step is to match this parameterization to the new 
subdivision connectivity. Finally, the input mesh geometry is transferred to the new 
mesh. Unfortunately, this last step is not free of geometric distortion. Gu et al.
[Gu 02] proposed the “geometry images” that are parameterized meshes on a regular 
rectangular grid, similarly to a digital image. Then, usual image compression 
techniques can be used for compression of geometry images. 

(a) (b) 

Figure 9.9. (a) Irregular mesh, (b) mesh (a) remeshed to a semi-regular mesh 

9.3.2.3.5. Irregular subdivision 

Another solution, which avoids the need for remeshing, was proposed by Valette 
and Prost [VAL 99]. They considered an irregular subdivision where a triangle can 
be subdivided into two, three or four triangles, or remains intact. In this way, a 
hierarchy of meshes of varying resolutions can be generated from an irregular mesh. 
This approach requires solving the inverse problem of subdivision, i.e. merging, 
during the calculation of the connectivity graph of the mesh to be compressed, by 
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the proposed irregular merging of triangles (coarsening step). Edge flips can also 
occur at this point, in order to ensure that the merging is reversible. By controlling 
the regularity of the created levels of resolution [VAL 04a], it is possible to store the 
subdivision information with an effective code, giving very good connectivity 
compression rates [VAL 04b]. Geometry coding can occur in a similar way as in the 
regular case: a progressive resolution compression to lossless compression 
[VAL 04b] or progressive precision compression [VAL 04c]. An essential 
characteristic of a coder – particularly if its resolution or precision is progressive – is 
the curve which depicts the tradeoff between the bitrate and the distortion. Figure 
9.10 shows the result obtained by the coder described in [VAL 04b], for a simple 
mesh. 

Figure 9.10. Trade-off between the bitrate and the distortion for a progressive resolution 
decoding (irregular mesh, algorithm in [VAL 04b])

9.4. Compression of dynamic meshes 

In a wide range of medical applications – such as the numerical simulation of 
airflows in bronchial trees or the analysis of pulmonary nodulation in computed 
tomography [PER 04], [FET 04] – only the isosurfaces extracted from volumetric 
data are taken into account. The generated isosurfaces are usually represented as a 
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set of 3D meshes with an arbitrary time-varying connectivity. The compression of 
these dynamic surfaces with topological changes remains a widely unexplored 
subject. We should mention here the pioneering works carried out by Eckstein et al.
[ECK 06], which extend the static encoder [LEE 03] to compress dynamic 
isosurfaces. Most of the other compression approaches assume a constant 
connectivity to be shared by the sequence of meshes. The technique reported in 
[YAN 04] carries out a semi-regular re-meshing in order to obtain such a dynamic 
mesh with a constant connectivity. 

9.4.1. State of the art 

Let us first recall the concept of time-dependent geometry compression, 
introduced in [LEN 99]. 

Let {0,..., 1}t F

tM  be a sequence of meshes (F stands for the number of frames) 
with a constant connectivity T, and a time-varying geometry, denoted by 

0,..., 1t F

tG . Here, the mesh geometry ( , , )t
t t t tG X Y Z  at frame t is represented as a 

vector of size 3 V  (with V  being the number of vertices), which includes the 
three x, y and z coordinates of the whole set of mesh vertices. 

The goal of time-dependent geometry compression is to develop adequate and 
compact representations of the geometry sequence 0,..., 1t F

tG , taking into account 
both spatial and temporal correlations. We should point out here that, since the 
connectivity of the mesh is constant, it is encoded just once for all the meshes, with 
a static mesh compression technique (section 9.3). 

Since Lengyel’s works, various methodological and technical contributions have 
been made [MAM 05]. They can be grouped into four “families”: (1) local spatio-
temporal prediction-based techniques, (2) wavelet-based approaches, (3) 
segmentation-based schemas and (4) the principal component analysis (PCA) 
encoders. 

9.4.1.1. Prediction-based techniques 

Local spatio-temporal prediction-based compression techniques analyze the 
animation locally in space and time. The compression of a vertex position at a given 
temporal instant only involves a local spatio-temporal neighborhood. 

As a representative of this family of approaches, let us first introduce  
the Interpolation Compression schema (IC) [JAN 04], recently adopted by the  
MPEG-4/AFX standard [BOU 04] [ISO 04]. The IC coder combines a sub-sampling 
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procedure with a local spatio-temporal prediction strategy. The decoder 
decompresses the key-frames and generates intermediary frames by applying a 
linear interpolation procedure. Different strategies can be used to select the key-
frames, going from a simple uniform sampling process to sophisticated techniques 
minimizing an error criterion. Such an approach is discussed in [JAN 04]. The 
authors suggest starting from a minimal sequence made-up of the first and last 
frame, and iteratively refining it by introducing intermediate frames until a 
predefined error threshold is reached. 

The Dynapack technique [IBA 03] uses a similar spatio-temporal prediction 
strategy with more elaborate predictors involving a deterministic vertex traversal 
similar to [TOU 98]. The authors propose two different predictors called the 
Extended Lorenzo Predictor (ELP) and Replica. The first extends to the dynamic 
case of the “parallelogram” prediction rule [TOU 98] extensively used for static 
mesh compression. The ELP perfectly predicts translations (i.e., with zero residual 
errors). It involves only additions and subtractions. The Replica predictor relies on a 
more complex local coordinate-based prediction approach in order to perfectly 
predict rigid movements and uniform scales. 

The MPEG-4/AFX-IC and Dynapack techniques offer the advantages of 
simplicity and low computational cost, which makes them well-suited for real-time 
decoding applications. However, because of the underlying deterministic traversal of 
the mesh vertices involved, such approaches do not support more advanced 
functionalities such as progressive transmission and scalable rendering. 

9.4.1.2. Wavelet-based techniques 

9.4.1.2.1. Regular wavelet-based compression 

Wavelet-based representations have been successfully used for image and video 
compression. Nevertheless, the extension of wavelets, generally defined on regular 
structures, to 3D meshes with arbitrary connectivities is not completely 
straightforward (see section 9.3.2.3.4). 

A first group of approaches circumvent this problem by applying a re-meshing 
procedure to the initial irregular mesh connectivity in order to obtain a regular 
connectivity suited to wavelet compression. 

In [BRI 03], the authors introduced the Geometry Video (GV) representation, 
which converts the dynamic 3D geometry into a sequence of 2D images using a 
mesh cut and a stretch minimizing parameterization [GU 02] over a 2D square 
domain. Here, the initial mesh connectivity is completely discarded and replaced by 
a regular one, obtained by uniformly sampling the parametric domain. The resulting 
sequence of geometry images is then compressed using traditional video encoding 
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techniques. A global affine motion compensation procedure is first applied. The 
resulting prediction errors are then compressed using a wavelet-based encoding 
scheme. The GV encoder offers good compression performances while enabling 
advanced functionalities such as progressive transmission and scalable rendering. Its 
main drawbacks are related to the re-meshing procedure involved which may lead to 
a loss of surface details and tangent plane discontinuities at the level of the cut. 

In order to overcome the GV’s limitations, Mamou et al. have recently 
introduced the Multi-Chart Geometry Video (MCGV) approach [MAM 06a]. The 
MCGV technique prevents the re-meshing-related problems by preserving the initial 
mesh connectivity. The motion compensation stage was improved by applying a 
more elaborate piecewise affine predictor instead of the global compensation 
procedure considered in GV. Finally, the MCGV encoder minimizes 
parameterization distortions by using an atlas parameterization [SAN 03] instead of 
the restrictive mapping on a 2D square domain. 

9.4.1.2.2. Irregular wavelet-based compression 

The use of irregular wavelets [DAU 99] for compression purposes requires the 
storage of the wavelet filters associated with each vertex. This additional 
parameterization information – costly in terms of bitrate – makes this approach 
unsuitable for static mesh compression, unlike the approach described in section 
9.3.2.3.5. In the case of dynamic meshes with a coherent parameterization 
throughout the sequence, this information can be deduced from the first frame. In 
[GUS 04], the authors present the Animation Wavelets Compression (AWC) 
approach, which makes use of this idea to compress a sequence of meshes with 
irregular anisotropic wavelets. 

Firstly, the AWC method builds a hierarchical structure of progressive meshes 
[HOP 96] on the frame 0M  of the sequence. This structure is then used to build 
anisotropic wavelet filters which are exploited to decompose the geometry 
signal 0,..., 1t F

tG  into a coarse representation and a set of wavelet details for each 
frame. Finally, these details are quantized, predicted and entropically encoded. 

The AWC approach allows low bitrate compression, while offering advanced 
functionalities such as progressive transmission, scalable rendering and real-time 
decompression. This approach is, however, ill-suited for meshes with a reduced 
number of vertices per connected component. In this case, the structure of the 
progressive meshes does not contain enough hierarchical levels for an efficient 
wavelet-based decomposition. 
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9.4.1.3. Clustering-based techniques 

In [LEN 99], Lengyel introduced the first clustering-based approach for 
encoding dynamic 3D meshes. The principle consists of splitting the mesh into sub-
parts whose motion can be accurately described by rigid transforms. The proposed 
motion-based segmentation approach selects at random 10% of the mesh’s triangles 
and classifies the vertices with respect to their motion. The animation is finally 
described by: (1) a partition information, (2) a set of affine motion parameters 
associated with each cluster and (3) the prediction residuals associated with each 
vertex. 

Lengyel’s approach is further improved in [COL 05], where animation is 
expressed only in terms of rigid transforms (RT). The authors introduce a new 
weighted least square mesh segmentation algorithm which minimizes the number of 
clusters under a distortion bound criterion. 

In [MAM 06b], Mamou et al. propose another extension of Lengyel’s coder 
called the Temporal-DCT-based encoder (TDCT). The TDCT technique is based on 
a k-means-segmentation-based approach. The resulting partition is used to construct 
a piecewise affine motion predictor. The residual errors are then compressed by 
applying a Discrete Cosine Transform (DCT) to the signal’s temporal component. 
The TDCT segmentation procedure requires the user’s intervention to specify the 
number of clusters for the k-means algorithm. To overcome this limitation, the 
authors introduced in [MAM 06c] a new fully automatic hierarchical segmentation 
approach. Here, the segmentation is performed using a decimation approach 
[HOP 96] allowing for the automatic detection of the number of clusters thanks to a 
global error criterion applied to the sequence. The motion compensation stage is also 
improved-upon by introducing a skinning model. 

A different clustering-based compression scheme is proposed in [ZHA 04]. Here, 
an octree structure is defined on the mesh bounding box. Next, eight motion vectors 
are associated with each sub-cube of the octree. The motion of each sub-cube vertex 
is calculated with a user-defined error threshold by applying trilinear interpolation. 
The octree structure and the quantized motion vectors are finally arithmetically 
encoded. An optimized version of this approach, the so-called Dynamic 3D Mesh 
Coder (D3DMC) [MUL 04], improves this entropic encoding stage by adopting a 
context-based adaptive approach. 

By using semi-global representations in combination with motion models, such 
clustering-based approaches are able to compactly describe a large category of 
motions. The compression performances as well as the complexity of calculation are 
often determined by the segmentation process. The major limitation of these 
techniques is related to the segmentation procedure which is computationally 
complex. In addition, such algorithms generally (with the exception of [MAM 06c]) 
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cause disgraceful discontinuities at low bitrates at the level of the cluster boundaries, 
since different motion models are considered. 

9.4.1.4. PCA-based techniques 

In [ALE 00], the authors introduce a different class of approaches based on a 
PCA of the mesh deformation field. First of all, a rigid global motion compensation 
procedure is applied. The elastic movement field is then projected on the basis of the 
PCA vectors. Finally, the animation is compactly represented with the PCA vectors 
corresponding to the largest singular values and their associated decomposition 
coefficients.

In [KAR 04], the authors enhance the PCA approach by introducing a temporal 
second linear prediction. Combining PCA with linear prediction makes possible a 
better temporal decorrelation of the animation signal. An additional refinement is 
introduced in [SAT 05], where the authors propose to partition the mesh vertices 
into a set of clusters that are optimally adapted to the PCA representation. The 
introduced clustering-based PCA (CPCA) approach captures more efficiently the 
local linear behavior of the motion field. 

The PCA-based approaches are specifically adapted for long repetitive animation 
sequences with a small number of vertices compared to the number of frames. 
However, they suffer from the high computational complexity (O(T×|V|2), with T as 
the number of frames and |V| the number of vertices) of the singular value 
decomposition algorithm involved. 

9.4.1.5. Discussion 

Table 9.1 summarizes the principles, properties and functionalities of each group 
of methods. 

The computational complexity is evaluated on three levels and categorized as: 

– *: low; 

– **: medium; 

– ***: high. 

Since theoretical computational complexity bounds are not available for all the 
techniques detailed in the previous section, the evaluation given here is based on the 
calculation times reported in the literature. 

Table 9.1 shows that only wavelet-based compression techniques offer both 
progressive transmission and scalable rendering functionalities. The irregular 
wavelet compression method seems particularly well-adapted to real-time 



Compression of Static and Dynamic 3D Surface Meshes     235 

applications, thanks to its low calculation cost. The PCA-based compression 
approaches enable the progressive transmission of the compressed flows. However, 
they have a high calculation cost. 

The clustering-based compression techniques (excepting TDCT and skinning) 
and local prediction approaches support neither progressive transmission nor 
scalable rendering functionalities. 

Approach Principle Computational 
complexity 

Progressive 
transmission 

Scalable
rendering

MPEG-4/ 
AFX-IC 

- Local spatio- 
   temporal  
   prediction 

* No No
Local spatio-
temporal 
prediction

Dynapack - Deterministic  
   mesh traversal 
- Local spatio- 
   temporal  
   prediction 

* No No

Clustering-based 
compression

- Motion-based  
  segmentation 
- Parametric  
  motion model 
- Temporal  
   prediction 

**

Only for the 
TDCT and 
skinning 
techniques

No

regular
- Re-meshing  
- Regular  
  wavelet-based  
  decomposition 

*** Yes Yes

Wavelets

irregular  
- Progressive  
  mesh structure 
- Anisotropic  
  irregular   
  wavelet   
  decomposition 

* Yes Yes

PCA compression - Global affine  
  motion  
  compensation 
- PCA
  decomposition  
- Linear  
   prediction 

*** Yes No

Table 9.1. Summary of the performances of the main groups of methods
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9.4.2. Application to dynamic 3D pulmonary data in computed tomography 

Developing accurate and reproducible procedures to assess the individual lung 
capacity in patients suffering from tumours or chronic obstructive pulmonary 
diseases is still a challenging issue for clinical diagnosis and therapy follow-up. 

The imaging modality making possible such a quantitative investigation is the X-
ray computed tomography (CT). 

9.4.2.1. Data 

The protocol for acquiring 3D thoracic data at different pulmonary volumes is as 
follows: 

– 1.25 mm X-ray beam collimation; 

– 0.6 mm interval for images axis; 

– LUNG reconstruction kernel (filtered back-projection algorithm); 

– “Lung” windowing, between -1,000 HU and 200 HU (Hounsfield Units). 

 Cut 33 Cut 100 Cut 166 Cut 233 Cut 366 

Fram
e 0 

Segm
ented

Fram
e 50 

Segm
ented

Figure 9.11. “Lung” sequence: dynamic volume data obtained during respiration. 
Native and segmented images (right lung)
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An automatic segmentation procedure [PRE 87], [FET 04] of the left and right 
lungs is applied to each data set. In the case of the “lung” sequence, chosen here for 
illustration purposes, this results in 50 volumetric frames after a temporal linear 
interpolation. Each volumetric frame is made up of 490 binary axial images of 
512x512 pixels (Figure 9.11). 

9.4.2.2. Proposed approach 

The proposed compression is illustrated Figure 9.12. The principle consists of 
converting the volume data into a dynamic mesh with a constant connectivity in 
order to compress it by using the skinning-based encoder. The conversion process is 
made up of three steps. 

Firstly, each volume frame is converted into a 3D mesh (Figure 9.13a) using the 
MC algorithm introduced in [LOR 87]. Let us note that the connectivities obtained 
by MC vary significantly from one frame to another, as they are generated 
independently for each volume data. 

Figure 9.12. Synoptic schema of the proposed compression approach

In order to reduce the complexity of the MC generated meshes, we apply the 
mesh simplification technique [HOP 96] with a modified cost function in order to 
minimize the volume variations. The obtained meshes are illustrated in Figure 
9.13b: the global aspect of the mesh is preserved even though the number of vertices 
is reduced by 95%. 

Surface rendering Wireframe
rendering

Surface rendering Wireframe
rendering

a) MC generated mesh 
(226,000 vertices) 

b) Simplified mesh 
(10,000 vertices) 

Figure 9.13. Triangulation and simplification of the volume data
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The last pre-treatment stage before compression is the generation of a constant 
connectivity for all the frames. We propose an iterative approach which deforms the 
mesh 0M generated for the first frame in order to obtain the shapes of the 
frames {1,...,50}( )i iM . The approach we propose uses the ray-tracing procedure 
presented in Figure 9.14. For each step i , the normal vectors associated with the 
vertices of 0M are re-calculated. Then, each vertex v of 0M  is projected on iM  by 
considering its associated normal vector as a direction. In this way, a new re-meshed 
version of iM  is obtained with the connectivity of 0M . This same process is 
repeated from one neighbor to another until all the frames are re-meshed 
(Figure 9.15). 

Figure 9.14. Re-meshing by ray tracing

9.4.2.3. Results 

The compression schema described in the previous section has been applied to 
the “lung” sequence. Figure 9.15 shows the original and compressed versions of 
some frames in the sequence. 

The size of the compressed bitstream describing the whole of the sequence is 
1 MB. The storage space required for the same sequence in its uncompressed form is 
about 765 MB. The compression ratio achieved is around 99.8%. Table 9.2 shows 
the evolution of the error on the calculation of the lung volume through the different 
compression stages. Let us note that the greatest error (2.3%) is introduced by the 
MC algorithm. The simplification process introduces an additional error of 0.1%. As 
for the error which results from the skinning-based compression, this is negligible 
(less than 0.1%). 

These results demonstrate the effectiveness of the proposed compression 
method, which makes it possible to reduce the binary flow to be coded by 99%, 
while still limiting the error on the calculated volume to 2.4%. We can therefore 
offer physicians both precision and effectiveness when using 3D dynamic medical 
data within the framework of telemedicine applications. 
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 Frame 0 Frame 20 Frame 40 Frame 50 

O
riginal

C
om

pressed 

Figure 9.15. Original and compressed versions of the “lung” sequence

Volumetric
representation 

MC generated 
meshes

Simplified
meshes

Compressed 
meshes

Volume (liter) 2.15 2.10 2.098 2.11 

Error (%) 0 2.3% 2.4% 2.4% 

Table 9.2. The different origins of error arising during the compression process, and their 
influence on the estimation of the volume of the right lung

9.5. Conclusion 

After the revolution which took place in digital medical imaging during the 
1970s, the introduction of data acquisition and processing systems in the 1980s, and 
the implementation since 1993 of the DICOM (Digital Imaging and 
Communications in Medicine) standard, medical data has been in continuous 
evolution: opening up the way for e-health. Based on information and 
communication technologies, the concept is already being applied in telemedicine, 
computer-aided surgery, telediagnoses, teleconsultation, shared computerized 
medical files, medical research networks, etc. Each time, the questions of the 
representation, manipulation, storage and transmission of 2D, 3D, static or dynamic 
data are key in the new functionalities available. In this context, the mesh 
compression techniques presented in this chapter play a key role in tomorrow’s 
medical world. 
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9.6. Appendices 

9.6.1. Appendix A: mesh via the MC algorithm 

The well-known algorithm for creating a triangulation from voxels is the  
MC algorithm [LOR 87]. It uses of a divide-and-conquer approach and determines 
the intersection of the isosurface with a cube of eight adjacent voxels. After this 
local operation, it “marches” to the next eight-pixel cube. The intersection of the 
surface with a cube is calculated by assigning the code 1 to voxels of the cube 
having a gray level equal or greater to a predefined threshold, and otherwise 0. The 
voxels with the code 1 are inside the surface, and those with the code 0 are outside 
the surface. We deduce that the isosurface intersects those cube edges where one 
vertex is outside the surface (code zero) and the other is inside the surface (code 
one). We have eight voxels per cube and two possible states for the voxels. There 
are therefore 28 = 256 ways to cut the cube with the isosurface. Nevertheless, taking 
into account equivalent configurations which are deduced from each other by 
symmetry, there are only 15 basic configurations (Figure 9.16). 

The algorithm acts locally, thus it cannot resolve ambiguities in the data, 
producing holes in the final mesh. These ambiguities are removed via the continuity 
of the isosurface [AND 04]. Note that the MC algorithm extracts several meshes in 
the presence of multiple unconnected isosurfaces. This advantage makes it useful for 
medical imaging. In addition to the isosurface, this algorithm generally calculates 
the unit normal vector to each elementary surface in order to facilitate rendering. 
Nevertheless, it is not necessary to store or transmit these vectors since they can be 
recalculated from the mesh. 

Figure 9.16. Basic configurations of the Marching Cubes algorithm. The dots  
represent voxels with a gray level above the predefined threshold
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Chapter 10 

Hybrid Coding: 
Encryption-Watermarking-Compression

for Medical Information Security

10.1. Introduction 

Nowadays, more and more digital images are being sent over computer 
networks. The works presented in this chapter show how encryption and 
watermarking algorithms provide security to medical imagery. In order to do this, 
the images can be encrypted in their source codes in order to apply this functionality 
at application level. In this way, the encryption and watermarking of images occurs 
at software level. We can therefore guarantee the protection of a medical image 
during transmission, and also once this digital data is archived. The subsequent 
challenge is to ensure that such coding withstands severe treatment such as 
compression. The quantity of information (entropy) to be sent greatly increases from 
the original image to the encrypted image. In the case of certain types of medical 
imagery, large homogenous zones appear. These zones affect the effectiveness of the 
coding algorithms. Nevertheless, these homogenous zones, useless for any 
diagnosis, can be safely used for the watermarking of medical images. 

When a physician receives a visit from a patient, he often requires a specialist 
opinion before giving a diagnosis. One possible solution is to send images of the 
patient, along with a specialist report, over a computer network. Nevertheless, 
computer networks are complex and espionage is a potential risk. We are therefore 
faced with a real security problem when sending data. For ethical reasons, medical 
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imagery cannot be sent when such a risk is present, and has to be better protected. 
Encryption is the best form of protection in cases such as this. Many different 
techniques for the encryption of text already exist. Since ancient times, humanity has 
attempted to encode secret messages in order to elude wandering, indiscreet eyes 
and ears. The most basic forays into this field relied upon algorithms which allowed 
coding and decoding. Over time, the notion of a key arose. Today, encryption 
systems rely upon algorithms which are available to the world at large, and it is the 
key, a code which remains confidential, which allows for the encryption and 
decryption of the message [KER 83]. 

In section 10.2 we will show how essential it is to ensure the security of medical 
imagery and data. Then in section 10.3 we will present the standard encryption 
algorithms and will show, in section 10.4, how these can be suited to medical 
imagery. Finally, in section 10.5, we will show how it is possible to hide data in 
these images, while retaining a high level of image quality. 

10.2. Protection of medical imagery and data 

Developments in techniques for the treatment, sharing and communication of 
medical imagery, and medical information in general, go hand in hand with an 
increased risk for information in a digital format. Medical information in general is 
chiefly made up of the results of analyses, clinical and para-clinical examinations, 
and personal information [DUS 97]. Possibilities for distant access and the sending 
of information have increased the chances of leaks, losses and alterations of the 
information which are also greater due to, or even assisted by, the availability of 
network surveillance tools and advanced editing tools such as imagery software. 

However, it is the consequences brought about by the occurrence of these risks 
which create the need for the protection of medical information. These 
consequences, which are not negligible, concern an individual and his health, and 
the privacy of these. This is why many countries attribute legal and ethical weight to 
this question; acknowledging patient rights and thereby obliging medical 
professionals and health centers to ensure the protection of the data in their 
possession. 

10.2.1. Legislation and patient rights 

Legislation and the medical ethics code accompany the technical evolution and, 
through a number of important legal texts, recognize patient rights. The first, and 
best-known, refers specifically to the patient-doctor relationship and concerns 
medical confidentiality. The guaranteed confidentiality of any information which a 
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patient may exchange with anyone in the healthcare system allows a relationship 
based on trust to be established. This relationship also enables the healthcare 
professional to judge the patient’s situation as effectively as possible. 

The computerization of the health system and the possibilities this offers both in 
terms of the mechanization of treatments and the sharing of information, has 
resulted in the widening of the legal coverage of the field, and new laws must be 
taken into account by healthcare professionals; in particular in France law no. 78-17 
of 6th January 1978, known as the “information technology and freedom law”, 
complemented by the law of 1st January 1994, the “law pertaining to the treatment of 
data, with regard to health sector research”. In France, the CNIL (National 
Commission on IT and Liberty) has the task of ensuring that these laws are 
respected (articles 6 to 13). These laws, aside from the collection of information, 
give every citizen – and therefore every patient – the right to control the use of 
information which concerns them personally [DUC 96]. In particular, the patient has 
a right to security, and article 29 states that it is the responsibility of the healthcare 
professional to take “every possible measure to ensure the security of the 
information, and particularly to ensure that it is not altered, damaged or allowed to 
reach unauthorized third parties”. If this law is not respected, legal measures can be 
taken (article 226-17 of the penal code). From a practical and technical point of 
view, working groups such as that put in place by the European Standards 
Committee TC/251 Medical Information (Working Group III), show that in order for 
this criteria to be met, the following must be achieved [ALL 94]: 

– the confidentiality of the data, by restricting access to the rightful owners (the 
patient and the healthcare professionals dealing with his case, considering the 
collaborative nature of medical practice and derogations allowed by the law); 

– the integrity of the information, ensuring that the information has not been 
modified by anyone but a qualified person in agreed conditions; 

– the availability, which guarantees access to the data within standard procedure. 

10.2.2. A wide range of protection measures 

Whatever the nature of the information, we can distinguish three types of 
protection measure for data stored, treated and sent using an information system: the 
legislation, security policies and protection mechanisms. These measures should be 
considered together in order to meet the AIC (Availability, Integrity and 
Confidentiality) requirements for the data. Nevertheless, these measures vary 
amongst themselves according to the target information system and its context. We 
can draw a difference between the systems installed at a single practitioner’s 
practice from those of a health center – whether fitted or not with communication 
applications such as telemedicine applications. 
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The first type of legal measure aims to discourage those who would infringe 
either deliberately or accidentally the confidentiality, integrity and availability of 
data and information systems (e.g. in France, the Godfrain Law no. 88-19 of 
05/01/1998). However, such measures are only effective if it is possible to detect the 
intrusion of a third party into an information system. A healthcare establishment’s 
security policy aims to set the strategy for the implementation and upkeep of the 
highest security level. This policy decides upon, among other things, various 
protocols for the usage of information and systems, taking into consideration the 
risks to the AIC of the data and the specific roles of the various parties present in the 
hospital framework. Most notably, it is up to the security policy to decide and 
regulate the use of protection tools and mechanisms. These physical or logical 
mechanisms are numerous and entail more or less complex procedures to be carried 
out. The first group deals with the physical protection of the material (restricted 
access to the rooms concerned, steps to avoid damage from the elements, to prevent 
theft, etc.), and the second group is integrated into the information systems. The 
tools which we will study in this chapter fall into this second category; 
cryptographic tools (encoding and digital signatures) and the watermarking of 
images. Among the other logic protection mechanisms we can include [COA 03]: 

– access control which includes a policy determining those with a right to the 
information or access to the workings of a system, and technical solutions for the 
identification of users, such as chip-card systems or biometric screening; 

– firewalls whose primary task is to control access to the system both at the entry 
and exit stages, as soon as the system is connected to a network; 

– antivirus systems; 

– auditing which allows us to keep a record of the access made to the 
information by users or computer programs. 

It is important to highlight the fact that these mechanisms are complementary, 
and are therefore to be used alongside one another. Additionally, some of these 
mechanisms, such as access restriction, rely upon cryptographic systems. The 
watermarking of images has come into use more recently, and has found its place 
among the range of tools on offer. Before discussing these techniques, let us return 
to medical imagery. These images are often produced, stored and communicated 
with the DICOM standard described in Chapter 4. This standard is more than a 
simple storage format, and includes very specific “profiles” or procedures, with the 
aim of guaranteeing the AIC requirements for storage and exchange between 
DICOM-compatible systems. These profiles are based on cryptographic 
mechanisms. 
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10.3. Basics of encryption algorithms 

10.3.1. Encryption algorithm classification 

There are four key objectives for the encryption of digital data: 

– confidentiality or masking of the data – the most widely-used characteristic – 
which aims to render the cryptogram unintelligible to anyone without the key; 

– authentication allows the sender to sign his message, thereby leaving the 
recipient in no doubt as to who sent the message; 

– integrity serves to assure the recipient that the message content has not been 
altered or manipulated since its creation; 

– non-repudiation is the guarantee that neither of the parties involved will be 
able to deny having sent or received the message. 

The most important objective for medical imagery is, naturally, the first: 
confidentiality. However, the notion of integrity described in section 10.2., as well 
as the two others, is also important in the protection of medical imagery. 

Encryption algorithms can be separated out according to various characteristics: 
the systems with a secret key (symmetric systems), illustrated in Figure 10.1, and 
those with public and private keys (asymmetric systems), shown in Figure 10.2 
[DIF 76], [STI 96]. The secret key systems are those which allow encryption and 
decryption with the same key. It goes without saying that the sender and the 
recipient must beforehand have exchanged the secret of this key, via a secure 
method of communication. The systems using a public or asymmetric key can 
overcome this step by using one key to encrypt the data, and another to decrypt it. 
Each person should possess a pair of keys, one of which is confidential (the private 
key) and the other known by the world at large (the public key). In order to write to 
B, all that needs to happen is for the message to be encoded with the public key of B,
which is known. Upon reception, only B will be able to decrypt the message with his 
private key. In this section, we present several data encryption systems; symmetric 
block systems, with a secret key (DES and AES), an asymmetric block system, with 
a public key (RSA); and a stream cipher system. 

Figure 10.1. The basis of symmetric encryption
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a)

b)

Figure 10.2. a) Basis of asymmetric encryption; b) double asymmetric encryption, 
guaranteeing confidentiality and authenticity

10.3.2. The DES encryption algorithm 

The DES (Data Encryption Standard) algorithm is one of the standard systems 
for block encryption (Figure 10.1). Its security relies entirely upon the secrecy of the 
key, as the algorithm is public. In 1974, the DES algorithm became the first standard 
of modern cryptography [SCH 95]. The DES algorithm is based on 16 rounds (a 
collection of stages repeated 16 times) during which a data block of 64 bits is mixed 
with the key K, which is also encoded on 64 bits. At each of these rounds, a sub-key 
ki is calculated from the initial key K (this sub-key will serve to mix up the block’s 
bits). Once the 16 sub-keys have been generated from the secret key, it is possible to 
cipher (or decipher) a 64-bit block of data. The process begins with an initial 
permutation (IP) which changes the order of the bits in the initial block, before 
splitting the result into two blocks of 32 bits, L0 and R0 . Once the 16 rounds have 
been passed, and before giving the result, a final permutation must be applied to the 
block. This permutation is no more than the inversion of the IP. For the decryption, 
the process is the same, apart from the fact that the sub-keys are used in the opposite 
order. 

Today, even if the algorithm is still respected, it suffers somewhat from the fact 
that the length of its key is limited to 64 bits. The current performance-levels of 
machines, in terms of computational time, make the DES breakable. The so-called 
brutal attack involves trying all of the 264 potential keys, and is nowadays feasible 
for big computers. A solution has been produced to increase the security level: it is 
called the triple-DES. The triple DES involves the encryption of the entry block 
three times with three different keys: K1, K2 and K3. There are several variations, but 
in general the first and third operations are encryption operations, whereas the 
second is a decryption operation. Often, we decide that K1 = K3, which does not 
allow the whole key to go beyond 128 bits. 
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10.3.3. The AES encryption algorithm 

The AES (Advanced Encryption Standard) algorithm is the standard system for 
block encryption and aims to replace the DES which has become vulnerable. The 
number of rounds in the AES algorithm depends upon the size of the key and the 
size of the data blocks. For example, the number of rounds is 9 if the blocks and the 
key have a length of 128 bits. To encrypt a block of data with AES (Figure 10.3), we 
must first of all complete a stage called “AddRoundKey”, which involves applying 
an “exclusive OR” (XOR) between a sub-key and the block. After this, we enter into 
the operation of a round. Each regular round operation involves four steps. The first 
step is called “SubByte”, where each byte of the block is replaced by another value 
created by an S-box. The second step is called “ShiftRow”, where the rows are 
cyclically moved with different offsets. In the third step, called “MixColumn”, each 
column is treated as a polynomial which is multiplied with a matrix in the GF(28)
(Galois Field). The final step of a round is again called “AddRoundKey”, which is a 
simple XOR between the given data and the sub-key of the given round. The AES 
algorithm carries out a final additional stage made up of the “SubByte”, “ShiftRow”, 
and “AddRoundKey” stages before producing the final encryption. The process 
applied to the “plaintext” (original data) is independent of that applied to the secret 
key, with the latter being called “KeySchedule”. This is made-up of two 
components: the “KeyExpansion” and the “RoundKeySelection” [DAE 02], 
[AES 01]. 

Figure 10.3. General AES scheme

The AES algorithm can support the following encryption modes: ECB, CBC, 
OFB, CFB, CTR, etc. The ECB (Electronic CodeBook) mode is that of the standard 
AES algorithm as described in document 197 of the FIPS (Federal Information 
Processing Standards). From a binary sequence X1, X2,..., Xn of plaintext blocks, each 
Xi is encrypted with the same secret key k in order to produce the coded blocks Y1,
Y2,.., Yn. The CBC (Cipher Block Chaining) mode adds a step before the encryption. 
Each encrypted block Yi is added by an XOR to the new current block Xi+1 before 
being encrypted with the key k. An initialization vector (IV) is used for the first 
iteration. In fact, all the modes apart from ECB need an IV. In the CFB (Cipher 
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FeedBack) mode, IV = Y0 . The dynamic key (or key stream) Zi is generated by Zi = 
Ek(Yi 1), i > 1, and the encrypted block is produced by Yi = Xi Zi. In the OFB 
(Output FeedBack) mode, as in the CFB, Yi = Xi Zi but VI = Z0 and Zi = Ek(Zi 1), i > 
1. The input data is encrypted after an XOR with the output Zi . The CTR (counter) 
mode has characteristics very similar to those of OFB, but it also allows for a 
random access for the decryption. It generates the following dynamic key by 
encryption of the successive value provided by a counter. This counter can be a 
simple function which produces a pseudo-random sequence. In this mode, the output 
of the counter is the entry of the AES algorithm. 

Even if AES is a block encryption algorithm, the OFB, CFB and CTR modes 
operate like stream ciphers. These modes require no particular measure concerning 
the length of messages. Each mode has its own advantages and disadvantages. In the 
ECB and OFB modes, for example, any change in the plaintext Xi results in a 
modification in the corresponding encrypted block Yi, but the other encrypted blocks 
are not affected. On the other hand, if a plaintext Xi is changed in the CBC and CFB 
modes, then Yi and the new encrypted blocks will be affected. These properties mean 
that the CBC and CFB modes are useful for authentication, and the ECB and OFB 
modes treat each block separately. As a result, we can note that the OFB mode does 
not propagate noise, whereas the CFB mode does. 

10.3.4. Asymmetric block system: RSA 

The RSA algorithm is the most widely-used asymmetric system. Its security 
relies upon the slowness of current computers for factorizing very large numbers 
into products of prime numbers [SCH 95], [SHA 78]. Let p and q be two very large 
distinct prime numbers, and n a very large number which is the product of p and q.
We write as (n) the Euler function in n in order to have numbers smaller than n and 
first with n, with (n) = (p-1)(q-1).

The public key/private key pair will reside in two numbers, d and e associated 
with n. e is first calculated randomly between 2 and (n) and must be prime with 

(n). The (n,e) pair is the public key. Then d is calculated such as d = e 1mod(n).
The extended Euclidian algorithm allows the calculation of this inversion, even in 
the case of very large numbers. The (n,d) pair is the private key. The use of keys for 
the encryption and the decryption is as follows. If m is the original message (lower 
than n, otherwise it is cut), we encrypt it with the public key (n,e) raising it to the 
power e, modulo n. We obtain the encrypted message m’ = memod(n). For the 
decryption, we need the private key second key (n,d). By raising the encrypted 
message to the power d modulo n and as d and e are inverted modulo n, we obtain: 
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For example, if Bob wishes to send a message to Alice, he converts his message 
into numbers, and cuts the message into blocks of a size smaller than n. For each 
block mi, using Alice’s public key, Bob calculates and codes the block as follows: 

),mod(nmc e
ii  [10.2] 

with i, the position of the block in the text, i  [1,N], if N is the number of blocks. 

Alice, with her private key, can then decrypt the message by performing: 

)mod(ncm d
ii  [10.3] 

Thus, the RSA method differs from the symmetric encryption systems in that it 
uses two different keys for encryption and decryption (Figure 10.2). One of these 
two keys, the public key, is meant to be known to everyone, and the other, the 
private key, is known to only one individual. The RSA algorithm can allow either 
encryption with a public key, in which case only the recipient will be able to decrypt 
the message with his private key, or encryption with one’s own private key 
(signature). In this case, everyone can read the message thanks to the public key, but 
the sender was able to sign the message, since he is potentially the only person who 
could have encrypted it with his private key. A double encryption, using a public 
key/private key therefore makes it possible to combine a signature with 
confidentiality (Figure 10.2b). 

Unfortunately, RSA is a very slow algorithm; much slower than any symmetric 
system, and even more so because the numbers used are very large. Moreover, it is 
easily breakable today, even for 512 bits numbers. It is currently advisable to use 
keys 1,024 bits long. It is therefore preferable to use it to send a secret key in a 
secure way, which will allow the message to be decrypted, with AES faster than 
RSA.

10.3.5. Algorithms for stream ciphering 

Algorithms for stream ciphering can be defined as algorithms for encryption by 
block, where each block has a unitary dimension (1 bit or 1 byte) or is relatively 
small. Their main advantages are their very high speed and their ability to change 
each symbol of the plaintext. With a stream cipher algorithm, it is possible to 
encrypt each character of the plaintext separately, using an encryption function 
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which varies each time (these algorithms therefore need memories). In general, 
algorithms for stream cipher are made up of two stages: the generation of a dynamic 
key (key stream) and the encryption output function using the dynamic key. 

When the dynamic key is created independently of the plaintext and the 
ciphertext, the stream cipher algorithm is synchronous. With a stream cipher 
algorithm, the sender and receiver have to synchronize using the same key at the 
same position. Synchronous stream ciphers are used in environments where error is 
common, because they have the advantage of not propagating errors [GUI 02]. 
Concerning active attacks, such as the insertion, deletion or copying of digits of the 
ciphertext by an active adversary, these attacks immediately result in a loss of 
synchronization. The encryption process of a synchronous stream cipher is described 
in Figure 10.4a, where f() is the function which determines the following state, g() is 
the function generating the dynamic key, and h() is the encryption output function: 
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where K is the key, si, mi, ci and zi are respectively the ith state, plaintext, ciphertext 
and dynamic key. The decryption process is shown in Figure 10.4b. 

a) b)

Figure 10.4. Synchronous stream cipher: a) encryption, b) decryption on the right

When the dynamic key is generated from the key and a certain number of 
previous ciphertext, the stream cipher algorithm is called asynchronous, also known 
as a self-synchronous stream cipher. The propagation of errors is limited to the size 
of the memory. If digits of the ciphertext are erased or added to, the receiver is able 
to resynchronize himself with the sender, by using the memory. As for active 
attacks, if an active adversary modifies any part of the digits of the ciphertext, the 
receiver will be able to detect this attack. The encryption process of an asynchronous 
stream cipher is described in Figure 10.5, where g() is the function which generates 
the dynamic key, and h() the encryption output function: 
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where K is the key, mi, ci and zi are respectively the ith plaintext, the ciphertext, and 
the dynamic key. We can observe in equations [10.5] that the dynamic key depends 
upon the previous t digits of the ciphertext. In order to resist statistical attacks, 
function g(), which generates the dynamic key, must produce a wide period 
sequence, with good statistical properties which can be called pseudo-random binary 
sequences. The decryption process is illustrated in Figure 10.5. 

a) b)

Figure 10.5. Asynchronous stream cipher: a) encryption, b) decryption on the right

10.4. Medical image encryption 

In this section, we will demonstrate how it is possible to apply the above 
algorithms to medical images in the gray level. In the case of a 1D medical signal, 
the standard coding algorithms can be applied directly. However, because of the 
bidimensional characteristic of images, and their size, these standard algorithms 
must be modified in order to be used effectively on medical images. The aim of 
image encryption is to obtain an image in the same format and without increasing 
the size above that of the original image. The encryption of images is considered as 
a source coding to process this functionality at the application level. Due to this, if a 
user does not possess the key, he does at least have access to an image in a known 
format. By carrying the encryption step up to the application level, it is possible to 
proceed, for example, towards a region of interest of the image. In the case of large 
images, it therefore becomes unnecessary to decrypt the whole image if we only 
want to view one particular area. The compression stage should also be taken into 
account during the image encryption stage. 
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10.4.1. Image block encryption  

In the case of block encryption, the length of the blocks is fixed, and varies from 
64 bits (8 pixels) to 192 bits (24 pixels). From the 2D information of an image, 
several pixel grouping solutions are possible. With the aim of withstanding a 
downstream compression as well as possible, or compressing at the same time as 
coding, it is useful to group the pixels with their nearest neighbors (in rows, 
columns, or blocks). Each block of pixels is encrypted separately. The encrypted 
block obtained will then come to replace the original block in the image. In this 
chapter, the route taken for scanning the blocks is carried out only in a linear manner 
(scan line). Manniccam and Bourbakis show that it is often more useful to use other 
types of scanning (spirals, zigzags, etc.) in order to combine encryption with lossless 
compression [MAN 01], [MAN 04]. 

10.4.2. Coding images by asynchronous stream cipher 

In this section, we present an asynchronous stream cipher algorithm which is 
applied to images. Let K be a key of length k bits bi, K = b1b2...bk. The unit of 
encryption is the pixel (1 byte). The method lies in the fact that for each pixel of the 
image, the encryption depends upon the original pixel, the value of the key K, and 
the k/2pixels previously encrypted. In order to use equations [10.5], we have t = k/2.
For each pixel pi of the original image, we calculate the value of the pixel p’i of the 
encrypted image using the following equation: 
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with i  [0,…,N 1] where N is the number of pixels in the image, k is the length of 
the key with k  [1,N], and j is a sequence of k/2 coefficients generated from the 
secret key K [PUE 01a]. 

The encryption principle is the same as that shown in Figure 10.5. Equations 
[10.6] have a recurrence of the order k/2, corresponding to half of the length of the 
key [PUE 01b]. Coefficients j are integer values included between -2 and +2 such 
as:
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with j = 2b2j-1+b2j, where b2j-1 and b2j are two consecutive bits of the secret key K.
In addition, the probability density of the j must be uniform in order to reduce the 
transmission errors during the decryption stage. The sign in front of the coefficients 
equal to 2 depends on coefficients j in order to obtain: 
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Considering that the encryption of a pixel is based on the k/2 pixels previously 
encrypted, we cannot encrypt the k/2 first pixels of the image. It is necessary to 
associate the i coefficients with a sequence of k/2 virtual encrypted pixels p’-i, for i

 [1,…,k/2]. This pixel sequence corresponds to an initialization vector (IV). In 
consequence, an IV is coded in the key: k/2 values of virtual pixels which allow us 
to encrypt the k/2 first pixels of the image as though they had predecessors. The 
length k of the key K must be big enough to guarantee maximum security. Equation 
[10.9] presents the decryption procedure. In the decryption procedure, we must 
apply the process in reverse. We can note that the function which generates the 
dynamic key is the same as equation [10.6]: 
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10.4.3. Applying encryption to medical images 

Starting out with the image in Figure 10.6a, we have applied the DES algorithm 
by blocks of 8 pixels in a row, with a 64-bit key to obtain the image in Figure 10.6c. 
We can observe the appearance of textures (Figures 10.6c-e). The reason for this 
phenomenon lies in the appearance of large homogenous zones (black in this case) 
on the medical images. At the level of the histograms (Figures 10.6d-f), we observe 
the strong presence of gray levels corresponding to the encryption of the gray levels 
of the homogenous zones. The encryption is therefore very poor for two reasons: 
firstly because it is easy to guess the nature of the medical image (an ultrasound), 
but mainly because the availability of the value of the plaintext block (the pixels 
were all black), and after encryption (the gray levels dominating in the encrypted 
image) is a precious clue for cryptanalysts. Block encryption algorithms therefore 
present us with serious problems when images contain homogenous zones. 
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a)  c)  e)

b)  d)  f)

Figure 10.6. a) Medical ultrasound image (442KB), with large homogenous zones,  
encrypted image; c) encrypted by DES algorithm (block of 8 pixels with a 64-bit key); 

e) by AES algorithm (block of 8 pixels with a 128-bit key); b), d) and f) histograms 

From the original image, Figure 10.7a (396x400 pixels), we have applied a 
stream cipher algorithm with a 128-bit key. Figure 10.7c illustrates the values 
obtained for the dynamic key zi generated by equation [10.6]. We can note that 
(Figure 10.7d) the probability of the appearance of each value is practically equal. 
Consequently the function generating the dynamic key g() produces a sequence with 
a large period and good statistical properties. From equations [10.6], we obtain an 
encrypted image (Figure 10.7e), and we can see that the initial image is no longer 
visible at all. By comparing the histogram of the initial image (Figure 10.7b), with 
the histogram of the encrypted image (Figure 10.7f), we can see that the density of 
probability of the gray levels is more or less identical. As a result, the entropies of 
the encrypted images are very high (around 8 bits/pixel). 
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a)  c)  e)

b)  d)  f)

Figure 10.7. a) Original image, b) histogram of original image, 
c) image of the dynamic key zi, d) histogram of the values of the dynamic key zi,

e) final encrypted image with the coding algorithm by asynchronous stream cipher, 
with a 128-bit key, f) histogram of the encrypted image

The stream cipher method has one major advantage over other encryption 
systems used in medical imagery. As the result of the encryption of the previous 
pixels is taken into account for each pixel to be encrypted, the problem of 
homogenous zones is solved. We are no longer dealing with block encryption 
systems, where two identical original blocks give the same encrypted block. We can 
observe that whatever the type of image with or without homogenous zones, no 
texture appears in the encrypted images. In conclusion, in the case of stream cipher 
algorithms, the homogenous zones are no longer visible either in the image or the 
histogram. The stream cipher method also carries another advantage: as the 
calculations which make it up are small in number, it proves to be very quick; even 
more so than AES. For example, a 7 MB image is encrypted (or decrypted) in 5 s 
with a standard PC, rather than the 15 s required for algorithms using a block 
encryption. 

10.4.4. Selective encryption of medical images 

Another way to ensure confidentiality is to adapt the protection level according 
to the application and the time available. It is in this second approach that we find 
selective encryption where users can apply a security level which can vary according 
to requirements [NOR 03]. Many applications can be protected with only selective 
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encryption; the images are therefore partially visible, without revealing all the 
information. Selective encryption can be useful in the case of medical images taken 
with a medical device and needing to be sent over a network in order to be 
diagnosed remotely. Furthermore, the device used for capturing medical images may 
be located in an ambulance or some other mobile vehicle, and in this case the 
transmission is carried out via the intermediary of a wireless network. Due to the 
vital nature of these images, they must be sent quickly and safely, and in this case a 
selective encryption seems to be the best solution (in terms of the time/security 
ratio).

In this section we present a selective encryption method for medical images 
compressed with JPEG [PUE 06]. This method is based on the AES algorithm, using 
the OFB (Output Feedback Block) mode in the Huffman coding stage of the JPEG 
algorithm. The combination of selective encryption and compression allows us to 
save time in the calculation and to retain the JPEG format and initial compression 
rate. In terms of security, selective encryption guarantees a certain level of 
confidentiality. Many different selective encryption methods have been developed 
for images coded by DCT. Tang [TAN 96] proposes a technique called zigzag 
permutation, which can be applied to videos or images. Although his method offers 
a good level of confidentiality, it does decrease the compression rate. [DRO 02] 
describes a technique which encrypts a selected number of AC coefficients; the DC 
coefficients are not encrypted as they carry important visible information and are 
highly predictable. For this method, the compression rate is constant (compared to 
compression only) and retains the binary flow format. However, the compression 
and the encryption are carried out separately, so the method is slower than a simple 
compression. [FIS 04] presents a method where the data is organized in a binary 
flow form which can be regulated. Recently, Said has shown the strength of partial 
encryption methods by testing attacks which use the non-encrypted information of 
an image alongside a small image [SAI 05]. 

Let EK(Xi) be the encryption of a block Xi of n bits using the secret key K with the 
AES algorithm in OFB mode. In the description of the method, we will suppose that 
n = 128 and Xi is a non-empty plaintext. Let us suppose that DK(Yi) is the decryption 
of a ciphertext Yi using the secret key K. The encryption is applied at the same time 
as the entropic coding procedure during the creation of the Huffman vector. The 
method works in three steps illustrated in Figure 10.8: the construction of the 
plaintext Xi, the encryption of Xi to create Yi and the substitution of the original 
Huffman vector with the encrypted information [ROD 06]. It should be mentioned 
that these operations are carried out separately for each DCT block quantified. 
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Figure 10.8. Global overview of the proposed method

To construct the plaintext Xi, we take the non-zero AC coefficients of the current 
block i accessing the Huffman vector from its end towards its beginning in order to 
create {HEAD, AMPLITUDE} pairs. From each HEAD we obtain the size of 
AMPLITUDE in bits. Only the AMPLITUDES (An, An-1,..., A1) are taken into 
account to build vector Xi. The final length of the plaintext LXi depends both on the 
homogenity of the block and a given constraint C, with C  {128, 64, 32, 16, 8} 
bits. This means that a block with a large will produce a small LXi . The Huffman 
vector is processed as long as LXi  C and the DC coefficient is not reached. Next, 
the padding function is applied, p(j) = 0, where j  { LXi,…, 128}, in order to fill in 
the Xi vector with zeros, if necessary. 

At the stage where X i is encoded with AES in OFB mode, the dynamic key Zi-1 is
used as a parameter by the AES encryption in order to obtain a new dynamic key Zi.
For the first iteration, the IV is created from the secret key K with the following 
strategy: the secret key K is used as a seed for a Pseudo Random Number Generator 
(PRNG). This K is divided into 16 sections of 8 bits each. The PRNG produces 16 
random numbers which define the formation order of the IV. Next, each Zi is added 
by an XOR with the plaintext Xi to generate the encrypted block Yi.

The final step is the substitution of the initial information with the encrypted 
information in the Huffman vector. As in the first step (the construction of the 
plaintext Xi), the Huffman vector is read backwards, but the coded vector Yi is read 
starting from the beginning and moving to the end. Knowing the length, in bits, of 
each AMPLITUDE (An, An-1,..., A1), these sections are cut in Yi to replace the 
AMPLITUDE in the Huffman vector. The total quantity of bits must be LXi. This 
procedure is carried out for each block. Any homogenous blocks are only slightly 
coded, or not at all. The use of the OFB method for coding allows for the generation 
of the independent Zi. During the OFB-mode decryption stage, the dynamic key Zi is
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added by an XOR to the ciphertext Yi in order to regenerate the plaintext Xi. The 
vector resulting from the plaintext Xi is cut into sections from the end to the 
beginning in order to replace the AMPLITUDES in the Huffman code to generate 
the Huffman vector. This method is applied to dozens of medical images in the gray 
level (see example in Figure 10.9). 

a)  b)  c)

Figure 10.9. From left to right: original medical image of a colon cancer, 320x496 pixels; 
encrypted image for C = 128; encrypted image for C=8 

The JPEG algorithm has been used with the online sequential coding system for 
a quality factor (QF) of 100%. Five values were applied for constraint C (128, 64, 
32, 16, and 8). For the encryption, the AES algorithm was used with the stream 
cipher mode OFB with a key of 128 bits in length. The original medical image of 
320x496 pixels (Figure 10.9) is compressed so that all the encrypted images are of 
the same size: 43.4 KB. The encrypted coefficients are distributed in the 2480 8x8 
blocks in the image. This means that there are no totally homogenous blocks. For    
C = 128, a maximum of 128 bits encrypted per block, 26,289 AC coefficients have 
been encrypted, which is an average of 33 encrypted bits per block. The percentage 
of encrypted bits in the image as a whole is 22.99%. That means, in the spatial 
domain, 136,038 modified pixels, which means 85.71% of the coded pixels. The 
PSNR is of 23.39 dB for C = 128. For C = 8, the quantities of AC coefficients and 
bits encrypted are respectively 6,111 and 16,765. The percentage of encrypted bits 
in terms of the whole image is 4.7%. This constraint gives a number of modified 
pixels rising to 76.1% of all the pixels in the image. The PSNR is then 30.90 dB. As 
the images show, selective encryption of the JPEG image produces block artefacts. 
These artefacts are at the borders between blocks, which often interfere with the 
HVS. Since the frequential transformation and the quantification of the pixel-blocks 
are processed separately, any continuity between the values of pixels in neighboring 
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blocks is broken during the coding. One of the advantages of this method is that it is 
possible to decrypt the 8x8 pixel blocks of the image individually (using the OFB 
mode for AES encryption). In order to form a remote diagnosis, the doctor needs to 
view regions of interest at a high resolution, where the background can be partially 
encrypted. We should note that confidentiality is linked with the ability to guess the 
values of the encrypted data (cryptanalysis). In terms of security, it is therefore 
preferable to encrypt the bits which seem the most random [PUE 05]. 

10.5. Medical image watermarking and encryption 

10.5.1. Image watermarking and health uses 

The watermarking of images comes under the more general heading of 
information hiding: a message is embedded into a document, a host which may be 
text, sound, video or images. For images, the difference signal between the original 
image and its watermarked version corresponds to the watermark signal associated 
with the embedded message. Care must be taken to ensure that the watermarked host 
document has the same value as the original host document. Figure 10.10 gives an 
example of a watermarking chain. 

Figure 10.10. A watermarking chain

With the link established between the message and its host, we see 
steganography, watermarking and fingerprinting. Steganography is a form of secret 
communication where the host, who serves as the hidden communication channel, is 
of little interest to the message’s recipient. Watermarking and fingerprinting have 
come to the fore since 1995, to meet the needs of managing DRM (Digital Rights 
Management). Watermarking involves the insertion of a code identifying the owner, 
and fingerprinting involves the insertion of a trace linked to the buyer. Since then, 
other applications have been proposed for information security, such as copy 
control, restriction of access and integrity control. For more details on watermarking 
applications and methods, see [COX 02]. Henceforth, the terms “watermarking” and 
“data hiding” will be used interchangeably. 
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For medical imagery, several cases making use of watermarking can be 
identified [COA 00]: 

– the authenticity of images with the insertion of data confirming the origin and 
the fact that a certain image refers to a particular patient; 

– controlling the integrity of images, by putting control information, such as a 
digital signature, within the image (section 10.3); 

– the addition of meta-data (data hiding), allowing the content of images to be 
enriched by attaching a semantic description of the content [COA 05]. 

Another, more detailed, scenario combines authenticity with the integrity control 
of the images, and aims to establish a solid link between these images and the 
corresponding test results [COA 06]. In information protection [COA 03], 
watermarking is complementary to the mechanisms discussed above, as it merges 
the protection information and the image to be protected into one entity: a 
watermarked image. 

10.5.2. Watermarking techniques and medical imagery 

10.5.2.1. Characteristics 

The data-hiding techniques proposed for use with images are numerous and vary 
in their approach. They do nevertheless have some common characteristics which, 
depending on the application, should be kept in mind when choosing the appropriate 
technique:

– robustness: a method is classed as robust if after modification of the 
watermarked image (a “washing” attack or simple image processing) the hidden 
information can still be accessed and understood. This property is essential for 
identifying images which undergo treatment or lossy compression; 

– capacity: this measurement expresses the embedding rate as the number of bits 
buried per pixel of the image (bpp, for “bit per pixel”) and therefore gives an 
indication of the message size which can be embedded in an image. Data-hiding 
techniques aim to optimize this parameter and then add useful information to the 
images; 

– security: in some cases access to the watermark and its contents must be 
restricted; as for cryptography, there are symmetric and asymmetric watermarking 
methods; 

– complexity: this is an indication of the calculation time needed for embedding 
and extraction; the complexity plays an important role when treating large image 
volumes; 
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– invisibility: this is important for medical images, since a watermark must not 
interfere with the interpretation of an image, in order to avoid affecting the 
diagnosis. With this in mind, certain watermarking methods have been proposed 
specifically for medical imagery; 

– the need for the original image for decoding is also one of these characteristics; 
we say that a method is “blind” if the original image is not required in order to 
extract the watermark; integrity control applications are not possible with non-blind 
watermarking methods, the question of knowing whether the original image has 
been modified has no meaning in such cases. 

One method can meet certain applications independently, but not simultaneously. 
A compromise must be reached between capacity, robustness and invisibility. A 
stronger watermark will better resist alterations to the signal introduced by the 
compression, or hacking attempts; but its presence will be more obvious to the user 
and its capacity will be reduced. 

10.5.2.2. The methods 

In their principles, watermarking methods proposed for medical imagery are only 
very slightly different from other methods which we can refer to as “classic” 
methods. They make use of particular adaptation strategies specifically for medical 
imagery. 

In the habitual schemes, two types of algorithm can generally be identified. The 
first involves additive methods. Starting from a message (a sequence of bits), they 
generate a signal which is added to the image or a transformation of the image 
(DCT, DWT, etc.). A technique involving spread spectrum links each bit bj of the 
message with the value dj = 1-2bj thus multiplies this quantity by a pseudo-random 
sequence Wj low in energy which is then added to the image I to produce the 
watermarked image: Iw = I + djWj. is a parameter of insertion or incrustation 
strength (robustness parameter). The embedding of a message of N bits adds to the 
image the watermark N

j jjWdW
1

. The presence of this watermark is checked by 

correlation techniques, which implies the orthogonal nature of the pseudo-random 
sequences Wj. The sign of each correlation product gives the value of the embedded 
bit. The embedding of a large message can lead to a partially visible watermark W.
In order to ensure the invisibility of the watermark, psychovisual criteria are used to 
adapt the insertion strength to the image locally. 

The second group covers substitution methods which, in order to embed a bit of 
the message, replace a piece of information from the image (its gray levels or a 
transformation thereof) with a symbol from a dictionary. Detection therefore takes 
place with a simple re-reading. The method of Least Significant Bit (LSB) 
substitution is the simplest. This method simply replaces the LSB of an image’s gray 
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levels with those of the message to be watermarked. For a gray level pixel p(n,m),
this means associating the binary value 1 with the odd values of p(n,m), and the 
value 0 with the even values. This method is far from robust (it is therefore fragile) 
but does offer a capacity of 1 bpp. More elaborate versions of this approach have 
since appeared, following the Costa schema [COS 03]. These methods known as 
informed [COX 02] are based upon structured dictionaries which contain the values 
that the blocks of pixels will take to carry information. 

For medical imagery, three strategies have been established with the key aim of 
preserving the image interpretation. These are the methods above, methods 
involving region of non-interest watermarking and reversible watermarking 
methods. 

The first methods produce watermarks which replace part of the information in 
an image. Using them requires careful attention to ensure that the watermark does 
not interfere with the diagnostic information. The first solutions proposed were 
techniques secretly modifying the LSB of certain pixels or coefficients of the 
transform of an image. These are methods with a large capacity, introducing only a 
slight damage to the original signal but very fragile nevertheless. More recently, 
robust techniques have been tested with, during the experiments, the involvement of 
a practitioner giving a threshold of insertion force which should not be crossed [PIV 
05]. More generally speaking, the problem with the automatic evaluation of the 
maximum authorized distortion level is a pertinent question. This problem is far 
from helped by the wide diversity of signals in the healthcare sector (see Chapter 3) 
and the availability for practitioners of tools which allow, for example, the isolation 
of a certain part of the dynamic of an image. These ranges of gray levels vary 
according to the user, and some may find that the watermark is visible. 

One strategy, suggested to optimize the performance of the above methods in 
terms of robustness and capacity without further damage to the image, is based on 
the existence in the image of regions with little or no interest for in the image 
interpretation. These techniques, known as region of non-interest watermarking, 
more often than not place the watermark in the black background of the image 
[COA 01]. Robustness can be achieved, with the watermark not masking any 
important information, although a strong watermark can be a hindrance for the 
physician during his image analysis. The embedding strength must be regulated. 

The final approach concerns reversible watermarking methods. The idea is to be 
able to remove the watermark from the image, thereby restoring the exact same gray 
levels as in the original image. These techniques make it possible to update the 
contents of a watermark. This is not the case for the previous methods, where one 
watermark would have to be added to another. The drawback is that the 
watermarked image is no longer protected once the watermark has been removed. 



Hybrid Coding     269 

Such techniques have benefited from progress in recent years; [COA 05], [COA 06], 
[CAV 04], [COL 07]. The techniques developed have variable performances 
depending on the host type to be watermarked and with performances lower than 
any non-reversible methods. Otherwise, these techniques are very rarely robust, and 
the desire to maximize the capacity often leads to highly visible watermarks: the 
watermark must be removed before the image can be used. 

Watermarking medical imagery is in its early stages at the moment, with the key 
difficulty encountered being the level of distortion which it introduces. We can 
however remain hopeful that the work carried out on improving the quality of image 
compression (Chapter 5) will lead to solutions allowing the full benefits of 
watermarking to be appreciated. 

10.5.3. Confidentiality and integrity of medical images by data encryption and 
data hiding 

The applications of watermarking medical imaging are numerous. In this section, 
we aim to illustrate the combination of cryptography and watermarking in secure 
image exchange. We saw in section 10.3 that the encryption process could be either 
symmetric or asymmetric, by block or by stream. Whereas asymmetric algorithms 
are not appropriate for image encryption due to their calculation time, block 
algorithms present security problems (due to homogenous zones) and problems with 
the data integrity. Figures 10.11 demonstrate this problem. The AES block algorithm 
[AES 01] with a 128-bit key has been applied to the original image (Figure 10.11a) 
in order to obtain the encrypted image (Figure 10.11b). If the encrypted image is 
modified during the transfer, it is not necessarily possible to detect this alteration. 
For example, in Figure 10.11c a small region of the encrypted image has been 
copied and pasted onto another zone of the image. After decryption, it is possible to 
view the images, but their integrity cannot be guaranteed, as shown in Figure 
10.11d. 

a)  b)  c)  d)

Figure 10.11. a) Original Lena image, b) image encrypted by AES by 128-bit block, c) copy 
of a region of the encrypted image, pasted onto another zone, d) decryption of (c)
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In order to solve the integrity problem, it is possible to combine a stream cipher 
algorithm with a secret key for the image and an asymmetric algorithm to encrypt 
the secret key. A substitutive watermarking method (section 10.5) then allows for 
the embedding of the encrypted key into the encrypted image [PUE 04], [PUE 07]. 
If person A sends an image over a network to person B, sender A will use a stream 
cipher algorithm with the secret key K to encrypt the image. To send key K, A can 
encrypt it using an algorithm with a public key such as RSA. Let pub(e,n) be the 
public key and priv(d,n) the private key for RSA with e = d-1mod(n), so A has his 
public and private keys puba(ea,na) and priva(da,na), and B has his public and private 
keys pubb(eb,nb) and privb(db,nb). As a result, A generates a secret key K for this 
session and encrypts the image with the stream cipher algorithm. Next, A ciphers the 
key with the RSA algorithm using his private key priva in order to achieve a key K’:

)mod(' a
d nKK a

 [10.10] 

This key K’ is encrypted a second time with RSA using the public key pubb of 
the recipient B to generate K’’:

)mod('" b
e nKK b

 [10.11] 

The size of the message to be embedded into the image depends upon the size of 
the recipient’s public key and is known to sender A and recipient B. We can 
therefore calculate the embedding factor and calculate the number of blocks required 
for the embedding. This key K’’ is embedded into the ciphered image. Finally, A
sends the image to B as shown in Figure 10.12. This procedure of K encryption with 
priva and pubb ensures the authenticity, and only B can decrypt the image. The 
embedding of the key into the image makes the method autonomous and guarantees 
its integrity. If, during transfer, the image is attacked, then it is no longer possible to 
extract the right key on reception, and so the image cannot be decrypted. 
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Figure 10.12. Combination of secret key encryption, public key  
encryption and a watermarking method

Person B receives the encrypted and watermarked image, and can then extract 
the encrypted key K’’. He can then identify the sender, A, and decrypt the key K’’
using the private key privb and the public key puba belonging to A:

)mod())mod("( a
e

b
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 [10.12] 

With the acquired key K, B can decipher the image and thus view it. Starting 
from the original ultrasound image (512x512 pixels), Figure 10.13a, we have 
applied a stream cipher algorithm with a key K of 128 bits, in order to obtain the 
encrypted image Figure 10.13b. If this image is decrypted, we can note that there is 
no difference between it and the original image. The 128-bit key K was encrypted 
twice with the RSA algorithm in order to obtain K’’. Due to the length of B’s public 
key, the length of K’’ is in the region of 1,024 bits. Next, using a watermarking 
technique in the spatial domain based on the LSB substitution, key K’’ is embedded 
into the encrypted image (Figure 10.13c). The embedding capacity is of 1 bit for 
every 256 pixels. The difference between the watermarked, encrypted image and the 
original is shown in Figure 10.13d. The pixels used for the embedding are visible, 
the PSNR=75.14 dB. After the decryption of the watermarked, encrypted image, in 
Figure 10.13c, we reach the final image shown in Figure 10.13e. The difference 
between the original image and the final one is shown in Figure 10.13f. This figure 
shows that the differences between the two images (PSNR = 55.28 dB) are spread 
throughout the image. Nevertheless, because the average value of the (i)
coefficients is equal to zero, the error due to the watermarking is not increased 
during the decryption stage. 
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a)  b)  c)

d)  e)  f)

Figure 10.13. a) Original image, b) encrypted image with a stream cipher algorithm 
with 128-bit key, c) image (b) watermarked with the secret encrypted key, 
d) the difference between images (b) and (c), e) decryption of image (c), 

f) the difference between original image (a) and (e)

In order to compare the results of this hybrid method, the watermarking method 
was applied to the encrypted medical image using the AES algorithm with the ECB 
and OFB modes (stream cipher mode). After decryption, the image watermarked 
and encrypted by AES in ECB mode shows a great deal of variation compared to the 
original image (PSNR=14.81 dB). After decryption, the image watermarked and 
encrypted by AES in OFB mode presents variations which were not diffused by this 
mode. The final image quality is good (PSNR=52.81 dB) but an overflow problem 
remains with the OFB AES mode. The black pixels become white, and vice versa. In 
conclusion, the combination of encryption and watermarking allows for an 
autonomous transmission system, and guarantees the integrity of the data 
transmission. 

10.6. Conclusion 

In this chapter, we have shown that there are many solutions for ensuring 
security when sending and storing medical images. In current practice, those 
solutions offered to secure medical data are based on very traditional protection 
techniques. These old approaches require either the introduction of certain specific 
mechanisms, or a longer execution time. These traditional approaches are not 
suitable for real-time applications or for access from a doctor’s surgery. Some of the 
solutions proposed in this chapter can be integrated into systems for sending medical 
images, if they can be proven robust. The main advantage of all these hybrid 
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approaches is the ability to link several types of coding in one algorithm. In years to 
come, the appearance of standards in the encryption and watermarking of images 
will be of great benefit to the safe transmission of medical data. 
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Chapter 11  

Transmission of Compressed Medical Data on 
Fixed and Mobile Networks

11.1. Introduction  

An objective of the present chapter will have to be a detailed discussion about 
the aspect of medical data diffusion (broadcasting or transmission). This 
encompasses access to medical information, by fixed networks (wired Internet, for 
example) or mobile networks (wireless communication) or a combination of both 
fixed and mobile networks (called hybrid networks). 

There are numerous situations where this type of information exchange can be 
encountered, either for remote consultations inside buildings, or outside, or 
combining the two environments, or even for ambulatory assistance, under the same 
conditions of geographical variability. 

The main difficulty in transmitting such compressed data results from the highly 
fragile nature of the data. This fragility can arise due to perturbations, which can 
happen during the transmission, because of errors, packet losses, etc.). At the same 
time, there can be several other causes of uncertainty in the data. These may arise, 
for example, as a result of compression techniques, which can also integrate the 
watermarking phase, or due to the choice of modulation technique, once the bit 
stream is obtained, from the random access procedure (degradation, unguaranteed 
rate, etc.), routing, etc. At the end of the chain, a process of quality assessment (as 
described in Chapter 5) will be carried out, as a function of the usage, to discern 
whether the received signal is acceptable. 

Chapter written by Christian OLIVIER, Benoît PARREIN and Rodolphe VAUZELLE. 
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The chapter is organized as follows. A brief overview of the existing applications 
based on the transmission of medical data is presented in section 11.2. This section 
also highlights the difficulties associated with these methods and the difficulties that 
may arise in immediate future. Section 11.3 will describe the various networks 
employed to tackle these situations, with their various specificities and sensitivity to 
the perturbations. Section 11.4.1 will present a set of existing or possible 
applications, using the fixed and mobile networks and in section 11.4.2 the effects of 
the errors or losses on medical images, for various standards of compression 
techniques, will be demonstrated. Section 11.4.3 will present the effect of the use of 
usual error correcting codes, at the cost of increased redundancy for the information 
transmitted. We shall also introduce the Mojette transform in this section, along with 
its application within the domain of medical data n networks. The chapter will be 
concluded with a discussion of the problem of joint source-channel coding in the 
context of medical data. 

11.2. Brief overview of the existing applications 

If the first objective in the communication of medical data is transmission, then 
the second one is access to the archive or files. It is a well known fact that, with the 
ever increasing quantity of data, compression becomes necessary. 

Sometimes at high rates, the coding procedure may make the information fragile, 
particularly for an information system environment which is not that robust, either 
inside the same hospital service or between several services. The “direct access” 
aspect of the information, from the compressed data, has been mentioned in the 
preceding chapters and is mentioned in the following discussions. There exist many 
applications, which are based on medical data transmission. The domain of 
telemedicine is often mentioned in the same category, if it is a question of 
exchanging medical data using a simple e-mail. 

Generally speaking, the optimal functions of the exchange of messages, files and 
the sharing of peripherals or even the access to a sophisticated information system, 
are yet to come into prominence. 

Table 11.1 summarizes the existing applications and specifies, for each one, the 
temporal constraints in terms of transfer of information delay. 
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Applications Constraints Explanations 

Telesurgery control Critical delay: < 50 ms The action must be synchronized 
with the feedback of image 

Audio frequency Delay: 150 ms With several participants, the 
interactivity must be perfect 

Telephony Delay: < 200 ms Interactive duplex is a condition 
of communication convenience  

Image reading Delay: < 1 s Over a 5 year period, the 
consultation time has been 

reduced from 2 to 0.45 sec/image 

Diffusion of medical 
signals

(remote control,
e-learning)

Delay of about 1 s Buffer memory compensates the 
delay and the loss 

Web, transfer of 
images, multimedia 

reports

Elastic delay Few seconds are acceptable 

Table 11.1. Existing medical applications and associated temporal constraints

11.3. The fixed and mobile networks 

In this section, we briefly present the wired and wireless networks, as well as 
their operating modes, with descriptions of the various stages of the transmission 
chain for the two cases. These two types of communications can also be mixed 
together (in hybrid networks) and they are discussed in section 11.3.2. 

11.3.1. The network principles 

11.3.1.1. Presentation, definitions and characteristics  

In the early 1980s, the beginning of the interconnection required a consensus 
among manufacturers to enable the interoperability of equipment. In this context, the 
International Organization for Standardization (ISO) proposed a layer structure of 
any exchange of data within a computer network using its OSI (Open System 
Interconnection). Today, this model, which was imposed as a reference in the world 
of computer networks, also unifies the telecommunication community and the 
information processing community. Rather than subdividing the activities into 
different subcategories, it offers a practical conceptual field because of its simplicity 
in designing systems, involving the relations across different layers. Figure 11.1 
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summarizes the design from the interface user (level 7) up to the binary transmission 
(level 1). 

Figure 11.1. OSI model in 7 layers of two interconnected hosts A and B. The transmission 
units of layers 1, 2 and 3 are specified on the right of the figure

In a simple manner, this model can be divided into two categories respectively 
grouping the applicative layers (levels 5 to 7) and the transport layers (levels 1 to 4). 
Independent of the temporal constraints mentioned in Table 11.1, the applications 
are classified according to their mode of information exchange. The types which 
have become popular in recent times are “client/server”, “push”, “flow” and “peer-
to-peer”.

The transportation of information (as shown in Figure 11.1, from levels 1 to 4) is 
characterized by a fragmentation of the initial volume of information into a series of 
packets. This mode of transport is different from the continuous flow of data in the 
commutated circuits, for example, the commutated telephone network. The 
autonomy of each packet containing a source address and a recipient address 
authorizes the multiplexing of several users on the same connection and therefore, 
increases the transmission rates. This same autonomy brings flexibility in the routes 
through which the packets transit. The routers, as points of interconnection, 
determine the optimal routes, depending on the state of the network and recopy the 
packet of a connection to another one. As an after-effect of this process, the 
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multiplication of the paths generates delays, which in turn causes jitters and even the 
loss of packets with quite significant effects on an initial volume of information 
weakened by fragmentation. This chapter will make a detailed analysis of the 
practical impacts of these parameters of quality of service. 

11.3.1.2. The different structures and protocols  

In practice, the Internet, functioning with two protocols of level 3 and 4, is itself 
imposed. At level 3, the Internet Protocol (IP) manages the interconnection 
networks. Devices called routers interconnect the networks. They analyze the 
recipient’s address in the header of each packet in order to perform the delivery. 
Two cases usually occur in packet processing, either the router knows the recipient 
address for a direct delivery or the router does not know the recipient and leaves the 
task to its default router. At level 4, the TCP (Transmission Control Protocol) 
involves a connection between the transmitter and the receiver of the packet. It 
exercises the control and maintains the reliability of the transmission by adjusting its 
emission rate to the network capacity, by detecting and performing the 
retransmission of lost packets. 

This mode of operation is prohibited for applications sensitive to delays such as 
telesurgery. In this context, the transport protocol UDP (User Datagram Protocol) is 
used by acting without connection and without retransmission. Additional 
mechanisms are needed in this case to increase reliability. 

The lower layers are responsible for the transmission of data by adapting 
themselves to the specifications of the physical medium. Each of these protocols 
leads to the definition of a format of a particular frame and to a specific address (in 
the network the IP protocol’s role is to erase these specifications). In fixed networks, 
Ethernet connections are widely deployed. With recent developments, there have 
been widespread modifications of its use. Although the initial range of a local area 
network was about 2.5 km, nowadays its use is often limited to a floor of a building 
(a range of about 25 to 100 m) with a star topology, involving an active repeater 
type central element (called a “Hub”) or switch. Thus, it has been possible to 
increase the rates to about 100 Mbits/s for fast Ethernet and 1 or 10 Gbits/s for 
gigabit Ethernet networks. The use of optical fibers facilitates the construction of 
intra-hospital networks. 

11.3.1.3. Improving the Quality of Service 

The interconnectivity offered by the IP comes at a price. The optimality in the 
routing algorithms, the relative reliability of transport protocols or even the limited 
capacities of processing the interconnected nodes lead to delays of transmission, 
weakening the Quality of Service. To prevent this, two actions are possible, either 
taken in the heart of the network, or at the terminals. The construction of a network 
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that is capable of applying an intelligent management distinguishing stream or the 
classes of priority services, is the goal of the “IntServ” and “DiffServ” working 
groups of the IETF (Internet Engineering Task Force) [BRA 94], [BLA 98]. These 
approaches assume an end-to-end implementation, which becomes particularly 
difficult for a wide area network. 

The action at the source or destination requires simply a network that is doing its 
best, e.g. “Best Effort”. In this context, coding with unequal error protection (UEP) 
is tested today. Contrary to the separation principle (source coding then channel 
coding), this protection mode considers a coding of a distinct channel for each 
priority of the source as a function of the channel status. This approach offers good 
reactivity for no stationary channels in mobile networks. It is facilitated by the 
developments of the scalable representations of multimedia information (JPEG 2000 
for still images or MPEG4/H.264 SVC for video images). Overviews of advanced 
protection are available in [GOY 01] and [HAM 05]. At the end of the chapter, an 
example of UEP implementing a function of discrete tomography is detailed. 

11.3.2. Wireless communication systems  

11.3.2.1. Presentation of these systems 

Wireless communication systems can be characterized according to the context 
of their use (inside/outside of buildings, range, etc.) and their rates, i.e. implicitly by 
the proposed services. A considerable evolution of the wireless system has been 
observed during the last 20 years. Some key elements of this development are 
mentioned now. At the beginning of the 1990s, standard GSM (Global System for 
Mobile) systems, functioning digitally at frequencies of 900 and 1,800 MHz, were 
deployed in Europe. They allowed the transmission of vocal communications and 
reached rates close to 9.6 Kbits/s. 

At that time, they provided a national coverage initially centered on large cities 
and highways. Gradually, this coverage extended to almost the entire territory and 
the network became denser in order to increase its capacity in zones with strong 
traffic. Since 2000, we have experienced an explosion in the standards and proposed 
services. Indeed, it is no longer only a question of transmitting voice by radio 
channel, but also of implementing wireless computer peripherals, exchanging 
computer files, images and, more recently, video. 

We can globally classify these wireless systems in three large families: personal 
networks (WPAN: Wireless Personal Area Network), local networks (WLAN: 
Wireless Local Area Network) and metropolitan networks (WMAN: Wireless 
Metropolitan Area Network). For the WPAN, the principal standard is “Bluetooth” 
to ensure short range connections between peripherals and computers, for example. 
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We should also mention “Zigbee” which is a recent technology, characterized by 
data exchanges of low rates and small consumption for networks of sensors for 
instance. Concerning the WLAN, the norm IEEE 802.11 called Wi-Fi and all its 
developments in both present and future use (IEEE 802.11a, b, g, n) represent the 
main system. They allow information exchange with high rates inside a building 
within an infrastructure or not, i.e. with or without a fixed access point to a core 
network. 

As an example, the characteristics at the level of the physical layer are  
54 Mbits/s for the standards a and g and 100 Mbits/s at the level of the data link 
layer for the standard n which is based on MIMO (Multiple Input Multiple Output) 
technology.

In 2003, within the WMAN family, two major evolutions to the GSM standard 
took place: the GPRS (General Packet Radio Service) qualified for 2.5 G 
development and the EDGE (Enhanced Data rate for GSM Evolution) associated 
with a 2.75 G development. Both transmit with a packet mode, like the fixed 
networks, contrary to the GSM which used a circuit mode. With this main change, 
GPRS is able to reach net rates ranging around 20 to 30 Kbits/s and the EDGE, net 
rates around 150 to 200 Kbits/s. These developments, however, do not replace the 
whole generation. 

The third generation (3G) is currently making its appearance. The UMTS 
(Universal Mobile Transmission System) standard represents an important 
technological advance because it can transmit much more data simultaneously and 
should offer a significantly higher rate than those of the previous generations. 

This standard is based on the spread spectrum technique called the W-CDMA 
(Wireless Coded Division Multiple Access) [PRO 00]. It uses the frequency bands 
located between 1,900 and 2,200 MHz. In theory, it can reach 2 Mbits/s in a fixed 
environment and 384 Kbits/s in a moving environment. These increased speeds of 
data transmission enable the provision of new services: visiophony, mobile 
television, etc. The UMTS is also sometimes called 3GSM, thus underlining the 
interoperability which was ensured between the UMTS and the standard GSM, 
which it succeeds. 

Finally, we should point out that a specific concept related to non-fixed 
infrastructure is currently being developed in Europe. It mainly concerns ad hoc
networks, also known as auto-configurable networks. 

In practice, various applications are possible, such as intra-vehicle 
communications or sensor networks (see section 11.4.1). However, whatever the 
considered wireless system of communication, the multi-path phenomenon of the 
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transmission channel introduces significant constraints. In addition, we must note 
that this aspect does not concern fixed networks. 

11.3.2.2. Wireless specificities 

The main difference between fixed and mobile networks lies in the physical 
layer (see Figure 11.2) and more precisely in the transmission channel. 

coding modulation

receiver demodulation decoding

channel

transmitter

Figure 11.2. Scheme of the physical layer of a wireless system

Let us briefly recall the objectives of the various elements of this chain of 
transmission: 

– the coding is decomposed into two operations, the source coding where the 
objective is the compression of the information, and the channel coding where the 
goal is to improve the robustness of the compressed signal of the information with 
respect to the perturbations which it can undergo during its transmission. The 
principle of the channel coding consists of introducing redundancy, allowing 
detection and errors correction of bits (described in detail in section 11.4.3.1); 

– the modulation is designed for two purposes. Firstly, it ensures the 
transposition in frequency of the information, and, secondly, it transforms the digital 
information in an analog signal, which can be sent to the antenna for emission. The 
principle consists of assigning an amplitude and a phase of an analog signal, to a 
symbol, as illustrated in Figure 11.3. This figure presents a digital constellation (i.e. 
representation of a signal in a complex plan) for a Quadrature Amplitude 
Modulation with 16 states: 16 QAM; 

– the radioelectric channel is the medium of transmission which allows the 
transfer of information between a transmitter and a receiver. Its principal property is 
the mechanism of multipath trajectories which governs the propagation of the radio 
waves; 

– the digital reception ensures the synchronization and the recovery of rhythm, 
which facilitates the operations of demodulation and decoding; 
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– the demodulation and decoding perform the dual operations of modulation and 
coding. 

Figure 11.3. Digital constellation of a 16 QAM modulated signal under ideal conditions 

In this context, special emphasis should be placed on the fact that the channel 
coding and the modulation are two key elements for the performances of the 
physical layer. These performances can be defined in different ways, where each of 
these constitutes a trade-off between the rate and the robustness of a transmission. 
Transmission performances can also be evaluated using the concept of Quality of 
Service, which relates to the upper layers of the OSI model. As mentioned above, 
the main specification of wireless systems compared to wired networks is located at 
the channel level. This presents spatio-temporal variability which does not exist for 
wired networks. There are two types of variations: slow variations due to the mask 
effects, such as an obstacle between the transmitter and the receiver and fast 
variations related to the multipath trajectories which characterize the channel. This 
phenomenon corresponds to the fact that a wave generated from a source generally 
follows different paths before reaching the receiver (Figure 11.4). 
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Figure 11.4. Principle of the multipath trajectories mechanism and 
its consequence on the received signal

Each path followed by the wave is characterized by a series of interactions with 
the environment of propagation, which are mainly related to the phenomena of 
reflection on surfaces, refraction through walls and diffraction from obstacle edges 
[VAU 04]. The received signal is a combination of all the propagated waves. This 
combination creates interferences which sometimes provide deep fading out of the 
reception level or frequency selectivity. This explains how the multipath 
phenomenon of the radio-electric channel generates perturbations during the signal 
transmission at a given time, a position and a frequency (section 11.4.2.2.1). 

Various approaches exist to model the behavior of such a channel. They can be 
stochastic or deterministic [ISK 02] [VAU 04] [COM 06] but they are all based on 
the experimentation and/or the simulation related to the electromagnetic waves 
propagation. The statistical channel models generally used are those by “Gauss”, 
“Rice” or “Rayleigh”. These models aim to define the variations of the magnitude of 
the received signal and sometimes the phase. 

The Gaussian channel model consists of adding a Gaussian white noise to the 
received signal; this noise is assumed to represent all the perturbations that influence 
the signal during its transmission. 

The Rice model is used when one of the received paths is dominant. This is 
generally the case when the transmitter and the receiver are directly visible. The 
magnitude S of the received signal can be obtained from the following probability 
law:

2 2

22
02 2( )

s A
s A sP s e I

[11.1] 



Transmission of Compressed Medical Data     287 

where I0 is the first type Bessel function of zero order, A is the magnitude of the 
dominant wave and  is the total power of the signal. The phase can be considered 
as constant or variable according to a uniform probability law. 

In the case where none of the paths is dominant, the Rice model can be replaced 
by the Rayleigh model, defined by the following probability law: 

2

22

2
2)(

As

e
s

sP  [11.2] 

Moreover, it is also necessary to note the possible occurrence of the Doppler 
phenomenon when the transmitter and/or the receiver are moving. This phenomenon 
induces frequency shifts in the transmitted signals, directly related to the speed of 
movement, the carrier frequency and the directions of arrival of the waves, with 
respect to the direction of moving. As an example, taken from the acoustic field, let 
us consider an ambulance siren, which is perceived differently as it passes by an 
observer. 

In general, in digital transmission, the channel study leads to characterizing it, in 
order to facilitate the setting up of appropriate techniques for formatting and 
restoration of the information. As an example, let us consider the dispersion of the 
propagated path delays whose value gives an indication of the risk involved in the 
interferences inter symbols. 

11.4. Transmission of medical images  

11.4.1. Contexts 

Let us consider at least three different geographical contexts or situations. 

11.4.1.1. Transmission inside a hospital 

This considers transmission inside a hospital on fixed networks or hybrid 
networks with a low mobility. The methodologies of remote image reading using 
fixed networks inside the same service are already well developed. We can consider 
as an example of hybrid networks employed in this geographical context, the access 
to the medical data at the patient’s bedside in his hospital room, at the time of the 
physician’s visit; this using a simple notepad. 

11.4.1.2. Transmission outside hospital on fixed networks 

Traditionally, this context relates a hospital service to the outside world (to a 
medical doctor or specialist, other hospitals, etc.). For the purposes of telemedicine,
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specific architectures are proposed for an optimal exchange of all the information 
which can be useful for the diagnosis, including the hierarchical coding of the 
image, the inclusion of meta data suitable for the acquisition or the history of the 
image and the modes of interaction with these data. This is why part 9 of the JPEG 
2000 standard extends the concept of the image compression system to a real 
communicating multimedia system. JPEG 2000 Interactive Protocol (JPIP) specifies 
the interactions with the elements constituting the JPEG 2000 stream (component, 
quality layer, levels of resolutions, regions of interest, metadata, etc.) (Figure 11.5). 
JPIP is based on a client/server type of architecture. It is really the stream structure, 
which ensures the availability of the medical data for the client. By authorizing a 
remote consultation of a very large image – a size of 64Kx64K pixels is allowed – 
even on channels with a very small capacity, this protocol is well suited for 
transmissions outside the hospital on fixed networks. With its recent integration 
within the DICOM standard, it can be safely assumed that JPIP is going to be 
implemented rapidly in the near future, in hospital centers and for remote access. 

Figure 11.5. Client/server in JPIP (JPEG 2000 Interactive Protocol) [TAU 03]

11.4.1.3. Transmission outside hospital on mobile networks  

These situations will arise where emergency intervention is required to diagnose 
an injured patient by a medical team, where medical assistance is available at some 
distance and the environment is quite complex (e.g. involves a complex road 
network, a mountainous zone or sea navigation, etc.). 

11.4.2. Encountered problems 

Under these transmission modes, a very important factor to be considered is the 
loss of information. In these situations, the network layer of a fixed infrastructure or 
the physical layer of a mobile network can be considered as the origin. There can be 
two main types of impact on the data stream. 

11.4.2.1. Inside fixed networks 

In fixed networks, the loss of packet takes place quite frequently. Currently the 
packet losses reach more than 5%. These losses can be primarily attributed to the 
saturation of intermediate equipment as routers and secondarily to parasitic errors in 
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the transmission line (due to interferences, breakdowns, etc.). Inside routers, queue 
management is generally beyond repair: in fact, the impact of overload can fatally 
lead to the suppression of packets. 

The simplest of these mechanisms is called Random Early Detection (RED). Its 
name is due to its prevention inside routers. The principle is to put a probability of 
packet dropping as soon as a minimal threshold of filling is reached. This probability 
varies linearly according to the filling until a maximum threshold is reached, that 
occurs under the condition when the queue reaches saturation. If the maximum 
threshold is reached, the suppression is systematic. Figure 11.6 shows this scheme 
for preventive management. 

These bottlenecks also have an impact on the delay (although their effects are not 
that severe and they are not beyond repair) and this gives rise to a phenomenon 
called jitter, which results from the variations between transmission delays. 

Figure 11.6. RED queuing algorithm. The probability of packet dropping is a function  
of filling. Below SMIN, no packet is dropped. Between SMIN and SMAX, the probability 

increases linearly (random early discards). Above SMAX, all incoming packets are dropped 

11.4.2.2. Inside mobile networks 

11.4.2.2.1. Difficulties induced by mobility: some errors 

As was indicated in section 11.3.2.2, the transmission channel experiences 
several effects: slow and fast variations from one side and the Doppler shift from the 
other side. These effects have different consequences on the transmission quality. 
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The slow variations generated by the masking effects leads to a received power 
which can get considerably weakened during a relatively long duration. This 
generates losses by burst during a transmission. 

The fast variations due to the multiple path phenomenon induces relatively 
isolated errors. In fact, it is shown that the deeper the fading the rarer they are 
[LEE 93]. For example, a fading of 10 dB has a probability of appearance of 10% in 
time or space, whereas a fading of 30 dB has a probability of only 1%. However, 
whatever the nature of variations, the degradation of the received power involves a 
contraction of the digital constellation associated with the received signal (Figure 
11.7a). 

As far as the Doppler effect is concerned, the Doppler shift leads to a rotation of 
constellation at a frequency corresponding to this shift (Figure 11.7b). In order to 
determine the value of the symbols, i.e. to demodulate, it is thus necessary to remove 
this rotation first. 

   (a)         (b)  

Figure 11.7. Examples of perturbations of the digital constellation of a 16 QAM modulation 
(Figure 11.3) induced by the channel: (a) contraction due to a fall of the received power;  

b) rotation due to the Doppler effect

In recent systems, the techniques implemented against all these channel effects 
in time and in space, are based on the estimation of the channel. 

There are several techniques. At the emission, for example, a pre-coding of the 
information can be carried out and at the reception, an equalization [PRO 00] 
approach is often applied. 
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11.4.2.2.2. First tests and report 

Let us now consider two types of channel models, presented above: the Gaussian 
channel model and the Rayleigh channel model. The perturbations in the channel 
can be measured in terms of Binary Error Rates (BER) and the quality of image can 
be measured in terms of PSNR. The compression rate is noted as CR = n:1 for a rate 
of n.

Let us first consider an MRI 256x256 image, compressed by the JPEG and JPEG 
2000 standards, which shows the considerable fragility of these two standards, even 
under the situations of small perturbations in the transmission channel (Figure 11.8). 

(a)   (b)   (c) 

Figure 11.8. Example MRI images reconstructed after transmission via a Gaussian channel 
with BER = 2.49.10-4. (a) Original image; then compressed with CR = 5.6:1, 

by a JPEG coder (b) and a JPEG 2000 coder (c) 

In the case of images using DICOM, Figure 11.9a shows the average values of 
the PSNR of the images which can be reconstructed via a Gaussian channel, where 
the BER is varied. For a BER higher than approximately 1.5.10-4, the decoding of 
the files achieved, with DICOM format, appears to be impossible. 

The BER limit value of about 10-6 was found as being an acceptable binary error 
rate in order to be able to receive the image without error on this type of channel. 
Thus, beyond this limit, and under a BER value of about 10-4 (Figure 11.9a), and if 
the files can be opened at the receiving end, the received image inevitably contains 
some errors. 

As an example, in Figure 11.9b, we show an image received with a BER equal to 
5.38.10-5, i.e. with a PSNR = 47.79 dB. We can actually identify the appearance of 
artefacts in the image, as shown in Figures 11.9b and 11.9d (which shows the 
zoomed area of a corrupted zone). This may actually lead the doctor to make the 
wrong diagnosis or conclusion. 
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In Figure 11.10, we consider several cases of transmission in the Rayleigh 
channel for the same radiographic image (of size 440x440 pixels) for various BER 
values and a compression ratio CR = 10:1, with JPEG and JPEG 2000 coding. 

We have observed in these tests (with CR = 10:1) that, for the JPEG standard, it 
is not possible to perform a diagnosis of the reconstructed image for a PSNR below 
26 dB. Beyond a negligible BER value of 3.10-7, the JPEG will not allow a diagnosis 
of the reconstructed image (for PSNR 26 dB). Regarding the JPEG 2000, this 
standard is always more robust than JPEG in term of the PSNR values. 

For JPEG 2000, Figure 11.11 shows the reconstructed image after transmission 
with BER equal to 1.57.10-5, and a PSNR value of 39.73 dB, via the same Rayleigh 
channel.

All these tests show the vulnerability of the coders to transmission errors, and 
justify the introduction of a strategy for the protection of the information to be 
transmitted. 

Figure 11.9. Average behavior of DICOM (a) during transmissions by Gaussian channel of 
the MRI image shown in (b) with BER= 5.38.10-5. (c) and (d) are the zooms of the left lower 

part of the original image and image (b) respectively
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(a) (b)

Figure 11.10. (a) Original image of thoracic radiography compressed with JPEG and JPEG 
2000 at a compression ratio CR = 10:1, and (b) transmitted in a Rayleigh channel: variation 

of the PSNR as a function of the BER 

(a)                                                      (b) 

Figure 11.11. (a) Compressed image with CR = 10:1 according to JPEG 2000; 
(b) reconstructed image via a Rayleigh channel with BER = 1.57.10-5

11.4.3. Presentation of some solutions and directions 

In transmission, the error correcting codes are generally used for the purpose of 
protection. In the case where the protection is restricted to one data flow, we can 
thus consider an equal protection. On the other hand, unequal protection can be 
considered as soon as the priorities are defined for each flow [ALB 96]. 
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Moreover, by adapting the protection to the characteristics of the transmission, 
the BER can also be significantly reduced, while preserving an optimal useful flow. 

11.4.3.1. Use of error correcting codes  

There is a great number of Error Correcting Codes (ECCs). Among the different 
classical codes, we can specifically mention the linear block codes, the 
convolutional codes (e.g. [SOU 04] described the behavior of these 2 classes in 
terms of BER and SNR on Gaussian or Rayleigh channels), cyclic codes [DEB 00] 
and the turbo codes [BER 93]; for a more exhaustive list, see [MAC 04] or [LIN 05]. 

Let us recall that the principle of a correcting code is to introduce redundancy 
into the transmitted signal. Thus, this redundant information is used at the moment 
of reception to detect and correct the isolated errors or an entire data packet. 

For each ECC, a certain number of characteristic parameters are defined. 
Therefore, if coding consists of associating with a given information word of length 
k, a word of the code of length n, such that (n > k); thus the rate Red = (n-k)/k 
expresses the rate of the introduced redundancy. The efficiency of the code is 
characterized by the ratio R = k/n. The error correcting capacity, denoted t of the 
code is defined using a distance of dissimilarity, denoted d between two code words 
(e.g. the Hamming distance). Generally, d n-k+1.

Among the cyclic codes, the RS (Reed-Solomon) codes [REE 60] are intensively 
used. They have the property of coding M-ary symbols. By this grouping of binary 
characters, the RS codes correct the arriving errors in burst mode. The distance 
between the words of codes is maximal, namely: d = n-k+1. This allows 
maximizing the correcting capacity. Therefore, these codes are optimal or MDS 
(Maximum-Distance Separable). 

In the following, these codes are denoted RS (n, k).

11.4.3.1.1. Equal protection using Reed-Solomon codes  

We have chosen the classical codes RS (255, k), which are well known for their 
use in spatial communications. Here n = 255 = 28 -1. The source symbols are the 
coefficients of a Galois field polynomial of dimension 256 [RIZ 97], and t (with: t = 
(255-k)/2) is the capacity of correction allowed by the codes. Table 11.2 indicates, 
for both an MRI image and a thoracic radiography image (shown in Figure 11.8 and 
11.10, respectively), the effect of adding a RS (255, k) code on the compressed 
image (size expressed in Kbytes) and on the other hand, its efficiency denoted R. We 
must note that the considered images are encapsulated in DICOM format. 
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Image type MRI Radiography 

Initial volume 129 Kbytes 378 Kbytes 

Compressed volume with RS 135 Kbytes 394 Kbytes k = 245 

Efficiency R 95.56% 95.94% 

Compressed volume with RS 154 Kbytes 449 Kbytes k = 215 

Efficiency R 83.77% 84.19% 

Compressed volume with RS 179 Kbytes 522 Kbytes k = 185 

Efficiency R 72.07 % 72.41% 

Table 11.2. Effect of adding a RS (255, k) code

If these correcting codes are applied to the whole MRI image (i.e. equal 
protection), a bounded (i.e. limited) BER is thus obtained, as shown in Table 11.3. 
This allows a perfect image reconstruction according to the Red redundancy rate. In 
addition, we consider here that the transmission is performed through a Gaussian 
channel.

That means, for example, that the RS (255, 225) code can correct the errors of 
the channel up to a BER of the order of 3.10-3, for a data redundancy cost of 13.33%. 
Beyond that, the reception systematically includes errors. Consequently, for a BER 
higher than 1.8.10-2, no correction is possible whatever the rate of redundancy. 

k 255 245 225 195 155 

Red 0 4.08% 13.33% 30.77% 64.52% 

R 1 95.56% 87.16% 76.33% 60.56% 

BER limit 9.46.10-7 5.82.10-4 3.2.10-3 8.2.10-3 1.73.10-3

Table 11.3. Acceptable BER limits when adding RS (255, k) code  
on the DICOM MRI image of Figure 11.9

We can also display the results using a limit curve. We thus obtain on the 
“colon” image shown in Figure 11.12a, the BER limit curve corresponding to an 
error-free reception with respect to the Red rate (Figure 11.12b). 
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 (a) (b) 

Figure 11.12. (a) Colon image; (b) curve of maximal BER with respect to the redundancy 
rate for an error-free reconstruction 

Finally, it should be noted that allowing a higher priority to the header of 
DICOM data, does not allow any additional improvement regarding the robustness 
related to the image. 

11.4.3.1.2. Towards a content-oriented protection 

The main limit of equal protection is that the reconstruction is “all or nothing". 
This leads to the idea of a content-oriented protection of the data where the 
reconstruction is more progressive. Moreover, it is clear that if we protect certain 
parts of the transmitted file, we may improve the performances in terms of global 
redundancy. 

A first idea consists of using a fixed length binary encoder for high priority data. 
The results of simulation show a significant resilience to the errors, with a small 
efficiency loss. This supposes the use of scalable source encoders like the ones 
allowed by JPEG 2000, SPIHT, LAR (see Chapter 7) or some video encoders such 
as MPEG and H26x. Closer to the content, the Forward Error Correcting codes 
(FEC), which include a scalable protection of the source, have also been introduced. 
For example, Mohr et al. [MOH 00] use SPIHT source encoding, coupled with RS 
codes for a packet correction on both ATM transmission and MRI images. Likewise, 
signals with temporal constraints (e.g. video) can be coupled with RS codes having 
different correction capacities. This unequal protection allows a gain of expected 
quality at the reception, which is not negligible with respect to an equal protection. 

(B
ER

 (1
0-4

)
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The Mojette transform also handles this unequal protection, which is particularly 
well suited to overcoming the problem of packet loss experienced on some networks 
by significantly reducing the complexity. 

11.4.3.2. Unequal protection using the Mojette transform 

The Mojette transform [GUE 05] is a discrete and exact Radon transform. While 
its original use relates to tomographic reconstruction, it also presents good properties 
to ensure the integrity of data during a transmission on unreliable networks. In fact, 
it enables the easy representation of information by a set of redundant 1D 
projections. An example of this representation is given by Figure 11.13. 

Figure 11.13. Mojette transform of a 4x4 image. Projections (-2, 1), (1, 1) and (1, -1) are 
represented. Each element of projection results from the sum of the image elements in the 

direction of projection. In this example, the modulo 2 addition (XOR operator) is used

These projections are regarded as many transport units (packets) whose loss or 
misordering does not disturb the reconstruction of the data at reception. From an 
encoding point of view, the 2D support of the information acts like a true 
geometrical buffer memory in the sense that the data flows using this support from 
which projections are calculated. By varying the number of projections necessary for 
the reconstruction of a geometrical buffer memory, it is possible to protect 
hierarchical information in an unequal way. Within this context, all projections are 
equivalent in terms of reconstruction. Progressive decoding of information is 
supported by an unequal number of received projections. For example, the low 
resolution of an image may require a low number of projections in order to be 
reconstructed (i.e. supporting a high rate of packets loss), whereas higher resolutions 
will require a greater number of projections. This mode of representation allows us 
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to support variable rates of redundancy, depending on both the priority of the 
information and the status of network. 

In this way, any source encoder having a scalable output representation can be 
protected. In [BAB 05], an unequal protection of lossless LAR encoder is carried 
out. In addition, an efficient comparison to the approaches proposed in section 
11.4.3.1 has been performed. A number of projections are optimally allocated for 
each resolution of the encoder, depending on the quality of the image and of the 
characteristics of the transmission channel. The model of packet loss follows an 
exponential law here (i.e. the average value of the losses is given by parameter  of 
the law). The progression of decoding depends on the number of projections 
received, in a deterministic way. A set of mi projections out of N is sufficient to 
reconstruct the resolution i. An example of encoding is illustrated in Figure 11.14. 
The unequal protection is applied to an angiography transmitted through a channel 
where  = 10%. The curve indicates the expected qualities in terms of PSNR at the 
reception taking into account both the source and the status of the channel. To each 
rate corresponds the optimal protection of the 6 levels of resolution delivered by the 
encoder. The singularities correspond to the decision of the system to send an 
additional flow in order to reach the available maximal quality according to the 
available rate. For example, to reach a quality of 38.51 dB, the 6 resolutions must be 
transmitted; for N = 16 projections: 8, 12, 13, 13, 15 and 16 projections are 
respectively necessary for the reconstruction under the conditions of transmission. 
For comparison purposes, the analysis rate-distortion for RS codes coupled to LAR
is also given in Figure 11.14. For better comparison legibility, only the range of  
0-5 bpp is displayed. On average, an overhead of 2.78% is recorded for Mojette
encoding in this example, but for a complexity which is linear with respect to the 
number of pixels and the number of projections. Moreover, the increase in the data 
amount or the rate of loss, contributes to the reduction of the encoding cost. 
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(a)

(b)

Figure 11.14. Mojette unequal protection applied to LAR source coding of a 512(512 
angiographic image: (a) preview of the raw angiographic image; (b) rate/quality analysis for 

two joint source-channel: LAR source coding with RS and Mojette coding 

11.5. Conclusion 

The aim of this chapter was to highlight, on the one hand, the difficulties related 
to joint coding, dedicated specifically to the medical data in complex geographic 
environments and, on the other hand, to provide some useful prospects. The problem 
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can be expressed simply: the more significant the compression rates become, the 
more sensitive the information provided by the encoder system is. Therefore, this 
makes it necessary not to separate the links constituting the source encoding and the 
channel encoding. In fact, some protection methods which use detecting/correcting 
codes can solve some situations, but require an increased redundancy. Moreover, 
their correcting capacity is limited because only one erroneous bit may involve the 
loss of the entire image. 

Even if we know that the joint source-channel coding is the subject of very 
active research, it still remains far from being optimal. Therefore, unequal error 
protection codes are currently under development such as the Mojette transform 
which proposes an intelligent protection depending on the importance of the source 
information contained in the binary stream. These codes modify the organization of 
the source data when packet losses appear.  

Likewise, joint decoders have been developed. We can cite, in particular, those 
built for convoluted codes and the turbo-codes [JEA 05], starting from a 
probabilistic estimation of the source model and a joint coding associating 
arithmetic coding (VLC) and correcting codes ECC. 

In general, for multimedia information, this problem remains both open and 
promising. However, it is essential to solve it within the context of medical data 
reading. Of course, an appropriate quality of service should be guaranteed. 
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Conclusion

This book, dedicated to the compression of medical images and signals, is the 
result of the collective work of a number of physicians and scientific researchers 
from a dozen different French research teams. Working on the project has provided 
the stimulus for cross-laboratory exchanges and collaboration between researchers 
and various scientific communities. Indeed, a number of chapters have been co-
written by researchers from different teams. In addition, this work goes hand in hand 
with the new policy implemented over the years in most scholarly societies on 
promoting medical and biological engineering and specifically the processing of 
medical signals and images. 

Most specialists agree on the fact that it is essential and inevitable to proceed 
with the compression of medical data in order to guarantee a good Quality of 
Service in any PACS, wireless transmissions or even storage systems. We have 
understood in the course of our work that most compression techniques used on 
medical data today are of a rather “general application” in the sense that they can 
apply to medical images from a variety of sources. We thus believe that there is still 
room for improvement in this particular field before reaching an optimal 
performance for all encoders applied to medical images. Why not have specific 
encoders for ultrasound images or videos? Or a specific encoder for MRI images? 
Ideas are already bustling within the community, and many attempts at 
improvements have been undertaken. Systems must therefore adapt to the 
specificities of medical data, so that they can then become integrated into a DICOM 
standard to guarantee the durability of the image and its capacity to be shared and 
transmitted thereafter. Such solutions will not be found overnight, not necessarily 
for technical reasons but more as a result of financial, legal and organizational 
constraints. In the short term, we may begin by developing pre-processing and post-
processing techniques that are either posterior or subsequent to already existing 
standards. Such changes should be made with the aim of improving the performance 
of compression procedures on medical data. 
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Other than the fact that compression of medical images is now accepted as 
necessary, the medical community have come to “tolerate” the use of irreversible 
methods. Nevertheless, the possible deterioration that results from these methods 
must be carefully controlled by objective and specifically targeted techniques of 
quality evaluation. Such techniques may therefore apply to monodimensional, two-
dimensional or even three-dimensional data. 

Finally, we must acknowledge the importance of security issues in any 
compression process; a problem that has been thoroughly addressed in the last two 
chapters of this book.  

As referred to in the Preface, we have provided our community with the 
“MeDEISA” database, accessible on the Internet, so as to evaluate the performances 
of our own algorithms. This database is constantly evolving as it is intended to 
include images from the most recent acquisition procedures. Images from the 
MeDEISA have been used on many occasions in this work. 

We truly hope that this work will serve as a useful guide to all students, 
engineers, professors, researchers and physicians for any further projects and 
research carried out in the field of medical data compression. Our aim was not to 
dictate the findings from one community but rather to gather the work from both the 
field of technology and that of medicine. 
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