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Preface

I started this book roughly 20 years ago with the intention of producing a finished product
within a year or so. But reality in the form of government research grants and “publish
or perish” soon set in and so now, at long last, I have finally finished. The final product
has of course changed significantly over these intervening years, both in content and in
breadth. My original plan was to put together a six- or seven-chapter treatise on basic
“Fourier-based” coherent imaging and diffraction tomography complete with Matlab codes
implementing the imaging and inversion algorithms presented in the text. The current book
certainly includes this material, but also includes a host of other material such as the chapter
on time-reversal imaging and the four chapters on the propagation and scattering of waves
in homogeneous and inhomogeneous backgrounds. More importantly, the “Fourier-based”
inversion schemes originally used to develop much of coherent imaging and linearized
inverse scattering (diffraction tomography) have been replaced by the much more powerful
singular value decomposition (SVD). This approach allows virtually all of the linearized
inverse problems associated with the wave and Helmholtz equation both in homogeneous
and in inhomogeneous backgrounds to be treated in a uniform “turn the crank” manner.

My work on imaging and wavefield inversion began as a graduate student under Profes-
sor Emil Wolf at the University of Rochester. Originally I had intended to pursue my Ph.D.
in quantum optics, but had my plans changed significantly by an off-hand remark by Pro-
fessor Wolf during one of our meetings. We were discussing the classical theory of imaging
by lenses, at which point he asked the question “what exactly is an image?” The answer
to that seemingly simple question set us off on a road that included non-radiating sources,
non-scattering scatterers, and other bizarre objects that the mathematician would recog-
nize as being members of the null space of the mapping from object to “image.” While
the purely non-radiating sources and non-scattering scatterers are in the null space of the
mapping from object to image, there are other strange objects that I have chosen to call
“essentially” non-radiating sources (or scatterers). These objects are not in the null space
but are very close to it, having the property that they only radiate (or scatter) evanescent
waves outside of their support and are the cause for instability of inverse problems related
to the wave and Helmholtz equations. I have tried to couple these physical interpreta-
tions of non-uniqueness and instability to the purely mathematical view of these properties
throughout the book. Indeed, the melding of physics with mathematics is one of my major
goals in this book.

The general areas of imaging and inverse scattering are multidisciplinary in that
they require a strong foundation in physics, mathematics, and signal processing. I
have tried to include the necessary background in all three areas, but assume that the
reader is already proficient in complex-variable theory and linear algebra at the senior
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undergraduate/first-year graduate level and has at least a rudimentary familiarity with the
wave and Helmholtz equations in a homogeneous medium such as free space. I have also
tried to emphasize the underlying physics of the various topics covered in the book but,
unfortunately, at the expense of mathematical rigor. This is especially true in the develop-
ment of time-independent scattering theory in Chapters 6 and 9, which follow the purely
formal approach used in non-relativistic quantum scattering (collision) theory.

The vast majority of the book treats scalar wave theory, with only the last chapter devoted
to vector waves in the form of the electromagnetic (EM) field. The reasons for this are that
all of the essential ingredients of coherent imaging and inverse scattering are already con-
tained in the scalar theory and that the vector theory, at least for the EM field, can be
reduced to three or fewer coupled scalar wave problems. Indeed, by using the so-called
Whittaker or Debye representations presented in Chapter 11, EM inverse source and scat-
tering problems for planar or spherical geometries can be reduced to two uncoupled scalar
wave problems that are treated exactly in the manner presented in earlier chapters of the
book. I have also, for the most part, restricted the treatment of the various inverse problems
to linearized formulations of the corresponding forward problems. The exceptions to this
are the inverse source problem which, by its nature, is a linear problem and one of the
formulations of inverse scattering from conducting surfaces in Chapter 7.

The goal of this book is to present the mathematical (and physical) foundations of imag-
ing and wavefield inversion rather than to push specific inversion schemes or algorithms
or to present detailed results of the use of such algorithms on real data. To this end, I have
concentrated on simple yet representative Matlab-based examples that are easily under-
stood and directly related to the theoretical development presented in the book. The myriad
details that attend any actual application of these algorithms to real data are not presented.
Such details include the methods required to retrieve the phase of an optical field in an
optical-imaging or inverse-scattering algorithm and the need to align, usually through the
use of digital filters, the outputs from antenna or transducer arrays in ultrasound or EM
inverse-scattering or time-reversal imaging experiments.

Finally, a word about the references cited in the book. Originally I intended to include
as complete a list as possible of the majority of papers and books by workers in the general
field of inverse scattering and wavefield inversion. I soon found the list growing beyond
bound and was forced to limit the list to those references that I felt to be directly related
to the material presented in the book. The book is mostly about linearized formulations of
inverse scattering and, thus, I have left out an enormous number of references, especially
within the mathematics community, to exact non-linear approaches to inverse scattering. I
have also left out virtually all references to applications since the book is about the under-
lying theory of linearized inverse scattering and is not concerned with applications of this
theory in various fields such as optics, acoustics, etc. I apologize to the many researchers
who may feel slighted by not being included in the bibliography or not being suitably
referenced.

I would like to thank my former professor and good friend and colleague over the past
(can it be 40?) years Emil Wolf. Much of the material in the book can be traced back to
my Ph.D. thesis and to joint papers by Emil and myself. I would also like to thank my
colleague of many years’ standing Dr. George Sherman and the dozens of current and
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former students and colleagues who collaborated on the development and application of
the material presented in the book. Special thanks go to my former friend and colleague
Alan Witten, who died unexpectedly in 2005. Alan, who was professor of geophysics at
the University of Oklahoma, used acoustic diffraction tomography to help find and unearth
seismosaurus, the longest dinosaur yet discovered (see NY Times “New X-Ray Technique
Helps Dinosaur Hunters,” Science Section, Dec. 12, 1989), and whose work was, at least
partially, the motivation for the opening scenes in the original Jurassic Park movie. I would
also like to thank Dr. Arje Nachman of the AFOSR and Dr. Richard Albanese, director
of the mathematical products division at the Brooks Air Force Base in San Antonio, for
financial and inspirational support over the past 20 years. Finally, I must thank Simon
Capelin and the wonderful staff at Cambridge University Press. Simon first met me about
the book in 1990 in my company office in downtown Boston to discuss the project that I
promised would be finished in less than a year.





1
Radiation and initial-value problems for

the wave equation

1.1 The radiation problem

We consider the radiation of waves from a real-valued space- and time-varying source
q(r, t) embedded in an infinite, homogeneous, isotropic and non-dispersive and non-
attenuating medium such as free space. The real-valued radiated wavefield satisfies the
inhomogeneous scalar wave equation

[
∇2 − 1

c2

∂2

∂t2

]
u(r, t) = q(r, t) (1.1)

throughout all of space and for all time, where c is the constant velocity of wave propaga-
tion in the background medium. We will assume that the source q is compactly supported
in the space-time region {S0|r ∈ τ0, t ∈ [0, T0]}, where τ0 is its spatial volume and [0, T0]
the interval of time over which the source is turned on. We also assume that the source
possesses finite energy (is square-integrable in S0)

Eq =
∫ T0

0
dt
∫
τ0

d3r|q(r, t)|2 <∞, (1.2)

although we will sometimes have to enlarge the class of sources to include Dirac delta
functions, which are not square-integrable, but these cases are special and will be dealt
with on an individual basis as required.

The reader may wonder why we have assumed that the source radiates only over a finite
time period [0, T0] as opposed to being allowed to radiate over the semi-infinite interval
[0,∞). The main reason is that it simplifies the mathematics without being a real restriction
on the theory and results that we will obtain. In particular, although the time interval over
which the source radiates is finite, it can be arbitrarily large so that this source model can
apply to any real source to arbitrary accuracy. Moreover, most of our results will be valid
in the limit T0 →∞ so that the assumption places little or no restriction on our theoretical
development.

The solution to the inhomogeneous wave equation Eq. (1.1) is not unique. In particular,
it is clear that we can add to u any solution to the homogeneous wave equation[

∇2 − 1

c2

∂2

∂t2

]
δu(r, t) = 0 (1.3)
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2 Radiation and initial-value problems for the wave equation

and still obtain a solution to Eq. (1.1). In order to obtain a unique solution it is necessary
to specify initial conditions in the form of the Cauchy conditions

u(r, t)|t=0 = u0(r),
∂

∂t
u(r, t)|t=0 = u′0(r), (1.4)

where u0 and u′0 are arbitrary (real-valued) functions of position r. We will show below
that the inhomogeneous wave equation Eq. (1.1) together with Cauchy conditions at t = 0
suffice to uniquely determine the field u. The appropriate initial conditions required of the
physically meaningful solution to Eq. (1.1) are derived from the requirement of causal-
ity; i.e., we seek the particular solution to the wave equation u+(r, t) that is causally
related to the source; i.e., that vanishes prior to the turn-on time of the source (t = 0).
The required causality of the field u+ is equivalent to requiring that this field satisfy homo-
geneous Cauchy conditions at t = 0; i.e.,

u+(r, t)|t=0 = 0,
∂

∂t
u+(r, t)|t=0 = 0,

where we have denoted the causal solution to Eq. (1.1) with the subscript +. The problem
of solving the inhomogeneous wave equation Eq. (1.1) under the condition of causality (or,
equivalently, homogeneous Cauchy conditions at t = 0) is called the radiation problem.
The problem of solving the homogeneous wave equation Eq. (1.3) subject to arbitrary
inhomogeneous Cauchy conditions at t = 0 is called the initial-value problem. We will
treat both problems in this chapter.

1.1.1 Fourier integral representations

We will make frequent use of Fourier integral representations of space and time dependent
functions and fields throughout the book. We will assume throughout that any function (or
field) f (r, t) possesses a temporal Fourier transform defined by

F(r,ω) =
∫ ∞
−∞

dt f (r, t)eiωt, (1.5a)

and that the temporal transform can be further transformed via a spatial Fourier transform
of the form

F̃(K,ω) =
∫

d3r F(r,ω)e−iK·r, (1.5b)

where the integration in Eq. (1.5b) is carried out over all of R3. We further assume that
each of the transforms can be inverted to yield Fourier integral representations given by

f (r, t) = 1

2π

∫ ∞
−∞

dω F(r,ω)e−iωt, (1.6a)

F(r,ω) = 1

(2π )3

∫
d3K F̃(K,ω)eiK·r. (1.6b)
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We can, of course, combine the temporal and spatial Fourier integral representations into a
single space-time representation of the form

f (r, t) = 1

(2π )4

∫ ∞
−∞

dω
∫

d3K F̃(K,ω)ei(K·r−ωt), (1.7a)

where

F̃(K,ω) =
∫ ∞
−∞

dt
∫

d3r f (r, t)e−i(K·r−ωt). (1.7b)

As in the presentation given above, we will generally denote functions of space and
time (space-time) by lower-case letters and their temporal (time) transforms by upper-case
letters. The spatial Fourier transforms of the latter transforms are then represented by an
upper-case letter with a tilde on top. Thus, we have the progression

f (r, t)⇐⇒ F(r,ω)⇐⇒ F̃(K,ω), (1.8)

where the double arrow⇐⇒ denotes the Fourier-transform operation. We will explicitly
display the limits on one-dimensional integrals as in the temporal and inverse temporal
transforms given above but will not explicitly display the limits on multi-dimensional inte-
grals unless their integration domains are finite.

The classical theory of the Fourier integral requires that the functions f (r, t), F(r,ω)
and F̃(K,ω) are all absolutely integrable and that the integrals be interpreted as Lebesgue
integrals for the above set of equations to hold. If, in addition, the functions decay suffi-
ciently fast at infinity they will possess the important property that multiplication by the
frequency variable in the frequency domain corresponds to differentiation in the time or
space domain. The modern theory of the Fourier integral is based on distribution theory
(the theory of generalized functions) and avoids all of the analysis and issues of the clas-
sical theory as well as enlarging the class of functions that can be transformed to include
discontinuous and non-differentiable (generalized) functions. Within the context of distri-
bution theory any generalized function f (r, t) will possess transforms and inverse trans-
forms as given above and partial derivatives that are related to their transforms via the
equations

∂n

∂tn
f (r, t)⇐⇒ (−iω)nF(r,ω),

∂n

∂xn
F(r,ω)⇐⇒ (iKx)nF̃(K,ω), (1.9)

where n is any positive integer, x is any of the Cartesian components of r, and the double
arrow⇐⇒ denotes the Fourier-transform operation.

Important examples of generalized functions are the Dirac delta functions which are
defined according to the equations1

1 We will not employ different symbols for one-, two- and three-dimensional delta functions unless their dimen-
sionality is not clear from their argument.
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φ(0) =
∫ ∞
−∞

dt δ(t)φ(t), χ (0) =
∫

d3r δ(r)χ (r), (1.10)

where φ(t) and χ (r) are any well-behaved ordinary functions of t and r, respectively. The
Dirac delta functions do not have meaning within the framework of classical function the-
ory and must be interpreted within the framework of distribution theory, where the “inte-
grals” in the above definitions are taken to be inner products defined on a suitable space of
“testing functions.” Although δ(t) and δ(r) are not ordinary functions, they can be formally
manipulated and treated as such as long as at the end of a calculation they appear in inte-
grals with ordinary functions that can then be given meaning through Eqs. (1.10). In this
connection, we note that the Fourier transforms of the delta functions are given by

1 =
∫ ∞
−∞

dt δ(t)eiωt, 1 =
∫

d3r δ(r)e−iK·r, (1.11a)

which follows from Eqs. (1.10) on taking φ(t) = exp(iωt) and χ (r) = exp(−iK · r). The
delta functions then admit Fourier-integral representations given by

δ(t) = 1

2π

∫ ∞
−∞

dω e−iωt, δ(r) = 1

(2π )3

∫
d3K eiK·r. (1.11b)

We will interpret the Fourier integral throughout this book within the context of distri-
bution theory, which amounts to using the transforms and inverse transforms in a purely
formal way without any regard for the properties of the functions being transformed or
inverse transformed. In most cases the results we obtain will hold within the classical the-
ory of the transform but will be obtained using much less effort than would be required
using the classical theory. In some cases the results cannot be obtained using classical the-
ory but have a perfectly acceptable interpretation within distribution theory as, for example,
will be the case when we compute the Green function of the wave equation in the follow-
ing section. We will not detour into a review of distribution theory but will present certain
results from the theory when needed. We refer the interested reader to the books on the
subject listed at the end of the chapter.

Example 1.1 As a simple example of the use of the Fourier transform we consider the initial-
value problem for the one-dimensional homogeneous wave equation[

∂2

∂z2
− 1

c2

∂2

∂t2

]
u(z, t) = 0,

together with the Cauchy conditions

u(z, t)|t=0 = u0(z),
∂

∂t
u(z, t)|t=0 = u′0(z).

It is easy to verify that the general solution is given by

u(z, t) = f (z− ct)+ g(z+ ct), (1.12)

where f and g are arbitrary functions that have derivatives up to second order. These func-
tions are uniquely determined from the Cauchy conditions via the equations
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f (z)+ g(z) = u0(z), − ∂
∂z

f (z)+ ∂

∂z
g(z) = 1

c
u′0(z).

The above coupled set of equations is easily solved using the Fourier transform. In partic-
ular, on Fourier transforming both sides of the above equations we obtain the result

f̃ (K)+ g̃(K) = ũ0(K), −iKf̃ (K)+ iKg̃(K) = 1

c
ũ′0(K),

where

f̃ (K) =
∫ ∞
−∞

dz f (z)e−iKz

and similarly for the other transformed quantities. We conclude that

f̃ (K) = 1

2

[
ũ0(K)+ i

cK
ũ′0(K)

]
,

g̃(K) = 1

2

[
ũ0(K)− i

cK
ũ′0(K)

]
,

so that the solution to the Cauchy initial-value problem is given by Eq. (1.12) with

f (z) = 1

2π

∫ ∞
−∞

dK

f̃ (K)︷ ︸︸ ︷
1

2

[
ũ0(K)+ i

cK
ũ′0(K)

]
eiKz,

g(z) = 1

2π

∫ ∞
−∞

dK

g̃(K)︷ ︸︸ ︷
1

2

[
ũ0(K)− i

cK
ũ′0(K)

]
eiKz.

Example 1.2 In many cases treated here and in later chapters the temporal and/or spatial
Fourier transforms are not only ordinary (as opposed to generalized) functions but also
analytic functions of the transform variables. As an example, consider the temporal trans-
form Q(r,ω) of the source q(r, t), which is assumed to be square-integrable and supported
in the finite time interval [0, T0]. This transform is an entire analytic function of ω through-
out the entire complex-ω plane. To show this we set f (r, t) = q(r, t) in Eq. (1.5a) and
expand the exponential in a Taylor series centered at the origin. We then interchange the
orders of summation and integration (which is allowable since the integral has finite limits
and the series converges uniformly) to obtain the result

Q(r,ω) =
∞∑

n=0

Anω
n, (1.13)

where Q(r,ω) is the temporal transform of q(r, t) and

An = (i)n

n!

∫ T0

0
dt tnq(r, t).

Since the time-dependent source q(r, t) is square-integrable and compactly supported in
[0, T0], it must be at least piecewise continuous within this interval so that
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|An| ≤ max|q(r, t)|
n!

∫ T0

0
dt tn = max|q|T (n+1)

0

(n+ 1)!
.

It then follows that the Taylor series of Q(r,ω) given in Eq. (1.13) is term by term smaller
than the series

G(ω) =
∞∑

n=0

max|q|T (n+1)
0

(n+ 1)!
ωn. (1.14)

But the latter series has, by the ratio test, an infinite radius of absolute convergence, i.e.,∣∣∣∣∣Max|q|T(n+2)
0

(n+ 2)!
ωn+1

∣∣∣∣∣∣∣∣∣∣Max|q|T (n+1)
0

(n+ 1)!
ωn

∣∣∣∣∣
= T0

|ω|
n+ 2

→ 0, n→∞, ∀ω.

It then follows by the comparison test that the series Eq. (1.13) also converges absolutely
for all ω and, hence, is entire analytic.

1.2 Green functions

The commonly used expressions “the Green’s function” and “a Green’s function” repre-
sent an atrocity to the English language. I doubt that those who use them ever refer to “a
Shakespeare’s sonnet.” (Rohrlich, 1965)

We define a Green function of the wave equation to be any (real) solution to the wave
equation Eq. (1.1) for the special case in which the source q(r, t) = δ(r−r′)δ(t− t′), where
δ(·) is the Dirac delta function and r′ and t′ are considered to be free parameters that can
assume any values in space-time. A Green function to the wave equation thus satisfies the
equation

[
∇2 − 1

c2

∂2

∂t2

]
g(r, r′, t, t′) = δ(r− r′)δ(t − t′). (1.15)

It is seen that a Green function g(r, r′, t, t′) is simply the field radiated by an impulsive
source located at the space-time point r′, t′. It follows from the homogeneity of infinite
free space and time that any physically meaningful Green function must then be a function
only2 of the difference vector R = r− r′ and the time difference3 τ = t − t′; i.e.,

2 This follows from the fact that any two space-time points in infinite homogeneous isotropic space-time are
indistinguishable; i.e, since there are no physical boundaries or inhomogeneities all space-time points are equiv-
alent so that solutions to the wave equation must be translationally invariant in space-time.

3 We will also use the Greek symbol τ to denote regions of space throughout the book; e.g., τ0 as the space
support of a source q(r, t) to the wave equation. No confusion should arise, however, since the meaning of the
symbol will be clear from the context.
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g(r, r′, t, t′) = g(r− r′, t − t′) = g(R, τ ).

We can thus replace Eq. (1.15) by the simpler equation[
∇2 − 1

c2

∂2

∂τ 2

]
g(R, τ ) = δ(R)δ(τ ), (1.16)

where the Laplacian operator ∇2 is taken with respect to the components of the R vector.
A Green function, like any solution to the inhomogeneous wave equation, is not unique.

In particular, given any Green function g(R, τ ) we can obtain a new Green function by
adding any function δg(R, τ ) that satisfies the homogeneous wave equation Eq. (1.3).
The different Green functions obtained in this way will satisfy the same defining equa-
tion Eq. (1.16) but different initial conditions. As discussed earlier, the choices of initial
conditions that result in a unique solution of the inhomogeneous wave equation are known
to be the value of the field and its first time derivative at some initial time (the Cauchy
conditions). A time-domain Green function g(R, τ ) to the wave equation in infinite free
space is thus uniquely determined by Cauchy conditions at τ = 0.

To compute a Green function we represent it in the space-time Fourier integral represen-
tation given in Eqs. (1.7) and make use of Eqs. (1.9). We then find that[

∇2 − 1

c2

∂2

∂τ 2

]
g(R, τ )⇐⇒

[
−K2 + ω

2

c2

]
G̃(K,ω),

where⇐⇒ denotes a four-dimensional Fourier transformation and K2 = K·K. The space-
time Fourier transform of Eq. (1.16) is then found to be

[−K2 + k2]G̃(K,ω) = 1,

where k = ω/c is the “wavenumber” of the background medium and we have used the fact
that the transforms of the delta functions in Eq. (1.16) are each unity. On using the inverse
space-time Fourier transform we then obtain

g(R, τ ) = 1

(2π )4

∫ ∞
−∞

dω
∫

d3K
ei(K·R−ωτ )

−K2 + k2
. (1.17)

1.2.1 Retarded and advanced Green functions

As discussed above, a Green function is not unique and, indeed, the Fourier integral repre-
sentation Eq. (1.17) does not uniquely define a Green function due to the improper nature
of the integral resulting from the poles of the integrand at k = ω/c = ±K. In order to give
meaning to the integral it is necessary to deform the ω contour to avoid these poles, which
is possible in a number of ways, with each scheme yielding a different Green function. The
Green function of most physical interest is the causal Green function, which vanishes for
negative time τ < 0 and results in homogeneous Cauchy conditions at τ = 0. The causal
Green function, which is referred to as the retarded Green function for reasons discussed
below, results from deforming the ω integration contour to lie above both poles, leaving
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the upper half-plane (u.h.p.) free of singularities. If τ < 0 the contour can be closed in the
u.h.p., from which it follows from Cauchy’s integral theorem that the integral vanishes and
the Green function is causal. If τ > 0 we can close the ω integration contour in the lower
half-plane (l.h.p.) to obtain

g+(R, τ ) = c2

(2π )4

∫
d3K eiK·R

∫
C

dω
e−iωτ

ω2 − c2K2
, τ > 0, (1.18)

where C is the causal contour that lies above both poles and is closed over an infinite
semicircle in the l.h.p., and where we have used the subscript+ to denote the causal Green
function. We can now evaluate the integral using residue calculus to find that

g+(R, τ ) = − c

(2π )3

∫
d3K eiK·R sin(cKτ )

K
, τ > 0. (1.19)

To finish the calculation we transform to spherical polar integration variables in
Eq. (1.19) with the polar axis aligned along the direction of R. We then have that
K · R = KR cos θ , with θ the polar angle of K. The integration over the azimuthal angle in
Eq. (1.19) can then be performed, and we obtain

g+(R, τ ) = − c

(2π )2

∫ ∞
0

K dK sin(cKτ )
∫ π

0
eiKR cos θ sin θ dθ

= − c

(2π )2R

∫ ∞
−∞

dK sin(cKτ )sin(KR), τ > 0.

The final step is to expand the sine functions using Euler’s identity and use the Fourier-
integral representation of the delta function given in Eq. (1.11b). We obtain after some
minor algebra

g+(R, τ ) = − 1

4π

δ(τ − R/c)

R
, (1.20a)

and g+(R, τ ) = 0 for τ < 0.
As mentioned above, the causal time-domain Green function defined in Eq. (1.20a) is

generally known as the retarded Green function. The motivation for this nomenclature
is that g+(r − r′, t − t′) represents the field radiated from an impulsive source located
at the space-time point r′, t′ and this field is not observed at the space point r until
the time τ = R/c ⇒ t = t′ + |r − r′|/c; i.e., the observation time is retarded by
the distance between the two field points divided by the velocity c of the background
medium.

Another time-domain Green function of interest is the acausal or advanced Green func-
tion g−(R, τ ). This Green function results from taking the ω contour of integration in the
Fourier-integral representation Eq. (1.17) to lie below the two poles. In this case the l.h.p. is
free of singularities and the integral vanishes if τ > 0, resulting in the acausal Green func-
tion. If τ < 0 we can close the contour in the u.h.p. and, following steps almost identical
to those used to compute g+(R, τ ), we obtain



9 1.2 Green functions

g−(R, τ ) = − 1

4π

δ(τ + R/c)

R
, (1.20b)

and g−(R, τ ) = 0 for τ > 0. The term advanced Green function comes from the property
that g−(r − r′, t − t′) is observed at the space point r at the time τ = −R/c ⇒ t =
t′ − |r − r′|/c; i.e., the observation time is before the pulse is emitted: it is advanced
by the distance between the two field points divided by the velocity c of the background
medium. Although the advanced Green function does not arise naturally in the solution of
any physical problem, it does play an important role in the class of inverse problems treated
in later chapters.

1.2.2 Frequency-domain Green functions

Any of the time-domain Green functions g(R, τ ) can be represented according to Eq. (1.6a)
in terms of a frequency-domain Green function G(R,ω) with

G(R,ω) =
∫ ∞
−∞

dτ g(R, τ )eiωτ , g(R, τ ) = 1

2π

∫ ∞
−∞

dωG(R,ω)e−iωτ . (1.21)

The frequency-domain Green functions are solutions to a partial differential equation,
called the reduced wave equation or Helmholtz equation, that results from performing a
temporal Fourier transform of the wave equation Eq. (1.15) satisfied by the time-domain
Green functions g(R, τ ). On making use of Eqs. (1.9) we conclude that[

∇2 − 1

c2

∂2

∂τ 2

]
g(R, τ )⇐⇒

[
∇ + ω

2

c2

]
G(R,ω),

which then yields the inhomogeneous Helmholtz equation

[∇2 + k2]G(R,ω) = δ(R). (1.22)

Like the inhomogeneous wave equation satisfied by the time-domain Green function
Eq. (1.16), the inhomogeneous Helmholtz equation Eq. (1.22) does not possess a unique
solution until an appropriate boundary condition is appended. The requirement of causal-
ity in the time domain yields a boundary condition in the frequency domain known as the
Sommerfeld radiation condition (SRC) (Sommerfeld, 1967) and a Green function denoted
by G+(R,ω) that is generally referred to as the “outgoing-wave” Green function for rea-
sons to be discussed below. The outgoing-wave Green function can be computed from the
Helmholtz equation Eq. (1.22) using a Fourier-based scheme entirely parallel to that used
to compute the retarded Green function (cf. Example 1.3 below and our derivation of G+
presented in the next chapter). Alternatively, it can be obtained by simply taking the tempo-
ral Fourier transform of the causal (retarded) Green function found above. Using the latter
procedure we obtain
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G+(R,ω) = − 1

4π

eikR

R
, (1.23a)

with k = ω/c.
The justification for the use of the name “outgoing-wave” Green function for G+ is

apparent when we examine the Fourier-integral representation of the retarded Green func-
tion in terms of G+:

g+(R, τ ) = 1

2π

∫ ∞
−∞

dω

{
− 1

4π

e−iω(τ−R/c)

R

}
.

In particular, we can regard this representation as a superposition of elemental spherical
time-harmonic waves

u+(R, τ ) = − 1

4π

eik(R−cτ )

R
,

which expand outward from the origin R = 0 with increasing time τ . This can be visu-
alized by keeping the phase factor R − cτ fixed and seeing that increasing τ requires that
the distance R must increase also in order for the phase to remain constant. An “incoming
wave” on the other hand would be of the form

u−(R, τ ) = − 1

4π

eik(R+cτ )

R
,

and would have the property that the surfaces of constant phase contract inward toward the
origin with increasing τ .

The frequency-domain Green function corresponding to the advanced Green function
g−(r, τ ) is the “incoming-wave” Green function G−(R,ω). On taking a temporal Fourier
transform of g− we find that

G−(R,ω) = − 1

4π

e−ikR

R
= G∗+(R,ω), (1.23b)

where the wavenumber k is assumed to be real-valued. It is easy to verify using an argument
similar to that employed above for G+ that G− is associated with incoming waves, thus
justifying its name as the incoming-wave Green function. The Green functions g− and G−
are associated with the important operations of field time reversal and back propagation,
as we will see later in this chapter.

Example 1.3 The time-domain Green function for the one-dimensional wave equation sat-
isfies the equation [

∂2

∂z2
− 1

c2

∂2

∂t2

]
g(z, t) = δ(z)δ(t). (1.24)

Fourier transforming Eq. (1.24) leads to the one-dimensional Helmholtz equation
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[
∂2

∂z2
+ k2

]
G(z,ω) = δ(z), (1.25)

which under a spatial Fourier transformation yields

G̃(K,ω) = 1

−K2 + k2
.

The Green function to the one-dimensional Helmholtz equation thus admits the Fourier-
integral representation

G(z,ω) = 1

2π

∫ ∞
−∞

dK
eiKz

−K2 + k2
. (1.26)

The Green function is not unique due to the improper nature of the integral caused by the
poles of the integrand at K = ±k. The outgoing-wave Green function G+(z,ω) is obtained
by requiring k = ω/c to have a positive imaginary part. This conclusion follows from the
fact that we required the ω contour of integration defining the causal time-domain Green
function to lie in the u.h.p., which translates to k > 0. The poles in the integrand of
Eq. (1.26) occur at K = ±k. One pole lies in the u.h.p. and the other lies in the l.h.p. Since
the integrand goes to zero exponentially fast in the u.h.p. if z > 0 and in the l.h.p. if z < 0,
the integration contours can be closed for both cases and the integral can be computed
using residue calculus. We obtain the result

G+(z,ω) = − i

2k
eik|z|. (1.27)

We can directly verify that the Green function defined in Eq. (1.27) satisfies the defining
equation Eq. (1.25) by direct differentiation. In particular, we have that

∂

∂z
G+(z,ω) = 1

2
eik|z| Sgn(z);

∂2

∂z2
G+(z,ω) = ik

2
eik|z| Sgn2(z)+ 1

2
eik|z| ∂

∂z
Sgn(z),

where

Sgn(z) =
{

1 if z > 0

−1 if z < 0

is the sign function. By using the fact that

Sgn(z) = 2
(z)− 1,

where 
 is the step function, we conclude that

∂2

∂z2
G+(z,ω)+ k2G+(z,ω) = ik

2
eik|z| + eik|z|δ(z)− ik

2
eik|z| = δ(z)

as required.

Example 1.4 The retarded (causal) time-domain Green function for the one-dimensional
wave equation can be easily obtained from the frequency-domain Green function G+
defined in Eq. (1.27) of Example 1.3 by performing an inverse temporal Fourier transform
of G+. We find that
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g+(z, τ ) = 1

2π

∫ ∞+iε

−∞+iε
dω

G+(z,ω)︷ ︸︸ ︷{
− i

2k
eik|z|

}
e−iωτ

= −ic

4π

∫ ∞+iε

−∞+iε
dω

ei(ω/c)|z|

ω
e−iωτ . (1.28)

We have explicitly indicated that the ω integral in Eq. (1.28) be taken along a contour
lying in the upper half of the complex-ω plane required by causality by including the term
+iε, ε > 0 in the limits of the integral. The integrand has a single pole at ω = 0 and goes
to zero exponentially fast in the u.h.p. if |z| > cτ and in the l.h.p. if |z| < τ . Since the only
pole is on the real-ω axis, Cauchy’s integral theorem yields the result

g+(z, τ ) = − c

2

[cτ − |z|], (1.29)

where 
 is the step function


(x) =
{

0 if x < 0,

1 if x > 0.

The Green function g+(z − z′, t − t′) defined in Eq. (1.29) is clearly causal (vanishes
for t < t′) but is very different than the three-dimensional retarded Green function defined
in Eq. (1.20a). In the three-dimensional case the Green function is a delta function con-
centrated on the “light cone” |r − r′| = c(t − t′), while in the one-dimensional case it
is a step function that begins at the retarded time t = t′ + |z − z′|/c. Note also that we
have used contour integration to obtain the Green function in the one-dimensional case
and used the definition of the Dirac delta function in the three-dimensional case. This was
necessary since the singularity of this quantity is higher in three dimensions than it is in
one dimension.

1.3 Green-function solutions to the radiation problem

The radiation problem consists of obtaining the causal solution to the inhomogeneous
wave equation Eq. (1.1) in terms of the source term q(r, t). To obtain this solution we use
standard Green-function techniques applied to the pair of equations[

∇2
r′ −

1

c2

∂2

∂t′2

]
g(r− r′, t − t′) = δ(r− r′)δ(t − t′), (1.30a)[

∇2
r′ −

1

c2

∂2

∂t′2

]
u+(r′, t′) = q(r′, t′), (1.30b)

where the subscript on the Laplacian operator indicates that it operates on the primed coor-
dinate vector and g is an unspecified Green function to the wave equation. Here, r and t
play the role of fixed parameters that are allowed to assume any values over some region
R = {r ∈ τ , t ∈ (t0, t1)} of space-time within which we seek a solution to the radiation



13 1.3 Green-function solutions to the radiation problem

problem. We emphasize that the Green function g as well as the space-time region R are
as yet unspecified and totally arbitrary.

By “standard Green-function techniques” we mean the standard procedure for convert-
ing the coupled partial differential equations given in Eqs. (1.30) into an integral repre-
sentation for the radiated field in terms of the source term and field boundary conditions
on a bounding surface to the space region τ in which we seek a solution to Eq. (1.30b) as
well as Cauchy conditions at the two times t0 and t1. This “standard procedure” consists of
multiplying Eq. (1.30a) by u+ and Eq. (1.30b) by g and subtracting one of the two resulting
equations from the other to obtain

I1(r,r′,t,t′)︷ ︸︸ ︷
u+(r′, t′)∇2

r′g(r− r′, t − t′)− g(r− r′, t − t′)∇2
r′u+(r′, t′)

I2(r,r′,t,t′)︷ ︸︸ ︷
− 1

c2

{
u+(r′, t′) ∂

2

∂t′2
g(r− r′, t − t′)− g(r− r′, t − t′) ∂

2

∂t′2
u+(r′, t′)

}

=
I3(r,r′,t,t′)︷ ︸︸ ︷

u+(r′, t′)δ(r− r′)δ(t − t′)− g(r− r′, t − t′)q(r′, t′) .

We now integrate both sides of the above equation over the space-time region R = {r′ ∈
τ , t′ ∈ (t0, t1)} to obtain the result

χ1(r,t)︷ ︸︸ ︷∫ t1

t0
dt′
∫
τ

d3r′ I1+

χ2(r,t)︷ ︸︸ ︷∫ t1

t0
dt′
∫
τ

d3r′ I2 =

χ3(r,t)︷ ︸︸ ︷∫ t1

t0
dt′
∫
τ

d3r′ I3, (1.31)

where we have simplified the notation by no longer explicitly displaying the arguments
of the three quantities Ij(r, r′, t, t′), j = 1, 2, 3. We will follow the same procedure in the
following, where we will drop the arguments of all field quantities under integral signs
unless there is the possibility of confusion.

By using Green’s theorem the first term, χ1, can be written in the form

χ1(r, t) =
∫ t1

t0
dt′
∫
τ

d3r′ ∇ · [u+∇g− g∇u+]

=
∫ t1

t0
dt′
∫
∂τ

dS′
[

u+
∂

∂n′
g− g

∂

∂n′
u+
]

, (1.32a)

where ∂τ is the bounding surface to the volume τ and the partial derivatives are with
respect to the outward directed normal to ∂τ . The second term, χ2, becomes

χ2(r, t) = − 1

c2

∫ t1

t0
dt′
∫
τ

d3r′ ∂
∂t′

[
u+

∂

∂t′
g− g

∂

∂t′
u+
]

= − 1

c2

∫
τ

d3r′
[

u+
∂

∂t′
g− g

∂

∂t′
u+
] ∣∣∣∣t1

t′=t0

. (1.32b)

Finally, the third term, χ3, reduces to
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χ3(r, t) =
{

u+ −
∫ t1

t0
dt′
∫
τ

d3r′ gq if r ∈ τ , t ∈ (t0, t1),

− ∫ t1
t0

dt′
∫
τ

d3r′ gq otherwise.
(1.32c)

We now examine the three quantities χj, j = 1, 2, 3, defined in Eqs. (1.32) for different
selections of the Green function g and for the space volume τ and time parameters t0 and
t1. For any given selection of these quantities we will compute the corresponding field
using the coupling equation Eq. (1.31).

1.3.1 The primary field solution

We first compute an expression for the causal field u+(r, t) in terms of the source q(r, t) that
is valid for all time t and over all of infinite space. We call this the primary field solution.
To obtain this solution we select the Green function g to be the causal Green function g+
and examine the three quantities χj, j = 1, 2, 3, defined in Eqs. (1.32) in the limits where
τ → ∞, t0 → −∞, and t1 → +∞. The simplest term is χ2 defined in Eq. (1.32b).
Because the field u+ is required to be causal and, hence, vanishes for negative time the
contribution from t′ = t0 = −∞ must vanish. Moreover, the contribution from t′ = t1
also must vanish in the limit t1 →∞ due to the causality of the Green function g+. Thus,
χ2 = 0. The quantity χ1 can also be shown to vanish in the limit where τ → ∞. In
particular, recalling that the Green function g+(r− r′, t− t′) = 0 unless |r− r′| = c(t− t′)
and that the field u+ is causal, it follows that the contribution from the integral over the
surface ∂τ in Eq. (1.32a) must vanish in the limit where the radius of the surface tends
to infinity while keeping t1 finite but arbitrarily large. Since χ1 + χ2 = χ3 we conclude
that χ3 must also vanish in the limit τ → ∞, t0 → −∞, t1 → +∞. Since r ∈ τ and
t ∈ (t0, t1) we thus arrive at our final result:

u+(r, t) =
∫ T0

0
dt′
∫
τ0

d3r′ g+(r− r′, t − t′)q(r′, t′), (1.33)

which holds over all space and for all time. By substituting the expression for the retarded
Green function given in Eq. (1.20a) we can also write the field in the form

u+(r, t) = −1

4π

∫
τ0

d3r′ q(r′, t − |r− r′|/c)

|r− r′| .

The process of radiation as governed by Eq. (1.33) consists of a superposition of expand-
ing spherical waves g+(r− r′, t− t′), each weighted by the amplitude of the source q(r′, t′)
at the source point r′, t′. The contribution to the total field from any one source point is a
delta function on the spherical surface (called the “light-cone”)

|r− r′| = c(t − t′)

and, hence, expands outward with the velocity c from each spatial source point r′. For the
case in which the source volume τ0 is a sphere centered at the origin r = 0 and having a
radius a it then follows from the above considerations that at any given time t the field is
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identically zero outside a sphere V+(t) that is also centered at the origin and has a radius
R+(t) = a + ct. Moreover, since the source ceases to radiate at time t = T0, the radiated
field also vanishes for all time t > T0 + a/c everywhere inside a different sphere V−(t)
that is also centered at the origin and has a radius R−(t) = c(t − T0) − a. The picture of
radiation that can be inferred from Eq. (1.33) is of a “ball of energy” that expands outward
from the source volume τ0 and eventually is contained within the annular region between
the two expanding concentric spheres V−(t) and V+(t). This picture of the radiation process
is useful to have in mind when dealing with the time-domain radiated field.

Example 1.5 We again consider the one-dimensional wave equation[
∂2

∂z2
− 1

c2

∂2

∂t2

]
u+(z, t) = q(z, t),

where the source is compactly supported in some finite space-time region S0|z ∈
[−a0, a0], t ∈ [0, T0] and the field is required to be causal. By following the sequence
of steps employed in the three-dimensional case we find that

u+(z′, t′) ∂
2

∂z′2
g+(z− z′, t − t′)− g+(z− z′, t − t′) ∂

2

∂z′2
u+(z′, t′)

− 1

c2

[
u+(z′, t′) ∂

2

∂t′2
g+(z− z′, t − t′)− g+(z− z′, t − t′) ∂

2

∂t′2
u+(z′, t′)

]
= u+(z′, t′)δ(z− z′)δ(t − t′)− g+(z− z′, t − t′)q(z′, t′).

On integrating both sides of the above equation over a space-time region −Z < z′ <
Z,−T < t′ < T , where Z > a0 and T > T0, we obtain the result∫ T

−T
dt′
[

u+(z′, t′) ∂
∂z′

g+(z− z′, t − t′)− g+(z− z′, t − t′) ∂
∂z′

u+(z′, t′)
] ∣∣∣∣Z−Z

− 1

c2

∫ Z

−Z
dz′
[

u+(z′, t′) ∂
∂t′

g+(z− z′, t − t′)− g+(z− z′, t − t′) ∂
∂t′

u+(z′, t′)
] ∣∣∣∣T−T

= u+(z, t)−
∫ T

−T
dt′
∫ Z

−Z
dz′ g+(z− z′, t − t′)q(z′, t′).

If we now assume that t ∈ (−T , T) and z ∈ (−Z, Z) the second line of the above equation
vanishes on account of the causality of the field and Green function. The first line can also
be shown to vanish due to the fact that, as shown in Example 1.4, the causal Green function
vanishes if |z− z′| > c(t− t′) and this will be the case in the limit where we take Z →∞.
In the limit T →∞ and Z →∞ we thus arrive at the result

u+(z, t) =
∫ T0

0
dt′
∫ a0

−a0

dz′ g+(z− z′, t − t′)q(z′, t′)

= − c

2

∫ T0

0
dt′
∫ a0

−a0

dz′
[c(t − t′)− |z− z′|]q(z′, t′)

= − c

2

∫ a0

−a0

dz′
∫ t−|z−z′|/c

0
dt′ q(z′, t′).
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Example 1.6 The primary field solution obtained above can also be used to represent fields
radiated by time-periodic sources. As an example we consider a unit-amplitude point
source traveling at constant velocity in a circle confined to the plane z = 0:

q(r, t) = δ(ρ − a)

a
δ(z)δ(φ − vφ t),

where a is the radius of the circular orbit and vφ the angular velocity in radians per second
of the point source, and ρ and φ are the cylindrical coordinates on the plane z = 0. The
motion is time-periodic with period Tφ = 2π/vφ , and the source can thus be expanded into
the Fourier series

q(r, t) = δ(ρ − a)

2πa
δ(z)

∞∑
n=−∞

einφe−invφ t. (1.34a)

The temporal Fourier transform of the source is readily computed and we obtain

Q(r,ω) = δ(ρ − a)

a
δ(z)

∞∑
n=−∞

einφδ(ω − nvφ). (1.34b)

It follows from Eq. (1.34b) and the linearity of the radiation process that the radiated
field will consist of a Fourier series with frequencies ωn = nvφ . In particular, we find using
the primary field solution that

u+(r, t) = 1

2π

∞∑
n=−∞

Un(r,ωn)e−iωnt, (1.35a)

where

Un(r,ωn) = − 1

4π

∫ 2π

0
dφ′ einφ′ e

iknR

R
, (1.35b)

where R = √(x− a cosφ′)2 + (y− a sinφ′)+ z2 and kn = ωn/c, with c being the velocity
of the background medium.

1.3.2 Representation of the radiated field in terms of boundary values via the
Kirchhoff–Helmholtz theorem

The solution to the radiation problem obtained in the previous section represents the radi-
ated field directly in terms of the source q(r, t). If we now take τ to be a finite region
that contains the source region τ0 and has closed boundary ∂τ and restrict our attention
to space points lying outside τ , it is possible to represent the radiated field in terms of the
field and its normal derivative evaluated on the closed boundary surface ∂τ . We again look
for a causal solution to the inhomogeneous wave equation Eq. (1.30b) over a time interval
(t0, t1) with t0 → −∞ and t1 → +∞ and take the Green function g in Eq. (1.30a) to be
the causal (retarded) Green function g+.

We are now seeking a solution in the region τ⊥ (the complement to τ ) so that the space
integrals in Eqs. (1.32) are over τ⊥, which is bounded by ∂τ and a closed sphere ∞ at
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infinity. If we then use an argument identical to that employed above in deriving the pri-
mary field solution, we conclude from the set of Eqs. (1.32) that χ2 = 0 and that the contri-
bution to χ1 from the integral over the bounding surface∞ also vanishes in the limit t0 →
−∞, t1 →+∞. If we then make use of the primary field solution given in Eq. (1.33), we
find that the field throughout the exterior region τ⊥ can be expressed in the form

u+(r, t) =
∫ ∞
−∞

dt′
∫
∂τ

dS′
[

g+
∂

∂n′
u+ − u+

∂

∂n′
g+
]

, r ∈ τ⊥, (1.36a)

where the partial derivatives ∂/∂n′ are directed outward from the interior region τ into τ⊥.
We also find, if the field point r is located in the interior region τ , that the field and its
normal derivative over ∂τ are coupled via the homogeneous integral equation

∫ ∞
−∞

dt′
∫
∂τ

dS′
[

g+
∂

∂n′
u+ − u+

∂

∂n′
g+
]
= 0, r ∈ τ , (1.36b)

where, as in Eq. (1.36a), the partial derivatives ∂/∂n′ are directed outward from τ into the
exterior region τ⊥ (Fig. 1.1).

Equations (1.36) together constitute a time-domain version of the Kirchhoff–Helmholtz
Theorem. Equation (1.36a) is an expression for the radiated field valid everywhere outside
any bounding surface ∂τ to the source region τ0 in terms of the field and its (outward
directed) normal derivative over ∂τ and is sometimes referred to as the first Helmholtz

�Fig. 1.1 Computing the radiated field in terms of boundary values over a closed surface ∂τ to a space region τ ⊇ τ0 that
contains the source. The radiated field throughout the region τ⊥ exterior to τ can be represented in terms of the
boundary value of the field and its normal derivative specified everywhere on ∂τ . These two quantities are not
independent but are coupled via the homogeneous integral equation Eq. (1.36b).
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identity. Equation (1.36b), referred to as the second Helmholtz identity, is an identity that
must be satisfied at all space points lying in the interior region τ . This second Helmholtz
identity is, in fact, a homogeneous integral equation that must be satisfied by the field and
normal derivative on ∂τ and indicates that these two quantities are not independent and
that, in principle, one can be determined from the other. Thus, in fact, Eq. (1.36a) is an
over-determined solution to a boundary value problem of the wave equation in the region
τ⊥ lying outside ∂τ . A properly posed solution to this boundary-value problem would
involve only the field or its normal derivative (or a linear combination of the two) on ∂τ ,
not both.

The above development assumes that the source is located within the finite space volume
τ and that the field satisfies the homogeneous wave equation throughout the exterior com-
plement region τ⊥. However, a similar development can be employed to obtain a solution
of the radiation problem within a finite region τ when the source is located in the infinite
exterior τ⊥. Indeed, it is not difficult to show that in such a case the above two Helmholtz
identities still hold where, however, the two regions τ and τ⊥ are now interchanged and
the normal derivatives are now directed out of τ⊥ (the region containing the source) and
into τ (the region in which the field satisfies the homogeneous wave equation).

Although the Kirchhoff–Helmholtz-type representation of the radiated field given in
Eq. (1.36a), as well as its companion form for a source located in τ⊥, is over-determined
in that it involves both the field and its normal derivative over ∂τ , this representation is
extremely useful in theoretical studies of the radiation problem and will be employed exten-
sively in this and later chapters of the book. Properly posed solutions to boundary-value
problems of the wave equation will be treated in the frequency domain in Chapter 2.

Finally, we mention that throughout the above development we have tacitly assumed
that the region τ was finite and simply connected and that the complement region τ⊥
was infinite and multiply connected. However, it is not difficult to show that the entire
development can be generalized to the case in which both regions are infinite and simply
connected with common infinite boundary ∂τ (e.g., two infinite half-spaces separated by
a planar boundary). Such geometries are important in applications and will be employed
frequently in later chapters. It should also be noted that, since the retarded Green function
g+(r−r′, t− t′) is causal and vanishes when t′ > t, the upper limit in the time integration in
Eqs. (1.36) is actually t rather than +∞. Thus, the radiated field at any time t everywhere
outside the volume τ depends only on the past values of the boundary conditions; i.e., is
causal with respect to the boundary conditions.

1.3.3 The interior field solution

The field u+(r, t) satisfies the homogeneous wave equation in the region exterior to the
surface ∂τ and the field representation Eq. (1.36a) for the radiated field within this exterior
region is a formal solution of an exterior boundary-value problem for the homogeneous
wave equation; i.e., it solves the homogeneous wave equation in the region τ⊥ exterior to
∂τ in terms of boundary conditions on ∂τ . If the time t exceeds the turn-off time T0 of the
source then the field within the interior region τ that contains the source also satisfies the
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homogeneous wave equation and can be represented as the formal solution of a boundary
value problem for this region in terms of the field and its normal derivative over ∂τ .

To obtain this field representation we use Eqs. (1.32) with the Green function g equal
to the acausal Green function g− and again select τ to be finite with closed boundary ∂τ
and take t0 → −∞, t1 → +∞. The term χ2 vanishes since the field u+ is causal and will
vanish over all of τ at t′ = ±∞, and we obtain the result

u+ =
∫ T0

0
dt′
∫
τ0

d3r′ g−q+
∫ ∞
−∞

dt′
∫
∂τ

dS′
[

u+
∂

∂n′
g− − g−

∂

∂n′
u+
]

, (1.37a)

if r ∈ τ , and

0 =
∫ T0

0
dt′
∫
τ0

d3r′ g−q+
∫ ∞
−∞

dt′
∫
∂τ

dS′
[

u+
∂

∂n′
g− − g−

∂

∂n′
u+
]

, (1.37b)

if r ∈ τ⊥, where the partial derivatives in the above equations are directed outward from
the interior region τ into the exterior τ⊥.

Now, if the observation time t exceeds the turn-off time T0 of the source, the first term
on the r.h.s. of Eqs. (1.37) must vanish since the advanced Green function vanishes when
its argument t − t′ + |r − r′| is positive, which will be the case ∀t′ ∈ [0, T0] if t > T0. In
this case Eq. (1.37a) reduces to

u+ =
∫ ∞
−∞

dt′
∫
∂τ

dS′
[

u+
∂

∂n′
g− − g−

∂

∂n′
u+
]

, r ∈ τ , t > T0. (1.38a)

For field points lying in the exterior region τ⊥ and for times t > T0 Eq. (1.37b) reduces to

0 =
∫ ∞
−∞

dt′
∫
∂τ

dS′
[

u+
∂

∂n′
g− − g−

∂

∂n′
u+
]

, r ∈ τ⊥, t > T0. (1.38b)

As was the case for the solution of the exterior boundary-value problem given in Eq. (1.36),
the solution to the interior boundary-value problem given in Eq. (1.38a) is over-determined
because of the second Helmholtz identity Eq. (1.36b) and, thus, can be expressed entirely in
terms of the field or its normal derivative on ∂τ . We emphasize that this over-determination
is due to the fact that the field u+ is radiated by the source q(r, t) ∈ τ0 that is bounded by
the surface ∂τ . Thus the wavefield over ∂τ will consist only of “outgoing” waves that
constrain the value of the field and its normal derivative to satisfy the second Helmholtz
identity over any bounding surface to the source. The fact that we are able to express the
field interior to the bounding surface ∂τ in terms of field boundary values on ∂τ when
t > T0 is a consequence of the fact that the source q(r, t) vanishes if t > T0 so that the field
satisfies the homogeneous wave equation for all such times. The solution Eq. (1.38a) is, in
fact, a formal solution of the interior boundary-value problem of the homogeneous wave
equation; i.e., it solves the homogeneous wave equation throughout the interior of ∂τ in
terms of boundary conditions on ∂τ .
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1.4 The initial-value problem for the wave equation

We can follow the same general procedure as was employed in the previous section to solve
the radiation problem to solve the homogeneous wave equation subject to inhomogeneous
Cauchy initial conditions. In particular, suppose that a field u(r, t) satisfies the homoge-
neous wave equation Eq. (1.3) throughout all of space and for all time t > t0 and satisfies
the inhomogeneous Cauchy conditions

u(r, t)|t=t0 = ut0 (r),
∂

∂t
u(r, t)|t=t0 = u′t0 (r) (1.39)

at the initial time t = t0. By following the same steps as led to the set of equations
Eqs. (1.32) we find that for all space points interior to an arbitrary volume τ and for all
times in the interval [t0, t1]

u(r, t) =
∫ t1

t0
dt′
∫
∂τ

dS′
[

u(r′, t′) ∂
∂n′

g(r− r′, t − t′)− g(r− r′, t − t′) ∂
∂n′

u(r′, t′)
]

− 1

c2

∫
τ

d3r′
{

u(r′, t′) ∂
∂t′

g(r− r′, t − t′)− g(r− r′, t − t′) ∂
∂t′

u(r′, t′)
} ∣∣∣∣t1

t′=t0

,

where g is any Green function to the wave equation. Since we are free to choose the Green
function, we will select it to be the retarded Green function g+. It then follows using
arguments identical to those used in computing the solution to the radiation problem in the
preceding section that in the limit where τ →∞ and t1 →∞ the contributions to u from
the surface integral over ∂τ and from the volume integral at the final time t′ = t1 vanish
and we obtain

u(r, t) = 1

c2

∫
d3r′

[
ut0 (r′) ∂

∂t0
g+(r− r′, t − t0)− g+(r− r′, t − t0)u′t0 (r′)

]
, (1.40a)

which is valid over all of space and for all times t > t0.
Equation (1.40a) gives the solution to the Cauchy initial-value problem over all of space

and for all time t > t0. If the homogeneous wave equation holds also for times t < t0 it is
also possible to compute its solution for these times using the same inhomogeneous Cauchy
conditions as employed in Eq. (1.40a). In particular, by again following steps similar to
those used in obtaining Eq. (1.40a) we find that

u(r, t) = − 1

c2

∫
d3r′

[
ut0 (r′) ∂

∂t0
g−(r− r′, t − t0)− g−(r− r′, t − t0)u′t0 (r′)

]
, (1.40b)

which now holds over all of space and for all times t < t0 and where g− is the advanced
Green function defined in Eq. (1.20b). The fact that the fields defined in Eqs. (1.40) satisfy
the homogeneous wave equation is trivial to verify. The fact that they both satisfy the same
Cauchy conditions Eq. (1.39) is a bit more difficult to prove, although a proof based on the
plane-wave expansion of these fields is quite simple and will be established in Example 3.1
of Chapter 3.
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The above results hold for any field that satisfies the homogeneous wave equation and
given Cauchy conditions at t = t0. If t > T0, the field u+ radiated by a source that turns
off at T0 satisfies the homogeneous wave equation so that these results also apply to u+
where t0 > T0 and Eq. (1.40a) applies for t > t0 and Eq. (1.40b) for T0 < t < t0. For
t < T0 the field so computed will not equal the actual radiated field (which satisfies the
inhomogeneous wave equation if t < T0) but, as we will find later, is a time-reversed
version of this field that satisfies the homogeneous wave equation everywhere.

We note that, since the retarded Green function g+(r− r′, t − t0) is causal and vanishes
for t < t0 and the advanced Green function g−(r − r′, t − t0) is acausal and vanishes for
t > t0, we can combine Eqs. (1.40a) and (1.40b) into a single equation that is valid for all
time t:

u(r, t) = 1

c2

∫
d3r′

[
ut0 (r′) ∂

∂t0
gf(r− r′, t − t0)− gf(r− r′, t − t0)u′t0 (r′)

]
, (1.41)

where

gf(R, τ ) = g+(R, τ )− g−(R, τ ).

We will call the quantity gf(R, τ ) the free-field propagator, since it governs the evolution
of the solution of the initial-value problem for the wave equation (the “free field”) from its
Cauchy conditions at some initial time.

1.4.1 Uniqueness

The uniqueness of the solution to the inhomogeneous wave equation subject to specified
Cauchy conditions at t = 0 is easy to establish using the solution to the Cauchy initial-
value problem given above. In particular, assume that the same source generates two fields
u(1) and u(2) that satisfy the inhomogeneous wave equation Eq. (1.1) and the same homo-
geneous or inhomogeneous Cauchy conditions at t = 0. The difference field

u+(r, t) = u(2)(r, t)− u(1)(r, t)

then satisfies the homogeneous wave equation and homogeneous Cauchy conditions at
t = 0. Taking t0 = 0 in the solution to the initial-value problem given in Eq. (1.40a), it
follows that u = 0, ∀t > 0. In a similar manner, taking t0 = 0 in the solution to the initial-
value problem for negative t − t0 given in Eq. (1.40b), we conclude that u = 0, ∀t < 0.
Since u = 0 for t = 0 because of the Cauchy conditions, we conclude that u = 0, which
establishes the uniqueness. It follows from this, of course, that the solution to the radiation
problem is unique.

1.4.2 Field back propagation

The expression for the radiated field in terms of the field and its normal derivative over ∂τ
given in Eq. (1.36a) performs the process of field forward propagation; i.e., it “propagates”
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the field outward from a boundary ∂τ that completely encloses the source region τ0 to
points that are further removed from the source than is the boundary surface. Similarly,
the solution of the initial-value problem Eq. (1.40a) for Cauchy data acquired at some
time t0 exceeding the turn-off time T0 of the source forward propagates the field from
the Cauchy data to future times t > t0. It is also possible to “back propagate” the field
from the boundary ∂τ to field points lying within τ and from the Cauchy data to times
t < t0 via Eqs. (1.38a) and (1.40b), respectively. The process of forward propagation from
either boundary-value data over the surface ∂τ or Cauchy conditions at t0 > T0 is exact;
i.e., forward propagation exactly reproduces the field radiated by the source. On the other
hand, the process of field back propagation as implemented from boundary-value data via
Eq. (1.38a) or Cauchy data via Eq. (1.40b) is approximate and will exactly reproduce the
field u+(r, t) only for times exceeding the turn-off time of the source. Although back prop-
agation as described here reproduces the field exactly only for times t > T0, it generates
an approximation to the exact field for all times and is an extremely important operation
that will be used throughout this book. We will describe a theoretically exact (but mathe-
matically unstable) form of back propagation from boundary-value data in Chapter 4 but
will, in practice, employ approximate forms of back propagation such as described here
for virtually all of the inverse problems that we treat in this book.

1.5 Frequency-domain solution of the radiation problem

We can express the radiated field u+(r, t) in the frequency domain by making use of the
Fourier-integral representation of the causal Green function g+ given in Eq. (1.21). In
particular, on setting R = r− r′ and τ = t − t′ in that equation and substituting the result
into Eq. (1.33) we obtain

u+(r, t) =
∫ T0

0
dt′
∫
τ0

d3r′

G+(r−r′,t−t′)︷ ︸︸ ︷
1

2π

∫ ∞
−∞

dωG+(r− r′,ω)e−iω(t−t′) q(r′, t′)

= 1

2π

∫ ∞
−∞

dω

U+(r,ω)︷ ︸︸ ︷∫
τ0

d3r′ G+(r− r′,ω)Q(r′,ω) e−iωt, (1.42)

where

Q(r,ω) =
∫ T0

0
dt′ q(r, t)eiωt

is the temporal Fourier transform of the source and

U+(r,ω) =
∫
τ0

d3r′ G+(r− r′,ω)Q(r′,ω) (1.43a)



23 1.5 Frequency-domain solution of the radiation problem

is the frequency-domain representation (temporal Fourier transform) of the radiated field
u+(r, t). By making use of the defining equation for a Green function to the Helmholtz
equation Eq. (1.22) we find that the frequency-domain field U+ satisfies the inhomoge-
neous Helmholtz equation

[∇2 + k2]U+(r,ω) = Q(r,ω). (1.43b)

1.5.1 The radiation pattern and the Sommerfeld radiation condition

By setting

|r− r′| =
√

r2 + r′2 − 2r · r′ ∼ r − s · r′ as r→∞
in the expression Eq. (1.23a) for the outgoing-wave Green function we find that

G+(r− r′,ω) ∼ − 1

4π
e−iks·r′ eikr

r
as r→∞, (1.44)

where s = r/r is the unit vector along the r direction having direction cosines
sin θ cosφ, sin θ sinφ, and cos θ , with (r, θ ,φ) being the spherical polar coordinates of the
vector r. If we now substitute Eq. (1.44) into Eq. (1.43a) we obtain the following far-field
approximation to U+(r,ω):

U+(r,ω) ∼
∫
τ0

d3r′

G+(r−r′,ω)︷ ︸︸ ︷[
− 1

4π
e−iks·r′ eikr

r

]
Q(r′,ω),

which can be expressed in the form

U+(r,ω) ∼ f (s,ω)
eikr

r
as r→∞, (1.45a)

where

f (s,ω) = − 1

4π

∫
τ0

d3r Q(r,ω)e−iks·r (1.45b)

is known as the radiation pattern of the source. It can be seen from Eq. (1.45a) that the radi-
ated field at large distances from the source is an outgoing spherical wave with a complex
angularly dependent amplitude given by the radiation pattern.

The spatial Fourier transform of the source Q(r,ω) is defined by

Q̃(K,ω) =
∫
τ0

d3r′ Q(r′,ω)e−iK·r′ . (1.46)
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It then follows from Eq. (1.45b) that the radiation pattern is proportional to the spatial
Fourier transform of the (frequency-domain) source evaluated on the surface of the sphere
K = ks; i.e.,

f (s,ω) = − 1

4π
Q̃(K,ω)|K=ks. (1.47)

It can also, of course, be interpreted as being the space-time transform q̃(K,ω) of the time-
dependent source q(r, t) over the same surface in Fourier space.

The surface K = ks is a special case of the more general Ewald sphere that plays
a fundamental and dominant role in inverse-scattering theory treated later in the book.
For now, we simply note that, due to our assumption that the source is at least piecewise
continuous in the finite volume τ0, the spatial Fourier transform Q̃(K,ω) is an entire ana-
lytic function of the three Cartesian components of the K vector4 so that its boundary
value Q̃(ks,ω) and, hence, the radiation pattern f (s,ω) are entire analytic functions of the
unit vector s; i.e., are entire functions of the real- and complex-valued direction cosines
sin θ cosφ, sin θ sinφ, cos θ of s as well as the real and complex polar and azimuthal angles
θ ,φ defining this unit vector. Note that the observable radiation pattern will be associated
with real direction cosines and real polar and azimuthal angles but, due to the analyticity,
this boundary value can be continued from the real unit sphere into the complex unit sphere
where s becomes complex but still has unit length5 √s · s = 1.

The asymptotic expression Eq. (1.45a) is one form of the famed Sommerfeld radiation
condition (SRC). An alternative, and the most often quoted, form of the SRC is given by

lim
r→∞ r

[
∂U+(r,ω)

∂r
− ikU+(r,ω)

]
→ 0, (1.48)

with a similar expression holding for G+. The equivalence of the two forms of the SRC is
easily established.

The time-domain radiation pattern

The time-domain far-field approximation is obtained by taking the inverse Fourier trans-
form of the frequency far-field approximation Eq. (1.45a). We obtain

u+(r, t) ∼ 1

2π

∫ ∞
−∞

dω f (s,ω)
ei(ω/c)r

r
e−iωt = F(s, t − r/c)

r
, (1.49)

where again r = rs and

F(s, t) = 1

2π

∫ ∞
−∞

dω f (s,ω)e−iωt (1.50)

is known as the time-domain radiation pattern (Shlivinski et al., 1997). Equation (1.49) is
a representation of the time-domain far field in terms of a superposition of spherical wave

4 The proof follows similar lines to those employed in Example 1.2 to establish that the temporal transform of a
source supported in a finite time interval is an entire analytic function of the transform variable ω.

5 Note that the “length” is not |s| = √s∗s but is the square root of the product of the complex unit vector with
itself.
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pulses that propagate outward from the origin to infinity with a propagation velocity of c.
Note that because of this interpretation of the time-domain far field the term “outgoing-
wave field” is sometimes applied to the frequency- and time-domain fields as well as to the
frequency-domain Green function G+.

The time-domain radiation pattern F(s, t) can be expressed directly in terms of the time-
domain source q(r, t) by substituting Eq. (1.45b) into Eq. (1.50). We obtain

F(s, t) = 1

2π

∫ ∞
−∞

dω

f (s,ω)︷ ︸︸ ︷{
− 1

4π

∫
τ0

d3r′ Q(r′,ω)e−iks·r′
}

e−iωt

= − 1

4π

∫
τ0

d3r′ q
(

r′, t + s · r′

c

)
. (1.51)

It is interesting to note that the time-domain radiation pattern need not be causal even
though the source q is causal. Indeed, source points for which s · r′ > 0 generate a con-
tribution to F even for negative time. However, the time-domain radiation pattern is not
directly observed and the observed quantity (the far field) defined in Eq. (1.49) is causally
related to the source.

1.6 Radiated power and energy

The power radiated by the source q(r, t) can be computed from the energy flux vector P(r, t)
defined to be the energy flow per unit time through a differential surface dS located at r
and having unit normal n. For the scalar wavefields under consideration here this quantity
is given by the expression

P(r, t) = −κ ∂u+(r, t)

∂t
∇u+(r, t), (1.52a)

where κ is a real and positive constant that depends on the nature of the radiation and is, for
example, equal to the fluid density for the case of acoustic waves in compressible fluids.
The total power P(t) radiated out of a region τ containing the source region τ0 and having
a closed boundary surface ∂τ is then given by the integral

P∂τ (t) =
∫
∂τ

dS n · P(r, t) = −κ
∫
∂τ

dS
∂u+(r, t)

∂t

∂u+(r, t)

∂n
, (1.52b)

where the normal derivative is directed out of the interior region τ and into the exterior of
∂τ . The total energy radiated out of ∂τ by the source is the integral of the radiated power
P∂τ (t) over all of time. This quantity is then found to be given by

Eq =
∫ ∞
−∞

dt P∂τ (t) = −κ
∫
∂τ

dS
∫ ∞
−∞

dt
∂u+(r, t)

∂t

∂u+(r, t)

∂n
. (1.52c)

We will show below in Theorem 1.1 that the total radiated energy Eq is independent of
the particular bounding surface ∂τ used in its computation, which allows us to label this
quantity with q alone and not ∂τ .
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The total energy Eq radiated by the source is an important quantity that is used fre-
quently in applications. This quantity has an especially simple form and interpretation in
the frequency domain. In particular, on making use of Eq. (1.9) we have that

∂u+(r, t)

∂t
⇔ −iωU+(r,ω),

∂u+(r, t)

∂n
⇔ ∂U+(r,ω)

∂n
,

where, as before, the double arrow denotes a Fourier transform. It then follows from
Parseval’s theorem that∫ ∞

−∞
dt
∂u+(r, t)

∂t

∂u+(r, t)

∂n
= 1

2π

∫ ∞
−∞

dω

[
iωU∗+(r,ω)

∂U+(r,ω)

∂n

]
.

If we now use the above result in Eq. (1.52c) we find that

Eq = −i
κ

2π

∫ ∞
−∞

dωω
∫
∂τ

dS U∗+(r,ω)
∂U+(r,ω)

∂n

= −i
κ

2π

∫ ∞
0

dωω
∫
∂τ

dS

[
U∗+(r,ω)

∂U+(r,ω)

∂n
− U+(r,ω)

∂U∗+(r,ω)

∂n

]
= 1

2π

∫ ∞
0

dω

[
2κω

∫
∂τ

dS U∗+(r,ω)
∂U+(r,ω)

∂n

]
,

where we have made use of the fact that U+(r,−ω) = U∗+(r,ω).
The quantity

EQ(ω) = 2κω
∫
∂τ

dS U∗+(r,ω)
∂U+(r,ω)

∂n
(1.53)

can be interpreted as being the energy spectra (energy per unit frequency) of the radiated
field, with the total radiated energy given by

Eq = 1

2π

∫ ∞
0

dω EQ(ω).

Important properties of the energy spectra EQ and radiated energy Eq are that they are
independent of the shape and location of the surface ∂τ over which they are computed so
long as this surface completely surrounds the source spatial volume τ0. In particular, we
have the following theorem.

Theorem 1.1 (Radiant energy theorem) The energy spectra EQ(ω) and radiated energy Eq

are independent of the surface ∂τ as long as ∂τ completely surrounds the source spatial
volume τ0. Moreover, the energy spectra can be expressed in terms of the frequency-domain
radiation pattern f (s,ω) via the integral

EQ(ω) = 2κω2

c

∫
4π

d�s| f (s,ω)|2, (1.54)

where s is a unit vector and the integration is over 4π steradians.
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We first show that EQ(ω) is independent of the surface ∂τ as long as the surface com-
pletely surrounds the source. Let< and> be any two surfaces that completely surround
the source and such that > lies entirely outside (i.e., encloses) <. Since these two sur-
faces both lie outside τ0 and the wavenumber k is strictly real, we have that

[∇2 + k2]U+(r,ω) = 0, [∇2 + k2]U∗+(r,ω) = 0,

throughout the region δτ enclosed between these two surfaces. It then follows that∫
δτ

d3r{U∗+(r,ω)∇2U+(r,ω)− U+(r,ω)∇2U∗+(r,ω)} = 0.

On using Green’s theorem we then obtain the result∫
>

dS

[
U∗+

∂U+
∂n
− U+

∂U∗+
∂n

]
=
∫
<

dS

[
U∗+

∂U+
∂n
− U+

∂U∗+
∂n

]
,

which proves the first part of the theorem.
To derive Eq. (1.54) we take ∂τ = ∞, where ∞ is the surface of a sphere centered

within the source region and having radius R → ∞. The radiated field over ∞ is then
given by Eq. (1.45a) so that

EQ(ω) = −iκω
∫
∞

R2 d�s

[
f ∗(s,ω)

e−ikR

R
f (s,ω)

ikeikR

R

−f (s,ω)
eikR

R
f ∗(s,ω)

−ike−ikR

R

]
= 2κωk

∫
4π

d�s| f (s,ω)|2,

where we have used the result that dS = R2 d�.
Finally, we note that we can express the energy spectra and total radiated energy directly

in terms of the source by making use of Eq. (1.47). In particular, we find that

EQ(ω) = 2κω2

c

∫
4π

d�s

| f (s,ω)|2︷ ︸︸ ︷∣∣∣∣∣ Q̃(ks,ω)

−4π

∣∣∣∣∣
2

= κω2

8π2c

∫
4π

d�s|Q̃(ks,ω)|2. (1.55)

It is, of course, also possible to express the energy spectra directly in terms of the source
Q(r,ω) by making use of Eqs. (1.46) in Eq. (1.55) (cf. Example 2.6 of Chapter 2).

1.7 Non-radiating sources

There exist non-trivial sources qnr(r, t) that are compactly supported in {S0|r ∈ τ0, t ∈
[0, T0]} and that have the interesting (and surprising) property that they generate fields
u+(r, t) that vanish identically outside the space-time region S0. Such sources are called
non-radiating sources (NR sources) and will be designated using the subscript “nr”
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throughout the book. The NR sources were first investigated by physicists interested in
developing microscopic models for stable classical atoms and molecules (Bohm and Wein-
stein, 1949; Goedecke, 1964). The general idea was that if the atom or molecule didn’t
radiate a field it would not lose energy and, hence, would not suffer the inevitable collapse
associated with classical models for atoms and molecules. Our interest in this book in the
class of NR sources is more pragmatic. In particular, we will find in the following chap-
ters that these sources and their scattering equivalents, the non-scattering potentials, cause
the inverse source and scattering problems to have non-unique solutions. For now we will
show that such sources do indeed exist (at least mathematically) and will present a recipe
for generating examples of such sources.

An NR source is simple to construct. In particular, consider a function π (r, t) of position
and time that is compactly supported in {S0|r ∈ τ0, t ∈ [0, T0]} and possesses continuous
first partial derivatives throughout the closed domain S0 but is otherwise arbitrary. We
construct an NR source by simple application of the D’Alembertian operator:

qnr(r, t) =
[
∇2 − 1

c2

∂2

∂t2

]
π (r, t). (1.56)

The associated causal NR field is given by Eq. (1.33):

unr(r, t) =
∫ T0

0
dt′
∫
τ0

d3r′ g+(r− r′, t − t′)

qnr(r′,t′)︷ ︸︸ ︷{[
∇2

r′ −
1

c2

∂2

∂t′2

]
π (r′, t′)

}

=
∫ T0

0
dt′
∫
τ0

d3r′

δ(r−r′)δ(t−t′)︷ ︸︸ ︷[
∇2

r′ −
1

c2

∂2

∂t′2

]
g+(r− r′, t − t′)π (r′, t′) = π (r, t),

where we have twice integrated by parts and dropped the surface terms due to the assump-
tion that π has continuous first partials throughout S0. The field unr vanishes outside S0,
which then establishes that the source defined via Eq. (1.56) is an NR source and, more-
over, that the field it generates is the compactly supported function π (r, t).

The quantity π (r, t) appearing in Eq. (1.56) must be supported in S0 and possess contin-
uous first partial derivatives but is otherwise arbitrary. Thus, by means of the prescription
Eq. (1.56) it is possible to generate a countably infinite number of NR sources by different
choices of the “generating function” π (r, t). Moreover, each such source will be at least
piecewise continuous and will possess finite energy6 since the generating function π has
continuous partials so that qnr is at least piecewise continuous in S0.7

6 By “energy” we mean here the source energy as defined in Eq. (1.2). This “energy” is simply the squared L2

norm of the source and should not be confused with the radiated energy of the source introduced in Section 1.6.
7 A larger class of NR sources can be constructed by taking limits of infinite convergent sequences of

the piecewise continuous NR sources constructed via Eq. (1.56). However, such sources will not be dis-
cussed or employed in this book since we will limit our attention to sources that are, at worst, piecewise
continuous.
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From the discussion presented in Section 1.3 for the radiation process we can describe
the radiation process for an NR source. In particular, during the time period [0, T0] the
field unr(r, t) generated by the NR source evolves in time completely contained within the
source spatial region τ0. However, as soon as the source turn-off time T0 occurs the field
completely vanishes! There is no attendant “ball of energy” that expands outward as time
increases and, indeed, there is no trace whatsoever that a source ever existed. This rather
perplexing conclusion is one reason why many scientists believe that NR sources do not
exist in the real world and are, at best, a mathematical oddity. However, to date there is
no evidence to rule out their physical (as opposed to “mathematical”) existence and some
reason to believe (Goedecke, 1964) that they play an important but not fully understood
role in nature.

1.7.1 Non-radiating sources in the frequency domain

A time-dependent NR source generates a radiated field unr(r, t) that vanishes for all time
t everywhere outside the source spatial volume τ0. This then requires that its Fourier
transform Unr(r,ω) vanish everywhere outside τ0 at all frequencies ω. It is worthwhile
to weaken this requirement when dealing with frequency-domain fields and define an NR
source in the frequency domain according to the following definition.

Definition 1.1 (Frequency-domain non-radiating sources) Let Q(r,ω) be a finite energy source
compactly supported in the spatial volume τ0 that radiates an outgoing-wave (causal) field
U+(r,ω) according to Eq. (1.43a). Then this source is a non-radiating source (NR source)
at any given frequency ω if and only if its radiated field U+(r,ω) vanishes outside its spatial
support τ0 at that frequency.

We note that we have defined the NR source in the frequency domain in a frequency-
by-frequency manner. A consequence of this is that an NR time-domain source will be
NR in the frequency domain but not, necessarily, vice versa. In order to have complete
equivalence one has to apply the frequency-domain NR requirement at all frequencies over
which the source is defined.

The frequency-domain representation of piecewise-continuous time-domain NR sources
can be constructed via a formula that is obtained by straightforward Fourier transformation
of Eq. (1.56). Alternatively, this representation can be obtained directly in the frequency
domain using a procedure that is completely parallel to the procedure that yielded the time-
domain formula (Devaney and Wolf, 1973). In particular, in analogy to the steps leading up
to Eq. (1.56), we consider a function �(r,ω) of position and frequency that is compactly
supported in the spatial volume τ0 at any given frequency ω and possesses continuous
partial spatial derivatives throughout this volume but is otherwise arbitrary. We construct
an NR source by simple application of the Helmholtz operator:

Qnr(r,ω) = [∇2 + k2]�(r,ω). (1.57)
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The associated frequency-domain NR field is found using Eq. (1.43a):

Unr(r,ω) =
∫
τ0

d3r′ G+(r− r′,ω)

Qnr(r′,ω)︷ ︸︸ ︷
{[∇2

r′ + k2]�(r′,ω)}

=
∫
τ0

d3r′
δ(r−r′)︷ ︸︸ ︷

[∇2
r′ + k2]G+(r− r′,ω)�(r′,ω) = �(r,ω),

where we have twice integrated by parts and dropped the surface terms due to the assump-
tion that � has continuous partials throughout τ0. The field Unr vanishes outside τ0, which
then establishes that the source defined via Eq. (1.57) is an NR source at frequency ω and,
moreover, that the field it generates is the compactly supported function �(r,ω).

We thus conclude that whereas the time-domain NR sources are generated by applying
the D’Alembertian operator to a time-dependent generating function that is compactly sup-
ported with continuous first partial derivatives in space and time, the frequency-domain NR
sources are generated by applying the Helmholtz operator to a time-independent generat-
ing function that is compactly supported with continuous first partial derivatives in space
alone. The remarks that were made concerning more general (non-piecewise-continuous)
NR sources in the time domain apply also in the frequency domain. In particular, it is
possible to generate more general NR frequency-domain sources using limits of infinite
sequences of the piecewise-continuous NR sources constructed via Eq. (1.57). As dis-
cussed earlier for the time-dependent case, we will not make use of such sources in this
book.

The energy spectra of an NR source

A compactly supported NR source generates zero field outside its space-time support and,
hence, must radiate zero energy. This means, of course, that the energy spectra EQnr (ω)
must vanish at any frequency ω at which it is NR. It then follows from Eq. (1.55) that

Q̃nr(ks,ω) = Q̃nr(K,ω)|K=ks = 0 (1.58)

is a necessary condition for a compactly supported source to be NR at frequency ω = ck.
In fact, the vanishing of the energy spectra and the boundary value of the source spatial
Fourier transform according to Eq. (1.58) are also sufficient conditions for such a source
to be NR.8 In particular, we have the following theorem.

Theorem 1.2 A necessary and sufficient condition for a piecewise continuous source Q
compactly supported in τ0 to be NR at any given frequency ω is that its energy spectra
vanish at that frequency; i.e.,

EQ(ω) = κω2

8π2c

∫
4π

d�s|Q̃(ks,ω)|2 = 0. (1.59)

8 However, this is true only for compactly supported sources whose spatial Fourier transforms are entire functions
of the spatial frequency variable K. For example, a source supported in an infinite rectangular “strip” can
radiate a field that possesses zero radiated field energy but that need not vanish identically outside this strip
(see Section 4.11.1 of Chapter 4).
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To prove the theorem we note that the energy spectra will vanish if and only if

Q̃(ks,ω) = 0→ Q̃(K,ω)|K=ks = 0→ Q̃(K,ω)|K2=k2 = 0. (1.60)

Moreover, if the source is compactly supported and piecewise continuous its spatial Fourier
transform Q̃(K,ω) must be an entire analytic function of K and, according to Eq. (1.60),
must have zeros at K = ±k. The transform must then admit the representation

Q̃(K,ω) = [−K2 + k2]�̃(K,ω), (1.61)

where �̃ is an entire analytic function of K whose inverse Fourier transform �(r,ω) is
twice differentiable and compactly supported in τ0. If we now take the inverse Fourier
transform of Eq. (1.61) we obtain the result

Q(r,ω) = 1

(2π )3

∫
d3K[−K2 + k2]�̃(K,ω)eiK·r = [∇2 + k2]�(r,ω), (1.62)

which establishes the theorem.

Example 1.7 As an example of a frequency-domain NR source consider a one-dimensional
source Q(z,ω) that is zero except at z = −z0 and z = +z0 with z0 > 0, where it is a delta
function with weights A−(ω) and A+(ω), respectively:

Q(z,ω) = A−(ω)δ(z+ z0)+ A+(ω)δ(z− z0).

The field radiated by this source is given by

u+(z,ω) = − i

2k

∫
dz′[A−(ω)δ(z+ z0)+ A+(ω)δ(z− z0)]eik|z−z′|

= − i

2k
[A−(ω)eik|z+z0| + A+(ω)eik|z−z0|].

We conclude that the field will vanish for all z > z0 if

A−(ω)eikz0 + A+(ω)e−ikz0 = 0,

and for all z < −z0 if

A−(ω)e−ikz0 + A+(ω)e+ikz0 = 0.

The source will thus be NR if both of the above equations hold, and this will happen so
long as A− = (−1)N+1A+ and 2kz0 = Nπ , where N is any integer.

1.7.2 A source decomposition theorem

An important theorem that we will use in our treatment of the inverse source problem
(ISP) in Chapter 5 establishes that an arbitrary square-integrable source in either the time
or frequency domain can be uniquely decomposed into the sum of an NR source and a
second component that is orthogonal to the NR source and satisfies the homogeneous wave
equation in the time domain and the homogeneous Helmholtz equation in the frequency
domain. Here we will present and prove the theorem in the time domain, leaving the proof
in the frequency domain as an exercise for the reader at the end of the chapter.
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Theorem 1.3 Let q(r, t) be a square-integrable source compactly supported within the
space-time region {S0|r ∈ τ0, t ∈ [0, T0]}. Then this source can be uniquely decomposed
into an NR component qnr(r, t) and a second component q̂(r, t) such that∫

S0

dt d3r qnr(r, t)q̂(r, t) = 0, (1.63a)[
∇2

r −
1

c2

∂2

∂t2

]
q̂(r, t) = 0, (1.63b)

qnr(r, t) =
[
∇2

r −
1

c2

∂2

∂t2

]
π (r, t), (1.63c)

where π (r, t) is a square-integrable function supported in S0 that possesses continuous
first partial derivatives.

We have already shown at the beginning of the section that any NR source can be rep-
resented according to Eq. (1.63c). To prove the remainder of the theorem we make use
of the fact that the set of all functions π (r, t) that are compactly supported in S0 and have
continuous first partial derivatives span the Hilbert space9 Hq of all square-integrable func-
tions supported in S0. It then follows that the NR sources constructed from this set via
Eq. (1.63c) span a subspace η ⊂ Hq comprised of all sources that generate zero field out-
side of S0. We can identify η as being the null space of the transformation from the source
to the field at all space-time points exterior to the source region S0. The entire Hilbert space
Hq can be decomposed into η and its orthogonal complement η⊥ composed of all sources
orthogonal to the NR sources. It then follows that any source q ∈ Hq admits the unique
decomposition

q(r, t) = qnr(r, t)+ q̂(r, t),

where qnr ∈ η and q̂ ∈ η⊥ satisfy Eq. (1.63a).
We now have only to prove that the sources q̂ ∈ η⊥ satisfy the homogeneous wave

equation. This follows from the orthogonality condition Eq. (1.63a) and the NR source
representation Eq. (1.63c). In particular, we have that

∫
S0

dt d3r

Dπ (r,t)︷ ︸︸ ︷
qnr(r, t) q̂(r, t) =

∫
S0

dt d3r π (r, t)Dq̂(r, t) = 0, (1.64)

where

D = ∇2
r −

1

c2

∂2

∂t2

is the D’Alembertian operator, and we have twice integrated by parts and used the fact that
the functions π (r, t) have continuous first-order partials. But Eq. (1.64) must hold for all
π (r, t) ∈ Hq and, since these functions span Hq, it then follows that Dq̂(r, t) = 0 and the
proof of the theorem is complete.

9 For a brief review of Hilbert spaces see Chapter 5.
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1.7.3 Essentially non-radiating sources

A frequency-domain NR source Qnr(r,ω) generates zero field outside the source’s space
volume τ0 at the given frequency ω. It is also possible for a source to generate a non-zero
field outside τ0 that has an energy spectrum EQ(ω) that is essentially zero at one or more
frequencies ω and, hence, radiates negligible power and energy over this set of frequencies.
We call such sources essentially non-radiating sources (essentially NR sources).

We showed in Section 1.6 in Theorem 1.1 that the energy spectra EQ(ω) of a source can
be expressed in terms of the radiation pattern via Eq. (1.54) so that an obvious requirement
for an essentially NR source is that

EQ(ω) = 2κω2

c

∫
4π

d�| f (s,ω)|2 < ε(ω), (1.65)

where ε(ω) is some small parameter that is used to characterize the essentially NR condi-
tion and may depend on the frequency ω. Although the condition Eq. (1.65) defining an
essentially NR source seems somewhat arbitrary, we will now show that there is a “natural”
choice for the parameter ε(ω) that leads to a useful and meaningful criterion for essentially
NR sources.

We begin with Eq. (1.45b) relating the frequency-domain radiation pattern to the
frequency-domain representation of the source. We can expand the plane wave exp(−iks·r)
in the series (see Example 3.4 in Chapter 3)

e−iks·r = 4π
∞∑

l=0

l∑
m=−l

(−i)ljl(kr)Ym
l (s)Ym

l
∗(r̂),

where jl is the spherical Bessel function of order l and Ym
l the spherical harmonic of degree

l and order m (see Chapter 3). In this equation and throughout the book the unit vectors s
and r̂ are employed as shorthand notation to denote the polar and azimuthal angles of the
unit propagation vector and field point r in the arguments of the spherical harmonics. If we
use the above expansion in Eq. (1.45b) we find that

f (s,ω) =
∞∑

l=0

l∑
m=−l

(−1)l+1ilqm
l (ω)Ym

l (s), (1.66a)

where

qm
l (ω) =

∫
τ0

d3r Q(r,ω)jl(kr)Ym
l
∗(r̂). (1.66b)

The energy spectrum is obtained by substituting Eq. (1.66a) into Eq. (1.65) and, on using
the orthonormality of the spherical harmonics, we conclude that

EQ(ω) = 2κω2

c

∞∑
l=0

l∑
m=−l

|qm
l (ω)|2. (1.66c)
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Now it is clear that for the energy spectrum to be finite the expansion coefficients qm
l (ω)

must tend to zero as l → ∞. However, these coefficients will actually tend to zero much
faster than is required by simple convergence considerations due to the constraint that the
source is compactly supported in the space volume τ0. To see this we note that qm

l as
defined in Eq. (1.66b) can be regarded as an L2 inner product between the source Q and
the functions jlYm

l so that, by application of the Schwarz inequality, we conclude that

|qm
l (ω)|2 ≤ EQ

∫ a0

0
r2 dr|jl(kr)|2 = EQ

μ2
l (ka0)︷ ︸︸ ︷

a3
0

2
[j2l (ka0)− jl−1(ka0)jl+1(ka0)], (1.67a)

where

EQ =
∫
τ0

d3r|Q(r,ω)|2 (1.67b)

is the L2-norm square of the source (source energy) and a0 the radius of the smallest bound-
ing sphere to τ0.

The quantities

μ2
l (ka0) = a3

0

2
[j2l (ka0)− jl−1(ka0)jl+1(ka0)] (1.68)

appearing in Eq. (1.67a) are important parameters that will re-occur many times throughout
this book. These parameters are exponentially decreasing functions of their index l when
l > ka0 and, indeed, l0 = ka0 can be considered to be a cutoff value beyond which μ2

l are
effectively zero. This is illustrated in Fig. 1.2, which shows plots of μ2

l and of the log (base
10) of μ2

l plotted as a function of the index l for various values of l0 = ka0. It then follows
that the expansion coefficients qm

l tend to zero exponentially fast for l > ka0 so that any
source for which the expansion coefficients qm

l vanish for l < ka0 will radiate negligible
energy; i.e., will be “essentially NR.”

Non-radiating sources and essentially NR sources play important roles in the ISP, which
will be treated in Chapter 5. The pure NR sources will be shown to be responsible for the
non-uniqueness of solutions to the ISP, while the essentially NR sources are responsible
for the ill-posedness of this problem. The inequality Eq. (1.67a) which leads to essentially
NR sources also limits the angular resolution of the radiation pattern radiated by any finite-
norm source. This conclusion follows directly from the expansion of the radiation pattern
given in Eq. (1.66a). In particular, because of the exponential decay of the source multipole
moments qm

l (ω) for l > ka0 it follows that this expansion is effectively terminated at
l = ka0. Moreover, the spherical harmonics Ym

l (s) are periodic functions of the polar and
azimuthal angles of the unit vector s with minimum angular periods of 2π/l radians for
fixed index l. It then follows that any finite-norm source cannot possess a radiation pattern
having angular periods smaller than 2π/(ka0) = λ/a0 radians, which thus sets a limit on
the achievable resolution of this class of source that depends only on the wavelength and
the source radius.
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1.7.4 The field uniqueness theorem

The following theorem plays an important role in the ISP, which will be treated in
Chapter 5.

Theorem 1.4 (Field uniqueness theorem) Let u+(r, t) be the field radiated by a causal source
compactly supported in the space-time domain {S0|r ∈ τ0, t ∈ [0, T0]}. Then this field
is uniquely determined over all space-time points lying outside S0 by its boundary values
(field and normal derivative) over any closed surface ∂τ that completely surrounds τ0 or
by Cauchy data specified at any time t0 exceeding the turn-off time T0 of the source.

We first prove the theorem for boundary-value data over ∂τ . Let us assume that there
exists also a second field û+(r, t) that is generated from a source supported in S0 and
assumes boundary conditions over the arbitrary bounding surface ∂τ identical to those
for u+. It then follows that the difference field δu = u+ − û+ is generated by a source
supported in S0 and has zero boundary values on ∂τ . According to the first Helmholtz
identity Eq. (1.36a) δu must then vanish identically outside the bounding surface ∂τ and,
hence, must be generated by an NR source compactly supported in the interior spatial
region τ ⊇ τ0 bounded by the surface ∂τ . But, by hypothesis, δu is generated by a source
supported in S0. We thus conclude that δu = u+ − û+ is generated by an NR source that is
compactly supported in S0 so that u+ = û+ everywhere outside S0.
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The proof for Cauchy conditions follows similar lines. Again we assume that there exists
a second field û+(r, t) that is generated from a source supported in S0 and assumes Cauchy
conditions identical to those of u+(r, t) at some time t0 > T0. It then follows that the
difference field δu = u+ − û+ is generated by a source supported in S0 and satisfies
homogeneous Cauchy conditions at t0. This field then must vanish for all time t > t0 and
hence must be generated by an NR source. Since, by hypothesis, this NR source must
be supported in S0 we conclude that u+ = û+ everywhere outside S0, which proves the
theorem.

We emphasize that the above theorem is a uniqueness theorem and neither indicates how
to compute the field everywhere outside S0 from boundary values on ∂τ or Cauchy data
at t = t0 > T0 nor considers the effect of noise or measurement error on the field deter-
mination. It simply states that under ideal conditions (perfect field data) either of these
data sets will contain, in principle, all the information required to compute the field every-
where outside the (known) space-time support S0 of the source and, hence, will contain
complete information regarding the ISP for the wave equation. In fact, as we will find in
Chapter 4, there is no stable algorithm for computing the radiated field everywhere outside
the spatial support volume τ0 from boundary values on a boundary ∂τ that is more than a
few wavelengths removed from τ0. Rather, it is possible only to compute this field exactly
and stably for space points r that lie outside the measurement boundary ∂τ or approxi-
mately and stably for space points r that lie inside this boundary. We also note that the
theorem requires that both the field and the normal derivative be specified on ∂τ to insure
uniqueness. However, only one of the two quantities is actually required, since the two
data sets are connected via the second Helmholtz identity Eq. (1.36b) and either one can,
in principle, be computed from the other.

1.8 Surface sources

Up to this point we have considered only three-dimensional (3D) (volume) sources q(r, t)
that are distributed throughout a 3D space volume τ0 and radiate a field that consists of
a superposition of outgoing-wave spherical waves each weighted by the source amplitude
at the various source points r ∈ τ0. It is possible to generalize this model to include two-
dimensional (2D) sources that are distributed over a surface ∂τ0 and that radiate a field
that consists of a superposition of outgoing spherical waves centered at the various source
points r0 ∈ ∂τ0. The most general model of this type radiates a field according to the
formula

u+(r, t) =
∫ ∞

0
dt′
∫
∂τ0

dS0

[
qs(r0, t′)g+ − qd(r0, t′) ∂

∂n0
g+
]

, (1.69)
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where r0 ∈ ∂τ0 denotes a point on the surface ∂τ0, which can be closed with finite interior
τ0 and infinite exterior τ⊥0 or the two regions can be infinite with common boundary ∂τ0.
The normal derivative in the above equation can be selected to be directed out of the region
τ0 and into the τ⊥0 or vice versa. The selection is arbitrary but is sometimes physically
motivated, as we will see in our treatment of the connection of time reversal to field back
propagation in Chapter 4. Here, and elsewhere unless stated otherwise, we will assume for
the sake of definiteness that it is directed outward from the region τ0 into the region τ⊥0 .
The field u+(r, t) radiated by the source pair is clearly causal and satisfies the homogeneous
wave equation over all space-time points that lie away from the boundary ∂τ0; i.e., within
both τ0 and τ⊥0 .

The source component qs is termed the “singlet” component since it radiates the simple
monopole spherical wave g+, while qd is termed the “doublet” component since it radi-
ates the dipole (∂/∂n0)g+. The two components are generally required to radiate different
fields into the two spaces τ0 and τ⊥0 . In cases where ∂τ0 is a separable surface (see Chap-
ter 3) defined by generalized coordinates (ξ1, ξ2, ξ3) with, say, ξ3 = ξ30 equal to a constant
defining the surface, the corresponding surface source can be expressed as a 3D source
distribution in the form

q(r, t) = qs(ξ1, ξ2, t)
δ(ξ3 − ξ30)

h3(r0)
+ qd(ξ1, ξ2, t)

h1(r0)h2(r0)

h1(r)h2(r)

∂
∂ξ3
δ(ξ3 − ξ30)

h3(r)
, (1.70)

where δ(·) is the Dirac delta function and h1, h2, h3 are the scale factors for the coordinate
system. The field radiated by q is then given by the primary field representation Eq. (1.33)
with the source given by Eq. (1.70), which reduces to Eq. (1.69).

The singlet–doublet sources are completely arbitrary and, in particular, are not, nec-
essarily, equal to the boundary values of the field u+ and its normal derivative on ∂τ0.
Indeed, although Eq. (1.69) resembles the Kirchhoff–Helmholtz representation of the field
radiated into τ⊥0 by a volume source supported within τ0 and given in Eq. (1.36a), the
above field representation is much more general and reduces to the Kirchhoff–Helmholtz
representation only in the special case that the two source components are such that u+
satisfies the second Helmholtz identity Eq. (1.36b) throughout the region τ0; i.e., vanishes
within τ0. In general this identity will not be satisfied and the singlet–doublet pair will
radiate a non-zero field both into τ0 and into τ⊥0 .

To prove the above assertion that Eq. (1.69) reduces to the Kirchhoff–Helmholtz repre-
sentation Eq. (1.36a) if the field u+ vanishes throughout τ0 we make use of the following
limiting values (Green, 1969) of the field u+:

lim
r→r0

u+(r, t) = u+P(r0, t)± 1

2
qd(r0, t), (1.71a)

lim
r→r0

∂

∂n
u+(r, t) = ∂

∂n0
u+P(r0, t)± 1

2
qs(r0, t), (1.71b)

where the + sign is used when the limit is taken from τ⊥0 and the minus sign when the
limit is taken from τ0, and the subscript P stands for the principal value of the quantity
being subscripted. Now, if u+ satisfies the second Helmholtz identity and, hence, vanishes
throughout τ0 then Eqs. (1.71) require that
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u+P(r0, t)− 1

2
qd(r0, t) = 0⇒ u+P(r0, t) = 1

2
qd(r0, t),

∂

∂n0
u+P(r0, t)− 1

2
qs(r0, t) = 0⇒ ∂

∂n0
u+P(r0, t) = 1

2
qs(r0, t),

which, when used in Eqs. (1.71), yield

lim
r→r0

u+(r, t) = qd(r0, t), lim
r→r0

∂

∂n
u+(r, t) = qs(r0, t), (1.72)

where the limits are taken from the region τ⊥0 onto the boundary ∂τ0. The Kirchhoff–
Helmholtz representation Eq. (1.36a) then results from Eq. (1.69) upon making the above
substitutions for the singlet–doublet pair. It then follows that in this case the field u+ can
be radiated by a 3D volume source located within the region τ0 and the surface sources
qs(r0, t) = ∂u+(r0, t)/∂n0 and qd(r0, t) = u+(r0, t) are sometimes referred to as “secondary
sources” that result from the “primary” 3D source.

1.8.1 Non-radiating surface sources

When the singlet–doublet pair qs, qd constitutes a secondary source corresponding to the
boundary values of a field u+ radiated by a 3D source supported within the region τ0 then
the second Helmholtz identity requires that the field u+ radiated by this pair as defined via
Eq. (1.69) must vanish identically throughout this region. We can interpret this as meaning
that the singlet–doublet pair qs = ∂u+/∂n, qd = u+, where u+ is radiated by a 3D source
supported in τ0, constitutes an NR surface source relative to the same region; i.e., relative
to the region τ0. Similarly, it is not difficult to show that if the singlet–doublet pair results
from the boundary values of a field radiated by a source supported entirely within the region
τ⊥0 then the field radiated by this pair must vanish everywhere throughout τ⊥0 and, hence,
must be an NR surface source relative to τ⊥0 . These conclusions are simply a consequence
of the second Helmholtz identity written for fields radiated by 3D sources confined to either
τ0 or τ⊥0 and are illustrated in Fig. 1.3.

We have just seen that all secondary surface sources that result from the boundary values
of a field radiated by 3D sources located within τ0 or τ⊥0 are NR into those regions; e.g.,
if the singlet–doublet pair results from a 3D source located within τ0 then this surface
source is NR into τ0 and similarly for τ⊥0 . Moreover, we will show in the following chapter
that all NR surface sources can be so constructed. This then provides a general algorithm
for generating any NR surface source in analogy to the general algorithm presented in
Eq. (1.56) for volume NR sources. In particular, if ψ(r, t) is a field that is radiated by a
source q(r, t) that is supported entirely within τ0 or its complement τ⊥0 then, for any point
r0 lying on the boundary ∂τ0,

qsnr(r0, t) = ∂

∂n0
ψ(r0, t) = − 1

4π

∫
τ0

d3r′ ∂
∂n0

q(r′, t − |r0 − r′|/c)

|r0 − r′| ,

qdnr(r0, t) = ψ(r0, t) = − 1

4π

∫
τ0

d3r′ q(r′, t − |r0 − r′|/c)

|r0 − r′|
and the singlet–doublet pair is NR into the region in which the source is located.
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s d

�Fig. 1.3 Illustrating the construction of NR surface sources. On the left an NR pair for the interior region τ0 is produced by the
field radiated by a primary 3D source located in τ0 and on the right an NR pair for the exterior region τ⊥0 is produced
by a primary 3D source located in τ⊥0 .

The natural question which arises is that of whether there exist surface sources that are
NR simultaneously in both τ0 and τ⊥0 . In fact, no such source can exist. To see this we
consider the case of a surface source that is NR in τ0. Then the field u+ radiated by this
singlet–doublet pair must vanish throughout τ0 and, hence, must satisfy Eq. (1.72) with the
limits taken from within τ⊥0 . But if the field is also NR within τ⊥0 then these two limits
must be zero and, hence, this equation requires that both qs and qd vanish, which then
establishes the result.

Finally, we mention that besides purely NR surface sources it is also possible to have
essentially NR surface sources that radiate a field that possesses an energy spectrum that is
essentially zero at one or more temporal frequencies. Such sources are secondary surface
sources generated by the boundary values of essentially NR 3D volume sources located
within τ0 or τ⊥0 and will radiate an identical field to that of the essentially NR primary
source throughout the complement of the region in which this primary source is located.
Since these surface sources are secondary sources they must satisfy the second Helmholtz
identity and are thus purely NR throughout the region in which the primary essentially NR
3D source is located.

1.8.2 Active object cloaking

An interesting and potentially very important application is that of “object cloaking”
whereby an object can be made invisible to electromagnetic or other types of wavefields
by the use of specially designed embedding materials (so-called “meta-materials”) or by
surrounding the object by an active antenna system (Miller, 2006). That this is theoreti-
cally possible with the use of a surrounding surface source implemented in the form of
an active antenna system is easily established using the results obtained above concerning
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NR surface sources. In particular, we consider a region of space τ0 illustrated in Fig. 1.3
in which is placed an object that we wish to cloak. An arbitrary field ψ is incident on this
object from the exterior of τ0 as illustrated on the right-hand side of Fig. 1.3. If we are able
to measure the incident field and its normal derivative over ∂τ0 and use this information to
construct the surface source (note the minus signs)

qsnr(r0, t) = − ∂

∂n0
ψ(r0, t), qdnr(r0, t) = −ψ(r0, t) (1.73)

then this source will be NR into the exterior region τ⊥0 containing the source of the incident
wavefield and, hence, will not alter this field outside τ0. On the other hand, it will radiate
the field−ψ(r, t) into the interior region τ0, thus annihilating the incident field and creating
a null field within τ0 that cannot generate a scattered field from the object that could alter
the field in the exterior region τ⊥0 . The object will then be totally cloaked (invisible) to
radiation generated by any source exterior to τ0.

The practical difficulties in achieving active field cloaking as described above are that
(i) both the incident field and its normal derivative would need to be measured and (ii)
the active cloaking antenna system needs to include both singlet and doublet sources. The
first requirement can, in principle, be eliminated since the normal derivative of the inci-
dent field over ∂τ0 can, in principle, be determined from knowledge of the incident field
(and vice versa) via the second Helmholtz identity implemented in the form of a fast dig-
ital algorithm, which is certainly possible for separable surfaces (see Chapter 3). On the
other hand, the second requirement is not so easily eliminated. However, it is possible to
implement such a cloaking antenna system using two concentric dipole arrays that together
approximate a general surface source or, alternatively, using directional antenna elements
that radiate only over a limited angular range.

We should note that if both the field and its normal derivative over ∂τ0 are measured then
it is not necessary to isolate the incident wavefield component of the total field over ∂τ0 in
constructing the sources in Eq. (1.73). The reason for this is that even if the cloaked object
generates a scattered field its boundary values over ∂τ0 will constitute a surface NR source
relative to the interior region τ0 and, hence, will not change the cloaking field within τ0.
The overall cloaking scheme will thus be insensitive (stable) to changes in the object or
cloaking surface ∂τ0.

Further reading

The key literature on the radiation and propagation of waves and on much of the mate-
rial presented in this book is the two-volume work by Morse and Feshbach (Morse and
Feshbach, 1953). Other excellent texts include the books by Stratton (Stratton, 1941),
Jackson (Jackson, 1998), Courant and Hilbert (Courant and Hilbert, 1966), Born and
Wolf (Born and Wolf, 1999) and Chew (Chew, 1990) and, from a more engineering per-
spective, the book by Balanis (Balanis, 1989). A complete account of the initial-value prob-
lem is contained in the classic text by Hadamard (Hadamard, 1952). Very readable accounts
of distribution theory include Zemanian (1965) and Richards and Youn (1995), while an
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excellent account of classical Fourier methods as applied to partial differential equations
is given in Weinberger (1995). The book by Arsac (Arsac, 1984) contains a combined
treatment of Fourier transforms and distribution theory written from a physicist’s point of
view. A simple but complete treatment of complex-variable theory at the level required in
this book is given in Arfken and Weber (2001). An excellent overall review of the history
of NR sources can be found in Gbur (2003). The theory of surface sources presented in
Section 1.8 relied heavily on the book by Baker and Copson (Baker and Copson, 1950).

Problems

1.1 Determine the relationship between the two Cauchy conditions for the one-
dimensional (1D) wave equation such that (a) only a wavefield propagating in the+z
direction is present and (b) only a wave propagating in the −z direction is present.
Are there any non-trivial Cauchy conditions that result in a zero field?

1.2 (a) Compute the temporal Fourier transform of the “Rect” function

Rect(t) =
{

1 −T0 ≤ t ≤ +T0,

0 else.

(b) Use the Cauchy–Riemann equations to prove that the transform that you com-
puted is an entire analytic function of the frequency variable ω.

1.3 Perform the steps leading from the Fourier-integral representation of the causal
Green function in Eq. (1.18) to its final form given in Eq. (1.20a).

1.4 Prove using Cauchy’s integral theorem that the difference between the causal
(retarded) and acausal (advanced) Green functions satisfies the homogeneous wave
equation and, hence, is not a Green function.

1.5 Compute the frequency-domain outgoing- and incoming-wave Green functions
G+(R,ω) and G−(R,ω) by performing spatial Fourier inversions of G̃(K,ω).

1.6 Compute the 1D incoming-wave Green function G−(z,ω) from Eq. (1.26) of
Example 1.3.

1.7 Directly verify by differentiation that the 1D causal Green function given in
Eq. (1.29) of Example 1.4 satisfies the defining equation Eq. (1.24) of Example 1.3.

1.8 Verify by direct differentiation that the difference between the causal and acausal 1D
Green functions to the wave equation satisfies the homogeneous wave equation.

1.9 Verify that the interior field representations given in Eqs. (1.37) remain valid with
g− replaced by g+; i.e., show that the two new equations are also correct.

1.10 Derive Eqs. (1.34a) and (1.34b) in Example 1.6.
1.11 Derive the expression for the radiated field given in Eq. (1.35a) of Example 1.6.
1.12 Determine the Cauchy conditions satisfied by the free-space propagator gf(R, τ ) at

τ = 0 directly from its definition as the difference between the retarded and advanced
Green functions to the wave equation.

1.13 Verify that the solution to the initial-value problem given in Eq. (1.41) reduces to the
Cauchy initial conditions found in Problem 1.12.
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1.14 Derive the time-domain Porter–Bojarski integral equation from the interior field solu-
tion Eq. (1.37a):∫ T0

0
dt′
∫
τ0

d3r′ gf(r− r′, t − t′)q(r′, t′) = φ(r, t), r ∈ τ ,

where

gf(R, τ ) = g+(R, τ )− g−(R, τ )

is the free-field propagator and

φ(r, t) =
∫ ∞
−∞

dt′
∫
∂τ

dS′
[

u+
∂

∂n′
g− − g−

∂

∂n′
u+
]

.

1.15 Compute the frequency-domain solution and radiation pattern for the 1D wave equa-
tion from the time-domain solution found in Example 1.5.

1.16 Compute the frequency- and time-domain radiation patterns for the time-periodic
source considered in Example 1.6.

1.17 Transform the SRC as defined in Eq. (1.48) into the time domain and interpret the
result.

1.18 Prove that the far-field approximation given in Eq. (1.49) is causal.
1.19 Express the energy spectra EQ(ω) directly in terms of the source Q(r,ω).
1.20 Derive the general expression for an NR source for the 1D wave equation.
1.21 Show that the solution to the 1D radiation problem can be expressed entirely in terms

of q̃(±k,ω) everywhere outside the source region. Using this solution, show that the
field everywhere outside the source region is uniquely determined by the value of the
field at any two points z1 < −a0 and z2 > a0, where [−a0, a0] is the space support
for the source. Give an expression for the field in terms of the field amplitude at these
two points.

1.22 Derive the equation satisfied by a frequency-domain NR source Eq. (1.57) directly
from the equation satisfied by the time-domain NR source Eq. (1.56).

1.23 Construct an NR source using the classical testing function of distribution theory

�(r) =
{

0 r ≥ a0,

exp[1/(r2 − a2
0)] r < a0.

1.24 Determine whether the rotating point source considered in Example 1.6 can ever be
NR at one or more temporal frequencies.

1.25 Determine whether the rotating point source considered in Example 1.6 can ever be
essentially NR. Construct an essentially NR source by high-pass filtering the Fourier-
series expansion of the delta function δ(φ − vφ t).

1.26 Use the second Helmholtz identity to verify that the cloaking field within the interior
τ0 generated from the surface source given in Eq. (1.73) is not modified when the
incident field is replaced by the total field (incident plus scattered). Discuss why this
modification (using total rather than incident field measurements) requires that both
the field and its normal derivative be separately measured.



2
Radiation and boundary-value problems in the

frequency domain

We return to the problem of computing the field u+(r, t) radiated by a real-valued space-
and time-varying source q(r, t) embedded in an infinite homogeneous medium such as free
space. As in Chapter 1 we will assume here that the time-dependent source q(r, t) is com-
pactly supported in the space-time region {S0|r ∈ τ0, t ∈ [0, T0]}, where τ0 is its spatial
volume and [0, T0] the interval of time over which the source is turned on. In the case in
which the medium is non-dispersive the radiated wavefield satisfies the inhomogeneous
scalar wave equation Eq. (1.1). More generally, if the background medium is dispersive it
is necessary to replace the second time derivative in this equation by an integral (convo-
lutional) operator, so that the wave equation is actually an integral-differential equation.
In this chapter we will treat the radiation problem in the frequency domain so that this
complication is avoided and our results apply both to dispersive and to non-dispersive
backgrounds.

In addition to treating the radiation problem we also treat the classical boundary-
value problem for the scalar wave Helmholtz equation in a (possibly dispersive) uniform
background medium. Special attention is devoted to the famous Rayleigh–Sommerfeld
boundary-value problem, which consists of computing a radiated field throughout a
half-space that is exterior to the source region τ0 from Dirichlet or Neumann condi-
tions prescribed over an infinite bounding plane to the source. The inverse problem of
(approximately) computing a radiated field throughout an interior half-space that includes
the source region from Dirichlet or Neumann conditions on an infinite bounding plane
is also addressed. This problem, which is a form of field back propagation, is important
in a number of imaging and wavefield-inversion applications and will be addressed more
completely in Chapter 4.

2.1 Frequency-domain formulation of the radiation problem

The key to treating the radiation problem in the frequency domain is the observation that
even if the background medium is dispersive the Fourier transforms Q(r,ω) and U(r,ω) of
the time-dependent source and field are still related by the inhomogeneous Helmholtz equa-
tion Eq. (1.43b) and the frequency-domain Green functions satisfy the Helmholtz equation
Eq. (1.22) with a delta-function source. The only difference is that the wavenumber k is
no longer simply ω/c but will be a product of ω/c with an analytic function of ω (see the
discussion below). The frequency- and time-domain quantities are still related via a tem-
poral Fourier transform and the time-dependent radiated field u+ is required to be causally
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related to the source and, hence, must vanish for all negative time. This then guarantees
that its temporal transform U+(r,ω) is analytic throughout the upper half of the complex-
ω plane and vanishes as |ω| → ∞ in that half-plane. The causal solution to the radiation
problem and the causal time-dependent Green function are thus obtained, as we showed in
Chapter 1, by employing an ω contour of integration in their temporal Fourier-integral rep-
resentations that lies above the real-ω axis. The “outgoing-wave Green function” G+(R,ω)
that yields the causal time-domain Green function g+ is then obtained as the solution to
the Helmholtz equation Eq. (1.22) with ω > 0 and is still given by Eq. (1.23a), where,
however, the wavenumber will depend on the frequency variable ω. The radiated field is
still given in terms of G+ by Eq. (1.43a) of Section 1.5, again with k = k(ω). Indeed, virtu-
ally all of the frequency-domain results obtained in the previous chapter can be extended to
dispersive media by simply allowing k to be an analytic function of ω that satisfies certain
conditions imposed by causality as discussed below.

2.1.1 Analytic-signal representation of time-domain fields

Unless stated otherwise, we will assume throughout this chapter that the temporal fre-
quency ω is a strictly real quantity. It is also sometimes useful to restrict ω to being posi-
tive. This is certainly possible in the case of real-valued time-dependent fields and sources
since their time Fourier transforms satisfy the reciprocity condition

F̃(r,−ω) = F̃∗(r,ω), (2.1)

where F(r,ω) is the time Fourier transform of some arbitrary real-valued function f (r, t),
the superscript asterisk ∗ denotes the complex conjugate and we have assumed that ω
is real-valued. Because of the reciprocity condition we can restrict our attention to only
positive frequencies and recover the negative-frequency components (if necessary) using
Eq. (2.1).

In fact, it is not even necessary to use the reciprocity relationship Eq. (2.1) to determine
the associated, real-valued time-domain quantities. In particular, we can make use of the
analytic signal

f (+)(r, t) = 1

2π

∫ ∞
0

dω F̃(r,ω)e−iωt,

which can be computed using only positive-frequency components of F̃. If we use the
reciprocity relationship Eq. (2.1) it is easy to show that

f (r, t) = 1

2π

∫ ∞
−∞

dω F̃(r,ω)e−iωt = 2�f (+)(r, t) (2.2)

so that only the analytic signal f (+) need be computed and the real (physically meaningful)
quantity f can then be obtained directly in the time domain using Eq. (2.2).

Although we will not make extensive use of the analytic-signal representation in this
book, this representation is often used in the signal-processing, physics and engineering
literature since it simplifies time-domain analysis. However, in this book we will work
primarily in the frequency domain, where the analytic-signal representation is not needed.
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2.1.2 The Helmholtz equation

Fourier transformation of the wave equation Eq. (1.1) yields the reduced scalar wave equa-
tion (scalar Helmholtz equation)

[∇2 + k2]U(r,ω) = Q(r,ω), (2.3)

where k = ω/c is the wavenumber. Although we have derived the Helmholtz equation
directly from the wave equation, this equation is, as we mentioned above, much more
general than the wave equation and should be considered in its own right rather than sim-
ply as the frequency-domain counterpart of the wave equation. For example, although the
wave equation applies only to a non-dispersive and non-attenuating background medium,
the Helmholtz equation Eq. (2.3) describes the radiation of waves in a dispersive medium
characterized by an index of refraction n(ω) and wavenumber k(ω) = (ω/c)n(ω). We thus
take the Helmholtz equation to be the fundamental equation governing radiation and wave
propagation in a dispersive medium characterized by a complex background wavenum-
ber k(ω).

The index of refraction n(ω) will be complex and analytic in the u.h.p. due to the required
causality of the medium but will have singularities in the form of branch points in the l.h.p.
It then follows that the particular solution U+ to the Helmholtz equation that corresponds
to a causal time-dependent field u+(r, t) will also be analytic throughout the upper half
of the complex-ω plane. Moreover, conservation-of-energy arguments also require that
the imaginary part of the index of refraction n(ω) be non-negative, corresponding to the
requirement that the background medium can only absorb energy from a propagating wave
rather than add energy to such a wave. Thus, we will assume throughout this and following
chapters that k(ω) = [(ω/c)n(ω)] ≥ 0, at least along the real-ω axis and throughout the
upper half of the complex-ω plane.

2.1.3 Lorentz dispersive medium

A Lorentz model for the complex index of refraction of a dispersive medium is often used in
theoretical studies of wave propagation and scattering in such media. The simplest example
of such a model is provided by the equation (Oughstun and Sherman, 1997)

n(ω) =
(

1− b2

ω2 − ω2
0 + 2δiω

)1/2

,

where ω0 is the resonance frequency of the material and δ and b are positive real constants
that are specific to the particular medium that is being modeled. We note from the above
equation that, when ω is real, n(−ω) = n∗(ω), which is a general feature of the complex
index of refraction of dispersive media. The above equation can be rewritten in the form

n(ω) =
(

(ω − ω′+)(ω − ω′−)

(ω − ω+)(ω − ω−)

)1/2

, (2.4)
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where

ω′± = ±
√
ω2

1 − δ2 − δi,
ω± = ±

√
ω2

0 − δ2 − δi,

with ω2
1 = ω2

0 + b2. It is clear from Eq. (2.4) that the index of refraction is free of singu-
larities in the upper half of the complex-ω plane but has singularities in the form of four
branch points at ω′± and ω± in the lower half of the complex-ω plane. From the definitions
of these quantities it can be seen that these branch points are symmetrically placed along
a line parallel to the real-ω axis in the lower half of the complex-ω plane as illustrated
in Fig. 2.1. The branch cuts can then be selected as indicated in that figure. We will use
this simple Lorentz model later in our discussion of the time-domain Green function of a
dispersive medium in Section 2.3.1.

We will also have cause to employ the analytic continuation of the complex conjugate
of n(ω) from its boundary value on the real-ω axis. This quantity is algebraically given by
n∗(ω∗), so it follows from Eq. (2.4) that for Lorentz media this quantity is given by

n∗(ω∗) =
(

(ω − ω′∗+)(ω − ω′∗−)

(ω − ω∗+)(ω − ω∗−)

)1/2

.

′ω+ ω+′ω− ω−

C−

C+

Im ω

Re ω

Complex-ω plane

�Fig. 2.1 The distribution of singularities of the complex index of refraction for a Lorentz medium having a single resonance.
n(ω) is free of singularities in the u.h.p. but has four branch points in the l.h.p. Integration around the contour C−
yields zero, while integration around C+ yields contributions from the four branch points.
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This quantity defines an analytic function of ω over the entire complex-ω plane. This con-
tinuation is seen to be free of singularities in the lower half of the complex-ω plane but
has singularities in the form of four branch points at ω′∗± and ω∗± in the upper half of the
complex-ω plane.

Example 2.1 It is easy to show using the Cauchy–Riemann (CR) equations satisfied by
n(ω) that the continuation of its complex conjugate into the complex-ω plane from its
boundary value on the real-ω axis is analytic. On setting n(ω) = nr(ωr,ωi) + ini(ωr,ωi),
with ω = ωr + iωi and nr and ni the real and imaginary components of n(ω), the CR
equations satisfied by n(ω) are given by

∂nr(ωr,ωi)

∂ωr
= ∂ni(ωr,ωi)

∂ωi
,

∂nr(ωr,ωi)

∂ωi
= −∂ni(ωr,ωi)

∂ωr
. (2.5)

The continuation of n∗(ω) from its boundary value on the real-ω axis is equal to n∗(ω∗) =
nr(ωr,−ωi) − ini(ωr,−ωi). If we thus write this continued function in the form n∗(ω∗) =
u(ωr,ωi)+ iv(ωr,ωi) we have that

u(ωr,ωi) = nr(ωr,−ωi), v(ωr,ωi) = −ni(ωr,−ωi). (2.6)

We will now show that the real and imaginary parts u and v of n∗(ω∗) satisfy the CR
equations. By making use of the definitions of u and v given in Eqs. (2.6) and the first CR
equation for n(ω) given in Eqs. (2.5) we find that

∂u(ωr,ωi)

∂ωr
= ∂nr(ωr,−ωi)

∂ωr
= ∂ni(ωr,−ωi)

∂ωi
= ∂v(ωr,ωi)

∂ωi
,

which is the first CR equation for n∗(ω∗). Similarly, we find that

∂u(ωr,ωi)

∂ωi
= ∂nr(ωr,−ωi)

∂ωi
= ∂ni(ωr,−ωi)

∂ωr
= −∂v(ωr,ωi)

∂ωr
,

which is the second CR equation for n∗(ω∗).

2.1.4 The Sommerfeld radiation condition in dispersive media

As was the case for the inhomogeneous wave equation Eq. (1.1), the inhomogeneous
Helmholtz equation does not possess a unique solution and, in particular, given any solu-
tion U(r,ω) we can obtain a new solution by adding any field δU(r,ω) that satisfies the
homogeneous Helmholtz equation

[∇2 + k2]δU(r,ω) = 0. (2.7)

The different solutions obtained in this way will satisfy the same defining equation
Eq. (2.3) but different boundary conditions. The choice of boundary conditions is dic-
tated by the physics of the problem at hand, and for the case of the radiation problem in an
infinite homogeneous background medium the appropriate boundary condition is the Som-
merfeld radiation condition (SRC) (Sommerfeld, 1967). The SRC was discussed at some
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length in Chapter 1 and, as shown in that chapter, is equivalent to the requirement that the
associated time-domain field and Green function be causal.

The SRC can be stated in either of the two forms (cf. Eqs. (1.45a) and (1.48))

lim
r→∞ r

[
∂U+(r,ω)

∂r
− ikU+(r,ω)

]
→ 0, (2.8a)

U+(r,ω) ∼ f (s,ω)
eikr

r
, (2.8b)

where s = r/r is the unit vector along the r direction and, as usual, we have used the sub-
script+ to denote the field that satisfies the SRC. The function f (s,ω), called the radiation
pattern and previously introduced in Section 1.5.1, plays an important role in a host of
inverse problems, as we will see in later chapters. The approximation of U by the first term
in Eq. (2.8b) is generally referred to as the far-field approximation. We will employ both
forms of the SRC in this chapter.

In the traditional form of the SRC the wavenumber k = ω/c is a real-valued quantity and
the SRC defines an outgoing-wave field. In particular, if we substitute the SRC in the form
of Eq. (2.8b) into Eq. (2.2) we conclude that the time-dependent radiated field behaves
asymptotically like

u+(r, t) ∼ 1

2π

∫ ∞
−∞

dω f (s,ω)
e−iω(t−r/c)

r
= F+(s, t − r/c)

r
, (2.9a)

where

F+(s, t) = 1

2π

∫ ∞
−∞

dω f (s,ω)e−iωt (2.9b)

is the so-called time-domain radiation pattern introduced in Section 1.5.1 of Chapter 1. It
is clear from Eq. (2.9a) that u+ behaves asymptotically as an outward expanding spherical
wave; i.e., wavefronts defined by t − r/c = constant are spherical and expand outward
from the origin as time t increases.

In the case of dispersive media where k is complex with a positive imaginary part the
SRC is still equivalent to causality in the time domain and still requires that the radiated
field behave as an outgoing spherical wave as the field point r tends to infinity, but this
condition also requires that its amplitude decay exponentially with increasing distance r
from the origin. This, of course, is a requirement that is imposed by the fact that k > 0,
corresponding to an absorbing background medium that attenuates any propagating wave.

2.1.5 Incoming- and conjugate-wave radiation conditions

As discussed above, the SRC is sometimes referred to as the “outgoing-wave radiation
condition” due to the fact that the associated time-domain wavefield propagates “out-
ward” from the source region into the surrounding space; i.e., it is causally “created”
by the source. It is also possible to construct wavefields that propagate “inward” from
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space toward their “source” region. Such wavefields satisfy a far-field condition that is
completely analogous to the SRC. This condition, called the incoming-wave radiation con-
dition, can be stated in either of the two forms

lim
r→∞ r

[
∂U−(r,ω)

∂r
+ ikU−(r,ω)

]
→ 0, (2.10a)

U−(r,ω) ∼ f−(s,ω)
e−ikr

r
, (2.10b)

where the function f−(s,ω) is the incoming-wave radiation-condition counterpart to the
usual outgoing-wave radiation pattern f (s,ω). The incoming-wave radiation condition
when employed as a boundary condition to the inhomogeneous Helmholtz equation gener-
ates a unique solution, which, in the case of non-dispersive media where k = ω/c, yields
an acausal time-domain wavefield u−(r, t) (see the discussion below).

In a realizable dispersive medium where k(ω) > 0 the incoming wavefield will grow
exponentially fast with increasing distance r from the source region. Because of this it is
desirable in dispersive media to sometimes employ an incoming wave that decays rather
than grows with increasing distance r from the source but reduces to the usual incoming
wave when the medium is non-dispersive and k is real-valued. The required wavefield is
obtained by noting that if we replace the wavenumber k in the Helmholtz equation by its
complex conjugate k∗ then the incoming-wave solution of this new Helmholtz equation is
perfectly stable and reduces to the incoming-wave solution of the usual Helmholtz equation
in the special case in which k is real-valued. We will name this class of wavefields conju-
gate waves and define them to be solutions to the inhomogeneous Helmholtz equation with
wavenumber k∗ that satisfy the conjugate-wave radiation condition

lim
r→∞ r

[
∂U(r,ω)

∂r
+ ik∗U(r,ω)

]
→ 0, (2.11a)

U(r,ω) ∼ fc(s,ω)
e−ik∗r

r
, (2.11b)

where fc is the “conjugate-wave” radiation pattern.

Conjugate waves and time reversal

For real-valued functions of time t the process of time reversal whereby t → −t corre-
sponds, in the frequency domain, to the complex-conjugation operation. It then follows
that the time-reversed field u+(r,−t) has a Fourier transform given by U∗+(r,ω). When the
wavenumber k is real we have that

[∇2 + k2]U∗+(r,ω) = Q∗(r,ω), (2.12a)
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and the complex conjugate of the SRC yields

lim
r→∞ r

[
∂U∗+(r,ω)

∂r
+ ikU∗+(r,ω)

]
= 0. (2.12b)

The time-reversed field is thus obtained as the incoming-wave solution to the Helmholtz
equation with a time-reversed source term. Since the time-reversed field u+(r,−t) is
acausal it then follows that in the case of real wavenumbers (non-dispersive media) the
incoming-wave radiation condition in the frequency domain implies acausality in the time
domain.

More generally, in dispersive media where k is a complex function of ω the above con-
clusions are no longer true and the time-reversed field is not obtained from the incoming-
wave solution to the Helmholtz equation Eq. (2.12a). In particular, in the case of dispersive
media the complex conjugate of the Helmholtz equation yields the result1

[∇2 + k∗2]U∗+(r,ω) = Q∗(r,ω), (2.12c)

and the complex conjugate of the SRC becomes the conjugate-wave radiation condition
defined in Eqs. (2.11). In this more general case we conclude that the Fourier transform
U∗+(r,ω) of the acausal, time-reversed field u+(r,−t) is the incoming-wave solution to the
Helmholtz equation for a medium having k∗ as its wavenumber rather than for the original
medium in which the original field was radiated. In other words, in the frequency domain,
the time-reversed field U∗+(r,ω) is the conjugate-wave field as we have defined it above.

These conclusions regarding the conjugate wave and time reversal in a dispersive
medium make perfect sense when we interpret the transformation k(ω) → k∗(ω). In par-
ticular, this operation corresponds to time reversing the material in which the wave prop-
agates. Thus, to obtain true time reversal in a dispersive medium it is necessary to time
reverse the source Q(r,ω)→ Q∗(r,ω), the medium k(ω)→ k∗(ω) and the SRC.

2.2 Green functions

We define a Green function to the Helmholtz equation to be any solution to the partial
differential equation

[∇2 + k2]G(r, r′,ω) = δ(r− r′) (2.13)

within some region τ , possibly infinite, bounded by a surface ∂τ . A Green function can be
interpreted as being the field generated by an impulsive source located at the space point r′.
As is the case for any solution to the inhomogeneous Helmholtz equation, a Green function
is non-unique and it is necessary to append appropriate boundary conditions over ∂τ in
order to obtain a unique Green function. In the case of the radiation problem where we

1 Here, and throughout this chapter, the quantity k∗(ω) is taken to mean the analytic continuation of this quantity
from its values along the real-ω axis (cf. the discussion in Section 2.1.3).
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seek a causal solution to the associated time-dependent problem in an infinite medium the
physically appropriate boundary condition is that G satisfy the SRC. The SRC is equivalent
to the requirement of causality in the time domain and the resulting Green function is the
outgoing-wave Green function

G+(R,ω) = − 1

4π

eikR

R
, (2.14)

derived by Fourier transformation of the causal time-domain Green function2 (retarded
Green function) g+(r − r′, t − t′) of the wave equation in Section 1.2.2 of Chapter 1.
The outgoing-wave Green function can also be obtained directly from its Fourier-integral
representation

G+(R,ω) = 1

(2π )3

∫
d3K

eiK·R

k2 − K2
, (2.15)

where the condition k > 0 guarantees that G+ will satisfy the SRC. The incoming-
wave Green function G− is obtained from G+ by simply replacing k by −k, while the
conjugate-wave Green function is obtained simply by taking the complex conjugate of G+.
The incoming-wave Green function G− is a solution to the Helmholtz equation Eq. (2.13)
while the conjugate-wave Green function is a solution to the equation

[∇2 + k∗2]G∗(r, r′,ω) = δ(r− r′) (2.16)

and, hence, is actually a Green function to the Helmholtz equation with wavenumber k∗
rather than with wavenumber k. We will show below that the time-domain conjugate-wave
Green function is acausal both for dispersive and for non-dispersive media, while the time-
domain incoming-wave Green function is acausal only for non-dispersive media.

Example 2.2 Consider the one-dimensional Helmholtz equation[
∂2

∂z2
+ k2

]
G(z,ω) = δ(z), (2.17)

with the wavenumber k strictly real-valued. Equation (2.17) is easily converted to Fourier
space and we obtain the result

G(z,ω) = 1

2π

∫ ∞
−∞

dK
eiKz

−K2 + k2
. (2.18)

The poles in the integrand of Eq. (2.18) occur at K = ±k and, thus, lie on the real-K
axis when the wavenumber is real. The outgoing- and incoming-wave Green functions are
obtained as above by selecting the contour to lie above the pole at K = −k and below
the pole at K = +k (outgoing-wave Green function) or below the pole at K = −k and
above the pole at K = +k (incoming-wave Green function). However, it is also possible
to use contours that pass either above both poles or below both poles. By making use of

2 Although the derivation of G+ obtained in Chapter 1 was for the wave equation, the functional form as given in
Eq. (2.14) remains valid in dispersive media and can be directly derived from the Fourier-integral representation
given in Eq. (2.15).
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Cauchy’s residue theorem the Green functions corresponding to these various contours are
easily computed and we obtain

G+(z,ω) = − i

2k
eik|z|,

G−(z,ω) = + i

2k
e−ik|z|,

G++(z,ω) =
{

0 if z > 0,

−[i/(2k)][e−ikz − eikz] if z < 0,

G−−(z,ω) =
{
+[i/(2k)][e−ikz − eikz] if z > 0,

0 if z < 0.

The Green functions G+ and G− are the 1D forms of the 3D incoming- and outgoing-wave
Green functions, while the Green functions G++ and G−− are linear combinations of G+
and G− of solutions to the 1D homogeneous Helmholtz equation.

It is instructive to verify by direct differentiation that the above Green functions all
satisfy the defining equation Eq. (2.17). For example, we can express G−− in the form

G−− = sin(kz)

k

(z),

where 
(z) is the step function. We then find that

∂

∂z
G−− = 1

k
[k cos(kz)
(z)+ sin(kz)δ(z)]

∂2

∂z2
G−− = 1

k

[
−k2 sin(kz)
(z)+ 2k cos(kz)δ(z)+ sin(kz)

∂

∂z
δ(z)

]
,

where δ(z) is the delta function. Using the above results, we conclude that[
∂2

∂z2
+ k2

]
G−−(z,ω) = 2 cos(kz)δ(z)+ sin(kz)

k

∂

∂z
δ(z) = δ(z),

where we have used the results that

f (z)δ(z) = f (0)δ(z),

f (z)
∂

∂z
δ(z) = − ∂

∂z
f (z)δ(z) = − ∂

∂z
f (z)|z=0δ(z)

for any continuous and differentiable function f (z).

2.2.1 Green functions in two space dimensions

The outgoing-wave Green function in two space dimensions is derived directly from the
2D Fourier-integral representation

G+(R,ω) = 1

(2π )2

∫
d2K

eiK·R

k2 − K2
,
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where K and R are now 2D vectors and k > 0 corresponding to the requirement of
causality in the time domain. The incoming-wave Green function G− is obtained from G+
by making the transformation k→−k or, alternatively, from G∗+ under the transformation
k∗ → k.

The actual computation of the 2D Green functions is left as a problem at the end of the
chapter. One finds that

G+(R,ω) = −i

4
H+0 (kR), (2.19a)

where H+0 (·) is the zeroth-order Hankel function of the first kind. The conjugate-wave
Green function is found by taking the complex conjugate of Eq. (2.19a). We obtain

G∗+(R,ω) = i

4
H−0 (k∗R),

where we have used the relationship

H+0
∗
(kR) = H−0 (k∗R).

The incoming-wave Green function is obtained from G+ by replacing k by −k or from G∗+
by replacing k∗ by k. Either method results in

G−(R,ω) = i

4
H−0 (kR). (2.19b)

The 2D Green functions are important since they reduce the size and complexity of simula-
tion studies in inverse scattering and diffraction tomography, and will be employed exten-
sively later in the book in such studies.

2.3 Time-domain Green functions

The time-domain Green functions are obtained from the frequency-domain quantities by
making use of the inverse Fourier transform Eq. (2.2). Corresponding to the outgoing- and
incoming-wave Green functions we obtain3

g+(R, τ ) = 1

2π

∫ ∞
−∞

dω
eik(ω)R

−4πR
e−iωτ , (2.20a)

g−(R, τ ) = 1

2π

∫ ∞
−∞

dω
e−ik(ω)R

−4πR
e−iωτ , (2.20b)

where we have denoted the time-domain outgoing- and incoming-wave Green function
by g+ and g−, respectively. The time-domain conjugate-wave Green function is, of course,
simply the time-reversed version of g+ and is thus given by g+(R,−τ ), a result that follows
directly from Eq. (2.20a) on making use of the fact that k(−ω) = −k∗(ω) when ω is real-
valued. In the case of non-dispersive media k(ω) = ω/c and Eq. (2.20a) then yields the

3 As in Chapter 1 we use the Greek symbol τ here to denote a time difference. This symbol is also used to denote
regions of space, but its meaning should be clear from the context in which it is employed.
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retarded Green function, while Eq. (2.20b) yields the advanced Green function that was
derived in Section 1.2.1 of Chapter 1; i.e.,

g±(R, τ ) = − 1

4π

δ(τ ∓ R/c)

R
,

where δ(·) is the 1D Dirac delta function.
As discussed in Section 1.2.1 and as is apparent from their definition, the retarded and

advanced Green functions vanish off the light-cone τ 2 = R2/c2, with g+ vanishing unless
τ = R/c and g− vanishing unless τ = −R/c. Setting τ = t − t′ and R = r − r′, we
then conclude that these two Green functions correspond to propagating pulses that are
emitted at the space-time point r′, t′ and are observed at the space point r at the retarded
and advanced times t = t± defined according to the equation

t± = t′ ± |r− r′|
c

.

In the case of dispersive media the wavenumber depends on frequency and the inte-
grals in Eqs. (2.20) cannot, in general, be evaluated in closed form. Approximations to the
time-domain Green functions that are valid in certain asymptotic regimes can, however, be
obtained by making use of the method of steepest descents as first developed by Sommer-
feld and Brillouin (Stratton, 1941; Oughstun and Sherman, 1997; Oughstun, 2006). In this
book we will not delve into these methods, since most of our work is performed in the fre-
quency domain where the various inverse problems that we will treat are best formulated
and solved. However, it is useful to review a few key features of the inversion integrals
Eqs. (2.20) that will be of use later in the present chapter.

2.3.1 Key features of the time-domain Green functions

A physically realizable dispersive medium is characterized by a complex wavenumber
of the form k(ω) = (ω/c)n(ω), where the complex index of refraction is analytic with
no singularities in the upper half of the complex-ω plane and, in addition, satisfies the
condition

lim|ω|→∞ n(ω) = 1. (2.21)

These two properties allow the ω contour of integration in Eq. (2.20a) to be closed in the
upper half of the complex-ω plane if R/c − τ > 0 and that of Eq. (2.20b) to be closed in
this half-plane if −R/c − τ > 0. Since the integrands are analytic with no singularities
throughout the u.h.p., we conclude from Cauchy’s integral theorem that g+(r − r′, t − t′)
will be causal relative to the retarded time t+ and g−(r − r′, t − t′) will be causal relative
to the advanced time t−; i.e.,

g+(r− r′, t − t′) = 0, t < t′ + |r− r′|
c

,

g−(r− r′, t − t′) = 0, t < t′ − |r− r′|
c

.

(2.22)
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The time-dependent conjugate-wave Green function g+(R,−τ ) will vanish if R/c+τ > 0,
which corresponds to the time t being greater than the advanced time t− = t′ − R/c. This
time-domain Green function is thus acausal relative to the advanced time.

If R/c − τ < 0 → t > t+ it is not possible to close the ω contour of integration
in Eq. (2.20a) in the u.h.p. and this integral will not vanish. Similarly, if −R/c − τ <
0 → t > t− it is not possible to close the ω contour of integration in Eq. (2.20b) in the
u.h.p. and this integral also will not vanish. It is possible, however, to close the contours of
integration of these two integrals in the l.h.p., where the wavenumber k(ω) has singularities
in the form of branch points. The integral around the branch lines connecting the various
branch points will contribute to the time-domain Green functions so that g+(r− r′, t − t′)
will be a pulse that begins oscillating at the retarded time t = t+ and continues, in principle,
to infinity, while the incoming-wave Green function g−(r − r′, t − t′) will be a pulse that
begins oscillating at the advanced time t = t− and also continues ideally to t = ∞. The
time-reversed Green function will be a pulse that begins oscillating at the advanced time
t = t− and terminates at t = −∞.

Example 2.3 We consider the case of a Lorentz medium characterized by the index of refrac-
tion given in Eq. (2.4) of Section 2.1.3. It is clear from this model that n(ω) satisfies
Eq. (2.21) and has no singularities in the upper half of the complex-ω plane but has sin-
gularities in the form of four branch points in the lower half of this plane as illustrated in
Fig. 2.1. It then follows from the discussion presented above that the ω contour of integra-
tion in the integral Eq. (2.20a) can be closed in the u.h.p. using the contour labeled C− in
Fig. 2.1 for g+ if τ < R/c, thus leading to the conclusion reached above that g+ is causal
relative to the retarded time t+. If, on the other hand, τ > R/c the ω contour must be
closed in the l.h.p. using the contour C+ and will yield contributions from the integrations
around the branch cuts as illustrated in Fig. 2.1. These integrations can only be evaluated
approximately using the method of steepest descents and lead to the famous Sommerfeld
and Brillouin precursors.

2.4 Green-function solution of the radiation problem

The solution to the radiation problem in the frequency domain for non-dispersive media
governed by the wave equation was found in Section 1.5 of Chapter 1 to be given by

U+(r,ω) =
∫
τ0

d3r′ G+(r− r′,ω)Q(r′,ω), (2.23)

where k = ω/c. This result applies also to a dispersive medium, where now k = k(ω) in
the outgoing-wave Green function G+. Since the solutions to the radiation problem both
for dispersive and for non-dispersive media are formally identical in the frequency domain
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all of the results obtained in that section carry over to the case of dispersive media and we
find that

U+(r,ω) ∼ f (s,ω)
eikr

r
as r→∞, (2.24a)

where

f (s,ω) = − 1

4π

∫
τ0

d3r′ Q(r′,ω)e−iks·r′ (2.24b)

is the radiation pattern of the source. The only difference between the results established
earlier in Section 1.5 and here is that now the wavenumber k is complex with a positive
imaginary part and will be an analytic function of the temporal frequency ω. Because of the
complex nature of k the far-field expression given in Eq. (2.24a) will decay exponentially
with increasing distance r from the source region. As was pointed out in Section 1.5.1, the
expression for the radiation pattern given in Eq. (2.24b) identifies this quantity as being
proportional to the spatial Fourier transform of the source,

Q̃(K,ω) =
∫
τ0

d3r′ Q(r′,ω)e−iK·r′ ,

evaluated on the surface of the (generally complex) sphere K = ks; i.e.,

f (s,ω) = − 1

4π
Q̃(K,ω)|K=ks. (2.25)

The surface K = ks is a special case of the more general Ewald sphere that plays a funda-
mental and dominant role in the inverse scattering theory treated later in the book. Again,
as pointed out earlier in our treatment of the radiation problem in non-dispersive media,
the source spatial Fourier transform Q̃(K,ω) is an entire analytic function of the three
Cartesian components of the K vector so that its boundary value Q̃(ks,ω) and, hence, the
radiation pattern f (s,ω) are entire analytic functions of the unit vector s; e.g., of the direc-
tion cosines of this quantity. We emphasize that these quantities are analytic functions of
s over the entire complex unit sphere; i.e., for all real and complex values of s such that
s · s = 1, and their analyticity depends on the source having a compact support volume τ0.

Example 2.4 As an example of Eq. (2.25) consider the source

Q(r,ω) =
{

g(r,ω)Ym
l (r̂) if r ≤ a0,

0 else,

where g(r,ω) is an arbitrary bounded function of frequency and the radial coordinate r, and
Ym

l (r̂) = Ym
l (θ ,φ) are the spherical harmonics defined in Section 3.3 of Chapter 3, which

are functions of the polar and azimuthal angles θ and φ of the unit vector r̂. The spatial
Fourier transform of this source is given by
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Q̃(K,ω) =
∫ a0

0
r2 dr g(r,ω)

∫
4π

d�Ym
l (r̂)e−iK·r

= 4π (−i)lYm
l (K̂)

∫ a0

0
r2 dr g(r,ω)jl(Kr) = G(K,ω)Ym

l (K̂), (2.26)

where

G(K,ω) = 4π (−i)l
∫ a0

0
r2 dr g(r,ω)jl(Kr)

and we have made use of the result (see Example 3.4 of Chapter 3)

jl(Kr)Ym
l (K̂) = il

4π

∫
4π

d�Ym
l (r̂)eiK·r.

The radiation pattern of the source is found from Eq. (2.26) to be given by

f (s,ω) = − 1

4π
G(k,ω)Ym

l (s),

which is an entire analytic function of the polar and azimuthal angles of the unit vector s.

Example 2.5 The sphere K = ks with s·s = 1 can be complex either due to dispersion where
k is complex or because the components of the unit vector s are themselves complex. To
see this we set

s = sinα cosβ x̂+ sinα sinβ ŷ+ cosα ẑ, (2.27)

from which we conclude that

s · s = sin2 α cos2 β + sin2 α sin2 β + cos2 α = 1

for all real and complex values of the polar α and azimuthal β angles defining the unit
vector s. The complex unit sphere is thus spanned by all unit vectors of the form given
in Eq. (2.27) with arbitrary complex or real polar and azimuthal angles. We will employ
plane waves having complex unit propagation vectors of this general type in later chapters
in connection with plane-wave expansions of the field.

2.4.1 Solution of the radiation problem in two space dimensions

The above development can be repeated in two space dimensions, where r denotes position
on the plane, τ and τ⊥ are now regions on this plane interior and exterior to the closed
boundary ∂τ and G+ is the 2D Green function defined in Eq. (2.19a). In place of Eq. (2.23)
we now have

U+(r,ω) =
∫
τ0

d2r′ G+(r− r′,ω)Q(r′,ω), (2.28)

where G+ is the 2D outgoing-wave Green function given in Eq. (2.19a) and τ0 ⊂ τ is
a closed planar region. The field radiation pattern in the 2D case is obtained using the
asymptotic expansion

H+0 (kr) ∼
√

2

πkr
ei(kr− π4 ), kr→∞. (2.29)
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On making use of Eq. (2.29) we find that

G+(r− r′,ω) ∼ − i

4

√
2

πk
e−i π4 e−iks·r′ eikr

√
r

as kr→∞ along the direction of the unit vector s. On substituting the above equation into
Eq. (2.28) we obtain the result

U+(r,ω) ∼ f (s,ω)
eikr

√
r

,

where

f (s,ω) = −
√

1

8πk
ei π4 Q̃(ks,ω) (2.30)

is the 2D radiation pattern and

Q̃(K,ω) =
∫
τ0

d2r′ Q(r′,ω)e−iK·r′

is the spatial Fourier transform of the 2D source.
All of our remarks made in connection with the solution of the radiation problem in

three dimensions extend to the 2D case. In particular, the 2D spatial Fourier transform of a
compactly supported source is an entire analytic function of K so that the radiation pattern
is an analytic function of the unit vector s, which now lies on the complex unit circle rather
than on the complex unit sphere. We will make use of the 2D solution to the radiation
problem in later chapters in computer simulations and examples since it requires much
less CPU time and is easier to implement than the 3D solution but retains all of the salient
features of the 3D case.

2.5 The Kirchhoff–Helmholtz representation of the radiated field

Fourier transformation of the time-domain Kirchhoff–Helmholtz equations obtained in
Section 1.3.2 yields the frequency-domain versions

∫
∂τ

dS′
[

G+
∂

∂n′
U+ − U+

∂

∂n′
G+
]
= U+(r,ω), r ∈ τ⊥, (2.31a)∫

∂τ

dS′
[

G+
∂

∂n′
U+ − U+

∂

∂n′
G+
]
= 0, r ∈ τ , (2.31b)

which hold both for dispersive media and for non-dispersive media. In these equations
τ ⊃ τ0 and the normal derivatives are directed out of τ into the infinite exterior region τ⊥
bounded by ∂τ and a sphere at infinity.

As discussed in Section 1.3.2, Eqs. (2.31) are, together, a statement of the famed
Kirchhoff–Helmholtz theorem and are often referred to as the Helmholtz identities. The
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first Helmholtz identity expresses the field throughout the exterior region τ⊥ in terms of
the boundary value of the field and its normal derivative on the interior boundary ∂τ of τ⊥,
while the second identity holds over the interior region τ . The second Helmholtz identity
is, in fact, an integral equation that relates the boundary values of the field and its normal
derivative over ∂τ . As discussed in Chapter 1 the Kirchhoff–Helmholtz-type field repre-
sentations are formal identities that must be satisfied by the field and boundary values, and
are not properly posed solutions to a boundary-value problem, which will be covered in a
later section.

The Kirchhoff–Helmholtz representation Eq. (2.31a) is not the solution of a properly
posed boundary-value problem for the Helmholtz equation; it is, however, the solution
to an over-specified boundary-value problem for this equation. In particular, it is easily
verified that this representation satisfies the homogeneous Helmholtz equation through-
out τ⊥ as well as the outgoing-wave radiation condition (the SRC) and possesses the
limits

lim
r→r0

∫
∂τ

dS′
[

G+
∂

∂n′
U+ − U+

∂

∂n′

]
= U+(r0,ω),

lim
r→r0

∂

∂n

∫
∂τ

dS′
[

G+
∂

∂n′
U+ − U+

∂

∂n′
G+
]
= ∂

∂n0
U+(r0,ω),

where the limits are taken from the exterior region τ⊥ onto the boundary ∂τ . The above
limits are readily verified using a procedure almost identical to that employed in Sec-
tion 1.8 of Chapter 1 to establish the same limits in the case of the Kirchhoff–Helmholtz
representation for the wave equation (see also Section 2.12 later in this chapter). It thus
follows that the first Helmholtz identity is, in fact, the unique solution to the over-specified
boundary-value problem stated above.

2.5.1 The interior field solution and field back propagation

Fourier transformation of the interior field solutions for the wave equation given in
Eqs. (1.37) of Section 1.3.3 yields the set of equations

�(r,ω)+
∫
τ0

d3r′ G−(r− r′,ω)Q(r′,ω) = U+(r,ω), r ∈ τ , (2.32a)

�(r,ω)+
∫
τ0

d3r′ G−(r− r′,ω)Q(r′,ω) = 0, r ∈ τ⊥, (2.32b)

where, as before, τ⊥ denotes the complement to τ and

�(r,ω) =
∫
∂τ

dS′
[

U+(r′,ω)
∂

∂n′
G−(r− r′,ω)− G−(r− r′,ω)

∂

∂n′
U+(r′,ω)

]
,

(2.33a)

where the normal derivatives are directed out of the interior τ and into the exterior τ⊥.
Equations (2.32) and (2.33a) hold both for dispersive and for non-dispersive media and,
hence, are the generalizations of the interior field solutions for the wave equation obtained
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in Section 1.3.3 for dispersive media. We identified the time-domain version of � in Sec-
tion 1.4.2 of Chapter 1 to be the field back propagated from the boundary ∂τ and thus
Eq. (2.33a) is the frequency-domain expression for the back-propagated field both in dis-
persive and in non-dispersive media.

The back-propagated field as defined in Eq. (2.33a) is not equal to the actual radiated
field U+(r,ω) but, as shown in Section 1.3.3, its time-domain equivalent φ(r, t) will, in non-
dispersive media, equal the actual radiated field u+(r, t) for all times t exceeding the turn-
off time T0 of the source. Unfortunately, this will not be true in dispersive media due to the
fact that, as shown in Section 2.3, the time-domain incoming-wave Green function g−(r−
r′, t − t′) is not acausal, so there is no guarantee that the source term in the time-domain
version of Eq. (2.32a) will vanish if t > T0. However, we will show later that the frequency-
domain back-propagated field defined according to Eq. (2.33a) both for dispersive and for
non-dispersive media is an excellent approximation to the radiated field U+ everywhere
outside the source region τ0 so long as the boundary ∂τ is many wavelengths removed from
τ0. For now we note that if we use the primary field solution on the r.h.s. of Eq. (2.32a) we
obtain an integral equation that relates the source to the back-propagated field; i.e.,

�(r,ω) =
∫
τ0

d3r′ Gf(r− r′,ω)Q(r′,ω), (2.33b)

where

Gf(R,ω) = G+(R,ω)− G−(R,ω),

is the frequency-domain free-field propagator whose time-domain counterpart

gf(R, τ ) = g+(R, τ )− g−(R, τ )

was first encountered in Section 1.4 of the last chapter. Equation (2.33b) is known as the
Porter–Bojarski (PB) integral equation (Bojarski, 1982a; Porter, 1970) and forms the basis
for one approach for solving the inverse source problem (ISP).

2.6 Radiated power and energy

The power and energy radiated by a compactly supported source q(r, t) in a dispersive
medium can be computed using a similar procedure to that employed in Section 1.6 of
Chapter 1. The radiated energy and energy spectrum are of most interest in the frequency
domain and, by following lines of reasoning identical to those employed in Section 1.6, we
find that the total energy radiated out of a surface ∂τ surrounding the source is given by

e∂τ = 1

2π

∫ ∞
−∞

dω E∂τ (ω), (2.34a)
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where

E∂τ (ω) = 2κω
∫
∂τ

dS U∗+(r,ω)
∂U+(r,ω)

∂n
(2.34b)

is the energy spectrum (energy per unit frequency) of the radiated field. In this equation κ
is a real and positive constant that depends on the nature of the radiation (e.g., acoustic,
optical, etc.).

An important and very useful property of the energy spectrum and radiated energy
of the source in the case of the wave equation was that these quantities are independent
of the surface ∂τ over which they are computed as long as the surface completely encloses
the source region τ0. This result was established in Theorem 1.1 in Section 1.6, which also
gave a simple expression for the energy spectra in terms of the radiation pattern of the
source. Unfortunately, these results and this theorem do not carry over in the general case
of dispersive media. To see this, we consider two surfaces < and > that completely
surround the source and such that > lies entirely outside (i.e., encloses) <. Since these
two surfaces both lie outside τ0 we have that

[∇2 + k2]U+(r,ω) = 0, [∇2 + k∗2]U∗+(r,ω) = 0

throughout the region δτ enclosed between these two surfaces. It then follows that∫
δτ

d3r{U∗+(r,ω)∇2U+(r,ω)− U+(r,ω)∇2U∗+(r,ω)}

− (k2 − k∗2)
∫
δτ

d3r|U+(r,ω)|2 = 0.

On using Green’s theorem we then obtain the result∫
>

dS

[
U∗+(r,ω)

∂U+(r,ω)

∂n
− U+(r,ω)

∂U∗+(r,ω)

∂n

]
=
∫
<

dS

[
U∗+(r,ω)

∂U+(r,ω)

∂n
− U+(r,ω)

∂U∗+(r,ω)

∂n

]
+ (k2 − k∗2)

∫
δτ

d3r|U+(r,ω)|2,

from which we conclude that

E> (ω) = E< (ω)− 2κω(k2)Eδτ (ω), (2.35)

where

Eδτ (ω) =
∫
δτ

d3r|U+(r,ω)|2

is the “energy” of the radiated field within the volume δτ contained between the two sur-
faces < and >.

Equation (2.35) states that the energy density (and total energy) radiated out of the larger
surface > is equal to that radiated out of the smaller surface < decreased by an amount
proportional to the energy of the radiated field over the volume contained between these
two surfaces. This decrease in energy is proportional to the imaginary part of the square of
the wavenumber of the medium and clearly represents bulk energy loss due to absorption
in the medium. In the limiting case of a loss-free medium where k is real this loss term
disappears and we regain the results of Theorem 1.1 of Chapter 1.
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The second part of Theorem 1.1 established that for dispersion-free media the energy
spectrum and radiation pattern are related via the simple equation

E∂τ (ω) = 2κωk
∫

4π
d�s| f (s,ω)|2, (2.36a)

where ∂τ is any closed surface completely surrounding the source volume τ0. By again
following identical lines to those used to establish the above result we find in the general
case of dispersive media that

ER (ω) = −iκω
∫
∂τ

R2 d�s

[
f ∗(s,ω)

e−ik∗R

R
f (s,ω)

ikeikR

R

− f (s,ω)
eikR

R
f ∗(s,ω)

−ik∗e−ik∗R

R

]

= 2κω�k
∫

4π
d�s| f (s,ω)|2, (2.36b)

whereR is the surface of an asymptotically large sphere centered on the origin and having
radius R. Equation (2.36b) is the generalization of Eq. (2.36a) to the case of dispersive
media and reduces to this earlier result when the medium is lossless and k = 0. It is
important to note that, while the energy spectrum defined in Eq. (2.36b) depends on the
radius R of the reference sphere R over which it is computed, this dependence disappears
in the case of a non-dispersive medium, as guaranteed by Theorem 1.1.

Although we have lost Theorem 1.1 in the case of dispersive media, we still have the
important and intuitively obvious result that the energy radiated out of any surface cannot
increase with propagation distance; i.e., that E> (ω) ≤ E< (ω) if > lies outside <. We
also mention that the general results established above are quite useful in certain areas of
time-reversal imaging in random media and form the basis for important work relating to
Green-function estimation from two-point correlation measurements in such media.

Example 2.6 In the case of non-absorbing media where the wavenumber k is real-valued we
can express the energy spectrum of the radiated field given in Eq. (2.36b) in a particularly
simple form in terms of the source Q. For this case the energy spectrum is given by

ER (ω) = 2κωk
∫

4π
d�s

∣∣∣∣
f (s,ω)︷ ︸︸ ︷

− 1

4π

∫
τ0

d3r Q(r,ω)e−iks·r
∣∣∣∣2,

where we have made use of Eq. (2.24b). The above equation can be simplified to become

ER (ω) = κωk

8π2

∫
τ0

d3r
∫
τ0

d3r′ Q∗(r,ω)Q(r′,ω)

{∫
4π

d�s eiks·(r−r)
}

.

The quantity in curly brackets in the above equation can be computed using Eq. (2.26) of
Example 2.4 for the special case of l = 0, m = 0. In particular, we have from that equation
that

j0(kR) = 1

4π

∫
4π

d�s eiks·R,
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so that

ER (ω) = κω�ke−2kR

2π

∫
τ0

d3r
∫
τ0

d3r′ Q∗(r,ω)Q(r′,ω)j0(k|r− r′|).

2.7 Non-radiating and essentially non-radiating sources in
dispersive media

The basic definition and all of the results pertaining to frequency-domain non-radiating
(NR) sources embedded in non-dispersive media developed in Section 1.7.1 carry over to
dispersive media. In particular, such sources are still characterized by Definition 1.1, which
gives as necessary and sufficient conditions for a source to be non-radiating at some given
frequency ω that its radiated field U+(r,ω) as given by Eq. (2.23) must vanish everywhere
outside its spatial support τ0 at that particular frequency. Piecewise continuous compactly
supported NR sources are constructed using the recipe (cf., Eq. (1.57))

Qnr(r,ω) = [∇2 + k2]�(r,ω), (2.37)

where �(r,ω) is a function that is compactly supported in the spatial volume τ0 at any
given frequency ω and possesses continuous first partial spatial derivatives throughout this
volume but is otherwise arbitrary. The field radiated by the NR source defined above is
found using Eq. (2.23):

Unr(r,ω) =
∫
τ0

d3r′ G+(r− r′,ω)

Qnr(r′,ω)︷ ︸︸ ︷
{[∇2

r′ + k2]�(r′,ω)}

=
∫
τ0

d3r′
δ(r−r′)︷ ︸︸ ︷

[∇2
r′ + k2]G+(r− r′,ω)�(r′,ω) = �(r,ω),

where we have twice integrated by parts and dropped the surface terms due to the assump-
tion that � is continuously differentiable throughout τ0. The field Unr vanishes outside τ0,
which then establishes that the source defined via Eq. (2.37) is an NR source at frequency
ω and, moreover, that the field it generates is the compactly supported function �(r,ω).

2.7.1 Non-radiating sources and the radiation pattern

In our treatment of NR sources for the wave equation in Chapter 1 we established Theo-
rem 1.2, which stated that a compactly supported and piecewise continuous source to the
wave equation whose energy spectrum vanished at any given frequency must be NR at that
frequency. Since the vanishing of the energy spectrum is equivalent to the vanishing of the
radiation pattern of the field it follows that this theorem also establishes that the radiation
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pattern generated from a compactly supported and piecewise continuous source will vanish
if and only if the source is NR. This, in turn, implies that the vanishing of the radiation pat-
tern of such sources guarantees that the field will also vanish everywhere outside the source
region τ0. We state this in the form of the following theorem.

Theorem 2.1 Let Q(r,ω) be a piecewise continuous source compactly supported in τ0

whose radiation pattern f (s,ω) vanishes for all directions s at some given frequency ω.
Then Q(r,ω) is NR at that frequency and the radiated field will vanish everywhere outside
the source volume τ0.

As a point of interest we note that, since the radiation pattern is an entire analytic func-
tion of the (real or complex) unit vector s, the above theorem applies even if the radiation
pattern f (s,ω) vanishes over some finite section of the complex unit sphere. In particular,
the source will be NR and the field will vanish everywhere outside the source volume τ0

if the radiation pattern vanishes over any finite but arbitrarily small region of the real unit
sphere.

2.7.2 Essentially non-radiating sources

A frequency-domain non-radiating source generates zero field outside the source’s space
volume τ0 at one or more frequencies ω. We showed in Section 1.7.3 of Chapter 1 that
there exist also sources to the wave equation that radiate negligible power and energy over
a given set of frequencies. Although these essentially non-radiating sources (essentially
NR sources) do not generate a zero field outside their support, the field is exponentially
damped and is, for all practical purposes, unobservable. As we discussed in Chapter 1, the
class of NR sources plays a dominant role in the uniqueness question for the inverse source
problem (ISP), while the class of essentially NR sources impacts on the well-posedness and
stability of solutions of this problem.

As was the case with NR sources, the treatment of essentially NR sources presented in
Section 1.7.3 of Chapter 1 is virtually unchanged when applied to dispersive media. In
particular, the radiated energy out of a large sphere of radius R is given by Eq. (2.36b) and
will be small, irrespective of the amount of absorption in the medium, so long as∫

4π
d�s| f (s,ω)|2 < ε(k), (2.38)

where, as in Section 1.7.3, ε(k) is a small parameter that characterizes the essentially
NR source. Following arguments identical to those employed in Section 1.7.3, it is eas-
ily verified that the above condition is equivalent to the requirement that the multipole
moments

qm
l (k) =

∫
τ0

d3r Q(r,ω)Ym
l
∗(s)jl(kr) (2.39a)

satisfy the condition
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|qm
l (k)|2 ≤ EQ

μ2
l (ka0)︷ ︸︸ ︷∫ a0

0
r2 dr|jl(kr)|2 = EQμ

2
l (ka0), (2.39b)

where

EQ(ω) =
∫
τ0

d3r|Q(r,ω)|2 (2.39c)

is the L2-norm square of the source (source energy) and a0 is the radius of the smallest
bounding sphere to τ0.

The conditions Eq. (2.38) and, equivalently, Eq. (2.39b) guarantee that the energy of the
field radiated out of an asymptotically large sphere of radius R will be small irrespective
of the amount of absorption in the medium. We will take these inequalities as a working
definition of an essentially NR source. We showed in Section 1.7.3 that the parameters
μ2

l (ka0) are exponentially decreasing functions of their index l for all l > l0 = ka0. It
then follows that an essentially NR source is any source for which the quantities defined in
Eq. (2.39a) are arbitrarily small for all l ≤ l0. As mentioned in Section 1.7.3, essentially
NR sources play a critical role in the inverse source problem treated in Chapter 5.

We also showed in Section 1.7.3 that the exponential decay of the parameters μ2
l (ka0)

for l > ka0 limits the size of the smallest angular periods of the source radiation pattern to
being larger than λ/a0. This, in turn, sets a minimum central lobe size achievable by any
finite-norm source, a result that plays an important role in the inverse source problem and
antenna design, as we will see in Chapter 5.

2.8 Boundary-value problems for the Helmholtz equation

The Kirchhoff–Helmholtz representation of the radiated field given in Eq. (2.31a) is, in
fact, a solution to the homogeneous Helmholtz equation throughout the infinite region τ⊥
lying outside the volume τ bounded by the surface ∂τ . As pointed out in the discussion pre-
sented below this equation, the surface integral must vanish at all points within the interior
of τ , which establishes the fact that the boundary values of the radiated field and its nor-
mal derivative over ∂τ are not independent but rather are connected via this homogeneous
integral equation. Indeed, it is possible to replace the outgoing-wave Green function in the
Kirchhoff–Helmholtz representation by a Green function that vanishes on the boundary ∂τ
and, hence, transform this representation into a form that employs only the field and not
its normal derivative. In this form the Kirchhoff–Helmholtz representation of the radiated
field outside τ becomes the solution of an exterior boundary-value problem for the homo-
geneous Helmholtz equation. Loosely speaking, a solution to a (properly posed) boundary-
value problem for the homogeneous Helmholtz equation is a Kirchhoff–Helmholtz type of
representation that involves only the boundary value of the field, its normal derivative, or
a linear combination of the two. We will review this important class of problems in this
section.
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We can formally define a boundary-value problem for the homogeneous Helmholtz
equation to be that of computing a solution to this equation within some region τ that
satisfies prescribed boundary conditions on the boundary ∂τ of the region. The region τ
can be simply or multiply connected4 and can be finite or infinite in extent, but the field
must satisfy the homogeneous Helmholtz equation throughout the entire region, not just
over some subset of this region. We will consider three types of boundary-value problems
defined according to the character of the region τ .

• The interior boundary-value problem, where τ is a finite region that can be simply or
multiply connected and whose boundary ∂τ entirely encloses the region.

• The exterior boundary-value problem, where τ is the exterior of a finite region.
• The Rayleigh–Sommerfeld boundary-value problem, where τ is a semi-infinite region

that is bounded by an infinite plane and a hemisphere at infinity.

Examples of these three cases are illustrated in Fig. 2.2.
In the case of the interior problem the boundary conditions can consist of specification

of the field, its normal derivative, or a linear combination of these two quantities over
the entire bounding surface ∂τ to the region. We refer to these three types of boundary

�Fig. 2.2 Examples of the interior (top), exterior (middle) and Rayleigh–Sommerfeld (bottom) boundary-value problems.
The arrows indicate the direction in which the field propagates.

4 A 3D region is said to be “simply connected” if the interior of every closed surface within the region contains
only points within the region. A region that is not simply connected is said to be “multiply connected.” An
example of a multiply connected region is the interior of a donut.
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conditions as inhomogeneous Dirichlet, Neumann and mixed conditions, respectively. In
this book we will restrict our attention to Dirichlet and Neumann conditions, although the
results are easily generalized to general inhomogeneous mixed conditions. In the case of
infinite (the exterior problem) and semi-infinite regions, Dirichlet, Neumann or mixed con-
ditions are specified over a portion of the boundary and homogeneous mixed conditions, in
the form of a radiation condition (Sections 2.1.4 and 2.1.5) are specified over the portion
of the boundary located at infinity.

2.8.1 The interior boundary-value problem

In the interior boundary-value problem the region τ throughout which the field satisfies
the homogeneous Helmholtz equation is finite and the boundary ∂τ entirely encloses τ .
For a simply connected region, such as that illustrated in Fig. 2.2, ∂τ is the single exterior
surface to τ , while in a multiply connected (donut-shaped) region ∂τ is the union of its
interior and exterior surfaces. We can formally solve the interior boundary-value problem
by applying standard Green-function techniques to the pair of equations

[∇2
r′ + k2]G(r, r′,ω) = δ(r− r′), (2.40a)

[∇2
r′ + k2]U(r′,ω) = 0, r′ ∈ τ , (2.40b)

where the subscript on the Laplacian operator indicates that this operator acts on the primed
coordinate vector and G is, for the moment, an unspecified Green function to the Helmholtz
equation that satisfies no particular boundary conditions. Following the same general pro-
cedure as was employed earlier in Section 2.5, we obtain the result∫

∂τ

dS′
[

U(r′,ω)
∂

∂n′
G(r, r′,ω)− G(r, r′,ω)

∂

∂n′
U(r′,ω)

]
= U(r,ω), (2.41a)

if r ∈ τ , and∫
∂τ

dS′
[

U(r′,ω)
∂

∂n′
G(r, r′,ω)− G(r, r′,ω)

∂

∂n′
U(r′,ω)

]
= 0, (2.41b)

otherwise, where ∂τ is the entire boundary to the region τ and the normal derivatives are
directed out of the volume τ . Equations (2.41) are Helmholtz identities satisfied by a field
obeying the homogeneous Helmholtz equation throughout the interior region τ .

The first Helmholtz identity Eq. (2.41a) is a formal solution to the boundary-value prob-
lem that consists of determining the solution to the homogeneous Helmholtz equation
throughout τ which achieves specified boundary conditions in the form of U(r′,ω) and
∂U(r′,ω)/∂n′ at all points r′ on the boundary ∂τ . However, this boundary-value problem
is not well posed in the sense that the boundary values U(r′,ω) and ∂U(r′,ω)/∂n′ are
not independent and therefore cannot be assigned arbitrarily. As discussed earlier, these
two quantities are coupled by the second Helmholtz identity, which implies that Dirich-
let, Neumann or mixed conditions are necessary and sufficient in order to yield a unique
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solution to a properly posed boundary-value problem.5 For example, it is clear from the
first Helmholtz identity in Eqs. (2.41a) that the field within the region τ can be expressed
entirely in terms of the field boundary value (Dirichlet conditions) on ∂τ if we require
that the Green function vanish on ∂τ (i.e., satisfy homogeneous Dirichlet conditions on
∂τ ) and, similarly, can be expressed entirely in terms of Neumann conditions if the Green
function satisfies homogeneous Neumann conditions of ∂τ . The solution to a properly
posed boundary-value problem thus reduces to determining a Green function that satisfies
the homogeneous form of the boundary conditions which are satisfied by the field.

Restricting our attention to the two cases of Dirichlet and Neumann boundary condi-
tions, we find using Eqs. (2.41a) that the solution to the interior boundary-value problem
is given by

U(r,ω) =

⎧⎪⎪⎨⎪⎪⎩
∫
∂τ

dS′ U(r′,ω)(∂/∂n′)GD(r, r′,ω) Dirichlet conditions,

− ∫
∂τ

dS′(∂/∂n′)U(r′,ω)GN(r, r′,ω) Neumann conditions,

(2.42)

where the subscripts D and N refer, respectively, to Dirichlet and Neumann cases and the
derivatives are directed outward from the interior region τ . The Dirichlet and Neumann
Green functions are required to satisfy the homogeneous conditions

GD(r, r′,ω)|r′∈∂τ = 0,
∂

∂n′
GN(r, r′,ω)|r′∈∂τ = 0,

with r ∈ τ . We will show below that a Green function satisfying the above homogeneous
Dirichlet or Neumann conditions with respect to source coordinates r′ will automatically
satisfy these conditions with respect to the field coordinate r; i.e., the above conditions
imply that

GD(r, r′,ω)|r∈∂τ = 0,
∂

∂n
GN(r, r′,ω)|r∈∂τ = 0,

where now r′ ∈ τ .
It is important to note that the solutions to the boundary-value problem as given in

Eqs. (2.42) are, in fact, algorithms that allow the user to propagate an arbitrarily imposed
boundary condition into a wavefield that satisfies the homogeneous Helmholtz equation
throughout the interior region τ and, in addition, reduces to the imposed boundary condi-
tion on the bounding surface ∂τ to τ .

2.8.2 The exterior boundary-value problem for closed boundaries

We first consider the case of the exterior problem where the field satisfies the homoge-
neous Helmholtz equation throughout the exterior τ⊥ (complement) of some finite region

5 Here, we exclude the possibility of resonances, which can occur in the interior boundary-value problem. Res-
onances occur for certain discrete values of the wavenumber and for special surface geometries for which it is
possible for the field or its normal derivative to vanish everywhere over a closed surface.
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τ having boundary ∂τ as well as the Sommerfeld radiation condition (SRC) at infinity. The
Helmholtz identities are, in this case, found to be given by

U(r,ω) =
∫
∂τ∪∞

dS′
[

U(r′,ω)
∂

∂n′
G(r, r′,ω)− G(r, r′,ω)

∂

∂n′
U(r′,ω)

]
, r ∈ τ⊥,∫

∂τ∪∞
dS′
[

U(r′,ω)
∂

∂n′
G(r, r′,ω)− G(r, r′,ω)

∂

∂n′
U(r′,ω)

]
= 0, r ∈ τ ,

where ∂τ ∪ ∞ denotes the union of ∂τ with the surface ∞ of an infinite sphere, and
the normal derivatives are directed outward from the exterior region τ⊥ into the interior
region τ and into the surface at infinity. On the infinite sphere ∞ the field and Green
function are required to satisfy the outgoing-wave radiation condition (SRC) expressed in
Eqs. (2.8), from which it follows that the integrals over ∞ in the above equations vanish
and we are left with a surface integral only over ∂τ ; i.e.,

U(r,ω) =
∫
∂τ

dS′
[

U(r′,ω)
∂

∂n′
G(r, r′,ω)− G(r, r′,ω)

∂

∂n′
U(r′,ω)

]
, (2.43a)

if r ∈ τ⊥, and∫
∂τ

dS′
[

U(r′,ω)
∂

∂n′
G(r, r′,ω)− G(r, r′,ω)

∂

∂n′
U(r′,ω)

]
= 0, (2.43b)

if r ∈ τ .
All of the discussion given for the interior problem continues to apply in the case of

the exterior problem. In particular, the second Helmholtz identity Eq. (2.43b) implies that
Green functions can be found that satisfy homogeneous Dirichlet or Neumann conditions
on ∂τ as well as the SRC. The field in the exterior region τ⊥ can then be represented in
the general form according to Eqs. (2.42), where the Green functions must satisfy homo-
geneous Dirichlet or Neumann conditions on ∂τ as well as the outgoing-wave radiation
condition at infinity. The fields so constructed will satisfy the same radiation condition at
infinity. As in the case of the interior boundary-value problem, these “solutions” are formal
in the sense that they require that the appropriate Green function be computed.

Representation of the radiated field as the solution of an exterior
boundary-value problem

The field U+ radiated by the source Q satisfies the homogeneous Helmholtz equation
everywhere outside the source spatial volume τ0 and the SRC and, hence, can be expressed
as the solution to an exterior boundary-value problem outside any surface ∂τ that com-
pletely surrounds the source volume. In contrast to the Kirchhoff–Helmholtz representation
given in Eq. (2.31a) the field representation as the solution of a properly posed boundary-
value problem in terms of Dirichlet or Neumann conditions on ∂τ is not over-determined
and is entirely equivalent to the primary field solution given in Eq. (2.23). Incidentally, it
should be clear from the equivalence of these two representations (primary and via the solu-
tion of a boundary-value problem) that the radiated field has only two degrees of freedom
outside the source volume τ0. This indicates that a source and its radiated field outside τ0
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are not in a 1:1 correspondence and, in particular, that there exist NR sources that generate
zero field outside τ0. Non-radiating sources were treated within the time domain for non-
dispersive media in Section 1.7 of Chapter 1 and earlier in Section 2.7 of this chapter for
the more general case of dispersive media.

2.8.3 The exterior boundary-value problem for open boundaries

Consider now the case in which τ⊥ is a semi-infinite half-space bounded by an open sur-
face ∂τ and a hemisphere ∞ located at infinity. We will again require that the field and
Green function both satisfy the outgoing-wave radiation condition on the hemisphere and
that the field satisfy inhomogeneous Dirichlet or Neumann conditions over the open sur-
face ∂τ (see Fig. 2.2). Using arguments identical to those employed in Section 2.4, it is
easy to verify that the integral over ∞ vanishes and we are left with a surface integral
over only ∂τ . All of the analysis and results obtained for the exterior problem for infinite
regions continue to apply in the case of semi-infinite regions, where now the boundary ∂τ
is the infinite open surface bounding the given half-space. In particular, the solution of the
boundary-value problem for a field satisfying the SRC and inhomogeneous Dirichlet or
Neumann conditions on the surface ∂τ is given by Eqs. (2.42), where the Green functions
must satisfy a homogeneity condition on ∂τ as well as the outgoing-wave radiation con-
dition. As in the case of the interior and infinite-region exterior boundary-value problems,
these solutions require that the appropriate Green function be computed and, as mentioned
above, this is generally non-trivial. One case for which a solution is easily constructed
is when ∂τ is a planar boundary. In this case the boundary-value problem is sometimes
referred to as the Rayleigh–Sommerfeld problem after the two scientists who first solved
it. We will treat this problem in Section 2.9, where we will compute the required Green
functions using the method of images first employed by Rayleigh and Sommerfeld in their
classic solution of this problem. These Green functions will also be computed using the
second Helmholtz identity Eq. (2.41b) in Section 2.10.

As was the case for the exterior boundary-value problem in an infinite region, we can
also represent the radiated field U+ in a semi-infinite region as the solution of a boundary-
value problem. In particular, it should be clear that this field representation can be used to
represent the radiated field throughout any half-space that lies outside the source volume
τ0 in terms of Dirichlet or Neumann conditions over the bounding plane to the half-space.

Uniqueness

The solutions of the Dirichlet and Neumann boundary-value problems as given in
Eq. (2.42) are unique; i.e, they are the only solutions to the homogeneous Helmholtz equa-
tion throughout the region τ that satisfy the prescribed Dirichlet or Neumann conditions
on the bounding surface ∂τ . The same is true for infinite and semi-infinite regions, where
the fields must satisfy the outgoing-wave radiation condition at infinity and Dirichlet or
Neumann conditions on ∂τ . To show this, assume to the contrary that there exists some
other solution U′(r,ω) that also satisfies the homogeneous Helmholtz equation as well as
the prescribed boundary conditions. Then the difference field δU = U − U′ must satisfy
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the homogeneous Helmholtz equation, and homogeneous boundary conditions on ∂τ and
the SRC. The difference field δU is then also given by Eq. (2.42), where, however, the
boundary value of δU or its first derivative is zero and, hence, the δU vanishes identically
so that U = U′.

2.8.4 Symmetry of the Green functions

We can employ a procedure similar to that used to derive the Helmholtz identities to prove
that a Green function to the interior or exterior boundary-value problems must be a sym-
metric function of its arguments. Here we prove this only for the interior boundary-value
problem since the proof for the exterior problem follows entirely similar lines.

To prove the result for the interior problem, we consider a Green function computed for
source points located at r1 and r2 within some closed bounded region τ with boundary
∂τ ; i.e.,

[∇2
r′ + k2]G(rj, r′,ω) = δ(rj − r′), rj ∈ τ ,

where j = 1, 2. Following the same general procedure as that used in Section 2.1.2, we find
that ∫

∂τ

dS′
[

G(r2, r′,ω)
∂

∂n′
G(r1, r′,ω)− G(r1, r′,ω)

∂

∂n′
G(r2, r′,ω)

]
= G(r2, r1,ω)− G(r1, r2,ω).

Now, since G must satisfy homogeneous Dirichlet or Neumann conditions with respect
to r′ on ∂τ , the surface integral must vanish and G(r1, r2,ω) = G(r2, r1,ω). In fact, it
is simple to show that the same result is obtained if the Green function satisfies general
homogeneous mixed conditions on the boundary.

We note that the symmetry of a Green function with respect to its arguments implies
important symmetry conditions for Green functions satisfying homogeneous Dirichlet or
Neumann conditions on the boundary ∂τ . In particular, it follows from the symmetry of
such Green functions that

GD(r1, r2,ω)|r2∈∂τ = 0⇒ GD(r2, r1,ω)|r2∈∂τ = 0, (2.44a)

∂

∂n2
GN(r1, r2,ω)|r2∈∂τ = 0⇒ ∂

∂n2
GN(r2, r1,ω)|r2∈∂τ = 0, (2.44b)

where GD and GN are Green functions satisfying homogeneous Dirichlet and Neumann
conditions over the surface ∂τ . The above equations state that if a Green function satisfies
homogeneous Dirichlet or Neumann conditions with respect to the source coordinate r′
then it automatically satisfies the same condition with respect to the field coordinate. We
note that this does not require that the normal derivative of the Neumann Green function
with respect to a given coordinate vector vanish when either r or r′ lies on the surface
∂τ ; e.g.,

∂

∂n′
GN(r, r′,ω)|r′∈∂τ = 0 �⇒ ∂

∂n′
GN(r, r′,ω)|r∈∂τ = 0,

a conclusion that one might be tempted to draw from Eq. (2.44a).
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2.9 The Rayleigh–Sommerfeld boundary-value problem

As an example of the Green-function method for solving a boundary-value problem for
the Helmholtz equation we consider the classic problem of determining the solution to
the homogeneous Helmholtz equation in a half-space that satisfies prescribed Dirichlet or
Neumann boundary conditions on the bounding plane of the half-space and the Sommer-
feld radiation condition on the infinite hemisphere enclosing the half-space. For the sake
of simplicity we will take the half-space to be either the right half-space z > 0 or the left
half-space z < 0, with the understanding that the general case of a half-space bounded by
the plane z = z0 �= 0 is trivially obtained by a simple coordinate-system translation. The
formal solution to these problems was shown in Section 2.8.2 to be given by Eqs. (2.42)
with ∂τ equal to the surface of the plane z = 0 and where the Green function is required to
satisfy homogeneous Dirichlet or Neumann conditions on ∂τ and the SRC on the infinite
hemisphere enclosing the half-space in which the solution is sought.

The boundary-value problems stated above were first solved using the method of images
by Sommerfeld, and we will refer to them as the Rayleigh–Sommerfeld problems (RS prob-
lems). Here, we will outline the method of images for the case of the RS problem under
inhomogeneous Dirichlet conditions (the RS Dirichlet problem) on the plane z = 0 and
leave it as an exercise for the reader to apply the same method to the RS Neumann prob-
lem. Before solving the full 3D RS problem it is instructive to examine this problem in the
case of the 1D Helmholtz equation, for which the algebra is reduced to a minimum.

Example 2.7 Consider the 1D boundary-value problem of solving the homogeneous
Helmholtz equation [

∂2

∂z2
+ k2

]
U(z,ω) = 0

on the half-line z > 0 subject to an outgoing-wave condition on this half-line and inhomo-
geneous Dirichlet conditions at z = 0. The general solution to this problem is given by the
1D version of Eq. (2.42) (written for the exterior problem):

U(z,ω) = −U0(k)
∂

∂z′
GD(z, z′,ω)|z′=0, (2.45)

where U0(k) = U(z = 0,ω) is the Dirichlet boundary condition and the Dirichlet Green
function is required to satisfy the 1D SRC on the right-half line z > 0 and to vanish when
z′ = 0. Note that we have used the fact that the outward directed unit normal to the half-line
z > 0 is −ẑ so that ∂/∂n′ = −∂/∂z′.

In the “method of images” we consider general field and source points z and z′ both
contained on the right-half line z, z′ > 0 and a mirror-image source point −z′ about the
point z′ = 0. We consider the quantity

�(z, z′,ω) = G+(z− z′,ω)− G+(z+ z′,ω),
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where

G+(z− z′,ω) = − i

2k
eik|z−z′|

is the 1D outgoing-wave Green function derived in Example 2.2. The quantity � satisfies
the equation [

∂2

∂z2
+ k2

]
�(z, z′,ω) = δ(z− z′)− δ(z+ z′)

and, hence, is itself a Green function if we require both z and z′ to lie in the same half-line
z, z′ > 0. Moreover, it is easily shown that �(z, z′,ω) satisfies the SRC and vanishes at the
point z′ = 0. It then follows that �(z, z′,ω) = GD(z, z′,ω) is the Dirichlet Green function
for the half-line problem.

For z ≥ z′ we have that

∂

∂z′
GD(z, z′,ω) = − i

2k

∂

∂z′
[eik(z−z′) − eik(z+z′)] = −1

2
[eik(z−z′) + eik(z−z′)],

so that
∂

∂z′
GD(z, z′,ω)|z′=0 = −eikz,

which, on using Eq. (2.45), yields the solution

U(z,ω) = U0(k)eikz,

which is valid throughout the right half-space z ≥ 0. It is easy to verify that the above
solution satisfies the homogeneous Helmholtz equation for all z > 0 and the Dirichlet
condition at z = 0 and is outgoing on the half-line z > 0.

Returning to the 3D case, we consider general field and source points r and r′ both
contained in either the right half-space V+ = {r : z > 0} or the left half-space V− =
{r : z < 0} and a mirror-image source point r̃′ = (x′, y′,−z′) about the plane z′ = 0
such as illustrated in Fig. 2.3. Thus, if r′ ∈ V+ then r̃′ ∈ V−. We will now show that
the Rayleigh–Sommerfeld Dirichlet and Neumann Green functions in either half-space are
given by

GD(r, r′,ω) = G+(r− r′,ω)− G+(r− r̃′,ω), (2.46a)

GN(r, r′,ω) = G+(r− r′,ω)+ G+(r− r̃′,ω). (2.46b)

We first note that GD is in fact a Green function so long as the source and field points r
and r′ both lie in the same half-space; i.e.,

[∇2
r,r′ + k2]GD(r, r′,ω) = δ(r− r′)− δ(r− r̃′) = δ(r− r′)

so long as r �= r̃′, which will be the case as long as both r and r′ lie in the same half-space
(either V+ or V−). It is also clear that this Green function satisfies the SRC both in V+ and
in V−. We need then show only that GD vanishes if r′ lies on the boundary plane z′ = 0.
To establish this, we note that if either r or r′ lies on the boundary plane then
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z

(x, y)

~r ′= (x ′,y ′,−z ′) r ′ = (x ′,y ′,z ′)

r = (x ,y ,z)~r − r′

r − r′

�Fig. 2.3 The geometry for computing the Rayleigh–Sommerfeld Green functions. Each source point r′ = (x′, y′, z′) has a
corresponding “image point” r̃′ = (x′, y′,−z′) so that |r − r′| = |r − r̃′|when the source point lies on the
boundary plane z′ = 0.

|r− r̃′| = |r− r′|,
so that GD vanishes in either of these situations. This then establishes that GD is, indeed,
the Dirichlet Green function for the problem.

By entirely analogous reasoning it is clear that GN as defined in Eq. (2.46b) satisfies the
SRC and is a proper Green function so long as the source and field points r and r′ both lie
in the same half-space. Moreover,

∂

∂z′
G+(r− r′,ω) = − ∂

∂z′
G+(r− r̃′,ω),

so that
∂

∂z′
[G+(r− r′,ω)+ G+(r− r̃′,ω)] = 0

when either r or r′ lies on the boundary plane. This then establishes GN as defined in
Eq. (2.46b) as the appropriate Neumann Green function for the RS problem.

We now note that if we let the source point r′ lie on the plane z′ = 0 we have that

∂

∂n′
GD(r, r′,ω)|r′=ρ′ = − ∂

∂z′
GD(r, r′,ω)|r′=ρ′ = −2

∂

∂z′
G+(r− ρ′,ω),

where ρ′ = (x′, y′) denotes an integration point on the (x, y) plane and we have used the
shorthand notation (∂/∂z′)G+(r− ρ′,ω) = (∂/∂z′)G+(r− r′,ω)|z′=0. If we now substitute
the above expression into Eq. (2.42) we obtain the result

U(r,ω) = ∓2
∫

dS′ U0(ρ′,ω)
∂

∂z′
G+(r− ρ′,ω), (2.47a)
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where dS′ = d2ρ′ is the differential area on the ρ′ plane. Here the top sign is used for the
solution in the right half-space and the bottom sign for the solution in the left half-space,
and U0(ρ′,ω) is an arbitrarily assigned Dirichlet boundary condition; i.e., an arbitrary func-
tion of the surface coordinate ρ′. A completely parallel development leads to the following
solution to the Neumann boundary-value problem:

U(r,ω) = ±2
∫

dS′ U′0(ρ′,ω)G+(r− ρ′,ω), (2.47b)

where U′0(ρ′,ω) = (∂/∂z′)U|z′=0 is the arbitrarily assigned Neumann boundary value on
the plane z = 0.

Although for the solutions to the RS Dirichlet and Neumann boundary-value problems
given in Eqs. (2.47) it is assumed that the boundary plane is the plane z = 0, the general
case of a boundary plane located at z = z0 is easily obtained via a coordinate-system trans-
lation along the z axis. In particular, if we note that the arguments on the Green functions
in Eqs. (2.47) depend only on the difference vector r − ρ′ we can translate the origin of
the coordinate system so that the data plane z = 0 is translated to z = z0, and it is easy to
show that Eqs. (2.47) yield the result

U(r,ω) =
⎧⎨⎩
∓2
∫

dS′ Uz0 (ρ′,ω)(∂/∂z′)G+(r− r′0,ω) Dirichlet conditions,

±2
∫

dS′ U′z0
(ρ′,ω)G+(r− r′0,ω) Neumann conditions,

(2.48)

where r′0 = ρ′ + ẑz0 is the position vector on the z0 plane and the integrations are per-
formed over this plane, and we have re-labeled the boundary conditions with the sub-
script z0 to indicate that these conditions are now applied on the plane z = z0 rather than
on z = 0. All of the remarks made above continue to hold with the plane z = 0 now
replaced by the plane z = z0. In particular, the top sign in each equation is used in the half-
space z > z0 and the bottom expression in the half-space z < z0, and the quantities Uz0

and U′z0
are arbitrary functions of the transverse component ρ′ of the surface coordinate

vector r′0.
The classical Rayleigh–Sommerfeld problem corresponds physically to the process of

propagation whereby a wavefield is propagated outward from its boundary value on the
plane z = z0 into either the right half-space z > z0 or the left half-space z < z0. In most
applications the wavefield is physically generated by a (causal) source or set of sources
located in the half-space opposite to that into which the field is being propagated; e.g., the
sources are located in the left half-space if the field is being propagated into the right half-
space and vice versa. The solution to the RS boundary-value problem allows the wavefield
to be determined from its boundary values as opposed to the primary sources that actually
generate the field.
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2.9.1 The Rayleigh–Sommerfeld solution for two-dimensional wavefields

In two space dimensions a wavefield satisfies the 2D Helmholtz equation[
∂2

∂x2
+ ∂2

∂z2
+ k2

]
U(r,ω) = 0,

where r is now the position vector on the (x, z) plane. The outgoing-wave Green function
for the 2D case was found in Section 2.2.1 to be given by

G+(R,ω) = −i

4
H+0 (kR).

The 2D RS Dirichlet and Neumann Green functions are obtained directly from Eqs. (2.46)
by substituting for G+ from the above equation, and the solutions to the RS boundary-value
problems for data specified on the plane z = z0 are given by Eqs. (2.48) using the above
outgoing-wave Green function.

Example 2.8 As an example we consider the RS Dirichlet problem in 2D in which the
boundary-value data are specified on the plane z = 0 and the field is to be computed
throughout the r.h.s. z > 0. The solution to this problem is given by Eq. (2.47a) with G+
equal to the 2D outgoing-wave Green function and with the integration performed over the
line z′ = 0. In order to compute the propagated field we need the normal derivative of this
Green function, which is found using the well-known derivative relation

d

dz
H+0 (z) = −H+1 (z).

It then follows that

∂

∂z′
G+(r− r′,ω) = ik

4
H+1 (k|r− r′|) ∂

∂z′
|r− r′| = −ik

4
H+1 (k|r− r′|) z− z′

|r− r′| ,

which, when substituted into Eq. (2.47a), yields the result

U(r,ω) = ikz

2

∫ ∞
−∞

dx′ U0(x′,ω)
H+1 (k|r− r′|)
|r− r′| . (2.49)

2.9.2 Rayleigh–Sommerfeld representation of the radiated field

As mentioned earlier, the field U+ radiated by the source Q can be expressed in terms
of Dirichlet or Neumann conditions over any plane z = z0 that lies outside the source
spatial volume τ0 via the RS field representations given in Eqs. (2.48). In contrast to the
Kirchhoff–Helmholtz field representations given in Eq. (2.31a), the RS representation is
not over-determined and can be used to represent the radiated field throughout any half-
space that lies outside the source volume τ0. By appropriate selection of this half-space it
is thus possible to express the radiated field everywhere outside the smallest convex region
that contains τ0 by such a representation.
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Example 2.9 As an example of the RS boundary-value problem consider the problem of
computing a plane wave exp(iks · r) propagating into the right half-space z > z0 from its
Neumann condition

∂

∂z′
eiks·r′ |z′=z0 = iksze

iks·r′0 . (2.50)

In the above equation s is a unit vector directed along the direction of propagation of the
plane wave and r′0 is a general field point on the plane z′ = z0. Because the plane wave is
propagating into the right half-space the z component of the plane wave sz > 0.

On substituting the Neumann condition Eq. (2.50) into the RS formula Eq. (2.48) we
obtain the result

eiks·r = 2iksz

∫
dS′ eiks·r′0G+(r− r′0,ω), (2.51)

which is valid for all z ≥ z0. The above equation represents the plane wave as a super-
position of spherical waves G+, each centered at a “source point” on the plane z = z0.
This seemingly unimportant result will be the basis for the important slant-stack operation
introduced in Chapter 6 that allows the data collected in a suite of scattering experiments
employing spherical incident waves to be converted into the data that would have been
obtained in a suite of scattering experiments employing incident plane waves.

2.10 Solution of the RS problem using the Helmholtz identities

A nifty derivation of the RS formulas Eqs. (2.48) is possible using only the Helmholtz
identities Eqs. (2.43) with G = G+ and the fact that the outgoing-wave Green function
G+(R,ω) is a function only of the magnitude R = |R| of the vector R. For the sake of
simplicity we take our data boundary ∂τ to be the plane z = 0 and look for a solution
to the RS problem throughout the half-space z > 0. The two Helmholtz identities then
become

U(r,ω) = −
∫

z′=0
dS′
[

U
∂

∂z′
G+(r− r′,ω)− G+(r− r′,ω)

∂

∂z′
U

]
, z > 0, (2.52a)

and ∫
z′=0

dS′
[

U
∂

∂z′
G+(r− r′,ω)− G+(r− r′,ω)

∂

∂z′
U

]
= 0, z < 0, (2.52b)

where the normal derivatives are directed into the positive r.h.s. z > 0.
Consider now a general field point r = (x, y, z) lying in the r.h.s. z > 0 and its mirror

image r̃ = (x, y,−z). Since r̃ lies in the l.h.s. we conclude from the second Helmholtz
identity that∫

z′=0
dS′
[

U(r′,ω)
∂

∂z′
G+(r̃− r′,ω)− G+(r̃− r′,ω)

∂

∂z′
U(r′,ω)

]
= 0, z > 0.
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But

G+(r̃− r′,ω)|z′=0 = G+(r− r′,ω)|z′=0,

∂

∂z′
G+(r̃− r′,ω)|z′=0 = − ∂

∂z′
G+(r− r′,ω)|z′=0,

from which we conclude that∫
z′=0

dS′ U(r′,ω)
∂

∂z′
G+(r− r′,ω) = −

∫
z′=0

dS′ G+(r− r′,ω)
∂

∂z′
U(r′,ω), z > 0.

Using this result we can then rewrite the first Helmholtz identity Eq. (2.52a) in either of
the two forms

U(r,ω) = −2
∫

z′=0
dS′ U(r′,ω)

∂

∂z′
G+(r− r′,ω) (2.53a)

and

U(r,ω) = 2
∫

z′=0
dS′ G+(r− r′,ω)

∂

∂z′
U(r′,ω). (2.53b)

The above two equations are recognized as being identical to the solutions for the RS
problem in the half-space z > 0 given in Eqs. (2.47). The solutions for the l.h.s. z < 0 can
be obtained in an entirely analogous manner and the results extended to any arbitrary plane
z = z0 using the same procedure as employed in Section 2.9.

2.11 Back propagation and the inverse RS boundary-value problem

The solutions to exterior boundary-value problems such as that to the RS boundary-value
problems in Eqs. (2.48) are solutions to “forward” propagation problems. By this we mean
that boundary values of an outgoing-wave field U+ over some surface ∂τ that surrounds
the source of the field are used to compute the field at points that are exterior to this sur-
face and, hence, further removed from the source than is the surface. An interesting and
important twist to this forward-propagation problem is the inverse or “back-propagation”
problem in which these boundary values are used to compute the field at points that are
closer to the source than is the boundary-value surface. The latter problem is not equivalent
to the interior boundary-value problem treated in Section 2.8.1 since the field is generated
from sources located within the boundary ∂τ and, hence, does not satisfy the homogeneous
Helmholtz equation within the interior τ of the boundary over which the boundary values
are specified. In fact, the back-propagation problem is not a classical boundary-value prob-
lem and cannot be solved exactly using the tools and techniques we have developed so far
but does have an exact, albeit unstable, solution that we will obtain in Chapter 4. Although
it cannot be solved exactly as a boundary-value problem, it can be solved approximately
as such, and the approximation will be found to be excellent so long as the boundary over
which the outgoing-wave boundary values are specified and the field point r to which the
field is back propagated are many wavelengths removed from the source.
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One approximate solution to the back-propagation problem was obtained in Sec-
tions 1.4.2 of Chapter 1 and in Section 2.5.1 of this chapter using over-specified field data
on a boundary ∂τ that completely surrounds the source. This over-determined solution as
provided by Eq. (2.33a) can be converted into one that is not over-determined by replacing
the incoming-wave Green function G− by either the incoming-wave Dirichlet Green func-
tion GD− or the incoming-wave Neumann Green function GN− appropriate to the boundary
∂τ . For example, on replacing G− by GD− in Eq. (2.33a) we obtain the following alterna-
tive expression for the back-propagated field

�D(r,ω) =
∫
∂τ

dS′ U+(r′,ω)
∂

∂n′
GD− (r, r′,ω), (2.54a)

where the field point r ∈ τ and the normal derivative is directed out of the interior τ and
into the exterior τ⊥. It is important to note that this particular back-propagated field will not
be equal to the one generated using over-specified data from Eq. (2.33a)! This conclusion
is readily verified if we note that under the replacement G− → GD− the Porter–Bojarski
integral equation Eq. (2.33b) relating the back-propagated field to the source becomes

�D(r,ω) =
∫
τ0

d3r′[G+(r− r′,ω)− GD− (r, r′,ω)]Q(r′,ω),

which is clearly different from Eq. (2.33b). We could also use the incoming-wave Neumann
Green function and generate a back-propagated field according to the formula

�N(r,ω) = −
∫
∂τ

dS′ ∂
∂n′

U+(r′,ω)GN− (r, r′,ω), (2.54b)

which is different from both � and �D.
Although there are various choices for a “back-propagation algorithm” we will find that

they all generate almost identical results as long as the boundary ∂τ and the field point r are
many wavelengths removed from the source. Justifying this claim will have to wait until
we develop the angular-spectrum expansion in Chapter 4, but for now we can make this
claim plausible by looking at the inverse RS boundary-value problem, which will involve
back propagation from planar boundaries.

2.11.1 The inverse RS boundary-value problem

In this section we will apply back propagation to obtain an approximate solution to the
inverse RS boundary-value problem. As its name suggests, the inverse RS boundary-value
problem consists of computing the field at points that lie closer to the source than a bound-
ary plane over which Dirichlet or Neumann boundary conditions are specified. For exam-
ple, if the source of the field is located in the left half-space z ≤ z+ < z0 and its radiated
field is observed over the plane z0, then the inverse RS boundary-value problem consists of
determining the field to the left of this plane within the strip z+ ≤ z ≤ z0 from Dirichlet or
Neumann boundary conditions specified over the plane z = z0. As mentioned above, this
problem is not a standard boundary-value problem of the type considered earlier and can-
not be solved using any Green-function technique. We will solve it exactly (but unstably) in
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Chapter 4 using the angular-spectrum expansion and will here employ field back propaga-
tion as described above to obtain an approximate solution.

We first consider the inverse RS boundary-value problem described above in terms of
Dirichlet or Neumann data specified over a plane z = z0 located to the right of a source that
is supported in the left half-space z ≤ z+ < z0. We can then obtain an approximate solution
to this inverse problem by using either of the back-propagation algorithms given above.
The incoming-wave Dirichlet and Neumann Green functions are given by Eqs. (2.46) with
G+ replaced by G−. The fields back propagated into the l.h.s. from Dirichlet or Neumann
data on the plane z = z0 according to Eqs. (2.54) are then given by Eqs. (2.48) with G+
replaced by G− and where the bottom signs of each equation are used since we are back
propagating into the l.h.s.:

�D(r,ω) = 2
∫

dS′ Uz0 (r′0,ω)
∂

∂z′
G−(r− r′0,ω), (2.55a)

�N(r,ω) = −2
∫

dS′ U′z0
(r′0,ω)G−(r− r′0,ω), (2.55b)

where r′0 = (x′, y′, z0) denotes a point on the boundary-value plane, Uz0 denotes the Dirich-
let data on this plane and U′z0

denotes the Neumann data on this plane. It is easy to verify
that the above expressions also apply to the inverse RS boundary-value problem posed in
the l.h.s so long as the signs are reversed; i.e., for the case in which the source is confined
to the half-space z > z− and the boundary-value plane is located to the left of the source at
z0 < z−.

The above back-propagated fields can be seen to be the solutions of the standard RS
boundary-value problem formulated for a field that satisfies the homogeneous Helmholtz
equation in the l.h.s. and the incoming-wave boundary condition at infinity in that half-
space. This suggests an interesting interpretation of these fields and the back-propagation
process. In particular, we can consider an outgoing wave propagating into the r.h.s. also
as an incoming wave propagating from the l.h.s. Thus, we can view the back-propagated
fields defined in Eqs. (2.55) as being solutions to the homogeneous Helmholtz equation
throughout the half-space z < z0 that satisfy the incoming-wave radiation condition in this
half-space and reduce to specified Dirichlet or Neumann boundary values on the boundary
plane z = z0. This is only an approximate solution to the inverse RS boundary-value
problem since the l.h.s. z < z0 is source-free in this formulation of the problem but contains
an actual source in the exact statement of the problem. We will show in Chapter 4 that the
two approximate solutions found above are identical and give excellent approximations to
the field radiated by a source located in the l.h.s. z < z+ < z0 so long as the distances
of the field point and boundary-value plane from the source are large compared with the
wavelength of the field.

2.11.2 Connection with wavefield time reversal

The approximate solution of the inverse RS boundary-value problem obtained using a
back-propagation algorithm is intimately connected with the process of wavefield time
reversal. To see this, we consider the case of Dirichlet data over a plane z0 lying to the
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right of the source for which the back-propagated field is given by Eq. (2.55a). If we take
the complex conjugate of both sides of the above equation, we conclude that

�∗D(r,ω) = 2
∫

dS′ U∗z0
(r′0,ω)

∂

∂z′
G∗−(r− r′0,ω). (2.56)

The quantity

G∗−(r− r′0,ω) = − 1

4π

eik∗R

R

is recognized as being the outgoing-wave Green function for the conjugate (time-reversed)
medium having wavenumber k∗. It then follows that Eq. (2.56) is the solution to the normal
outgoing-wave RS boundary-value problem in the conjugate-medium half-space z < z0

for Dirichlet data equal to the complex conjugate of Uz0 . In words, this result indicates
that the the time-reversed back-propagated field φD(r,−t) is equal to the field radiated by
the time-reversed boundary-value data into the time-reversed medium. In other words, if
the Dirichlet data are first time-reversed and allowed to radiate back into the source region
but in the time-reversed medium then the resulting field will be equal to φ(r,−t). We will
return to this point later when we implement the back-propagation algorithms using the
angular-spectrum expansion in Section 4.4.

2.12 Surface sources in dispersive media

The treatment of surface sources for the wave equation presented in Section 1.8 of Chap-
ter 1 carries over to dispersive media if we simply reformulate that earlier treatment in the
frequency domain. In particular, the most general surface source will consist of a singlet–
doublet pair Qs(r0,ω), Qd(r0,ω) defined over some boundary ∂τ0 that separates a region
τ0 and its complement τ⊥0 . This surface source pair then radiates a field according to the
equation

U+(r,ω) =
∫
∂τ0

dS0

[
Qs(r0,ω)G+(r− r0,ω)− Qd(r0,ω)

∂

∂n0
G+(r− r0,ω)

]
, (2.57)

where the normal derivative is, by convention, directed out of the region τ0 and into its
complement τ⊥0 , although this selection is arbitrary (see the discussion in Section 1.8).
The field U+(r,ω) radiated by the singlet–doublet source pair clearly satisfies the SRC and
the homogeneous Helmholtz equation at all space points r that lie away from the boundary
∂τ0. This boundary can be finite with interior τ0 and infinite exterior τ⊥0 or infinite in extent
as in the Rayleigh–Sommerfeld boundary-value problem.

As in the case of surface sources for the wave equation, a surface source that is
distributed over a separable surface (see Chapter 3) defined by generalized coordinates
(ξ1, ξ2, ξ3) with ξ3 = ξ30 = constant can be expressed in the frequency domain as a 3D
source distribution in the form



82 Radiation and boundary-value problems in the frequency domain

Q(r,ω) = Qs(ξ1, ξ2,ω)
δ(ξ3 − ξ30)

h3(r0)
+ Qd(ξ1, ξ2,ω)

h1(r0)h2(r0)

h1(r)h2(r)

∂
∂ξ3
δ(ξ3 − ξ30)

h3(r)
, (2.58)

where δ(·) is the Dirac delta function and h1, h2, h3 are the scale factors for the coordinate
system. The field radiated by Q is then given by the primary field representation Eq. (2.23)
with the source given by Eq. (2.58), which reduces to Eq. (2.57). The justification of the use
of the terms “singlet” for Qs and “doublet” for Qd is apparent from this source representa-
tion in terms of a delta function (singlet) and the derivative of the delta function (doublet).

Again, as was the case of surface sources to the wave equation, the singlet–doublet pair
is completely arbitrary and, in particular, its elements are not, necessarily, equal to the
boundary values of the field U+ and its normal derivative on ∂τ0. As was established for
the wave equation in Section 1.8, this will occur if and only if U+ vanishes throughout one
of the two regions τ0 (τ⊥0 ) in which case the limit of U+ and its normal derivative taken
from the region τ⊥0 (τ0) onto the boundary ∂τ0 will equal Qd and Qs, respectively. More
generally, the field U+ radiated by an arbitrary singlet–doublet pair will not vanish within
either region τ0 or τ⊥0 and the limiting boundary values of U+ from either region will be
determined from the pair of equations (cf. Eqs. (1.71) of Section 1.8)

lim
r→r0

U+(r,ω) = U+P(r0,ω)± 1

2
Qd(r0,ω), (2.59a)

lim
r→r0

∂

∂n
U+(r,ω) = ∂

∂n0
U+P(r0,ω)± 1

2
Qs(r0,ω), (2.59b)

where the+ sign is used when the limit is taken from τ⊥0 and the minus sign when the limit
is taken from τ0, and the subscript P stands for the principal value of the quantity being
subscripted.

2.12.1 Non-radiating surface sources

The NR surface sources within a dispersive medium are defined to be any singlet–doublet
pair Qsnr, Qdnr that radiates a field U+ that vanishes throughout one of the two regions τ0 or
τ⊥0 at one or more temporal frequencies ω. If the field vanishes in τ0 we say that the source
pair is NR relative to τ0 and vice versa if the field vanishes throughout τ⊥0 . In analogy with
the surface NR sources to the wave equation treated in Section 1.8 of Chapter 1, the most
general surface NR source results from the boundary values of a field radiated by a 3D
source supported within τ0 or τ⊥0 . This conclusion is a consequence of the fact that any
such field must satisfy the second Helmholtz identity throughout the complement region
τ⊥0 (τ0) and, hence, by definition, constitute an NR surface source for that region. The proof
that any NR surface source can be so constructed is not much deeper and is established in
Example 2.10 below.

By making use of the fact that NR surface sources result from the boundary values of
fields radiated by 3D sources it is possible to give a simple prescription for specifying
any NR surface source. In analogy with Eqs. (1.72) of Section 1.8 we conclude that, if
�τ̂0 (r,ω) is a field that is radiated by a 3D source Qτ̂0 (r,ω) supported within a volume τ̂0

that is located entirely within τ0 or its complement τ⊥0 , then for any point r0 lying on the
boundary ∂τ0
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Qsnr(r0,ω) = ∂

∂n0
�τ̂0 (r0,ω) = − 1

4π

∫
τ̂0

d3r′ Qτ̂0 (r′,ω)
∂

∂n0

eik|r0−r′|

|r0 − r′| , (2.60a)

Qdnr(r0,ω) = �τ̂0 (r0,ω) = − 1

4π

∫
τ̂0

d3r′ Qτ̂0 (r′,ω)
eik|r0−r′|

|r0 − r′| , (2.60b)

where τ̂0 is either within τ0 or τ⊥0 and the singlet–doublet pair is NR into the same region
τ0 or τ⊥0 as that in which the 3D primary source is located.

Again, as was the case for the wave equation, no surface sources exist that are NR
simultaneously in both τ0 and τ⊥0 . This is easily proven using Eqs. (2.59). Also, as was
the case for the wave equation, it is possible to have essentially NR surface sources that
radiate a field that possesses an energy spectrum that is essentially zero at one or more
temporal frequencies. Such sources are generated by the boundary values of essentially NR
3D volume sources supported within either the interior region τ0 or its exterior complement
τ⊥0 and produce a field identical to that which is radiated by the primary 3D source.

Finally, we mention the important result that NR surface sources can be employed to
reduce the complexity of a surface source by removing the singlet or doublet compo-
nent without affecting the field radiated by the source into a specific region τ0 or τ⊥0 .
Consider, for example, a singlet–doublet pair Qs, Qd that radiates a field according to
Eq. (2.57) into the two regions τ0 and τ⊥0 . If we require that the field radiated by this
pair remain unchanged in only one of these two regions then we can add to this pair of
surface sources the singlet–doublet pair Qsnr, Qdnr that is NR within the region where
the original field is to remain unchanged. The new field that is radiated by the pair
Qs + Qsnr, Qd + Qdnr is then identical to the original field within the region where the
pair Qsnr, Qdnr is NR but is changed within the other region due to the radiation generated
by the NR pair within this region (recall that a surface source cannot be NR within both τ0

and τ⊥0 simultaneously). On selecting the NR pair such that Qsnr = −Qs the field will be
radiated by the doublet component Qd + Qdnr alone, whereas on taking Qdnr = −Qd the
field will be radiated by the pure singlet Qs + Qsnr.

Example 2.10 We wish to prove that any surface source pair Qsnr, Qdnr that radiates a field
U+nr and that is NR into a given region (say, τ0) must be equal to the boundary values
of a field radiated by a 3D volume source supported within the same region. The proof
of this follows from the fact that the vanishing of the field U+nr throughout τ0 requires
that the singlet–doublet pair be related to the boundary values of U+nr over ∂τ0 via the
equations

Qsnr(r0,ω) = ∂

∂n0
U+nr(r0,ω), Qdnr(r0,ω) = U+nr(r0,ω),

where the r.h.s. of the above two equations are limits of the field quantities taken from the
region τ⊥0 onto the boundary ∂τ0. The above results were derived in the time domain for
the wave equation in Section 1.8 of Chapter 1 and can be easily derived in the frequency
domain by making use of Eqs. (2.59) in conjunction with the requirement that U+nr vanish
within τ0.
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On substituting the above into Eq. (2.57) we find that the field U+nr can be expressed in
the form

U+nr(r, t) =
∫
∂τ0

dS′
[

G+(r− r′,ω)
∂

∂n′
U+nr(r

′,ω)− U+nr(r
′,ω)

∂

∂n′
G+(r− r′,ω)

]
.

We can convert the surface integral into a volume integral over the interior τ0 of ∂τ0 by
using Green’s theorem. We obtain the result

U+nr(r,ω) =
∫
τ0

d3r′[G+ ∇2
r′U+nr − U+nr ∇2

r′G+]

=
∫
τ0

d3r′[G+(∇2
r′ + k2)U+nr − U+nr(∇2

r′ + k2)G+]. (2.61)

If we now use the fact that

(∇2
r′ + k2)G+(r− r′,ω) = δ(r− r′),

define the 3D volume source

Q(r,ω) = (∇2
r′ + k2)U+nr(r

′,ω)

and restrict the field point r to lie within the complement region τ⊥0 we find that Eq. (2.61)
reduces to

U+nr(r,ω) =
∫
τ0

d3r′ Q(r′,ω)G+(r− r′,ω),

which establishes the desired result. A similar development can be employed to establish
the result for surface sources that are NR into the complement region τ⊥0 .

Further reading

Most of the books and papers referenced in Chapter 1 also apply to this chapter. In addi-
tion to those references the book by Goodman (Goodman, 1968) contains an excellent
treatment of the Rayleigh–Sommerfeld boundary-value problem, while the SRC is dis-
cussed in Sommerfeld (1967). The Porter–Bojarksi integral equation is reviewed in the
paper by Bojarski (Bojarski, 1982a) and is used in the inverse source problem by R. P.
Porter (Porter, 1970). The papers by Wolf (Shewell and Wolf, 1968) and Sherman (Sher-
man, 1967) are among the first to deal with back propagation and inverse diffraction in
optics. The excellent book by Stamnes (Stamnes, 1986) contains an account of the focus-
ing and back propagation of water waves. Stratton (1941) has a basic review of dispersive
media theory, while complete and thorough treatments are contained in Oughstun (2006)
and Oughstun and Sherman (1997). Additional treatments of NR sources and their fields
are contained in Marengo and Ziolkowski (2000) and Marengo and Devaney (1998). The
problem of reducing over-specified boundary conditions for the Helmholtz equation is a
form of the so-called “Dirichlet-to-Neumann” map and has been treated extensively in the
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literature (Fokas, 2008). It plays a crucial role in a number of inverse problems (Sylvester
and Uhlmann, 1990; Kirsch, 1993).

Problems

2.1 Prove that the real and imaginary parts of the analytic signal are connected by Hilbert
transforms. Hint: use the fact that f (+)(t) is analytic in the l.h.p. and goes to zero as
|t| → ∞ in that half-plane.

2.2 Let

εk(τ ) = 1

2π

∫ ∞
−∞

dω k2(ω)e−iωτ ,

where k(ω) is the wavenumber of a causal medium.

1. Prove that εk(τ ) is causal, i.e., vanishes for negative τ .
2. Compute εk(τ ) as a generalized function for a non-dispersive medium in which

k2(ω) = ω2/c2.
3. Prove that the real and imaginary parts of k2(ω)−(ω/c)2 are connected via Hilbert

transforms and derive these transforms.

2.3 Derive the equation satisfied by the time-dependent field u+(r, t) radiated by the
source q(r, t) if k2(ω) ⇔ εk(τ ). Show that this equation reduces to the usual wave
equation in the special case in which k2(ω) = (ω/c)2.

2.4 Prove that k(−ω) = −k∗(ω) if ω is real-valued.
2.5 Compute the incoming- and outgoing-wave Green functions G−(R,ω) and G+(R,ω)

from their Fourier-integral representations using contour-integration techniques.
2.6 Using the Fourier-integral representations of the frequency-domain outgoing- and

incoming-wave Green functions G±(R,ω) and Cauchy’s integral theorem show that
the free-field propagator Gf(R,ω) = G+(R,ω) − G−(R,ω) satisfies the homoge-
neous Helmholtz equation.

2.7 Use the second Helmholtz identity in the time-domain Eq. (1.36b) to derive
Eq. (2.31b). Can Eq. (1.36b) be derived from Eq. (2.31b) for dispersive media? What
does this say about the validity of this identity in the time domain for dispersive
media?

2.8 Show that if r ∈ τ the back-propagated field �(r,ω) defined in Eq. (2.33a) can be
expressed in terms of the free-field propagator in the form

�(r,ω) = −
∫
∂τ

dS′
[

U+(r′,ω)
∂

∂n′
Gf(r− r′,ω)− Gf(r− r′,ω)

∂

∂n′
U+(r′,ω)

]
.

2.9 Verify that the contribution from the integral over the surface ∞ in the derivation
of Eqs. (2.43) vanishes.

2.10 State and prove the frequency-domain version of the source decomposition
Theorem 1.3.
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2.11 Show by using a coordinate-system translation along the z axis that the RS solutions
given in Eqs. (2.47) yield the solutions in Eqs. (2.48), which are valid for a boundary-
value plane z = z0, with z0 being arbitrary.

2.12 Solve the 1D inverse RS problem in the r.h.s. z > z+ in terms of Dirichlet data on the
line z = z0 > z+. Compare this solution with the exact field radiated by the source
into this half-space.

2.13 Compute a 1D NR surface source distributed on the two points z = z±. Hint: find a
pair of coupled algebraic conditions that must be satisfied.

2.14 Use the general procedure employed in Section 2.8 to compute the field radiated by a
source located in the l.h.s. in the presence of a Dirichlet plane (a plane over which the
field vanishes) at z = 0. Express your answer in terms of a Dirichlet Green function.

2.15 Interpret the radiated field found in the previous problem in terms of a mirror-image
source relative to the plane z = 0.

2.16 Determine a cloaking surface source over a closed surface ∂τ0 directly in the fre-
quency domain using NR surface sources constructed from the incident wavefield
and its normal derivative over the cloaking surface.

2.17 Prove that the cloaking surface source found in the previous problem with the inci-
dent wavefield replaced by the total wavefield (incident plus that generated from
the cloaked object) radiates an identical wavefield into the interior τ0 as that of the
original surface source.

2.18 Give an argument for why the surface source found in the previous problem also
cloaks the region τ0; i.e., both cancels out the incident wavefield within τ0 and is NR
outside of τ0.



3
Eigenfunction expansions of solutions

to the Helmholtz equation

The “solutions” of boundary-value problems presented in Section 2.8 are merely formal
in that the appropriate Green functions must be found, and finding these Green functions
is extremely difficult except in certain special cases such as the Rayleigh–Sommerfeld
problem. Moreover, even when the appropriate Green functions can be found they are
often expressed in the form of superpositions of elementary solutions of the homogeneous
Helmholtz equation that are especially suited for dealing with boundaries of a specific
shape. One example of a set of such elementary solutions is the plane waves which arise
from applying the method of separation of variables to the homogeneous Helmholtz equa-
tion using a Cartesian coordinate system and, as we will see below, form a complete set of
basis functions for fitting boundary-value data specified on plane surfaces; e.g., for the RS
problems. However, the plane waves have limited utility in solving boundary-value prob-
lems involving non-planar boundaries such as spherical boundaries. In that case the method
of separation of variables is applied to the Helmholtz equation using a spherical polar coor-
dinate system and the so-called multipole fields arise as a set of elementary solutions that
form a basis for fitting boundary-value data specified on spherical boundaries. In this chap-
ter we will briefly review the method of separation of variables for the Helmholtz equa-
tion and obtain the resulting eigenfunctions for the important cases of Cartesian, spherical
polar and cylindrical coordinate systems. We mention that, although one of the principal
uses of eigenfunction representations is in solving boundary-value problems, they are also
extremely useful in general analytic studies of wave propagation and scattering and in the
implementation of general algorithms associated with wave phenomena. We will use these
representations heavily in developing inversion algorithms both for inverse source prob-
lems and for inverse scattering problems.

3.1 Separation of variables and the Sturm–Liouville problem

In the method of separation of variables applied to the homogeneous Helmholtz equa-
tion one decides on a specific coordinate system (e.g., Cartesian, cylindrical, spheri-
cal) and looks for a solution of the homogeneous Helmholtz equation with wavenumber
k = ω/(cn(ω)) of the form

U(r,ω) = U(ξ1, ξ2, ξ3) = U1(ξ1)U2(ξ2)U3(ξ3), (3.1)

where the Uj(ξj) are functions only of the jth generalized coordinate in the selected coor-
dinate system and, possibly, the wavenumber k. Equation (3.1) is then substituted into

87
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the homogeneous Helmholtz equation with the D’Alembertian operator represented in
the ξ1, ξ2, ξ3 system. For certain choices of the coordinate system the resulting equation
then separates into three ordinary differential equations, one for each component function
Uj(ξj). It is known that for the scalar Helmholtz equation there exist exactly 11 coordinate
systems for which the separation method works. We will be mainly concerned with three of
them: (i) Cartesian coordinates, (ii) spherical coordinates and (iii) cylindrical coordinates,
although we will also have occasion to deal with others such as the spheroidal coordi-
nates whose corresponding eigenfunctions play a central role in certain inverse problems
associated with the Fourier transform (Slepian and Pollak, 1961).

The three ordinary differential equations arising from the separation-of-variables pro-
cedure form a two-parameter coupled set of Sturm–Liouville problems, which can be
jointly solved to yield a complete set of basis functions for solving the homogeneous scalar
wave Helmholtz equation. When solving boundary-value problems for the homogeneous
Helmholtz equation one selects the two free parameters to be eigenvalues associated with
the generalized coordinates of the surface on which the boundary-value data are speci-
fied (say, ξ3 = constant). In such a way it is then possible to generate a two-parameter
set of functions that satisfy the homogeneous Helmholtz equation and, in addition, form
a complete set of functions for fitting Dirichlet, Neumann or mixed boundary conditions
specified on the surface(s) ξ3 = constant. We will employ this procedure in the follow-
ing sections to solve the Dirichlet and Neumann boundary-value problems for Cartesian,
spherical and cylindrical boundary surfaces.

3.1.1 The Sturm–Liouville problem

In the separable systems of interest here separation of variables applied to the homogeneous
Helmholtz equation

[∇2 + k2]U(r, k) = 0 (3.2)

will lead to a set of coupled linear first-order ordinary differential equations of the general
form [

d

dξ

[
p(ξ )

d

dξ

]
+ q(ξ )+ λw(ξ )

]
ψ(ξ , λ) = 0, (3.3)

where p(ξ ) and q(ξ ) are real-valued analytic functions of the real variable ξ , w(ξ ) > 0 is a
real-valued weight function and λ is an eigenvalue that depends on the wavenumber k. The
differential operator

L = d

dξ

[
p(ξ )

d

dξ

]
+ q(ξ ) (3.4)

is Hermitian under the standard inner product in the space L2(a, b) of square-integrable
functions on [a, b]; i.e.,∫ b

a
dξ [Lψ(ξ , λ)]χ (ξ , λ) = p(ξ )[ψ ′χ − ψχ ′]|ba +

∫ b

a
dξ ψ(ξ , λ)[Lχ (ξ , λ)], (3.5)

so that
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〈Lψ ,χ〉 = 〈ψ ,Lχ〉 (3.6a)

so long as the functions ψ and χ satisfy the condition

p(ξ )[ψ ′(ξ , λ)χ (ξ , λ)− ψ(ξ , λ)χ ′(ξ , λ)]|ba = 0. (3.6b)

It is important to note that for the operator L to be Hermitian it is required that it be of the
general form given in Eq. (3.4) and that the eigenfunctions satisfy the boundary conditions
given in Eq. (3.6b).

It is well known and easily proven that the eigenvalues of an Hermitian operator are
real-valued and that eigenfunctions corresponding to different eigenvalues are orthogonal.
More difficult to prove, but also true, is the fact that the eigenfunctions are complete in
L2(a, b); i.e., under the induced norm

||ψ || = √〈ψ ,ψ〉.
Finally, it can also be shown that the eigenvalues are discrete if the interval [a, b] is finite
and will form a continuum otherwise. Both possibilities will occur in our applications.

3.2 Cartesian coordinates

Returning to the homogeneous Helmholtz equation, we select the three generalized coor-
dinates ξj to be the Cartesian coordinates x, y, z and we find that

[∇2 + k2]Ux(x)Uy(y)Uz(z) = 0,

which results in the separated system of equations[
∂2

∂x2
+ K2

x

]
Ux(x) = 0,

[
∂2

∂y2
+ K2

y

]
Uy(y) = 0,

[
∂2

∂z2
+ K2

z

]
Uz(z) = 0,

where the three separation constants K2
x , K2

y and K2
z must satisfy the constraint equation

(dispersion relation)

K2
x + K2

y + K2
z = k2. (3.7)

The general solution of the coupled system is easily found to be

U(r,ω) = Ux(x)Uy(y)Uz(z) = AeiKxxeiKyyeiKzz = AeiK·r, (3.8)

where A is an arbitrary constant and the wave vector K = Kxx̂ + Kyŷ + Kzẑ has arbitrary
direction but a (possibly complex) length K = √K · K = k as required by the constraint
equation Eq. (3.7).

The most general solution of the homogeneous Helmholtz equation with fixed wavenum-
ber k = ω/(cn(ω)) can be expressed as an integral of the separated solutions Eq. (3.8) over
all wave vectors K satisfying the constraint equation Eq. (3.7). Because of this constraint
there are only two degrees of freedom for the wave vector K. They can be selected in
a number of ways. For example, we can take Kx and Ky free and constrain Kz to satisfy
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the constraint equation. Alternatively, we can represent the wave vector in spherical coor-
dinates, take the radial component equal to the wavenumber k and take the polar and
azimuthal angles α and β as the free variables. The latter procedure leads to a plane-wave
expansion of the form

U(r,ω) =
∫

d�s A(ks,ω)eiks·r, (3.9a)

where the unit propagation vector s is given in terms of its polar and azimuthal angles α
and β by

s = sinα cosβ x̂+ sinα sinβ ŷ+ cosα ẑ (3.9b)

and the integration over s in Eq. (3.9a) is over a set of real or complex angles. We will
find below that different choices for the angular integration region correspond to different
properties of the wavefield U and, in particular, to different boundary conditions for the
field U.

3.2.1 Homogeneous plane-wave expansions

If we demand that the unit propagation vector s defined in Eq. (3.9b) be strictly real then
the polar and azimuthal angles α and β must be strictly real. The most general form of the
corresponding plane-wave expansion is then given by Eq. (3.9a), with the angular integra-
tion region taken to be 4π steradians. This plane-wave expansion converges everywhere
under very weak conditions on the plane-wave amplitude A(ks,ω) and, hence, satisfies the
homogeneous Helmholtz equation over all of space.

In the important case in which the wavenumber k is real-valued and the unit propagation
vector s is also real, the elemental plane waves entering into the plane-wave expansion
Eq. (3.9a) are all homogeneous plane waves. By this we mean that they have strictly real
wave vectors K = ks and unit magnitude over all of space and, in particular, do not decay
along any direction in space. In this case we say that Eq. (3.9a) is a homogeneous plane-
wave expansion. A plane wave that decays (or grows) in amplitude as it propagates is called
an inhomogeneous plane wave. In the case of a dispersive medium where k > 0 the wave
vector ks will be complex even if the unit propagation vector s is real-valued. Thus, it is
not possible to have purely homogeneous plane waves in a dispersive medium, and what
are homogeneous plane waves in a non-dispersive medium become inhomogeneous plane
waves in a dispersive medium.

Plane-wave expansion in the time domain

We can construct solutions to the homogeneous wave equation Eq. (1.3) by using a
superposition of elementary plane waves both over frequencies ω and over propagation
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directions s. In this case the wavenumber k is real-valued and we can construct the time-
dependent plane-wave expansion

u(r, t) = 1

(2π )3

∫ ∞
−∞

k2 dk
∫

d�s A(ks,ω)eik(s·r−ct), (3.10)

where we have used the wavenumber k = ω/c as the integration variable and included the
multiplying factor k2 in the k integral and the factor 1/(2π )3 for later notational simplicity.
It is easy to verify that the field U constructed in Eq. (3.10) satisfies the homogeneous wave
equation throughout its region of (uniform) convergence.

Let’s consider the special, but important, case in which the integration angles α and β
are real and the angular range in the plane-wave expansion Eq. (3.10) is over a full 4π
steradians. In this case the expansion Eq. (3.10) is a homogeneous plane-wave expansion
since the wave vectors ks of the plane waves comprising the expansion are all real-valued. It
then follows that the expansion will converge and satisfy the homogeneous wave equation
over all of space and for all time. Moreover, for this case we can express the wave vector
K = ks in terms of its Cartesian components

Kx = k sinα cosβ, Ky = k sinα sinβ, Kz = k cosα.

If we then make the change of variable from the polar coordinates k,α,β to the Cartesian
coordinates Kx, Ky, Kz in Eq. (3.10) we obtain the result

u(r, t) = 1

(2π )3

∫
d3K A(K, cK)ei(K·r−cKt)

+ 1

(2π )3

∫
d3K A(K,−cK)ei(K·r+cKt). (3.11)

The first term on the r.h.s. of Eq. (3.11) represents the contribution of positive frequencies
in Eq. (3.10) while the second represents the contribution of negative frequencies. Equa-
tion (3.10) is referred to as the angle-variable (or polar) form of the plane-wave expansion
and Eq. (3.11) as the Cartesian-variable form of this expansion.

Example 3.1 As an example of the use of the plane-wave expansion Eq. (3.11) we consider
the initial-value problem addressed in Chapter 1 using Green-function techniques. It fol-
lows from this expansion that the plane-wave amplitudes A(K, cK) and A(K,−cK) must
satisfy the Cauchy conditions

ut0 (r) = 1

(2π )3

∫
d3K A(K, cK)ei(K·r−cKt0)

+ 1

(2π )3

∫
d3K A(K,−cK)ei(K·r+cKt0),

u′t0 (r) = 1

(2π )3

∫
d3K − icKA(K, cK)ei(K·r−cKt0)

+ 1

(2π )3

∫
d3K icKA(K,−cK)ei(K·r+cKt0),
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where

ut0 (r) = u(r, t)|t=t0 , u′t0 (r) = ∂

∂t
u(r, t)|t=t0 .

On spatial Fourier transforming the above set of equations we then find that

A(K, cK)e−icKt0 + A(K,−cK)eicKt0 = ũt0 (K), (3.12a)

A(K, cK)e−icKt0 − A(K,−cK)eicKt0 = i

cK
ũ′t0 (K), (3.12b)

where

ũt0 (K) =
∫

d3r ut0 (r)e−iK·r,

ũ′t0 (K) =
∫

d3r u′t0 (r)e−iK·r,

are the spatial Fourier transforms of the Cauchy data at t0. The coupled set of equations
Eqs. (3.12) are easily solved and we obtain the result

A(K, cK) = 1

2

[̃
ut0 (K)+ i

cK
ũ′t0 (K)

]
eicKt0 , (3.13a)

A(K,−cK) = 1

2

[̃
ut0 (K)− i

cK
ũ′t0 (K)

]
e−icKt0 . (3.13b)

The plane-wave expansion Eq. (3.11), with the plane-wave amplitudes A(K, cK) and
A(K,−cK) defined in Eqs. (3.13), satisfies the homogeneous wave equation and the speci-
fied Cauchy conditions and hence is the unique solution to the initial-value problem under
this Cauchy data.

3.2.2 Plane-wave expansions that include inhomogeneous plane waves

Homogeneous plane waves were defined in the previous section as being plane waves
whose wave vectors K are real-valued so that they have unit magnitude over all of space.
Superpositions of these plane waves (called “homogeneous plane-wave expansions”) can
be employed, as we have just seen in the above example, to solve the Cauchy initial-value
problem for the homogeneous wave equation and, in certain cases, can also be used to
represent solutions to the inhomogeneous Helmholtz equation in a non-dispersive medium
or to the wave equation over a restricted region of space such as within a finite volume
lying outside the source volume τ0.

We can obtain a generalization to the homogeneous plane-wave expansion that can be
employed in dispersive media by simply allowing the wavenumber in Eq. (3.9a) to be com-
plex but keeping the unit propagation vector s real-valued. The resulting plane waves com-
prising the expansion are no longer homogeneous, since the wave vectors K = ks are now
complex due to the complex nature of k, but they have the special property that they become
homogeneous in the limit when k → 0. We will generally refer to such waves as weakly
inhomogeneous plane waves. Plane-wave expansions comprised of weakly inhomogeneous
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plane waves satisfy the homogeneous Helmholtz equation in a dispersive medium and can
thus be used to represent certain classes of solutions to this equation.

Unfortunately, the generalized form of the plane-wave expansion comprised of weakly
inhomogeneous plane waves has limited applicability for solving boundary-value problems
for the Helmholtz equation due to the fact that this set of plane waves does not form a
complete set of functions on any closed or open boundary-value surface.1 For example,
to solve a boundary-value problem for Dirichlet or Neumann data specified on the (x, y)
plane, it is required that Kx and Ky vary over the entire (Kx, Ky) plane in order for the
plane waves defined in Eq. (3.8) to be complete on this plane. This, in turn, requires that

Kz = ±
√

k2 − K2
x − K2

y assume complex values even in the limit when k → 0. It is

thus necessary to admit into the expansion inhomogeneous plane waves that have complex
wave vectors even in the limit where the wavenumber is purely real-valued. Such plane
waves are called evanescent plane waves. It is clear that the basic form Eq. (3.9a) of the
plane-wave expansion does not exclude such plane waves and, in particular, this class of
inhomogeneous plane waves arises when the polar integration angles α and β are allowed
to assume complex values.

Weakly inhomogeneous and evanescent plane waves

To understand better the nature of weakly inhomogeneous and evanescent plane waves, we
define the transverse wavenumber Kρ = Kxx̂+ Kyŷ and take Kx and Ky to be the two free
variables in the general plane wave defined in Eq. (3.8). The allowable values for Kz are
then given by Kz = ±γ , where

γ =
⎧⎨⎩
√

k2 − K2
ρ if K2

ρ < �k2,

i
√

K2
ρ − k2 if K2

ρ > �k2.
(3.14)

The quantity γ is the principal root of the multivalued function
√

k2 − K2
ρ and has positive

real and imaginary parts for all real and positive values of Kρ and �k.2 We note that in
the limit of a non-dispersive medium in which k → 0 γ is pure real (and positive) for
K2
ρ < �k2 and pure positive imaginary for K2

ρ > �k2. The plane waves having transverse
wave vectors Kρ for which K2

ρ < �k2 are, thus, inhomogeneous plane waves due to the
fact that the medium in which they propagate is dispersive, and become homogeneous in
the limit k → 0. These plane waves have the same character as those having a wave
vector K = ks with k complex and s real, and are thus what we have defined to be “weakly
inhomogeneous plane waves.”

1 Note, in this connection, that the homogeneous plane waves used in Example 3.1 form a complete set of
functions for expanding the Cauchy conditions for the initial-value problem. This is the reason why the plane-
wave expansion using homogeneous plane waves is ideally suited for this problem.

2 Here, and in much of what is to follow, we tacitly assume that �k > 0. As mentioned at the beginning
of Chapter 2, the positive frequencies ω > 0 completely and uniquely define real-valued fields of the type
considered in this book, so no generality is lost in making this assumption.
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On the other hand, the plane waves having transverse wave vectors Kρ for which K2
ρ >

�k2 are inhomogeneous plane waves of a different type altogether. These plane waves
are inhomogeneous even if the medium is non-dispersive and k is strictly real-valued. To
distinguish them from the weakly inhomogeneous plane waves they are called evanescent
plane waves.

Example 3.2 To get a better feel for the two types of inhomogeneous plane wave we examine
the special case in which the medium absorption is small and set k2 = �k2 + ik2. We
then have that

γ =
√

k2 − K2
ρ ≈

√
�k2 − K2

ρ + i
k2

2
√
�k2 − K2

ρ

, K2
ρ < �k2, (3.15a)

γ = i
√

K2
ρ − k2 ≈ i

√
K2
ρ −�k2 + k2

2
√

K2
ρ −�k2

, K2
ρ > �k2. (3.15b)

When �k2 − K2
ρ > 0, γ has a non-zero real part and a (small) imaginary part that van-

ishes in the limit k → 0. Thus, the plane waves resulting from Kz = ±γ in these cases
are homogeneous plane waves in the limit k → 0 and, hence, are what we have called
“weakly inhomogeneous plane waves.” On the other hand, when �k2 − K2

ρ < 0 the first
term in Eq. (3.15b) is pure imaginary and γ is complex even in the limit k→ 0. The asso-
ciated set of plane waves with the set of wave vectors with Kz = ±γ when �k2 − K2

ρ < 0
thus corresponds to the class of evanescent plane waves.

3.2.3 Plane-wave expansions involving evanescent plane waves

We can construct a plane-wave expansion using the plane waves defined in Eq. (3.8) with
Kz = ±γ . This expansion will contain both weakly inhomogeneous plane waves having
transverse wave numbers Kρ whose magnitude squared K2

ρ < �k2 and evanescent plane
waves for which K2

ρ > �k2. The most general form for such an expansion is given by

U(r,ω) =

U(+)(r,ω)︷ ︸︸ ︷
i

2π

∫
d2Kρ
γ

A(+)(k+,ω)eik+·r+

U(−)(r,ω)︷ ︸︸ ︷
i

2π

∫
d2Kρ
γ

A(−)(k−,ω)eik−·r, (3.16a)

where

k± = Kρ ± γ ẑ, (3.16b)

with γ defined in Eq. (3.14) and where we have expressed the above expansion in a form
that is most convenient for later applications. Clearly, the wave vectors k± satisfy the con-
straint equation Eq. (3.7) due to the definition of γ so that both components satisfy the
homogeneous Helmholtz equation in the spatial regions in which they converge.

Both components, U(+) and U(−), of the general plane-wave expansion given in
Eq. (3.16a) are seen to consist of superpositions of plane waves, each of which satisfies the
homogeneous Helmholtz equation. The plane waves comprising U(+) all propagate in the
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positive-z direction, while the plane waves comprising U(−) all propagate in the negative-
z direction. Both components include both weakly inhomogeneous and evanescent plane
waves, with the latter decaying or growing exponentially with increasing |z| from the z = 0
plane. The wavefield U(+) is appropriate for representing wavefields propagating into the
right half-space z > 0, while U(−) is used for representing wavefields that propagate into
the left half-space z < 0. The plane-wave amplitudes A(±)(k±,ω) can be arbitrarily chosen
but are, in principle, uniquely specified by appropriate boundary conditions.

The two fields U(+) and U(−) defined by the plane-wave expansions in Eqs. (3.16a)
satisfy the Sommerfeld radiation condition (SRC) in the half-spaces z > 0 and z < 0,
respectively. This conclusion can be arrived at by applying the method of stationary phase
to their respective plane-wave expansions, and one finds that (Born and Wolf, 1999; Man-
del and Wolf, 1995)

U(±)(rs,ω) ∼ A(±)(k±,ω)
eikr

r
, (3.17)

as r→∞ along the direction of the unit vector s = r/r. In this equation Kρ = (ksx, ksy) =
(k sin θ cosφ, k sin θ sinφ) and Kz = ksz = k cos θ , with (r, θ ,φ) being the polar coordi-
nates of the field point r. We will not digress here to discuss this result or its ramifica-
tions, since we will return to this issue in Section 4.2.2 of the following chapter, where
we will derive the result directly from the Green-function representation of the radiated
field. Because of the fact that these plane-wave expansions satisfy the SRC they are ideally
suited for solving the Rayleigh–Sommerfeld boundary-value problem, as we mentioned
above and as the following example illustrates.

Example 3.3 The plane-wave expansion derived above can be employed to solve the
Rayleigh–Sommerfeld problem treated in Section 2.9 using the Green-function approach.
Here we will solve the RS problem in the right half-space z > 0 in terms of Dirichlet
or Neumann data on the plane z = 0. To solve this boundary-value problem we employ
the plane-wave expansion U(+)(r,ω) comprising the first term in Eq. (3.16a) and compute
the plane-wave amplitude from boundary conditions on the plane z = 0. It is clear from
Eq. (3.17) that U+ satisfies the SRC in the r.h.s. and, hence, is an appropriate representation
for the solution to the RS problem in this half-space.

To determine the plane-wave amplitude we note using U(+) as defined in Eq. (3.16a)
that on the plane z = 0

U0(ρ,ω) = i

2π

∫
d2Kρ
γ

A(+)(k+,ω)eiKρ ·ρ ,

U′0(ρ,ω) = i

2π

∫
d2Kρ
γ

iγA(+)(k+,ω)eiKρ ·ρ ,

where U0 is the Dirichlet boundary condition on the plane z = 0 and U′0 = (∂/∂z)U is the
Neumann condition on this plane. In addition, we have defined the vector

ρ = xx̂+ yŷ,
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which is recognized as the projection of the field point r onto the (x, y) plane. If we Fourier
invert both sides of the above equations, we then find that

A(+)(k+,ω) =
{
−[iγ /(2π )]Ũ0(Kρ ,ω) Dirichlet conditions,

−[1/(2π )]Ũ′0(Kρ ,ω) Neumann conditions,
(3.18)

where the tilde ˜ denotes the spatial Fourier transform; e.g.,

Ũ0(Kρ ,ω) =
∫

d2ρ U0(ρ,ω)e−iKρ ·ρ .

As a final step we substitute the expressions for the plane-wave amplitudes directly into
the plane-wave expansion for U+ to obtain

U(+)
D (r,ω) = 1

(2π )2

∫
d2Kρ Ũ0(Kρ ,ω)eik+·r, (3.19a)

U(+)
N (r,ω) = −i

(2π )2

∫
d2Kρ

Ũ′0(Kρ ,ω)

γ
eik+·r, (3.19b)

where we have used the subscripts D and N to denote the solutions to the Dirichlet and
Neumann RS boundary-value problems in the half-space z > 0. It is readily verified that
these solutions satisfy the homogeneous Helmholtz equation and reduce to the required
boundary conditions on the plane z = 0.

The plane-wave expansions of U(+) and U(−) derived in the example presented above
employ the plane z = 0 as the boundary-value plane and represent the field either in
the half-space z > 0 or in the half-space z < 0. However, since the orientation of our
Cartesian system is arbitrary it is clear that these representations can be employed in any
half-space within which the field satisfies the homogeneous Helmholtz equation and the
SRC. Moreover, since the plane-wave expansion U+ converges throughout the right-half
space z > 0 and satisfies the SRC in that half-space this expansion actually solves the
Rayleigh–Sommerfeld boundary-value problem for the general case of specified Dirichlet
or Neumann conditions on any plane z = z0 ≥ 0. For example, it follows from the plane-
wave expansion for the Dirichlet problem addressed in Example 3.3 that

Ũz0 (Kρ ,ω) = Ũ0(Kρ ,ω)eiγ z0 ,

where Ũz0 (Kρ ,ω) is the spatial Fourier transform of the field on the plane z = z0 ≥ 0.
Solving for Ũ0 in terms of Ũz0 and substituting into the plane-wave expansion then yields

U(+)
D (r,ω) = 1

(2π )2

∫
d2Kρ Ũz0 (Kρ ,ω)e−iγ z0 eik+·r (3.20)

for the solution of the boundary-value problem with Dirichlet conditions specified on the
plane z0 > 0. A similar result is obtained for the left half-space using U(−) in place of U(+).
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Spatial resolution of homogeneous and evanescent plane waves

We see from the above example that the plane-wave amplitudes of the fields resulting
from Dirichlet or Neumann conditions over a boundary plane are related to the bound-
ary conditions via a spatial Fourier transform. Each spatial frequency component of the
field or its normal derivative over the plane is mapped into a specific plane wave that then
propagates into a half-space as a component of the solution to the boundary-value prob-
lem. The division between weakly inhomogeneous and evanescent plane waves occurs
at K2

ρ = �k2, corresponding to a spatial period equal to L = 2π/
√�k2, which for

non-dispersive media is L = λ, the wavelength of the field. It then follows that weakly
inhomogeneous plane waves radiate from spatial periods larger than the spatial period
L = 2π/

√�k2 and evanescent plane waves from spatial periods smaller than L. For
non-dispersive and weakly dispersive media the conclusion is simpler: homogeneous plane
waves radiate from spatial periods larger than the wavelength and evanescent plane waves
from spatial periods smaller than the wavelength. These observations will be used many
times throughout the book to interpret both wave-propagation phenomena and wavefield-
inversion algorithms.

The angle-variable form of the plane-wave expansion

It is also possible to represent the plane-wave expansion given in Eq. (3.16a) in the gen-
eral form of the homogeneous plane-wave expansion given in Eq. (3.9a) using spherical
polar coordinates for the integration variables. We first make a change from Cartesian to
cylindrical polar integration variables

Kx = Kρ cosβ, Ky = Kρ sinβ,

k± = Kρ cosβ x̂+ Kρ sinβ ŷ± γ ẑ

to find that the component fields U± in Eq. (3.16a) assume the form

U(±)(r,ω) = i

2π

∫ π

−π
dβ
∫ ∞

0

Kρ dKρ
γ

A(±)(k±,ω)ei(Kρ cosβ x+Kρ sinβ y ± γ z), (3.21)

where we have used the result that

d2Kρ = Kρ dKρ dβ.

We now make the transformation

Kρ = k sinα,

Kρ dKρ = k2 sinα cosα dα,

±γ = k
√

1− sin2 α = k cosα,

so that

k± = Kρ cosβ x̂+ Kρ sinβ ŷ± γ ẑ→ k

s︷ ︸︸ ︷
(sinα cosβ x̂+ sinα sinβ ŷ+ cosα ẑ) . (3.22)

The integration ranges of the angle α must be selected so that Kρ varies from zero to infinity
and k cosα = +γ or −γ depending on whether the field is in U+ or U−. In the important
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case in which the medium is non-dispersive and k is real-valued it is easily verified that the
required integration ranges are as follows:

+γ case: from 0 to π/2 along the real-α axis and then from π/2 to π/2− i∞ along the
straight line �α = π/2;

−γ case: from π/2 + i∞ to π/2 along the straight line �α = π/2 and then from π/2
to π along the real-α axis.

The integration contours corresponding to the above two cases are illustrated in Fig. 3.1. In
the case of dispersive media the α contours are similar but are displaced above the contours
shown in the figure. In most of our applications the plane-wave amplitude A(±)(k±,ω)
will be an entire analytic function of Kρ and, hence, of the integration variables α and β
so that the two α contours can be arbitrarily deformed so long as they extend from 0 to
π/2 − i∞ when z > 0 (the +γ case) and from π/2 + i∞ to π when z < 0 (the −γ
case).

Under the above transformation we find that Eq. (3.21) can be written in the form

U(±)(r,ω) = ik

2π

∫ π

−π
dβ
∫

C±
sinα dα A(±)(ks,ω)eiks·r, (3.23)

�Fig. 3.1 Choices for theα integration contour in the angular-spectrum expansion. The contour labeled C+ applies for z > 0
and the contour C− for z < 0. Because of analyticity the contours can be deformed as illustrated in the figure.
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where C± are the α contours of integration illustrated in Fig. 3.1 and s is the complex
unit propagation vector defined in Eq. (3.22). In this equation the plane-wave amplitude is
given by

A(±)(ks,ω) =
{

A(+)(k+,ω) if α ∈ C+,
A(−)(k−,ω) if α ∈ C−.

(3.24)

Equation (3.23) is the angle-variable form of the plane-wave expansion Eq. (3.16a). We
note that, as mentioned above, the integrand is usually an entire analytic function of the
polar angles α and β so that the α integration contours can be arbitrarily deformed so long
as they extend from 0 to π/2 − i∞ when z > 0 and from π/2 + i∞ to π when z < 0. It
is easily verified that the field U(+) satisfies the SRC in the half-space z > 0 and the field
U(−) satisfies the SRC in the half-space z < 0. In fact, it follows directly from Eq. (3.17)
that

U(±)(rs,ω) ∼ A(±)(ks,ω)
eikr

r
, (3.25)

where we have made use of Eq. (3.24). It is now apparent why we have expressed the
general plane-wave expansion in the form used in Eq. (3.16a): it results in an angle-variable
form where the plane-wave amplitudes A(±)(ks,ω) are equal to the radiation patterns in the
two half-spaces z > 0 and z < 0, respectively.

3.3 Spherical coordinates

Selecting the three generalized coordinates ξj to be the spherical coordinates r, θ ,φ we
have that

∇2 = 1

r2

∂

∂r

(
r2 ∂

∂r

)
− L2

r2
,

where

L2 = L · L = − 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
− 1

sin2 θ

∂2

∂φ2
, (3.26a)

is the square of the angular-momentum operator

L = −ir×∇ = i

[
θ̂

1

sin θ

∂

∂φ
− φ̂

∂

∂θ

]
. (3.26b)

The homogeneous Helmholtz equation then becomes[
1

r2

∂

∂r

(
r2 ∂

∂r

)
− L2

r2
+ k2

]
U(r, θ ,φ) = 0.
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Assuming a separable solution in the form of Eq. (3.1), we then conclude that

1

Ur(r)

∂

∂r

(
r2 ∂

∂r

)
Ur(r)− L2Uθ (θ )Uφ(φ)

Uθ (θ )Uφ(φ)
+ k2r2 = 0,

which requires that

∂

∂r

(
r2 ∂

∂r

)
Ur(r)+ [k2r2 − l(l+ 1)]Ur(r) = 0, (3.27a)

L2Uθ (θ )Uφ(φ) = l(l+ 1)Uθ (θ )Uφ(φ), (3.27b)

where l(l+ 1) is a separation constant.
Equation (3.27b) can itself be separated. In particular, we have that

L2Uθ (θ )Uφ(φ) = −Uφ(φ)

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
Uθ (θ )− Uθ (θ )

sin2θ

∂2

∂φ2
Uφ(φ),

which when used in Eq. (3.27b) yields the equation

− sin θ

Uθ (θ )

∂

∂θ

(
sin θ

∂

∂θ

)
Uθ (θ )− 1

Uφ(φ)

∂2

∂φ2
Uφ(φ) = l(l+ 1) sin2θ ,

from which we conclude that

1

Uφ(φ)

∂2

∂φ2
Uφ(φ) = −m2, (3.28a)

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
Uθ (θ )− m2

sin2θ
+ l(l+ 1)Uθ (θ ) = 0. (3.28b)

Equation (3.27a) for integer l is the equation satisfied by the spherical Bessel and Neu-
mann functions

jl(kr) =
√
π

2kr
Jl+ 1

2
(kr), (3.29a)

nl(kr) =
√
π

2kr
Nl+ 1

2
(kr), (3.29b)

where Jl+ 1
2

and Nl+ 1
2

are the ordinary Bessel and Neumann functions of half-integer order.
Related to the spherical Bessel and Neumann functions are the spherical Hankel functions

h±l (z) = jl(z)± inl(z), (3.29c)

so h±l (kr) are also solutions to Eq. (3.27a). The solutions to Eq. (3.28a) are the complex
exponentials

Uφ(φ) = e±imφ ,

where m must be an integer in order for the solution to be single-valued in the angle φ.
Finally, the solutions to Eq. (3.28b) are the associated Legendre polynomials with argument
cos θ :

Uθ (θ ) = Pm
l (cos θ ).
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We note for future reference that the associated Legendre polynomials satisfy the parity
relationship

Pm
l (−x) = (−1)l+mPm

l (x),

and that the spherical Bessel and Neumann functions are both real-valued if their arguments
are real, so that it follows from the Schwartz reflection principle that

j∗l (kr) = jl(k
∗r), n∗l (kr) = nl(k

∗r), h±l
∗
(kr) = h∓l (k∗r) (3.30)

in a dispersive medium having a complex wavenumber k (with, of course, r real-valued).
The above conditions satisfied by the spherical Bessel, Neumann and Hankel functions will
be important in our treatment of the inverse source problem presented in Chapter 5, while
we will make use of the parity condition satisfied by the associated Legendre polynomials
in an example presented below.

It is customary to combine the two angular functions Uθ (θ ) and Uφ(φ) into a single
function of θ ,φ that satisfies Eq. (3.27b) and, hence, is an eigenfunction of the square of
the angular-momentum operator with eigenvalue l(l+ 1). Thus, we introduce the spherical
harmonics

Ym
l (θ ,φ) = (−1)m

√
2l+ 1

4π

(l− m)!

(l+ m)!
Pm

l (cos θ )eimφ , (3.31a)

where m is an integer in the range −l ≤ m ≤ l and

L2Ym
l (θ ,φ) = l(l+ 1)Ym

l (θ ,φ). (3.31b)

The spherical harmonics are orthonormal on the unit sphere:∫
d�Ym

l (θ ,φ)Ym′∗
l′ (θ ,φ) = δl,l′δm,m′ , (3.31c)

where d� = sin θ dθ dφ is the differential solid angle, δl,l′ and δm,m′ are the Kronecker
delta functions and the superscript asterisk denotes the complex conjugate.

Separable solutions to the Helmholtz equation in spherical coordinates are then given by

Um
l (r,ω) = am

l (ω)fl(kr)Ym
l (θ ,φ),

where am
l (ω) is an arbitrary constant and fl(kr) is a linear combination of spherical Bessel

and Neumann functions. The most general solution to the homogeneous Helmholtz equa-
tion is then given by a sum of the above elementary solutions having the general form

U(r,ω) =
∞∑

l=0

l∑
m=−l

am
l (ω)fl(kr)Ym

l (θ ,φ), (3.32)

where the specific combination of spherical Bessel and Neumann functions fl(kr) and the
expansion constants am

l (ω) are determined from the boundary conditions. We will refer
to the expansion Eq. (3.32) as a multipole expansion and the expansion coefficients as
multipole moments.
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The addition theorem for spherical harmonics

An important result involving the spherical harmonics is the addition theorem. Let θ1,φ1

and θ2,φ2 be two sets of polar and azimuthal angles associated with two unit vectors s1

and s2; i.e., s1 = sin θ1 cosφ1 x̂+ sin θ1 sinφ1 ŷ+ cos θ1 ẑ and similarly for s2. Also let χ
denote the angle formed between these two unit vectors so that s1 · s2 = cosχ . Then the
addition theorem states that

Pl(cosχ ) = 4π

2l+ 1

l∑
m=−l

Ym
l (θ1,φ1)Ym

l
∗(θ2,φ2)

= 4π

2l+ 1

l∑
m=−l

Ym
l
∗(θ1,φ1)Ym

l (θ2,φ2).

Note the important result that the complex-conjugation operation can be applied to either
spherical harmonic. The addition theorem can be used to simplify expressions involving
spherical-harmonic expansions as well as to establish various results involving these func-
tions that are otherwise difficult to prove.

Vector spherical harmonics

In dealing with vector-valued fields such as the electromagnetic field we will need to
employ the so-called vector spherical harmonics, which are generated from the spherical
harmonics Ym

l by application of the angular-momentum operator:

Ym
l (θ ,φ) = LYm

l (θ ,φ). (3.33)

By integrating by parts and using the fact that the spherical harmonics are orthonormal
eigenfunctions of L2 with eigenvalue l(l+1) it is easily established that the vector spherical
harmonics are orthogonal over the unit sphere with square norm equal to l(l+ 1):∫

d�Ym
′∗

l′ (θ ,φ) · Ym
l (θ ,φ) =

∫
d�LYm

l
∗(θ ,φ) · LYm

l (θ ,φ)

=
∫

d�Ym
l
∗(θ ,φ)L2Ym

l (θ ,φ)

= l(l+ 1)δl,l′δm,m′ . (3.34)

We showed above that the spherical harmonics are the angular functions that arise when
the (scalar) Helmholtz equation is separated in spherical coordinates. In a similar fashion
we will find that the vector spherical harmonics result from separation of variables of the
vector Helmholtz equation

∇ × ∇ × E(r)− k2E(r) = 0

in spherical coordinates. We will not investigate this further at this point, but will develop
the theory in some detail in Chapter 11, where we address direct and inverse problems
involving the electromagnetic field.
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Example 3.4 A plane wave exp(iks · r) satisfies the homogeneous Helmholtz equation over
all of space and can, thus, be represented in a multipole expansion of the form Eq. (3.32)
with the radial functions equal to the spherical Bessel functions jl(kr). This expansion,
which will be important in later applications, can be derived as a solution to the interior
boundary-value problem with the bounding surface ∂V = ∞ being the surface of an
infinite sphere centered at the origin. The computation of the multipole moments am

l (ω) for
this expansion is straightforward, albeit tedious, and leads to the result

eiks·r = 4π
∞∑

l=0

l∑
m=−l

iljl(kr)Ym
l (r̂)Ym∗

l (s), (3.35)

where we have denoted the azimuthal and polar angles of the unit propagation vector and
field point r in the arguments of the spherical harmonics by s and r̂, respectively. This
shorthand notation for the arguments of the spherical harmonics is very useful and will be
used almost exclusively from this point on in the book.

Equation (3.35) represents a plane wave in a multipole expansion. It is sometimes use-
ful to have the reverse situation, namely the plane-wave expansion of a multipole field
jl(kr)Ym

l (r̂). This expansion can be obtained directly from Eq. (3.35) by making use of the
orthogonality relation Eq. (3.31c) for the spherical harmonics. In particular, by multiplying
both sides of Eq. (3.35) by a spherical harmonic Ym

l (s) and integrating the result over 4π
steradians we obtain

jl(kr)Ym
l (r̂) = (−i)l

4π

∫
d�s Ym

l (s)eiks·r. (3.36)

Both Eqs. (3.35) and (3.36) will be used extensively in later chapters.
Finally, we note that it is sometimes useful to have a multipole expansion of the plane

wave exp(−iks · r), where the wavenumber k may be complex. This expansion can be
obtained directly from Eq. (3.35) by noting that

eik∗s·r = 4π
∞∑

l=0

l∑
m=−l

ilj∗l (kr)Ym
l (r̂)Ym∗

l (s),

where we have made use of Eq. (3.30). On taking the complex conjugate of the above
equation we then obtain the desired expansion

e−iks·r = 4π
∞∑

l=0

l∑
m=−l

(−i)ljl(kr)Ym∗
l (r̂)Ym

l (s). (3.37)
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3.4 Multipole expansions

The outgoing-wave Green function can be represented in a multipole expansion given by

G+(r− r′,ω) = −ik
∞∑

l=0

l∑
m=−l

jl(kr<)h+l (kr>)Ym
l (r̂)Ym

l
∗(r̂′), (3.38a)

where r< = min r, r′ and r> = max r, r′, and where we have used the unit vectors r̂ = r/r
and r̂′ = r′/r′ to denote the arguments θ ,φ and θ ′,φ′ of the spherical harmonics Ym

l (θ ,φ)
and Ym

l (θ ′,φ′). By making use of the addition theorem the above multipole expansion can
also be expressed in the form

G+(r− r′,ω) = −ik
∞∑

l=0

2l+ 1

4π
jl(kr<)h+l (kr>)Pl(cosχ ), (3.38b)

where χ is the angle formed between the unit vectors r̂ and r̂′. It also follows from the
addition theorem that the complex-conjugate operations in Eq. (3.38a) can be interchanged.

We can derive the multipole expansion Eq. (3.38a) starting from the Fourier-integral
representation of the outgoing-wave Green function and making use of the multipole
expansions of the plane waves given in Example 3.4. In particular, on substituting the
expansions from Eqs. (3.35) and (3.37) into the Fourier-integral representation of G+ given
in Eq. (2.14) from Chapter 2 we find that

G+(r− r,ω) = 2

π

∫
d3K

∑
l,m

∑
l′,m′

il(−i)l′ jl(Kr)jl′(Kr′)
k2 − K2

Ym
l (r̂)Ym

l
∗(K̂)Ym′

l′ (K̂)Ym′∗
l′ (r̂′)

= 2

π

∞∑
l=0

l∑
m=−l

Ym
l (r̂)Ym

l
∗(r̂′)

∫ ∞
0

K2 dK
jl(Kr)jl(Kr′)

k2 − K2
,

where we have made use of the orthogonality of the spherical harmonics according to
Eq. (3.31c).

Consider now the integral

Il(r, r′) =
∫ ∞

0
K2 dK

jl(Kr)jl(Kr′)
k2 − K2

= 1

2

∫ ∞
−∞

K2 dK
jl(Kr)jl(Kr′)

k2 − K2
,

in terms of which

G(r, r′) = 2

π

∞∑
l=0

l∑
m=−l

Il(r, r′)Ym
l (r̂)Ym

l
∗(r̂′). (3.39)

We now assume that r > r′ and express the spherical Bessel function jl(Kr) in terms of the
spherical Hankel functions using Eq. (3.29c). We then find that
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I(r, r′) = 1

2

∫ ∞
−∞

K2 dK
jl(Kr)jl(Kr′)

k2 − K2

= 1

4

∫ ∞
−∞

K2 dK
h+l (Kr)jl(Kr′)

k2 − K2
+ 1

4

∫ ∞
−∞

K2 dK
h−l (Kr)jl(Kr′)

k2 − K2
.

It follows from well-known properties of the spherical Bessel and Hankel functions that
h+l (Kr)jl(Kr′) goes to zero exponentially fast in the upper half of the complex K plane
and h−l (Kr)jl(Kr′) goes to zero exponentially fast in the lower half of the complex K plane
when r > r′. We can then close the contours in the above equation in the upper and lower
half-planes, respectively. Since k > 0 the first closed contour integral contains an interior
pole at K = k and the second has one at K = −k so that we obtain

I(r, r′) = −π i

4
kh+l (kr)jl(kr′)− π i

4
kh−l (−kr)jl(−kr′) = −π i

2
kh+l (kr)jl(kr′), (3.40)

with the final equality following from the parity conditions

jl(−x) = (−1)ljl(x), h−l (−x) = (−1)lh+l (x).

The multipole expansion Eq. (3.38b) when r > r′ then follows directly upon substituting
Eq. (3.40) into Eq. (3.39). The derivation of the expansion for r′ > r follows identical
lines.

The multipole expansion of the conjugate-wave Green function is readily obtained from
the above expansions by simply taking its complex conjugate. We find that

G∗(r− r′,ω) = ik∗
∞∑

l=0

l∑
m=−l

jl(k
∗r<)h−l (k∗r>)Ym

l
∗(r̂)Ym

l (r̂′),

which, on account of the addition theorem, can also be written in the form

G∗(r− r′,ω) = ik∗
∞∑

l=0

l∑
m=−l

jl(k
∗r<)h−l (k∗r>)Ym

l (r̂)Ym
l
∗(r̂′). (3.41a)

The incoming-wave Green function is obtained from the conjugate-wave Green function
by letting k→ k∗. Upon making this transformation we then obtain

G−(r− r′,ω) = ik
∞∑

l=0

l∑
m=−l

jl(kr<)h−l (kr>)Ym
l (r̂)Ym

l
∗(r̂′). (3.41b)

Example 3.5 In this example we turn our attention to the exterior boundary-value problem
in which Dirichlet or Neumann (or mixed) conditions are specified on a closed surface
∂V bounding some region V and the solution satisfying the outgoing radiation condition
is desired in the region of space outside or exterior to V . Here, we address the exterior
boundary-value problem for the case in which the interior region V is a sphere centered
at the origin and having radius a > 0 and Dirichlet or Neumann conditions are specified
on the surface ∂V of the sphere. Although Eqs. (2.42) formally give the solutions to these
boundary-value problems these “solutions” are incomplete since the Green functions GD

and/or GN need to be computed. An alternative solution method is to use an eigenfunction
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expansion of the field in the exterior region r > a that can fit arbitrary boundary-value data
on the bounding surface ∂V . We present such a solution here.

We can represent the solution throughout the exterior of the region V in the general
multipole expansion Eq. (3.32) where the radial functions fn(kr) must be chosen so as to
satisfy the SRC. It is easily determined that the appropriate combination of spherical Bessel
and Neumann functions is given by the spherical Hankel function of the first kind:

h+l (kr) = jl(kr)+ inl(kr). (3.42)

The general solution satisfying the SRC is then given by

U+(r,ω) =
∞∑

l=0

l∑
m=−l

am
l (ω)h+l (kr)Ym

l (θ ,φ), (3.43)

where the expansion coefficients (multipole moments) must be determined from the Dirich-
let or Neumann conditions on the surface r = a.

If we set r = a in the multipole expansion Eq. (3.43) and use the fact that the spherical
harmonics are orthonormal over the unit sphere (cf. Eq. (3.31c)) we find that

aD
m
l (ω) = 1

h+l (ka)

∫
d�Ym

l
∗(θ ,φ)U+(r = a, θ ,φ,ω), (3.44a)

where U+(r = a, θ ,φ,ω) is the Dirichlet boundary condition on the sphere r = a and
the subscript D denotes the solution to the Dirichlet boundary-value problem. In a similar
fashion we find the multipole moments for the Neumann problem to be given by

aN
m
l =

1

kh+′l (ka)

∫
d�Ym

l
∗(θ ,φ)U′+(r = a, θ ,φ,ω), (3.44b)

where U′+(r = a, θ ,φ,ω) is the Neumann condition on the sphere r = a and h+′l denotes
the derivative of the spherical Hankel function.

The multipole expansion Eq. (3.32) with the radial functions taken to be the spherical
Hankel functions of the first kind leads directly to a solution of the exterior boundary-
value problem for Dirichlet or Neumann (or mixed) conditions specified on the surface of
a sphere of radius a > 0. The multipole expansion with a different choice for the radial
functions can also be used for solving the interior boundary-value problem for the sphere,
which consists of determining the solution to the homogeneous Helmholtz equation within
the interior of a sphere of radius a > 0 from Dirichlet or Neumann conditions on the
surface of the sphere. In this case we require that the field be well behaved throughout
the interior of the sphere, which requires the radial functions to be the spherical Bessel
functions jn(kr).3 The solution to the interior problem is then given by an expansion of the
form of Eq. (3.43) of Example 3.5 but with the spherical Hankel functions replaced by the
spherical Bessel functions. The multipole moments are given by Eqs. (3.44) of this example
where, again, the spherical Hankel functions are replaced by spherical Bessel functions.

3 The spherical Neumann functions have a logarithmic singularity at the origin r = 0 and, hence, must be
excluded from the radial functions in order to have a well-behaved field at the origin.
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3.4.1 Multipole expansions of the Dirichlet and Neumann Green functions

The solutions to the exterior and interior boundary-value problems for spherical boundaries
presented in the above two examples can also be obtained using the Dirichlet and Neumann
Green functions appropriate to spherical boundaries. These Green functions are obtained in
the form of the sum of multipole expansions of the outgoing-wave Green function G+ and
a free field that satisfies the homogeneous Helmholtz equation over the region τ in which
the boundary-value problem is to be solved. For the exterior boundary-value problem the
free field must also satisfy a radiation condition over the sphere at infinity. The multipole
moments (expansion coefficients) of the free field component are then found by requiring
the sum or its normal derivative to vanish over the sphere on which the boundary conditions
are to be imposed.

For example, we can express the Dirichlet Green function for the interior boundary-value
problem via the multipole expansion

GD(r, r′,ω) =

G+(r−r′,ω)︷ ︸︸ ︷
− ik

∞∑
l=0

l∑
m=−l

jl(kr)h+l (kr′)Ym
l (r̂)Ym

l
∗(r̂′)

+

free field︷ ︸︸ ︷
∞∑

l=0

l∑
m=−l

am
l jl(kr)jl(kr′)Ym

l (r̂)Ym
l
∗(r̂′),

where it is assumed that r < r′ appropriate to an interior boundary-value problem. We
select the multipole moments am

l by requiring that GD = 0 over the data sphere r′ = a. We
then find that

am
l = ik

h+l (ka)

jl(ka)
,

so that the required multipole expansion of the Dirichlet Green function for the interior
boundary-value problem is found to be

GD(r, r′,ω) = −ik
∞∑

l=0

l∑
m=−l

jl(kr)h+l (kr′)Ym
l (r̂)Ym

l
∗(r̂′)

+

free field︷ ︸︸ ︷
ik
∞∑

l=0

l∑
m=−l

h+l (ka)

jl(ka)
jl(kr)jl(kr′)Ym

l (r̂)Ym
l
∗(r̂′), (3.45a)

where r < r′. A completely parallel development yields the following multipole expansion
of the Neumann Green function for the interior boundary-value problem:

GN(r, r′,ω) = −ik
∞∑

l=0

l∑
m=−l

jl(kr)h+l (kr′)Ym
l (r̂)Ym

l
∗(r̂′)

+ ik
∞∑

l=0

l∑
m=−l

h+′l (ka)

j′l(ka)
jl(kr)jl(kr′)Ym

l (r̂)Ym
l
∗(r̂′). (3.45b)
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It is easy to verify that GD and ∂GN/∂r′ = 0 both vanish when r′ = a.
The Dirichlet and Neumann Green functions for the exterior problem for the sphere not

only must vanish on the boundary r′ = a but also must satisfy a radiation condition. For
the case of the outgoing-wave radiation condition (SRC) the Green functions are expressed
in the general form

G(r, r′,ω) =

G+(r−r′,ω)︷ ︸︸ ︷
−ik

∞∑
l=0

l∑
m=−l

jl(kr′)h+l (kr)Ym
l (r̂)Ym

l
∗(r̂′)

+

free field︷ ︸︸ ︷
∞∑

l=0

l∑
m=−l

am
l h+l (kr)h+l (kr′)Ym

l (r̂)Ym
l
∗(r̂′),

where now r > r′. Again the multipole moments am
l are selected to make the Green func-

tion G satisfy homogeneous Dirichlet or Neumann conditions on the data sphere r′ = a.
We find that

GD(r, r′,ω) = −ik
∞∑

l=0

l∑
m=−l

{
jl(kr′)h+l (kr)− jl(ka)

h+l (ka)
h+l (kr)h+l (kr′)

}
Ym

l (r̂)Ym
l
∗(r̂′),

(3.46a)

GN(r, r′,ω) = −ik
∞∑

l=0

l∑
m=−l

{
jl(kr′)h+l (kr)− j′l(ka)

h+l
′
(ka)

h+l (kr)h+l (kr′)
}

Ym
l (r̂)Ym

l
∗(r̂′).

(3.46b)

The conjugate-wave Green functions both for the interior and for the exterior boundary-
value problem are obtained by simply taking the complex conjugate of those found above,
and the incoming-wave Green functions are, of course, equal to the conjugate-wave Green
functions with the wavenumber k replaced by its complex conjugate k∗.

Example 3.6 We solved the exterior Dirichlet and Neumann problems with an outgoing-
wave radiation condition in Example 3.5. Here we solve those problems using the
outgoing-wave Dirichlet and Neumann Green functions given in Eqs. (3.46). The Green-
function solutions to the Dirichlet and Neumann exterior boundary-value problems are
given in Eqs. (2.42) of Section 2.8.2 of Chapter 2. For the special case of a spherical data
boundary these equations become4

U(r,ω) = −a2
∫

d�′ U(r′,ω)|r′=a
∂

∂r′
GD(r, r′,ω)|r′=a

for inhomogeneous Dirichlet conditions and

4 Note that in the exterior boundary-value problem the normal derivatives in Eqs. (2.42) are directed outward
from the exterior into the interior region so that ∂/∂n′ = −∂/∂r′ when the data boundary is a sphere.
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U(r,ω) = a2
∫

d�′ ∂
∂r′

U(r′,ω)|r′=aGN(r, r′,ω)|r′=a

for inhomogeneous Neumann conditions. The solution to the boundary-value problem for
inhomogeneous Neumann conditions is immediately obtained by substituting the multipole
expansion of GN given in Eq. (3.46b) into the above equation. We first note that

GN(r, r′,ω)|r′=a

= −ik
∞∑

l=0

l∑
m=−l

{
jl(ka)h+l (kr)− j′l(ka)

h+′l (ka)
h+l (kr)h+l (ka)

}
Ym

l (r̂)Ym
l
∗(r̂′)

= −ik
∞∑

l=0

l∑
m=−l

i/(ka)2︷ ︸︸ ︷
h+′l (ka)jl(ka)− j′l(ka)h+l (ka)

h+′l (ka)
h+l (kr)Ym

l (r̂)Ym
l
∗(r̂′)

= 1

ka2

∞∑
l=0

l∑
m=−l

h+l (kr)

h+′l (ka)
Ym

l (r̂)Ym
l
∗(r̂′),

where we have used the Wronskian relationship

h+′l (ka)jl(ka)− j′l(ka)h+l (ka) = i

(ka)2
.

On substituting this expansion into the Green-function solution of the Neumann problem
given above we obtain the result

U(r,ω) = a2
∫

d�′ ∂
∂r′

U(r′,ω)|r′=a
1

ka2

∞∑
l=0

l∑
m=−l

h+l (kr)

h+′l (ka)
Ym

l (r̂)Ym
l
∗(r̂′)

=
∞∑

l=0

l∑
m=−l

aN
m
l h+l (kr)Ym

l (r̂),

where the multipole moments are given in Eq. (3.44b) of Example 3.5. We thus arrive at
precisely the same solution as that which we obtained previously by matching boundary
conditions using the multipole expansion of the field. A completely parallel development
yields the solution for the Dirichlet problem in Example 3.5.

Example 3.7 As a second example we solve the interior Dirichlet boundary-value problem
using the interior Dirichlet Green function given in Eq. (3.45a). The Green-function solu-
tion to this problem is given in Eqs. (2.42) of Section 2.8.1 of Chapter 2. For the special
case of a spherical data boundary this solution assumes the form

U(r,ω) = a2
∫

d�′ U(r′,ω)|r′=a
∂

∂r′
GD(r, r′,ω)|r′=a, (3.47)

where we have used the fact that the normal derivatives in the interior boundary-value
problem are directed outward from the interior of the sphere so that ∂/∂n′ = ∂/∂r′. A
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straightforward calculation similar to that employed in the above problem for the Neumann
Green function yields the result

∂

∂r′
GD(r, r′,ω)|r′=a = 1

a2

∞∑
l=0

l∑
m=−l

jl(kr)

jl(ka)
Ym

l (r̂)Ym
l
∗(r̂′),

which, when substituted into Eq. (3.47), yields the solution

U(r,ω) =
∞∑

l=0

l∑
m=−l

um
l

jl(ka)
jl(kr)Ym

l (r̂), (3.48a)

where

um
l =

∫
d�′ Ym

l
∗(r̂′)U(r′,ω)|r′=a. (3.48b)

It is readily verified that Eq. (3.48a) satisfies the prescribed boundary condition when
r = a. An entirely parallel development can be used to compute the solution of the interior
boundary-value problem for the case of Neumann data.

3.4.2 Plane-wave expansions of the multipole fields

We have already derived the plane-wave expansion of the free multipole fields jl(kr)Ym
l (r̂)

in Example 3.4. It is also possible to represent the outgoing-wave multipole fields
h+l (kr)Ym

l (r̂) employed in Example 3.5 in such an expansion, where, however, we have to
include both evanescent plane waves and the weakly inhomogeneous plane waves that are
employed exclusively in the plane-wave expansion of the free multipole fields. Although
the rigorous derivation of the plane-wave expansion for the outgoing-wave fields is some-
what complicated (Devaney and Wolf, 1974), it is possible to obtain the correct result by
making use of the far-field result given in Eq. (3.25) of Section 3.2.3. This equation states
that the plane-wave amplitude in the angle-variable form of the plane-wave expansion of
an outgoing-wave field is simply the radiation pattern of this field! For the outgoing-wave
multipole fields we have that

h+l (kr)Ym
l (r̂) ∼

f (r̂,ω)︷ ︸︸ ︷
(−i)(l+1)

k
Ym

l (r̂)
eikr

r
,

from which we conclude that the plane-wave expansion for this field is given by

h+l (kr)Ym
l (r̂) = ik

2π

∫ π

−π
dβ
∫

C±
sinα dα

f (s,ω)︷ ︸︸ ︷
A(±)(ks,ω) eiks·r,

which becomes

h+l (kr)Ym
l (r̂) = (−i)l

2π

∫ π

−π
dβ
∫

C±
sinα dα Ym

l (s)eiks·r, (3.49)
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where the contours of integration C± are illustrated in Fig. 3.1 and C+ is used in the r.h.s.
z > 0 and C− in the l.h.s. z < 0.

On comparing the result Eq. (3.49) with the plane-wave expansion of the free multipole
fields given in Eq. (3.36) of Example 3.4 we see that they differ by a trivial multiplicative
factor of two and by the replacement of the integration over the entire unit sphere for
the case of the free multipole fields by the integration over the complex contours shown
in Fig. 3.1 for the outgoing-wave fields. This again is an indication that homogeneous
and weakly inhomogeneous plane waves are associated with free fields; i.e., fields that
satisfy the homogeneous Helmholtz or wave equations while evanescent plane waves are
associated with fields satisfying the inhomogeneous Helmholtz or wave equations and a
radiation condition. We will return to these issues in the next chapter, where we investigate
in more detail plane-wave and multipole expansions of radiated fields.

The evanescent-wave component of the multipole fields

We showed in Section 3.2.3 that there is a one-to-one correspondence between the spatial
variations of the boundary value of a field or its normal derivative over a plane surface
and the decomposition of the field radiated from that surface into a plane-wave expansion
of weakly inhomogeneous and evanescent plane waves. We can use this observation to
deduce a general property of the multipole fields that will be of importance when we study
the inverse source problem (ISP) in Chapter 5. This general property follows from the
fact that the spherical harmonics Ym

l (r̂) possess angular periods in the polar and azimuthal
angles θ and φ varying from a largest equal to 2π at l = 1, m = ±1 to a smallest of 2π/l
for general l > 1. The corresponding spatial periods associated with the multipole fields at
some radial distance r vary then from a maximum of R = 2πr to a minimum of R = 2πr/l
for general l. As shown in Section 3.2.3, the division between weakly inhomogeneous and
evanescent plane waves in a non-dispersive medium occurs at a field spatial period equal to
the wavelength λ. If we then set the smallest spatial period of the multipole field R = 2πr/l
equal to the wavelength, we conclude that the multipole fields in a non-dispersive medium
consist of mostly homogeneous plane waves if l < kr and will then include increasingly
more evanescent plane waves when l > kr. A similar conclusion is reached in dispersive
media if we replace the wavelength λ by 2π/

√�k2.
The above observations can be interpreted to mean that sub-wavelength field information

at any radial distance r is carried by the multipole fields for which l > kr. As mentioned
above, this observation will be of use in our treatment of the ISP later in the book.

3.5 Circular cylindrical coordinates

Selecting the three generalized coordinates ξj to be the circular cylindrical coordinates
ρ,φ, z, we have that

∇2 = 1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+ 1

ρ2

∂2

∂φ2
+ ∂2

∂z2
. (3.50)
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The homogeneous Helmholtz equation then becomes[
1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
+ 1

ρ2

∂2

∂φ2
+ ∂2

∂z2
+ k2

]
U(ρ,φ, z) = 0.

Assuming a separable solution in the form of Eq. (3.1), we conclude that

Uφ(φ)Uz(z)

ρ

∂

∂ρ

(
ρ
∂Uρ(ρ)

∂ρ

)
+ Uρ(ρ)Uz(z)

ρ2

∂2Uφ(φ)

∂φ2

+ Uρ(ρ)Uφ(φ)
∂2Uz(z)

∂z2
+ k2Uρ(ρ)Uφ(φ)Uz(z) = 0,

which requires that

∂2Uz(z)

∂z2
= −h2Uz(z), (3.51a)

1

ρUρ(ρ)

∂

∂ρ

(
ρ
∂Uρ(ρ)

∂ρ

)
+ 1

ρ2Uφ(φ)

∂2Uφ(φ)

∂φ2
+ k2 = h2, (3.51b)

where h is a separation constant.
Equation (3.51b) can be further separated. In particular, we find that

∂2Uφ(φ)

∂φ2
= −n2Uφ(φ), (3.52a)

ρ
∂

∂ρ

(
ρ
∂Uρ(ρ)

∂ρ

)
+ [(k2 − h2)ρ2 − n2]Uρ(ρ) = 0, (3.52b)

where n is another separation constant. Equations (3.51a) and (3.52a) have the complex
exponentials exp(±ihz) and exp(±inφ) as solutions, while Eq. (3.52b) is Bessel’s equation,
for which the solutions are linear combinations of the Bessel and Neumann functions Jn

and Nn of order n and having argument
√

k2 − h2ρ. Associated with these two elementary
solutions are the Hankel functions

H±n (z) = Jn(z)± Nn(z). (3.53)

Separable solutions to the homogeneous Helmholtz equation in circular cylindrical coor-
dinates are then given by

Un,h(ρ,φ, z,ω) = Zn(
√

k2 − h2ρ)einφe±ihz, (3.54a)

where Zn(·) is a linear combination of Bessel and Hankel functions of order n.
Of particular interest is the special case when h = 0, which corresponds to two-

dimensional wave propagation in the (x, y) plane. In this case the separable solutions given
in Eq. (3.54a) reduce to

Un(ρ,φ,ω) = Zn(kρ)einφ , (3.54b)

and, thus, depend on the single separation constant n, which can assume any positive or
negative integer values. The most general solution to the homogeneous Helmholtz equation
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in the two-dimensional case is then given by a sum of the elementary solutions Eq. (3.54b)
having the general form

U(r,ω) =
∞∑

n=−∞
an(ω)Zn(kρ)einφ , (3.55)

where the specific combination of Bessel and Hankel functions Zn(kρ) and the expansion
constants an(ω) are determined from the boundary conditions.

3.6 Two-dimensional wavefields

It is often useful to specialize our analysis to 2D wavefields that satisfy the 2D Helmholtz
equation [

∂2

∂x2
+ ∂2

∂y2
+ k2

]
U(r,ω) = Q(r,ω), (3.56)

where now r = (x, y) denotes a point on the (x, y) plane. The 2D case is of importance for
testing and evaluating wavefield propagation and inversion algorithms in computer simu-
lation studies since it reduces the computational burden to a minimum while still retaining
all of the flavor of the 3D case. In addition, certain 3D problems reduce to a 2D formulation
such as scattering of plane waves off cylindrical structures. We presented the 2D incoming-
and outgoing-wave Green functions in Section 2.2.1 of Chapter 2 and the solution of the
2D radiation problem in Section 2.4.1 of that chapter. We now turn to computation of the
2D eigenfunctions and eigenfunction expansions for 2D wavefields.

3.6.1 Polar coordinates

Polar coordinates in the plane correspond to circular cylindrical coordinates with the axial
coordinate z set equal to zero. We then conclude from Eq. (3.50) that

∇2 = 1

r

∂

∂r

(
r
∂

∂r

)
+ 1

r2

∂2

∂φ2
,

where r = √x2 + y2 and φ denotes the polar angle made between the coordinate vector r
and the positive-y axis. The homogeneous Helmholtz equation then becomes[

1

r

∂

∂r

(
r
∂

∂r

)
+ 1

r2

∂2

∂φ2
+ k2

]
U(r,φ) = 0. (3.57)

Assuming a separable solution in the form of Eq. (3.1) we then find that

Uφ(φ)

r

∂

∂r

(
r
∂Ur(r)

∂r

)
+ Ur(r)

r2

∂2Uφ(φ)

∂φ2
+ k2Ur(r)Uφ(φ) = 0,

which requires that
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∂2Uφ(φ)

∂φ2
= −n2Uφ(φ), (3.58a)[

r
∂

∂r

(
r
∂Ur(r)

∂r

)
+ k2r2 − n2

]
Ur(r) = 0, (3.58b)

where n is a separation constant. Equation (3.58a) has the complex exponentials exp(inφ)
as solutions while Eq. (3.58b) is Bessel’s equation for which the solutions are the Bessel
and Hankel functions of order n and having argument kr. Separable solutions to the 2D
homogeneous Helmholtz equation in polar coordinates are then given by

Un(r,φ,ω) = Zn(kr)einφ , (3.59)

where Zn(kr) is a linear combination of Bessel and Hankel functions of order n, where n is
any positive or negative integer or zero.

The separable solutions given in Eq. (3.59) are precisely those obtained by simply letting
the axial coordinate z → 0 in the 3D separable solutions corresponding to circular cylin-
drical coordinates given in Eq. (3.54a). The most general solution to the 2D homogeneous
Helmholtz equation in polar coordinates is then given by

U(r,ω) =
∞∑

n=−∞
an(ω)Zn(kr)einφ , (3.60)

where the combination of Bessel and Hankel functions Zn(kr) are selected to satisfy spe-
cific boundary conditions. We will sometimes refer to expansions of the form Eq. (3.60) as
2D multipole expansions.

Multipole expansion of the 2D Green function

In analogy to the multipole expansions given in Eqs. (3.38) and (3.41) of the 3D outgoing-,
conjugate- and incoming-wave Green functions we can expand the 2D Green functions
into 2D multipole expansions using the 2D multipole fields Zn(kr)einφ . In particular, one
finds that

G±(r− r′) = ∓ i

4
H±0 (kR) = ∓ i

4

∞∑
n=−∞

Jn(kr<)H±n (kr>)ein(φ−φ′), (3.61)

where r< = min r, r′ and r> = max r, r′. Here φ and φ′ are the polar angles of r and
r′, respectively. The conjugate Green function is simply obtained by taking the complex
conjugate of G+.

Example 3.8 Consider the exterior boundary-value problem of determining a solution to the
2D Helmholtz equation [

∂2

∂x2
+ ∂2

∂y2
+ k2

]
U(r,ω) = 0, (3.62)
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which satisfies the SRC and inhomogeneous Dirichlet conditions on the circle r =√
x2 + y2 = a. The general solution can be expressed in the form Eq. (3.55), where the

particular combination of Bessel functions and the expansion coefficients are determined
by the boundary conditions.

The most general combination of Bessel functions Zn can be expressed as a sum of the
Bessel function Jn of the first kind of order n and the Hankel function H+n of the first kind
of order n. These two quantities behave asymptotically as

Jn(kr) ∼
√

2

πkr
cos

(
kr − 2n+ 1

4
π

)
,

Hn(kr) ∼
√

2

πkr
exp

[
i

(
kr − 2n+ 1

4
π

)]
.

The SRC in two space dimensions requires the field to have the asymptotic dependence

U(r,ω) ∼ f (r̂,ω)
eikr

√
r

, kr→∞,

from which we conclude that only the Hankel function satisfies the SRC. Thus, the solution
to the exterior boundary-value problem is given by an expansion of the form Eq. (3.55) with
the functions Zn(kr) equal to the Hankel functions Hn(kr). The expansion coefficients are
readily determined from the Dirichlet boundary conditions via the formula

an(ω) = 1

2πHn(ka)

∫ 2π

0
dφU(r,ω)|r=ae−inφ . (3.63)

Example 3.9 The 3D plane wave exp(iks · r) was expanded into a multipole expansion in
Example 3.4. Here we derive the multipole expansion of the 2D plane wave, where now
s = (sx, sy) lies on the unit circle and r = (x, y) lies on the plane. It is tempting to simply put
z = 0 in the 3D expansion, but this is not a good approach to this problem since it would
yield an expansion involving the spherical Bessel functions, which are not appropriate to
a 2D geometry. The proper approach is to employ the general 2D multipole expansion
Eq. (3.60) with the coefficients an(ω) and radial functions Zn(kr) treated as unknowns to
be determined.

We write the expansion Eq. (3.60) for the special case of a plane wave propagating along
the positive-x axis in the form

eiks·r = eikr cosφ
∞∑

n=−∞
Xn(r)einφ ,

where Xn(r) = an(ω)Zn(kr) is an unknown to be determined. We conclude from the above
equation that

Xn(r) = 1

2π

∫ 2π

0
dφ eikr cosφe−inφ = inJn(kr), (3.64)
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leading to the result

eikr cosφ =
∞∑

n=−∞
inJn(kr)einφ , (3.65)

which is generally known as the “Jacobi–Anger expansion.” The general case of a plane
wave propagating at an angle φ0 relative to the positive-x axis is obtained from Eq. (3.65)
by simply replacing φ by φ − φ0:

eiks·r = eikr cos(φ−φ0) =
∞∑

n=−∞
ine−inφ0 Jn(kr)einφ . (3.66)

Further reading

The books by Arfken (Arfken and Weber, 2001) and Vaughn (Vaughn, 2007) contain
readable treatments of the Sturm–Liouville problem and separation of variables for the
Helmholtz equation. Advanced material in these areas is contained in Morse and Fesh-
bach (1953), Stratton (1941) and Jackson (1998). An excellent, but advanced, treatise on
these and other related topics is the book by Claus Muller (Muller, 1969). The book by
Mandel and Wolf (Mandel and Wolf, 1995) contains an excellent exposition on the angular-
spectrum plane-wave representation and its asymptotic expansion. The time-domain theory
of plane-wave expansions of both free and radiating scalar wavefields is presented in
Devaney and Sherman (1973) and an excellent account is presented in the book on antenna
theory by Hansen and Yaghjian (Hansen and Yaghjian, 1999).

Problems

3.1 Determine the Cauchy initial conditions such that the solution to the initial-value
problem has only positive frequency components. Discuss the consequences of this.
Hint: Example 3.1.

3.2 Compute the plane-wave expansion of the free-field propagator gf(R, τ ) =
g+(R, τ )− g−(R, τ ) by employing the general procedure described in Example 3.1.
Hint: See Problem 1.12.

3.3 Compute the plane-wave expansion Eq. (3.11) of the field radiated by a source q(r, t)
for times t exceeding the turn-off time t = T0 of the source. Hint: express the field
for t = T0 in terms of the free-field propagator.

3.4 Determine a source q(r, t) supported on the space-time boundary t = 0 that radiates
a field for t > 0 that has prescribed Cauchy conditions at t = t0 > 0.
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3.5 Find the plane-wave expansion in the form of Eq. (3.16a) of a wavefield that satisfies
the homogeneous Helmholtz equation over all of space and whose Dirichlet and
Neumann conditions on the plane z = 0 are U0(x, y,ω) and U′0(x, y,ω), respectively.
What must be true of these boundary conditions if the field is to be finite over all of
space?

3.6 Compute the plane-wave expansion found in Problem 3.5 for a single plane wave
propagating along the positive-z axis; i.e., U(r,ω) = exp(ikz). Verify that the result-
ing expansion reduces to the plane wave.

3.7 Compute the plane-wave amplitudes and plane-wave expansion for a monochromatic
wavefield that propagates into the r.h.s. z > 0 and whose Dirichlet condition over the
plane z = 0 is the Rect function

Rect(x) =
{

1 −X0 ≤ x ≤ +X0,

0 else.

3.8 Use the method of stationary phase to derive Eq. (3.17) from the plane-wave expan-
sions in Eqs. (3.16a).

3.9 Use the multipole expansion of the plane wave given in Eq. (3.35) of Example 3.4 in
the plane-wave expansion Eq. (3.9a) to obtain a multipole expansion for the field rep-
resented by this plane-wave expansion. Determine the multipole moments in terms
of the plane-wave amplitude A(ks,ω).

3.10 Use the plane-wave expansion of the multipole field jl(kr)Ym
l (r̂) given in Eq. (3.36)

of Example 3.4 in the multipole expansion of the solution to the interior boundary-
value problem for Dirichlet conditions over a sphere given in Example 3.7 to obtain
a plane-wave expansion of the solution to this problem.

3.11 Use the multipole expansion of the Dirichlet Green function in Section 3.4 and the
solution of the exterior boundary-value problem in Section 2.8.2 to show that the
radiation pattern of a field radiated by a source confined to a sphere of radius a0

centered at the origin admits the expansion

f (s) =
∑
l,m

f m
l (ω)Ym

l (s), (3.67a)

where the expansion coefficients are given in terms of Dirichlet conditions over the
sphere by

f m
l (ω) = (−i)(l+1)

kh+l (ka0)

∫
4π

d�r U(a0r̂)Ym
l
∗(r̂), (3.67b)

where �r is the solid angle on the unit sphere.
3.12 Compute the radiation pattern of a field radiated by a source confined to a sphere of

radius a0 centered at the origin from the solution of the exterior Dirichlet problem
for a sphere presented in Example 3.5. Verify that the solution you obtain is identical
to that given in the previous problem.
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The Green-function solution to the radiation problem given in Eq. (2.23) of Chapter 2
represents this solution in terms of a superposition of outgoing spherical waves with each
spherical wave being weighted by the source amplitude at that point. This solution was
derived starting from the fact that the Helmholtz equation is linear and, hence, can be rep-
resented as a superposition of elementary solutions to the equation when excited by delta
functions; i.e., as a convolution of the source term with a Green function that satisfies the
same outgoing-wave condition, namely the Sommerfeld radiation condition (SRC), as is
satisfied by the radiated field. Alternative representations of the field can also be obtained
by making use of the linearity of the Helmholtz equation and the fact that the radiated
field satisfies the homogeneous Helmholtz equation everywhere outside the source region
τ0. In particular, as we have seen in the last chapter, it is possible to represent the field in
such regions in terms of an expansion of eigenfunctions of the homogeneous Helmholtz
equation such as the plane waves or multipole fields. Indeed, in Examples 3.3 and 3.5 of
Chapter 3 we expanded outgoing-wave fields such as the radiated field in a plane-wave
expansion and a multipole expansion, respectively, with the expansion coefficients (plane-
wave amplitudes and multipole moments) determined directly from boundary values of
the field. We continue with this task in this chapter, where we develop plane-wave and
multipole expansions for the radiated field directly in terms of the source Q rather than
in terms of the boundary value of the radiated field. We first derive the so-called angular-
spectrum expansion of the field, which is a superposition of weakly inhomogeneous and
evanescent plane waves of the type introduced in Section 3.2.2 of the previous chapter. We
then turn our attention to the multipole expansion of the radiated field, which is a super-
position of elementary multipole fields of the type considered in Section 3.3 of Chapter 3.
In both cases we derive these expansions directly from the primary (Green-function) rep-
resentation of the radiated field given in Eq. (2.23) and, hence, are able to compute the
plane-wave amplitude and multipole moments directly in terms of the source term Q(r,ω).
Both of these eigenfunction expansions are extremely useful when solving certain classes
of inverse problems associated with the wave and Helmholtz equations and will be used
extensively in later chapters.

4.1 TheWeyl expansion

Although there are several ways of deriving the angular-spectrum expansion of the field
U+, the most direct procedure is to expand the outgoing-wave Green function G+ in an
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angular-spectrum expansion and then substitute this expansion into the Green-function
solution for U+ given in Eq. (2.23). The angular-spectrum expansion of the outgoing-
wave Green function, originally due to Weyl (Weyl, 1919) and called the Weyl expansion,
is derived directly from the Fourier-integral representation of the outgoing-wave Green
function given in Eq. (2.15). The outgoing-wave Green function is derived directly from
this Fourier-integral representation by transforming to spherical polar coordinates and per-
forming the resulting integrations. Our goal here, however, is not to obtain a closed-form
expression for G+ (which we already have) but, rather, to express G+ as a superposition of
plane waves all of which satisfy the homogeneous Helmholtz equation.1

To derive the Weyl expansion we introduce a specific Cartesian coordinate system x, y, z
and represent both R and K in this system according to the equations

R = Rρ + Zẑ, (4.1a)

K = Kρ + Kzẑ, (4.1b)

where ẑ is the unit vector along the z axis of the selected coordinate system, Rρ and Kρ

denote the transverse coordinates; i.e., are the projections of the vectors R and K onto the
(x, y) plane of this system, and Z and Kz are the z coordinates of these two vectors. Using
this coordinate system we can express Eq. (2.15) in the form

G+(R,ω) = −1

(2π )3

∫ ∞
−∞

d2Kρ

∫ ∞
−∞

dKz
ei(Kρ ·Rρ+KzZ)

K2
z − γ 2

, (4.2)

where γ is that root of
√

k2 − K2
ρ that has positive real and imaginary parts for Kρ =√

K2
x + K2

y real and positive and was defined previously in Eq. (3.14), which we repeat

here for convenience2

γ =

⎧⎪⎪⎨⎪⎪⎩
√

k2 − K2
ρ if K2

ρ < �k2,

i
√

K2
ρ − k2 if K2

ρ > �k2.

(4.3)

The integrand in Eq. (4.2) has poles at Kz = ±γ . Since both the real part and the
imaginary part of γ are positive for all values of Kx and Ky in the integral Eq. (4.2), it
follows that the pole located at Kz = +γ lies in the upper half of the complex-Kz plane
while the pole at Kz = −γ lies in the lower half of this plane. Since the integrand of
Eq. (4.2) tends to zero in the upper half of the complex-Kz plane if Z > 0 and in the l.h.p.
if Z < 0, we can close the Kz contour of integration in the u.h.p. if Z > 0 and in the l.h.p.
if Z < 0, and we find using Cauchy’s integral formula that

1 It might be argued that the Fourier-integral representation Eq. (2.15) is, itself, a “plane-wave expansion.” How-
ever, the plane waves in this expansion have wavenumbers K that can vary from K = 0 to K = ∞ so that the
expansion does not satisfy the homogeneous Helmholtz equation with a given fixed wavenumber and, hence,
is not a true plane-wave expansion of the type considered in this chapter and the previous one.

2 Here, and throughout the remainder of this chapter, we will tacitly assume that �k > 0. As discussed in
Section 2.1.1 of Chapter 2, there is no loss in generality in making this assumption since the (time-dependent)
wavefields considered in this book are assumed to be real-valued and, hence, are completely and uniquely
defined by their positive-frequency components.
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G+(R,ω) = −i

8π2

∫ ∞
−∞

d2Kρ
ei(Kρ ·Rρ±γZ)

γ
,

which we can write in the form

G+(R,ω) = −i

8π2

∫ ∞
−∞

d2Kρ
eik±·R

γ
, (4.4a)

where the plus sign is used if Z > 0 and the minus sign if Z < 0, and where we have
defined

k± = Kρ ± γ ẑ. (4.4b)

The Weyl expansion of the outgoing-wave Green function given in Eq. (4.4a) is a plane-
wave expansion of the type introduced in Section 3.2.2 of the last chapter involving both
weakly inhomogeneous and evanescent plane waves, both types satisfying the homoge-
neous Helmholtz equation with (generally complex) wavenumber k. As was discussed in
that section, the weakly inhomogeneous plane waves are those for which K2

ρ < �k2 and
have a complex wave vector due to the dispersive nature of the medium in which they
propagate. If the loss in this medium as characterized by k were to vanish, these partic-
ular plane waves would become homogeneous plane waves and have unit magnitude over
all of space. The plane waves for which K2

ρ > �k2 are evanescent plane waves and have
a complex wave vector that does not become real in the limit k → 0. These plane waves
derive their inhomogeneous character from the fact that we allow the (Kx, Ky) components
of the wave vector K = Kxx̂ + Kyŷ + Kzẑ to vary over the entire (Kx, Ky) plane, thus
requiring the z component Kz = ±γ to be inherently complex when K2

x + K2
y > �k2.

Many of the important applications of the Weyl expansion are in non-dispersive or
weakly dispersive media where k can be taken to be zero. In this non-dispersive limit
the wave vectors k± are purely real if K2

ρ < k2 and are complex with z components that
are purely imaginary when K2

ρ > k2. In this case, the Weyl expansion Eq. (4.4a) thus
decomposes the outgoing-wave Green function into a superposition of homogeneous and
evanescent plane waves. We note that, while each plane wave satisfies the homogeneous
Helmholtz equation, the superposition of plane waves comprising the Weyl expansion sat-
isfies the homogeneous Helmholtz equation only if the integral Eq. (4.4a) converges uni-
formly, which occurs only if |Z| > 0.

4.1.1 The angular-spectrum expansion for the conjugate-wave Green function

The angular-spectrum expansion of the conjugate-wave Green function is found by taking
the complex conjugate of the Weyl expansion Eq. (4.4a):

G∗+(R,ω) = i

8π2

∫ ∞
−∞

d2Kρ
e−ik±∗·R

γ ∗
.
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By making the transformation Kρ → −Kρ and making use of the definition Eq. (4.4b) of
k± we can express this expansion in the simplified form

G∗+(R,ω) = i

8π2

∫ ∞
−∞

d2Kρ
γ ∗

eiKρ ·Rρ e∓iγ ∗Z , (4.5a)

where

γ ∗ =
{
γ (k∗), Kρ <

√�k2,

−γ (k∗), Kρ >
√�k2,

(4.5b)

and where the top sign is used if Z > 0 and the bottom sign if Z < 0. On decomposing the
above expansion into weakly inhomogeneous and evanescent plane-wave components we
obtain the result

G∗+(R,ω) = i

8π2

∫
Kρ<

√�k2
d2Kρ

eik∓(k∗)·R

γ (k∗)
− i

8π2

∫
Kρ>

√�k2
d2Kρ

eik±(k∗)·R

γ (k∗)
, (4.6)

where again the top sign is used if Z > 0 and the bottom sign if Z < 0, and where k±(k∗)
is simply k± as defined in Eq. (4.4b) with γ (k) replaced by γ (k∗).

4.1.2 The angular-spectrum expansion of the incoming-wave Green function

The incoming-wave Green function is related to the conjugate-wave Green function under
the replacement of k by k∗; i.e.,

G−(R, k) = G∗+(R, k∗).

It then follows that the angular-spectrum expansion of this Green function is obtained from
that of the conjugate-wave Green function by simply replacing the wavenumber k by its
complex conjugate k∗. We then find using Eq. (4.5a) that

G−(R,ω) = i

8π2

∫ ∞
−∞

d2Kρ
γ ∗(k∗)

eiKρ ·Rρ e∓iγ ∗(k∗)Z , (4.7a)

while from Eq. (4.6) we obtain the result

G−(R,ω) = i

8π2

∫
Kρ<
√
�k2

d2Kρ
eik∓·R

γ
− i

8π2

∫
Kρ>
√
�k2

d2Kρ
eik±·R

γ
, (4.7b)

with k± defined in Eq. (4.4b) and where, again, the top sign is used if Z > 0 and the bottom
sign if Z < 0.

On comparing the angular-spectrum expansion of G− in the form Eq. (4.7b) with the
Weyl expansion Eq. (4.4a) we see that the two expansions are identical over the evanescent
region Kρ > k and differ by overall sign and by a shift from outgoing to incoming plane
waves over the weakly homogeneous region Kρ <

√�k2. In contrast with the expansion
for the outgoing-wave Green function, the plane waves over the homogeneous region thus
propagate inward from the half-space containing the field point R toward the origin while
the evanescent plane waves still propagate on the plane Z = 0 and decay exponentially
with distance |Z| from this plane. These observations are consistent with the fact that G− is
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an incoming-wave Green function, so it is to be expected on intuitive grounds that it be
composed of a superposition of incoming plane waves.

Example 4.1 In problems involving non-dispersive media where the wavenumber k is
strictly real, the free-field propagator

Gf(R,ω) = G+(R,ω)− G−(R,ω) = − i

2π

sin(kR)

R
(4.8)

plays an important role in a host of inverse problems related to the wave and Helmholtz
equations. This quantity can be represented in a plane-wave expansion by making use of the
angular-spectrum expansions for the outgoing-wave and incoming-wave Green functions
given in Eqs. (4.4a) and (4.7b). In particular, on substituting these expansions into the
definition of Gf given above and noting that the two expansions are identical over the
evanescent region we find that

Gf(R,ω) = − i

8π2

∫
Kρ<k

d2Kρ
γ

[eik±·R + eik∓·R],

which can be written in the form

Gf(R,ω) = − i

8π2

∫
Kρ<k

d2Kρ
γ

eiKρ ·Rρ [eiγZ + e−iγZ], (4.9)

where Rρ and Z are defined in Eq. (4.1a) and which holds for all R. Equation (4.9) and its
angle-variable form (see Example 4.2 below) will reappear in a number of inverse problems
that are treated in later chapters.

4.1.3 Angle-variable forms of the Green-function expansions

We can also express the angular-spectrum expansions of the outgoing- and conjugate-wave
Green functions in the angle-variable form given in Eq. (3.23) of Section 3.2.3. The angle-
variable forms of the angular-spectrum expansions are particularly elegant and important
in theoretical studies and will be employed throughout the book. Restricting our attention,
for the moment, to the outgoing-wave Green function G+, we follow the same general pro-
cedure as was employed in Section 3.2.3 and make a change of integration variable in the
Weyl expansion Eq. (4.4a) from the transverse spatial frequency vector Kρ to the polar α
and azimuthal β angles relative to the fixed Cartesian (x, y, z) system used in the derivation
of Eq. (4.4a). Upon making this transformation, the propagation vectors k± become

k± = ks = k

s︷ ︸︸ ︷
(sinα cosβ x̂+ sinα sinβ ŷ+ cosα ẑ),

where the azimuthal angle β varies from 0 to 2π and the polar angle α varies along the
contour C+ in Fig. 4.1 for the wave vector k+ and over the contour C− in this figure for
the wave vector k−. For the outgoing-wave Green function we find on using the results of
that section that
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�Fig. 4.1 Theα integration contours for the Weyl expansions of G±. The contours labeled C± are used for the outgoing-wave
Green function G+ while the contours C̃± are used for G−. In both cases the contours labeled with the + sign are
employed if Z > 0 and the ones labeled with the minus sign are used if Z < 0. It can be seen that C̃± are simply the
mirror images of C± about the line�α = π/2.

G+(R,ω) = − ik

8π2

∫ π

−π
dβ
∫

C±
sinα dα eiks·R, (4.10)

where the contour C+ is used if Z > 0 and C− if Z < 0. It should be noted that the
integrand in the above angular-spectrum expansion is an entire analytic function of the
angles α and β, so the precise shape of the integration contours C± is unimportant. As
discussed in Section 3.2.3, the decomposition of the α contour to lie along the real axis and
along the line �α = π/2 corresponds to a separation of the plane waves in the expansions
into weakly inhomogeneous plane waves in the first case or evanescent plane waves in the
second case.

Expansion of the conjugate-wave and incoming-wave Green functions

On taking the complex conjugate of Eq. (4.10) we obtain

G∗+(R,ω) = ik∗

8π2

∫ π

−π
dβ
∫

C±
sinα∗ dα∗ e−ik∗s∗·R. (4.11a)
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If we now make the transformation α′ = α∗ we find that Eq. (4.11a) becomes

s∗ = s′ = [sinα′ cosβ, sinα′ sinβ, cosα′],

G∗+(R,ω) = ik∗

8π2

∫ π

−π
dβ
∫

C∗±
sinα′ dα′ e−ik∗s′·R, (4.11b)

where C∗± denotes the complex conjugates of the contours C±. As a final step we make the
transformations

β → β + π , α′ → π − α
to find that s′ → −s and Eq. (4.11b) becomes

G∗+(R,ω) = − ik∗

8π2

∫ π

−π
dβ
∫

C̃±
sinα dα eik∗s·R, (4.11c)

where C̃± are the contours shown in Fig. 4.1. As in the case of the outgoing-wave Green
function, the precise shape of the integration contours C̃± is unimportant.

The expansion of the incoming-wave Green function is obtained from that of G∗+ by
simply replacing the wavenumber k by its complex conjugate k∗. We find using Eq. (4.11c)
that

G−(R,ω) = − ik

8π2

∫ π

−π
dβ
∫

C̃±
sinα dα eiks·R. (4.12)

If we take the α contours to lie along the real axis and along the line �α = π/2 it is easily
verified that the expansions for G+ and G− are identical over the evanescent part of the
spectra and differ by a sign and a shift from outgoing to incoming plane waves over the
homogeneous part of the spectra.

Example 4.2 The angle-variable form of the plane-wave expansion of the free-field propaga-
tor defined in Eq. (4.8) of Example 4.1 is obtained by substituting the above angle-variable
forms of the angular-spectrum expansions of G+ and G− with k real-valued into Eq. (4.8)
of that example. We obtain the result

Gf(R,ω) = − ik

8π2

∫ π

−π
dβ
∫

C±
sinα dα eiks·R + ik

8π2

∫ π

−π
dβ
∫

C̃±
sinα dα eiks·R.

First consider using the contours C+ and C̃+ corresponding to Z > 0. If we deform these
two contours so that C+ lies along the real axis from α = 0 to α = π/2 and C̃+ lies along
the real axis from α = π to α = π/2, we conclude that the integrals extending from π/2
to π/2 − i∞ cancel out while the integrals along the real-α axis add and we obtain the
result

Gf(R,ω) = − ik

8π2

∫ π

−π
dβ
∫ π

0
sinα dα eiks·R. (4.13)

It is not difficult to show that the same result is obtained for Z < 0 using the contours
C− and C̃−, so Eq. (4.13) holds over all of space.
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The above result can also be obtained directly from the plane-wave expansion of the free
multipole fields jl(kr)Ym

l (r̂) given in Example 3.5 of Chapter 3. In particular, we showed in
that example that

jl(kr)Ym
l (r̂) = (−i)l

4π

∫
d�s Ym

l (s)eiks·r.

On setting l = 0 we then find that

j0(kR) = sin(kR)

kR
= 1

4π

∫
d�s eiks·R,

from which we conclude that

Gf(R,ω) = − ik

2π
j0(kR) = − ik

8π2

∫ π

−π
dβ
∫ π

0
sinα dα eiks·R,

which is identical to the result given in Eq. (4.13).

4.2 The angular-spectrum expansion of the radiated field

If we substitute the Weyl expansion given in Eq. (4.4a) into the expression for the radiated
field given in Eq. (2.23) of Chapter 2 we obtain

U+(r,ω) = −i

2(2π )2

∫
τ0

d3r′ Q(r′,ω)
∫ ∞
−∞

d2Kρ
eik±·(r−r′)

γ
, (4.14)

where the plus sign is used if z > z′ and the minus sign if z < z′. We now assume that the
source spatial volume τ0 is entirely contained within a strip z− ≤ z ≤ z+ and restrict our
attention to field points r whose z coordinates lie outside this strip. For such field points
k± will be either k+ (if z > z+) or k− (if z < z−), and we can interchange the orders of
integration in Eq. (4.14) to obtain

U+(r,ω) = i

2π

∫ ∞
−∞

d2Kρ
γ

A(k±,ω)eik±·r, (4.15a)

where the plus sign is used if z > z+ and the minus sign if z < z−, and the spectral
amplitude A(k±,ω) is known as the angular spectrum and is given in terms of the source by

A(k±,ω) = −1

4π
Q̃(K,ω)|K=k± , (4.15b)

where

Q̃(K,ω) =
∫
τ0

d3r′ Q(r′,ω)e−iK·r′

is the space-time Fourier transform of the source.



126 Angular-spectrum and multipole expansions

Like the Weyl expansion, the angular-spectrum expansion of the field is in the form of
a superposition of plane waves that individually satisfy the homogeneous Helmholtz equa-
tion and divide into the two classes of weakly inhomogeneous (K2

ρ < �k2) and evanescent
(K2
ρ > �k2) plane waves. Since the angular-spectrum expansion converges uniformly so

long as the z coordinate of the observation point r lies outside the source volume τ0, the
expansion also satisfies the homogeneous Helmholtz equation and, hence, is a mode expan-
sion of the field throughout this region. Clearly, the orientation of our coordinate system is
arbitrary, so that it is possible to obtain such an expansion outside any strip whose parallel
planes completely contain the source spatial volume τ0. See Fig. 4.2.

The angular-spectrum expansion of the radiated field given above is seen to be of the
same general form as that given in Eq. (3.16a) of the last chapter where, however, the
two plane-wave amplitudes (angular spectra) A(+)(k+,ω) and A(−)(k−,ω) have the same
functional form as defined in terms of the source transform via Eq. (4.15b). It is not difficult
to show from Eq. (4.15b) that in the evanescent region

|A(k±,ω)| ≤ Ce|γ ||z±|, (4.16)

where C is a constant. Since the evanescent plane waves decay exponentially with |z|, it
then follows that a good approximation to the field, valid for field points r whose z coordi-
nates are more than a few wavelengths from the source volume τ0, is given by Eq. (4.15a)
with the Kρ integration limited to the weakly inhomogeneous region; i.e.,

�Fig. 4.2 The geometry for expanding a radiated field into an angular-spectrum expansion. The expansion is valid outside the
strip z−< z < z+, with A+ and k+ employed in the r.h.s. z > z+ and A− and k− employed in the l.h.s. z < z−.
The weakly inhomogeneous plane waves propagate into either the right half-space or the left half-space and decay
weakly with propagation distance while the evanescent plane waves propagate in the (x, y) plane and decay
exponentially fast with increasing |z|.
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U+(r,ω) ≈ i

2π

∫
Kρ<

√�k2

d2Kρ
γ

A(k±,ω)eik±·r. (4.17)

The approximate plane-wave expansions of U+ given in Eq. (4.17) converge uniformly
over all of space and, hence, satisfy the homogeneous Helmholtz equation everywhere.
It then follows that the expansion using k+ is a free field3 that will closely approximate
the radiated field if z � z+ while the expansion using k− is a free field that will closely
approximate this field if z z−.

4.2.1 The angle-variable form of the radiated field expansion

The angle-variable form of the angular-spectrum expansion for the radiated field can be
obtained by making the same change of integration variables in the Cartesian form given
in Eq. (4.15a) as was used in deriving the angle-variable form of the general plane-wave
expansion in Section 3.2.3 of the last chapter. It can also be obtained by simply substi-
tuting the angle-variable form of the Weyl expansion given in Eq. (4.10) into Eq. (2.23).
By employing this second scheme and following steps almost identical to those used in
deriving Eq. (4.15a) we obtain the result

U+(r,ω) = ik

2π

∫ π

−π
dβ
∫

C±
sinα dα A(ks,ω)eiks·r, (4.18a)

where the angular spectrum A(ks,ω) is given in terms of the source via the equation

A(ks,ω) = − 1

4π
Q̃(ks,ω), (4.18b)

and where the α integration contour C+ is used if z > z+ and C− if z < z−. The source
transform Q̃(ks,ω) is an entire analytic function of the unit vector s continued onto the
complex unit sphere; i.e., is an entire function of its polar and azimuthal angles within any
specific Cartesian reference system. Thus, the exact shape of the α contour of integration
in Eq. (4.18a) is not important as long as it begins and terminates at the proper points in
the complex-α plane.

4.2.2 The angular spectrum and radiation pattern

The radiation pattern of the field, was introduced in Section 1.5.1 of Chapter 1 and further
treated in Section 2.4 of Chapter 2, where it was shown to be related to the space-time
Fourier transform of the source via the equation

f (s,ω) = − 1

4π
Q̃(K,ω)|K=ks. (4.19)

3 A “free field” is loosely defined to be a field that satisfies the homogeneous Helmholtz equation over all of
space.



128 Angular-spectrum and multipole expansions

On comparing Eqs. (4.18b) and (4.19) we see that the angular spectrum in angle-variable
form is related to the radiation pattern through the equation

A(ks,ω) = f (s,ω), (4.20a)

a result that was previously derived in Section 3.2.3 of the previous chapter. A less elegant
statement of this same result can be expressed in Cartesian variable form from Eq. (4.15b):

A(k±,ω) = f (s±,ω), (4.20b)

where s± = k±/k is the unit vector along the direction of the wave vectors k±.
The radiation pattern f (s,ω) is the complex amplitude of the field U+(rs,ω) in the limit

r → ∞. Its argument s is thus restricted to the real unit sphere corresponding to real
observable field points r = rs, so Eqs. (4.20b) have meaning only for transverse wave
vectors Kρ corresponding to the weakly inhomogeneous part of the spectrum K2

ρ < �k2.
In a similar way Eq. (4.20a) also has meaning only over the weakly inhomogeneous part
of the spectrum which corresponds to s lying on the real unit sphere. However, because of
analyticity these two quantities are, in fact, uniquely determined for all values of their argu-
ments via the process of analytic continuation from their values over the observable part
of the spectrum. Indeed, they are both uniquely specified by the radiation pattern over any
arbitrary section of the real unit sphere.4 For example, if the angular spectrum A+(Kρ ,ω)
is specified over any area on the Kρ plane it is, in principle, uniquely determined over the
entire Kρ plane. In a similar fashion A(ks,ω) is uniquely determined from the radiation
pattern f (s,ω) specified over any arbitrary section of the real unit sphere. This fact also
indicates that the angular spectra in the two regions (physical and evanescent) cannot be
defined independently: any change in the physically observable radiation pattern corre-
sponding to the weakly inhomogeneous part of the angular spectrum is accompanied by an
associated change in the evanescent region and vice versa. This observation has important
implications in the inverse source and antenna synthesis problems (Hansen, 1981), as we
will see in Chapter 5.

The fact that the radiation pattern of compactly supported sources uniquely determines
the angular spectrum establishes the important result that it also uniquely determines the
field everywhere outside the smallest convex region5 which surrounds the source. In par-
ticular, since the choice of the orientation of our Cartesian coordinate system is arbitrary,
the radiated field can be represented in an angular-spectrum expansion that will be valid
outside any plane surface that bounds the source region and the angular spectrum for this
particular expansion can then be determined from the radiation pattern via Eqs. (4.20). By
this means the field can, in principle, be uniquely and completely determined everywhere

4 An entire analytic function of N variables is uniquely determined from its values over an N-dimensional hyper-
volume of arbitrarily small size. Thus, for example, in the common case of a function of a single variable it
is uniquely specified by its value over any line segment of arbitrary length. In our case of a function of two
(generally) complex variables we require specification over an area.

5 A convex region has the defining property that any two points within the region can be connected by a straight
line that does not intersect the surface of the region. The smallest convex region that encloses the source volume
τ0 is called the “convex hull” of this region.
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outside the convex hull of the source region.6 Of course this conclusion is merely formal
in the sense that it would involve an analytic continuation of the radiation pattern from the
physical to the evanescent region, and this process is computationally unstable and cannot
be performed in practice.

4.2.3 The radiation pattern of a non-radiating source

In our treatment of non-radiating (NR) sources for the Helmholtz equation in Chapter 2
we established Theorem 2.1, which stated that a necessary and sufficient condition for a
compactly supported and piecewise continuous source to be NR at frequency ω is that its
radiation pattern vanish over the entire real unit sphere. The necessity of the condition is
an immediate consequence of the fact that an NR source generates a zero field outside its
support and, hence, generates a zero radiation pattern. The sufficiency condition is easily
established using the angular-spectrum expansion. In particular, we consider any particu-
lar bounding plane to the source, which we are free to take as the (x, y) plane located at
z = z0 with the source located in the half-space z < z0. The field throughout the half-space
z ≥ z0 can be represented via the angle-variable form of the angular-spectrum expansion
Eq. (4.18a), where the angular spectrum is proportional to the analytic continuation of the
radiation pattern onto the complex unit sphere and, hence, must vanish if the radiation pat-
tern vanishes over the entirety, or, indeed, any finite region, of the real unit sphere. This
then requires that the field itself vanish throughout the half-space z > z0. Since the orien-
tation of the coordinate system is arbitrary, it follows that the field must vanish everywhere
outside the convex hull of τ0, which then establishes the vanishing of the radiation pattern
as a sufficient condition for a source to be NR.

4.3 Forward and back propagation using the angular spectrum

We have already seen in Example 3.3 of Chapter 3 that the angular-spectrum expansion
can be used to solve the Rayleigh–Sommerfeld (RS) boundary-value problems. Indeed,
this conclusion follows immediately upon taking the spatial Fourier transforms of both
sides of Eq. (4.15a) over any plane z = z0 lying outside the source strip z− ≤ z ≤ z+:

A(k±,ω) = γ

2π i
Ũ+(Kρ , z0,ω)e∓iγ z0 , (4.21a)

where Ũ+(Kρ , z0,ω) is the spatial Fourier transform of the field on the plane z = z0 and
the top sign is used if z0 > z+ and the bottom sign if z0 < z−. An entirely analogous
procedure allows the angular spectra to be determined in terms of Neumann conditions
from the equation

A(k±,ω) = ∓ 1

2π
Ũ′+(Kρ , z0,ω)e∓iγ z0 , (4.21b)

6 Actually, we will show later using the multipole expansion (see Section 4.8) that the radiation pattern uniquely
determines the field everywhere outside the source support τ0, not just outside the convex hull of this support.
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where Ũ′+ is the spatial Fourier transform of the Neumann boundary value on the plane
z = z0 and again the top sign is used if z0 > z+ and the bottom sign if z0 < z−. The
angular spectra as computed above when used in Eq. (4.15a) then yield the solution to the
RS problem in either of the two half-spaces z ≶ z0 depending on whether z0 lies to the right
or left of the source support strip.

The two equations Eqs. (4.21) are the generalization of Eqs. (3.18) of Example 3.3 of
Chapter 3 to boundary-value planes other than the plane z = 0 and, in addition, apply
to propagation into both the left half-space z < z0 ≤ z− and the right half-space z >
z0 ≥ z+. It is important to note that the data plane z = z0 is arbitrary in these equations
so long as it lies outside the source strip z− < z < z+. Because of this we can employ
these equations to implement the process of field back propagation whereby the angular
spectrum is computed from a plane z = z0 and the result used in Eq. (4.15a) to compute the
field over other planes that lie closer to the source than the data plane z = z0. This process
is distinct from the normal process of field forward propagation whereby boundary values
of the field over surfaces near the source are used to compute the field at points further
removed from the source than the data surface. Thus forward propagation implemented
via the angular spectrum corresponds to computing the angular spectrum from data on
some plane z = z0 and using this quantity in the angular-spectrum expansion to compute
the field for field points whose z coordinates are further removed from the source region
than z0. Back propagation, on the other hand, uses the angular spectrum that is computed
from data on the plane z = z0 to compute the field at field points whose z coordinates are
closer to the source than z0.

The processes of forward and back propagation are easy to implement directly from
Eqs. (4.21) when we note that in any given half-space the angular spectrum A(k±,ω) is
independent of z0. It then follows from Eq. (4.21a) that

Ũ+(Kρ , z,ω) = Ũ+(Kρ , z0,ω)e±iγ (z−z0), (4.22a)

with the result holding for any values of z0, z lying outside the source strip z− < z < z+
and in the same half-space and where the upper (+) sign applies if z, z0 > z+ and the lower
(−) sign if z, z0 < z−. When z is further removed from the source than z0 then Eq. (4.22a)
performs the process of normal field propagation (is equivalent to the RS boundary-value
problem), but when z is closer to the source than z0 this equation performs the process of
field back propagation. The actual field is then computed via an inverse spatial Fourier
transform:

U+(ρ, z,ω) = 1

(2π )2

∫
d2Kρ Ũ+(Kρ , z,ω)eiKρ ·ρ ,

thus leading to

U+(ρ, z,ω) = 1

(2π )2

∫
d2Kρ Ũ+(Kρ , z0,ω)e±iγ (z−z0)eiKρ ·ρ , (4.22b)
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�Fig. 4.3 The processes of forward and back propagation from a boundary-value plane z = z0 implemented in the r.h.s. of
some radiating source using the angular-spectrum expansion. Forward propagation is stable since the evanescent
plane waves decay exponentially with increasing distance from the boundary-value plane if z > z0, whereas back
propagation is unstable since the evanescent plane waves grow exponentially with increasing distance from this
boundary-value plane if z < z0.

with an analogous relationship connecting the field to Neumann conditions over any given
plane (see the problems at the end of this chapter). We illustrate the processes of forward
and back propagation in Fig. 4.3.

We emphasize that the processes of forward and back propagation as encoded in
Eqs. (4.22) apply both to dispersive and to non-dispersive media and are valid for all fre-
quencies ω, hence allowing the time-dependent field u+(r, t) to be computed for all times
throughout any half-space not containing the source from Dirichlet or Neumann data spec-
ified over any plane in this half-space. The quantity γ has a positive imaginary part both in
the weakly inhomogeneous part and in the evanescent part of the spectra,7 so the process of
forward propagation is well posed and equivalent to the solutions of the RS boundary-value
problems in terms of Green functions presented in Section 2.8. On the other hand, for the
same reason, the process of back propagation is unstable and requires some modification
in order for it to be applicable to real data. We will return to this issue later in this section,
where we will compare two stabilized forms of field back propagation with exact field

7 As discussed in Section 3.2.2 of Chapter 3, γ = 0 over the homogeneous part of the spectrum in non-
dispersive media, but will have γ > 0 over this part of the spectrum in normal dispersive media where
k > 0.
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back propagation. For the present we re-emphasize that, although field back propagation
as implemented using Eqs. (4.22) is unstable, it is mathematically exact and does provide
a formal solution to the problem of back propagating a field from its boundary value on
some plane z0 to some other plane z1 that is located closer to the source than is the data
plane z0.

Example 4.3 We showed in Example 3.2 of Chapter 3 that if we set

k2 = �k2 + ik2

and assume that k2  |K2
ρ −�k2| then

γ =
√

k2 − K2
ρ ≈

√
�k2 − K2

ρ + i
k2

2
√
�k2 − K2

ρ

, K2
ρ < �k2,

and

γ = i
√

K2
ρ − k2 ≈ i

√
K2
ρ −�k2 + k2

2
√

K2
ρ −�k2

, K2
ρ > �k2.

It can be seen from these expressions that γ > 0 so long as both the real part and the
imaginary part of the wavenumber k are greater than zero. It then follows that back prop-
agation implemented via Eq. (4.22b) will be unstable due to exponential growth of the
plane waves both over the weakly inhomogeneous part and over the evanescent part of the
spectra of the field data. However, the exponential growth of the weakly inhomogeneous
plane waves will be small since it is clear from the above expressions that the imaginary
part of γ over this region of the spectra will be small. On the other hand, the evanescent

plane waves grow exponentially fast in proportion to
√

K2
ρ −�k2 and, hence, can become

unbounded.

Example 4.4 On comparing Eqs. (4.21a) and (4.21b) we conclude that

Ũ′+(Kρ , z0,ω) = ±iγ Ũ+(Kρ , z0,ω), (4.23)

where the top sign (+) is used in the r.h.s. z0 > z+ and the bottom sign in the l.h.s.
z0 < z− where the source to the field U+ is assumed to lie in the strip [z−, z+]. The above
result, which is a special case of the so-called “Dirichlet-to-Neumann map” (Sylvester and
Uhlmann, 1990), is a consequence of the fact that the radiated field and its normal deriva-
tive over any infinite plane boundary that lies outside this strip are not independent and, in
particular, must satisfy the second Helmholtz identity given in Eq. (2.31b) of Section 2.5. In
fact we can derive Eq. (4.23) directly from this identity by substituting the Weyl expansion
Eq. (4.4a) directly into Eq. (2.31b) with the volume τ throughout which this equation must
be satisfied taken to be the region z < z0 if z0 > z+ and equal to z > z0 if z0 < z+. Here
we will derive the result only for z0 > z+, in which case the second Helmholtz identity
becomes∫

z0

dS0

[
G+(r− r0,ω)

∂

∂z0
U+(r0,ω)− U+(r0,ω)

∂

∂z0
G+(r− r0,ω)

]
= 0, z < z0.
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If we substitute the Weyl expansion Eq. (4.4a) into the above equation and perform some
algebra (see the problems at the end of this chapter) we obtain the result

−i

8π2

∫ ∞
−∞

d2Kρ
γ

eiKρ ·ρe−iγ (z−z0)[Ũ′+(Kρ , z0,ω)− iγ Ũ+(Kρ , z0,ω)] = 0, z < z0.

If we now perform an inverse spatial Fourier transform over any plane z < z0 we then
arrive at the relationship Eq. (4.23) for the case in which z0 > z+ as required. A completely
parallel development gives the result for z0 < z−.

4.3.1 Back propagation from the radiation pattern

If we express the radiated field via the angle-variable form of the angular-spectrum expan-
sion given in Eq. (4.18a) and make use of Eq. (4.20a) we obtain

U+(r,ω) = ik

2π

∫ π

−π
dβ
∫

C±
sinα dα f (s,ω)eiks·r, (4.24)

where f (s,ω) is the radiation pattern of the field and the α integration contour C+ is used
if z > z+ and C− if z < z−. Equation (4.24) expresses the field everywhere outside the
source strip z− < z < z+ in terms of the radiation pattern f (s,ω). Thus it performs the
operation of back propagation from far-field data. As was the case for back propagation
from boundary-value data, the above expansion is unstable both due to inherent absorption
in a dispersive medium and due to the presence of evanescent plane waves in the expansion.
The reason for the instability of the expansion is not as clear as in the case of boundary-
value data, where the factor exp[±iγ (z − z0)] in Eq. (4.22b) clearly grows exponentially
fast if z < z0 in the r.h.s. and if z > z0 in the l.h.s. both over the evanescent part and
over the weakly inhomogeneous part of the spectrum (cf. Example 4.3). In the case of the
expansion Eq. (4.24) the instability over the evanescent part of the spectrum arises due to
the fact that the actual far-field data specify only the radiation pattern over the real unit
sphere so that f (s,ω) is directly known from the data only for weakly inhomogeneous
components of the field. In order to determine the evanescent components it is necessary to
perform an analytic continuation: this is a process that is unstable and that would generate
exponentially large errors in the angular-spectrum expansion from arbitrarily small errors
in the field data.

4.4 Stabilized field back propagation and the inverse
boundary-value problem

We consider the process of field back propagation from Dirichlet data specified over a plane
z = z0 that lies outside the source strip [z−, z+] to field points r = (ρ, z) that lie within the
interior strips z+ < z ≤ z0 or z0 ≤ z < z−. The boundary-value plane lies to the right of the
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source in the first case and to the left of the source in the second. In our previous discussion
we concluded that this process is exact but unstable due to the exponential growth of the
evanescent plane waves in these interior strips. The process can be stabilized if we limit
the integral in Eq. (4.22b) to the weakly inhomogeneous region of the spectrum. We obtain
the approximation

U+(ρ, z,ω) ≈ 1

(2π )2

∫
K2
ρ<�k2

d2Kρ Ũ+(Kρ , z0,ω)e±iγ (z−z0)eiKρ ·ρ , (4.25)

where the upper (plus) sign is used to the right of the source strip (for back propagation
from a plane lying to the right of the source) and the lower (minus) sign is used to the left of
this strip (for back propagation from a plane lying to the left of the source). An analogous
relationship connecting the back-propagated field to Neumann conditions over any given
plane lying outside the source strip is easily obtained using the results in Section 4.3. The
accuracy of the approximation depends on the distances of the field point r = (ρ, z) and
boundary-value plane z0 from the source strip. If these distances are much larger than
the wavelength λ then the accuracy is excellent since the evanescent components of the
radiated field will be highly damped and give a negligible contribution to the value of the
field. On the other hand, the approximation can be quite poor in the very near field, where
the evanescent field components can be large.8

An approximate form of field back propagation was obtained earlier, in Section 2.11
of Chapter 2, where we addressed the problem of approximately back propagating the
field into the interior strips z+ < z ≤ z0 or z0 ≤ z < z− from Dirichlet or Neumann
conditions specified over the z0 plane. The approximate form of field back propagation
arrived at in that treatment was based on the solution to an RS boundary-value problem
using the incoming-wave radiation condition and was expressed in terms of the incoming-
wave Dirichlet and Neumann Green functions. In this section we will represent this earlier
solution in angular-spectrum form and compare the result with the approximate form of
field back propagation given in Eq. (4.25). We will consider two cases: (i) back propagation
using the incoming-wave Green function and (ii) back propagation using the conjugate-
wave Green function.

4.4.1 Back propagation using the incoming-wave Green function

Using the notation employed in this chapter we showed in Section 2.11 that for the case
of Dirichlet data an approximate solution to the problem of back propagation from a
boundary-value plane z0 lying outside the source support region is given by (cf. Eq. (2.55a))

U+(ρ, z,ω) ≈ ±2
∫

d2ρ′ U+(ρ′, z0,ω)
∂

∂z′
G−(r− r′0,ω)|z′=z0 , (4.26)

where G− is the incoming-wave Green function to the Helmholtz equation and the upper
sign is used for field points lying in the interior strip z+ < z ≤ z0 that lie to the right of

8 As discussed in Example 4.3 and in the preceding section, there will also be a small amount of instability
introduced in dispersive media over the weakly inhomogeneous part of the spectrum. However, this instability
will be small and can usually be ignored.
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the source and to the left of a boundary-value plane located at z = z0 and the lower sign is
used for field points lying in the interior strip z0 ≤ z < z− that lie to the left of the source
and to the right of a boundary-value plane located at z = z0. A similar result was obtained
for the case of Neumann data. If we make use of the angular-spectrum expansion of the
incoming-wave Green function given in Eq. (4.7a) we can express Eq. (4.26) in the form

U+(ρ, z,ω) ≈ 1

(2π )2

∫
d2Kρ Ũ+(Kρ , z0,ω)e±iγ ∗(k∗)(z−z0)eiKρ ·ρ , (4.27)

where again, the top sign is used in the strip z+ < z ≤ z0 and the bottom sign in the strip
z0 ≤ z < z−.

The approximate solution to the inverse RS boundary-value problem as given in
Eq. (4.27) is seen to be identical to the exact back-propagated field as given in Eq. (4.22b)
except for the replacement of γ by γ ∗(k∗). Over the homogeneous region of the spec-

trum γ ∗(k∗) =
√

k2 − K2
ρ = γ so that this component of the expansion is identical to the

stabilized back-propagated field as given in Eq. (4.25). Over the evanescent region of the

spectrum γ ∗(k∗) = −
√

K2
ρ − k2 = −γ < 0, so the plane waves comprising this com-

ponent of the expansion Eq. (4.27) will decay exponentially with |z− z0| in the two strips
z+ < z ≤ z0 and z0 ≤ z < z−. The overall conclusion is that the approximate solution to
the back-propagation problem as given in Eq. (4.27) will be a good approximation under
precisely the same conditions as those for which the approximation given in Eq. (4.25) is
accurate; i.e., if the boundary-value plane z0 and field point r = (ρ, z) are more than a
few wavelengths from the source strip [z−, z+] so that evanescent-wave components can
be neglected.

Example 4.5 The approximation Eq. (4.25) for the back-propagated field from Dirichlet
data on a planar boundary turns out to be an exact expression for the field back propagated
from over-specified data on this boundary using the incoming-wave Green function. As an
example we consider the field back propagated using G− from over-specified data on the
plane z = z0 that lies to the right of the source. The field back propagated using G− into
the half-space z < z0 is given by Eq. (2.33a) of Section 2.5.1 of Chapter 2

�+(r,ω) =
∫

z′=z0

d2ρ′
[

U+
∂

∂z′
G− − G−

∂

∂z′
U+
]

.

If we now substitute the angular-spectrum expansions of the incoming-wave Green func-
tion and its normal derivative into the above equation and simplify the resulting expression
we obtain

�+(r,ω) = 1

8π2

∫
d2Kρ A+(Kρ ,ω)eiγ ∗(k∗)(z−z0)eiKρ ·ρ , (4.28a)

where

A+(Kρ ,ω) =
[

Ũ+(Kρ , z0,ω)− i

γ ∗(k∗)
˜∂

∂z0
U+(Kρ , z0,ω)

]
(4.28b)

and Ũ+(Kρ , z0,ω) and ˜(∂/∂z0)U+(Kρ , z0,ω) are the spatial Fourier transforms of the field
U+(ρ, z,ω) and its normal derivative over the plane z = z0.
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We now use Eq. (4.23) from Example 4.4, which relates the two transforms

Ũ+(Kρ , z0,ω) and ˜(∂/∂z0)U+(Kρ , z0,ω), to find that Eq. (4.28b) reduces to

A+(Kρ ,ω) =
{

2Ũ+(Kρ , z0,ω) if K2
ρ < �k2k,

0 if K2
ρ > �k2,

which, when used in Eq. (4.28a), yields the result

�+(r,ω) = 1

(2π )2

∫
K2
ρ<�k2

d2Kρ Ũ+(Kρ , z0,ω)eiγ (z−z0)eiKρ ·ρ ,

which is identical to Eq. (4.25) for the case of a plane lying to the right of the source.
A parallel development can be employed for the field back propagated using G− from
over-specified data on a plane that lies to the left of the source.

4.4.2 Back propagation using the conjugate-wave Green function
and field time reversal

Back propagation implemented with the incoming-wave Green function can suffer insta-
bility problems in high-loss dispersive media due the positive imaginary part of γ over
the weakly inhomogeneous region of the spectrum (cf. Example 4.3). A fully stabilized
approximate form of back propagation over both the weakly inhomogeneous region and
the evanescent region of the spectra is obtained by replacing the incoming-wave Green
function by the conjugate-wave Green function. Thus in place of Eq. (4.26) we use

U+(ρ, z,ω) ≈ ±2
∫

d2ρ′ U+(ρ′, z0,ω)
∂

∂z′
G∗+(r− r′0,ω)|z′=z0 , (4.29)

which, of course, reduces to Eq. (4.26) when k is real-valued. The angular-spectrum expan-
sion of this latter approximation is identical in form to the angular-spectrum expansion
given in Eq. (4.27), where, however, γ ∗(k∗) is now replaced by γ ∗(k).

Back propagation and time reversal

We showed in Section 2.11 that the time-reversed back-propagated field obtained using the
incoming-wave Green function is equal to the field radiated by the time-reversed boundary-
value data into the time-reversed medium. In other words, if the Dirichlet data are first time-
reversed and allowed to radiate back into the source region but in the time-reversed medium
then the resulting field will be equal to the time-domain back-propagated field defined in
Eq. (4.26). The approximate solution to the back-propagation problem implemented using
the conjugate-wave Green function is also intimately connected with the process of wave-
field time reversal. In particular, on taking the complex conjugate of both sides of Eq. (4.29)
we conclude that the time-domain field u+(ρ, z,−t) (obtained by inverse Fourier transfor-
mation of U∗+(ρ, z,ω)) results from forward propagation of the time-reversed boundary-
value field u+(ρ, z0,−t) into the original medium having wavenumber k. Thus, both
versions of field back propagation are also versions of field time reversal and differ only
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in terms of the medium in which the time reversal is performed. When k is real-valued the
conjugate-wave Green function is identical to the incoming-wave Green function so that
the two forms of time reversal coincide.

4.5 The angular-spectrum expansion of the scalar wavelet field

A popular canonical radiation pattern is that of a so-called scalar wavelet field, which is
given by (Kaiser, 2003, 2004, 2005)

f (s,ω) = f (α,ω) = eka cosα

eka
, (4.30a)

where a > 0 is a positive real parameter and α is the polar angle at which the radiation pat-
tern is measured. We will show in Chapter 5 that the wavelet source is compactly supported
within a sphere of radius a that is centered at the origin, which gives physical meaning to
the parameter a in its radiation pattern. For the sake of simplicity we will assume through-
out this section that the wavenumber k is strictly real, corresponding to a non-dispersive
background medium. The results are easily generalized to dispersive media.

The wavelet radiation pattern is seen to be rotationally symmetric about the polar (z)
axis, which peaks in the forward direction (α = 0) where it is unity. We show in Fig. 4.4 the
radiation pattern for two values of ka together, for comparison, with the radiation patterns
of a planar circular source supported on the z = 0 plane having the same radius a as that of
the 3D wavelet source. This radiation pattern, normalized to unity in the forward direction,
is found to be given by

f (α,ω) = 2
J1(ka sinα)

ka sinα
. (4.30b)

On examining Fig. 4.4 it can be seen that, although the disk radiation patterns have
smaller central lobes than the wavelet patterns for a given radius, they have the unfor-
tunate properties of possessing large side lobes and radiating equally in the right and left
half-spaces.9 The wavelet radiation pattern, by comparison, has no side lobes and very
little back radiation.

The scalar wavelet field can be computed outside the source region (for r > a) using
the angular-spectrum expansion in either of the two forms given in Eqs. (4.15a) and
(4.18a) with the angular spectrum computed from the scalar wavelet radiation pattern using
Eqs. (4.20). We will use the Cartesian form of the expansion here and leave the computa-
tion of the field via the angle-variable form as a problem at the end of the chapter.

On making use of Eqs. (4.4b) and (4.20b) and using cylindrical coordinates for r we can
express the angular-spectrum expansion of the wavelet field in the form

9 The back radiation can be significantly reduced or even removed entirely by employing both a singlet and a
doublet component to the surface disk source (see Sections 1.8, 2.12 and Section 5.2 in the following chapter).
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�Fig. 4.4 The radiation patterns of a wavelet field for a wavelet parameter a = 1 and for wavelengths ofλ = a/10 = 0.1
andλ = a = 1 (dotted). Shown for comparison (drawn solid) are the radiation patterns of a circular disk source
supported on the plane z = 0 and having the same radius as that of the wavelet source. The wavelet and disk
radiation patterns with the smaller central lobes correspond to the smaller of the two wavelengths.

U+(r,ω) = 1

(2π )2

∫ ∞
−∞

d2Kρ

A(k±,ω)︷ ︸︸ ︷
2π i

γ

e±aγ

eka
ei(Kρ ·ρ±γ z).

If we now transform to cylindrical coordinates for the spatial frequency variable Kρ the
above expression simplifies to become

U+(r,ω) = i
∫ ∞

0

Kρ dKρ
γ

e±aγ

eka
e±iγ z

J0(Kρρ)︷ ︸︸ ︷
1

2π

∫ π

−π
dβ eiKρ cos(β−φ)

= i
∫ ∞

0

Kρ dKρ
γ

e±aγ

eka
J0(Kρρ)e±iγ z. (4.31)

We show in Fig. 4.5 mesh plots of the real (top) and imaginary (bottom) parts of the
homogeneous part of the wavelet field computed using Eq. (4.31) band-limited to Kρ < k.
We employed a wavelet parameter a = 1 (equal to the radius of the wavelet source),
propagation distances z = 0, z = a and z = 2a and a wavelength of λ = a = 1. All
three plots can be considered to be stabilized back propagations from the far field (as given
by the radiation pattern) resulting from removing all evanescent components of the field
(see the discussion in Section 4.3). The plane z = 0 is internal to the wavelet source and,
hence, the field computed over this internal plane has no direct physical meaning, while
the field computed over the bounding plane to the source (at z = a) is in error due to the
non-inclusion of the evanescent-wave components of the field. On the other hand, the field
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�Fig. 4.5 Mesh plots of the real (top) and imaginary (bottom) parts of the wavelet field having the parameter a = λ
band-limited to homogeneous plane waves over the planes z = 0, z = a and z = 2a for a wavelength
λ = a = 1.

computed over the plane z = 2a will be quite accurate since it is a wavelength from the
source for the wavelength of λ = 1 so that the evanescent-wave components of the field
would be considerably damped, with the result that the homogeneous component of the
field would be a good approximation to the total field.

4.6 Angular-spectrum expansions in two space dimensions

In this section we derive the plane-wave (angular-spectrum) expansions for the 2D Green
function and the solutions to the 2D radiation problem as well as the 2D Dirichlet and Neu-
mann boundary-value problems. These expansions can be employed for both forward and
back propagation of 2D wavefields in a manner completely parallel to their 3D counter-
parts. The advantage of these 2D expansions over their 3D counterparts is computational
speed in computer simulations both of forward and of inverse problems in wave propaga-
tion and scattering.

We can obtain the angular-spectrum expansion of the 2D Green function following
steps identical to those used in obtaining the Weyl expansion of the 3D Green function
in Section 4.1. The Weyl expansion is not a coordinate-free representation of the Green
function and depends, in particular, on the selection of a specific coordinate axis relative
to which the decomposition into homogeneous and evanescent plane waves is performed.
In the 3D case this axis is, by convention, taken to be the z axis of the 3D right-handed
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Cartesian x, y, z system and it is convenient to employ the same coordinate axis for this
purpose in the 2D case. We thus will employ a 2D Cartesian system with coordinate axes x
and z (corresponding to the y = 0 plane in 3D) and represent the 2D outgoing-wave Green
function via the Fourier integral in 2D (cf. Section 2.2.1 of Chapter 2):

G+(R,ω) = −1

(2π )2

∫
d2K

eiK·R

K2 − k2
,

where now R = (X, Z) and K = (Kx, Kz) are defined on the (x, z) plane. Following the same
general procedure as was used to derive the Weyl expansion, we write the above integral
in the form

G+(R,ω) = −1

(2π )2

∫
dKx dKz

ei(KxX+KzZ)

K2
z − γ 2

, (4.32a)

where

γ =
⎧⎨⎩
√

k2 − K2
x if K2

x < �k2,

i
√

K2
x − k2 if K2

x > �k2.
(4.32b)

Following steps identical to those used in deriving the Weyl expansion, we perform the
Kz integration in Eq. (4.32a) to obtain the angular-spectrum expansion of the 2D Green
function (which we will refer to as the 2D Weyl expansion):

G+(R,ω) = −i

4π

∫ ∞
−∞

dKx
eik±·R

γ
, (4.33)

where the plus sign is used if Z > 0 and the minus sign if Z < 0, and we have defined

k± = x̂Kx ± γ ẑ.

Incoming- and conjugate-wave Green functions

The angular-spectrum expansion of the conjugate-wave Green function in 2D is obtained
by taking the complex conjugate of Eq. (4.33). We find that

G∗+(R,ω) = i

4π

∫ ∞
−∞

dKx
eik∓∗·R

γ ∗
,

where the top sign is used if Z > 0 and the bottom sign if Z < 0, and

γ ∗ =

⎧⎪⎪⎨⎪⎪⎩
√

k∗2 − K2
x if K2

x < �k2,

−i
√

K2
x − k∗2 if K2

x > �k2,
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and

k∓∗ = x̂Kx ∓ γ ∗ẑ

=

⎧⎪⎪⎨⎪⎪⎩
x̂Kx ∓

√
k∗2 − K2

x ẑ if K2
x < �k2,

x̂Kx ± i
√

K2
x − k∗2ẑ if K2

x > �k2.

The angular-spectrum expansion of the incoming-wave Green function G− is obtained
from that of G∗+ by simply replacing k by k∗.

All of the discussion relating to the angular-spectrum expansion of the 3D conjugate-
and incoming-wave Green functions presented in earlier sections applies equally well to
the 2D expansions of these quantities. In particular, the expansion for the incoming-wave
Green function is identical to that for the outgoing-wave Green function over the evanes-
cent region Kρ > k and differs by an overall sign and shift from outgoing to incoming
plane waves over the homogeneous region Kρ < k. In contrast with the expansion for the
outgoing-wave Green function, the plane waves over the homogeneous region thus prop-
agate inward from the half-space containing the field point R toward the origin, while the
evanescent plane waves still propagate in or near to the plane Z = 0 and decay expo-
nentially with distance |Z| from this plane. As mentioned earlier, these observations are
consistent with the fact that G− is an incoming-wave Green function so that it is to be
expected on intuitive grounds that it be composed of a superposition of incoming plane
waves.

4.6.1 The angular-spectrum expansion of the solution to the 2D radiation problem

Now consider a 2D source Q(r,ω) compactly supported within the 2D region τ0 that is
bounded by two infinite lines parallel to the x axis and located at z = z±. The radiated field
is given by Eq. (2.28) of Chapter 2,

U+(r,ω) =
∫
τ0

d2r′ G+(r− r′,ω)Q(r′,ω),

where r = (x, z) and G+ is the 2D outgoing-wave Green function to the Helmholtz equa-
tion. On substituting the 2D Weyl expansion into the above equation and restricting our
attention to field points lying outside the strip z− ≤ z ≤ z+ and performing some simpli-
fying algebra we obtain the result

U+(r,ω) =
√

k

2π
ei π4

∫ ∞
−∞

dKx

γ
A(k±,ω)eik±·r, (4.34a)

where the plus sign is used if z > z+ and the minus sign if z < z− and the “angular
spectrum” A(k±,ω) is given in terms of the source by
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A(k±,ω) = −i

√
1

8πk
e−i π4 Q̃(K,ω)|K=k± , (4.34b)

with

Q̃(K,ω) =
∫
τ0

d2r′ Q(r′,ω)e−iK·r′

being the 2D spatial Fourier transform of the source Q(r,ω).
We have used the specific form of the angular-spectrum expansion given in Eq. (4.34a)

in order that the angular spectra A(k±,ω) reduce to the radiation pattern of the 2D radiated
field expressed in terms of the propagation vectors k±. In particular, if we express that
radiation pattern given in Eq. (2.30) of Chapter 2 in terms of the propagation vectors k±
we obtain

f (s±,ω) = −
√

1

8πk
ei π4 Q̃(k±,ω) = A(k±,ω), (4.35)

where s± = k±/k is the unit vector along the direction of the propagation vector k±.

4.6.2 Two-dimensional forward and back propagation

The above results are seen to completely parallel those obtained in Sections 4.1 and 4.2.
Indeed, it can be easily verified that all of those results apply to the 2D case with minor
modification. For example, forward and back propagation are directly implemented using
Eq. (4.34a) by noting that the 1D spatial Fourier transform of the field or its normal deriva-
tive over any line z lying outside the source strip [z−, z+] is related to the angular spectrum
via the 2D version of Eqs. (4.21a) and (4.21b); i.e.,

Ũ+(Kx, z,ω) = √2πk
ei π4

γ
A(k±,ω)e±iγ z, (4.36a)

where

Ũ+(Kx, z,ω) =
∫

dx U+(x, z,ω)e−iKxx

is the 1D spatial Fourier transform of the field on the line z. An entirely analogous argument
yields the result

Ũ′+(Kx, z,ω) = ±i
√

2πkei π4 A(k±,ω)e±iγ z, (4.36b)

where Ũ′+ is the 1D spatial Fourier transform of the Neumann boundary value on the line
z, and the + sign is used if z > z+ and the minus sign if z < z−.

The location of the line z is arbitrary so long as it lies outside the source strip [z−, z+]
so that the above equations can be used to relate the spatial Fourier transforms of the fields
over any two lines lying on the same side of the source strip. In particular, in analogy to
Eq. (4.22a) we have that

Ũ+(Kx, z,ω) = Ũ+(Kx, z0,ω)e±iγ (z−z0), (4.37)
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where the plus sign is used if z and z0 lie to the right of the source strip and the minus
sign applies if they both lie to the left of the source strip. Again, as in the 3D case, forward
propagation of the boundary value field Ũ+(Kx, z0,ω) corresponds to the case in which
exp[±iγ (z − z0)] decays with increasing |z − z0| and back propagation of this boundary-
value field to the case in which exp[±iγ (z − z0)] increases (grows) with increasing
|z − z0|. The actual fields are, of course, computed via an inverse 1D Fourier transform
of Ũ+(Kx, z,ω). The case of Neumann field data is treated in an entirely parallel manner.

Example 4.6 As an example we implemented the 2D angular spectra and 2D Rayleigh–
Sommerfeld (RS) solution given by Eq. (2.48) of Chapter 2. The 2D RS solution was
shown in Example 2.8 of Chapter 2 to be given by

U+(x, z) = ± ik

2

∫ ∞
−∞

dx′ U+(x′, z0)H+1 (k|r− r′|) z− z′

|r− r′|
∣∣∣∣
z′=z0

, (4.38)

where H+1 is the first-order Hankel function of the first kind and the plus sign is used for
propagation into the r.h.s. z > z0 > z+ and the minus sign for propagation into the l.h.s.
z < z0 < z−, where [z−, z+] is the source strip.

Unlike the RS solution, the angular-spectrum expansion can be used for both forward
and back propagation and is given by Eq. (4.34a), with the angular spectrum determined
from Dirichlet or Neumann data over any line lying outside the source strip via Eqs. (4.36).
As in the 3D case, the process of forward propagation is stable and, in principle, identical
to the RS solution. On the other hand, the process of back propagation is unstable due to
the growth of the evanescent plane waves when |z| < |z0|, where z0 is the boundary-value
line and z the line onto which the propagated or back-propagated field is to be evaluated. To
stabilize the back-propagation operation, we can either limit the angular-spectrum expan-
sion to only homogeneous plane waves as discussed in Section 4.4 or use the approximate
form of back propagation given in Eq. (4.26) or Eq. (4.27) of that section. It is computa-
tionally easier to employ Eq. (4.27), which, for the non-dispersive media assumed in these
simulations, simply requires us to replace γ by γ ∗ in the angular-spectrum expansion of
the fields.

We show in Fig. 4.6 plots of the forward-propagated field from a rectangular-shaped
boundary-value field having a total extent of 20λ on the line z0 = 0, for propagation
distances ranging from z = 50λ to z = 200λ with 50λ separation. The boundary-value
field can be interpreted as being that generated by an infinite slit when illuminated by a
plane wave normally incident to the plane of the slit. The solid curves were computed
using the RS formula given in Eq. (4.38), while the dotted curves were computed using
the 2D angular-spectrum expansion Eq. (4.34a) with the angular spectrum computed from
the Fourier transform of the boundary value according to Eq. (4.36a). It is apparent from
Fig. 4.6 that the difference between the two computations increases as the propagation dis-
tance z increases. We have magnified the plots over an interval about the central peak of the
propagated wave fields in Fig. 4.7, which clearly shows the increasing error with increas-
ing propagation distance. This increase in error with increasing propagation distance is due
to the fact that the angular-spectrum expansion is implemented using an FFT with a fixed
sampling interval δx on the x axis and fixed overall interval size Lx = N δx, where N is the
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�Fig. 4.6 The forward-propagated fields from a rectangular-shaped boundary-value field of width equal to 20λ at z0 = 0
computed using the 2D RS formula (drawn solid) and the angular spectrum truncated to only homogeneous plane
waves (dotted). The curves correspond to propagation distances of z = 50λ (top left), z = 100λ (top right),
z = 150λ (lower left) and z = 200λ (lower right).

number of points used in the FFT. As the propagation distance increases, the field expands
and eventually spills outside the (fixed) interval, with the result that the angular-spectrum
computation will eventually suffer from aliasing in the space domain. This aliasing effect
can be reduced by increasing the interval size L on the boundary-value line (by increas-
ing the total number of points N used in the FFT). However, as we will discuss later in
connection with the Fresnel transform, the required interval size increases linearly with z,
so such a buffering scheme will require extremely large array sizes, which limits the use
of the angular-spectrum expansion for field-propagation computations at large propagation
distances.

Example 4.7 As a second example we implemented 2D back propagation using the approx-
imate form of field back propagation given by the 2D version of Eq. (4.27) of Section 4.4.
The field data were computed over a line z > z0 ≥ 0 using the RS formula given in the
previous example and the back propagation was performed by taking the inverse Fourier
transform of these data and using Eq. (4.27). We show in Fig. 4.8 the stabilized back-
propagated fields computed from two of the four RS forward-propagated fields shown in
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�Fig. 4.7 Magnified versions of the forward-propagated fields shown in Fig. 4.6.
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�Fig. 4.8 The forward-propagated fields, back-propagated fields and ideal rectangular-shaped boundary-value field for
propagation and back-propagation distances of z = 50λ (top) and z = 100λ (bottom).



146 Angular-spectrum and multipole expansions

Fig. 4.6. If the back-propagation is not stabilized the back-propagated field will diverge
due to small discrepancies between the forward-propagated field computed using the angu-
lar spectrum and that obtained using the RS formula. This difference thus plays the role
of additive noise, which becomes amplified in the (unstabilized) back-propagation pro-
cess. A close comparison of the two back-propagated fields indicates that they are almost
identical and equal to the ideal rectangular boundary-value field spatially band-limited to
|Kx| < k.

4.6.3 The angle-variable form of the 2D angular-spectrum expansion

The angle-variable form of the 2D Weyl expansion is obtained by making the transfor-
mation

Kx = k sinα, γ = k cosα, k± → ks = k sinα x̂+ k cosα ẑ,

which transforms the 2D Weyl expansion into the angle-variable form

G+(R,ω) = −i

4π

∫
C±

dα eiks·R, (4.39a)

where C± are the contours shown in Fig. 4.9, and C+ is used if Z > 0 and C− if Z < 0. By
making the same transformation as in Eq. (4.34a) the angle-variable form of the angular-
spectrum expansion of the field is found to be

U+(r,ω) =
√

k

2π
ei π4

∫
C±

dα A(ks,ω)eiks·r, (4.39b)

where now C+ is used if z > z+ and C− if z < z−, and where we have used the multiplying
factor

√
k/(8π )ei π4 so that the angular spectrum A(ks,ω) is equal to the 2D radiation pattern

given in Section 2.4.1 of Chapter 2:

A(ks,ω) = f (s,ω) = −
√

1

8πk
ei π4 Q̃(ks,ω). (4.39c)

The relationship Eq. (4.39c) between the 2D radiation pattern and the source spatial Fourier
transform forms the basis for one formulation of the inverse source problem (ISP) in two
space dimensions that will be treated in Chapter 5.
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�Fig. 4.9 Theα integration contours of integration for the 2DWeyl expansions of G+. The solid-line contour labeled C+ is used
if Z > 0 and the dashed contour labeled C− if Z < 0.

4.7 The Fresnel approximation and Fresnel transform

The RS boundary-value problems can be solved using either the Rayleigh–Sommerfeld
(RS) formulas or the angular-spectrum expansion. The angular-spectrum expansion has
the apparent advantage that it can be implemented digitally using the fast Fourier trans-
form (FFT). However, as we found in Example 4.6, this apparent advantage disappears
if the propagation distance is much larger than the wavelength. As we discussed in that
example, the reason for this is that a freely propagating outgoing wave will eventually
expand as it propagates so that the number of spatial samples required in the FFT increases
with propagation distance. A way around this difficulty is possible by use of the Fres-
nel approximation (Goodman, 1968), which, when implemented digitally, is known as the
Fresnel transform (Hamam and de Bougrenet de la Tocnaye, 1995). This transform can
be used to implement free-space propagation and back propagation between two planes z0

and z if the propagation distance h = |z − z0| between the two planes is much larger than
the wavelength. The advantage of the Fresnel transform is that it is self-scaling in that it
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employs a sampling interval δx(h) over any plane that varies linearly with the propagation
distance h. Thus, for example, if the wavefield is outgoing from the plane z0 then the sam-
pling interval required on the plane z > z0 will be proportional to h = |z − z0|, with the
result that the total number of samples is preserved while the total area over which the field
is computed expands with increasing propagation distance and spatial aliasing is avoided.
In this section we derive the Fresnel transform for the RS Dirichlet problem for both two
and three space dimensions.

4.7.1 The 3D Fresnel approximation and Fresnel transform

The propagation of outgoing wavefields from an arbitrary data plane z = z0 can be imple-
mented using the Rayleigh–Sommerfeld formulas of Chapter 2. In particular, we have that

U+(r,ω) = ∓2
∫

z0

dS′ U+(r′,ω)|z′=z0

∂

∂z′
G+(r− r′)|z′=z0 , (4.40)

where the minus sign is used for propagation into the r.h.s. z > z0 and the plus sign
for propagation into the l.h.s. z < z0, with analogous formulas for Neumann boundary
conditions. The normal derivative of the outgoing-wave Green function is found to be

∂

∂z′
G+(r− r′) = − 1

4π

eik|r−r′|

|r− r′|
(
−ik

z− z′

|r− r′| +
z− z′

|r− r′|2
)

,

which, when substituted into Eq. (4.40), yields the propagation formula

U+(r,ω) = ± 1

2π

∫
z0

dS′ U+(r′,ω)|z′=z0

eik|r−r′|

|r− r′|
(
−ik

z− z0

|r− r′| +
z− z0

|r− r′|2
) ∣∣∣∣

z′=z0

.

The 3D Fresnel approximation

In three space dimensions we have that

|r− r′| = |z− z′|
√

1+ (x− x′)2 + (y− y′)2

(z− z′)2
∼ |z− z′| + (x− x′)2 + (y− y′)2

2|z− z′| ,

which is valid if |z− z′| � √
(x− x′)2 + (y− y′)2. We conclude that in this case

∂

∂z′
G+(r− r′) = − 1

4π

eik|r−r′|

|r− r′|
(
−ik

z− z′

|r− r′| +
z− z′

|r− r′|2
)

∼ − 1

4π

e
ik|z−z′|+ik (x−x′)2+(y−y′)2

2|z−z′ |

|z− z′|
(
−ik

z− z′

|z− z′| +
z− z′

|z− z′|2
)

= ± ik

4π

e
ik|z−z′|+ik (x−x′)2+(y−y′)2

2|z−z′ |

|z− z′| ,
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where the plus sign is used if z > z0 and the minus sign if z < z0. The Fresnel approxima-
tion in 3D is then given by

U+(r,ω) = − ik

2π

∫
z0

dS′ U+(r′)|z′=z0

e
ik|z−z0|+ik (x−x′)2+(y−y′)2

2|z−z0|

|z− z0| . (4.41)

A sufficient condition for the validity of the 3D Fresnel approximation is that

|z− z0|3 � π

4λ
δρ4|max,

where δρ = √(x− x′)2 + (y− y′)2 and the maximum is to be taken relative to all source
points in the boundary-value plane and all field points on the plane z for which the field is
to be computed.

The 3D Fresnel transform

If we expand out the exponentials in Eq. (4.41) we can write the Fresnel approximation in
the form

U+(r,ω) = − ik

2π

eik|z−z0|

|z− z0|e
i k

2
x2+y2

|z−z0|
∫

z0

dS′ U+(r′,ω)|z′=z0

× e
i k

2
x′2+y′2
|z−z0| e

−i k
|z−z0| (xx′+yy′)

. (4.42)

Equation (4.42) can be implemented in three steps.

1. Multiplication of the boundary-value field U+(r′,ω)|z′=z0 by exp(i k
2

x′2+y′2
|z−z0| ), yielding

F(x′, y′) = U+(r′,ω)|z′=z0 e
i k

2
x′2+y′2
|z−z0| .

2. Two-dimensional spatial Fourier transformation of F. After the 2D Fourier transform
has been computed the integral in Eq. (4.42) is given by∫

z0

dS′ F(x′, y′)e−i k
|z−z0| (xx′+yy′) = F̃(Kx, Ky)|Kx= k

|z−z0| x,Ky= k
|z−z0| y

, (4.43)

where F̃(Kx, Ky) is the 2D spatial Fourier transform of F.
3. Multiplication of the result obtained in Eq. (4.43) by

C(x, y) = − ik

2π

eik|z−z0|

|z− z0|e
i k

2
x2+y2

|z−z0 | .

It is important to note that in a computer implementation of the Fresnel transform the
sampling intervals on the boundary-value plane δx0 and δy0 are different from those on the
observation plane located at z. In particular, due to the FFT we have that

δKx δx0 = 2π

N
, δKy δy0 = 2π

N
,
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where N is the total number of sample points for x and y on the boundary-value plane
z = z0. But, from Eq. (4.43),

Kx = k

|z− z0|x, Ky = k

|z− z0|y,

so that

δx = |z− z0|
k

δKx = |z− z0|
k

2π

N δx0
= λ |z− z0|

N δx0
, (4.44a)

δy = |z− z0|
k

δKy = |z− z0|
k

2π

N δy0
= λ |z− z0|

N δy0
, (4.44b)

where δx and δy are the sample spacings on the plane z. Thus, the sampling interval on the
observation plane increases linearly with propagation distance. For this reason, the Fresnel
transform is sometimes referred to as a self-scaling transform.

Back propagation: the inverse Fresnel transform

We can invert the Fresnel transform to approximately recover the boundary-value field
on the plane z = z0 from the propagated field on the plane z. To do this we simply
invert the three steps that were used above to compute the field at z from the boundary
value at z0.

1. Multiplication of the field U+(x, y, z,ω) on the plane z by

C−1(x, y) = 2π i

k
|z− z0|e−ik|z−z0|e−i k

2
x2+y2

|z−z0| .

2. Inverse Fourier transformation of F̃ = C−1(x, y)U+(x, y, z,ω). Once the inverse trans-
form of F̃ has been computed the field on the boundary-value plane is given by

U+(x, y, z0,ω) = exp

(
−i

k

2

x2 + y2

|z− z0|
)

F(x, y, z0,ω),

where F(x, y, z0,ω) is the inverse Fourier transform of F̃.

Note again that, in a computer implementation using the FFT, care has to be taken that
the correct sample spacing is employed at z and at z0. On the observation plane the
sample spacing is defined by Eq. (4.44), while on the boundary-value plane it is δx0

and δy0.
Finally, we note that the forward and inverse Fresnel transforms form a perfect pair just

as the forward and inverse discrete Fourier transforms (DFTs) do. Thus, for example, if an
arbitrary boundary-value field U0 over the plane z = 0 is forward propagated some distance
z using the forward Fresnel transform and then the resulting field over the z plane (or line) is
back propagated to z = 0 using the inverse Fresnel transform, the original boundary-value
field U0 will be exactly reconstructed. However, if the forward propagation is computed
using the (in principle exact) RS formula then application of the inverse Fresnel transform
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to this forward-propagated field will not exactly yield the original boundary-value field
U0. The reason for this is that the exactly forward-propagated field will not include any
evanescent-wave components, so, at best, a low-pass-filtered version of U0 will result (see
Example 4.7). However, the reconstruction will also be in error due to the approximate
nature of the Fresnel approximation which forms the basis of the forward and inverse
Fresnel transforms.

4.7.2 The 2D Fresnel approximation

In two space dimensions the RS formulas are given by (cf. Eqs. (2.49) of Chapter 2)

U+(x, z) = ± ik

2

∫ ∞
−∞

dx′ U+(x′, z0)H+1 (k|r− r′|) z− z′

|r− r′|
∣∣∣∣
z′=z0

, (4.45)

where the plus sign is used for propagation into the r.h.s. z > z0 and the minus sign for
propagation into the l.h.s. z < z0.

If the propagation distance |z − z′| is sufficiently large relative to the maximum lateral
extent of the boundary-value field we can make the approximation

|r− r′| = |z− z′|
√

1+ (x− x′)2

(z− z′)2
≈ |z− z′| + 1

2

(x− x′)2

|z− z′| . (4.46)

Moreover, for large values of its argument we have that

H+1 (k|r− r′|) ∼
√

2

kπ |r− r′|e
−i3/(2π )eik|r−r′|,

which, when coupled with Eq. (4.46), yields the result

H+1 (k|r− r′|) ∼
√

2

kπ |z− z′|e
−i3/(2π )e

ik

(
|z−z′|+ 1

2
(x−x′)2
|z−z′ |

)
. (4.47)

Substituting Eq. (4.47) into Eq. (4.45) and using the fact that

z− z′

|r− r′| ∼
z− z′

|z− z′| = ±1, |z− z′| � 0,

then yields the 2D Fresnel approximation

U+(x, z) = ∓
√

k

2π

eik|z−z0|ei k
2

x2
|z−z0|√|z− z0|

∫ ∞
−∞

dx′ U+(x′, z0)e
i k

2
x′2
|z−z0| e

−ik x′x
|z−z0| , (4.48)

where the plus sign is used if z > z0 and the minus sign if z < z0 and the approximation
requires that |z− z0| � λ.
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The 2D Fresnel transform

The 2D Fresnel approximation defined in Eq. (4.48) can be implemented in three steps.

1. Multiplication of the boundary-value field U+(x′, z0) by exp(i k
2

x′2
|z−z0| ), yielding

F(x′) = U+(x′, z0)e
i k

2
x′2
|z−z0 | .

2. Spatial Fourier transformation of F. After the Fourier transform has been computed the
integral in Eq. (4.48) is given by∫ ∞

−∞
dx′ F(x′)e−i k

|z−z0| xx′ = F̃(Kx)|Kx= k
|z−z0| x

, (4.49)

where F̃(Kx) is the spatial Fourier transform of F.

3. Multiplication of the result obtained in Eq. (4.49) by

C(x) = ∓
√

k

2π

eik|z−z0|ei k
2

x2
|z−z0 |√|z− z0| .

As mentioned earlier in connection with the 3D Fresnel transform, in a computer imple-
mentation of the 2D Fresnel transform the spatial Fourier transform would be implemented
using the FFT. In this implementation the sampling interval on the boundary-value plane
z0 is different from the sampling interval on the observation plane located at z > z0. In par-
ticular, the sampling interval on the observation plane increases linearly with propagation
distance and is connected with the sampling interval on the boundary-value plane at z0 via
the equation

δx = |z− z0|
k

δKx = |z− z0|
k

2π

N δx0
= λ |z− z0|

N δx0
. (4.50)

Example 4.8 As an example we implemented the 2D Fresnel transform and 2D Raleigh–
Sommerfeld (RS) solution given by Eq. (4.38) in Example 4.6. We show in Fig. 4.10 plots
of the real and imaginary parts of the forward-propagated fields from a rectangular-shaped
boundary-value field having a total extent of 20λ on the line z0 = 0 and for propaga-
tion distances ranging from z = 10λ to z = 40λ in 10λ steps. The boundary-value field
can be interpreted as being that generated by an infinite slit when illuminated by a plane
wave normally incident to the plane of the slit. The solid curves were computed using the
RS formula given in Eq. (4.38) of Example 4.6, while the dotted curves were computed
using the 2D Fresnel transform as outlined above. It is apparent from Fig. 4.10 that the
difference between the results from the two computations decreases as the propagation
distance z increases. Thus, while the angular-spectrum expansion implemented in Exam-
ple 4.6 using the FFT degrades with increasing propagation distance due to spatial aliasing,
the Fresnel transform becomes more accurate as the propagation distance increases. The
two computational schemes thus complement each other.
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�Fig. 4.10 The real (top four) and imaginary (bottom four) forward-propagated fields from a rectangular-shaped
boundary-value field of width equal to 20λ at z0 = 0 computed using the 2D RS formula (drawn solid) and the 2D
Fresnel transform (dotted). The curves correspond to propagation distances of z = 10λ (top left) to z = 40λ
(bottom right) in steps of 10λ.

4.8 Multipole expansions

We showed in Section 3.3 that the component fields fl(kr)Ym
l (r̂) with l = 0, 1, . . . ,

m = −l,−l + 1, . . . , l form a complete set of functions for expanding solutions to
the Helmholtz equation. The radial functions fl(kr) are linear combinations of spherical
Bessel and Neumann functions, and we have denoted the azimuthal and polar angles
of the field point r in the argument of the spherical harmonics by the unit vector r̂.
The particular selection of the radial functions depends on the far-field behavior of
the field and, as shown in Examples 3.5 and 3.4 of Section 3.3, the radial functions
to be selected are the spherical Hankel functions of the first kind h+l (kr) of order l
if the field is required to satisfy the outgoing-wave radiation condition (SRC) and are
the spherical Bessel functions jl(kr) of order l if the field is the difference between
an outgoing- and an incoming-wave field at infinity. The spherical Hankel functions
have singularities at the origin r = 0 and satisfy the SRC, so the component fields
h+l (kr)Ym

l (r̂) are an appropriate set of functions for representing radiated fields. On the
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other hand, the spherical Bessel functions have no singularities, so the component fields
jl(kr)Ym

l (r̂) are an appropriate set of functions for representing fields that satisfy the homo-
geneous Helmholtz equation over all of space. We will refer to expansions of fields in
terms of the component functions h+l (kr)Ym

l (r̂) or jl(kr)Ym
l (r̂) in general as multipole

expansions.

4.8.1 Multipole expansion of the radiated field

We can expand the radiated field U+ in a series of the outgoing-wave multipole fields
h+l (kr)Ym

l (r̂) by making use of the multipole expansion of the outgoing-wave Green func-
tion G+ derived in Section 3.4 of Chapter 3:

G+(r− r′,ω) = −ik
∞∑

l=0

l∑
m=−l

jl(kr<)h+l (kr>)Ym
l (r̂)Ym

l
∗(r̂′), (4.51)

where r< = min r, r′ and r> = max r, r′. If we substitute the above expansion into the
primary field solution for the radiated field and restrict our attention to field points r lying
outside the smallest sphere that completely contains the source volume τ0, we obtain after
some algebraic manipulation

U+(r,ω) = −ik
∞∑

l=0

l∑
m=−l

qm
l (ω)h+l (kr)Ym

l (r̂), (4.52a)

where it is assumed that r > a0, with a0 being the radius of the smallest sphere that is
centered at the origin and completely encloses the source volume τ0, and the multipole
moments qm

l (ω) are given by

qm
l (ω) =

∫
τ0

d3r′ Q(r′,ω)jl(kr′)Ym
l
∗(r̂′). (4.52b)

The multipole moments qm
l (ω) were first introduced in connection with essentially non-

radiating sources in Section 1.7.3 of Chapter 1 and Section 2.7.2 of Chapter 2. In those
discussions it was shown that the multipole moments qm

l (ω) decay exponentially fast with
index l > �ka0. It then follows that the multipole expansion of the field radiated by a
source with radius a0 is effectively limited to l values for which l < �ka0. This is in anal-
ogy with the angular-spectrum expansion of the field, which is effectively limited to weakly
inhomogeneous plane-wave components. The multipole expansion Eq. (4.52a) plays an
important role in various inverse problems associated with the wave and Helmholtz equa-
tions and will be re-visited many times in later chapters.
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Example 4.9 The conjugate-wave Green function G∗+(R, k) admits the multipole expansion

G∗+(r− r′,ω) = ik∗
∞∑

l=0

l∑
m=−l

jl(k
∗r<)h−l (k∗r>)Ym

l (r̂)Ym
l
∗(r̂′), (4.53)

where we have used the easily proven relationships

j∗l (kr<) = jl(k
∗r<), h+l

∗
(kr>) = h−l (k∗r>), (4.54)

where h−l is the spherical Hankel function of the second kind. In the special case of non-
dispersive media in which k = 0, we then find that

sin(k|r− r′|)
|r− r′| = i2π [G+(r− r′,ω)− G∗+(r− r′,ω)]

= 4πk
∞∑

l=0

l∑
m=−l

jl(kr>)jl(kr<)Ym
l (r̂)Ym

l
∗(r̂′)

= 4πk
∞∑

l=0

l∑
m=−l

jl(kr)jl(kr′)Ym
l (r̂)Ym

l
∗(r̂′), (4.55)

where we have used the result that h+l (kr>)+h−l (kr>) = 2jl(kr>) and obtained the last line
by noting that the product jl(kr>)jl(kr<) is a symmetric function of r> and r< and hence
could be replaced by jl(kr)jl(kr′).

4.8.2 Forward and back propagation using the multipole expansion

The multipole expansion can also be the basis for field forward- and back-propagation
algorithms. In particular, if we evaluate the field over some sphere having a radius a larger
than the source radius a0, we find using Eq. (4.52a) that

U+(r,ω)|r=a = −ik
∞∑

l=0

l∑
m=−l

qm
l (ω)h+l (ka)Ym

l (r̂), (4.56a)

from which we find that

qm
l (ω) = i

k

um
l (ω)

h+l (ka)
, (4.56b)

where

um
l (ω) =

∫
d�U+(r,ω)|r=aYm

l
∗(r̂) (4.56c)

are the projections of the boundary field onto the spherical harmonics. The multipole
moments computed using Eq. (4.56b) determine the field everywhere outside the source
sphere r > a0 via the multipole expansion Eq. (4.52a). If r > a then the resulting expansion
is identical to the solution to the exterior boundary-value problem found in Example 3.5
of Chapter 3 and the expansion implements the process of field forward propagation.
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However, if r < a this expansion performs the process of field back propagation whereby
the multipole moments are computed from boundary-value data over the sphere r = a and
the results used in Eq. (4.52a) to compute the field over points that lie closer to the source
than the data sphere r = a.

The process of computing the field closer to the source than the data sphere is the process
of field back propagation developed in Section 4.3 using the angular-spectrum expansion.
Indeed, as was the case for back propagation implemented using the angular-spectrum
expansion, back propagation implemented using the multipole expansion is also exact but
unstable and corresponds to the solution of an ill-posed problem rather than being the
solution of a true interior boundary-value problem. The reason for the instability can be
seen if we substitute the expression Eq. (4.56b) into Eq. (4.52a) to express the field directly
in terms of the um

l (ω). We find that

U+(r,ω) =
∞∑

l=0

l∑
m=−l

h+l (kr)

h+l (ka)
um

l (ω)Ym
l (r̂). (4.57)

Now, although Eq. (4.57) is, in principle, exact for r > a0, the factor

Al = h+l (kr)

h+l (ka)

will grow exponentially fast with index l if l > �kr. The reason for this is that the spherical
Hankel functions h+l (x) grow exponentially fast with index l for l > x. It then follows that,
since r < a in field back propagation, the factor Al will grow exponentially fast with l for
l > �kr. Thus, any small error in the boundary-value coefficients um

l (ω) will be amplified
exponentially for such index values, leading to large errors in the back-propagated field. In
order to stabilize the back propagation it is necessary to limit the l values to l < �kr. How-
ever, as discussed earlier, the radiated field multipole moments and, hence, the boundary-
value field expansion coefficients um

l (ω) will be effectively zero for l > �ka0, so it is
prudent to limit the expansion Eq. (4.57) to this l range since the expansion coefficients in
the intermediate range �ka0 < l < �kr will be effectively zero anyway.

Example 4.10 The multipole expansion can be used to relate the generalized Fourier coef-
ficients of the Dirichlet and Neumann boundary conditions over any sphere lying outside
the source volume as was done for plane boundaries via the angular-spectrum expansion
in Example 4.4. In particular, it follows from Eq. (4.57) that

vm
l (ω) =

∫
d�

∂

∂r
U+(r,ω)|r=aYm

l
∗(r̂) = kh+′l (ka)

h+l (ka)
um

l (ω),

which states that the projections of U+ and its normal derivative onto the spherical har-
monics are related via the equation

vm
l (ω) = kh+′l (ka)

h+l (ka)
um

l (ω). (4.58)
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Equation (4.58), which can also be derived from the second Helmholtz identity, is the
spherical-wave equivalent to Eq. (4.23) of Example 4.4 and is also a special case of a
Dirichlet-to-Neumann map; it allows the Neumann boundary condition over any sphere
lying outside the source region to be computed from the Dirichlet condition and vice versa.

4.8.3 Back propagation in the interior boundary-value problem

Up to this point we have limited our discussion of the process of field back propagation to
outgoing-wave fields such as those radiated by compactly supported sources and to cases in
which the goal was to compute the field interior to some closed surface ∂τ that completely
encloses the source from boundary-value data over ∂τ . However, it is also possible to back
propagate wavefields that satisfy the homogeneous Helmholtz equation and are solutions of
an interior boundary-value problem. In this case the “source” of the field is boundary-value
data over a closed surface ∂τ that completely encloses a source-free region τ and back
propagation consists of computing the field throughout the annular region lying between
∂τ and some closed surface ∂τ< that is interior to ∂τ from boundary-value data specified
over ∂τ<.

As an example of field back propagation such as described above we consider a source-
free region bounded by two concentric spheres centered at the origin and having radii
a and a0, with a0 < a. The interior boundary-value problem for Dirichlet or Neumann
data specified over the exterior sphere is given by multipole expansions in Example 3.7 of
Chapter 3. For example, for the case of Dirichlet data we found in that example that

U+(r,ω) =
∞∑

l=0

l∑
m=−l

um
l (a)

jl(ka)
jl(kr)Ym

l (r̂), (4.59a)

where

um
l (a) =

∫
d�′ Ym

l
∗(r̂′)U+(r′,ω)|r′=a (4.59b)

are the generalized Fourier coefficients of the boundary-value data over the bounding
sphere having radius a. The multipole expansion Eq. (4.59a) converges throughout the
interior of the bounding sphere and, in particular, is valid everywhere over the interior con-
centric sphere having radius a0 < a. We thus conclude that we can compute the multipole
moments um

l (a)/jl(ka) from Dirichlet data over this sphere according to the formula

um
l (a)

jl(ka)
= um

l (a0)

jl(ka0)
, (4.60a)

where

um
l (a0) =

∫
d�′ Ym

l
∗(r̂′)U+(r′,ω)|r′=a0 . (4.60b)
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The multipole expansion Eq. (4.59a) can then be written in terms of the Fourier coefficients
um

l (a0) in the form

U+(r,ω) =
∞∑

l=0

l∑
m=−l

um
l (a0)

jl(ka0)
jl(kr)Ym

l (r̂). (4.61)

Equation (4.61) converges everywhere within the exterior bounding sphere having radius
a > a0 and thus performs the process of field back propagation from the surface of the inte-
rior sphere to all points within the annular region bounded by the two concentric spheres.
However, just as the field back propagation was unstable for outgoing-wave fields, the
same is true for back propagation implemented according to Eq. (4.61). In particular, the
spherical Bessel functions jl(x) decay exponentially fast with l > x, so the ratio

η(r, a0) = jl(kr)

jl(ka0)

will be well behaved for all l values if r < a0 but will grow exponentially fast for r > a0

when l > ka0. Thus, in practice only a stabilized version of Eq. (4.61) is useful where
the expansion is limited to l < ka0. This, of course, is completely analogous to truncating
the angular-spectrum expansion to homogeneous plane waves. In fact, as we showed in
Section 3.4.2 of Chapter 3, the evanescent component of outgoing-wave fields corresponds
to multipole components of such fields for which l > ka0, where a0 is the source radius.

Although back propagation for solutions to the homogeneous Helmholtz equation as
developed above is unstable, it is, nevertheless, mathematically exact and can be used to
establish fundamental results and theorems related to this equation. In particular, it can be
used to continue a solution to the homogeneous Helmholtz equation specified over a given
region τ< into all points lying in a larger region τ> ⊃ τ< in much the same way as an
analytic function is extended into larger regions of the complex plane via the process of
analytic continuation. For example, we showed in Section 4.2.2 that the radiation pattern
uniquely determines the radiated field everywhere outside the convex hull of the source
support τ0. If we then construct a sphere tangent to the convex hull and having radius a0

we can represent the field via Eq. (4.61), where all the expansion coefficients are computed
from the known radiated field over the surface of this sphere. This expansion will then
converge within a possibly larger sphere of radius a > a0 and in this way we can then
extend the region where the radiation pattern has uniquely determined the radiated field. By
continuing in this manner we can then determine the field everywhere outside the support
volume of the source.

4.8.4 Back propagation from the radiation pattern

By making use of the well-known result

h+l (kr) ∼ (−i)l+1 eikr

kr
as kr→∞
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we find using the multipole expansion Eq. (4.52a) that

U+(r,ω) ∼
⎧⎨⎩−i

∞∑
l=0

l∑
m=−l

(−i)l+1qm
l (ω)Ym

l (s)

⎫⎬⎭ eikr

r
,

where s = r/r is the unit vector along the direction of r. We conclude that the radiation
pattern f (s,ω) is given by

f (s,ω) =
∞∑

l=0

l∑
m=−l

f m
l (ω)Ym

l (s), (4.62a)

where the expansion coefficients

f m
l (ω) =

∫
d� f (s,ω)Ym

l
∗(s)

are related to the multipole moments via the equation

f m
l (ω) = −(−i)lqm

l (ω). (4.62b)

The expansion of the radiation pattern in terms of spherical harmonics in Eq. (4.62a)
will be used in the following chapter in one formulation of the inverse source problem.
We note that this expansion also establishes the result that the radiation pattern uniquely
determines the field everywhere outside the source region and in particular allows us to
back propagate the field from the radiation pattern using the multipole expansion. In this
case the result is slightly less general than the corresponding result established using the
angular-spectrum expansion in the last section in that the multipole expansion is valid only
outside the smallest sphere that completely contains the source. It then follows that the
multipole moments as determined from the radiation pattern via Eq. (4.62b) will determine
the field only outside this sphere and not everywhere outside the smallest convex region
that encloses τ0. However, the field can be further continued inside this sphere by using the
solution of the interior boundary-value problem developed in the previous section.

Finally, we note that back propagation from the radiation pattern, like that from data pre-
scribed on a sphere surrounding the source considered in the last section, will be ill-posed
(unstable) due to the requirement that the source multipole moments qm

l (ω) are required to
decay exponentially fast with index l > ka0. Thus, unless the generalized Fourier coeffi-
cients of the radiation pattern satisfy this requirement, the back-propagated field will grow
exponentially fast as the field point recedes from the sphere at infinity. This also indicates
that an ideal radiation pattern (one generated from a compactly supported source) must
have Fourier coefficients f m

l (ω) that effectively vanish when l > ka0, thus limiting the res-
olution (central lobe size) of any such radiation pattern. We will return to this issue in the
following chapter, where we treat the antenna synthesis problem formulated as an inverse
source problem.
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4.9 Multipole expansions of two-dimensional wavefields

We introduced the eigenfunctions appropriate to 2D wavefields in polar coordinates in
Section 3.6 of the last chapter and turn now to using these eigenfunctions to develop the
multipole expansion of the field radiated by a 2D source. We will employ a Cartesian
coordinate system with horizontal axis x, vertical axis y and polar coordinates r and φ so
that x = r cosφ and y = r sinφ. The radiated field in two space dimensions is given by
Eq. (2.28) of Chapter 2,

U+(r,ω) =
∫
τ0

d2r′ G+(r− r′,ω)Q(r′,ω),

where

G+(r− r′,ω) = − i

4
H+0 (k|r− r′|)

is the outgoing-wave Green function of the 2D Helmholtz equation. This Green function
was expanded in a 2D multipole expansion in Section 3.6 of Chapter 3:

G+(r− r′,ω) = − i

4

∞∑
n=−∞

Jn(kr<)H+n (kr>)ein(φ−φ′),

where r< = min r, r′ and r> = max r, r′. Here φ and φ′ are the polar angles of r and
r′, respectively. On making use of this expansion and assuming that the field point r lies
outside the smallest circle that completely encloses the source region τ0 we obtain after
some minor algebra the result

U+(r,ω) = − i

4

∞∑
n=−∞

qn(ω)H+n (kr)einφ , (4.63a)

where

qn(ω) =
∫
τ0

d2r′ Q(r′,ω)Jn(kr′)e−inφ′ (4.63b)

are the 2D multipole moments.
By making use of the asymptotic expression

H+n (kr) ∼
√

2

πk
e−i(n+ 1

2 ) π2
eikr

√
r

, kr→∞,

we find that the 2D multipole expansion Eq. (4.63a) becomes

U+(r,ω) ∼

f (s,ω)︷ ︸︸ ︷{
− i

4

√
2

πk
e−i π4

∞∑
n=−∞

(−i)nqn(ω)einφ

}
eikr

√
r

.

It then follows that the 2D radiation pattern admits the orthonormal expansion

f (s,ω) = 1

2π

∞∑
n=0

fn(ω)einφ , (4.64a)
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where the expansion coefficients fn(ω) are related to the source multipole moments qn(ω)
via the equation

fn(ω) = − i

4

√
8π

k
e−i π4 (−i)nqn(ω). (4.64b)

As was the case for the 2D angular-spectrum expansions treated in Section 4.6, all of the
results for 3D multipole fields have their 2D versions. In particular, the multipole expansion
Eq. (4.63a) can be expressed in terms of Dirichlet or Neumann boundary conditions over
any circle completely enclosing the source region τ0. For example, over any such circle
of radius a > a0, where a0 is the radius of the smallest circle enclosing the source, we
find that

U+(r,ω)|r=a = − i

4

∞∑
n=−∞

qn(ω)H+n (ka)einφ ,

from which it follows that

un(ω) = 1

2π

∫ 2π

0
dφ U+(r,ω)|r=ae−inφ = − i

4
qn(ω)H+n (ka),

so that

U+(r,ω) =
∞∑

n=−∞

H+n (kr)

H+n (ka)
un(ω)einφ . (4.65)

4.10 Connection between the angular-spectrum andmultipole
expansions

The outgoing-wave multipole field h+l (kr)Ym
l (r̂) was expanded into an angular-spectrum

expansion in Eq. (3.49) of Section 3.4.2 of Chapter 3:

h+l (kr)Ym
l (r̂) = (−i)l

2π

∫ π

−π
dβ
∫

C±
sinα dα Ym

l (s)eiks·r, (4.66a)

where, as usual, the contour C+ is used if z > 0 and the contour C− if z < 0. Conversely,
the plane waves can be expanded into the free multipole expansions (see Example 3.4 of
Chapter 3)

eiks·r = 4π
∞∑

l=0

l∑
m=−l

iljl(kr)Ym
l (r̂)Ym∗

l (s). (4.66b)

Equations (4.66) provide a bridge between the angular-spectrum and multipole expansions
that allows one to pass from one to the other with relative ease.

As an example of the connection between the two types of expansions we now derive
the multipole expansion Eq. (4.52a) directly from the angle-variable form of the angular-
spectrum expansion given in Eq. (4.18a). In order to do this we first note that, as shown
in Section 4.2.2, the angular spectrum A(ks,ω) over the weakly inhomogeneous part of the
spectra is equal to the radiation pattern f (s,ω) of the field and is the analytic continuation
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of this quantity over the evanescent part of the spectrum. If we then use the spherical-
harmonic expansion of the radiation pattern derived above, we conclude that

A(ks,ω) = −
∞∑

l=0

l∑
m=−l

(−i)lqm
l (ω)Ym

l (s),

where we have made use of Eq. (4.62b). If we now substitute the above expansion into the
angle-variable form of the angular-spectrum expansion we obtain the result

U+(r,ω) = ik

2π

∫ π

−π
dβ
∫

C±
sinα dα

A(ks,ω)︷ ︸︸ ︷⎧⎨⎩−
∞∑

l=0

l∑
m=−l

(−i)lqm
l (ω)Ym

l (s)

⎫⎬⎭ eiks·r

= −ik
∞∑

l=0

l∑
m=−l

qm
l (ω)

{
(−i)l

2π

∫ π

−π
dβ
∫

C±
sinα dα Ym

l (s)eiks·r
}

= −ik
∞∑

l=0

l∑
m=−l

qm
l (ω)h+l (kr)Ym

l (r̂),

where we have made use of Eq. (4.66a).
We have thus been able to derive the multipole expansion directly from the angular-

spectrum expansion. We note in this connection that in obtaining the above result we have
interchanged an infinite sum with an indefinite integral. A more careful analysis of this
interchange indicates that it is allowable only if the z coordinate of the field point r lies
outside the source volume τ0 that gave rise to the field U+. Thus, the multipole expansion
will converge only outside the smallest sphere surrounding the source, as we have already
determined in Section 4.8.

Example 4.11 The multipole expansion of the outgoing-wave multipole fields derived in
Section 3.4.2 of Chapter 3 was based on the relationship Eq. (4.20a) between the angular
spectra of an outgoing-wave field and its radiation pattern. In particular, for the outgoing-
wave multipole fields we have that

h+l (kr)Ym
l (r̂) ∼

f (r̂,ω)︷ ︸︸ ︷
(−i)(l+1)

k
Ym

l (r̂)
eikr

r
,

which, on making use of Eq. (4.20a), yields the result

A(s) = (−i)(l+1)

k
Ym

l (s),

from which we obtained the expansion given in Eq. (4.66a).
This expansion can also be derived from the multipole and angular-spectrum expan-

sions of the outgoing-wave Green function. In particular, if we assume an angular-spectrum
expansion for the multipole fields in the standard form
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h+l (kr)Ym
l (r̂) = ik

2π

∫ π

−π
dβ
∫

C±
sinα dα Am

l (s)eiks·r

and substitute this into the r.h.s. of the multipole expansion Eq. (4.51), we obtain the result

G+(r− r′,ω) = −ik
∞∑

l=0

l∑
m=−l

h+l (kr)Ym
l (r̂)︷ ︸︸ ︷

ik

2π

∫ π

−π
dβ
∫

C±
sinα dα Am

l (s)eiks·r jl(kr′)Ym
l
∗(r̂′)

=
∫ π

−π
dβ
∫

C±
sinα dα

⎧⎨⎩ k2

2π

∞∑
l=0

l∑
m=−l

Am
l (s)jl(kr′)Ym

l
∗(r̂′)

⎫⎬⎭ eiks·r,

where we have assumed that r > r′. If we now make use of the Weyl expansion Eq. (4.10),
we conclude that

k2

2π

∞∑
l=0

l∑
m=−l

Am
l (s)jl(kr′)Ym

l
∗(r̂′) = − ik

8π2
e−iks·r′ .

As a final step we make use of the multipole expansion of the plane wave exp(−iks · r′)
presented in Example 3.4 of Chapter 3:

e−iks·r′ = 4π
∞∑

l=0

l∑
m=−l

(−i)ljl(kr′)Ym∗
l (r̂′)Ym

l (s),

from which it follows that
∞∑

l=0

l∑
m=−l

Am
l (s)jl(kr′)Ym

l
∗(r̂′) = − i

k

∞∑
l=0

l∑
m=−l

(−i)ljl(kr′)Ym
l
∗(r̂′)Ym

l (s),

which yields

A(s) = (−i)(l+1)

k
Ym

l (s).

4.11 Radiated energy out of plane and spherical boundaries

The energy and energy spectrum (energy per unit frequency) radiated by a source embed-
ded in a non-dispersive medium were treated in Section 1.6 of Chapter 1 and were general-
ized to dispersive media in Section 2.6 of Chapter 2. In those sections we showed that the
total energy radiated out of a surface ∂τ surrounding the source is given by

e∂τ = 1

2π

∫ ∞
−∞

dω E∂τ (ω),

where

E∂τ (ω) = 2κω
∫
∂τ

dS U∗+(r,ω)
∂U+(r,ω)

∂n
(4.67)
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is the energy spectrum of the radiated field over the surface ∂τ , where κ is an unessential
real and positive constant.

In the case of non-dispersive media we showed in Section 1.6 that the energy spectrum is
independent of the surface ∂τ and could be expressed in terms of the field radiation pattern
via the equation

E∂τ (ω) = 2κωk
∫

4π
d�s| f (s,ω)|2. (4.68a)

In the more general case of dispersive media treated in Section 2.6 the energy spectrum
depends on the particular surface ∂τ over which it is computed and an expression in terms
of the radiation pattern is possible only when ∂τ = R is the surface of an asymptotically
large sphere centered on the origin and having radius R � 0. In this case we showed in
Section 2.6 that

ER (ω) = 2κω�ke−2kR
∫

4π
d�s| f (s,ω)|2, (4.68b)

which is a generalization of Eq. (4.68a) to the case of dispersive media.
Equation (4.68b) allows the energy spectrum to be computed over asymptotically large

spheres. However, it is useful to have expressions for this quantity over general surfaces
that lie at arbitrary distances from the source volume τ0. Of particular interest are expres-
sions for this quantity over spheres of arbitrary radius a > a0 and over infinite plane
surfaces bounding the source volume τ0. In this section we employ the angular-spectrum
and multipole expansions of the radiated field to obtain such expressions in terms of the
angular-spectrum and multipole moments of the field.

4.11.1 Radiated energy into an infinite half-space

Let’s assume that a source is located in the half-space z < z0. Then the radiated field can
be expressed throughout the half-space z ≥ z0 via the angular-spectrum expansion

U+(r,ω) = 1

(2π )2

∫ ∞
−∞

d2Kρ A+(Kρ ,ω)eik+·r,

where k+ = Kρ +γ ẑ and the angular spectrum A+ is determined from the boundary value
of the field on the plane z0 via its inverse spatial Fourier transform

A+(Kρ ,ω) = e−iγ z0

∫
d2ρ U+(r,ω)|z=z0 e−iKρ ·ρ = e−iγ z0 Ũ+(Kρ , z0,ω), (4.69)

where Ũ+(Kρ , z0,ω) denotes the spatial Fourier transform of the field over the plane z =
z0. If we now substitute the angular-spectrum expansion into the expression for the energy
spectrum over any plane z ≥ z0, we find on using Eq. (4.67) that
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Ez(ω) = 2κω
∫

z
d2ρ

{
1

(2π )4

∫ ∞
−∞

d2Kρ

∫ ∞
−∞

d2K′ρ iγ (K′ρ)A+∗(Kρ ,ω)

×A+(K′ρ ,ω)ei(k+′−k+∗)·r
}

⇓
Ez(ω) = κω

2π2

∫ ∞
−∞

d2Kρ(�γ )|A+(Kρ ,ω)|2e−2γ z, (4.70a)

where Ez(ω) is the energy spectra computed over the plane z ≥ z0. In deriving the above
we have used the result that

1

(2π )2

∫
z

d2ρ ei(k+′−k+∗)·r = e−2γ zδ(K′ρ −Kρ).

We can also express the result Eq. (4.70a) directly in terms of the field spatial Fourier
transform over the plane z > z0. In particular, if we substitute the expression for the angular
spectrum A+ in Eq. (4.69) into Eq. (4.70a), we obtain the result

Ez(ω) = κω

2π2

∫ ∞
−∞

d2Kρ(�γ )|Ũ+(Kρ , z0,ω)|2e−2γ (z−z0). (4.70b)

When the medium is non-dispersive and the wavenumber is real-valued γ is pure real
over the homogeneous part of the spectrum and pure positive imaginary over the evanes-
cent part of the spectrum. In this case the contribution to the energy spectrum from the
evanescent plane waves in Eqs. (4.70) vanishes and we obtain

Ez(ω) = κω

2π2

∫ k

−k
d2Kρ γ |A+(Kρ ,ω)|2 = κω

2π2

∫ k

−k
d2Kρ γ |Ũ+(Kρ , z0,ω)|2, (4.71)

which is independent of the location z of the plane over which the energy spectrum is com-
puted. This result is in accord with Theorem 1.1, which requires that the energy spectrum
in a non-dispersive medium be invariant with respect to the location of the surface ∂τ over
which it is computed. On the other hand, when the medium is dispersive then γ is gen-
erally complex both in the weakly inhomogeneous part and in the evanescent part of the
spectrum, and the energy spectrum will be z-dependent and will decay with propagation
distance z as is required by the general results established in Eqs. (4.70).

The radiated energy spectrum of an NR source

We recall that an NR source has to generate zero radiated energy so that Ez(ω) must vanish
if z lies outside the source support. However, it is possible for a source to generate zero
radiated energy out of its support region τ0 and yet not be an NR source. For example,
consider a source in a non-dispersive medium that is confined to a region bounded by two
infinite parallel planes. It follows from Eq. (4.71) that the energy density radiated out of this
region will be zero so long as the angular spectrum A+(Kρ ,ω) vanishes over the weakly
inhomogeneous region of the spectrum (for |Kρ | ≤ k). However, as pointed out earlier
in Section 4.2.3, this does not require the angular spectrum to vanish over the evanescent
region |Kρ | > k. Only in the case of compactly supported sources whose angular spectra
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are entire functions of Kρ will the vanishing of the angular spectrum over the homogeneous
part of the spectrum guarantee that it also vanishes over the evanescent region. Indeed, it is
easily verified that the source defined by

Q(r,ω) =
{

sin(κx) |z| < a,

0 otherwise,

where κ > k, generates zero angular spectrum over the homogeneous part of the spectrum
but radiates a pure evanescent plane wave outside the strip |z| < a.

4.11.2 Radiated energy from a spherical region

We now consider a source located within a sphere that is centered at the origin and has a
radius a0. In this case we represent the radiated field in the multipole expansion Eq. (4.52a)
and we find upon using Eq. (4.67) that

Ea(ω) = 2κωa2
∫

4π
d�

[
U∗+(r,ω)

∂U+(r,ω)

∂r

] ∣∣∣∣
r=a

= 2κω|k|2a2
∫

4π
d�

⎧⎨⎩
∞∑

l=0

l∑
m=−l

∞∑
l′=0

l′∑
m′=−l′

qm′
l′ (ω)qm∗

l (ω)kh+
′

l′ (ka)

×Ym′
l′ (r̂)h+∗l (ka)Ym

l
∗(r̂)

⎫⎬⎭ ,

where Ea(ω) denotes the energy spectrum of the radiated field computed over any sphere
r = a ≥ a0 and h+l′

′
denotes the derivative of the spherical Hankel function. On making

use of the orthonormality of the spherical harmonics the above expression simplifies to
become

Ea(ω) = 2κω|k|2a2
⎧⎨⎩k

∞∑
l=0

l∑
m=−l

|qm
l (ω)|2h+′l (ka)h+∗l (ka)

⎫⎬⎭ . (4.72a)

In the case of non-dispersive media where k is real-valued we have that

[h+′l (ka)h+∗l (ka)] = 1

2i
[h+′l (ka)h+∗l (ka)− h+′∗l (ka)h+l (ka)]

= 1

2i
[h+′l (ka)h−l (ka)− h−′l (ka)h+l (ka)] = 1

k2a2
,

where we have used the fact that h+l (x)
∗ = h−l (x) when x is real-valued and also the

Wronskian relationship satisfied by the two spherical Hankel functions. On substituting
the above into Eq. (4.72a) we find that

Ea(ω) = 2κωk
∞∑

l=0

l∑
m=−l

|qm
l (ω)|2, (4.72b)

which is independent of the radius a > a0 of the sphere over which the energy spectrum
is computed. Again this is in agreement with Theorem 1.1, as was our result presented
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above for plane boundaries. If the medium is dispersive then k is complex and the general
expression Eq. (4.72a) cannot be reduced to simple form. In this case the energy spectra
will be a monotonically decreasing function of the radius a of the sphere over which it is
computed, in accordance with the results presented in Section 2.6 of Chapter 2.

Further reading

Excellent treatments of the angular-spectrum expansion can be found in Born and Wolf
(1999), Stratton (1941), Goodman (1968) and Stamnes (1986), as well as in Mandel and
Wolf (1995) and Oughstun (2006). The multipole expansion for both scalar and vector
(electromagnetic) fields is covered in Born and Wolf (1999), Stratton (1941), Jackson
(1998), Papas (1988) and Chew (1990) and was developed within the time domain in Hey-
man and Devaney (1996) and Marengo and Devaney (1998). Field back propagation imple-
mented with the angular-spectrum expansion is treated in Sherman (1967) and Shewell and
Wolf (1968), while Devaney and Sherman (1973) contains an in-depth treatment of plane-
wave expansions of solutions to the radiation problem. Interesting treatments of the Fresnel
transform are contained in Gori (1981) and James and Agarwal (1996).

Problems

4.1 Prove that the Weyl expansion Eq. (4.4a) satisfies the homogeneous Helmholtz equa-
tion if |Z| > 0.

4.2 Use the angular-spectrum expansion to prove that the solution to the RS boundary-
value problem is unique; i.e., that Dirichlet or Neumann conditions over any infinite
plane bounding a half-space over which a field satisfies the Sommerfeld radiation
condition uniquely determine the field throughout this half-space.

4.3 Derive the plane-wave expansion of the radiated field given in Eq. (4.15a) by per-
forming the Kz integration using contour integration and the calculus of residues in
the Fourier-integral representation of the radiated field

U+(r,ω) = 1

(2π )3

∫
d3K

Q̃(K,ω)

k2 − K2
eiK·r.

4.4 Derive a plane-wave expansion in the time-domain involving only homogeneous
plane waves that is valid for a field radiated by a causal source in a non-dispersive
medium for all times after the source has ceased to radiate.

4.5 Comment on the relationship between the evanescent plane waves in the time-domain
angular-spectrum expansion of the field radiated by the source in the previous
problem and the homogeneous waves in the plane-wave expansion of this field for
times exceeding the turn-off time of the source.
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4.6 Derive the radiation pattern of a uniform circular disk surface source confined to
the plane z = 0 employed in Section 4.5 for comparison with the wavelet radiation
pattern.

4.7 Express the back-propagated field in Eq. (4.25) in terms of Neumann conditions.
4.8 Derive the inequality given in Eq. (4.16).
4.9 Use the Weyl expansion in the expression for the field radiated by a source located in

the left half-space within the strip z− < z+ < 0 in the presence of a Dirichlet plane (a
plane over which the field vanishes) located at z = 0 to develop an angular-spectrum
expansion of the radiated field in the half-space z < z−; i.e., to the left of the source
(cf. Problems 2.14 and 2.15 from Chapter 2).

4.10 Represent the radiated field in an angular-spectrum expansion for the previous prob-
lem in the interior strip z+ < z < 0 lying between the source and the Dirichlet
plane.

4.11 Use the angular-spectrum expansion of the outgoing-wave multipole fields given in
Eq. (4.66a) to derive the angular-spectrum expansion of the radiated field from the
multipole expansion of this field given in Eq. (4.52a).

4.12 Derive the angle-variable form of the expression for the wavelet field in Eq. (4.31) of
Section 4.5 using the angle-variable form of the angular-spectrum expansion. Check
your result by transforming your expression into Cartesian-variable form.

4.13 Use the scheme given in Example 4.11 to derive the 2D angular-spectrum expansion
of the 2D outgoing-wave multipole fields.

4.14 Use the 2D angular-spectrum expansion of the 2D outgoing-wave multipole fields
found in the previous problem to derive the 2D multipole expansion of a radiated
field from its angular-spectrum expansion.

4.15 Use the 2D angular spectrum found in Problem 4.13 to derive the angular-spectrum
expansion of a 2D outgoing-wave field from its 2D multipole expansion.

4.16 Derive the expression for the radiation-pattern expansion coefficients f m
l (ω) given in

Problem 3.11 of the last chapter directly from the multipole expansion of the radiated
field.



5 The inverse source problem

The formulas Eq. (1.33) of Chapter 1 represent the solution to the radiation problem in
a non-dispersive medium governed by the wave equation; i.e., they give the radiated field
u+(r, t) in terms of a known source q(r, t). These formulas were generalized to dispersive
media in Chapter 2, where the radiation problem was solved directly in the frequency
domain for a known source embedded in a uniform dispersive background medium. The
inverse source problem (ISP), as its name indicates, is the inverse to the radiation problem,
and in this problem one seeks the source q(r, t) from knowledge of its radiated field u+(r, t).
The question of what applications require a solution to an inverse source problem naturally
arises. There are basically two such applications that consist of (i) imaging (reconstructing)
the interior of a volume source from observations of the field radiated by the source and
(ii) designing a volume source to act as a multi-dimensional antenna to radiate a prescribed
field. In the first application actual field measurements are employed, thereby generating
data that are then used to “solve” the ISP and thus “reconstruct” the interior of the source,
whereas in the second application desired field data are used to “design” a source that
will generate those data. Regarding the ISP, the two applications are essentially identical,
differing only in emphasis; in application (i) we have to contend with measurement error
and noisy data, whereas in application (ii) we have to contend with inconsistencies between
the desired data and the constraints required of the source (antenna). However, both of
these issues, as well as several others, ultimately reduce to considerations of the impact
of non-radiating and essentially non-radiating sources on the ISP and can be treated in a
systematic manner using tools already developed in previous chapters.

5.1 The ISP for the wave equation

We will begin our treatment of the ISP for the case of non-dispersive media governed by
the wave equation [

∇2 − 1

c2

∂2

∂t2

]
u(r, t) = q(r, t),

where the source q is assumed to be supported in the space-time region {S0|r∈ τ0,
t∈ [0, T0]}. The ISP then consists of determining the source from measurements of the
radiated field over some space-time domain. Of course, if we know the field u+ over the
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source space-time support region S0 then the solution to the inverse problem is trivial. In
particular, we simply apply the D’Alembertian operator

W = ∇2 − 1

c2

∂2

∂t2

to the field to recover the source according to the wave equation. The catch is that in
practical versions of the ISP we can measure the radiated field only in restricted regions
of space-time that lie outside the source’s space-time support S0. For example, in one
common form of the ISP the source is surrounded by an external closed surface ∂τ and the
field u+ or its normal derivative ∂u+/∂n is measured at each point on the surface for all
time t > 0. The ISP then consists of deducing the source from the measured field data. In
a second version of this problem Cauchy data (field and first time derivative) are measured
over all of space at some time t0 greater then the turn-off time T0 of the source and the
source is to be determined from these data. An ideal data set would be measurements of
the radiated field specified everywhere outside the source space-time region S0.

Fortunately, although it is unrealistic to have complete knowledge of the field every-
where outside S0, it is also not necessary. In particular, according to Theorem 1.4 in Chap-
ter 1 the radiated field is uniquely determined over all space-time points lying outside its
space-time support S0 by its boundary values (field and normal derivative) over any closed
surface ∂τ that completely surrounds τ0 or by Cauchy data specified at any time t0 exceed-
ing the turn-off time T0 of the source. We emphasize that this theorem is a uniqueness
theorem and neither indicates how to compute the field from the boundary value or Cauchy
data nor considers the effect of noise or measurement error on the field determination. It
simply states that under ideal conditions (perfect field data) either of these data sets con-
tains, in principle, all the information required to compute the field everywhere outside the
(known) space-time support S0 of the source and, hence, contains complete information
as regards the ISP for the wave equation. In fact, as we found in Chapter 4, there is no
stable algorithm for computing the radiated field everywhere outside the spatial support
volume τ0 from boundary values on a boundary ∂τ that is more than a few wavelengths
removed from τ0. Rather, it is possible merely to compute this field exactly and stably for
space points r that lie outside the measurement boundary ∂τ or approximately and stably
for space points r that lie inside this boundary. We also note that the theorem requires that
both the field and the normal derivative be specified on ∂τ to insure uniqueness. However,
only one of the two quantities is actually required, since the two data sets are connected via
the second Helmholtz identity Eq. (1.36b) of Chapter 1 and either one can, in principle, be
computed from the other.

Finally, we note that the ISP cannot have a unique solution even under zero-noise, ideal
measurement conditions due to the possible presence of NR sources within the source
region S0. In particular, if q1 is any “solution” to the ISP (i.e., generates a specified field
everywhere outside S0) then q2 = q1 + qnr will also be a solution, where qnr is any NR
source supported in S0. A good deal of the “mathematics” associated with the ISP is related
to this inherent non-uniqueness of the problem and finding inversion methods that select
out that particular source which is most physically meaningful. An equally important issue
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is the stability problem created by the possible presence of essentially NR source compo-
nents within the source volume τ0. As we discussed in Section 1.7.3 of Chapter 1, such
sources radiate negligible energy and, hence, are difficult to detect, let alone determine,
from field measurements performed outside their region of localization.

5.1.1 The ISP integral equation

We first address the ISP for the case of “ideal data” as defined by the field uniqueness
theorem. We will discuss the problem within the context of limited and noisy field data later
in this chapter. According to the field uniqueness theorem boundary-value data acquired
over any closed surface ∂τ that completely surrounds the source spatial volume τ0 or
Cauchy data specified at any time t0 exceeding the turn-off time T0 generate the maximal
amount of information about the source that is available from unlimited field measurements
performed exterior to its space-time support volume {S0|r ∈ τ0, t ∈ [0, T0]}. We can thus
pose the ISP in terms of ideal data as represented by these two data sets without any loss
of generality.

The ISP in terms of boundary-value data

We have already obtained a relationship between over-specified data on any bounding sur-
face ∂τ ⊇ ∂τ0 to the source volume τ0 and the source term q(r, t) in the form of the interior
field solution to the wave equation in Section 1.3.3 of Chapter 1. By making use of the two
Helmholtz identities derived in Section 1.3.2 we can convert the interior field solution to
the following integral equation which holds over all of space-time; e.g., for r located either
within or outside of τ :

∫ T0

0
dt′
∫
τ0

d3r′ gf(r− r′, t − t′)q(r′, t′) = φ(r, t), (5.1a)

where

gf(R, τ ) = g+(R, τ )− g−(R, τ )

is the “free-field propagator” first introduced in Chapter 1, with g+ being the retarded
Green function and g− the advanced Green function, and

φ(r, t) = −
∫ ∞
−∞

dt′
∫
∂τ

dS′
[

u+
∂

∂n′
gf − gf

∂

∂n′
u+
]

, (5.1b)

with the normal derivatives being directed out of the interior τ . If we impose the restriction
that the observation point r lies inside the region τ bounded by ∂τ then the contribution to φ
in Eq. (5.1b) from the retarded Green function g+ will vanish due to the second Helmholtz
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identity, so an alternative expression for φ in terms of boundary-value data valid within τ
is given by

φ(r, t) =
∫ ∞
−∞

dt′
∫
∂τ

dS′
[

u+
∂

∂n′
g− − g−

∂

∂n′
u+
]

, r ∈ τ . (5.1c)

Note that, although the integration over t′ in Eqs. (5.1b) and (5.1c) formally extends from
−∞ to +∞, the radiated field over the boundary ∂τ will be non-zero only over some
finite time interval so that these integrals will, in fact, extend only over that finite interval
of time.

The field φ(r, t) is equal to the actual radiated field u+(r, t) for all values of t exceeding
the source turn-off time T0. This follows from Eq. (5.1a) on noting that the advanced-
Green-function component of gf is acausal, so φ(r, t) = u+(r, t) if t > T0. Although
the field φ(r, t) is not equal to the radiated field for times t < T0, this quantity is still
everywhere finite and well defined for such times and, thus, can be used as an estimate
of the radiated field over the source’s space-time region. Moreover, Eq. (5.1a) provides
a relationship between this field and the source q that is valid over all of space and
for all time, even for times t < T0. In particular, Eq. (5.1a) can be regarded as an
integral equation relating the source to the field φ computed from boundary-value data
on ∂τ via Eq. (5.1b) or Eq. (5.1c). We will refer to this equation as the ISP integral
equation.

The field φ(r, t) satisfies the homogeneous wave equation everywhere within τ but is
equal to the actual radiated field if t > T0 and is a continuation of this field for times
t < T0. In a sense, then, it is the radiated field without the radiated field’s singularities, just
like the free-field propagator gf is the retarded Green function to the wave equation without
the Green function’s singularities. In fact, for field points r ∈ τ , φ is the back-propagated
field defined in Section 1.4.2 of Chapter 1 and the ISP integral equation Eq. (5.1a) is noth-
ing more than the interior field solution to the radiation problem given in Eq. (1.37a) of
Section 1.3.3 of that chapter (see also the treatment of back propagation in the frequency
domain in Section 2.5.1 and stabilized field back propagation and the inverse RS boundary-
value problem in Section 2.11 of Chapter 2). For this reason we will refer to φ as the back-
propagated field even though it is only a stabilized version of the exactly back-propagated
field (cf. the discussion in Section 4.4 of Chapter 4).

Finally, we mention that the back-propagated field φ computed from boundary-value
data via Eq. (5.1b) is over-specified in that the radiated field and its normal derivative over
∂τ are not independent and, in particular, must together satisfy the second Helmholtz iden-
tity Eq. (1.36b) of Chapter 1 throughout the interior region τ . We show in an example
presented below that this redundancy in the data can be removed and that φ can be com-
puted in terms of the field (Dirichlet data) or its normal derivative (Neumann data), or,
indeed, any linear combination of these two quantities over ∂τ . In this connection we
also note that the back-propagated field computed using Eq. (5.1b) is not the solution to
a properly or improperly posed interior boundary-value problem. The reason for this is
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that the boundary values u+ and ∂u+/∂n are of the radiated field and its normal deriva-
tive and, hence, of a field that does not satisfy the homogeneous wave equation within
the interior region τ of the data boundary ∂τ . This means, in particular, that the lim-
its of φ and its normal derivative ∂φ/∂n as the field point r tends to ∂τ from τ will
not be equal to the boundary values u+ and ∂u+/∂n. We will show in Section 5.1.3
that a proper interpretation of φ is in terms of a field generated from singlet and dou-
blet sources distributed over ∂τ according to the theory developed in Section 1.8 in
Chapter 1.

The ISP in terms of Cauchy data

The back-propagated field expressed in terms of Cauchy data is, in fact, nothing more than
the representation of the radiated field in terms of the solution to the initial-value problem
presented in Section 1.4 of Chapter 1. In particular, the radiated field u+(r, t) satisfies the
homogeneous wave equation for all times t > T0 and, hence, can be expressed over all of
space and for all times t > t0 > T0 in terms of Cauchy data acquired at any time t0 > T0

via Eq. (1.41) of that section. It then follows that

φ(r, t) = 1

c2

∫
d3r′[u+(r′, t0)g′f(r− r′, t − t0)− gf(r− r′, t − t0)u′+(r′, t0)], (5.2)

where the primes denote derivatives w.r.t. t0, will be equal to the radiated field if t > T0

and is the continuation of this field for t < T0. The fact that the back-propagated field φ
computed either from boundary-value data via Eq. (5.1b) or from Cauchy data according to
Eq. (5.2) is related to the source via the same integral equation means, of course, that these
two quantities are identical. Thus, in particular, φ computed from either data set will equal
the actual radiated field over all of space and for all times t > T0 and contains, according to
Theorem 1.4, the maximum amount of information concerning the source that is available
from full knowledge of the field everywhere outside S0.

We note also that the representation of the back-propagated field φ in terms of Cauchy
data continues the field radiated backwards in time from the Cauchy data; i.e., in a certain
sense, performs the process of field time reversal. This should not be surprising, consid-
ering the close connection between the processes of time reversal and back propagation
(cf. Section 2.11 of Chapter 2 and Section 5.1.3 below). Of course, the back-propagated
field so computed will satisfy the homogeneous wave equation over all of space and time
and, hence, will not be equal to the actual radiated field for times t smaller than the source
turn-off time T0.

Finally, we note that, unlike the computation of φ from boundary-value data using
Eq. (5.1b) or Eq. (5.1c), its computation using Cauchy data according to Eq. (5.2) is not
over-specified. In particular, the radiated field u+(r, t) at any time t > T0 satisfies the homo-
geneous wave equation and is thus uniquely determined by Cauchy data as the solution of
the initial-value problem covered in Section 1.4 of Chapter 1.
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5.1.2 The Porter–Bojarski integral equation

The Porter–Bojarski integral equation is the ISP integral equation in the frequency domain
and was previously derived in Section 2.5.1 for the case of boundary-value data, where it
was found to be given by

�(r,ω) =
∫
τ0

d3r′ Gf(r− r′,ω)Q(r′,ω), (5.3a)

where

Gf(R,ω) = G+(R,ω)− G−(R,ω) = − i

2π

sin(kR)

R
,

is the frequency-domain free-field propagator and

�(r,ω) = −
∫
∂τ

dS′
[

U+(r′,ω)
∂

∂n′
Gf(r− r′,ω)− Gf(r− r′,ω)

∂

∂n′
U+(r′,ω)

]
,

(5.3b)

which holds over all of space, and

�(r,ω) =
∫
∂τ

dS′
[

U+(r′,ω)
∂

∂n′
G−(r− r′,ω)− G−(r− r′,ω)

∂

∂n′
U+(r′,ω)

]
,

(5.3c)

which holds within the region τ bounded by ∂τ . The back-propagated field can also be
expressed in terms of Cauchy data for the special case of the wave equation1 by Fourier
transformation of Eq. (5.2):

�(r,ω) = eiωt0

c2

∫
d3r′[iωu+(r′, t0)− u′+(r′, t0)]Gf(r− r′,ω). (5.3d)

Example 5.1 The inhomogeneous terms in the time-domain ISP integral equation Eq. (5.1a)
and its frequency-domain equivalent Eq. (5.3a) are computed from over-specified
boundary-value data. In this example we will remove this over-specification for the special
case in which the data boundary ∂τ is a sphere and express the back-propagated field in
terms of Dirichlet data alone. We will work in the frequency domain and take the volume
τ to be a sphere of radius r0 > a0, where a0 is the radius of the smallest bounding sphere
to τ0, and will compute the back-propagated field using Eq. (5.3b). An entirely parallel
development based on Eq. (5.3c) leads to the same result at all interior points to the data
boundary at r = r0. Since the geometry is spherical we will use the multipole expansion
of the free-field propagator, which is found from Example 4.9 to be given by

1 The initial-value problem and, hence, the representation of the back-propagated field in terms of Cauchy data
is applicable only to the wave equation, not to general dispersive media.
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Gf(R,ω) = − i

2π

sin(kR)

R
= −2ik

∞∑
l=0

l∑
m=−l

jl(kr)jl(kr′)Ym
l (r̂)Ym

l
∗(r̂′), (5.4)

where jl, l = 0, 1, . . . , are the spherical Bessel functions of order l and Ym
l , m=−l,

−l+ 1, . . . , l, the spherical harmonics of degree l and order m; r̂ and r̂′ denote the polar
and azimuthal angles θ ,φ and θ ′,φ′ of the general field points r and r′. On substituting
the above expansion into Eq. (5.3b), with ∂τ taken to be the surface of the sphere having
radius r0, and performing some minor algebra we obtain the result

�(r,ω) = 2ikr2
0

∞∑
l=0

l∑
m=−l

[kj′l(kr0)um
l (ω)− jl(kr0)vm

l (ω)]jl(kr)Ym
l (r̂),

where

um
l (ω) =

∫
d�U+(r,ω)|r=r0 Ym

l
∗(r̂), vm

l (ω) =
∫

d�
∂

∂r
U+(r,ω)|r=r0 Ym

l
∗(r̂)

are the generalized Fourier coefficients of the field and its normal derivative over the sur-
face of the sphere. These coefficients are not independent but rather are related via the
equation

vm
l (ω) = kh+l ′(kr0)

h+l (kr0)
um

l (ω), (5.5)

which was derived in Example 4.10. We can use Eq. (5.5) to remove the data redundancy
in Eq. (5.1) and express � entirely in terms of Dirichlet or Neumann data. For example,
for the case of Dirichlet data we obtain the result

�(r,ω) = 2i(kr0)2
∞∑

l=0

l∑
m=−l

j′l(kr0)h+l (kr0)− h+l ′(kr0)j′l(kr0)

h+l (kr0)
um

l (ω)jl(kr)Ym
l (r̂)

⇓

�(r,ω) = 2
∞∑

l=0

l∑
m=−l

um
l (ω)

h+l (kr0)
jl(kr)Ym

l (r̂), (5.6)

where we have used the Wronskian relationship

j′l(kr0)h+l (kr0)− h+l ′(kr0)j′l(kr0) = − i

(kr0)2
.

A similar development can be employed to express � and, hence, φ in terms of Neumann
data over the sphere.

Example 5.2 We now consider the case in which the field measurements are performed over
a closed sphere ∞ having an arbitrarily large radius. The back-propagated field is then
given by Eq. (5.3b) with ∂τ = ∞. Over this sphere we have that
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U+(r′,ω) ∼ f (s,ω)
eikr′

r′
,

∂

∂n′
U+(r′,ω) ∼ ikf (s,ω)

eikr′

r′
,

Gf(r− r′,ω) ∼ − 1

4πr′
{e−iks·reikr′ − eiks·re−ikr′ },

∂

∂n′
Gf(r− r′,ω) ∼ − ik

4πr′
{e−iks·reikr′ + eiks·re−ikr′ },

where s = r′/r′ and kr′ → ∞ on ∞ and f (s,ω) is the radiation pattern of the field. By
substituting the above into Eq. (5.3b) with ∂τ = ∞ we then obtain

�(r,ω) =
∫
∞

dS′
[

f (s,ω)
eikr′

r′
ik

4πr′
{e−iks·reikr′ + eiks·re−ikr′ }

− 1

4πr′
{e−iks·reikr′ − eiks·re−ikr′ }ikf (s,ω)

eikr′

r′

]
⇓

�(r,ω) = ik

2π

∫
4π

d�s f (s,ω)eiks·r. (5.7a)

If we expand the radiation pattern in a series of spherical harmonics with expansion
coefficients (cf. Section 4.8.4)

f m
l (ω) =

∫
4π

d� f (s,ω)Ym
l
∗(s)

we obtain using Eq. (5.7a)

�(r,ω) =
∞∑

l=0

l∑
m=−l

2il+1k f m
l (ω)

jl(kr)Ym
l (r̂)︷ ︸︸ ︷

(−i)l

4π

∫
4π

d�s Ym
l (s)eiks·r, (5.7b)

where we have made use of the plane-wave expansion of the free multipole fields derived in
Example 3.4 of Chapter 3. The plane-wave expansion Eq. (5.7a) or the multipole expansion
Eq. (5.7b) allows the back-propagated field to be computed directly from the radiation
pattern of the field.

5.1.3 Time reversal and the back-propagated field

We have seen that the back-propagated field φ(r, t) when generated by Cauchy data
acquired at a time t0 > T0 can be interpreted as being a version of the actual radiated
field u+(r, t) continued backward into times t < t0. A similar interpretation can be applied
to this field when generated by boundary-value data over ∂τ . Moreover, when these bound-
ary data are over-specified (the field and its normal derivative) then the field φ(r,−t) can
be interpreted as being generated by singlet and doublet sources distributed over ∂τ that
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are time-reversed versions of the radiated field and its (inward-directed) normal derivative
measured over ∂τ .

To see this, we restrict our attention to field points r ∈ τ for which the back-propagated
field can be expressed in terms of the advanced Green function via Eq. (5.1c). If in this
equation we make the transformations t → −t and t′ → −t′ and replace the outward-
directed normal derivatives by inward-directed normal derivatives ∂/∂η′ (from τ⊥ to τ )
then the equation becomes

φ(r,−t) =
∫ ∞
−∞

dt′
∫
∂τ

dS′
[

g+(r− r′, t − t′) ∂
∂η′

u+(r′,−t′)

− u+(r′,−t′) ∂
∂η′

g+(r− r′, t − t′)
]

, r ∈ τ . (5.8)

On comparing Eq. (5.8) with Eq. (1.69) of Section 1.8 of Chapter 1 we conclude that
φ(r,−t) can be interpreted as being the field radiated into the interior region τ by the
singlet and doublet surface sources

qs(r, t) = ∂

∂η
u+(r,−t), qd(r, t) = u+(r,−t), r ∈ ∂τ . (5.9)

The above development shows that the time-reversed back-propagated field φ(r,−t) is
radiated into the interior region τ containing the source by the time-reversed boundary
values u+(r,−t) and its normal derivative ∂/∂ηu+(r,−t) directed from the exterior τ⊥ into
τ . Since φ(r,−t) = u+(r,−t) if t < −T0 we conclude that the time-reversed boundary-
value fields radiate the time-reversed back-propagated field within τ ∀t < −T0, illustrating
the close connection between field time reversal and field back propagation and the ISP. A
similar connection was obtained in Section 2.11, where we showed that the time-reversed
approximate solution to the inverse RS boundary-value problem generated from field back
propagation was equal to the field radiated by the time-reversed Dirichlet or Neumann
boundary conditions.

5.1.4 The ISP in terms of Dirichlet or Neumann boundary-value data

Generating a singularity-free version of the radiated field by back propagating both the
field and its normal derivative over ∂τ is only one of a number of ways of constructing
such a field. For example, we used stable back propagation of only the field or its normal
derivative over infinite plane boundaries in Section 2.11 of Chapter 2. A similar approach
can be used in the ISP if we replace the free-field propagator by the difference between the
retarded Green function and the time-reversed Dirichlet Green function appropriate to the
boundary ∂τ ; i.e., we replace gf by

g(r, r′, t − t′) = g+(r− r′, t − t′)− gd(r, r′, t′ − t), (5.10)

where the time-reversed Dirichlet Green function gd(r, r′, t′ − t) = 0, with r, r′ ∈ ∂τ . The
quantity g(r, r′, t − t′) is the difference between two Green functions to the wave equation
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and, like the free-field propagator, satisfies the homogeneous wave equation. All of the
development presented using the free-field propagator can thus be repeated and we obtain,
in place of Eqs. (5.1), the set of equations

∫ T0

0
dt′
∫
τ0

d3r′ g(r, r′, t − t′)q(r′, t′) = χ (r, t), (5.11a)

where

χ (r, t) = −
∫ ∞
−∞

dt′
∫
∂τ

dS′
[

u+
∂

∂n′
g− g

∂

∂n′
u+
]

(5.11b)

=
∫ ∞
−∞

dt′
∫
∂τ

dS′ u+(r′, t′) ∂
∂n′

gd(r, r′, t′ − t), r ∈ τ , (5.11c)

where in deriving Eq. (5.11c) we have made use of the fact that the Dirichlet Green function
vanishes on ∂τ . Equation (5.11a) is a new ISP integral equation that is just as valid as our
original one defined in Eq. (5.1a), while Eqs. (5.11b) and (5.11c) are the generalizations of
Eqs. (5.1b) and (5.1c).

If we restrict our attention to field points r ∈ τ , we see from Eq. (5.11c) that only
the value of the field and not its normal derivative is required in order to generate the
inhomogeneous term χ (r, t) in the ISP integral equation Eq. (5.11a). Moreover,

χ (r,−t) =
∫ ∞
−∞

dt′
∫
∂τ

dS′ u+(r′,−t′) ∂
∂n′

gd(r, r′, t − t′), r ∈ τ ,

which shows that the field χ (r,−t) is radiated into the interior region τ from time-reversed
Dirichlet data over ∂τ . The field χ (r,−t) is thus generated as a properly posed interior
boundary-value problem from the time-reversed radiated field in a manner completely par-
allel to that employed in our discussion of the inverse RS boundary-value problem and
stabilized field back propagation in Section 2.11 of Chapter 2!

Other “ISP integral equations” can be constructed using other replacements for the free-
field propagator so long as the replacement is the difference between the retarded Green
function and a time-reversed second Green function to the wave equation. All of them will
have a kernel g(r, r′, t − t′) that satisfies the homogeneous wave equation over τ which
forces them to be mathematically equivalent. It is important to note, however, that these
various versions of the ISP integral equation will have different kernels and different inho-
mogeneous terms. For example, the inhomogeneous terms φ and χ in the two versions of
the ISP developed above are different and will, of course, remain different if the redun-
dancy of the boundary-value data in the first version of this integral equation given in
Eq. (5.1a) is removed so that φ is computed, say, from Dirichlet data alone. In this case φ
is still the same as when computed using over-specified boundary-value data and, in par-
ticular, will not be equal to χ in our second version of the ISP computed from the Dirichlet
data via Eq. (5.11c). The two integral equations will, however, possess the same set of
solutions to the ISP.
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5.2 The ISP for surface sources

The simplest type of source to the wave equation is, of course, the delta function
δ(r− r′)δ(t − t′) which radiates the retarded Green function g+(r − r′, t − t′). The next
simplest types would be those sources that are distributed on a line or surface in 3D space.
This latter class of source was treated in the time-domain in Section 1.8 of Chapter 1 and
in the frequency domain in Section 2.12, where we considered sources distributed over
an open or closed surface ∂τ0 that separates two disjoint regions τ0 and τ⊥0 . The surface
source radiates a field into both regions according to the formula

u+(r, t) =
∫ ∞

0
dt′
∫
∂τ0

dS0

[
qs(r0, t′)g+(r− r0, t − t′)

− qd(r0, t′) ∂
∂n0

g+(r− r0, t − t′)
]

,

where r0 ∈ ∂τ0 denotes a point on the surface ∂τ0 which can be closed with finite interior
τ0 and infinite exterior τ⊥0 or the two regions can be infinite with common boundary ∂τ0.
The normal derivative in the above equation can be selected to be directed out of τ0 and into
the τ⊥0 or vice versa. The surface source is seen to be characterized by the two components
qs and qd, which are referred to as the “singlet” and “doublet” components of the source
due to the fact that they radiate a monopole field and a dipole field, respectively. The ISP
for surface sources consists of determining these two source components in terms of the
back-propagated field φ(r, t) computed from Cauchy or boundary-value data. We mention
in this connection that a surface source requires both a singlet component and a doublet
component since a single component (singlet or doublet) would radiate an identical field
into the two regions separated by the surface τ . We will elaborate on this point later in
connection with our solution of the ISP presented below.

Surface sources are idealizations of 3D (volume) sources that are distributed over a thin
layer or shell that is much smaller than the shortest wavelength λmin radiated by the source.
As such they provide convenient and simple limiting forms of a large class of realizable
volume sources that can be employed as a benchmark against which the performance of
the actual volume source can be compared. Their simplicity also makes them an ideal
first source with which to study and apply the formulation of the ISP developed in the
preceding sections. In this section we will solve the ISP for a surface source distributed
over an infinite plane with boundary-value data specified over two bounding planes on
each side of the source plane. A similar development (see the problems at the end of the
chapter) can be employed to solve the ISP for a source distributed over the surface of a
sphere with boundary-value data specified over the surface of a concentric larger sphere.

5.2.1 The ISP for a planar surface source

We will work in the frequency domain and consider a source distributed over the plane
z = 0 with boundary-value data acquired over two parallel planes located at z = ±z0.
We showed in Section 1.8 of Chapter 1 and Section 2.12 of Chapter 2 that a source that is
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distributed over a separable surface for the scalar wave and Helmholtz equations defined
by generalized coordinates (ξ1, ξ2, ξ3) with ξ3 = ξ30 = constant can be expressed in the
frequency domain as a 3D source distribution in the form

Q(r,ω) = Qs(ξ1, ξ2,ω)
δ(ξ3 − ξ30)

h3(r0)
+ Qd(ξ1, ξ2,ω)

h1(r0)h2(r0)

h1(r)h2(r)

∂
∂ξ3
δ(ξ3 − ξ30)

h3(r)
, (5.12)

where δ(·) is the Dirac delta function and h1, h2, h3 are the scale factors for the coordinate
system. On selecting the separable system to be the Cartesian coordinate system with ξ1 =
x, ξ2 = y and ξ3 = z with ξ30 = 0 the above source becomes

Q(r,ω) = Qs(ρ,ω)δ(z)+ Qd(ρ,ω)
∂

∂z
δ(z),

where ρ0 = (x0, y0) denotes a point on the source plane.
On substituting the expression for the surface source given above into the r.h.s. of the

frequency-domain ISP integral equation (the Porter–Bojarski integral equation) Eq. (5.3a)
we obtain the integral equation

�(r,ω) =
∫

z=0
d2ρ′

[
Gf(r− ρ′,ω)Qs(ρ

′,ω)+ Qd(ρ′,ω)
∂

∂z
Gf(r− ρ′,ω)

]
, (5.13)

where r = ρ + zẑ is a general field point within τ . The back-propagated field generated
from the boundary-value data over the two planes at z = ±z0 can be expressed as the sum
of the two field components

�(r,ω) = �+(r,ω)+�−(r,ω),

where

�±(r,ω) = ±
∫

d2ρ′
[

U+(ρ′, z′,ω)
∂

∂z′
G−(ρ − ρ′, z− z′,ω)

−G−(ρ − ρ′, z− z′,ω)
∂

∂z′
U+(ρ′, z′,ω)

] ∣∣∣∣
z′=±z0

,

where the top (plus) sign is used for the plane z′ = +z0 and the bottom (minus) sign for
the plane at z′ = −z0. In deriving the above expression we have made use of the fact that
∂/∂n′ = ±∂/∂z′, with the plus sign holding over the surface at z0 and the minus sign for
the surface at −z0. The ISP integral equation for the planar surface source is thus given by
Eq. (5.13) with the back-propagated field computed from the boundary-value data via the
above set of equations.

5.2.2 Solving the ISP integral equation

To proceed we represent the r.h.s. of the ISP integral equation Eq. (5.13) in terms of a
plane-wave (angular-spectrum) expansion by using the plane-wave expansion of the free-
field propagator developed in Example 4.1. This choice of expansion is dictated by the fact
that the source and data are defined over planar boundaries, thus immediately suggesting



181 5.2 The ISP for surface sources

the use of plane waves (see the discussion at the beginning of Chapter 3). For the case of
non-dispersive media with real wavenumber k we find from Example 4.1

Gf(ρ − ρ′, z− z′,ω) = − i

8π2

∫
Kρ≤k

d2Kρ
γ

eiKρ ·(ρ−ρ′)[eiγ (z−z′) + e−iγ (z−z′)], (5.14)

where γ =
√

k2 − K2
ρ . On substituting the plane-wave expansion into the r.h.s. of the

integral equation Eq. (5.13) and making some algebraic simplifications we obtain the result

�(r,ω) = i

8π2

∫
Kρ≤k

d2Kρ
γ

eiKρ ·ρ
[
(Q̃s(Kρ ,ω)− iγ Q̃d(Kρ ,ω))eiγ z

− (Q̃s(Kρ ,ω)+ iγ Q̃d(Kρ ,ω))e−iγ z
]

, (5.15)

where Q̃s(Kρ ,ω) and Q̃d(Kρ ,ω) are the spatial Fourier transforms of the singlet and dou-
blet components of the source over the source plane. It should be noted that Eqs. (5.15)
involve only the spatial Fourier transforms of the source components over the homoge-
neous region of the spectra Kρ < k. This means that these transforms can be determined
from the solution of the ISP integral equation only over the homogeneous region, which,
in turn, means that only a low-pass-filtered version of the source is, in general, possible
(however, see the discussion below).

We can also express the back-propagated fields�± from the two data planes in angular-
spectrum expansions using the angular-spectrum expansion of the incoming-wave Green
function given in Eq. (4.5a) of Section 4.1 of Chapter 4. In Example 4.5 of that chapter we
computed these plane-wave expansions and obtained the result

�±(r,ω) = 1

(2π )2

∫
K2
ρ<k2

d2Kρ Ũ+(Kρ ,±z0)e±iγ (z−z0)eiKρ ·ρ , (5.16)

where Ũ+(Kρ ,±z0) are the 2D spatial Fourier transforms of U+(r,ω) over the two data
planes z = ±z0. It should be noted that the two back-propagated fields, even though
they are computed from over-specified boundary-value data (field plus normal derivative)
have plane-wave expansions that depend only on Dirichlet conditions on the two planes
and also include only homogeneous plane-wave components; i.e., there are no evanescent
plane waves in the expansions. The reason for this is that the transforms Ũ+(Kρ ,±z0)

and ˜(∂/∂z0)U+(Kρ , z0) of the Dirichlet and Neumann boundary values are linearly related
(see below), which allows the plane-wave amplitudes in the plane-wave expansions of
�± to be expressed entirely in terms of Dirichlet or Neumann boundary values and also
causes these plane-wave amplitudes to vanish over the evanescent region of the spectra
(cf. Example 4.5).

On adding the two component fields we find that

�(r,ω) = 1

(2π )2

∫
K2
ρ<k2

d2Kρ
[
Ũ+(Kρ ,+z0)eiγ (z−z0)

+ Ũ+(Kρ ,−z0)e−iγ (z−z0)
]

eiKρ ·ρ . (5.17)
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As a final step we equate Eqs. (5.15) and (5.17) and solve for the Fourier transforms of the
two source components to obtain

Q̃s(Kρ ,ω) = iγ [Ũ+(Kρ ,−z0)eiγ z0 + Ũ+(Kρ ,+z0)e−iγ z0 ], (5.18a)

Q̃d(Kρ ,ω) = Ũ+(Kρ ,−z0)eiγ z0 − Ũ+(Kρ ,+z0)e−iγ z0 , (5.18b)

where Kρ is limited to the homogeneous region Kρ < k. The solution of the ISP
then yields the following low-pass-filtered (spatially band-limited) versions of the source
components

Q̂s(ρ,ω) = 1

(2π )2

∫
Kρ<k

d2Kρ Q̃s(Kρ ,ω)eiKρ ·ρ , (5.19a)

Q̂d(ρ,ω) = 1

(2π )2

∫
Kρ<k

d2Kρ Q̃d(Kρ ,ω)eiKρ ·ρ , (5.19b)

with Q̃s and Q̃d defined in Eqs. (5.18).

5.2.3 Interpretation of the solution

The expressions for the low-pass-filtered singlet and doublet source components given in
Eqs. (5.19) have simple interpretations in terms of the back propagation of Dirichlet and
Neumann boundary conditions on the two boundary-value planes z = ±z0. Consider first
the doublet component, which, on substituting for Q̃d from Eq. (5.18b), becomes

Q̂d(ρ,ω) = 1

(2π )2

∫
Kρ<k

d2Kρ Ũ+(Kρ ,−z0)eiγ z0 eiKρ ·ρ

− 1

(2π )2

∫
Kρ<k

d2Kρ Ũ+(Kρ ,+z0)e−iγ z0 eiKρ ·ρ .

It follows from the angular-spectrum expansions of the two back-propagated fields given in
Eq. (5.16) that the first term on the r.h.s. of the above equation is the field back propagated
from Dirichlet data on the boundary plane at z = −z0 lying to the left of the source plane,
while the second term is the field back propagated from the Dirichlet data on the boundary
plane at z = +z0 lying to the right of the source plane. The doublet source component is
thus simply the difference of these two back-propagated fields.

Consider now the singlet source component. It is shown in Example 4.4 that the spatial
Fourier transforms of the Dirichlet and Neumann boundary values over any plane z = z0

are related via the equation

Ũ′+(Kρ ,±z0) = ±iγ Ũ+(Kρ ,±z0),

which, when used in Eq. (5.18a), yields the result

Q̃s(Kρ ,ω) = −Ũ′+(Kρ ,−z0)eiγ z0 + Ũ′+(Kρ ,+z0)e−iγ z0 .
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On substituting this into Eq. (5.19a) we then obtain

Q̂s(ρ,ω) = − 1

(2π )2

∫
Kρ<k

d2Kρ Ũ′+(Kρ ,−z0)eiγ z0 eiKρ ·ρ

+ 1

(2π )2

∫
Kρ<k

d2Kρ Ũ′+(Kρ ,+z0)e−iγ z0 eiKρ ·ρ .

Again, we conclude from the plane-wave expansions given in Eq. (5.16) that we can inter-
pret the first term on the r.h.s. of the above equation as being the field back propagated
using Neumann data on the boundary plane at z = −z0 lying to the left of the source
plane,2 while the second term is the field back propagated from Neumann data over the
boundary plane at z = +z0 lying to the right of the source plane. The singlet source com-
ponent is thus simply the sum of these two back-propagated fields.

Finally we comment on the fact that the solution of the ISP yielded only low-pass-
filtered versions of the surface source rather than the exact, or complete, source. This would
appear to contradict Theorem 1.4, which states that the boundary-value data over the two
bounding planes to the source should uniquely determine the source up to NR components,
and we have shown in Section 1.8 of Chapter 1 that NR surface sources do not exist. The
apparent contradiction is resolved when we recall that Theorem 1.4 applies only to causal
sources supported in a finite spatial region and our solution to the ISP as formulated above
includes no such constraint. Thus, if we demand that the source be supported in a finite
region on the (x, y) plane then we can, in principle, compute the exact surface source. The
basic reason for this is that sources that are supported in finite spatial regions have spatial
Fourier transforms Q̃(K,ω) that are entire analytic functions of the spatial frequency vector
K. For surface sources this means that the transforms Q̃s(Kρ ,ω) and Q̃d(Kρ ,ω) are entire
functions of the 2D spatial frequency vector Kρ and can, in principle, be determined for
all Kρ from specification of the transforms over the homogeneous region (the interior of a
circle of radius k).

5.3 The ISP for 3D sources supported in plane-parallel slabs

The surface source computed in the preceding section has a number of drawbacks, the
most serious being that it consists of the sum of a delta-function component (singlet) and a
derivative of a delta-function component (doublet). These components are, of course, not
realizable in any real system and can only be approximated by thin 3D source distributions.
Thus, in terms of source synthesis, where the goal is to design a source to radiate a specified
field, the surface source has limited applicability. Another goal of the ISP is to compute an
existing source distribution from measured field data. Again, the ISP formulated in terms
of surface sources has limited applicability to real-world problems since any physically

2 Note that the normal derivatives of the boundary-value fields in this equation are taken with respect to positive
z so that −Ũ′+(Kρ ,−z0,ω) is actually the spatial Fourier transform of the Neumann boundary value on the
plane z = −z0 with the derivative taken with respect to the outward-directed normal (in the −z direction) over
this plane.
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realizable source will be 3D. We are thus led to consider the general formulation of the
ISP for 3D sources in terms of the ISP integral equation Eq. (5.1a) or its frequency-domain
equivalent, the Porter–Bojarski integral equation, Eq. (5.3a).

We first consider the generalization of the surface source to that of a 3D source sup-
ported within a slab bounded by two infinite parallel planes located at z = ±a0. As in the
preceding sections, we will consider only the case of a non-dispersive medium where k is
real-valued and will also limit our attention to boundary-value data acquired over the two
parallel planes at z = ±z0 with z0 ≥ a0 as was done for the surface source in the last
section. After solving the ISP we will find that our solution reduces to that obtained for the
surface source in the limit where the source depth 2a0 → 0.

The Porter–Bojarski integral equation for the case under consideration assumes the form

�(r,ω) =
∫

d2ρ′
∫ a0

−a0

dz′ Gf(r− r′,ω)Q(r′,ω),

where r = ρ + zẑ and r′ = ρ′ + z′ẑ are field points within τ = [−z0 ≤ z ≤ +z0] and
τ0 = [−a0 ≤ z ≤ +a0], respectively. If we then make use of the plane-wave expansion of
the free-field propagator in Eq. (5.14) we obtain after some simplification

�(r,ω) = − i

8π2

∫
Kρ≤k

d2Kρ
γ

eiKρ ·ρ[Q̃(Kρ ,+γ ,ω)eiγ z + Q̃(Kρ ,−γ ,ω)e−iγ z],

where Q̃(Kρ ,±γ ,ω) denotes the spatial Fourier transform of Q̃(K,ω) over the surfaces
K = Kρ ± γ ẑ. The back-propagated field from the two planes at z = ±z0 was computed
in the last section and is given in Eq. (5.17). If we then substitute this expression into
the l.h.s. of the above equation and inverse Fourier transform both sides of the resulting
equation over the ρ plane we obtain

Q̃(Kρ ,+γ ,ω)eiγ z + Q̃(Kρ ,−γ ,ω)e−iγ z

= 2iγ [Ũ+(Kρ ,+z0)eiγ (z−z0) + Ũ+(Kρ ,−z0)e−iγ (z−z0)], (5.20)

which must hold over the homogeneous region Kρ ≤ k. As a final step we note that since
the above equation has to hold ∀z ∈ [−z0,+z0] it requires that

Q̃(Kρ ,±γ ,ω) = 2iγ Ũ+(Kρ ,±z0)e∓iγ z0 , Kρ ≤ k. (5.21)

5.3.1 Solving for the source

We showed in Theorem 1.3 in Chapter 1 that any source to the wave equation can be
decomposed into the sum of an NR component qnr(r, t) and a second component q̂(r, t)
such that these two components are orthogonal over {S0|r ∈ τ0, t ∈ [0, T0]} and q̂(r, t) sat-
isfies the homogeneous wave equation in S0. In the frequency domain these two conditions
become

[∇2 + k2]Q̂(r,ω) = 0, 〈Qnr, Q̂〉L2(τ0) = 0, (5.22)
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where, for the problem under consideration, τ0 is the infinite region lying between the two
planes z = ±a0 and

〈Qnr, Q̂〉L2(τ0) =
∫
τ0

d3r Q∗nr(r,ω)Q̂(r,ω),

stands for the standard inner product in the Hilbert space L2(τ0) of square integral functions
supported within τ0. We have already shown that the NR component of a source cannot be
determined from field data acquired outside the source’s space-time support, so the best that
we can expect to determine from such field data is the component Q̂(r,ω). This solution
to the ISP satisfies the homogeneous Helmholtz equation within τ0 and also possesses a
minimum-L2 norm of all possible solutions Q = Q̂+ Qnr; i.e.,

||Q̂+ Qnr||2 = ||Q̂||2 + ||Qnr||2 ≥ ||Q̂||2,

which establishes Q̂ as the minimum-norm solution to the ISP. It is the solution to the ISP
that we will seek throughout this chapter.

Our goal is thus to determine that particular 3D source supported in τ0 that satisfies
Eqs. (5.21) as well as the homogeneous Helmholtz equation within τ0. If we perform a
spatial Fourier transform of the homogeneous Helmholtz equation satisfied by Q̂ over the
(x, y) plane we obtain[

∂2

∂z2
+ γ 2

]
Q̂(Kρ , z,ω) = 0, −a0 ≤ z ≤ +a0, (5.23)

where

Q̂(Kρ , z,ω) =
∫

d2ρ Q̂(r,ω)e−iKρ ·ρ

is the 2D spatial Fourier transform of the minimum-norm source over the (x, y) plane. The
most general solution to Eq. (5.23) is given by

Q̂(Kρ , z,ω) = A+(Kρ ,ω)eiγ z + A−(Kρ ,ω)e−iγ z, −a0 ≤ z ≤ +a0, (5.24)

where A±(Kρ ,ω) are arbitrary functions of the transverse wavenumber Kρ and frequency
ω that vanish over the evanescent region Kρ > k.

On taking the spatial Fourier transform of Q̂(Kρ , z,ω) defined in Eq. (5.24) w.r.t. z and
substituting the result into Eq. (5.21) we obtain after some minor algebra the matrix equa-
tion [

1 j0(2γ a0)
j0(2γ a0) 1

] [
A+(Kρ ,ω)
A−(Kρ ,ω)

]
= iγ

a0

[
Ũ+(Kρ ,+z0)e−iγ z0

Ũ+(Kρ ,−z0)e+iγ z0

]
,

whose solution is readily found to be

A±(Kρ ,ω) = iγ /a0

1− j20(2γ a0)
[Ũ+(Kρ ,±z0)e∓iγ z0 − j0(2γ a0)Ũ+(Kρ ,∓z0)e±iγ z0 ],
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where j0(·) is the zeroth-order spherical Bessel function and, again, Kρ lies in the homo-
geneous region Kρ ≤ k. On substituting this result into Eq. (5.24) we then find that

Q̂(Kρ , z,ω) = iγ /a0

1− j20(2γ a0)

× {[Ũ+(Kρ ,+z0)e−iγ z0 − j0(2γ a0)Ũ+(Kρ ,−z0)e+iγ z0 ]eiγ z

+ [Ũ+(Kρ ,−z0)e+iγ z0 − j0(2γ a0)Ũ+(Kρ ,+z0)e−iγ z0 ]e−iγ z}, (5.25a)

if z ∈ [−a0,+a0] and zero outside this interval. After a bit of algebra the above expression
can be expressed in the following simplified form that will lead to a direct comparison with
the results obtained in the preceding section for the planar source:

Q̂(Kρ , z,ω) = iγ /a0

1+ j0(2γ a0)
[Ũ+(Kρ ,+z0)e−iγ z0 + Ũ+(Kρ ,−z0)e+iγ z0 ]cos(γ z)

− γ /a0

1− j0(2γ a0)
[Ũ+(Kρ ,+z0)e−iγ z0 − Ũ+(Kρ ,−z0)e+iγ z0 ]sin(γ z),

(5.25b)

where, again, −a0 ≤ z ≤ +a0. As a final step we take an inverse spatial Fourier transform

of Q̂(Kρ , z,ω) to obtain

Q̂(r,ω) = 1

(2π )2

∫
Kρ<k

d2Kρ eiKρ ·ρ

×
{

iγ /a0 cos(γ z)

1+ j0(2γ a0)
[Ũ+(Kρ ,+z0)e−iγ z0 + Ũ+(Kρ ,−z0)eiγ z0 ]

− γ /a0 sin(γ z)

1− j0(2γ a0)
[Ũ+(Kρ ,+z0)e−iγ z0 − Ũ+(Kρ ,−z0)eiγ z0 ]

}
. (5.26)

5.3.2 Limiting form as a surface source

If we take the limit a0 → 0 in the source Eq. (5.26) we should recover the surface source
derived in Section 5.2. To this end we note that for −a0 ≤ z ≤ +a0 we have that

lim
a0→0

cos(γ z)

a0(1+ j0(2γ a0))
→ δ(z), lim

a0→0

γ sin(γ z)

a0(1− j0(2γ a0))
→−δ′(z). (5.27)

The above results are easily verified by using the definitions of the delta function and
doublet; i.e.,

∫ ∞
−∞

g(z)δ(z)dz = g(0),
∫ ∞
−∞

g(z)δ′(z)dz = −g′(0),
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for any function g(z) that is analytic in the neighborhood of the origin. On making use of
Eqs. (5.27) we find that Eq. (5.26) yields

lim
a0→0

Q̂(r,ω) =
Qs(ρ,ω)︷ ︸︸ ︷

1

(2π )2

∫
Kρ<k

d2Kρ eiKρ ·ρ iγ [Ũ+(Kρ ,+z0)e−iγ z0 + Ũ+(Kρ ,−z0)eiγ z0 ] δ(z)

+

Qd(ρ,ω)︷ ︸︸ ︷
1

(2π )2

∫
Kρ<k

d2Kρ eiKρ ·ρ[Ũ+(Kρ ,−z0)eiγ z0 − Ũ+(Kρ ,+z0)e−iγ z0 ] δ′(z),

which is the solution we obtained for the surface source in Section 5.2.

5.3.3 Time-reversal imaging for slab geometry

In the limit where the wavelength is small relative to the width a0 of the source and the
field boundary-value data U+(ρ,±z0) are effectively band-limited to spatial frequencies
Kρ much smaller than the wavenumber k we have that

γ =
√

k2 − K2
ρ → k, j0(2γ a0)→ j0(2ka0)→ 0,

so that Eq. (5.25a) becomes

lim
ka0→∞

Q̂(Kρ , z,ω) = i
k

a0
[Ũ+(Kρ ,+z0)e−iγ z0 + Ũ+(Kρ ,−z0)e+iγ z0 ].

The source Q̂(r,ω) then becomes

lim
ka0→∞

Q̂(r,ω)→ 1

(2π )2

∫
Kρ<k

d2Kρ eiKρ ·ρQ̂(Kρ , z,ω) = i
k

a0
�(r,ω). (5.28)

The above development shows that in non-dispersive media i(k/a0)�(r,ω) is a good
approximation to the minimum-norm solution to the ISP if the source is much larger than
a wavelength in size and radiates a field having limited angular resolution. The Porter–
Bojarski (PB) integral equation need not be solved and it is necessary only to compute the
back-propagated field directly from over-determined boundary-value data via Eq. (5.3b)
or Dirichlet or Neumann data using Eq. (5.17). The back-propagated field can also be
computed in terms of Cauchy data in the case of non-dispersive media using Eq. (5.3d).
The underlying reason for this is that under these conditions the source Q(r,ω) is a slowly
varying function of position within the source volume relative to the wavelength so that
the additional smoothing introduced by the kernel of the PB integral equation is of little
consequence and, hence, a deconvolution is not required and the back-propagated field
itself is, to within a multiplicative constant, a good estimate of the source.
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5.4 The Hilbert-space formulation of the ISP

The “classical” treatment of the ISP based on the PB integral equation has several limita-
tions that include it being generally limited to sources embedded in non-dispersive media
(e.g., the wave equation) and the requirement of having a full data set in the form of
over-determined data over a closed surface surrounding the source. In this section we will
formulate the ISP directly within the frequency domain in a form that is valid for dis-
persive backgrounds as well as limited data sets. The reformulated problem also has the
advantage that it is in a “standard form” that will transition easily and naturally into the
inverse scattering problem (ISCP) that will be treated in later chapters and is much more
important from an application viewpoint than the ISP. This “standard form” consists of a
linear mapping T̂ : HQ → Hf from a Hilbert space of source functions HQ to a Hilbert
space of data Hf that is very general and includes the ISP and ISCP as well as other inverse
problems such as inverse diffraction, which will be considered in a later chapter. Because
the two Hilbert spaces HQ and Hf are generally different and the linear operator T̂ is not
generally Hermitian, it will be necessary to delve rather deeply into Hilbert-space theory
and employ more powerful mathematical techniques than are used when basing the ISP
on the PB integral equation. Most of the required Hilbert-space theory will be developed
within this section, although it is recommended that the reader consult one or more of the
excellent references that are listed at the end of the chapter.

The ISP is governed by an equation of the general form

T̂Q = f , (5.29)

where f ∈ Hf is the “data” contained in some Hilbert space Hf and T̂ : HQ → Hf is
a linear mapping that relates the source Q ∈ HQ to the data f ∈ Hf . An “ideal” data set
would be Dirichlet or Neumann boundary values over any closed surface ∂τ surrounding
the source support volume τ0, which, of course, includes as a special case the radiation
pattern f (s,ω) specified over the surface of the real unit sphere. The general formulation of
the ISP as defined via Eq. (5.29) applies also to cases of incomplete field data as well as to
dispersive backgrounds where the wavenumber k is complex. What is required, of course,
is a systematic method of inverting such mappings for the source in terms of the data.

One important form of the ISP is the “antenna-synthesis problem” in which the goal
is to synthesize a 3D source that will radiate a specified radiation pattern. In this case
HQ = L2(τ0) is the space of square-integrable functions supported in τ0 and the data f are
the radiation pattern of the source. Equation (5.29) reduces to

f (s,ω) = − 1

4π

∫
τ0

d3r Q(r,ω)e−iks·r, (5.30)

where s is a real or complex unit vector (s · s = 1) and k is the wavenumber, which can
be either real- or complex-valued. As mentioned in previous chapters, the radiation pattern
for compactly supported sources is an analytic function of the unit vector s over the entire
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complex unit sphere (s · s = 1) and, hence, can be uniquely determined via the process
of analytic continuation from its specification over the real unit sphere. There is no loss
in generality on then restricting the range of the mapping Eq. (5.30) to functions defined
over the real unit sphere. In this case, then, Hf is the Hilbert space of square-integrable
functions defined on the real unit sphere, which we denote by L2(�). This Hilbert space
has an inner product and induced norm defined by

〈 f1, f2〉Hf =
∫

4π
d�s f ∗1 (s,ω)f2(s,ω), || f ||Hf =

√
〈f , f 〉Hf . (5.31)

We will use the antenna-synthesis problem governed by the mapping defined in Eq. (5.30)
with Hf = L2(�) as a prototype ISP throughout this section, with the understanding that
most of our results and discussion can be generalized to apply to any form of the ISP
governed by any linear mapping T̂ : HQ → Hf between the Hilbert space of source
functions HQ and the Hilbert space of data Hf .

We can write Eq. (5.30) in the form of Eq. (5.29), where Hf = L2(�) and f ∈ L2(�) is
a radiation pattern and T̂ : HQ → Hf is the linear mapping (operator)3 that is defined via
the equation

T̂Q = − 1

4π

∫
τ0

d3r e−iks·rQ(r,ω) (5.32)

for all functions Q ∈ HQ. We will sometimes express the operator T̂ in the short-hand form

T̂ = − 1

4π

∫
τ0

d3r e−iks·r,

where it is understood that the domain of the operator is source functions in the Hilbert
space HQ = L2(τ0).

Example 5.3 The operator T̂ defined above is a bounded operator, by which we mean that

||T̂Q||2Hf
<∞, ∀Q ∈ HQ. (5.33)

On substituting the definition of T̂Q from Eq. (5.32) we find that

||T̂Q||2Hf
=
(

1

4π

)2 ∫
d�s

{∫
τ0

d3r eik∗s·rQ∗(r,ω)

}{∫
τ0

d3r′ e−iks·r′Q(r′,ω)

}
=
(

1

4π

)2 ∫
τ0

d3r
∫
τ0

d3r′ Q∗(r,ω)Q(r′,ω)
∫

d�s eik∗s·re−iks·r′ . (5.34)

3 Strictly speaking, an operator maps a Hilbert space into itself, so the linear mapping T̂ is not an operator within
this strict definition. However, it is common practice to stretch this definition to include mappings, such as
T̂ , that map one Hilbert space into a different Hilbert space, and we will sometimes use the term “operator”
according to this more general definition.
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On setting k = kr + iki with ki ≥ 0 we find that∣∣∣∣∫ d�s eik∗s·re−iks·r′
∣∣∣∣ = ∣∣∣∣∫ d�s ekis·(r+r′)eikrs·(r−r′)

∣∣∣∣ ≤ e2kia0

∣∣∣∣∫ d�s eikrs·(r−r′)
∣∣∣∣

= 4πe2kia0 | j0(kr|r− r′|)|,

where a0 is the radius of the smallest support sphere to τ0 and we have used the plane-
wave expansion of the spherical Bessel function j0 given in Example 4.2 of Chapter 4. On
substituting the above inequality into Eq. (5.34) we obtain

||T̂Q||2Hf
≤ e2kia0

4π

∫
τ0

d3r
∫
τ0

d3r′|Q∗(r,ω)Q(r′,ω)|| j0(kr|r− r′|)| < τ0e2kia0

4π
||Q||2HQ

∀Q ∈ HQ, which establishes Eq. (5.33).

The fact that T̂ maps source functions in Q ∈ HQ into the Hilbert space Hf follows from
the fact that, as we have just shown, T̂ is a bounded operator so that ||T̂Q||Hf <∞ for all
functions Q ∈ HQ. However, this operator has much better properties than being bounded.
It is also a Hilbert–Schmidt operator, from which it follows that it is also a compact oper-
ator.4 Compact operators are the closest thing in infinite-dimensional Hilbert spaces to
the finite-dimensional operators and matrices of standard linear algebra. In particular, they
are defined by the property that they result from convergent Cauchy sequences of finite-
dimensional operators. Almost all of the operators that we will deal with in this book are
compact.

Example 5.4 It is not difficult to prove that the operator T̂ defined in Eq. (5.32) is Hilbert–
Schmidt and, hence, compact. In particular, the operator T̂ : HQ → Hf is Hilbert–Schmidt
if there exists a complete orthonormal sequence en ∈ HQ such that∑

n

||T̂en||2Hf
<∞.

To prove that T̂ is Hilbert–Schmidt we select any orthonormal sequence en(r) ∈ HQ so that

T̂en = − 1

4π

∫
τ0

d3r e−iks·ren(r) = − 1

4π
〈eik∗s·r, en〉HQ .

It then follows that

||T̂en||2Hf
=
(

1

4π

)2 ∫
4π

d�s|〈eik∗s·r, en〉HQ |2,

4 The term “completely continuous” is sometimes used in place of “compact” for such operators.
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from which we find that∑
n

||T̂en||2Hf
=
(

1

4π

)2∑
n

∫
4π

d�s|〈eik∗s·r, en〉HQ |2

=
(

1

4π

)2 ∫
4π

d�s

∑
n

|〈eik∗s·r, en〉HQ |2 ≤
(

1

4π

)2 ∫
4π

d�s||e−iks·r||2HQ
,

(5.35)

where we have used Bessel’s inequality. As a final step we set k = kr + iki to find that

||e−iks·r||2HQ
=
∣∣∣∣∫
τ0

d3r e2kis·r
∣∣∣∣ ≤ e2kia0τ0,

where a0 is the radius of the smallest sphere that entirely encloses the source volume τ0.
Using this result in Eq. (5.35), we then conclude that∑

n

||T̂en||2Hf
≤ e2kia0τ0

4π
,

which establishes the desired result.

5.4.1 The adjoint operator

The adjoint mapping T̂† : Hf → HQ carries elements f ∈ Hf into the source Hilbert space
HQ. The adjoint mapping is defined via the equation

〈 f , T̂Q〉Hf = 〈T̂†f , Q〉HQ ,

which must hold for all Q ∈ HQ and all f ∈ Hf . By making use of the definitions of the
standard inner products in the two spaces and the definition of T̂ given in Eq. (5.32) we
find that

T̂†f = − 1

4π
Mτ0

∫
4π

d� eik∗s·rf (s,ω), (5.36)

where

Mτ0 =
{

1 if r ∈ τ0

0 else

is a so-called masking operator. The masking operator is required in order to guarantee
that the adjoint maps arbitrary elements in Hf to elements in HQ, which must be compactly
supported in the volume τ0. As was the case with the operator T̂ , we will sometimes express
the adjoint operator using the shorthand notation

T̂† = − 1

4π
Mτ0

∫
4π

d� eik∗s·r,
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where the domain of the operator is functions f (s,ω) ∈ Hf . It should be noted that in
constructing the adjoint operator we have allowed for the possibility that the wavenumber
k is complex. The ISP formulated using this operator is thus valid for sources embedded in
dispersive as well as in non-dispersive media.

Example 5.5 We consider the 1D radiation problem(
∂2

∂z2
+ k2

)
U+(z,ω) = Q(z,ω),

where the source is assumed to be supported in some finite interval La = [−a, a] about the
origin of the z axis. The outgoing-wave solution to the above equation is given by

U+(z,ω) = − i

2k

∫ a

−a
dz′ Q(z′,ω)eik|z−z′|,

where we have used the 1D outgoing-wave Green function derived in Example 2.3 of
Chapter 2. The far field is easily found to be

U+(z,ω) ∼ − i

2k

∫ a

−a
dz′ Q(z′,ω)e∓ikz′e±ikz, |z| → ∞,

where the top sign applies if z > 0 and the bottom sign if z < 0. The radiation pattern is
the coefficient to the term exp(±ikz) in the above equation and can be written in the form

f (s,ω) = − i

2k

∫ a

−a
dz′ Q(z′,ω)e−iksz′ , (5.37)

where f (s,ω) with s = −1 is the radiation pattern along the left half-line z < 0 and f (s,ω)
with s = +1 is the radiation pattern along the right half-line z > 0. The far-field ISP
consists of inverting Eq. (5.37) for the source from the radiation pattern specified for both
z > 0 and z < 0; i.e., from both f (1,ω) and f (−1,ω).

We can formulate the 1D ISP described above in a Hilbert-space framework. Thus,
we introduce the Hilbert space L2(La) of square-integrable sources Q(z,ω) compactly
supported on the line interval La = [−a, a] with la = 2a being the length of the
interval. We also introduce the Hilbert space C2 consisting of all pairs of complex numbers
f (s,ω), s = ±1; i.e., C2 = { f (−1,ω), f (+1,ω)| f (±1,ω) ∈ C}. The mapping from the
space L2(La) to the space C2 is governed by Eq. (5.37), so the operator T̂ : L2(La)→C2 is

T̂ = − i

2k

∫
L0

dz′ e−iksz′ ,

which is the 1D version of the T̂ operator defined in Eq. (5.32).
The inner products in the two spaces are given by

〈Q1, Q2〉L2(La) =
∫

La

dz Q∗1(z,ω)Q2(z,ω),

〈 f1, f2〉C2 =
∑

s=±1

f ∗1 (s,ω)f2(s,ω),



193 5.4 The Hilbert-space formulation of the ISP

where the inner products defined above are the standard inner products in L2(La) and C2,
respectively.

The adjoint operator T̂† maps the space C2 into the space L2(La) and is obtained using
its definition

〈f , T̂Q〉C2 = 〈T̂†f , Q〉L2(La).

On substituting the definition of T̂ we find that

〈 f , T̂Q〉C2 =
∑

s=±1

f ∗(s,ω)

{ T̂Q︷ ︸︸ ︷
− i

2k

∫
L0

dz′ e−iksz′Q(z′,ω)

}

=
∫

L0

dz′
⎧⎨⎩ i

2k∗
∑

s=±1

f (s,ω)eik∗sz′
⎫⎬⎭
∗

Q(z′,ω),

from which we conclude that

T̂† = i

2k∗
M

∑
s=±1

eik∗sz′ ,

where M is the masking operator defined by

M =
{

1 if |z| < a,

0 else.

Back propagation and the adjoint operator

The adjoint operator T̂† maps the data space Hf back into the Hilbert space HQ of source
functions just as the back-propagation operation maps data into the back-propagated field
�(r,ω), which is related to the source via the PB integral equation. Indeed, for the special
case of a non-dispersive medium and far-field data the back propagated field was found in
Example 5.2 to be given by

�(r,ω) = ik

2π

∫
4π

d�s f (s,ω)eiks·r = −2ikT̂†f (r,ω), r ∈ τ0.

We thus see that back propagation is simply an implementation of the adjoint operator and,
as such, plays the important role of mapping the data space into back-propagated fields
that are related to the source via an integral equation that then must be solved to recover
the source. The great thing about our Hilbert-space formulation is that the adjoint operator
and, hence, the back-propagation operation resulted directly from the formal mathematics
of this formulation without any recourse to the physics of the underlying problem. This
approach to the problem is basically a “turn the crank” approach that is guaranteed to yield
the “best” solution to the problem in the fastest and most economical way. We will find
later that the back-propagation process implemented in terms of the adjoint operator yields
an easily computed approximate solution to a host of inverse problems related to the wave
and Helmholtz equations that includes the ISP as well as the ISCP.
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5.4.2 Singular value decomposition

In the case in which the source volume τ0 is finite, the operator T̂ and its adjoint T̂† are
compact,5 from which it follows that there exist a countable set of orthonormal basis func-
tions vp ∈ HQ and a second, companion set, of orthonormal basis elements up ∈ Hf that
are coupled via the set of equations

T̂vp = σpup, T̂†up = σpvp, (5.38a)

where the σp are a discrete set of non-negative real numbers and p = 0, 1, . . . is an integer
index that labels the singular set. The functions vp and up are referred to as singular func-
tions, the constants σp as singular values and the triplet {vp, up, σp} as the singular system
associated with the operator T̂ . Since the two sets {vp, up} are complete in their respective
Hilbert spaces we can represent the operators T̂ and T̂† in the expansions

T̂ =
∫
τ0

d3r
∑

p

σpup(s)v∗p(r), T̂† =
∫

4π
d�

∑
p

σpvp(r)u∗p(s), (5.38b)

which are called the “singular value decompositions” (SVDs) of the operators T̂ and T̂†.
Note that the presence of the singular values σp in these expansions means that they involve
only the singular vectors associated with non-zero singular values. We will not prove the
existence of the SVD here but refer the interested reader to the excellent literature on this
subject.

The singular vectors vp and up each satisfy a separate set of equations known as the
normal equations, which are readily derived from the defining equations Eqs. (5.38) of the
SVD. In particular, we find that

T̂†T̂vp = σ 2
p vp, T̂T̂†up = σ 2

p up. (5.39)

Both of the composite operators T̂†T̂ and T̂T̂† are clearly Hermitian and compact (since
T̂ and T̂† are compact) and, because of this, it is well known that each operator possesses
a complete set of orthonormal eigenvectors with a discrete spectrum. Thus, the singular
set {vp, up, σp} can be computed by solving the two eigenvector equations Eqs. (5.39). In
practice it is necessary only to solve for those singular functions associated with non-zero
singular values σp > 0 and to solve one of the normal equations for either vp or up and
then use the defining equations Eqs. (5.38a) to compute its partner.

5 That T̂ is compact has been established in Example 5.4. That its adjoint T̂† is also compact is easily established
using an almost identical treatment.
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Example 5.6 For our prototype operator T̂ defined in Eq. (5.32) we find that the composite
operator T̂†T̂ is given by

T̂†T̂ =
(

1

4π

)2

Mτ0

∫
4π

d� eik∗s·r
∫
τ0

d3r′ e−iks·r′ ,

so

T̂†T̂vp =
(

1

4π

)2

Mτ0

∫
4π

d� eik∗s·r〈eik∗s·r, vp〉HQ = σ 2
p vp.

It then follows immediately that if σp > 0 then

[∇2 + k∗2]vp = 0, r ∈ τ0;

i.e., the singular vectors vp of the ISP operator T̂ that have non-zero singular values satisfy
the homogeneous Helmholtz equation with wavenumber k∗ within the source volume τ0.

Example 5.7 A simple yet important linear transformation is the 1D Fourier transform of a
time- or space-limited function. In terms of space-dependent functions this transform takes
the form

T̂g(K) = 1√
2π

∫ a0

−a0

dx g(x)e−iKx, −∞ < K < +∞. (5.40a)

Using the standard inner product in the spaces L2([−a0,+a0]) and L2(−∞,∞), we find
that

T̂† =Ma0

1√
2π

∫ ∞
−∞

dK eiKx, (5.40b)

where

Ma0 =
{

1 −a0 ≤ x ≤ a0,

0 else.

The normal equations for the singular functions {vp(x), up(K)} are found to be

T̂†T̂vp =Ma0

1

2π

∫ ∞
−∞

dK eiKx
∫ a0

−a0

dx′ e−iKx′vp(x′) = σ 2
p vp(x),

T̂T̂†up = 1

2π

∫ a0

−a0

dx e−iKx
∫ ∞
−∞

dK′ eiK′xup(K′) = σ 2
p up(K).

It is not difficult to verify (see the problems at the end of the chapter) that the singular
system satisfying the above normal equations is given by

vp(x) =Ma0

e
i πa0

px

√
2a0

, up(K) = sinc[(a0/π )(K − (π/a0)p)]√
π/a0

, σp = 1,
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where

sinc x = sin(πx)

πx

is the “sinc function.” The set of orthonormal singular functions vp, p = −∞, . . . ,+∞,
comprises the classical basis for Fourier-series expansions of square-integrable func-
tions within the interval [−a0, a0], while the orthonormal singular functions up,
p= − ∞, . . . ,+∞, form the basis for the classical Whittaker–Shannon sinc-function
expansion of band-limited functions.

Example 5.8 The linear mapping T̂ considered in the above example maps the Hilbert space
of square-integrable functions over the finite interval −a0 ≤ x ≤ +a0 to square-integrable
functions defined over the entire line −∞ < K < +∞. A related mapping is the Fourier
transform of time- or space-limited functions into frequency-limited functions. Using the
same notation as in the previous example, this mapping is defined as

T̂g(K) =MK0

1√
2π

∫ a0

−a0

dx g(x)e−iKx, (5.41)

where

MK0 =
{

1 −K0 ≤ K ≤ K0,

0 else.

It is thus similar to the mapping defined in Eq. (5.40a) of the previous example, with the
important difference that the Fourier transform is now frequency-limited to the finite band
pass −K0 ≤ K ≤ +K0. This mapping is extremely important in a host of applications
ranging from communication theory to inverse problems in wave propagation and scatter-
ing. It was treated in the famous paper by Slepian and Pollak (Slepian and Pollak, 1961)
who showed that the SVD of this mapping is given by the angular prolate spheroidal
wavefunctions which satisfy the equation

κn

S̃0,n(c,cω)︷ ︸︸ ︷
S0,n(c,ω) =

∫ 1

−1
dξ S0,n(c, ξ )eicωξ , −1 < ω < +1, (5.42)

where c is a constant parameter and

κn = 2in√
2π

R(1)
on (c, 1),

with R(1)
on (c, 1) being the radial prolate spheroidal wavefunctions. Moreover, and most

importantly, these functions are orthogonal over the intervals −1 < ξ < +1 and
−1 < ω < +1 with norm

||S0,n||2 =
∫ +1

−1
dξ |S0,n(c, ξ )|2.
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Starting from Eq. (5.42) and setting c = K0a0 it is not difficult (see the problems at the
end of the chapter) to show that the SVD of the mapping Eq. (5.41) is given by

vp(x) =Ma0

i−p/2S0p(c, x/a0)√
a0||S0p|| , up(K) =MK0

ip/2S0p(c, K/K0)√
K0||S0p|| ,

σp =
√

K0a0|κp|.
The singular functions {vp(x)} form an orthonormal basis in L2(−a0,+a0), while the singu-
lar functions {up(K)} form an orthonormal basis in L2(−K0,+K0). These two sets then can
be used to (exactly) invert the truncated 1D Fourier transform of a space-limited function.

5.4.3 The range and null space of T̂

We will require a few definitions for our subsequent development of the solution to the ISP.
The first of these is of the range R(T̂) of a linear mapping T̂ , which is simply the set of all
data f that result from applying the operator T̂ to a Q ∈ HQ. If we make use of the SVD of
T̂ given in Eq. (5.38b) we find that

T̂Q =
∑

p

σp〈vp, Q〉HQup(s), (5.43)

from which we conclude that R(T̂) is spanned by the set of singular functions up(s) having
non-zero singular values σp > 0. The range, however, is not actually itself a Hilbert space
in that not every Cauchy convergent series formed from this basis is an image of a source
Q ∈ HQ, which is another way of saying that not all Cauchy sequences formed from

elements f ∈ R(T̂) are themselves in R(T̂). The closure of the range, denoted by R(T̂),
is obtained by adding the limits of all Cauchy sequences to R(T̂) and is, thus, a proper
Hilbert space.

Example 5.9 The closure of the range R(T̂) of an operator T̂ has the orthonormal basis
{up(s), σp > 0} so that any element in this subspace can be expanded into the series

f =
∑
σp>0

〈up, f 〉Hf up(s),

with

|| f ||2Hf
=
∑
σp>0

|〈up, f 〉Hf |2 <∞. (5.44)

If f is also in the range R(T̂) of T̂ it can be expanded into the series Eq. (5.43) so that

〈up, f 〉Hf = σp〈vp, Q〉HQ → 〈vp, Q〉HQ =
〈up, f 〉Hf

σp
, σp > 0,
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for some Q ∈ HQ. It then follows that

||Q||2HQ
=
∑

p

|〈vp, Q〉HQ |2 =
∑
σp>0

∣∣∣∣ 〈up, f 〉Hf

σp

∣∣∣∣2 <∞, (5.45)

which is the Picard condition required of the expansion coefficients 〈up, f 〉Hf for a data

function f ∈ R(T̂). It should be clear that a function f can be in the closure of R(T̂) and
satisfy Eq. (5.44) but not satisfy the Picard condition Eq. (5.45) and, hence, not be in the
range R(T̂).

A second definition that we will require is that of the null space η(T̂) of a linear mapping
T̂ . The null space is the set of all Q ∈ HQ such that T̂Q = 0. It follows from Eq. (5.43)
that the null space is spanned by all singular vectors vp having zero singular values σp = 0.
For the ISP this space is the space of NR sources Qnr that generate zero field outside their
support volume. The null space is a proper Hilbert subspace of HQ in that the limits of all
Cauchy sequences within this space remain within this space.6

It is not difficult to show using the results of Example 5.6 that the NR sources lie in
the null space of our prototype operator T̂ . To show this, we make use of the fact that

the orthogonal complement η(T̂)
⊥

of the null space is spanned by the singular vectors
vp having non-zero singular values and, as shown in Example 5.6, these singular vectors
satisfy the homogeneous Helmholtz equation with wavenumber k∗. It then follows that if

vp has non-zero singular value σp > 0 and hence lies in η(T̂)
⊥

then

〈Qnr, vp〉HQ = 〈
Qnr︷ ︸︸ ︷

[∇2 + k2]�, vp〉HQ = 〈�, [∇2 + k∗2]vp〉HQ = 0.

This then establishes that Qnr ∈ η(T̂) since the singular vectors vp, σp �= 0 form a basis in

η(T̂)
⊥

. In fact the NR sources span the null space since any solution of T̂vp = 0 must be a
source that radiates a zero field outside of τ0 and, hence, must be NR.

5.4.4 The least-squares pseudo-inverse

The ISP operator T̂ possesses a null space η(T̂) formed of all NR sources, so the ISP
does not possess a unique solution. Moreover, generally the data will be noisy or the field
measurements non-ideal so that the data need not be in the range R(T̂) of T̂ and, hence,
Eq. (5.29) might not even possess any solution! In this section we will address both of these
issues by computing the so-called least-squares pseudo-inverse Q̂ ∈ HQ of the mapping
Eq. (5.29), and we will employ that as our fundamental solution to the ISP. The least-
squares pseudo-inverse has the following properties.

6 This is reminiscent of the often-heard phrase “Everything that takes place in Vegas stays in Vegas.”
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1. Q̂ minimizes the squared error

Ef = ||T̂Q− f ||2Hf
(5.46a)

among all sources Q ∈ HQ.
2. Q̂ has minimum norm among all sources that minimize Ef ; i.e.,

||Q̂||2HQ
=
∫
τ0

d3r|Q̂(r,ω)|2 (5.46b)

is minimum among all Q that minimize the squared error defined in Eq. (5.46a).

Least-squares solution

We first address the possibility that the data f ∈ Hf might not be in the range of the ISP
operator T̂ . This is addressed by noting that

T̂†f =
∑

p

σp〈up, f 〉Hf vp(r)

and thus involves only that part of f which lies in the closure R(T̂) of R(T̂). If we then
apply the adjoint operator T̂† to both sides of the ISP mapping defined in Eq. (5.29) we

annihilate that component of f that lies outside R(T̂) and obtain the normal equations

T̂†T̂Q = T̂†f . (5.47)

If the data are in the range of the operator T̂ (f ∈ R(T̂)) then Eqs. (5.29) and (5.47) are
equivalent and will possess the same solution set. If, on the other hand, f /∈ R(T̂) then the
original equations Eq. (5.29) will not possess a solution but the normal equations Eq. (5.47)
may possess a solution set that is the least-squares solution set of Eq. (5.29); i.e., will be
such that any solution in this set will minimize the squared error Ef defined in Eq. (5.46a).
Whether or not a least-squares solution exists depends on whether or not the projection

of the data into R(T̂) satisfies the Picard condition and, hence, is in the range of T̂ . The
normal equations Eq. (5.47) will have a solution set that is the least-squares solution set of

Eq. (5.29) if and only if the projection of the data into R(T̂) satisfies the Picard condition
or, equivalently, if the data themselves satisfy this condition.

The pseudo-inverse

A second problem arises in connection with the normal equations Eq. (5.47) even if the
data satisfy the Picard condition in that the null space η(T̂) of T̂ is not empty and includes,
in particular, all NR sources in HQ. This is apparent from Eq. (5.43), which indicates
that the projection of the source Q onto the singular vectors vp having zero singular value
σp = 0 will vanish so that such source components are NR and cannot be determined
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from the data. The composite operator T̂†T̂ possesses the same null space, so the normal
equations Eq. (5.47) will also not possess a unique solution. Although they do not possess a
unique solution, they can, nevertheless, be solved (if the data satisfy the Picard condition),
and the so-called pseudo-inverse is that particular solution that results from projecting the
source onto the subspace spanned by all singular vectors vp having non-zero singular values
σp �= 0. This subspace is the orthogonal complement of the null space and is denoted by
η(T̂)⊥, so this solution, which we will denote by Q̂, is then given by

Q̂(r,ω) =
∑
σp>0

〈vp, Q〉HQ vp(r).

If the data f ∈ R(T̂) then the pseudo-inverse is the projection of the source into η(T̂)⊥,
whereas if the data f /∈ R(T̂) but satisfy the Picard condition then Q̂ is the projection of the
least-squares solution to the ISP onto this subspace. In either case Q̂ has no components in
the null space η(T̂) of the operator T̂ and, for this reason, we will often refer to Q̂ as the
minimum-norm solution to the ISP.

If we make use of Eqs. (5.38b) we find that

T̂†T̂ =
∫
τ0

d3r′
∑

p

σ 2
p vp(r)v∗p(r′).

The pseudo-inverse [T̂†T̂]+ of this operator must generate the projection operator onto
η(T̂)⊥, from which we conclude that

[T̂†T̂]+ =
∫
τ0

d3r′
∑
σp>0

1

σ 2
p

vp(r)v∗p(r′).

Note that [T̂†T̂]+ (with a plus sign +, not a dagger †) denotes the pseudo-inverse of the
composite operator [T̂†T̂], not its adjoint. Applying the pseudo-inverse to both sides of
Eq. (5.47) then yields the result

Q̂(r,ω) = [T̂†T̂]+T̂†f . (5.48a)

As a final step we can represent the pseudo-inverse in Eq. (5.48a) in terms of the singular
system {vp, up, σp} by using the expansions of [T̂†T̂]+ and T̂† into that system. We find that

Q̂(r,ω) =

[T̂†T̂]+︷ ︸︸ ︷∫
τ0

d3r′
∑
σp>0

1

σ 2
p

vp(r)v∗p(r′)

T̂†︷ ︸︸ ︷∫
4π

d�
∑

p′
σp′vp′ (r

′)u∗p′ (s) f (s,ω),
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which reduces to

Q̂(r,ω) =
∑
σp>0

〈up, f 〉Hf

σp
vp. (5.48b)

5.4.5 Filtered back propagation and back-propagation imaging

The operator expression for the pseudo-inverse solution of the ISP given in Eq. (5.48a) can
be expressed in an alternative form that is useful in a number of applications and, indeed,
forms the basis for so-called filtered back projection and back-propagation algorithms in
computed tomography (CT) and diffraction tomography (DT). In particular, by making use
of the definitions of T̂ and T̂† and following a similar set of steps to those used above, we
find that

T̂T̂† =
∫

4π
d�s′

∑
p

σ 2
p up(s)u∗p(s′),

from which it follows that the pseudo-inverse is given by

[T̂T̂†]+ =
∫

4π
d�s′

∑
σp>0

1

σ 2
p

up(s)u∗p(s′).

We then conclude that

T̂†[T̂T̂†]+ =
∫

4π
d�s′

∑
σp>0

1

σp
vp(r)u∗p(s′),

which, upon comparison with Eqs. (5.48b), yields the following alternative expression for
the pseudo-inverse solution to the ISP:

Q̂(r,ω) = T̂†[T̂T̂†]+f . (5.49)

The expression for the pseudo-inverse given in Eq. (5.49) can be interpreted as a two-step
procedure whereby in the first step the data f are filtered in the Hilbert space Hf using the
filter [T̂T̂†]+ : Hf → Hf and then back projected (propagated) from Hf onto HQ using
the adjoint operator T̂† : Hf → HQ. In contrast, the expression for the pseudo-inverse
given in Eq. (5.48a) performs back projection from Hf onto HQ followed by filtering in
the space HQ by the filter [T̂†T̂]+ : HQ → HQ. The importance of this difference is that
filtering in the space Hf is much more efficient than filtering in the space HQ and this
difference can be important in a number of applications (cf. the discussion in Section 8.1.1
of Chapter 8).
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It is interesting to note that the final expression Eq. (5.48b) for the pseudo-inverse
expressed in terms of the SVD is automatically in the form of the filtering of the data,
expressed by

[T̂T̂†]+f = 〈up, f 〉Hf

σp
(5.50)

followed by back propagation expressed by the summation over singular functions vp(r)
with expansion coefficients equal to the filtered data. As mentioned earlier, this is another
advantage of the SVD-based solution to the ISP and other inverse problems: it automat-
ically yields the most economical form of the solution to the problem. We will find this
to be especially important in the (linearized) inverse scattering problem where the SVD
generates the filtered back-propagation algorithm of diffraction tomography.

Back-propagation imaging

In many cases of interest the singular values σp are approximately constant up to some
cutoff value P after which they decay exponentially fast to zero. In such cases we can
basically ignore the inverse filtering step as given in Eq. (5.50) and approximate the filtered
back-propagation algorithm via

Q̂(r,ω) ≈ κT̂†f , (5.51)

where κ is a constant. Using the expression for the adjoint operator given in Eq. (5.38b),
we find that this approximate solution can be expressed in the form

Q̂(r,ω) ≈
∑

p

σp〈up, f 〉Hf vp,

which differs from the exact solution given in Eq. (5.48b) by having the singular values
in the numerator rather than in the denominator. The above approximation will thus be
accurate within a constant multiplier so long as the singular values behave as described
above. This procedure of forming an approximate solution to the ISP by basically ignoring
the inverse filtering of the data required in the exact inversion and simply back propagating
the data via T̂† will be referred to as back-propagation imaging7 and, as one might expect,
plays a large role in certain inverse scattering applications.

5.5 The antenna-synthesis problem

In this section we will employ the Hilbert-space framework and the SVD to solve the
ISP for the case of far-field data in the form of the radiation pattern f (s,ω) specified for
all observation directions s and a single frequency ω. This problem is one form of the

7 Back-propagation imaging is also sometimes referred to as adjoint imaging.
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antenna-synthesis problem, where the goal is to determine a 3D source (“antenna”) that
radiates a specified radiation pattern. We will solve the problem for the special case of
sources confined to spherical regions where τ0 = {r|r ≤ a0}, with a0 being the radius
of the source sphere assumed centered at the origin. The problem can be solved for other
source geometries and data sets using the same general Hilbert-space formulation, but here
we will restrict our attention to the classic problem of determining a source confined to a
sphere from specification of its radiation pattern.

The ISP in terms of far-field data is governed by our prototype mapping T̂Q = f with
T̂ defined in Eqs. (5.32). We obtained the minimum-norm inverse of this mapping in Sec-
tion 5.4.4, where it was found to be

Q̂ = [T̂†T̂]+T̂†f =
∑
σp>0

〈up, f 〉Hf

σp
vp(r),

where [T̂†T̂]+ is the so-called pseudo-inverse of the operator T̂†T̂ and is given in terms
of the singular system {vp, up, σp} in Eq. (5.48b). As discussed in that section, Q̂ is the
minimum-norm solution to the ISP if the data f are in the range R(T̂) of T̂ and will be
the minimum-norm least-squares solution to the ISP if f /∈ R(T̂) but satisfies the Picard
condition ∑

σp>0

∣∣∣∣ 〈up, f 〉Hf

σp

∣∣∣∣2 <∞.

5.5.1 Implementation of the SVD

In order to compute Q̂ it is necessary to compute the singular system of the operator T̂ for
the specific case of a spherical source support volume. Because τ0 is the interior of a sphere
and the data are specified over the surface of the unit sphere it is natural to employ a spher-
ical coordinate system in implementing the solution given in general form in Eq. (5.48b).
This can be accomplished by using the multipole expansion of the plane wave exp(iks · r)
given in Example 3.4 of Chapter 3 to express T̂ and its adjoint T̂† via the equations

T̂ = − 1

4π

∫
τ0

d3r e−iks·r

= −
∞∑

l=0

l∑
m=−l

(−i)lYm
l (s)

∫
r′≤a0

d3r jl(kr)Ym
l
∗(r̂) (5.52a)

and

T̂† = − 1

4π
Mτ0

∫
4π

d� eik∗s·r

= −Mτ0

∞∑
l=0

l∑
m=−l

iljl(k
∗r)Ym

l (r̂)
∫

4π
d�s Ym

l
∗(s), (5.52b)
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where r̂ is the unit vector along the r direction having polar angle θ and azimuthal angle φ,
we have taken the source volume τ0 to be a sphere of radius a0 centered at the origin and

Mτ0 =
{

1 if r ≤ a0,

0 else.
(5.52c)

We have that jl(k∗r) = j∗l (kr), so we can also express the adjoint operator in the alternative
form

T̂† = −Mτ0

∞∑
l=0

l∑
m=−l

ilj∗l (kr)Ym
l (r̂)

∫
4π

d�s Ym
l
∗(s), (5.52d)

which we will employ in the following development.
The singular system {vp, up, σp} is computed using the normal equations Eqs. (5.39) and,

hence, we have need of the composite operators T̂†T̂ : HQ → HQ and T̂T̂† : Hf → Hf .
These composite operators can be constructed directly from Eqs. (5.52) and we find that

T̂†T̂ =Mτ0

∞∑
l=0

l∑
m=−l

j∗l (kr)Ym
l (r̂)

∫
r′≤a0

d3r′ jl(kr′)Ym
l
∗(r̂′), (5.53a)

T̂T̂† =
∞∑

l=0

l∑
m=−l

μ2
l (ka0)Ym

l (s)
∫

d�s′ Y
m
l
∗(s′), (5.53b)

where

μ2
l (ka0) =

∫ a0

0
r2 dr| jl(kr)|2 (5.54)

was first encountered in connection with essentially NR sources in Section 1.7.3 of
Chapter 1.

The singular functions vp and up satisfy the normal equations Eqs. (5.39), which, upon
making use of Eqs. (5.53), can be expressed in the form

Mτ0

∞∑
l=0

l∑
m=−l

〈 j∗l Ym
l , vp〉HQ j∗l (kr)Ym

l (r̂) = σ 2
p vp(r,ω), (5.55a)

∞∑
l=0

l∑
m=−l

μ2
l 〈Ym

l , up〉Hf Ym
l (s) = σ 2

p up(s,ω), (5.55b)

where

〈 j∗l Ym
l , vp〉HQ =

∫
r′≤a0

d3r′ jl(kr′)Ym
l
∗(r̂′)vp(r′,ω),

〈Ym
l , up〉Hf =

∫
d�′s Ym

l
∗(s)up(s,ω).

Equations (5.55) constitute the normal equations for the SVD of the far-field ISP. These
equations are standard eigenfunction equations satisfied by the two singular functions vp

and up.
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The singular functions vp

We first consider Eq. (5.55a) satisfied by the singular functions vp. It follows from this
equation that the singular functions vp(r,ω) having non-zero singular values are linear
combinations of the free multipole fields j∗l (kr)Ym

l (r̂). It then follows that since this set of
functions is orthogonal over the source volume the singular functions vp(r,ω) having non-
zero singular value can be selected to be normalized versions of the free multipole fields
having wavenumber k∗. In particular, we have that

vl,m(r,ω) = −il

μl(ka0)
Mτ0 j∗l (kr)Ym

l (r̂), (5.56a)

where μl(ka0) is the positive square root of μ2
l (ka0) defined in Eq. (5.54), the index p is

replaced by the pair l, m and we have included the factor −il for reasons soon to become
apparent.

Non-zero singular values

To determine the non-zero singular values σp = σl,m > 0 we take the inner product of both
sides of Eq. (5.55a) with respect to the functions j∗l (kr)Ym

l (r̂) to find that

〈 j∗l Ym
l , vp〉HQσ

2
l,m = 〈 j∗l Ym

l , vp〉HQμ
2
l (ka0),

from which we conclude that σl,m > 0 are equal to the positive root of the μ2
l (ka0) defined

in Eq. (5.54).

The singular functions up

To compute the singular functions up = ul,m(s,ω) ∈ Hf we can solve the normal equa-
tions Eqs. (5.55b). Alternatively, these functions corresponding to non-zero singular values
μl(ka0) > 0 can be computed directly from the set vl,m found above using the first of the
two defining equations for the SVD given in Eqs. (5.38a). In particular, if we make use of
Eqs. (5.52a) and (5.56a) we find that

T̂vl,m = μl(ka0)ul,m(s)

=

T̂︷ ︸︸ ︷
−
∞∑

l′=0

l′∑
m′=−l′

(−i)l′Ym′
l′ (s)

∫
r′≤a0

d3r′ jl′ (kr′)Ym′∗
l′ (r̂′)

vl,m︷ ︸︸ ︷
−il

μl(ka0)
j∗l (kr)Ym

l (r̂)

= 1

μl(ka0)

∫ a0

0
r2 dr| j2l (kr)|2Ym

l (s) = μl(ka0)Ym
l (s),



206 The inverse source problem

from which we conclude that

ul,m(s) = Ym
l (s), μl(ka0) > 0. (5.56b)

The singular functions ul,m having non-zero singular values μl(ka0) > 0 are thus the spher-
ical harmonics and are clearly complete in the space Hf of square-integrable functions on
the unit sphere; i.e., in this particular problem the closure of the range of the mapping
T̂Q = f is the whole space Hf ! Our motivation for including the factor−il in the definition
of the singular functions vl,m is now apparent in that it resulted in the singular functions
ul,m being the spherical harmonics with no multiplying phase factors.

5.5.2 The solution to the far-field ISP

The minimum-norm least-squares solution to the ISP is given in general form in
Eq. (5.48b). On using the singular system computed in the previous section for the far
field ISP and a spherical source volume this solution reduces to

Q̂(r,ω) =
∞∑

l=0

l∑
m=−l

〈Ym
l , f 〉Hf

μl(ka0)
vl,m(r,ω) =

∞∑
l=0

l∑
m=−l

f m
l (ω)

μl
vl,m(r,ω)

= −
∞∑

l=0

l∑
m=−l

il
f m
l (ω)

μ2
l (ka0)

Mτ0 j∗l (kr)Ym
l (r̂), (5.57a)

where

f m
l (ω) = 〈Ym

l , f 〉Hf =
∫

d�s f (s,ω)Ym
l
∗(s)

are the radiation-pattern Fourier coefficients first introduced in Section 4.8.4 of Chapter 4.
We will sometimes refer to the minimum-norm solution Q̂ as the minimum-norm source.

We obtained a multipole expansion and plane-wave expansion of the field back prop-
agated from the radiation pattern in Example 5.2. On comparison of the minimum-norm
solution given above with the multipole expansion in that example we conclude that Q̂(r,ω)
can be considered to be the back propagation of a filtered version of the radiation pattern
in a medium with wavenumber k∗. In particular, we can write the minimum-norm solution
in the form

Q̂(r,ω) =Mτ0

∞∑
l=0

l∑
m=−l

2il+1k f m
l (ω)j∗l (kr)Ym

l (r̂),

where

f m
l (ω) = i

2k

f m
l (ω)

μ2
l (ka0)

are the filtered versions of the radiation-pattern generalized Fourier coefficients f m
l (ω).



207 5.5 The antenna-synthesis problem

If we make use of the plane-wave expansion of the free multipole fields given in
Example 3.4 of Chapter 3 we can also express Q̂(r,ω) in a plane-wave expansion with
the plane-wave amplitudes equal to a filtered version of the radiation pattern. In particular,
we have from that example

j∗l (kr)Ym
l (r̂) = (−i)l

4π

∫
4π

d�s Ym
l (s)eik∗s·r,

which, when substituted into Eq. (5.57a), yields after some minor algebra

Q̂(r,ω) = ik∗

2π
Mτ0

∫
4π

d�s f (s,ω)eik∗s·r, (5.57b)

with

f (s,ω) = − 1

2ik∗
∞∑

l=0

l∑
m=−l

f m
l (ω)

μ2
l (ka0)

Ym
l (s).

Again, on comparison of Eq. (5.57b) with the plane-wave expansion of the field back prop-
agated from the radiation pattern found in Example 5.2 we see that the minimum-norm
solution is the back propagation of a filtered version of the radiation pattern.

Field radiated by the minimum-norm source

According to Theorem 1.4 the radiation pattern uniquely determines the field everywhere
outside the source spatial volume τ0. It then follows that the field radiated by the minimum-
norm source has to be equal to the field radiated by the actual source everywhere outside the
source sphere. We can prove this result directly by making use of the multipole expansion
of the field developed in Section 4.8 of Chapter 4. In particular, we showed in that section
that the field radiated everywhere outside the source sphere can be expressed in terms of
the radiation-pattern Fourier coefficients via the multipole expansion

U+(r,ω) = ik
∞∑

l=0

l∑
m=−l

ilf m
l (ω)h+l (kr)Ym

l (r̂).

We can thus establish that the field radiated by the minimum-norm source Q̂ is equal to
the actual radiated field U+ everywhere outside the source sphere if we can prove that this
field possesses the above multipole expansion.

To establish this we first represent the field radiated by Q̂ via the basic multipole
expansion

UQ̂(r,ω) = −ik
∞∑

l=0

l∑
m=−l

qm
l (k)h+l (kr)Ym

l (r̂), (5.58)
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where we have denoted the field radiated by Q̂ by UQ̂. In this expansion the multipole
moments qm

l (k) are given in terms of the source by Eq. (4.52b) of Chapter 4:

qm
l (k) =

∫
r′≤a0

d3r′ Q̂(r′,ω)jl(kr′)Ym
l
∗(r̂′)

= −
∞∑

l′=0

l′∑
m′=−l′

il
′ f m′

l′ (k)

μ2
l′ (ka0)

∫
r′≤a0

d3r′ j∗l′(kr′)Ym′
l′ (r̂′)jl(kr′)Ym

l
∗(r̂′)

= −ilf m
l (k).

On substituting this result into Eq. (5.58) we then find that

UQ̂(r,ω) = ik
∞∑

l=0

l∑
m=−l

ilf m
l (ω)h+l (kr)Ym

l (r̂), (5.59)

which establishes that UQ̂ = U+ everywhere outside the source sphere.

Source efficiency and essentially NR source components

On comparing the multipole expansion Eq. (5.59) with the expansion of the minimum-
norm source Eq. (5.57a) we see that there is a one-to-one correspondence between the
terms in the two series. In particular, each component of the source radiates a single mul-
tipole field according to the correspondence

Source︷ ︸︸ ︷
vl,m(r,ω)⇒

Radiated Field︷ ︸︸ ︷
il+1kμl(ka0)h+l (kr)Ym

l (r̂) . (5.60)

We can loosely define the “energy” of a source as the square of its norm, which, for each
component vl,m of Q̂, is unity. On the other hand, the real field energy radiated by the
multipole field out of a large sphere of radius R� a0 is given by Eq. (2.36b) of Section 2.6
of Chapter 2 and found to be

E(ω) = 2κω�ke−2kR
∫

4π
d�s| f (s,ω)|2 = 8πκω

�k

|k|2 e−2kRμ2
l (ka0),

where we have used the fact that the radiation pattern of a single multipole field is equal to
[(−i)l+1/k]Ym

l (s). The field energy can be seen to be proportional to μ2
l (ka0), which decays

exponentially fast when l > ka0, while the source “energy” is constant and equal to unity.
It then follows that the source components having l > |k|a0 are very inefficient radiators.
In fact, they are precisely the essentially NR sources that are discussed in some depth in
Chapters 1 and 2 as well as earlier in this and the previous chapter. We can thus decompose
the minimum-norm source into the two components
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Q̂(r,ω) =

Radiating︷ ︸︸ ︷
−

ka0∑
l=0

l∑
m=−l

il
f m
l (ω)

μ2
l (ka0)

j∗l (kr)Ym
l (r̂)

Essentially Non-radiating︷ ︸︸ ︷
−

∞∑
l=ka0+1

l∑
m=−l

il
f m
l (ω)

μ2
l (ka0)

j∗l (kr)Ym
l (r̂), (5.61)

a result that has obvious ramifications in the stability of the solution of the ISP.

5.5.3 The algorithm point-spread function

One way of assessing the quality of an inversion of a linear mapping is to compute the
point-spread function (PSF) of the algorithm used to generate the inverse. This quantity
plays a central role in linearized inverse theory and will be used extensively in the inverse
scattering theory treated in later chapters of the book. The PSF for the ISP is the inversion
generated from data resulting from a delta-function source: Q(r,ω) = δ(r − r′). We note
that such a source is not square-integrable. However, if we formally expand this source into
a generalized Fourier series using the SVD basis {vp} we find that

δ(r− r′) =
∑

p

〈vp, δ(r− r′)〉Qvp(r) =
∑

p

vp(r)v∗p(r′),

which is the so-called “completeness relationship” for the basis vp. Now the minimum-
norm solution Q̂ of the ISP is a projection of the actual source Q onto the singular func-
tions vp having non-zero singular values σp > 0 so that the PSF for the ISP is given
by the completeness relation truncated to singular functions having non-zero singular
values; i.e.,

H(r, r′, k) =
∑
σp>0

vp(r)v∗p(r′). (5.62)

The PSF for the antenna-synthesis problem is then given by this general expression with
the singular functions and singular values given by Eqs. (5.56a) and (5.54), respectively.
We then find that

H(r, r′,ω) =M(r, r′)
∞∑

l=0

l∑
m=−l

j∗l (kr)jl(kr′)
|μl(ka0)|2 Ym

l (r̂)Ym
l
∗(r̂′), (5.63)

where

M(r, r′) =
{

1 if r, r′ ≤ a0,

0 otherwise.
(5.64)
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We will return to the PSF in a later section where we solve the antenna-synthesis problem
in two space dimensions, where we can obtain a detailed and complete picture of the PSF
and the quality of the minimum-norm solution to the ISP.

5.5.4 Time reversal and back-propagation imaging

We found in Section 5.3.3 that for sources confined to plane-parallel slabs in a non-
dispersive background, in the limit that the wavelength is small relative to the width of the
slab, the minimum-norm solution to the ISP became proportional to the back-propagated
field with proportionality constant ik/a0, where 2a0 is the total width of the slab. The same
result holds here in the special case in which the background is non-dispersive (k is real-
valued). In particular, in the limit that the wavelength is much smaller than the source
radius a0 and the wavenumber is real-valued we have that

μ2
l (ka0) = a3

0

2
[jl

2(ka0)− jl−1(ka0)jl+1(ka0)]

∼ a3
0

2(ka0)2

{
cos2

(
ka0 − l+ 1

2
π

)
− cos

(
ka0 − l

2
π

)
cos

(
ka0 − l+ 2

2
π

)}
= a3

0

4(ka0)2
{1+ cos(2ka0 − (l+ 1)π )− cos(2ka0 − (l+ 1)π )− cos(π )}

⇓
μ2

l (ka0)→ a0

2k2
, (5.65)

where we have used the result that

jl(ka0) ∼
cos

(
ka0 − l+ 1

2
π

)
ka0

, ka0 � l.

If we now assume that the minimum-norm solution given by the series in Eq. (5.57a)
terminates at some finite l = l0, we find on substituting the above limiting value forμ2

l (ka0)
into this series and using the fact that k is real

Q̂(r,ω)→−2k2

a0

∞∑
l=0

l∑
m=−l

ilf m
l (ω)Mτ0 jl(kr)Ym

l (r̂) = ik

a0
�(r,ω), (5.66)

where we have made use of the multipole expansion of the back-propagated field obtained
in Example 5.2.

The approximate solution to the ISP given in Eq. (5.66) can be interpreted as being a
form of the back-propagation imaging described earlier in Section 5.4.5. In particular, if
we approximate the inverse filter in Eq. (5.49) by [T̂T̂†]+ ≈ 2k2/a0 we find that

Q̂(r,ω) = T̂†[T̂T̂†]+f ≈ 2k2

a0

T̂†f︷ ︸︸ ︷⎡⎣−Mτ0

∞∑
l=0

l∑
m=−l

ilf m
l (ω)j∗l (kr)Ym

l (r̂)

⎤⎦, (5.67)
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where we have made use of the expression for T̂† given in Eq. (5.52d). Equation (5.67) is
the generalization of the approximate solution given in Eq. (5.66) to lossy media with com-
plex k and allows us to interpret the image of the source formed by application of the adjoint
operator to the data as being the back-propagated image as described in Section 5.4.5. We
thus conclude that back-propagation imaging implemented via the simple application of
the adjoint operator to the data will generate a good approximation to the solution to the
ISP so long as the wavelength is small relative to the overall size of the source region τ0.

5.6 Picard’s condition andminimum-sized sources

Picard’s condition that must be satisfied by the expansion coefficients of a minimum-norm
solution to the ISP is, in fact, a condition that places a lower bound on the size required of
a source in order for it to radiate a given field. We have the following theorem.

Theorem 5.1 (Minimum-sized-source theorem) Let a finite-norm source Q ∈ L2(τ0) be sup-
ported within the source volume τ0 = {r|r ≤ a0} and radiate a field U+(r,ω). Then there
exists a minimum radius amin ≤ a0 below which no finite-norm source supported within
τ ′0 = {r|r ≤ a′0 ≤ a0} can radiate that same field at all points outside the source region τ0.
Moreover, this minimum radius is given by

amin = 2

|k| Max lim
l→∞ l

| f m
l+1(ω)|
| f m

l (ω)| , (5.68)

where f m
l (ω) are the expansion coefficients of the radiation pattern into the spherical har-

monics and the maximum is taken with respect to the index m.

Before proving this theorem we mention that, while the original source Q is supported
within the sphere τ0 = {r|r ≤ a0}, it is certainly possible that this source has NR compo-
nents within this region. An equivalent minimum-norm source that will radiate the same
field everywhere outside of τ0 may, thus, be supported within a smaller sphere having
radius a′0 < a0. The above theorem then states that, although this is certainly possible,
there is, in fact, a minimum value for a′0 that is required in order for the minimum-norm
source to radiate the field everywhere outside of the original source volume τ0.

To prove the theorem let’s assume that a source is confined to a sphere τ0 having radius
a0 and radiates a field having a specified radiation pattern f (s,ω). The minimum-norm
source that radiates this field is given in Eq. (5.57a), where the expansion coefficients are
required to satisfy Picard’s condition, which takes the form

||Q̂||2 =
∞∑

l=0

l∑
m=−l

| f m
l (ω)|2
μ2

l (ka′0)
<∞. (5.69)

By application of the ratio test we then conclude that

lim
l→∞

| f m
l+1(ω)|2
| f m

l (ω)|2
μ2

l (ka′0)

μ2
l+1(ka′0)

< 1,
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which can be rewritten in the form

lim
l→∞

μ2
l+1(ka′0)

μ2
l (ka′0)

> lim
l→∞

| f m
l+1(ω)|2
| f m

l (ω)|2 . (5.70)

For the index l� |x| we have that

jl(x) ∼ l!

(2l+ 1)!
(2x)l, (5.71)

so that

μ2
l (ka′0) =

∫ a′0

0
r2 dr| jl|2(kr) ∼ 22ll!2 (|k|a′0)2la′0

3

(2l+ 1)!2 (2l+ 3)
. (5.72)

Using the above result we conclude that

lim
l→∞

μ2
l+1(ka′0)

μ2
l (ka′0)

→
( |k|a′0

2l

)2

,

from which we conclude from Eq. (5.70) that

|k|a′0 > 2 lim
l→∞ l

| f m
l+1(ω)|
| f m

l (ω)| , (5.73)

which establishes the theorem.
It is interesting to note that a square-integrable radiation pattern requires that

lim
l→∞

| f m
l+1(ω)|
| f m

l (ω)| < 1,

which is not sufficient for the limit in Eq. (5.68) to be finite and, thus, for there to exist
a finite-norm source that will generate that radiation pattern. In other words, one cannot
simply prescribe a (square-integrable) radiation pattern and expect that a finite-norm and
finite-sized source will radiate this pattern.

Example 5.10 Consider the scalar wavelet field (Kaiser, 2003) in a non-dispersive medium
from Section 4.5 of the previous chapter. The generalized Fourier coefficients of the radia-
tion pattern of this field are easily computed and found to be given by

f m
l (ω) = √4π (2l+ 1)(−i)ljl(ika).

The condition Eq. (5.68) for the minimum source radius for this radiation pattern is found
to be
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ka′0 > 2 lim
l→∞ l

| jl+1(ika)|
| jl(ika)| .

For index l � |x|, the spherical Bessel functions jl(x) obey the asymptotic relationship
Eq. (5.71), which, when substituted into the above inequality, yields the result

ka′0 > 2 lim
l→∞ l

[(l+ 1)!/(2l+ 3)!](2ka)l+1

[l!/(2l+ 1)!](2ka)l
= ka.

We thus conclude that the minimum source radius that will radiate the scalar wavelet field
is a0 = a, where a is the wavelet field parameter defining its radiation pattern.

Finally, we note that the condition Eq. (5.68) implies that any radiation pattern that
has a finite number of terms in its spherical-harmonic expansion can be radiated by a
finite-norm source having an arbitrarily small radius a0. However, this condition is not
the whole story, since it is also necessary to consider the source norm, which, although
finite, can become exponentially large if a0 is smaller than a threshold value determined
by the highest-order term in the spherical-harmonic expansion of the radiation pattern. In
particular, the condition Eq. (5.68) guarantees that the Picard condition Eq. (5.69) will be
satisfied but does not place an upper bound on the source norm ||Q̂||. This issue is addressed
in the following example.

Example 5.11 We consider a radiation pattern of the general form

f (s,ω) =
L∑

l=0

l∑
m=−l

f m
l (ω)Ym

l (s),

where L > 1 is a constant and ∀l, m, C1 ≤ | f m
l (ω)| ≤ C2, where C1 and C2 are two

constants. The minimum-norm source that is supported within a sphere of radius a0 and
that will radiate this pattern is given by

Q̂(r,ω) = −
L0∑

l=0

l∑
m=−l

il
f m
l (ω)

μ2
l (ka0)

jl(kr)Ym
l (r̂), r ≤ a0.

The norm square of this radiation pattern is given by

|| f ||2 =
∫

d�s| f (s,ω)|2 =
L∑

l=0

l∑
m=−l

| f m
l (ω)|2 ≤ (L+ 1)C2

2.

The squared norm of the source Q̂ is given by

||Q̂||2 =
∫

d3r|Q̂(r,ω)|2 =
L0∑

l=0

l∑
m=−l

| f m
l (ω)|2
μ2

l (ka0)
≥ C2

1

L0∑
l=0

l∑
m=−l

1

μ2
l (ka0)

.
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The problem that arises is that the μ2
l (ka0) go to zero exponentially fast for values of

l > ka0 (see Section 1.7.3 0f Chapter 1). Thus, although the norm of the radiation pattern
will be finite for any value of L, the norm of the source will become exponentially large if
ka0 < L, thus placing a practical limit on the size of a source that will radiate a radiation
pattern having a finite number of terms.

5.7 Antenna synthesis and the far-field ISP in 2D space

The ISP in 2D space in terms of far-field data is governed by Eq. (4.39c) of Chapter 4,
which relates the radiation pattern to the 2D spatial Fourier transform of the 2D source. To
simplify the algebra it is convenient to rewrite this basic relationship in the form

T̂Q = d, (5.74a)

where the data d ∈ L2([−π ,π ]) are related to the 2D radiation pattern f (α,ω) via the
equation

d(α,ω) = 2
√

kei 3π
4 f (α,ω)

and T̂ : HQ → L2([−π ,π ]) is the operator

T̂ = 1√
2π

∫
τ0

d2r e−ikr cos(φ−α). (5.74b)

In these equations r is the radial coordinate in a 2D Cartesian system having x =
r cosφ, y = r sinφ and α is the polar angle at which the radiation pattern f (α,ω) is
observed.

The adjoint operator T̂† is obtained in the usual way

〈d, T̂Q〉L2([−π ,π ]) = 〈T̂†d, Q〉HQ ,

with the inner products defined by

〈d1, d2〉L2([−π ,π ]) =
∫ π

−π
dα d∗1(α)d2(α), 〈Q1, Q2〉HQ =

∫
τ0

d2r Q∗1(r)Q2(r).

Using the definition of the adjoint, we find that

T̂† = 1√
2π

∫ π

−π
dα eik∗r cos(φ−α). (5.75)

We can expand the plane wave exp(−ikr cos(φ − α)) in the plane-wave expansion (cf.
Example 3.9 of Chapter 3)

e−ikr cos(φ−α) =
∞∑

n=−∞
(−i)neinαJn(kr)e−inφ , (5.76)
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from which we conclude that

eik∗r cos(φ−α) =
∞∑

n=−∞
ine−inαJ∗n (kr)einφ .

On substituting these expansions into Eqs. (5.74b) and (5.75) we obtain the 2D versions of
Eqs. (5.52):

T̂ = 1√
2π

∞∑
n=−∞

(−i)neinα
∫ a0

0
r dr

∫ π

−π
dφ Jn(kr)e−inφ , (5.77a)

T̂† =Mτ0

1√
2π

∞∑
n=−∞

ineinφJ∗n (kr)
∫ π

−π
dα e−inα , (5.77b)

where we have assumed that the source region τ0 is a circle of radius a0 centered at the
origin and Mτ0 is the masking operator defined in Eq. (5.52c) but with r now the radial
coordinate on the plane.

5.7.1 Implementation of the SVD

The composite operators T̂†T̂ and T̂T̂† are easily found to be given by

T̂†T̂ =Mτ0

∞∑
n=−∞

einφJ∗n (kr)
∫ a0

0
r′ dr′

∫ π

−π
dφ′ Jn(kr′)e−inφ′ , (5.78a)

T̂T̂† =
∞∑

n=−∞
ν2

n (ka0)einα
∫ π

−π
dα′ e−inα′ , (5.78b)

where

ν2
n (ka0) =

∫ a0

0
r dr|Jn(kr)|2 (5.79)

is the so-called “second Lommel integral,” which can be expressed in the closed form

ν2
n (ka0) = a2

0

2
[J2

n(ka0)2 − Jn−1(ka0)Jn+1(ka0)].

The parameters ν2
n (ka0) are functionally identical to the parameters μ2

l (ka0) that we
encountered in the 3D version of the ISP in the previous section and are proportional to the
latter quantities if n = l+ 1/2. Like their 3D counterparts, the parameters ν2

n (ka0) possess
a cutoff index n = ka0 beyond which they go to zero exponentially fast with increasing
index n. This is illustrated in Fig. 5.1, which should be compared with the corresponding
plot for the μ2

l (ka0) given in Fig. 1.2 of Chapter 1.
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�Fig. 5.1 (Top) Plots of ν2n (ka0) normalized by their peak value for each value of ka0 with k taken to be real. The parameters are
plotted as a function of the index n for various values of ka0. (Bottom) Plots of the log to base 10 of ν2n (ka0) plotted as
a function of the index n for various values of ka0.

The singular functions vp and singular valuesσ p

The singular functions vp satisfy the normal equations Eqs. (5.39), which, using
Eq. (5.78a), can be written in the form

Mτ0

∞∑
n=−∞

〈J∗n (kr′)einφ′ , vp〉HQ J∗n (kr)einφ = σ 2
p vp(r,ω),

from which it follows, using an argument completely parallel to that employed in
Section 5.5.1, that the index p = n and the vp can be taken to be proportional to the
2D free multipole fields J∗p (kr) exp(ipφ) of the homogeneous Helmholtz equation with
wavenumber k∗:

vp(r,ω) = ip√
2πνp(ka0)

Mτ0 J∗p (kr)eipφ , (5.80)

where we have included the phase factor ip for later notational convenience and p is any
positive or negative integer or zero. The non-zero singular values are found to be propor-
tional to the νp(ka0):

σp =
√

2πνp(ka0) =
√

2π
∫ a0

0
r dr|Jp(kr)|2,

which are guaranteed to be real and positive for any a0 > 0 and for all integer p.
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The singular functionsup
The singular functions up(α,ω) can be found by substituting the singular functions vp(r,ω)
found above into the defining equation T̂vp = σpup. We find that

1√
2π

∞∑
n=−∞

(−i)neinα
∫ a0

0
r dr

∫ π

−π
dφ Jn(kr)e−inφ

vp(r,ω)︷ ︸︸ ︷{
ip√

2πνp(ka0)
J∗l (kr)eipφ

}
= νp(ka0)eipα = σpup(α,ω),

from which we conclude that

up(α,ω) = 1√
2π

eipα .

The inclusion of the phase factor ip in the definition of the singular functions vp in
Eq. (5.80) should now be evident, since it allowed the singular functions up to be the set of
orthonormal complex exponentials on the unit circle.

5.7.2 The solution to the 2D far-field ISP and algorithm PSF

The minimum-norm solution to the 2D far-field ISP is given in general form in Eq. (5.48b),
which reduces to

Q̂(r,ω) =
∞∑

p=−∞

〈up, d〉L2([−π ,π ])

σp
vp(r,ω)

=
√

k

π
ei 3π

4 Mτ0

∞∑
p=−∞

fp(ω)

ν2
p (ka0)

ipJ∗p (kr)eipφ , (5.81a)

where

fp(ω) = 〈up, f 〉L2([−π ,π ]) =
1√
2π

∫ π

−π
dα f (s,ω)e−ipα (5.81b)

are the Fourier coefficients of the radiation pattern over the unit circle.

Comments on the minimum-norm solution

As should be expected, the minimum-norm solution to the 2D ISP given in Eq. (5.81a)
shares a number of properties with the 3D solution given in Eqs. (5.57a). Of particular
importance is the fact, illustrated in Fig. 5.2 for real wavenumbers, that the Bessel functions
Jp(kr) are exponentially damped for kr < p so that each term in the expansion Eq. (5.81a)
corresponds to a source component that is essentially supported in a circle having an inner
radius equal to ai = p/k and an outer radius equal to a0. If p > ka0 then ai > a0,
so the effective support of these terms lies outside the actual source radius a0. It then
follows that the contribution of these terms to the minimum-norm source Q̂ is negligible,
so the expansion Eq. (5.81a) effectively terminates at a maximum p value of ka0. That
these source terms are not important can also be traced to the fact that they radiate mostly
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�Fig. 5.2 Plots of the Bessel functions Jl(x) for l= 3, 6, 9 and 12 and for strictly real wavenumber k.

evanescent waves. This result follows from the fact that these component sources have an
angular period of oscillation equal to 2π/p and thus possess a spatial period at a radial
distance r of 2πr/p. We plot a set of four source components with real wavenumber k
and p = 10, 20, 30 and 40 in Fig. 5.3. When p ≥ ka0 the spatial periods of these source
components at a distance r will then be smaller than 2π (r/ka0) = (r/a0)λ ≤ λ and they
will radiate mostly evanescent plane waves that will be undetectable outside the source
except in certain special experimental situations. These components of the source are, in
fact, the “essentially non-radiating” sources that we discussed earlier in connection with
the solution of the 3D ISP.

The point-spread function

The 2D point-spread function (PSF) is defined in Eq. (5.62) as the projection of the delta
function onto singular functions vp having non-zero singular values σp. For the 2D case
these singular functions are given in Eq. (5.80) so that

H(r, r′,ω) = 1

2π
M(r, r′)

∞∑
p=−∞

Jp(kr)J∗p (kr′)
ν2

p (ka0)
eip(φ−φ′)

= 1

π
M(r, r′)

∞∑
p=0

εp
Jp(kr)J∗p (kr′)
ν2

p (ka0)
cos[p(φ − φ′)], (5.82)

where

M(r, r′) =
{

1 if r, r′ ≤ a0

0 otherwise
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�Fig. 5.3 Plots of the real parts of the component sources Jp(kr)exp(ipφ) for p= 10, 20, 30 and 40 and for real kwith ka0 = 40.
These component sources are effectively supported within the interval p/k < r < r0 and have spatial periods at any
radial distance of 2π (r/p).

and εp = 1 if p �= 0 and 1/2 if p = 0. The PSF was previously defined for the 3D case in
Eq. (5.64). The PSF is the “image” of a point source (delta-function source) located at the
space coordinate r′ and is related to the image (reconstruction) of a general 2D source via
the equation

Q̂(r,ω) =
∫

d2r′ Q(r′,ω)H(r, r′,ω). (5.83)

We consider first the computation of the PSF defined in Eq. (5.82) as a function of the
image point r for various source points r′. As mentioned above, the PSF is the image of
a delta-function source centered at the space point r′, so the PSF is the image generated
by the solution to the ISP for this source. We will assume that the various source points r′
are contained within an outer circle centered at the origin and having a radius a0 and that
the medium is non-dispersive, with real wavenumber k. We first computed the PSF for a
maximum p value equal to ka0 corresponding to the stable component of the minimum-
norm source. Shown in Fig. 5.4 is the PSF for three different source points r′ located at the
radial distances r′ = 0, a0/3 and 2a0/3. Since the PSF is a function only for φ − φ′ we
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�Fig. 5.4 Plots of the absolute value of the 2D PSF for r′ = 0, a0/3 and 2a0/3, withφ′ = 0 and max p= ka0.

have arbitrarily selected the source point locations to be along the positive-x (horizontal)
axis corresponding to φ′ = 0.

5.7.3 Two-dimensional scalar wavelet source

We consider the 2D version of the scalar wavelet field treated in Example 5.10. In two
space dimensions the field’s radiation pattern is given by

f (s,ω) = eka(cosα−1),

where α is the polar angle of the unit vector s, a is a positive constant parameter of the
wavelet field and it is assumed that the wavenumber k is real-valued, corresponding to
radiation in a non-dispersive medium. The generalized Fourier coefficients of this radiation
pattern are found from Eq. (5.81b) to be given by

fp(ω) = e−ka

√
2π

∫ π

−π
dα eka cosαe−ipα .

The above integration can be performed if we make use of the expansion Eq. (5.76) with
−ikr = ka and φ = 0. We then find that

fp(ω) = e−ka

√
2π

∫ π

−π
dα

{ ∞∑
n=−∞

(−i)neinαJn(ika)

}
e−ipα = √2π (−i) pe−kaJp(ika),

which yields the following representation for the 2D wavelet radiation pattern:

f (α,ω) = e−ka
∞∑

p=−∞
(−i) pJp(ika)eipα ,

= 2e−ka
∞∑

p=0

εp(−i)pJp(ika)cos(pα). (5.84a)
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The minimum-norm source for the 2D scalar wavelet field is found using Eq. (5.81a) to be

Q̂(r,ω) =
√

2k

π
ei 3π

4 e−ka
∞∑

p=−∞

Jp(ika)

ν2
p (ka0)

J∗p (kr)eipφ

=
√

8k

π
ei 3π

4 e−ka
∞∑

p=0

εp
Jp(ika)J∗p (kr)

ν2
p (ka0)

cos(pφ), r ≤ a0, (5.84b)

where εp = 1 if p �= 0 and ε0 = 1/2. It is interesting to note the similarity of the form of
the minimum-norm wavelet source to the 2D PSF given in Eq. (5.82).

The above expression for the minimum-norm source is merely formal in that the wavelet
parameter a and the source radius a0 must be selected such that the source actually has
finite norm. We found in Example 5.10 that the minimum-sized 3D source that will radiate
the 3D scalar wavelet field has a radius a0 = a; i.e., the parameter a defining the scalar
wavelet radiation pattern is the minimum source radius that will radiate the field. The same
is true in the 2D case since it follows from Eq. (5.84b) that

||Q̂||2 = 2k

π

∞∑
p=−∞

|Jp(ika)|2
ν2

p (ka0)
.

After applying the ratio test, we then conclude that the source norm will be finite only if

lim
p→∞

|Jp+1(ika)|2
ν2

p+1(ka0)

ν2
p (ka0)

|Jp(ika)|2 < 1. (5.85)

If we now use the asymptotic expression

Jp(x) ∼ xp

2pp!
, l� |x|,

we find from the definition of the ν2
p (ka0) that

ν2
p (ka0) = k2p

(2pp! )2

∫ a0

0
dr r2p+1 ∼ k2p

(2pp! )2

a2p+2
0

2p+ 2
,

|Jp(ika)|2 ∼ (ka)2p

(2pp! )2
.

We then conclude that

|Jp+1(ika)|2
ν2

p+1(ka0)
∼ (ka)2p+2(2p+ 4)

(ka0)2p+2a2
0

,
ν2

p (ka0)

|Jp(ika)|2 ∼
(ka0)2pa2

0

(ka)2p(2p+ 2)
,

which, when substituted into Eq. (5.85), yields the condition

lim
p→∞

(ka)2p+2(2p+ 4)

(ka0)2p+2a2
0

(ka0)2pa2
0

(ka)2p(2p+ 2)
=
(

a

a0

)2

< 1,

which establishes that a0 > a.
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�Fig. 5.5 Images of the real (left) and imaginary (center) components and magnitude (right) of the 2D wavelet source
computed using a maximum p index value of 3ka0. The arrows indicate the main beam direction.

The problem in computing the wavelet source is that, although the series Eq. (5.84b) is
guaranteed to converge so long as the source radius a0 is larger than the wavelet parame-
ter a, the separate terms J∗p (kr)Jp(ika) and ν2

p (ka0) each become exponentially small when
p� ka0 even though in the limit p→∞ their ratio tends to zero and the series Eq. (5.84b)
converges. Because of this it is possible only to perform simple simulations of the stabi-
lized approximation of the wavelet source and radiation pattern obtained by limiting the
two series in Eqs. (5.84) to a maximum p value in the vicinity of ka0. We computed the
stabilized wavelet radiation pattern obtained using the series Eq. (5.84a) for the case in
which a0 = a = 10λ and the maximum index p is equal to 3ka0 and found that it was
virtually identical to the exact radiation pattern, indicating that the stabilized source will
radiate a far field virtually identical to the exact source. The stabilized source is shown
in Fig. 5.5, where the arrows indicate the direction of the main radiation lobe (φ = 0).
It should be noted that, although the stabilized source will radiate a field whose radiation
pattern is virtually identical to that of the exact wavelet field, this field may differ markedly
in the very near field of the source (within a wavelength) due to the higher-order terms that
have been neglected in the stabilized version of the source.

5.8 The limited-view problem

Up to this point in our treatment of the ISP we have addressed only the ideal case in
which the scattering amplitude f (s,ω) is specified over a continuum of view angles over
the real unit sphere �. This is a reasonable assumption in the antenna-synthesis problem
where the antenna designer has in mind a specific radiation pattern that can be specified
either functionally or numerically over a continuous or dense set of view directions s. As
mentioned at the beginning of the chapter, a second application of the ISP is in “imaging”
where a source to a radiated field is to be computed from actual data, which will, of course,
be known only over a limited set of observation directions or over a discrete set of points
on a bounding surface to the source. For example, in cases of limited data the radiation
pattern will be known only over a discrete set of directions sj, j = 1, 2, . . . , N, and Hf

will now be the space of square-summable complex N-tuples l2(CN) with inner product
given by
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〈 f1, f2〉Hf =
N∑

j=1

f ∗1 (sj,ω)f2(sj,ω), (5.86)

while the Hilbert space of source functions HQ remains L2(τ0). The basic structure of
the Hilbert-space formulation of the limited-view ISP remains the same as for the case
of complete data but the details of the solution to the problem change considerably. Here
we will just develop the solution of the limited-view problem in two space dimensions
for a 2D source confined to a cylinder of radius a0 and for field data consisting of the 2D
radiation pattern specified over a set of N different view directions sj, j = 1, 2, . . . , N. Other
geometries and data sets can be treated in an entirely analogous manner to that presented
below.

5.8.1 The 2D limited-view problem

The far-field 2D limited-view ISP problem is defined via Eqs. (5.74), where, however, the
data now consist of

dj(ω) = 2
√

kei 3π
4 f (αj,ω),

where αj, j = 1, 2, . . . , N are a discrete set of view angles over [−π ,+π ]. The data space
is now l2(CN) and the operators T̂ and T̂† are given by

T̂ = 1√
2π

∫
τ0

d2r′ e−iksj·r, T̂† = 1√
2π

Mτ0

N∑
j=1

eik∗sj·r. (5.87)

In the full-view 2D problem treated in the previous section we represented the operators T̂
and T̂† in cylindrical coordinates appropriate to the cylindrical source geometry. This was
appropriate for that problem since this representation leads directly to orthogonal basis
functions into which we expanded the singular functions vp(r) and up(s) for σp > 0.
However, this advantage disappears in the limited-view case due to the new inner prod-
uct Eq. (5.86) appropriate to the limited-view problem. It is thus better to stay with the
basic definitions of these two operators in terms of plane waves as given in Eqs. (5.87).

It is advantageous to define the set of functions

χj(r) = 1√
2π

Mτ0 eik∗sj·r,

where it is easily shown that

〈χj,χj′ 〉HQ =
1

2π

∞∑
n=−∞

ν2
n (ka0)ein(αj−αj′ ), (5.88)

with ν2
n (ka0) defined in Eq. (5.79). Note that since ν2−n(ka0) = ν2

n (ka0) the matrix
〈χj,χj′ 〉HQ is real and symmetric and, hence, possesses an orthonormal set of eigenvec-
tors with real eigenvalues. In terms of the functions χj we find that

T̂ =
∫

d2r′ χ∗j (r), T̂† =
N∑

j=1

χj(r),
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and the normal equations for the singular functions become

N∑
j=1

χj(r)〈χj, vp〉HQ = σ 2
p vp, (5.89a)

∫
d2r χ∗j (r)〈χ∗j′ (r), up〉Hf = σ 2

p up. (5.89b)

5.8.2 Computing the singular system

It follows from Eq. (5.89a) that the singular functions vp corresponding to non-zero singu-
lar values σp > 0 are linear combinations of the functions χj; i.e.,

vp(r) =
N∑

j=1

Cj( p)χj(r), σp > 0.

On substituting the above expansion into the normal equation Eq. (5.89a) we find that

N∑
j=1

N∑
j′=1

Cj′ ( p)χj(r)〈χj,χj′ 〉HQ = σ 2
p

N∑
j=1

Cj( p)χj(r),

from which it follows from the linear independence of the set χj that

N∑
j′=1

Cj′ ( p)〈χj,χj′ 〉HQ = σ 2
p Cj( p). (5.90)

The expansion coefficients are thus the eigenvectors of the real symmetric matrix defined
in Eq. (5.88) with real and non-negative eigenvalues σ 2

p ≥ 0. Since the matrix 〈χj,χj′ 〉HQ

is N × N there will be exactly N real non-negative eigenvalues, yielding N real and non-
negative singular values and N orthonormal singular functions vp(r), p = 1, 2, . . . , N.

The singular vectors up are N-tuples up( j), j = 1, 2, . . . , N, so

〈χ∗j′ (r), up〉Hf =
N∑

j′=1

χj′ (r)up( j′)

and, hence, we can write the normal equation Eq. (5.89b) in the form

N∑
j′=1

up( j′)〈χj,χj′ 〉HQ = σ 2
p up( j). (5.91)

On comparing this equation with Eq. (5.90) we conclude that the singular vectors up( j) are
equal to the eigenvectors Cj( p) of the matrix 〈χj,χj′ 〉HQ . The solution to the limited-view
2D ISP is then given by the usual expression

Q̂(r,ω) =
∑
σp>0

〈up, d〉Hf

σp
vp(r),
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where, for σp > 0,

〈up, d〉Hf =
1√
2π

N∑
j=1

C∗j ( p)dj(ω) =
√

2kei 3π
4

2π

N∑
j=1

C∗j ( p)f (αj,ω), (5.92a)

vp(r) =
N∑

j=1

Cj( p)χj(r) = 1√
2π

Mτ0

N∑
j=1

Cj( p)eik∗sj·r. (5.92b)

Further reading

There are a number of excellent texts on Hilbert space, among which I highly rec-
ommend Young (1988), Naylor and Sell (1982) and the treatment in Vaughn (2007).
Strong proponents of the SVD and its use in imaging and wavefield inversion have been
Bertero, Pike and co-workers (Bertero et al., 1985; 1988). Good overall treatments of
the mathematics of imaging and wavefield inversion include Colton and Kress (1992)
and Bertero and Poccacci (1998). Stability issues with SVD inversion and regulariza-
tion schemes are discussed in Bertero (1986, 1989) and Hansen (1988). One of the first
treatments of the inverse source problem was due to Bleistein and Cohen (Bleistein
and Cohen, 1977), while the so-called Porter–Bojarski integral equation first appeared
in Porter (1970) and Bojarski (1982a). Fiddy and co-workers have long been involved
with the inverse source problem as well as with the inverse scattering problem (Byrne
and Fiddy, 1987; Fiddy and Testorf, 2006; Ross et al., 1979). Their work is especially
important in optical applications where the phase problem (Fienup, 1982; Gerchberg
and Saxton, 1972; Gonsalves, 1976; Guizar-Sicairos and Fienup, 2006; Taylor, 1981) is
important. Moses (Moses, 1984) has investigated the inverse source problem in the time
domain both for scalar and for electromagnetic wavefields. The inverse problem for ran-
dom sources was formulated and solved for spatially incoherent sources by the author
(Devaney, 1979). An outstanding treatment of random wavefields in general is given in
Ishimaru’s book (Ishimaru, 1999). The formulation of the ISP using a reactive power con-
straint rather than minimum energy was treated in Marengo et al. (2004), and Marengo and
Ziolkowski (2000) provide a slightly different approach to the ISP than has been used here.
The solution of the ISP for the 2D scalar wavelet presented in Example 5.7.3 was general-
ized to the 3D case both for scalar and for electromagnetic wavelet fields in Devaney et al.
(2008).

Problems

5.1 Derive the ISP integral equation Eq. (5.1a) in terms of boundary-value data as
given by Eq. (5.1b) by applying standard Green-function techniques to the two
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wave equations satisfied by the radiated field u+(r′, t′) and the free-field propaga-
tor gf(r− r′, t − t′).

5.2 Derive the ISP integral equation Eq. (5.1a) in terms of Cauchy data as given by
Eq. (5.2) by applying standard Green-function techniques to the two wave equations
satisfied by the radiated field u+(r′, t′) and the free-field propagator gf(r− r′, t− t′).

5.3 Prove that the ISP integral equation holds under the replacement of gf(r− r′, t − t′)
by any function ĝf(r − r′, t − t′) that satisfies the homogeneous wave equation over
all of space-time.

5.4 Derive the frequency-domain back-propagated field given in terms of Cauchy data in
Eq. (5.3d) by Fourier transformation of Eq. (5.2).

5.5 Use the multipole expansion of the free-field propagator given in Eq. (5.4) of Exam-
ple 5.1 in Eq. (5.3d) to derive the expansion

�(r,ω) =
∑
l,m

�m
l (ω)jl(kr)Ym

l (r̂),

where

�m
l (ω) = −2ki

eiωt0

c2

∫
d3r′

[
iωu+(r′, t0)− ∂

∂t0
u+(r′, t0)

]
jl(kr′)Ym

l
∗(r̂′).

5.6 Use the expansions of the back-propagated field obtained in Problem 5.5 and in
Example 5.1 to establish a relationship between Dirichlet data on a sphere sur-
rounding the source and Cauchy conditions acquired after a source has ceased to
radiate.

5.7 Show that the PB integral equation for a source distributed over the surface of a
sphere and for which the data consist of boundary-value data of any kind over the
surfaces of two concentric spheres, one interior and one exterior to the source sphere,
is incomplete and involves only the data on the exterior sphere. This is an example
for which the formulation of the ISP in terms of the PB integral equation fails and
the more powerful SVD-based approach is required (cf. Problem 5.18).

5.8 Derive the most general form of a surface source that is distributed over an infi-
nite plane and that is NR throughout one of the two half-spaces bounded by the
plane.

5.9 Derive the most general form of a surface source distributed over the surface of a
sphere and that is NR throughout the interior (exterior) of the sphere.

5.10 Prove the following theorem, which is the frequency-domain version of the “source
decomposition theorem” (Theorem 1.3) proven in Section 1.7 of Chapter 1. Let
Q(r,ω) be a square-integrable source compactly supported within τ0. Then this
source can be uniquely decomposed into an NR component Qnr(r,ω) and a
minimum-norm component Q̂(r,ω) such that∫

τ0

d3r Qnr(r,ω)Q̂(r,ω) = 0,

[∇2
r + k2]Q̂(r,ω) = 0,

Qnr(r,ω) = [∇2
r + k2]�(r,ω),
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where �(r,ω) is a square-integrable function supported in τ0 that has continuous
first partial derivatives.

5.11 Verify Eqs. (5.27).

5.12 Show that the adjoint of a compact operator is also compact. Hint: Show that it is
Hilbert–Schmidt.

5.13 Prove that T̂†T̂ and T̂T̂† are compact if T̂ is compact.

5.14 Let H be an N ×M matrix with complex elements hn,m and possessing the singular
set vp, up, σp. Then show that it admits the SVD

H = UV†,

where U is the N × N matrix with column vectors u1, u2, . . . , uN , V is the M × M
matrix with column vectors v1, v2, . . . , vM and  is the N ×M diagonal matrix with
elements σ1, σ2, . . . , σP, where P = min(N, M).

5.15 Compute the singular system for the antenna-synthesis problem addressed in Sec-
tion 5.5 by first solving for the singular functions up and then computing the rest of
the system from these functions.

5.16 1. Show that the singular values σp and singular vectors vp for the 1D far-field ver-
sion of the ISP defined in Example 5.5 satisfy the normal equation

T̂†T̂vp︷ ︸︸ ︷
1

4|k|2M
∑

s=±1

eik∗sz
∫

L0

dz′ e−iksz′vp(z′,ω) = σ 2
p vp(z,ω).

2. Give an argument for why the singular functions vp for σp > 0 satisfy the homo-
geneous Helmholtz equation with wavenumber k∗ everywhere inside the interval
L0 and are, in fact, a linear combination of the two functions exp(±ik∗z).

3. Using the above result, show that the singular functions can be expressed in the
form

vp(z,ω) =M
∑

s′=±1

As′ ( p)eik∗s′z, σp > 0,

where the Fourier coefficients As, s = ±1, satisfy the matrix equation[
sinc[a0(k − k∗)] sinc[a0(k + k∗)]
sinc[a0(k + k∗)] sinc[a0(k − k∗)]

] [
A−1( p)
A+1( p)

]
=
[

A−1( p)
A+1( p)

]
.

5.17 Set up and solve the ISP for a source compactly supported between two parallel
planes and Dirichlet data over two bounding parallel planes using the SVD. Compare
and contrast your solution with that found in Section 5.3.

5.18 Set up and solve the ISP for a source distributed over the surface of a sphere, where
the data consist of Dirichlet data over the surfaces of two concentric spheres, one
interior and one exterior to the source sphere.

5.19 Compute the singular system given in Example 5.7.

5.20 Derive the singular system of the Slepian–Pollak problem given in Example 5.8.
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5.21 By following identical steps to those used in solving the full-view 2D ISP problem
for a cylindrical source region show that in the limited-view problem T̂ and T̂† can
be expressed in the form

T̂ = 1√
2π

∞∑
n=−∞

(−i)neinαj

∫ a0

0
r dr

∫ π

−π
dφ Jn(kr)e−inφ ,

T̂† =Mτ0

1√
2π

∞∑
n=−∞

ineinφJ∗n (kr)
N∑

j=1

e−inαj .

5.22 Using the expressions for T̂ and T̂† found in the previous problem show that the 2D
composite operators T̂†T̂ and T̂T̂† are given by

T̂†T̂ =Mτ0

1

2π

∑
n,n′

r(n, n′)einφJ∗n (kr)
∫ a0

0
r′ dr′

∫ π

−π
dφ′ Jn′ (kr′)e−in′φ′ ,

T̂T̂† = 1

2π

∞∑
n=−∞

ν2
n (ka0)einαj

N∑
j=1

e−inαj′ ,

where

r(n, n′) = i(n−n′)
N∑

j=1

e−i(n−n′)αj .

5.23 Derive Eq. (5.88).



6 Scattering theory

In the radiation problem treated in Chapters 1 and 2 a “source” q(r, t) in the time domain
or Q(r,ω) in the frequency domain radiated a wavefield that satisfied either the inhomoge-
neous wave equation in the time domain or the inhomogeneous Helmholtz equation in the
frequency domain. In either case the solution to the radiation problem was easily obtained
in the form of a convolution of the given source function with the causal Green func-
tion of the wave or Helmholtz equation. A key point concerning the radiation problem is
that the source to the radiated field is assumed to be known (specified) and is assumed
to be independent of the field that it radiates. Such sources are sometimes referred to as
“primary” sources since the mechanism or process that created them is unknown or, at
least, unimportant as regards the field that they radiate.

In this chapter we will also encounter the radiation problem, but with sources that are
created by the interaction of a propagating wave incident on a physical obstacle or inho-
mogeneous region of space. These new types of sources are referred to as “induced” or
“secondary” sources and the problem of computing the field that they radiate given the inci-
dent wave and a model for the field–obstacle interaction is called the scattering problem.
We deal with two classes of scattering problem in this book: (i) scattering from so-called
“penetrable” scatterers, where the incident wave penetrates into the interior of the obstacle
so that the resulting induced source radiates as a conventional volume source of the type
treated in earlier chapters; and (ii) scattering from non-penetrable scatterers, where the
interaction of the incident wave with the obstacle occurs only over the object’s surface. We
will review the first class of scattering problems in this chapter, and treat non-penetrable
scatterers in the following chapter. We will also make the simplifying assumption that the
scattering object is embedded in a uniform, possibly dispersive, background medium. We
will treat the more general case of non-uniform backgrounds in Chapter 9.

For the class of penetrable scatterers the induced source to the inhomogeneous
Helmholtz equation is related to the field U through a quantity V(r) called the scattering
potential:1

Q(r) = V(r)U(r). (6.1)

The scattering potential is a complex-valued quantity that we will take to be compactly sup-
ported in a finite scattering volume τ0. The scattering problem then consists of computing

1 We will not carry the frequency ω in the arguments of the various field quantities in most of the presentation in
this and the following chapter. Although these quantities will, in general, depend on frequency, this dependence
is parametric and does not play a significant role except in certain time-domain problems, where it will be re-
introduced as necessary.
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the field U in terms of the incident wavefield and the scattering potential V . In this chapter
we will present a general formulation of scattering theory for penetrable scatterers defined
via a scattering potential. The Lippmann–Schwinger integral equation that governs the
scattering process will be derived and shown to define a linear mapping between the inci-
dent wave and the scattered field but a non-linear mapping between the scattering poten-
tial and the scattered field. This non-linear character of the scattering problem makes the
inverse scattering problem, which is a central topic and concern in this book, extremely
difficult and one goal of the current chapter is to derive approximations to the scattered
field that are linear functionals of the scattering potential. Fortunately, in many applica-
tions the Lippmann–Schwinger equation can be approximately linearized, thus yielding an
approximate linear formulation of the scattering problem that effectively reduces it to a
simple radiation problem of the type treated in Chapter 2.

In the scattering problem for non-penetrable scatterers the field–obstacle interaction
occurs only over the surface of the obstacle and cannot be described in terms of a volume
source in the form of Eq. (6.1). In the following chapter we will treat two types of such
scattering problems: (i) scattering from “Dirichlet” objects, where the total field over the
object’s surface must vanish; and (ii) scattering from “Neumann” objects, where the nor-
mal derivative of the total field over the object’s surface must vanish. In the case of electro-
magnetic fields Dirichlet objects are perfect conductors and Neumann objects are perfect
absorbers. As is the case for penetrable scatterers, the solution of the scattering problem for
non-penetrable objects is in the form of a linear mapping from incident field to scattered
field but a non-linear mapping from the object to the scattered field and we will also obtain
linearized approximate models of this non-linear mapping that can be easily and quickly
implemented in computer code and that yield simple workable models for the associated
inverse scattering problem.

6.1 Potential scattering theory

The discipline of scattering theory goes far beyond the simple case of potential scatter-
ing theory, for which the interaction of the wave with physical material is described by
Eq. (6.1). However, potential scattering is an extremely important class of scattering the-
ory that has special relevance to practical direct and inverse problems that are encountered
in applications in electromagnetics, optics, acoustics and elastic-wave phenomenon. For
example, in all of these applications the scattering problem can be cast in terms of a scat-
tering potential of the general form2

V(r) = k2
0[1− n2

r (r,ω)], (6.2)

2 The scattering problems associated with vector-valued wavefields such as the electromagnetic field treated in
the final chapter can vary in detail but have the same general mathematical structure of the potential scattering
problem.
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where

nr(r,ω) = n(r,ω)

n0(ω)
,

which is called the “relative index of refraction of the scatterer,” is the ratio of the complex
index of refraction of the scattering object n(r,ω) to that of the background medium n0(ω)
and k0 = (ω/c)n0(ω) is the constant wavenumber of the background. The scattering object
is completely defined (from a wave point of view) by its complex index of refraction and,
hence, the inverse scattering problem that will be treated in later chapters reduces to the
determination of V and, hence, n(r,ω) from available scattering data.

The basic formulation of potential scattering theory is directly obtained from the for-
mulation of the radiation problem presented in Chapter 2. In particular, the total field
generated in any given scattering experiment satisfies the inhomogeneous Helmholtz equa-
tion Eq. (2.3) with the source given by Eq. (6.1). We have emphasized the phrase “in any
given scattering experiment” since it is extremely important for the inverse scattering prob-
lem that a suite of scattering experiments be performed rather than a single experiment and
that the entire suite of scattered field data be available to aid in the determination (recon-
struction) of the scattering potential. If just a single scattering experiment is performed then
the inverse scattering problem reduces to the inverse source problem and is solved using
the theory and algorithms presented in the previous chapter. However, such solutions are
highly non-unique and, in fact, provide very-low-grade reconstructions of the scattering
potential and it is thus important to employ as many scattering experiments as possible to
generate adequate data to use in solving the inverse scattering problem. In order to keep
track of different scattering experiments (with the same scattering potential V) we will
write Eq. (2.3) in the form

[∇2 + k2
0]U(r, ν) =

Q(r,ν)︷ ︸︸ ︷
V(r)U(r, ν)

⇓

[∇2 + k2
0 − V(r)]U(r, ν) = 0, (6.3)

where ν is a parameter that labels the particular scattering experiment and Q(r, ν) is the
induced source generated in the νth experiment. The boundary condition satisfied by the
field U is that it reduces to the sum of an incident wavefield U(in) plus a scattered field U(s)

that is required to satisfy the Sommerfeld radiation condition (SRC); i.e.,

U(r, ν) = U(in)(r, ν)+ U(s)
+ (r, ν) ∼ U(in)(r, ν)+ f (s, ν)

eik0r

r
, (6.4)

where the incident wavefield U(in) propagates in the uniform background medium and
hence satisfies the homogeneous Helmholtz equation
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[∇2 + k2
0]U(in)(r, ν) = 0,

and f (s, ν) is the induced source radiation pattern in the direction of the unit vector
s= r̂= r/r for the νth scattering experiment. We have also added the subscript + to the
scattered field to denote that this quantity satisfies the outgoing-wave radiation condition.

We should note that the incident field will, in fact, be produced by some source radiating
in the background medium and, hence, will actually satisfy the inhomogeneous Helmholtz
equation. However, we assume that this source is well separated from the scatterer so that
the field U(in) will satisfy the homogeneous Helmholtz equation at least within the scatterer
volume τ0. Moreover, as we discussed in our treatment of the angular-spectrum expansion
in Section 4.2 of Chapter 4, the field radiated by a compactly supported source can be accu-
rately approximated as a free field at distances that are more than a few wavelengths from
the source support volume. Thus, insofar as the potential scattering problem is concerned
the incident field can be modeled as a free field that satisfies the homogeneous Helmholtz
equation over all of space.

It is clear from the above that any single scattering experiment is formally equivalent
to a radiation problem of the type considered in Chapters 1 and 2. In particular, we can
view scattering as being a two-step process whereby in the first step the incident wavefield
U(in)(r, ν) interacts with the scattering potential generating the induced source Q(r, ν),
which then radiates the scattered field U(s)

+ (r, ν) according to Eq. (6.3) in the second step.
Indeed, since the incident wave satisfies the homogeneous Helmholtz equation, Eq. (6.3)
can be expressed in the form

[∇2 + k2
0]U(s)

+ (r, ν) = Q(r, ν), (6.5)

which is identical to the governing Helmholtz equation for the radiation problem treated
in Chapters 1 and 2. It then follows that the inverse scattering problem differs from the
inverse source problem (ISP) that was treated in Chapter 5 only if one performs a suite
of scattering experiments using two or more different incident waves. In such cases the
induced sources generated by the incident wave in each experiment are different, so the
mathematical structure of the inverse scattering problem differs markedly from that of
the ISP.

6.2 The Lippmann–Schwinger equation

The scattered field satisfies the inhomogeneous Helmholtz equation Eq. (6.5) and the Som-
merfeld radiation condition (SRC) and, hence, is obtained by setting the source Q equal to
the induced source defined in Eq. (6.1) in the solution of the radiation problem given, for
example, in Eq. (2.23) of Chapter 2. We obtain

U(s)
+ (r, ν) =

∫
d3r′ G0+ (r− r′)V(r′)U(r′, ν), (6.6a)
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where

G0+ (R) = − 1

4π

eik0R

R
(6.6b)

is the outgoing-wave Green function of the Helmholtz equation in the background medium
having wavenumber k0 (the so-called “free-space Green function”). This Green function
satisfies the inhomogeneous Helmholtz equation

[∇2 + k2
0]G0+ (r− r′) = δ(r− r′)

and the SRC. It follows from Eqs. (6.4) and (6.6a) that the total field (incident plus scat-
tered) is given by

U(r, ν) = U(in)(r, ν)+
∫

d3r′ G0+ (r− r′)V(r′)U(r′, ν), (6.7a)

which is known as the Lippmann–Schwinger (LS) integral equation. We can write the LS
integral equation in the symbolic form

Uν = U(in)
ν + G0+VUν , (6.7b)

where G0+V stands for the integral operator

G0+V =
∫

d3r′ G0+ (r− r′)V(r′) (6.7c)

and we have used a subscript to denote the dependence of the incident and total waves on
the parameter ν.

6.2.1 The Lippmann–Schwinger equation for the full Green function

The free-space Green function G0+(r − r0) can be interpreted as being the field radiated
by a point (delta-function) source located at r0 in the infinite homogeneous background
medium. In analogy, we define the “full Green function” G+(r, r0) as the wavefield radi-
ated by a point source located at r0 in the background medium containing a scatterer char-
acterized by the scattering potential V(r). This quantity satisfies the equation

[∇2
r′ + k2

0 − V(r′)]G+(r′, r0) = δ(r′ − r0) (6.8)

and the SRC. Clearly, G+ → G0+ when V → 0.
The full Green function satisfies an LS equation that is readily derived by rearranging

Eq. (6.8) in the form

[∇2
r′ + k2

0]G+(r′, r0) =
Q(r′,r0)︷ ︸︸ ︷

δ(r′ − r0)+ V(r′)G+(r′, r0),
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where Q(r′, r0) is the sum of a “primary” source δ(r′ − r0) and an “induced” source equal
to V(r′)G+(r′, r0). The formal solution to the above equation is found to be

G+(r, r0) =
∫

d3r′
Q(r′,r0)︷ ︸︸ ︷

{δ(r′ − r0)+ V(r′)G+(r′, r0)}G0+(r− r′)

= G0+(r− r0)+
∫

d3r′ G0+(r− r′)V(r′)G+(r′, r0)

⇓

G+(r, r0) = G0+(r− r0)+
∫

d3r′ G0+(r− r′)V(r′)G+(r′, r0), (6.9a)

which is the Lippmann–Schwinger equation satisfied by the total Green function. It is clear
from this equation that the full Green function can also be interpreted as being the field
generated in a scattering experiment whose incident wave is the free-space Green function
G0+; i.e., when U(in)(r, ν) = G0+(r− r0).

The full Green function satisfies a reciprocity condition that is derived using an argument
identical to that employed in Section 2.8.4 to establish the reciprocity condition satisfied by
the free-space Dirichlet and Neumann Green functions. In particular, by replacing r0 with
r1 in Eq. (6.8) and applying standard Green-function techniques to these two equations and
using the fact that G+ must satisfy the SRC we find that

G+(r1, r0) = G+(r0, r1).

It is obvious that the free-space Green function G0+ satisfies the same condition. If we
interchange r and r0 in Eq. (6.9a) and make use of the reciprocity condition we find that
the LS equation for the full Green function can also be written in the form

G+(r, r0) = G0+(r− r0)+
∫

d3r′ G+(r, r′)V(r′)G0+(r′ − r0). (6.9b)

6.2.2 The formal solution to the LS equation

We can formally “solve” the LS Eq. (6.7b) for the field U in terms of the (assumed known)
scattering potential V and incident wave U(in) by making use of the “full Green function”
G+. To obtain this solution we set U = U(in) + U(s) in Eq. (6.3) and cast this equation in
the form

[∇2
r′ + k2

0 − V(r′)]U(s)
+ (r′, ν) = V(r′)U(in)(r′, ν).

On applying “standard Green function techniques” to this equation and Eq. (6.8) we then
find that
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G+(∇2
r′ + k2

0 − V)U(s)
+ − U(s)

+ (∇2
r′ + k2

0 − V)G+ = G+VU(in) − U(s)
+ δ,

from which we conclude that

U(s)
+ (r, ν) =

∫
d3r′ G+(r, r′)V(r′)U(in)(r′, ν), (6.10)

so that the total field (incident plus scattered) can be expressed in the form

Uν = U(in)
ν +

∫
d3r′ G+VU(in)

ν = [I + G+V]U(in)
ν , (6.11a)

where G+V stands for the integral operator

G+V =
∫

d3r′ G+(r, r′)V(r′).

Equation (6.11a) is a formal solution to the LS equation since this solution requires that
the full Green function G+ be known and its computation involves solving a scattering
problem. Using an entirely parallel development, we find that the LS equation for the total
Green function Eq. (6.9a) admits the formal solution

G+ = G0+ +
∫

d3r′ G+VG0+ = [I + G+V]G0+, (6.11b)

which is, in fact, simply another version of the LS equation Eq. (6.9a) for the total Green
function.

We note that the solution as given in Eqs. (6.11a) is in the form of a linear mapping from
the incident wave to the scattered and total wavefields but is a non-linear mapping from the
scattering potential V to the scattered and total wavefields. The non-linearity of the V → U
mapping follows from the fact that the total Green function G+ depends on the scattering
potential V so that the composite operator G+V is non-linear in V . It then follows that the
inverse scattering problem requires the inversion of the set of coupled, non-linear integral
Eqs. (6.11a) for the scattering potential V in terms of knowledge of the total or scattered
field amplitudes over some set of field points and some set of scattering experiments.

6.3 Scattering from homogeneous penetrable objects

The LS integral equation is general in that it governs scattering from arbitrary penetra-
ble objects described by scattering potentials. However, solving it for any given specified
scattering potential (the so-called forward-scattering problem) can require a great deal of
computational effort and time. An alternative approach for the forward-scattering problem
that can be employed for homogeneous scattering objects or even piecewise-homogeneous
objects involves constructing the field in pieces and tying the pieces together by matching
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at the boundaries of the various homogeneous regions of the scattering object. In partic-
ular, it follows from Eq. (6.3) that, if V(r) represents a piecewise homogeneous object,
then it will be piecewise constant and the total field U(r, ν) must then be continuous with
continuous first partial derivatives everywhere and, in particular, across the discontinuities
of the scattering potential. This conclusion follows from the simple fact that if either U or
any of its partials were discontinuous then the ∇2 operation would generate delta functions
supported on the discontinuities, such that Eq. (6.3) would not be satisfied.

A general approach for solving Eq. (6.3) is then to represent the solutions within each
homogeneous sub-region of the scattering object using the well-known solutions for waves
in homogeneous backgrounds developed in Chapter 3 and then to match these various
component parts at the interfaces between the various homogeneous sub-regions using
the continuity conditions. The wave component lying outside the support of the scattering
potential is also required to reduce to the sum of the incident-wave (assumed known in the
forward problem) and outgoing-wave scattered field components according to Eq. (6.4).

6.3.1 Scattering from homogeneous spheres and cylinders

Perhaps the simplest homogeneous scattering objects are homogeneous spheres and cylin-
ders. When these scatterers are centered at the origin they are represented by a scattering
potential of the general form

V(r) =
{

k2
0[1− n2

r ] r ≤ R0,

0 r > R0,

where R0 is the radius of the sphere or cylinder, nr is its (constant) relative index of refrac-
tion, and r = (r, θ ,φ) for the case of the sphere and r = (r,φ) for the cylinder. Here, we
have represented the scattering potential in terms of its relative complex index of refraction
nr and the wavenumber k0 of the background using Eq. (6.2). The sphere and cylinder are
especially simple since their boundaries coincide with one of the coordinates in a separable
coordinate system for the scalar wave Helmholtz equation, so the associated eigenfunction
expansions for these systems presented in Chapter 3 can be used to obtain the solution
to the scattering problem. Matching at the surface of the sphere or cylinder is then sim-
ple, since the eigenfunctions are functions only of the surface coordinates of the sphere or
cylinder.

6.3.2 Scattering from a homogeneous sphere

We first consider a homogeneous sphere, for which case the appropriate eigenfunctions
are the multipole fields developed in Section 3.3 of Chapter 3. For a sphere centered at the
origin the total fields within and outside the support τ0 of the scattering potential can be rep-
resented in 3D multipole expansions of the general form given in Eq. (3.32) of Section 3.3,
where the radial functions are linear combinations of the spherical Bessel functions jl and
the spherical Hankel functions h+l . Within the scatterer support volume the field must be
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finite at the origin so the appropriate radial functions are the spherical Bessel functions and
the multipole expansion is given by

U(r, ν) =
∞∑

l=0

l∑
m=−l

am
l (ν)jl(k0nrr)Ym

l (r̂), r ≤ R0, (6.12a)

where nr is the relative index of refraction of the sphere, with k0nr = ω/cnr being the
constant wavenumber within the sphere. Here, Ym

l are the spherical harmonics of degree l
and order m, and we have used our customary practice of representing the argument θ , φ
of these quantities by the unit vector r̂ = r/r of the field point. Outside of the scattering
volume the field must reduce to the sum of the incident wave and an outgoing scattered
wave, so the multipole expansion becomes

U(r, ν) =

U(in)(r,ν)︷ ︸︸ ︷
∞∑

l=0

l∑
m=−l

a0
m
l (ν)jl(k0r)Ym

l (r̂)+

U(s)
+ (r,ν)︷ ︸︸ ︷

∞∑
l=0

l∑
m=−l

bm
l (ν)h+l (k0r)Ym

l (r̂) . (6.12b)

In the forward-scattering problem the incident wave and, hence, the multipole moments
a0

m
l (ν) are assumed to be known (specified). The unknowns are the multipole moments

am
l (ν) of the interior field to the scatterer and the multipole moments bm

l (ν) of the scattered
field. These quantities are determined by applying the continuity conditions at the scatterer
surface. On applying these conditions, we then require that

a0
m
l (ν)jl(k0R0)+ bm

l (ν)h+l (k0R0) = am
l (ν)jl(k0nrR0),

a0
m
l (ν)

∂

∂R0
jl(k0R0)+ bm

l (ν)
∂

∂R0
h+l (k0R0) = am

l (ν)
∂

∂R0
jl(k0nrR0),

(6.13)

where we have made use of the fact that the spherical harmonics are orthonormal over the
unit sphere.

The above coupled set of equations involving the two unknowns am
l (ν), bm

l (ν) can be
readily solved in terms of the known multipole moments a0

m
l (ν) of the incident wavefield.

We find that

am
l (ν) = Tla0

m
l (ν), bm

l (ν) = Rla0
m
l (ν), (6.14a)

where Tl and Rl are generalized transmission and reflection coefficients given by

Tl = jl(k0R0)h+′l (k0R0)− j′l(k0R0)h+l (k0R0)

jl(k0nrR0)h+′l (k0R0)− nrj′l(k0nR0)h+l (k0R0)
, (6.14b)

Rl = nrjl(k0R0)j′l(k0nrR0)− j′l(k0R0)jl(k0nrR0)

jl(k0nrR0)h+′l (k0R0)− nrj′l(k0nrR0)h+l (k0R0)
. (6.14c)
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By making use of the Wronskian relationship

jl(k0R0)h+′l (k0R0)− j′l(k0R0)h+l (k0R0) = i

(k0R0)2

we can also express the transmission coefficient in the alternative form

Tl = i/(k0R0)2

jl(k0nrR0)h+′l (k0R0)− nrj′l(k0nrR0)h+l (k0R0)
. (6.14d)

It is important to note that the transmission and reflection coefficients are independent of
the incident wave and depend only on the radius and relative index of refraction of the
sphere.

6.3.3 Scattering from a homogeneous cylinder

A homogeneous cylinder with relative index of refraction nr(ω) illuminated by an incident
wavefield that propagates in the (x, y) plane perpendicular to the cylinder axis is treated in
an entirely parallel way.3 In such cases the fields are 2D and we can expand the interior and
exterior fields in 2D multipole expansions of the form given in Eq. (3.60) of Section 3.6
of Chapter 3 and match them at the boundary of the cylinder. The field expansions take
the form

U(r, ν) =
∞∑

l=−∞
al(ν)Jl(k0nrr)eilφ , r ≤ R0, (6.15a)

and

U(r, ν) =

U(in)(r,ν)︷ ︸︸ ︷
∞∑

l=−∞
a0l(ν)Jl(k0r)eilφ +

U(s)
+ (r,ν)︷ ︸︸ ︷

∞∑
l=−∞

bl(ν)H+l (k0r)eilφ , r ≥ R0, (6.15b)

where r,φ are the polar coordinates in the (x, y) plane. Matching at r = R0 then yields the
set of equations

a0l(ν)Jl(k0R0)+ bl(ν)H+l (k0R0) = al(ν)Jl(k0nrR0),

a0l(ν)
∂

∂R0
Jl(k0R0)+ bl(ν)

∂

∂R0
H+l (k0R0) = al(ν)

∂

∂R0
Jl(k0nrR0),

(6.16)

which are then solved for in terms of the multipole moments a0l of the incident wave. We
obtain

al(ν) = Tla0l(ν), bl(ν) = Rla0l(ν), (6.17a)

3 By this we mean a wavefield that varies only as a function of the x, y coordinates of the plane perpendicular to
the cylinder axis. An example of such a wavefield is a plane wave with its unit propagation vector s0 lying in
the (x, y) plane.
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with the generalized transmission and reflection coefficients given by

Tl = 2i/(πk0R0)

Jl(k0nrR0)H+′l (k0R0)− nrJ′l(k0nrR0)H+l (k0R0)
, (6.17b)

Rl = nrJl(k0R0)J′l(k0nrR0)− J′l(k0R0)Jl(k0nrR0)

Jl(k0nrR0)H+′l (k0R0)− nrJ′l(k0nrR0)H+l (k0R0)
, (6.17c)

where we have used the Wronskian

Jl(k0R0)H+′l (k0R0)− J′l(k0R0)H+l (k0R0) = 2i

πk0R0
.

6.3.4 Scattering from concentric cylinders

It is also easy to compute eigenfunction expansions of the fields scattered by composite
objects consisting of sets of concentric homogeneous spheres or cylinders. Here we will
work out the simplest case of an object that consists of two concentric cylinders having
differing indices of refraction. In particular, we assume that the object has a scattering
potential given by

V(r) =

⎧⎪⎪⎨⎪⎪⎩
k2

0[1− n2
r1

] r ≤ R1,

k2
0[1− n2

r2
] R1 < r ≤ R2,

0 r > R2,

where nr1 and nr2 are the relative indices of the two component parts of the object. This
object is seen to consist of two concentric cylinders having radii R1 and R2 > R1 and such
that the relative index of refraction is nr1 within the inner cylinder and nr2 in the region
between the two cylinder surfaces; i.e., for R1 < r ≤ R2.

For the sake of simplicity we will again assume that the incident wave to the two concen-
tric cylinders propagates in the (x, y) plane so that the appropriate eigenfunctions are again
the 2D multipole fields. The field expansions within and outside the composite scatterer
then take the form

U(r, ν) =
∞∑

l=−∞
a(1)

l (ν)Jl(k0nr1 r)eilφ , r ≤ R1, (6.18a)

U(r, ν) =
∞∑

l=−∞
a(2)

l (ν)Jl(k0nr2 r)eilφ

+
∞∑

l=−∞
b(2)

l (ν)H+l (k0nr2 r)eilφ , R1 ≤ r ≤ R2, (6.18b)

U(r, ν) =

U(in)(r,ν)︷ ︸︸ ︷
∞∑

l=−∞
a0l(ν)Jl(k0r)eilφ +

U(s)
+ (r,ν)︷ ︸︸ ︷

∞∑
l=−∞

bl(ν)H+l (k0r)eilφ , r ≥ R2, (6.18c)
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where the various coefficients (multipole moments) are to be determined by matching con-
ditions on the two interfaces of the composite cylinders. Note that the wavefield within
the inner cylinder consists only of standing waves, which are finite at the origin, while
the wavefield in the region between the two cylinders consists of both standing waves
and outgoing cylindrical waves. Matching the wavefields at the interfaces yields the set of
equations

−a(1)
l (ν)Jl(k0nr1 R1)+ a(2)

l (ν)Jl(k0nr2 R1)+ b(2)
l (ν)H+l (k0nr2 R1) = 0,

−a(1)
l (ν)nr1 J′l(k0nr1 R1)+ a(2)

l (ν)nr2 J′l(k0nr2 R1)+ b(2)
l (ν)nr2 H+′l (k0nr2 R1) = 0,

a(2)
l (ν)Jl(k0nr2 R2)− bl(ν)H+l (k0R2)+ b(2)

l (ν)H+l (k0nr2 R2) = a0l(ν)Jl(k0R2),

a(2)
l (ν)nr2 J′l(k0nr2 R2)− bl(ν)H+′l (k0R2)+ b(2)

l (ν)nr2 H+′l (k0nr2 R2) = a0l(ν)J′l(k0R2),

where the prime denotes the derivative with respect to the total argument of the function.
The above coupled set of equations can, of course, be solved for the interior and scattered

field multipole moments in terms of the multipole moments of the incident wave similar to
those obtained for the simple single cylinder. However, it is preferable to simply represent
them in matrix form, which can then be easily incorporated into Matlab or some other
programming language. In matrix form these equations can be expressed in the form

Ha = b, (6.19)

where

H =

⎛⎜⎜⎜⎜⎜⎜⎝

−Jl(k0nr1 R1) Jl(k0nr2 R1) 0 H+l (k0nr2 R1)
−nr1 J′l(k0nr1 R1) nr2 J′l(k0nr2 R1) 0 nr2 H+′l (k0nr2 R1)

0
Jl(k0nr2 R2)

Jl(k0R2)
−H+l (k0R2)

Jl(k0R2)

H+l (k0nr2 R2)

Jl(k0R2)

0 nr2

J′l(k0nr2 R2)

J′l(k0R2)
−H+′l (k0R2)

J′l(k0R2)
nr2

H+′l (k0nr2 R2)

J′l(k0R2)

⎞⎟⎟⎟⎟⎟⎟⎠
and

a =

⎛⎜⎜⎜⎝
a(1)

l (ν)

a(2)
l (ν)
bl(ν)

b(2)
l (ν)

⎞⎟⎟⎟⎠ , b =

⎛⎜⎜⎝
0
0

a0l(ν)
a0l(ν)

⎞⎟⎟⎠ .

6.4 The scattering amplitude

An important class of incident wavefields consists of the plane waves

U(in)(r, s0) = eik0s0·r, (6.20)

where s0 is a unit vector along the direction of propagation of the plane wave and the
parameter ν in the argument of the incident wave is taken to be this unit wave vector. The
LS equation for plane-wave incidence assumes the form



241 6.4 The scattering amplitude

U(r; s0) = eik0s0·r +

U(s)
+ (r,s0)︷ ︸︸ ︷∫

d3r′ G0+(r− r′)V(r′)U(r′; s0) . (6.21)

The scattering amplitude f (s, s0) is defined to be the radiation pattern associated with
the induced source in a single scattering experiment employing an incident plane wave.
This quantity is obtained directly from the expression for the scattered field given in
Eq. (6.21) by letting r → ∞ along the direction of the unit vector s. On making use
of the definition of the outgoing-wave Green function in Eq. (6.6b) we find that

G0+ (rs− r′) ∼ − 1

4π
e−ik0s·r′ eik0r

r
, r→∞,

from which we obtain the result

U(s)(k0s; s0) ∼ f (s, s0)
eik0r

r
,

where the scattering amplitude is related to the scattering potential and total field via the
equation

f (s; s0) = −1

4π

∫
d3r V(r)U(r; s0)e−ik0s·r. (6.22)

The above expression for the scattering amplitude is also directly obtained from the radia-
tion pattern given in Eq. (2.24b) of Chapter 2 upon setting the source Q equal to the induced
source VU.

Example 6.1 We consider a homogeneous sphere with constant relative index of refraction
nr centered at the origin and excited by an incident plane wave U(in)(r, s0) = exp(ik0s0 · r).
The incident plane wave admits the multipole expansion (cf. Example 3.4 in Section 3.3 of
Chapter 3)

eik0s0·r = 4π
∞∑

l=0

l∑
m=−l

iljl(k0r)Ym
l (r)Ym

l
∗(s0), (6.23)

from which we find the multipole moments a0
m
l (s0) of the incident wave in Eq. (6.12b) to

be given by

a0
m
l (s0) = 4π ilYm

l
∗(s0).

The multipole moments of the scattered wave are then found from Eqs. (6.14) to be

bm
l (s0) = Rl(s0)a0

m
l (s0) = 4πRli

lYm
l
∗(s0),

with Rl given by Eq. (6.14c).
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The scattering amplitude is obtained from the multipole expansion of the scattered wave-
field given in Eq. (6.12b) with ν = s0 by making use of the asymptotic expression (cf.
Eq. (4.8.4) of Chapter 4)

h+l (k0r) ∼ (−i)l+1 eik0r

k0r
, r→∞.

We then find that

U(s)
+ (r, s0) =

∞∑
l=0

l∑
m=−l

bm
l (s0)︷ ︸︸ ︷

4πRli
lYm

l
∗(s0) h+l (k0r)Ym

l (r̂)

∼ −4π i

k0

∞∑
l=0

l∑
m=−l

RlY
m
l (r̂)Ym

l
∗(s0)

eik0r

r
,

from which we conclude that the scattering amplitude is given by

f (s, s0) = −4π i

k0

∞∑
l=0

l∑
m=−l

RlY
m
l (s)Ym

l
∗(s0).

6.4.1 The scattering amplitude in 2D space

The scattered field in two space dimensions is given by the obvious generalization of
Eq. (6.6a) to 2D:

U(s)
+ (r, ν) =

∫
d2r′ G0+ (r− r′)V(r′)U(r′, ν), (6.24)

where G0+ (r−r′) is now the outgoing-wave Green function in two space dimensions. This
quantity was derived in Chapter 2 and is given in Eq. (2.19a) of Section 2.2.1:

G+(R) = −i

4
H+0 (k0R), (6.25)

where H+0 is the zeroth-order Hankel function of the first kind. The 2D Green function
admits the asymptotic expansion

G+(r− r′) ∼ −
√

1

8πk0
ei π4 e−ik0s·r′ eik0r

√
r

, r→∞, (6.26)

where s = r/r is the unit vector along the direction of r. On substituting Eq. (6.26) into
Eq. (6.24) and setting ν = s0 corresponding to plane-wave incidence we obtain

U(s)
+ (r, s0) ∼ f (s, s0)

eik0r

√
r

, r→∞,
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where

f (s, s0) = −
√

1

8πk0
ei π4

∫
d2r V(r)U(r; s0)e−ik0s·r (6.27)

is the 2D scattering amplitude. Except for the constant multiplying factors and the dimen-
sions of the functions, the expressions for the 3D and 2D scattering amplitudes are seen to
be formally identical.

Example 6.2 We consider a homogeneous cylinder with constant relative index of refraction
nr centered at the origin and excited by an incident plane wave propagating in the plane that
is perpendicular to the axis of the cylinder. The incident plane wave admits the multipole
expansion (cf. Example 3.9 in Section 3.6 of Chapter 3)

eik0s0·r =
∞∑

l=−∞
ile−ilφ0 Jl(k0r)eilφ ,

where (r,φ) are polar coordinates in the (x, y) plane of a Cartesian coordinate system whose
z axis is aligned along the cylinder axis and φ0 is the polar angle of the incident plane
wave as measured from the positive x axis so that s0 = (cosφ0, sinφ0). The multipole
moments of the incident plane wave are thus given by a0l(s0) = il exp(−ilφ0), from which
we conclude that

bl(s0) = Rla0l = il exp(−ilφ0)Rl,

with Rl being the generalized reflection coefficients for the cylinder defined in Eq. (6.17c).
The scattering amplitude is found directly from the multipole expansion of the scattered
wavefield Eq. (6.15b) with ν = s0 on making use of the asymptotic expression (cf. Eq. (4.9)
of Chapter 4)

H+l (k0r) ∼
√

2

πk0
e−i(l+ 1

2 ) π2
eik0r

√
r

, r→∞. (6.28)

We find that

U(s)
+ (r, s0) =

∞∑
l=−∞

bl(s0)︷ ︸︸ ︷
ilRle

−ilφ0 H+l (k0r)eilφ

∼
⎧⎨⎩
√

2

πk0
e−i π4

∞∑
l=−∞

Rle
il(φ−φ0)

⎫⎬⎭ eik0r

√
r

, r→∞,

from which we conclude that

f (s, s0) =
√

2

πk0
e−i π4

∞∑
l=−∞

Rle
il(φ−φ0). (6.29)
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Example 6.3 The results obtained in the previous example are easily extended to scattering
from a pair of concentric cylinders. We employ the same expansion of the incident plane
wave as that given in Example 6.2 but now use the multipole moment bl(s0) computed
from the matrix equation Eq. (6.19) in place of those computed for the cylinder accord-
ing to Eq. (6.17c). The scattering amplitude is obtained from the multipole expansion of
the scattered wave given in Eq. (6.18c) on making use of the asymptotic expression for
the Hankel function given in Eq. (6.28) of the previous example. We then again obtain the
expansion Eq. (6.29) of that example with the generalized reflection coefficients Rl given
by Rl = bl(s0)/a0l(s0), where the bl(s0) are obtained as the solutions to the matrix equation
Eq. (6.19), with the a0l(s0) again given by il exp(−ilφ0).

6.4.2 Reciprocity and translation theorems for the scattering amplitude

Like the Green function G+(r, r′), the scattering amplitude satisfies a reciprocity condition
that can easily be derived from the LS equation Eq. (6.9a) for the total Green function.
This theorem, which is established in Appendix A, is useful for checking whether a given
function f (s, s0) is a realizable scattering amplitude and is also useful for checking for
redundant scattering data in inverse-scattering applications. The theorem can be stated in
the following form.

Theorem 6.1 (the scattering-amplitude reciprocity theorem) The scattering amplitude f (s, s0)
for a compactly supported scattering potential embedded in a uniform background medium
must satisfy the reciprocity condition

f (s, s0) = f (−s0,−s). (6.30)

We illustrate the theorem in Fig. 6.1, where a scattering potential is interrogated by a
plane wave propagating in the s0 direction and the scattering amplitude is measured in
the direction defined by the unit vector s. In a second experiment the potential is probed
by a plane wave propagating in the −s direction and the scattering amplitude is measured
along the −s0 direction. The reciprocity theorem then states that the scattering amplitudes
acquired in the two experiments are identical.

A second theorem, which is useful in certain inverse-scattering applications, relates the
scattering amplitude for a scattering potential centered at a point X in a homogeneous back-
ground medium to the scattering amplitude for the same potential centered at the origin;
i.e., at X = 0. This theorem, which is also established in Appendix A, takes the following
form.

Theorem 6.2 (the scattering-amplitude translation theorem) The scattering amplitude fX(s, s0)
for a compactly supported scattering potential centered at X in a uniform background
medium is related to the scattering amplitude f (s, s0) for the same potential when it is
centered at the origin X = 0 via the equation

fX(s, s0) = e−ik0(s−s0)·Xf (s, s0). (6.31)
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�Fig. 6.1 An illustration of the scattering-amplitude reciprocity theorem.

6.4.3 Scattered field energy and the optical theorem

We showed in Section 1.6 of Chapter 1 that the energy radiated from a source having
a radiation pattern f (s,ω) in a non-dispersive medium with wavenumber k0 = ω/c is
given by

E(ω) = 2κωk0

∫
4π

d�s| f (s,ω)|2,

where κ is a real-valued constant that depends on the nature of the scalar field (acoustic,
optical, etc.). Since the scattered amplitude for any given scattering experiment (for a given
incident wave) is formally equivalent to the radiation pattern for the induced source gener-
ated in that experiment, it immediately follows that the scattered field energy is given by
the above equation with the radiation pattern replaced by the scattering amplitude; i.e.,

Es0 (ω) = 2κωk0

∫
4π

d�s| f (s, s0)|2. (6.32)

The scattered field energy for plane-wave scattering is related to the forward-scattering
amplitude f (s0, s0) via a very simple relationship, which is known as the optical theorem
and is established in Appendix A.

Theorem 6.3 (the optical theorem) The scattered field energy for plane-wave scattering in a
non-dispersive background medium is related to the forward-scattering amplitude via the
equation

Es0 (ω) = 2κωk0

∫
4π

d�s| f (s, s0)|2 = 8πκωf (s0, s0).
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6.5 Computing the scattered field from the scattering amplitude

We showed in Section 4.2.2 of Chapter 4 that the radiation pattern f (s) specified for all unit
observation directions s lying on the real unit sphere completely and uniquely determines
the radiated field everywhere outside the source volume τ0. Since the scattering amplitude
f (s, s0) can be considered to be the radiation pattern for the induced source

Q(r, s0) = V(r)U(r; s0),

we can use this earlier result to conclude that the scattering amplitude f (s, s0) specified for
all real unit vectors s and any given incident wave vector s0 completely and uniquely deter-
mines the scattered field U(s)

+ (r, s0) everywhere outside of the scattering volume τ0. More-
over, we can use the angle-variable form of the angular-spectrum expansion developed in
Chapter 4 to compute the scattered field everywhere outside the so-called convex hull4 of
the scattering volume τ0 directly from the (analytically continued) scattering amplitude. In
particular, it follows from the analysis presented in Section 4.3 that if the scattering vol-
ume is supported within the strip z− < z < z+ then at all field points lying outside this
strip

U(s)
+ (r, s0) = ik0

2π

∫ π

−π
dβ
∫

C±
dα sinα f (s, s0)eik0s·r, (6.33)

where s = (sinα cosβ, sinα sinβ, cosα) and such that the α-integration contour C+ =
[0 : π/2 − i∞] is used in the r.h.s. z > z+ and C− = [π/2 + i∞ : π ] is used in the
l.h.s. z < z−. We note that the two contours C± can be arbitrarily deformed due to the
analyticity of the scattering amplitude as a function of the unit vector s (see the discussion
in Section 4.2.2).

Since the orientation of the fixed x, y, z Cartesian coordinate system is arbitrary we can
employ the above expansion to compute the scattered field throughout any two half-spaces
bounded by parallel tangent planes to the scattering volume and, hence, everywhere out-
side of the convex hull of the scattering volume. The scattered field so computed can, in
principle, be continued into the interior of the convex hull up to the actual boundary of the
scattering volume τ0 using the multipole solution of the interior boundary-value problem
developed in Section 4.8 of Chapter 4. However, such a continuation and, indeed, even
the exact calculation of the scattered field by means of Eq. (6.33) in the near field of the
scattering potential would be computationally unstable. Such calculations serve mainly as
mathematical tools by means of which to establish ideal properties of the field. In particu-
lar, Eq. (6.33) requires an analytic continuation of the scattering amplitude from scattering
directions s lying on the (observable) real unit sphere onto the complex contour required
in this integral. As discussed in Chapter 4, such a continuation is unstable and cannot be
used in any practical application.

4 The convex hull of a simply connected volume τ0 is the smallest convex region that completely contains τ0.
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Although the scattered field cannot be exactly computed outside the convex hull of the
scattering volume τ0 using Eq. (6.33), it can be approximately computed using a stabilized
version of this expansion as described in Section 4.3 of Chapter 4 by simply eliminating the
evanescent plane waves from the expansion. We will use this stabilized version of scattered
field back propagation from the scattering amplitude in a number of applications in later
chapters.

6.5.1 Field scattered by an arbitrary incident wave and the generalized scattering
amplitude

The angular-spectrum expansion allows us to construct the wavefield scattered by an inci-
dent plane wave everywhere outside the convex hull of the scattering potential from the
scattering amplitude. However, since the plane waves form a complete set into which
any incident wave can be expanded and the scattering process is represented by a linear
transform from incident to scattered wave, we can use the angular-spectrum expansion to
represent the wavefield scattered by any arbitrary incident wavefield. To obtain this field
representation, we first expand the incident wave in a homogeneous plane-wave expansion
of the form (cf. Section 3.2.1 of Chapter 3)

U(in)(r, ν) =
∫

4π
d�s0 A(s0, ν)eik0s0·r, (6.34)

where the integral is over the entire unit sphere of incident unit propagation vectors s0. If
we now substitute this expansion into the expression for the scattered field in terms of the
full Green function G+ given by Eq. (6.11a) we obtain the result

U(s)
+ (r, ν) =

∫
d3r′ G+(r, r′)V(r′)

U(in)(r′,ν)︷ ︸︸ ︷{∫
4π

d�s0 A(s0, ν)eik0s0·r′
}

=
∫

4π
d�s0 A(s0, ν)

U(s)
+ (r;s0)︷ ︸︸ ︷{∫

d3r′ G+(r, r′)V(r′)eik0s0·r′
}

=
∫

4π
d�s0 A(s0, ν)

U(s)
+ (r;s0)︷ ︸︸ ︷{

ik0

2π

∫ π

−π
dβ
∫

C±
dα sinα f (s, s0)eik0s·r

}
= ik0

2π

∫ π

−π
dβ
∫

C±
dα sinα

{∫
4π

d�s0 A(s0, ν)f (s, s0)

}
eik0s·r,

which will converge throughout the two half-spaces lying outside the support strip z− <
z < z+. We can write this in the compact form

U(s)
+ (r, ν) = ik0

2π

∫ π

−π
dβ
∫

C±
dα sinα f (s, ν)eik0s·r, (6.35a)
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where f (s, ν), known as the generalized scattering amplitude, is given by

f (s, ν) =
∫

4π
d�s0 A(s0, ν)f (s, s0). (6.35b)

The generalized scattering amplitude is simply the induced source radiation pattern for
the scattering experiment employing an incident wave parameterized by ν. The genesis of
its name follows at once from Eq. (6.4), which states that the scattered wave behaves as
an outgoing spherical wave with amplitude equal to f (s, ν) as r → ∞ along the direction
s = r̂ = r/r. We see from Eq. (6.35b) that the generalized scattering amplitude for an
incident wave with plane-wave amplitude A(s0, ν) is equal to the convolution of A with the
plane-wave scattering amplitude.

6.5.2 Computing the scattering amplitude from scattered field data over a plane

We showed in Section 4.2 that the angle-variable form of the angular-spectrum expansion
can be converted to Cartesian-variable form by means of a simple transformation of inte-
gration variables. The Cartesian-variable form of the expansions employs the two Carte-
sian components of the transverse wavenumber Kρ = (Kx, Ky) as integration variables and
is especially suited for propagating and back-propagating scattered fields specified over
plane surfaces that lie outside the scattering volume τ0. On making this transformation we
have that

k0 sinα dβ dα ⇒ d2Kρ
γ

, k0s⇒ k± = Kρ ± γ ẑ, (6.36)

where k+ corresponds to ẑ · s = sz > 0 and k− to sz < 0, and

γ =

⎧⎪⎪⎨⎪⎪⎩
√

k2
0 − K2

ρ if Kρ < k0,

i
√

K2
ρ − k2

0 if Kρ > k0.

On making this transformation in Eq. (6.35a) we obtain

U(s)
+ (r, ν) = i

2π

∫ ∞
−∞

d2Kρ
γ

A(k±, ν)eik±·r, (6.37a)

where

A(k± = k0s, ν) = f (s, ν), Kρ < k0, (6.37b)

with k+ corresponding to the scattering amplitude over the hemisphere ẑ · s = sz > 0
and k− corresponding to the hemisphere sz < 0. In words this result states that over the
homogeneous region of the spectra the angular spectra A(k+, ν) for expanding the field in
the r.h.s. z > z+ is equal to the scattering amplitude in that half-space and similarly for
the l.h.s. z < z−. The angular spectra in the evanescent region Kρ > k0 is, in principle,
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obtained from its specification over the homogeneous region via the process of analytic
continuation (see the discussion in Section 4.2.2).

By Fourier inverting both sides of Eq. (6.37a) over any plane z0 that lies outside the
support strip z− < z < z+ we find that

Ũ(s)
+ (Kρ , z0, ν) = 2π i

γ
A(k±, ν)e±iγ z0 , (6.38)

where

Ũ(s)
+ (Kρ , z0, ν) =

∫
d2ρ0 U(s)

+ (ρ, z0, ν)e−iKρ ·ρ0

is the spatial Fourier transform of the scattered field on the plane z = z0. The above equa-
tions allow the angular spectra and, hence, the scattering amplitude to be computed directly
from the scattered field lying over plane surfaces lying outside the scattering volume. For
example, using these equations and Eqs. (6.37b) we find that

f (s, ν) = γ

2π i
Ũ(s)
+ (Kρ , z0, ν)e∓iγ z0 , Kρ < k0, (6.39)

with

Kρ = k0sxx̂+ k0syŷ, γ = k0

√
1− s2

x − s2
y ,

where sz =
√

1− s2
x − s2

y > 0 if z0 > z+ and sz = −
√

1− s2
x − s2

y < 0 if z0 < z−. We

note that in this equation γ =
√

k2
0 − K2

ρ is purely real since the (observable) scattering
amplitude is defined only over the homogeneous region of the spectra corresponding to
Kρ < k0. These relationships, which form the basis for diffraction tomography (DT), will
be derived using a different approach in our treatment of inverse scattering and diffraction
tomography in Section 8.5 of Chapter 8.

6.5.3 Multipole expansion of the scattered field

We employed multipole expansions in our treatment of scattering by homogeneous spheres
and cylinders in Section 6.3 and generalize that treatment here to scattering from general
potentials. The general treatment is based on the multipole expansion of radiated fields
presented in Section 4.8 of Chapter 4, where, as was the case with the angular-spectrum
expansion, the multipole expansion of a scattered field is readily obtained by simply replac-
ing the source Q(r) by the induced source V(r)U(r, ν) and the radiation pattern f (s) by the
(generalized) scattering amplitude f (s, ν). We then obtain

U(s)
+ (r, ν) = −ik0

∞∑
l=0

l∑
m=−l

qm
l (ν)h+l (k0r)Ym

l (r̂), (6.40a)

which will converge for all field points r lying outside the smallest sphere that completely
encloses the scattering potential. In this expansion h+l (·) are the spherical Hankel functions
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of the first kind and Ym
l the spherical harmonics of degree l and order m, where we have

used the standard practice introduced in Chapter 3 of denoting the argument of the spher-
ical harmonics with a unit vector rather than with the polar and azimuthal angles defining
this unit vector. The spherical-harmonic expansion of the radiation pattern derived in Sec-
tion 4.8.4 also leads to the following analogous expansion of the generalized scattering
amplitude:

f (s, ν) =
∞∑

l=0

l∑
m=−l

f m
l (ν)Ym

l (s). (6.40b)

The multipole moments qm
l (ν) are expressed in terms of the induced source via

qm
l (ν) =

∫
τ0

d3r V(r)U(r, ν)jl(k0r)Ym
l
∗(r̂), (6.41a)

and in terms of the scattering amplitude via

qm
l (ν) = −ilf m

l (ν) = −il
∫

4π
d�s f (s, ν)Ym

l
∗(s). (6.41b)

It is also possible to express the multipole moments in terms of the scattered field over
any sphere surrounding the scattering volume by obvious generalizations of the formulas
presented in Section 4.8.

As discussed in Section 4.8, the multipole expansion will converge everywhere out-
side the smallest sphere that encloses the scattering volume τ0. Moreover, the multipole
moments qm

l (ν) as well as the generalized Fourier coefficients f m
l (ν) will decay exponen-

tially fast with index l for l > [k0a0], where [k0a0] is the next larger integer to k0a0, with
a0 being the radius of the support volume τ0. In particular, as shown in Section 1.7.3, the
multipole moments of any finite-norm source Q(r, ν) = V(r)U(r, ν) satisfy the inequality

|qm
l (ν)|2 ≤ EQ

∫ a0

0
r2 dr|jl(k0r)|2

= EQ

μ2
l (k0a0)︷ ︸︸ ︷

a3
0

2
[j2l (k0a0)− jl−1(k0a0)jl+1(k0a0)], (6.42)

where EQ is the L2 squared norm of the induced source. The quantities μ2
l (k0a0) are plotted

in Fig. 1.2 of Chapter 1, where they are shown to decay exponentially fast with index
l > [k0a0]. It then follows that the expansion Eq. (6.40a) can be terminated at l0 = [k0a0]
with small error and thus provides a stable scheme for field back propagation from the
scattering amplitude.



251 6.5 Computing the scattered field from the scattering amplitude

Finally, we note that the bound for the scattered field multipole moments given in
Eq. (6.42) is an upper bound and that these coefficients can decay faster than the μ2

l (k0a0)
due to the fact that the interior field U(r, ν) can also decay with index l. For example, for
the scattering from a homogeneous sphere considered in Section 6.3.2, the interior field
admits the multipole expansion given in Eq. (6.12a), so the multipole moments of the scat-
tered field given in Eq. (6.41a) reduce to

qm
l (ν) = k2

0(1− n2
r )
∫

r<a0

d3r

⎡⎣ ∞∑
l′=0

l′∑
m=−l′

am′
l′ (ν)jl′ (k0nrr)Ym′

l′ (r̂)

⎤⎦ jl(k0r)Ym
l
∗(r̂)

= k2
0(1− n2

r )am
l (ν)

∫ a0

0
r2 dr jl(k0nrr)jl(k0r)

≈ k2
0(1− n2

r )am
l (ν)μl(k0a0)μl(k0nra0),

where nr is the relative index of refraction of the sphere and we have used the Schwarz
inequality. We then conclude that

|qm
l (ν)|2 ≤ |k2

0(1− n2
r )|2|am

l (ν)|2μ2
l (k0a0)μ2

l (k0nra0) (6.43)

and thus will decay as the product of μ2
l (k0a0) with μ2

l (k0nra0) rather than simply as
μ2

l (k0a0).

Example 6.4 We computed the multipole expansion of the field scattered from a homoge-
neous sphere in Section 6.3.2. We found that the scattered field admitted the multipole
expansion Eq. (6.40a) with the multipole moments qm

l (ν) given by

qm
l (ν) = i

k0
bm

l (ν) = i

k0
Rla0

m
l (ν), (6.44)

with the Rl being the generalized reflection coefficients defined in Eq. (6.14c) and the
a0

m
l (ν) the multipole moments of the incident wave to the sphere. So long as the incident-

wave multipole moments are all finite the scattered field multipole moments should,
according to the discussion given above, decay exponentially fast with l > [k0a0] irre-
spective of the index of refraction of the sphere! We computed the scattered field multi-
pole moments with the incident-wave multipole moments all set to unity and plot their
magnitudes squared, normalized to a peak value of unity, as a function of l for four dif-
ferent index values in Fig. 6.2. We also plot the bounds provided by Eqs. (6.42) and
(6.43), also normalized to a peak value of unity. In computing the bound in Eq. (6.43)
we used the expression for the multipole moments am

l (ν) = Tla0
m
l (ν) of the interior field

within the sphere given in Section 6.3.2 with the a0
m
l (ν) all set to unity. It is clear from

Fig. 6.2 that the multipole moments computed from Eqs. (6.44) obey the bound provided
by Eq. (6.43).

6.5.4 Multipole expansions of 2D scattered fields

For scattering from a 2D object we employ the multipole expansion of a 2D radiated field
developed in Section 4.9, where, again, we replace the source by the induced source and
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�Fig. 6.2 Semi-log plots ofμ2
l (k0a0) (solid), |aml (ν)|2μ2

l (k0a0)μ
2
l (k0nra0) (dotted) and |bml (ν)|2 (dashed), all normalized to

a peak value of unity, forλ = 1, with a0 = 10λ, for spheres having relative indices of refraction nr = 0.75 (top
left), 0.95 (top right), 1.05 (bottom left) and 1.25 (bottom right).

the radiation pattern by the scattering amplitude. The multipole expansion of a scattered
field then assumes the form

U(s)
+ (r, ν) = − i

4

∞∑
l=−∞

ql(ν)H+l (kr)eilφ , (6.45a)

where the multipole moments ql(ν) are given in terms of the induced source via

ql(ν) =
∫
τ0

d2r V(r)U(r, ν)Jl(kr)e−ilφ . (6.45b)

The radiation pattern is found to be

f (s, ν) = 1

2π

∞∑
l=0

fl(ν)eilφ , (6.46)

where the generalized Fourier coefficients fl(ν) are given by

fl(ν) =
∫ 2π

0
dφ f (s, ν)e−ilφ

and are related to the source multipole moments via the equation

fl(ν) = − i

4

√
8π

k
e−i π4 (−i)lql(ν).
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6.6 The transition operator

The transition operator is an abstract operator that plays a key role in quantum-mechanical
scattering theory and in inverse scattering. This operator maps an incident wave into the
product of the scattering potential with the total (incident plus scattered) wave generated
in a given scattering experiment. We can define this operator by its action on any complete
set of incident wavefields via the equation

T̂U(in)
ν = VUν , (6.47)

where U(in)
ν is an arbitrary incident wave parameterized by ν, Uν the corresponding total

wave generated in the scattering process with the scattering potential V and T̂ the transition
operator associated with that particular scattering potential. Since the plane waves form
a complete set into which any incident wavefield can be expanded (cf. Eq. (6.34)) the
transition operator is completely defined by its action on the plane waves, which we can
write in the form

T̂eik0s0·r = V(r)U(r, s0), (6.48)

where s0 is any vector on the unit sphere.
The transition operator as defined in Eq. (6.48) maps the plane waves parameterized

by propagation vectors k0s0 into square-integrable functions supported in the scatter-
ing volume τ0 (the product of the scattering potential with the field generated in the
scattering experiment). By taking the spatial Fourier transform of this equation we can
then obtain the matrix elements T(K, k0s0) of the transition operator between the plane
waves having wavenumbers k0 and the plane waves exp(iK · r) whose wavenumber is
K = |K|; i.e.,

T(K; k0s0) = 〈eiK·r, T̂eik0s0·r〉
=
∫

d3r e−iK·r{T̂eik0s0·r} =
∫

d3r V(r)U(r; s0)e−iK·r, (6.49)

where the bracket 〈·, ·〉 stands for the standard inner product in the Hilbert space of square-
integrable functions in R3. We refer to the matrix T(K; k0s0) as the T matrix. It completely
defines the transition operator and, indeed, is the momentum-space representation of this
operator in the bra–ket language of quantum-mechanical scattering theory.

On comparing Eq. (6.22) with Eq. (6.49) we conclude that the scattering amplitude
f (s; s0) is proportional to the boundary value of the T matrix over the sphere |K| = K = k0.
Because of this, the scattering amplitude is easily computed directly from the T matrix for
any given set of incident and scattered wave vectors. It is important to note that, while the
scattering amplitude can be computed from the T matrix, it is not evident that the T matrix
is computable from the scattering amplitude. The reason for this is that the T matrix is a
function of five variables, namely the three components of the wave vector K and the two
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free components of the incident unit wave vector s0, while the scattering amplitude is a
function only of four variables (the two free components each of s and s0). Thus, although
the scattering amplitude is an analytic function of the four components of the unit vectors s
and s0 continued onto the complex unit spheres, the T matrix is an analytic function of five
complex variables and, hence, cannot be directly analytically continued from its boundary
value on a four-dimensional (4D) surface.

While the scattering amplitude f (s, s0) uniquely determines the scattered field every-
where outside the scattering volume τ0, the T matrix allows this field to be determined
everywhere, including within the support τ0 of the scattering potential. In particular, on
Fourier inverting Eq. (6.49) and substituting the result into the expression Eq. (6.10) for
the scattered field we find that

U(s)
+ (r; s0) =

∫
d3r′ G0+(r− r′)

V(r′)U(r′;s0)︷ ︸︸ ︷{
1

(2π )3

∫
d3K T(K; k0s0)eiK·r′

}
= 1

(2π )3

∫
d3K

T(K; k0s0)

k2
0 − K2

eiK·r,

where we have used the result (cf. Section 2.2 of Chapter 2)

G̃0+ (K) = 1

k2
0 − K2

.

Because the T matrix allows the scattered field to be determined within the support of
the scattering potential it follows that the scattering potential is uniquely determined from
the T matrix; e.g., via the algorithm

V(r) = [∇2 + k2
0]U(s)

+ (r; s0)

eik0s0·r + U(s)
+ (r; s0)

.

The inverse scattering problem can thus be viewed as being equivalent to computing the
T matrix from the scattering amplitude. However, as mentioned above, this would require
some sort of analytic continuation and, hence, would not be a stable procedure.

6.6.1 The Lippmann–Schwinger equation for the transition operator

If we multiply both sides of the abstract form of the Lippmann–Schwinger equation
Eq. (6.7b) by the scattering potential we obtain the result

VUν = VU(in)
ν + VG0+VUν .

If we now make use of the definition of the transition operator in Eq. (6.47) we obtain the
result

T̂U(in)
ν = VU(in)

ν + VG0+ T̂U(in)
ν .
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On specializing this equation to the case of plane-wave incidence and using the fact that
the plane waves are complete in the space of incident waves we then conclude that the
transition operator satisfies the operator Lippmann–Schwinger equation:

T̂ = V + VG0+ T̂ . (6.50)

6.7 The Born series

The Lippmann–Schwinger (LS) integral equation Eq. (6.7) can be formally solved using
a Liouville–Neumann perturbation expansion commonly known as the Born series after
Max Born who first employed it in quantum scattering theory. To develop this expansion
it is convenient to employ the symbolic form of the LS equation given in Eq. (6.7b). If we
associate a perturbation parameter ε with the scattering potential (let V → εV) and expand
the field U(r, ν) in a power series in this parameter we obtain

U = [1+ εG0+V + ε2G0+VG0+V + · · · ]U(in),

which, if convergent, tends to a solution of the (forward) scattering problem for the poten-
tial εV . It is clear from the Born series that the mapping from the incident field to the scat-
tered field is linear, while the mapping from the scattering potential to the scattered field
is non-linear. As discussed earlier, this non-linear character of the scattering-potential-to-
field map is the underlying reason for the great difficulty of inverse scattering theory and
is the major driving force behind the use of linearizing approximations in this discipline.

If we re-absorb the perturbation parameter ε into the scattering potential (i.e., let εV →
V) the Born series assumes the form

U = [1+ G0+V + G0+VG0+V + · · · ]U(in), (6.51)

a result that can also be obtained directly from Eq. (6.11a); i.e.,

U = (I − G0+V)−1U(in) =
∞∑

n=0

(G0+V)nU(in).

For this reason the series solution Eq. (6.51) is sometimes referred to as the inversion of
the operator consisting of the identity plus a small perturbation.

Born series for the transition operator

Using a completely parallel development, we can expand the transition operator defined in
Eq. (6.50) in the Born series

T̂ = V + VG0+V + VG0+VG0+V + · · · ,

a result that also follows directly from the Born series Eq. (6.51) for the field and the
definition of the transition operator Eq. (6.47).
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6.7.1 The Born approximation

The celebrated Born approximation results from dropping all terms in the Born series
Eq. (6.51) except for the first two terms. Thus we have that

UB(r, ν) = [1+ G0+V]U(in)

= U(in)(r, ν)+
∫

d3r′ G0+(r− r′)V(r′)U(in)(r′, ν), (6.52)

where we have used the subscript B to denote the Born approximation. The Born approx-
imation Eq. (6.52) is seen to be a linear mapping from the scattering potential V to the
scattered field:

U(s)
B (r, ν) =

∫
d3r′ G0+ (r− r′)V(r′)U(in)(r′, ν). (6.53)

The inverse scattering problem within the Born approximation consists of inverting the set
of equations Eqs. (6.53) for the scattering potential from measurements of the scattered
field obtained in a suite of scattering experiments using a set of incident waves U(in)(r, ν).

The philosophy employed in the Born approximation to the inverse scattering problem
is that we seek an exact inversion to an approximate formulation of the (forward) scat-
tering problem. Thus we regard the Born scattering model as given by Eqs. (6.52) and
(6.53) as exact formulations of the forward scattering problem and seek exact inversions
of these equations; i.e., we assume that these equations accurately model the actual mea-
sured scattered field data and seek to recover a scattering potential V that satisfies this set
of equations. This philosophy is not the only possible approach to the inverse scattering
problem and, for example, we could start with the exact (non-linear) scattering model as
described by the LS integral equations Eqs. (6.7) and seek approximate solutions to this
exact forward model. The problem with the latter approach is that it can be addressed only
by ad-hoc and, generally, numerically based inversion schemes and does not lend itself
to any systematic treatment of the inverse problem. The advantage of the linearized Born
model is that we can employ a systematic procedure to develop analytic inversion schemes
that can later be generalized to include non-linear effects in the actual scattering experi-
ments. For example, we can extend all of the analysis contained in this and the following
chapter to non-constant backgrounds characterized by a (known) wavenumber k0 = k0(r)
that varies with position. Such a generalization is based on the so-called distorted-wave
Born approximation (DWBA), which will be developed in Chapter 9.

6.7.2 Incident plane waves

For the important class of incident plane waves the scattering amplitude within the Born
approximation is obtained from Eq. (6.22) upon setting

U(r; s0) ≈ U(in)(r; s0) = eik0s0·r.
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We then obtain the result

fB(s; s0) = −1

4π

∫
d3r′ V(r′)e−ik0(s−s0)·r′ .

If we define the spatial Fourier transform of the scattering potential via the equation

Ṽ(K) =
∫

d3r V(r)e−iK·r,

we see that the Born approximation to the scattering amplitude is related to Ṽ via the
equation

fB(s, s0) = −1

4π
Ṽ[k0(s− s0)]. (6.54)

Equation (6.54) relates the scattering amplitude to the spatial Fourier transform of the
scattering potential evaluated over the set of spatial frequencies defined by the equation

K = k0(s− s0). (6.55)

Let us now assume that the background medium is non-absorbing, so that the wavenumber
k0 is real-valued. In this case the spatial frequencies defined in Eq. (6.55) are real-valued
and map out the surface of a sphere of radius k0 that is centered at the point K = −k0s0 in
K space. This sphere is known as an Ewald sphere, so that for non-absorbing background
media and within the Born approximation the scattered field generated in any single scat-
tering experiment depends only on the spatial Fourier transform of the scattering potential
over the surface of a single Ewald sphere. Conversely, the scattered field data acquired in
any single experiment determine this transform over the surface of a single Ewald sphere.
If a complete (countably infinite) set of experiments with s0 varying over the entire unit
sphere is performed, the transform Ṽ(K) would be determined from this entire suite of data
over the union of the surfaces of an infinite number of Ewald spheres, which is easily seen
to be the interior of a sphere centered at the origin of K space that has an outer radius of
2k0 (the so-called Ewald limiting sphere). The situation is illustrated in Fig. 6.3.

The scattering potential V(r) is compactly supported within the volume τ0 and every-
where finite. It then follows that its Fourier transform Ṽ(K) is an entire analytic function of
the spatial frequency vector K = (Kx, Ky, Kz) extended into complex K space (or, equiva-
lently, into the three complex planes associated with the Cartesian components Kx, Ky, Kz).
An entire analytic function of three complex variables is completely determined by its
specification over any finite volume in the space of the three variables. Examples of such a
volume would be the interior of a cube or sphere in real K space. Although a single Ewald
sphere will not provide such a specification, a full set of Ewald spheres will. By a “full set”
we mean the Ewald spheres generated from an ideal complete set of scattering experiments
in which the scattering amplitude f (s, s0) is determined for all pairs of unit vectors s and
s0. Referring to Fig. 6.3, we see that such a complete data set results in specification of
the scattering potential Fourier transform throughout the Ewald limiting sphere, which is a



258 Scattering theory

�Fig. 6.3 A graphical illustration of an Ewald sphere and an Ewald limiting sphere for a penetrable scatterer embedded in a
non-absorbing medium.

volume in 3D K space and, hence, allows Ṽ(K) to be analytically continued into the entire
K space.

The process of analytic continuation is, of course, an unstable process and, although the
above comments indicate that knowledge of Ṽ(K) throughout the entire Ewald limiting
sphere is, in principle, sufficient to yield an exact solution to the inverse scattering problem
for non-absorbing background media within the Born approximation, the situation is quite
different in practice. However, it is clear that specification of the transform Ṽ throughout
the interior of the Ewald limiting sphere leads directly to a stable low-pass-filtered approx-
imation of V given by

VLP(r) = 1

(2π )3

∫
|K|≤2k0

d3K Ṽ(K)eiK·r. (6.56)

Without prior information regarding the scattering potential, such as support knowledge,
the low-pass-filtered approximation VLP defined above is the best that can be hoped for
within the Born approximation; it will be our principal goal in Chapter 8.5

5 A better inversion can be obtained if additional information concerning the scattering potential is known,
beyond the results from the scattering experiments. For example, if the support volume τ0 of the scattering
potential is known this information can be incorporated into the inversion, as will be discussed in Chapters 8
and 9.
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The above discussion assumed that the background medium is non-absorbing so that k0

is real-valued. This allowed us to use standard Fourier analysis to state and obtain a formal
solution to the inverse scattering problem within the Born approximation. If k0 is complex
the above discussion is no longer valid, since the scattering amplitude would specify Ṽ(K)
over complex spheres so that the standard inverse Fourier transform leading to the solution
in Eq. (6.56) would not be applicable. Although there have been proposals regarding how to
extend the validity of the Fourier-integral-based solution to absorbing background media, a
superior approach that is applicable to general inhomogeneous and dispersive background
media and that reduces to the Fourier-based solution given above when the background is
uniform and non-absorbing is presented in Chapter 9.

6.8 The Born approximation for spherically and cylindrically
symmetric scattering potentials

Especially simple results are obtained for scattering from 3D spherically symmetric and 2D
cylindrically symmetric potentials within the Born approximation. Such scattering poten-
tials are very useful in computer-simulation studies of inverse scattering since their (exact)
scattering amplitudes are easily and efficiently computed using the algorithms presented
in Section 6.3, with the result that the accuracy of the Born and other linearized inversion
algorithms can be easily evaluated.

Considering first the 3D case, we expand the scattered field in the multipole expansion
developed in Section 6.5.3, where the multipole moments within the Born approximation
are found from Eq. (6.41a) to be given by

qm
l (ν) =

∫
τ0

d3r V(r)U(in)(r, ν)jl(k0r)Ym
l
∗(r̂)

=
∫ a0

0
r2 dr V(r)jl(k0r)

∫
4π

d�r U(in)(r, ν)Ym
l
∗(r̂).

The incident wave propagates in the homogeneous background and admits a multipole
expansion of the general form given in Eq. (6.12b) of Section 6.3 so that∫

4π
d�r U(in)(r, ν)Ym

l
∗(r̂) = a m

0l (ν)jl(k0r),

with the a m
0l (ν) being the multipole moments of the incident wave. On making use of the

above result we then find that

qm
l (ν) = a m

0l (ν)
∫ a0

0
r2 dr j2l (k0r)V(r) = i

k0
R(B)

l a m
0l (ν),

where

R(B)
l = −ik0

∫ a0

0
r2 dr j2l (k0r)V(r)
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play the role of generalized reflection coefficients for the symmetric scatterer within the
Born approximation (cf. Section 6.3). The multipole expansion of the scattered field within
the Born approximation is then found to be

U(s)
B (r) =

∞∑
l=0

l∑
m=−l

R(B)
l a m

0l (ν)h+l (k0r)Ym
l (r̂).

The Born scattering amplitude is found to be given by Eq. (6.40b) with the expansion
coefficients

f m
l (ν) = −(−i)lbm

l (ν) = (−i)l+1

k0
R(B)

l a m
0l (ν).

The multipole expansion of a plane wave was derived in Example 3.4 of Chapter 3 where
the multipole moments a m

0l (s0) were found to be given by

a m
0l (s0) = 4π ilYm

l
∗(s0)⇒ f m

l (s0) = −4π i

k0
R(B)

l Ym
l
∗(s0).

The plane-wave scattering amplitude within the Born approximation thus admits the expan-
sion

fB(s, s0) = −4π i

k0

∞∑
l=0

l∑
m=−l

R(B)
l Ym

l (s)Ym
l
∗(s0).

In two space dimensions the multipole expansion of the scattered field is given by
Eq. (6.45a) with the multipole moments computed according to Eq. (6.45b). On making
the Born approximation and assuming a cylindrically symmetric scattering potential we
then find that

ql(ν) =
∫
τ0

d2r V(r)U(in)(r, ν)Jl(k0r)e−ilφ

=
∫ a0

0
r dr V(r)Jl(k0r)

∫ 2π

0
dφ U(in)(r, ν)e−ilφ . (6.57)

On expanding the incident wave in a multipole expansion as given in Eq. (6.15b) we find
that

∫ 2π

0
dφ

U(in)(r,ν)︷ ︸︸ ︷
∞∑

l′=−∞
a0l′ (ν)Jl′ (k0r)eil′φ e−ilφ = 2πJl(k0r)al0(ν),

where al0(ν) are the multipole moments of the incident wave. If we now use this result in
Eq. (6.57) we obtain

ql(ν) = 2π
∫ a0

0
r dr V(r)J2

l (k0r)al0(ν),

which then yields the multipole expansion

U(s)
B (r) =

∞∑
l=−∞

− i
4 ql(ν)︷ ︸︸ ︷

R(B)
l a0l(ν) H+l (k0r)eilφ , (6.58a)
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where

R(B)
l = −i

π

2

∫ a0

0
r dr J2

l (k0r)V(r) (6.58b)

are the Born approximations to the generalized reflection coefficients Rl for the scatterer.
The Born approximation to the plane-wave scattering amplitude is obtained using the

same procedure as was employed in Example 6.2 for a homogeneous cylinder and is given
by Eq. (6.29) of that example with the generalized reflection coefficients Rl of the homoge-
neous cylinder replaced by the R(B)

l defined above. Note that, while the scattering amplitude
computed in that example applied only to homogeneous cylinders, the Born approximation
computed with R(B)

l employed in place of Rl will be valid for any cylindrically symmetric
scattering potential.

6.8.1 Born scattering from homogeneous cylinders

We computed the interior and scattered fields from a homogeneous cylinder and from
two concentric homogeneous cylinders in Section 6.3 and used these results in Exam-
ples 6.2 and 6.3 to compute the scattering amplitudes for these two scatterers. Within the
Born approximation to the scattered fields we obtained the multipole expansions given in
Eqs. (6.15b) with the coefficients bl(ν) given by

bl(ν) = R(B)
l a0l(ν),

while the scattering amplitudes are obtained using Eq. (6.29) of Example 6.2 with the
generalized reflection coefficients computed using Eq. (6.58b). We then find for the homo-
geneous cylinder with radius a0 and index of refraction nr that

R(B)
l = −i

π

2
k2

0(1− n2
r )
∫ a0

0
r dr J2

l (k0r) = −i
π

2
k2

0(1− n2
r )μ2

l (k0a0), (6.59a)

with

μ2
l (k0a0) =

∫ a0

0
r dr J2

l (k0r) = a2
0

2
[J2

l (k0a0)− Jl−1(k0a0)Jl+1(k0a0)].

For two concentric cylinders having indices n1 and n2 and radii a1 and a2 > a1 we obtain

R(B)
l = −i

π

2

{
k2

0(1− n2
1)
∫ a1

0
r dr J2

l (k0r)+ k2
0(1− n2

2)
∫ a2

a1

r dr J2
l (k0r)

}
= −i

π

2
[k2

0(n2
2 − n2

1)μ2
l (k0a1)+ k2

0(1− n2
2)μ2

l (k0a2)]. (6.59b)

The Born scattering amplitudes for the two objects are then found to be

fB(s, s0) = −
√
π

2k0
ei π4

∞∑
l=−∞

k2
0(1− n2

r )μ2
l (k0a0)eil(φ−φ0) (6.60a)

and

fB(s, s0) = −
√
π

2k0
ei π4

∞∑
l=−∞

[k2
0(n2

2−n2
1)μ2

l (k0a1)+k2
0(1−n2

2)μ2
l (k0a2)]eil(φ−φ0). (6.60b)
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We computed the exact and Born approximations to the scattering amplitude of a single
cylinder parameterized by its relative index of refraction nr and of two concentric cylinders
parameterized by their two radii a1 and a2 and relative indices n1 and n2. We show in
Figs. 6.4 and 6.5 the magnitude and phase of the Born and exact scattering amplitudes
computed for the single cylinder having radius a0 = 4λ and indices of refraction varying
from 1.01 to 1.07 in steps of 0.02 and in Figs. 6.6 and 6.7 the magnitude and phase of the
Born and exact scattering amplitudes computed for the pair of concentric cylinders having
radii a1 = 2λ and a2 = 4λ and each having relative indices of refraction of 1.03 and 1.07.
Note that, as required, the two concentric cylinders each having the same relative index of
refraction (top left and bottom right in Figs. 6.6 and 6.7) yield identical results to the case
of the single cylinder having radius 4λ and indices of refraction of 1.03 and 1.07 (top left
and bottom right in Figs. 6.4 and 6.5).

6.8.2 The error between the Born and exact scattering amplitudes

The results presented in Figs. 6.4–6.7 indicate that there is relatively good agreement
between the Born and exact scattering amplitudes for small index variations and small
cylinder radii. To obtain a better idea of the accuracy of the Born approximation we
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�Fig. 6.4 Magnitudes of the exact (solid) and Born-approximation (dotted) scattering amplitudes of a cylinder having radius
a0 = 4λ and relative indices of refraction varying from nr = 1.01 (top left) to nr = 1.07 (bottom right) in steps of
δnr = 0.02.



263 6.8 Spherically and cylindrically symmetric scattering potentials

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−3

−2

−1

0

1

2

angle
−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−3

−2

−1

0

1

2

3

angle

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−4

−3

−2

−1

0

1

2

3

angle
−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−4

−3

−2

−1

0

1

2

3

angle

�Fig. 6.5 Phases of the exact (solid) and Born-approximation (dotted) scattering amplitudes of a cylinder having radius
a0 = 4λ and relative indices of refraction varying from nr = 1.01 (top left) to nr = 1.07 (bottom right) in steps of
δnr = 0.02.

computed the normalized integrated squared error between the exact and Born scattering
amplitudes for a homogeneous cylinder as a function of its relative index of refraction and
for four values of its radius. The normalized error is defined according to the equation

E(nr, a0) = || f − fB||
|| f || =

√√√√∫ 2π
0 dφ| f (s, s0)− fB(s, s0)|2∫ 2π

0 dφ| f (s, s0)|2
=
√∑

l |Rl − R(B)
l |2∑

l |Rl|2 ,

where the Rl are given in Eq. (6.14c) and the R(B)
l by Eq. (6.59a).

We show in the top part of Fig. 6.8 the normalized errors in percent plotted as a func-
tion of the relative index of the cylinder also in percent for cylinder radii of λ, 2λ, 3λ
and 4λ. It is apparent from Fig. 6.8 that for any given relative index the errors appear to
increase linearly with the radius. To verify this conclusion we plotted the errors versus the
product of the radius with the relative index in the bottom part of Fig. 6.8. It can be seen
that the errors in this figure are identical, thus verifying the often-quoted statement that
the “validity of the Born approximation requires that the product of the maximum value
of the scattering potential with the radius of support of the scatterer must be small.” Of
course, this simulation applies only to scattering from a cylinder, but certainly supports this
conclusion.
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�Fig. 6.6 Magnitudes of the exact (solid) and Born-approximation (dotted) scattering amplitudes of two concentric cylinders
having radii of a1 = 2λ and a2 = 4λ and relative indices of refraction of (n1, n2) = (1.03, 1.03) (top left),
(1.03, 1.07) (top right), (1.07, 1.03) (bottom left) and (1.07, 1.07) (bottom right).
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�Fig. 6.7 Phases of the exact (solid) and Born-approximation (dotted) scattering amplitudes of two concentric cylinders having
radii of a1 = 2λ and a2 = 4λ and relative indices of refraction of (n1, n2) = (1.03, 1.03) (top left), (1.03, 1.07) (top
right), (1.07, 1.03) (bottom left) and (1.07, 1.07) (bottom right).
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�Fig. 6.8 The top plot shows percentage normalized errors for cylinder radii ofλ, 2λ, 3λ and 4λ plotted as a function of the
percentage relative index of the cylinders. The errors for any given relative index increase with increasing radius. The
bottom plot shows percentage errors superimposed for all four cylinders plotted as a function of the product of their
radii with their percentage relative index.

6.9 Non-scattering potentials

We showed in Section 6.4 that the scattering amplitude f (s, s0) specified for all unit obser-
vation vectors s and fixed incident unit wave vector s0 completely and uniquely speci-
fies the scattered field U(s)

+ (r, s0) everywhere outside the scattering volume τ0. It follows
that the vanishing of the scattering amplitude over all scattering directions s for any given
incident-wave direction s0 guarantees that the scattered field will vanish everywhere out-
side the support of the scatterer for that particular incident plane wave. We will refer to
scattering potentials that generate scattered waves that vanish outside the scattering vol-
ume as non-scattering potentials in analogy with the term non-radiating sources that we
applied to sources that radiate fields that vanish outside the source volume (cf. Section 1.7
of Chapter 1 and Section 2.7 of Chapter 2).

The first question that needs to be answered is whether non-trivial non-scattering poten-
tials actually exist, at least in a mathematical sense; i.e., do there exist compactly supported
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scattering potentials that do not scatter a given incident wave? The answer to that question
is in the affirmative, as the following theorem establishes.

Theorem 6.4 (non-scattering-potentials theorem) There exists a countably infinite number of
compactly supported scattering potentials that generate no scattered field outside their
scattering volume for any given arbitrary incident wave. Moreover, any one of these non-
scattering potentials is generated by the algorithm

Vns(r) = Qnr(r)

U(in)(r)+ ∫
τ

d3r′ Qnr(r′)G0+(r− r′)
, (6.61)

where Qnr is an arbitrary NR source supported within the scattering volume τ0 and U(in)

is an arbitrary incident wavefield.

The proof of the theorem follows at once from the fact that we can find a countable
infinity of NR sources that will generate no radiated field outside the source volume. If we
then set the induced source resulting from some arbitrary incident wavefield U(in) equal
to an NR source supported within the scattering volume we conclude that the total field
(incident plus scattered) resulting from this induced (NR) source is given by

U(r) = U(in)(r)+

U(s)
+ (r)︷ ︸︸ ︷∫

τ

d3r′ Qnr(r′)G0+(r− r′),

where the scattered field U(s)
+ (r) will vanish outside τ0. On setting Qnr = UVns and solving

for the non-scattering potential Vns we then find that

Vns(r) = Qnr(r)

U(r)
= Qnr(r)

U(in)(r)+ ∫
τ

d3r′ Qnr(r′)G0+(r− r′)
,

which is an algorithm for constructing a non-scattering potential from an arbitrary NR
source and incident field.

Theorem 6.4 allows us to construct a scattering potential that will not generate a scattered
wave for any single (specified) incident wave. The question of whether we can construct a
potential that will not scatter two or more incident waves naturally arises. Although there
does not appear to be any definitive answer to this question at the present time (see, how-
ever, the paper by Isakov and Nachman (Isakov and Nachman, 1995)), we can provide an
answer as well as a simple algorithm for generating such non-scattering potentials within
the Born scattering model.

6.9.1 Non-scattering potentials within the Born approximation

The scattered field within the Born scattering model is given by Eq. (6.53), from which it
follows that within this weakly scattering model a non-scattering potential is given by the
ratio of an NR source with the incident field:

VB
ns(r) = Qnr(r)

U(in)(r)
. (6.62)
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The above result is also obtainable from the expression for a non-scattering potential within
the framework of exact scattering theory given by Eq. (6.61) if we perform a perturbation
expansion of this expression and drop the terms corresponding to higher-order terms in the
Born series. To see this, we first write Eq. (6.61) in the compact form

Vns(r) = Qnr(r)

U(in)(r)+ π (r)
, (6.63a)

where

π (r) =
∫
τ

d3r′ Qnr(r′)G0+(r− r′)

is the field radiated by the NR source Qnr. If we now perform a binomial expansion of the
denominator in Eq. (6.63a) we obtain the result

Vns(r) = Qnr(r)

U(in)(r)

{
1− π (r)

U(in)(r)
+
[
π (r)

U(in)(r)

]2

− · · ·
}

. (6.63b)

The lowest-order term in the above expansion corresponds to the Born weak-scattering
model and is precisely the result we obtained directly from the Born scattering model in
Eq. (6.62).

Another class of scattering potentials within the Born scattering model that gener-
ate a zero scattered field are those potentials whose spatial Fourier transforms vanish
everywhere within the Ewald limiting sphere. Such scattering potentials would then have
Ṽ[k0(s − s0)] = 0 for any set of incident and scattered wave vectors and, hence, would
be truly “invisible” in any scattering experiment.6 However, such scattering potentials are
not compactly supported within a finite scattering volume τ0 and, hence, are not “non-
scattering potentials” within the definition used here.

6.9.2 Incident plane waves

The Born non-scattering potential constructed according to Eq. (6.62) is not the most gen-
eral non-scattering potential that can be constructed within the Born model for the case
in which the incident wave is a plane wave. A more general model for this case can be
obtained by working with the Born scattering amplitude fB(s, s0). This quantity as defined
in Eq. (6.54) is proportional to the spatial Fourier transform of the scattering potential
Ṽ(K) evaluated over the set of spatial frequencies K = k0(s − s0). Thus, if for any given
incident plane-wave direction s0 the transform Ṽ[k0(s− s0)] vanishes for all unit vectors s,
the scattering amplitude and, hence, the scattered field will vanish everywhere outside the
scattering volume τ0 for that particular incident plane wave. The condition K = k0(s− s0)
is equivalent to the condition

s = K
k0
+ s0,

6 This conclusion follows from the fact that the plane waves form a complete set of wavefields into which any
incident wave can be expanded.
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which will be satisfied for all unit vectors s if and only if

s · s = 1 =
[

K
k0
+ s0

]
·
[

K
k0
+ s0

]
,

which reduces to the requirement that Ṽ(K) vanish over those spatial frequencies K that
lie on the surface

K2 + 2k0s0 · K = 0.

It follows from the above condition that any scattering potential whose spatial Fourier
transform is of the general form

ṼB
ns(K; s0) = −(K2 + 2k0s0 · K)χ̃ (K), (6.64a)

where

χ̃ (K) =
∫
τ0

d3r χ (r)e−iK·r

is the spatial Fourier transform of any function χ (r) that is compactly supported within the
scattering volume τ0, will be non-scattering within the Born approximation for an incident
plane wave with unit propagation vector s0. If we also require that χ (r) possess continuous
first partial derivatives we find that

VB
ns(r; s0) = 1

(2π )2

∫
d3K Ṽns(K; s0)eiK·r

= − 1

(2π )2

∫
d3K(K2 + 2k0s0 · K)χ̃ (K)eiK·r

⇓

Vns(r; s0) = (∇2 + 2ik0s0 · ∇)χ (r). (6.64b)

The non-scattering potential VB
ns(r; s0) generates a scattering amplitude that vanishes

over all directions s and a scattered field that vanishes everywhere outside the convex
hull of the scattering volume τ0 for an incident plane wave with unit propagation vec-
tor s0. Moreover, the scattering-amplitude reciprocity theorem (Theorem 6.1) states that
f (s, s0) = f (−s0,−s) so that this non-scattering potential will also generate a zero scat-
tering amplitude along the single scattering direction −s0 for incident plane waves hav-
ing arbitrary unit propagation vectors. By letting s0 → −s we can state this in the
form that

Vns(r; s) = (∇2 − 2ik0s · ∇)χ (r) (6.65)

will possess a Born scattering amplitude fB(s, s0) that vanishes for all s0 ∈ 4π steradians.
Note that in this case only the scattering amplitude in the single direction s, not the scattered
field outside τ0, will vanish.
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6.9.3 The relationship between the two Born non-scattering potentials

To see the relationship between the two models Eq. (6.62) and Eqs. (6.64) for a Born non-
scattering potential, we set U(in)(r) = exp(ik0s0·r) in Eq. (6.62) and take the spatial Fourier
transform of the resulting potential. We obtain the result

ṼB
ns(K) =

∫
τ0

d3r Qnr(r)e−i(K+k0s0)·r =
∫
τ0

d3r

Qnr(r)︷ ︸︸ ︷
[∇2 + k2

0]π (r) e−i(K+k0s0)·r

= [−(K+ k0s0) · (K+ k0s0)+ k2
0]
∫
τ0

d3r π (r)e−i(K+k0s0)·r

= −(K2 + 2k0s0 · K)π̃(K+ k0s0),

where in the first line we have expressed the NR source in terms of its radiated field π (r)
and integrated by parts twice to obtain the second line. On comparing the above result with
Eq. (6.64a) we see that the Born non-scattering model defined in Eq. (6.62) is a special
case of the more general model given in Eq. (6.64a), which was obtained by taking

χ̃(K) = π̃ (K+ k0s0).

Although the two models are consistent, we see that in the more general model the function
χ is arbitrary and independent of the incident-wave direction, whereas in the more restric-
tive model defined in Eq. (6.62) χ depends on the incident-wave direction. Because of this
it is not possible to extend the restrictive model to cases of multiple experiments using
different incident plane waves, whereas the more general model defined in Eqs. (6.64) is
easily extended, as we will now show.

6.9.4 Almost-invisible weak scatterers

A truly invisible object would produce no scattering for any arbitrary incident wavefield.
However, as we noted earlier, the scattering potential for such an object within the Born
scattering model would have to have a spatial Fourier transform that vanished everywhere
within the Ewald limiting sphere and such a potential would, of necessity, be infinite in
extent. Although no truly invisible compactly supported weakly scattering potential exists,
it is simple to construct such potentials that will be invisible in any finite set of scattering
experiments employing incident plane waves or incident waves that can be expressed as
a superposition of a finite set of plane waves. We will refer to such potentials as “almost-
invisible scattering potentials.”

An almost-invisible scattering potential within the Born approximation can be generated
by cascading the operator (∇2 + 2ik0s0 · ∇) with different values of the unit wave vector
s0 to generate the non-scattering potential

VB
ns(r) =

M∏
m=1

(∇2 + 2ik0s0m · ∇)χ (r), (6.66a)

where χ (r) is assumed to be compactly supported within a scattering volume τ0. It is easy
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to verify that the scattering potential VB
ns(r) has a spatial Fourier transform that vanishes

over the M Ewald spheres associated with the M unit vectors s0m, and, hence, will not
scatter in any of these M scattering experiments.

If we again make use of the scattering-amplitude reciprocity theorem we conclude from
Eq. (6.65) that, within the Born approximation, the potential

VB
ns(r) =

M∏
m=1

(∇2 − 2ik0sm · ∇)χ (r) (6.66b)

will generate a zero scattering amplitude over the set of M scattering directions sm, m =
1, 2, . . . , M for any incident plane wave having an arbitrary unit propagation vector s0.
Moreover, we showed in Section 6.4 that the generalized scattering amplitude for an inci-
dent wave having arbitrary plane-wave amplitude A(s0, ν) is given by

f (s, ν) =
∫

4π
d�s0 f (s, s0)A(s0, ν).

It then follows that within the Born scattering model the generalized scattering amplitude
of the non-scattering potential defined in Eq. (6.66b) will vanish for any incident wave
over the set of M scattering directions sm, m = 1, 2, . . . , M. Again we emphasize that
this does not guarantee that the scattered field will vanish but only that the generalized
scattering amplitude will vanish over that specific set of scattering directions. In order for
the scattered field to vanish outside the convex hull of the scattering potential it is necessary
that the scattering amplitude vanish for all scattering directions s, not just for a discrete set
of scattering directions.

6.9.5 Essentially non-scattering potentials

The non-scattering (NS) potentials are the scattering-problem equivalent to the NR sources
of the radiation problem. We also encountered “essentially” NR sources in the radiation
problem and these sources too have their counterpart in the scattering problem. In analogy
with the definition of the essentially NR sources employed in Section 1.7.3 of Chapter 1 we
define an essentially non-scattering potential as one that generates “negligible” scattered
field energy. On making use of the expression for the scattered field energy from Eq. (6.32)
we then require an essentially NS potential to possess a scattering amplitude that satisfies
the inequality

Eν(ω) = 2κωk0

∫
4π

d�s| f (s, ν)|2 < ε, (6.67)

where ε is a small positive parameter used to characterize the essentially NS potential.
Following steps identical to those employed in our treatment of essentially NR sources

in Section 1.7.3, we express the generalized scattering amplitude in the spherical harmonic
expansion given in Eq. (6.40b) of Section 6.5.3, where the generalized Fourier coefficients
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f m
l (ν) are related to the induced source and scattering amplitude via Eqs. (6.41) of that

section. On substituting this expansion into Eq. (6.67) we obtain the result

Eν(ω) = 2κωk0

∞∑
l=0

l∑
m=−l

| f m
l (ν)|2. (6.68)

We showed in Section 6.5.3 that the quantities | f m
l (ν)|2 decay exponentially fast for

l > [k0a0], where the bracket [·] stands for the closest next positive integer. It then fol-
lows that if the scattering amplitude expansion coefficients f m

l (ν) are all negligible for
l < [k0a0] then the scattered field energy will be negligible and the scattering potential
will be essentially NS. The condition for essential NS can then be expressed in either of
the two forms

| f m
l (ν)| =

∣∣∣∣∫
4π

d�s f (s, ν)Ym
l
∗(s)

∣∣∣∣ < ε, l < [k0a0], (6.69a)

and

| f m
l (ν)| =

∣∣∣∣∫
τ0

d3r V(r)U(r, ν)jl(k0r)Ym
l
∗(r̂)

∣∣∣∣ < ε, l < [k0a0], (6.69b)

where ε is a small positive parameter. These conditions are precisely those required for the
induced source (Q = VU) to be essentially NR.

Limits on the angular resolution of a scattering amplitude

We found in our treatments of essentially NR sources in Chapters 1 and 2 that the expo-
nential decay of the parameters μ2

l (k0a0) with index l > [k0a0] also limited the achievable
angular resolution of the radiation pattern of any finite-norm source. The same result is
found for the scattering amplitude of a finite-norm induced source for which the general-
ized Fourier coefficients of the scattering amplitude f m

l (ν) must decay exponentially fast for
l > [k0a0]. As discussed in our treatments of essentially NR sources, the spherical harmon-
ics Ym

l (s) are periodic functions of the polar and azimuthal angles α and β, with smallest
angular periods of 2π/l ≥ 2π/(k0a0) = λ/a0 radians. It then follows that the generalized
scattering amplitude, like the radiation pattern of a primary source, can oscillate as a func-
tion of the polar and azimuthal angles with angular periods no smaller than λ/a0 radians.
This, of course, translates into a minimum primary-lobe width (angular resolution) of the
same magnitude.

6.10 The Rytov approximation

In this section we again seek a linearized approximate solution of the scattering prob-
lem but will base the theory on the non-linear Ricatti differential equation satisfied by the
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(complex) space-dependent phase of the total field U rather than on the Helmholtz equa-
tion satisfied by the field itself. The two formulations of the forward scattering problem
(the Helmholtz equation for U and the Ricatti equation for the complex phase of U) are
mathematically equivalent and, hence, yield the same (exact) forward solution for the field.
However, the linearized versions of the two formulations are different and the one based on
the Ricatti equation presented in this section (the Rytov approximation) is generally more
accurate and has a greater domain of applicability than the Born approximation developed
earlier in the chapter for many of the inverse scattering problems that we will deal with
in later chapters. Although the two linearized formulations of the forward scattering prob-
lem have different domains of applicability, we will find that the underlying mathematical
structure of the solutions to the forward scattering problem within the two formulations
is identical so that many of the results obtained earlier for the Born scattering model can
again be employed within the Rytov weak-scattering model presented here.

When developing and using the Rytov scattering model it is customary to employ the
complex index of refraction n(r) in place of the scattering potential V(r). These two quanti-
ties are related according to Eq. (6.2). If this relationship is used in the Helmholtz equation
Eq. (6.3) we obtain

[∇2 + k2
0n2(r)]U(r, ν) = 0, (6.70)

which will be employed in place of Eq. (6.3) from this point on in this section.

6.10.1 The Ricatti equation for the complex phase of the field

We can express the field U in terms of a complex-valued phase W via the equation

U(r, ν) = eik0W(r,ν), (6.71)

where the complex-valued phase function W(r, ν) is required to satisfy a differential equa-
tion that results from substitution of Eq. (6.71) into Eq. (6.70). On making this substitution
we obtain

ik0∇2W(r, ν)− k2
0[∇W(r, ν)]2 + k2

0n2(r) = 0, (6.72a)

where we have used the shorthand notation (∇W)2 = ∇W · ∇W. Equation (6.72a) is a
non-linear Ricatti equation satisfied by the complex phase function W and is completely
equivalent to the Helmholtz equation Eq. (6.70) satisfied by the field U. The phase of the
incident field W0 satisfies the same equation with the index of refraction n set equal to
unity:

ik0 ∇2W0(r, ν)− k2
0[∇W0(r, ν)]2 + k2

0 = 0. (6.72b)
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Besides satisfying the Ricatti equation Eq. (6.72a), the phase also has to satisfy a bound-
ary condition corresponding to the requirement that the field satisfy the asymptotic condi-
tion Eq. (6.4). If we express the phase W in the form

W(r, ν) = W0(r, ν)+ δW(r, ν) (6.73)

we find that this asymptotic condition can be expressed in the form

U(r, ν) = eik0[W0(r,ν)+δW(r,ν)] ∼
U(in)(r,ν)︷ ︸︸ ︷

eik0W0(r,ν) + f (s, ν)
eik0r

r
, r→∞, (6.74)

with s = r/r. We will employ Eq. (6.74) below where we formally solve the Ricatti equa-
tion using a perturbation expansion.

6.10.2 The Liouville–Neumann expansion for the phase

If we make the substitution Eq. (6.73) into the left-hand side of the Ricatti equation
Eq. (6.72a) and simplify the result, we find that the phase perturbation δW satisfies the
equation

ik0 ∇2δW − k2
0(∇δW)2 − 2k2

0 ∇W0 · ∇δW + k2
0(n2 − 1) = 0. (6.75)

The quantity n2 − 1 is a perturbation of the index of refraction from its background value
of unity introduced by the presence of the scattering object. This perturbation results in
a perturbation δW of the phase of the incident field W0 governed by Eq. (6.75). If we
associate a perturbation parameter ε with the index perturbation so that

n2 − 1→ ε(n2 − 1)

we can expect that the phase perturbation can be expressed in a perturbation expansion
(Liouville–Neumann expansion) of the general form

δW =
∞∑

n=1

δW(n)εn, (6.76)

which, when substituted into Eq. (6.75), yields the result

ik0

∞∑
n=1

∇2δW(n)εn − k2
0

∞∑
n′=1

∞∑
n=1

∇δW(n′) · ∇δW(n)εn′+n

− 2k2
0

∞∑
n=1

∇W0 · ∇δW(n)εn + k2
0(n2 − 1)ε = 0. (6.77)
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If we equate terms of equal powers of ε we then arrive at the set of equations

ik0 ∇2δW(1) − 2k2
0 ∇W0 · ∇δW(1) + k2

0(n2 − 1) = 0,

ik0 ∇2δW(2) − k2
0 ∇δW(1) · ∇δW(1) − 2k2

0 ∇W0 · ∇δW(2) = 0,

...

ik0 ∇2δW(n) − k2
0

∑
n′+n′′=n

∇δW(n′) · ∇δW(n′′) − 2k2
0 ∇W0 · ∇δW(n) = 0.

The above set of coupled linear partial differential equations can be sequentially solved
for the various terms δW(n) in the perturbation expansion Eq. (6.76). As each equation is
solved the resulting phase perturbation δW(n) is used in the next equation as an inhomo-
geneous (driving) term in terms of which the next higher-order perturbation is computed.
Note that only the first member of this set explicitly involves the index of refraction n(r)
and that this quantity enters the higher-order equations only through their dependence on
the first-order phase perturbation δW(1).

6.10.3 The Rytov approximation

The Rytov approximation to the phase perturbation δW consists of the first term δW(1) in
the Liouville–Neumann expansion Eq. (6.76). Denoting the Rytov phase perturbation by
δWR, we thus conclude that δWR satisfies the first equation in the coupled set given above,
which we write in the form

ik0 ∇2δWR(r, ν)− 2k2
0 ∇W0 · ∇δWR(r, ν) = −k2

0(n2 − 1). (6.78a)

In the important case of plane-wave incidence, the phase W0 of the incident plane wave is
given by W0 = s0 · r, where s0 is the unit propagation vector of the incident plane wave.
In this case Eq. (6.78a) reduces to

ik0 ∇2δWR(r; s0)− 2k2
0s0 · ∇δWR(r; s0) = −k2

0(n2 − 1). (6.78b)

6.10.4 The short-wavelength limit

We first examine the Rytov approximation within the short-wavelength limit where the
wavelength λ → 0 (k0 → ∞). In this limit the first term in Eq. (6.78b) is negligible in
comparison with the other two terms and we obtain the result

s0 · ∇δw(r; s0) = n2 − 1

2
≈ δn, (6.79)

where we have denoted the short-wavelength limit of δWR by the lower-case symbol
δw and
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δn(r) = n(r)− 1.

In making the above approximation in Eq. (6.79) we have used the fact that the Rytov
approximation requires that n2 − 1 be small.

Equation (6.79) is the ray model for the propagation of a plane wave through a weakly
inhomogeneous object. We note that this equation is equivalent to the simple differential
equation

∂

∂η
δw(r; s0) = δn,

where η = s0 · r is the position variable along the Cartesian coordinate axis defined by the
direction of propagation of the incident plane wave. The above equation can be immedi-
ately integrated to yield

δw(r; s0)(r)|η=b
η=a =

∫ b

a
dη δn(r), (6.80)

where the integration has been performed along the straight-line ray path that extends from
η = a to η = b. If we take the points η = a and η = b = l0 to lie outside the object then
δw|η=a = 0 and the integration on the r.h.s. of Eq. (6.80) can be extended from −∞ to∞,
and we obtain the result

δw(r)|η=l0 =
∫ ∞
−∞

dη δn(r). (6.81)

Equation (6.81) is the underlying mathematical model for computed tomography (CT) and
appears here as the limiting model for wave propagation through weakly inhomogeneous
scatterers modeled using the Rytov approximation in the short-wavelength limit.

6.10.5 The Rytov transformation

It is possible to convert the linearized Ricatti equations Eqs. (6.78) into Helmholtz equa-
tions that can then be easily solved using the methods developed earlier in this chapter. The
conversion is based on the use of a transformation originally due to Rytov (Tatarski, 1961;
Chernov, 1967) and, for the case of plane-wave incidence, is given by

ik0 δWR(r; s0) = e−ik0s0·rF(r), (6.82)

where F(r) is a function that satisfies a differential equation that is obtained upon substitut-
ing Eq. (6.82) into the linearized Ricatti equation Eq. (6.78b). On making this substitution
and simplifying the resulting equation we obtain

[∇2 + k2
0]F(r) = k2

0[1− n2(r)]eik0s0·r. (6.83)

Equation (6.83) is precisely the equation satisfied by the Born approximation of the
scattered field obtained earlier in the chapter. Indeed, the outgoing-wave solution to this
equation is given by



276 Scattering theory

F(r) =
∫

d3r′ k2
0[1− n2(r)]eik0s0·rG0+(r− r′),

which is identical to Eq. (6.53) defining the Born approximation to the scattered field for
the case of plane-wave incidence. We thus conclude that the Rytov approximation to the
phase perturbation is formally related to the Born approximation to the scattered field via
the equation

δWR(r; s0) = − i

k0
e−ik0s0·rU(s)

B (r; s0). (6.84)

Although the two approximations (Born and Rytov) are mathematically related, they
have different domains of validity. Indeed, as we will find later, the Rytov approximation
is generally more accurate than the Born approximation if the scattering object is large
compared with the wavelength. On the other hand, the Rytov approximation degrades as
the distance between the scattering volume τ and the field observation point r increases.
Indeed, in the far field one obtains the result

UR(r; s0) = eik0[s0·r+δWR(r;s0)] ∼ eik0s0·r + U(s)
B (r; s0), (6.85)

which shows that the two approximations become identical in the far field!

6.10.6 A comparison of the Born and Rytov approximations

We compared the Born and Rytov approximations with the exact computation of the fields
scattered by a homogeneous cylinder and a pair of concentric homogeneous cylinders that
were obtained in Section 6.3. We performed these comparisons for cylinders of differing
indices of refraction and radii for which we computed the scattered fields evaluated over
lines located at various distances from the cylinder axis. The exact and Born fields were

computed using the multipole expansions as described in Sections 6.3, with r =
√

x2 + z2
0

and φ = arctan x/z0, where x is the position on the line and z0 the distance of the line
from the center of the cylinders. The Rytov scattered field was computed according to the
equation

U(s)
R (x, z0) =

UR(x,z0)︷ ︸︸ ︷
eik0(z0+δWR(x,z0))− eik0z0 = e

ik0

[
z0− i

k0
e−ik0z0 U(s)

B (x,z0)
]
− eik0z0 ,

where exp(ik0z0) is the incident plane wave on the line z = z0.
We first computed the Born, Rytov and exact scattered fields for a single cylinder having

a radius of a0 = 4λ and parameterized by its index of refraction nr, which assumed the
values of 1.01 to 1.07 in steps of δnr = 0.02. We took the measurement line to be located
at one wavelength from the cylinder’s surface along the z axis; i.e., z0 = a0 + λ. We show
in Figs. 6.9 and 6.10 plots of the magnitude and phase of the scattered fields as a function
of x on the measurement line. It is clear from these figures that the Rytov approximation
far outperforms the Born approximation at larger values of the index of refraction of the
cylinder.



−8 −6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x
−8 −6 −4 −2 0 2 4 6 8

0

0.5

1

1.5

2

x

−8 −6 −4 −2 0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

x
−8 −6 −4 −2 0 2 4 6 8

0

0.5

1

1.5

2

2.5

3

3.5

4

x
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We also computed the normalized errors between the exact values and the Born and
Rytov approximations to the scattered fields defined according to the equation

E(nr, a0) = ||U
(s) − Û(s)||
||U(s)|| =

√∫
dx|U(x, z0)− Û(x, z0)|2∫

dx|U(s)(x, z0)|2 ,

where the hat denotes the approximate scattered field (Born or Rytov). We present in
Fig. 6.11 the percentage normalized errors computed for the Born and Rytov approxi-
mations plotted as functions of the relative refractive index of the cylinder also in percent
for cylinder radii of λ, 2λ, 3λ and 4λ. The top plot is the error in the Rytov scattered
field and the bottom, which is identical to that shown in the top part of Fig. 6.8, is the
error in the Born scattered field. As discussed in connection with Fig. 6.8, the Born error
increases linearly with the cylinder radius at any given cylinder refractive-index value.
The Rytov error, on the other hand, is seen to be independent of the cylinder radius, at
least for low-to-moderate refractive-index values of the cylinder, and is much less than
the Born error for any given refractive-index value. This supports the contention that the
Rytov approximation is superior to the Born approximation, especially for large extended
scatterers.

6.10.7 The hybrid approximation

We showed above that the Rytov and Born approximations are identical in the far field,
which indicates that the Rytov approximation will degrade with propagation distance from
the scatterer. To test this conclusion we computed the errors for the Born and Rytov scat-
tered fields for the single homogeneous cylinders employed in the simulations presented
above and displayed in Figs. 6.9–6.11. The results are presented in Fig. 6.12, which shows
the errors computed on a line located 100 wavelengths from the surface of the cylinder. It
is clear from this figure that at that distance the two approximations yield essentially iden-
tical errors. To correct for this problem it is possible to compute the Rytov field in the near
vicinity of the cylinder where it has small error and then propagate the field so computed
to more distant regions using either the Rayleigh–Sommerfeld formula developed in Sec-
tion 2.9 or the angular-spectrum expansion or Fresnel transform developed in Chapter 4.
The resulting two-step approximation has been called the hybrid approximation and can,
of course, also be used to transition from distant regions to the near field via the process of
field back propagation implemented via any of the algorithms developed in Chapter 4. This
second possibility is extremely important in inverse scattering applications since it allows
the Rytov approximation to be employed for data gathered at arbitrary distances from the
scatterer.

Unfortunately, the use of the Rytov approximation in inverse scattering applications
is limited due to the fact that it employs as data the phase of the (total) field, which is
a quantity that is not directly measurable. In particular, only the complex field itself is
directly measurable, from which both the real and the imaginary part of the complex phase
must be computed, and herein lies the problem. Although the imaginary part of the phase
is easily determined as the log amplitude of the magnitude of the field, the real part of
the phase can be determined only up to jumps of integral multiples of 2π radians, and the
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�Fig. 6.11 Percentage normalized errors for cylinder radii ofλ, 2λ, 3λ and 4λ plotted as a function of the percentage relative
index of the cylinders for the scattered fields evaluated on the line z0 = a0 + λ. The error for the Rytov
approximation is shown in the top plot and the error for the Born approximation in the bottom plot.
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�Fig. 6.12 Percentage normalized errors for Rytov (top) and Born (bottom) fields evaluated on the line z0 = 10 + 100λ for
cylinder radii ofλ, 2λ, 3λ and 4λ plotted as a function of the percentage relative index of the cylinders.
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phase that is related to the Born approximation via Eq. (6.84) and thus to the scattering
potential via the linear model Eq. (6.53) is the unwrapped phase; i.e., the real phase that
is a continuous function of position and does not possess any artificial jumps of integral
multiples of 2π radians. This problem of determining the unwrapped phase of a function
on the line or plane is a basic and largely unsolved problem in mathematics and severely
limits the Rytov approximation in practice. We will return to this issue in Chapter 8 when
we develop the theory of diffraction tomography.

6.11 Incident spherical waves and slant stacking

In many applications it is not possible to generate an incident plane wave and an incident
spherical wave is used instead. In the ideal case the incident spherical wave is generated
by a point source located at r = r0, which results in the outgoing-wave Green function

U(in)(r; r0) = G0+ (r− r0), (6.86)

where the parameter ν is now equal to the source location r0. The associated LS equation
is then given by

U(r; r0) = G0+(r− r0)+
∫

d3r′ G0+(r− r′)V(r′)U(r′; r0). (6.87)

We will treat the direct and inverse scattering problems using general incident waves
such as spherical waves in Chapter 9 but for now will show how a complete suite of scat-
tering data generated from incident spherical waves can be converted to an equivalent set
of plane-wave scattering data, thus allowing the inverse scattering problem for spherical
waves to be converted into an equivalent inverse scattering problem for plane-wave data.
The key to this procedure is the observation that the spherical waves Eq. (6.86) form a com-
plete set of functions for expanding other types of incident waves. This conclusion follows,
for example, from the solution to the Rayleigh–Sommerfeld Neumann problem presented
in Section 2.9 of Chapter 2. Indeed, it was shown in Example 2.9 of that chapter that an
incident plane wave propagating into the right half-space z > 0 can be generated by a
set of spherical waves whose source points are all located on the boundary z = 0 via the
formula

eik0s0·r = 2ik0s0z

∫
z0=0

dS0 eik0s0·r0G0+ (r− r0), (6.88)

where s0z > 0 is the z component of the unit propagation vector s0 and the source
points r0 of the spherical waves are all on the plane z = 0. It then follows that by the
simple expedient of simultaneously exciting an infinite array of point sources over the
plane z = 0 with the amplitude 2ik0s0z exp(ik0s0 · r0) it is possible to generate an inci-
dent plane wave that propagates into the right half-space. This process corresponds to the
well-known method of beam steering whereby the radiation pattern of an antenna array
is electronically steered by properly phasing the excitation inputs to the antenna array
elements.
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The scheme outlined in the above paragraph for generating incident plane waves from
point sources has a number of disadvantages in inverse scattering applications. An obvious
problem with the procedure is that it appears to require a continuum distribution of sources
over the plane z = 0. However, the boundary value of a homogeneous plane wave is spa-
tially band-limited to transverse wavenumbers Kρ < k0 so that a discrete array of sources
with sample spacing δ ≤ π/k0 = λ/2 suffices. Moreover, this array need only be finite in
size so as to produce a plane-wave beam whose cross-sectional area is much larger than
the extent of the scatterer volume τ0. A more serious problem with the procedure is that a
real array of sources is usually not available in practical applications and a synthetic array
formed by sequentially measuring the scattered wave corresponding to different locations
of a single point source or, at best, a small group of point sources is the best that can be
expected. Fortunately, the data set that results from such a suite of experiments can be
converted to an equivalent set that would have been obtained using a real (as opposed to
synthetic) source array. The reason for this is that, as mentioned earlier in our discussion of
the formal solution to the LS equation, the scattering process is a linear mapping from the
incident wave U(in) to the total wave U. This conclusion can also be arrived at by formally
inverting the LS equation Eq. (6.7b) to obtain

(I − G0+V)U = U(in) → U = (I − G0+V)−1U(in), (6.89)

where I is the identity operator and (I − G0+V)−1 is the inverse of (I − G0+V). It follows
from the linearity of the scattering process as embodied in Eq. (6.89) that a full suite of
scattering data obtained using incident spherical waves can be converted to a correspond-
ing suite of scattering data generated by incident plane waves.

To derive an algorithm for converting a suite of spherical-wave scattered field data to a
suite of plane-wave scattered field data we use the LS equation Eq. (6.87) for the case of
incident spherical waves G0+(r′ − r0):

U(r; r0) = G0+ (r− r0)+
∫

d3r′ G0+ (r− r′)V(r′)U(r′; r0).

Let us now apply the slant-stack operator

Ss0 = 2ik0s0z

∫
z0=0

dS0 eik0s0·r0 (6.90)

to both sides of the above LS equation, where the subscript s0 indicates that the slant-stack
operator depends parametrically on the propagation vector s0. We obtain the result

Ss0 U(r; r0) = Ss0 G0+ (r− r0)+
∫

d3r′ G0+(r− r′)V(r′)Ss0 U(r′; r0)

= eik0s0·r +
∫

d3r′ G0+(r− r′)V(r′)Ss0 U(r′; r0),

where we have used the fact that the slant-stack operator operates on the r0 coordinates
and have also made use of Eq. (6.88). On comparing the above result with the LS equation
Eq. (6.21) corresponding to an incident plane wave we conclude that

U(r; s0) = Ss0 U(r; r0). (6.91)
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Thus, by the simple process of slant stacking a set of scattered field data generated by
incident spherical waves we can obtain a set of scattered field data that would have resulted
from a suite of incident plane waves.

6.11.1 Slant stacking from arbitrary surfaces

Equation (6.91) allows the wavefield generated by an incident plane wave exp(ik0s0 · r)
propagating into the half-space z > 0 to be computed from scattered field data generated
from a suite of spherical waves all having their source points r0 lying on the plane z = 0. A
simple modification of the slant-stack operator defined in Eq. (6.90) would yield analogous
results for suites of spherical waves having source points located on any infinite plane
surface. More generally, we can construct slant-stack operators that generate plane waves
from a suite of spherical waves having source points r0 located over any closed or infinite
surface 0. These operators are obtained using the appropriate Neumann Green function
for the particular surface 0 and have the defining property

eik0s0·r = Ss0 G(r, r0), (6.92)

where G is the Neumann Green function which is, in fact, a spherical wave with source
point r0 ∈ 0. From this point on we will interpret the slant-stack operator in the general
form as defined by Eq. (6.92) as an operator that converts spherical waves located on an
arbitrary closed or infinite surface 0 to plane wavefields having unit wave vectors s0.

6.11.2 Slant-stack computation of the scattering amplitude

On making use of the definition Eq. (6.22) of the scattering amplitude and Eq. (6.91) relat-
ing the field generated by incident plane waves to that generated by incident spherical
waves we conclude that

f (s; s0) = −1

4π

∫
d3r V(r)U(r; s0)e−ik0s·r

= −1

4π

∫
d3r V(r)Ss0 U(r; r0)e−ik0s·r

= Ss0

{−1

4π

∫
d3r V(r)U(r; r0)e−ik0s·r

}
= Ss0 f (s, r0), (6.93a)

where

f (s, r0) = −1

4π

∫
d3r V(r)U(r; r0)e−ik0s·r (6.93b)

is the spherical-wave scattering amplitude. This quantity is simply the scattering amplitude
observed in a scattering experiment employing an incident spherical wave rather than an
incident plane wave and is a special case of the generalized scattering amplitude defined in
Section 6.4. Equation (6.93a) allows the (plane-wave) scattering amplitude to be computed
via a slant stack of the spherical-wave scattering amplitude.
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Further reading

Non-relativistic quantum scattering theory, upon which much of the material presented in
this chapter is based, is treated in Newton (1982), Taylor (1972) and Sitenko (1991). Dis-
cussions of the classical use of the Born approximation in X-ray crystallography can be
found in Vainshtein (1974) and Lipson and Cochran (1966). A comparison of the Born and
Rytov approximations in one space dimension is presented in Keller (1969) and in three
space dimensions for transmission and reflection at an interface in Oristaglio (1985) and,
more generally, by Weston (Weston, 1985). A computer study comparing the approxima-
tions with exact acoustic scattering from cylinders was performed by Robinson and Green-
leaf (Robinson and Greenleaf, 1986). Good overall treatments of the Rytov approximation
can be found in Ishimaru (1999), Chernov (1967) and Tatarski (1961).

Problems

6.1 Derive the following alternative form of the Lippmann–Schwinger equation
Eq. (6.7a):

U(r, ν) = U(in)(r, ν)+
∫

d3r′ G+(r, r′)V(r′)U(in)(r′, ν),

where G+ is the full Green function of the background with an embedded scatterer.
6.2 Prove that the full outgoing-wave Green function G+(r, r0) is a symmetric function

of its arguments.
6.3 Use Theorem 6.2 to compute the scattering amplitude of a scattering potential of the

general form

V(r) =
M∑

m=1

Vm(r− Xm)

in terms of the scattering amplitudes of the component potentials Vm(r).
6.4 Use the angular-spectrum expansion of the scattered field given in Eq. (6.33) and

the angular-spectrum expansion of the outgoing-wave multipole fields given in
Eq. (3.49) of Chapter 3 to derive a multipole expansion of the scattered field includ-
ing expressions for the multipole moments in terms of the scattering amplitude.

6.5 Use the scattering amplitude of a homogeneous sphere in the angular-spectrum
expansion given in Section 6.5 to compute the multipole expansion of the scattered
field. You will need to make use of the angular-spectrum expansions of the multipole
fields given in Section 3.4.2. Verify that the expansion you obtained agrees with the
one obtained in Section 6.3.

6.6 Use the scattering amplitude of a homogeneous cylinder in the 2D angular-spectrum
expansion to compute the multipole expansion of the scattered field. You will need
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to make use of the angular-spectrum expansions of the 2D multipole fields found in
Problem 4.13 of Chapter 4. Verify that the expansion you obtained agrees with the
one obtained in Section 6.3.

6.7 Express the multipole moments of the scattered field in terms of its boundary value
over a sphere that completely surrounds the scattering volume.

6.8 Compute the 2D Born approximation of the scattering amplitude of a homogeneous
scatterer with wavenumber k1 having a radius a0 and being centered at X0. Verify
that this scattering amplitude is in agreement with Theorems 6.1 and 6.2 but does
not satisfy the optical theorem, Theorem 6.3.

6.9 Repeat Problem 6.8 for the 3D case of a sphere of radius a0 centered at X0.
6.10 Compute the generalized scattering amplitude of a homogeneous sphere for the case

of an incident free multipole field jl(kr)Ym
l (r̂) by using the technique given in Sec-

tion 6.5.
6.11 Compute the field scattered from an infinite Dirichlet plane (a plane over which the

field vanishes) located at z = 0 due to an incident wavefield radiated by a source
Q(r) located in the l.h.s. z < 0. Express your answer in terms of the outgoing-wave
Green function G+(r− r′).

6.12 Use the result obtained in the previous problem to derive the so-called “law of reflec-
tion,” which states that a plane wave incident from the left half-space with unit prop-
agation vector s0 onto an infinite plane Dirichlet surface located on the (x, y) plane
will generate a reflected plane wave that propagates into the left half-space with unit
wave vector s̃0 = (s0x , s0y ,−s0z ).

6.13 Express the scattered (reflected) wavefield found in Problem 6.11 in an angular-
spectrum expansion and interpret your result in terms of the law of reflection stated
in the previous problem.

6.14 Derive the Ricatti equation Eq. (6.72a) from the Helmholtz equation.
6.15 Derive the form of the Ricatti equation given in Eq. (6.75) from Eq. (6.72a).
6.16 Derive Eq. (6.83).
6.17 Derive Eq. (6.85).



7 Surface scattering and diffraction

In this chapter we turn our attention to scattering from non-penetrable objects, or “surface
scattering,” and “diffraction” from planar apertures.1 As was mentioned in the introduction
to the previous chapter, the interaction of an incident wave with a non-penetrable scatterer
occurs over the surface of the scattering obstacle and is thus defined by some type of
boundary condition over this surface. In a similar vein diffraction of an incident wave
from apertures cut into non-penetrable surfaces is also defined by some type of boundary
condition over the aperture plus surface and thus can, in a certain sense, be considered to be
a type of surface scattering. The formal solution to both types of problems is thus obtained
in an identical fashion by converting the problem into a boundary-value problem, which is
then easily solved using the theory developed in Chapter 2.

The above prescription for “solving” surface scattering and aperture diffraction prob-
lems has one missing ingredient: determination of the boundary values required in the
solution of the scattering or diffraction problem. This is the ingredient that distinguishes
a scattering or diffraction problem from the purely mathematical boundary-value prob-
lem. In this chapter we will restrict our attention to non-penetrable objects over which
the total field (incident plus scattered) satisfies homogeneous Dirichlet or Neumann con-
ditions. By invoking this condition it is possible to represent the scattered field in terms
of either the value of the normal derivative of the total field (the homogeneous Dirichlet
case) or the total field itself (the homogeneous Neumann case) over the scatterer surface.
Unfortunately, neither of these quantities is known a priori and we will find that they can
be easily determined only for scattering objects whose surface coincides with a separable
surface for the scalar wave Helmholtz equation. In such cases the unknown boundary con-
dition can be computed and the scattered field represented via an eigenfunction expansion
using the theory developed in Chapter 3.

Such exact solutions are not easily attained for non-penetrable scatterers of general shape
or for aperture diffraction problems and we will need to resort to approximate solutions
based on our intuitive understanding of how waves interact with material bodies. The
approximate solutions developed in this chapter include the physical-optics approxima-
tion (PO approximation) for surface scattering and the Kirchhoff approximation in the case
of aperture diffraction. These two approximations are closely related and both are short-
wavelength approximations; i.e., require that the wavelength be small compared with the
scatterer or aperture size.

1 The term “diffraction” is usually associated with forward scattering resulting from an incident wavefield
impinging on an aperture contained in an otherwise impenetrable surface. Unfortunately, as we will find in
the following chapter, the term has been used also to describe forward scattering from penetrable objects, as in
“diffraction” tomography.

285
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Besides developing approximate solutions to (forward) aperture diffraction problems
we will also formulate and obtain approximate solutions to inverse diffraction problems
for such apertures. Just as our treatment of forward diffraction problems is based on solu-
tions to (forward) boundary-value problems, our treatment of inverse diffraction will be
based on solutions to inverse boundary-value problems. We have already encountered the
inverse boundary-value problem (IBVP) for plane boundaries in Section 2.11 of Chap-
ter 2 and in our development of field back propagation in Section 4.3 of Chapter 4. In
the IBVP treated in those sections we considered a source supported within some strip
z− ≤ z ≤ z+ and radiating a field U+(r) that was measured over an infinite plane z = z0

lying outside the source strip. The goal of the IBVP was then to compute the radiated field
within the interior strip(s) z0 ≤ z ≤ z− and/or z+ ≤ z ≤ z0 from Dirichlet or Neumann
data over the measurement plane z0. We showed that field back propagation as developed
in Section 4.3 provided an exact, yet unstable, solution to the IBVP, while the Green-
function-based approach developed in Section 2.11 provided an approximate solution that
was a regularized form of the exact solution obtained via field back propagation. In this
chapter we will revisit the IBVP and show how it can be used as a basis for solving inverse
diffraction problems from finite apertures. Whereas the IBVP is a purely formal mathemat-
ical problem and has limited practical use, the inverse diffraction problem has numerous
applications in optics, acoustics and electromagnetics.

Finally, we will also present a brief treatment of inverse scattering from non-penetrable
scatterers, where the goal is the determination of the scatterer shape (boundary) from mea-
surements of its scattering amplitude. We will consider methods based on approximate
scattering models such as the PO approximation mentioned above as well as methods that
are independent of the scattering model, requiring only that the field satisfy homogeneous
boundary conditions on the scatterer surface.

7.1 Formulation of the scattering problem for
non-penetrable scatterers

The mathematical model for scattering from non-penetrable obstacles embedded in a uni-
form background medium is the homogeneous Helmholtz equation together with appro-
priate boundary conditions. These conditions include the far-field behavior as defined by
Eq. (6.4) as well as homogeneous Dirichlet or Neumann conditions over the surface ∂τ0 of
the scattering object. On applying standard Green-function techniques to the homogeneous
Helmholtz equation satisfied by the total field outside the support of the scatterer and the
Helmholtz equation Eq. (6.2) satisfied by the outgoing-wave Green function we find that

U(r′, ν)∇2
r′G0+(r− r′)− G0+(r− r′)∇2

r′U(r′, ν) = δ(r− r′)U(r′, ν),

where ν is a parameter defining the incident wave employed in the scattering experiment
and G0+ is the outgoing-wave Green function to the Helmholtz equation. We now integrate
both sides of the above equation over all of space exterior to the scattering volume and use
Green’s theorem to find that, if r /∈ τ0,
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U(r, ν) =
∫
∞

dS′ n̂′ · {U(r′, ν)∇r′G0+(r− r′)− G0+(r− r′)∇r′U(r′, ν)}

−
∫
∂τ0

dS′ n̂′ · {U(r′, ν)∇r′G0+(r− r′)− G0+(r− r′)∇r′U(r′, ν)},

where ∞ is the surface of a sphere of radius R→∞, ∂τ0 is the surface of the scattering
object and n̂′ is the outward-directed unit vector to these two surfaces. If, on the other hand,
r ∈ τ0, the r.h.s. of the above equation is zero.

If we use the asymptotic boundary condition Eq. (6.4) satisfied by the total field at infin-
ity we find that the first term in the above equation becomes (cf. Section 2.4 of Chapter 2)∫

∞
dS′ n̂′ · {U(r′, ν)∇r′G0+(r− r′)− G0+(r− r′)∇r′U(r′, ν)}

=
∫
∞

dS′ n̂′ · {U(in)(r′, ν)∇r′G0+(r− r′)− G0+(r− r′)∇r′U
(in)(r′, ν)}

= U(in)(r, ν).

The total field outside of the scattering volume then reduces to

U(r, ν) = U(in)(r, ν)−
∫
∂τ0

dS′ U(r′, ν)
∂

∂n′
G0+(r− r′) (7.1a)

or

U(r, ν) = U(in)(r, ν)+
∫
∂τ0

dS′ G0+(r− r′) ∂
∂n′

U(r′, ν), (7.1b)

where ∂/∂n′ denotes the outward-directed normal derivative to the surface ∂τ0. Equa-
tion (7.1a) applies to Neumann scatterers where the normal derivative of the field vanishes
over their surface and Eq. (7.1b) applies to Dirichlet scatterers where the field vanishes
over the scatterers’ surface. If the field point r is interior to the scattering volume τ0 the
r.h.s. of both equations must vanish, which can be formally viewed as a requirement that
the total interior field to the scattering volume must vanish.

7.1.1 The scattering amplitude

The scattering amplitude is defined in Eq. (6.4) to be the coefficient of the outgoing spher-
ical wave in the asymptotic expansion of the scattered field as k0r→∞ in the direction of
the unit vector s resulting from an incident plane wave having unit propagation vector s0.
On making use of the definition of G0+ from Eq. (6.6b) we find that

G0+ (rs− r′) ∼ − 1

4π
e−ik0s·r′ eik0r

r
, k0r→∞,

and

∂

∂n′
G0+(rs− r′) ∼ ik0s · n̂′

4π
e−ik0s·r′ eik0r

r
, k0r→∞.
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If we substitute the above expressions into Eqs. (7.1) we obtain the following expressions
for the scattering amplitudes for Neumann and Dirichlet non-penetrable scatterers:

f (s, s0) = − ik0

4π

∫
∂τ0

dS′ s · n̂′ U(r′; s0)e−ik0s·r′ , Neumann surface, (7.2a)

f (s, s0) = − 1

4π

∫
∂τ0

dS′ e−ik0s·r′ ∂
∂n′

U(r′, s0), Dirichlet surface. (7.2b)

7.1.2 Liouville–Neumann expansion

The set of Eqs. (7.1) play for non-penetrable scatterers the role played by the Lippmann–
Schwinger integral equation Eq. (6.7a) for penetrable scatterers. As was the case in
potential scattering, we can employ a perturbation expansion in the form of a Liouville–
Neumann (Born) series to obtain formal solutions to these equations. A formal iteration
yields the results

UNν = U(in)
ν −

∫
∂τ0

dS′ ∂
∂n′

G0+U(in)
ν +

∫
∂τ0

dS′ ∂
∂n′

G0+
∫
∂τ0

dS′′ ∂
∂n′′

G0+U(in)
ν

− · · · (7.3a)

and

UDν = U(in)
ν +

∫
∂τ0

dS′ G0+
∂

∂n′
U(in)
ν +

∫
∂τ0

dS′ G0+
∂

∂n′

∫
∂τ0

dS′′ G0+
∂

∂n′′
U(in)
ν

+ · · · , (7.3b)

where the subscripts N and D are self-explanatory. It is clear from these equations that
the mapping from the incident field to the scattered field is linear, whereas the mapping
from the scatterer’s surface ∂τ0 to the scattered field is non-linear. We found a similar
non-linear mapping from the scattering potential to the scattered field in Chapter 6, where
we remarked that this made the inverse scattering problem of determining the scattering
potential from scattered field data extremely difficult, which caused us to develop linear
approximate mappings such as the Born and Rytov approximations. It might be expected
that a similar situation arises in the inverse scattering problem of determining the shape
of a non-penetrable object from scattered field data. However, there is one big difference
between potential scattering and surface scattering: the dimensionality of the problems.
In particular, a scattering potential has three degrees of freedom, whereas a Dirichlet or
Neumann surface has only two degrees of freedom. Because of this the inverse scattering
problems are vastly different and, as we will show later in this chapter, there are various
approaches to inverse surface scattering that can be used to develop inverse scattering algo-
rithms that are valid within the exact scattering models as defined in Eqs. (7.2). On the other
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hand, linearized versions of these equations are extremely useful in the forward scattering
problem and have also been used in surface shape reconstruction as will be described later
in the chapter.

Lowest-order approximation

One such linear model is the analog of the Born approximation for potential scattering.
This model results from dropping all terms in the Liouville expansions except the leading
two terms and is thus given by

UB
Nν =U(in)

ν −
∫
∂τ0

dS′ ∂
∂n′

G0+U(in)
ν , UB

Dν =U(in)
ν +

∫
∂τ0

dS′ G0+
∂

∂n′
U(in)
ν . (7.4)

Unfortunately, experience has shown that the above Born models for non-penetrable
scatterers are not good approximations and it is necessary to resort to ad-hoc (non-
perturbational) approximations such as the physical-optics approximation, which will be
developed later in the chapter.

7.2 Scattering from simple shapes

In cases in which the scatterer surface ∂τ0 coincides with a separable surface for the scalar
Helmholtz equation either a Green function or an eigenfunction expansion of the type
developed in Chapter 3 can be employed to exactly solve the forward scattering problem.
The Green-function solution employs a Green function satisfying the same homogeneous
condition over the surface of the scatterer (either homogeneous Dirichlet or Neumann) as
is satisfied by the total field, whereas in the eigenfunction approach the incident and scat-
tered fields are represented via eigenfunction expansions appropriate to the specific sepa-
rable system and the boundary conditions over ∂τ0 can be applied term by term to these
series. This approach is similar to that employed in Section 6.3 of Chapter 6 to compute
the scattered field for penetrable objects whose scattering potentials are piecewise constant
within regions bounded by separable surfaces. The simplest example of this type is scat-
tering from an infinite plane surface over which the field satisfies homogeneous Dirichlet
or Neumann conditions. This problem was given in the form of Problems 2.16 and 2.17 at
the end of Chapter 2 and in the form of Problems 4.9 and 4.10 at the end of Chapter 4. The
problems posed in Chapter 2 sought Green-function-based expressions for the scattered
field from a Dirichlet plane, whereas those posed in Chapter 4 sought angular-spectrum
expansions for the scattered field. Here, we will briefly review the angular-spectrum solu-
tion to the problem of an incident wavefield scattering from a Dirichlet or Neumann plane
and then look at scattering from spheres and cylinders.

7.2.1 Scattering from an infinite Dirichlet or Neumann plane

We consider an infinite plane surface located at z = 0 and illuminated by an incident
wavefield propagating into the plane from the l.h.s. z < 0. We will represent a general field
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point r in terms of its transverse component ρ = (x, y) lying on the plane surface and its
longitudinal component z. We can represent the incident wavefield via an angular-spectrum
expansion of the general form

U(in)(r) =
∫

Kρ<k0

d2Kρ A(Kρ)eiKρ ·ρeiγ z, (7.5a)

where γ =
√

k2
0 − K2

ρ and A(Kρ) is an arbitrary plane-wave amplitude (“angular spec-
trum”) of the incident wave. We have assumed for simplicity that the incident wave pos-
sesses no evanescent plane-wave components, although this is not a necessary assumption
in the theory. Equation (7.5a) is seen to consist of a superposition of homogeneous plane
waves whose wave vectors Kρ+γ ẑ all have positive z components and, hence, all of which
propagate in the positive-z direction (toward the plane z = 0) from the l.h.s.

It is not difficult to show that if the total field satisfies homogeneous Dirichlet conditions
over the plane at z = 0 then the reflected (scattered) wave propagates into the l.h.s. (z < 0)
according to the angular-spectrum expansion

U(s)
D (r) = −

∫
Kρ<k0

d2Kρ A(Kρ)eiKρ ·ρe−iγ z, (7.5b)

where we have used the subscript D to denote that this is the field scattered by a Dirich-
let plane surface. Equation (7.5b) is seen to be identical to the expansion of the incident
wave except for the presence of the minus sign and the replacement of +γ by −γ in the
component plane waves comprising the expansion. The expansion of the scattered wave
thus consists of a superposition of homogeneous plane waves, all of which propagate in
the negative-z direction (away from the plane boundary) with the same angular spectrum
(plane-wave amplitude) as the incident wave.

A completely parallel development applies if the total wavefield satisfies homogeneous
Neumann conditions over the plane. In this case the normal derivative of the total field
must vanish at z = 0 so that the scattered field admits the plane-wave expansion

U(s)
N (r) =

∫
Kρ<k0

d2Kρ A(Kρ)eiKρ ·ρe−iγ z. (7.5c)

It is clear that the total field UD = U(in) + U(s)
D vanishes over the Dirichlet plane and the

normal derivative of UN = U(in) + U(s)
N vanishes over the Neumann plane. We also note

the interesting result that the normal derivative of the total field over the Dirichlet plane is
given by

∂

∂z
UD(r)|z=0 = 2

∫
Kρ<k0

d2Kρ iγA(Kρ)eiKρ ·ρ = 2
∂

∂z
U(in)(r)|z=0, (7.6a)

while the total field over the Neumann plane is

UN(r)|z=0 = 2
∫

Kρ<k0

d2Kρ A(Kρ)eiKρ ·ρ = 2U(in)(r)|z=0. (7.6b)

Equations (7.6) form the foundation of the so-called “physical-optics approximation,”
which applies to scattering from Dirichlet or Neumann surfaces whose curvatures are
smooth relative to the wavelength λ. We will review this approximation in some detail
later in this chapter.
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7.2.2 Scattering from a sphere

A more interesting example of a simple shape for which the surface scattering problem
can be exactly solved is provided by a sphere over which the field satisfies homogeneous
Dirichlet or Neumann conditions. We will first solve the problem for a sphere of radius a0

that is centered at the origin and over which the (total) field must vanish (the Dirichlet prob-
lem for a sphere). In this case the appropriate eigenfunctions are the multipole fields into
which we can expand both the incident and the scattered fields using the results obtained
in Examples 3.5 and 3.4 of Chapter 3:

U(in)(r, ν) =
∞∑

l=0

l∑
m=−l

am
l (ν)jl(k0r)Ym

l (r̂), (7.7a)

U(s)(r, ν) =
∞∑

l=0

l∑
m=−l

bm
l (ν)h+l (k0r)Ym

l (r̂), (7.7b)

where the scattered-field expansion is valid outside the sphere; i.e., for r > a0. In these
equations Ym

l are the spherical harmonics of order m and degree l, jl and h+l are the spherical
Bessel and Hankel functions of the first kind of order l, respectively, and we have denoted
the angular arguments of the spherical harmonics by the unit vector r̂. The quantities am

l (ν)
are the so-called multipole moments of the incident wave (parameterized by ν and assumed
specified in the scattering problem) and bm

l (ν) are the multipole moments of the scattered
wave.

The multipole moments bm
l (ν) of the scattered field are the unknowns that must be deter-

mined using the condition that the total field vanishes over the surface of the sphere. Since
the spherical harmonics are orthonormal over the unit sphere the vanishing of the total field
(incident plus scattered) then yields the requirement

am
l (ν)jl(k0a0)+ bm

l (ν)h+l (k0a0) = 0⇒ bm
l (ν) = − jl(k0a0)

h+l (k0a0)
am

l (ν), (7.8)

where a0 is the radius of the sphere. Using this result in Eq. (7.7b), we then obtain the
following (exact) solution for the scattered field:

U(s)(r, ν) = −
∞∑

l=0

l∑
m=−l

jl(k0a0)

hl(k0a0)
am

l (ν)h+l (k0r)Ym
l (r̂). (7.9)

The solution Eq. (7.9) is, in principle, exact. However, in practice it would, of course,
be necessary to approximate the infinite sum via a finite sum. This is easily accomplished
with small error due to the fact that the multipole moments bm

l (s0) decay exponentially fast
with index l when l exceeds the cutoff value of L = [k0a0], where the bracket denotes the
next higher integer.2 This is illustrated in Fig. 7.1, where we plot the ratio | jl(x)/hl(x)| as a

2 This assumes that the multipole moments am
l (ν) are all bounded, a condition that is guaranteed so long as the

incident wave is everywhere bounded (see the problems at the end of this chapter).



292 Surface scattering and diffraction

0 10 20 30 40 50 60 70 80 90 100

index l

10−180

10−160

10−140

10−120

10−100

10−80

10−60

10−40

10−20

100

lo
g(

j l 
(x

)/h
+

(x
))

l

�Fig. 7.1 The ratios |jl(x)/h+l (x)| plotted logarithmically as a function of l for values of x = 10, 30, 50, 70 and x = 90. The
break points at l = x where these ratios begin to decay exponentially fast with increasing l are clear in the plots.

function of l for various values of x. It follows from this figure that the multipole expansion
Eq. (7.9) can be approximated with small error if we terminate the series at an l value that
exceeds the cutoff value of L = [k0a0].

The Neumann sphere

The same general approach as was used for the Dirichlet sphere can be employed for a
sphere over which the normal derivative of the field must vanish (the Neumann sphere). In
place of Eq. (7.8) we now require

j′l(k0a0)am
l (ν)+ bm

l (ν)h+′l (k0a0) = 0⇒ bm
l (ν) = − j′l(k0a0)

h+′l (k0a0)
am

l (ν), (7.10)

where the prime on the spherical Bessel and Hankel functions denotes a first derivative
with respect to their arguments. Using this result in Eq. (7.7b) then yields the following
expression for the scattered field from a Neumann sphere:

U(s)(r, ν) = −
∞∑

l=0

l∑
m=−l

j′l(k0a0)

h+′l (k0a0)
am

l (ν)h+l (k0r)Ym
l (r̂). (7.11)

As in the case of the Dirichlet sphere shown in Fig. 7.1, the multipole moments bm
l (ν) of

the scattered wave decay exponentially fast when l exceeds the cutoff value of L = [k0a0]
so that the series Eq. (7.11) can be terminated at any l value that exceeds L.
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The scattering amplitude

The (generalized) scattering amplitude is obtained by making use of the asymptotic for-
mula

h+l (k0r) ∼ (−i)l+1 eik0r

k0r
, as k0r→∞.

We then find using Eq. (7.7b) that

U(s)(rs, ν) ∼
⎧⎨⎩
∞∑

l=0

l∑
m=−l

(−i)l+1

k0
bm

l (ν)Ym
l (s)

⎫⎬⎭ eik0r

r
,

as k0r → ∞ along the direction of the unit vector s = r/r. The generalized scattering
amplitude is the quantity in brackets:

f (s, ν) =
∞∑

l=0

l∑
m=−l

(−i)l+1

k0
bm

l (ν)Ym
l (s), (7.12)

where the multipole moments bm
l (ν) are given in Eq. (7.8) for a Dirichlet sphere and by

Eq. (7.10) for a Neumann sphere.

7.2.3 Scattering of a plane wave from a cylinder

An especially interesting case that is ideally suited for computer simulations is scattering
from a circular cylinder whose axis is aligned along the z axis of a Cartesian coordinate
system when illuminated by a plane wave whose unit propagation vector s0 lies in the (x, y)
plane. In this case the problem reduces to two space dimensions and we can use the 2D
multipole expansions developed in Section 3.6 of Chapter 3. It was shown in that section
that the incident and scattered waves can be expressed in 2D multipole expansions of the
form

eik0s0·r = eik0r cos(φ−φ0) =
∞∑

n=−∞
inJn(k0r)ein(φ−φ0), (7.13a)

U(s)(r,φ0) =
∞∑

n=−∞
bn(φ0)H+n (k0r)einφ , (7.13b)

where r,φ are the polar coordinates in an (x, y) plane perpendicular to the cylinder axis,
with φ0 being the polar angle of the incident plane wave as measured relative to the
positive-x axis. Here, Jn and H+n are the Bessel and Hankel functions of the first kind
of order n. For a Dirichlet cylinder of radius a0 the total field must vanish over the cylinder
surface (at r = a0), yielding the result

bn(φ0) = −in
Jn(k0a0)

H+n (k0a0)
e−inφ0 , (7.14)

which is the 2D version of Eq. (7.8). Substituting the expression for bn(φ0) into Eq. (7.13b)
then yields the following expression for the scattered field from a Dirichlet cylinder:
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U(s)(r,φ0) = −
∞∑

n=−∞
in

Jn(k0a0)

H+n (k0a0)
H+n (k0r)ein(φ−φ0). (7.15)

Using an entirely parallel development we find that for a Neumann cylinder

bn(φ0) = −in
J′n(k0a0)

H+′n (k0a0)
e−inφ0 , (7.16)

from which we obtain the following expression for the field scattered by a Neumann
cylinder:

U(s)(r,φ0) = −
∞∑

n=−∞
in

J′n(k0a0)

H+′n (k0a0)
H+n (k0r)ein(φ−φ0). (7.17)

We show in Fig. 7.2 the magnitudes of the scattered and total wavefields from a Dirichlet
cylinder having a radius of a0 = 5λ when illuminated by a plane wave propagating in the
direction of the positive-x axis, i.e., at angle φ0 = 0. We have, of course, plotted these
quantities only outside the cylinders, since the interior fields must vanish. The fields were
computed using the multipole expansions given above with a cutoff l value of [ka0], where
[·] stands for the next greatest integer. It is interesting to note that the maximum value
of the magnitude of the scattered field is in the forward direction. Although this seems
counter-intuitive for a Dirichlet cylinder, it makes sense when it is realized that this is due
to the almost total blockage of the incident plane wave in the forward direction so that
the scattered wave in this direction must be nearly equal to the negative of the incident
plane wave. This is also apparent from the plot of the magnitude of the total (incident
plus scattered waves) in Fig. 7.2, where this magnitude assumes a minimum value in the
forward direction.
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�Fig. 7.2 Magnitudes of the total (left) and scattered (right) wavefields for an incident plane wave incident on a Dirichlet
cylinder of radius a0 = 5λ. The incident plane wave is propagating from left to right in the figures.
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The scattering amplitude

The scattering amplitude for a Dirichlet or Neumann cylinder is obtained directly from
Eq. (7.13b) upon making use of the asymptotic expression for the Hankel functions given
in Eq. (6.28) of Chapter 6:

H+n (k0r) ∼
√

2

πk0
e−i(n+ 1

2 ) π2
eik0r

√
r

, k0r→∞. (7.18)

On substituting this expression into Eq. (7.13b) we obtain the result

U(s)(rs,φ0) ∼
{√

2

πk0
e−i π4

∞∑
n=−∞

(−i)nbn(φ0)einφ

}
eik0r

√
r

, (7.19)

as k0r → ∞ along the direction of the unit vector s = r/r and where bn(φ0) is given in
Eq. (7.14) for a Dirichlet cylinder and in Eq. (7.16) for a Neumann cylinder. The scattering
amplitude in two space dimensions is the coefficient of the 2D outgoing spherical wave
exp(ik0r)/

√
r, from which we conclude that the scattering amplitudes measured at angle φ

for a Dirichlet and a Neumann cylinder are given by

fD(φ,φ0) = −
√

2

πk0
e−i π4

∞∑
n=−∞

Jn(k0a0)

H+n (k0a0)
ein(φ−φ0) (7.20a)

and

fN(φ,φ0) = −
√

2

πk0
e−i π4

∞∑
n=−∞

J′n(k0a0)

H+′n (k0a0)
ein(φ−φ0). (7.20b)

We show plots of the scattering amplitude for both Dirichlet and Neumann cylinders in
Figs. 7.3 and 7.4 for cylinder radii of a0 = λ, 2λ, 3λ and 4λ. Those in Fig. 7.3 are polar
plots of the magnitude of the scattering amplitudes, whereas those in Fig. 7.4 are linear
plots of the magnitudes of the scattering amplitudes as a function of the polar angle φ
for an angle of incidence φ0 = 0. The polar plots indicate that there is a great deal of
commonality in the magnitude of the scattering amplitudes when a0 > λ except in the
immediate vicinity of the forward direction φ = 0. Similar results are obtained for larger
radii. The plots in Fig. 7.4 show that while the magnitudes of the scattering amplitudes for
the two cases are similar if a0 > λ, the two scattering amplitudes differ in detail outside of
the main lobe.

7.3 The physical-optics approximation

The linearized Born-type approximations Eqs. (7.4) for Neumann or Dirichlet non-
penetrable scatterers are not accurate due to the fact that we can expect the wavefield
incident on a non-penetrable surface to be partially blocked by the surface, causing the
wavefield in the region immediately behind the surface to be small. The linearized approx-
imations, on the other hand, assume that the total wave over the entire surface is equal to
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�Fig. 7.3 Polar plots of the magnitude of the scattering amplitudes for Dirichlet (left member of each pair of plots) and
Neumann cylinders (right member of each pair of plots).
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the (unblocked) incident wave, which, although reasonable for a weak penetrable scatterer,
will certainly not be the case for a non-penetrable scatterer. A more accurate approximation
is possible if the scattering surface is convex3 and varies slowly relative to the wavelength
λ of the incident wave; i.e., such that the curvature of the surface varies slowly at the scale
of the wavelength. Examples of such a surface would be spheres or cylinders whose radii
are large relative to the wavelength. We show a more general example of such a surface in
Fig. 7.5.

A Neumann or Dirichlet surface that satisfies the conditions outlined above has the prop-
erty that we can attach a Neumann or Dirichlet plane at each point of the surface and
approximately model the scattering of an incident wave in the immediate vicinity of that
point as that of scattering from the locally attached plane. We saw in Section 7.2 that over
such a plane the total Neumann field is simply twice the wavefield incident on the plane
surface, while the normal derivative of the Dirichlet field is twice the normal derivative
of the incident wave. It is important to note that the development presented in Section 7.2
and these conclusions are based on the assumption that the field incident on the locally
attached plane is propagating inwards toward the plane and, in particular, does not include
any outward-propagating plane waves. A general incident wave to a compactly supported
scattering structure would, at each point of the surface, contain both inward-propagating
plane waves and outward-propagating plane waves and the approximation outlined above
requires that only the portion of the incident wavefield that contains the inward-propagating

�Fig. 7.5 A convex surface suitable for the physical-optics approximation and the decomposition of the surface into “lit” and
“unlit” components.

3 A convex surface is one for which a tangent plane can be attached at each point of the surface such that it
doesn’t intersect any other points of the surface.
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plane waves be included. For example, an incident plane wave on a Dirichlet sphere of
radius a � λ would be mostly blocked by the sphere so that the field on the side of the
sphere that does not face the incident plane wave would be essentially zero.

If we define that portion of the incident wave that propagates inward toward the scat-
tering object by U(in)

< (r) we then define the physical-optics approximation to the scattered
wave via the equations

U(s)
PO(r) = −2

∫
∂τ0

dS′ U(in)
< (r′) ∂

∂n′
G0+(r− r′), Neumann surface (7.21a)

and

U(s)
PO(r) = 2

∫
∂τ0

dS′ G0+(r− r′) ∂
∂n′

U(in)
< (r′), Dirichlet surface, (7.21b)

where we have used the subscript PO to denote the physical-optics (PO) approximation.

7.3.1 Plane-wave incidence

An obvious problem with the PO approximation is the determination of that component
of the incident wave that is propagating inward to the surface at any given point. How-
ever, this determination is easy in the case of plane-wave incidence, for which the incident
wave propagates in a specific well-defined direction. For this case the “inward-propagating
wave” at any point of the surface is equal to the incident plane wave if that portion of the
surface is “lit” by the wave and is zero over that portion that is in the shadow of the scat-
terer (the “unlit” portion of the surface). We accordingly decompose the total surface ∂τ0

into “lit” and “unlit” portions defined according to the equations

∂τ0l(s0) = r ∈ ∂τ0 such that s0 · n̂ ≤ 0,

∂τ0
⊥
l (s0) = r ∈ ∂τ0 such that s0 · n̂ > 0,

where n̂ is the unit outward-directed normal to the surface at r. The above equations define
∂τ0l(s0) as being the lit portion of the surface that faces the incident plane wave and
∂τ0
⊥
l (s0) as the unlit portion of the surface that faces away from the incoming incident

wave. We illustrate the decomposition into “lit” and “unlit” components in Fig. 7.5. It is
clear that for convex surfaces the two components are related via the equation

∂τ0
⊥
l (s0) = ∂τ0l(−s0) (7.22a)

and that

∂τ0 = ∂τ0l(s0) ∪ ∂τ0
⊥
l (s0). (7.22b)

The PO approximations to the scattered fields for plane-wave incidence are obtained
from Eqs. (7.21) by setting

U(in)
< (r; s0) = eik0s0·r, r ∈ ∂τ0l(s0), U(in)

< (r; s0) = 0, r ∈ ∂τ0
⊥
l (s0). (7.23)
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We then obtain the results

U(s)
PO(r, s0) = −2

∫
∂τ0 l(s0)

dS′ eik0s0·r′ ∂
∂n′

G0+(r− r′) (7.24a)

for the Neumann surface and

U(s)
PO(r, s0) = 2ik0

∫
∂τ0 l(s0)

dS′ G0+(r− r′)s0 · n̂′eik0s0·r′ (7.24b)

for the Dirichlet surface.

The PO approximation to the scattering amplitude

The scattering amplitude within the PO approximation for plane-wave incidence is found
from Eqs. (7.2) upon replacing the total surface ∂τ0 by ∂τ0l(s0) and substituting from
Eqs. (7.23) for the boundary-value fields over the lit surface. We obtain the results

fPO(s, s0) = − ik0

2π

∫
∂τ0 l(s0)

dS′ s · n̂′e−ik0(s−s0)·r′ , Neumann surface (7.25a)

and

fPO(s, s0) = − ik0

2π

∫
∂τ0 l(s0)

dS′ s0 · n̂′e−ik0(s−s0)·r′ , Dirichlet surface. (7.25b)

7.3.2 Simulation

We compared the PO approximation for scattering from a Dirichlet cylinder with the exact
field computation using the multipole expansion developed in Section 7.2.3. The PO com-
putation was implemented using Eq. (7.24b) specialized to the case of an incident plane
wave propagating in the positive-x direction in the (x, y) plane. In this case the problem
reduces to two space dimensions, where the Green function admits the expansion given in
Eq. (3.61) of Chapter 3:

G0+(r− r′) = i

4

∞∑
n=−∞

Jn(k0r′)H+n (k0r)ein(φ−φ′),

where Jn and H+n are the Bessel and Hankel functions of the first kind, r,φ and r′,φ′ are
the polar coordinates of the field point r and the source point r′, and it is assumed that
r > r′. The PO approximation for a Dirichlet cylinder then takes the form

U(s)
PO(r,φ) = 2ik0a0

∫ 3
2π

π
2

dφ′

G0+(r−r′)︷ ︸︸ ︷
i

4

∞∑
n=−∞

Jn(k0a0)H+n (k0r)ein(φ−φ′) cosφ′ eik0a0 cosφ′

= −k0a0

2

∞∑
n=−∞

CnJn(k0a0)H+n (k0r)einφ , (7.26a)
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where the expansion coefficients Cn are given by

Cn =
∫ 3

2π

π
2

dφ′ cosφ′ eik0a0 cosφ′e−inφ′ .

It is not difficult to show that the expansion coefficients satisfy the condition C−n = Cn so
that Eq. (7.26a) assumes the simplified form

U(s)
PO(r,φ) = −k0a0

2

[
C0J0(k0a0)H0(k0r)+ 2

∞∑
n=1

CnJn(k0a0)H+n (k0r)cos(nφ)

]
,

(7.26b)

which is much simpler to implement in code than Eq. (7.26a).
We show in Figs. 7.6 and 7.7 comparisons of the exact values and PO approximations

of the wavefields from a Dirichlet cylinder of radius a0 = 13.33λ illuminated by a plane
wave propagating perpendicular to the cylinder axis. The exact results were obtained using
the multipole expansion developed in Section 7.2.3, while the PO approximation was com-
puted using Eq. (7.26b). The mesh plots shown in Fig. 7.6 cover a radial range of roughly
90 wavelengths outside the cylinder, while the plots in Fig. 7.7 are over a circle one wave-
length outside the cylinder boundary. The PO approximation is seen to be excellent except
around 90◦ and 270◦, which correspond to the transition region between the lit and unlit
portions of the cylinder. Plots comparing the PO approximation with the exact scattering
amplitudes are shown in Fig. 7.8. The exact scattering amplitudes were computed using the
expansion developed in Section 7.2.3, while the PO approximation was computed using the
expansion

fPO(φ0) =
√

k0a0

2π
e−i π4

[
C0J0(k0a0)H0(k0r)+ 2

∞∑
n=1

(−i)nCnJn(k0a0)cos(nφ)

]
,

which results from Eq. (7.26b) after making use of Eq. (7.18). The plots shown in Fig. 7.8
illustrate the very close agreement between the exact values and the PO approximations of
the magnitudes of the scattering amplitudes for four different cylinder radii. Overall, it is
safe to say that the PO approximation to the scattering amplitude is excellent for cylinders
whose radii exceed a few wavelengths.

7.4 The Bojarski transformation and linearized inverse
surface scattering

N. Bojarski (Bojarski, 1982b) proposed an interesting transformation that can be employed
for Dirichlet or Neumann scatterers that are accurately modeled by the PO approximation.
The so-called “Bojarski transformation” which is useful in certain inverse scattering appli-
cations that we will discuss below is applied to the sum
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�Fig. 7.6 Comparison of exact results (right) for scattering of an incident plane wave from a Dirichlet cylinder having radius
a0 = 5λwith the PO approximation (left).

F(k0s0) = fPO(−s0, s0)+ f ∗PO(s0,−s0). (7.27)

The quantity fPO(−s0, s0) is the scattering amplitude within the PO approximation com-
puted in the back-scattering direction; i.e., for the observation vector s = −s0. Equa-
tion (7.27) thus computes the sum of the back-scattering amplitude for some arbitrary
incident wave direction s0 plus the complex conjugate of the back-scattering amplitude for
the opposite incident wave direction −s0.
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The back-scattering amplitudes within the PO approximation are readily found from
Eqs. (7.25) to be given by

fPO(−s0, s0) = ± ik0

2π

∫
∂τ0 l(s0)

dS′ s0 · n̂′ei2k0s0·r′ ,

where the top (plus) sign applies for Neumann scatterers and the bottom (minus) sign for
Dirichlet scatterers. For convex surfaces the quantity fPO(s0,−s0) is obtained by replacing
s0 in the above equation by −s0 and by replacing ∂τ0l(s0) by ∂τ0l(−s0), which, according
to Eq. (7.22a), is equal to its complement ∂τ0

⊥
l (s0). We then find that

fPO(s0,−s0) = ∓ ik0

2π

∫
∂τ0
⊥
l (s0)

dS′ s0 · n̂′e−i2k0s0·r′ ,

where the top sign is for Neumann scatterers and the bottom for Dirichlet scatterers. If we
now compute the quantity F(k0s0) defined in Eq. (7.27) we obtain

F(k0s0) = ± ik0

2π

∫
∂τ0 l(s0)

dS′ s0 · n̂′ei2k0s0·r′ ± ik0

2π

∫
∂τ0
⊥
l (s0)

dS′ s0 · n̂′ei2k0s0·r′

= ± ik0

2π

∫
∂τ0

dS′ s0 · n̂′ei2k0s0·r′ , (7.28)

where we have used Eq. (7.22b) so that now the integration is over the entire surface ∂τ0.
The Bojarski transformation is completed by using the divergence theorem on Eq. (7.28)

and simplifying the result. On applying this theorem we find that∫
∂τ0

dS′ s0 · n̂′ei2k0s0·r′ =
∫
τ0

d3r′ ∇r′ · [s0ei2k0s0·r′] = 2ik0

∫
τ0

d3r′ ei2k0s0·r′ , (7.29)

where τ0 is the support volume of the scatterer. If we now define the characteristic function
�(r) of the scatterer via the equation

�(r) =
{

1 if r ∈ τ0

0 else

we can express Eq. (7.29) in the simplified form∫
∂τ0

dS′ s0 · n̂′ei2k0s0·r′ = 2ik0

∫
d3r′ �(r′)ei2k0s0·r′ = 2ik0�̃(−2k0s0), (7.30)

where

�̃(K) =
∫

d3r′ �(r′)e−iK·r′ .

Finally, on substituting Eq. (7.30) into Eq. (7.28) we obtain the desired result

F(k0s0) = ∓k2
0

π
�̃(−2k0s0), (7.31)

where the top sign applies to Neumann scatterers and the bottom to Dirichlet scatterers.
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7.4.1 The generalized Bojarski transformation

A generalized form of the Bojarski transformation can be derived that is not limited to
backscatter data and that is in the form of the Born approximation of penetrable scatterers
obtained in the previous chapter. This generalized form is particularly useful in inverse
scattering applications involving Dirichlet or Neumann scatterers since it allows the inver-
sion algorithms developed in the following chapter for Born inversion to be applied to the
surface-reconstruction problem discussed below and at the end of the chapter.

The derivation of the transformation follows almost identical lines to those employed
above for the classical Bojarski transformation but where we do not require the scattering
vector s to be the negative of the incident wave vector s0. Thus, in place of Eq. (7.27) we
define the quantity

Fg(s, s0) = fPO(s, s0)+ f ∗PO(−s,−s0), (7.32)

which reduces to F(k0s0) under the replacement of s = −s0. Restricting our attention for
the moment to Dirichlet scatterers we then find in place of Eq. (7.28) the result

Fg(s, s0) = − ik0

2π

∫
∂τ0 l(s0)

dS′ s0 · n̂′e−ik0(s−s0)·r′

− ik0

2π

∫
∂τ0
⊥
l (s0)

dS′ s0 · n̂′e−ik0(s−s0)·r′

= − ik0

2π

∫
∂τ0

dS′ s0 · n̂′e−ik0(s−s0)·r′ . (7.33)

The transformation is completed by applying the divergence theorem to Eq. (7.33):

− ik0

2π

∫
∂τ0

dS′ s0 · n̂′e−ik0(s−s0)·r′ = − ik0

2π

∫
τ0

d3r′ ∇r′ · [s0e−ik0(s−s0)·r′]

= k2
0

2π
(1− s0 · s)

∫
d3r′ �(r′)e−ik0(s−s0)·r′ , (7.34)

where �(r′) is the characteristic function �(r) of the scatterer. A completely parallel devel-
opment yields the same result with a minus sign rather than a plus sign for the case of
Neumann scatterers. We then obtain the generalized form of Eq. (7.31)

Fg(s, s0) = ∓ k2
0

2π
(1− s0 · s)�̃[k0(s− s0)], (7.35a)

where the top sign applies to Neumann scatterers and the bottom to Dirichlet scatterers.
We can also write the above result in the alternative form

Fg(s, s0) = ∓ 1

4π
|k0(s− s0)|2�̃[k0(s− s0)]. (7.35b)
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The results obtained above are identical in form to the Born approximation of pene-
trable scatterers obtained in Section 6.7, where we found that the scattering amplitude of
a penetrable scatterer was proportional to the spatial Fourier transform of the scattering
potential over sets of Ewald spheres; i.e., over the sets of spatial frequencies defined by
K = k0(s − s0). Here, the same general result is obtained, where the quantity Fg(s, s0) is
seen from Eq. (7.35b) to be proportional to K2�̃(K) over a set of Ewald spheres. Since
this transform is the transform of −∇2�(r), it then follows that within the PO approx-
imation Fg(s, s0) plays the role of the scattering amplitude within the Born approxima-
tion and −∇2�(r) plays the role of the scattering potential. This conclusion has important
consequences in the inverse scattering problem for Dirichlet and Neumann scatterers (see
below).

7.4.2 Inverse scattering within the PO approximation

The quantities F(k0s0) and Fg(s, s0) can be employed in certain inverse scattering problems
involving Dirichlet or Neumann convex-shaped scatterers. In particular, if the wavelength
λ is much smaller than the minimum curvature of the (convex) scattering object we can
expect the PO approximation to be valid and, hence, Eqs. (7.31) and (7.35) will provide
good linearized scattering models that relate the shape of the scatterer (via the characteristic
function) to scattered field data in the form of the scattering amplitude. It then follows that
these models can be approximately inverted to obtain the shape from knowledge of the
scattering amplitude specified over some set of incident- and scattered-wave directions s0

and s and some set of wavenumbers k0. For example, if the forward- and back-scattering
amplitudes are specified for all unit vectors s0 lying on the unit sphere and over some
band of frequencies corresponding to wavenumbers k0 ∈ [k−0 , k+0 ] then the characteristic
function is approximately given by

�(r) ≈ 1

(2π )3

∫
K∈D

d3K �̃(K)eiK·r = 1

(2π )3

∫ 2k+0

2k−0
K2 dK

∫
4π

d�s �̃(Ks)eiKs·r

= ∓ 1

2π2

∫ k+0

k−0
dk0

∫
4π

d�s0 F∗(k0s0)eik0s0·r, (7.36)

where the top sign applies for Neumann scatterers and the bottom for Dirichlet scatterers
and we have used the result that

F(−k0s0) = F∗(k0s0).

The actual surface can then be obtained from the above image of the characteristic func-
tion by applying the gradient operator and finding the maximum of the magnitude of this
quantity:

∂τ0 ≈ max

∣∣∣∣∣ 1

2π2

∫ k+0

k−0
dk0

∫
4π

d�s0 s0F∗(k0s0)e2ik0s0·r
∣∣∣∣∣ . (7.37)

Another case of interest is when the scattering amplitude is specified at a single fre-
quency but over some set of incident and scattered field directions. In this case the inver-
sion algorithms developed in the following chapter for penetrable scatterers within the
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Born approximation can be employed to yield an approximate estimate of ∇2�(r) from
Fg(s, s0). This inversion is of special interest since it will generate a doublet pulse over
the surface of the scatterer, from which its shape will be clearly evident. We will return to
the inverse problem for surface scattering in Section 7.7, where we develop this inversion
scheme and present other approaches to the surface-reconstruction problem, including one
method that does not rely on linearized approximations such as the PO approximation.

7.5 Kirchhoff diffraction theory

The boundary-value problem is a purely mathematical problem associated with the homo-
geneous Helmholtz equation in some finite or semi-infinite region of space. In this section
we will see how the solution to this purely mathematical problem can be employed to
obtain (approximate) solutions to practical problems involving the interaction of scalar
wavefields with certain types of physical bodies and, in particular, to the problem of wave-
field diffraction. In the classical diffraction problem a known wavefield U(in)(r, ν) is inci-
dent onto an aperture located in the plane z = 0. The incident wave interacts with the
aperture and the result of this interaction is a diffracted wave U(d)(r, ν) that propagates
away from the aperture into the right half-space z > 0. The diffraction problem consists of
determining the diffracted wave from the known incident wavefield and the properties of
the diffracting aperture.4

A key ingredient of the above description of an aperture diffraction problem is the phrase
“properties of the diffracting aperture.” This phrase sets the diffraction problem apart from
the boundary-value problem since it requires knowledge in the form of a mathematical
model for the interaction of the aperture with the incident wave. This additional informa-
tion cannot come from the Helmholtz equation itself and must, instead, come from the
physics describing the interaction of the particular wavefield with the aperture. However,
it is possible to obtain a heuristic model for this interaction that applies in many practical
applications, by appealing to our intuitive understanding of how waves interact with mate-
rial bodies. For example, we know that there exist certain material bodies that are almost
transparent to an incident wavefield, whereas other types of material are essentially opaque
to an incident wave; i.e., essentially block the transmission of an incident wave.

Kirchhoff used such intuitive ideas to obtain an approximate solution of the scalar wave-
diffraction problem for the case of a wave incident onto an aperture consisting of a perfectly
transparent hole in a perfectly opaque screen.5 In his solution of the problem Kirchhoff
made the seemingly obvious assumption that the field passed unattenuated through the
hole in the aperture but was completely blocked by the opaque material of the screen at
points not within the hole. Thus, assuming that the incident wave is propagating from

4 A reflected wave that propagates back into the left half-space will also be generated in the process but is of no
interest in classical diffraction theory and is not considered to be a part of the actual diffracted wavefield.

5 The solution of the dual problem of a perfectly opaque hole in a perfectly transparent screen can be obtained
from the solution of this problem using Babinet’s principle (Born and Wolf, 1999).
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left to right,6 Kirchhoff hypothesized that the diffracted wave and its normal derivative to
the immediate right of the hole were equal to the value of the incident field and its normal
derivative over the hole and that the diffracted wave not within the area of the hole vanished
identically. Since both the field and its normal derivative were then specified over the entire
aperture plane and the wavefield had to be outgoing into the r.h.s. and, hence, had to satisfy
the Sommerfeld radiation condition (SRC) in that half-space, Kirchhoff was able to use the
first Helmholtz identity (cf. Eq. (2.41a) in Section 2.8 of Chapter 2) to obtain the following
expression for the diffracted field in the half-space z > 0:

U(d)(r, ν) =
∫
A

d2ρ′
[

G+(r− r′0)
∂

∂z′
U(in)(r′0, ν)− U(in)(r′0, ν)

∂

∂z′
G+(r− r′0)

]
,

(7.38)

where A denotes that area of the hole in the aperture plane here assumed to be z = 0
and r′0 = (ρ′, z = +ε) denotes the position vector on the plane z = +ε with ε > 0
arbitrarily small so that U(in)(r′0, ν) is the incident field immediately to the right of the
aperture.

The assumptions behind the Kirchhoff solution Eq. (7.38) appear to be very reasonable
and the inquisitive reader may wonder why this solution is not, in principle, exact. There are
two basic reasons why the Kirchhoff solution is only an approximation to the true diffracted
field. First, because the diffracted wave obeys the outgoing-wave radiation condition in the
r.h.s. z > 0 this field and its normal derivative over the diffraction plane must be related
via the second Helmholtz identity (cf. Eq. (2.41b) in Section 2.8). If we then assume that
these boundary values are given according to Kirchhoff’s assumption we require that∫

A
d2ρ′

[
G+(r− r′0)

∂

∂z′
U(in)(r′0, ν)− U(in)(r′0, ν)

∂

∂z′
G+(r− r′0)

]
= 0

if the field point r lies in the left half-space τ− = {r : z < 0}. On the other hand, the
incident wave has to be generated by a source located in the l.h.s. z < 0 and, hence, it, by
itself, must satisfy the second Helmholtz identity on the l.h.s.; i.e.,∫

z=0
d2ρ′

[
G+(r− r′0)

∂

∂z′
U(in)(r′0, ν)− U(in)(r′0, ν)

∂

∂z′
G+(r− r′0)

]
= 0,

where the integration is over the entire aperture plane z = 0. It is clear that these
two equations cannot both be satisfied except for the uninteresting case of an infinite
aperture.

A second objection to the Kirchhoff solution is that it ignores completely the physics of
the interaction of the incident wave with the material of the aperture screen. The Kirchhoff
solution Eq. (7.38) is identical for screens made of any material so long as the material
fits the criterion of being “opaque” to the incident wave. Thus, in the case of an incident
optical wave the theory predicts no difference in the diffracted wave irrespective of whether

6 Kirchhoff’s original application was optics and, as any optical physicist or engineer will tell you, light always
propagates from left to right.



308 Surface scattering and diffraction

the material is a perfect conductor or a perfect absorber. In both cases the material fits the
loose definition of being opaque, since in the case of an infinite conducting screen all of
the incident radiation is reflected, while in the case of an infinite absorbing screen all of
the incident radiation is absorbed.

Of the two objections to the Kirchhoff theory given above, the second is, by far, the most
serious. Indeed, we will show below that it is possible to convert the diffraction problem
into a Rayleigh–Sommerfeld (RS) boundary-value problem so that the diffracted field can
be computed entirely in terms of either its boundary value or the boundary value of its
normal derivative over the aperture plane. If we then invoke Kirchhoff’s assumption that the
diffracted field to the immediate right of the aperture is equal to the incident wave within
the aperture and zero outside the aperture we are able to arrive at two alternative formulas
for the diffracted wave; one involving only the incident wave (the Dirichlet solution to
the RS boundary-value problem) and a second involving only the normal derivative of the
incident wave (the Neumann solution to the RS problem). Unfortunately, both “solutions”
are also not exact and, in particular, are insensitive to the precise nature of the material of
the aperture material. Thus, the only real objection with the Kirchhoff theory is that his
ansatz for constructing the diffracted field boundary conditions on the aperture plane from
the incident wavefield is only approximately correct and its domain of validity must be
determined from more fundamental considerations or from actual experimental data.

7.5.1 The Rayleigh–Sommerfeld alternative to the Kirchhoff diffraction formula

We can compute the wavefield diffracted by an aperture located in the plane z = 0 in terms
of its Dirichlet or Neumann boundary values on this plane using the RS solution to the
boundary-value problem given in Eqs. (2.48) of Chapter 2. In particular, we have that

U(d)(r, ν) =

⎧⎪⎪⎨⎪⎪⎩
−2
∫

z=z0
d2ρ′ U(d)(r′0, ν)(∂/∂z′)G+(r− r′0), Dirichlet conditions,

+2
∫

z=z0
d2ρ′ (∂/∂z′)U(d)(r′0, ν)G+(r− r′0), Neumann conditions,

where U(d)(r′0, ν) and (∂/∂z′)U(d)(r′0, ν) denote the boundary value of the diffracted wave-
field and its normal derivative to the immediate right of the aperture. Note that the integral
in the above equations is over the entire boundary plane, not just over the aperture region as
is the case in the Kirchhoff solution Eq. (7.38). The problem that we face is that we don’t
know the boundary value of the diffracted field or of its normal derivative over the aperture
plane and we must, again, invoke Kirchhoff’s ansatz or make some other assumption about
the required boundary values in order to proceed.

If we invoke the Kirchhoff ansatz we obtain the results

U(d)(r, ν) = −2
∫
A

d2ρ′ U(in)(r′0, ν)
∂

∂z′
G+(r− r′0) (7.39a)

and

U(d)(r, ν) = +2
∫
A

d2ρ′ ∂
∂z′

U(in)(r′0, ν)G+(r− r′0), (7.39b)
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where now the integral is only over the aperture A as in the Kirchhoff solution Eq. (7.38).
Although we have denoted the diffracted wavefields generated by Dirichlet and Neumann
boundary conditions using the same symbol U, it is important to realize that the wavefields
generated by the two formulas will be different. We will refer to the above two approximate
solutions to the diffraction problem as the Rayleigh–Sommerfeld diffraction formulas. We
might expect either of the above two diffraction formulas to be better or more accurate
than Kirchhoff’s formula Eq. (7.38), but evidence suggests that this is not the case. Indeed,
certain experimental studies of optical diffraction from holes in conducting plates (Wolf
and Marchand, 1964) have shown that the opposite is true, especially in the immediate
vicinity of the aperture. In this connection we note that the original Kirchhoff solution is
actually the arithmetic average of the two RS formulas:

UK = 1

2
URS1 +

1

2
URS2 ,

where UK denotes the original Kirchhoff approximation to the diffracted field and URS1

and URS2 are the two Rayleigh–Sommerfeld approximations to the diffracted field.

7.5.2 More general diffraction problems

The Kirchhoff and Rayleigh–Sommerfeld diffraction formulas apply to the case of a hole
in a perfectly opaque screen and it is, of course, of interest to generalize these formulas to
more general aperture distributions. In between the two extremes of perfectly transparent
and perfectly opaque bodies are those bodies that will partially transmit and partially reflect
an incident wave. If we then construct a very thin (compared with the wavelength λ = 2π/k
of the wavefield) aperture from such material it is reasonable to assume a model for the
aperture–wavefield interaction of the form

Ut(r0, ν) = T (ρ)U(in)(r0, ν), (7.40)

where Ut(r0, ν) denotes the diffracted wavefield immediately to the right of the aperture
and T (ρ) is a transmission coefficient or “transmittance function” that depends on the
aperture material and geometry but is independent of the incident wavefield.

The above model for the interaction of the incident wave with a general aperture might
appear, at first glance, to be, in principle, exact. In particular, the reader may wonder why
the wavefield immediately to the right of a thin aperture located on the plane z = 0 cannot
always be written in the form of Eq. (7.40) for some choice of the transmission coeffi-
cient T . While it is certainly true that the (exact) boundary-value field can always be so
expressed, it is not true that the transmission coefficient will be independent of the incident
wavefield. Thus, the model as defined in Eq. (7.40) assumes a linear interaction between
the aperture and the incident wave. Upon reflection the reader will realize that this assump-
tion is also hidden in the Kirchhoff ansatz that is the limiting case of the model Eq. (7.40)
when the transmission coefficient is unity within the aperture (hole) and zero outside this
aperture.

If we assume a model of the form given in Eq. (7.40) the diffracted wavefield is then
given by the Kirchhoff or RS formulas with the incident wave replaced by the aperture
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field Ut(r0, ν). For example, using the first RS formula Eq. (7.39a) we obtain the following
expression for the diffracted field:

U(d)(r, ν) = −2
∫

z=z0

d2ρ′ T (ρ′)U(in)(r0, ν)
∂

∂z′
G+(r− r′0). (7.41a)

If we compute the derivative of the Green function appearing in Eq. (7.41a) we can write
this formula in the form (cf. Section 4.7 of Chapter 4)

U(d)(r, ν) = 1

2π

∫
z=z0

d2ρ′ T (ρ′)U(in)(r0, ν)
eik0|r−r′0|

|r− r′0|
[
−ik0

z

|r− r′0|
+ z

|r− r′0|2
]

.

(7.41b)

7.5.3 Algorithmic implementation of the diffraction formulas

Although the diffraction formulas Eqs. (7.38), (7.39a), (7.39b) and, more generally,
Eqs. (7.41) are computationally simple by modern standards, they were highly intractable
in the early and middle parts of the last century when they were first devised and used.
Thus a good deal of effort was expended obtaining approximate forms of these formulas
that could be used to obtain analytic expressions for the field diffracted from various sim-
ple apertures. This was especially true in optical applications, where the distance of the
field point r = |r| can be expected to be large compared with the wavelength λ of the inci-
dent wavefield. Depending on the size of the distance r relative to the effective radius a of
the aperture, these approximate theories are known as the Fresnel approximation and the
Fraunhofer approximation. These approximate schemes, together with exact eigenfunc-
tion implementations of these formulas such as the angular-spectrum expansion developed
in Chapter 4, are still important today and are often used in place of the exact formulas
because of their simplicity and computational efficiency. Indeed, all of these alternatives
to the basic diffraction formulas are Fourier-based and easily implemented using the fast
Fourier transform (FFT).

We have already developed the Fresnel approximation in Section 4.7 of Chapter 4,
where we compared its performance with both the RS solution to the boundary-value prob-
lem and the angular-spectrum implementation of this solution. We found that the Fresnel
approximation was excellent at large propagation distances but degraded significantly in
the near field of the boundary. On the other hand, the angular-spectrum implementation
of the RS formulas, while, in principle, exact, degraded significantly for large propaga-
tion distances due to aliasing in the spatial frequency domain. Thus, the computer imple-
mentation of boundary-value and aperture diffraction problems is best treated using the
angular-spectrum expansion for short propagation distances and the Fresnel approximation
for moderate propagation distances. The Fraunhofer approximation is a further approxima-
tion to the Fresnel approximation and is valid only at very large propagation distances. We
will briefly review these three alternative implementations of the diffraction formulas in
this section. For the sake of simplicity we consider only the general formulas Eqs. (7.41)
for an aperture located in the plane z = 0, with the understanding that implementations of
the other diffraction formulas are easily obtained using entirely parallel developments. To
obtain the formulas for an aperture located at z = a0 simply replace z by |z − a0| in the
formulas presented below.
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The angular-spectrum expansion

The angular-spectrum expansion of the diffracted field is obtained by employing the Weyl
expansion of the outgoing-wave Green function given in Eq. (4.4a) of Section 4.1 of Chap-
ter 4. Using this expansion we find that

∂

∂z′
G+(r− r′0) = −1

8π2

∫ ∞
−∞

d2Kρ eiKρ ·(ρ−ρ′)+iγ z,

where r′0 = ρ′ denotes a point on the aperture plane located at z = 0. On substituting the
above expansion into Eqs. (7.41a) we obtain

U(d)(r, ν) = 1

(2π )2

∫ ∞
−∞

d2Kρ ˜T U(in)(Kρ , ν)eiKρ ·ρ+iγ z, (7.42a)

where

˜T U(in)(Kρ , ν) =
∫

z=0
d2ρ′ T (ρ′)U(in)(r′0, ν)e−iKρ ·ρ′

is the spatial Fourier transform of the product of the transmittance function T (ρ′) with
the incident wavefield. The above expansion is particularly simple if U(in)(r, ν = ẑ) =
exp(ik0ẑ · r) is a unit-amplitude plane wave normally incident to the aperture. In this case
we find that

˜T U(in)(Kρ , ẑ) =
∫

z′=0
d2ρ′ T (ρ′)e−iKρ ·ρ′ = T̃ (Kρ)

is equal to the spatial Fourier transform of the transmittance function and Eq. (7.42a)
reduces to

U(d)(r, ẑ) = 1

(2π )2

∫ ∞
−∞

d2Kρ T̃ (Kρ)eiKρ ·ρ+iγ z. (7.42b)

The angular-spectrum expansion of the diffracted field is efficiently implemented in code
using FFTs, as is apparent from the form of Eqs. (7.42).

The Fresnel approximation

The Fresnel approximation to the solution of the RS boundary-value problem was devel-
oped in Section 4.7 of Chapter 4, where it is given by Eq. (4.41). Using this approximation
for the Kirchhoff diffracted field we obtain the result

U(d)(r, ν) = − ik0

2π

∫
z=0

d2ρ′ U(d)(r′, ν)|z′=0
eik0z+ik0

(x−x′)2+(y−y′)2
2z

z
.
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On setting the boundary value U(d)(r′, ν)|z′=0 equal to the product of the incident wave and
the aperture transmittance function and performing some simplification we then obtain the
following Fresnel approximation to the (Kirchhoff-approximated) diffracted wavefield:

U(d)(r, ν) ≈ − ik0

2π

eik0z

z

∫
z′=0

d2ρ′ T (ρ′)U(in)(r′0, ν)eik0
|ρ−ρ′ |2

2z , (7.43)

where ρ = (x, y) and ρ′ = (x′, y′). As discussed in Chapter 4, a sufficient condition for the
validity of the Fresnel approximation is that

z3 � π

4λ
δρ4|max,

where δρ = |ρ − ρ′| and the maximum is to be taken relative to all source points in the
diffracting aperture (z = 0) and all field points on the plane z for which the field is to be
computed.

The Fresnel transform

At first glance it would appear that there is no significant computational advantage of the
Fresnel approximation to the exact Kirchhoff formula Eqs. (7.41). However, if we expand
the quadratic term in the exponential in Eq. (7.43) we can write the approximate expression
in the form

U(d)(r, ν) ≈ − ik0

2π

eik0z

z
eik0

ρ2

2z

∫
z′=0

d2ρ′ T (ρ′)eik0
ρ′2
2z U(in)(r′0, ν)e−ik0

ρ·ρ′
z . (7.44)

Equation (7.44) represents the Fresnel diffracted field in terms of the spatial Fourier
transform of the product of the incident field with the aperture transmission func-
tion modulated by exp[ik0ρ

′2/(2z)]. This shows that the paraxial form of the Fresnel
approximation can be computed using an FFT with some additional overhead compu-
tations. In this form the Fresnel approximation is sometimes referred to as the Fresnel
transform.

The Fresnel transform is treated in some detail in Section 4.7 of Chapter 4, where it is
compared with the angular-spectrum expansion. As discussed in that section, the Fresnel
transform has the advantage over the angular-spectrum expansion in that it is self-scaling.
By this we mean that the sample spacing δρ in an FFT implementation of this transform
increases linearly with the propagation distance z. On the other hand, FFT implementation
of the angular-spectrum expansion needs to employ a fixed sample spacing for all propa-
gation distances. Since the diffracted field will expand in the (x, y) plane, with increasing
propagation distance the angular-spectrum expansion requires significant buffering in the
FFT in order to avoid aliasing in the spatial frequency domain. This is not true for the
Fresnel transform, so the diffracted field can be computed very efficiently at large propa-
gation distances using the Fresnel transform rather than the angular-spectrum expansion.
Of course, the Fresnel transform is only approximate and requires the propagation distance
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to be large, whereas the angular-spectrum expansion is, in principle, exact at any propaga-
tion distance.

The Fraunhofer approximation

The Fraunhofer approximation is simply a further simplification of the Fresnel
approximation. In particular, in the Fraunhofer approximation it is assumed that the Fresnel
approximation is valid and, in addition, the term exp[ik0ρ

′2/(2z)] ≈ 1 so that Eq. (7.44)
further simplifies to become

U(d)(r, ν) ≈ − ik0

2π

eik0z

z
eik0

ρ2

2z

∫
z=0

d2ρ′ T (ρ′)U(in)(r′0, ν)e−ik0
ρ·ρ′

z . (7.45)

A sufficient condition for the validity of the Fraunhofer approximation is that the maximum
value of the quadratic phase term kρ′2/(2z) across the diffracting aperture be less than a
radian. Thus, we require that

z� π

λ
ρ′2|max,

where the maximum is taken relative to all source points in the diffracting aperture.
From a computational point of view the Fraunhofer approximation offers little advan-

tage over the Fresnel approximation. In particular, an FFT is used in both approximations,
where, however, the Fresnel approximation requires also a multiplication of the transmis-
sion function T by the factor exp[ik0ρ

′2/(2z)]. However, this multiplication has only to be
performed once for any given observation plane z, so it does not significantly increase the
computational burden. However, the Fraunhofer approximation offers considerable advan-
tages over the Fresnel approximation for computing the diffraction of simple waveforms
such as plane waves from simple apertures since the analytic form of the spatial Fourier
transform is known for a number of such cases. In this connection we note that

eik0z

z
eik0

ρ2

2z ≈ eik0r

r
,

which is accurate to the same level as approximation as the Fresnel approximation. We can
then write Eq. (7.45) in the form

Ud(r, ν) ≈ fd(u, ν)
eik0r

r
,

where u = ρ/z and

fd(u, ν) = − ik0

2π

∫
z=0

d2ρ′ T (ρ′)U(in)(r′0, ν)e−ik0u·ρ′ (7.46a)

is called the diffraction pattern of the aperture. The diffraction pattern plays the same role
for diffraction problems as does the scattering amplitude (cf. Section 6.4 of Chapter 6)
for scattering problems. Indeed, the process of diffraction is another form of wavefield
scattering and can be treated as a limiting form of potential scattering within the Born
approximation (see the problems at the end of the chapter).



314 Surface scattering and diffraction

The diffraction pattern within the Kirchhoff approximation as given in Eq. (7.46a) is seen
to be the 2D spatial Fourier transform of the product of the transmittance function with the
incident wave to the aperture. If the incident wave is a plane wave then this expression
becomes particularly simple and can be computed in closed form for a number of simple
apertures. This is one reason for the historical popularity of the Kirchhoff approximation.
However, with the advent of modern digital computers and the FFT it has no computational
advantages over either the angular-spectrum expansion or the Fresnel approximation and
the Fresnel transform. On the other hand, the fact that the diffraction pattern is related to
the transmittance function via a spatial Fourier transform makes it an ideal mathematical
model to be used in inverse diffraction, as will be discussed below.

The diffraction pattern given in Eq. (7.46a) is a function of the coordinate vector ρ over
an observation plane located at a fixed distance z from the diffracting aperture. It is useful
to have a formula that gives this pattern as a function of the unit observation vector s = r/r
over a hemisphere in complete analogy with the scattering amplitude of a penetrable or
impenetrable scatterer and the radiation pattern of a primary or induced source. Such a
formula is easily derived within the same level of approximation as Eq. (7.46a) directly
from Eq. (7.41b) and one finds that

fd(s, ν) = − ik0

2π

∫
z=0

d2ρ′ T (ρ′)U(in)(r′0, ν)e−ik0s·ρ′ . (7.46b)

We emphasize that the two expressions for “the” diffraction pattern differ fundamentally
in that Eq. (7.46a) gives the pattern as function of position on a fixed plane z � λ lying
parallel to the diffraction aperture, whereas Eq. (7.46b) gives this pattern as a function of
the unit vector s over a spherical surface located at fixed radial distance r � λ. We note
that the diffraction pattern as given in Eq. (7.46b) can be interpreted as being the radiation
pattern generated by the induced source

Q(r) = 2ik0T (ρ′)U(in)(r′0, ν)δ(z)

supported on the z = 0 plane. Sources of this type were investigated in connection with the
inverse source problem (ISP) in Chapter 5 and were employed in connection with so-called
“wavelet” fields in Section 4.5 of Chapter 4.

7.6 Inverse diffraction

Inverse diffraction within the Kirchhoff approximation consists of determining the aper-
ture transmittance function T (ρ) from knowledge of the incident wave to the diffracting
aperture and the diffracted field or its normal derivative specified over some “measurement
plane" located at some distance z0 > 0 from the diffracting aperture. Mathematically, this
reduces to solving the integral equation Eqs. (7.41) for T with U(in) known and U(d) or
(∂/∂z)U(d) specified over a plane z0 > 0. Formally, this problem is identical to the inverse
boundary-value problem (IBVP) first introduced in Section 2.11 of Chapter 2, where it
was approximately solved using an incoming-wave Green function solution to a (forward)
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Rayleigh–Sommerfeld (RS) boundary-value problem. It is solved exactly (but unstably)
using field back propagation implemented via the angular-spectrum expansion as devel-
oped in Section 4.3 of Chapter 4 and in Eq. (7.42b) above. Here we will briefly review
those earlier approaches to inverse diffraction and then formulate and solve the problem
using the singular value decomposition (SVD) that was developed in Chapter 5. For the
sake of simplicity of notation we will restrict our attention to an aperture located on the
plane z = 0 and illuminated by a normally incident plane wave.

7.6.1 Inverse diffraction using back propagation

The angular-spectrum expansion of the Kirchhoff diffracted field over a plane z = z0 > 0
for a normally incident, unit-amplitude plane wave to an aperture located in the plane
z = 0 is given by Eq. (7.42b). Spatially Fourier transforming both sides of this equation
and solving for T̃ (Kρ) then yields the result

T̃ (Kρ) = Ũ(d)(Kρ , z0, ẑ)e−iγ z0 , (7.47a)

where

Ũ(d)(Kρ , z0, ẑ) =
∫

z0

d2ρ U(d)(ρ, z0, ẑ)e−iKρ ·ρ (7.47b)

is the spatial Fourier transform of the diffracted field over the plane z0. Equation (7.47a) is
the spatial frequency-domain statement of (exact) field back propagation from the diffrac-
tion plane at z0 back to the aperture plane at z = 0 that was presented in Section 4.3 of
Chapter 4. We obtain the space-domain back-propagated field by simply inverse transform-
ing Eq. (7.47a):

T (ρ) = 1

(2π )2

∫
d2Kρ Ũ(d)(Kρ , z0, ẑ)e−iγ z0 eiKρ ·ρ , (7.47c)

which is a formal solution to the inverse Kirchhoff diffraction problem.
The process of field back propagation was discussed at some length in Chapter 4, where

it was pointed out that the process, although in principle exact, is unstable due to the
exponential growth of the factor exp(−iγ z0), z0 > 0, in Eqs. (7.47a) and (7.47c) over
the evanescent region Kρ > k0. We discussed stabilized field back propagation in Sec-
tion 4.4 of that chapter, where the stabilization was achieved by damping the contribu-
tion of the evanescent plane waves in the back-propagation integral Eq. (7.47c). The two
schemes that were introduced in that section were hard limiting the integration region in
the integral to the homogeneous region Kρ < k0 and replacing γ by its complex conjugate
γ ∗. Over the homogeneous region in a non-dispersive medium γ ∗ = γ , while over the
evanescent region γ ∗ = −γ , so this stabilization scheme returns a result almost identi-
cal to that obtained from the hard limiting scheme so long as z is much larger than the
wavelength.

The second stabilization scheme outlined above was shown in Section 4.4 to correspond
to using the incoming-wave Dirichlet Green function in the approximate solution of the
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inverse RS boundary-value problem obtained in Section 2.11 of Chapter 2. The use of
the incoming-wave Green function in place of the outgoing-wave Green function with
boundary-value data was shown in that section to correspond to a stabilized form of field
back propagation. Thus, we can also express the stabilized approximate solution of the
inverse Kirchhoff diffraction problem directly in the space domain in the form

T̂ (ρ) = 2
∫

z0

d2ρ′ U(d)(r′, ẑ)
∂

∂z′
G−(r− r′),

where G− = G∗+ is the incoming-wave Green function in a non-dispersive medium and
r′ = (ρ′, z0) denotes a point on the diffraction plane.

7.6.2 The SVD formulation of the inverse diffraction problem

We again consider the Kirchhoff diffraction problem formulated for an aperture located in
the plane z = 0 and a normally incident plane wave via Eq. (7.42b). The inverse Kirchhoff
diffraction problem consists of inverting this equation for the transmittance function T (ρ)
given Dirichlet data U(d)(r, ẑ) specified over some plane z = z0 > 0. The spatial Fourier
transform of this equation over the data plane z = z0 yields T̃ (Kρ) according to Eq. (7.47a),
which reduces this problem to the classical problem of inverting the Fourier transform of
a space-limited function T (ρ) that we considered in Example 5.7 of Chapter 5. In princi-
ple the transform is specified over the entire Kρ plane, but in practice it will be limited to
the homogeneous region Kρ < k as discussed above. Thus, a more accurate formulation
of the problem is that of inverting the Fourier transform of a space-limited function from
frequency-limited data; i.e., to the classical Slepian–Pollak problem discussed in Exam-
ple 5.8 of Chapter 5.

We will first address the problem using the formulation outlined in Example 5.7, which
will yield an exact inversion (within the Kirchhoff approximation) if the spatial Fourier
transform of the diffracted field is exactly specified over the entire Kρ plane and a least-
squares approximate inversion otherwise. We then will briefly outline the use of the
Slepian–Pollak theory developed in Example 5.8, which yields an exact solution given
exact data only over the homogeneous region of the spectra Kρ < k and a least-squares
solution given noisy data over Kρ < k.

7.6.3 The full data case

For simplicity we will consider the 2D version of the Kirchhoff inverse diffraction problem,
in which the aperture is a slit of known width 2a0 centered along the x axis of the aperture
plane z = 0 and the incident wave is a unit-amplitude plane wave having unit propagation
vector s0 = ẑ. The extension to 2D rectangular apertures and arbitrary incident waves is
straightforward, while the extension to circular and other separable apertures can be treated
using eigenfunctions of the homogeneous Helmholtz equation such as those presented in
Chapter 3.

The 2D version of Eq. (7.47a) for a normally incident plane wave can be expressed in
the simplified form
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1√
2π

∫ a0

−a0

dx T (x)e−iKx = f (K), (7.48a)

where

f (K) = 1√
2π

Ũ(d)(K, z0)e−iγ z0 , (7.48b)

with

γ =
{√

k2 − K2 K < k,

+i
√

K2 − k2 K > k.

We now define the Hilbert spaces HT of square-integrable functions over (−a0,+a0) and
Hf of square-integrable functions of the spatial frequency variable K over (−∞,∞) and
introduce the operator T̂ : HT → Hf ,

T̂ = 1√
2π

∫ a0

−a0

dx e−iKx,

used in Example 5.7 of Chapter 5. In terms of this operator, which we will refer to here as
the “diffraction operator,” we can write Eq. (7.48a) in the abstract form

T̂T (K) = f (K). (7.49a)

To invert Eq. (7.48b) for the transmittance function T (x) we will employ the singular
value decomposition (SVD) of T̂ that was derived in Example 5.7 of Chapter 5. The SVD
was reviewed in some detail in that chapter, where it was employed to solve the inverse
source problem (ISP) for the scalar Helmholtz equation in a generally dispersive medium.
The advantage of the SVD is that it is a “tried and true” scheme for solving a host of linear
inverse problems and can be used here to solve the inverse diffraction problem in a very
simple and elegant manner.

The SVD of the operator T̂ consists of the set {vp(x) ∈ HT , up(K) ∈ Hf , σp ≥ 0} of
singular functions vp, up and associated singular values σp that are indexed by the integer
p = −∞, . . . ,+∞ and satisfy the set of equations

T̂vp = σpup, T̂†up = σpvp. (7.50)

In these equations T̂† : Hf → HT is the adjoint operator

T̂† = 1√
2π

Ma0

∫ +∞
−∞

dK eiKx,

where

Ma0 =
{

1 −a0 ≤ x ≤ a0

0 else

is a masking operator that space limits the result of the integral transform defining T̂† to
the aperture interval (−a0,+a0). The steps involved in computing an adjoint operator are
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discussed in detail in Chapter 5. The singular functions each comprise an orthonormal basis
in their respective Hilbert spaces so that

T (x) =
∞∑

p=−∞

〈
vp, T

〉
HT

vp(x), f (K) =
∑

p

〈
up, f

〉
Hf

up(K), (7.51)

where 〈·, ·〉H stands for the standard inner product in the Hilbert space H.
The solution to the inverse diffraction problem is obtained by substituting the above

expansions into Eq. (7.49a), making use of Eq. (7.50) and solving for the (unknown)
expansion coefficients

〈
vp, T

〉
HT

in terms of the known coefficients
〈
up, f

〉
Hf

. We obtain

the result

T̂

T (x)︷ ︸︸ ︷⎡⎣∑
p

〈
vp, T

〉
HT

vp(x)

⎤⎦ =
f (K)︷ ︸︸ ︷∑

p

〈
up, f

〉
Hf

up(K)

⇓
〈
vp, T

〉
HT
=
〈
up, f

〉
Hf

σp
, σp > 0.

The transmittance function is thus given by

T (x) =
∑
σp>0

〈
up, f

〉
Hf

σp
vp(x). (7.52)

The solution is completed by employing the SVD of T̂ that was obtained in Example 5.7.
In that example we showed that

vp(x) =Ma0

e
i πa0

px

√
2a0

, up(K) = sinc[(a0/π )(K − (π/a0)p)]√
π/a0

, σp = 1,

where

sinc x = sin(πx)

πx

is the “sinc function.” On substituting the above into Eq. (7.52) we obtain

T (x) =Ma0

∞∑
p=−∞

〈
up, f

〉
Hf

e
i πa0

px

√
2a0

,

where 〈
up, f

〉
Hf
=
∫ ∞
−∞

dK f (K)
sinc[(a0/π )(K − (π/a0)p)]√

π/a0
.

The above equations yield an exact (within the L2 norm of the Hilbert space HT ) solu-
tion of the Kirchhoff inverse diffraction problem. However, it requires that the Fourier
transform of the diffracted field be specified over the entire line −∞ < K < ∞,
which is unrealistic in practice. However, the set of orthonormal singular functions
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up(K), p = −∞, . . . ,+∞, forms a basis for expanding the diffraction pattern into the
classical Whittaker–Shannon sinc-function expansion of band-limited functions (Arsac,
1984). In particular, on substituting the singular functions up(K) into the expansion of the
diffracted field transform in Eq. (7.51) we find that

f (K) =
∑

p

〈
up, f

〉
Hf

sinc[(a0/π )(K − (π/a0)p)]√
π/a0

, (7.53)

which is the Whittaker–Shannon sinc-function expansion of the band-limited function
f (K). This expansion allows us to identify the expansion coefficients

〈
up, f

〉
Hf

not only

as the projections of the transform onto the up but also as the samples of the f (K) at the
discrete sample points Kp = (π/a0)p. By this means we can then obtain a least-squares
approximation to the transmission function from computations of the diffracted field trans-
form over some set of points, say Kp, p = −P,−P+1, . . . , P−1, P, which then yields the
least-squares approximation

T (x) ≈Ma0

P∑
p=−P

f (Kp)e
i πa0

px
. (7.54)

The problem with the solution of the Kirchhoff diffraction problem obtained above is
that the Fourier transform Ũ(d)(K, z0) of the diffracted field over the line z0 will decay
exponentially fast while the factor exp(−iγ z0) will grow exponentially fast when |K| > k
so that the sample values

f (Kp) = 1√
2π

Ũ(d)(Kp, z0)e−iγpz0

will be unreliable over this range; i.e., when γp is purely positive imaginary. The sampling
series Eq. (7.54) can then only return a least-squares solution with the maximum value
of the index P in Eq. (7.54) determined from the condition |KP| = k. A way around this
difficulty is provided by the so-called Slepian–Pollak theory, which we will review next.

7.6.4 The Slepian–Pollak theory

Slepian and Pollak (Slepian and Pollak, 1961) were able to obtain the SVD of the
frequency-limited Fourier transform of a space (or time)-limited function in a famous paper
published in the Bell System Technical Journal. In particular, they obtained the SVD of the
linear transform

T̂ = 1√
2π

MK0

∫ a0

−a0

dx e−iKx,

where MK0 is the masking operator that frequency limits the transform to−K0 ≤ K ≤ K0.
In inverse diffraction theory we can only expect to determine the transform of the diffracted
field over the homogeneous region of the spectra corresponding to K0 = k0 = 2π/λ, so this
theory is ideally suited to realistically treating the Kirchhoff inverse diffraction problem.
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Using results from Sturm–Liouville theory for the homogeneous Helmholtz equation
Slepian and Pollak showed that the SVD of the operator T̂ is given in terms of the angular
prolate-spheroidal wavefunctions S0,n(c, ξ ) (cf. Example 5.8 of Chapter 5) by

vp(x) =Ma0

i−p/2S0p(c, x/a0)√
a0||S0p|| , up(K) =MK0

ip/2S0p(c, K/K0)√
K0||S0p|| ,

σp =
√

K0a0|Kp|,
where c is a constant parameter and

Kn = 2in√
2π

R(1)
on (c, 1),

with R(1)
on (c, 1) being the radial prolate-spheroidal wavefunctions. Moreover, and most

importantly, these functions are orthogonal over the intervals −1 < ξ < +1 and
−1 < ω < +1 with norm

||S0,n||2 =
∫ +1

−1
dξ |S0,n(c, ξ )|2.

The singular functions {vp(x)} form an orthonormal basis in L2(−a0,+a0), while the sin-
gular functions {up(K)} form an orthonormal basis in L2(−K0,+K0). These two sets then
can be used to (exactly) solve the inverse diffraction problem within the Kirchhoff approx-
imation. We will not delve further into this solution of the inverse diffraction problem in
this book since this approach and solution are very well documented in the open literature
both by Slepian and Pollak in their original paper (Slepian and Pollak, 1961) and by many
other workers who have extended their work in various directions.

7.7 Determining the shape of a surface scatterer

A problem of some interest in acoustic and electromagnetic scattering is that of determin-
ing the shape of an obstacle from measurements of scattered field data generated in a suite
of scattering experiments. In the classic form of this problem the scattering process is gov-
erned by the Helmholtz equation, the field satisfies homogeneous Dirichlet or Neumann
conditions over the scatterer surface and the data are values of the scattering amplitude
specified over a set of incident and scattering directions and/or over a band of frequencies.
The inverse (scattering) problem then consists of determining the surface ∂τ0 from this data
set. We briefly discussed this problem within the linearized physical-optics (PO) approxi-
mation in Section 7.4 for the case in which the data consist of the back-scattering amplitude
f (−s0, s0) specified over a set of wavelengths (frequencies) for incident wave directions s0

spanning the unit sphere and for a data set consisting of the scattering amplitude specified
over a set of incident and scattering directions at a single frequency. These approaches are
based on the use of an approximate linearized forward-scattering model that related the
surface (via the characteristic function) to the scattering amplitude in much the same way
as the Born or Rytov linearized scattering models developed in the previous chapter relate
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the scattering potential of a penetrable scatterer to the scattering amplitude. An approxi-
mate Fourier inversion of these models then yields an approximate characteristic function
from which the surface can be estimated.

In this section we will develop the inversion scheme based on the generalized Bojarski
transformation obtained in Section 7.4 that employs the scattering amplitude specified over
a set of incident and scattering wave directions at a single frequency. We will also examine
alternative approaches to the surface-reconstruction problem that do not rely on a linearized
scattering model and are based on the simple requirement that the sum of the incident
and scattered fields satisfy homogeneous Dirichlet conditions on the surface ∂τ0. One
algorithm for accomplishing this is to compute the scattered field over all of space from the
scattering amplitude and determine ∂τ0 from the requirement that U(in)(r) + U(s)(r) = 0
when r ∈ ∂τ0. To implement this procedure it is, of course, necessary to compute the scat-
tered field from the scattering amplitude or, in other words, to back propagate the scattered
field into the region occupied by the scatterer. As we showed in Chapter 4, evanescent
components of the scattered field cannot be reliably determined from field measurements
performed more than a few wavelengths from the scatterer, so this procedure will have an
inherent error associated with it that can possibly result in large errors for the surface recon-
struction. However, in many cases it can yield good results and, most importantly, does not
rely on a linearized model for the scattering amplitude. We will review the procedure in
the following section.

An alternative approach to the surface reconstruction process that is also model-
independent is presented in Section 7.7.2. In that approach we still use the requirement
that the field satisfy homogeneous Dirichlet conditions on ∂τ0 as our basic algorithm for
determining the object shape but avoid the problem of determining the scattered field over
∂τ0 by selecting an incident field that results in a scattered field having small magnitude
outside and on the object’s surface. The required incident field is shown to be readily com-
puted from the SVD of the scattering amplitude and the surface is then (approximately)
determined by the condition that the magnitude of the computed incident field |U(in)(r)|
be small when the field point r → ∂τ0. A simple example illustrating the method devel-
oped here is presented and compared with results obtained by use of the earlier schemes
developed in Section 7.7.1.

7.7.1 Surface reconstruction via back propagation

This approach to the surface-reconstruction problem is based on the requirement that the
total field on the surface of a Dirichlet scatterer must vanish. If then the total field is back
propagated from some arbitrary surface surrounding the scatterer its surface can be esti-
mated from the locus of points over which the back-propagated field vanishes or achieves
a minimum. Alternatively, the scattered field can be back propagated and the scatterer sur-
face estimated from the sum of the known incident wave and the back-propagated scattered
wavefield. The scheme is not exact, of course, due to the fact that evanescent components
of the scattered field cannot be obtained at more than a wavelength from the scatterer, but
can be expected to be accurate so long as the scatterer surface does not vary significantly
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on the scale of the wavelength. Note also that, unlike the PO approximation, the scatter-
ing model on which the method is based is exact so that the procedure seeks an approx-
imate solution to an exactly posed problem. This is in contrast to many of the linearized
inverse scattering schemes that rely on approximate forward-scattering models such as the
PO, Born and Rytov approximations and seek exact inversions of approximate scattering
models.

To test the algorithm, we considered a circular Dirichlet cylinder with plane-wave illu-
mination such that the scattered field data are given by the scattering amplitude of the
cylinder. The back propagation was implemented using the angular-spectrum expansion
limited to homogeneous waves as developed in Section 4.3 of Chapter 4. We used the
angle-variable form of the expansion presented for 2D wavefields in Section 4.6, which,
for scattered fields, assumes the form

U(s)(r, s0) =
√

k

2π
ei π4

∫
C(h)
±

dα f (s, s0)eik0s·r,

where f (s, s0) is the scattering amplitude and the integration contours C(h)
+ and C(h)

− are the
α-integration contours shown in Fig. 4.9 of Section 4.6 limited to the homogeneous region.
In the treatment presented here we assume that the cylinder axis is aligned along the z axis
of a Cartesian system and the incident plane wave propagates along the positive-x axis
in the (x, y) plane. The angle α in the above expansion is thus the polar angle measured
relative to the x axis and the expansion reduces to

U(s)(x, y) =
√

k

2π
ei π4

∫ π
2

− π2
dα f (α)eik0(x cosα+y sinα),

where f (α) is the scattering amplitude f (α,α0) with the polar angle of the incident plane
wave α0 = 0 and we have restricted our attention to the forward-scattered field propagating
into the r.h.s. x > 0.

We show in Fig. 7.9 the magnitude of the back-propagated total and scattered fields
from a Dirichlet cylinder having a radius of 5λ and evaluated over a square 32 wavelengths
on a side. The back-propagated fields were generated from the scattering amplitude over
the right half-plane and so the back-propagated fields can be expected to be valid only
outside the line x = 5λ defined by the edge of the cylinder where the (exact) angular-
spectrum expansion converges. However, on comparison of this figure with the exact total
and scattered fields presented in Fig. 7.2 it is seen that the back-propagated fields appear
reasonably accurate for x values lying within the strip −5λ < x < +5λ occupied by the
cylinder. Note also that the shape of the cylinder is clearly defined by the minimum of the
back-propagated total field.

A better estimate of the shape of the cylinder is obtained by employing a number of
back-propagated fields from incident plane waves whose propagation directions vary over
the unit circle. The simplest such algorithm is to simply incoherently sum the set of back-
propagated images of the magnitude of the total back-propagated fields resulting from the
different incident plane waves. Alternatively, if we note that the magnitude squared of the
total back-propagated field reduces to
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�Fig. 7.9 Mesh plots of the absolute values of the total (left) and scattered (right) back-propagated fields from a circular
cylinder having a radius of a0 = 5λ.

|Ubp|2 = |U(s)
bp |2 + 1+ 2�[e−ik0zU(s)

bp ]

we see that the presence of the square of the magnitude of the scattered field will blur
out the sharpness of the image of the shape of the scatterer so that a superior estimate
is obtained by summing the quantity �[e−ik0zU(s)

bp ] over the different incident propaga-
tion directions. Because the cylinder is circularly symmetric, these algorithms are imple-
mented by rotating either the magnitude of the total field or �[e−ik0zU(s)

bp ] obtained for a
single incident wave direction through a set of angles angle φn = n δφ, n = 1, 2, . . . , N,
spanning 2π radians and then summing the rotated images. The resulting images for a
cylinder having a radius of a0 = 5λ are shown in Fig. 7.10 for N = 100 and radial cuts
through these images are shown in Fig. 7.11. It is clear from the radial cuts that the back-
propagated demodulated images yield an excellent image of the cylinder and of the cylinder
radius.

Inversion based on the PO approximation

The inversion scheme developed above is very similar to the inversion of the PO model
Eq. (7.35b) via the filtered back-propagation (FBP) algorithm developed in the following
chapter for linearized inverse scattering of penetrable scatterers. In particular, it fol-
lows from that equation that the spatial Fourier transform of −∇2�(r) is proportional to
Fg(s, s0), which is obtained from the scattering amplitude via the equation

Fg(s, s0) = f (s, s0)+ f ∗(−s,−s0). (7.55)

If s and s0 are allowed to vary over the entire unit sphere then Fg(s, s0) specifies the trans-
form over the interior of the Ewald limiting sphere shown in Fig. 6.3 within the context
of the Born approximation of penetrable scatterers. The Ewald limiting sphere is centered
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�Fig. 7.10 Images of the superposition of the magnitudes of 100 back-propagated total fields from a circular cylinder having a
radius of a0 = 5λ (left) and of the demodulated back-propagated scattered fields�[e−ik0zU(s)bp]
(right).
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�Fig. 7.11 Radial cuts through the images shown in Fig. 7.10. The solid lines represent the cut through the sum of the
back-propagated demodulated fields and the dashed lines represent the cut through the sum of the magnitudes of
the total back-propagated fields. The radial cuts have been normalized in amplitude for comparison purposes.
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at the origin and has a radius of 2k0 in Fourier space. For the surface scattering and clas-
sical diffraction tomography treated in the following chapter it is preferable to limit the
scattering directions s to be in the forward direction s · s0 > 0, in which case this quantity
specifies the transform over the interior of a smaller sphere having radius

√
2k0.

For 2D objects the FBP algorithm derived in the following chapter generates an image
of −∇2�(r) via the algorithm

I(r) = ∓ k2
0

8π2

∫ π

−π
dα0

∫ π
2

− π2
dα
√

1− (s · s0)2Fg(s, s0)eik0(s−s0)·r, (7.56)

where, as above, the minus sign is used for a Neumann scatterer and the plus for a Dirichlet
scatterer, the angle α is the polar angle of s measured relative to the unit propagation vector
s0 and α0 is the polar angle of s0 measured relative to the positive-x axis. It then follows
that s · s0 = cosα so that

√
1− (s · s0)2 = |sinα|. Moreover,

(s− s0) · r = ξ cosα + η(sinα − 1), (7.57)

where (ξ , η) are the Cartesian coordinates in the (x, y) plane rotated through the angle α0

so that η̂0 = s0 as illustrated in Fig. 8.3 in the following chapter. On substituting for Fg

from Eq. (7.55) and making use of Eq. (7.57) we find that Eq. (7.56) simplifies to

I(r) = ∓ k2
0

4π2
�
{∫ π

−π
dα0

∫ π
2

− π2
dα|sinα| f (α,α0)eik0[ξ sinα+η(cosα−1)]

}
. (7.58)

We implemented the above algorithm for the Dirichlet cylinder considered in the inver-
sions given above, where f (α,α0) = f (α) is independent of the incident wave direction and
depends only on the angle α measured relative to the η axis. For this circularly symmetric
case the algorithm is implemented exactly along the lines used in those earlier inversions.
In particular, except for the presence of the filter |sinα| in the FBP algorithm (hence the
adjective filtered) this algorithm consists of back propagation followed by demodulation
and is implemented in the same manner as is used in the filtered back-propagation algo-
rithms that will be employed in the following chapter.

The results of the simulation are presented in Fig. 7.12. For a Dirichlet cylinder the
characteristic function is given by �(r) = 1−θ (r−a0), where θ (·) is the unit step function
and a0 is the radius of the cylinder. The FBP algorithm should then generate a filtered
version of

−∇2[1− θ (r − a0)] = 1

a0
δ(r − a0)+ δ′(r − a0),

where δ′(·) is the first derivative of the Dirac delta function (the doublet). The presence of
the delta function and doublet on the surface of the cylinder is clearly evident in this figure,
and an excellent estimate of the cylinder’s surface is obtained.

7.7.2 The SVD approach to surface reconstruction

To develop this approach to surface inverse scattering we first have to review some basic
material that we developed in earlier chapters. We showed in Section 3.2.1 of Chapter 3
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�Fig. 7.12 An image generated using the filtered back-propagation algorithm (left) with 100 views of the scatterer and a radial
cut through the center of the image (solid line in the plot on the right). Also shown for comparison (dotted line in the
plot on the right) is a radial cut through the sum of the back-propagated images shown in Fig. 7.11. The radial cuts
have been normalized in amplitude for comparison purposes.

that an arbitrary incident wave satisfying the homogeneous Helmholtz equation over all of
space can be represented via the plane-wave expansion

U(in)(r, ν) =
∫ 2π

0
dβ0

∫ π

0
sinα0 dα0 A(s0, ν)eik0s0·r, (7.59a)

in which s0 is a unit propagation vector having direction cosines sinα0 cosβ0,
sinα0 sinβ0, cosα0 and the plane-wave amplitude A(s0, ν) is an arbitrary square-integrable
function on the unit sphere s0 ∈ �s0 . We have included the parameter ν in the arguments
of the incident wave and its plane-wave amplitude to keep track of possible multiple-
scattering experiments using different incident waves. We also showed in Section 6.5 that
the scattered field from a compactly supported scattering object resulting from the above
incident field can also be expressed in a plane-wave (angular-spectrum) expansion of the
general form

U(s)(r, ν) = ik0

2π

∫ 2π

0
dβ
∫ π/2−i∞

0
sinα dα f (s, ν)eik0s·r, (7.59b)
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where f (s, ν) is the analytic continuation of the generalized scattering amplitude of the
scattered field, i.e.,

U(s)(rs, ν) ∼ f (s, ν)
eik0r

r
,

as k0r→∞ in the direction s. The plane-wave expansion Eq. (7.59b) is valid for any field
point r = (x, y, z > z0), where z0 is the z coordinate of the closest (x, y) bounding plane to
the object surface ∂τ0. Since the orientation of the Cartesian (x, y, z) coordinate system is
arbitrary, an expansion of the form Eq. (7.59b) is possible for every point lying outside the
smallest convex surface that completely encloses the scattering volume τ0.

The detailed form of the α contour of integration in Eq. (7.59b) is unimportant due
to the known analyticity of f (s, ν). Thus, this contour can be selected to run along the
real-α axis from α = 0 to α = π/2 and then parallel to the imaginary axis from α =
π/2 to α = π/2 − i∞, corresponding to the decomposition of the scattered field into a
homogeneous part U(s)

h and an evanescent part U(s)
e . The homogeneous part of the scattered

field is a superposition of unattenuated homogeneous plane waves that all propagate into
the half-space z > 0, while the evanescent part is a superposition of plane waves that
propagate perpendicular to the z axis and attenuate exponentially with propagation distance
z from the boundary plane z = z0. For this reason, as we discussed in Chapter 4, only the
homogeneous part of the scattered field can be reliably computed from scattered field data
collected at more than a few wavelengths from the scattering volume τ0.

We also showed in Section 6.5 that the scattered-field plane-wave amplitude (angular
spectra) f (s, ν) is related to the incident-field plane-wave amplitude A(s0, ν) through the
integral transform

f (s, ν) =
∫ 2π

0
dβ0

∫ π

0
sinα0 dα0 f (s, s0)A(s0, ν), (7.59c)

where f (s, s0) is the (plane-wave) scattering amplitude of the scatterer. The above mapping
holds for all real and complex unit vectors s, so knowledge of the incident-field plane-wave
amplitude and the scattering amplitude can, in principle, uniquely and completely deter-
mine both the homogeneous part and the evanescent part of the scattered field. However,
this would require an analytic continuation of the scattering amplitude onto complex unit
vectors s, which is highly ill-posed and not at all practical in any real-world application.
The basic underlying reason for the ill-posed nature of this operation goes back to our
earlier remarks regarding the irrecoverable loss of information when the scattered field
measurements are performed at more than a few wavelengths from the scattering volume.

SVD of the scattering amplitude andmodal expansion of the fields

The transform Eq. (7.59c) defines a linear mapping T̂ : L2(�s0 )→ L2(�s) that admits the
SVD (see Section 5.4.2 of Chapter 5)

T̂vp = σpup, T̂†up = σpvp,
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where p = |p| and the singular values σp ≥ 0, p = 0, 1, . . . , are ordered from largest
(p = 0) to smallest and have a limit point of zero at p = ∞; i.e., limp→∞ σp = 0. We
have indexed the singular vectors {vp(s0), up(s)} with the vector p since, in general, each
singular value will be degenerate.

Associated with each pair of plane-wave amplitudes (singular vectors) {vp(s0), up(s)}
is a pair of incident and scattered fields {Vp(r), σpUp(r)} computed from the plane-wave
expansions Eqs. (7.59); i.e.,

Vp(r) =
∫ 2π

0
dβ0

∫ π

0
sinα0 dα0 vp(s0)eik0s0·r, (7.60a)

Up(r) = ik0

2π

∫ 2π

0
dβ
∫ π−i∞

0
sinα dα up(s)eik0s·r ∼ up(r̂)

eik0r

r
, k0r→∞, (7.60b)

such that σpUp(r) is the scattered field generated from the incident field Vp(r). More-
over, since the singular sets {vp, p = 0, 1, . . .} and {up, p = 0, 1, . . .} are complete sets of
orthonormal functions in �s0 and �s, respectively, it follows that any set of plane-wave
amplitudes A(s0, ν) and f (s, ν) can be represented in the forms

A(s0, ν) =
∞∑

p=0

Ap(ν)vp(s0), f (s, ν) =
∞∑

p=0

σpAp(ν)up(s),

from which we conclude that the incident field and the associated scattered field can be
represented via the expansions

V (in)(r) =
∞∑

p=0

Ap(ν)Vp(r), U(s)(r) =
∞∑

p=0

σpAp(ν)Up(r), (7.61a)

where the expansion coefficients {Ap} must satisfy the condition

∞∑
p=0

|Ap|2 <∞

but are otherwise arbitrary.

Determining a Dirichlet surface from themodal expansions

The total field (incident plus scattered) from a Dirichlet surface must satisfy homo-
geneous boundary conditions on the surface ∂τ0 and this includes the modal pair
{Vp(r), σpUp(r)}; i.e.,

Vp(r)+ σpUp(r) = 0, r = r0.

It then follows that

lim
r→r0

∞∑
p=0

Ap(ν)F(Vp(r)+ σpUp(r)) = 0, (7.62)

where F(x) is an arbitrary non-negative function that is zero at x = 0. Strictly speak-
ing, the above results apply only if the surface ∂τ0 is convex (see the discussion under
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Eq. (7.59b)). However, the plane-wave expansions of the individual modal fields Up(r) can
be expected to converge everywhere outside the origin so that any finite series approxima-
tions of Eq. (7.62) should apply to general, non-convex boundaries.

As discussed earlier, only the homogeneous part of the scattered field can be reliably
computed from far-field data, and this applies also to the modal fields Up(r). Thus, the algo-
rithm Eq. (7.62) will, in general, lead to errors in determining the boundary ∂τ0 because of
inaccuracies in the computation of these modal fields. However, we can avoid this problem
by selecting the expansion coefficients Ap so as to minimize the scattered-field contribu-
tion to these equations (Luke and Devaney, 2007). This is easily accomplished by setting a
cutoff singular index P0 such that σp < ε, ∀p > P0, where ε is some small parameter, and
then demanding that Ap = 0, ∀p < P0. Equation (7.62) then reduces to the form

lim
r→r0

P1∑
p=P0

Ap(ν)F(Vp(r)+ σpUp(r)) ≈ lim
r→r0

P1∑
p=P0

Ap(ν)F(Vp(r)) ≈ 0, (7.63)

where P1 is some maximum index value that depends on the specific application.
The success of the above algorithm hinges on the facts that (1) the singular values σp <

ε, ∀p ≥ P0, and (2) the amplitude of each of the modal fields Up(r) remains bounded in
the vicinity of the boundary ∂τ0. To examine this second condition in more depth we define
the scattered-field energy radiated out of the scattering volume τ0 in any of these modal
fields in the usual manner as

Ep = 1

k

∫
∂τ0

dS0 Up
∗(r0)

∂

∂n0
Up(r0) =

∫
�s

d�s|up(s)|2 = 1,

where r0 is a general field point on the scattering surface ∂τ0 and we have made use of
Eq. (7.60b). It then follows that the individual scattered-field modes must remain bounded
as r→ r0 ∈ ∂τ0 so that the algorithm Eq. (7.63) will be valid.

Example 7.1 As an example we consider 2D scattering from a cylinder over which the
field satisfies homogeneous Dirichlet conditions. The scattering amplitude for a Dirichlet
cylinder centered on the origin and having radius a0 was found in Section 7.2.3 to be
given by

f (α,α0) = −
√

2

πk0
e−i π4

∞∑
n=−∞

Jn(k0a0)

H+n (k0a0)
ein(α−α0). (7.64)

It is easy to verify that the singular system {vp, up, σp} is, in this case, given by

vp(α0) = 1√
2π

e±ipα0 , up(α) = eiφp

√
2π

e±ipα , σp =
√

8π

k0

∣∣∣∣ Jp(k0a0)

Hp(k0a0)

∣∣∣∣ , (7.65a)

where

φp = 3π

4
+ Arg[Jp(k0a0)/Hp(k0a0)] (7.65b)

and the plus sign gives one of the two singular vectors and the minus sign the second for
each singular value σp.
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The modal fields Vp and Up are constructed from the 2D versions of the plane-wave
expansions Eq. (7.60) with the plane-wave amplitudes set equal to vp(s0) and up(s). We
showed in Chapters 3 and 4 that these 2D versions assume the form

Vp(r) =
∫ π

−π
dα0 vp(α0)eik0s0·r, Up(r) =

√
k

2π
ei π4

∫
C±

dα up(α)eik0s·r, (7.66)

where α0 and α are, respectively, the polar angles of the unit propagation vectors s0 and s.
On substituting for the singular vectors from Eqs. (7.65a) we find that

Vp(r, θ ) = √2π ipJp(k0r)e±ipθ , Up(r, θ ) = √2πeiφp ipH+p (k0r)e±ipθ , (7.67)

where (r, θ ) are the cylindrical polar coordinates of the field vector r. We selected the
functional F(x) in Eqs. (7.63) to be F(x) = |x|2 and the expansion coefficients Ap = 1 so
that this equation reduces to

lim
r→a

P1∑
p=P0

∣∣∣∣Jp(k0r)− Jp(k0a0)

Hp(k0a0)
Hp(k0r)

∣∣∣∣2 ≈ lim
r→a

P1∑
p=P0

|Jp(k0r)|2 = 0, (7.68)

with P1 > P0 and P0 such that σp < ε, ∀p > P0.
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�Fig. 7.13 The top plot shows the singular valuesσp = |Jp(k0a0)/Hp(k0a0)| for a cylinder having radius a = 35. In the bottom
part we show plots of the l.h.s. of Eq. (7.68) and the r.h.s. of this equation for P0 = [k0a0] and for P1 = P0 + 20, for
a = 35. We also show a plot of the r.h.s. of this equation for the case in which P0 = [k0a0]+ 4.



331 Further reading

We present a plot of the singular values σp = |Jp(k0a0)/Hp(k0a0)| using unit wavelength
(k = 2π ) and cylinder radius a = 35λ = 35 in the top part of Fig. 7.13. It is clear from
this figure that the cutoff P0 ≈ [k0a0] ≈ 220, where [x] indicates the nearest integer
approximation of x. In the bottom part of Fig. 7.13 we show plots of the sums on the
left- and right-hand sides of Eq. (7.68) for the cases in which P0 = [k0a0] and P0 =
[k0a0]+ 4 and P1 = P0 + 20. We obtained similar results for other choices of the cylinder
radius a and index limits P0 and P1 so long as P0 > [k0a0] is not significantly greater
than [k0a0].

Further reading

An excellent historical account of diffraction theory is given in Baker and Copson (1950).
More modern treatments are available in Born and Wolf (1999), Cowley (1966) and
Arsac (1984). The earliest papers on inverse scattering from surfaces include those by
Lewis (Lewis, 1969), which was based on the physical-optics approximation, and Imbriale
and Mittra (Imbriale and Mittra, 1970), who employed field back propagation to gener-
ate the inversions. A comprehensive and well-researched and -tested procedure for inverse
scattering from surfaces within the framework of exact scattering theory is the so-called
“linear sampling method” developed by Kirsch, Colton and co-workers (Kirsch, 1998;
Kirsch and Ritter, 2000; Haddar and Piana, 2003). Anyone interested in this subject should
certainly consult their work before beginning any research in the area; see also Colton
and Kress (1992, 1991). Cheney (Cheney, 2001) has related this method to the MUSIC
algorithm which will be presented in Chapter 10, while direct application of the MUSIC
algorithm to the problem of inverse surface scattering was presented in Solna et al. (2006)
and Marengo et al. (2007). Pierri and co-workers have used the SVD to determine the shape
of metallic scatterers (Pierri et al., 2006) and also investigated the shape-reconstruction
problem using optical scattered intensities (Soldovieri and Pierri, 2008). Langenberg and
co-workers have developed a number of algorithms for non-destructive evaluation that are
based on inverse diffraction and inverse scattering, which are summarized in Langenberg
et al. (1999). A completely different approach to surface-structure determination that we
have not discussed is possible using the analytic properties of the scattering amplitude
and a generalized form (Damelin and Devaney, 2007; Kusiak and Sylvester, 2005; Hansen
et al., 2000) of the famous Paley–Wiener theorem (Paley and Wiener, 1934).

The application of inverse scattering in identifying and tracking targets has, of course,
been treated extensively within the military community, mostly using ad-hoc approaches.
Methods such as SAR, ISAR, etc. are closely related and can be developed in a rigorous
manner from the theories presented in this and the following chapter. Suggested reading
on such treatments of these imaging schemes is presented in Borden (1999, 2002) and
Cheney and Borden (2008, 2009). See also the tomography-based scheme presented in
Das and Boerner (1978).
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Problems

7.1 Prove that a square-integrable free field (one that satisfies the homogeneous
Helmholtz equation over all of space) has finite multipole moments.

7.2 Derive Eq. (7.5b).
7.3 Use the angular-spectrum expansions developed in Section 7.2.1 to compute the

outgoing-wave Green functions in the half-space z < 0 that satisfy homogeneous
Dirichlet and Neumann conditions on the plane z = 0.

7.4 Generalize the angular-spectrum expansions developed in Section 7.2.1 to the case
of an incident wave radiated by a source in the right half-space z > z0 and reflect-
ing from the plane z = z0, where it satisfies homogeneous Dirichlet or Neumann
conditions.

7.5 Derive the 2D versions of Eqs. (7.25).
7.6 Derive Eq. (7.26a).
7.7 Derive the generalized scattering amplitudes for Dirichlet and Neumann surfaces

within the PO approximation

(1) from the definition of the PO scattered fields given in Eqs. (7.21) and
(2) from their plane-wave scattering amplitudes and the relationship Eq. (6.35b).
(3) Verify that they are the same and reduce to the plane-wave scattering amplitudes

for plane-wave incidence.

7.8 Compute the scattered field and scattering amplitude for plane-wave incidence within
the PO approximation for a Dirichlet sphere.

7.9 Use the scattering amplitude for a Dirichlet cylinder within the PO approximation
given in Section 7.3 to verify the 2D version of Eq. (7.31).

7.10 Use the scattering amplitude for a Dirichlet cylinder within the PO approximation
given in Section 7.3 to verify the 2D version of Eq. (7.35).

7.11 Derive the expression for the Kirchhoff diffraction pattern given in Eq. (7.46b).
7.12 Compute the Kirchhoff diffraction pattern of a circular disk as a function of the

transverse coordinates in an observation plane located at distance z from the center
of the disk.

7.13 Compute the diffraction pattern of the disk in Problem 7.12 in the far field as a
function of the unit vector s.

7.14 Give an argument for why the field diffracted by a circular aperture that subtends the
solid angle �0 from a source located in the l.h.s. is approximately given by

U(d)(r) ≈
∫
�0

d�sA
(in)(s)eik0s·r,

where A(s) is the angular spectra of the incident wave to the aperture. State the
requirements that must hold in order for the approximation to be accurate.

7.15 Derive Eq. (7.58) from Eq. (7.56).
7.16 Generalize the formulation developed in Example 7.1 to the case of a sphere.



8
Classical inverse scattering and

diffraction tomography

The “direct” or “forward” scattering problem was treated in the preceding two chapters,
where the goal was the computation of a scattered field given knowledge of the scattering
object and the incident wavefield. In the “inverse scattering problem” (ISCP) the goal is
the determination of the scattering object given knowledge of the incident wave and the
scattered wave over some restricted region of space. In Chapter 6 we treated so-called
“penetrable” scatterers, where the incident wave penetrates into the interior of the obsta-
cle, thus creating an “induced volume source” that then radiates as a conventional volume
source of the type treated in earlier chapters. In Chapter 7 we treated non-penetrable scat-
terers, where the interaction of the incident wave with the obstacle occurs only over the
object’s surface. We also treated certain inverse problems associated with non-penetrable
scatterers in that chapter that included inverse diffraction and the ISCP of determining the
shape of a Dirichlet or Neumann scatterer from its scattering amplitude. In this chapter we
will treat the ISCP for penetrable scatterers. We will also make the simplifying assumption
that the scattering object is embedded in a uniform lossless medium. This assumption will
be discarded in the next chapter, where we will treat scatterers embedded in non-uniform
and dispersive media.

We pointed out in Chapter 5 that the difficulty of the “inverse source problem” (ISP)
lies in the fact that the radiated field from which the source is to be determined is known
only over space points that lie in some restricted region of space that is outside the sup-
port of the (unknown) source. The same is true of the ISCP: if the scattered field is known
over all of space the scattering structure is easily determined. For example, for the poten-
tial scattering treated in Chapter 6 the total (incident plus scattered) field satisfies the
equation

[∇2 + k2
0 − V(r)]U(r, ν) = 0, (8.1)

where k0 is the background wavenumber, ν is a parameter that parameterizes the incident
wave and V(r) is the unknown scattering potential. If the scattered field is known over all
of space (including the interior of the scattering volume) then the scattering potential is
easily computed via the equation

V(r) = [∇2 + k2
0]U(r, ν)

U(r, ν)
.

In any real experiment the scattered field can be measured only at space points that are
exterior to the scattering volume, so the above simple solution to the ISCP is not possible.

333
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However, it is possible to estimate the interior field from exterior field measurements from
which an estimate of the scattering potential can be computed. Thus, in essence the ISCP
for penetrable scatterers reduces to the determination of the field interior to the scattering
volume from exterior scattered field measurements.

A similar situation was encountered in the ISP treated in Chapter 5. In that problem
measurements of the field radiated by an unknown source are performed in space regions
exterior to the source and are to be employed to estimate the unknown source. In the
first part of Chapter 5, where we treated the ISP for the wave equation, we employed
field back propagation to estimate the interior field from which we obtained an estimate
of the source. In the later part of Chapter 5, where we considered dispersive media, we
employed a formal mathematical approach to the problem that allowed us to estimate the
source directly from the exterior field without first estimating the interior field. We will
employ both of these approaches in this chapter, although, in fact, they are fundamentally
the same.

One major difference between the ISP and the ISCP is that in the ISCP we are allowed
the luxury of performing more than one scattering experiment using different incident
wavefields. Because of this we obtain multiple “looks” or “views” of the scattering poten-
tial. On the other hand, in the ISP the source is fixed and we get only a single view of
the source provided by its (single) radiated field. We will show later in this chapter that
these multiple views of a scattering potential provided by the scattered field data acquired
in multiple scattering experiments are analogous to the multiple views that are generated
in a suite of tomographic experiments in X-ray tomography. Indeed, we will show that
the ISCP can be cast in an entirely parallel form to that of computed tomography (CT),
in which form it becomes known as diffraction tomography (DT). We will examine both
formulations of the ISCP in this chapter.

Linearization of the inverse scattering problem

We showed in Chapters 6 and 7 that the process of scattering is linear when it is considered
to be a transformation from the incident wave to the scattered wave but non-linear when
it is considered to be a transformation from the scattering object to the scattered wave. It
then follows that the ISCP, which consists of deducing the scatterer from scattered field
data, reduces to the inversion of a set of non-linear transformations obtained over the suite
of scattering experiments. An obvious approach to this problem is to linearize this set
of transformations, thus reducing the problem to a form that can be solved using well-
established mathematical theory. In the case of potential scattering there are two standard
linearization schemes that were developed in Chapter 6: the Born approximation and the
Rytov approximation (Tatarski, 1961; Chernov, 1967; Ishimaru, 1999). We will employ
both linearization schemes in this chapter and, in the process, obtain the two formulations
of linearized inverse scattering alluded to above: (i) Born-based inverse scattering and (ii)
Rytov-based inverse scattering, which is commonly known as diffraction tomography. In
this chapter we will limit our attention to weakly scattering objects embedded in a lossless
and constant (uniform) background medium but generalize our results to a more general
class of linearized models in the following chapter.
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8.1 Born inverse scattering from far-field data

An important class of incident wavefields is constituted by the plane waves

U(in)(r, s0) = eik0s0·r,

where the parameter ν is now the unit propagation vector s0 of the incident plane wave.
The plane waves are important for a number of reasons, not the least of which is that, as
shown in Chapter 3, they form a complete set of elementary solutions to the homogeneous
Helmholtz equation into which any incident wavefield can be expanded. However, they are
also important in that certain controlled scattering experiments can directly employ a set
of incident plane waves in order to generate a suite of scattered field data for the ISCP. A
classic example of this occurs in structure determination in X-ray crystallography, where a
set of incident plane waves with unit propagation vectors s0 is employed and the scattered
field measurements are performed many wavelengths from the scattering object. Under
these conditions the scattered field is well approximated by its far-field expression

U(s)(rs; s0) ∼ f (s; s0)
eik0r

r
, k0r→∞,

where f (s; s0) is the scattering amplitude of the scattering object with s = r/r the unit vec-
tor along the direction of the field point r. Plane waves and far-field measurements are also
used in certain inverse scattering applications in electromagnetics, ultrasound and optics.
In all of these applications the ISCP reduces to the determination of a scattering poten-
tial V(r) from specification of its scattering amplitude1 f (s, s0) over some set of scattering
directions s and some set of incident-wave directions s0.

The scattering amplitude within the Born approximation was derived in Section 6.7.2 of
Chapter 6, where it was shown to be related to the scattering potential via the equation

fB(s, s0) = − 1

4π
Ṽ[k0(s− s0)], (8.2)

where

Ṽ(K) =
∫
τ0

d3r V(r)e−iK·r

is the spatial Fourier transform of the scattering potential and the subscript B on the scat-
tering amplitude denotes the Born approximation. For fixed incident-wave direction s0 the
locus of points

K = k0(s− s0)

1 A complication occurs in X-ray and optical scattering, where only intensity field measurements can be
performed. This problem, called the phase problem, can be solved in certain cases by employing holo-
graphic measurement systems (Yamaguchi and Zhang, 1997) or by use of so-called phase-retrieval algorithms
(Taylor, 1981; Maleki et al., 1992; Fienup, 1982; Guizar-Sicairos and Fienup, 2006; Gerchberg and Saxton,
1972; Gonsalves, 1976). See also Devaney (1989).
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lies on the surface of a sphere of radius k0 centered at the point K = −k0s0, which is known
as an Ewald sphere (Lipson and Cochran, 1966; Born and Wolf, 1999) (see Figure 6.3 of
Section 6.7.2). For any given incident-plane-wave direction s0 the scattering amplitude
specified over all scattering directions s ∈ � thus determines the scattering potential’s
spatial Fourier transform over the surface of a single Ewald sphere. Here, and from this
point onward, we denote the entire (real) unit sphere by � (i.e., � = 4π steradians) and
will denote limited regions of the unit sphere by �s or �s0 , etc. If a complete suite of
scattering experiments is performed, using all incident-wave directions s0 ∈ �, the totality
of resulting Ewald-sphere surfaces will sweep out the interior of a sphere of radius 2k0

called the Ewald limiting sphere. In this ideal case Ṽ(K) is then determined throughout the
interior of the Ewald limiting sphere and a low-pass-filtered approximation is obtained via
an inverse spatial Fourier transform:

VLP(r) = 1

(2π )3

∫
|K|≤2k0

d3K

−4π fB(s,s0)︷ ︸︸ ︷
Ṽ(K) eiK·r. (8.3)

We note that the spatial Fourier transform Ṽ(K) of a compactly supported scattering
potential is an entire analytic function of the spatial frequency vector K so that specifica-
tion of the Fourier transform throughout the interior of the Ewald limiting sphere allows
the transform to be determined over all of K space via the process of analytic continuation.
Within the linearized Born scattering model an exact and complete solution to the ISCP can
then be obtained via an inverse Fourier transform of the analytically continued transform.
However, as discussed in Section 6.7.2, such a procedure is computationally unstable and
the best that can be expected in practice is the low-pass-filtered approximation defined in
Eq. (8.3). Indeed, in any real experimental situation the scattering amplitude will be deter-
mined only over some finite discrete set of scattering directions s ∈ �s and for a finite
number of incident-wave directions s0 ∈ �s0 . One method of obtaining an approximate
solution to the linearized ISCP in such cases is then to interpolate the transform data spec-
ified over the set of Ewald spheres onto a regular cubic grid in K space from which VLP(r)
can then be approximated using an inverse discrete Fourier transform. This method has
been employed extensively in the ISCP, especially, within the discipline of X-ray crystal-
structure determination. We will treat this so-called “limited-view problem” later in this
and the following chapter.

8.1.1 Born inversion from ideal data

Equation (8.3) by itself is not actually an inversion algorithm for computing the low-pass-
filtered approximation to the scattering potential since it requires first an interpolation from
the Ewald-spherical surfaces K = k0(s − s0) over which Ṽ(K) is specified from the scat-
tering amplitude onto a regular grid in K space over which the integral can then be numer-
ically approximated. Alternatively, one can transform the 3D integral in Eq. (8.3) into a
4D integral over the two unit vectors s and s0, in which case no interpolation or other
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scheme is required in order to generate the low-pass-filtered approximation directly from
the scattering-amplitude data. In this section we will employ this second procedure and
derive a one-step inversion algorithm that employs the “natural” coordinate vectors s and
s0 rather than the spatial frequency vector K. We will assume that the scattering amplitude
is modeled exactly by the Born approximation according to Eq. (8.2) and that it is speci-
fied over all scattering s ∈ � and incident s0 ∈ �. Later we will relax these conditions and
examine situations of non-ideal data not exactly modeled by the Born approximation and
specified over limited sets of scattering and incident wave directions.

To obtain the desired inversion algorithm we will employ a generalized form of the
scheme that was used in Chapter 5 to solve the ISP for the wave equation. In the case of
the ISP we first back propagated the field data to generate an “image” of the source that was
related to the exact source by an integral equation (the Porter–Bojarski integral equation),
which was then solved to yield an estimate of the source. In the ISCP we perform a suite
of scattered-field experiments using different incident wavefields each of which generates
a scattered wave via the process of radiation by a different “induced source.” For plane-
wave incidence and within the Born approximation we showed in Chapter 6 that these
induced sources are related to the scattering potential and incident plane wave via the
equation

Q(r; s0) = V(r)eik0s0·r.

The scattered fields radiated by this set of induced sources gives us a set of separate “partial
views” of the scattering potential and we thus have to modify the scheme employed in the
ISP to accommodate this entire set of scattered (radiated) fields.

The required modification consists of first back propagating each of the separate
scattered-field data sets (each view of the scattering potential) to generate a set of inter-
mediate images of the induced sources for the various experiments. The next step con-
sists of “demodulating” each induced source image by multiplication by exp(−ik0s0 · r)
to obtain a partial image of the scattering potential and then summing the entire set of
partial view images. This summed image is found to be related to the scattering potential
via an integral equation that is then solved to yield an estimate of the scattering potential.
In the case of complete ideal Born data under consideration here, the estimate we gener-
ate is precisely the low-pass-filtered version of the scattering potential defined in Eq. (8.3)
and the solution we obtain is in the form of an integral over the unit vectors s0 and s as
desired.

In the case of far-field data and plane-wave incidence the back-propagated field �(r; s0)
generated in each experiment is given by Eq. (5.7a) of Example 5.2 of Chapter 5 with the
radiation pattern f (s) replaced by the scattering amplitude f (s, s0):

�(r; s0) = ik0

2π

∫
d�s fB(s, s0)eik0s·r,

where the integral is performed over the entire unit sphere �. It is mathematically conve-
nient to use the quantity


(r; s0) = i

2k0
�(r; s0) = − 1

4π

∫
d�s fB(s, s0)eik0s·r
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rather than �(r; s0) in the following development. The demodulated and summed set of
partial images is then found to be

F(r) =
∫

d�s0 e−ik0s0·r
(r; s0) = − 1

4π

∫
d�s0

∫
d�s fB(s, s0)eik0(s−s0)·r. (8.4a)

On making use of Eq. (8.2) we find that the above equation can be written in the form

F(r) = − 1

4π

∫
d�s0

∫
d�s

fB(s,s0)︷ ︸︸ ︷(
− 1

4π

∫
d3r′ V(r′)e−ik0(s−s0)·r′

)
eik0(s−s0)·r

=
∫

d3r′ V(r′)H(r− r′), (8.4b)

where

H(R) = 1

(4π )2

∫
d�s0

∫
d�s eik0(s−s0)·R, (8.4c)

with R = r− r′. Equation (8.4b) is an integral equation for the scattering potential V(r) in
terms of the demodulated and summed set of partial images F(r) that is directly computed
from the scattering amplitude fB via Eq. (8.4a). We will refer to Eq. (8.4b) as the ISCP
integral equation.

The kernel H(R) of the ISCP integral equation Eq. (8.4b) can be computed in closed
form by making use of the expansion

j0(k0R) = 1

4π

∫
d�s eik0s·R,

where j0 is the zeroth-order spherical Bessel function of the first kind and R = |R|. On
making use of the above result in Eq. (8.4c) we find that

H(R) =
∣∣∣∣ 1

4π

∫
d�s eik0s·R

∣∣∣∣2 = j20(k0R). (8.5)

The above closed-form expression for the kernel H(R) of the ISCP integral equation
allows us to compute its spatial Fourier transform H̃(K) and, hence, solve the integral
equation using standard Fourier-transform techniques. In particular, we have that2

H̃(K) =
∫

d3R j20(k0R)e−iK·R =
∫ ∞

0
R2 dR j20(k0R)

4π j0(k0R)︷ ︸︸ ︷∫
d�R e−iK·R

= 4π
∫ ∞

0
R2 dR j20(k0R)j0(k0R) =

{
π2/(k2

0K) if K ≤ 2k0,

0 else.
(8.6)

If we Fourier transform both sides of the ISCP integral equation Eq. (8.4b) we then obtain
the result

F̃(K) = H̃(K)Ṽ(K) =
{
π2/(k2

0K)Ṽ(K) if K ≤ 2k0,

0 else.
(8.7)

2 The final expression Eq. (8.6) is obtained using contour integration and the calculus of residues.
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It can be seen from Eq. (8.7) that the transform of the inhomogeneous term F(r) of the
ISCP integral equation defined in Eq. (8.4a) is band-limited to the Ewald limiting sphere
|K| = K ≤ 2k0. It then follows that F merely determines the transform of the scattering
potential within the Ewald limiting sphere or, equivalently, merely determines the low-
pass-filtered version VLP of the scattering potential defined in Eq. (8.3). In particular, for
K ≤ 2k0 we conclude from Eq. (8.7) that

ṼLP(K) = k2
0K

π2
F̃(K),

where

ṼLP(K) =
∫

d3r VLP(r)e−iK·r

is the spatial Fourier transform of the low-pass-filtered scattering potential.
The low-pass-filtered version of the scattering potential VLR is then found to be

VLP(r) = 1

(2π )3

∫
d3K

ṼLP(K)︷ ︸︸ ︷
k2

0K

π2
F̃(K) eiK·r. (8.8)

We can express the transform F̃(K) using Eq. (8.4a) in the form

F̃(K) =
∫

d3r

F(r)︷ ︸︸ ︷(
− 1

4π

∫
d�s0

∫
d�s fB(s, s0)eik0(s−s0)·r

)
e−iK·r

=− 2π2
∫

d�s0

∫
d�s fB(s, s0)δ(K− k0(s− s0)),

which, when substituted into Eq. (8.8), yields the result

VLP(r) = − k2
0

4π3

∫
d3K K

{∫
d�s0

∫
d�s fB(s, s0)δ(K− k0(s− s0))

}
eiK·r

⇓

VLP(r) = − k3
0

4π3

∫
d�s0

∫
d�s|s− s0| fB(s, s0)eik0(s−s0)·r, (8.9)

which is the sought-after inversion algorithm.

8.1.2 The filtered back-propagation algorithm

The inversion algorithm Eq. (8.9) is one version of the filtered back-propagation algorithm
(FBP algorithm) of linearized inverse scattering. We can decompose this algorithm into the
following three steps:
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• filtering of the scattering amplitude fB(s, s0) implemented by the multiplication

fB(s, s0) = ik2
0

2π2
|s− s0| fB(s, s0),

• back propagation of the filtered scattering amplitude at fixed incident-wave direction
followed by demodulation to yield the partial reconstructions

VLP(r; s0) =
demodulation︷ ︸︸ ︷
e−ik0s0·r

back propagation︷ ︸︸ ︷
ik0

2π

∫
d�s fB(s, s0)eik0s·r,

• summation of the partial reconstructions over all incident-wave directions s0 to yield
the low-pass-filtered version of the scattering potential

VLP(r) =
∫

d�0 VLP(r; s0).

We should note that the FBP algorithm employed with ideal (Born) data will generate
the theoretical ideal reconstruction

VLP(r) = 1

(2π )3

∫
K≤2k0

d3K Ṽ(K)eiK·r,

which is V(r) band-limited to the Ewald limiting sphere. If the transform Ṽ(K) extends out-
side this sphere the reconstruction can have pronounced ripples (the Gibbs phenomenon)
introduced by the hard band-limiting caused by the abrupt cutoff of the transform at
K = 2k0. To minimize these ripples a smoothing filter such as a Blackman, Hamming
or wavelet filter can be employed in the FBP algorithm. This then introduces one more
filter in the filtering process given above.

8.1.3 Inverse scattering identity

The inversion formula Eq. (8.9) is actually a mathematical identity between the low-pass-
filtered version VLP(r) of any function V(r) and its spatial Fourier transform defined over
the set of Ewald spheres. Indeed, if we replace fB(s, s0) in Eq. (8.4a) by−Ṽ[k0(s−s0)]/(4π )
we find that the inversion formula Eq. (8.9) yields the result

VLP(r) = k3
0

(2π )4

∫
d�s0

∫
d�s|s− s0|Ṽ[k0(s− s0)]eik0(s−s0)·r, (8.10a)

where Ṽ(K) is the spatial Fourier transform of an arbitrary function V(r) and VLP is its
low-pass-filtered version band-limited to the Ewald limiting sphere K ≤ 2k0. We will refer
to Eq. (8.10a) as the inverse scattering identity.

On setting r = 0 in Eq. (8.10a) and using the definition Eq. (8.3) of a low-pass-filtered
function we obtain the result
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∫
K≤2k0

d3K Ṽ(K) = k3
0

2π

∫
d�s0

∫
d�s|s− s0|Ṽ[k0(s− s0)]. (8.10b)

Equation (8.10b) is an identity that relates the integral of the transform of an arbitrary
function Ṽ(K) over the Ewald limiting sphere to the integral of this transform expressed as
a function of the difference vector k0(s− s0) and weighted by k3

0|s− s0|/(2π ). This identity
will be used later to evaluate integrals of the form appearing on the r.h.s. of Eq. (8.10b).

It is apparent that the inverse scattering identity Eq. (8.10a) and the identity Eq. (8.10b)
result from the change of integration variables

K = k0(s− s0).

Unfortunately, in three space dimensions this encompasses a change from three variables
(the Cartesian components of K) to four variables (the polar and azimuthal angles of the
unit vectors s and s0) and there does not appear to be any straightforward method for per-
forming this via simple change-of-variable techniques (see, however, Burridge and Beylkin
(1988)). However, the situation is quite different in two space dimensions, as the following
example illustrates.

Example 8.1 The inversion formula Eq. (8.9) and, in particular, the inverse scattering iden-
tity Eq. (8.10a) can be derived in the 2D case by a simple change of variables. In particular,
in two space dimensions we have that

VLP(ρ) = 1

(2π )2

∫
K≤2k0

d2K Ṽ(K)eiK·ρ , (8.11)

where ρ = xx̂+ yŷ and K = Kxx̂+ Kyŷ are vectors on the (x, y) plane. We now make the
change of integration variable

K = k0(s− s0)

=
Kx︷ ︸︸ ︷

k0(cosα − cosα0) x̂+
Ky︷ ︸︸ ︷

k0(sinα − sinα0) ŷ, (8.12)

where α and α0 are, respectively, the polar angles of the unit vectors s and s0. The Jacobian
of the above transformation is found to be

J = ∂(Kx, Ky)

∂(α,α0)

=
∣∣∣∣−k0 sinα k0 sinα0

k0 cosα −k0 cosα0

∣∣∣∣
= k2

0|sinα cosα0 − cosα sinα0|
= k2

0 sin(α − α0) = k2
0

√
1− cos2(α − α0)

= k2
0

√
1− (s · s0)2.

On making the change of variables Eq. (8.12) in Eq. (8.11) we then find that

VLP(ρ) = k2
0

2(2π )2

∫ π

−π
dα0

∫ π

−π
dα
√

1− (s · s0)2Ṽ[k0(s− s0)]eik0(s−s0)·ρ , (8.13)
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which is the inverse scattering identity in two space dimensions. Note that the extra fac-
tor of 1/2 appears due to double coverage in the integration on going from Eq. (8.11) to
Eq. (8.13).

8.1.4 The FBP algorithm in two space dimensions

We showed in Section 6.4 that in two space dimensions (2D) the scattering amplitude is
related to the scattering potential via the equation

f (s, s0) = −
√

1

8πk0
ei π4

∫
d2ρ V(ρ)U(ρ; s0)e−ik0s·ρ . (8.14)

Within the Born approximation this then yields the result

Ṽ[k0(s− s0)] = −√8πk0e−i π4 fB(s, s0), (8.15)

which, when employed in the 2D inverse scattering identity derived in the above example,
yields the 2D FBP algorithm

VLP(ρ) =
√

k5
0

(2π )3
ei 3π

4

∫ π

−π
dα0

∫ π

−π
dα
√

1− (s · s0)2fB(s, s0)eik0(s−s0)·ρ . (8.16)

As mentioned above, it is advisable to employ a smoothing filter in addition to the filter
function

√
1− (s · s0)2 in the above algorithm.

Circularly symmetric scatterers

An especially interesting case is that of a circularly symmetric scatterer such as a cylinder
when the incident s0 and scattered s wave directions cover the unit circle. For this scenario
the scattering amplitude f (s, s0) = f (α), where the angle α is the polar angle of s measured
relative to the direction of the incident wave vector s0 and varies from −π to +π . The 2D
FBP algorithm Eq. (8.16) then becomes

VLP(ρ) =
√

k5
0

(2π )3
ei 3π

4

∫ π

−π
dα0

∫ π

−π
dα|sinα| fB(α)eik0(s−s0)·ρ . (8.17)

Since the integral over α is fixed and independent of α0 we can perform the α0 integration
to obtain∫ π

−π
dα0 eik0(s−s0)·ρ =

∫ π

−π
dα0 ei

√
2k0ρ

√
1−cosα cosα0 = 2πJ0(

√
2k0ρ

√
1− cosα),

where we have used the result that

k0(s− s0) · ρ = k0|s− s0|ρ cosχ = √2k0ρ
√

1− cosα cosχ ,

where χ is the angle between the vectors (s − s0) and ρ, and have then replaced χ by α0

since the integrand in the above integral is periodic in χ . Equation (8.17) then becomes
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VLP(ρ) =
√

k5
0

2π
ei 3π

4

∫ π

−π
dα|sinα| fB(α)J0(

√
2k0ρ

√
1− cosα). (8.18)

Equation (8.18) is easily implemented in code and is ideally suited for computer sim-
ulations testing the performance of the FBP algorithm on exact and idealized (Born) data
from circularly symmetric scatterers. We performed such simulations using exact and Born
scattering amplitudes computed as described in Section 6.8 of Chapter 6 for single cylin-
ders and pairs of concentric cylinders. In that section we compared the Born and exact
scattering amplitudes for cylinders having indices of refraction varying from nr = 1.01 to
nr = 1.07 corresponding to scattering potentials V = k2

0(1 − n2
r ) varying from −0.8 to

−5.7. These are rather strong scatterers, which were found to result in large errors between
the Born and exact scattering amplitudes and, consequently, would result in large errors
in the reconstructions generated using the FBP algorithm with exact scattered-field data.
Consequently we employed lower index values in the reconstructions we show below, with
nr varying between nr = 1.005 and nr = 1.02 in steps of δnr = 0.005. This range then
corresponds to scattering potentials varying from −0.4 to −1.6.

The results of the simulations for a single penetrable cylinder having a radius of a0 = 4λ
and various index values are shown in Fig. 8.1, where the Born data employed in the FBP
algorithm generated the theoretical optimum reconstruction defined in Eq. (8.11), while
the exact data generated least-squares inversions (see the following section). Both the ideal
and the approximate solutions exhibit pronounced Gibbs effects as described earlier, so we
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�Fig. 8.1 Comparison of reconstructions obtained using the FBP algorithm on exact (solid) and Born (dashed) data for a single
cylinder of radius a0 = 4λ and index values ranging from nr = 1.005 corresponding to V = −0.4 (best
reconstruction) to nr = 1.02 corresponding to V = −1.6 (worst reconstruction) in steps of δnr = 0.005. The
reconstructions in the bottom part included the use of a standard Hamming window in the filtering operation.



344 Classical inverse scattering and diffraction tomography

0 1 2 3 4 5 6 7 8
−1.8
−1.6
−1.4
−1.2

−1
−0.8
−0.6
−0.4
−0.2

0
0.2

0 1 2 3 4 5 6 7 8
−1.8
−1.6
−1.4
−1.2

−1
−0.8
−0.6
−0.4
−0.2

0
0.2

�Fig. 8.2 Comparison of reconstructions obtained using the FBP algorithm on exact (solid) and Born (dashed) data for a pair of
concentric cylinders. The outer cylinder had a fixed index of nr = 1.005 and radius a2 = 4λ and the inner cylinder
had a radius of a1 = 2λ and index values ranging from nr = 1.005 (best reconstruction) to nr = 1.02 (worst
reconstruction) in steps of δnr = 0.005. The reconstructions in the bottom part included the use of a standard
Hamming window in the filtering operation.

also generated inversions that employed a Hamming filter to smooth the ripples introduced
by the hard band-limiting. It can be seen from Fig. 8.1 that the FBP algorithm with exact
data degrades monotonically with increasing nr and would be considered unreliable after
nr = 1.02, which is an index deviation of only 2%. Note also that the smoothing filter
reduces the rippling due to the Gibbs phenomenon by an appreciable amount.

The results for a pair of concentric cylinders are shown in Fig. 8.2. We fixed the index
and radius of the outer cylinder at nr = 1.005 and a2 = 4λ, and fixed the radius of the inner
cylinder to be a1 = 2λ and allowed its index to vary over the four values from nr = 1.005
to nr = 1.02 in steps of δnr = 0.005 employed in the simulation presented in Fig. 8.1.
Again the raw reconstructions generated by the FBP algorithm are shown in the top part
of the figure and those obtained using a Hamming smoothing filter in the bottom part. The
results are somewhat better than those presented in Fig. 8.1 due to the smaller radius of the
inner cylinder (see the discussion in Section 6.7.2 of Chapter 6).

8.2 Born inversion from limited and non-perfect data

The FBP algorithm that we have just derived is a solution to the integral equation

f (s, s0) = − 1

4π

∫
d3r V(r)e−ik0(s−s0)·r (8.19)
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in the special case in which the scattering amplitude is exactly modeled by the Born
approximation and, hence, is a function of the difference vector s − s0 and f is specified
for all unit vectors s0 and s on the unit sphere �. We now consider the general case in
which the observed scattering amplitude f (s, s0) need not be a function of the difference
vector s − s0 and is specified only over limited sets of incident and scattered field direc-
tions s0 ∈ �s0 , s ∈ �s. We first consider the case in which the scattering amplitude is not
exactly modeled by the Born approximation but where �s0 = �s = � and then treat the
limited-data case.

8.2.1 Non-perfect data

When the scattering amplitude is not exactly modeled by the Born approximation the inte-
gral equation Eq. (8.19) will not possess a solution VLP(r) due to the fact that the scattering
amplitude is not in the range of the integral transform defined by the r.h.s. of this equation.
Although we cannot exactly solve this equation we can obtain a least-squares solution V̂
that minimizes the integral squared error between the observed scattering amplitude f and
the Born scattering amplitude fB defined by Eq. (8.19) with V = V̂ . The least-squares
solution is thus defined to be that approximate solution V̂ that minimizes the squared error

L =
∫

d�s0

∫
d�s

∣∣∣∣ f (s, s0)

fB(s,s0)︷ ︸︸ ︷
− 1

4π

∫
d3r′ V̂(r′)e−ik0(s−s0)·r′

∣∣∣∣2. (8.20)

The minimization of Eq. (8.20) is performed in the usual way by requiring that the first
variation with respect to V̂ vanish. The first variation yields the result

δL = 1

2π

∫
d�s0

∫
d�s

{[
f (s, s0)+ 1

4π

∫
d3r′ V̂(r′)e−ik0(s−s0)·r′

]
×
∫

d3r δV̂∗(r)eik0(s−s0)·r
}
+ c.c.

= 1

2π

∫
d3r δV̂∗(r)

∫
d�s0

×
∫

d�s

[
f (s, s0)eik0(s−s0)·r + 1

4π

∫
d3r′ V̂(r′)eik0(s−s0)·(r−r′)

]
+ c.c.,

where c.c. stands for the complex conjugate of the first term on the r.h.s of the equation.
On setting the variation equal to zero and performing some minor manipulations we obtain
the result

− 1

4π

∫
d�s0

∫
d�s f (s, s0)eik0(s−s0)·r =

∫
d3r′ V̂(r′)H(r− r′), (8.21)

where H is the kernel defined in Eq. (8.4c). Equation (8.21) is recognized as the ISCP inte-
gral equation Eq. (8.4b) which has its solution in the form of the filtered back-propagation
algorithm Eq. (8.9).

We conclude from the above that the filtered back-propagation algorithm can be applied
to non-perfect data, in which case it generates the least-squares solution V̂ . The least-
squares solution has the property that it minimizes the integral squared error defined in
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Eq. (8.20) between the measured scattered amplitude and a Born scattered amplitude that
is related to the scattering potential V̂ via the integral equation Eq. (8.19). We will find
in Section 8.4 that this property follows automatically from the properties of the SVD
presented in Section 5.4 of Chapter 5.

8.2.2 Limited-data case I

The above treatment can also be employed to determine the least-squares solution to
Eq. (8.20) for the case in which the scattering amplitude is specified over limited (but
dense) sets of incident and scattered field directions s0 ∈ �s0 and s ∈ �s. In this case
the integrals in Eq. (8.20) extend only over the regions �s0 and �s. However, other than
this change, the above treatment goes through without modification, with the result that
the least-squares solution again satisfies the integral equation Eq. (8.21) with the integrals
over the incident and scattered field directions limited to �s0 and �s and where the filter
function is now given by

H(R) = 1

(4π )2

∫
�s0

d�s0

∫
�s

d�s eik0(s−s0)·R. (8.22)

Equation (8.21) with H given by Eq. (8.22) and s0 and s restricted to the solid angles �s0

and �s can still be inverted, and one finds that it is again given by the FBP algorithm with
the integrals restricted to �s0 and �s.

8.2.3 Limited-data case II

A more realistic limited-data case occurs when the scattering amplitude is specified over
limited discrete sets of incident and scattered field directions s0n, n = 1, 2, . . . , N, and
sm, m = 1, 2, . . . , M. We will address this problem using iterative algorithms in Sec-
tion 8.6.1 and also in Section 9.10 of Chapter 9, where we also incorporate a support
constraint into the formulation of the problem. For now we outline a formulation along the
lines of the FBP algorithm.

A natural approximation to the solution to the ISCP in the limited-data case would be to
simply replace the FBP algorithm Eq. (8.9) by its discrete-sum approximation:

VLP(r) ≈ − k3
0

4π3

N∑
n=1

δ�s0n

M∑
m=1

δ�sm |sm − s0n| fB(sm, s0n)eik0(sm−s0n)·r. (8.23)

This approximation is adequate if the sample spacings δ�s0n and δ�sm are sufficiently
small and if the incident and scattered wave directions span the entire unit sphere. A more
systematic approach to this limited-data case is to compute the least-squares solution to
the problem; i.e., determine the scattering potential that minimizes the summed squared
error between the measured scattered amplitude and the Born model for this scattering
amplitude.
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In this limited-data case the integrated squared error defined in Eq. (8.20) for data spec-
ified over dense sets of incident and scattered field directions is replaced by

L =
N∑

n=1

M∑
m=1

| f (sm, s0n)+ 1

4π

∫
d3r′ V̂(r′)e−ik0(sm−s0n )·r′ |2.

By again following steps almost identical to those employed in the complete-data case we
find that the least-squares solution V̂ must satisfy the integral equation

− 1

4π

N∑
n=1

M∑
m=1

f (sm, s0n)eik0(sm−s0n)·r =
∫

d3r′ V̂(r′)H(r− r′),

where H is the filter

H(R) = 1

(4π )2

N∑
n=1

M∑
m=1

eik0(sm−s0n)·R.

It should be clear that this solution will converge to the FBP algorithm in the limit where
the two sets sm → s ∈ � and s0n → s0 ∈ �.

8.3 Non-uniqueness and non-scattering scatterers

In our derivation of the inverse scattering identity and of the FBP algorithm we assumed
that the scattering amplitude f (s, s0) is specified over a continuum of incident s0 and scat-
tering s directions completely covering the entire unit sphere � and was exactly modeled
by the Born scattering model. In this case the scattering potential is uniquely determined
up to a high-pass function

FHP(r) = 1

(2π )3

∫
K>2k0

d3K Ṽ(K)eiK·r,

where Ṽ(K) is an arbitrary square-integrable function of the spatial frequency vector K.
Thus, in such cases the ISCP is non-unique only up to components of the scattering poten-
tial that are band-limited to spatial frequencies that lie outside the Ewald limiting sphere.
Such components limit the spatial resolution of Born inversion but do not pose a serious
problem in most applications where the wavelength λ is small compared with the sought-
after resolution of the inversion.

A more serious issue arises in all practical applications in which the data are specified
only over a finite set of incident and/or scattered wave directions. The reason for this is
that within the linearized Born scattering model there exists a countably infinite number
of scattering potentials VB

ns(r) whose scattering amplitude f (s, s0) vanishes identically over
any finite sets�s0 and/or�s of incident and/or scattering wave directions. These scattering
potentials, which play in the ISCP the role which the non-radiating sources Qnr play in the
ISP, are called non-scattering potentials and increase immensely the non-uniqueness of
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the linearized ISCP. Non-scattering potentials were covered in some detail in Section 6.9
of Chapter 6 and here we present an overview of the main results obtained in that section.

8.3.1 Non-scattering potentials within the Born approximation

We showed in Section 6.9 that within the Born approximation any scattering potential of
the general form

Vns(r; s0) = (∇2 + 2ik0s0 · ∇)χ (r),

where χ (r) is compactly supported within the scattering volume τ0 and continuously dif-
ferentiable but otherwise arbitrary, will generate a zero scattered field outside τ0 from an
incident plane wave with unit propagation vector s0. Such a scattering potential will thus
lie in the null space of the integral transform Eq. (8.19) for that particular value of s0.
More generally, we showed that a scattering potential of the general form

VB
ns(r) =

M∏
m=1

(∇2 + 2ik0s0m · ∇)χ (r), (8.24)

where χ (r) is assumed to be continuously differentiable up to order 2M−1 and com-
pactly supported within a scattering volume τ0, will not scatter in any of the M scatter-
ing experiments employing incident plane waves having the M unit propagation vectors
s0m, m = 1, 2, . . . , M. This scattering potential thus lies in the null space of Eq. (8.19) for
this entire set of incident plane-wave directions and any scattering direction s.

Consider now a scattering potential of the general form

V(r) = V0(r)+ VB
ns(r),

where V0 is an arbitrary potential supported within τ0 and VB
ns is a Born non-scattering

potential also supported within τ0 and of the general form given in Eq. (8.24). Because the
Born approximation is a linear mapping between the scattering potential and the scattered
field, it follows that V and V0 will generate identical scattered fields outside τ0 over the set
of M plane-wave scattering experiments employing incident plane waves having the M unit
propagation vectors s0m, m = 1, 2, . . . , M. The ISCP will thus not have a unique solution
for this data set.

The above argument shows that the ISCP does not possess a unique solution from scat-
tered field data collected in a finite set of scattering experiments employing incident plane
waves. Moreover, we also showed in Section 6.9 of Chapter 6 that the potential defined
in Eq. (8.24) with s0m replaced by sm will generate a zero scattering amplitude f (sm, s0)
over the set of M scattering directions sm, m = 1, 2, . . . , M, for any incident plane wave
having an arbitrary unit propagation vector s0. We also showed that this scattering potential
generated a zero generalized scattering amplitude f (sm; ν) over the same set of scattering
directions for arbitrary incident waves. We thus conclude that the ISCP will also not have a
unique solution for scattered-field data equal to the generalized scattering amplitudes mea-
sured over any finite set of scattering directions in any finite set of scattering experiments
employing arbitrary incident waves.
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8.4 Hilbert-space formulation of Born inverse scattering

We reviewed the basics of Hilbert-space theory in Chapter 5, where we employed this
theory to solve the inverse source problem (ISP). Here, we employ the same theory to
solve the ISCP within the Born approximation. By analogy with our treatment of the ISP
in Chapter 5 we define the Hilbert space HV of complex-valued scattering potentials V(r)
supported in a (possibly infinite)3 scattering volume τ0. This space has the standard inner
product and norm

〈V1, V2〉HV =
∫

d3r V∗1 (r)V2(r), (8.25a)

||V|| = √〈V , V〉HV =
√∫

d3r|V(r)|2, (8.25b)

where the integrals are over all of space. We emphasize that, unlike for the Hilbert space
L2(τ0) of sources employed in Chapter 5, the scattering potentials contained in HV need
not be compactly supported. However, we will require that all scattering potentials within
the space HV possess finite norm ||V||.

In addition to the Hilbert space HV of scattering potentials we also define a Hilbert space
Hf of scattering amplitudes f (s, s0). The Hilbert space Hf has the standard inner product
and norm

〈 f1, f2〉Hf =
∫

d�s0

∫
d�s f ∗1 (s, s0)f2(s, s0), (8.26a)

|| f || =
√
〈 f , f 〉Hf =

√∫
d�s0

∫
d�s| f (s, s0)|2, (8.26b)

where the integrals are over the entire unit sphere �.
The Hilbert-space setting provided above is ideally suited for solving the ISCP within

the Born approximation. As we have shown earlier, this problem consists of inverting the
integral equation Eq. (8.19)

f (s, s0) = − 1

4π

∫
d3r V(r)e−ik0(s−s0)·r (8.27a)

for the scattering potential V in terms of the scattering amplitude f . The integral equation
Eq. (8.27a) is a linear mapping from the Hilbert space of scattering potentials HV into the
Hilbert space Hf . We will write Eq. (8.27a) in the symbolic form

T̂V = f , (8.27b)

3 Throughout this section we will not constrain the solutions to the ISCP to have compact support. Such con-
straints can be easily incorporated into the iterative algorithms treated in Section 8.6.1 and will be incorporated
into our more general formulation of the ISCP in an inhomogeneous background in Chapter 9.
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where T̂ : HV → Hf is the linear operator

T̂ = − 1

4π

∫
d3r e−ik0(s−s0)·r. (8.27c)

Comparison with the ISP

The Hilbert-space formulation of the ISP with far-field data that was employed in Chapter 5
was based on the integral transform

f (s) = − 1

4π

∫
τ0

d3r Q(r)e−ik0s·r, (8.28)

where we have suppressed the frequency variable ω in the arguments of the radiation pat-
tern f (s) and source Q(r), and the source volume τ0 is assumed to be finite. On comparison
with Eq. (8.27a) we see that the ISCP and ISP have very similar mathematical structures
and, indeed, become identical if just a single scattering experiment is employed in the ISCP
and if the constraint that the source be compactly supported in τ0 is dropped. In the latter
case the scattered field is equal to the field radiated by the induced source

Q(r, s0) = V(r)eiks0·r

and the radiation pattern f (s) of this induced source is the scattering amplitude f (s, s0).

8.4.1 Adjoint and composite operators

We define the adjoint operator (cf. Section 5.4.1) in the usual way:

〈 f , T̂V〉Hf = 〈T̂†f , V〉HV .

Using the definition Eq. (8.27c) we find that

〈 f , T̂V〉Hf =
∫

d�s0

∫
d�s f ∗(s, s0)

T̂V︷ ︸︸ ︷
− 1

4π

∫
d3r V(r)e−ik0(s−s0)·r

=
∫

d3r

{
− 1

4π

∫
d�s0

∫
d�s f (s, s0)eik0(s−s0)·r

}∗
V(r),

from which we conclude that

T̂† = − 1

4π

∫
d�s0

∫
d�s eik0(s−s0)·r, (8.29)

where, again, we have assumed that the background medium is lossless so that the
wavenumber k0 is real-valued.
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We will also have need of the composite operators T̂†T̂ : HV → HV and T̂T̂† : Hf →
Hf . These composite operators can be constructed directly from the definitions of T̂ and
T̂† given in Eqs. (8.27c) and (8.29). First considering T̂†T̂ we find that

T̂†T̂V =
∫

d3r′ H(r− r′)V(r′), (8.30)

where

H(r− r′) = j20(k0|r− r′|)
is the kernel defined in Eq. (8.5).

Consider now the composite operator T̂T̂† : HHf → HHf . We have that

T̂T̂†f = π

2

∫
d�s′0

∫
d�s′ δ[k0(s− s0)− k0(s′ − s′0)] f (s′, s′0), (8.31)

where δ(·) is the 3D Dirac delta function.
We can obtain a closed-form expression for action of the composite operator T̂T̂† on

scattering amplitudes fB ∈ Hf within the Born approximation by making use of the identity
Eq. (8.10b). In particular, we find that

T̂T̂†fB = −π
2

k3
0

fB(s, s0)

|s− s0| . (8.32)

8.4.2 Singular value decomposition

The singular value decomposition (SVD) was reviewed in Section 5.4 of Chapter 5 and
employed in later sections of that chapter to solve the ISP. For the ISCP formulated within
the Born approximation the SVD takes the form

T̂vp = σpup(s, s0), T̂†up = σpvp(r), (8.33)

where T̂ is defined in Eqs. (8.27), σp ≥ 0 are the singular values and vp ∈ HHV and
up ∈ HHf are the singular functions. As in the ISP, we employ an integer p to index the
singular system. However, this is done merely for ease and simplicity of notation and,
indeed, we will find in the Born scattering model that the index is, in fact, a continuous
variable in R3.

Normal equations

The normal equations satisfied by the singular functions vp and up are found to be

T̂†T̂vp(r) = σ 2
p vp(r), T̂T̂†up(s, s0) = σ 2

p up(s, s0),

where T̂†T̂ and T̂T̂† are the composite operators defined in Eqs. (8.30) and (8.31). On
making use of these definitions we find that∫

d3r′ H(r− r′)vp(r′) = σ 2
p vp(r), (8.34a)

π

2

∫
d�s′0

∫
d�s′ δ[k0(s− s0)− k0(s′ − s′0)]up(s′, s′0) = σ 2

p up(s, s0). (8.34b)
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Equations (8.34) constitute the normal equations for the SVD of the far-field ISCP problem
within the Born approximation. They are standard eigenfunction equations satisfied by the
two singular functions vp and up.

The singular functions vp
We first consider Eq. (8.34a) satisfied by the singular functions vp. It is seen that this
equation is the eigenfunction equation associated with the ISCP integral Eq. (8.4b). We
can solve this equation by noting that since the kernel H is convolutional a general solution
will be of the form

vp(r) = Apeiκ·r,

where κ is a free parameter and Ap is a normalization constant. On substituting the above
expression into the l.h.s. of Eq. (8.34a) we obtain the result∫

d3r′ H(r− r′)vp(r′) = Ap

∫
d3r′ H(r− r′)eiκ·r′

= Apeiκ·r

H̃(κ)︷ ︸︸ ︷∫
d3r′ H(r′)e−iκ·r′

= Apeiκ·r
{
π2/(k2

0κ) if κ ≤ 2k0,

0 else,
(8.35a)

where we have made use of Eq. (8.6).
We conclude from Eq. (8.35a) that the index p is actually the parameter κ ∈ R3 and that

the singular functions vp(r) = v(r; κ) have a continuous spectrum; their singular values
σ (κ) are a function of the continuous variable κ ∈ R3. It then follows that they possess a
delta-function normalization; i.e., they are orthogonal with delta-function weighting∫

d3κ v∗(r, κ)v(r, κ ′) = δ(κ − κ ′),

which then leads to the requirement that

|Ap|2 = |A(κ)|2 = 1

(2π )3
→ A(κ) = 1

(2π )3/2
. (8.35b)

On making use of Eqs. (8.35) we then conclude that

vp(r) = v(r, κ) = eiκ·r

(2π )3/2
, (8.36a)

σ 2
p = σ 2(κ) =

{
π2/(k2

0κ) if κ ≤ 2k0,

0 else.
(8.36b)

The singular functions up
The singular functions up corresponding to non-zero singular values σp = σ (κ) > 0 are
obtained directly from Eq. (8.33):
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σ (κ)u(s, s0; κ) = T̂v(s, s0; κ)

= − 1

4π

∫
d3r e−ik0(s−s0)·r

{
1

(2π )3/2
eiκ·r

}
= −

√
π

2
δ(k0(s− s0)− κ). (8.37)

We conclude that the singular functions v(s, s0; κ) corresponding to non-zero singular val-
ues κ > 0 are given by

u(s, s0; κ) = T̂v(s, s0; κ)

σ (κ)
= −

√
κ

2π
k0 δ(k0(s− s0)− κ). (8.38)

8.4.3 Solution to the inverse scattering problem

The integral equation Eq. (8.27a) will possess a solution only if the scattering amplitude
f ∈ Hf is in the range of the operator T̂ . Moreover, the solution, if it exists, will be non-
unique due to the fact that the operator T̂ has a null space consisting of all functions
band-limited to spatial frequencies that lie outside the Ewald limiting sphere. However,
we showed in our review of basic Hilbert-space theory in Section 5.4 of Chapter 5 that
the SVD-based solution that we obtained in Eq. (5.48b) and that we will employ here to
solve the linearized ISCP actually generates a least-squares pseudo-inverse of any linear
mapping of the general form of Eq. (8.27b). This means that if the scattering amplitude
f (s, s0) is not in the range of the operator T̂ the inversion that we will derive below will be
a scattering potential that minimizes the mean-squared error between the actual scattering
amplitude (data) and that generated by our solution. This also means that the reconstructed
scattering potential has the minimum L2 norm among all least-squares solutions to the lin-
earized inverse problem. The least-squares pseudo-inverse solution to the ISCP is obtained
using the singular system σp = σ (κ), vp = v(r; κ), up = u(s, s0; κ) following the same pro-
cedure as that employed in Chapter 5 for the ISP. In particular, in analogy with Eq. (5.48b)
of Section 5.4 we can represent the solution in the form

V̂(r) = σp>0
〈up, f 〉Hf

σp
vp(r)

=
∫
κ≤2k0

d3κ
k0
√
κ

π
〈up, f 〉Hf v(r; κ), (8.39a)

where

〈up, f 〉Hf =
∫

d�s0

∫
d�s v∗(s, s0; κ)f (s, s0)

=
∫

d�s0

∫
d�s

[
−
√
κ

2π
k0δ[κ − k0(s− s0)] f (s, s0)

]
, (8.39b)

and where we have denoted the least-squares pseudo-inverse by V̂ . If we then substitute
Eq. (8.39b) into Eq. (8.39a) we obtain
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V̂(r) =
∫
κ≤2k0

d3κ
k0
√
κ

π

{∫
d�s0

∫
d�s

[
−
√
κ

2π
k0δ[κ − k0(s− s0)]f (s, s0)

]}
× eiκ·r

(2π )3/2

= − k3
0

4π3

∫
d�s0

∫
d�s|s− s0| f (s, s0)eik0(s−s0)·r,

which is recognized as the filtered back-propagation (FBP) algorithm Eq. (8.9).
Because of the general property that the SVD solution generates a minimum-norm least-

squares solution it follows immediately that the FBP algorithm has this property. Thus,
if the scattering amplitude is not a function of the difference s − s0 and thus is not an
ideal Born scattering amplitude, the FBP algorithm will generate a least-squares solution
that will minimize the integrated squared error between the scattering amplitude generated
by the scattering potential reconstruction and the actual scattering amplitude (data). This
property applies also if the scattering amplitude is specified only over a region of either
or both of the unit spheres �s and �s0 . We are also guaranteed that the FBP algorithm
generates a minimum-norm solution; i.e., that |V̂|will be minimum among all least-squares
solution to the linearized ISCP.

8.5 Born inversion using non-plane-wave probes and arbitrary
measurement surfaces

The solution to the Born ISCP obtained in the preceding sections assumes knowledge of
the scattering amplitude f (s, s0) which is directly measured in the far field of the scatter-
ing potential V . In this section we consider the case in which the field measurements are
performed on an arbitrary boundary ∂τ surrounding the scattering potential and incident
waves other than plane waves are employed.

8.5.1 Data collected on arbitrary surfaces

If we make use of the first Helmholtz identity as given in Eq. (2.41a) of Chapter 2 we find
that at all points outside an arbitrary surface ∂τ surrounding the scattering potential the
scattered field U(s)(r; ν) generated from an arbitrary incident wave parameterized by ν can
be expressed in the form

U(s)(r; ν) =
∫
∂τ

dS′
[

G0+ (r− r′) ∂
∂n′

U(s)(r′; ν)− U(s)(r′; ν)
∂

∂n′
G0+(r− r′)

]
, (8.40)

where the partial derivatives are with respect to the outward-directed normals to the surface
∂τ . The generalized scattering amplitude is defined to be the radiation pattern associated
with the scattered field U(s)(r; ν) and can be computed from the above equation by making
use of the asymptotic form for the outgoing-wave Green function



355 8.5 Born inversion using non-plane-wave probes and arbitrary measurement surfaces

G0+ (r− r′) ∼ − 1

4π
e−ik0s·r′ eik0r

r
, as r→∞, (8.41)

where s = r/r is the unit vector along the direction of the asymptotic field point r. On
making use of Eq. (8.41) in Eq. (8.40) we obtain

U(s)(r; ν) ∼

f (s,ν)︷ ︸︸ ︷
− 1

4π

∫
∂τ

dS′
[
∂

∂n′
U(s)(r′; ν)+ ik0(s · n̂′)U(s)(r′; ν)

]
e−ik0s·r′ eik0r

r
,

where

f (s, ν) = − 1

4π

∫
∂τ

dS′
[
∂

∂n′
U(s)(r′; ν)+ ik0(s · n̂′)U(s)(r′; ν)

]
e−ik0s·r′ (8.42)

is the generalized scattering amplitude.
If the incident wave is a plane wave with unit propagation vector s0 then Eq. (8.42) can

be used to compute the conventional scattering amplitude f (s, s0) from the field and its
normal derivative over ∂τ , which can then be used in the FBP algorithm. It is also possible
to generate a reconstruction from non-plane-wave data using either the method of slant
stacking (see discussion below) or the algorithms presented in the following chapter.

Plane measurement boundaries

Equation (8.42) is an expression for the generalized scattering amplitude in terms of the
scattered field and its normal derivative measured over an arbitrary surface ∂τ surrounding
the scattering potential V . As we showed in Chapters 1 and 2, the field and its normal
derivative are not independent and it is also possible to compute the scattered field exterior
to the surface ∂τ in terms of either the scattered field or its normal derivative over ∂τ by
using the solutions to the exterior boundary-value problem given in Eqs. (2.42). However,
these solutions require knowledge of the Dirichlet or Neumann Green function, which can
be easily computed only for separable boundaries. One important example of a separable
boundary is the union of a set of parallel planes located at z = z< ≤ z− and z = z> ≥ z+
lying on either side of the scattering potential assumed to be localized to the strip z− ≤
z ≤ z+. For this case we can employ the solution to the Rayleigh–Sommerfeld boundary-
value problems presented in Chapter 2 to express the scattered field throughout the two
half-spaces z < z< and z > z> in terms of the value of the scattered field (the Dirichlet
solution) or its normal derivative (the Neumann solution) over the two planes z = z< and
z = z>. In particular, for the case of Dirichlet conditions we find that

U(s)(r; ν) =
⎧⎨⎩ 2

∫
z<

dS′ U(s)
z< (ρ′; ν)(∂/∂z′)G0+(r− r′0), if z < z<, (8.43a)

−2
∫

z>
dS′ U(s)

z> (ρ′; ν)(∂/∂z′)G0+(r− r′0), if z > z>, (8.43b)

where U(s)
z< (ρ′; ν) and U(s)

z> (ρ′; ν) denote the values of the scattered field over the planes
z = z< and z = z>, respectively, and a similar result is obtained for the case of Neumann
conditions over these planes.

We can employ the same general procedure as was used above to derive Eq. (8.42) to
compute the generalized scattering amplitude from Eqs. (8.43). In particular, by making
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use of the asymptotic form for the outgoing-wave Green function given in Eqs. (8.41) we
have that

∂

∂n′
G0+ (r− r′) = ẑ′ · ∇r′G0+(r− r′) ∼ ik

4π
sze
−ik0s·r′ eik0r

r
,

where sz = ẑ · s is the z component of the unit observation vector s = r/r. If we substitute
the above result into Eqs. (8.43) we find that

U(s)(r; ν) ∼

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{
ik0sz

2π

∫
z<

dS′ U(s)
z< (ρ′; ν)e−ik0s·r′

}
eik0r

r
, if z < z<,{

− ik0sz

2π

∫
z>

dS′ U(s)
z> (ρ′; ν)e−ik0s·r′

}
eik0r

r
, if z > z>.

We conclude from the above that the generalized scattering amplitude is given by the
equations

f (s, ν) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ik0sz

2π

∫
z<

dS′ U(s)
z< (ρ′; ν)e−ik0s·r′ , if sz < 0, (8.44a)

− ik0sz

2π

∫
z>

dS′ U(s)
z> (ρ′; ν)e−ik0s·r′ , if sz > 0. (8.44b)

The above equations, which were derived in Section 6.4 using the angular-spectrum
expansion of the scattered field, allow the generalized scattering amplitude to be deter-
mined for all values of the unit vector s from measurements of the scattered field over
any two parallel bounding planes of the scattering potential. In the case of incident plane
waves the parameter ν is the unit wavenumber s0 of the incident plane waves and the gen-
eralized scattering amplitude reduces to the conventional scattering amplitude f (s, s0). In
this case the filtered back-propagation algorithm Eq. (8.9) can be employed to generate
the low-pass-filtered approximation VLP to the scattering potential V from scattered-field
measurements over the two planes z = z< and z = z>. We will find in Section 8.7 that a
variant of this procedure forms the basis of diffraction tomography (DT).

Locally plane measurement surfaces

Equation (8.42) applies to arbitrary surfaces and, in addition, can be approximately eval-
uated in terms of the scattered field (or its normal derivative) alone if the curvature of the
surface ∂τ is small relative to the wavelength. In such cases the surface can be locally
approximated as a plane surface and the Rayleigh–Sommerfeld Green function can be
employed, thus yielding the result

f (s, ν) ≈ − ik

2π

∫
∂τ

dS′(s · n̂′)U(s)(r′; ν)e−ik0s·r′ , (8.45)

with an analogous result holding for Neumann data on ∂τ . When the incident waves are
plane waves so that ν = s0, Eqs. (8.42) and (8.45) yield expressions for the scatter-
ing amplitude f (s, s0) that can then be employed in the filtered back-propagation algo-
rithm Eq. (8.9) to generate the low-pass-filtered approximation VLP to the scattering
potential V .
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8.5.2 Incident spherical waves

In the case in which spherical incident waves are employed in a suite of scattering experi-
ments the slant-stack algorithm discussed in Section 6.11 can be employed to convert the
spherical-wave scattering amplitude f (s, r0) to the conventional (plane-wave) scattering
amplitude. In particular, we have from Eq. (6.93a)

f (s; s0) = Ss0 f (s, r0),

where Ss0 is the slant-stack operator defined by its property of converting a suite of spher-
ical waves covering a closed surface r0 ∈ ∂τ0 into a plane wave having unit propagation
vector s0; i.e.,

eik0s0·r = Ss0 G(r, r0).

By applying the slant-stack operator to the expression for the generalized scattering ampli-
tude given in Eq. (8.42) we obtain the result

f (s; s0) = Ss0

{ f (s,r0)︷ ︸︸ ︷
− 1

4π

∫
∂τ

dS′
[
∂

∂n′
U(s)(r′; r0)+ ik0(s · n̂′)U(s)(r′; r0)

]
e−ik0s·r′

}

= − 1

4π

∫
∂τ

dS′
[
∂

∂n′
{
Ss0 U(s)(r′; r0)

}
+ ik0(s · n̂′)

{
Ss0 U(s)

}
(r′; r0)

]
e−ik0s·r′ .

The above equation allows the (conventional) scattering amplitude to be determined from
measurements of the scattered waves generated by a suite of spherical incident waves. The
scattered-field measurements are performed over any closed surface ∂τ that surrounds the
scattering potential and the incident spherical waves are distributed uniformly over another
surface ∂τ0 that also surrounds the scattering potential.

8.6 Iterative algorithms

We begin with the defining equation for the least-squares minimum-norm solution V̂:

T̂†T̂V̂ = T̂†f . (8.46)

As discussed earlier, the solution V̂ will be equal to the low-pass-filtered approximation
VLP to the scattering potential in the case in which the data are in the range of T̂ and will
minimize the integral squared error between the scattering amplitude generated by V̂ and
the data in cases in which the data are not perfect and, in addition, will have the mini-
mum L2 norm among all such reconstructions. The least-squares minimum-norm solution
is generated by the filtered back-propagation (FBP) algorithm Eq. (8.9). However, in some
instances it is desirable to employ an iterative algorithm rather than the FBP algorithm.
This occurs, for example, in cases of limited data and in cases in which we wish to incor-
porate constraints into the solution. For example, the FBP algorithm generates a scattering
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potential having infinite support, which is unrealistic. In many cases we know or have a
good idea of the scattering potential support and it is desirable to build this prior knowledge
into the reconstruction algorithm.

8.6.1 Limited-data problems

We consider here the important case in which the scattering amplitude f (s, s0) is known
only over a set of discrete scattering directions sj, j = 1, 2, . . . , Ns, and only for a finite
set of incident-wave directions s0j, j = 1, 2, . . . , Ns0 . The scattering operator T̂ is still
defined by Eq. (8.27c), with s and s0 replaced by sj and s0j, respectively. The Hilbert space
of scattering potentials HV remains the same, with the same inner product and norm as
defined in Eqs. (8.25). However, the Hilbert space of scattering amplitudes Hf is now
replaced by the Hilbert space of complex numbers fj,j′ = f (sj, s0j′ ) having the standard
inner product and norm

〈 f1, f2〉Hf =
Ns0∑
j′=1

Ns∑
j=1

f ∗1 j,j′ f2j,j′ ,

|| f || =
√
〈 f , f 〉Hf =

√√√√√Ns0∑
j′=1

Ns∑
j=1

| fj,j′ |2.

It is easy to show that the adjoint operator T̂† is now given by

T̂† = − 1

4π

Ns0∑
j′=1

Ns∑
j=1

eik0(sj−s0j′ )·r,

which is simply the full-data adjoint operator defined in Eq. (8.29) with the integrals over
s0 and s replaced by discrete sums over s0j′ and sj.

The composite operators T̂†T̂ and T̂T̂† are also easily computed. These operators, like
the adjoint T̂†, are obtained from the full-data operators defined in Eqs. (8.30) and (8.31) by
replacing the integrals over s0 and s by discrete sums over s0j′ and sj. Of particular interest
here is the composite operator T̂†T̂ which is defined exactly by Eq. (8.30) but where the
kernel H is now given by

H(R) = 1

(4π )2

Ns0∑
j′=1

Ns∑
j=1

eik0(sj−s0 j′ )·R.

We can develop an iterative algorithm for the limited-data ISCP directly from Eq. (8.46)
by rewriting this equation in the form

V̂ = V̂ + T̂†[ f − T̂V̂],

where T̂ and T̂† are the limited-data operators defined above. We now define a sequence of
scattering potentials V̂n, n = 0, 1, 2, . . ., that are required to satisfy the equation

V̂n+1 = V̂n + T̂†[ f − T̂V̂n], n = 0, 1, 2, . . . . (8.47)
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It is clear that if the sequence V̂n converges then it converges to the solution of the ISCP;
i.e., if

lim
n→∞ V̂n → V̂

then V̂ satisfies Eq. (8.46) and, hence, is the least-squares solution to the limited-data ISCP.

The SIRT algorithm

The iteration Eq. (8.47) is in the form of a SIRT (Andersen and Kak, 1984) (for simul-
taneous iterative reconstruction technique) algorithm that is similar to the well-known
ART (Bender et al., 1970) (for algebraic reconstruction technique) algorithm of computed
tomography (see also Gilbert (1972)). It can be interpreted as consisting of three steps.

1. Computation of the scattering amplitude f n = T̂V̂n corresponding to the nth approxi-
mation V̂n of the scattering potential.

2. Back propagation of the residual error f − f n between the actual scattering amplitude
and the nth approximation of this quantity implemented via the adjoint operator T̂†.

3. Addition of the back-propagated residual error to the nth approximation V̂n to obtain
the (n+ 1)th approximation V̂n+1.

8.6.2 Incorporation of constraints

We can employ the SIRT algorithm defined above both in full- and in limited-data problems
that incorporate constraints by making use of a constraint operator C. The constraint oper-
ator has the property of projecting any scattering potential into the subspace HVC ⊂ HV

of scattering potentials that satisfy the various constraints imposed on the scattering poten-
tial V . In order for this scheme to work it is required, of course, that the constraints be
of such a nature that the constrained scattering potentials form a proper subspace of the
Hilbert space HV . Examples of such constraints include support constraints, positivity (or
negativity) constraints and bandwidth constraints. Thus, for example, a support constraint
operator is defined by the property

CV =
{

V if r ∈ τ0,

0 else,

where τ0 is the known support of the scattering potential V .
One form of a modified SIRT algorithm that incorporates the constraint operator is

given by

V̂n+1 = CV̂n + T̂†[ f − T̂CV̂n], n = 0, 1, 2, . . . , (8.48)

although other forms of the algorithm are also possible. The constrained SIRT algorithm
defined in Eq. (8.48) is equivalent to the usual SIRT algorithm Eq. (8.47) followed by appli-
cation of the constraint operator at each step of the iteration. The sequence now converges
only if both V̂n → V̂ and CV̂ = V̂ .
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8.7 Tomographic formulation of inverse scattering

In this section we will again employ a linearized version of the inverse scattering prob-
lem (ISCP) but will base the theory on the Rytov approximation developed in Section 6.10
of Chapter 6. The Rytov approximation is obtained as a linearization of the non-linear
Ricatti differential equation satisfied by the (complex) space-dependent phase of the total
field U = U(in)+U(s) rather than of the Helmholtz equation Eq. (8.1) satisfied by the total
field U. We showed in Chapter 6 that the two formulations of the (forward) scattering prob-
lem (the Helmholtz equation for U and the Ricatti equation for the complex phase of U)
are mathematically equivalent and, hence, yield the same (exact) forward solution for the
field. However, the linearized versions of the two formulations are different and the Rytov
approximation presented in Section 6.10 of Chapter 6 is generally more accurate and has a
greater domain of applicability than the Born approximation. Although the two linearized
formulations of the forward-scattering problem have different domains of applicability we
showed in Section 6.10 that the underlying mathematical structure of the ISCP is identical
within the two formulations so that many of the results obtained earlier in this chapter can
again be employed within the Rytov approximation to the ISCP presented here.

The reformulated theory of inverse scattering based on the Rytov approximation
employs the complex phase of the field rather than the scattered field as the measured
field quantity upon which the ISCP is based. The complex phase describes the shape and
amplitude of the wavefronts of the field diffracted by the scatterer and for this reason the
ISCP formulated using the Rytov approximation has become known as diffraction tomog-
raphy (DT).4 The “tomography” part of its name derives from the fact that in the special
cases in which the field measurements are performed in the forward-scattering direction
the theory resembles the classical theory of computed tomography and, indeed, reduces to
the latter theory in the limit where the wavelength λ tends to zero.

It is customary in DT to employ the complex index of refraction n(r) in place of the
scattering potential V(r). These two quantities are related according to the equation

V(r) = k2
0[1− n2(r)], (8.49)

where, as usual in this chapter, we have suppressed the frequency variable ω in the argu-
ments of the scattering potential and index of refraction. If this relationship is used in the
Helmholtz equation Eq. (8.1) we obtain

[∇2 + k2
0n2(r)]U(r; ν) = 0,

which will be employed in place of Eq. (8.1) from this point on in this chapter. The goal of
DT is then the determination of the complex index of refraction n(r) from measurements
of the complex phase of the field outside the scattering volume τ0.

4 The term diffraction tomography has also been applied to the Born ISCP due to the mathematical similarity of
the inversion algorithms. However, we will reserve the term “diffraction tomography” for the Rytov formulation
of the ISCP presented in this section.
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8.7.1 The Rytov approximation

The Rytov approximation is based on a representation of the total field U in terms of a
complex-valued phase W via the equation

U(r; ν) = eik0W(r;ν).

The complex-valued phase function W(r; ν) can be decomposed into the sum of the phase
W0 of the incident wave and a perturbation component δW that arises due to the scattering
(diffraction) of the incident wave from the deviation of the complex index of refraction
n(r) from its background value of unity. The perturbation component of the phase is then
found to satisfy a non-linear differential equation whose solution can be expanded into a
Liouville–Neumann expansion of the general form (cf. Section 6.10.2)

δW =
∞∑

n=1

δW(n) εn,

where ε denotes the strength of the deviation of the index of refraction from unity. The
Rytov approximation δWR = ε δW(1) to the phase δW results from retaining only the first
term in the above expansion and is found to satisfy the linear differential equation

ik0 ∇2δWR − 2k2
0 ∇W0 · ∇δWR + k2

0(n2 − 1) = 0.

In the important case of incident plane waves the phase W0 = s0 · r and this equation then
assumes the form

ik0 ∇2δWR − 2k2
0s0 · ∇δWR = −k2

0(n2 − 1). (8.50)

Classical DT assumes incident plane-wave fields and, hence, is governed by Eq. (8.50).
Although the theory can be extended to arbitrary incident waves, historically plane waves
have played a dominant role in applications and will be assumed throughout the devel-
opment in the following exposition. In any case, the inversion algorithms developed in
classical DT that are based on the assumption of incident plane waves can be employed for
other types of incident waves such as spherical waves through the process of slant stacking
as discussed in Section 8.5.2.

8.7.2 The short-wavelength limit of DT

In the limiting case in which the wavelength λ→ 0 (k0 →∞) the first term in Eq. (8.50)
is negligible in comparison with the other two terms and we obtain the result

s0 · ∇δwR = n2 − 1

2
≈ δn, (8.51)

where we have denoted the short-wavelength limit of δWR by the lower-case symbol δwR

and

δn(r) = n(r)− 1.

In making the above approximation in Eq. (8.51) we have used the fact that the Rytov
approximation requires that n2 − 1 be small.
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Equation (8.51) is the basic model of diffraction tomography of weakly inhomogeneous
objects within the short-wavelength limit. This equation is equivalent to the simple differ-
ential equation

∂

∂η
δwR = δn,

where η = s0 · r is the position variable along the Cartesian coordinate axis defined by the
direction of propagation of the incident plane wave. The above equation can be immedi-
ately integrated to yield

δwR(r)|η=b
η=a =

∫ b

a
dη δn(r),

where the integration has been performed along the straight-line ray path that extends from
η = a to η = b. If we take the points η = a and η = b = l0 to lie outside the object then
δwR|η=a = 0 and the integration on the r.h.s. of the above equation can be extended from
−∞ to∞ and we obtain the standard tomographic model

δwR(r)|η=l0 =
∫ ∞
−∞

dη δn(r). (8.52)

Equation (8.52) is the underlying mathematical model for computed tomography (CT)
and appears here as the limiting model for diffraction tomography (DT) within the Rytov
approximation in the short-wavelength limit.

8.7.3 Computed tomography

We consider the experimental setup illustrated in Fig. 8.3, which shows a plane wave with
unit propagation vector s0 incident on an object having a complex index of refraction n(r).
We define Cartesian coordinate systems (x, y, z) and (ξ , η, z) whose z axes coincide and
are perpendicular to the direction of propagation of the incident plane wave. The (x, y, z)
coordinate system is assumed to be fixed in space while the (ξ , η, z) system rotates about
the z axis with the direction of propagation of the incident plane wave in such a way that the
η axis always remains aligned along this direction as indicated in the figure; i.e., s0 = η̂.
If the unit wave vector s0 then makes the angle α0 with the positive y axis then the ξ , η
system is simply the x, y system rotated in a counter-clockwise direction by the angle α0

about the z axis. For future reference we note that the x, y and ξ , η coordinate systems are
related by the orthogonal transformations

x = ξ cosα0 − η sinα0, y = ξ sinα0 + η cosα0, (8.53a)

η = −x sinα0 + y cosα0, ξ = x cosα0 + y sinα0. (8.53b)

Within the short-wavelength limit of the Rytov approximation the complex phase per-
turbation measured along the line η = l0 which is assumed to lie outside the object is then
approximately given by Eq. (8.52), which we can express in the form
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�Fig. 8.3 The geometry for computed tomography. The solid line running through the object in the figure denotes a typical line
over which the straight-line integral defined in Eq. (8.52) is performed, generating the so-called “projection” of the
object onto the ξ axis.

δwR(r)|η=l0 = Pα0 δn(ξ ) =
∫ ∞
−∞

dη δn(x, y), (8.54)

where the integration is performed along the line ξ = constant and δn(x, y) = δn(r) eval-
uated on the plane z = z0. We will not, at this point, discuss the details of how the phase
perturbation over the measurement line is determined from the wavefield over this line
but will return to this issue later in our treatment of diffraction tomography below. How-
ever, we should point out that this computation is not trivial, due to the phase-unwrapping
problem, and is one of the major road blocks to the successful implementation of DT in
ultrasound and optical tomography.

The quantity Pα0 δn(ξ ) is called a projection of the two-dimensional function δn(x, y)
and can be interpreted roughly as being a “shadow” of the index perturbation δn(x, y) =
δn(x, y, z0) generated by the incident plane wave along the line η = l0. The goal of com-
puted tomography is to reconstruct the function δn(x, y) from a set of projections Pα0 δn(ξ )
taken at various viewing angles α0. Computed tomography then generates a reconstruc-
tion of the index perturbation over the plane z = z0, but, since this plane is arbitrary, an
approximate 3D reconstruction of the index perturbation can be obtained using a set of
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2D reconstructions acquired using different z planes. From this point on we will limit our
attention to a single plane (fixed z) and will denote points in this plane by ρ = (x, y).

8.7.4 The projection-slice theorem

Many of the reconstruction algorithms of computed tomography (CT) depend on a theorem
that is called the projection-slice theorem. This theorem is easily proved from the following
considerations. We take the 1D Fourier transform of the projection of an arbitrary function
f (ρ) as defined in Eq. (8.54):

˜Pα0 f (K) =
∫ ∞
−∞

dξ Pα0 f (ξ )e−iKξ

=
∫ ∞
−∞

dξ
∫ ∞
−∞

dη f (x, y)e−iKξ =
∫

d2ρ f (ρ)e−iKξ̂ ·ρ ,

where ξ̂ is the unit vector along the ξ coordinate axis and ρ = (x, y) denotes the vector
position of a general point in the (x, y) plane. The above result yields the following theorem.

Theorem 8.1 (the projection-slice theorem) Let Pα0 f (ξ ) be a projection of a function f (x, y)
taken at the angle α0 that the ξ axis makes with the positive x axis of the fixed x, y coor-
dinate system. Then the 1D Fourier transform of the projection Pα0 f (ξ ) is equal to a slice
taken through the 2D Fourier transform f̃ (K) of the function f along the line K = Kξ̂ ; i.e.,

˜Pα0 f (K) = f̃ (Kξ̂ ).

The projection-slice theorem leads directly to a popular method of tomographic recon-
struction; namely, the filtered back-projection algorithm, which we will now discuss.

8.7.5 The filtered back-projection algorithm

We begin by representing δn using a 2D Fourier integral:

δn(ρ) = 1

(2π )2

∫
d2K δ̃n(K)eiK·ρ .

If we make a change in integration variables from Cartesian to cylindrical in the above
equation we find that

δn(ρ) = 1

(2π )2

∫ π

−π
dα0

∫ ∞
0

K dK δ̃n(KK̂)eiKK̂·ρ

= 1

2(2π )2

∫ π

−π
dα0

∫ ∞
−∞
|K|dK δ̃n(KK̂)eiKK̂·ρ , (8.55)

where K̂ is the unit vector along the K direction. If we now simply align the K direction
with the ξ axis so that K̂ = ξ̂ and make use of the projection-slice theorem we can write

δ̃n(KK̂) = ˜Pα0 δn(K),
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which when used in Eq. (8.55) yields the filtered back-projection (FBP) algorithm:

δn(ρ) = 1

2(2π )2

∫ π

−π
dα0

∫ ∞
−∞
|K|dK ˜Pα0 δn(K)eiKξ̂ ·ρ . (8.56)

The FBP algorithm as defined in Eq. (8.56) owes its name to the fact that it can be
interpreted as the composite operation of 1D filtering of the projections followed by the
process of “back projection.” To see this, we make the substitution

ξ = ξ̂ · ρ = x cosα0 + y sinα0,

which follows directly from Eqs. (8.53b). On substituting the above into Eq. (8.56) we
obtain

δn(ρ) = 1

2(2π )2

∫ π

−π
dα0

∫ ∞
−∞
|K|dK ˜Pα0 δn(K)eiK(x cosα0+y sinα0)

= 1

4π

∫ π

−π
dα0 Pα0 δn(x cosα0 + y sinα0), (8.57a)

where

Pα0 δn(ξ ) = 1

2π

∫ ∞
−∞
|K|dK ˜Pα0 δn(K)eiKξ

= h ◦ Pα0 δn(ξ ) (8.57b)

is the filtered projection. In this equation h denotes the 1D convolutional filter

h(ξ ) = 1

2π

∫ ∞
−∞
|K|dK eiKξ (8.58)

and ◦ denotes the 1D convolution operation

h ◦ g(ξ ) =
∫ ∞
−∞

dξ ′ h(ξ − ξ ′)g(ξ ′)

for any function g(ξ ).
The FBP algorithm as given in Eq. (8.57a) is thus seen to consist of three steps.

1. Convolutional filtering of the projections with the filter h to obtain Pα0 δn(ξ ).
2. Replacement of the argument τ of the filtered projections via the formula ξ =

x cosα0 + y sinα0.
3. Summation of all of the quantities obtained in step 2 over all view angles α0.

The second and third steps, together, constitute the operation of “back projection,” thus
leading to the name filtered back-projection algorithm.
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�Fig. 8.4 Reconstructions obtained using the CT filtered back-projection algorithm with exactly computed phase data from four
cylinders all having a radius of 6λ and having relative indices varying from 1.01 to 1.025 in steps of δnr = 0.005. The
reconstructions are in the form of radial cuts through the center of the cylinders.

8.7.6 Computed tomography of circularly symmetric objects

The reconstruction algorithms of CT are especially simple for circularly symmetric objects
centered at the origin where the spatial Fourier transform δ̃n(K) = δ̃n(K) is a function
only of the magnitude of the 2D spatial frequency vector K and the projections Pα0 δn(ξ )
are independent of the incident-wave direction α0. In that case we can simplify the FBP
algorithm as given in Eq. (8.56) to obtain

δn(ρ) = 1

2(2π )2

∫ π

−π
dα0

∫ ∞
−∞
|K|dK P̃ δn(K)eiKξ̂ ·ρ

= 1

2π

∫ ∞
0

K dK P̃ δn(K)J0(Kρ). (8.59)

We implemented the reconstruction algorithm Eq. (8.59) using scattered-field data from
penetrable cylinders having different indices of refraction and show the results in Fig. 8.4.
The reconstructions shown in the figure are radial cuts through the center of single cylin-
ders having a radius a0 = 6λ and four relative indices varying from 1.01 to 1.025 in steps
of δnr = 0.005 and employed scattered-field data computed using the multipole expansion
developed in Section 6.3 of Chapter 6. The algorithm employed the phase perturbation of
the total field (incident plus scattered) over a line two wavelengths outside the cylinder
surface. Ideally, the reconstructions should be step functions with the value of the cylinder
index over the range 0 ≤ ρ ≤ a0 and zero for ρ > a0. The extremely bad reconstructions
generated by the algorithm are due to the fact that the scattered field does not propagate
along the straight-ray paths assumed in CT but rather diffracts and expands as it propagates
through the cylinder. This diffraction is taken into account at least to lowest order in DT,
as will be developed in the following section.
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8.8 Diffraction tomography

The CT model described in the previous section requires that the wavelength λ be suffi-
ciently small that the first term in the Rytov model given in Eqs. (8.50) can be neglected in
comparison with the remaining two terms in this equation. It is apparent from the results
presented in Fig. 8.4 that this requirement can fail if the incident wave suffers signifi-
cant diffraction in passing through the object.5 In this section we will discuss the general
case in which λ need not be small and so will examine the ISCP formulated within the
Rytov approximation and valid for any wavelength. We will again assume plane-wave
incidence with the understanding that the plane-wave data can be obtained from a full suite
of spherical-wave data using the slant-stack algorithm described in Chapter 6. A gener-
alized form of inverse scattering that can directly employ arbitrary incident wavefields is
developed in Chapter 9.

We showed in Section 6.10.5 that potential scattering theory formulated using the Rytov
approximation can be formally converted to the scattering theory formulated within the
Born approximation. In particular, we showed that the Rytov approximation to the phase
perturbation is mathematically related to the Born approximation to the scattered field via
the equation

δWR = − i

k0
e−ik0s0·rU(s)

B (r). (8.60)

Although the two approximations (Born and Rytov) are mathematically related, it is impor-
tant to note that the Rytov approximation is an approximation to the complex phase of the
field, whereas the Born approximation is an approximation to the scattered field. Because
of this they have different domains of validity; i.e., they are not equally good approxima-
tions. In particular, the Rytov approximation is generally a more accurate approximation
to the complex phase than the Born approximation is to the scattered field if the scatter-
ing object is large compared with the wavelength. On the other hand, as we showed in
Section 6.10.5, the Rytov approximation degrades as the distance between the scattering
volume τ0 and the field observation point r increases and becomes identical to the Born
approximation in the far-field limit (Colton and Kress, 1992).

8.8.1 Hybrid formulation

It is possible to employ diffraction tomography as formulated via the Rytov approxima-
tion with scattered-field data acquired at any distance from the scattering potential by first
back propagating the field data to the near field of the scattering potential, after which the
Rytov-based FBP algorithm is employed. This scheme, which has been called the “hybrid
method” (Johansen et al., 1990), is easy, in principle, to implement but suffers from the

5 In X-ray CT the wavelength of the X-rays is much smaller than the scale at which the object varies so that very
little diffraction occurs and the FBP algorithm and other CT-based algorithms can be successfully employed.
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difficulty of phase unwrapping the back-propagated field. The back propagation of the
scattered field can be performed using any of the algorithms presented in Chapter 4, includ-
ing Green-function-based methods as well as Fourier-based methods such as the angular-
spectrum expansion and the Fresnel transform. An alternative approach (He and Greenleaf,
1986) is to back propagate the complex phase directly using the non-linear Ricatti equa-
tion Eq. (6.72a) which it satisfies. This approach avoids the issue of phase unwrapping but
is computationally demanding and there can be problems associated with instabilities in
regions where caustics introduce phase discontinuities.

8.8.2 Reduction to a set of 2D inverse scattering problems

The fact that the Rytov approximation to the complex phase of the field is mathematically
identical to the Born approximation to the scattered field allows us to employ all of the
results obtained earlier in this chapter to the ISCP formulated within the Rytov approxima-
tion. In particular, the FBP algorithm can be directly employed within the Rytov approxi-
mation to yield an inversion algorithm employing the complex phase perturbation δWR of
the (total) field rather than the (complex) amplitude of the scattered field U(s)

B . However,
in diffraction tomography, as opposed to the classical ISCP, we employ only forward-
scattered field data (similarly to the CT case) and employ near-field measurements (or
measurements of the back-propagated field in the hybrid method) as opposed to the far-
field measurements of the scattering amplitude f (s, s0) used in the classical ISCP problem
and entering into the FBP algorithm as defined in Eq. (8.9). Thus, in order to transform the
results obtained earlier in the chapter to the case of DT it is necessary to specialize these
results to be applicable to near-field measurements of forward-scattered-field data.

Although the necessary modifications to the earlier Born-based theory can be made
directly in the full 3D case, it is preferable to first develop the inversion algorithms for
planar projections of the 3D index perturbation δn onto specified planes and then later
extend the theory to the full 3D case. The reduction of the 3D case to planar projections of
the index perturbation over planes is possible because of the following theorem.

Theorem 8.2 Let the unit vectors s0 of a set of incident plane waves all lie in a plane per-
pendicular to the z axis of a Cartesian coordinate system (x, y, z) = (ρ, z) and let U(s)(r; s0)
be the field scattered by the scattering potential V for any of these incident plane waves.
Then the planar projections

PzU
(s)
B (ρ; s0) =

∫ ∞
−∞

dz U(s)
B (r; s0) (8.61a)

of the Born approximation U(s)
B (r; s0) to the scattered fields projected onto this plane are

equal to the Born approximation to the 2D fields scattered by the planar projection PzV(ρ)
of the scattering potential; i.e.,

PzU
(s)
B (ρ; s0) =

∫
d2ρ′ PzV(ρ′)eik0s0·ρ′G0+ (ρ − ρ′), (8.61b)
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where

PzV(ρ) =
∫ ∞
−∞

dz V(r)

are the projections of the scattering potential onto the (x, y) plane and

G0+ (ρ) = − i

4
H0(kρ)

is the outgoing-wave Green function to the 2D Helmholtz equation.

The above theorem effectively reduces the ISCP within the Born approximation to a
sequence of 2D inverse scattering problems. In particular, by projecting the scattered field
onto the (x, y) plane according to Eq. (8.61a) and then solving the 2D ISCP corresponding
to a set of incident plane waves all lying in this plane the above theorem states that the
resulting 2D scattering potential generated by the inversion is equal to a planar projection of
the 3D scattering potential onto the (x, y) plane. By repeating the procedure for a set of such
planes it is then possible to determine the projections of the 3D potential onto all of these
planes from which the potential can then be determined via a 3D CT algorithm. Moreover,
in many applications so-called “out-of-plane scattering” will be small so that on employing
an incident plane-wave beam that is essentially zero outside some small region of the z axis
the resulting 2D reconstruction will be a good approximation to the cross-section of the
potential over that wedge region. It is then possible to obtain planar cross-sectional images
of a 3D structure by this means.

To prove the theorem, we first note that the Born approximation to the scattered field
satisfies the equation

[∇2 + k2
0]U(s)

B (r) = V(r)eik0s0·r,

where

V(r) = k2
0[1− n2(r)].

If we now take the planar projection of both sides of the above equation satisfied by U(s)
B

onto the plane containing the unit propagation vectors s0 we find that∫ ∞
−∞

dz[∇2 + k2
0]U(s)

B (r) =
∫ ∞
−∞

dz V(r)eik0s0·ρ ∂
∂z

U(s)
B |∞−∞ + [∇2

ρ + k2
0]
∫ ∞
−∞

dz U(s)
B (r)

=
∫ ∞
−∞

dz V(r)eik0s0·ρ[∇2
ρ + k2

0]PzU
(s)
B (ρ)

= PzV(ρ)eik0s0·ρ ,

which establishes the theorem.
The above theorem is stated for the Born approximation to the scattered field but is

trivially extended to the Rytov approximation and, hence, to diffraction tomography within
this approximation. This, of course, follows from the linear relationship Eq. (8.60) between
the Born and Rytov scattering models. Within the Rytov approximation the above theorem
takes the following form.
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Theorem 8.3 Let the unit vectors s0 of a set of incident plane waves all lie in a plane per-
pendicular to the z axis of a Cartesian coordinate system (x, y, z) = (ρ, z) and let δW(r; s0)
be the complex phase of the total (incident plus scattered) field generated by the scattering
potential V for any of these incident plane waves. Then the planar projections

Pz δWR(ρ; s0) =
∫ ∞
−∞

dz δWR(r; s0)

of the Rytov approximation δWR(r; s0) to the phase projected onto this plane are equal to
the Rytov approximation phase of the 2D fields scattered by the planar projection PzV(ρ)
of the scattering potential; i.e.,

Pz δWR(ρ; s0) = − i

k0
e−ik0s0·ρ

∫
d2ρ′ PzV(ρ′)eik0s0·ρ′G0+(ρ − ρ′), (8.62)

where PzV(ρ) are the projections of the scattering potential onto the (x, y) plane and
G0+ (ρ) is the outgoing-wave Green function to the 2D Helmholtz equation.

The proof of the theorem follows immediately from Eq. (8.60) and Theorem 8.2.

8.9 Diffraction tomography in two space dimensions

The above two theorems allow us to solve the full 3D inverse scattering problem within
either the Born or the Rytov approximation using a sequence of 2D inversions that we will
find are generalizations of the FBP algorithm of CT. In the following discussion we will
develop the theory for 2D diffraction tomography without reference to the 3D case and
will, in particular, employ a 2D scattering potential V(ρ) and 2D scattered field U(s)(ρ, s0)
and phase perturbation δW(ρ, s0) and restrict our attention to near-field data acquired using
the “classical” tomographic geometry illustrated in Fig. 8.3. We will also make the approx-
imation

V(ρ) = k2
0[1− n2(ρ)] ≈ −2k2

0 δn(ρ), (8.63)

which is required in order for the Rytov approximation to be valid. As illustrated in Fig. 8.3,
the (2D) index perturbation δn is illuminated by an incident plane wave whose unit propa-
gation vector s0 lies in the ρ plane, making the angle α0 with respect to the positive-y axis,
and the complex phase of the total field is measured outside the scattering volume τ0 along
the line ξ in the rotated ξ , η coordinate system illustrated in Fig. 8.3. The geometry is thus
identical to that used in classical CT and all of the discussion relative to that figure given
earlier applies here.

The field data consist of the complex phase perturbation of the total (incident plus scat-
tered) field over the measurement line ξ , namely the total (measured) phase minus the con-
stant and known phase of the incident plane wave on this measurement line. In two space
dimensions the Rytov phase perturbation for plane-wave incidence is given by Eq. (8.62)
with Pz δWR replaced by δWR and PzV replaced by −2k2

0 δn according to Eq. (8.63). For



371 8.9 Diffraction tomography in two space dimensions

the classical scan geometry illustrated in Fig. 8.3 we have that s0 = η̂ and s0 · ρ = η, so
the Rytov phase perturbation on the measurement line is given by

δWR(ξ ;α0) = 2ik0e−ik0l0

∫
d2ρ′ δn(ρ′)eik0η

′
G0+(ρ − ρ′), (8.64)

where we used α0 to denote the dependence of the phase on s0 and ρ = ξ ξ̂ + l0η̂ denotes a
point on the measurement line, which we assume is at a constant distance η = l0 from the
center of rotation of the tomographic system.

We will refer to the mapping δn(ρ) → δWR(ξ ;α0) defined in Eq. (8.64) as a general-
ized projection of the index perturbation δn onto the measurement line ξ and denote it, in
analogy to the CT case, by Pα0 δn(ξ ); i.e.,

δWR(ξ ;α0) = Pα0 δn(ξ ) = 2ik0e−ik0l0

∫
d2ρ′ δn(ρ′)eik0η

′
G0+(ρ − ρ′). (8.65)

The DT reconstruction problem then reduces to that of estimating (reconstructing) the
index perturbation δn(ρ) from a set of generalized projections Pα0 δn(ξ ) taken at various
viewing angles α0 contained in some set α0 ∈ Sα0 .

8.9.1 The generalized projection-slice theorem

We have already seen that in the short-wavelength limit the above model reduces to con-
ventional CT, which is grounded in the projection-slice theorem relating the 1D transform
of the phase perturbation to a slice of the 2D transform of the index perturbation. It is then
natural to take a spatial Fourier transform of both sides of the defining equation Eq. (8.65)
of the generalized projection with respect to ξ in the hope of obtaining a generalization
of this theorem that will lead to an inversion algorithm within the Rytov approximation
that applies at all wavelengths. In computing this transform we will make use of the Weyl
expansion of the 2D outgoing-wave Green function given in Section 4.6 of Chapter 4. For
the geometry in hand this expansion takes the form

G0+ (ρ − ρ′) = −i

4π

∫ ∞
−∞

dκ

γ
ei[κ(ξ−ξ ′)+γ (η−η′)], (8.66)

where

γ =
⎧⎨⎩
√

k2
0 − κ2 κ < k0,

i
√
κ2 − k2

0 κ > k0.

On substituting Eq. (8.66) into Eq. (8.64) with η = l0 and performing some simple
algebra we obtain

Pα0δn(ξ ) = k0e−ik0l0

2π

∫ ∞
−∞

dκ

γ
δ̃n(κ , γ − k0)ei(κξ+γ l0),
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where

δ̃n(κ , γ − k0) =
∫

d2ρ δn(ρ)e−iK·ρ |K=κ ξ̂+(γ−k0)η̂,

is the 2D spatial Fourier transform δ̃n(K) of the 2D index perturbation over the arc K =
κ ξ̂ + (γ − k0)η̂. The above two equations encompass the so-called generalized projection-
slice theorem, which we state formally as follows.

Theorem 8.4 (the generalized projection-slice theorem) Let Pα0 f (ξ ) be a generalized projec-
tion of a function f (x, y) taken at the angle α0 that the ξ axis makes with the positive-x
axis of the fixed x, y coordinate system. Then the 1D Fourier transform of the generalized
projection Pα0 f (ξ ) is proportional to a slice taken through the 2D Fourier transform f̃ (K)
of the function f along the arc K = κ ξ̂ + (γ − k0)η̂; i.e.,

˜Pα0 f (κ) = k0ei(γ−k0)l0

γ
f̃ (κ , γ − k0), (8.67a)

where

˜Pα0 f (κ) =
∫ ∞
−∞

dξ Pα0 f (ξ )e−iκξ , (8.67b)

is the 1D spatial Fourier transform of the generalized projection of the function f (x, y) over
the measurement line η = l0.

In the limit λ→ 0 we have that γ → k0 so that the above theorem reduces to the usual
projection-slice theorem, Theorem 8.1. When the wavelength is finite the straight-line slice
occurring in the projection-slice theorem deforms to a semicircular arc that corresponds to
the inner half of an Ewald circle and the linear transformation from the 2D function f (x, y)
to the 1D generalized projection includes the multiplying factor

H(κ) = k0

γ
ei(γ−k0)l0 ,

which acts as a filter in this transformation (Goodman, 1968). Over the homogeneous
region of the spectrum (κ < k0) γ is real-valued and this filter has a magnitude k0/γ

that increases with spatial frequency and a non-linear phase (γ − k0)l0 that oscillates
non-linearly with κ with the instantaneous frequency of oscillation increasing as a func-
tion of κ2. The spatial frequency κ = k0 is a cutoff frequency after which the filter
decreases exponentially fast with increasing κ . Moreover, using an argument identical
to that employed in Section 4.2 of Chapter 4, it is easily established that the product
H(κ)f̃ (κ , γ − k0) also decreases exponentially fast after this cutoff frequency so long as
the radius of the support of the function f (ρ) is many wavelengths less than the radius l0 of
the measurement circle. This, of course, is due to the fact that the evanescent components
of the scattered field decay exponentially fast outside the support of the scattering potential.
In this case, which we will assume here and in the following, the generalized projections
are band-limited to the homogeneous region of the spectrum κ < k0.
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8.9.2 The filtered back-propagation algorithm

The reconstruction problem for the classical scan geometry reduces to estimating the index
perturbation δn(ρ) from a set of generalized projections related to the data (phase pertur-
bations) via the equations

Pα0 δn(ξ ) = δWR(ξ ;α0),

and to the index perturbation via the generalized projection-slice theorem. According to
this theorem a given generalized projection determines the 2D spatial Fourier transform of
the index perturbation over the arc

K = κ ξ̂ + (γ − k0)η̂. (8.68)

As discussed in conjunction with the generalized projection-slice theorem, the spatial fre-
quencies lying outside the band −k0 < κ < +k0 correspond to evanescent components of
the scattered field and hence will be unusable if the measurement circle lies many wave-
lengths distant from the support of δn(ρ), which we will assume is the case here.6

The unit vector η̂ is equal to the unit propagation vector s0 of the incident plane wave
and if we define the unit vector s according to the equation

k0s = κ ξ̂ + γ η̂, −k0 < κ < +k0,

then we conclude that the arc defined in Eq. (8.68) over which the generalized projections
specify the 2D transform of the index perturbations corresponds to the Ewald semicircle

K = k0(s− s0), (8.69)

with s0 · s ≥ 0. We thus conclude that

˜Pα0 δn(κ) = δ̃WR(κ ,α0) = k0ei(γ−k0)l0

γ
δ̃n[k0(s− s0)], (8.70)

with s defined in Eq. (8.69) and with s · s0 ≥ 0.
By varying the unit propagation vector s0 over the unit circle we conclude from

Eq. (8.70) that δ̃n(K) can be determined throughout the interior of the circle K = |K| ≤√
2k0, which is analogous to the interior of the Ewald limiting sphere that we encountered

in our treatment of the ISCP formulated within the Born approximation in Section 8.1. In
that earlier treatment we found that the scattering amplitude specified for all incident and
scattering directions uniquely determined the transform of the scattering potential through-
out the interior of the Ewald limiting sphere, which has a radius of 2k0 rather than

√
2k0.

The reason for the difference is that in the classical scan configuration we use only forward-
scattered data corresponding to s0 · s ≥ 0, unlike in the Born inversion from the scattering
amplitude, which employs scattered-field data in all directions.

The inversion algorithm for the ISCP within the Born approximation from the scattering
amplitude was based on the so-called inverse scattering identity derived in Section 8.1.3
for the 3D case and in Example 8.1 of that section for the 2D case. In those treatments
it was assumed that the scattered-field data were obtained for all scattering directions s,

6 Evanescent plane waves can be included in the data using the Green-function-based inversion algorithms devel-
oped in the following chapter.
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whereas for the classical scan configuration under consideration here we are restricted to
forward-scattered field data corresponding to the semicircular arcs defined in Eq. (8.69)
with s0 · s ≥ 0. Using a development completely parallel to that employed in Example 8.1,
we then find that the 2D inverse scattering identity modified to use only forward-scattering
data is given by

δnLP(ρ) = k2
0

2(2π )2

∫ π

−π
dα0

∫ π

0
dα
√

1− (s · s0)2 δ̃n[k0(s− s0)]eik0(s−s0)·ρ , (8.71a)

where α is the angle that s makes relative to the ξ axis and

δnLP(ρ) = 1

(2π )2

∫
K≤√2k0

d2K δ̃n(K)eiK·ρ , (8.71b)

is the index perturbation band limited to the circle K ≤ √2k0.
Our final step is to substitute for δ̃n[k0(s − s0)] from the generalized projection-slice

theorem and convert Eq. (8.71a) into a more usable form that parallels the FBP algorithm
Eq. (8.57a) of CT. This form follows from the change of integration variable α → κ

according to the equations

κ = k0 cosα, γ = k0 sinα, dκ = −γ dα, s0 · s = γ

k0
,

from which we find that Eq. (8.71a) becomes

δnLP(ρ) = 1

2(2π )2

∫ π

−π
dα0

∫ k0

−k0

dκ|κ|δ̃WR(κ ,α0)ei[κξ+(γ−k0)(η−l0)]. (8.72)

The inversion algorithm Eq. (8.72) is the “classical” filtered back-propagation algorithm
of diffraction tomography within the Rytov approximation. This algorithm, which is the
DT version of the FBP algorithm presented in Section 8.1.2 can be decomposed into three
steps.

• Filtering of the data (complex phase perturbations) δWR(κ ,α0) acquired at angle α0

implemented in the spatial frequency domain via

δ̃WR(κ ,α0) = |κ|δ̃WR(κ ,α0).

• Back propagation of the filtered data to yield the partial reconstructions

δnLP(ρ,α0) = 1

2π

∫ k0

−k0

dκ δ̃WR(κ ,α0)ei[κξ+(γ−k0)(η−l0)].

• Summation of the partial reconstructions over all incident-wave directions (angles) α0

δnLP(ρ) = 1

4π

∫ π

−π
dα0 δnLP(ρ,α0).

It is easily verified that the DT FBP algorithm reduces to the classical FBP algorithm of
CT in the limit λ→ 0 (k0 →∞).
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8.9.3 Diffraction tomography of circularly symmetric objects

As was the case in CT, the FBP algorithm of DT is especially simple for circularly sym-
metric objects centered at the origin, where the spatial Fourier transform δ̃n(K) = δ̃n(K) is
a function only of the magnitude of the 2D spatial frequency vector K and the generalized
projections Pα0 δn(ξ ) are independent of the incident-wave direction α0. In that case we
can simplify the FBP algorithm as given in Eq. (8.72) to obtain

δnLP(ρ) = 1

2(2π )2

∫ π

−π
dα0

∫ k0

−k0

dκ|κ|δ̃WR(κ)ei[κξ+(γ−k0)(η−l0)]

= 1

2π

∫ k0

0
dκ|κ|δ̃WR(κ)e−i(γ−k0)l0 J0

(√
κ2 + (γ − k0)2ρ

)
. (8.73a)

It is easily verified that Eq. (8.73a) reduces to its CT equivalent Eq. (8.59) in the limit
k0 →∞. We can also write Eq. (8.73a) in the alternative form

δnLP(ρ) = 1

2π

∫ k0

0
dκ|κ|δ̃WR(κ)e−i(γ−k0)l0 J0(

√
2k0ρ

√
1− γ /k0).

Exact and Rytov data for four penetrable cylinders having a radius a0 = 6λ and real-
valued indices of refraction ranging from nr = 1.01 to nr = 1.025 in steps of δnr = 0.005
are shown in Fig. 8.5. These plots are of the real and imaginary parts of the phase deviation
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�Fig. 8.5 Real (top) and imaginary (bottom) parts of the phase deviation generated over the line l0 = a0 + 2λ by four
penetrable cylinders having a radius a0 = 6λ and indices of refraction ranging from nr = 1.01 to nr = 1.025 in
steps of δnr = 0.005. The solid lines are the exactly computed phases and the dashed lines are the Rytov phases.
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δW(ξ ) along the measurement line η = 8λ, which is two wavelengths removed from the
cylinder boundary. The exact phases were computed using the algorithm

δW(ξ ) = ln U

ik0
− ln eik0l0

ik0
, (8.74)

where U is the total exact field (incident plus scattered). The Rytov phases were computed
directly using Eq. (8.60) with the Born scattered field computed using the multipole expan-
sion of this field developed in Section 6.8. It can be seen from Fig. 8.5 that the agreement
between the Rytov and exact phase data is excellent and that no phase wrapping occurs
with this particular data set since the radius and indices of the cylinders are sufficiently
small that the phase delay introduced by the passage of the incident wave through the
cylinders is smaller than 2π . Reconstructions obtained using this data set in the FBP algo-
rithm in the form given in Eqs. (8.73) are shown in Fig. 8.6. As expected because of the
close agreement between the exact and Rytov data the reconstructions are excellent.

We employed the same set of cylinder indices but with a larger cylinder radius equal to
12λ in the simulations shown in Figs. 8.7 and 8.8. In this case the phase delay introduced
by the larger cylinders results in a phase wrap in the data for the largest cylinder in the
exact data. No wrapping occurs in the Rytov phase since it is computed directly from the
Born scattered field using Eq. (8.60) and, hence, is automatically guaranteed to be free of
phase wraps. The phase wrap is catastrophic in the reconstructions of this cylinder’s radial
profile from the exact data, as can be seen in Fig. 8.8. Moreover, the use of the standard
Matlab unwrap algorithm fails on this data set. Note, however, that the reconstructions of
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�Fig. 8.6 Reconstructions obtained using the FBP algorithm on exact (top) and Rytov (bottom) data for the phase data shown
in Fig. 8.5. The reconstructions were obtained using the FBP algorithm with a standard Hamming window included in
the filtering operation.
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�Fig. 8.7 Real (top) and imaginary (bottom) parts of the phase deviation generated over the line l0 = a0 + 2λ by four
penetrable cylinders having a radius a0 = 12λ and indices of refraction ranging from nr = 1.01 to nr = 1.025 in
steps of δnr = 0.005. The solid lines are the exactly computed phases and the dashed lines are the Rytov phases. It is
seen that the exact phase computed for the largest-index cylinder is not properly unwrapped and so generates a
severely distorted reconstruction.
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�Fig. 8.8 Reconstructions obtained using the FBP algorithm on exact (top) and Rytov (bottom) data for the phase data shown
in Fig. 8.7. The reconstructions were obtained using the FBP algorithm with a standard Hamming window included in
the filtering operation. It is seen that the failure to have a properly unwrapped phase led to a terrible reconstruction of
the index profile of the cylinder having the largest index.
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�Fig. 8.9 Reconstructions obtained using the FBP algorithm on exact (top) and Rytov (bottom) data for two concentric
cylinders. The radial cuts are shown on the left and 2D images on the right.

the cylinder profiles having smaller index values are excellent, as is the reconstruction of
the largest cylinder from the Rytov data.

We also performed simulations using data for two concentric cylinders again using the
FBP algorithm in the form given in Eqs. (8.73). We show in Fig 8.9 the reconstructions
obtained for a pair of concentric cylinders centered at the origin with the inner cylinder
having a radius of a1 = 2λ and an index of nr = 1.01 and the outer cylinder a radius
of a2 = 8λ and an index of nr = 1.05. This figure shows both radial cuts through the
centers of the cylinder reconstructions and 2D plots generated from the radial cuts using
the Matlab mfile pol2cart.m. As it was for the single-cylinder cases, the reconstructions
are excellent. Other simulations of single and concentric cylinders yield similar results:
good to excellent reconstructions up to index perturbations of about 5% so long as the data
can be properly unwrapped. However, if the product of the index perturbation with the
support radius of the scatterer is too large the phase cannot be easily unwrapped and the
reconstruction algorithms fail. This is the major limitation of diffraction tomography.

8.10 Simulations of DT with ideal Rytov data

Here we present simulations of CT and DT using ideal Rytov data generated using the
generalized projection-slice theorem via Eq. (8.70). Our goal is to acquaint the reader with
the steps required in the processing of real data in wavefield tomography and to compare
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the quality of the DT reconstructions generated via the FBP algorithm with that of those
generated from the same data set using the standard CT FBP algorithm without regard to
the accuracy of the data set; i.e., we tacitly assume that the scattering object is such that
the Rytov data are accurate and that no phase wrapping has occurred. We select scattering
objects (phantoms) that are particularly simple, consisting of a set of circular cylinders
having differing indices and radii and, hence, of the general form

δn(ρ) =
N∑

j=1

δnj circ[aj(ρ − ρj)], (8.75a)

where circ is the circ function having radius aj and center ρj and δnj are a set of real
constants. The 2D spatial Fourier transform of δn(ρ) is readily found to be given by

δ̃n(K) = 2π
N∑

j=1

δnj
J1(Kaj)

K
e−iK·ρj . (8.75b)

The ideal Rytov data are thus given by Eq. (8.70) with δ̃n[k0(s− s0)] given by Eq. (8.75b)
with

K = k0(s− s0) = κ ξ̂ + (γ − k0)η̂.

We thus obtain

δ̃WR(κ ,α0) = 2πk0ei(γ−k0)l0

γ

N∑
j=1

δnj
J1(
√

2k0aj
√

k0 − γ )√
2k0
√

k0 − γ e−i[κξj+(γ−k0)ηj], (8.76)

where ρj = ξjξ̂ + ηjη̂. The actual phase data δW(ξ ,α0) are, of course, given by the 1D
inverse spatial Fourier transform of δ̃W(κ ,α0) computed via the algorithm Eq. (8.74).

We take as a general phantom a circular version of the famous Shepp and Logan head
phantom (Shepp and Logan, 1974). The parameters for this phantom are given in Table 8.1
and an image of the phantom itself is shown in the left-hand part of Fig. 8.13 later.

Shown in Fig. 8.10 are reconstructions of the head phantom obtained using 3, 6, 10,
and 31 equally spaced view angles over 2π radians with the wavelength λ = 1, which is
roughly 1/80 of the outer diameter of the phantom. The increasing clarity and accuracy of
the reconstruction with increasing view angles is apparent. The focusing effect of the back-
propagation step of the filtered phase data into the image space is also clear, especially in
the first two reconstructions. The reconstructions are all band-limited to K ≤ √2k0 and
are thus somewhat blurred by the low-pass filtering inherent in the FBP algorithm. We also
used a Hamming filter on the phase data to remove Gibbs ringing in the reconstructions.
We show the same set of reconstructions in Fig. 8.11, but for a much smaller wavelength
equal to λ = 0.1. The increased resolution is apparent, as is the change in the focusing
in each of the partial views. This is due to the fact that as the wavelength decreases the
back propagations tend toward back projections, which are defined by parallel lines with
no focusing. Because of this we can expect the standard CT FBP algorithm to yield a fairly
good reconstruction at this shorter wavelength, which is indeed the case, as shown by the
CT reconstruction in Fig. 8.12.



380 Classical inverse scattering and diffraction tomography

Table 8.1 Head phantom parameters (all lengths are in
wavelength units)

xj yj aj δnj

0 0 40.25 0.5
0 −0.92 38.41 −0.5

11 0 10.5 −0.2
−11 0 14.25 −0.2

0 17.5 11.5 0.1
0 5 2.3 0.15
0 −5 2.3 0.15
−4 −30.25 2.3 0.15

0 −30.25 1.15 0.15
3 −30.25 1.725 0.15
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�Fig. 8.10 Reconstructions obtained using the FBP algorithm on Rytov data for the Shepp and Logan head phantomwithλ = 1,
for 3 views (top left), 6 views (top right), 10 views (bottom left) and 31 views (bottom right), all equally spaced.
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�Fig. 8.11 Reconstructions obtained using the FBP algorithm on Rytov data for the Shepp and Logan head phantomwith
λ = 0.1, for 3 views (top left), 6 views (top right), 10 views (bottom left) and 31 views (bottom right), all equally
spaced.

As a last example we show in the right-hand part of Fig. 8.13 the reconstruction obtained
at λ = 1 for 109 equally spaced view angles. Shown in the left-hand part of Fig. 8.13 is
an ideal image of the head phantom obtained using an inverse 2D spatial Fourier transform
(2D IFFT) of δ̃n(K) as given in Eq. (8.75b) but not band-limited to K ≤ √2k0. The recon-
struction is seen to be in good agreement with the ideal image both in shape and in gray
level. Even greater agreement can be obtained using larger numbers of view angles in the
FBP reconstruction.

8.11 Three-dimensional diffraction tomography

It is possible to directly obtain a complete 3D reconstruction for the classical scan sys-
tem without first obtaining a set of 2D reconstructions of planar projections as developed
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�Fig. 8.12 Reconstructions obtained using the CT FBP algorithm on Rytov data for the Shepp and Logan head phantomwith
λ = 0.1, for 3 views (top left), 6 views (top right), 10 views (bottom left) and 31 views (bottom right), all equally
spaced.
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�Fig. 8.13 (Left) Ideal reconstruction of the Shepp and Logan head phantom forλ = 1 obtained using an inverse 2D Fourier
transform of δ̃n(K) band-limited to K ≤ √2k0. (Right) FBP-generated reconstruction from Rytov phase data using
109 view angles.
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in the previous section. The key to this is the 3D inverse scattering identity developed in
Section 8.1. Again we will work with DT within the Rytov approximation for the classical
scan system, where now the data will be the complex phase perturbation of the total field
specified over a set of planes whose unit normals are the unit propagation vectors s0 of
the incident plane waves. We will denote position on these planes by the vector ρ whose
Cartesian components are ξ and χ , and, as in the 2D case, use η to denote the third Carte-
sian component, whose positive axis is aligned along the unit propagation vector s0 of the
incident plane wave. The Rytov model for the phase perturbations measured over a given
measurement plane is given in Eq. (8.60), which can be expressed in the form

δWR(ρ, s0) = 2ik0e−ik0l0

∫
τ0

d3r′ G0+ (r− r′)δn(r′)eik0s0·r, (8.77)

where r = ρ + l0s0 denotes a point on the measurement plane, with ρ being the projection
of r onto this plane.

Following our treatment of the 2D case, we expand the 3D Green function in the Weyl
(angular-spectrum) expansion relative to the measurement plane and find that (cf. Sec-
tions 4.1 and 4.2 of Chapter 4)

δWR(ρ, s0) = k0e−ik0l0

(2π )2

∫
Kρ≤k0

d2Kρ
γ

δ̃n[k0(s− s0)]eik0s·r, (8.78)

where Kρ = (Kξ , Kχ ) is the Fourier spatial frequency vector conjugate to ρ and

k0s = Kρ + γ s0, (8.79)

with γ =
√

k2
0 − K2

ρ . Note that in Eq. (8.78) we have assumed that the radius of the mea-
surement sphere l0 is many wavelengths larger than the radius of the support volume τ0 of
the scattering potential. This then limits the integration to the homogeneous region of the
spectra, as discussed in our treatment of the 2D case in the previous section, and requires
that s0 · s ≥ 0.

Again, following our treatment of the 2D case, we transform both sides of Eq. (8.78)
and use the definition of s given above to find that

δ̃WR(Kρ , s0) = k0ei(γ−k0)l0

γ
δ̃n[k0(s− s0)], (8.80a)

where

δ̃WR(Kρ , s0) =
∫

d2ρ δWR(ρ, s0)e−iKρ ·ρ (8.80b)

is the 2D spatial Fourier transform of the phase perturbation over the measurement plane.
Equation (8.80a) is the generalization of Eq. (8.70) to the 3D case, and much of the discus-
sion following that earlier equation applies here. In particular, due to the requirement that
s0 ·s ≥ 0, a full set of data corresponding to δWR(ρ, s0) being specified for s0 lying over the
entire unit sphere results only in specification of δ̃n(K) over a sphere having radius

√
2k0

rather than over the entire Ewald limiting sphere. The 3D inverse scattering identity given
in Section 8.1.3 then yields a low-pass-filtered version of δn band-limited to this sphere.
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The inverse scattering identity modified to use only forward-scattered field data corre-
sponding to s0 · s yields the result

δnLP(r) = k3
0

(2π )4

∫
d�s0

∫
s0s≥0

d�s|s− s0|δ̃n[k0(s− s0)]eik0(s−s0)·r, (8.81a)

where

δnLP(r) = 1

(2π )3

∫
K≤√2k0

d3K δ̃n(K)eiK·r. (8.81b)

Following our treatment of the 2D case we substitute for δ̃n[k0(s − s0)] from Eq. (8.80a)
and convert Eq. (8.81a) using the change of integration variable according to Eq. (8.79).
We find that

d�s = d2Kρ
γ

, |s− s0| =
√

2
√

1− γ ,

which then yields

δnLP(r) = k2
0

(2π )4

∫
d�s0

∫
d2Kρ δ̃WR(Kρ , s0)ei[Kρ ·ρ+(γ−k0)(η−l0)]. (8.82)

Further reading

The Born approximation is used extensively in X-ray crystallography (Vainshtein, 1974;
Lipson and Cochran, 1966; Cowley, 1966), while one of the first, and most often-quoted,
papers in Born inverse scattering theory in optics is Wolf (1969). The use of the Born
approximation using broad-band data in the time domain is given in Norton and Linzer
(1981). The first use of the SVD in Born inverse scattering is due to B. DeFacio (Brander
and DeFacio, 1986), while Nachman and Waag (Nachman et al., 1997) used the SVD to
decompose the scattering amplitude (see our treatment of MUSIC in Chapter 10). The
“inverse scattering identity” Eq. (8.9) was first derived in Devaney (1982) along the lines
of the derivation presented here and later in Beylkin (1983) using a completely different
approach. Fiddy and co-workers have done a great deal of work on the inverse scattering
problem within the field of optics (Byrne and Fiddy, 1987; Fiddy and Testorf, 2006; Ross
et al., 1979), where the phase problem is of major importance. Various approaches to DT
and linearized inverse scattering have been developed by a number of workers (Maleki
et al., 1992; Devaney, 1989; Gbur and Wolf, 2002).

Exact (non-linear) inverse scattering for the 1D Schrödinger equation has been treated
using a number of different approaches (Newton, 1980a; Sylvester and Winebrenner, 1998;
Sylvester and Gylys-Colwell, 1996), while the treatment of exact inverse scattering in
two or more space dimensions has had very little success. Important contributions, how-
ever, include those by Prosser (Prosser, 1969), who was an early investigator of multi-
dimensional non-linear inverse scattering, and Roger Newton (Newton, 1980b, 1982) and
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the work of Adrian Nachman and co-workers, who have established uniqueness theorems
for a number of inverse scattering problems (Nachman, 1996; Isakov and Nachman, 1995).
Many of the mathematical issues that are encountered in inverse scattering theory were
outlined in an important paper by Sabatier (Sabatier, 1983). Non-linear-based inverse scat-
tering in the form of non-linear diffraction tomography has been developed using Volterra
series in Tsihrintzis and Devaney (2000a, 2000b, 2000c) while the effect of multiple scat-
tering on linearized DT was investigated in Belkebir et al. (2006).

The Radon transform, which underlies much of computed tomography, first appeared
in Radon (1917). Computed tomography (CT) was first introduced by Nobel prize win-
ner Hounsfield (Hounsfield, 1973). The book by Kak and Slaney (Kak and Slaney, 1988)
contains an easily read presentation of both classical CT and diffraction tomography (DT),
while Born and Wolf (1999) give a nice and concise treatment of DT. Other excellent treat-
ments of CT are given in the books by Natterer (Natterer, 1986) and Gabor Herman (Her-
man, 1980). The famous Shepp and Logan head phantom first appeared in Shepp and
Logan (1974) and so-called “ghost images” (the CT analog of non-scattering scatterers)
are treated in Louis (1981).

Two of the earliest papers on the Rytov-based ISCP are Iwata and Nagata (1974) and
Mueller et al. (1979). The use of DT in geophysics was championed by Alan Witten and co-
workers (Witten et al., 1992; Levy and Witten, 1996), while Weglein (Stolt and Weglein,
1985) and his co-workers have done an immense amount of work on Born-based geo-
physical inversion within the context of the oil industry. Twomey’s book (Twomey, 2002)
is a wonderful and thorough treatment of inverse methods especially useful in geophysics
applications. Greenleaf and co-workers (Greenleaf, 1980, 1983; Greenleaf and Bahn, 1981;
He and Greenleaf, 1986) pioneered the use of inverse scattering and DT in medical ultra-
sound tomography, while the first application in geophysics is in Devaney (1984). Wolf
has reviewed the use of DT in optical applications (Wolf, 1996) and has developed the
theory for random scatterers (Fischer and Wolf, 1997). Diffraction tomography has also
been formulated for random media in Tsihrintzis and Devaney (1993) and specialized to
geophysical applications in Tsihrintzis and Devaney (1994). Pan has made a number of
contributions within the field of diffraction tomography, many of which are summarized in
Pan (1998). Pan and Kak (Pan and Kak, 1983) compared the FBP algorithm with Fourier
interpolation in K space.

Stamnes and his students have done extensive work in all phases of DT but especially
in optical tomography (Wedberg and Stamnes, 1996a, 1996b) while Lauer (Lauer, 2002)
has developed an optical microscope based on DT inversion. Time-domain versions of
DT (Melamed et al., 1996; Melamed and Heyman, 1997) and inverse scattering (Bolomey
et al., 1981) that allow much of the theory presented in this chapter to be applied with
wide-band data have been developed. Schotland and co-workers have developed a form of
DT for diffusive imaging (Markel and Schotland, 2001; Schotland and Markel, 2001) and
have also applied DT to near-field microscopy (Carney and Schotland, 2000). Finally, it is
of interest to note that the former president of MIT Charles Vest was one of the earliest
researchers to use a form of DT in optical imaging applications (Cha and Vest, 1979).
Tabbara and co-workers have applied diffraction tomography both in biomedical and in
non-destructive-testing applications (Tabbara et al., 1988).
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Problems

8.1 Compute the coherent point-spread function of the low-pass-filtered approximation
generated via Eq. (8.3).

8.2 Complete the derivation of Eq. (8.6) using contour-integration techniques.
8.3 Fill in the steps in the derivation of Eq. (8.18) from Eq. (8.17).
8.4 Verify that the FBP algorithm with s0 and s restricted to the solid angles �s0 and �s

satisfies the integral equation Eq. (8.19).
8.5 Complete the derivation of Eq. (8.21).
8.6 Derive the expressions for T̂T̂† given in Eq. (8.30) and for T̂†T̂ given in Eq. (8.31)

and Eq. (8.32).
8.7 Complete the derivation of Eq. (8.42).
8.8 Express the generalized scattering amplitude given in Eq. (8.42) in terms of Dirichlet

data over a sphere that completely encloses the scattering volume τ0. Use this result
to express the generalized scattering amplitude in terms of the multipole moments of
the scattered field.

8.9 Derive Eqs. (8.44) directly from Eqs. (8.42). Hint: use the relationship between the
spatial Fourier transforms of the scattered field and its normal derivative over a plane
surface derived in Example 4.4 of Chapter 4.

8.10 Derive the second line in Eq. (8.55) from the first line.
8.11 Complete the derivation of Eq. (8.59).
8.12 Derive Eq. (8.71a).
8.13 Derive Eq. (8.72).
8.14 Complete the derivation of Eq. (8.73a); i.e., show that

1

2π

∫ π

−π
dα0 ei[κξ+(γ−k0)η] = J0(

√
κ2 + (γ − k0)2ρ),

where α0 is the angle formed by the η coordinate axis with the fixed x axis. (Hint:
write κξ + (γ − k0)η as the dot product of two vectors.)

8.15 Derive Eq. (8.75b).



9 Waves in inhomogeneousmedia

In this chapter we generalize the theory presented in Chapters 1–8 to inhomogeneous back-
ground media where the wavenumber is a known function of position r and temporal fre-
quency1 ω. As in most of the book we will work strictly in the frequency domain, with
the understanding that the time-domain results, if desired, can be obtained via an inverse
temporal Fourier transform. The basic wave model that we employ is the inhomogeneous
Helmholtz equation

[∇2 + k2
0(r)− V(r)]U(r) = Q(r), (9.1a)

where k0(r) is the space-varying wavenumber of a “background” medium in which are
embedded a scattering potential V and primary source Q. We assume throughout the chap-
ter that the background wavenumber k0(r) is a known quantity that is at least piecewise
continuous and satisfies the asymptotic condition

k0(r)→ k0, r→∞, (9.1b)

where k0 is a real (possibly frequency-dependent) constant. Both the background
wavenumber k0(r) and the scattering potential V(r) can be complex quantities, although,
for the sake of simplicity, we will sometimes restrict the background wavenumber to being
real-valued.

The background medium in this chapter corresponds to the uniform (homogeneous)
background assumed in earlier chapters. In regions exterior to the support regions of pri-
mary sources or scatterers (where Q = V = 0) radiated or scattered waves in the inhomo-
geneous background satisfy the homogeneous Helmholtz equation

[∇2 + k2
0(r)]U0(r) = 0.

If we define the background scattering potential

V0(r) = k2
0 − k2

0(r) (9.2a)

we can express the Helmholtz equation in the form

1 For the sake of economy we will not explicitly display the frequency variable ω in the arguments of the various
field quantities.

387
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[∇2 + k2
0 − V0(r)]U0(r) = 0, (9.2b)

which is precisely the model we employed in Chapter 6 in our treatment of classical scat-
tering theory. Thus many of the results obtained in that chapter carry over and will be used
in the current chapter. However, a major difference between our treatment in Chapter 6 and
that employed here is emphasis. In that earlier chapter our goal was to obtain scattered-
field models that could be used in inverse scattering applications for scatterers embedded
in a uniform background. Consequently we were mainly concerned with the properties of
the scattered field outside of the support volume of the scattering potential. In the cur-
rent chapter our goal is to obtain models of background waves interior to the support of
the background scattering potential that can then be used in inverse source and scatter-
ing problems for sources and scatterers embedded in an inhomogeneous medium. We will
often make use of the Helmholtz equation in the form of Eq. (9.2b) in the following devel-
opments, with the understanding that it now plays the role of the (classical) homogeneous
Helmholtz equation in a uniform medium having a constant wavenumber.

9.1 Background-medium Green functions

A Green function for an inhomogeneous background satisfies the Helmholtz equation

[∇2 + k2
0(r)]G0(r, r′) = δ(r− r′) (9.3)

and boundary conditions appropriate to the particular problem that is to be solved. In
the case of radiation and scattering problems in unbounded backgrounds the appropriate
boundary condition is causality in the time domain, which translates into the Sommerfeld
radiation condition (SRC) or “outgoing-wave condition” in the frequency domain. Denot-
ing the outgoing-wave background Green function by G0+(r, r′), the SRC is defined by

G0+ (r, r′) ∼ g+(s, r′)eik0r

r
+ O

(
1

r2

)
, r→∞, (9.4a)

where g+(s, r′) is the radiation pattern for the outgoing-wave Green function along the
direction defined by the unit vector s = r/r and we have used the condition that k0(r)→ k0

as r→∞. Two other Green functions that will be used are the so-called “incoming-wave”
Green function which satisfies the incoming-wave radiation condition

G0− (r, r′) ∼ g−(s, r′)e−ik0r

r
+ O

(
1

r2

)
, r→∞, (9.4b)

where g−(s, r′) is the incoming-wave Green function’s radiation pattern, and the
“conjugate-wave Green function” which is simply the complex conjugate of G0+ . If the
background wavenumber k0(r) is real-valued the conjugate-wave Green function reduces
to the incoming-wave Green function G0− (r, r′) and g− = g∗+. The conjugate-wave and
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incoming-wave Green functions for homogeneous backgrounds were defined in Section 2.2
of Chapter 2 and were used throughout many of the earlier chapters.

In the case of homogeneous backgrounds for which k0(r) = k0 we were able to compute
the outgoing- and incoming-wave Green functions G0± in closed form to find that2

G0+(r− r′) = − 1

4π

eik0|r−r′|

|r− r′| ∼

g+(s,r′)︷ ︸︸ ︷
− 1

4π
e−ik0s·r′ eik0r

r
, (9.5a)

G0−(r− r′) = − 1

4π

e−ik0|r−r′|

|r− r′| ∼

g−(s,r′)︷ ︸︸ ︷
− 1

4π
eik0s·r′ e−ik0r

r
. (9.5b)

A closed-form or analytical solution for the inhomogeneous background Green functions
or their radiation patterns is not possible except for very simple backgrounds such as those
consisting of piecewise-constant components with separable boundaries. However, many
important theoretical results can still be obtained for general backgrounds that are impor-
tant in imaging and inverse source and scattering problems.

9.1.1 The reciprocity condition for the Green functions

We have already encountered the outgoing-wave Green function G0+ for a non-uniform
medium in Chapter 6 where we studied the scattering problem for a scattering potential
embedded in a uniform background medium having (constant) wavenumber k0. Indeed, if
we express the scattering potential in that chapter by its form V0(r) = k2

0 − k2
0(r) given

in Eq. (9.2a) we find that the background Green function G0+ corresponds to what we
referred to as the “full Green function” in Chapter 6. One of the properties of this Green
function that was stated there was the reciprocity property

G0+ (r, r′) = G0+ (r′, r). (9.6)

We didn’t actually prove the reciprocity property in Chapter 6 but simply stated that its
proof followed along parallel lines to those used in Section 2.8.4 of Chapter 2 to show that
the uniform-medium Green functions satisfying homogeneous Dirichlet or Neumann con-
ditions on any closed surface ∂τ surrounding two field points r1 and r2 will be symmetric
functions of r1 and r2. For the sake of completeness we supply a proof of the reciprocity
property here both for the incoming- and for the outgoing-wave Green function.

As was done in Section 2.8.4 of Chapter 2, we begin with the two equations satisfied by
the Green functions computed for two source points located at r1 and r2:

[∇2
r′ + k2

0(r′)]G0±(r′, rj) = δ(r′ − rj), j = 1, 2,

2 We will also denote the (infinite) uniform-medium outgoing- and incoming-wave Green functions using the
subscript “0.” No confusion should arise since the uniform-medium Green functions will be functions of the
difference r− r′ and so can easily be identified by their arguments.
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with r1 and r2 both contained within some volume τ , which we will take to be an infinite
sphere with surface ∂τ = ∞ and radius r′ → ∞. Using by-now-familiar manipulations
we find that∫

∞
dS′

[
G0± (r′, r2)

∂

∂n′
G0±(r′, r1)− G0±(r′, r1)

∂

∂n′
G0± (r′, r2)

]
= G0±(r1, r2)− G0± (r2, r1),

where we have used Green’s theorem and the above holds ∀ r1, r2. Now, since G0± must
satisfy the boundary conditions given in Eq. (9.4) (with r′ and r interchanged), we have
that

G0± (r1, r2)− G0± (r2, r1) =
∫
∞

dS′
[

G0± (r′, r2)
∂

∂n′
G0± (r′, r1)

−G0± (r′, r1)
∂

∂n′
G0± (r′, r2)

]
∼
∫

4π
d�′ [±ik0g±(r̂′, r2)g±(r̂′, r1)e±2ik0r′

∓ ik0g±(r̂′, r1)g±(r̂′, r2)e±2ik0r′ ]+ O

(
1

r′2

)
= 0

in the limit r′ → ∞, which establishes the desired result.

9.1.2 Plane-wave scattering states

We were able to easily obtain the radiation patterns of the outgoing- and incoming-wave
Green functions for homogeneous backgrounds in Section 1.5.1 of Chapter 1 by setting
|r − r′| ∼ r − s · r′ as r → ∞ to yield the results given in Eqs. (9.5). Unfortunately, we
cannot use a similar approach for inhomogeneous backgrounds since the Green functions
are not known in closed form. However, we can obtain an analogous result using the “plane-
wave scattering states3” ψ±(r, k0s) of the background medium in place of the plane waves
exp(±ik0s · r′) that occur in g±(s, r′) for the homogeneous-background case. The plane-
wave scattering states are defined to be the outgoing- and incoming-wave solutions to the
non-uniform-medium Helmholtz equation which we can write in the form of Eq. (9.2b),

[∇2 + k2
0 − V0(r)]ψ±(r, k0s0) = 0, (9.7a)

which satisfy the boundary conditions

ψ±(r, k0s0) ∼ eik0s0·r + f±(s, s0)
e±ik0r

r
. (9.7b)

3 In the literature of quantum scattering theory these states are known as the stationary scattering states.
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The plane-wave scattering state ψ+(r, k0s0) is recognized as being the total (incident plus
scattered) field resulting from an incident plane wave propagating in the s0 direction in
a homogeneous medium having wavenumber k0 in which is embedded the background
scattering potential V0(r) = k2

0 − k2
0(r) defined in Eq. (9.2a) and the far-field amplitude

f+(s, s0) of the scattered wave is the scattering amplitude of this scattering potential. The
plane-wave scattering states satisfy the Lippmann–Schwinger (LS) equations that were
derived in Section 6.2 of Chapter 6, which can be written in either of the two forms

ψ±(r, k0s0) = eik0s0·r +
∫

d3r′ G0±(r, r′)V0(r′)eik0s0·r′ (9.8a)

and

ψ±(r, k0s0) = eik0s0·r +
∫

d3r′ G0±(r− r′)V0(r′)ψ±(r′, k0s0), (9.8b)

with V0(r) = k2
0−k2

0(r) and where G0±(r−r′) are the Green functions of the homogeneous
medium with wavenumber k0.

To determine the radiation pattern of the two Green functions G0±(r, r′) we use the LS
equations satisfied by these two Green functions that were also derived in Section 6.2 of
Chapter 6:

G0± (r, r′) = G0±(r− r′)+
∫

d3r′′ G0±(r− r′′)V0(r′′)G0±(r′′, r′).

If we now let r→∞ and make use of Eqs. (9.5) we find that

G0± (r, r′) ∼ − 1

4π
e∓ik0s·r′ e±ik0r

r
+
∫

d3r′′
[
− 1

4π
e∓ik0s·r′′ e±ik0r

r

]
V0(r′′)G0±(r′′, r′)

= − 1

4π

e±ik0r

r

{ ψ±(r′,∓k0s)︷ ︸︸ ︷
e∓ik0s·r′ +

∫
d3r′′ e∓ik0s·r′′V0(r′′)G0±(r′′, r′)

}
.

We thus conclude that

G0±(r, r′) ∼ − 1

4π

e±ik0r

r
ψ±(r′,∓k0s), r→∞, (9.9a)

which yields the result

g±(s, r′) = − 1

4π
ψ±(r′,∓k0s). (9.9b)

In words, the radiation pattern g±(s, r′) of the outgoing (incoming)-wave Green function in
a background medium with wavenumber k0(r′) is −1/(4π ) times the outgoing (incoming)
plane-wave scattering state for this medium for a unit-amplitude incident plane wave with
propagation vector ∓k0s. Note that in the special case in which the background medium
is uniform with wavenumber k0 the radiation pattern reduces to the uniform-medium case
defined in Eqs. (9.5).
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Example 9.1 If we take the inner product of both sides of the LS equation Eq. (9.8b) with
the spherical harmonics Ym

l (r̂) and make use of the multipole expansions of the incident
plane wave and the outgoing-wave Green function G0+ given in Eqs. (3.35) and (3.38a) of
Chapter 3 we obtain the result

〈Ym
l ,ψ±〉 = 4π ilYm

l
∗(s0)jl(k0r)

∓ ik0

∫
d3r′ jl(k0r<)h±l (k0r>)Ym

l
∗(r̂′)V0(r′)ψ±(r′, k0s0),

where r< = min r, r′ and r> = max r, r′, and

〈Ym
l ,ψ±〉 =

∫
d�Ym

l
∗(r̂)ψ±(r, k0s0)

denotes the inner product over the unit sphere. If the background scattering potential is
spherically symmetric (V0(r) = V0(r)) the above equation becomes

〈Ym
l ,ψ±〉 = 4π ilYm

l
∗(s0)jl(k0r)∓ ik0

∫ ∞
0

r′2 dr′ jl(k0r<)h±l (k0r>)V0(r′)〈Ym
l ,ψ±〉.

We thus conclude that for spherically symmetric backgrounds the plane-wave scattering
states admit the expansion

ψ±(r, k0s0) = 4π
∑
l,m

ilg±l (r)Ym
l
∗(s0)Ym

l (r̂), (9.10a)

where g±l (r) satisfies the integral equation

g±l (r) = jl(k0r)∓ ik0

∫ ∞
0

r′2 dr′ jl(k0r<)h±l (k0r>)V0(r′)g±l (r′). (9.10b)

The result obtained in the above example is a consequence of the fact that the Helmholtz
equation is separable in spherical coordinates if the background scattering potential
V0(r) = V0(r) is spherically symmetric. Indeed, in this case the homogeneous Helmholtz
equation satisfied by the plane-wave scattering states can be expressed in spherical coordi-
nates in the form (cf. Section 3.3 of Chapter 3)[

1

r2

∂

∂r

(
r2 ∂

∂r

)
− L2

r2
+ k2

0 − V0(r)

]
ψ±(r, k0s0) = 0, (9.11)

where L2 is the square of the angular-momentum operator whose eigenfunctions are the
spherical harmonics Ym

l with eigenvalue l(l+ 1). It follows from Eq. (9.11) that the plane-
wave scattering states can be expressed in the form of Eq. (9.10a) as a superposition of the
product of the spherical harmonics with the functions g±l (r) that then satisfy the integral
equation Eq. (9.10b). On substituting this expansion into Eq. (9.11) we find that the radial
functions also satisfy the differential equation{

d

dr

(
r2 d

dr

)
+ r2[k2

0 − V0(r)]− l(l+ 1)

}
g±l (r) = 0, (9.12)
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and behave as the sum of jl(k0r) and a scattered wave component h±l (k0r) as r → ∞,
which follows from the boundary condition Eq. (9.7b) satisfied by ψ±(r, k0s0). In the limit
where V0(r) → 0 Eq. (9.12) reduces to the differential equation satisfied by the spherical
Bessel functions g±l (r) = jl(k0r), as is also found directly from Eq. (9.10b).

9.2 The radiation problem in non-uniform backgrounds

The field radiated by a source Q(r) in a non-uniform background medium satisfies
Eq. (9.1a) with the scattering potential V(r) set equal to zero. We will assume that the
source is causal and supported within some finite spatial volume τ0 and that the wavenum-
ber k0(r) satisfies the asymptotic condition Eq. (9.1b). The physical model thus corre-
sponds to a causal source localized within a finite and causal non-uniform background that
eventually becomes uniform with wavenumber k0 sufficiently far from the source volume
τ0. We can thus regard the radiated field U0+ (r) from Q to be the field that is radiated by a
composite causal source consisting of Q embedded in the non-uniform causal background.
It then follows that U0+ must behave as an outgoing spherical wave as r→∞ and satisfy
the Sommerfeld–Radiation condition (SRC) in both of the two equivalent forms

lim
r→∞ r

[
∂U0+(r)

∂r
− ik0U0+(r)

]
→ 0

and

U0+ (r) ∼ f (s)
eik0r

r
+ O

(
1

r2

)
, r→∞,

where f (s) is the “radiation pattern” of the field along the direction s = r/r.

9.2.1 The Green-function solution to the radiation problem

Following identical steps to those employed in the uniform-background case in Section 2.4
of Chapter 2 we start with the pair of equations

[∇2
r′ + k2

0(r′)]G0+(r, r′) = δ(r− r′),
[∇2

r′ + k2
0(r′)]U0+(r′) = Q(r′),

where we require that both the Green function and the field satisfy the SRC and have made
use of the fact that the outgoing-wave Green function G0+ is a symmetric function of its
arguments. On multiplying the top equation by U0+ and the bottom by G0+ and subtracting
one of the resulting two equations from the other we obtain

U0+ (r′)∇2
r′G0+ (r, r′)− G0+ (r, r′)∇2

r′U0+ (r′) = U0+ (r′)δ(r− r′)− G0+ (r, r′)Q(r′).

By integrating the above equation over a volume τ ⊃ τ0 containing the source space
region τ0 and having closed boundary ∂τ we obtain

χ (r)+
∫
τ0

d3r′ G0+ (r, r′)Q(r′) = U0+(r), r ∈ τ , (9.13a)
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and

χ (r)+
∫
τ0

d3r′ G0+(r, r′)Q(r′) = 0, r ∈ τ⊥, (9.13b)

where τ⊥ denotes the infinite region exterior to τ (the complement of τ ). In deriving the
above we have used the fact that the source Q vanishes outside the space region τ0 and
have defined

χ (r) =
∫
∂τ

dS′
[

U0+ (r′) ∂
∂n′

G0+ (r, r′)− G0+ (r, r′) ∂
∂n′

U0+(r′)
]

. (9.14)

We have also made use of Green’s theorem∫
τ

d3r′[U0+ ∇2
r′G0+ − G0+ ∇2

r′U0+ ] =
∫
∂τ

dS′
[

U0+
∂

∂n′
G0+ − G0+

∂

∂n′
U0+

]
,

where the partial derivatives are taken with respect to the outward-directed normal to ∂τ .
The field χ can be shown to vanish in the limit where the volume τ tends to an infinite
sphere ∞ with radius r′ → ∞ so long as we require the Green function and field U0+ to
satisfy the SRC (see the problems at the end of the chapter) and we obtain

U0+(r) =
∫
τ0

d3r′ G0+ (r, r′)Q(r′). (9.15)

9.2.2 The Kirchhoff–Helmholtz representation of the radiated field

We return to the set of Eqs. (9.13), where we now take the volume τ ⊃ τ0 to be arbitrary. If
we now make use of the Green-function solution Eq. (9.15) in these equations we conclude
that

χ (r) = 0, r ∈ τ , χ (r)+ U0+(r) = 0, r ∈ τ⊥.

On substituting the expression for χ given in Eq. (9.14) these two equations yield the
results∫

∂τ

dS′
[

G0+ (r, r′) ∂
∂n′

U0+(r′)− U0+ (r′) ∂
∂n′

G0+ (r, r′)
]
= U0+ (r), r ∈ τ⊥, (9.16a)

and ∫
∂τ

dS′
[

G0+(r, r′) ∂
∂n′

U0+ (r′)− U0+(r′) ∂
∂n′

G0+(r, r′)
]
= 0, r ∈ τ . (9.16b)

Equations (9.16) are a generalization to the case of inhomogeneous backgrounds of the
famous Kirchhoff–Helmholtz theorem for homogeneous backgrounds that was established
in Section 2.5 of Chapter 2 and, in the time domain, for the wave equation in Chapter 1.
As mentioned in those earlier treatments, they are sometimes referred to as the Helmholtz
identities. The first Helmholtz identity, Eq. (9.16a), is a formal solution to the exterior
boundary-value problem; i.e., it is the solution to the homogeneous Helmholtz equation
throughout τ⊥ that achieves specified boundary conditions in the form of the field U0+ (r′)
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and ∂U0+ (r′)/∂n′ at all points r′ on the boundary ∂τ and satisfies the SRC. However, this
boundary-value problem is not well posed in the sense that the boundary values U0+ (r′)
and ∂U0+(r′)/∂n′ are not independent and therefore cannot be assigned arbitrarily. As was
the case for homogeneous backgrounds, these two quantities are coupled by the second
Helmholtz identity, which implies that Dirichlet, Neumann or mixed conditions are neces-
sary and sufficient in order to yield a unique solution to a properly posed boundary-value
problem both in homogeneous and in inhomogeneous background media. We will not go
into a detailed treatment of these boundary-value problems since it would follow identical
lines to that developed in Chapter 2.

9.2.3 The Porter–Bojarski integral equation

The Porter–Bojarski (PB) integral equation was derived in Chapter 2 and used in Chap-
ter 5 to solve the inverse source problem (ISP) in a homogeneous and lossless background
medium. This equation relates the source of a radiated or scattered wave to the wavefield
back propagated from over-specified boundary-value data over a closed surface surround-
ing the source support region. The equation plays a fundamental role in time-reversal imag-
ing of sources embedded in lossless media and will be used in the following chapter in our
treatment of imaging of systems of discrete scatterers.

We can derive the PB integral equation in a general inhomogeneous medium by follow-
ing the same steps as used above in deriving the solution to the radiation problem, where,
however, we replace the outgoing-wave Green function by the incoming-wave Green func-
tion G0− (r, r′). Under this replacement Eq. (9.13a) becomes

�(r)+
∫
τ0

d3r′ G0−(r, r′)Q(r′) = U0+(r),

where

�(r) =
∫
∂τ

dS′
[

U0+ (r′) ∂
∂n′

G0− (r, r′)− G0− (r, r′) ∂
∂n′

U0+ (r′)
]

. (9.17a)

If we now make use of Eq. (9.15) we obtain the PB integral equation

�(r) =
∫
τ0

d3r′ G0f (r, r′)Q(r′), (9.17b)

where

G0f (r, r′) = G0+ (r, r′)− G0− (r, r′) (9.18)

is the free-space propagator of the medium. This quantity is the difference between two
Green functions and, hence, satisfies the homogeneous Helmholtz equation over all of
space.

As mentioned above, the PB integral equation forms the foundation of one formulation
of the ISP and, as we will find in the following chapter, plays a key role in time-reversal
imaging in lossless media. In such media G0− = G∗0+ , so the complex conjugate of �
defined in Eq. (9.17a) can be interpreted as being the field radiated into the interior region
τ by surface sources equal to the time-reversed radiated (or scattered) field. This field is
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thus an “image” of the source formed by field data over ∂τ and, as we saw in Chapter 5, is,
in some cases, a good approximation to the solution of the ISP.

9.2.4 The radiation pattern of the field

If we substitute the asymptotic expression Eq. (9.4a) for the outgoing-wave Green function
into Eq. (9.15) we obtain

U0+(r) ∼
{∫

τ0

d3r′ g+(s, r′)Q(r′)
}

eik0r

r
,

from which we conclude that the radiation pattern of the field is given by

f (s) = − 1

4π

∫
τ0

d3r′ ψ+(r′,−k0s)Q(r′), (9.19a)

where we have used the expression for the outgoing-wave Green-function radiation pattern
g+(s, r′) given in Eq. (9.9b). This result reduces to the homogeneous background radiation
pattern

f (s) = − 1

4π

∫
τ0

d3r′ e−ik0s·r′Q(r′) = − 1

4π
Q̃(k0s),

where

Q̃(K) =
∫
τ0

d3r′ e−iK·r′Q(r′)

is the spatial Fourier transform of the source when k0(r′) is constant and equal to k0.
We can also express the radiation pattern in terms of boundary-value data over any sur-

face ∂τ that completely surrounds the source volume τ0. In particular, on making use of
Eqs. (9.16a) and (9.9b) we find that

U0+(r) ∼
∫
∂τ

dS′
[

g+(s, r′)eik0r

r

∂

∂n′
U0+ (r′)− U0+(r′) ∂

∂n′
g+(s, r′)eik0r

r

]
=
{
− 1

4π

∫
∂τ

dS′
[
ψ+(r′,−k0s)

∂

∂n′
U0+ (r′)− U0+ (r′) ∂

∂n′
ψ+(r′,−k0s)

]}
eik0r

r
,

which yields the result

f (s) = − 1

4π

∫
∂τ

dS′
[
ψ+(r′,−k0s)

∂

∂n′
U0+ (r′)− U0+(r′) ∂

∂n′
ψ+(r′,−k0s)

]
. (9.19b)
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9.3 Generalized plane-wave expansions

The plane waves exp(ik0s0 · r) played a dominant role in radiation and scattering prob-
lems in homogeneous background media and we might expect that the plane-wave scat-
tering states ψ±(r, k0s0) should play a similar role in these problems in inhomogeneous
backgrounds. These quantities reduce to plane waves in the limit where k0(r) → k0

and are, thus, a natural generalization of the pure plane waves to inhomogeneous back-
ground media. Although these “generalized plane waves” are, indeed, useful in a number
of applications, their utility is limited due to the fact that they are not, except in certain
special cases, associated with any geometry that forms a separable system for the non-
uniform-medium Helmholtz equation Eq. (9.7a). As discussed in Chapter 3, the conven-
tional Helmholtz equation is separable in 11 coordinate systems that include the Cartesian
system. Because of this the plane waves form a complete set of functions for representing
solutions to the homogeneous Helmholtz equation and have the property that they can be
used to fit data specified over all of space, as in the initial-value problem for the wave equa-
tion, or over infinite plane surfaces, as in the Rayleigh–Sommerfeld boundary-value prob-
lem. The Helmholtz equation in a non-uniform medium will not generally be separable in
any coordinate system and, although the plane-wave scattering states form a complete set
for expanding wavefields propagating in the background media, the expansion coefficients
in these expansions cannot be easily determined from boundary-value data. However, as
mentioned above, the plane-wave scattering states and the generalized plane-wave expan-
sions employing these states have some utility in certain applications and for this reason,
and for the sake of completeness, we include a treatment of such expansions in this section.

9.3.1 Generalized plane-wave expansions to the homogeneous Helmholtz
equation in a non-uniformmedium

We consider a wavefield U0(r) satisfying the homogeneous Helmholtz equation Eq. (9.7a)
over all of space

[∇2
r′ + k2

0(r′)]U0(r′) = 0.

If we couple the above equation with the Helmholtz equation for the outgoing-wave Green
function G0+ (r, r′) we obtain

G0+(r, r′)∇2
r′U0(r′)− U0(r′)∇2

r′G0+(r, r′) = −U0(r′)δ(r− r′).

If we now integrate the above equation over the interior of an infinite sphere with radius
r′ → ∞ and use Green’s theorem we obtain

U0(r) = lim
r′→∞

r′2
∫

4π
d�r′

{
U0(r′) ∂

∂r′
G0+ (r, r′)− G0+ (r, r′) ∂

∂r′
U0(r′)

}
.

As a final step we make use of the asymptotic expansions of the field U0(r′) and the
outgoing-wave Green function G0+ (r, r′) as r′ → ∞ with r finite. Since the field is a
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solution to the homogeneous Helmholtz equation it will not satisfy a radiation condition
but will, instead, have both outgoing- and incoming-wave components at infinity, i.e.,

U0(r′) ∼ u+(r̂′)eik0r′

r′
− u−(r̂′)e−ik0r′

r′
+ O

(
1

r′2

)
, r′ → ∞. (9.20)

On making use of this result and the far-field expression of the Green function given in
Eq. (9.9a) (with r and r′ exchanged) we find after a bit of algebra that

U0(r) = ik0

2π

∫
4π

d�s u−(s)ψ+(r,−k0s). (9.21a)

A completely parallel development using G0− in place of G0+ yields the alternative
expansion

U0(r) = ik0

2π

∫
4π

d�s u+(s)ψ−(r, k0s). (9.21b)

The above (generalized) plane-wave expansions are precisely of the form of the
plane-wave expansions of solutions to the homogeneous Helmholtz equation in a uniform
background that were derived in Section 3.2 of Chapter 3. In both cases they consist of
superpositions of plane waves or plane-wave scattering states with an arbitrary plane-wave
amplitude. Note, however, that the derivation of the plane-wave expansions given above
not only yields the general form of the expansion but also relates the plane-wave ampli-
tudes to the far-field amplitudes of the incoming- and outgoing-wave components of the
field! We employed a different derivation of the plane-wave expansion in Chapter 3 that
did not yield this result.

Example 9.2 If we specialize the general plane-wave expansions given in Eqs. (9.21) to
the case of a homogeneous background with constant wavenumber k0 then the plane-wave
scattering states ψ±(r, k0s) become the plane wave exp(ik0s·r) and the expansions become

U0(r) = ik0

2π

∫
4π

d�s u±(s)e±ik0s·r. (9.22)

As an example we consider the free-field propagator

G0f (r− r′) = G0+ (r− r′)− G0− (r− r′) = − i

2π

sin(k0|r− r′|)
|r− r′| , (9.23)

which played a major role in the ISP for the wave equation treated at the beginning of
Chapter 5. The free-field propagator is the difference between two Green functions and,
hence, satisfies the homogeneous Helmholtz equation over all of space. It can thus be
represented via the plane-wave expansion Eq. (9.22) with r′ a free parameter. The far-field
amplitudes u±(s) are readily obtained from Eq. (9.23) and we find that

u±(s) = − 1

4π
e∓ik0s·r′ ,
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which, when substituted into Eq. (9.22), yields the result

G0f (r− r′) = − ik0

8π2

∫
4π

d�s eik0s·(r−r′).

The plane-wave expansion of the free-field propagator found above was previously
derived in Example 4.2 of Chapter 4 by making use of the angular-spectrum expan-
sions of the outgoing- and incoming-wave Green functions in the definition Eq. (9.23)
of the free-field propagator. The above derivation based on the general expressions for
the plane-wave amplitudes given in Eq. (9.20) is much simpler and more elegant than the
previous derivation and allows solutions of the homogeneous Helmholtz equation both in
uniform and in non-uniform media to be computed given only the far-field behavior of the
fields.

Example 9.3 As a second example we consider the plane-wave expansion of the free-field
propagator in an inhomogeneous medium. This quantity which previously arose as the
kernel of the PB integral equation in Section 9.2.3 is the natural generalization of the free-
field propagator in a homogeneous medium, being defined as the difference between the
outgoing- and incoming-wave Green functions of the medium. The free-field propagator
behaves asymptotically as

G0f (r, r′) = G0+ (r, r′)− G0− (r, r′)

∼ g+(r, r̂′)eik0r′

r′
− g−(r, r̂′)e−ik0r′

r′
+ O

(
1

r′2

)
, r′ → ∞,

with g±(r, r̂′; k0) defined in Eq. (9.9b). Because it is the difference between two Green
functions, the free-field propagator satisfies the homogeneous Helmholtz equation with
respect to both r and r′ and thus admits a plane-wave expansion of the form given in
Eqs. (9.21) with either r or r′ being a free parameter. On making use of Eq. (9.3) and the
definition of u± given in Eq. (9.20) we find that

u±(s) = − 1

4π
ψ±(r,∓k0s),

where we have selected r to be the free parameter. The plane-wave expansion of the free-
field propagator is then obtained from either of Eqs. (9.21) and found to be

G0f (r, r′) = − ik0

8π2

∫
4π

d�s ψ+(r′,−k0s)ψ−(r, k0s), (9.24a)

which, due to symmetry of the free-field propagator, can also be written in the form

G0f (r, r′) = − ik0

8π2

∫
4π

d�s ψ+(r,−k0s)ψ−(r′, k0s). (9.24b)

It is easily verified that this plane-wave expansion of G0f reduces to the plane-wave expan-
sion of the free-field propagator given in Example 9.2 when k0(r)→ k0.
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9.3.2 Generalized angular-spectrum expansions

The plane-wave expansions that we obtained in the preceding section apply to wavefields
that propagate in the background medium without the presence of sources or scatterers
and employ plane-wave scattering states ψ+(r, k0s) that have purely real unit propagation
vectors s lying on the surface of the (real) unit sphere. We saw in the case of uniform
backgrounds in earlier chapters that these types of plane-wave expansions do not suffice
for representing either radiated or scattered fields and it is necessary to include so-called
evanescent plane waves that are characterized by complex unit propagation vectors in the
expansions of these types of wavefields.

For example, the plane-wave expansion of the outgoing-wave Green function in a uni-
form background having wavenumber k0, called the Weyl expansion, that was derived in
Section 4.1 of Chapter 4 is given by

G0+ (r− r′) = − ik0

8π2

∫ π

−π
dβ
∫

C±
sinα dα eik0s·(r−r′),

where s = sinα cosβ x̂ + sinα sinβ ŷ + cosα ẑ and the contours C± are displayed in
Fig. 4.1 of Chapter 4; C+ is used if z > z′ and C− if z < z′. These types of plane-
wave expansions that can represent radiated and scattered fields are referred to as angular-
spectrum expansions and played an important role in the theory developed in previous
chapters. For example, the angular-spectrum expansion of outgoing-wave solutions to
the Helmholtz equation formed the basis in Chapter 4 for the important concept of field
back propagation that was used extensively in our solutions of the ISP and ISCP in later
chapters.

Although it is possible to derive a generalized type of Weyl expansion for the outgoing-
wave Green function G0+ (r, r′) the details of the derivation are quite involved, especially
in the case of lossy backgrounds where the background scattering potential V0 is complex.
The derivation is a bit more manageable in the case of lossless backgrounds where V0 is
real-valued and the Helmholtz operator is Hermitian. In this case standard results from
quantum collision theory can be employed and we show in Appendix B that

G0+ (r, r′) = − ik0

8π2

∫ π

−π
dβ
∫

C±
sinα dα ψ+(r, k0s)ψ−(r′,−k0s), (9.25a)

where, as in the homogeneous-background case, the contour C+ is used if z > z′ and the
contour C− is used if z < z′. It is evident that Eq. (9.25a) reduces to the conventional
Weyl expansion in the homogeneous-background case. In their angle-variable forms given
above the Weyl expansion for both homogeneous and inhomogeneous backgrounds does
not decompose into evanescent plane waves that decay in a specific direction but gener-
ally includes plane waves that decay or grow in more than one direction. However, the
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plane waves and plane-wave scattering states are entire analytic functions of the unit prop-
agation vector s, so the α contours of integration can be transformed to lie along the real-α
axis and the line �α = π/2 in the complex-α plane, which correspond exactly to a decom-
position into homogeneous and evanescent plane waves (see the discussion in Section 3.2.2
of Chapter 3).

The Weyl expansion can be written in an alternative form by making use of the reci-
procity condition Eq. (9.6). In particular, we find that

G0+ (r, r′) = − ik0

8π2

∫ π

−π
dβ
∫

C∓
sinα dα ψ+(r′, k0s)ψ−(r,−k0s).

The α contour of integration is changed in the above expansion so that C− is now used
if z > z′ and C+ if z < z′. However, if we now make the change of integration variables
β → β + π and α → π − α resulting in s → −s then C∓ → C± and the expansion
assumes the form (cf. Section 4.1 of Chapter 4)

G0+ (r, r′) = − ik0

8π2

∫ π

−π
dβ
∫

C±
sinα dα ψ−(r, k0s)ψ+(r′,−k0s), (9.25b)

where now C+ is again used if z > z′ and C− if z < z′.
Although we have derived the generalized Weyl expansion in Appendix B under the

assumption of a lossless medium where the Helmholtz operator is Hermitian, Eqs. (9.25)
actually hold more generally in cases in which V0 is complex and the background is lossy.
However, the derivation of the expansions in this more general scenario is quite involved
and requires the use of biorthogonal expansions (Morse and Feshbach, 1953), so it will not
be presented here.

9.3.3 Angular-spectrum expansion of the radiated field in non-uniformmedia

We now assume that the source is confined to a strip z− ≤ z ≤ z+ and restrict our attention
to field points r lying outside this strip. Then, using arguments completely parallel to those
employed in Section 4.2 of Chapter 4, we substitute the generalized Weyl expansion of the
Green function in Eq. (9.25b) into Eq. (9.15) to obtain the angular-spectrum expansion of
the radiated field valid everywhere outside the source strip z− ≤ z ≤ z+:

U0+ (r) =
∫
τ0

d3r′
{
− ik0

8π2

∫ π

−π
dβ
∫

C±
sinα dα ψ−(r, k0s)ψ+(r′,−k0s)

}
Q(r′)

⇓

U0+ (r) = ik0

2π

∫ π

−π
dβ
∫

C±
sinα dα A(k0s)ψ−(r, k0s), (9.26a)

where the angular spectrum A(k0s) is given by
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A(k0s) = − 1

4π

∫
τ0

d3r′ Q(r′)ψ+(r′,−k0s) (9.26b)

and the α integration contour C+ is used in the r.h.s. z > z+ and the contour C− in the
l.h.s. z < z−. We note that the orientation of the Cartesian coordinate system is arbitrary,
so such an expansion can be used throughout any two parallel half-spaces that lie outside
the source volume τ0.

On making use of Eq. (9.19a) we can express the angular-spectrum expansion in terms
of the radiation pattern of the field4

U0+ (r) = ik0

2π

∫ π

−π
dβ
∫

C±
sinα dα f (s)ψ−(r, k0s). (9.27)

The above expansion performs the operation of field back propagation from the radiation
pattern of the source that was developed for homogeneous backgrounds in Section 4.3 of
Chapter 4. All of the discussion of field back propagation that was presented in that section
also applies here for inhomogeneous backgrounds, including and most importantly, the
instability of this process due to the inclusion of evanescent waves in the angular-spectrum
expansion. Since the evanescent plane waves decay exponentially fast with distance from
the source boundary planes z = z± they grow exponentially fast as the source boundary
planes are approached from more distant boundaries. It then follows that any small errors in
the (analytically continued) radiation pattern f (s) in the evanescent region will be amplified
exponentially fast as the source region is approached from the far field (see the discussion
in Section 4.3 of Chapter 4); i.e., exact field back propagation is mathematically unstable.
Despite being unstable it is, nevertheless, mathematically exact and allows us to prove a
number of general results and theorems that are important for a complete understanding of
inverse problems related to the wave and Helmholtz equations.

9.4 Non-radiating sources in non-uniformmedia

The basic definition and all of the results pertaining to frequency-domain non-radiating
(NR) sources embedded in uniform media developed in Sections 1.7.1 and 2.7 of Chap-
ters 1 and 2 carry over to inhomogeneous backgrounds. In particular, such sources are
still characterized by Definition 1.1, which gives as necessary and sufficient conditions
for a source to be NR at some given frequency ω that its radiated field U0+ (r) as given

4 Note that we require that the radiation pattern be extended into an entire function of the unit vector s in
Eq. (9.27). That this is possible follows from the assumption that the source support τ0 is compact and the
plane-wave scattering states are entire functions of s.
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by Eq. (9.15) must vanish everywhere outside its spatial support τ0 at that particular fre-
quency. Piecewise-continuous compactly supported NR sources are constructed using the
recipe (cf. Eq. (1.57))

Qnr(r) = [∇2 + k2
0(r)]�(r), (9.28)

where �(r) is a function that is compactly supported in the spatial volume τ0 at any given
frequency ω and possesses continuous first partial derivatives throughout this volume but
is otherwise arbitrary. The field radiated by the NR source defined above is found using
Eq. (9.15):

Unr(r) =
∫
τ0

d3r′ G0+ (r, r′)

Qnr(r′)︷ ︸︸ ︷
{[∇2

r′ + k2
0(r′)]�(r′)}

=
∫
τ0

d3r′
δ(r−r′)︷ ︸︸ ︷

[∇2
r′ + k2

0(r′)]G0+(r, r′)�(r′) = �(r),

where we have twice integrated by parts and dropped the surface terms due to the assump-
tion that � is continuously differentiable throughout τ0. The field Unr vanishes outside τ0,
which then establishes that the source defined via Eq. (9.28) is an NR source at frequency
ω and, moreover, that the field it generates is the compactly supported function �(r).

The question arises as to whether an NR source in a uniform medium will also be NR
when embedded in a non-uniform medium. The answer is definitely no, due to the fact that
the radiated field within the interior of the source will interact with the background in which
it is embedded and thus generate an outgoing (scattered) wave that will not vanish outside
the source’s support. In particular, the field radiated by such a source when embedded in a
non-uniform background is given by

U0+ (r) =
∫
τ0

d3r′
Q0NR (r′)︷ ︸︸ ︷

[∇2
r′ + k2

0]�(r′) G0+ (r, r′), (9.29a)

where Q0NR(r′) is an NR source in the uniform medium having wavenumber k0. If we now
integrate by parts and drop the surface terms due to the continuity and differentiability
conditions on �(r′) we find that at all points outside τ0

U0+ (r) =
∫
τ0

d3r′�(r′)[∇2
r′ + k2

0]G0+(r, r′) =
∫
τ0

d3r′�(r′)V0(r′)G0+(r, r′), (9.29b)

which is the field scattered from the background scattering potential V0(r′) confined to τ0

by the interior field �(r′) radiated by the source Q0NR(r′) within the source region.

9.4.1 Non-radiating sources and the radiation pattern

In our treatment of NR sources for the Helmholtz equation in Chapter 2 we estab-
lished Theorem 2.1 that, in effect, states that the necessary and sufficient condition for
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a compactly supported source in a uniform medium to be NR is that its radiation pattern
vanish. The same theorem holds for compactly supported sources in non-uniform media,
which we state formally as follows.

Theorem 9.1 Let Q(r) be a piecewise-continuous source compactly supported in τ0 in a
background medium with wavenumber k0(r). Then the necessary and sufficient condition
for Q to be NR at any given frequency ω is that the source’s radiation pattern f (s) vanish
at that frequency.

The necessary part of the theorem is obvious from the definition of NR sources. A con-
structive proof of the sufficiency condition can be established in two steps as follows. First
we use the angular-spectrum expansion given in Eq. (9.27) to construct the field every-
where outside the convex hull of the source support τ0. This then shows that the vanishing
of the radiation pattern guarantees that the radiated field vanishes everywhere outside the
convex hull of τ0 and, thus, establishes the theorem for source supports τ0 whose surfaces
are convex. Now assume that the source surface is not convex. We then follow a procedure
entirely analogous to that used in Section 4.8.3 to continue the known field outside the
convex hull of the source support to points that lie outside τ0 but interior to the convex
hull. Since the field vanishes outside the convex hull, the continued field will also vanish,
which then establishes the theorem.

9.5 The inverse source problem

In this section we will generalize the treatment of the ISP presented in Chapter 5 to inho-
mogeneous background media. As in that chapter, we will employ a Hilbert-space formula-
tion of the problem that makes use of the singular value decomposition (SVD) to generate a
least-squares minimum norm (pseudo-inverse) solution of the ISP. We will then specialize
this general formulation to two specific cases that are easily solved. More general source
geometries and backgrounds can be treated using the developed theory but will, in general,
require a numerically based solution.

The question naturally arises as to what applications require a solution to the ISP for
a source embedded in an inhomogeneous medium. As mentioned at the beginning of
Chapter 5, there are basically two applications for the ISP, irrespective of whether it is
posed for sources in uniform backgrounds or for sources in inhomogeneous backgrounds.
The first of these is that of 3D (or 2D) imaging, where the goal is to estimate the inte-
rior of a radiating source from observations of the radiated field. This problem is very
closely tied to the inverse scattering problem (ISCP) that was treated in Chapter 8 and
that will be generalized to inhomogeneous backgrounds later in this chapter. As was
the case for homogeneous backgrounds, the formulation of the ISP for inhomogeneous
backgrounds will lay the foundation for the ISCP in inhomogeneous backgrounds and
will be useful in its own right for imaging coherent sources embedded in known back-
grounds.
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The second application is that of source, or antenna, design, where the goal is to design
a source to radiate a prescribed field (radiation pattern). This second application for the
ISP in inhomogeneous media is intriguing since it offers the possibility of designing novel
antennas by embedding a conventional antenna in an inhomogeneous medium. The idea
is that the induced source (antenna in background) will somehow outperform the antenna
when radiating in a uniform background. We will investigate this aspect of the ISP in some
detail below, where we will find that fundamental limitations allow, at best, only moderate
performance increases to be obtained by the use of such schemes (Devaney et al., 2007).

9.5.1 General formulation

We showed in Chapter 5 that in the case of homogeneous backgrounds the ISP can be
directly posed in terms of the radiation pattern with no loss of generality. The same applies
to inhomogeneous backgrounds, where it follows from Eq. (9.27) that the radiation pattern
uniquely specifies the radiated field everywhere outside the source support volume τ0. In
view of this we can pose the ISP directly in terms of the radiation pattern without any
loss of generality. Indeed, we showed in Section 9.2.4 that the radiation pattern can be
computed from field data specified over any closed surface surrounding the source support
volume so that, if necessary, the ISP can be solved in two steps for data specified over such
surfaces.

Following our treatment of the ISP presented in Chapter 5, we define the operator

T̂ = − 1

4π

∫
τ0

d3r′ ψ+(r′,−k0s), (9.30a)

so that Eq. (9.19a) assumes the form

T̂Q = f . (9.30b)

Equation (9.30b) is identical in form to the defining equation Eq. (5.29) for the ISP in a
homogeneous background and virtually all of the discussion presented in Chapter 5 regard-
ing this equation applies here. In particular, we will assume that the source Q is contained
in the Hilbert space HQ = L2(τ0) of square-integrable functions in τ0 and that the radiation
pattern f (s) is in the Hilbert space Hf = L2(�) of square-integrable functions on the unit
sphere. Both of these spaces are equipped with the standard inner products

〈Q1, Q2〉HQ =
∫
τ0

d3r Q∗1(r)Q2(r),

〈 f1, f2〉Hf =
∫

4π
d�s f ∗1 (s)f2(s),

with induced norms ||Q|| = √〈Q, Q〉HQ and || f || =
√
〈 f , f 〉Hf .
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The adjoint operator T̂† is obtained in the usual manner from its defining equation

〈 f , T̂Q〉Hf = 〈T̂†f , Q〉HQ ,

from which we find that

T̂†f = − 1

4π
Mτ0

∫
4π

d�ψ∗+(r′,−k0s)f (s), (9.31a)

where

Mτ0 =
{

1 if r ∈ τ0

0 else
(9.31b)

is a masking operator.
Following almost identical steps to those employed in Examples 5.3 and 5.4 of Chapter 5

and using the homogeneous plane-wave expansions developed in Section 9.3, it is not
difficult to show that the operator T̂ and its adjoint are compact.

9.5.2 Singular value decomposition

The fact that the operators T̂ and T̂† are compact allows us to employ the SVD to solve
the ISP. Following the treatment employed in Section 5.4.2 of Chapter 5 we thus define the
system {vp, up, σp} via the set of equations

T̂vp = σpup, T̂†up = σpvp, (9.32a)

where the singular values σp are a discrete set of non-negative constants and p = 0, 1, . . .
is an integer index that labels the singular set. The singular functions vp ∈ HQ and up ∈ Hf

are orthonormal and complete in their respective Hilbert spaces and can thus represent the
operators T̂ and T̂† in the expansions

T̂ =
∫
τ0

d3r
∑

p

σpup(s)v∗p(r), T̂† =
∫

4π
d�

∑
p

σpvp(r)u∗p(s), (9.32b)

which are called the “singular value decompositions” of the two operators. It follows from
the defining equations Eqs. (9.32a) that the singular functions vp and up satisfy the normal
equations

T̂†T̂vp = σ 2
p vp, T̂T̂†up = σ 2

p up. (9.32c)
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The composite operator T̂†T̂ is easily found using the definitions given in Eq. (9.30a) and
(9.31a). In particular, we have that

T̂†T̂ = 1

(4π )2
Mτ0

∫
4π

d�ψ∗+(r,−k0s)
∫
τ0

d3r′ ψ+(r′,−k0s)

= 1

(4π )2
Mτ0

∫
τ0

d3r′
{∫

4π
d�ψ∗+(r,−k0s)ψ+(r′,−k0s)

}
. (9.33)

Example 9.4 If we substitute the representation for T̂†T̂ given in Eq. (9.33) into the normal
equation Eq. (9.32c) we find that the singular functions vp(r) having singular values σp > 0
satisfy the homogeneous Helmholtz equation with background wavenumber k∗0(r) within
the source support volume τ0; i.e.,

[∇2 + k2
0
∗(r)]σ 2

p vp(r) = [∇2 + k2
0
∗(r)]T̂†T̂vp(r)

= [∇2 + k2
0
∗(r)]

1

(4π )2
Mτ0

×
∫
τ0

d3r′
{∫

4π
d�ψ∗+(r,−k0s)ψ+(r′,−k0s)

}
vp(r′)

= 1

(4π )2
Mτ0

∫
4π

d�

⎧⎪⎨⎪⎩
0︷ ︸︸ ︷

[∇2 + k2
0
∗(r)]ψ∗+(r,−k0s)

×
∫
τ0

d3r′ vp(r′)ψ+(r′,−k0s)

}
= 0,

so long as the field point r ∈ τ0. The above result can be seen to be the generalization of
the corresponding result established for homogeneous backgrounds in Example 5.6.

9.5.3 The least-squares pseudo-inverse solution of the ISP

The singular system {vp, up, σp} can, in principle, be computed for any given background
wavenumber and source geometry from the defining equations Eq. (9.32a) or from the nor-
mal equations Eqs. (9.32c). Since the singular functions {vp(r)} are complete and orthonor-
mal in HQ and {up(s)} are complete and orthonormal in Hf we can expand the unknown
source Q(r) and (known) data f (s) into these sets to obtain

Q(r) =
∑

p

〈
vp, Q

〉
HQ

vp(r), (9.34a)

f (s) =
∑

p

〈
up, f

〉
Hf

up(s). (9.34b)

On substituting these expansions into Eq. (9.30b) and making use of Eq. (9.32a) we then
obtain the result
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∑
p

σp
〈
vp, Q

〉
HQ

up(s) =
∑

p

〈
up, f

〉
Hf

up(s),

from which we conclude that

〈
vp, Q

〉
HQ
=
〈
up, f

〉
Hf

σp
, σp > 0. (9.35)

As a final step we substitute the above result into the expansion Eq. (9.34a) to obtain the
following formal solution to the ISP

Q̂(r) =
∑
σp>0

〈
up, f

〉
Hf

σp
vp(r). (9.36)

The above “solution” of the ISP is identical in form to that obtained in Section 5.4.4 of
Chapter 5 for the case of a source embedded in a homogeneous background and all of the
discussion presented in that section applies here. In particular, we showed that, because
the above expansion extends only over non-zero singular values, Q̂ has no components
in the null space of the operator T̂ and is, thus, a minimum-norm or “pseudo-inverse”
solution of the ISP; i.e., among all solutions to Eqs. (9.30b) Q̂ is that particular solution
whose norm ||Q̂|| is smallest. Moreover, in the case of non-perfect data, it is, at best, a
least-squares solution to Eq. (9.30b). We say “at best” because the above expansion will
not even converge in HQ unless the data f (s) satisfy the Picard condition

∑
σp>0

∣∣∣∣∣
〈
up, f

〉
Hf

σp

∣∣∣∣∣
2

<∞, (9.37)

which is simply a guarantee that Q̂ have finite norm in HQ. We will not delve further into
these issues here, but simply refer the reader to the extensive treatment of this material
presented earlier in Section 5.4.4 for further details.

9.6 Solution of the ISP for spherically symmetric backgrounds

In order to construct Q̂ it is necessary to compute the singular system for singular values
σp > 0. Even for the case of a homogeneous background this can be done analytically
only for source geometries whose boundaries coincide with a surface in one of the 11 sep-
arable coordinate systems for the Helmholtz operator in a uniform medium. In the case
of non-homogeneous backgrounds the same requirement applies, but where the Helmholtz
operator is now defined for the non-homogeneous medium; i.e., the constant background
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wavenumber k0 is replaced by k0(r). Because of this the number of coordinate systems in
which this operator is separable is much reduced and will, in general, be zero. One case
of importance that can be easily solved is that of a source compactly supported within a
spherical volume τ0 : r < a0 in a spherically symmetric background characterized by a
scattering potential V0(r).5

The plane-wave scattering states ψ±(r, k0s0) for spherically symmetric backgrounds
were found in Example 9.1. If in that example we replace s0 by −s and use the fact that∑

m

Ym
l
∗(−s)Ym

l (r̂) =
∑

m

Ym
l (−s)Ym

l
∗(r̂)

we find that

ψ+(r,−k0s) = 4π
∑
l,m

ilg+l (r)Ym
l (−s)Ym

l
∗(r̂), (9.38a)

where the radial functions g+l (r) satisfy the integral equation

g+l (r) = jl(k0r)− ik0

∫ ∞
0

r′2 dr′ jl(k0r<)h+l (k0r>)V0(r′)g+l (r′). (9.38b)

On substituting Eq. (9.38a) into the r.h.s. of Eq. (9.33) we then find that

T̂†T̂ = 1

(4π )2
Mτ0

∫
τ0

d3r′
{∫

4π
d�s ψ

∗+(r,−k0s)ψ+(r′,−k0s)

}
=Mτ0

∑
l,m

∫
τ0

d3r′ g+l
∗
(r)g+l (r′)Ym

l (r̂)Ym
l
∗(r̂′)vp(r′).

The normal equation Eq. (9.32c) satisfied by the singular functions vp(r) then becomes

Mτ0

∑
l,m

∫
τ0

d3r′ g+l
∗
(r)g+l (r′)Ym

l (r̂)Ym
l
∗(r̂′)vp(r′) = σ 2

p vp(r). (9.39)

The kernel on the l.h.s. of Eq. (9.39) is separable and, using arguments identical to those
employed in Section 5.5 of Chapter 5 in our solution of the ISP for a source in a spherical
support volume in a uniform background, we find that the solution of the above equation
is given by

vl,m(r) =
{
−(il/σl)g

+
l
∗
(r)Ym

l (r̂) if r < a0,

0 if r > a0,
(9.40a)

where the index p is the doublet p = {l, m} and

σl =
√∫ a0

0
r2 dr|g+l (r)|2. (9.40b)

Note that, in agreement with Example 9.4, the singular functions defined in Eq. (9.40a)
satisfy the homogeneous Helmholtz equation with wavenumber k∗0(r).

5 We emphasize that the source need not be spherically symmetric, only the background medium in which it is
embedded.
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The singular functions {up, σp > 0} can be computed from the singular functions {vp}
using the defining equations Eq. (9.32a) for the SVD. Again, following an identical proce-
dure to that employed in Section 5.5, we find that

ul,m(s) = Ym
l (s), σl > 0, (9.40c)

which are identical to the singular functions ul,m found in Section 5.5.

Solution of the ISP

On making use of the SVD obtained above in the least-squares pseudo-inverse Q̂ given in
Eq. (9.36) we obtain the result

Q̂(r) =
∞∑

l=0

l∑
m=−l

〈
Ym

l , f
〉
Hf

σl
vl,m(r) =

∞∑
l=0

l∑
m=−l

f m
l

σl
vl,m(r)

⇓

Q̂(r) = −
∞∑

l=0

l∑
m=−l

ilf m
l

σ 2
l

g+l
∗
(r)Ym

l (r̂), r < a0, (9.41a)

where

f m
l =

〈
Ym

l , f
〉
Hf
=
∫

d�s f (s)Ym
l
∗(s), (9.41b)

are the radiation-pattern Fourier coefficients first introduced in Section 4.8.4 of Chapter 4.

The Picard condition

On making use of Eq. (9.41b) we find that the Picard condition Eq. (9.37) assumes the
form ∑

σp>0

∣∣∣∣ f m
l

σp

∣∣∣∣2 <∞, (9.42)

which is a condition that must be satisfied by the expansion coefficients of the radiation
pattern of a source of a given (specified) radius. We showed in Section 5.6 of Chapter 5
that this condition places a lower bound on the size of a source to radiate a given field and
the two theorems proven in that section carry over to the current application of sources
embedded in non-homogeneous backgrounds. The only difference between the two cases
is that the singular values σp will no longer be those that we computed for homogeneous
backgrounds, so the details of the theorem proofs will be different.
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9.6.1 Solution of the ISP for a piecewise-constant spherically symmetric
background

In order to complete the solution of the ISP in a spherically symmetric background it is
necessary to compute the radial functions g+l (r) within the interior of the source support
region τ0. These functions satisfy the LS equation Eq. (9.38b) and also the differential
equation Eq. (9.12) and are the radial components of the field scattered by the background
scattering potential V0(r) for an incident wave equal to the free-space multipole field

U(in)(r) = jl(k0r)Ym
l (r̂).

One case in which the radial functions are easily computed is for a piecewise-constant
spherically symmetric background whose scattering potential is of the form

V0(r) =
{

k2
0[1− n2

r ] r ≤ R0,

0 r > R0,
(9.43)

where nr = k/k0 is the relative index of refraction of the background region to that at
infinity. We computed the scattered field from such a scattering potential in Section 6.3
of Chapter 6 and can use that result here to compute the required radial functions g+l (r)
entering into the pseudo-inverse solution to the ISP found above.

We only need the radial functions within the support region τ0 of the source, which is
assumed to be a sphere of radius a0 < R0 concentric to the background spherical support
region. On making use of the results obtained in Section 6.3 we find that the total field
(incident plus scattered) within this region for an incident wave equal to the free-space
multipole field defined above is given by

g+l (r)Ym
l (r̂) = am

l (ν)jl(k0nrr)Ym
l (r̂), r ≤ a0, (9.44a)

where

am
l =

i/(k0R0)2

jl(k0nrR0)h+′l (k0R0)− nrj′l(k0nrR0)h+l (k0R0)
. (9.44b)

The radial functions g+l (r) within the source support region are thus proportional to the
spherical Bessel functions jl(k0nrr) with proportionality constant equal to am

l . The singular
values are then found to be

σl = |am
l

μl(k0nra0)︷ ︸︸ ︷
|
√∫ a0

0
r2 dr| jl(k0nrR0)|2 = |am

l |μl(k0nra0). (9.44c)

9.6.2 Super-resolution

As we mentioned at the beginning of the previous section, the question arises as to whether
a primary source embedded in a non-uniform medium can, in some sense, outperform
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the same source embedded in a uniform background. One measure of performance is the
minimum source size required in order to radiate a given radiation pattern, which for a
source embedded in a uniform background is governed by Theorem 5.1. Unfortunately,
it is not possible to “beat” this theorem and obtain “super-resolution” since a composite
source consisting of a primary source Q0 embedded in an inhomogeneous background is,
in fact, an induced source embedded in a homogeneous medium and thus also subject to
Theorem 5.1! In particular, the induced source is given by

Q′0 = Q0 + V0U,

where U is the wave radiated by the primary source embedded in the background scatter-
ing potential V0. For a proper comparison the induced (composite) source must have the
same support as the primary source, which requires that the background potential have this
support. The composite source radiates into the homogeneous medium having wavenum-
ber k0 with the same support as Q0 and is thus subject to Theorem 5.1. This conclusion
holds regardless of the background potential! Thus, although, as we will show below, it is
possible to obtain certain moderate gains (Devaney et al., 2007) by embedding a source
in a non-uniform background, Theorem 5.1 strictly applies and limits the achievable gains
and benefits of immersing primary sources in inhomogeneous backgrounds no matter how
they are constructed.

Although the performance of the composite (induced) source consisting of a primary
source Q0 embedded in a non-uniform background is identical to that of a (different) pri-
mary source (Q′0 = Q0 + V0U) embedded in a uniform background, the primary source
Q0 embedded in the background will, for some backgrounds, have better characteristics
than that of Q0 embedded in a uniform background. The reason for this is that the rates
of decay and cutoff values of the singular values σp for Q0 embedded in a non-uniform
medium can, in some cases, be better than those for the same source in a uniform medium
so that in this sense moderate gains can be achieved. For the case considered above, namely
that of a uniform spherically symmetric background, this can be easily seen by comparing
the singular values μl(k0a0) for a primary source embedded in a uniform background with
wavenumber k0 with the singular values σl = am

l μ(k0nra0) for a primary source embed-
ded in a uniform spherically symmetric background. At first glance the situation looks
promising since the quantities μl(x) begin their exponential decay with index l at l = [x],
where the bracket [·] stands for the next higher integer. Thus, for a source embedded in
a background with relative index of refraction nr > 1 the factor μl(k0nra0) will begin its
exponential decay at l = nr[k0a0], whereas μl(k0a0) begins its decay at [k0a0]. The embed-
ded primary source will thus have a smaller L2 norm than that of the non-embedded one
for a given radiation pattern so long as nr > 1. Unfortunately, the multiplying factor am

l
offsets this gain somewhat, since it also decays exponentially fast with index l. We show
in Fig. 9.1 semi-log plots of μl(k0a0), μl(nrk0a0) and σl for a background relative index
nr = 1.5 and for [k0a0] = 26 and nr[k0a0] = 39. The singular values μl(k0a0) begin their
exponential decay at l ≈ 26, whereas the μl(nrk0a0) begin theirs at l ≈ 39. The cutoff
point for the singular values σl of the composite source lies between these two values at
l ≈ 34.
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�Fig. 9.1 Semi-log plots ofμl(k0a0) (solid),μl(nrk0a0) (+), andσl (•) for [k0a0] = 26 and nr = 1.5.

9.7 Scattering in a non-uniform backgroundmedium

In this section we consider the scattering of an incident wave propagating in a non-uniform
background by an embedded penetrable scatterer characterized by the scattering potential
V(r). Virtually all of the theory and results established in our treatment of scattering in a
uniform background established in Chapter 6 apply here, with the uniform-medium Green
function G0+(r − r′) replaced by the non-uniform-medium background Green function
G0+ (r, r′). The Green function for a composite medium having scattering potential V0 + V
satisfies the Lippmann–Schwinger (LS) equation in either of the two forms

G+(r, r′) = G0+ (r, r′)+
∫

d3r′′ G0+(r, r′′)V(r′′)G+(r′′, r′) (9.45a)

and

G+(r, r′) = G0+ (r, r′)+
∫

d3r′′ G+(r, r′′)V(r′′)G0+(r′′, r′), (9.45b)

where we have denoted the composite (total) medium Green function with the subscript+.
An incident wave propagating in the background will scatter from the embedded scattering
potential V and generate a total wave (incident plus scattered) that satisfies the LS equation
in either of the two forms

U+(r, ν) = U(in)
0 (r, ν)+

∫
d3r′ G0+(r, r′)V(r′)U+(r′, ν) (9.46a)
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and

U+(r, ν) = U(in)
0 (r, ν)+

∫
d3r′ G+(r, r′)V(r′)U(in)

0 (r′, ν), (9.46b)

where the parameter ν labels the incident and resulting total fields and U+(r, ν) is the total
wave in the composite medium resulting from the incident wave U(in)

0 (r, ν) propagating in
the background medium.

The field scattered by the embedded potential V(r) is the second term in the LS equations
and is formally the field radiated by the induced source Q(r, ν) = V(r)U+(r, ν) in the
background medium. However, the total scattered field that would be observed at some
distant field point r = rs along the direction s is the sum of the field scattered by the
potential V and the field scattered by the background (the first term in the above equations).
In particular, we have that

U+(r, ν) ∼ f+(s, ν)
eik0r

r
= f0+(s, ν)

eik0r

r
+ δf (s, ν)

eik0r

r
, r→∞, (9.47a)

where f+(s, ν) is the (generalized) scattering amplitude of the composite medium consist-
ing of background with embedded scattering potential V , f0+(s, ν) is the scattering ampli-
tude of the background wave alone (cf. Eq. (9.7b)) and δf (s, ν) is the deviation of the total
scattering amplitude from the scattering amplitude of the background alone. The last of
these three quantities is simply the radiation pattern of the induced source V(r′)U+(r′, ν)
derived in Section 9.2.4 and is thus given by

δf (s, ν) = − 1

4π

∫
τ0

d3r′ ψ+(r′,−k0s)

Q(r′,ν)︷ ︸︸ ︷
V(r′)U+(r′, ν), (9.47b)

where ψ+(r′,−k0s) is the background plane-wave scattering state with unit propagation
vector−s. On making use of Eq. (9.47b) in Eq. (9.47a) we obtain the following expression
for the total scattering amplitude of the composite medium:

f+(s, ν) = f0+(s, ν)+

δf+(s,ν)︷ ︸︸ ︷
− 1

4π

∫
τ0

d3r′ ψ+(r′,−k0s)V(r′)U+(r′, ν) . (9.47c)

The mappings from the incident wave propagating in the background to the total and
scattered fields according to the LS equations above are linear functionals of the incident
waves but non-linear functionals of the embedded scattering potential V(r). Both of these
properties follow directly from a Liouville–Neumann expansion of the LS equations along
the lines employed in Chapter 6 for scattering potentials embedded in a uniform back-
ground medium. The non-linearity of these equations and of the scattering amplitudes with
respect to the embedded scattering potential makes the inverse scattering problem (ISCP)
extremely difficult, as was discussed extensively in Chapters 6 and 8. As in those ear-
lier chapters, we are thus led to linearization of these equations by dropping higher-order
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terms in the Liouville–Neumann expansion, thus yielding the Born approximation in the
uniform-medium case and the so-called distorted-wave Born approximation (DWBA) for
non-uniform backgrounds.

9.8 The distorted-wave Born approximation

An important procedure in many inverse scattering applications is the process of index
matching whereby an object (scatterer) of interest is embedded in a known scattering
background whose index of refraction (background scattering potential) is closely matched
to the average index of refraction of the scattering object. The background is gener-
ally selected to be simple so that its exact scattering amplitude can be easily computed.
The ISCP then reduces to estimating the scattering potential (index-of-refraction profile)
of the object from the observed scattering amplitude of the composite scatterer consist-
ing of the object embedded in the known scattering background. The key points are that
the scattering from the embedded scatterer will be weak and the scattering amplitude of
the background is known so that a linearized version of Eq. (9.47c) can be employed to
compute the embedded scattering potential.

The scattering model that employs the known scattering amplitude of a background
in which is embedded a weak scatterer of interest is known as the distorted-wave Born
approximation (DWBA). The DWBA of the scattering amplitudes defined in Eqs. (9.47)
results from approximating the total exact wave U+(r′, ν) by the total wave propagating in
the background medium U(in)

0 (r′, ν). We then obtain

δfDB(s, ν) = − 1

4π

∫
τ0

d3r′ ψ+(r′,−k0s)

QDB(r′,ν)︷ ︸︸ ︷
V(r′)U(in)

0 (r′, ν), (9.48a)

for a general incident wave, and

δfDB(s, s0) = − 1

4π

∫
τ0

d3r′ ψ+(r′,−k0s)

QDB(r′,s0)︷ ︸︸ ︷
V(r′)ψ+(r′, k0s0), (9.48b)

for an incident plane-wave scattering state, where we have denoted the DWBA to the vari-
ous quantities with the “DB” subscript. The DWBA scattering amplitudes are linear func-
tionals of the scattering potential V(r) and thus can form the basis of linearized inverse
scattering in inhomogeneous media, which we shall discuss in the next section. They can,
of course, also be used as simple forward-scattering models to compute approximations to
the scattering amplitude of weakly scattering potentials embedded in a known background
medium.
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9.8.1 The DWBA for a pair of concentric homogeneous cylinders

As an example we compute the DWBA of the scattering amplitude f+(s, s0) for a pair
of concentric homogeneous penetrable cylinders for the case in which the incident- and
scattered-field unit vectors s0 and s both lie in the plane perpendicular to the axis of the
cylinders. In this case the background consists of the larger cylinder with scattering ampli-
tude f0+ (s, s0) and

δfDB(s, s0) = −
√

1

8πk0
ei π4

∫
τ0

d2r′ ψ0+(r′,−k0s)V(r′)ψ0+ (r′, k0s0) (9.49)

is the scattering amplitude of the smaller cylinder when embedded in the larger cylinder,
where all quantities are defined on the (x, y) plane. We take the background cylinder to have
a radius a2 and index n2 and the interior cylinder to have a radius a1 < a2 and index n1. The
scattering amplitude f0+(s, s0) of the background cylinder was computed in Example 6.2
of Chapter 6, where it was found to be given by the 2D multipole expansion

f0+(s, s0) =
√

2

πk0
e−i π4

∞∑
l=−∞

Rle
il(α−α0), (9.50)

where Rl are the generalized reflection coefficients for the outer cylinder defined in
Eq. (6.17c) of Chapter 6.

The interior wavefield to the background cylinder for a general incident wave was com-
puted in Section 6.3 of Chapter 6, where it was found to be given by the multipole expan-
sion

U+(r, ν) =
∞∑

l=−∞
al(ν)Jl(k0n2r)eilφ , r ≤ a2, (9.51)

where r,φ are the polar coordinates of the field point r in the x, y system centered along
the axis of the cylinder and

al(ν) = Tla0l (ν), (9.52a)

where a0l (ν) are the multipole moments of the incident wave to the cylinder and, for an
incident plane wave propagating with polar angle ν, are given by

a0l (ν) = ile−ilν , (9.52b)

and

Tl = 2i/(πk0a2)

Jl(k0n2a2)H+′l (k0a2)− n2J′l(k0n2a2)H+l (k0a2)

are the generalized transmission coefficients of the background cylinder. The plane-wave
scattering states for this background are thus given by Eq. (9.51), with ν = α + π for
ψ+(r′,−k0s) and ν = α0 for ψ+(r′, k0s0).

The DWBA for a circular cylinder is given by Eq. (9.49), with the scattering potential

V(r) = δV = k2
0(n2

2 − n2
1), r < a1, (9.53)
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and zero otherwise. Because of the circular symmetry of the scattering potential we can
perform the integration over the polar angle in the expression for δfDB(s, s0) to find that

δfDB(s, s0) = −
√

1

8πk0
ei π4 δV

∫ a1

0
r′ dr′

∫ 2π

0
dφ′ ψ+(r′,−k0s)ψ+(r′, k0s0)

= −
√
π

2k0
ei π4 δV

∞∑
l=−∞

(−1)l
∫ a1

0
r′ dr′|Jl(k0n2r′)|2a−l(α + π )al(α0)

= −
√
π

2k0
ei π4 δV

∞∑
l=−∞

(−1)lμ2
l (k0n2a1)a−l(α + π )al(α0), (9.54)

where we have used the result that J−l(x) = (−1)lJl(x) and where μ2
l (ka) is our old friend

(cf. Section 6.8 of Chapter 6)

μ2
l (ka) =

∫ a

0
r dr J2

l (k0r) = a2

2
[J2

l (ka)− Jl−1(ka)Jl+1(ka)].

On making use of Eqs. (9.52) we conclude that

al(α0) = Tli
le−ilα0 , a−l(α + π ) = T−li

−leil(α+π ) = (−1)lTli
−leilα ,

where we have made use of the fact that Tl = T−l. On making use of the above results in
Eq. (9.54) we then obtain the final expression

δfDB(s, s0) = −
√
π

2k0
ei π4 δV

∞∑
l=−∞

T2
l μ

2
l (k0n2a1)ei(α−α0), (9.55a)

and

fT(s, s0) =
√

2

πk0
e−i π4

∞∑
l=−∞

Rle
i(α−α0)

−
√
π

2k0
ei π4 δV

∞∑
l=−∞

T2
l μ

2
l (k0n2a1)ei(α−α0). (9.55b)

We note that in the limit where the background cylinder has index n2 = n0 = 1 we
have Tl → 1, Rl → 0, and Eq. (9.55b) reduces to the Born approximation for scattering
from a single cylinder with radius a1 embedded in an infinite homogeneous medium with
wavenumber k0 found in Section 6.8 of Chapter 6. On the other hand, if δV → 0, fT reduces
to the exact expression for scattering from a single cylinder of radius a2 embedded in an
infinite homogeneous medium with wavenumber k0.

We compared the DWBA of the scattering amplitude of two concentric cylinders com-
puted above with the exact scattering amplitude found in Example 6.3 of Section 6.4 of
Chapter 6 and with the Born approximation for these two cylinders given in Section 6.8
of that chapter. The exact scattering amplitude is also given by a multipole expansion
of the form of Eq. (9.50) but with the generalized reflection coefficients now given by
Rl = bl(s0)/a0l (s0), where the bl(s0) are obtained as the solutions to the matrix equation
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Eq. (6.19) of Section 6.3 of Chapter 6 and with a0l (s0) = ile−ilα0 given by Eq. (9.52a). The
standard Born approximation was found to be given by

fB(s, s0) = −
√
π

2k0
ei π4

∞∑
l=−∞

[δV μ2
l (k0a1)+ V2μ

2
l (k0a2)]eil(α−α0), (9.56a)

where δV is defined in Eq. (9.53) and

V2 = k2
0(1− n2

2), (9.56b)

is the amplitude of the scattering potential of the outer cylinder alone.
We compared the exact, Born and distorted-wave Born approximations to the scattering

amplitudes of two concentric cylinders having varying radii and relative indices of refrac-
tion. We show in Figs. 9.2 and 9.3 the magnitude and phase of the three scattering ampli-
tudes computed for the pair of concentric cylinders previously considered in Section 6.8.
The two cylinders have radii a1 = 2λ and a2 = 4λ and relative indices of refraction of 1.03
and 1.07. The various combinations of indices are thus (1.03, 1.03) (top left in the figures),
which reduces to a single cylinder having index 1.03 and radius a2 = 4λ, (1.03, 1.07) (top
right in the figures), (1.07, 1.03) (bottom left in the figures) and (1.07, 1.07) (bottom right
in the figures), which reduces to a single cylinder having index 1.07 and radius a2 = 4λ.
Note that, as expected, the DWBA of the two concentric cylinders having the same relative
index of refraction is exact. It is also clear from the figures that the DWBA outperforms
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�Fig. 9.2 Magnitudes of the exact values (solid) and of the Born approximation (dotted) and DWBA (dashed) to the scattering
amplitudes of two concentric cylinders having radii of a1 = 2λ and a2 = 4λ and relative indices of refraction of
(n1, n2) = (1.03, 1.03) (top left), (1.03, 1.07) (top right), (1.07, 1.03) (bottom left) and (1.07, 1.07) (bottom right).
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�Fig. 9.3 Phase plots of the exact values (solid) and of the Born approximation (dotted) and DWBA (dashed) to the scattering
amplitudes of two concentric cylinders having radii of a1 = 2λ and a2 = 4λ and relative indices of refraction of
(n1, n2) = (1.03, 1.03) (top left), (1.03, 1.07) (top right), (1.07, 1.03) (bottom left) and (1.07, 1.07) (bottom right).

the Born approximation in all cases, especially as regards the (real) phase of the scatter-
ing amplitudes shown in Fig. 9.3. The phase of the scattering amplitude plays a dominant
role in inverse scattering applications that rely heavily on field back propagation, which
employs the real and imaginary parts of the scattering amplitude in the back-propagation
process. We show in Figs. 9.4 and 9.5 the real and imaginary parts of the scattering ampli-
tudes displayed in Figs. 9.2 and 9.3. It is readily apparent from these two figures that the
DWBA is much superior to the Born approximation in this example.

As a second example we selected the background cylinder to have a radius a2 = 8λ
and the inner cylinder the same radius as used above, namely a1 = 2λ. We selected the
indices to be n1 = (1.1, 1.2) and n2 = (1.05, 1.08). We display only the DWBA and
exact scattering amplitudes in Figs. 9.6 and 9.7 since the Born results were very poor and
not worth showing. We also only display the real and imaginary parts of the scattering
amplitudes since, as illustrated above, they are much more indicative of the accuracy of
the approximations than are the magnitude and phase. It can be seen from the figures that
the DWBA results in almost perfect agreement with the exact scattering amplitudes for
n1 = 1.1 and n2 = 1.08 (top right in the figures) and does reasonably well for n1 = 1.1
and n2 = 1.05. On the other hand, the results for n1 = 1.2 (bottom parts of the figures) are
not accurate and a better index match between the two cylinders would be required in any
inverse scattering application.
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�Fig. 9.4 Real parts of the exact values (solid) and of the Born approximation (dotted) and DWBA (dashed) to the scattering
amplitudes of two concentric cylinders having radii of a1 = 2λ and a2 = 4λ and relative indices of refraction of
(n1, n2) = (1.03, 1.03) (top left), (1.03, 1.07) (top right), (1.07, 1.03) (bottom left) and (1.07, 1.07) (bottom right).
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�Fig. 9.5 Imaginary parts of the exact values (solid) and of the Born approximation (dotted) and DWBA (dashed) to the
scattering amplitudes of two concentric cylinders having radii of a1 = 2λ and a2 = 4λ and relative indices of
refraction of (n1, n2) = (1.03, 1.03) (top left), (1.03, 1.07) (top right), (1.07, 1.03) (bottom left) and (1.07, 1.07)
(bottom right).
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�Fig. 9.6 Real parts of the exact values (solid) and of the DWBA (dashed) to the scattering amplitudes of two concentric
cylinders having radii of a1 = 2λ and a2 = 8λ and relative indices of refraction of (n1, n2) = (1.1, 1.05) (top left),
(1.1, 1.08) (top right), (1.2, 1.05) (bottom left) and (1.2, 1.08) (bottom right).
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�Fig. 9.7 Imaginary parts of the exact values (solid) and of the DWBA (dashed) to the scattering amplitudes of two concentric
cylinders having radii of a1 = 2λ and a2 = 8λ and relative indices of refraction of (n1, n2) = (1.1, 1.05) (top left),
(1.1, 1.08) (top right), (1.2, 1.05) (bottom left) and (1.2, 1.08) (bottom right)..
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9.9 Foldy–Lax theory

An important scattering model in a number of applications and that we will employ in our
treatment of time-reversal imaging in the next chapter is that of a set of idealized point
(delta-function) scatterers whose scattering potential is of the general form

V(r) =
M∑

m=1

Vmδ(r− Xm). (9.57)

On making use of the above model for the scattering potential in the LS equation
Eq. (9.46a) we obtain

U+(r, ν) = U(in)
0 (r, ν)+

M∑
m=1

VmG0+(r, Xm)U+(Xm, ν). (9.58a)

The above equation runs into immediate difficulty if we take the field point r to be any
of the scattering centers Xm due to the fact that the background Green function occurring
in the equation diverges when r = Xm. This is, of course, a consequence of the unphys-
ical model Eq. (9.57) for the scattering potential employed in deriving the equation. In a
famous paper dealing with multiple scattering in a system of discrete random scatterers
Foldy (Foldy, 1945; Lax, 1951; Ishimaru, 1999) proposed a simple fix for this problem,
which consisted of supplementing the model Eq. (9.57) with the requirement that the scat-
tered field from any of the point scatterers vanish back at their scattering centers. Thus,
while Eq. (9.58a) is required to hold at all field points r �= Xm, m = 1, 2, . . . , M, the field
at any of the scatterer locations is required to satisfy the “renormalized” LS equation

U+(Xm, ν) = U(in)
0 (Xm, ν)+

∑
m′ �=m

Vm′G0+ (Xm, Xm′ )U+(Xm′ , ν). (9.58b)

If we define the two column vectors

u+(ν) = [U+(X1, ν), U+(X2, ν), . . . , U+(XM , ν)]T,

u(in)
0 (ν) = [U(in)

0 (X1, ν), U(in)
0 (X2, ν), . . . , U(in)

0 (XM , ν)]T,

we can write Eq. (9.58b) in the matrix form

Hu+(ν) = u(in)
0 (ν), (9.59a)

where H is the M ×M matrix with elements

H(m, m′) = δm,m′ − V ′m[δm,m′ − G0+ (Xm, Xm′ )]. (9.59b)
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Since we know the background Green function, the incident wave and the scattering centers
Xm and scattering strengths Vm the Foldy–Lax formulation and, in particular, Eq. (9.58b)
reduces the forward-scattering problem6 to the linear problem of inverting the matrix equa-
tion Eq. (9.59b). Once the field amplitudes U+(Xm, ν) at the various scattering centers have
been computed, the field U+(r, ν) is then easily computed using Eq. (9.58a).

Example 9.5 The Foldy–Lax formulation given above can be used to compute the
composite-medium Green function G+(r, r′) by selecting the incident wave U(in)

0 (r, ν) =
G0+ (r, r′). Equations (9.58) then become

G+(r, r′) = G0+ (r, r′)+
M∑

m=1

VmG0+ (r, Xm)G+(Xm, r′),

G+(Xm, r′) = G0+ (Xm, r′)+
∑

m′ �=m

Vm′G0+ (Xm, Xm′ )G+(Xm′ , r′),

where r′ �= Xm, m = 1, 2, . . . , M. We can cast the second equation in the form of the
matrix equation Eq. (9.59a), where now ν → r′ and u+ and u(in) are replaced by

g+(r′) = [G+(X1, r′), G+(X2, r′), . . . , G+(XM , r′)]T,

g0+ (r′) = [G0+(X1, r′), G0+(X2, r′), . . . , G0+ (XM , r′)]T.

9.10 Inverse scattering within the DWBA

We will address only the ISCP formulated within the linearized DWBA presented in the
last section. We will also limit our presentation to the limited-view problem in which one
performs only a limited number of scattering experiments and field measurements. We
will first develop the theory for the ISCP formulated in terms of the scattering amplitude
f+(s( j), s(k)

0 ) specified over a set of Nj scattering directions s( j) and Nk incident plane-wave

propagation vectors s(k)
0 but will also later consider the more general scenario in which the

incident waves are generated by a set of Nk transmitting antennas and the measurements
are performed by a set of Nj receiving antennas, both distributed over an arbitrary set
of locations outside the scattering volume τ0. Our formulation of the limited-view ISCP
mirrors closely our treatment of the limited-view ISP presented in Section 5.8 of Chapter 5.

As usual we will cast the problem in Hilbert space such that the unknown scattering
potential V(r) is contained in the Hilbert space HV = L2(τ0) of square-integrable functions
compactly supported in τ0 and the field data are in the space Hf . In the limited-view ISCP
under consideration here Hf is the space of complex N-tuples with N = Nj × Nk and with
standard inner product defined by

6 We will find in the following chapter that the Foldy–Lax formulation, coupled with the DORT and/or MUSIC
algorithms, also reduces the ISCP of computing the scattering strengths Vm from scattered-field data to a linear
problem.
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〈 f1, f2〉Hf
=

Nj∑
j=1

Nk∑
k=1

f ∗1j,k
f2j,k

. (9.60a)

The Hilbert space HV of scattering potentials is assumed to possess the standard inner
product

〈V1, V2〉HV
=
∫
τ0

d3r V∗1 (r)V2(r). (9.60b)

The two spaces have their respective induced norms || f ||Hf =
√
〈 f , f 〉Hf

and ||V||HV =√〈V , V〉HV
.

9.10.1 The far-field limited-view ISCP

We can cast the far-field ISCP directly in terms of the scattering-potential perturbation
δfDB(s, s0) specified over the set of scattering and incident plane-wave directions s( j), s(k)

0
in an obvious generalization of the statement of the ISCP for the constant-background case
considered in Chapter 8. In particular, in analogy with Eqs. (8.27) of that chapter we have
that

T̂V = δf , (9.61)

where T̂ : HV → Hf and T̂† : Hf → HV are the linear operators

T̂ = − 1

4π

∫
τ0

d3r′ ψ+(r′,−k0s( j))ψ+(r′, k0s(k)
0 ), (9.62a)

T̂† = − 1

4π
Mτ0

Nj∑
j=1

Nk∑
k=1

ψ∗+(r,−k0s( j))ψ∗+(r, k0s(k)
0 ), (9.62b)

where Mτ0 is the masking operator defined in Eq. (9.31b).
We now introduce, in analogy with our treatment of the limited-view ISP in Section 5.8,

the functions

χn(r) = − 1

4π
Mτ0ψ

∗+(r,−k0s( j))ψ∗+(r, k0s(k)
0 ), (9.63)

where n = j + (k − 1)Nj ordered such that, for each j = 1, 2, . . . , Nj, k = 1, 2, . . . , Nk. In
terms of the functions χn we find that

T̂ =
∫

d3r′ χ∗n (r′), T̂† =
∑

n

χn(r),

so that the normal equations for the singular functions vp(r) ∈ HV and singular vectors
up ∈ Hf are given by
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T̂†T̂vp =
N∑

n=1

〈
χn, vp

〉
HV
χn(r) = σ 2

p vp(r), (9.64a)

T̂T̂†up =
∫

d3r χ∗n (r)
〈
χ∗n′ (r), up

〉
Hf
= σ 2

p up. (9.64b)

It follows from Eq. (9.64a) that the singular functions vp corresponding to non-zero
singular values σp > 0 are linear combinations of the functions χn. By then following the
same steps as used in Section 5.8 one finds that

vp(r) =
N∑

n=1

up(n)χn(r)

= − 1

4π
Mτ0

Nj∑
j=1

Nk∑
k=1

up( j, k)ψ∗+(r,−k0s( j))ψ∗+(r, k0s(k)
0 ), σp > 0, (9.65)

where the expansion coefficients up( j, k) = up(n), n = j+ (k−1)Nj, are the components of
the singular vectors up and are the eigenvectors of the Hermitian matrix 〈χn,χn′ 〉HV

whose
eigenvalues are the square of the singular values σ 2

p ; i.e.,

N∑
n′=1

〈χn,χn′ 〉HV
up(n′) = σ 2

p up(n). (9.66)

The solution to the limited-view far-field ISCP is given by the usual expression

V̂(r) =
∑
σp>0

〈
up, δf

〉
Hf

σp
vp(r), (9.67a)

where 〈
up, δf

〉
Hf
=

Nj∑
j=1

Nk∑
k=1

u∗p( j, k)δf+(s( j), s(k)
0 ), (9.67b)

with the singular functions vp(r), σp > 0 given in Eq. (9.65).
It is important to note that the SVD {vp, up, σp} is totally independent of the scattered-

field data and, hence, can be computed once and for all for any given experimental arrange-
ment. Moreover, 〈χn,χn′ 〉HV

will be rank deficient or nearly singular, so only a relatively
small number of terms will need to be included in the inversion Eq. (9.67a). This means,
of course, that only this number of singular functions will need to be stored in memory,
which is an important consideration since the full number of terms will be Nj × Nk × N3,
where N3 is the number of pixels in a given 3D image space.

9.10.2 Back-propagation imaging

The reconstruction algorithm Eq. (9.67a) is in the form of the filtered back-propagation
algorithms discussed extensively in Chapters 5 and 8. In particular, the expansion coeffi-
cients
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〈
up, δf

〉
Hf

σp

can be viewed as being the result of linear filtering of the raw data δf in the subspace
spanned by the singular vectors up. These filtered data are then back-propagated into τ0 by
summation over the singular functions vp(r). If we replace the filters 1/σp by σp we obtain
the algorithm

Ṽ(r) =
∑

p

σp
〈
up, δf

〉
Hf

vp(r) = T̂† δf , (9.68a)

where we have used the result that the adjoint operator has the representation

T̂† =
∑

p

σpvp(r)u∗p( j, k).

As discussed in those earlier chapters, Eq. (9.68a) corresponds to simple back propagation
of the data and can be implemented directly by making use of the definition of T̂† given in
Eq. (9.62b):

Ṽ(r) = − 1

4π
Mτ0

Nj∑
j=1

Nk∑
k=1

ψ∗+(r,−k0s( j))ψ∗+(r, k0s(k)
0 )δf+(s( j), s(k)

0 ). (9.68b)

The process of computing the reconstruction of the scattering potential by means of
the back-propagation algorithm as given in Eq. (9.68b) is seen to be simple and requires
absolutely no work. One simply multiplies the raw data by the conjugates of the plane-
wave scattering states and sums over the sets of incident and observation directions. In
cases in which the singular values σp are essentially constant over a pass band, as is often
the case, this raw image of the scattering potential can be quite accurate, as we have found
in our treatments of the ISP and ISCP in earlier chapters. In any case the back-propagation
algorithm allows one to compute a quick approximation to the scattering potential directly
from the data and the plane-wave scattering states of the background.

9.10.3 The limited-view problem in a homogeneous background

In this section we specialize the general formulation presented above to the ISCP for a 2D
scattering potential compactly supported within a circle of radius a0 in a 2D homogeneous
lossless background having wavenumber k0. The plane-wave scattering states are, in this
case, the usual plane waves

ψ+(r, k0s) = eik0s·r,

where both s and r are vectors on the (x, y) plane. The far-field ISCP within the DWBA
then reduces to the far-field ISCP within the normal Born approximation which consists of
inverting the mapping (cf. Section 8.1.3)

f (s, s0) = −
√

1

8πk0
ei π4

∫
τ0

d2r V(r)e−ik0s·reik0s0·r,

where τ0 is a circle of radius a0 centered at the origin.
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We can cast the 2D limited-view problem within the Hilbert-space formulation given in
Eq. (9.61) by simply replacing δf in that equation by

δf (s j, sk
0) =

√
k0

2π
e−i π4 f (s j, sk

0),

where, as above, s j, j = 1, 2, . . . , Nj, are the set of scattering unit vectors and sk
0, k =

1, 2, . . . , Nk, the set of incident plane-wave unit vectors. The operators T̂ and T̂† defined in
Eqs. (9.62) then become

T̂ = − 1

4π

∫
τ0

d2r′ eik0δs( j,k)·r′ , T̂† = − 1

4π
Mτ0

∑
j,k

eik0δs( j,k)·r,

where now Mτ0 is the masking operator for a circle of radius a0 and centered at the origin

of the (x, y) plane and δs( j,k) = s( j) − s(k)
0 . The quantities χn defined in Eq. (9.63) are

given by

χn(r) = − 1

4π
Mτ0 eik0δs( j,k)·r, (9.69)

where n = j+ (k − 1)Nj.
The singular vectors vp(r) are given by the expansion Eq. (9.65) with the χn now defined

in Eq. (9.69) and the expansion coefficients up(n) are again the components of the singular
vectors up and satisfy the matrix equation Eq. (9.66). The matrix 〈χn,χn′ 〉HV

is particularly
simple in this case and can be found in closed form:

〈χn,χn′ 〉HV
= 1

(4π )2

∫ a0

0
r dr

∫ 2π

0
dφ e−ik0(δs( j,k)−δs( j′ ,k′))·r

= a2
0

8π

J1(k0a0|δs( j,k) − δs( j′,k′)|)
k0a0|δs( j,k) − δs( j′,k′)| . (9.70)

As a final step the pseudo-inverse is given by Eq. (9.67a), with the expansion coeffi-
cients

〈
up, δf

〉
Hf

obtained from the solutions of Eq. (9.66) using the matrix computed from

Eq. (9.70).

Example 9.6 We performed a simulation of the 2D limited-view problem for a scattering
potential consisting of two circular disks embedded in a uniform background:

V(r) =
2∑

j=1

Vj Circ[aj(r− Rj)],

where Circ is the “Circ function” having radius aj and center Rj and Vj, j = 1, 2, are two
real constants. The 2D scattering potential is then found to be (cf. Eqs. (8.75) of Chapter 8)

f (s, s0) = −
√

1

8πk0
ei π4 Ṽ(K) = −

√
π

2k0
ei π4

N∑
j=1

Vj
J1(Kaj)

K
e−iK·Rj ,

where K = k0(s− s0).
We took the overall scattering-potential support radius to be a0 = 5λ and first used 13

incident-wave directions s j
0 uniformly distributed over the unit circle and 17 scattered-wave

directions sk uniformly distributed between −π/2 and π/2 relative to the incident-wave
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�Fig. 9.8 Reconstruction of two circular scatterers using 13 incident plane waves and 17 scattering directions. Two circles
indicating the actual supports of the two scatterers are drawn.
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�Fig. 9.9 Reconstruction of two circular scatterers using 17 incident plane waves and 17 scattering directions. Two circles
indicating the actual supports of the two scatterers are drawn.

direction; i.e., over 180◦ in the forward-scattering direction for each incident plane wave.
We limited the scattered-field directions to the forward direction since we are using the
Born approximation in a uniform background where backscattering will be small for scat-
tering potentials more than a wavelength in radius. The 221 singular values σp varied from
a maximum of 2.16 to zero, with a significant drop off at p = 189, which we selected as a
cutoff value in the reconstruction algorithm.
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We centered one of the two scatterers one wavelength to the left of the origin at x = −λ
and y = 0 and the second at x = λ and y = 0. The two scatterers were given the same radius
of a = λ and scattering strengths of unit amplitude. The reconstruction is shown in Fig. 9.8,
where we have added the circles to indicate the supports of the scatterers. The supports and
locations of the two scatterers are clearly correct in the reconstruction, but it has limited
overall quality due to the limited number of incident and scattering directions employed.
Increasing the number of incident and scattering directions increases the quality of the
reconstruction, but at the cost of computer memory. We show in Fig. 9.9 a reconstruction
obtained using the same number of scattering directions but 17 incident-wave directions.
The quality of the reconstruction clearly improves, as is evident from the more accurate
scattering strengths and the decrease in the “halo” around the two scatterers.

9.11 The ISCP using data generated and acquired by sets of
antennas

The formulation and SVD-based solution of the far-field ISCP within the DWBA presented
in the last section is easily generalized to be applicable to experiments employing
transmitter and receiver elements (antennas) distributed over an arbitrary set of points
outside of the scattering volume τ0. In the simplest case we can model the antennas as
point sources or sinks, in which case the incident wave generated from one of the trans-
mitting antennas is the background Green function G0+(r, αk), where αk, k = 1, 2, . . .Nα ,
is the location of the antenna. The field measured by a point antenna located at β j, j =
1, 2, . . . , Nβ , is then the total Green function G+(β j, αk) of the composite medium consist-
ing of the scatterer with unknown scattering potential V(r) embedded in the background
with known scattering potential V0(r). The scattering model for the ISCP is then found
from the LS Eqs. (9.45) to be given by

G+(β j, αk) = G0+ (β j, αk)+
∫

d3r′ G+(β j, r′)V(r′)G0+(r′, αk). (9.71)

The quantity

Kj,k = G+(β j, αk)− G0+ (β j, αk)

is known as the multistatic data matrix and is the obvious generalization of the conven-
tional scattering amplitude to near-field applications. It follows from Eq. (9.71) that the
multistatic data matrix is related to the unknown scattering potential via the equation

Kj,k =
∫

d3r′ G+(β j, r′)V(r′)G0+ (r′, αk), (9.72a)

and within the DWBA by

Kj,k ≈
∫

d3r′ G0+ (β j, r′)V(r′)G0+(r′, αk). (9.72b)
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We can generalize the above development to extended transmitting and receiving
antennas by modeling the transmitting antennas as surface sources consisting of singlet
and doublet components as described in Sections 1.8 and 2.12 for homogeneous back-
grounds. These models are easily generalized to inhomogeneous backgrounds by sim-
ple replacement of the constant-background Green functions by non-uniform-background
Green functions. The corresponding models for receiving antennas are then obtained by
simple arguments of reciprocity. The simplest such model, and the one we will employ
here, radiates a field within the background according to the equation

ψt(r, αk) =
∫

d2r′Rt(r′, αk)G0+ (r, r′), (9.73a)

where, as above, αk is the location of the antenna element and Rt is its “transmission func-
tion,” which is essentially the singlet component of a finite-sized source distributed over
the surface of the antenna. The quantity ψt(r, αk) is the transmitting antenna’s “response
function” and is the field radiated by the antenna and, thus, the generalization of G0+(r, αk)
to the case in which the field is radiated by a finite-sized antenna.

The model for the receiving antenna located at β j is given by

ψr(β j, r) =
∫

d2r′Rr(β j, r′)G+(r′, r), (9.73b)

where Rr is the receiving antenna’s “transmission function.” The quantity ψr(β j, r) is the
receiving antenna’s response function and is the measured response at an extended antenna
element located at β j to the field radiated by a point source at r and is thus the general-
ization of G+(β j, r) to the case in which the field is measured by a finite-sized antenna.
Within the DWBA ψr(β j, r) becomes

ψr(β j, r) ≈
∫

d2r′Rr(β j, r′)G0+(r′, r). (9.73c)

The generalization of the exact and DWBA models for the multistatic data matrix given in
Eqs. (9.72) to finite-sized antennas is found to be

Kj,k =
∫

d3r′ ψr(β j, r′)V(r′)ψt(r′, αk), (9.74)

whereψr(β j, r) is given by Eq. (9.73b) within the exact scattering model and by Eq. (9.73c)
for scattering within the DWBA.

Solution of the limited-view ISCP

We now consider the limited-view ISCP formulated in terms of the DWBA of the mul-
tistatic data matrix as given by Eqs. (9.74) with ψr(β j, r) defined in Eq. (9.73c). We can
express this equation in the standard form

T̂V = K,
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where K = Kj,k ∈ Hf = l2(CN), N = Nα × Nβ , is the multistatic data matrix, V ∈ HV =
L2(τ0) is the unknown scattering potential and T̂ : HV → Hf is the linear operator

T̂ =
∫

d3r′ ψr(β j, r′)ψt(r′, αk).

The Hilbert space Hf has the same inner product as in the far-field limited-view problem
defined in Eq. (9.60a), from which it follows that

T̂† =Mτ0

Nβ∑
j=1

Nα∑
k=1

ψ∗r (β j, r)ψ∗t (r, αk).

Following identical lines as employed in the far-field limited-view ISCP we now intro-
duce the functions

χn(r) =Mτ0ψ
∗
r (β j, r)ψ∗t (r, αk), (9.75)

where Mτ0 is the masking operator defined in Eq. (9.31b) and n = j+ (k − 1)Nβ ordered
such that, for each j = 1, 2, . . . , Nβ , k = 1, 2, . . . , Nα . The normal equations for the singular
functions vp(r) ∈ HV and singular vectors up ∈ Hf are then found to be again given by
Eq. (9.64), with the functions χn now defined according to Eqs. (9.75). The solution of the
normal equations are given by

vp(r) =Mτ0

Nβ∑
j=1

Nα∑
k=1

up( j, k)ψ∗r (β j, r)ψ∗t (r, αk), σp > 0, (9.76)

where the expansion coefficients up( j, k) = up(n), n = j + (k − 1)Nβ , and the squares of
the singular values σ 2

p are the eigenvectors and eigenvalues of the Hermitian matrix

〈χn,χn′ 〉HV
=
∫
τ0

d3rψr(β j, r)ψt(r, αk)ψ∗r (β j′ , r)ψ∗t (r, αk′ ). (9.77)

Finally, the solution of the ISCP is given by

V̂(r) =
∑
σp>0

〈
up, K

〉
Hf

σp
vp(r),

where 〈
up, K

〉
Hf
=

Nβ∑
j=1

Nα∑
k=1

u∗p( j, k)Kj,k,

with the singular functions vp(r), σp > 0 given in Eq. (9.76).

The back-propagation algorithm

As was the case for far-field data the reconstruction algorithm obtained above is a filtered
back-propagation algorithm and can be approximated by the back-propagation algorithm
obtained by replacing the inverse filters 1/σp by σp. One then obtains
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Ṽ(r) =
∑

p

σp
〈
up, K

〉
Hf

vp(r) = T̂†K

=Mτ0

Nβ∑
j=1

Nα∑
k=1

ψ∗r (β j, r)ψ∗t (r, αk)Kj,k, (9.78)

where we have denoted the back-propagated reconstruction by Ṽ(r). We will find in the
next chapter in our treatment of time-reversal imaging of systems of discrete scatterers
that the back-propagation algorithm as given above generates a raw image from which the
locations of the various scatterers can be estimated.

Further reading

A time-domain version of inverse scattering in inhomogeneous media is presented in
Melamed et al. (1999a, 1990b). Ramm (Ramm, 1990) has studied the completeness prop-
erty of products of solutions to partial differential equations, which play a crucial role
in the solution of the limited-view problem presented in Section 9.10. An alternative
computationally based scheme for inverse scattering within the DWBA is presented by
Chew (Chew, 1990) and an iterative method is given in Chew and Wang (1990), while
Heyman and colleagues have formulated inverse scattering in inhomogeneous media in
the time domain (Melamed et al., 1996). The treatment of the limited-view problem pre-
sented in Section 9.10 is similar to the inversion schemes employed by Twomey (Twomey,
2002). Hansen and Yaghjian (Hansen and Yaghjian, 1999) provide a complete treatment of
antenna theory that is especially appropriate for the material covered in this book.

Problems

9.1 Show that in the special case in which the background is lossless so that the scattering
potential V0 is real-valued we have that

ψ∗+(r, k0s0) = e−ik0s0·r +
∫

d3r′ G−(r, r′)V0(r′)e−ik0s0·r′ ,

from which we conclude that for such backgrounds

ψ∗+(r′, k0s0) = ψ−(r′,−k0s0).

9.2 Compute the plane-wave scattering states in two space dimensions for an inho-
mogeneous medium consisting of a homogeneous plane-parallel slab with constant
wavenumber k �= k0.

9.3 Prove that the plane-wave scattering states satisfy the relationship

ψ+(r, k0s0; X0) = eik0s0·δX0ψ+(r, k0s0; X′0),
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where δX0 = X0 − X′0 with X0 and X′0 being any two central locations of the back-
ground scattering potential.

9.4 Fill in the missing steps in the derivation of Eqs. (9.10) of Example 9.1.
9.5 Fill in the missing steps in the derivation of Eq. (9.15).
9.6 Complete the derivation of Eqs. (9.21).
9.7 Complete the derivation of Eqs. (9.24).
9.8 Derive Eq. (9.25b) from Eq. (9.25a) and the reciprocity condition satisfied by the

background Green functions.
9.9 Prove that the operators T̂ and T̂† defined in Eqs. (9.30a) and (9.30b) are compact.
9.10 Complete the derivation of Eq. (9.55).
9.11 Prove the inhomogeneous-medium “field uniqueness theorem,” which states that the

field radiated by a source compactly supported in a space region τ0 within a non-
uniform medium is uniquely determined over all space points lying outside τ0 by the
radiated field or its normal derivative (Dirichlet or Neumann conditions) over any
closed surface ∂τ that completely surrounds τ0.

9.12 Show that for a lossless inhomogeneous background

T̂†T̂ = i

2k0
Mτ0

∫
τ0

d3r′ G0f (r, r′),

where T̂ is the operator defined in Eq. (9.30a).
9.13 Formulate and solve the 2D ISP for a source compactly supported within a homo-

geneous plane-parallel slab with constant wavenumber k �= k0 and Dirichlet data
over two bounding planes. Compare and contrast your solution with that obtained in
Section 5.3 of Chapter 5.

9.14 Compute the scattering amplitude for a set of discrete point scatterers embedded in
an inhomogeneous medium using the Foldy–Lax scattering model.

9.15 Complete the derivation of Eq. (9.70) in Section 9.10.3.
9.16 Derive Eq. (9.66).
9.17 Derive Eq. (9.74).
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Time-reversal imaging for systems of

discrete scatterers

In this chapter we turn our attention to systems of discrete scatterers embedded in an inho-
mogeneous background medium characterized by a background scattering potential V0(r).
The system of scatterers is assumed to have a scattering potential of the general form

V(r) =
M∑

m=1

Vm(r), (10.1a)

where the component scattering potentials Vm(r) are each compactly supported within non-
overlapping regions τm ⊂ τ0 with centers Xm. In the simplest, but important, case in which
the supports τm of the component scatterers are all much smaller than the wavelength of
the wavefields of interest we can make the approximation

Vm(r) ≈ Vmδ(r− Xm),

where the scattering strengths Vm, m = 1, 2, . . . , M, are a set of real or complex constants.
The scattering potential of the system of scatterers then becomes

V(r) =
M∑

m=1

Vmδ(r− Xm). (10.1b)

We will employ the simple model Eq. (10.1b) throughout most of this chapter. Generaliza-
tions of this model to extended discrete scatterers have been developed by Chambers and
co-workers (Chambers and Berryman, 2004; Chambers and Gautesen, 2001; Chambers,
2002) and Zhao (Zhao, 2004). As usual, we work in the frequency domain but will not
explicitly display the frequency ω unless necessary.

Our main topics in the chapter are time-reversal imaging and inverse scattering from
systems having the general model Eq. (10.1a) or the simplified model Eq. (10.1b). Our
major emphasis is in so-called “computational time-reversal imaging,” where the goal is
to determine the scattering centers Xm and, possibly, the scattering strengths Vm in the
case of the model Eq. (10.1b) from measurements of the multistatic data matrix intro-
duced at the end of the previous chapter. We will also, however, briefly review so-called
“experimental time reversal” using a sequence of actual (physical) experiments to focus
an incident wave on one or more of the various discrete scatterers. Within the area of
computational time-reversal imaging we review the DORT (Prada and Fink, 1994, 1995)
(standing for “décomposition de l’opérateur de retournement temporel”) and time-reversal
MUSIC (Lev-Ari and Devaney, 2000) algorithms and will also show how these algorithms
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are related to the solution of the limited-view ISCP as formulated in the last chapter in
terms of the multistatic data matrix. We will begin our treatment with a brief review of
experimental time-reversal imaging as developed more than 20 years ago by the famous
French group headed by M. Fink.

10.1 Experimental time-reversal imaging

We consider a system of discrete scatterers and an antenna system that lies outside the
support τ0 of the system and has the ability both to generate an incident wave propagating
into the system and to measure the resulting scattered wave over some set of points exte-
rior to τ0. Our goal is to develop an experimental procedure that is able to generate a set
of incident waves having the property that they each focus on a different scatterer in the
system without prior knowledge of the scatterer locations or of the background medium
in which they are embedded! In the ideal and simplest case we can imagine the scattering
system to be embedded in a homogeneous and non-dispersive background with wave prop-
agation and scattering governed by the wave equation. We will also assume that the system
is completely surrounded by a closed surface ∂τ over which time-domain surface singlet
and doublet sources as described in Section 1.8 can be deployed and that time-domain
measurements of both the scattered field u(s)(r, t) and its normal derivative ∂u(s)(r, t)/∂n
can be performed.

Restricting our attention, for the moment, to the ideal situation described above, we
now imagine that an arbitrary wave is incident to the scattering system and that both the
resulting scattered field and its normal derivative are measured over ∂τ . We showed in
Section 5.1.3 of Chapter 5 that if these field data are time-reversed and used as singlet
and doublet sources on ∂τ the resulting incident wave to the scattering system will be a
singularity-free version of u(s)(r,−t); i.e., these surface sources will generate an incident
wave that closely resembles the time-reversed scattered wave from the system of scat-
terers. Since the discrete scatterers comprising the scattering system will generate outgo-
ing expanding spherical scattered waves centered at their respective scattering centers, the
time-reversed scattered field and, hence, the new incident wave, will consist of a set of
incoming contracting spherical waves with focal points at the various scattering centers.1

If this process of illumination using the time-reversed scattered-wave data from the pre-
vious experiment is repeated in a sequence of experiments one can expect that eventually
the sequence will converge, yielding an incident wave u(in)

1 that will focus on the strongest
scatterer in the system.2 The entire process can then be repeated, where, however, the inci-
dent wave used in any experiment is processed to remove the component lying along u(in)

1 .

1 These incoming spherical waves are the free-space propagators gf(r − Xm, t) equal to the difference between
the retarded and advanced Green functions to the wave equation (see Section 5.1.3) that focus at Xm but have
no singularity.

2 The incident wave in any given experiment is assumed to be normalized over the measurement boundary
∂τ . Otherwise the sequence of scattered waves would converge to zero due to the inherent loss of energy
experienced by the incident field in the scattering process.
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This new sequence can then be expected to converge to focus on the second strongest scat-
terer. Again the process is repeated, where now the incident waves are processed to remove
the components lying both along u(in)

1 and along u(in)
2 . By this means then it is possible to

selectively focus on all of the scatterers in the system.

10.1.1 Experimental time-reversal imaging in non-uniformmedia

The above discussion was certainly “suggestive” but did not detail the mathematics behind
the iterative procedure and also assumed a homogeneous and non-dispersive background
medium with wave propagation and scattering governed by the wave equation. Here we
will generalize the above treatment to a system of discrete scatterers embedded in an inho-
mogeneous but still lossless background having scattering potential V0(r) and will examine
the iterative procedure in the frequency domain, where we can get a better understanding
of the underlying mathematics behind the procedure. As above, we assume that both the
scattered field and its normal derivative are measurable over a closed surface ∂τ surround-
ing the scattering volume τ0 and that singlet and doublet sources can be deployed over the
surface to radiate an incident wave into τ0.

We begin by assuming that an arbitrary but unfocused wave U(in)
1 is incident to the sys-

tem of discrete scatterers and that both the resulting scattered field and its normal derivative
are measured over ∂τ . If we now normalize and time reverse (complex conjugate) these
boundary-value data and use them as surface sources that radiate into the interior τ ⊃ τ0

we generate the new incident wave

U(in)
2 (r) =

∫
∂τ

dS′
[
ψ∗(r′) ∂

∂n′
G0+(r, r′)− G0+(r, r′) ∂

∂n′
ψ∗(r′)

]
,

where ψ is the scattered wave generated in the first experiment normalized over the
measurement boundary and G0+ is the outgoing-wave Green function in the background
medium. If we now make use of the Porter–Bojarski (PB) integral equation derived in Sec-
tion 9.2.3 and the assumption that the background medium is lossless so that G∗0+ = G0−
we find that

U(in)
2 (r) = �∗(r) = −

∫
τ0

d3r′ G0f (r, r′)Q∗(r′), (10.2)

where Q is the induced source and

G0f (r, r′) = G0+(r, r′)− G0− (r, r′)

is the free-space propagator of the background medium and

�(r) =
∫
∂τ

dS′
[
ψ(r′) ∂

∂n′
G0− (r, r′)− G0− (r, r′) ∂

∂n′
ψ(r′)

]
is the field back propagated into τ from the boundary-value data.

Assume, for the moment, that the wavelength is sufficiently large that the approximate
form of the scattering potential given in Eq. (10.1b) can be employed. The induced source
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is then given by

Q(r) = V(r)U1(r) =
M∑

m=1

VmU1(Xm)δ(r− Xm),

where U1 is the sum of the incident and scattered wavefields from the first experiment. If
we substitute this equation into Eq. (10.2) and perform some simple algebra we obtain

U(in)
2 (r) = −

M∑
m=1

V∗mU∗1 (Xm)G0f (r, Xm). (10.3)

The free space propagator G0f (r, Xm) is a regularized version of the background Green
function and will peak at the various scattering centers Xm so that U(in)

2 (r) will focus on the
scattering centers of the system. The strength of the focusing is proportional to the product
|VmU1(Xm)|, which, for an unfocused incident wave, can be expected to be maximized at
the location of the strongest scatterer so that the overall wave scattered from the system
will then be dominated by the component from this strongest scatterer. The process is then
repeated using the normalized new scattered wave to generate an even stronger focused
wave at the location of the strongest scatterer and so on until the iterative process converges
to a pair of incident and scattered waves that satisfies the equation

U(s)(r) = σU(in)∗(r),
∂

∂n
U(s)(r) = σ ∂

∂n
U(in)∗(r), r ∈ ∂τ , (10.4)

where σ is a constant.
Assume now that the normalized final incident wave

ψ1 = U(in)(r)

||U(in)(r)||
and its normal derivative from this first sequence of experiments is stored and a new
sequence of experiments begun, whereby the first and subsequent incident waves are pro-
cessed to remove the components along ψ1 and ∂ψ1/∂n; i.e.,

U(in) → U(in) − 〈ψ1, U(in)〉ψ1,

∂

∂n
U(in) → ∂

∂n
U(in) −

〈
∂

∂n
ψ1,

∂

∂n
U(in)

〉
∂

∂n
ψ1,

where the brackets 〈·〉 denote the L2 inner product over the measurement surface ∂τ . Since
the mapping from incident to scattered field is linear, the set of incident waves processed
as above will not generate a focused component on the strongest scatterer but rather will
converge to an incident wave that focuses on the second-strongest scatterer. This final inci-
dent wave will again satisfy Eq. (10.4) with generally a different σ and will, by virtue of
the way it was constructed, be orthogonal to ψ1. It then follows that the entire sequence of
experiments can again be repeated, where now the components along both ψ1 and ψ2 are
removed from each iteration of the sequence. The process can then be repeated until all of
the scatterers in the system have sequentially been focused on.
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10.2 Time-reversal imaging using a finite set of antennas

Our discussion of experimental time-reversal imaging presented above is, of course, over-
simplified in that it assumes that continuously distributed field transmission and receiver
systems are employed over the surface ∂τ surrounding the system of scatterers. Any real
experiment must use finite sets of transmitting antennas and receiving antennas of the type
employed in our treatment of the limited-view inverse scattering problem (ISCP) in Sec-
tion 9.11 in the last chapter. In this section we will present a brief review of experimental
time-reversal imaging implemented with two finite sets of co-located transmit and receive
antenna arrays that we will model as point (delta-function) sources that radiate the back-
ground Green function. We use such simplified ideal point antenna elements only for the
sake of simplicity and the development is easily generalized to more realistic antenna mod-
els as described in Section 9.11. We also mention that the two arrays need not be regularly
and/or densely spaced but must, of course, be co-located, for otherwise it would not be
possible to determine the required (time-reversed) driving signals to the transmitter array
from measurements of the scattered field over the (separate) receiver array.

10.2.1 Experimental time-reversal imaging

We again consider the scattering system defined in Eq. (10.1b) embedded in a lossless
inhomogeneous background but where the experimental system now consists of a finite
set of transmit and receive antennas, which, as mentioned above, we will model as ideal
point sources and sinks. We assume that the antennas are co-located over an arbitrary set
of points αk, k = 1, 2, . . . , Nα , outside of the overall scattering volume τ0. The set of
transmitting antennas is excited by frequency-domain signals tk(ω), k = 1, 2, . . . , Nα and
the set of co-located Nα receiving antennas output the corresponding frequency-domain
signals rj(ω), j = 1, 2, . . . , Nα . Our goal, as above, is to employ a sequence of scattering
experiments that results in a set of radiated (incident) waves that selectively focus on the
various discrete scatterers comprising the scattering system.

We consider a particular experiment in which a set of signals tk(ω) is applied to the
transmitting antennas, generating an incident wave U(in)(r) in the background medium.
The incident wave will be of the general form

U(in)(r) =
Nα∑

k=1

tk(ω)G0+(r, αk), (10.5)

where G0+ (r, αk) is the background Green function radiated by the kth transmitter element.
Using the simplified model Eq. (10.1b) for the scattering potential, the scattered wave will
be given by the Lippmann–Schwinger equation Eq. (9.46b) as

U(s)(r) =
M∑

m=1

VmG+(r, Xm)U(in)(Xm),
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where G+ is the Green function of the composite medium consisting of the scattering
potential V(r) embedded in the background medium. Owing to our assumption of ideal
point antenna elements the output from any given receiving antenna rj(ω) is equal to the
scattered field evaluated at the antenna location3 αj, which then yields the equation

rj(ω) =
Nα∑

k=1

{
M∑

m=1

VmG+(αj, Xm)G0+ (Xm, αk)

}
tk(ω). (10.6)

The quantity

Kj,k(ω) =
M∑

m=1

VmG+(αj, Xm)G0+(Xm, αk) (10.7)

is recognized as being the multistatic data matrix first introduced in the last section of the
previous chapter. This quantity is the response at a receiving antenna located at αj due to
an input signal tk(ω) = 1 at a transmitting antenna located at αk and is independent of
the actual driving signals tk(ω) applied in any given experiment. Since we are using ideal
point sources and sinks, the K matrix is actually the (scattered-field component) of the
composite-medium Green function G+(αj, αk), from which it follows from reciprocity that
the matrix K is symmetric. We can then write Eq. (10.6) in the matrix form

r(ω) = Kt(ω),

where K = KT is the Nα×Nα multistatic data matrix and r(ω) and t(ω) are column vectors
with components rj(ω) and tk(ω), respectively.

Now consider a sequence of experiments in which, as earlier, we employ normalized
time-reversed scattered-field data to generate the incident wave in each successive exper-
iment. In place of the boundary-value fields used in the previous section we now use the
input and output signals tj(ω) and rk(ω) to and from the various antennas distributed over
the set of points αj, j = 1, 2, . . . , Nα . If the sequence converges we obtain in place of
Eq. (10.4) the requirement

Kt(ω) = σ t∗(ω), (10.8a)

where again σ is a constant. The above equation is easily converted to an eigen-equation
that must be satisfied by the transmission signals by pre-multiplying both sides with the
adjoint matrix K† = K∗T = K∗:

K†Kt(ω) = |σ |2t(ω). (10.8b)

3 The antenna elements will, of course, measure the total field (incident plus scattered), but we assume that the
incident-wave component is known and removed by suitable means.
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The Nα × Nα Hermitian matrix

T = K†K

is called the time-reversal matrix and has a complete set of Nα orthonormal eigenvectors
μp and real non-negative eigenvalues λp ≥ 0, p = 1, 2, . . . , Nα . We conclude from the
above analysis that the sequence of time-reversal experiments will converge to an input
signal t(ω) that is one of the eigenvectors of T . Indeed, it is not difficult to show that this
sequence corresponds to solving for the eigenvectors using the so-called “power method,”
which will converge to the eigenvector having the largest eigenvalue. Whether or not this
largest eigenvector when applied as input to the antenna system focuses on the strongest
scatterer depends on the total number of scatterers M and the number of transmit/receive
antennas Nα and also depends on the separation of the scattering centers relative to the
wavelength of the radiation.

10.2.2 Eigenvectors of the time-reversal matrix

In order to simplify the analysis it is convenient to define the Nα-dimensional background
Green-function vectors

g0(r) = [G0+(α1, r), G0+ (α2, r), . . . , G0+ (αNα , r)]T, (10.9a)

which are simply the column vectors formed from the Nα background Green functions
radiated by the antenna elements. We also introduce the associated composite-medium
Green-function vectors

g(r) = [G+(α1, r), G+(α2, r), . . . , G+(αNα , r)]T, (10.9b)

which are the column vectors formed from the composite-medium Green function. On
making use of Eqs. (10.7) we can then express the multistatic data matrix as the weighted
sum of outer products of the Green-function vectors evaluated at the various scatterer
locations

K =
M∑

m=1

Vmg(Xm)gT
0 (Xm). (10.10)

We will refer to the Green-function vectors g0(Xm) and g(Xm) evaluated at the scatterer
locations as the background and composite-medium antenna vectors.

The rank R(K) of the multistatic data matrix is clearly less than or equal to the smaller of
the number M of antenna vectors and the number Nα of antenna elements. If M ≤ Nα it is
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likely that the antenna vectors will be linearly independent except, possibly, for some very
specialized antenna configurations and scatterer locations that are very unlikely to occur,4

so we will make this assumption throughout this chapter. We then have

Rank(K) = R(K) = min(M, Nα), (10.11)

a result that will be important in the analysis presented below.
In terms of the antenna vectors the time-reversal matrix then becomes

T = K†K =
M∑

m=1

M∑
m′=1

g∗0(Xm)�(m, m′)gT
0 (Xm′ ), (10.12a)

where

�(m, m′) = V∗mVm′g
†(Xm)g(Xm′ ). (10.12b)

It is clear that the rank of the time-reversal matrix is equal to the rank of the multistatic
data matrix R(K) which satisfies Eq. (10.11).

If we expand the inner product in Eq. (10.12b) we obtain

�(m, m′) = V∗mVm′
Nα∑
j=1

G∗+(Xm, αj)G+(αj, Xm′ ).

We can interpret the quantity

H(r, r′) =
Nα∑
j=1

G∗+(r, αj)G+(αj, r′) = g†(r)g(r′) (10.13)

as being the coherent point-spread function (CPSF) of the antenna system embedded in the
composite medium. In particular, this quantity represents an “image” of a source point
r′ in the composite medium formed by the antenna system from measurement of the
outgoing-wave Green function G+(r, r′) at the various antenna elements. Mathematically
this equation represents the CPSF as the back propagation of the outgoing-wave Green
function of the composite medium from its measured values across the antenna system
into the scatterer region τ0. It follows that the inner product occurring in Eq. (10.12b) is
the antenna-system point-spread function evaluated at the image and source points r = Xm

and r′ = Xm′ , and � can be expressed in terms of the CPSF as

�(m, m′) = V∗mVm′H(Xm, Xm′ ). (10.14)

4 We will assume throughout this chapter that the antenna vectors are linearly independent. This can be easily
established for the special case of an infinite homogeneous background (Devaney, 2000).
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Well-resolved scatterers

For large, closely spaced, antenna systems and sparse distributions of scatterers the CPSF
H(r, Xm′ ) will have a maximum at the source point location r = Xm′ and will decay in
amplitude for points removed from this image point. For sparse systems or for systems
having few elements the CPSF will have a complicated structure that consists of ridges and
valleys (so-called “grating modes”) that converge to the source point at which the CPSF
achieves a local maximum or, at least, a maximum in some plane or line that contains
the source point. The effective spatial extent of the point-spread function is determined
by the geometry of the antenna system, the wavelength of the radiation and the density
of the scatterers. For example, for a densely spaced (less than a half-wavelength spacing)
planar square antenna array in a uniform background, the transverse effective spatial region
of support of the CPSF is roughly a square having sides of length zλ/a, where z is the
distance of the array from the system and a = Nαδ is the length of the side of the array,
with δ being the spacing between array elements. The extent of the region of the CPSF
in the longitudinal direction (z direction) is considerably larger and, again, depends on the
wavelength and array geometry.

We conclude from the above discussion that if a scatterer located at Xm is separated by
distances larger than the effective spatial extent of the CPSF from all other scatterers in
the system then H(Xm, Xm′ ) will approximately vanish for m′ �= m and �(m, m′) reduces
approximately to

�(m, m′) = V∗mVm′g
†(Xm)g(Xm′ ) ≈ |Vm|2ρmδm,m′ , (10.15a)

where

ρm = H(Xm, Xm) = ||g(Xm)||2 (10.15b)

is the squared norm of the mth antenna vector of the composite medium and δm,m′ is the
Kronecker delta function. If this situation occurs we say that the mth scatterer is well
resolved by the array.

By making use of Eqs. (10.12a) and (10.15a) we find that if the members of some subset
m ∈ M of scatterers are well resolved the time-reversal matrix will decompose into the
two components

T ≈
∑

m∈M
|Vm|2ρmg∗0(Xm)gT

0 (Xm)+
∑

m,m′ /∈M
�(m, m′)g∗0(Xm)gT

0 (Xm′ ), (10.16a)

from which it follows that the eigenvectors μm, m ∈ M are approximately equal to the
normalized complex conjugates of the background antenna vectors g0(Xm), m ∈ M and
the eigenvalues are equal to |Vm|2ρ0mρm, m ∈M, i.e.,

μm = g∗0(Xm)√
ρ0m

, λm = |Vm|2ρ0mρm, m ∈M, (10.16b)

where

ρ0m = ||g0(Xm)||2
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are the squared norms of the background antenna vectors. The total number of well-
resolved scatterers NM must clearly be less than or equal to the rank R(K) of the time-
reversal matrix.

Non-resolved scatterers

Those scatterers that do not satisfy the condition of being well resolved, Eq. (10.15a), are
said to be “non-resolved” by the antenna array. These scatterers are then represented by
the second sum in the decomposition of the time-reversal matrix in Eq. (10.16a) and are
associated with eigenvectors μm that are linear combinations of the complex conjugates
of the antenna vectors entering this summation. Since the rank of the time-reversal matrix
is R(K) = min(M, Nα) there will be a total of R(K) eigenvectors having non-zero eigen-
values. These R(K) eigenvectors are divided between the well-resolved and non-resolved
targets so that

NM + NM⊥ = R(K), (10.17)

where NM and NM⊥ are, respectively, the numbers of resolved and unresolved scatterers.
The remaining (if any) Nα eigenvectors have zero eigenvalue and are not associated with
any scatterers. These eigenvectors will be found to play a key role in time-reversal MUSIC,
which will be developed in the following section.

10.2.3 Focusing with the eigenvectors of the time-reversal matrix

We are now in a position to interpret the results obtained in a convergent sequence of time-
reversal imaging experiments. As we found earlier, any such sequence will result in an
antenna input signal t = {tk(ω)}, k = 1, 2, . . . , Nα , that is an eigenvector μm of the time-
reversal matrix. In the case of a well-resolved scatterer located at Xm the eigenvector μm

will be given by Eq. (10.16b), which then results in the incident wave

Um(r) =
Nα∑

k=1

tk(ω)=μm(k)︷ ︸︸ ︷
G∗0+(Xm, αk)
√
ρ0m

G0+(r, αk) = g†
0(Xm)√
ρ0m

g0(r) = H∗0 (r, Xm)√
ρ0m

, (10.18)

where

H0(r, r′) =
Nα∑
j=1

G∗0+ (r, αj)G0+(αj, r′) = g†
0(r)g0(r′)

is the CPSF of the background medium. The wavefields radiated by a set of eigenvectors
μm, m ∈M belonging to well-resolved scatterers then individually focus on the different
scatterers with image fields proportional to the complex conjugate of the CPSF of the array
in the background medium evaluated at the scatterer location.

The eigenvectors not belonging to the set of well-resolved scatterers are associated with
the non-resolved scatterers and are of the general form

μm =
∑

m′ /∈M

〈
g∗0(Xm′ )√
ρ0m′

,μm

〉
g∗0(Xm′ )√
ρ0m′

. (10.19)
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The input signal tk(ω) at the kth antenna is then

tk(ω) =
∑

m′ /∈M

〈
g∗0(Xm′ )√
ρ0′m

,μm

〉
G∗0+(Xm′ , αk)
√
ρ0m′

and the resulting incident wave generated at the conclusion of the sequence of experiments
is found to be

Um(r) =
Nα∑

k=1

{ ∑
m′ /∈M

〈
g∗0(Xm′ )√
ρ0m′

,μm

〉
G∗0+(Xm′ , αk)
√
ρ0m′

}
G0+(r, αk)

=
∑

m′ /∈M

〈
g∗0(Xm′ )√
ρ0m′

,μm

〉
H∗0 (r, Xm′ )√

ρ0m′
. (10.20)

We thus conclude that for scatterers that are not resolved the sequence of iterative time-
reversal experiments will result in an incident wave that focuses on groups of scatterers
rather than a single scatterer.

10.3 Computational time-reversal imaging

It follows from the linearity of the mapping from incident to scattered wavefield that the
output signals rj(ω), j = 1, 2, . . . , Nα , generated in any physical experiment are com-
pletely specified by the multistatic data matrix K = {Kj,k} and the set of input signals
tk(ω), k = 1, 2, . . . , Nα . Moreover, if we know the background scattering potential V0(r)
we can compute the background Green function G0+ (r, r′) and eigenvectors of the time-
reversal matrix and thus also compute the actual incident wave U(in)(r) generated from the
eigenvectors of the time-reversal matrix. In other words we can synthetically generate the
time-reversal images of the system of scatterers that are generated in a sequence of actual
time-reversal experiments! We call this procedure of computing the time-reversal images
of the scattering system computational time-reversal imaging.

We should note that experimental time-reversal imaging possesses one big advantage
over computational time-reversal imaging: one need not know the background scattering
potential (or Green function) in order to perform experimental time-reversal imaging. On
the other hand, it has a disadvantage in that the actual scattering centers are not determined
in the process. To actually determine the scattering centers and, possibly, their strengths it
is necessary to have knowledge of the background Green function with which computer
algorithms can be devised to perform this determination. Moreover, for experimental time-
reversal imaging5 to work it is necessary to have the transmitter and receiver antenna arrays
co-located. Otherwise it would not be possible to determine the required (time-reversed)
driving signals to the transmitter array from measurements of the scattered field over the

5 We emphasize that by “experimental” time-reversal imaging we mean using a sequence of experiments as
described earlier to generate focused waves into a medium. One or more experiments must, of course, be
performed also in computational time-reversal imaging, but they differ from the sequence used in what we
have termed experimental time-reversal imaging.
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(separate) receiver array. However, in computational time-reversal imaging each antenna
in the system can be regarded as being both a transmitter and a receiver due to wavefield
reciprocity, so time-reversal imaging can be implemented both for co-located and for non-
co-located sets of transmitter and receiver arrays. We will develop computational time-
reversal imaging in this section for the general case of non-co-located transmit and receive
antenna arrays. Our development follows closely that presented in Lehman and Devaney
(2003).

We assume that the transmitting antennas are located at αk, k = 1, 2, . . . , Nα , and the
set of receiving antennas at β j, j = 1, 2, . . . , Nβ , and that a set of experiments yielding the
Nβ × Nα multistatic data matrix will be performed. This quantity is the received signal at
antenna element β j due to a unit-amplitude applied signal at antenna element αk and, due
to reciprocity, can also be viewed as being the received signal at antenna element αk due
to a unit-amplitude applied signal at antenna element β j.

Using the Lippmann–Schwinger equations derived in Section 9.7 of the last chapter we
can express the multistatic data matrix as

Kj,k(ω) =
∫
τ0

G+(β j, r′)V(r′)G0+(r′, αk) =
∫
τ0

G0+(β j, r′)V(r′)G+(r′, αk),

where G0+ (r, r′) is the background Green function and G+(r, r′) the composite-medium
Green function. We can interpret the first of the above two representations as resulting
from using the α array as the transmitting array and the β array as the receiving array,
while the second representation has the two arrays reversed. We emphasize that the above
equations are exact in that they include all of the multiple scattering between the scatter-
ers and background. The distorted-wave Born approximation (DWBA) (see Section 9.8)
results from approximating the composite-medium Green function in these expressions
by the background Green function. However, we will develop the theory using the exact
multiple-scattering formulation as defined by the above expressions for the K matrix.

We will employ the simplified model for the scattering potential given in Eq. (10.1b),
for which the above expressions for the K matrix reduce to

Kj,k(ω) =
M∑

m=1

VmG+(β j, Xm)G0+(Xm, αk) =
M∑

m=1

VmG0+ (β j, Xm)G+(Xm, αk),

which we can express in the compact forms

K(ω) =
M∑

m=1

Vmgβ (Xm)gT
0α (Xm) =

M∑
m=1

Vmg0β (Xm)gT
α(Xm), (10.21a)

where g0α (r) and g0β (r) are the Green-function vectors

g0α (r) = [G0+ (α1, r), G0+ (α2, r), . . . , G0+(αNα , r)]T, (10.21b)

g0β (r) = [G0+(β1, r), G0+ (β2, r), . . . , G0+(βNβ , r)]T, (10.21c)
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and gα and gβ are the Green-function vectors obtained by replacing the background Green
function G0+ in these expressions by the composite-medium Green function G+. As in
our treatment of experimental time-reversal imaging presented in the previous section we
will refer to the various Green-function vectors evaluated at a scatterer location Xm as the
antenna vectors.

10.3.1 Singular value decomposition of the multistatic data matrix

The multistatic data matrix K(ω) defines a linear transformation between the space CNα of
antenna-α excitation signals and the space CNβ of antenna-β received signals and admits a
singular value decomposition (SVD) defined by the set of equations

Kvp = σpup, K†up = σpvp, (10.22a)

where vp ∈ CNα , up ∈ CNβ are the singular (column) vectors and σp ≥ 0 are the set of
singular values, where p is a positive integer that indexes the system. The singular vectors
satisfy the normal equations

K†Kvp = σ 2
p vp, KK†up = σ 2

p up, (10.22b)

from which it follows that there will a total of Nσ>0 = R(K) = min(M, Nα , Nβ ) non-
zero singular values σp > 0 and a total of Nσ = min(Nα , Nβ ) singular values σp with
associated singular vectors {vp, up}, p = 1, 2, . . . , Nσ . We tacitly assume that these Nσ
singular vectors are extended, if necessary, to include the kernel (null-space vectors) of
K†K and KK† so that there will be a grand total of Nα singular vectors vp and Nβ singular
vectors up. The members of the (extended) set of singular vectors vp are orthonormal and
complete in CNα , while those of the set up are orthonormal and complete in CNβ ; i.e.,

v†
pvp′ = δp,p′ , p, p′ = 1, 2, . . . , Nα , u†

pup′ = δp,p′ , p, p′ = 1, 2, . . . , Nβ .

The SVDs of the matrices K and K† are then expressed in terms of the singular system via
the equations

K =
Nσ∑

p=1

σpupv†
p, K† =

Nσ∑
p=1

σpvpu†
p, (10.22c)

where v†
p = v∗Tp and similarly for u†

p.
The normal equation satisfied by the singular vectors vp is seen to be identical to the

eigen-equation Eq. (10.8b) satisfied by the excitation signals in a convergent sequence of
experimental time-reversal imaging experiments employing the α array as both a transmit
and a receive array. Indeed, we can interpret the quantity K†K as being the time-reversal
matrix associated with the α antenna array and the singular vectors vp are then the required
excitation signals that, when applied to this array, ensure that it radiates a wave that will
focus on one or more of the scatterers. Similarly, we can interpret the quantity KK† as
being the (complex conjugate) of the time-reversal matrix K∗KT associated with the β
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antenna array and the complex conjugates of the singular vectors u∗p are then the required
excitation signals that, when applied to the β array, ensure that it radiates a wave that
will also focus on one or more of the scatterers. Thus, each separate antenna array can
act as both a transmitting array and a receiving array and possesses its own time-reversal
matrix and its own set of eigenvectors that can be associated in a one-to-one manner with
individual or groups of scatterers. When excited by an eigenvector of their respective time-
reversal matrices they will each generate an incident wave that focuses on one or more of
the scatterers. However, we must be careful to note that these two focused waves might
not focus on the same scatterer or groups of scatterers!6 Thus, although for given p the
singular vectors vp and up are each (separately) associated with specific scatterers or group
of scatterers, they need not be the same scatterer or group of scatterers. The only guaranteed
exception to this possibility is when the two arrays are coincident and up = v∗p.

Although we cannot in practice perform the conceptual set of experiments leading to
the above results, we can perform an actual set of experiments to measure the multistatic
data matrix K. If the singular vectors vp are then computed from this measured matrix and
the actual (physical) transmit array is excited by one of the singular vectors tα = vp the
resulting incident wave will focus on a single scatterer or group of scatterers. Similarly,
if the receiver array, used as a transmitting array, is excited by one of the singular vectors
up it will also generate an incident wave that will focus on a (possibly different) set of
scatterers. Thus, in this way we can extend the application of experimental time-reversal
imaging to non-co-located transmit and receiver arrays. More importantly, we can also
use these conclusions in computational time-reversal imaging to generate separate images
using focused wavefields both from the transmit and from the receiver arrays. Thus, in
particular, knowing the background Green functions, we can compute these focused waves
from the set of singular vectors vp, up, p = 1, 2, . . . , Nσ>0, of the K matrix. However, as
noted in the previous paragraph we must beware of the possibility that these two focused
waves might not focus on the same scatterer or set of scatterers.

10.3.2 DORT

The conventional DORT images are computed from the singular vectors via the general-
ization of Eq. (10.18) according to the two equations

Up(r;α) =
Nα∑

k=1

vp(k)G0+(r, αk) = vT
p g0α (r), (10.23a)

Up(r;β) =
Nβ∑
j=1

u∗p(k)G0+(r, β j) = gT
0β (r)u∗p, (10.23b)

with p = 1, 2, . . . , Nα for Up(r;α) and p = 1, 2, . . . , Nβ for Up(r;β); i.e., each array

6 The reason for this is that the eigenvalues of the two separate arrays depend on both the scatterer strengths
as well as the CPSFs of the separate arrays evaluated at the scatterer locations. Thus, a given eigenvalue σ 2

p
common to both arrays can correspond to different sets of scatterers for each array.
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can generate from its singular vectors a number of images equal to the number of ele-
ments in the array. Of these sets of images only a total of Nσ>0 ≤ min(M, Nα , Nβ ) will be
associated with non-zero singular values and, hence, be images of single (well-resolved)
scatterers or groups of non-resolved scatterers. Because the images generated from the two
arrays might not be of the same scatterer or group of scatterers, we cannot, in general, com-
bine them to form a single composite image of the same scatterer or group of scatterers.
We can, of course, form a composite image by simply adding the two separate images to
obtain

φp(r) = gT
0β (r)u∗p + vT

p g0α (r), p = 1, 2, . . . , Nσ>0, (10.24a)

which will focus on the scatterers associated with both arrays. We can also multiply the
two separate images to obtain

χp(r) = gT
0β (r)u∗pvT

p g0α (r), p = 1, 2, . . . , Nσ>0, (10.24b)

which will then focus on the scatterer or set of scatterers common to the two array images.
Various other ways to combine the two images are, of course, possible.

Example 10.1 As an example we consider two coincident linear arrays with element-to-
element spacing of δ = 2λ in 2D space. Each array has 11 elements and is distributed
above a set of three point (line) scatterers. The 2D outgoing-wave Green function is given
by Eq. (2.19a) of Chapter 2

G+(R,ω) = −i

4
H+0 (kR),

where H+0 (·) is the zeroth-order Hankel function of the first kind. The multistatic data
matrix and Green-function and antenna vectors are then constructed from Eqs. (10.21)
using the above 2D Green function.

In this case we have M = 3 and Nα = Nβ = 11 so that the rank R(K) = 3, thus
yielding three non-zero singular values σp, p = 1, 2, 3, with associated singular vectors
(vp, up = v∗p), p = 1, 2, 3. Since the two arrays are coincident they generate identical
DORT images given by

φp(r) = gT
0β (r)u∗p = vT

p g0α (r), p = 1, 2, 3.

We show in Fig. 10.1 the results of a computer simulation for two different sets of scat-
terers. The top images correspond to three well-resolved scatterers, such that each image
is that of a single scatterer. The three singular values are seen to be comparable in the top
images. The bottom images correspond to three scatterers that are aligned perpendicular to
the antenna arrays and, hence, cannot be resolved due to the poor longitudinal resolution of
a linear array. This is indicated by the magnitudes of the second and third singular values,
which are much smaller than that of the first.
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σ1 = 0.066 σ2 = 0.032 σ3 = 0.018 

σ1 = 0.062 σ2 = 0.0039 σ3 = 0.0017

�Fig. 10.1 DORT images of three well-resolved scatterers (top) and three unresolved scatterers (bottom). The positions of the
antennas are shown at the top of each image and the locations of the scattering centers are displayed as black dots in
the images. The singular values associated with each image are indicated above the images.

Well-resolved scatterers

The background and composite-medium CPSFs of the α and β arrays are defined in the
usual way via the equations

H0α (r, r′) = g†
0α

(r)g0α (r′), H0β (r, r′) = g†
0β

(r)g0β (r′),

Hα(r, r′) = g†
α(r)gα(r′), Hβ (r, r′) = g†

β (r)gβ (r′).

A specific scatterer located at Xm is then said to be well resolved with respect to the α
and/or β array if

Hα(Xm, Xm′ ) ≈ ραmδm,m′ , Hβ (Xm, Xm′ ) ≈ ρβmδm,m′ ,

where

ραm = ||gα(Xm)||2, ρβm = ||gβ (Xm)||2.
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Unfortunately, a scatterer that is well resolved with respect to only one of the two arrays
will not be associated with either of the two singular vectors vp or up and, hence, will not
result in a focused DORT image. Rather, it requires that a scatterer be well resolved with
respect to both arrays for DORT focusing on the scatterer to occur. To see this we make
use of Eqs. (10.21a) to find that

K†K =
∑
m,m′

�β (Xm, Xm′ )g
∗
0α (Xm)gT

0α (Xm′ ), (10.25a)

KK† =
∑
m,m′

�∗α(Xm, Xm′ )g0β (Xm)g†
0β

(Xm′ ), (10.25b)

where

�β (Xm, Xm′ ) = V∗mVm′Hβ (Xm, Xm′ ), �α(Xm, Xm′ ) = V∗mVm′Hα(Xm, Xm′ ).

If we now assume that a scatterer Xm0 is well resolved by, say, the β array we have that

Hβ (Xm0 , Xm′ ) ≈ ρβm0
δm0,m′

so that

K†K ≈ |Vm0 |2ρβm0
g∗0α (Xm0 )gT

0α (Xm0 )+
∑

m,m′ �=m0

�β (Xm, Xm′ )g
∗
0α (Xm)gT

0α (Xm′ ).

For

vm0 =
g∗0α (Xm0 )
√
ραm0

(10.26a)

to be an eigenvector of the normal equations K†Kvm0 = σ 2
m0

vm0 then requires that g∗0α (Xm0 )

be orthogonal to the second term in the expansion of K†K given above and this requires
that

gT
0α (Xm′ )g

∗
0α (Xm0 ) = H0

∗
α(Xm′ , Xm0 ) = 0, m′ �= m0,

and thus requires that the scatterer at Xm0 also be well resolved7 by the α array! In a similar
fashion we conclude that for

um0 =
g0β (Xm0 )
√
ρβm0

(10.26b)

to be an eigenvector of the normal equations KK†um0 = σ 2
m0

um0 requires that

g†
0β

(Xm′ )g0β (Xm0 ) = H0β (Xm′ , Xm0 ) = 0, m′ �= m0,

and thus requires that the scatterer at Xm0 also be well resolved by the β array!
In summary, we see that a scatterer located at Xm that is well resolved by both the α

and β arrays is associated with singular vectors vm and um that will generate a composite
DORT image

φm(r) = gT
0β (r)u∗m + vT

mg0α (r) = H∗β (Xm, r)+ H∗α(Xm, r)
√
ρβmραm

.

7 In this case the scatterer is well resolved by the array in the background medium rather than in the composite
medium.
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Example 10.2 As an example of non-coincident arrays we consider two linear arrays that
are oriented perpendicular to each other. As in Example 10.1, each array has 11 elements,
with element-to-element spacing of δ = 2λ in 2D space and we again take three scatterers
so that M = 3 and Nα = Nβ = 11 and the rank R(K) = 3, thus yielding three non-zero
singular values σp, p = 1, 2, 3, with associated singular vectors (vp, up), p = 1, 2, 3. Since
the two arrays are not coincident, they separate DORT images given by

φαp (r) = vT
p g0α (r), φβp (r) = gT

0β (r)u∗p, p = 1, 2, 3.

We show in Fig. 10.2 the results of a computer simulation for a single set of scatterers
that are well resolved by both arrays. The top images are those generated by the singular
vectors vp and are thus associated with the α array and the bottom are those generated by
the singular vectors up and are thus associated with the β array. In this particular example

Image from 1st singular vector
of α array

Image from 1st singular vector
of β array

Image from 2nd singular vector
of α array

Image from 2nd singular vector
of β array

Image from 3rd singular vector
of α array

Image from 3rd singular vector
of β array

�Fig. 10.2 DORT images of three well-resolved scatterers obtained from theα array (top) andβ array (bottom). The positions of
theα-array antennas are shown at the top of each figure and those of theβ array on the left-hand side of the
images. The actual locations of the scatterers are displayed as black dots in the images.
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Image from 1st singular vector
of α array

Image from 1st singular vector
of β array

Image from 2nd singular vector
of α array

Image from 2nd singular vector
of β array

Image from 3rd singular vector
of α array

Image from 3rd singular vector
of β array

�Fig. 10.3 DORT images of three unresolved scatterers obtained from theα array (top) andβ array (bottom). The positions of
theα-array antennas are shown at the top of each figure and those of theβ array on the left-hand side of the
images. The actual locations of the scatterers are displayed as black dots in the images.

there is a one-to-one correspondence between the two sets of images; i.e., the singular
vectors vp and up each separately generate images of the same well resolved scatterers.

The reason for the 1:1 correspondence of the images generated by the two arrays in the
above example is that the three scatterers are well resolved by both arrays. An example in
which this is not the case is shown in Fig. 10.3, where it is clear that the images generated
by the two arrays are of different sets of scatterers. Although the images generated by
the first singular vectors shown in the first image pair appear to be of two different well-
resolved scatterers a careful examination of the images indicates that they are of the pair
of the two leftmost scatterers.

10.3.3 Time-reversal MUSIC

The time-reversal MUSIC algorithm for a general system of non-coincident transmitters
and receivers is based on the fact that (Gruber et al., 2004)

η(K)⊥ = Span(vp, σp > 0) = Span(g∗0α (Xm)),

η(K†)⊥ = Span(up, σp > 0) = Span(g0β (Xm)),
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where η(K) = Span(vp, σp = 0) is the null space of K and η(K†) = Span(up, σp = 0) the
null space of K†. Moreover, if M < (Nα , Nβ ) then the two null spaces are not empty so that

vT
p g0α (r) = 0, gT

0β (r)u∗p = 0, r = Xm

when vp ∈ η(K) and up ∈ η(K†) or when p = M + 1, . . . , Nα in the first case and p =
M + 1, . . . , Nβ in the second case. We can then form the pseudo-spectrum

�(r) = 1∑Nα
p=Nσ>0+1 |vT

p g0α (r)| ∗∑Nβ
p=Nσ>0+1 |gT

0β
(r)u∗p|

, (10.27)

which will peak, ideally to infinity, at the various scatterer locations Xm. In practice it is
necessary to include a regularization parameter ε > 0 in the denominator to broaden the
width around the peak values of �(r) at the various scatterer locations. Otherwise they are
difficult to visually detect from a grayscale image.

As in defining the DORT images according to Eqs. (10.24), there exist other possible
ways to compute a pseudo-spectrum. We have chosen to employ the products of the sums
of the magnitudes of the components vT

p g0α (r) and gT
0β

(r)u∗p rather than summing the com-
plex amplitudes in order to avoid the possibility of false maxima in �(r) introduced by
destructive interference of the various terms in the denominator.

Example 10.3 As an example we consider time-reversal MUSIC in two space dimensions
with the two coincident arrays employed in Example 10.1. The pseudo-spectrum in this
case reduces to

�(r) = 1∑
σp=0 |vT

p g0α (r)| .

We took three scatterers with scattering locations varying from well removed from each
other to closely spaced. The results of the simulation are shown in Fig. 10.4. It can be seen
that even for the closely spaced scatterers there is relatively good separation of the focus
point on the individual scatterers.

As a second example we applied the MUSIC algorithm to the same scattering system but
using the two non-coincident arrays employed in Example 10.2. The results of the simula-
tion are shown in Fig. 10.5. It is seen that the resulting images have better resolution than
those shown in Fig. 10.4 along the vertical (y) axis due to the good transverse resolution of
the β array.

10.3.4 Filtered DORT andmultiple-frequency algorithms

Unlike DORT, which has the capability (for well-resolved scatterers) to generate separate
images of individual scatterers, the time-reversal MUSIC algorithm generates an image
that has all scatterers included. If we are willing to give up the advantage of having images
of individual scatterers then there are alternatives to MUSIC that can be employed and that,
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�Fig. 10.4 MUSIC images of three scatterers in two space dimensions obtained using the coincident linear arrays employed in
Example 10.1. The actual locations of the scatterers are displayed as black dots in the images.

in many cases, work as well as or better than the MUSIC algorithm. We will refer to these
alternative algorithms as “filtered DORT algorithms” since they generate their images by
weighting the component DORT images with filters Fα(p) and Fβ (p) and summing the
components over the index p. Thus, on making use of Eq. (10.24a) we obtain the filtered
DORT image

φ(r) =
∑
σp>0

Fβ (p)gT
0β (r)u∗p +

∑
σp>0

Fα(p)vT
p g0α (r). (10.28a)

If we select the filters Fβ (p) = Fα(p) = δp,m we clearly obtain the standard composite
DORT image corresponding to the mth singular vectors of the K matrix.

In a similar fashion we can use the basic DORT image defined in Eq. (10.24b) to generate
the filtered DORT image

χ (r) =
∑
σp>0

F(p)gT
0β (r)u∗p ∗ vT

p g0α (r). (10.28b)
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�Fig. 10.5 MUSIC images of three scatterers in two space dimensions obtained using the non-coincident linear arrays employed
in Example 10.2. The actual locations of the scatterers are displayed as black dots in the images.

By summing over the singular values in the above equation we obtain

χ (r) = gT
0β (r)Hg0α (r), (10.29a)

where H is the Nβ × Nα matrix

H =
∑
σp>0

F(p)u∗pvT
p . (10.29b)

An important special choice that is very easily implemented results from selecting F(p) =
σp, i.e., equal to the singular values of the SVD of the K matrix. In this case we have that

H =
∑
σp>0

σpu∗pvT
p = K∗,

so that

χ (r) = gT
0β (r)K∗g0α (r) =

∑
j,k

G0+ (r, β j)K
∗
j,kG0+ (r, αk). (10.30)
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In this case the image is generated without even performing an SVD of the K matrix and
can be interpreted as being the image generated by first time reversing the multistatic data
matrix and then letting the time-reversed data radiate into the interior region τ0 contain-
ing the scatterers. Alternatively, it can also be interpreted as being the complex-conjugate
(time-reversed) image resulting from the back propagation of the multistatic data matrix
from all transmitter and receiver locations.

Multiple frequencies

All of the material covered in this chapter is easily extended to multiple frequencies by
simply summing over the frequency band. For example, the filtered DORT algorithm
Eq. (10.29a) becomes

χ (r) =
∑
ω

gT
0β (r,ω)H(ω)g0α (r,ω), (10.31)

where g0β , g0α and the matrix H now depend on the frequency ω. The use of multiple
frequencies will improve performance in all of the algorithms but especially in DORT and
MUSIC. The filtering operation can also benefit from multiple frequencies since it can
be extended to the frequency domain and, hence, will allow a frequency-domain matched
filter to be incorporated into the overall filtering operation. The use of matched filters in
DORT imaging is discussed in a number of papers in the literature.

10.4 The inverse scattering problem

The ISCP formulated for a set of discrete scatterers consists of estimating their scatter-
ing strengths Vp and scattering centers Xp from knowledge of the scattered field over
some set of points that lies outside of the scattering volume V (Devaney et al., 2005).
Here we will restrict our attention to scattering experiments employing a finite set of ideal
point (delta-function) transmitting and receiving antennas as employed in our treatment
of computational time-reversal imaging in Section 10.3 and data consisting of the multi-
static data matrix Kj,k(ω). Our results are easily extended to more realistic antenna models
as described in Section 9.11 and to the classical case of data consisting of the scattering
amplitude f (s, s0) specified over some set of incident s0 and scattering s directions by let-
ting the antenna locations recede to infinity.

The basic scattering model is given by Eq. (10.21a), which we will write in the form

Kj,k(ω) =
M∑

m=1

VmG0+(β j, Xm)G+(Xm, αk). (10.32a)

The above equation defines a non-linear transformation from the (unknown) scattering
strengths Vm and scattering centers Xm to the K matrix and the ISCP consists of estimating
the Vm and Xm from Kj,k, j = 1, 2, . . . , Nβ , k = 1, 2, . . . , Nα .

We can remove the non-linearity associated with the unknown scattering centers Xm by
first estimating these quantities using DORT, MUSIC, or one of the filtered DORT imaging
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schemes described in Section 10.3. However, even with these quantities known it appears
that the presence of the composite-medium Green function in Eq. (10.32a) also introduces
a non-linearity because of its dependence on the scattering strengths Vm. However, the
Foldy–Lax formulation of the forward-scattering problem presented in Section 9.9 of the
last chapter gets around this problem by renormalizing the Lippmann–Schwinger equation
satisfied by the G+(Xm, αk) in such a way that these quantities depend only on Vm′ with
m′ �= m. In particular, we showed in Example 9.5 of Section 9.9 that according to this
model

G+(Xm, αk) = G0+ (Xm, αk)+
∑

m′ �=m

Vm′G0+(Xm, Xm′ )G+(Xm′ , αk). (10.32b)

It follows from Eq. (10.32b) that G+(Xm, αk) is linearly related to the set of scattering
strengths Vm so that, under the assumption that the scattering centers Xm are known, the
unknown scattering strengths are related to the multistatic data matrix via a linear transform
that is readily inverted.

Further reading

It is impossible to list even a small percentage of the many papers that have been pub-
lished in the general area of time-reversal imaging. Many of them are from the famous
French group headed by M. Fink (Thomas et al., 1995; Spoliansky et al., 1996; Prada
and Fink, 1994; Lerosey et al., 2007), who have developed most of the practical applica-
tions of this theory. An interesting paper connecting time-reversal imaging to chaos and
using the Foldy–Lax formulation of multiple scattering outlined in the previous chapter is
Snieder and Scales (1998). Larry Carin and his group at Duke have also been very pro-
ductive in theoretical as well as experimental studies of time reversal in electromagnetic
systems (Liu et al., 2005, 2007), while Ishimaru and his group have investigated the use
of time reversal in enhanced back scattering (Ishimaru et al., 2007). The MUSIC time-
reversal algorithm was first presented in Lev-Ari and Devaney (2000) and in an unpub-
lished manuscript (Devaney, 2000), which contains a proof of the linear independence
of the Green-function vectors for a homogeneous background. The algorithm is an adap-
tation of the algorithm with the same name first developed by R. Schmidt in his Ph.D.
thesis (Schmidt, 1981). The algorithm is also used within the signal-processing commu-
nity for resolving narrow spectral peaks (Therrien, 1992; Stoica and Moses, 1997) and in
angle-of-arrival estimation in radar (Schmidt, 1986).

Problems

10.1 Prove that G∗0f
= −G0f .

10.2 Derive Eqs. (10.2) and (10.3).
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10.3 Use the Lippmann–Schwinger equations satisfied by the composite-medium Green
function to prove that the multistatic data matrix given in Eq. (10.7) is symmetric.

10.4 Determine the asymptotic form of the multistatic data matrix given in Eq. (10.7) in
the limit when the transmit and receive locations lie on the surface of an infinite
sphere.

10.5 Prove that, for the simple scattering potential model given in Eq. (10.1b) and coin-
cident point transmitter and receiver arrays, Kj,k(ω) is the scattered field component
of the composite-medium Green function G+(αj,αk).

10.6 Prove that the antenna vectors g(X1) and g(X2) for the case of two co-located trans-
mit and receive elements in a homogeneous background are linearly independent
except for certain special scatterer and antenna locations. Determine these special
situations in which linear independence breaks down.

10.7 Derive the representations of the K matrix given in Eq. (10.21) starting from the
Lippmann–Schwinger equations from the previous chapter.

10.8 Formulate the SVD for the case of far-field transmit and receive co-located antenna
elements considered in Problem 10.4.

10.9 Show that the singular values for the far-field SVD considered in the previous prob-
lem are invariant under a finite translation of the scattering system.

10.10 Show that the singular vectors for the far-field SVD considered in the previous two
problems merely suffer a phase shift under a finite translation of the scattering sys-
tem and determine what that phase shift is.

10.11 Show that the Green-function vectors g(r) and g0(r) are related via the equation

g(r) = g0(r)+
∑

m

VmG0+ (r, Xm)g(Xm).

10.12 Show that in place of Eqs. (10.25) we can also represent the matrices K†K and KK†

in the alternative form

K†K =
∑
m,m′

�0β (Xm, Xm′ )g
∗
α(Xm)gT

α(Xm′ ), (10.33a)

KK† =
∑
m,m′

�∗0α (Xm, Xm′ )gβ (Xm)g†
β (Xm′ ), (10.33b)

where

�0β (Xm, Xm′ ) = V∗mVm′H0β (Xm, Xm′ ),

�0α (Xm, Xm′ ) = V∗mVm′H0α (Xm, Xm′ ).

10.13 Discuss the implications of using the representations Eqs. (10.33) rather than those
in Eqs. (10.25) in the definition of a scatterer being well resolved and also in the
actual generation of the DORT image of a well-resolved scatterer.

10.14 Discuss the implications of using the representations Eqs. (10.33) rather than those
in Eqs. (10.25) in constructing the SVD of the K matrix and in time-reversal
MUSIC.

10.15 Express the filtered DORT and MUSIC algorithms using multiple frequencies.



11 The electromagnetic field

11.1 Maxwell equations

We work in the frequency domain where the “electromagnetic” (EM) field consists of the
electric E(r,ω) and magnetic H(r,ω) field vectors and the electric D(r,ω) and magnetic
B(r,ω) flux vectors, where ω is the temporal frequency. The time-dependent fields and
fluxes are obtained, in the usual way, via an inverse temporal Fourier transform so that, for
example,

e(r, t) = 1

2π

∫ ∞
−∞

dωE(r,ω)e−iωt,

where, of course,

E(r,ω) =
∫ ∞
−∞

dt e(r, t)eiωt.

From this point onward we will not include the temporal frequency ω in the arguments
of the various field quantities except in special cases where its exclusion can result in
confusion or we wish to emphasize frequency dependence. We emphasize, however, that
all of the EM field quantities depend to some extent on ω and this dependence must be
accounted for except in narrow-band applications such as occur in optics, where the use of
lasers is common.

The four field vectors are coupled by the famous Maxwell equations, which, in the SI
system of units, assume the form

∇ · D(r) = ρ(r),

∇ · B(r) = 0,

∇ × E(r) = iωB(r),

∇ ×H(r) = −iωD(r)+ J(r),

where J and ρ are the current density and charge density, respectively. These two quantities
are coupled via the charge–current conservation equation

∇ · J(r) = iωρ(r), (11.1)

which can be inferred directly from the Maxwell equations.
The four field vectors are also coupled via the so-called constitutive relations which, in

the case of linear and isotropic media (which we will assume throughout this chapter) are
given by

459
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D(r) = ε(r)E(r), B(r) = μ(r)H(r),

where ε and μ are the dielectric “constant” and permitivity of the medium, respectively.
These two parameters are generally complex and are directly related to the complex index
of refraction n(r) of the medium via the equation

n(r) = c
√
μ(r)ε(r),

where c is the velocity of light in vacuum. The wavenumber k0(r) of the medium is then
given by the usual equation

k0(r) = n(r)
ω

c
= ω√μ(r)ε(r).

On making use of Eq. (11.1) in the set of Maxwell equations we obtain a set of equations
involving only the electric and magnetic field vectors

∇ · ε(r)E(r) = ρ(r),

∇ · μ(r)H(r) = 0,

∇ × E(r) = iωμ(r)H(r),

∇ ×H(r) = −iωε(r)E(r)+ J(r).

11.1.1 Maxwell equations for a homogeneous isotropic medium

If the medium in which the charge and current densities are embedded is uniform (proper-
ties independent of r) then the Maxwell equations simplify to become

ε0∇ · E(r) = ρ(r), (11.2a)

∇ · H(r) = 0, (11.2b)

∇ × E(r) = iωμ0H(r), (11.2c)

∇ ×H(r) = −iωε0E(r)+ J(r). (11.2d)

The above set of equations can be easily uncoupled and lead to the pair of vector Helmholtz
equations

∇ × ∇ × E(r)− k2
0E(r) = iωμ0J(r), (11.3a)

∇ × ∇ ×H(r)− k2
0H(r) = ∇ × J(r), (11.3b)

where k0 = k0(ω) is now a frequency-dependent complex constant given by

k0 = ω

c
n0 = ω√μ0ε0. (11.4)

The set of Maxwell equations Eqs. (11.2) or the two vector Helmholtz equations
Eqs. (11.3) together with the first Maxwell equation Eq. (11.2a) and the charge–current
conservation equation Eq. (11.1) form the basis for the radiation and inverse source prob-
lems for electromagnetic fields in linear isotropic media.
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11.1.2 Maxwell equations in the spatial frequency domain

We define the spatial Fourier transform pair E(r)⇐⇒ Ẽ(K)

Ẽ(K) =
∫

d3r E(r)e−iK·r, E(r) = 1

(2π )3

∫
d3K Ẽ(K)eiK·r,

with similar definitions for the magnetic field vector and the current and charge densities.
As usual we assume that

∂n

∂xn
j

E(r)⇐⇒ (iKj)
nẼ(K), (11.5)

at least up to order n = 2, where xj is any Cartesian coordinate of the position vector r and
Kj is the associated component of the spatial frequency vector K.

On taking the spatial Fourier transform of the set of Maxwell equations Eqs. (11.2) we
obtain the result

iε0K · Ẽ(K) = ρ̃(K), (11.6a)

K · H̃(K) = 0, (11.6b)

K× Ẽ(K) = ωμ0H̃(K), (11.6c)

iK× H̃(K) = −iωε0Ẽ(K)+ J̃(K). (11.6d)

The charge–current conservation equation Eq. (11.1) yields the result

K · J̃(K) = ωρ̃(K). (11.7)

The spatial Fourier transform of the vector Helmholtz equations Eqs. (11.3) are easily
obtained directly from Eqs. (11.6). We find that

K×K× Ẽ(K)+ k2
0Ẽ(K) = −iωμ0J̃(K), (11.8a)

K×K× H̃(K)+ k2
0H̃(K) = −iK× J̃(K). (11.8b)

11.2 The Helmholtz theorem

The Helmholtz theorem states that any suitably well-behaved vector field V(r) can be
uniquely decomposed into the sum of a longitudinal part VL(r) that has zero curl and a
transverse part VT(r) that has zero divergence; i.e.,

V(r) = VL(r)+ VT(r),

where

∇ × VL(r) = 0, ∇ · VT(r) = 0. (11.9)

The proof of the theorem is somewhat tedious in the space domain but there is a simple and
elegant proof for vector-valued fields that admit a spatial Fourier decomposition for which
the relationship Eq. (11.5) holds and that we will assume in the following treatment.
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To establish the theorem we begin by using the vector identity

K×K× Ṽ(K) ≡ K[K · Ṽ(K)]− K2Ṽ(K), (11.10)

where Ṽ(K) is the spatial Fourier transform of the field V(r). It then follows that this
transform admits the decomposition

Ṽ(K) = K
K · Ṽ(K)

K2
− K×K× Ṽ(K)

K2
.

We can then define longitudinal and transverse components via the equations

ṼL(K) = K
K · Ṽ(K)

K2
, ṼT(K) = −K×K× Ṽ(K)

K2
, (11.11)

where the space-dependent inverse transforms VL(r) and VT(r) satisfy Eqs. (11.9) on
account of our assumption that the transform Ṽ(K) satisfies Eq. (11.5).

The space-dependent field components VL(r) and VT(r) are found by taking an inverse
Fourier transform of Eqs. (11.11). We find that

VL(r) = 1

(2π )3

∫
d3K K

K · Ṽ(K)

K2
eiK·r,

VT(r) = − 1

(2π )3

∫
d3K

K×K× Ṽ(K)

K2
eiK·r.

As a final step we note that if we again make use of Eqs. (11.5) we can express the
Helmholtz decomposition in the form

V(r) = ∇φ(r)+ ∇ × A(r),

where the scalar potential φ and vector potential A are given by

φ(r) = − i

(2π )3

∫
d3K

K · Ṽ(K)

K2
eiK·r,

A(r) = i

(2π )3

∫
d3K

K× Ṽ(K)

K2
eiK·r.

It should be noted that the decomposition of a given vector field into longitudinal and trans-
verse components is unique, although the scalar and vector potentials are not, and that the
theorem does not require the vector field V(r) to satisfy the vector Helmholtz equation,
or any equation for that matter. We also note that it follows from the Maxwell equations
that the magnetic field vector has zero divergence and, hence, is totally transverse, while
the electric field vector has both longitudinal and transverse components. We will make
frequent use of the decomposition of a vector field into longitudinal and transverse com-
ponents in later sections of this chapter.

Example 11.1 As an example we decompose the transform of a current density J(r) into
longitudinal and transverse parts using the Fourier-based approach used in proving the
Helmholtz theorem. On making use of Eqs. (11.11) we find that
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J̃L(K) = K
K · J̃(K)

K2
= K

ωρ̃(K)

K2
,

J̃T(K) = −K×K× J̃(K)

K2
.

Since J̃(K) = J̃L(r)+ J̃T(r) we can also express the transform of the transverse part of the
current in the form

J̃T(K) = J̃(K)−K
ωρ̃(K)

K2
, (11.12)

which also follows directly from expanding the triple cross product in the above equation
for the transform of the transverse current using the identity Eq. (11.10).

Example 11.2 As a second example we decompose the transforms of the electric and mag-
netic field vectors into longitudinal and transverse parts according to the Helmholtz theo-
rem. On making use of the identity Eq. (11.10) we find from Eqs. (11.8) that

(−K2 + k2
0)Ẽ(K) = −iωμ0J̃(K)+ i

ε0
Kρ̃(K),

(−K2 + k2
0)H̃(K) = −iK× J̃(K) = −iK× J̃T(K),

where we have also made use of Eqs. (11.6a) and (11.6b) and the easily proven identity

K× J̃(K) ≡ K× J̃T(K).

Solving for the field transforms we then find that

Ẽ(K) = −iωμ0J̃(K)+ (i/ε0)Kρ̃(K)

−K2 + k2
0

,

H̃(K) = −iK× J̃T(K)

−K2 + k2
0

.

As noted earlier and as follows from the above equations, the magnetic field is trans-
verse and depends only on the transverse component of the current density, while the
electric field has both a transverse and a longitudinal component. However, if we recall
that k2

0 = ω2ε0μ0 we can express the transform of the source term for the electric field in
the form

−iωμ0J̃(K)+ i

ε0
Kρ̃(K) = −iωμ0

[
J̃(K)−K

ωρ̃(K)

k2
0

]
,

which, on making use of Eq. (11.12) of the previous example, is seen to reduce to
−iωμ0J̃T(K) when K = k0. We will show in a later section that both the electric field and
the magnetic field depend only on the Fourier transform of the transverse component of the
current on the boundary K = k0 everywhere outside the charge–current source region τ0.
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11.3 The EM radiation problem

The radiation problem for EM fields generated by sources in a uniform isotropic medium
consists of solving the vector Helmholtz equations Eqs. (11.3) for the electric and magnetic
field vectors subject to causality in the time domain, which, as we showed in Chapter 1,
translates into the “outgoing-wave” or Sommerfeld radiation condition (SRC) in the fre-
quency domain. We can write these equations in the form

[∇2 + k2
0]E(r) = −iωμ0J(r)+ 1

ε0
∇ρ(r),

[∇2 + k2
0]H(r) = −∇ × J(r),

where we have made use of the Maxwell equation Eq. (11.2a). The solutions to the above
equations that satisfy the SRC are then immediately obtained using the outgoing scalar-
wave Green function

G+(R) = − 1

4π

eik0R

R
,

and we find that

E+(r) = −
∫
τ0

d3r′
[

iωμ0J(r′)− 1

ε0
∇r′ρ(r′)

]
G+(r− r′), (11.13a)

H+(r) = −
∫
τ0

d3r′ ∇r′ × J(r′)G+(r− r′), (11.13b)

where τ0 is the spatial support of the charge and current distributions and we have used
a plus-sign subscript to denote that these are the outgoing-wave solutions to the Maxwell
equations.

11.3.1 The dyadic Green function

The solution to the EM radiation problem given in Eqs. (11.13) employs a vector source
comprised of both the charge and current densities and a scalar Green function. It is some-
times desirable to use a form of this solution in terms of just the current density and a
tensor Green function in the form of a dyadic. The dyadic is, in fact, a second-order Carte-
sian tensor expressed in terms of constant unit vectors x̂j, j = 1, 2, 3, relative to a fixed

Cartesian coordinate system labeled by (x1, x2, x3). The dyadic
←→
A corresponding to the

second-order tensor (orthogonal matrix) aij is given by

←→
A =

∑
i,j

aijx̂ix̂j.

The identity dyadic (diagonal matrix) corresponds to aij = δi,j and is thus given by
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←→
I =

3∑
j=1

x̂jx̂j,

so that
←→

I · V = V ·←→I = V,

for any vector V.
A Green-function dyadic for the electric and magnetic field vectors E and H is obtained

as the solution to the inhomogeneous vector Helmholtz equation

∇ × ∇ ×←→G (r, r′,ω)− k2
0
←→
G (r, r′,ω) =←→I δ(r− r′), (11.14)

which satisfies specified boundary conditions. For radiation and scattering problems in
an infinite homogeneous and isotropic medium the appropriate boundary condition is the
Sommerfeld radiation condition (SRC) that requires the Green-function dyadic to be out-
going at infinity. By applying standard Green-function techniques to the vector Helmholtz
equations Eqs. (11.3) satisfied by the electric or magnetic field vectors with Eq. (11.14) and
using the SRC it can be shown that the two field vectors admit the integral representations

E+(r) = −iωμ0

∫
τ0

d3r′ ←→G (r, r′) · J(r′), (11.15a)

H+(r) = −
∫
τ0

d3r′ ∇r′ × J(r′) ·←→G (r, r′), (11.15b)

where the Green dyadic is given by

←→
G (r, r′) =

[
←→

I + 1

k2
0

∇r∇r

]
G+(r− r′). (11.15c)

Equations (11.15) can be derived simply by transforming the field representations given
in Eqs. (11.13) into the form of Eqs. (11.15). For example, we can express the electric field
vector from Eq. (11.13a) in the form

E+(r) = −iωμ0

∫
τ0

d3r′
[

J(r′)− 1

iωμ0ε0
∇r′ρ(r′)

]
G+(r− r′)

= −iωμ0

∫
τ0

d3r′
[

J(r′)G+(r− r′)− 1

iωμ0ε0
ρ(r′)∇rG+(r− r′)

]
,

where we have integrated by parts and used the fact that

∇r′G+(r− r′) = −∇rG+(r− r′).
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If we now make use of the charge–current conservation equation Eq. (11.1) and the disper-
sion relationship Eq. (11.4) we obtain

E+(r) = −iωμ0

∫
τ0

d3r′
[

J(r′)G+(r− r′)+ ∇r′ · J(r′)
k2

0

∇rG+(r− r′)
]

= −iωμ0

∫
τ0

d3r′
[

J(r′)G+(r− r′)+ J(r′)
k2

0

· ∇r∇rG+(r− r′)
]

= −iωμ0

∫
τ0

d3r′ J(r′) ·
[
←→

I + 1

k2
0

∇r∇r)

]
G+(r− r′),

which is Eq. (11.15a) with the Green dyadic given in Eq. (11.15c). A similar development
can be used to obtain the Green dyadic representation of the magnetic field vector.

11.3.2 The radiation patterns

The radiation patterns of the EM field vectors are obtained using the asymptotic form of
the outgoing-wave Green function G+ (cf. Section 1.5.1 of Chapter 1)

G+(r− r′) ∼ − 1

4π
e−ik0s·r′ eik0r

r
, as r→∞,

where s = r/r is the unit vector in the direction of the field point r. On substituting the
above expression into the set Eqs. (11.13) we obtain the result

E+(r) ∼ fe(s)
eik0r

r
, H+(r) ∼ fh(s)

eik0r

r
, (11.16)

where the electric and magnetic radiation patterns fe(s) and fh(s) are given by

fe(s) = 1

4π

∫
τ0

d3r′
[

iωμ0J(r′)− 1

ε0
∇r′ρ(r′)

]
e−ik0s·r′ ,

fh(s) = 1

4π

∫
τ0

d3r′ ∇r′ × J(r′)e−ik0s·r′ .

We see from the above equations that the radiation patterns are proportional to spatial
Fourier transforms of linear combinations of the current and charge distributions evaluated
on the surface K = k0s. We can then use Eq. (11.5) to simplify these expressions and
obtain

fe(s) = 1

4π

[
iωμ0J̃(k0s)− ik0s

ε0
ρ̃(k0s)

]
= iωμ0

4π
J̃T(k0s), (11.17a)

fh(s) = ik

4π
s× J̃(k0s) = ik

4π
s× J̃T(k0s), (11.17b)

where, in deriving the expression for fe(s), we have used the spatial frequency-domain
charge–current conservation equation Eq. (11.7) and the definition of the transverse part of



467 11.3 The EM radiation problem

the current given in Eq. (11.12) of Example 11.1. It follows from the above expressions for
the radiation patterns that

fe(s) = −ωμ0

k0
s× fh(s), fh(s) = k0

ωμ0
s× fe(s), (11.18)

so that either radiation pattern determines the other and they both depend only on the trans-
verse part of the charge–current distribution. Note also that both patterns are perpendicular
(transverse) to the unit observation vector s. This conclusion is obvious from Eqs. (11.17)
and is a consequence of the fact that both the electric field and the magnetic field are trans-
verse fields (have zero divergence) outside of the charge–current support volume τ0.

11.3.3 The Kirchhoff–Helmholtz representation of the radiated field

In the region τ⊥ exterior to a simply connected region τ ⊃ τ0 that contains the source
region τ0 the electric and magnetic field vectors satisfy the homogeneous Helmholtz equa-
tions

[∇2 + k2
0]E+(r) = 0, [∇2 + k2

0]H+(r) = 0, r ∈ τ⊥.

By then following steps identical to those used in Section 2.5 of Chapter 2 we can obtain
“Helmholtz identities” and the so-called “Kirchhoff–Helmholtz representation” of the EM
fields that are generalizations of those obtained in Section 2.5 for the scalar-wave case. For
example, we find for the electric field

E+(r) =
∫
∂τ

dS′
[

G+(r− r′) ∂
∂n′

E+(r′)− E+(r′) ∂
∂n′

G+(r− r′)
]

,

if r ∈ τ⊥ and ∫
∂τ

dS′
[

G+(r− r′) ∂
∂n′

E+(r′)− E+(r′) ∂
∂n′

G+(r− r′)
]
= 0,

if r ∈ τ with an identical result for the magnetic field vector and where the normal deriva-
tives are directed out of τ into the infinite exterior region τ⊥ bounded by ∂τ and a sphere
at infinity. The above two equations are generally referred to as the Helmholtz identities,
with the top equation being the Kirchhoff–Helmholtz representation of the electric field in
the exterior region τ⊥ and the bottom equation a homogeneous Fredholm integral equation
that must be satisfied by the boundary values of the field and its normal derivative.

As discussed in Section 2.5, in the case of scalar wavefields the above integral equation
guarantees that the boundary values of the (scalar) field and its normal derivative are not
independent and cannot be independently specified so that the Kirchhoff–Helmholtz repre-
sentation of this field is not a solution to a properly posed boundary value for the (exterior)
scalar-wave boundary-value problem. The same holds true in the vector-wave case treated
here but in spades. In particular, not only are the boundary values of the EM fields and
their normal derivatives not independent, but even the boundary values of the fields them-
selves are over-specified due to the fact that these fields must have zero divergence outside
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the source region τ0. Indeed, as discussed in our treatment of the scalar-wave boundary-
value problems in Section 2.8 it is always possible to find outgoing-wave Green func-
tions GD(r, r′) and GN(r, r′) that satisfy homogeneous Dirichlet (GD vanishing on ∂τ )
or Neumann (normal derivative (∂/∂n)GN vanishing on ∂τ ) and that, when used in the
Kirchhoff–Helmholtz field representation yield a proper solution to the exterior boundary-
value problem in the scalar-wave case. In the vector-wave case using these Green functions
in place of G+ will remove either the boundary value of the EM field or that of its normal
derivative, but we will still end up with an improperly posed vector-wave boundary prob-
lem. We will return to this issue in a later section where we will solve EM boundary-value
problems using modal expansions of the vector Helmholtz equation for planar and spheri-
cal boundaries.

11.4 Angular-spectrum expansions of the radiated field

We can obtain angular-spectrum expansions of the radiated EM fields of the type derived in
Section 4.2 of Chapter 4 for the field radiated by scalar sources by making use of the Weyl
expansion derived in Section 4.1 of that chapter. This expansion can be expressed in either
Cartesian or angular integration variables, and in Cartesian variables assumes the form

G+(R) = −i

8π2

∫ ∞
−∞

d2Kρ
γ

eik±0 ·R, (11.19)

where the plus sign is used if Z = ẑ · R > 0 and the minus sign if Z < 0. Here,

k±0 = Kρ ± γ ẑ,

with Kρ = (Kx, Ky) and

γ =

⎧⎪⎪⎨⎪⎪⎩
√

k2
0 − K2

ρ if K2
ρ < �k2

0,

i
√

K2
ρ − k2

0 if K2
ρ > �k2

0.

As discussed in Section 4.1, the Weyl expansion is in the form of a superposition of
plane waves having wave vectors k±0 , which are generally complex due to the fact that in a
dispersive medium k0 > 0. These wave vectors also satisfy the requirement that k±0 ·k±0 =
k2

0 as a consequence of the fact that the plane waves satisfy the homogeneous Helmholtz
equation. The plane waves for which K2

ρ < �k2
0 are weakly inhomogeneous plane waves

and have a complex wave vector due to the dispersive nature of the medium in which they
propagate. If the loss in this medium as characterized by k0 were to vanish these particular
plane waves would become homogeneous plane waves and have a unit magnitude over all
of space. The plane waves for which K2

ρ > �k2
0 are evanescent plane waves and have

a complex wave vector that does not become real in the limit where k0 → 0. These
plane waves derive their inhomogeneous character from the fact that we allow the (Kx, Ky)
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components of the wave vectors k±0 = Kxx̂+Kyŷ±γ ẑ to vary over the entire Kx, Ky plane,
thus requiring the z component ±γ to be inherently complex when K2

x + K2
y > �k2

0.

The angle-variable form of the Weyl expansion

If we make the transformation from Cartesian (Kx, Ky) to spherical (α,β) integration vari-
ables in the Weyl expansion Eq. (11.19) we showed in Section 4.1 that

d2Kρ
γ
⇒ k0 sinα dβ dα, (11.20a)

and

k±0 ⇒ k0s = k0

s︷ ︸︸ ︷
(sinα cosβ x̂+ sinα sinβ ŷ+ cosα ẑ), (11.20b)

where the azimuthal angle β varies from 0 to 2π and the polar angle α varies along the
contour C+ in Fig. 3.1 of Chapter 3 for the wave vector k+0 and over the contour C− in this
figure for the wave vector k−0 . We then find that the Weyl expansion assumes the form

G+(R) = − ik0

8π2

∫ π

−π
dβ
∫

C±
sinα dα eik0s·R, (11.21)

where the contour C+ is used if Z > 0 and C− if Z < 0. The integrand in the above
angular-spectrum expansion is an entire analytic function of the angles α and β so that
the precise shape of the integration contours C± is unimportant and, as discussed in Sec-
tion 3.2.3, the decomposition of the α contour to lie along the real axis and then along
the line �α = π/2 corresponds to a separation of the plane waves in the expansions into
weakly inhomogeneous and evanescent plane waves.

11.4.1 The angle-variable form of the angular-spectrum expansion of the
EM field

We first consider the angular-spectrum expansion of the EM field in angle variables, where
the Weyl expansion is given in Eq. (11.21). We assume that the spatial support volume τ0

of the charge–current distribution is contained within the strip z− ≤ z ≤ z+ and restrict
our attention to field points r = (ρ, z) that lie outside this strip. We note that, since the
orientation of the (x, y, z) coordinate system is arbitrary, our results hold outside any such
strip containing the source support volume τ0. If we then substitute the angle-variable form
of the Weyl expansion into Eq. (11.13a) we obtain the result

E+(r) = ik0

8π2

∫ π

−π
dβ
∫

C±
sinα dα

{∫
τ0

d3r′
[

iωμ0J(r′)− 1

ε0
∇r′ρ(r′)

]
e−ik0s·r′

}
eik0s·r

= ik0

2π

∫ π

−π
dβ
∫

C±
sinα dαAe(k0s)eik0s·r, (11.22a)

where C+ is used in z > z+ and C− in z < z−, and the electric-field plane-wave amplitude
(angular spectrum) Ae(k0s) is given by
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Ae(k0s) = 1

4π

∫
τ0

d3r′
[

iωμ0J(r′)− 1

ε0
∇r′ρ(r′)

]
e−ik0s·r′

= 1

4π

[
iωμ0J̃(k0s)− ik0s

ε0
ρ̃(k0s)

]
= iωμ0

4π
J̃T(k0s). (11.22b)

A completely parallel derivation leads to the result that

H+(r) = ik0

2π

∫ π

−π
dβ
∫

C±
sinα dαAh(k0s)eik0s·r, (11.23a)

where the magnetic-field angular spectrum Ah(k0s) is given by

Ah(k0s) = 1

4π

∫
τ0

d3r′ ∇r′ × J(r′)e−ik0s·r′ = ik0

4π
s× J̃T(k0s). (11.23b)

As in the case of the electric-field angular-spectrum expansion, the magnetic-field expan-
sion is valid at all field points r lying outside the source strip z− ≤ z ≤ z+.

The two angular spectra and, hence, the electric and magnetic fields outside the source
strip are seen to depend only on the spatial Fourier transform of the transverse part of
the current distribution on the boundary K = k0s. However, since the orientation of the
x, y, z coordinate system is arbitrary, this result, as mentioned in Example 11.2, must apply
everywhere outside the smallest convex region that contains the source (the so-called con-
vex hull of the source support volume τ0). We also note that the two angular spectra Ae(k0s)
and Ah(k0s) are entire analytic functions of the (generally complex) unit vector s, so the
contours C± can be arbitrarily deformed in Eqs. (11.22a) and (11.23a) so long as they run
from α = 0 to α = π/2− i∞ in the case of C+ and from α = π/2+ i∞ to α = π in the
case of C−. As discussed above, the deformation of these contours to run along the real-α
axis and along the line �α = π/2 corresponds to the decomposition of the expansions into
weakly inhomogeneous and evanescent plane waves, respectively.

The two angular spectra are functionally identical to the two radiation patterns fe(s) and
fh(s), respectively, defined in Eqs. (11.17) and, hence, must satisfy the relationships in
Eqs. (11.18); i.e.,

Ae(k0s) = −ωμ0

k0
s× Ah(k0s), Ah(k0s) = k0

ωμ0
s× Ae(k0s). (11.24)

We should note that, although the angular spectra and radiation patterns are functionally
identical, they have the important difference that the radiation patterns are the amplitudes
of the electric and magnetic field vectors in the far field along the directions s = r/r and,
hence, are defined only on the real unit sphere, whereas the angular spectra are defined for
both real and complex unit vectors s and, hence, are properly interpreted as being analytic
continuations of the radiation patterns (see the discussion below).

11.4.2 Back propagation from the radiation patterns

When the unit vector s lies on the real unit sphere the angular spectra Ae(k0s) and Ah(k0s)
are seen to be equal to the radiation patterns fe(s) and fh(s), respectively. This is pre-
cisely the same result as we obtained in the scalar-wave case considered in Section 4.2.2
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of Chapter 4. As discussed in that section, the radiation patterns are boundary values of
entire analytic functions of the unit vector s and the angular spectra can be considered
to be analytic continuations of these boundary values onto complex unit vectors s having
azimuthal angles α lying on the integration contours C±. This then allows the radiated field
to be computed everywhere outside the source strip using field back propagation imple-
mented via the angular-spectrum expansions and analytically continued radiation patterns.
However, as discussed in Sections 4.2.2 and 4.3 such a process of analytic continuation is
not stable and cannot be used in any practical application. However, we can deform the
contours C± to lie along the real-α axis and along the line �α = π/2 as described above
and approximate the radiated fields using only the contributions from the weakly inho-
mogeneous plane waves whose amplitudes are the observed radiation patterns. Indeed, we
employed such approximations in the scalar-wave case in Section 4.4 of Chapter 4, where
they were found to be excellent except in the immediate vicinity of the source strip.

A further word of caution is necessary regarding back propagation from the radiation
pattern in the case of EM vector wavefields that is not necessary in the scalar-wave case
treated in Chapter 4. In particular, it follows from Eqs. (11.18) that the radiation patterns
fe(s) and fh(s) must both be perpendicular to the unit vector s. On the other hand, mea-
surements of these quantities in any physical experiment will not, in general, satisfy this
requirement, which will result in back-propagated fields that will not have zero divergence
as is required of both EM fields outside of the source support region τ0. A simple way
to correct this problem is to project the measured radiation patterns onto the unit sphere
and use the projected patterns in the stabilized angular-spectrum expansions. This is essen-
tially what we will do using the so-called Debye representation of the EM fields that will
be presented in a later section of the chapter.

11.4.3 The Cartesian-variable form of the angular-spectrum
expansion of the EM field

We now consider the angular-spectrum expansion of the EM field in Cartesian integration
variables, where the Weyl expansion is given in Eq. (11.19). As in the angle-variable form
of the expansion derived above, we will restrict our attention to field points r = (ρ, z)
that lie outside the source strip z− ≤ z ≤ z+. The required expansion can be obtained by
employing a parallel derivation to that used above for the angle-variable form, starting with
the Cartesian-variable form of the Weyl expansion given in Eq. (11.19). Alternatively, we
can simply make the inverse transformation to that defined in Eqs. (11.20) in the angle-
variable form of the angular-spectrum expansions in Eqs. (11.22a) and (11.23a). For the
sake of simplicity we will use this second scheme and make the transformation in these
expansions from angle integration variables to Cartesian integration variables via

k0 sinα dβ dα ⇒ d2Kρ
γ

,

k0s⇒ k±0 = Kρ ± γ ẑ.

We find that Eqs. (11.22a) and (11.23a) yield the results
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E+(r) = i

2π

∫ ∞
−∞

d2Kρ
γ

Ae(k±0 )eik±0 ·r, (11.25a)

H+(r) = i

2π

∫ ∞
−∞

d2Kρ
γ

Ah(k±0 )eik±0 ·r, (11.25b)

where Ae(k±0 ) and Ah(k±0 ) are, respectively, Ae(k0s) and Ah(k0s) under the above transfor-
mation and are thus given by

Ae(k±0 ) = 1

4π

[
iωμ0J̃(k±0 )− ik±0

ε0
ρ̃(k±0 )

]
= iωμ0

4π
J̃T(k±0 ), (11.26a)

Ah(k±0 ) = i

4π
k±0 × J̃T(k±0 ). (11.26b)

Both forms of the expansions require that the z coordinate of the field point r = ρ + zẑ lie
outside of the source strip z− ≤ z ≤ z+, with k+0 used in the expansions if z > z+ and k−0
if z < z−.

As was the case with the angle-variable form of the angular-spectrum expansion, the
angular spectra Ae(k±0 ) and Ah(k±0 ) both depend only on the Fourier transform of the trans-
verse part of the current density on the boundary

√
K · K = k0 and are analytically contin-

ued radiation patterns and must satisfy Eqs. (11.24) under the replacement of k0s with k±0 :

Ae(k±0 ) = − 1

ωε0
k±0 × Ah(k±0 ), Ah(k±0 ) = 1

ωμ0
k±0 × Ae(k±0 ). (11.27)

Moreover, the radiated field can, in principle, be exactly, but unstably, computed every-
where outside the source strip via field back propagation using the analytically continued
radiation patterns in Eqs. (11.25) or can be stably computed by truncating these expansions
to weakly inhomogeneous plane waves. However, field back propagation from the radia-
tion patterns is best implemented using the angle-variable forms of the angular-spectrum
expansions given in Eqs. (11.22a) and (11.23a) while the Cartesian-variable form of these
expansions is best used when back propagating from planar boundary-value data, as we
will now describe.

11.4.4 Forward and back propagation from planar boundary-value data

If we take an inverse spatial Fourier transform of the electric and magnetic field vectors
as given in the angular-spectrum expansions Eqs. (11.25) over any plane z = z0 that lies
outside of the source strip we find that

Ẽ+(Kρ , z0) = 2π i

γ
Ae(k±0 )e±iγ z0 , H̃+(Kρ , z0) = 2π i

γ
Ah(k±0 )e±iγ z0 ,

where the plus sign is used if z0 > z+ and the minus sign if z0 < z− and

Ẽ+(Kρ , z0) =
∫

d2ρ E+(ρ, z0)e−iKρ ·ρ , H̃+(Kρ , z0) =
∫

d2ρH+(ρ, z0)e−iKρ ·ρ ,
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are the 2D transforms of the EM fields over the boundary-value plane. The above equations
directly relate the angular spectra of the electric and magnetic field vectors to the spatial
Fourier transforms of these fields over arbitrary planar surfaces that lie outside the source
strip. It then follows that it is possible to compute the angular spectra both over the homo-
geneous and over the evanescent regions and, hence, the radiated EM field everywhere in
the r.h.s. z > z+ from field data acquired over any plane in this half-space and throughout
the half-space z < z− from field data acquired over any plane in this half-space.

The above results are identical to those that we obtained for scalar fields in Section 4.3
of Chapter 4, where we discussed field forward and back propagation from boundary-
value data acquired over infinite planes lying outside the source region τ0. As discussed
in that section, if the angular spectrum is acquired from field data over a plane z0 that lies
to the right of the source strip (z0 > z+) then the resulting angular-spectrum expansion
converges throughout the r.h.s. z > z+ and implements field forward propagation from
the data if z > z0 and field back propagation if z < z0. On the other hand, if the angular
spectrum is acquired from field data over a plane z0 that lies to the left of the source strip
(z0 < z−) then the resulting angular-spectrum expansion converges throughout the l.h.s.
z < z− and implements field forward propagation from the data if z < z0 and field back
propagation if z > z0. In other words, forward propagation is the process of computing
the field at points more distant from the source than the data boundary, whereas field back
propagation is the process of computing the field at points closer to the source than the
data boundary. As discussed extensively in earlier chapters field forward propagation can
be formulated as a properly posed boundary-value problem and is perfectly stable and
well-posed, whereas field back propagation cannot be so formulated and is unstable and
ill-posed.

As was the case in EM field back propagation from the radiation patterns, EM field
forward and back propagation from boundary-value data is further complicated by the fact
that the EM fields must have zero divergence outside the source region. This requires that
the angular spectra Ae(k±0 ) and Ah(k±0 ) be perpendicular to the wave vectors k±0 and there
is no guarantee that the angular spectra computed from measured boundary value data via
the above equations will satisfy this condition. A simple way to insure that this condition
is satisfied and that the propagated or back-propagated fields have zero divergence is to
project the measured data onto the perpendicular plane to k±0 and this is, in fact, what
is done in deriving the so-called Whittaker representation of the fields in the following
section.

11.5 TheWhittaker representation of the radiated fields

The vector-valued amplitudes (angular spectra) of the plane waves in the Cartesian form
of the angular-spectrum expansions of the EM fields derived in the last section are perpen-
dicular to the propagation vectors k±0 and, hence, can be decomposed into two orthogonal
components on the plane perpendicular to these vectors. We can thus express the angular
spectra in terms of the two orthogonal vectors k±0 × ẑ and k±0 × k±0 × ẑ in the form
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Ae(k±0 ) = ik±0 × ẑ�̂w
h (k±0 )− i

ωε0
k±0 × k±0 × ẑ�̂w

e (k±0 ), (11.28a)

Ah(k±0 ) = ik±0 × ẑ�̂w
e (k±0 )+ i

ωμ0
k±0 × k±0 × ẑ�̂w

h (k±0 ), (11.28b)

where the triple vector product k±0 × k±0 × ẑ is taken to mean k±0 × [k±0 × ẑ]. We will
refer to the two scalar quantities �̂w

e and �̂w
h as the Whittaker electric and magnetic plane-

wave amplitudes. It is easy to verify that Ae(k±0 ) and Ah(k±0 ) as represented via Whittaker
plane-wave amplitudes satisfy the conditions given in Eqs. (11.27).

The Whittaker plane-wave amplitudes are obtained by projecting the electric- and/or
magnetic-field plane-wave amplitudes onto the two orthogonal vectors k±0 × ẑ and k±0 ×
k±0 × ẑ. In terms of the electric-field plane-wave amplitude we find, after performing some
simple vector algebra and using the fact that k±0 · k±0 = k2

0, that

�̂w
h (k±0 ) = −i

k±0 × ẑ

K2
ρ

· Ae(k±0 ), �̂w
e (k±0 ) = i

ωμ0

k±0 × k±0 × ẑ

K2
ρ

· Ae(k±0 ).

A similar calculation yields the result

�̂w
e (k±0 ) = −i

k±0 × ẑ

K2
ρ

· Ah(k±0 ), �̂w
h (k±0 ) = − i

ωε0

k±0 × k±0 × ẑ

K2
ρ

· Ah(k±0 ).

The Whittaker representation of the EM fields outside the source strip z− ≤ z ≤ z+
is obtained by substituting the plane-wave amplitudes from Eqs. (11.28) into the angular-
spectrum expansions Eqs. (11.25). We obtain

E+(r) = i

2π

∫ ∞
−∞

d2Kρ
γ

{
ik±0 × ẑ�̂w

h (k±0 )− i

ωε0
k±0 × k±0 × ẑ�̂w

e (k±0 )

}
eik±0 ·r,

(11.29a)

H+(r) = i

2π

∫ ∞
−∞

d2Kρ
γ

{
ik±0 × ẑ�̂w

e (k±0 )+ i

ωμ0
k±0 × k±0 × ẑ�̂w

h (k±0 )

}
eik±0 ·r.

(11.29b)

If we make use of the identities

k±0 × ẑeik±0 ·r ≡ −i∇ × ẑeik±0 ·r, k±0 × k±0 × ẑeik±0 ·r ≡ −∇ × ∇ × ẑeik±0 ·r,

we can also write Eqs. (11.29) in the standard form

E+(r) = ∇ × ẑ�w
h (r)+ i

ωε0
∇ × ∇ × ẑ�w

e (r), (11.30a)

H+(r) = ∇ × ẑ�w
e (r)− i

ωμ0
∇ × ∇ × ẑ�w

h (r), (11.30b)
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where

�w
e (r) = i

2π

∫ ∞
−∞

d2Kρ
γ

�̂w
e (k±0 )eik±0 ·R, (11.31a)

�w
h (r) = i

2π

∫ ∞
−∞

d2Kρ
γ

�̂w
h (k±0 )eik±0 ·R. (11.31b)

The angular-spectrum expansions Eqs. (11.31) and, hence, the Whittaker representation in
either of the two forms given above converge everywhere outside the source strip z− ≤ z ≤
z+. However, since the orientation of the (x, y, z) coordinate system is arbitrary, a Whittaker
representation can be employed everywhere outside the convex hull of the source support
volume τ0.

The Whittaker representation was first obtained by E. T. Whittaker (Whittaker, 1904)
in 1903 and was derived within the context of antenna theory by Borgiotti (Borgiotti,
1962) using the procedure employed above. Borgiotti’s work is of special interest since
it constitutes a general method that can be extended to spherical geometries and the Debye
representation that will be derived below.

Example 11.3 The Whittaker representation is not restricted to the EM field vectors and can
be employed to decompose the transverse part of any vector field whose spatial Fourier
transform satisfies the conditions Eqs. (11.5). As an example, we consider the transverse
part of the current density JT(r) whose transform we can express in the form

J̃T(K) = iK× ẑQ̃w
h (K)− i

ωε0
K×K× ẑQ̃w

e (K), (11.32)

where

Q̃w
h (K) =

∫
τ0

d3r Qw
h (r)e−iK·r,

Q̃w
e (K) =

∫
τ0

d3r Qw
e (r)e−iK·r

are the spatial Fourier transforms of the two scalar sources Qw
h (r) and Qw

e (r), which we will
refer to as the Whittaker magnetic and electric scalar source components of the transverse
current density. Indeed, on taking an inverse Fourier transform of both sides of Eq. (11.32)
and employing steps essentially identical to those used in transforming from Eq. (11.28a)
to the standard form of the Whittaker representation of the electric field vector given in
Eq. (11.30a) we find that

JT(r) = ∇ × ẑQw
h (r)+ i

ωε0
∇ × ∇ × ẑQw

e (r).

The two scalar source transforms are directly related to the angular spectra of the two
Whittaker potentials of the field E+(r) radiated by the current density J. In particular, it
follows from Eqs. (11.26a), (11.28a) and (11.32) above that
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Ae(k±0 )︷ ︸︸ ︷
ik±0 × ẑ�̂w

h (k±0 )− i

ωε0
k±0 × k±0 × ẑ�̂w

e (k±0 )

= iωμ0

4π

J̃T(k±0 )︷ ︸︸ ︷[
ik±0 × ẑQ̃w

h (k±0 )− i

ωε0
k±0 × k±0 × ẑ Q̃w

e (k±0 )

]
.

This then requires that

Q̃w
h (k±0 ) = −4π i

ωμ0
�̂w

h (k±0 ), Q̃w
e (k±0 ) = −4π i

ωμ0
�̂w

e (k±0 ). (11.33)

In words, the boundary values of the spatial Fourier transforms of the Whittaker magnetic
and electric scalar source components on the boundaries K = k±0 are proportional to the
corresponding angular spectra of the Whittaker magnetic and electric scalar potentials. The
Whittaker decomposition of the transverse part of the current density and this later result
incorporated in Eqs. (11.33) play an important role in the EM inverse source problem (ISP)
for sources compactly supported within the source strip z− < z < z+.

11.5.1 Boundary-value problems and field back propagation using theWhittaker
representation

The Rayleigh–Sommerfeld (RS) boundary-value problem for scalar waves was solved
in Section 2.9 of Chapter 2 using Green-function methods and then using the angular-
spectrum expansion in Section 4.3 of Chapter 4. Here we will generalize the treatment
given in Chapter 4 to the EM case by using the Whittaker representation implemented via
angular-spectrum expansions. As in the scalar-wave case the EM RS problem consists of
computing an outgoing-wave field throughout a source-free half-space z > z0 or z < z0

from properly specified boundary-value data on the plane z = z0. In the case of scalar
waves “properly” specified data consists of the value of the field (Dirichlet), its normal
derivative (Neumann) or linear combinations of the two, while in the EM case it is known
to consist of specification of the tangential components of the EM fields. We thus address
the problem of computing the outgoing-wave electric and magnetic field vectors through-
out a source-free half-space from specification of their tangential components on the data
plane z = z0. We will show that this solution can be employed to implement field back
propagation into the region bounded by the data plane and the planar boundary of the
charge–current distribution at z = z± that generated the field.

An outgoing EM wave radiated by sources contained within a source strip z− < z < z+
can be expressed everywhere outside this strip in the Whittaker plane-wave expansions
Eq. (11.29). Considering for the moment the electric field vector we find that its tangential
component on a plane z = z0 that lies outside the source strip assumes the form
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ẑ× E+(ρ, z0) = i

2π

∫ ∞
−∞

d2Kρ
γ

{
iẑ× k±0 × ẑ�̂w

h (k±0 )

− i

ωε0
ẑ× k±0 × k±0 × ẑ�̂w

e (k±0 )

}
eiγ z0 eiKρ ·ρ

= 1

(2π )2

∫ ∞
−∞

d2Kρ
γ

{
−2πKρ�̂

w
h (k±0 )∓ 2π

ωε0
γKρ × ẑ�̂w

e (k±0 )

}
eiγ z0 eiKρ ·ρ ,

where we have used the identities

ẑ× k±0 × ẑ ≡ Kρ , ẑ× k±0 × k±0 × ẑ ≡ ∓γKρ × ẑ.

By performing a 2D inverse Fourier transform over the boundary-value plane we then
obtain

ẼT(Kρ , z0)e∓iγ z0 = −2π

γ
Kρ�̂

w
h (k±0 )∓ 2π

ωε0
Kρ × ẑ�̂w

e (k±0 ),

where

ẼT(Kρ , z0) =
∫

d2ρ ẑ× E(ρ, z0)e−iKρ ·ρ

is the 2D spatial Fourier transform of the tangential electric field vector over the boundary-
value plane. An entirely parallel computation yields

H̃T(Kρ , z0)e∓iγ z0 = −2π

γ
Kρ�̂

w
e (k±0 )± 2π

ωμ0
Kρ × ẑ�̂w

h (k±0 ),

where

H̃T(Kρ , z0) =
∫

d2ρ ẑ×H(ρ, z0)e−iKρ ·ρ .

The two Whittaker plane-wave amplitudes are then found to be

�̂w
h (k±0 ) = − γ

2πK2
ρ

Kρ · ẼT(Kρ , z0)e∓iγ z0 , (11.34a)

�̂w
e (k±0 ) = ∓ ωε0

2πK2
ρ

Kρ × ẑ · ẼT(Kρ , z0)e∓iγ z0 , (11.34b)

which can also be expressed in the form

�̂w
e (k±0 ) = − γ

2πK2
ρ

Kρ · H̃T(Kρ , z0)e∓iγ z0 , (11.34c)

�̂w
h (k±0 ) = ± ωμ0

2πK2
ρ

Kρ × ẑ · H̃T(Kρ , z0)e∓iγ z0 . (11.34d)

This then leads to a solution of the EM RS boundary-value problem for the electric
and magnetic field vectors in the form of the Whittaker angular-spectrum representation
as given in Eqs. (11.29) or in terms of the standard form of the Whittaker representation
given in Eqs. (11.30) with
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�w
e (r) = ∓ iωε0

(2π )2

∫ ∞
−∞

d2Kρ
γ

Kρ × ẑ
K2
ρ

· ẼT(Kρ , z0)e∓iγ z0 eik±0 ·r, (11.35a)

�w
h (r) = − i

(2π )2

∫ ∞
−∞

d2Kρ
Kρ

K2
ρ

· ẼT(Kρ , z0)e∓iγ z0 eik±0 ·r, (11.35b)

with the upper signs applying for propagation into the r.h.s. z > z0 with z0 to the right of
the source and the lower signs for propagation into the l.h.s. z < z0 with z0 lying to the left
of the source. Similarly, the solution of the RS boundary-value problem for the magnetic
field is also given in terms of the Whittaker representation, where now the plane-wave
amplitudes are computed from the boundary values of the magnetic field according to the
equations

�w
h (r) = ± iωμ0

(2π )2

∫ ∞
−∞

d2Kρ
γ

Kρ × ẑ
K2
ρ

· H̃T(Kρ , z0)e∓iγ z0 eik±0 ·r, (11.36a)

�w
e (r) = − i

(2π )2

∫ ∞
−∞

d2Kρ
Kρ

K2
ρ

· H̃T(Kρ , z0)e∓iγ z0 eik±0 ·r. (11.36b)

Field back propagation

The angular-spectrum expansions for the electric and magnetic field vectors and the two
Whittaker potentials vectors in their basic forms given in Eqs. (11.29) and (11.31) converge
everywhere outside the source strip z− < z < z+. It then follows that the above solutions
to the EM RS boundary-value problems when implemented in terms of exact boundary-
value data via Eqs. (11.35) and (11.36) will also converge everywhere outside the source
strip and will implement forward propagation in the exterior regions z+ < z0 < z and
z < z0 < z− and back propagation in the interior strips z+ < z < z0 and z0 < z < z+.
As discussed earlier, forward propagation is a stable process and will continue to be valid
even for non-exact boundary-value data, while back propagation is an unstable process and
might not converge if the data are not exact due to the exponential growth of the evanescent
plane waves in the interior strips. Thus, the process of field back propagation has to be
regularized using one of the schemes discussed in Section 4.4 of Chapter 4.

Example 11.4 We showed in Example 11.3 that the transverse part of the current density
JT(r) admits a Whittaker representation in terms of magnetic and electric scalar source
components and that the spatial Fourier transforms of these two source components on
the boundaries K = k±0 are related to the angular spectra of the magnetic and electric
Whittaker potentials through the equations

Q̃w
h (k±0 ) = −4π i

ωμ0
�̂w

h (k±0 ), Q̃w
e (k±0 ) = −4π i

ωμ0
�̂w

e (k±0 ).

If we then make use of Eqs. (11.34) we find that

Q̃w
h (k±0 ) = −4π i

ωμ0

�̂w
h (k±0 )︷ ︸︸ ︷[

− γ

2πK2
ρ

Kρ · ẼT(Kρ , z0)e∓iγ z0

]
,
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Q̃w
e (k±0 ) = −4π i

ωμ0

�̂w
e (k±0 )︷ ︸︸ ︷[

∓ ωε0

2πK2
ρ

Kρ × ẑ · ẼT(Kρ , z0)e∓iγ z0

]
,

with analogous equations relating the scalar source components to boundary values of the
tangential components of the magnetic field vector. The above equations allow the trans-
forms of the two scalar source components on the boundaries K = k±0 to be determined
in terms of the (properly specified) boundary values of the tangential electric field vector
over bounding planes that lie outside the source strip. This result can be used to reduce the
EM inverse source problem for sources confined to the plane-parallel slab to that of two
uncoupled scalar problems such as those treated in Section 5.3 of Chapter 5.

11.6 Debye representation andmultipole expansions of radiated
fields

Here we will work with the angle-variable form of the angular-spectrum expansions where
the angular spectra Ae(k0s) and Ah(k0s) are perpendicular to the unit propagation vector s
and thus lie on the surface of the unit sphere where they can be expressed in terms of the
polar and azimuthal unit vectors α̂ and β̂. We can write these decompositions in analogy
to those used in deriving the Whittaker representation in the form

Ae(k0s)| = −iL�̂d
h(k0s)+ ik0

ωε0
s× L�̂d

e(k0s), (11.37a)

Ah(k0s) = −iL �̂d
e(k0s)− ik0

ωμ0
s× L�̂d

h(k0s), (11.37b)

where �̂d
e and �̂d

h are the Debye electric and magnetic plane-wave amplitudes and

L = −ik0s×∇k0s = i

[
α̂

1

sinα

∂

∂β
− β̂

∂

∂α

]
is the angular-momentum operator first introduced in Section 3.3 of Chapter 3. The valid-
ity of the decomposition of the electric and magnetic field plane-wave amplitudes in the
form given in Eqs. (11.37) is known as Hodge’s decomposition theorem and was estab-
lished by Calvin Wilcox using harmonic analysis (Wilcox, 1957) and by the author in his
Ph.D. thesis using simple arguments based on the properties of the angular-momentum
operator (Devaney, 1971).

The Debye plane-wave amplitudes �̂d
e(k0s) and �̂d

h(k0s) satisfy the partial differential
equations
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L2�̂d
h(k0s) = iL · Ae(k0s) = iωμ0

k0
s× L · Ah(k0s),

L2�̂d
e(k0s) = iL · Ah(k0s) = − iωε0

k0
s× L · Ae(k0s),

where L2 = L · L is the square of the angular-momentum operator. The above equations
are derived directly from Eqs. (11.37) on making use of the easily proven identities

L · [s× L] = [s× L] · L = 0, [s× L] · [s× L] = L2.

It is easy to verify that Ae(k0s) and Ah(k0s) as represented in terms of the Debye plane-
wave amplitudes satisfy the conditions given in Eqs. (11.18).

The angular-spectrum expansion form of the Debye representation of the EM fields out-
side the source strip z− ≤ z ≤ z+ is obtained by substituting the plane-wave amplitudes
from Eqs. (11.37) into the angular-spectrum expansions Eqs. (11.22a) and (11.23a). We
find that

E+(r) = − ik0

2π

∫ π

−π
dβ
∫

C±
sinα dα

{
iL�̂d

h(k0s)− ik0

ωε0
s× L�̂d

e(k0s)

}
eik0s·r,

H+(r) = − ik0

2π

∫ π

−π
dβ
∫

C±
sinα dα

{
iL�̂d

e(k0s)+ ik0

ωμ0
s× L�̂d

h(k0s)

}
eik0s·r.

If we now use the fact that the first-order partial differential operators L and s× L involve
only derivatives with respect to the polar and azimuthal angles α and β of the unit vector s
we can integrate by parts and then make use of the identities

iL︷ ︸︸ ︷
k0s×∇k0s eik0s·r = ik0s× reik0s·r = ∇ × reik0s·r, (11.38a)

−k0s×L︷ ︸︸ ︷
ik2s× s×∇k0s eik0s·r = −k2

0s× s× reik0s·r = ∇ × ∇ × reik0s·r, (11.38b)

to express the above angular-spectrum expansion of the EM field in the “standard form” of
the Debye representation

E+(r) = ∇ × r�d
h(r)+ i

ωε0
∇ × ∇ × r�d

e(r), (11.39a)

H+(r) = ∇ × r�d
e(r)− i

ωμ0
∇ × ∇ × r�d

h(r), (11.39b)

where

�d
e(r) = ik0

2π

∫ π

−π
dβ
∫

C±
sinα dα �̂d

e(k0s)eik0s·r, (11.40a)

�d
h(r) = ik0

2π

∫ π

−π
dβ
∫

C±
sinα dα �̂d

h(k0s)eik0s·r. (11.40b)
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As was the case for the Whittaker representation, the Debye representation as implemented
via the angular-spectrum expansions will hold everywhere outside of the source strip but
can be employed everywhere outside the convex hull of the source support volume τ0 using
appropriate coordinate transformations.

The Debye representation has a long and distinguished history within the field of elec-
tromagnetics. It was first obtained by Debye (Debye, 1909) in 1909 and was studied and
employed by vast numbers of researchers in the following years. Its main use is in the
derivation of the multipole expansion of radiated and scattered EM fields, which we will
address in the following section.

Radiation patterns of the Debye potentials

We showed in Section 4.2.2 of Chapter 3 that the radiation pattern of an outgoing scalar
wavefield is equal to its angular spectrum for s lying on the real unit sphere. We thus
conclude that

�̂d
e(k0s) = f d

e (s), �̂d
h(k0s) = f d

h (s), (11.41a)

where

�d
e(rs) ≡ f d

e (s)
eik0r

r
, �d

h(rs) ≡ f d
h (s)

eik0r

r
, r→∞, (11.41b)

with f d
e (s) and f d

h (s) being the radiation patterns of the electric and magnetic Debye poten-
tials, respectively. It then follows that the angular spectra and radiation patterns of the EM
fields can be represented in terms of the scalar radiation patterns of the Debye potentials
via Eqs. (11.37); i.e.,

fe(s) = Ae(k0s) = −iLf d
h (s)+ ik0

ωε0
s× Lf d

e (s), (11.42a)

fh(s) = Ah(k0s) = −iLf d
e (s)− ik0

ωμ0
s× Lf d

h (s). (11.42b)

Example 11.5 Like the Whittaker representation, the Debye representation is not restricted
to the EM field vectors and can be employed to decompose the transverse part of any
vector field whose spatial Fourier transform satisfies the conditions Eqs. (11.5). In Exam-
ple 11.3 we represented the transverse part of the current density JT(r) in the Whittaker
representation and here we represent this quantity in the Debye representation. We begin
by expressing the transform of JT in the form

J̃T(K) = −iLQ̃d
h(K)+ i

ωε0
K× LQ̃d

e(K), (11.43)

where

Q̃d
h(K) =

∫
τ0

d3r Qd
h(r)e−iK·r, Q̃d

e(K) =
∫
τ0

d3r Qd
e(r)e−iK·r,

are the spatial Fourier transforms of the magnetic and electric Debye source components
of JT(r). On taking an inverse Fourier transform of both sides of the above equations and
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employing steps essentially identical to those used in transforming from Eq. (11.37a) to the
standard form of the Debye representation of the electric field vector given in Eq. (11.39a)
we find that

JT(r) = ∇ × rQd
h(r)+ i

ωε0
∇ × ∇ × rQd

e(r). (11.44)

We can relate these two scalar sources to the angular spectra of the Debye potentials as
well as to the radiation patterns of the EM field radiated by the current density J. These
relationships follow directly from Eq. (11.43) above and from Eqs. (11.22b), (11.23b) and
(11.42). Following steps parallel to those used in Example 11.3, we find that

Q̃d
h(k0s) = −4π i

ωμ0
�̂d

h(k0s) = −4π i

ωμ0
f d
h (s), (11.45a)

Q̃d
e(k0s) = −4π i

ωμ0
�̂d

e(k0s) = −4π i

ωμ0
f d
e (s). (11.45b)

The Debye decomposition of JT and the above relationships between the scalar source
transforms and the Debye potential radiation patterns will play an important role in our
solution of the EM ISP for sources compactly supported within a spherical volume.

11.6.1 Multipole expansion of the radiated field

The multipole expansion of the EM field is obtained using the Debye representation and
results from expanding the angular spectra of the two Debye potentials into series of spher-
ical harmonics. In particular, we set

�̂d
h(k0s) = −

∞∑
l=1

l∑
m=−l

(−i)lqh
l,mYm

l (s), �̂d
e(k0s) = −

∞∑
l=1

l∑
m=−l

(−i)lqe
l,mYm

l (s),

(11.46a)
where the coefficients

qh
l,m = −il

∫
4π

d�s �̂
d
h(k0s)Ym

l
∗(s), qe

l,m = −il
∫

4π
d�s �̂

e
h(k0s)Ym

l
∗(s), (11.46b)

are referred to, respectively, as the magnetic and electric multipole moments and the factors
−(−i)l are employed for later algebraic simplicity. We note that, since the angular spectra
�̂d

h(k0s) and �̂d
e(k0s) are, respectively, equal to the radiation patterns f d

h (s) and f d
e (s) (cf.

Eqs. (11.41a)), Eqs. (11.46) also hold, with the angular spectra replaced by the radiation
patterns.

On substituting Eqs. (11.46a) into the plane-wave expansions Eqs. (11.40) we obtain

�d
e(r) = −ik

∞∑
l=1

l∑
m=−l

qe
l,m

{
(−i)l

2π

∫ π

−π
dβ
∫

C±
sinα dα Ym

l (s)eik0s·r
}

= −ik
∞∑

l=1

l∑
m=−l

qe
l,mh+l (k0r)Ym

l (r̂), (11.47a)
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�d
h(r) = −ik

∞∑
l=1

l∑
m=−l

qh
l,m

{
(−i)l

2π

∫ π

−π
dβ
∫

C±
sinα dα Ym

l (s)eik0s·r
}

= −ik
∞∑

l=1

l∑
m=−l

qh
l,mh+l (k0r)Ym

l (r̂), (11.47b)

where h+l (k0r) are the spherical Hankel functions of the first kind and we have made use
of the angular-spectrum expansion of the outgoing-wave scalar multipole fields

h+l (k0r)Ym
l (r̂) = (−i)l

2π

∫ π

−π
dβ
∫

C±
sinα dα Ym

l (s)eik0s·r (11.48)

derived in Section 3.4.2 of Chapter 3. The above multipole expansions of the two Debye
potentials are identical in form to the multipole expansion of the scalar field developed in
Chapter 4 and related to the angular-spectrum expansion of this field in Section 4.10 of
that chapter. Like the multipole expansions of the scalar fields considered in Chapter 4,
these expansions converge and represent the two Debye potentials everywhere outside the
smallest sphere that contains the source support volume τ0.

As a final step we substitute the above multipole expansions into the Debye representa-
tion Eqs. (11.39) to obtain

E+(r) =
∞∑

l=1

l∑
m=−l

qh
l,mEh

l,m(r)+
∞∑

l=1

l∑
m=−l

qe
l,mEe

l,m(r), (11.49a)

H+(r) =
∞∑

l=1

l∑
m=−l

qe
l,mHe

l,m(r)+
∞∑

l=1

l∑
m=−l

qh
l,mHh

l,m(r), (11.49b)

where

Eh
l,m(r) = He

l,m(r) = −ik∇ × rh+l (k0r)Ym
l (r̂), (11.50a)

Ee
l,m(r) = −μ0

ε0
Hh

l,m(r) =
√
μ0

ε0
∇ × ∇ × rh+l (k0r)Ym

l (r̂), (11.50b)

and where the expansions Eqs. (11.49) converge outside the smallest sphere that contains
the source support volume τ0. We will refer to the pair Eh

l,m(r), Hh
l,m(r) as the trans-

verse electric (TE) or magnetic multipole fields and the pair Ee
l,m(r), He

l,m(r) as the trans-
verse magnetic (TM) or electric multipole fields. These fields admit angular-spectrum
expansions

Eh
l,m(r) = He

l,m(r) = − (−i)lk0

2π

∫ π

−π
dβ
∫

C±
sinα dαYm

l (s)eik0s·r, (11.51a)
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Ee
l,m(r) = −μ0

ε0
Hh

l,m(r) =
√
μ0

ε0

(−i)lk0

2π

∫ π

−π
dβ
∫

C±
sinα dα s× Ym

l (s)eik0s·r, (11.51b)

where

Ym
l (s) = LYm

l (s) (11.52)

are the vector spherical harmonics first introduced in Chapter 3. The above two expan-
sions are generalizations of the angular-spectrum representation of the scalar multipole
field given in Eq. (11.48).

11.7 Vector spherical-harmonic expansion of the radiation pattern

We can obtain an expansion of the EM radiation patterns into the vector spherical harmon-
ics by asymptotically expanding the multipole expansions of the two EM fields or, more
simply, by substituting the expansions Eqs. (11.46a) of the angular spectra of the Debye
potentials into Eqs. (11.42) for the EM radiation patterns. Using this approach we find that

fe(s) = i
∞∑

l=1

l∑
m=−l

(−i)lqh
l,mYm

l (s)− ik0

ωε0

∞∑
l=1

l∑
m=−l

(−i)lqe
l,ms× Ym

l (s), (11.53a)

fh(s) = i
∞∑

l=1

l∑
m=−l

(−i)lqe
l,mYm

l (s)+ ik0

ωμ0

∞∑
l=1

l∑
m=−l

(−i)lqh
l,ms× Ym

l (s). (11.53b)

The Ym
l (s) and s×Ym

l (s) are orthogonal with L2 norm over the unit sphere of
√

l(l+ 1),
so the multipole moments can be computed by simply projecting the EM radiation patterns
onto these two functions. We find that

qh
l,m =

il−1

l(l+ 1)

∫
4π

d�s fe(s) · Ym
l
∗(s), (11.54a)

qe
l,m = −

il−1ωε0

l(l+ 1)k0

∫
4π

d�s fe(s) · s× Ym
l
∗(s), (11.54b)

with a similar result relating the multipole moments to the radiation pattern of the magnetic
field.

The electric and magnetic multipole moments are represented in terms of the angular
spectra and radiation patterns of the Debye potentials via Eqs. (11.46b) and in terms of the
radiation patterns (and angular spectra) of the EM field vectors via Eqs. (11.54). We can
also express the multipole moments in terms of the transverse part of the current density
by substituting for fe(s) from Eq. (11.17a) into Eqs. (11.54). We obtain the result

qh
l,m = −

ωμ0il

4π l(l+ 1)

∫
4π

d�s J̃T(k0s) · Ym
l
∗(s), (11.55a)

qe
l,m =

ωμ0il

4π l(l+ 1)

√
ε0

μ0

∫
4π

d�s J̃T(k0s) · s× Ym
l
∗(s). (11.55b)
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Field back propagation from the radiation patterns

The Debye representation of the EM fields implemented in the form of the multipole expan-
sion forms the basis for properly posed forward- and back-propagation algorithms in spher-
ical coordinate systems and, in particular, for back propagation from the radiation patterns.
For example, for back propagation from the electric field radiation pattern the algorithm
consists of first computing the multipole moments from Eqs. (11.54) and then using the
resulting multipole moments in Eqs. (11.49) to compute the EM fields everywhere outside
of the smallest sphere that completely encloses the source support volume τ0. A similar
computation using the magnetic field radiation pattern in place of fe(s) can be employed.
If required, the field can be further continued into the region between the bounding sphere
and τ0 using a free-field EM multipole expansion such as was discussed in Section 4.8.3
of Chapter 4 for the scalar-wave case.

11.8 The EM inverse source problem

We will restrict our attention to the EM analog of the antenna-synthesis problem formu-
lated for scalar sources compactly supported in a spherical domain in Chapter 5, although
the EM analog of the ISP for scalar sources confined to plane-parallel strips (parallel piped
geometries) presented in Chapter 5 can also be easily treated. The reader may recall that
the key to obtaining analytic solutions to the scalar-wave ISP was the use of eigenfunction
expansions of solutions to the scalar Helmholtz equation and, likewise, the key to obtain-
ing such solutions to the EM ISP is the use of eigenfunction expansions of solutions to
the vector Helmholtz equation satisfied by the electric and magnetic field vectors. While
the scalar Helmholtz equation is separable in 11 coordinate systems, leading to analytic
solutions of the scalar wave ISP for 11 source geometries, the vector Helmholtz equation
is separable in only two basic systems: spherical and Cartesian coordinates, corresponding
to the EM ISP for spherical and parallel piped source geometries. Here, we will solve the
EM ISP for spherical source geometries in terms of the radiation pattern of the electric or
magnetic field vector and leave the problem for sources confined to plane-parallel strips in
terms of the tangential electric or magnetic field vectors on two planar boundaries lying
outside the source strip to the highly motivated reader (Problem 11.13 at the end of the
chapter).

11.8.1 The EM ISP for sources supported in spherical regions

We will base our treatment on the radiation pattern fe(s) of the electric field vector, with
the understanding that a completely parallel treatment using the magnetic field radiation
pattern can be employed. The key to our solution of the EM ISP is the observation that
the Debye representation maps the EM ISP into two uncoupled scalar inverse source prob-
lems that we can easily solve using the theory presented in Chapter 5! In particular, the
transverse current density JT(r) is mapped into the two uncoupled scalar sources Qd

h(r)
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and Qd
e(r) via Example 11.5 and the EM radiation pattern fe(s) is mapped into the two

Debye radiation patterns fe(s) and fh(s) according to Eqs. (11.42). The EM ISP has thus
been reduced to that of determining the scalar source Qd

h from its corresponding radiation
pattern fh(s) and determining the scalar source Qd

e from its corresponding radiation pattern
fe(s). The transverse current is then computed using Eq. (11.44) of Example 11.5.

The scalar sources are coupled to their radiation patterns by Eqs. (11.45) of Exam-
ple 11.5. These two equations are identical in form to those relating the radiation patterns
to the sources in our treatment of the scalar ISP in Chapter 5 and all the Hilbert-space
machinery that we developed in that chapter applies here. Following the treatment pre-
sented in Chapter 5 we thus define the Hilbert space HQ = L2(τ0) of square-integrable
scalar sources compactly supported within the spatial volume τ0 and the Hilbert space
Hf = L2(�) of square-integrable scalar radiation patterns over the unit sphere. The ISP
then consists of inverting the mapping T̂ : HQ → Hf defined by

T̂Q = i

ωμ0
f , (11.56a)

where

T̂ = − 1

4π

∫
τ0

d3r e−ik0s·r, (11.56b)

and where the radiation pattern f and source Q are either the pair {fh(s), Qd
h(r)} or the pair

{fe(s), Qd
e(r)}. The extra factor i/(ωμ0), which is not present in the pure scalar-wave case,

is required in Eq. (11.56a) due to the presence of the multiplying factor iωμ0 to the current
density in the vector Helmholtz equation Eq. (11.3a).

In this section we will address the EM version of the antenna-synthesis problem solved
in Section 5.5 of Chapter 5. The EM version of this problem consists of determining the
transverse current density JT(r) whose support volume τ0 is a sphere of radius a0 cen-
tered on the origin and that radiates a specified radiation pattern fe(s). As discussed in
Chapter 5 this problem does not possess a unique solution due to the possible presence
of non-radiating sources within τ0 and might not even possess any solution since the data
(radiation pattern) might not be in the range of the mapping Eq. (11.56a). We can obtain,
however, a least-squares pseudo-inverse to the mapping, which yields the source Q̂(r)
which is that particular least-squares solution to Eq. (11.56a) that possesses minimum L2

norm in the Hilbert space HQ. The pseudo-inverse solution found in Section 5.5 translated
to the EM case is given by

Q̂(r,ω) = i

ωμ0

∞∑
l=0

l∑
m=−l

qlm

σ 2
l (k0a0)

j∗l (k0r)Ym
l (r̂), r < a0, (11.57a)

where ql,m are the EM field multipole moments and

σ 2
l (k0a0) =

∫ a0

0
r2 dr| j0(k0r)|2 (11.57b)

are the squares of the singular values of the operator T̂ computed in Section 5.5. The
above results apply equally both to the electric, Qd

e(r), and to the magnetic, Qd
h(r), scalar
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components of the source (transverse current density). The field multipole moments that
enter the above solution are given in terms of the angular spectra or radiation patterns
of the Debye potentials in Eqs. (11.46b) or in terms of the EM radiation patterns by
Eqs. (11.54).

The pseudo-inverse transverse current density ĴT(r) is obtained by substituting the
pseudo-inverse scalar sources given above into Eq. (11.44) of Example 11.5. We obtain

JT(r) = i

ωμ0

∞∑
l=0

l∑
m=−l

qh
lm

σ 2
l (k0a0)

∇ × rj∗l (k0r)Ym
l (r̂)

− 1

k2
0

∞∑
l=0

l∑
m=−l

qe
lm

σ 2
l (k0a0)

∇ × ∇ × rj∗l (k0r)Ym
l (r̂), r < a0.

Example 11.6 The above treatment allows a transverse current density to be computed from
a specified EM radiation pattern. It is also possible to compute an EM radiation pattern and
corresponding transverse current density from two pre-specified scalar radiation patterns
and their associated scalar sources. As an example we consider the scalar wavelet field
from Section 4.5 of Chapter 4 whose radiation pattern is given by

f (s) = ek0a cos θ ,

where θ is the polar angle of the unit vector s and a is a positive constant parameter of the
wavelet field. The generalized Fourier coefficients of this radiation pattern are found to be

fl,m = −i−lql,m =
∫

d�s f (s,ω)Ym
l
∗(s) =

∫ π

0
sin θ dθ

∫ π

−π
dφ ek0a cos θYm

l
∗(θ ,φ),

where ql,m are the multipole moments. It is shown in Example 5.10 that the above integra-
tion can be performed, leading to

ql,m = −ilfl,m = −
√

4π (2l+ 1)jl(ik0a).

The minimum-norm source that will radiate this scalar wavelet field is then given by
Eq. (11.57a) with the ql,m given above:

Q̂(r,ω) = −
√

4π i

ωμ0

∞∑
l=0

l∑
m=−l

√
2l+ 1jl(ik0a)

σ 2
l (k0a0)

j∗l (k0r)Ym
l (r̂), r ≤ a0,

where Q̂ can be either the magnetic or the electric scalar source. On taking Q̂ = Q̂d
h we

then find that

JT(r) = −
√

4π i

ωμ0

∞∑
l=0

l∑
m=−l

√
2l+ 1jl(ik0a)

σ 2
l (k0a0)

∇ × rj∗l (k0r)Ym
l (r̂), r ≤ a0.
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11.9 Electromagnetic scattering theory

We now consider a medium consisting of a uniform isotropic background with parameters
ε0 and μ0, in which is embedded a localized inhomogeneity supported within the spatial
region τ0 and having parameters ε(r) = ε0 + δε(r) and μ(r) = μ0 + δμ(r), where δε
and δμ both vanish outside of τ0. The EM field within the composite medium satisfies the
Maxwell equations Eqs. (11.2), which can be expressed in the form

ε0 ∇ · E(r) = −∇ · [δε(r)E(r)]+ ρ(r),

μ0 ∇ · H(r) = −∇ · [δμ(r)H(r)],

∇ × E(r) = iωμ0H(r)+ iω δμ(r)H(r),

∇ ×H(r) = −iωε0E(r)− iω δε(r)E(r)+ J(r).

The above set of equations can be interpreted as describing radiation and scattering in
a homogeneous isotropic background medium having parameters ε0 and μ0 in which are
embedded the usual primary electric charge and current densities ρ and J as well as induced
electric and magnetic charge and current densities

ρe(r) = −∇ · [δε(r)E(r)], Je(r) = −iω δε(r)E(r), (11.58a)

ρh(r) = −∇ · [δμ(r)H(r)], Jh(r) = −iω δμ(r)H(r). (11.58b)

It is easily verified that the induced charge–current distributions satisfy the charge–current
conservation equation Eq. (11.1).

The primary charge–current distribution ρ, J radiates an incident EM wavefield
(E(in), H(in)) that propagates in the background medium and that then interacts with the
localized inhomogeneity inducing the above charge–current distributions. These induced
sources then re-radiate a scattered field (E(s), H(s)) that adds to the incident field, creating
the net overall electric and magnetic field vectors

E(r) = E(in)(r)+ E(s)(r), H(r) = H(in)(r)+H(s)(r).

The incident field is radiated by the primary charge–current distribution in the infinite
homogeneous isotropic background medium and, hence, obeys the set of Maxwell equa-
tions Eqs. (11.2) and the vector Helmholtz equations Eqs. (11.3). By subtracting Eqs. (11.2)
with E = E(in) and H = H(in) from the above set of Maxwell equations we find that the
scattered fields satisfy the set of equations

ε0 ∇ · E(s)(r) = ρe(r),

μ0 ∇ · H(s)(r) = ρh(r),

∇ × E(s)(r) = iωμ0H(s)(r)− Jh(r),

∇ ×H(s)(r) = −iωε0E(s)(r)+ Je(r),

where the fields E and H appearing in the induced sources defined in Eqs. (11.58) are the
total fields (incident plus scattered). If we then follow steps identical to those employed in
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deriving the vector Helmholtz equations Eqs. (11.3) we find that the above set of equations
reduces to the vector Helmholtz equations

∇ × ∇ × E(s)(r)− k2
0E(s)(r) = iωμ0Je(r)− ∇ × Jh(r),

∇ × ∇ ×H(s)(r)− k2
0H(s)(r) = iωε0Jh(r)+∇ × Je(r),

where k0 = ω√ε0μ0.
We can convert the above set of vector Helmholtz equations to scalar Helmholtz equa-

tions by following a procedure identical to that employed in our treatment of the EM radi-
ation problem in Section 11.3. We obtain

[∇2 + k2
0]E(s)(r) = −iωμ0Je(r)+ 1

ε0
∇ρe(r)+∇ × Jh(r), (11.59a)

[∇2 + k2
0]H(s)(r) = −iωε0Jh(r)+ 1

μ0
∇ρh(r)−∇ × Je(r). (11.59b)

11.9.1 The Lippmann–Schwinger equations

As in our treatment of scalar-wave scattering theory in Chapter 6, we will later have to deal
with suites of scattering experiments employing different incident waves, which we will
label with the parameter ν. The incident, scattered and total (incident plus scattered) waves
will thus be represented as E(in)(r, ν) and E(s)(r, ν), and we have

E(r, ν) = E(in)(r, ν)+ E(s)(r, ν).

The induced charge–current distributions will also, of course, depend on the parameter ν,
which will be included in their arguments to emphasize this dependence. The scattered
fields satisfy the SRC so that the outgoing-wave solutions to Eqs. (11.59) for the scat-
tered EM fields are identical in form to the solutions to the radiation problem found in
Section 11.3. We then find that the total EM fields are given by

E(r, ν) = E(in)(r, ν)−
∫
τ0

d3r′
[

iωμ0Je(r′, ν)

− 1

ε0
∇ρe(r′, ν)−∇ × Jh(r′, ν)

]
G+(r− r′), (11.60a)

H(r, ν) = H(in)(r, ν)−
∫
τ0

d3r′
[

iωε0Jh(r′, ν)

− 1

μ0
∇ρh(r′, ν)+ ∇ × Je(r′, ν)

]
G+(r− r′), (11.60b)

where τ0 is the scattering volume and the second terms in the above two equations are the
scattered fields.
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Equations (11.60) are not solutions to the EM scattering problem since the induced
sources depend on the total fields E and H. They are, in fact, EM versions of the Lippmann–
Schwinger integral equation governing potential scattering of scalar waves in Chapter 6.
As in the scalar-wave case, the above integral equations cannot, in general, be solved ana-
lytically and usually require numerical solutions that will not be pursued here. However, as
was the case in scalar-wave scattering theory presented in Chapter 6, they form the basis
of EM potential scattering theory and will be employed in the following to develop much
of this theory.

11.9.2 Electromagnetic scattering amplitudes

The EM scattering amplitudes are straightforward generalizations of the scalar wave scat-
tering amplitudes defined in Chapter 6. As in that chapter, we define the “generalized”
scattering amplitudes to be the radiation patterns of the scattered EM fields resulting from
an arbitrary fixed incident wave. The scattering amplitudes are formally identical to the
radiation patterns found in Section 11.3, which yield the results

fe(s, ν) = iωμ0

4π
J̃eT(k0s, ν)− ik0

4π
s× J̃hT(k0s, ν), (11.61a)

fh(s, ν) = iωε0

4π
J̃hT(k0s, ν)+ ik0

4π
s× J̃eT(k0s, ν), (11.61b)

where

J̃eT(k0s, ν) = J̃e(k0s, ν)− ωs
k0
ρ̃e(k0s, ν) = −s× s× J̃e(k0s, ν),

J̃hT(k0s, ν) = J̃h(k0s, ν)− ωs
k0
ρ̃h(k0s, ν) = −s× s× J̃h(k0s, ν)

are the spatial Fourier transforms of the transverse parts of the induced current densities on
the sphere K = k0s. It is easily verified that the EM scattering amplitudes are related via
Eqs. (11.18).

11.9.3 angular-spectrum expansions

For a given incident wave the EM field scattered by a localized inhomogeneity is formally
identical to the EM field radiated by a primary source and thus admits angular-spectrum
expansions such as given in Section 11.4. In particular, for a scatterer localized to the strip
z− < z < z+ we find that

E(s)(r, ν) = ik0

2π

∫ π

−π
dβ
∫

C±
sinα dαAe(k0s, ν)eik0s·r,

H(s)(r, ν) = ik0

2π

∫ π

−π
dβ
∫

C±
sinα dαAh(k0s, ν)eik0s·r,
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where C+ is used in z > z+ and C− in z < z−, and where the plane-wave amplitudes
(angular spectra) Ae(k0s, ν) and Ah(k0s, ν) are analytic continuations of the scattering
amplitudes fe(s, ν) and fh(s, ν) onto the contours C± as was the case for the field radiated
by a primary source discussed in Section 11.4. The expansions converge and represent the
scattered fields everywhere outside the strip z− < z < z+.

The Cartesian-variable form of the angular-spectrum expansions of the scattered EM
fields are found by extension of the Cartesian-variable form of the expansions of the radi-
ated field given in Section 11.4. Again, for a scatterer localized to the strip z−< z< z+ we
find that

E(s)(r, ν) = i

2π

∫ ∞
−∞

d2Kρ
γ

Ae(k±0 , ν)eik±0 ·r,

H(s)(r, ν) = i

2π

∫ ∞
−∞

d2Kρ
γ

Ah(k±0 , ν)eik±0 ·r,

where Ae(k±0 , ν) and Ah(k±0 , ν) are, respectively, Ae(k0s, ν) and Ae(k0s, ν) under the trans-
formation

k0s⇒ k±0 = Kρ ± γ ẑ,

and are thus given by

Ae(k±0 , ν) = iωμ0

4π
J̃eT(k±0 , ν)− i

4π
k±0 × J̃hT(k±0 , ν),

Ah(k±0 , ν) = iωε0

4π
J̃hT(k±0 , ν)+ i

4π
k±0 × J̃eT(k±0 , ν).

As in the case of the angular form of the angular-spectrum expansions the Cartesian forms
require that the z coordinate of the field point r = ρ + zẑ lie outside of the scatterer strip
z− ≤ z ≤ z+, with k+0 used in the expansions if z > z+ and k−0 if z < z−.

11.10 The Born approximation

The Born approximation results from performing a perturbation expansion of the scattered
fields in Eqs. (11.60) in the strength of the perturbations δε and δμ of the material prop-
erties of the scatterer and retaining only the lowest order in the expansion. Following lines
similar to those employed in Section 6.7, we replace δε and δμ by η δε and η δμ and
expand the EM scattered fields via

E(s)(r, ν) = ηE(s)
B (r, ν)+ O(η2), H(s)(r, ν) = ηH(s)

B (r, ν)+ O(η2),

where the subscript “B” stands for the Born approximation and the perturbation parameter
η will eventually be set equal to unity. The Born approximation to the induced charge–
current distributions in Eqs. (11.58) results from expanding these quantities in η and retain-
ing only the terms of lowest order. We find that

ρB
e (r, ν) = −∇ · [δε(r)E(in)(r, ν)], JB

e (r, ν) = −iω δε(r)E(in)(r, ν),

ρB
h (r, ν) = −∇ · [δμ(r)H(in)(r, ν)], JB

h (r, ν) = −iω δμ(r)H(in)(r).
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Substituting these expressions into the scattered fields in Eqs. (11.60) we then obtain the
Born approximations

E(s)
B (r, ν) = −

∫
τ0

d3r′
[

iωμ0JB
e (r′, ν)− 1

ε0
∇ρB

e (r′, ν)− ∇ × JB
h (r′, ν)

]
G+(r− r′),

H(s)
B (r, ν) = −

∫
τ0

d3r′
[

iωε0JB
h (r′, ν)− 1

μ0
∇ρB

h (r′, ν)+ ∇ × JB
e (r′, ν)

]
G+(r− r′).

Unlike the EM Lippmann–Schwinger equations Eq. (11.60), the Born approximation to
the induced sources does not depend on the scattered field, so the above two equations are
the actual solutions for the EM fields within the Born approximation. These solutions are
seen to depend linearly both on the incident EM field and on the material perturbations δε
and δμ. For these reasons, the Born approximation is ideally suited to the inverse scattering
problem (ISCP) which we will treat in the following section.

11.10.1 Born scattering amplitudes

The scattering amplitudes within the Born approximation are obtained by substituting the
Born induced currents into Eqs. (11.61). We find that

fB
e (s, ν) = − k2

0

4πε0
s× s× ˜δε E(in)(k0s)− ωk0

4π
s× ˜δμH(in)(k0s), (11.62a)

fB
h (s, ν) = k0ω

4π
s× ˜δε E(in)(k0s)− k2

0

4πμ0
s× s× ˜δμH(in)(k0s), (11.62b)

where ˜δε E(in) and ˜δμH(in) denote the spatial Fourier transforms of the products of δε and
E(in) and of δμ and H(in), respectively.

The “classical” scattering amplitudes result from incident plane waves propagating in a
fixed direction. In the EM case there are two such plane waves having orthogonal polar-
ization states for each unit propagation vector s0, corresponding to so-called transverse
electric (TE) or transverse magnetic (TM) polarization states, which we can represent in
the form

E(in)
TE (r, s0) = A0(s0)eik0s0·r, H(in)

TE (r, s0) = k0

ωμ0
s0 × A0(s0)eik0s0·r,

H(in)
TM(r, s0) = A0(s0)eik0s0·r, E(in)

TM(r, s0) = − k0

ωε0
s0 × A0(s0)eik0s0·r,

where A0(s0) is a constant vector orthogonal to the unit propagation vector s0 (s0 · A0

(s0) = 0) and we have set ν = s0. The TE and TM plane waves each separately satisfy the
homogeneous Maxwell equations in the background medium.
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Since the two scattering amplitudes fB
e and fB

h are connected via Eqs. (11.18) we need
only consider one of the two for any given scattering experiment. Here we will restrict our
attention to the electric field scattering amplitude for a TE incident plane wave and the
magnetic field scattering amplitude for a TM incident plane wave. On making use of the
above incident plane waves in Eqs. (11.62) we then find after a bit of algebra that

fTE
e (s, s0) = − k2

0

4πε0
[(s · A0(s0))s− A0(s0)]δ̃ε[k0(s− s0)]

− k2
0

4πμ0
[(s · A0(s0))s0 − (s · s0)A0(s0)]δ̃μ[k0(s− s0)], (11.63a)

where we have dropped the superscript “B” for notational convenience and the tilde denotes
the spatial Fourier transform. In a similar fashion we find the magnetic field scattering
amplitude for a TM incident plane wave to be given by

fTM
h (s, s0) = − k2

0

4πε0
[(s · A0(s0))s0 − (s · s0)A0(s0)]δ̃ε[k0(s− s0)]

− k2
0

4πμ0
[(s · A0(s0))s− A0(s0)]δ̃μ[k0(s− s0)]. (11.63b)

11.10.2 Born inverse scattering

We will restrict our attention to the ISCP using far-field data in the form of the Born approx-
imations to the TE electric field scattering amplitude and the TM magnetic field scattering
amplitude given in Eqs. (11.63). Scattered field data over spherical surfaces can be con-
verted to these scattering amplitudes using the EM multipole expansion while scattered
field data over plane surfaces can be converted to the scattering amplitudes using the EM
angular-spectrum expansions.

It can be seen from Eqs. (11.63) that the two scattering amplitudes are linear combi-
nations of the spatial Fourier transforms of the perturbations of the material properties
δε(r) and δμ(r) of the medium evaluated over the spatial frequencies K = k0(s − s0).
These are the same sets of spatial frequencies as those we first encountered in Chapter 6
in our treatment of scalar-wave scattering theory within the Born approximation. For fixed
incident-wave direction s0 and scattered-field vector s covering the unit sphere the spatial
frequency K = k0(s− s0) covers the so-called Ewald sphere illustrated in Fig. 6.3. If then
s0 is allowed to also span the unit sphere, the resulting set of Ewald spheres will fill Fourier
space within a sphere of radius 2k0 also illustrated in Fig. 6.3 and called the Ewald limit-
ing sphere. By isolating δ̃ε[k0(s − s0)] and δ̃μ[k0(s − s0)] from Eqs. (11.63) we can thus
determine these transforms throughout the Ewald limiting sphere from a complete set of
scattering experiments and over a finite set of Ewald spheres from a finite set of experi-
ments. The material parameters can then be determined from these transforms using the
Born inverse scattering algorithms already developed in Chapters 8 and 9.

There are a number of ways to proceed in isolating the two transforms and we will
consider the simplest, which is to take the dot product of both scattering amplitudes with
the unit propagation vector s0 of the incident plane waves. We then obtain the equations
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s0 · fTE
e (s, s0) = − k2

0

4π

[
s · s0

δ̃ε[k0(s− s0)]

ε0
+ δ̃μ[k0(s− s0)]

μ0

]
s · A0(s0),

s0 · fTM
h (s, s0) = − k2

0

4π

[
δ̃ε[k0(s− s0)]

ε0
+ s · s0

δ̃μ[k0(s− s0)]

μ0

]
s · A0(s0),

which are immediately solved to yield

δ̃ε[k0(s− s0)] = −4πε0

k2
0

s0 · fTM
h (s, s0)− (s · s0)s0 · fTE

e (s, s0)

[1− (s · s0)2]s · A0(s0)
, (11.64a)

δ̃μ[k0(s− s0)] = −4πμ0

k2
0

s0 · fTE
e (s, s0)− (s · s0)s0 · fTM

h (s, s0)

[1− (s · s0)2]s · A0(s0)
. (11.64b)

Once the transforms of δε and δμ have been determined from the scattering amplitudes
via Eqs. (11.64) the material perturbations can be estimated either using the filtered back-
propagation algorithm developed in Chapter 8 or, in the limited-data case, via the ISCP
algorithm developed in Chapter 9.

Further reading

An excellent modern treatment of both direct and inverse EM problems in inhomogeneous
backgrounds is given in Chew’s book (Chew, 1990). The inverse source problem for EM
sources and fields is treated in Marengo and Devaney (1999) and for so-called EM wavelet
sources in Devaney et al. (2008). The book by Colton and Kress (Colton and Kress, 1992)
also treats inverse EM problems, especially ones involving surface scatterers (see also the
references listed at the end of Chapter 7). The classical texts of general EM theory include
those by Morse and Feshbach (Morse and Feshbach, 1953), Stratton (Stratton, 1941), Jack-
son (Jackson, 1998) and Born and Wolf (Born and Wolf, 1999) and the excellent treatise by
Muller (Muller, 1969). The little book by Papas (Papas, 1988) has an excellent treatment
of multipole expansions and dyadic Green functions.

Problems

11.1 Derive Eqs. (11.15) using Green-function techniques.
11.2 Compute the radiation pattern of the Green-function dyadic.
11.3 Derive Eqs. (11.23).
11.4 Derive Eqs. (11.26) from Eqs. (11.22b) and (11.23b).
11.5 Prove the following identities:

L · [s× L] = [s× L] · L = 0, [s× L] · [s× L] = L2.
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11.6 Derive Eqs. (11.30) from Eqs. (11.29).
11.7 Prove that an EM non-radiating (NR) source must have zero total charge.
11.8 Derive a general expression for an NR EM source supported within a spherical

region.
11.9 Derive the most general form of an EM surface source supported over a plane sur-

face.
11.10 Determine the relationship between the components of the surface source found in

the previous problem for it to be NR throughout one of the two half-spaces bounded
by the source plane.

11.11 Derive the most general form of an EM surface source supported over a sphere
centered at the origin.

11.12 Determine the relationship between the components of the surface source found in
the previous problem for it to be NR throughout the interior (exterior) of the sphere.

11.13 Use the results from Example 11.4 to solve the 2D EM ISP for a source compactly
supported between two parallel planes in terms of the tangential components of the
electric field specified over two bounding parallel planes.

11.14 Fill in the missing steps in the derivation of Eqs. (11.39).
11.15 Derive the expressions for the EM scattering amplitudes given in Eqs. (11.61) from

Eqs. (11.60).
11.16 Derive Eqs. (11.62).
11.17 Verify that the EM scattering amplitudes satisfy Eqs. (11.18).
11.18 Compute fTM

e and fTE
h within the Born approximation in terms of δ̃ε and δ̃μ.

11.19 Express the TE and TM scattering amplitudes within the Born approximation in
terms of scattered-field data specified over a spherical surface surrounding the scat-
tering volume.

11.20 Derive a general expression for non-scattering material parameters δε and δμwithin
the Born approximation for plane-wave incidence.



A
Appendix A Proof of the scattering

amplitude theorems

A.1 Proof of the reciprocity theorem

The reciprocity theorem states that the scattering amplitude for a compactly supported
scattering potential in a homogeneous medium must satisfy the condition

f (s, s0) = f (−s0,−s). (A.1)

This theorem is easily proven using the LS equation Eq. (6.11b) for the total Green func-
tion. In particular, we let the source point r0 recede to infinity along the direction −s0 in
Eq. (6.9b) to obtain

G+(r,−r0s0) = G0+(r+ r0s0)+
∫

d3r′ G+(r, r′)V(r′)G0+(r′ + r0s0)

∼
{
− 1

4π

U(r,s0)︷ ︸︸ ︷[
eik0s0·r +

∫
d3r′ G+(r, r′)V(r′)eik0s0·r′

]}
eik0r0

r0

= − 1

4π
U(r, s0)

eik0r0

r0
, k0r0 →∞,

where we have made use of Eq. (6.4) and U(r, s0) is the sum of the incident and scattered
waves for the incident plane wave exp(ik0s0 · r). We now set r = r0s in the above equation
to find that

G+(r0s,−r0s0) ∼ − 1

4π
U(r0s, s0)

eik0r0

r0

= − 1

4π

{
eik0s·s0r0 + f (s, s0)

eik0r0

r0

}
eik0r0

r0
, k0r0 →∞. (A.2)

The final step is to use the reciprocity condition for the full Green function. In particular,
it follows from this condition that

G+(r0s,−r0s0) = G+(−r0s0, r0s),

which, when used with Eq. (A.2), requires that

f (s, s0) = f (−s0,−s),

which establishes the theorem.
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A.2 Proof of the translation theorem

The scattering amplitude from a potential centered at the point X is found using Eq. (6.22)
to be

fX(s; s0) = −1

4π

∫
d3r V(r− X)UX(r; s0)e−ik0s·r

= −1

4π
e−ik0s·X

∫
d3r V(r)UX(r+ X; s0)e−ik0s·r, (A.3)

where UX(r, s0) denotes the total field (incident plus scattered) generated from the incident
plane wave exp(ik0s0 · r) onto the potential V(r − X). This field satisfies the LS equation
Eq. (6.21), which assumes the form

UX(r; s0) = eik0s0·r +
∫

d3r′ G0+(r− r′)V(r′ − X)UX(r′; s0).

We now make the simultaneous transformations r′ → r′ + X and r→ r+ X to obtain

UX(r+ X; s0) = eik0s0·(r+X) +
∫

d3r′ G0+(r− r′)V(r′)UX(r′ + X; s0),

which, after minor manipulation, becomes

e−ik0s0·XUX(r+X; s0) = eik0s0·r+
∫

d3r′ G0+(r− r′)V(r′)e−ik0s0·XUX(r′ +X; s0). (A.4)

We now compare Eq. (A.4) with the LS equation Eq. (6.21) for plane-wave scattering
from the unshifted potential to find that

U0(r, s0) = e−ik0s0·XUX(r+ X; s0). (A.5)

On substituting this result into Eq. (A.3) we conclude that

fX(s; s0) = −1

4π
e−ik0s·X

∫
d3r V(r)UX(r+ X; s0)e−ik0s·r

= −1

4π
e−ik0s·Xeik0s0·X

∫
d3r V(r)U0(r; s0)e−ik0s·r,

which can be written in the form

fX(s; s0) = e−ik0(s−s0)·Xf0(s, s0),

which establishes the theorem.

A.3 Proof of the optical theorem

We consider a real-valued scattering potential V(r) embedded in a non-dispersive homo-
geneous background having real-valued wavenumber k0. The total field resulting from an
incident plane wave exp(ik0s0 · r) then satisfies the pair of equations
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[∇2 + k2
0 − V(r)]U(r; s0) = 0, (A.6a)

[∇2 + k2
0 − V(r)]U∗(r; s0) = 0, (A.6b)

and the asymptotic conditions

U(r; s0) ∼ eik0s0·sr + f (s, s0)
eik0r

r
, (A.7a)

U∗(r; s0) ∼ e−ik0s0·sr + f ∗(s, s0)
e−ik0r

r
. (A.7b)

as k0r→∞ along the direction defined by the unit vector s. Applying standard manipula-
tions to Eqs. (A.6) we then find that


∫
∂V

dS r2U∗(r; s0)
∂

∂n
U(r; s0) = 0, (A.8)

where ∂V is any surface completely surrounding the scattering volume τ0 and ∂n denotes
the outward-directed unit normal to ∂V . If we select ∂V to be the surface of a sphere of
radius R centered at the origin and such that k0R→∞, Eq. (A.8) becomes

0 = R2
∫

4π
d�s

[
e−ik0s0·sR + f ∗(s, s0)

e−ik0R

R

]{
∂

∂R

[
eik0s0·sR + f (s, s0)

eik0R

R

]}

=
I1︷ ︸︸ ︷

R2
∫

4π
d�s e−ik0s0·sR ∂

∂R
eik0s0·sR+

I2︷ ︸︸ ︷
R2

∫
4π

d�s e−ik0s0·sRf (s, s0)
∂

∂R

eik0R

R

+

I3︷ ︸︸ ︷
R2

∫
4π

d�s f ∗(s, s0)
e−ik0R

R

∂

∂R
eik0s0·sR

+

I4︷ ︸︸ ︷
R2

∫
4π

d�s f ∗(s, s0)
e−ik0R

R
f (s, s0)

∂

∂R

eik0R

R
. (A.9)

We now evaluate each of the integrals in Eq. (A.9). The first integral I1 is easily shown
to be zero while for I4 we find that

I4 =
∫

4π
d�s| f (s, s0)|2 = E

2κω
,

where E is the scattered field energy defined in Eq. (6.32). For I2 we find that

I2 = Rik0eik0R
∫

4π
d�s e−ik0s0·sRf (s, s0)

[
1+

(
1

R

)]
, (A.10)

where O(1/R) stands for “of order 1/R.” We now use the multipole expansion of the plane
wave exp(−ik0s0 · r) which was derived in Example 3.4 of Chapter 3:

e−iks0·r = 4π
∞∑

l=0

l∑
m=−l

(−i)ljl(kr)Ym
l (r̂)Ym

l
∗(s0). (A.11)
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On setting r = Rs and using the asymptotic form of the spherical Bessel functions

jl(k0R) ∼ 1

2ik0R
[(−i)leik0R − ile−ik0R], k0R→∞,

we find that Eq. (A.11) yields the result

e−iks0·sR ∼ 2π

ik0R

∞∑
l=0

l∑
m=−l

(−i)l[(−i)leik0R − ile−ik0R]Ym
l (s)Ym

l
∗(s0). (A.12)

On substituting Eq. (A.12) into Eq. (A.10) we then find that

I2 = 2π
∫

4π
d�s

[
f (s, s0)+ O

(
1

R

)] l∑
m=−l

[(−i)2le2ik0R − 1]Ym
l (s)Ym

l
∗(s0)

= 2π
∫

4π
d�s f (s, s0)

l∑
m=−l

(−i)2le2ik0RYm
l (s)Ym

l
∗(s0)− 2πf (s0, s0), k0R→∞,

(A.13)

where f (s0, s0) is the scattering amplitude evaluated in the forward direction (i.e., at s = s0)
and we have used the completeness relation

l∑
m=−l

Ym
l (s)Ym

l
∗(s0) = δ(s− s0),

with δ(s− s0) being the delta function over the unit sphere.
We now evaluate I3, which assumes the form

I3 = Re−ik0R
∫

4π
d�s f ∗(s, s0)

∂

∂R
eik0s0·sR

= Re−ik0R
∫

4π
d�s f ∗(s, s0)

2π

R

∞∑
l=0

l∑
m=−l

il[(−i)leik0R + ile−ik0R]Ym
l
∗(s)Ym

l (s0),

where we have made use of the complex conjugate of Eq. (A.12). On simplifying the above
result we conclude that

I3 = 2π
∫

4π
d�s f ∗(s, s0)

∞∑
l=0

l∑
m=−l

i2le−2ik0RYm
l
∗(s)Ym

l (s0)

+ 2π
∫

4π
d�s f ∗(s, s0)

∞∑
l=0

l∑
m=−l

Ym
l
∗(s)Ym

l (s0)

= 2π
∫

4π
d�s f ∗(s, s0)

∞∑
l=0

l∑
m=−l

i2le−2ik0RYm
l
∗(s)Ym

l (s0)+ 2πf ∗(s0, s0), (A.14)

where we have again used the completeness relationship for the spherical harmonics. On
adding I1 through I4 we then obtain
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I1 + I2 + I3 + I3 = 0 = 2π
∫

4π
d�s f (s, s0)

l∑
m=−l

(−i)2le2ik0RYm
l (s)Y∗m

l (s0)

− 2πf (s0, s0)

+ 2π
∫

4π
d�s f ∗(s, s0)

∞∑
l=0

l∑
m=−l

i2le−2ik0RYm
l
∗(s)Ym

l (s0)

+ 2πf ∗(s0, s0)+ E

2κω

= −4πf (s0, s0)+ E

2κω
= 0,

which then yields the final result

E = 2κωk0

∫
4π

d�s| f (s, s0)|2 = 8πκωf (s0, s0). (A.15)



B
Appendix B Derivation of the generalized

Weyl expansion

In this appendix we derive the generalized Weyl expansion Eq. (9.25a) for the special
case of a lossless background characterized by a real-valued scattering potential V0(r).
This assumption allows us to employ, without major modification, some important results
from non-relativistic quantum-mechanical scattering theory (collision theory) that require
the Helmholtz (Schrödinger) operator to be Hermitian and, hence, the scattering poten-
tial (background wavenumber) to be real-valued.1 The key to the derivation is the use of
so-called “off-shell” Green functions and plane-wave scattering states which are briefly
reviewed below.

B.1 Off-shell Green functions and scattering wave states

If we define the scattering potential V0(r) according to Eq. (9.2a) then the background
Green functions G0± (r, r′) are limiting values as p → k0 ± iε of the off-shell Green func-
tions G0± (r, r′; p) that satisfy

[∇2 + p2 − V0(r)]G0±(r, r′; p) = δ(r− r′) (B.1)

and the radiation conditions

G0± (r, r′; p) ∼ g±(s, r′; p)
e±ipr

r
+ O

(
1

r2

)
, r→∞.

It is important to note that the scattering potential V0 in Eq. (B.1) is fixed and does not
depend on the parameter p; i.e., p plays the role of k0 but can vary over the complex-p
plane, while the scattering potential V0 is a fixed real-valued function of position r that
is independent of p. We can consider the “on-shell” or background Green functions to
be boundary values of the off-shell Green functions on the “energy sphere” p = k0. The
off-shell Green function G0+ approaches this boundary from the half-plane p > 0 and
the off-shell Green function G0− approaches this boundary from the half-space p < 0
corresponding to the two branches of

√
p2.

We also define off-shell plane-wave scattering states as the solutions to the homogeneous
Helmholtz equation

[∇2 + p2 − V0(r)]ψ±(r, p) = 0,

1 However, most, if not all, of the results obtained in the appendix can be generalized to lossy backgrounds using
the theory of biorthogonal expansions.
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where p = √p · p. The off-shell plane-wave scattering states satisfy the far-field conditions

ψ±(r, p) = eip·r + f±(s, p̂; p)
e±ipr

r
, (B.2)

where f±(s, p̂; p) is the scattering amplitude of the potential V0 embedded in the homoge-
neous medium having wavenumber p. The on-shell plane-wave scattering statesψ±(r, k0s),
like the on-shell Green functions G0± (r, r′), are boundary values of their off-shell continu-
ations on the energy sphere p = k0, with ψ+(r, k0s) obtained when p approaches the sphere
from the half-plane p > 0 and ψ−(r, k0s) when p approaches the sphere from the half-
plane p < 0. The off-shell plane-wave scattering states satisfy the Lippmann–Schwinger
(LS) equation with reference wavenumber p which can be written in the form

ψ±(r, p) = eip·r +
∫

d3r′ G0± (r− r′; p)V0(r′)ψ±(r′, p). (B.3)

Because the background wavenumber k0(r) and, hence, the background scattering poten-
tial V0(r) are assumed to be real-valued the set of off-shell plane-wave scattering states
ψ±(r, p), p ∈ R3 are eigenfunctions of the Hermitian operator −∇2 + V0(r) with eigen-
value p2 that satisfy the boundary conditions Eq. (B.2) and, hence, form a complete set
of functions for expanding any outgoing wavefield in the background medium having ref-
erence wavenumber k0 and, in particular, can represent the background Green function
G0+ (r, r′). Thus, we can write (cf. the discussion in Section 3.1 of Chapter 3)

G0+(r, r′) = 1

(2π )3

∫
d3p

ψ+(r, p)ψ∗+(r′; p)

k2+0 − p2
,

where k2+0 = k2
0 + iε to insure that the Green function is outgoing (satisfies the SRC)

and the factor 1/(2π )3 is needed for normalization. We note also that since the scattering
potential V0 is real-valued we have that

ψ∗+(r′; p) = ψ−(r′;−p),

so that we can write the above expansion for G0+ in the alternative form

G0+ (r, r′) = 1

(2π )3

∫
d3p

ψ+(r, p)ψ−(r′;−p)

k2+0 − p2
. (B.4)

B.2 Derivation of the generalizedWeyl expansion

We now select a fixed Cartesian coordinate system and set p = (px, py, pz) so that Eq. (B.4)
assumes the form

G0+ (r, r′) = 1

(2π )3

∫
dpx dpy dpz

ψ+(r, p)ψ−(r′,−p)

k2+0 − p2
. (B.5)

The wavefunctionsψ+(r, p) andψ−(r, p) are analytic functions of the three Cartesian com-
ponents of p over the real environment p ∈ R3 and can be continued onto complex values
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of these three components. We note, however, that in this continuation the multivalued

function p =
√

p2
x + p2

y + p2
z will lie on different Riemann sheets for the two functions

and, in particular, will have a positive imaginary part for ψ+ and a negative imaginary part
for ψ−. This requirement will be important in the computations we present below.

If we now allow pz to tend toward infinity in the upper half of the complex-pz plane with
px, py real we find using the LS equation Eq. (B.3) that

ψ+(r, p) ∼ ei(pxx+pyy)e−|pz|z +
∫

d3r′ e−|pz||r−r′|

|r− r′| V0(r′)ψ+(r′, p)

≈ ei(pxx+pyy)e−|pz|z + V0(r)ψ+(r, p)
∫

d3ξ
e−|pz||ξ |

|ξ | → K+e−|pz|z,

ψ−(r,−p) ∼ e−i(pxx+pyy)e+|pz|z +
∫

d3r′ e−|pz||r−r′|

|r− r′| V0(r′)ψ−(r′, p)

≈ ei(pxx+pyy)e|pz|z + V0(r)ψ−(r, p)
∫

d3ξ
e−|pz||ξ |

|ξ | → K−e|pz|z,

where K± are constants and we have used the fact that ψ+(r, p) is evaluated on the Rie-
mann sheet where p > 0 and ψ+(r,−p) on the sheet where p < 0. Using a similar
development, it is easy to show that

ψ+(r, p)→ K−e+|pz|z, ψ−(r, p)→ K+e−|pz|z

as pz tends to infinity in the l.h.p.
If we make use of these results in Eq. (B.5) we can close the pz contour of integration in

the u.h.p. as long as z > z′ and in the l.h.p. if z < z′, and we find using Cauchy’s integral
formula that

G0+ (r, r′) = − 1

(2π )3

∫
dpx dpy

∫
dpz

ψ+(r, p)ψ−(r′;−p)

(pz − γ )(pz + γ )

= − i

8π2

∫
dkx dky

γ
ψ+(r, k±0 )ψ−(r′,−k±0 ), (B.6)

where

k±0 = kxx̂+ kyŷ± γ ẑ,

with

γ =
⎧⎨⎩
√

k2
0 − k2

x − k2
y k2

x + k2
y < k2

0,

i
√

k2
x + k2

y − k2
0 k2

x + k2
y > k2

0,

where k+0 is used when z > z′ and k−0 when z < z′. The plane-wave scattering states
ψ+(r, k±0 ) and ψ−(r,−k±0 ) that enter the expansion Eq. (B.6) are seen to be homogeneous
plane waves in the region k2

x +k2
y < k2

0 and evanescent plane waves in the region k2
x +k2

y >

k2
0. Since +γ is used if z > z′ and −γ if z < z′, it is apparent that the evanescent plane

waves in Eq. (B.6) decay exponentially fast with increasing |z − z′| in both half-spaces
z > z′ and z < z′.
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Equation (B.6) is the Cartesian-variable form of the generalized Weyl expansion. By
making a transformation to spherical integration coordinates it is easily shown (cf. Sec-
tion 4.1) that the generalized Weyl expansion can also be expressed in the angle-variable
form given in Eq. (B.2)

G0+ (r, r′) = − ik0

8π2

∫ π

−π
dβ
∫

C±
sinα dα ψ+(r, k0s)ψ−(r′,−k0s),

where the contour C+ is used if z > z′ and the contour C− is used if z < z′.
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