




 
 
Brian Clegg is a prize-winning science writer with a physics degree from
Cambridge and a masters in the mathematical discipline operational
research. He has written over 20 science books and articles for newspapers
and magazines from The Observer and Wall Street Journal to BBC Focus
and Playboy. He lives in Wiltshire, England, with his wife and two children.



Other titles

A Brief History of Infinity by Brian Clegg

Ten Physicists Who Transformed Our Understanding of Reality by Brian
Clegg and Rhodri Evans

A Slice of Pi by Liz Strachan

Easy as Pi by Liz Strachan

A Brief History of Mathematical Thought by Luke Heaton

A Brief Guide to the Great Equations by Robert Crease



Are
Numbers
Real?

Brian Clegg



 
 
 

ROBINSON

First published in the US in 2016 by St Martin’s Press, New York

This edition published in Great Britain in 2017 by Robinson

Copyright © Brian Clegg, 2016

The moral right of the author has been asserted.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form, or by any means, without the prior permission in writing of the publisher, nor be otherwise
circulated in any form of binding or cover other than that in which it is published and without a

similar condition including this condition being imposed on the subsequent purchaser.

A CIP catalogue record for this book
is available from the British Library.

ISBN: 978-1-47213-977-1

Robinson
An imprint of

Little, Brown Book Group
Carmelite House

50 Victoria Embankment
London EC4Y 0DZ

An Hachette UK Company
www.hachette.co.uk

www.littlebrown.co.uk

http://www.hachette.co.uk/
http://www.littlebrown.co.uk/


 
 

For Gillian, Rebecca, and Chelsea



 
 

As far as the laws of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality.

—Albert Einstein, Sidelights on Relativity (1922)
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1 Counting Sheep

Our journey in this book will explore a question that is fundamentally
important to scientists—and for that matter the rest of us. Yet it’s a question
that most people, including scientists, rarely give a moment’s thought to.
Are numbers, and is the wider concept of mathematics, real?

At first glance, this seems a crazy question to devote thirty seconds to,
let alone a whole book. Of course numbers are real. You only have to take a
look at my bank statement. It contains a whole load of numbers, most of
which seem to be negative as cash flows out of the account. And as for
mathematics, we all had plenty of homework when we were at school, and
that seemed real enough at the time. But here I’m using a different
definition of “real.” It is essential to gain a better understanding of science
to discover whether numbers and mathematics form real entities, whether
they have a factual existence in the universe. Would numbers exist without
people to think about them, or are they just valuable human inventions, the
imaginary inhabitants of a useful fantasy world?

We know that it is perfectly possible to devise mathematics that does not
have any underlying link with reality. Mathematicians do this all the time.
Math,* in the end, provides nothing more or less than a set of rules that are
used to get from a starting point to an outcome. We can define those rules in
such a way that they happen to match what we observe in the real world, or
we can make them as bizarrely and wonderfully different from reality as we
like. And some mathematicians delight in taking such fantasy journeys into
alternative universes.

To take a simple example, the real world has three spatial dimensions
(unless string theory, the attempt in physics to combine gravity and the



other forces of nature that requires 9- or 10- dimensional space, has it right
—see page 236)—but a mathematician is just as comfortable working with
1, 2, 4, 79, or 5,000 dimensions. Mathematicians delight in the existence of
a mathematical construct called the Monster group, which is a group of
ways you could rotate things if space had 196,883 dimensions. When
working with the Monster, to quote Dorothy in The Wizard of Oz, “Toto,
I’ve a feeling we’re not in Kansas anymore.”

For that matter, when mathematicians work on something as everyday as
the shape of knots, they make their own definition of what a knot is that
bears no resemblance to the things we use to tie up shoelaces. For reasons
of practical convenience, the mathematicians set a rule that both ends of the
string they are knotting must be joined together, making a continuous loop.
We know real-world knots aren’t like that—even mathematicians
(admittedly not the most worldly people) know this—but they don’t care,
because that’s the rule that they chose to use.

Similarly we could devise a mathematical system in which 2 + 2 = 5. It
doesn’t work with real-world objects, but there is no reason why it can’t
with a number system if we define it to work that way. Although not so
extreme, there is a commonly used mathematical system where we can
define 2 + 2 to be 0 or 1. It’s called clock arithmetic. Instead of numbers
adding constantly, they progress like the numbers on a clock, resetting to 0
at a specific value. Admittedly these do have a parallel in the world. We use
clock arithmetic, as the name suggests, on analog clocks. On a twelve-hour
clock, for instance, 9 + 6 = 3. Such arithmetic provides a better
representation of anything cyclical than traditional counting. What this
illustrates is both the arbitrariness of mathematics and how we have to be
careful about definitions. The number 9 on a clock is not the same thing as
the number 9 when we are counting goats, they just have some things in
common, and use the same symbol.

To turn it around and consider things from the real-world viewpoint, it is
possible to go through life without ever encountering much in the way of
mathematics. For most of human existence, the vast majority of human
beings have managed to do so. Some very basic arithmetic seems to be



preprogrammed. Both dogs and babies react with surprise when, for
instance, one item is put into a bowl, then another, but when they then look
in the bowl, there is only one object, because the second was palmed. “1 + 1
= 2” seems a pretty low-level mammal programming, and is without doubt
useful in calculating the odds when faced with more than one enemy to
fight. Most of the rest of mathematics is a late add-on to our capabilities,
but one that has proved extremely useful.

Without mathematics, hardly any of the science and technology that is
essential for today’s civilization would be produced. Math threads through
our lives, from everyday functions like transactions in a store, to
understanding the significance of the distribution of a disease or the
outcome of an election. Because it is important that we have a feel for a
discipline that is so useful in understanding the underlying structures and
principles of the world around us and predicting its behavior, it’s a shame
that so many of us find getting into mathematics remarkably difficult, or
even painful—something to be avoided if at all possible. A 2012 British
article for World Math Day commented:

We know too that many adults simply don’t like maths and don’t see the point of it. Many have
no qualms about saying so. Being “no good at maths” carries little stigma. That tends not to be
the case in other parts of the world. Negative attitudes to maths set in early in the UK—some
would say between the ages of seven and nine, when many children’s interest and attainment
dip, in most cases never to return. They switch off and decide maths is something to be borne
until the moment they can give it up—for ever. . . . The process is then cyclical, with parents
(and in some cases—dare I say?—teachers) passing on their own lack of enthusiasm and
confidence to the next generation.

The article suggests that this problem of having a negative attitude to
mathematics is a particularly British one, but I suspect that it is one that is
reflected not only in the United States, but also across many parts of the
world. And this opinion is nothing new. St. Augustine of Hippo wrote back
in AD 415, “The danger . . . exists that the mathematicians have made a
covenant with the devil to darken the spirit and confine man in the bonds of
hell.” He clearly did not have much fun in his geometry lessons. (The quote
is a touch misleading. Augustine was usually more supportive of



mathematics—the word translated as “mathematicians” referred to
astrologers—but it still reflects the feeling that many seem to have.)

And yet mathematics can be both enjoyable, when presented the right
way, and immensely powerful. The fun comes from mathematical puzzles
and diversions. The delight can be particularly strong with mathematics that
entertains by making your head spin—like the idea that there is more than
one size of infinity (see page 181).

We might not need much math to go through our basic everyday lives,
and the vast majority of us get by with a touch of arithmetic and little else.
But when scientists and engineers try to understand how things work and to
construct products based on that understanding, mathematics has proved an
invaluable tool to gain insights. Without it, it would be very difficult to
understand much about the natural world, or to predict how it is going to
behave. Without it, we would not have the computer this was written on or
much of the other technology that supports our modern lives.

Initially mathematics was intimately tied to natural behavior. Numbers,
for instance, corresponded to tangible objects. But with time it has become
separated from reality. There is still applied mathematics with a tie to the
real world, but pure mathematics soared in the Renaissance as
mathematicians realized that they were playing an immense game where
they could set their own rules, play along, and see what happened.
Sometimes some of the ideas and worlds they generated would have
practical uses, sometimes they wouldn’t. The distinction was arbitrary as far
as they were concerned (and often remains so). The great game is
paradoxical in that it is both totally open and surprisingly restrictive—what
mathematics covers, what rules you set, are absolutely up to you. But once
those rules have been established, the game says that you must stick to
them. In math you can never cheat.

When we contemplate the nature of numbers and reality, the
arbitrariness that lies beneath the surface of mathematics can lead to
problems for the more rigidly minded. In the British Court of Appeal, the
second highest court in the UK, in 2015, three judges were set the task of
deciding exactly what the number “1” meant. And their decision certainly



didn’t equate to something that matched the understanding most of us (or
even most mathematicians) would have.

The legal case was a wrangle between two pharmaceutical companies
over a chemical solution used to reduce infection in wound dressings, and
bizarrely the case led to a change in the legal definition of the number “1”
in the UK. The problem was that one company, ConvaTec, had a patent
covering a silver-based solution of “between 1 per cent and 25 per cent of
the total volume of treatment.” The rival pharma company, Smith &
Nephew, had therefore devised a competing product containing a 0.77
percent solution, which they believed kept them safely outside the remit of
their competitor’s patent.

This dispute had already been taken to trial in 2013. A lower court
agreed that the “1” at the lower end of the ConvaTec range did not simply
represent the numerical value “1,” corresponding to a single object. Instead,
they adopted an approach not uncommon among chemists, but unusual
mathematically, of defining the value as the split between the ranges of two
significant figures. This “significant figure” aspect meant that “1” was
defined by the lower court as anything between 0.95 and 1.5—giving a
conveniently asymmetric definition that left the Smith & Nephew product
legal. Unhappy with this approach, the Court of Appeal judges went for a
more familiar arithmetic approach of rounding to the nearest whole number,
meaning that “1” now became anything between 0.5 and 1.4999. The result
was to put Smith & Nephew into a difficult position. But it also
demonstrates the arbitrary nature of mathematical decisions.

There is no “right” way to define something that is 1 unless you stick to
exactly and only 1—and the result is that, as far as the lawyers are
concerned, the range “between 1 and 25” would have to include 0.5. One of
the panel, Lord Justice Christopher Clarke, made the unhelpful statement,
“A linguist may regard the word ‘one’ as meaning ‘one—no more and no
less.’ To those skilled in the art it may, however, in context, imply a range
of values extending beyond the integer.” It’s not clear exactly what dark art
he had in mind.



Over time, mathematicians (as opposed to lawyers) have been distinctly
creative in their handling of math. The way they operate is a bit like the
way that some companies allow their employees to play around with
different ideas and technologies in the hope that a new product will emerge.
Often nothing relevant to the commercial world will be produced. But every
now and then, something wonderful and genuinely new will be brought into
being. Similarly, when mathematicians played around with an idea like the
square root of a negative number (see chapter 8), called an imaginary
number, they were initially simply enjoying a new direction to take their
mathematical game. But, as it happened, because of the rules they decided
to apply to this magical class of numbers, it became a hugely useful tool for
physics and engineering.

No scientist or engineer ever said prior to the introduction of imaginary
numbers, “What we want is the square root of a negative number. They
would really help us with this problem we’ve got.” Similarly, no one in
mathematics thought, “How can we solve this particular problem that the
physicists have?” before dreaming up imaginary numbers. The
mathematicians just played with the implications of their new concept and
the set of rules attached to it. The applications emerged later.

Generally speaking, up to the nineteenth century, the mathematics that
was needed for all of science was within the grasp of pretty well anyone
who hasn’t got serious problems with numbers. In my experience, as long
as you can get on top of the workings of fractions (something a scary
number of people never achieve), you can manage everything up to basic
calculus, which sounds worse than it is. But in the nineteenth century, it is
arguable that two things happened in mathematics that drove a wedge
between the general public and science.

The first of these was the use of increasingly complex mathematical
techniques that take a considerable amount of post-school study to get a
handle on. Pick up a modern physics paper at random, for instance, and the
chances are it will use at least one approach that never made it into high
school math. It is no surprise that when Einstein developed his general
theory of relativity he had to get help with the mathematics because he



found it too difficult alone. The science he was fine with, but the
mathematics had moved beyond his experience.

The second development that has made science less approachable was
putting the cart before the horse. Mathematics had always been the servant
of scientists, but in the twentieth century it increasingly was put in charge.
Attempts to unify the forces of nature, for instance, became driven from the
mathematics of symmetry, along the way becoming very difficult to explain
in laypeople’s terms. Another example was matrix mechanics, where a form
of mathematics then largely unfamiliar to scientists, let alone the rest of us,
was used to explain the behavior of quantum particles in a way that made it
impossible to visualize what was happening. All that remained were the
numbers and the rules to manipulate them.

There is nothing wrong with these developments per se, but they bring
some unfortunate baggage along with them. If your science can’t be easily
described to the person in the street, then it becomes harder to justify
spending taxpayer dollars on it. Physicists often point to the U.S.
government funding decision in the 1990s between spending on the
International Space Station (ISS) and the Superconducting Super Collider
(SSC). The SSC was a massive particle accelerator, already by then under
construction in Texas. Nobel Prize–winning physicist Steven Weinberg has
pointed out that the SSC, larger than the Large Hadron Collider (LHC) at
CERN, the European nuclear research organization, could have produced
results a good ten years earlier than its rival, that would have added to our
fundamental understanding of the universe. The ISS, by contrast, which
won the funds, leading to the cancellation of the SSC, has given us a better
understanding of space and space travel, which may be valuable in the
future, but has made little contribution to scientific research.

What’s more, the ISS has now cost the United States ten times the SSC
budget in the process of delivering very little. But the difference is that the
ISS was doing something that all the politicians could clearly visualize and
that could be easily explained to the people controlling the funds. Hence its
prioritization and the cancellation of the SSC. No one could explain to the
politicians really what was going to be achieved by the collider, because it



was too complicated to do so. The result was that the science funding went
to the project with almost zero scientific benefit, rather than the one that
would have retained the U.S. position as a world leader in physics.

Instead that glory went to CERN and the LHC. And yet in a way it was a
hollow victory, because that same math-based difficulty was looming in
terms of what the LHC was trying to achieve. We hear about “re-creating
the conditions near the Big Bang” or “searching for the Higgs boson,” but
when it comes down to explaining to the public what these handy labels
actually mean, it is very difficult. The Higgs boson will typically be
described as “the particle that gives all the others their mass,” which has
elements that verge on the correct, but is also wrong in several different
ways. However, it is hard even to describe why this wording is wrong
without resorting to the language of mathematics—one that will
immediately lose the audience.

What I don’t want to do is sound miserable and negative about
mathematics. As you will discover as we take our journey into the reality of
numbers, it is a topic that is as fascinating as it is powerful. And it has been
central to the development of modern society and technology. But that
should not stop us asking some fundamental questions. Does modern
science give too much emphasis to mathematics? Some scientists, such as
physicist Max Tegmark, go as far as to suggest that the universe is
mathematical. That numbers aren’t just real, but are what make everything
happen. Could it be that scientists like Teg-mark sometimes confuse math
and reality? Is mathematics really at the heart of the universe, or is it just a
great tool for helping us understand what’s going on? These are the
questions we will discover answers to as we explore how math has come to
rule the scientific world.

First, though, we need to go back to the very beginning of mathematical
thinking. Let’s take a leaf out of the mathematicians’ book and play a game
where we set the rules. Let’s pretend that we are going to invent numbers.



 
____________________
* I am conscious that this book will be read by both its original American audience and those from
other countries, where mathematics is shortened to “maths.” I apologize for the genuine pain I know
that seeing “math” will cause those readers, but adding “(maths)” every time would be clumsy.



2 Counting Goats

Do you ever feel the need to count your children to make sure they exist?
It’s unlikely. Similarly, for the early human hunter-gatherers with no
concepts of large-scale projects or commerce, numbers would have had
little significance. But once humans began to settle and to trade, counting
and the ability to record those counts for future reference took on a new
significance. A good place to start would be to undertake Albert Einstein’s
favorite approach to understanding. Let’s do a thought experiment, in this
case imagining that we will be responsible for bringing numbers into being.
We don’t know how numbers were invented historically for sure, but it’s
pretty likely to have gone something like this.

We start by counting. Strange though it may seem to us in our intensely
number-oriented world, there is no need to have numbers to be able to
count. This is something we will come back to in a big way when we take
on set theory and infinity—where there are such things as countable and
uncountable infinities, even though neither is a number. For the moment it
is enough to go with the flow and see how counting in the form of a tally
requires no concept of numbers.

Let’s imagine I’m a prehistoric farmer, living in a society where
numbers do not yet exist. I agree to lend my neighbor some of my goats. (I
don’t know why he might want them, not knowing much about goats or
prehistoric farmers. I will leave that to your imagination.) My neighbor is
my friend and I trust him, but equally I want to make sure that I get all of
my goats back when he returns them. So starting with my hand spread open
flat, I fold my pinkie into my palm as a goat leaves my stockade. Try it as
we go along. (You will probably need to help your little finger with the



other hand as it will tend to pull the next finger with it, left to its own
devices. Hands make relatively poor counting technology, but they are very
convenient.) Then I fold the next finger in as another goat leaves. After all
the fingers of my hand are folded in, I put my thumb across them to indicate
another goat. At this point the neighbor decides that he’s got enough.

A few weeks later, he brings my goats back. I go through the same
process as the goats are counted into the stockade. And I end up with the
same result—so I know that all of the goats that went out have come back
in. (If we are going to be picky, I don’t know that they are the same goats,
but that’s not really of importance here.) At this stage I don’t know how
many goats were involved—I don’t have a concept of “how many” or of
numbers—but I know that he didn’t cheat me. Inventing counting has
proved to be a very valuable tool to deal with the world around me.

We do have some evidence that suggests this approach was taken in the
form of old tally sticks. The earliest known example that may be a tally is a
piece of bone with notches on it dating back around 20,000 years. Called
the Ishango bone it is a fibula (calf bone) from a baboon, which has been
decorated with three sets of deep, grouped scratches, adding up to 60, 48,
and 60. These may well have been tallies, going beyond the simple number
of fingers on a hand both in achieving a larger number and a greater
permanence.

We have no contextual information to be sure that the role of the Ishango
bone was as an aid to counting, we’re just guessing. The scratches could
simply have been a form of decoration. But in more recent prehistoric times
there certainly were plenty of tally markings that were clearly being used
for keeping a record. We will never know for certain when such a counting-
without-numbers device came into being, but tallies have been regularly
deployed for many millennia. Back in our thought experiment of inventing
numbers, though, we’ve only just started. There is further to go than a
simple tally.

Let’s imagine that the next day after I lent the goats to my neighbor, my
daughter asks me which goats I lent to my friend. I can’t remember which
they were (after a while, all goats look the same to me). So I say “It was”



and run through the fingers-and-thumb-counting gesture. This is the closest
I can come to identifying those goats. Some while later (and after my
neighbor has borrowed goats several times more—it seems he is that kind
of neighbor) a spark of genius strikes. Why should I go through the tedious
process with the fingers and thumb when I want to talk about the goats that
he borrowed? I just say “It was a hand of goats.” He needs an extra goat?
“A hand and a finger of goats.” Without realizing it, I have invented
numbers. Since they are based on fingers, my new numbers are literally
digits.

Unfortunately this prehistoric version of me is getting on a bit, and my
memory is not what it once was. For a while I’ve been carving notches in
tally sticks to remember the goats that are involved in these strangely
frequent transactions. But I have a word now for a special collection of
fingers or tally marks—a hand. So why not scratch or paint a special
symbol for a hand so I can see at a glance what the tally represents? After
all, a whole string of notches rapidly become difficult to convert into a
collection of hands. Initially it may well be that I use the tally mark that is
still often used when counting in hands:

But after a while, being lazy, I would probably simplify it to a related
squiggle, providing a downstroke to represent the fingers and a cross stroke
for the thumb.

With the impact of writing and laziness, numbers have started to take on
a life and a symbology of their own. And so powerfully simple is this kind



of number system that you, never having used or seen it before, should be
able to pretty quickly tell me what this number is:

Yes, it is what we would now call twelve. But we’re getting ahead of
ourselves. From our prehistoric viewpoint it is simply “hand hand finger
finger.” Or possibly “finger finger hands, finger finger,” because I can count
off the number of hands on the fingers of my left hand while counting spare
fingers on the right if I want to. Woo-hoo! Am I a mathematician now? Not
yet. But I am an arithmetician, if there is such a word (there appears to be as
my spell-checker hasn’t complained). Arguably what I am doing is
probably too simplistic to be regarded as mathematics. But before we get
into more sophistication, let’s explore these new abilities a little further.

What I have invented is a kind of token system where my numbers stand
in for real objects—they are visual representations of something physical in
the world. To be more precise, in this example, they are finger positions that
stand in for goats. It might seem obvious to us now that once we have these
visual tokens they will work as well for, say, bags of grain as they do for
goats, but that leap of abstraction is one that we know proved a struggle for
early would-be mathematicians. The fact is that the universality of a
number—the distancing from actual objects to independent tokens that
allow us now to apply “4” as easily to cars as sausages—is not inherently
obvious.

When the ancient people of the city-state of Uruk began to write, they
frequently concerned themselves with accounting, just as happened in our
goat thought experiment. Uruk was one of the first cities; its remains in
modern Iraq. Dating back nearly as far as 4000 BC, Uruk was at the heart of
the Sumerian civilization, lasting for more than 2,000 years. But the
inhabitants of Uruk didn’t have a single number representation that worked
for everything. They had some generalization, but as far as they were



concerned, some types of objects were so different that they needed their
own special numbers to represent them. So, for instance, one number
system was used for humans, living animals, and dried fish (don’t ask),
while another was employed for grain products, cheese, and fresh fish.

Nevertheless, once numbers were in play, it was inevitable that someone
somewhere would eventually make the leap from numbers as, say, a
measure of goats alone, to applying those same numbers to any other set of
objects. Numbers had become universal. I am laboring this point, because it
is perhaps at the heart of the issue that lies behind the question “Are
numbers real?”—which is to ask why is it, if it turns out that numbers aren’t
real, they are so good at representing reality? The American mathematician
Richard Hamming said:

I have tried, with little success, to get some of my friends to understand my amazement that
the abstraction of integers for counting is both possible and useful. Is it not remarkable that 6
sheep plus 7 sheep make 13 sheep; that 6 stones plus 7 stones make 13 stones? Is it not a
miracle that the universe is so constructed that such a simple abstraction as a number is
possible? To me this is one of the strongest examples of the unreasonable effectiveness of
mathematics. Indeed, l find it both strange and unexplainable.

After a while, back in our thought experiment, I might have based a
variant of my finger-counting system on physical tokens. They could be
counting stones, the “calculi” that gave their name to calculations and
calculus, or counters on an abacus—or, for that matter, the very specialized
counting stones that we still use today and call coins. In fact I almost
certainly would need to produce some sort of physical tokens fairly soon
after developing numbers. My written symbols are fine for bookkeeping—
to let me know just how much I’ve lent to my neighbor, for instance. And
that’s okay because he is my friend and we trust each other. But if I weren’t
a trustworthy person, there’s nothing to stop me adding a couple of extra
notches to my tally.

Now, when he brings my goats back and we count a hand of goats back
in, I would pretend to be deeply wounded. “You’ve only given me a hand of
goats,” I would say. “Where are the finger finger of goats that I also lent
you?” And I would show him my modified tally stick with an innocent but



hurt expression on my face. Because he would have no way of backing up
my tally, he is unlikely to have any recourse, other than giving me a pair of
goats I never owned, or hitting me.

In reality by now, incidentally, I would probably have got fed up of
saying, for instance, “finger finger” for what we would call two. So, being
inventive, I would have come up with words for the intermediate values
between finger and hand. As someone who works with words, and wanting
to keep things short and sweet, I might end up counting: “Fin, ger, nuc, cul,
hand!” So I would actually have asked “Where are the ger goats that I also
lent you?” With the appropriate hurt expression.

However I represented those extra goats, I have unconsciously and
without effort undertaken a new arithmetic operation. The total goats
according to my fraudulent tally are hand ger (in fact, I might run the words
together to make handger for what we would call seven). And my neighbor
brought me back hand goats, leaving ger goats missing. If I have hand of
handger there’s ger left to come—or to put it another way, handger take
away hand equals ger. We’re doing sums.

So, if I weren’t trustworthy I could use my tally and my new-found
skills in arithmetic as a con artist. Luckily my neighbor is clever enough to
realize the risk, and so, instead of relying on my easily modified tally,
where a goat is just represented by a notch on a stick, he provides me with a
set of actual tokens. These are physical objects that he has made and will
recognize, which I would find difficult to reproduce—one for each goat.
Then, as he brings my goats back, I give him a token in exchange for each
goat. Once hand goats are returned, I’ve given him all his tokens, so I can’t
cheat him. But here’s the thing. I’m getting a bit fed up of being without my
goats all the time. So we make a new arrangement. I get to keep one of his
tokens as recompense for all this borrowing and some time in the future, I
can exchange that for something else from him—a bag of flour, perhaps.

A combination of very basic arithmetic and not really trusting each other
has produced, without any real effort, the existence of money and the ability
to pay for services. They are scarily powerful things, these numbers.
However, the money aspect has got us away from the purity of arithmetic,



so let’s just go back to considering what “hand” means. To start with, I
might only use it to indicate a particular sized group of goats. But it
wouldn’t be long before I discovered universality, realizing that I could just
as easily refer to hand apples or hand people or hand spears—as a number,
hand is wonderfully versatile because it can tell us how many anythings we
are dealing with.

For now, and frankly for a long time to come, that is all that hand would
be or that it would need to be. It is incredibly useful for stocktaking and
loans and buying and selling. It’s useful to know how many are joining us
for dinner so we can plan our menu, or how many nights have to pass
before the days start to lengthen again. Which is why it’s quite something
that one of the earliest examples we have of written numbers, moving on
from a simple tally, are the surprisingly advanced base-60 numbers of the
Babylonians.

That “base 60” part refers the point at which the numbers move on to the
next level. Today we use a base-10 system, in all likelihood originating
from the fingers and thumbs of both hands. (The hand system we have
developed in this chapter is technically base 5.) What was impressive about
the Babylonian system, which was written in cuneiform, a script based on
characters made with the end of a stylus pushed into clay tablets, was that it
was a very early positional system—one where the position of a number in
a row of numbers shows whether “1” is just “1” or “60” or “3600”—a
system that came into use more than 2,000 years before such systems were
common.

Number systems with base 5 or 10 or 20 (think fingers and toes) make a
fair amount of sense, but the base 60 at first seems odd. However it turns
out to be a very flexible number. It is divisible by 1, 2, 3, 4, 5, 6, 10, 12, 15,
20, and 30, which is handy when you are dividing things up. And before
you dismiss base 60 entirely, bear in mind that we still use that same system
for seconds in a minute, minutes in an hour, and in the way we represent
angles. The Babylonians dedicated vast quantities of their clay tablets that
they used as a cuneiform writing material to numbers. Many of these were
for accounting purposes, and for controlling trade, but others cropped up in



their work on the heavens, as the Babylonians made detailed studies of the
skies, primarily for astrological reasons.

Back with my prehistoric thought experiment, the numbers we have
invented stand in for real objects and are meaningless without a real object
to represent. They are more like an adjective than a noun. I can’t give you
handger. I can only give you handger goats or handger baskets. I can’t show
you handger either. You might think I can show you the number when I
draw the appropriate symbols, but that isn’t handger any more than a sketch
of a goat is a goat. And plenty of people tend to think of numbers in this
adjectival fashion and in no other to this day. Many of these will be the
people who struggled with math at school. Because this kind of direct
representation of physical objects is just a starting point for numbers.

It is the same correspondence of numbers to objects that explains the
clumsiness of many early numbering systems, which fell far behind the
older Babylonian approach. The Ancient Greeks, for instance, used their
standard letters of the alphabet to represent numbers, though they had to
bring back a few old extinct numbers like the digamma (looking like our
capital F) to have enough to go around. This confusing approach, where it
was necessary to distinguish between letters and numbers by context,
reflected an early separation of the two activities of writing and
bookkeeping. The concept seems to be derived from the Phoenicians, and
also turned up as a result in the early Hebrew representation of numbers.

For most of us, Roman numerals are more familiar, and these used a mix
of straightforward tally marks and a Greek-like letter system. In fact, they
even had a strong correspondence with our imagined hand-based number
system that is just tally marks with I for finger and V for hand. Where the
Greeks had, for instance, a separate letter for each multiple of 10 and 100,
the Roman system simply repeated a letter, but with an interesting twist that
gave some significance to position because the letters had to appear in
decreasing order of value. If a smaller number appeared before a larger one,
this was a sign that it was a modifier to be taken away.

So, for instance, think of a clockface with Roman numerals. What would
you expect to see at the “4” position? If you know your Roman numerals



you would probably say IV, where V indicates 5, and the “I” before it
means “1 less than,” getting us to 4. As it happens in this particular instance
you would be wrong, as there is a strange historical convention for no good
reason that on watch and clockfaces, 4 is represented by the more basic IIII
(even though 9 is still IX)—but generally speaking your interpretation
would be correct.

To our eyes, the systems used by both the Romans and the Greeks were
extremely clumsy. They had taken a huge backward step from the
Babylonians. Okay, base 60 was a little tricky to get your head around. This
reflects the nature of our short-term memory. It can only cope with around 7
to 8 items at a time. This is why phone numbers, which are usually longer
than 7 digits, are traditionally broken up into blocks. So number systems
based on 5, or at a stretch 10, are easier to cope with than those based on
60. But there was so much about the older system that was better than what
came later.

The Romans certainly had very little going for them. Their numbers
were unnecessarily bulky. Compare their version of the year number 1999,
which comes out as MCMXCIX, with ours. (Though just occasionally they
win, such as the more compact MM for 2000.) You might wonder why we
still occasionally use Roman numerals. I suspect it was because until the
twentieth century there was an unjustified awe for classical culture—the
same reason that the classical architectural style, considered ugly for many
centuries, received a renaissance. About the only thing that Roman
numerals have going for them is that they have fewer curves than our
modern Arabic/Indian numerals, so are easier to carve in stone.

Most strikingly, the real problem with Roman numerals is that it makes
basic arithmetic much harder than it needs to be. It isn’t practical to have a
simple rule (and mathematicians love a simple rule) to add XXIII to XLIV
for instance, in the way that we can easily teach children how to add 23 to
45, because we have a position-based system where the column the number
is in indicates how many powers of 10 it represents. This transforms the
mechanics of arithmetic. (More on this in chapter 6.) It is perhaps no



coincidence that the Romans who had such a poor number system never
really got the hang of science.

In classical times, just as with the original tallies of goats and the like,
the Greek and Roman number systems weren’t designed to be mathematical
tools and were not manipulated by mathematicians the way our current
numbers are. Although the Greeks certainly had both a mathematical and
scientific tradition, which we’ll explore soon, they treated numbers very
differently to the way we now do. For the moment, let’s stick with the kind
of basic working that was available to our imaginary prehistoric goat owner
with a tally system.

You might think that negative numbers would be a step too far for such
early arithmeticians. And in the modern sense, they were. You can’t have –2
goats. I can’t show you –2 anything. So –2 can’t provide a direct
representation of objects in the physical world. However, it is a concept that
would be valuable to bookkeepers, even though that concept wouldn’t
initially be represented as a negative number. When I, as a prehistoric
farmer, lent my neighbor a hand of goats, my flock was, until he returned
them, missing a hand of goats. And though what was being recorded was
the absence of a standard (positive) hand of goats, the notches that I made
on my tally stick, or with the fingers I curled, effectively represented
negative goats. When the goats were returned, each of the goat-shaped
holes was filled by a returning positive goat until all the holes were filled.
Just as the first use of tallies enabled us to count without numbers, so tally-
based arithmetic allowed us to have negative values without recognizing
negative numbers.

Even in their absence, though, the goats remained at the center of things.
Whether a hand is negative or positive, it still refers to a collection of
physical objects that is located somewhere in the world. But for
mathematics to take off and soar it had to be detached from its linkage to
sets of worldly items.

The realization came to different civilizations at different times, but in
the Western tradition, the ones who first saw the light were the Ancient
Greeks. It’s quite popular these days to be a little dismissive of Greek



science, because they didn’t take what we would now consider a scientific
approach and they got many things wrong. And it is certainly true that their
mathematics had significant limitations. But if they had done nothing else,
we would still have to thank the Ancient Greeks for making arguably the
biggest single step in the development of mathematics—making it explicitly
clear that numbers did not have to correspond to a specific, real-world
object. For one Ancient Greek cult, whole numbers took on a whole new
significance devoid of a link to counting things.



3 All Is Number

The title of this chapter is a translation of the motto that legend tells us was
carved over the door lintel of the school of the Pythagoreans. For most of
us, the only real contact we are likely to have had with this decidedly
strange ancient Greek cult is what’s now known as Pythagoras’s theorem.
The basic concept that the squared length of the longest side of a right-
angled triangle is equal to the square of the length of the other two sides
comfortably predates Pythagoras, but what is probably fairly attributed to
Pythagoras, or at least one of his followers, is the proof of this idea.

Geometry, which we’ll cover in more detail in chapter 5, seems to have
been one of the earliest mathematical excursions after whole-number
counting. We don’t know for certain where or how it originated. The Greeks
mostly thought it came from the Egyptians, though there are variants of the
concepts of simple geometric relationships, like Pythagoras’s theorem,
originating earlier from Babylon, Mesopotamia, and the East. Perhaps a
useful indication of why geometry arose fairly early is that an old Egyptian
term for those who practiced geometry was “rope stretchers,” implying that
the discipline belonged to surveyors involved on building sites or in
dividing up lands. (Our word geometry comes from Greek words for
“Earth” and “measuring.”) But the Pythagoreans did not practice such
hands-dirty practical mathematics. These are the early days of Greek
mathematics—Pythagoras was born around 570 BC and is thought to have
traveled to Egypt, where he may have picked up some of the ideas that later
became part of the belief system of his group, the main members of which
were known as the mathematikoi. As we have seen in our thought
experiment, the origin of numbers was likely to have been intimately linked



to the physical world. What the Pythagoreans managed to do was both
elevate this concept to a fundamental, and yet at the same time to establish a
distance between mathematics and simple numbers that made it possible to
see math as something that could be performed in isolation from the world,
without a direct physical application.

The Pythagoreans arguably forged the first link in the chain that leads to
modern mathematics and science, by going beyond counting to understand
and make use of the power of pattern. In a sense all human beings—indeed
all living things that respond to their environment—make use of patterns.
Life would be far too complicated if we had to learn how to do everything
afresh each time. Instead we make use of patterns both to recognize what is
around us and to shape the way that we respond to what we detect. Imagine,
for instance, I programmed a robot to be able to open the window in my
bedroom. As it happens it is in the form of a pair of doors opening onto a
Juliet balcony, so I would have to program the device to turn a key in a lock
at a certain position on the wall, push down on a door handle located at a
different position, and pull open the door with the right amount of force to
open it without causing damage.

If I now moved the robot to the living room, which happens to have the
same kind of window, but in a different location, my robot’s precise
programming would mean that it would miss its target and fail. Of course
things would be far worse if, for instance, the room had a sash window. We
learn the patterns of things like windows and doors and then are able to
cope with them accordingly, without having to learn how to deal with every
single window separately.

The same kind of process is at work when we try to understand the
universe. All of science is based on making use of patterns to simplify the
process of comprehension. If we had to have a separate study of every
single atom to understand what was going on, we would never get
anywhere. But if we can build up a pattern of what atoms in general are
like, and apply that pattern across the board, we can make progress.

The Ancient Greeks had not yet come up with the concept of atoms
(taken from the Greek atomos meaning “uncuttable”) when the school of



Pythagoras flourished, but they still had a powerful feel for the importance
of pattern, whether it was the shape patterns of geometry, the harmonic
patterns of music, or some of the patterns of numbers. As we will see, they
also took those patterns too far, something humans are always prone to do.
We are very good at seeing a pattern where one does not exist. It could be a
visual pattern—when we see a bogeyman in what is only a collection of
shadows—or a statistical pattern, when we expect there to be a cause for a
cluster of events, even when randomness inherently produces such clusters
with no cause.

Bear in mind that the Pythagoreans were not just mathematicians, but
were also members of a cult. They had some distinctly odd beliefs, for
instance a strong aversion to eating beans. It has been suggested that this
was for symbolic magical reasons, because the beans looked like human
organs, making eating them close to cannibalism and unsuitable for the
vegetarian cult.

As far as the Pythagoreans were concerned, many of the most important
patterns revolved around whole numbers. They were of the opinion that
everything in the universe was structured on numbers—that numbers were
not merely a human creation, but provided the underlying architecture of
reality. The numbers were endowed with characteristics that made them
seem like living things in their own right. The number 1, for instance, was
linked to the mind and its singular nature. Two represented opinion,
something that was deemed appropriate sharing—opinion. Three was linked
to wholeness. This was because anything whole required a beginning, a
middle, and an end, and physical objects needed three dimensions to define
their existence.

And so it went on. Because odd numbers were considered to be male
and even numbers to be female, 5, for instance, was an indicator of
marriage (that “marriage” may be a Victorian euphemism in this context),
because it joined the first true odd number, 3 (1 was considered too unique
to be in the list) with the first even number, 2. This whole structure of
number associations came to a climax with 10, which represented



perfection. Not only was 10 the sum of the first four numbers, but, when
arranged as a series of dots, it formed a perfect equilateral triangle.

Equally, the Pythagoreans were aware of the appearance of numerical
patterns in music, not just in rhythm, but in the relative length of strings or
pipes that produced harmonies that were pleasing to the ear. Doubling the
length of a string, for instance, produced the similar-sounding octave note,
while they also established the ratios required to produce other notes that
sounded harmonically pleasing together. This study of musical mathematics
may seem relatively trivial, but it has been suggested that it is a real
milestone in the development of science, as this may well be the first
example of numbers being used to derive a kind of scientific law. The study
of nature, which to date had been entirely qualitative was taking on a
quantitative side.

As an excellent example of the dangers of putting too much faith in the
linkage between mathematics and reality, then making deductions from it
(at least according to the not entirely unbiased Aristotle, who could be
scathing about the older school), one Pythagorean named Philolaus used his
school’s obsession with the perfection of the number 10 to argue that there
had to be an extra planet. This was because when he added up the Sun, the
Moon, Earth, the known planets, and the sphere of the stars, making 2 + 1 +
5 + 1, he got a total of 9. As the universe had to be balanced perfection—to
match the pattern that the Pythagoreans expected—Philolaus is said to have
argued that the real value of the bodies must be 10 because of the number’s
importance, hence the unknown planet.

It would be easy now to make the association of this planet with the yet-
to-be-discovered Uranus (ignoring Neptune), but Philolaus had a more
dramatic, if more physically unlikely, idea that there was a “counter Earth”
balancing out our home world. The more familiar later Greek cosmology
that made the universe a bit like the solar system, but with the Earth at the
center, had yet to be dreamed up. At the time, the prevailing model for the
structure of the universe was that there was a central fire that gave light to
the rest of it—the counter Earth was assumed to be on the far side of the
fire, so was never seen.



Although a planet like this would return in fiction (not to be confused
with the imaginary planet Vulcan, once thought to exist inside the orbit of
Mercury) there has never been any astronomical evidence for its existence
—it was purely a case of basing a model of how the universe works on a
form of mathematics, then making deductions from it. Although this is also
the way much modern physics is undertaken, we use better math—and after
making an assertion, we then attempt to verify the prediction through
observation or experiment, something that wasn’t possible at the time for
the counter Earth theory.

Nonetheless, even with a few hiccups along the way, there was just too
much going for patterns in getting a feel for the nature of the universe for
the approach not to be valued. Some patterns are so obvious that you can’t
avoid them. We are all very familiar with the repeating patterns of day and
night, for instance. Some of our time patterns—the division of the day into
hours or the collection of seven days into a week (based on the planets,
including the Sun and the Moon), for instance—are artificial and
meaningless outside human usage, but others like the day and the year are
natural occurrences, real patterns of nature.

We see patterns in the way that the Sun travels across the sky—always
in the same direction, at roughly the same speed—and there are other
patterns that play out over a longer period in the way that the Sun’s arc gets
higher or lower, or in the repeated movements of the celestial lights of
planets and stars. And then there are the related patterns of seasons and the
longer-term patterns of life itself. It’s hardly surprising that the Greeks
adopted a pattern-based approach in explaining their world. A rather less
dramatic, if more romantic number-based concept that also seems to have
originated with the Pythagoreans was the linkage of the so-called amicable
numbers, 220 and 284. Such is the amorous appeal of this pair of numbers
(when seen through Pythagorean eyes, where whole numbers were so
significant) that you can even buy jewelry consisting of a metal heart
broken into two, one piece with the number 220 inscribed on it and the
other bearing the value 284.



The reasoning behind this is a venture into mathematical nerdiness of
the highest degree. If you list the factors of 220 (the whole numbers that
divide into it), you get 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, and 110. Add those
together and the result is 284. By comparison, the significantly fewer
factors of 284 are 1, 2, 4, 71, and 142. Add those together and you get 220.
It’s a reciprocal linkage that the whole-number obsessed Pythagoreans
could not resist.

To us this linkage is just a bit of fun—an opportunity to show off when
someone asks “Why 220?” or to have a little personal secret. But clearly,
with the Pythagorean view that the whole universe was constructed on
numbers, these were numbers that were considered genuinely important,
joining the pantheon of significant numbers.* Once you allow mathematics,
and specifically whole numbers, to give you your entire viewpoint on the
universe, you risk losing perspective.

This became clear in the form of a serpent in this mathematical Eden
where whole numbers controlled everything. An unwanted guest that
legend tells us resulted in murder.

It doesn’t take a huge amount of imagination to believe that the cultist
Pythagoreans would be prepared to kill to preserve intact their obsession
with the significance of numbers, and, according to legend, this is exactly
what they did. The victim was one of their number named Hippasus, who
dared to reveal to the world the dirty mathematical secret that they had
discovered. It’s a bit like a major religion discovering that one of their
sacred texts revealed that their religion was based on fiction. You can
imagine the attempts that would be made to cover this up. So it’s easy to
understand the discomfort that this discovery caused the cult.

It all began with that apparently innocent theorem attributed to
Pythagoras, specifically when it was applied to the diagonal of a square that
had unit sides. The sides don’t have to be any particular unit long in
practice. They could be 1 centimeter or 1 mile. But the idea that they are of
length 1 keeps things simple. Of course they can be any length you like and
we can define a new unit based on that length, so that the sides of the square
are now of unit length.



We draw a diagonal line across the square. So far, so innocent.
According to the Pythagoreans’ favorite theorem, it’s easy to calculate the
length of that diagonal, because it forms the longest side of a right-angled
triangle (in fact there are two identical right-angled triangles to choose
between). This means that, thanks to the power of math, we know straight
away that we can find the square of the length of that diagonal by adding
together the square of the other two sides. Because we handily chose the
sides to be 1 unit long, this means the square of the diagonal is 12 + 12 or 1
+ 1—better known as 2. And equally easily, by definition we would now
call the length of the diagonal, the value we are trying to find √2—the
square root of 2. The number that when multiplied by itself makes 2.

This all seems highly inoffensive, but things started to fall apart when
the Pythagoreans tried to calculate exactly what √2 was. Bear in mind that
their whole universe was constructed on the concept of numbers. Whole
numbers. So everything, including √2 had to be calculable from whole
numbers. Now √2 clearly isn’t 1, as 1 multiplied by itself is just 1, not 2.
And similarly √2 can’t be 2 because 22 is 4. That wasn’t a problem, because
the Pythagoreans were also aware that there could be something in between
1 and 2 that was a ratio of two whole numbers—what we would call a
fraction.



If the Greeks had had a true concept of a fraction, then the Pythagoreans
would already have made an even bigger abstraction than recognizing the
existence of whole numbers without specific physical objects to count.
When we use the positive integers, the whole numbers, they can always be
returned to the consideration of actual objects. If I say I am giving you three
goats and you take one away, we are left with exactly two goats. But even
making the step to a simple fraction such as a half (1/2), we are no longer
quite representing reality with the same degree of perfection. Yes 2 goats
are exactly 1/2 of 4 goats. But 1/2 a cake, say, can only ever be an
approximation in the real world—it is about dividing something in two,
where the two segments are similar, but are impossible to make identical.

Fractions inevitably come to mind when dividing up an object like a
cake—but they also start to become important when we deal with spatial
measurement. When first we start to divide up fields or measure out the size
of a stone block to build a structure, we can make use of the equivalent of
integers in some standard unit of measurement, usually initially based on an
aspect of the human body like a thumb’s length or a foot or a cubit (the
distance from the elbow to the tip of the middle finger) or a pace (passum),
which can be multiplied up to a thousand paces (mille passus)—which is a
mile. But unlike goats, it is quite easy when measuring the size of a piece of
stone, for instance, to use up, say, seven thumbs and then have part of a
thumb still to measure. Something between nothing and a whole thumb.
Something that needs a concept like a fraction.

However, the Greeks didn’t make the full extra leap of abstraction in
considering fractions as separate numbers because they didn’t use them as
we do. To begin with, they didn’t use the same symbolic approach. To
represent, for instance, 1/4, they would simply show the number 4, itself
confusingly represented by the letter delta, with a mark like an acute accent
over it. To be even more confusing, for obscure historical reasons, while the
second letter of the alphabet, beta was sensibly 2, a beta with a dash over it
was the symbol for 2/3—an oddity that may well derive from Egyptian
practice, where 2/3 seems to have been one of the few fractions they



recognized with something other than 1 on the top, and so was given a
special symbol.

Similarly, a special, nonalphabetic lightning-like symbol was reserved
by the Greeks for 1/2 (this wasn’t entirely standard—there were several
alternatives). Because of this, performing arithmetic with fractions was a
nightmare. The usual approach was to buy a book of tables that would tell
you that, for instance 1/2 + 1/6 was 4/6 (or 2/3) because there was no
mechanism like we have to multiply top and bottom until we get numbers
we can work with. Greek fractions had no explicit top and bottom, even
though they were thought of as ratios of whole numbers.

When we consider the Ancient Greek approach, though, we shouldn’t
consider it to be entirely simplistic. The Greeks were aware of some quite
intricate implications of working with fractions. A philosopher born a few
decades after Pythagoras, Zeno, even made something of a name for
himself by producing a paradox that depended on an odd behavior of some
fractions when added together. Zeno belonged to the Eleatic school (based
in Elea, the ancient city just outside the current Castellammare di Velia in
Italy). The school considered change and movement to be illusory. This was
all very well, but experience seemed to show something quite different, that
change was happening all the time. To defend his colleagues’ viewpoint,
Zeno came up with a whole list of paradoxes to demonstrate that our ideas
of change and movement were flawed. And this, as far as the Eleatics were
concerned, meant that the experience on which most people based their
ideas of change was also flawed.

Probably the most famous of Zeno’s paradoxes concerns Achilles and
the tortoise. These two are to have a race—Achilles, the superstar of his
day, running against the slow, lumbering tortoise. It was not exactly a fair
pairing, yet Zeno claimed that, given a little consideration on the part of
Achilles, the hero would be unable to catch up with the plodding animal.
All that was required was that Achilles gave the tortoise a lead—let it start a
minute or two before he did. He was a hero, after all, so this wasn’t too
much to ask of him. And now, Zeno argued, Achilles would never be able
to overtake his opponent, even though he ran much faster.



To illustrate Zeno’s argument, let’s assume that Achilles goes at twice
the speed of the tortoise. In practice he would be much faster than that, but
it keeps the math simple and the same argument will apply however fast
Achilles runs. Our hero waits until the tortoise has traveled 1 yard. Then he
sets off. Very soon he will have covered that yard, but of course in the time
he took to get to that point, the tortoise will have moved on. It will have
covered 1/2 a yard. Even quicker, Achilles will cross that 1/2 a yard. Only
to find the tortoise is now 1/4 of a yard ahead. He still hasn’t caught it. And
so it goes on. Forever. Achilles will never catch the tortoise, because
whenever he gets to the point that the animal had reached, it has always
moved on a little further.

It’s not clear if Zeno really was unaware of what was happening here,
but Ancient Greek mathematics was perfectly able to explain this oddity—
in fact the explanation was made easier because of a peculiarity (from our
viewpoint) of the way that they considered fractions, and because they had
a very visual approach to mathematics, as was clear from their relentless
enthusiasm for geometry. This was because the Greeks were so obsessed
with whole numbers. So by “2” (represented by beta), they really meant “a
collection of two units.” It is too clumsy to say, but it is a subtly different
concept from the one we have now.

This distinction was even clearer when it came to fractions, where whole
numbers managed to keep their significance. Rather than thinking of 1/2 or
1/3, the Greeks would consider “the second part” or “the third part.” Where
we would think of 1/2 as a single object (1) split into 2, the Greeks were
thinking of two whole objects (the parts) that when put together made up 1.
So they totally avoided the abstraction issues that accompany 1/2. For
instance, the idea of it being an approximation when dealing with a cake
didn’t occur because instead they were thinking of two whole pieces of cake
that made up between them a single, bigger whole. A good way of thinking
of their approach to the set of distances in Achilles and the tortoise, which
we would represent in our modernist algebraic representation as

1 + 1/2 + 1/4 + 1/8 + 1/16 . . .



is as a box that is half filled by a unit-sized stone. We then add in a stone
that it would take two of to be the size of the unit stone—a stone, which is
the second part in size. Then a stone we would need four of to be the same
as the unit stone—the fourth part. And so on. The collection of stones
would get closer and closer to filling the box, but they would never quite
make it. This is the legacy of the Pythagoreans’ obsession with whole
numbers. The Greeks weren’t thinking of fractions as we do, but rather of
whole objects that would fit into another object two or three or four times.

We would now say that the series below tends to 2:

1 + 1/2 + 1/4 + 1/8 + 1/16 . . .

Each item added to the sequence brings it closer and closer to 2, though it
never quite makes it. In principle, if you had the whole infinite set of the
sequence in the series then it would add up to 2. But it would never add up
to more than that. We now say that the total tends to 2 as the number of
items in the series tends to infinity. So in the real world, the tortoise would
only cover 2 yards before Achilles powered past it and the paradox
collapses. Arguably, the visual Greek approach to the sum of the series is
easier to accept than our modern series, though, because it is clear that as
we add the narrower and narrower stones, we will never quite fill the box. It
isn’t so obvious when looking at that sequence

1 + 1/2 + 1/4 + 1/8 + 1/16 . . .

that the outcome is going to be finite. In fact the remarkably similar series

1 + 1/2 + 1/3 + 1/4 + 1/5 . . .

doesn’t “converge” as the mathematicians call it and would tend to an
infinite sum as the number of items tends to infinity.

Meanwhile, back with the Pythagoreans, who were trying to decide what
ratio of whole numbers made up the square root of 2. If you play around
with fractions, the appropriate value appears to be somewhere in the region



of 707/500, but it isn’t quite that. Strictly speaking, that would be 707 lots
of 1/500 to the Greeks, though to make matters even more confusing it
would have been represented as something like 1, 1/5, 1/5, 1/100, 1/500,
1/500. After a certain amount of head scratching and throwing a spot of
logic at the problem, the Pythagoreans were able to prove that √2 was not
the ratio of any two whole numbers. It couldn’t be done. This new value
didn’t fit into their worldview. Their whole number system for the universe
was shattered.

It sounds quite a challenge to prove that there was no appropriate ratio
of whole numbers to produce √2. At first sight it seems to require the
Ancient Greeks to test out every one of an infinite set of different fractions
to make sure there wasn’t a match—clearly something that was impossible
to do. However there was nothing the Greeks liked more than a spot of
logic, and this was a proof that could be made using only basic knowledge
of the behavior of odd and even numbers and an elementary working of
logic. The argument uses a popular classical approach of assuming that
something is true and showing that the result of that assumption is an
impossible outcome—so it can’t be true. And the proof goes something like
the following.

Assuming that there exists a ratio of whole numbers that is the length of
the diagonal—let’s say that it is α/β to use handy Greek letters—then we’ve
got two whole numbers, α and β, and α/β = √2. To keep things simple, we
will make α and β the smallest whole numbers that produce this ratio. So
they would be like 2/3 rather than 4/6 or 200/300.

We’ll do the old trick of multiplying both sides by β to get rid of the
messy division, giving

α = β × √2

And let’s get rid of that square root by multiplying each side by itself:

α2 = β2 × 2



So far we’ve used basic high school math (the Greeks would have done
it a little differently, but the outcome would be the same). The Greeks knew
that anything multiplied by 2 is even. So the right-hand side of the equation
is even . . . which means α2 is even too. Which means α itself is even—
because multiplying an odd number by itself would produce an odd value.

Anything even can be divided by 2. So α2 can be divided by 4. Which
means β2 × 2 can be divided by 4 as well. So β2 can be divided by 2. Which
means β2 is even . . . and so β is even and is itself divisible by 2.

Finally we get to the point. We have shown that both α and β can be
divided by 2. Which means the values used in α/β can’t be the smallest
whole numbers to make this ratio as was originally specified. So we have
established that the smallest whole numbers aren’t the smallest whole
numbers. The original statement doesn’t make logical sense. Which means
that we can be sure that there is no ratio of whole numbers that results in
√2.

Now this doesn’t bother us. We just shrug our shoulders and stick with
√2, or write out as many decimal places of the diagonal’s length as we
require, such as 1.414213452 . . . but these were not options that were
available to the whole-number obsessed Pythagoreans. We now call a
number like this irrational because it can’t be made from the ratio of two
whole numbers, but for the Pythagoreans it seemed to literally be an assault
on the foundations of rationality. At least this would have been the case if
they really associated numbers with geometrical shapes of this kind. The
story of the revenge on poor Hippasus, who was said to have been taken out
in a boat and drowned for giving away the secret of irrational numbers, is
entertaining, but in reality, geometry back then was seen as a totally
different exercise to the handling of numbers, and it is quite possible that
the Pythagoreans simply saw this as a difference between shapes and
number. Geometry was a visual concept as far as they were concerned, not
truly a numerical one.

We now very happily make use of irrationals, and in fact any “real
numbers” as we now refer to the non-integers, whether irrational like the
square root of 2 or rational but represented as a decimal sequence, such as



0.666666 . . . for 2/3. In a world where computers and phones and digital
displays have largely replaced manual calculations, these real numbers
proved the easiest way to go. They are usually rounded to fit the capabilities
of the device, so 0.666666 . . . (where the “. . .” means that the number goes
on forever) becomes 0.666667, rounded up in this case on the final digit.

Generally speaking it isn’t clear whether such real numbers are, indeed
real, in the sense of being directly related to the nature of the universe
rather than being a construct of mathematics. The ratio of the circumference
to the diameter of a mathematical circle is the irrational number pi, but in
the real world, such perfection is never achieved or achievable. Even if,
somehow, a circle could be drawn perfectly, there is a granularity in matter,
reflecting the way that it is made up of atoms. However the circle is
physically constructed, whether it is a circular piece of metal or a shape
printed on a page, this lack of perfect continuity in the real world means
that we can never achieve such an idealized match between what we
construct and the predictions of mathematics.

We can, of course, do away with matter and just consider space itself.
Current physics suggest that even here there may be granularity, that space
itself may not be totally continuous, but is probably quantized at the level of
the Planck length, an immeasurably tiny size around 10–35 meters across.
That’s getting on for 1025 times smaller than the hydrogen atom, the
smallest atom. Yet this lack of continuity is still a limitation, a coarseness
that seems to attach to reality that doesn’t exist in the imaginary
mathematical world where anything can happen and continuous values are
the norm. It’s just possible that the universe is infinite, or that some
quantum properties could correspond to real numbers (see page 191), but
there is a fair chance that real numbers can only ever approximate reality.

However, Greek mathematicians were not aware of this type of issue in
the physical world, nor did they spend too much effort on trying to find a
form mathematics that would more accurately fit reality. Instead, they
cocooned themselves in considering the isolated and perfect world of
theoretical mathematics. This was a world typified by a mysterious name—
Euclid.



 
____________________
* Some mathematicians argue that all numbers are significant. Otherwise, if you imagine the smallest
number that isn’t significant, then it becomes significant because of being in this position.



4 Elegant Perfection

If you were exposed to geometry at school, ending with a triumphant (or
irritated) QED—the contraction of quod erat demonstrandum,
approximately “that which has been proved”—that traditionally caps a
geometric proof, you were following in the footsteps of Euclid. His book
Elements was the standard mathematical textbook for around 2,000 years.
Yet we know so little about Euclid himself that some scholars have
suggested that he never existed at all, but was instead a constructed persona
for multiple authors. We do know that his work came out of the
unparalleled school established by Ptolemy I at Alexandria, where Euclid
(if he existed) was a key figure. His masterpiece was never intended to
include earth-shattering new content. Euclid was known as a great teacher,
and this was the book of the course. It was a textbook of existing
knowledge, but pulled together in a very effective fashion.

The mathematics of Euclid operates in a little world of its own, a model
for the way math has operated ever since. It starts by making a few basic
assumptions and then constructs a hierarchy of proofs that never require any
of the dirty work—observing, counting, and measuring—that are featured
in a real-world problem or in science. We think of it now as a definitive
geometry textbook, but it also incorporated an introduction to arithmetic
and the closest the Greeks came to algebra in their visual representations of
algebraic problems—the kind of thing described in their approach to the
series 1 + 1/2 + 1/4 + 1/8 . . . (see page 39).

The concept of proof and exactness in mathematics, as opposed to the
rough-and-ready approximation of the hands-dirty surveyor, was arguably
the biggest contribution that the Greeks brought to the mathematical scene.



As we have seen, the Egyptians were already active in geometry and the
Babylonians had numerical and algebraic expertise that went far beyond
anything the Greeks ever achieved. But neither of these earlier civilizations
worried too much about proofs. For them, it was enough that the numbers
or the shapes did the job. Their mathematics was anything but pure.

We have already come across the concept of mathematical proofs,
because these began with the Pythagoreans, but it was Euclid who defined a
more exacting model for the process. The starting point was to have a set of
definitions of terms and of axioms or “givens”—things that mathematicians
would need to take for granted to make their mathematics work, but that it
wasn’t possible to prove. Instead these axioms were (hopefully, though not
always) self-evident and could be used as a starting point. The proof then
required the mathematician to make a series of logical steps, one building
on the other, and only using the axioms as starting points, until the proof
was complete.

Euclid’s book (technically books, because of the limited practical length
of scrolls) begins with his definitions—what a point, a line, and a circle are,
for instance—then five axioms (known as “postulates” here) and five
“common notions,” which we would now also consider axioms, before
plunging into his first theorem, which describes how to construct an
equilateral triangle with a pair of compasses and a straight edge (the Greeks
were mad on constructing their geometry using just these pieces of
equipment). In practice, some of Euclid’s definitions were weak—he
defined an angle by using a term “inclination,” which is probably less
familiar than the term he is defining—but he had the right idea. We won’t
bother with the details of his proofs here, but it is worth taking a look at
those axioms.

The five postulates were:

1.   A straight line can be drawn between any two points.
2.   A straight line can be extended continuously.
3.   A circle can be drawn for any distance from a point.



4.   All right angles are equal.
5.   If a straight line crosses two other straight lines and the interior

angles are less than two right angles, the two other straight lines will
meet.

While the five common notions were:

1.   Things equal to the same thing are equal to each other.
2.   If equal things are added to (other) equal things, the results are

equal.
3.   If equal things are taken away from (other) equal things, the results

are equal.
4.   Things fitted (exactly) into one another are equal.
5.   The whole is greater than the part.

A lot of this may seem like obvious common sense, but the whole point
about being rigorous in a mathematical proof is that you don’t make
unnecessary assumptions. Common sense is not an option. One of the
advantages that the world of mathematics has over reality is that you can
make assumptions that don’t hold outside in the real world. These start in
the definitions where we discover, for instance, that a line is “a length
without breadth.” Real lines, of course, always do have breadth. The
definition immediately launches us into the world of something that is
physically impossible to construct in reality.

Equally, at least one of the postulates makes assumptions about the
environment in which the mathematics is undertaken—an assumption that
does not appear in the axioms because Euclid never thought of it. Euclid’s
fifth postulate (which is a rather clumsy way of saying that nonparallel lines
meet, and by implication that parallel lines don’t meet) did indeed hold true
for the flat surfaces on which Euclid was working, but it isn’t true for a
curved surface, which are much more common in the real world. Think of
drawing parallel lines, for instance, at right angles to the equator of the



Earth, heading north. Lines of longitude are such lines. By the time they
reach the North Pole, the lines meet—even though they were genuinely
parallel at the equator. The system for working on flat surfaces does not
apply on curved surfaces.

A fundamental requirement for Euclid’s geometry is that parallel lines
do not meet. If they do, geometry as Euclid knew it would not work. It
wasn’t until the nineteenth century that “non-Euclidean” geometry,
designed to work on real-world curved surfaces, was developed. At the time
it seemed to have limited application beyond measurements on the surface
of the Earth, but its extension from curved surfaces to the curvature of
something more than two-dimensional would prove invaluable when
Einstein began work on his general theory of relativity.

Bearing in mind the way that mathematics can exist and function
without any relation to the physical universe we occupy, we have to ask if
Euclid’s work was about reality—and conclude that it wasn’t. This is not
saying it was useless. It provided a valuable approximation to reality, but
the geometric world that Euclid’s work occupied was not real. Probably the
closest description of the relationship between Euclid’s theorems and the
physical objects of the real world was the metaphor developed by Plato,
who flourished several hundred years earlier. Plato envisaged a
hypothetical, almost heavenly, universe of perfection where mathematical
structures like those that Euclid would later work on existed. These perfect
shapes and objects had a kind of hyperreality, while the shapes and
structures that we experience in the real world were mere shadows of the
pure original.

Specifically, Plato used the image of shadows cast into a cave—if he
considered, say, a drawn triangle, it was as if a true perfect triangle, out in
the harsh light of true mathematical existence, was casting the fuzzy
shadow of an imperfectly drawn triangle in his cave. And there is an
element of truth here. Not that mathematics is somehow more real or
perfect than the world, but that math can usually only approximate to the
actual universe, as the universe is far too complex to model perfectly. Just
as whole numbers have true real-world equivalents, but fractions don’t, so



the shapes of geometry fall down when faced with the physical world
constructed of atoms and lines that have width and aren’t perfectly straight.

A great example of the imperfection of life in the cave—of the
distinction between the perfect shapes of mathematical proofs and real-life
objects that we can handle and experience—is the mind-bending puzzle
usually called the missing square puzzle.

The two shapes shown above consist of exactly the same pieces, where
those pieces have just been moved around on a grid. Yet the upper triangle
seems to have a different area, as we are left with a blank space when the
shapes are rearranged. This would not be possible with Plato’s perfect
shapes—but here, in the shadowy real world, we can get away with it,
because the way that lines are drawn is not precise. The angle of the smaller
triangle, at the left-hand side of the top image is not quite the same as the



angle of the larger triangle at the top right, even though they appear to be
the same. That very slight difference is enough to account for the extra bit
of area that is then brought into the open by rearranging the shapes.

The further we get into this journey through the relationship between
mathematics and reality, the more we will see the use of models, toy
versions of reality, used by scientists. The universe is a vastly complex
entity. Even a small part of it like a human being is ridiculously complex in
structure. To try to understand the universe, and what makes it up in a
physical sense, we usually need to simplify, to deal with less complexity
than exists in the original.

Models can literally be physically constructed representations—think,
for instance, of orreries, the elegant mechanical models of the solar system
that were popular all the way up to the introduction of computers. However,
more often than not, we use “mathematical models”—a collection of
equations or mathematical systems that act to some degree like the real
thing, but that are simpler to handle. Often such models will now be
realized in the form of computer programs, though many scientists still
prefer a model that can be reduced to (relatively) simple formulas.

We will explore these models in much depth in later chapters, but in
essence, the models are reflections of parts of the universe, or even of the
whole thing, that exist in Plato’s idealized space. They aren’t reality, but
they provide a simplified, perfected equivalent to reality. They are what are
sometimes called archetypes, giving us the rather beautiful medieval
description of Plato’s concept as being about “types and shadows.” The
only thing is, Plato got the relationship back to front. In his picture there
were the true, real perfect versions of, say, triangles, and then there were the
flawed, limited shadow version that we would encounter in the everyday
world. To Plato our world was less real than the ideal one. But when
scientists produce their models, the picture is inverted. It is the models that
are flawed and limited. Our scientific models and theories are mathematical
shadows of the natural world, much simpler than the original systems that
cast those shadows.



It doesn’t help that Plato’s cave was, itself, a model—so arguably the
cave belongs outside of the cave. You could equally say that mathematics is
an agreed fiction, a shared mental world that mathematicians agree to
collectively inhabit. But their world isn’t allowed the looseness of literary
fiction, because here all the rules have to be pinned down and agreed. As
long as a piece of mathematics is consistent with those rules it is acceptable,
whether or not it has any parallel with the physical universe. Yet we keep
coming back to the fact that a sizable subset of mathematics not only has
parallels, but has an uncanny ability to mirror what the real world can offer.
It could just be because so much of the essential structure that mathematics
is built on—like the nature of whole number arithmetic—started as a
reflection of the real world. But whether there is anything more, we will
return to once the mathematical landscape has been made clearer.

Even with its carefully proscribed world of perfect shapes, Euclidian
mathematicians had their nemesis in the form of squaring the circle. With
their obsession for performing everything using only a pair of compasses
and a straight edge, the idea was to be able to construct a square with
exactly the same area as that simplest and most perfect of shapes, a circle.
Such was the obsession there was even a word in ancient Greek for the
people who spent their time attempting this feat—they were τετραγονιδζειν
(tetragonidzein). But impressive though the name may sound, they were
battering their head against a brick wall.

We now know that in attempting to uncover the exact area of a circle the
Greeks were coming up against an even greater irrational number than √2 in
the form of pi (π). Not only is pi irrational, it is also transcendental,
meaning that it isn’t possible to produce a finite equation that will perfectly
produce its value. (There are equations for pi, but they are all infinite series,
so we can’t even write down pi exactly in equation form.)

In Euclid’s time, mathematicians were happy with the challenges of
geometrical rigor. And it is certainly true that this wasn’t math undertaken
purely for intellectual stimulation. It was widely applied. As we have seen,
the word “geometry” is derived from Greek words meaning measuring the
Earth, and an approximate version of geometry was clearly valuable



whether you were a surveyor or an architect. But all the derivations and
proofs took place in the sterile, isolated mathematical universe, compared
with which the real world was irritatingly messy.

The physical universe seemed an untidy corruption of the precision of
Euclid’s proofs. But this isolation would not last long when a
mathematician entered the scene who was prepared to get his hands dirty
and apply mathematics to engineering and even to the weapons of war.



5 Counting Sand

The Greek mathematician who made the mathematics of the time more
practical was Archimedes—though he also succeeded in a feat of
impractical number work that most at the time would have regarded
impossible.

Although a fair number of texts from Ancient Greece have been
recovered via later translations, many were lost forever, and among them
were biographies of key figures. We know that a biography of Archimedes
was written some time after his death, but it has been lost, along with the
key dates in his life, so his birthdate can only be approximated to 287 BC.
Archimedes proved himself just as much a wizard of geometry as his
predecessors, but arguably he was also the first engineer, because the math
that he employed was applied in practical ways to devise engines of war
and machines for practical work.

While it was impossible to get back the purity of the imagined
underlying structure linking math and the universe that the Pythagoreans
had once held, Archimedes showed that math could be the servant of the
natural philosopher as a requisite for the development of science. Some
people have even considered Archimedes the first scientist in the modern
sense. For his own part, though, Archimedes was never more than an
applied mathematician. According to the Greek historian and biographer
Plutarch, Archimedes regarded his mechanical inventions as mere
“diversions of geometry at play,” considering them of no importance.

Most significantly for our story, Archimedes established a different kind
of abstraction of mathematics. As we have seen, Greek mathematics in
general and geometry in particular had been primarily visual and would



never have been capable of creating the flights of mathematical fantasy that
we now experience. They couldn’t, apart from anything else, because the
Ancient Greek number system was so limited. Greek mathematics rarely
took on the symbolic forms that we are familiar with and struggled with any
numerical complexity. As we have seen, the Greek numerals were clumsy—
simply the letters of the alphabet with one or two old letters added to enable
it to cope with the range required. And most frustratingly, the system ran
out at 10,000—a myriad was the biggest number it provided.

To demonstrate that a number system could do far more, Archimedes
wrote a strange short book named The Sand-reckoner. In it, he calculated
the number of grains of sand that it would take to fill the universe. Clearly
this was not one of his practical engineering feats. His intention seems to
have been to demonstrate that mathematics was not limited by mundane
thinking, or by the numbers as they were then known. To make it work,
Archimedes had to devise a whole new number system of his own.

To give the book some authority it was addressed to the local king Gelon
(or Gelo) of Syracuse. It seems that Archimedes worked for the king, and it
has even been suggested that the two were related in the small melting pot
that was Syracuse. Archimedes warns Gelon to avoid the mistake of
thinking that even the number of grains of sand on the Earth is infinite or
uncountable, and makes it clear that he refers to “not only that which exists
about Syracuse and the rest of Sicily but also that which is found in every
region whether inhabited or uninhabited.” But then he sets the minor
challenge of the Earth’s actual sand aside to show that he could even
produce a number to match the number of grains required to fill the
universe.

In modern terms, this would be impossible to meaningfully calculate as
we simply don’t know how big the universe is. We have a figure for the size
of the visible universe, the limit for light to travel in the lifetime of the
universe, which forms a space about 90 billion light-years across, but
beyond that we have no idea. In Archimedes’ day, however, the picture of
the universe was far simpler. By then the central fire had been abandoned
for Aristotle’s simpler model with the Earth at the center of everything.



Everything that was seen in the sky—the Moon, the Sun, and the planets—
rotated around the Earth, as they clearly appeared to do from day to day.
And on the outside was a sphere containing the distant points of light that
were the stars. By this reckoning, the whole thing was rather smaller than
our current picture of the solar system (bearing in mind that the stars were
just outside the orbit of Saturn in their model, as this was the most distant
known planet).

Intriguingly, Archimedes does point out in The Sand-reckoner that there
was an alternative viewpoint available and he quotes a book by Aristarchus
of Samos, who makes the Sun and the fixed stars unmoving, with the Earth
orbiting the Sun, which took over the position at the center of the universe.
This is an intriguing snippet because Aristarchus’s book did not survive, so
we don’t have the original words Aristarchus wrote on the matter and have
to rely on a few indirect references to discover the first known suggestion
that the Earth orbits the Sun.

Aristarchus said that his universe was far bigger than the usual model,
describing the size in a way that Archimedes points out is confusing and, in
truth, downright impossible. This is because Aristarchus apparently claimed
that the sphere of the fixed stars was so distant that it compares with the
Earth’s orbit as “the center of the sphere bears to its surface.” As
Archimedes pointed out, since the center has no magnitude, you can hardly
have a ratio based on it. However, Archimedes believed that he understood
what Aristarchus really meant was a comparison between the size of the
Earth—the center of the traditional universe model—and the size of the
sphere of the fixed stars in the traditional model.

With this established, Archimedes set out to work out the number of
grains of sand it would take to fill either the traditional universe or the
larger Aristarchus version. The first requirement was to calculate how big
those universes were. Since Archimedes was an Ancient Greek, this was
inevitably established with a vigorous dose of geometry. The calculations
were based on a number of assumptions on the size of the Earth and the
relative sizes of the Earth, Moon, and Sun. Most of these were
straightforward, such as “that the perimeter of the Earth is about 3,000,000



stades and not greater.” (Stades were a measurement based on the distance
around a stadium.) But one assumption is harder to grasp: “That the
diameter of the Sun is greater than the side of the chiliagon inscribed in the
greatest circle in the sphere of the universe.”

It helps to know that a chiliagon (a word we don’t see often enough) is a
1,000-sided polygon. Archimedes was using a very specific definition of
“the sphere of the universe.” He did not mean the sphere of the fixed stars,
which we would tend to think of as the extremity of the universe in the
Greek model, but rather “the sphere whose center is the center of the Earth
and whose radius is equal to the straight line between the center of the Sun
and the center of the Earth.” In other words his “sphere of the universe” was
actually the sphere of the apparent orbit of the Sun. So he was saying that
the Sun’s diameter was around 1,000th of its apparent orbit.

The popular approach to science in Ancient Greek times was one of pure
argument, without much effort to confirm whether or not the results bore
any resemblance to reality. However, astronomy tended to be something of
an exception to this rule. Archimedes was never a pure armchair
philosopher, and his father had been an active astronomer. The basis for the
ratio of the Sun’s size to its orbit was a spot of practical astronomical work.
Archimedes got a long rod with a movable disc attached to it. Waiting until
just after sunrise, when he believed the Sun’s light was safe to look at (it
isn’t, but at least it is weakened by the extra air it has to pass through), he
pointed the rod at the Sun and slid the disc up and down until it just covered
the Sun’s surface. From the angle the disc made to the eye, he worked out
that the Sun’s disc covered between 1/164th and 1/200th of a right angle,
then he multiplied this up for the whole orbit and rounded up to get to his
approximation of 1/1,000th of the distance around the orbit.

The distances that Archimedes used were measured in stades (in the
original Greek stadion, plural stadia), which does present us with
something of a problem. As mentioned above, these were based on the
distance around a stadium running track, but this unit was not standardized.
It appears to have been 600 Greek feet in length, but these varied from
place to place, so a stade could have been anything from around 150 to over



200 meters (490 to 650 feet) in length. Even with such a fuzzy set of
definitions, though, Archimedes’ calculations put the size of the universe
somewhere in the outer planets, which wasn’t bad given the level of
estimation involved.

He then decided arbitrarily that no more than a myriad (10,000) grains
of sand would fit into a poppy seed, and that a poppy seed was not less than
1/40th of a finger’s breadth, the standard unit of measurement that came
below a foot. All he needed now was a way to count beyond a myriad. To
do this he started with a myriad myriads—100 million—and called the
numbers up to this value the first order. He then multiplied a myriad
myriads by itself to get the second order, multiplied the result by 100
million again to get the third order and so on. When he had done this a
myriad myriad times he ended the first period and began all over again on
the second period.

By adding a set of rules to perform arithmetic with his super units,
Archimedes was able to calculate that the traditional universe would be
filled by no more than 1,000 units of the seventh order (1051, or 1 followed
by 51 zeroes) grains of sand, or, for the significantly bigger universe of
Aristarchus, 10 million units of the eighth order (1063) grains. The number
system that Archimedes had devised was not really the way forward. It built
on the existing, disastrous Greek system and was clumsy at best. However,
despite his use of geometry in calculating the size of the universe, there was
something special and new about the way that Archimedes had worked.

Arguably, in the way he had gone through his calculations, he was
making an abstraction that was pretty much unique among his Greek
colleagues. He may have been dealing with grains of sand, yet his number
system was one step removed from the traditional approach of being unable
to separate numbers and objects. Yet despite this step forward, Archimedes’
numbers still lacked an absolutely crucial component. What no one could
see at the time was that the element that was truly lacking was nothing.

There was a big, zero-shaped hole.



6 The Emergence of Nothing

One of the most important reasons that the Greeks and the Romans
struggled with numbers was because of a terrible absence from their
arithmetic. They had no way to represent nothing—they had an absence of
zero. In a sense, even those earliest accountants, scratching their tallies on
bone or clay, had the concept of nothing. A clear, empty tablet had nothing
on it—no stylus marks at all. I might not be able to show you no goats, but I
can have an empty field that is free of goats—or an empty box that contains
no oranges. Unconsciously, when we take on the concept of zero we stop
thinking of a number purely as a correspondence between a marker and an
object and start thinking of a container instead.

However, there is a big conceptual step from nothing as an absence of
objects and a nothing that could take an active part in mathematics. Yet it
was only by using zero that mathematicians could get full control of their
numbers. What’s more, this new wonder number could also act as a
convenient placeholder, giving the way that numbers were written an
enhanced structure, enabling far more complex calculations than had ever
been possible before.

Zero looks like such an innocent, unimportant little thing—but it would
transform mathematics. For a long time it was regarded as a special case.
Many mathematicians thought that it was not really a number at all. You
can see why. It misbehaves when undergoing the basic operations of
arithmetic. Mathematicians (and scientists for that matter) don’t like special
cases, but zero is a special case par excellence. It is the only integer (whole
number) that can be added to or subtracted from another number leaving it



exactly as it was before. Multiply anything—anything—by zero and you get
zero. It is a disintegrator weapon, a destroyer of other numbers.

As for dividing by zero, the process unleashed the terrifying and
arithmetically useless power of infinity. Imagine dividing 10 by 1. We get 1.
Now divide it by 1/2. When we learn fractions we are taught that dividing
by 1/2 is the same as multiplying by 2, so the answer is 20. (If it helps,
think of dividing up 10 cakes into portions of 1/2 a cake each. There will be
20 portions.)

When we divide 10 by 1/4 we get 40. As the number that is being
divided into the 10 gets smaller and smaller, the result gets bigger and
bigger. And as the bottom number in the fraction tends to 0, the result tends
to infinity.

However, the worst trick that zero has under its belt is still to come.
What do you get when you divide zero by zero? Apple’s voice-controlled
assistant, Siri, has a very effective answer to this:

Indeterminate: Imagine that you have zero cookies and you split them evenly among zero
friends. How many cookies does each person get? See, it doesn’t make sense. Cookie Monster
is sad that you have no cookies and you are sad that you have no friends.

Any fraction with zero on the top is zero, while any fraction with zero
on the bottom ends up with an infinite result. Somehow zero over zero
manages to be both at the same time . . . or neither. When zero first came
into use in India there were major arguments among mathematicians over
the outcome of this division. Over a period of times both apparent outcomes
prevailed. In the seventh century, Brahmagupta was sure that zero divided
by zero produced zero, while in the twelfth century Bhāskara pronounced
the outcome to be infinite.

More recently, mathematicians have plumped, like Siri, for saying that
the outcome is indeterminate—it doesn’t have a value. Dividing zero by
zero does not have a useful mathematical outcome. Mathematicians can do
this because, as is becoming increasingly obvious as we move through its
history, most of mathematics is not based on reality. When that is the case,



we allow mathematicians to make arbitrary decisions on what the rules are
going to be. Zero divided by zero is one such case.

Because of its oddities, just as mathematicians would later decide that 1
was not a prime number, they initially often considered zero not to be an
integer. This caused a problem when the highly useful concept of the
number line was developed. Anyone educated in the last thirty years will
probably have come across the number line at school, but in case you
missed out, the easiest way to imagine this is a ruler, stretching off to
infinity in both directions. Each of the main markers on the ruler is an
integer—so moving up the line (to the right) increases the value and
moving down the line (to the left) decreases it.

The number line takes in both positive and negative numbers—so the
question is, what happens when we go down below 1, heading for the
negative values? One of the first practical number lines, the BC/AD dating
system, fluffed this question. Devised by the monk Dionysius Exiguus in
525 and popularized by the historian the Venerable Bede in the 730s, the
approach became common in Christian countries from the ninth century. In
this dating system, the year before AD 1 is 1 BC. There is no year 0. And
that remains the case to this day.

The line effectively jumps between–1 (1 BC) and +1 (AD 1), without
anything in between. The letters AD stand for Anno Domini, “in the year of
the Lord,” making AD 1 the first year of Christ’s life (though whether this
was the intention is disputed). The gap in the number line often misleads
would-be historians when trying to calculate the age of someone who
crossed the BC/AD divide as, ironically, it seems likely that Jesus himself
did, since most scholars now suggest that he was born around 4 BC.

This approach of jumping from–1 to 1 was just about acceptable for
dating, as historians are not mathematicians, but it wasn’t acceptable for the
number line, because the whole point of the line as a tool is that the amount
you move up and down the line corresponds to the operations of addition
and subtraction. For instance, we can use the number line as a calculator to
work out 5 + 2 by starting at 5 and moving up (the + direction) two places,
where we find the answer is 7. But if you have a number line with no zero



and try to do the operation 1 – 1, starting at 1 and moving down (the –
direction) one place would take you to –1, not the correct 0. Like it or not,
zero had to be an integer for the basic operations of arithmetic to work
properly.

If all that zero did was to patch up the number line and represent an
empty container—filling in the value that comes in the integers between–1
and 1—it would have been valuable, but not as transformative as it has
actually been. This is because of zero’s second role, as a placeholder in our
numbers. As we’ve already seen (chapter 2), Roman numerals, and their
Greek predecessors made it very difficult to perform calculations as there
was no system to the layout of the digits that aided calculation, and because
of this numbers quickly become huge unmanageable strings of characters.
But in practice, the classical civilizations were ignoring a powerful
technique that had already been around for more than 1,000 years.

This was back when the Babylonians used a number system of base 60
derived from the ideas of their Sumerian predecessors. Here, an upright
stylus mark stood for an individual digit, just like a tally mark, and a
sideways mark, called a hook, represented 10. Just as we have a day divided
up into 24 hours, but then 60 minutes, the Babylonians counted up in 10s
and then in 60s. Their predecessors had a separate mark for 10s from 1s, but
60s were just represented by a big version of 1, which was fine when using
different styli, but could easily be confused. So by later Babylonian times
an alternative approach was brought into play making use of the power of
position.

When you look at a big Roman number like MDCCCLXXVII, there is a
terrible waste of information. Although the Romans made a very tiny use of
the position of letters, making LX 60 but XL 40, on the whole, the position
was just a matter of laying things out in order. But the position of a
character has the potential to carry a significant amount of information.
“GOD” and “DOG” contain exactly the same characters, but the position of
those characters makes a total change to the meaning. Why not do the same
thing with the position of digits and make use of this extra information in a
far more general way? The Babylonians did just this. If a number came in



the rightmost position it represented 1s, the next position was for 60s, the
next for 60 × 60s and so on.

So, if I use a Y for the Babylonian “1” and a D for the Baby-lonian “10,”
then the number YY DY has 2 × 60 + 10 + 1, so it represents 131. Not only
can this be much more compact for large numbers, because we are making
use of the position as an additional piece of information, it also transforms
arithmetic-making operations like addition, subtraction, and multiplication
vastly more easy. The reason for this is that we have similar numbers in
columns, one above the other. So, for instance, to add YY DY to Y Y we
can lay the sum out in columns

YY DY
 Y    Y

And quickly see that the result is YYY DYY—we’ve done scary base-
60 arithmetic without even thinking about it. Of course you need carrying
rules to get values from one column to another, just as we have now, but
given that, what we have here is a vastly more effective system than that
used by the Greeks and the Romans. The Babylonians even had the ability
to cope with the problem of an irrational like the square root of 2 that so
upset the Pythagoreans (see page 42), as remarkably they also incorporated
decimals (or rather sexagesimals as they were working to base 60) into their
numbering system—there is even an old Babylonian tablet that gives the
square root of 2 a value that approximates to 1.414222. It’s hard to
understand why the Greeks took such a huge backward step when they
could have learned from Babylonian methods, but any reason is now lost in
the mists of time.

There was, however, one problem with the Babylonian system. In the
sum above, the second number that was added to the first was Y Y—61.
But how would 3,601 be represented? It has Y in the 60 × 60 column,
nothing in the 60 column, and Y in the 1 column. So it is Y Y—the space
between the Ys is technically bigger, but it is hardly obvious which of the
two numbers is which, especially when producing a tablet by hand. Looking
at many surviving Babylonian tablets, the layout could be extremely



haphazard. Of course it’s simple enough when counting those goats that I
loaned to my neighbor in chapter 2. I’m hardly likely to have lent him 3,601
goats, so the context tells me what was intended. But the distinction is not
at all obvious when these numbers are being used to deal with commodities
that come in smaller units, or with money.

By the time the Greek civilization was taking off and the Babylonians
were in the decline, a solution had been reached. If a column was empty, it
was filled with a diagonal marker that identified it as a null column. So 61
was still Y Y, but 3,601 would now be represented by Y \\ Y. Brilliant.
Calculations in columns were far safer and context wasn’t really needed to
work out what was happening. And yet \\ was not quite a modern zero. For
some reason, the Babylonians never made the step of accepting that their
dividing marker could go at the end of a number, so anything with zero in
the units column was still in danger of being confused with other numbers.
For whatever reason, \\ wasn’t a fully functioning placeholder. And it never
appeared on its own or in calculations, so it didn’t function as the integer
zero either. It was just a ghost of a zero as a part-time placeholder—and it is
only in its double role that it would be able to take on its true worth.

This same approach with an occasionally used placeholder was also used
in some late Greek numbering when it cropped up in the work of the
astronomers who flourished toward the end of the Ancient Greek
civilization. Although conventional Greek numbers used the unwieldy
system of applying a single letter to each value from 1 to 10, then to each of
the multiples of 10 to 100, and each multiple of 100 to 1,000 there were
also systems that came closer to the Babylonian approach. For example, in
later days, angles were measured as we do in degrees, minutes, and
seconds. To represent a value of 5 degrees, 0 minutes, and 20 seconds, the
Greeks would put an empty placeholder in the minutes and even in the
seconds, a void that was represented by a circle with a complex bar shape
over it.

They had made a small step closer to zero in some respects then, but this
placeholder symbol was still not treated separately as one of the numbers.
Where ordinary numbers were represented by the appropriate Greek letter



with a straight bar over it, the empty placeholder was marked differently to
indicate this was something odd, outside the normal. It might seem to us
that it was such an obvious step forward to turn it into an actual number, but
despite the inevitable use of numbers in accounting and those astronomical
texts, we have to remember that the vast majority of Greek mathematics
was visual and concerned with shapes; it remained geometrical. And with
that mind-set, an empty shape was hard to envisage, and even harder to
make any use of in practical geometry.

This meant that the mathematicians and philosophers who might
sensibly have come up with the mathematical concept of zero never had a
starting to point to work with. As for those accountants and merchants who
needed to work with numbers, the Greeks generally used a form of wireless
abacus (actually the source of the name “abacus”)—a board with a set of
columns in which pebbles could be placed. This was little more than an
advanced version of my goat accounting using fingers. There was no need
for a placeholder, because the fixed columns of the counting board
automatically put the 10s and units and so on into appropriate columns.
When a section of the board was empty, that was fine—but it wasn’t in any
sense a number, just a gap in this advanced form of tally.

It wasn’t until the early thirteenth century that zero in its modern form
reached Western mathematicians at the hands of several mathematicians,
notably Leonardo of Pisa, better known by his filial nickname Fibonacci
(it’s a contraction of “filius Bonaccii”—son of Bonaccio). His father was a
diplomat who seems to have taken young Fibonacci, born in 1170, with him
on his trips representing Pisa in North Africa, and it was on these journeys
that Fibonacci may have become acquainted with the novel numbering
system that the Arab mathematicians had improved from an Indian original.
In his book Liber Abaci, which translates as “Book of the Abacus,” a rather
odd title as it had nothing to with the abacus, Fibonacci both introduced an
early version of the now standard “Arabic” numerals to the West, and
brought us zephirum, a word that probably translated from the Arabic sifr, a
special kind of number represented by a simple upright egg-shaped figure, 0
—the zero.



Those powerfully flexible numbers originally from India could have
reached the West far sooner. In AD 662 a Syrian bishop named Severus
Sebokht pointed out that the “Hindus” had made “subtle discoveries in
astronomy” and specifically highlighted “their valuable methods of
calculation, and their computing that surpasses description. I wish only to
say that this computation is done by means of nine signs.” Sebokht’s
reference to the effectiveness of the nine numerals other than zero was a
response to a parochial view of Greek scholars who seemed to believe that
there was no wisdom outside of Greece. Unfortunately it wasn’t enough to
gain the system any attention. Again, the French mathematician Gerbert,
later Pope Sylvester II, appears to have briefly taught Arab/Indian numerals
without the zero toward the end of the tenth century, but once more it seems
not to have caught on.

Although the exact origins of the modern true mathematical zero is
fuzzy, to say the least, the assumption is that Arab mathematicians got the
concept from working with the highly advanced mathematicians of India. In
his book Finding Zero, mathematician and science writer Amir Aczel
describes undertaking a lengthy mission to try to find a missing example of
zero that predated Arabic use. His hope was to show for certain that this
was neither a European nor an Arab invention. The French-Hungarian
scholar George Cœdès, working in the 1920s, had translated a Cambodian
inscription from a ruined temple that dated the stone to the 605th year of the
çaka era, which we know to have begun in AD 78, putting the date of the
inscription as AD 683, before other well-dated recorded use of zero.

The significance of this inscription is that the number 605 used a zero
(represented by a dot) as a placeholder. It was a self-dating early use of zero
(though of itself it doesn’t show the true zero in action, just the equivalent
of the much older Babylonian \\ placeholder). This discovery was written
up in the Bulletin of the School of Oriental and African Studies in 1931. But
the inscription itself was lost and had not been photographed. The evidence
was dependent on the reliability of the reporting by Cœdès. Later an almost-
as-old zero, dating to AD 684, would turn up in Sumatra, but Aczel was
determined to track down what he believed to be the oldest known example.



After a long search, Aczel discovered the stone fragment K-127 in Siem
Reap in a shed full of stone inscriptions that had survived the destruction by
the Khmer Rouge, the brutal Communist party that ruled Cambodia in the
late 1970s. There was the inscription he had been searching for, complete
with that enigmatic 605. To the untrained eye the dot for the zero does look
rather like a later disfigurement, a simple scraped out space, but this was the
evidence of that tantalizingly early use of zero. However, despite Aczel’s
enthusiasm, there seems to be no evidence that this was any more than the
kind of place marker used by the Babylonians and the true evolution of the
full numeric zero seems to have come via a different route.

There is good evidence that early Indian mathematics and astronomy
was influenced by Greek sources, and it seems likely that the placeholder
circle used by Ptolemy and others found its way to India from there—but
then it was in India in the minds of the superbly creative mathematicians of
the period that the breakthrough was made, with zero allowed to perform its
full numerical role. Indian mathematicians had been using the concept of
“nothing,” an absence of number since at least the sixth century, but we
don’t know exactly when the zero digit came into play. Confusingly, the
same term was used at the time both for the placeholder of an empty
column and for an unknown quantity—the kind of thing algebra has taught
us to represent as “x, the unknown.”

Arguably this equivalence of the placeholder and the unknown arises
because each represents a kind of empty space waiting to be filled. We can
even see this coming through in one of our words for zero, null or nil, from
the French, “null,” which originates in the Latin phrase nulla figura,
meaning “no number.” Although there are many nearly-zeroes all the way
through from ancient Greek to Arab mathematics, the oldest certain Indian
example of a placeholder zero is in a stone tablet from Gwalior dated AD
876 that uses a small circle for zero in both 270 and 50. But it’s very likely
that it was in use before then.

Zero as the numerical value you get when you take a number from itself
was certainly firmly in place for the great Indian mathematician
Brahmagupta to make use of it in the seventh century. It seems likely then



that the fully functional zero we now use had origins both in Babylonian
ideas, via the Greeks, and in the Far East before becoming more widely
used in India. From there it reached the growing world of Arab science and
mathematics to begin a new stage in the increasing sophistication of
numbers. It was via this route that zero would finally arrive (along with the
Indian number system) in Europe, which is why we still refer to our
numbers as “Arabic numerals” rather than the more accurate term Indian.

If this were a formal history of mathematics it would be important to
consider the way math was used in China and South and Central America,
and particularly to explore more the work of the early Indian
mathematicians, but as we are concerned with mathematics as it interfaces
with science, the use of zero and Indian numerals represents by far the
biggest contribution to the development of modern science. Probably the
next most important contribution from India was interesting in that it had an
extra level of abstraction from reality over most of the mathematics of the
time.

This was the concept of the sine in trigonometry, the mathematics of the
angles and lines of a triangle—the name means triangle measurement. The
Greeks had used a messy system to deal with this called a table of chords,
but the Indians introduced the modern concept of the sine of an angle,
which, if it escapes you from school days, is the ratio of the length of the
side opposite an angle to the size of the side opposite the right angle in a
right-angled triangle. You may well have forgotten this, which, in a sense,
reflects the existence of that extra level of abstraction. The side of a triangle
or an angle is something tangible, but a sine is a particular ratio, which is
meaningless unless you know how it is derived. Sines are very useful, but
are arguably not as real as the components from which they were produced.

Zero, though, was a vastly bigger and more powerful concept than the
sine, and when introduced to the West by Fibonacci it was to a mixed
reception. Mathematicians seem to have taken to the power that zero could
provide rather more enthusiastically than the public at large first did. This
certainly appears to be the case if we take seriously the poet John Donne’s



complaint in a 1620s sermon “The less anything is, the less we know it:
how invisible, how unintelligible a thing, then, is this nothing!”

The negative reaction to the new numbering system was not entirely an
emotional one. Accountants noticed the ease with which a 0 could be
converted into a 6 or a 9 in the new number system. This was considered
enough of an enticement to fraud that in 1299 the Florence city council
published an edict that numerals should not be used in accounts, where
numbers had to always be represented by words to avoid tampering. Even
in the time of Galileo, a Belgian cleric had to warn his suppliers that they
were only to use words for numbers in their contracts.

But before the flourishing of mathematics in Europe inspired by the new
notation and the power of zero, a new group of mathematical scholars in the
Middle East took the Indian notation and ran with it. As we have seen, the
system reached the West from the Middle East, and so became known as
Arabic numerals, but the key book that transformed the way mathematics
worked was titled On the Calculation with Hindu Numerals by its Persian
author al-Khwarizmi around AD 825. This was translated into Latin as
Algoritmi de numero Indorum, and it was the Latinized version of al-
Khwarizmi’s name that gave us the term “algorithm” for the kind of step-
by-step rules that a computer typically performs. Another book by the same
author brought us the word “algebra.” Now, thanks to the flexibility of the
new number system, math was able to take a step away into a new kind of
reality that paralleled many possible physical worlds.

Algebra might be a subject of fear for many school students, but it has
an unrivalled power in its puzzle-like problem-solving ability and its open-
ended approach. It’s useful to think back to the Ancient Greek way of doing
things to see why the Indian numerals and concepts like algebra were so
powerful. As soon as the Greeks moved away from their elegant geometry
they struggled because their approach to fractions was limited and difficult
to use, and because they had no mechanism to deal with the kind of
problem that we would deal with trivially using algebra. When they moved
away from diagrams and visual thinking they simply didn’t have the tools to
deal with the mathematics.



Take a trivially simple equation like A + B = C + D. The Greeks had no
way of dealing with a process like this symbolically. The best they could do
is write out the whole thing in words, a process not helped by the
convention of the time of not leaving spaces between words, so an
approximation to a Greek style equivalent would be

THEAANDTHEBTAKENTOGETHERAREEQU
ALTOTHECANDTHEDTAKENTOGETHER

In reality it would be worse than that, as the Greeks also had no tradition
of replacing an unknown quantity by a letter or other simple symbol (it
would have been highly confusing if they had used letters, because the
letters were already being used for numbers), so the “word equation” would
not have A, B, C, and D, but rather words that reflected the actual things
being combined. This was another example of the backward step that
resulted in not taking up Babylonian techniques—the different attitude the
Babylonians had to numbers enabled them to take on algebra-style
problems, even dealing with a form of quadratic equations in a way that
would be forgotten for millennia.

Inevitably, Greek mathematics did move on, and by the time of the late
Alexandrians from around AD 250, approaches to algebra had reached an
intermediate state, typified by the work of Diophantus. He seems to have
reached back to the more number-oriented approach of the Babylonians, but
adding in the Greek essential of accuracy and proof, rather than
approximation. Perhaps the biggest contribution Diophantus made was in
developing a symbolic approach to algebra problems that made them far
more compact and easier to address.

In his book Arithmetica, Diophantus made use of symbols and structures
to indicate unknown values, powers of 10, and arithmetic operations. What
he produced was not a true equation as we would now use one, but a
symbolic representation of such an equation that was consistent and
compact. So, for instance, his equivalent of the equation 2x4 + 3x3 – 4x2 +
5x – 6, if we use our lettering with S for square, C for cube, x for unknown,



M for minus, and u for unit, would have been SS2 C3 x5 M S4 u6.
Diophantus provided the starting point for the flourishing of algebra.

In a sense, al-Khwarizmi’s book on algebra, Al-jabr wa’l muqābalah
(the meaning is uncertain), was a reversal of some of the work Diophantus
did, in that it worked purely in words without even his clumsy equation
representations, but al-Khwarizmi presented something much closer to a
modern basic algebra primer in the way that he worked through the solving
of equations, particularly quadratic equations—even if it was just in word
form. Some sources have suggested that the development of algebra was
driven by the need to calculate the outcome of the complicated rules for
inheritance in the Arabic world of the period—which might also explain
why al-Khwarizmi generally avoided negative solutions to his equations.

With the translation of Arabic works like al-Khwarizmi’s, things begun
to turn around. As we saw, the new numbering system was resisted by the
general public for centuries after Fibonacci’s Liber Abaci was published,
but this was more the last struggles of a dying system than any sensible
operation. Those who had a vested interest because of their expertise in
using the abacus or a counting table (like an abacus, but without the wires)
may have resisted the new numbers as opening their field of expertise up to
the common herd—ironically, given the name of Fibonacci’s book. And we
all grumble about “new math” that isn’t done the way we were taught at
school. But the change could not be resisted. The superiority of the new
system was so obvious to anyone who understood the workings of
mathematics that there could be little doubt that it would take over.

In the medieval period, many scholars played down the importance of
mathematics. But one individual would begin a crusade to ensure its
significance was recognized.



7 He Who Is Ignorant

Mention the name “Bacon” to most scientists and they will almost certainly
think of the sixteenth-century politician and philosopher who developed an
early version of the scientific method, Francis Bacon. But Francis was
pretty much indifferent to mathematics. For him science was all about
collecting, codifying, and classifying. His was the kind of activity that the
great physicist Ernest Rutherford would later mock by saying “All science
is either physics or stamp collecting.” However, Roger Bacon, apparently
no relation, gave the impression that he had a much more modern take on
things. “He who is ignorant of mathematics,” wrote Roger, “cannot know
the other sciences and the things of this world.” Bacon wanted numbers and
mathematics to have a status in understanding nature that was simply not
recognized at the time.

Bacon appears to have been a fascinating character, though tracking
down anything definitive about him as an individual 800 years after his
birth has proven difficult. Apart from some unreliable paperwork dating
from a century after he died, the main source we have is Bacon’s own
writing and he rarely gives anything more than tantalizing glimpses of
biographical detail. Even Bacon’s date of birth, usually given as 1214, is
only accessible indirectly via a mechanism that involves the unusual need to
incorporate a value judgment into a calculation.

In 1267, in his masterpiece the Opus Majus, Bacon wrote: “I have
labored diligently in sciences and languages, and forty years have passed
since I first learned the alphabet . . . for all but two of those forty years I
have been in study.” The assumption is usually made that the forty years he
spent in studio (as he put it in the original Latin) began when he went up to



Oxford University, and as matriculation, the formal entry into a university,
was then usually at the age of thirteen, this takes us back to 1214. But that
would make Bacon’s rather cryptic remark about having “first learned the
alphabet” metaphorical, referring to the point where he took on serious
study. If it were literally the point when he first learned the alphabet, then it
makes his birthdate later—perhaps around 1220. But 1214 remains the most
widely accepted figure.

According to the fifteenth-century historian John Rous, Bacon was born
in the sleepy country town of Ilchester, though there is no other source
(certainly Bacon never mentions where he came from) to back this up.
What we do know, though, is that Bacon went up to Oxford University,
where his first task was likely to get his hair cut. Before they could attend
university, students had to undertake minor orders, effectively becoming
junior monks. One essential for this was to take the tonsure, the haircut that
leaves a large bald patch on the top of the head. One of the earliest
businesses to open in Oxford after the university was established was a
barbershop. At the time none of the colleges we would now find in Oxford
had been founded and there were no university buildings in the modern
sense. Accommodation was in lodging houses, while lectures took place in
large rooms scattered around the city, wherever space could be rented by
the teachers.

For that matter, the university itself bore little resemblance to the kind of
institution of that name familiar now around the world. Oxford started when
a schoolmaster called Theobald of Étampes decided to set up a school for
higher education in the town in 1095. This wasn’t an obvious location for
Britain’s first university—there were plenty of cathedral cities with a
tradition of the kind of ecclesiastical structures required, and the abbeys
were already providing centers of learning that could easily have been
extended. But Oxford had proved strategically significant in the civil war
that raged across England between King Stephen and the Empress Matilda
in the twelfth century and it was the transport links left over from its central
position that probably made it the focus for the UK’s first university.



Just as the establishment was getting settled in, modeling itself on the
University of Paris, which began teaching in the mid-twelfth century, a
murder in 1209 threatened to tear Oxford apart. The mistress of one of the
(supposedly celibate) students was murdered and angry mobs of
townspeople, straight out of central casting, were soon baying for student
blood. The town officials reacted with summary justice by hanging two
other students who simply happened to be in the wrong place at the wrong
time.

The university authorities weren’t sure what was worse—that the
townspeople should hang innocent students, or that the locals concerned
themselves with matters that the university considered to be within its own
jurisdiction. Seventy of the university’s masters, a fair percentage of the
teaching staff, left the town for a smaller group of schools that had recently
been established in an East Anglian backwater called Cambridge.
Thankfully for Oxford, a visit from the papal legate, Cardinal Nicholas, in
England to sort out the recalcitrant King John, restored order to the town. In
1214, the basic structures of the university were established, though it
would not formally receive its charter until 1231.

When Roger Bacon arrived, perhaps in 1227, the university was still a
very new establishment. Although it was technically part of the church
hierarchy, this didn’t stop it from being a lively, even a dangerous place.
Attacks leading to death in the gutter were commonplace, either through
criminal assault or becoming caught up in the large-scale brawls that
regularly broke out between townsfolk and members of the university. In
their dress, the scholars would not have been much different from the
youths of the town, but the characteristic tonsure made sure that they stood
out in a crowd. There was also fierce rivalry between different student
factions from the north and south of the country.

A good example of the atmosphere around the time that Bacon was
studying at Oxford is found in a report from 1238. The new papal legate,
Otto, was visiting the town and staying at Osney Abbey, located nearby to
the southwest. A party of students and masters went out to the abbey to
greet the legate, but the pleasant formality went horribly wrong when the



master cook of the establishment threw a pot of boiling water over an
unfortunate Irish student who was begging at the abbey door. One of the
other students then drew his bow and shot the cook dead (even on a social
occasion, appropriate weaponry was considered necessary and acceptable
for protection).

The welcoming party turned into a seething mob, and the legate had to
be smuggled to safety farther down the Thames at Wallingford. There was a
drastic clampdown on university freedoms, only lifted several months later
once the regent masters, the ruling lecturers at the university, had performed
an act of penance, walking barefoot through the streets of London to the
legate’s residence. Bacon, who was painfully plain speaking and incapable
of the kind of political activities necessary to make it up the academic
greasy pole, was unlikely to have been a regent master and so would not
have taken part in this degrading display of subservience. As for the
students, they soon resumed their wild behavior.

It would have taken Bacon six years to receive his BA (bear in mind that
the first part of medieval university training was essentially a high school
education) and then another two to become a master, Magister Artis, an MA
licensed to teach in the university. He could then have spent eight years
more to become a master of theology, with eight further years of studious
work before he could take the only available doctorate in theology, but there
is no evidence that he did so. Instead Bacon moved to Paris, where there
was much demand for Oxford masters, as Aristotle’s work had been banned
at the French university, but was now creeping back into the curriculum
without any local experts left to teach it. Paris was generally regarded as the
greatest of the three universities widely recognized in the West at this time:
Oxford, Cambridge, and Paris.

Bacon only stayed a few years, but in Paris he met Peter of Maricourt, a
mysterious figure known as Peter Peregrinus (roughly “wandering Peter”).
Peter, who wrote one of the earliest surviving treatises on magnetism,
steered Bacon toward an interest in the sciences, inspiring a clear
enthusiasm to undertake experiments. Returning to Oxford in the late
1240s, Bacon spent serious sums of money on books and kit. He wrote in



1267: “During the twenty years in which I have labored specially in the
study of wisdom, after abandoning the usual methods, I have spent more
than £2,000 on secret books and languages and instruments and
mathematical tables etc.” At the time, a substantial house would have cost 2
to 3 pounds to build. While there may have been a degree of exaggeration
in this claim, Bacon certainly seems to have worked his way through the
family fortune funding his scientific endeavors—and mathematics was
already an important part of his toolkit for understanding the world.

Running out of money may well have been the reason why, soon after
his return to England, Bacon joined the newly formed religious order, the
Franciscans. These gray-robed friars were building a large establishment in
Oxford that would stretch from the city’s south gate to the castle in the
west. Friars had more freedom than the longer-established monastics like
the Order of St. Benedict. What’s more, at Oxford the house had tight links
with the university. Bacon would have had access to books and was able to
spend a considerable amount of his time on natural philosophy. All seemed
to go well until around 1250, when Bacon was dispatched to the mother
convent in Paris and says that he spent ten years on “menial tasks.” It is
entirely possible that the outspoken Bacon upset the authorities one too
many times with his opinions.

While in Paris, Bacon developed ideas on calendar reform, realizing that
the Julian calendar then in use and dating back to Roman times made the
year around eleven minutes too long. He calculated that this meant that the
calendar went a day out of synchronization with the seasons every 125 to
130 years (the actual figure is 128 years). This doesn’t sound much of a
shift, but since the introduction of the calendar it had slipped more than a
week from its original dating, something that Bacon found intolerable, as it
meant that religious festivals would be held on the wrong dates. His plea for
reform was ignored and it was not until 1582 that the Gregorian calendar,
almost identical to the approach that Bacon detailed, was adopted in
Catholic countries, not reaching Britain until 1752. Different parts of the
United States typically converted with the countries that had originally
colonized them, leaving dating confused for decades.



While Bacon was still in Paris, a new head of the Franciscans was
elected to return the order to its roots of poverty and lack of possessions. He
began to shift the gray friars away from their academic links, eventually
banning them from writing books. But Bacon had become obsessed with
communicating science and searched for ways that he could get around the
ban. He wrote to a number of influential people, including Cardinal Guy de
Foulques, the papal legate to England. Bacon asked the cardinal for special
permission to be excluded from the ban so that he could write a book on
science, but the message got garbled and de Foulques replied by asking to
see this (nonexistent) book immediately.

What Bacon had hoped for was sponsorship—with his family finances
exhausted and no support from the Franciscans, he needed an external
source of money for research and materials. Instead what he received from
de Foulques were demands. While Bacon was nervously wondering how to
respond to the cardinal, he received unexpected news. In 1264 de Foulques
was summoned to Perugia to discover that the College of Cardinals had
elected him pope, and the next year he was crowned Clement IV. Suddenly
Bacon’s friend in high places had reached the top of the heap.

In 1266, a letter arrived from Clement, ordering Bacon to get started on
his exploration of science, and giving him authority to ignore the
prohibitions of his order. Bacon still needed resources, though, and tried to
raise money from his friends, only procuring a small amount. By January
1267, he decided instead to send the pope a brief proposal to procure further
funding and rushed into writing with what would become his masterpiece,
the Opus Majus. Anyone who has written a nonfiction book knows just
what a painful process producing an initial proposal can be. It requires the
author to squeeze the contents of an entire book into brief summaries.

Bacon could not manage the necessary restraint. His “brief” proposal
ended up as a massive book over 500,000 words long (around six times the
length of Are Numbers Real?), covering optics, astronomy, mechanics,
alchemy, agriculture, and medicine, with a final section that concentrated on
experimental science. While the Opus was being copied, because
everything at the time was handwritten, Bacon decided a covering letter



was necessary as the proposal had got out of hand, but this became so long
it was soon a book in its own right. Astonishingly, this happened a third
time, resulting in a third volume, so his final package for the pope was a
three-book epic of around a million words, all written in twelve months. (In
practice, only two books were sent, as the third was still being copied when
the messenger left.)

By now, Bacon had begun pulling together resources in Oxford, ready
for the eagerly anticipated go-ahead to write his masterpiece. But the
response he received from the continent left him in despair. While his
proposal was still on the road, Clement had died. With little remaining
support in the hierarchy, Bacon lashed out against those in the church who
thought it was enough to know theology and who were ignorant of science.
According to a chronicle written in 1370, Bacon was condemned for
“suspected novelties.” He may have been imprisoned at Ancona in central
Italy and seems to have been released by 1290, recorded by Rous as dying
in 1292.

Bacon was no great mathematician himself, but he left behind in his
Opus Majus an incomparable picture of the understanding of the world at
the time. The most unusual focus he had was on the importance of
mathematics for natural philosophers (and indeed for theologians). Along
with his intellectual predecessor Robert Grosseteste who also emphasized
the essential nature of mathematics, Bacon was certainly setting the
direction for the future, just as he did with calendar reform, putting him in
an interesting position that could be called the grandfather effect.

We are used to individuals being labeled the “father of X” where X is
some new approach—think “the father of computing” or “the father of
space flight,” but there are also grandfather figures who have, to my mind, a
subtly different role. The grandfather figures set a broad direction often
with a dead-end approach, but did not actually come up with a viable means
to head in that direction. Some time later, the father figures take the first
significant step that is in direct line of inheritance to the finished product.

I’d suggest that the Victorian photographer Eadweard Muybridge was
the grandfather of moving pictures. (His real name was Edward



Muggeridge, but he was always flamboyant and regularly reinvented
himself.) In his work, first at the behest of railroad magnate Leland
Stanford in California, and then at the University of Pennsylvania,
Muybridge produced many thousands of series of images of motion,
captured by using a bank of cameras triggered one after the other in
sequence as horses, people, and animals passed by. As an exercise in its
own right, producing these series of still photographs was useful and
informative, but what Muybridge also did was to display the images using a
crude projector that produced true, if very short, moving pictures. He even
had constructed the first purpose-built movie theater at the World’s
Columbian Exposition on the outskirts of Chicago in 1893.

Muybridge’s improbably named Zoopraxographical Hall was a full-scale
dedicated building in which he gave educational lectures on his work—but
in practice what the audiences came in to see for their 25 cents was boxers
fighting and scantily clad women parading up and down on the big screen.
(Muybridge preferred to capture images of humans with little or no
clothing, even producing sequences depicting naked bricklayers in action,
so that it was possible to study their musculature.) Although the quality of
Muybridge’s photographic work has always been recognized, his moving
pictures were long ignored, in part because of a concerted campaign by a
historian of film to have his work forgotten. It’s certainly true that
Muybridge’s technique was a dead end, where the mainstream technology
needed the use of roll film, but there is equally no doubt he demonstrated
the concept and earned that “grandfather” status.

Like Muybridge, Bacon did not make any great strides in the
advancement of the field, in his case mathematics, but he did emphasize its
importance at a time when most academics had a clear disdain for the
subject. Bacon may well have had an inferiority complex because, at the
time, the only subject in which it was possible to achieve a doctorate was
theology. But, he pointed out, the theologians of the day were dismissive of
the importance of mathematics, not understanding how valuable it could be.
It seems in part that this was due to an uncomfortable association that math
had with magic.



Bacon himself was strident in his attack on magic, showing that
charlatans used trickery to prey on uneducated people and get money out of
them. Yet many at the time, even academics, confused magic and
mathematics. This was due to an unfortunate coincidence that the word
pronounced “matesis,” meaning scientific knowledge and the entirely
different word “mathesis” meaning divination were both written as
“mathesis.” It was also the case that as late as Tudor times, “calculating”
was used to mean undertaking magic and it was common for the uninitiated
to confuse mathematical and magical texts.

There is no doubt that Roger Bacon did not have great expertise in
mathematics. In his Opus Majus, for instance, he makes the blunder of
thinking that a good example of Aristotle’s lack of complete knowledge was
that the Ancient Greek philosopher confessed to be ignorant about squaring
the circle, something that Bacon says is “a problem that is clearly
understood in these days.” As we have seen (see page 52), squaring the
circle or producing a square of the same area as a circle using only the
geometer’s tools of compasses and straight edge, was a problem that taxed
mathematicians since ancient times, but that ultimately proved impossible.

Despite his limited skill, though, Bacon was without doubt remarkable
for his time in emphasizing the importance of mathematics. The British
mathematician and contemporary of Isaac Newton, John Wallis wrote to
Newton’s mathematical nemesis (see page 110), Gottfried Leibniz toward
the end of the seventeenth century:

Those who in the present century (following Galileo) joined mathematics to natural philosophy
have advanced physics to an enormous extent. This was also being attempted by Roger Bacon
(a great man in a dark century) four hundred years ago (and more).

Bacon dedicated a whole section of his Opus Majus to mathematics,
though he used the term to cover everything from calendar reform to
astrology. This last may seem unnerving to those brought up to consider
astrology totally unscientific, but Bacon was a person of his time. While he
dismissed astrology when used as a form of fortune-telling, putting in the
same realm as other fraudulent attempts to extract money from easily



deceived members of the public, he did believe that the arrangement of the
heavens at the time of a person’s birth could influence their personality, and
it was in this form—a kind of early nature-versus-nurture debate—that
astrology was seen as potentially a respectable science in his day.

Bacon and his contemporaries had no way of knowing how little
influence the planets could have on humans, but this idea of astrology as
potentially giving a guide to personality (a bit like the Myers-Briggs and
other personality-type indicators beloved of some corporate businesses
today) made sense to those employing it, given the state of scientific
knowledge of the day. Looking at the more general need for mathematics in
science, Bacon pointed out its benefits:

Of [the] sciences the gate and the key is mathematics . . . He who is ignorant of mathematics
cannot know the other sciences and the things of this world. . . . Moreover, what is worse, men
who are ignorant of mathematics do not perceive their ignorance, and therefore seek no
remedy. While, on the other hand, knowledge of this science prepares the mind and elevates it
to a sure knowledge of all things, so that if it perceives these roots of wisdom which surround
this science and applies these roots to an inquiry into other sciences and things, then it will be
able to know all things in sequence without doubt or error, and in ease and power.

For Bacon, mathematics was more than a tool, it provided a way of
thinking, a structured application of logic that those ignorant of math did
understand, but that made the human mind better able to address and to
understand nature. He went on to demonstrate the importance of
mathematics, for instance, in understanding optics (the scientific subject
that he studied in most detail, and in which he had both original theories
and experiments), which requires a good understanding of angles,
geometry, and symmetry.

It is not that Bacon was the only one who had spotted that mathematics
should be taught. (The education of the period had some mathematical
content. The “quadrivium,” a significant section of the university
curriculum, consisted of arithmetic, geometry, astronomy, and music—all
either directly mathematical or with mathematical elements at their core.) It
was rather that Bacon was different in seeing the importance of



mathematics to all of science, and in taking it out of its confined world and
suggesting that it provided a mechanism for understanding.

Largely speaking, Bacon’s view would be ignored for a couple of
centuries. However, there were a few lights in the metaphorical
mathematical darkness. One, also from Oxford, came in the form of the
Oxford Calculators, also known as the Merton School or the Merton
Mathematicians. There were a handful of men associated with Merton
College in Oxford, one of the first Oxford colleges, who took the
importance of mathematics (and advancing it) seriously.

The group, notably Thomas Bradwardine and William Heytesbury
worked on logic, geometry, and methods of calculation, but are probably
best known for devising the law of falling bodies, or the “mean speed
theorem” that says that if you have an object undergoing constant
acceleration (such as a falling body) and one going at a constant speed, they
will cover the same distance if the velocity of the constant speed body is
half that of the final speed of the body that is accelerating. Interesting in its
own right, perhaps the most important significance of the work of
Bradwardine and his colleagues was their move away from Aristotle’s ideas
on motion to a position that was partway to that of Galileo and Newton.
Most importantly, unlike Aristotle’s drive from pure philosophy, for the
Merton calculators, mathematics had far more significance in producing
results.

Another example of the ability to extend mathematical thinking came
from the fourteenth-century French scholar, Nicole Oresme. It was he, for
instance, who worked out what we would now consider the mathematics of
powers—so, for instance, that y2 × y3 = y5. When we multiply two items
that are raised to a power like this, we add the powers together. Similarly he
envisaged the possibility of what we would now think of as fractional
powers, such as x½—though the concept of a power as we now use it did
not explicitly exist, so this was an indirect approach, but he was still starting
to make more of an abstraction from reality than the work at Merton, which
dealt with squares and cubes only in reference to the observed behavior of
moving objects.



Less abstract, but equally important, Oresme also seems to have devised
the idea of using a graphical representation of a mathematical structure.
Today we take it for granted that it can be useful to draw a chart
representing, say the function y = x2, which will enable us to get a better
visual understanding of that function, and also allows us to investigate
concepts like differentiation and integration that we will meet with the
introduction of calculus (see page 111). Oresme at the very least was the
first to popularize this approach, then called the latitude of forms, and even
speculated about the possibility of extending the approach into three
dimensions.

By insisting on the importance of math and of experiment, Bacon and
his medieval successors bridged the natural philosophy of his day and the
true science of the future. For Bacon, math was a tool to help us to
understand the universe, and as such could never exist in true isolation from
it. It’s probably just as well that he never came across the concept of
imaginary and complex numbers.



8 All In the Imagination

An imaginary number, the name mathematicians give to the square root of a
negative number, is a concept that at first seems totally alien to the way that
numbers had been related to the real world up to this point—so weird, in
fact, that it appears to prove the final detachment of mathematics from any
vestige of a connection to the reality. Yet over time, imaginary numbers
have proved surprisingly versatile in helping us understand the physical,
and are employed every day in calculations by down-to-earth engineers.

It all started with the negative numbers. Once mathematicians had got
their heads around these variants on the counting numbers as a practical
concept, they put them through their mathematical paces. It turned out that
multiplying two negative numbers together produces a positive one. It
might not seem entirely obvious why this is the case, but the easiest way to
think of it is to use the number line (see page 65). The minus sign
effectively represents a change of direction on the line, so by taking a pair
of changes away from positive, you are left heading in the positive direction
once more. Another way of thinking of it is that it was one of the
mathematicians’ arbitrary decisions, but one they had to make, as exploring
the alternatives shows that it’s the only option that results in consistent
results elsewhere.

The problem then was that if multiplying a negative number by itself
produced a positive result, and we already know that multiplying a positive
number by itself also produces a positive result, what was the square root of
a negative number? What number, when multiplied by itself, came out
negative? It couldn’t be either a positive or negative number, which seems
to leave few options.



Before we get too far down that line of thinking, it’s worth considering
the relationship between negative numbers and reality a little further. As we
saw in chapter 2, a negative number is useful in bookkeeping as a way of
representing a debt, and it can be regarded as a mechanism to indicate how
many goats have been taken away when we end up with fewer than we
started with—but these examples are really still about positive numbers,
used in a very specific way. I can’t show you a debt, for instance, I can only
show you the money that I will use to repay it. So can I produce something
of the real world that is explicitly negative? As it happens I can, provided it
is acceptable to go beyond pure counting. But this was not realized as a
possibility until the nineteenth century.

Think of the labels on the poles of an electrical battery. One is positive,
one negative. This description is generally attributed to Benjamin Franklin,
though when first applied it really simply meant something different and
didn’t have the true mathematical distinction of a positive and negative
number. However we now know that the charge on, say, an electron and a
proton are equal and opposite. They don’t have a direction, so it’s not like
the equal and opposite force of Newton’s third law—they are purely
numerical (“scalar” as mathematicians and physicists would say) in nature.
Yet the two operate just like positive and negative numbers in the way that
they add up and cancel out.

Although the definition of which charge is positive and which is
negative is arbitrary, the charges are effectively physical objects that operate
as positive and negative numbers respectively. It might seem at first sight
that modern discoveries also produce examples of real-world rational
numbers. We now believe that particles like protons and neutrons are made
up of smaller particles called quarks, which have charges of 2/3 or –1/3.
However, although these are genuine exact values, not approximations, they
only appear to be rational numbers because we didn’t know about them
when we assigned charge values of 1 to a proton and –1 to an electron.
Really, quarks have charges of 2 or–1, while protons and electrons have
charges of 3 and –3 respectively.



Returning to the square roots of negative numbers, once it was realized
that they could not be produced by any existing type of number,
mathematicians made the arbitrary decision to make them up. This wasn’t
because there was a demand for them, but simply the mathematician’s urge
to boldly explore new numerical worlds. Given the appropriate name
“imaginary numbers” by a sarcastic René Descartes, these strange creatures
became the new playmates of the mathematician. It was like opening up a
new dimension in the world of math, one that seemed to have no equivalent
in the physical world. Imaginary numbers were initially pure mathematical
toys—but surprisingly flexible ones because they extended all kinds of
mathematical operation.

The basic idea of an imaginary number emerged in a work by the
Milanese physician and mathematician Girolamo Cardano, dating back to
the first half of the sixteenth century. Cardano’s Artis Magnae Sive de
Regulis Algebraicis Liber Unus (book one of the great art of algebraic
rules) is probably best known for a degree of treachery involved in writing
it. Cardano had learned from fellow mathematician and engineer Niccolo
Tar-taglia a method for solving cubic equations (an equation with a cubed
unknown, and potentially lower powers as well, such as x3 + 4x2 + 2x + 5 =
0) on the assurance that Cardano would never tell anyone about the method.
But Cardano published it in his book. This wasn’t plagiarism—he fully
acknowledged Tartaglia’s role—but he had broken his word.

However, in passing in the book, Cardano also commented on the
solution to an apparently harmless little equation like x2 + 1 = 0. As this is
the same as x2 =–1 (produced by subtracting 1 from both sides of the equal
sign), its solution requires there to be a number that, multiplied by itself,
produces a negative value. Cardano remarked that such a number was “as
subtle as it is useless,” an assessment that would prove far from the truth.
The useful part would not come until the nineteenth century, though, when
the German mathematician Carl Friedrich Gauss realized that imaginary
numbers made it easy to extend the number line to turn it into a two-
dimensional number plane.



As we’ve already seen, it is common to think of the integers stretching
along a horizontal line with 0 in the middle, a line that heads off toward
negative infinity on the left and positive infinity on the right. Gauss put a
second number line at right angles to the first, with positive imaginary
numbers heading upward and negative imaginary numbers going
downward. Now, any point on the plane could be defined using a single
“complex number”—a value combining a real number and an imaginary
one. With the square root of –1 written as i, a complex number might be 5 +
2i—this would define the point that is five units along the real (horizontal)
axis and two units up the imaginary (vertical) axis.

It might seem that this is nothing more than relabeling the x and y
coordinates we are familiar with on charts, but the power of the complex
number is that it was possible to perform algebra on it in exactly the same
way we would a normal number and all the rules and mechanisms still
applied, but produced a result that worked in this two-dimensional space.
Such complex numbers proved ideal for describing phenomena like waves
that are naturally two-dimensional in form—and so imaginary factors crept
into everything from basic electrical calculations to sophisticated quantum
mechanical equations. As long as any final result shed the imaginary part,
so you didn’t end up with, say, an imaginary electrical current, these
versatile numbers proved and remain a very powerful mathematical tool.

Do imaginary numbers exist? They certainly don’t have a direct
correspondence to anything in the physical world. I can’t, for instance,
show you 3i apples. I can’t even use the kind of indirect method that’s
possible to show you –3 apples when I take three away for an existing set of
apples. However, anything can exist in the mathematical universe as long as
it is properly defined and consistent with the rules. And in this case,
because the way that the imaginary (and particularly complex) numbers
behave to usefully model two-dimensional changes, they have proved
excellent tools for coming to a real-world solution via an excursion into the
abstract mathematical world.

Imaginary numbers provided a tool that doesn’t exist in the real world.
We can export a problem from the real world to the imaginary universe,



operate on it in a way that wouldn’t work without the availability of
imaginary numbers, then translate it back to reality. Where a simple
counting number can be considered to have a direct, one-to-one
correspondence to an object or a set of objects, imaginary and complex
numbers operate in a parallel universe, but are still able to give us insights
into physical reality.

Before imaginary numbers really took off practically, though, old-
fashioned, straightforward positive numbers and geometry would be used to
conquer the universe.



9 The Amazing Mechanical Mathematical
Universe

One of the reasons it took a long time for math to play its full part in
science was that the generally held view of the universe was riddled with
metaphysical mysteries. When natural philosophers believed that
everything outside the Moon’s orbit was perfect and made of a different
element to the rest of creation (the so-called quintessence), and perhaps
even rotated because it was powered by angels, it was hard to see how
mathematics could be of any help. Yet Galileo opened cracks in the ancient
Greek model of the universe, and made the first significant steps toward the
use of math to predict the behavior, for instance, of projectiles and
pendulums.

Riding on the shoulders of this giant, Isaac Newton constructed a
mechanical picture of the universe, where a good enough mathematician,
with perfect data and immense calculating power, could know everything.
Although Newton was too much a Christian (if an unorthodox one) to say
this, his successor and superfan, the eighteenth-century French scholar
Pierre-Simon, Marquis de Laplace, had no such hesitation. Laplace was
unusual for his day in being an atheist. (According to legend, when
Napoleon asked Laplace of God’s place in his philosophy he said, “I had no
need of that hypothesis.”) And he believed that the universe was literally a
hugely complex mechanism like a vast clock, where with the right
information and intelligence it would be possible to perfectly predict the
future. He wrote:

Given for one instant an intelligence which could comprehend all the forces by which nature is
animated and the respective situation of the beings who compose it—an intelligence



sufficiently vast to submit these data to analysis—it would embrace in the same formula the
movements of the greatest bodies of the universe and those of the lightest atom; for it, nothing
would be uncertain and the future, as the past, would be present to its eyes.

Newton would never have gone this far, yet emphasizing his position on
the cusp of the change in the fundamental place of mathematics in science,
Newton made the calculations that would enable him to establish his laws
of motion and gravity in a new, mysterious mathematics, the method of
fluxions, that dealt with the infinitesimally small. His mathematics might
not have predicted the future perfectly, but it gave a remarkable ability to
predict forces and their impact, particularly the mysterious force of
gravitation. Yet to avoid scaring his audience, or more likely to make his
methods less obvious, Newton painstakingly translated as much of his work
as he could into old-fashioned geometry for his masterpiece, the Principia.
Newton’s clockwork universe was one of certainty and predictability.

Newton’s translation was possible thanks to the work of his French
predecessor, the philosopher René Descartes. We tend to remember
Descartes for two things—proclaiming “I think, therefore I am,” and having
the so-called “Cartesian coordinates” named after him, where we specify
locations on a chart with x and y values. But this was just a tiny part of his
work, which took in everything from theories on light to attempts to take a
scientific view on the soul.

Those Cartesian coordinates were far more than a simple way of
representing a point as a pair of numbers (an approach that Bacon was well
aware of in the thirteenth century). Descartes was responsible for analytical
geometry, a mechanism for translating from geometrical forms to the
equivalent algebraic equations and vice versa. For example, an equation
like y = x2 + 2x + 3 could be represented by plotting out the values as x/y
coordinates on a chart. Similarly, many natural processes that were known
to change in a way that could be plotted out on a chart could be matched to
an algebraic equation, making it much easier to predict outcomes.

This approach of Descartes, fulfilling Oresme’s concept of plotting a
function as a chart (see page 93) would prove immensely powerful in the
development of Newton’s work and enabled him to hide away most of his



algebraic workings in the form of less transparent geometry. Descartes
himself seems to have been unaware of the power of the idea. He says in La
Géométrie, where he introduced the concept, that what he was providing
was an easy mechanism for constructing geometric forms—in essence, he
had in mind more the way that Newton would turn algebra into geometry
than what we now see as the real power of turning spatial problems into
algebra. But whatever his intent, Descartes provided a mechanism for
translating the geometry that had a more visual link to the world around us
to the more abstract-feeling algebra that was the ancestor of most modern
scientific mathematics.

Newton’s mathematical wizardry, the method of fluxions, had a long
ancestry. It had been realized as far back as Ancient Greek times that by
slicing up a shape into smaller and smaller segments it was possible to
make an approximate calculation of the area of that shape. For instance, if
you want to find the area of a circle, you could imagine dividing that circle
up with a series of straight cuts from the center to the circumference,
producing segments like two-dimensional equivalents of orange segments.
If you make these segments thinner and thinner, they become closer and
closer to triangles, for which the area is easy to calculate. Pile up those
segments in alternating directions and you have something that
approximates to a rectangle that is r wide and πr high. It doesn’t take a
mathematical genius to work out what the area of the circle is.

Although approaches along this line had been suggested since the time
of the Ancient Greeks, it was the fifteenth-century German philosopher
Nicholas of Cusa who made use of the method to come up with the familiar
πr2. He didn’t suggest that this was a proper mathematical approach that
produced an accurate result as that would mean dealing with an infinite set
of infinitely small segments, but Nicholas accepted that the method
effectively predicted what the right answer would be as the segments got
thinner and thinner, and the result of piling up the segments became closer
and closer to a true rectangle.

Others took up this approach, notably the astronomer Johannes Kepler,
but it was Newton’s contemporary John Wallis, a mathematician who would



have been far more famous had he not been overshadowed by Newton, who
suggested a way to get around the problem of dealing with the infinitely
small. He suggested that the small segments being used to, for instance, find
a total area, could be considered “dilutable”—that they be made smaller to
the extent that was required, without ever totally disappearing away. The
term is distinctly suggestive of the approach taken by Newton in his great
leap forward, developing his method of fluxions where he was always
referring to flowing quantities (the very name, fluxions, suggests this). And
Newton’s fluxions would not just enable him to crack the problems of
understanding gravity—they would start a mathematicians’ war that lasted
100 years.

Isaac Newton was a man with an extraordinary breadth of interest. This
is clear from a look at the catalog of his library. By the time of his death he
had around 2,100 books—a substantial collection at the time, over half the
size of the entire library at his college, Trinity College, Cambridge.
However, alongside his 235 books on the physical sciences and
mathematics, there were 138 on alchemy and a massive 477 on theology.
His interests didn’t stop there either, with 207 works of literature, 46 travel
books, 31 on economics, and even 6 titles on medals. (He would become
Master of the Royal Mint, the organization responsible for Britain’s coins
and medals.) Such was his diversity of focus that for much of his working
life he spent significantly more time on alchemy and theology than he did
on science.

Even so, Newton’s contributions to science, from a better understanding
of light and color to his theory of universal gravitation, were enormous.
And underpinning his tour de force on gravitation and motion, the book
Philosophiæ Naturalis Principia Mathematica, usually shortened to the
Principia, was the method of fluxions with its powerful mechanism. At its
heart was an unnatural-feeling mathematical tool that was brought into play
in predicting the behavior of every component part of the universe.

It is part of the Newton myth that was already coalescing toward the end
of his life, when he had become the first celebrity scientist, that Newton
devised the method of fluxions in his early twenties. Back then he had an



enforced break at home on his family farm in Lincolnshire, when
Cambridge was evacuated because of an outbreak of the plague. And he
certainly gave some thought to the matter then. But from his notebooks it
seems clear that Newton gradually assembled his thoughts on fluxions over
a couple of decades, while he would not publish full details until a
considerable time after he had developed it.

Although this new way of doing mathematics would also deal with the
method of calculating areas by dividing a shape into increasingly thin slices
that we have already seen, Newton’s method of fluxions was primarily
assembled to calculate the outcome of factors that changed with time like
acceleration, essential to deal with the force of gravity, and to compare, for
instance, how the Moon travels around the Earth with the way that an apple
falls. We can see how the method of fluxions works by performing a quick
calculation on acceleration using Newton’s approach. This will involve a
few equations. They are surprisingly painless, but feel free to skip them if
they aren’t for you.

Acceleration is the rate at which velocity (speed and direction) changes
over time. To keep things simple in this example, we’ll assume that the
direction of movement stays the same, so we’re only dealing with the rate at
which the speed increases. This is easy to work out in a steady “linear”
relationship where speed is, for instance, 10 miles per hour after 1 second,
20 miles per hour after 2 seconds, 30 miles per hour after 3 seconds and so
on. To work out the acceleration we can say that it is the change in speed
per second—in this case the speed changes by 10 miles per hour every
second. A convenient way of looking at this acceleration is that it’s like the
gradient of a hill. Take a look at a chart of how speed changes with time:



The acceleration is just the slope or gradient of that line—it is the
change in speed, divided by the change in time. But in the real world, a lot
of relationships don’t turn out to be as simple as straight lines. Newton
knew from reasonably early on, for instance, that the force of gravity was
an inverse square law—one that varied with the square of the distance away
from the source. The result of plotting how speed varies with this kind of
relationship is not a straight line, but rather a curve.

Let’s take a look at the acceleration where there is a simple square
relationship between speed and time. The acceleration is such that speed =
time2. In that case, the relationship between speed and time would plot out
like this:



Because the result is not a convenient straight line, we can no longer
simply divide the change in speed by the change in time. However if we
considered a very short moment in time, then the curve will almost be
straight, and we can approximate to the outcome during that moment by
using the same old approach of dividing the change in speed by the change
in time. This is what Newton did. Let’s call speed s and time t. Newton
called the teensy extra bit of time that goes by in the short moment a
“fluxion,” represented by a sort of squashed zero, o. So the change in time
when we roll things forward a tiny bit is (t + o) – t, which makes the change
in speed, bearing mind that s = t2:

(t + 0)2 – t2



So to get our acceleration, we divide the change in speed by the change
in time:

If we multiply out the squares and get rid of the brackets, this becomes:

Which simplifies to:

Now we can cancel 0 top and bottom and get:

2t + 0

Finally we let the little fluxion 0 flow away to nothing and we get the
answer 2t, which is correct. We have worked out that the acceleration at
time t is 2t. However, to get to this correct answer, something worryingly
dubious has happened. When 0 becomes zero, then the previous step where
0 was canceled out top and bottom involves dividing zero by zero—which
as we have seen is not considered an acceptable mathematical operation.

Newton was well aware of this problem and tried to deal with it by what
amounted to concealment. He said that he only ever dealt with ratios, and
that his fluxion was, as John Wallis had said, dilutable—a flowing
substance that disappeared away, but wasn’t actually zero. It wasn’t a great
argument, but the fact was that the method of fluxions worked and Newton
wasn’t going to abandon it just because it wasn’t entirely mathematically
sound. He managed to conceal as much as possible in the Principia by
translating his algebraic calculations into geometrical arguments whenever



he could, but he would soon have a more pressing problem on his hands:
competition.

This came from the German mathematician, Gottfried Wilhelm Leibniz.
Independently from Newton, as far as we can tell, Leibniz had been
working on his own equivalent of the method of fluxions. Newton was
aware that there was some work underway in Germany because both he and
Leibniz corresponded with the Royal Society in London. Newton
exchanged a couple of suspicious letters with Leibniz, notably one where he
made use of one of the conventions of the day and wrote:

I cannot proceed with the explanation of the fluxions now, I have preferred to conceal it thus:
6accdæ13eff7i3l9n4o4qrr4s8t12vx

What Newton had done was to write down a sentence he felt
summarized the method, then noted the frequency of the letters in the
sentence and used this as a coded note of his achievement. The idea was
that this would establish Newton’s priority, though the sentence encoded
above—Data æquatione quotcunque fluentes quantitates involvente,
fluxiones invenire: et vice versa (given an equation that consists of any
number of flowing quantities, to find the fluxions: and vice versa)—hardly
clarifies what his method involved. (He did provide further cryptic
clarification later on.) At this point Newton could easily have published his
method and established his priority, but throughout his life he was reluctant
to share his ideas, often having them wheedled out of him by colleagues. He
kept his workings to himself.

Any doubts Newton had about his competitor came to a head in 1684,
when Leibniz published the details of his equivalent to the method of
fluxions, which he called calculus, after the Latin name for the little stones
used in classical calculating tables. Leibniz used a significantly different
notation than Newton, which proved considerably easier to use, but the
principles were the same. Where Newton would indicate the rate of change
of, say, x by putting a dot over it, a style known as pricked notation, Leibniz
picked up on the convention of using the Greek letter delta to indicate a
small change and transformed this to the letter d to indicate the infinitesimal



change that Newton called a fluxion. This made Leibniz’s rate of change be
represented as dx/dt—both clearer (it was easy to miss Newton’s dot) and
more flexible in approach.

Leibniz also had a distinct notation for the reverse of this “differential
calculus,” used for the approach of adding up disappearingly thin slices to
calculate an area that Nicholas of Cusa had championed. Leibniz called this
integration and used an elongated S symbol, ∫, to represent “summa,” the
Latin for a sum. Newton had no real cause to complain. It had been his
choice not to publish his method. What he did, though, was gradually to
build a weight of feeling among British mathematicians that Leibniz was
guilty of plagiarism.

Eventually, in 1708, the Scottish mathematician John Keill made this
accusation explicit (quite possibly at Newton’s request) in the Philosophical
Transactions of the Royal Society. As tensions rose, the Royal Society of
which both Newton and Leibniz were fellows, announced an inquiry,
setting up a commission of eleven men to establish who had priority. The
report, written by the president of the Royal Society himself, found in
Newton’s favor—though this is probably no surprise given that the
president at the time was Isaac Newton. The outcome was a frosty
relationship between British and continental mathematicians that lasted for
decades to come.

Whichever approach was adopted among the mathematical fraternity,
and whoever got there first, both men would come under fire from the
philosopher bishop George Berkeley who pointed it out in a magnificently
titled paper, The Analyst: A Discourse Addressed to an Infidel
Mathematician, that something was astray in the whole concept. The infidel
Berkeley was addressing seems to have been the astronomer Edmond
Halley, who had been instrumental in getting Newton’s Principia published.
Halley was an atheist and challenged Berkeley’s beliefs. In response,
Berkeley tore into the method of fluxions.

He pointed out that fluxions were being used for undertaking
calculations even though they had effectively flowed away to nothing—he
referred to them poetically as “the ghosts of departed quantities.” Using



such an approach seemed to depend on faith to accept an unimaginable
concept. Berkeley considered this hypocritical in those who criticized
religion because it made exactly the same demand of its followers.
Whatever his motives, the bishop was correct in highlighting the problem
that we have already discovered. It was true that the method of fluxions
(and, for that matter, calculus) worked by performing arithmetical
operations with what were effectively zeroes, procedures that weren’t
mathematically viable.

According to Berkeley, Newton and Leibniz only arrived at the correct
result by chance, as a result of two errors canceling each other out. As he
put it, “by virtue of a twofold mistake you arrive, though not at science, yet
at the truth.” Newton’s escape route depended on the fluid nature of his
small changes—he would argue that they were in the act of flowing away,
rather than being absolutely gone. In the example above, when we go from
2t + 0 to 2t, Newton would say that the result tended to 2t as 0 tended to
zero, while never actually making the infinitesimally small value become
zero. This fix would remain mathematical hand-waving without a firm basis
until the nineteenth century when two mathematicians would finally patch
up calculus for good.

In the 1820s, Augustin-Louis Cauchy effectively redefined infinity and
the infinitesimally small, for the purposes of calculus, as being variable—
just a label for something that tended toward a value. Then in the 1850s,
Karl Weierstrass introduced the concept of limits, the standard approach
used today, which makes it possible to establish a final value as the limit of
making something infinitesimally small if the result approaches that limit
faster than a required minimum. Weierstrass provided a formal mechanism
for proving that calculus really did work as long as limits were being
approached quickly enough. In a sense, Weierstrass did away with infinity
in the workings of calculus. His new version of potential infinity never
required that final result to be approached, as long as the (finite) rate of
getting closer was big enough.

We will return to infinity in a big way in chapter 12, but for a while here
it seemed that something that was difficult, perhaps even impossible, to



conceive in the real world had influenced mathematics, proving extremely
valuable in making Newton’s vision of a mechanical universe real.
Although the establishment of limits meant that infinity never truly came
into play, calculus feels like mathematics that somehow manages to sneak
up on reality by making use of a magical world of the infinitesimal and
infinite. And yet, paradoxically, it only achieves a match with reality when
this is done.

At the heart of this paradox is that calculus requires us to imagine what
is happening in an instant of time—yet in a truly instantaneous moment it
seems impossible that anything can happen. This was reflected in another of
the paradoxes of the Greek philosopher Zeno (see page 37), known as the
arrow. Although it’s not the exact wording of the original paradox, probably
the best way to envisage the arrow in action is to imagine that somehow we
have an arrow floating stationary in front of us in space, and another arrow
flashes past it, fired from a bow.

Let’s imagine freezing time and taking a look at the two arrows at the
moment the second arrow is exactly alongside the first. In that frozen
moment in time, the two arrows appear identical. One is moving; the other
isn’t, but in that moment, both hang in space. Our inability to distinguish
between the two, Zeno suggested, shows how artificial our ideas of motion
and change are.

We now would say that there are clear differences in some of the
physical properties of the two arrows. The moving arrow has inertia.
Without time moving on we can’t detect this, but it is still there. For that
matter, special relativity (see page 211) makes it clear that anything moving
has extra mass, so the arrows would be distinguishable by making an exact
comparison of their masses, had that been possible to the Greeks.

Although the image of the arrows is puzzling, it also establishes that,
despite its odd feel, calculus, and the way it is applied to understanding
nature, is grounded in the real world. Provided we can cope with concepts
like an instant in time or an infinitesimal change in position, then calculus is
the natural mathematical approach to take. It was derived, after all, not from



obscure mathematical considerations but from understanding how things
change in nature while taking smaller and smaller views on them.

All this was very much about the behavior of Newton’s clockwork
universe, which would inspire Laplace’s vision where the future was fully
determined by the past, provided we had enough information. However, by
the time Newton did his work, the seeds were already being sown to enable
mathematics to take a far less certain view of the future—a view based on
chance and circumstance.



10 The Mystery of “Maybe”

Statistics seems a harmless enough concept, related straight back to those
prehistoric finger counts based on goats transactions. If I kept a set of tallies
from different times that my neighbor borrowed goats, I could compare
them and see how my neighbor’s goat-borrowing habit ebbed and flowed
with time. I wouldn’t be able to do anything more than make direct
comparisons of higher and lower levels, but I would be able to indulge in
basic statistics.

Originally derived as a word from the same source as “state,” the
discipline of statistics started as little more than an accumulation of data on
a country, the kind of thing you would find in the CIA’s World Factbook
today. This was surely a harmless enough activity—and yet the famous
quote, “There are three kinds of lies: lies, damned lies, and statistics,”
reflects a viewpoint that seems to have persisted as long as statisticians
have existed. They might claim to be innocent mathematicians, but they are
clearly up to no good.

Exactly who was being quoted on the matter of lies and statistics is not
clear. The quotation is often said to have been the work of the British prime
minister Benjamin Disraeli, who was known for his witty and sarcastic
turns of phrase. He denied responsibility, claiming that he was himself
quoting Mark Twain—yet no one has found evidence of these words in
Twain’s written work. Perhaps it was a passing remark to the statesman
when the author was visiting Britain.

It’s certainly true that from its earliest days, statistics has, as a discipline,
had something of a macabre feel to it. The first statistician worked on the
subject of death. His name was John Graunt, and he was no professional



mathematician, but rather a button maker who had an interest in how the
world worked. Graunt got hold of the “bills of mortality,” tables giving
details of deaths in London from 1604 to 1661 and added in what he could
find about births, then pulled these together in a book where he attempted to
give a picture of the underbelly of life in London through the study of
numbers.

In part this was a matter of presenting the existing data more usefully,
collecting together numbers that had been spread across many different
documents so, for the first time, for instance, it was possible to see how
deaths from the plague went up and down from year to year. However,
Graunt wasn’t satisfied with simply reformatting existing data. He also
combined numbers in a way that produced information that hadn’t existed
previously. So, for instance, he made early estimates of the population of
London (this was before there was a regular census) based on secondary
data, and also tried to produce a picture of how different life expectancies
would be spread around a group of people.

It was this life-expectancy work, plus some later analysis by the
astronomer Edmond Halley, that led directly to the founding of an industry
that could be said to prey on human uncertainty in the combination of
statistics and what might happen in the future—the insurance business.
Starting in the coffee houses of London, which were then bustling meeting
places for business, this large-scale regime of betting on future outcomes
based on the best current statistics spread across the world to become an
inevitability of life.

Despite Disraeli’s disdain, statistics as a discipline on its own seems
fairly staid. Yet when statistics and probability—the mathematics of chance
—came together, sparks flew. If there had been any conception of the
relation of mathematics and the world to date, it had been one of math
slavishly modeling what was happening now, or explaining what had
happened in the past. But this new brand of math, championed by lowlifes,
dared to describe the future. This was not the clockwork future of Newton
and Laplace’s universe, but a future of uncertainty and risk. The result was
a major extension of the reach of mathematics in describing aspects of the



universe that were yet to be—and eventually probability and statistics
would become essential to describing everything from the behavior of gases
to the mysterious quantum, as we will discover in chapter 13.

To succeed in the blossoming insurance industry, it wasn’t enough to
have good numbers. They had to be turned, as Graunt had shown was
possible, into a crystal ball that would help predict the future. And this
meant turning to the habits of a far lower class of beings than mere button
makers. This was the world of the gambler. In the end, the insurance
business is a form of casino where the house, in the form of the industry,
hopes to stay ahead by offering odds to the customers that give the
“players” the chance to get back more than they put in, but in most cases
will result in profits for the insurance company.

Gambling has been in existence for a long time. Polished knucklebones
called astragli, an early form of four-sided dice, have been discovered in
archaeological sites dating back thousands of years. And as long as coins
have existed, coin-tossing games seem to have proliferated, using the head
and tail sides of the coin as a simple generator of random values—at least,
random as long as the coin is honest. Human beings have been happy to bet
on everything from races to the weather for as long as records go back.
However, gambling was largely a matter of intuition and guesswork for
both player and for the honest game organizer until the Italian
mathematician (and enthusiastic gambler) Girolamo Cardano came on the
scene.

We’ve already met Cardano in the world of imaginary numbers and
mathematical intrigue (see page 98), but his attempts to put the vagaries of
chance onto a mathematical footing would be just as important, both to the
future of mathematics, and to its separation from the everyday and tangible.
Cardano was born around 1500 and wrote his book on what would become
known as probability before he was thirty, though it wasn’t finished until he
was in his sixties and wouldn’t be published until the 1660s, by which time
it should have been old news. The fact that it wasn’t shows how advanced
Cardano’s thinking was. The book was Liber de Ludo Aleae (Book of
Games of Chance).



It would have been impossible for anyone who played many coin-
tossing games not to notice that, with a fair coin, each side had the same
chance of turning up. There was no way of knowing what the next toss
would reveal, but neither head nor tail was more likely to be thrown. What
Cardano did was to take this simple, practical observation and turn it into a
numerical structure—to wed together the numerical concept of fractions
with a view to what might happen in the future, providing an insight into
the workings of a simple, easy-to-understand system like a coin toss.

Of course, that proviso about using a fair coin was an important one.
One of the difficulties with making probability respectable was the
frequency with which gamblers, particularly professional gamblers,
cheated. Whether they were armed with a double-headed coin to win the
toss whenever they chose, or were masters of the simple but highly
deceptive “flick from the top” technique* used in the ubiquitous three-card
trick (also known as “find the lady”), the professionals seemed almost
magically able to mislead the poor marks who took part in their games. The
borderline between professional gambler, illusionist, and thief was fuzzy at
best.

When I give talks about probability and statistics, I usually open with a
coin-tossing example. I produce a coin, which I tell the audience that I have
spent some time before the event tossing until I managed to toss nine heads
in a row. (This is perfectly feasible, though it does usually take some time.)
I then ask the audience if my next toss is more likely to be a tail, after I
have thrown so many heads, if it has a 50/50 outcome, or if it is more likely
to be a head, because this coin clearly prefers heads. A few will always say
“more likely to be a tail,” a viewpoint that is called the gamblers’ fallacy,
because in reality the coin has no memory. It can’t react to what has
happened before. Yet it’s very difficult after a run of a particular outcome
not to assume that the opposite outcome is more likely.

Most of the audience will usually give the correct mathematical answer
of 50/50. But a few do go for heads again. This could be just a matter of
another fallacy, the “hot hand” fallacy that often crops up in sports. This is
where fans assume that a run of good results means that an individual or



team is on a “winning streak.” However, by the time I have tossed three
more heads in a row, the audience is beginning to be suspicious. And they
are right to be: I am using a double-headed coin. (At this point the question
is always, “Where did you get it?” It was eBay.) What’s interesting is that
there is inevitably a fascination with the coin, the same kind of fascination
we feel for clever con tricks in the movies. The audience wants to see the
double-headed coin, to get their hands on this wicked prop.

So back in Cardano’s day there was awareness that either side of a fair
coin had the same chance of coming up. (This isn’t strictly true. Because of
the way we flip them, a standard coin has a slightly higher chance of ending
up showing whatever side is upward to start with—it’s about a 51/49
chance.) But this feeling of equal chances had not been put in a form that
enabled mathematics to be engaged. Although we have various different
ways of expressing the chance of, say, a head coming up in a coin toss—an
even chance, for instance, or 50/50—the most useful way to make progress
mathematically is to use a number that we can manipulate with arithmetic.
It was Cardano who was the first to represent probabilities as ranging from
0—meaning “it won’t happen”—through to 1 for “it definitely will
happen.” This made the chances of heads turning up on a toss a 1/2.

This is fairly straightforward, but it was just the starting point of
Cardano’s efforts to put guesses of future chance onto a sound mathematical
footing. (Cardano wouldn’t have used the term “probability,” which had
been in use meaning “uncertain but likely” from the fourteenth century in
France, but the first recorded use of the modern mathematical sense of
“probability” only dates to 1692.) Taking the same approach as he had with
the coin, it was now possible to say that the chance of picking a particular
card out of a regular modern deck, for instance, would be 1/52.

Cardano also worked out two of the most essential ways of combining
probabilities that would prove essential to any games player (bear in mind
that he was both a mathematician and a fanatical gambler). The first method
made possible the task of combining the probabilities of getting several
possible outcomes. So, for instance, from Cardano’s initial insight we know
that there is a 1/6 chance of getting any particular number—a six, say—



with a single throw of a die. But if you want to know the chance of getting
either a one or a six, then the outcome is going to be 2/6 or 1/3.

Similarly, Cardano was able to show that to get the same throw on each
of two dice—the chance of getting a double six or of getting “snake eyes”
in craps—the mechanism of combining the probabilities is to multiply the
fractions together. This makes the chance 1/6 × 1/6 or 1/36. There is just 1
chance in 36 that the specific double required will come up. What’s more,
he realized that this was subtly different from wanting to get a one and a six
from two dice. In that case, the desired outcome could be produced by
getting a one on the first die and a six on the other, or a six on the first and a
one on the other, making the chance 2/36 or 1/18.

However, the cleverest realization Cardano had was to find the way to
work out what the chance of getting a six with either of two dice (or any
other multiple combination of number generators). The situation where, for
instance, I’ve got a throw of two dice and I need to get at least one six—I
don’t care how. This kind of combination of probability is one we face all
the time. The natural inclination is to do some sort of addition. There’s a 1/6
chance of getting a six on each die, so a first shot might be just to add these
together. But this clearly is wrong. If this were true, you would only have to
throw six dice to guarantee getting a six, which anyone who has played dice
will realize is not the case.

The problem was to find a way to represent the “on either die” selection.
Cardano’s genius was to notice that you could turn the same problem into a
“on both dice” requirement, which could then be handled by the technique
he had already developed of multiplying the probabilities together. If the
chance of getting a six with one die was 1/6, then the chance of not getting
a six was 5/6. So the chance of not getting a six with both dice was 5/6 ×
5/6 or 25/36. Which meant that the chance of getting a six with either was 1
– 25/36 or 11/36. Notice that this is just a little less than twice the chance of
getting a six with a single die, which would be 12/36. And as the number of
dice thrown goes up, the value gets closer and closer to 1 and certainty, but
it never quite makes it, always leaving a tiny margin for having a whole lot
of throws with no six coming up.



Cardano’s work was built on by those who followed him, notably the
French mathematicians Blaise Pascal and Pierre de Fermat, who between
them solved a notorious problem that would make probability the tool of
preference for the insurance trade. The puzzle, known as the problem of
points, featured a game in which two equally matched players are playing
for an amount of money. The game is structured so that the first person to
reach a certain number of points gets the prize. But they have to stop
playing before the game is finished. How do they divide up the prize
money?

Let’s imagine players get a point when they win a game, and at the time
they have to stop, one player has 12 points and the other 7. To work out
how to make the split, Pascal thought that the important thing to consider
was how many rounds each player would have to succeed in, if the game
had continued until it had an overall winner. Say the target to win was 15
points. In this case, the first player only needed success in 3 more games to
win, while the second player needed 8. By looking at what was likely to
happen as a result of the distance away from winning, Pascal was able to
produce a mathematical statement of the fair way to split the prize. What he
had developed, effectively, was a concept called expected value, the result
that is expected after a large number of runs of a process with random
outcomes.

To take a very simple example of expected value, imagine you were
asked to play a game where you threw a die ten times and won the average
of the numbers thrown in dollars. How much would it be worth paying to
take part in the game? Common sense says that your winnings are likely to
be in the middle of the possibilities and for once common sense (not usually
the best guide when it comes to dealing with probabilities) is right. If you
don’t give any thought to it, you might say that value would be 3, as it’s half
of 6. But if you think about putting the values 1 to 6 in a row, the middle of
the range sits between 3 and 4, so the expected value is 3.5.

You could work this out more formally by thinking you have a 1/6
chance of getting 1, a 1/6 chance of getting 2 and so on, up to a 1 in 6
chance of getting 6. So by adding 1 × 1/6 + 2 × 1/6 + 3 × 1/6 . . . 6 × 1/6



you would get 21/6 or 3.5. So if the expected amount you could win is
$3.50, it should be worth paying anything less than that to take part. On any
particular game you might lose. But as long as you play the game a
sufficient number of times (and you have enough stake money) you should
win overall.

This concept of calculating the expected value of a transaction is the
basis for a whole range of modern financial systems—and it is by no means
limited to gambling. Most notably, insurance companies are like the player
in the game. They try to set the odds so that, though they might lose one
particular “game” (or “policy” as they like to call them), the insurance
company wins overall. This is also true, of course, of casinos. Importantly,
the approach can be used to compare different options, to see which is the
most attractive.

So, for instance, imagine that you were offered two possible
investments. One has a 1/2 probability of returning $1,000 and a 1/2
probability of returning nothing. The other has a 1/4 probability of returning
$1,900 and a 3/4 probability of returning nothing. Which is better? We can
work out the expected value from the probability times the outcome. So in
the first case, the expected value is $500 and in the second case it is $475,
making the first the better investment, even though there is a potential to
win more in the second. You can also add together different possible
outcomes if there is more than one possibility for a particular investment.

The expected value, like other probability-based mechanisms for
predicting the future, is not magic. It can’t do the impossible. It won’t tell
you what you will win on a single roll of a die. But it does give a picture of
the likely outcome as long as the process is repeated a good number of
times. At least, when playing the right kind of game. As a member of the
extremely talented Bernoulli family pointed out, there are some
circumstances where the concept of expected value is not a useful guide.

Before we get to the Bernoulli demonstration, we can see the way that
expected value isn’t always appropriate in a simplistic way with a rather
silly imaginary lottery. (I am keeping the examples to games of chance,
where the probabilities can be calculated accurately, but the same approach



can be taken with business investments, insurance deals, and so forth,
where instead we have to rely on the best guess for a probability.)

In this lottery there are two tickets for sale, each costing $10. One has a
9/10 chance of winning $11.11. The other has a 1/100,000 chance of
winning $1 million. In each case, the expected value is $10. To have an
expected value that is the same as the entry price is an unusually good
outcome for a lottery. In gambling games like a lottery or casino game, the
expected value usually has to be less than the cost of the ticket, so that the
organizer is likely to make a profit. But my lottery is especially generous.
Because the expected value is the same in each case, we should be
indifferent as to which of the tickets we are allocated. But they feel like
very different outcomes—and the outcome that appeals most is likely not to
depend on the expected value, but on your personal circumstances. The
choice of which ticket to buy would probably depend on how important $10
is in your daily life.

Let me illustrate this effect with a more dramatic example. In talks I give
based on my book Dice World, I run a psychological test called the
ultimatum game with the audience. This game is much used by
psychologists to show up how economists don’t understand people.
(Psychologists love to show up the failings of economists.) In the usual way
that the game is played, a small prize, such as $1, is made available to the
two players. The first player tells the other player how this money will be
split between them, and then the second player says “Yes” or “No.” If the
second player says “Yes,” the money is split as the first player announced it
would be. If the second player says “No,” then no one gets anything.

Economists and logicians would assume that the second player would
always say “Yes” as long as they were offered anything. Because otherwise
they would be turning down money for nothing, which appears to be a
bizarre decision. If you ask people, “Would you turn down money for
nothing?” they usually say, “Of course I wouldn’t.” But in practice, unless
the first player offers the second player around 30 percent or more of the
prize, they usually do say no. These figures apply in the United States and
Europe. The split varies between cultures, but there is always a percentage



below which most people would say “No.” People are prepared to lose
money to punish the other player for being unfair. However, there’s a way
to turn the game around and show that the psychologist hasn’t got a perfect
grasp of the situation either.

When I do my talk, after running a conventional ultimatum game I ask
the audience to imagine we’re playing it again, but instead of it being
funded by a psychologist, this time it is being funded by a billionaire, who
has put up a stake of $10 million. (In practice I have usually done the
experiment with £10 million, but the impact is similar.) Realistically the
second person would be very unlikely to turn down an offer of $100,000,
for instance, even though the first person would be getting $9,900,000 and
the second is only receiving 1 percent. So I get the audience to stand up and
start telling them a decreasing amount that they would get as their split of
$10 million. I ask them to be honest and sit down at the value at which they
would say “No,” and turn down the cash.

As there is no real money involved, because I am yet to find a billionaire
willing to fund the experiment (offers to @brian clegg on Twitter, please) I
think that many people exaggerate how much they would turn down. But
typically the response goes like this. A few people sit down above the
$50,000 mark. By somewhere in the $10,000 to $5,000 region, around half
the audience has sat down. When it’s down to $500 a significant majority
are seated. And at $1 I have between 1 and 4 stubborn folks still standing.
It’s a fascinating experiment when you think just how much money people
are prepared to give up (or at least say they are) in order to take revenge.
But the experiment reflects the same effect as my strange lottery with those
alternate expected returns of a 9/10 chance of winning $11.11 or a
1/100,000 chance of winning $1 million. The handful of people left
standing at the end of the ultimatum game are often teenagers or children.
For them, $1 is worth significantly more than it is to a middle-aged
audience member.

This leads us neatly back to the Bernoulli family, and the way that a
family member pointed out a flaw in the expected value concept. The
mathematician in question was Nicolaus Bernoulli, son of Johann and
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brother of the most famous member of this overachieving Swiss family,
Daniel. Nicolaus considered the outcome of another simple game. All we
do to play the game is take note of a series of coin tosses. The amount a
player wins depends on what comes up. Each time the result is a tail, the
prize doubles and the games goes on. As soon as the result is a head, the
game ends with the player winning the value that has accumulated to that
point.

So, for instance, if we start with the prize set at $1, if it’s heads on the
first throw, you win $1. If it’s tails, you go on to another throw. If heads
comes up on the second throw you win $2. If you make a third toss and the
result is heads this time, you get $4. If you get another tail, then the
winnings are $8 if the next toss is a head . . . and so on. The thing that
makes it interesting, Nicolaus pointed out, is to ask how much of a stake
you would be prepared to put up to take part in the game? All we should
need do is to calculate the expected value and as long as your stake is less
than that, it is worth taking part.

To find the expected value we take the probability that the first head will
occur on each throw and multiply it by the amount you would win in that
case—then we add together all the options. So we have a 1/2 chance of
getting a head on the first throw. In that case, the prize will be $1, so the
contribution to the expected value in this case will be 1/2 × $1 = $0.50. The
chance of getting tails on the first throw then a head on the second throw is
1/2 × 1/2 = 1/4. And the prize would be $2. So the contribution to the
expected value would be 1/4 × $2 or $0.50. If we got as far as the third
head, the chance would be 1/8 and the prize $4, giving an expected value of
1/8 × $4 or $0.50. There’s a pattern emerging. The expected value at each
stage is $0.50.

So to get the overall expected value, we simply add together all the
contributions from each possible win, which gives us the series:

(1/2 × $1) + (1/4 × $2) + (1/8 × $4) + (1/16 × $8) . . . or to put it another
way

$0.50 + $0.50 + $0.50 + $0.50 . . .



Now, bear in mind that “. . .” means to carry on without stopping. That
should mean that however much money it costs to play this game, as long
as you are guided by the expected value, you ought to play. If, for example,
it costs $1 million a play, you should do so, because the sum of $0.50 +
$0.50 + $0.50 + $0.50 . . . is more than that. It’s more than any number. The
limit of this series is infinite. The game has an infinite expected value. But
the problem that Nicolaus Bernoulli underlined was that the expected value
is only really useful if the process is repeated very many times. It can only
tell us so much about any particular instance.

It’s hard to imagine anyone sensible paying $1 million to play a game
where they have a 50 percent chance of winning just $1. What the player
needs to do instead is to think what chance of losing they are prepared to
take. We know, for instance, that there is a 50 percent (1/2) chance of
winning no more than $1, a 75 percent chance of winning no more that $2,
an 87.5 percent chance of winning no more than $4, a 93.75 chance of
winning no more than $8, and a 96.875 percent chance of winning no more
than $16. So to invest even $16 is a long shot.

For fun I just played the game by tossing a coin. The outcome? It came
up heads on the third throw—a $4 win. All the tools of probability have
their place. At the simple end, the ability to work out the chance of getting a
number from either of two dice is handy indeed; for instance, if you are
playing backgammon. Expected value is essential in working out whether
or not to take on lots of financial commitments. But each tool has to be used
with an understanding of its implications for a specific game or investment,
not just “averaged over a lot of people” or “averaged over a lot of
transactions.”

We wouldn’t, for instance, be happy with a bank system that was usually
good, but every 10,000 transactions would lose all the contents of your
account. It really is no reassurance that 99.99 percent of transactions work
perfectly if your account happens to be one of the ones that is accidentally
emptied. This is why performance statistics that tell us that, say, 99 percent
of cases are handled well, are highly dependent on the outcome of them
going badly. If it’s trivial, like on-time delivery of a burger in a fast-food



restaurant, then that statistic is very good. If it’s the chance of dying when
going into a hospital for a routine checkup, we would be worried indeed.

Where probability-based statistics proved extremely valuable was in
dealing with a mass of data, or a mass of participants, whether that mass
represented “the American people” or “the molecules of gas in a cylinder.”
In each case, as long as there was no need to worry about the impact on
individuals, the statistical approach enabled mathematics to give us eerily
correct predictions of how the mass would behave.

The Scottish physicist James Clerk Maxwell, as we will see in the next
chapter, was one of the first to drive much of his approach to science from
mathematics. And he was also one of the first to apply statistics to the
behavior of gases. The starting point for his work was the matter of smells.
Why does the odor of a smelly object (bad or good smell—it doesn’t
matter) take so long to get from the object to our nose? It was known by the
nineteenth century that the molecules in gases fly around at high speeds,
traveling at hundreds of meters (or yards) per second, yet a smell typically
took a number of seconds to percolate across a room.

The German physicist Rudolf Clausius had suggested that the problem
was a matter of collisions. Although molecules were indeed traveling very
quickly they were constantly colliding with each other and bouncing off in a
new direction. This meant that for a new set of molecules—the “smell
molecules”—to diffuse out through the air would take a long time, because
they would typically only travel a very small distance before an impact
resulted in a change of direction.

Clausius assumed that gas molecules all traveled at the same speed, but
this didn’t make any sense to Maxwell. It seemed much more likely that the
speeds of molecules would vary—some higher, some lower, with their
speeds distributed in a curve with a peak somewhere between maximum
and minimum. Maxwell realized that the only approach that could be taken,
if this were true, was a statistical one, enabling him to get an overall picture
of how the molecules behaved. This so-called Maxwell distribution gives a
manageable way to make calculations on the speeds of gas molecules



dependent on the temperature, transforming the way that the behavior of
gases could be predicted.

This ability for statistics to give us an overview of many varying
individuals is just as important when dealing with people as it is with
molecules. This is what makes it possible to get a picture of what is
happening in a large group of people and to predict everything from
garment sales to medical requirements. However it is important to be aware
of the limitations. Even the statistical behavior of molecules can result in
misleading outcomes. If we look, for instance, at the second law of
thermodynamics, which says that heat flows from hot to cold, and disorder
stays the same or increases in a closed system, it tends to be treated as if it
were an unbreakable fact, but in practice, it is statistically based.

The implication of the law is that, for instance, if we open a partition
between two boxes of gas, one warmer and one cooler, then over time the
two will mix and we will end up with a uniform gas at an intermediate
temperature. This is what the second law predicts (the more ordered state of
two separate sets of molecules, selected by temperature, giving way to the
disordered mix). However in principle there could be, purely randomly, a
temperature gradient briefly reestablished. Purely by chance, more hot
molecules could head into one box than into the other. It’s unlikely to have
a major impact with so many molecules involved, but it could happen.
Statistics provide us with an overview likelihood, not a certainty.

When dealing with people, the particular danger is not just applying the
typical pattern to an unusual grouping, like those gas molecules, but
applying the statistics of a mass of people to one individual. We rarely need
to consider what happens to a single gas molecule in a whole cloud of gas
because they are effectively identical—but people are not. There is a
notorious case in the history of statistics when in 1999, British mother Sally
Clark was convicted of murdering her two baby sons. She would remain in
prison for nearly four years before the verdict was overturned. She was
convicted on the basis of a terrible misuse of statistics—both in terms of the
mathematical competence involved in the calculation and in the way an



incorrect leap was made from the big picture of statistics to the specifics of
an individual person’s situation.

The trial took place after a second of Clark’s baby sons, each aged under
three months, had died of Sudden Infant Death Syndrome (SIDS),
sometimes referred to as “cot death.” A high-profile pediatrician, Professor
Sir Roy Meadow, was brought in by the prosecution as an expert witness.
Unfortunately, Meadow’s expertise did not extend to probability and
statistics. A study had put the chance of a child dying of SIDS in a
household with no contributory factors as 1/8,543. Meadow told the jury
that this meant that the chances of both of Clark’s sons dying from SIDS
could be discovered by multiplying the probability by itself, making it a 1
in 73 million occurrence, something that Meadow claimed should only
happen by chance once every 100 years.

This evidence was central to Clark’s conviction. Yet the use of numbers
was impossibly flawed. As Cardano had discovered, multiplying together
the probabilities of two unconnected events is the correct way to work out
the combined probability. So we know that where the chance of throwing a
six with a single die is 1/6, the chance of throwing six twice in a row is 1/6
× 1/6 = 1/36. The two throws are unconnected. There is nothing about the
circumstances of the first throw that has any influence on the second.

However, what failed to come out in the trial is that this use of the
mathematics simply doesn’t apply in the case of a condition like SIDS.
There is strong evidence that this is a condition where two such deaths
would not be unconnected events. If a death has occurred, it is far more
likely that there would be a second occurrence than simply taking the
chances of SIDS striking in the general population. Research published
soon after, in response to the trial, suggested that double SIDS cases would
occur in the UK not every 100 years, but more like every 18 months.

Leaving aside the bad handling of probability, the other problem with
the prosecution case is that it went from “something has a low probability
of happening by chance” to “something did not happen by chance.” This is
a totally unjustified leap that is based on a profound illogicality. Take, for
example, a major lottery like the EuroMillions game. The chance of



winning the main prize in this is 1 in 116,531,799—it is ridiculously
unlikely—yet the game is won most weeks. With a big enough pool of
people involved, unlikely things happen time and again. It’s not enough to
say that because something is unlikely, it is not going to happen.

Apart from the simple fact that with a large enough population involved,
something with a low probability will almost certainly happen, the final
error was that even if there had been a 1 in 73 million chance of the deaths
occurring at random (and bear in mind that 1 in 73 million was
overinflated), the inference that was being drawn was that in all the other
72,999,999 in 73 million cases the deaths would be as a result of murder.
What the prosecution should have been comparing was the probability of
this happening randomly with the chances of a mother in the UK
committing child murder twice—which certainly wouldn’t have been
72,999,999 in 73 million. Statistics are hugely valuable in science (and the
law), but they have to be handled properly.

It is very clear that we can’t apply the same kind of predictive statistics
we see in the second law of thermodynamics to human behavior, appealing
though the idea might be. Even though there are psychological reasons why
we tend to get “groupthink” or mob behavior, a collection of people is far
more complex in behavior than is a collection of gas molecules. The great
American science-fiction writer Isaac Asimov based his Foundation series
of stories on a concept he called psycho-history, where an extremely
powerful form of statistics is able to predict the development of the culture
it studies, down to individual events. But this could never work in practice.

Asimov was inspired by the classic history book The History of the
Decline and Fall of the Roman Empire by Edward Gibbon. This seemed to
show that specific indicators could be used to predict the way that an
empire would fall apart. Asimov extended the (already shaky) concept to a
whole mathematics of behavior. But in reality, anyone trying to use
statistics to predict the future of anything as complex as a civilization
comes up against the same problem faced by those who try to make long-
term forecasts of the weather. The system is far too complex, with too many
variables involved, to make meaningful predictions. It is highly chaotic in



the mathematical sense. This means that small changes in starting
conditions—typically, in the case of a population of humans, caused by the
actions of individuals—have a huge impact in outcomes.

Probability and statistics have become immensely valuable tools in the
armory of all scientists. However, this has proved a problem time and again
when the scientist in question does not have sufficient expertise in the
mathematics and misuses the statistics. There is no doubt here that the math
is useful, and does play an important role in the understanding of the
science, but there is a danger if too great a weight is put on statistics as a
mechanism of “proof,” which does not help science and can result in taking
an unrealistic leap from the apparently correct numbers to thinking we
know more about the reality of the universe than we do.

Some of the problems are not due to the mathematics at all, but rather to
the way that they are employed. A lot of these come up in the kind of
paranormal research I covered in my book Extra Sensory. Say we are
running a trial for telepathic ability. We select the people using a
preliminary test and work only with those who get high scores. This is fine,
as long as we throw away their initial test results. But what commonly
happened in trials is that the results from the selection tests were included
with the “real” tests. As these results were specifically selected because
they were good, they inevitably bias the overall figures toward a positive
outcome.

This is a form of “cherry-picking,” a common problem where statistical
methods are used. If only data that supports a hypothesis is used and the rest
is ignored or given less weight, the outcome is useless—yet it is frequently
done. Sometimes this is blatant and intentional. In other cases, like
including the selection trials, it can be done accidentally without realizing
that the outcome is being biased. Another way this might happen is to look
for reasons to discard data. It is fine to discard data because something went
wrong during an experiment as long as the data has not been examined.
Once it has, though, there is always a danger of finding a reason to drop the
data, even subconsciously, as the data didn’t support the desired outcome.



Here’s another example of unconscious cherry-picking that was
produced by an early parapsychology experimenter, J.B. Rhine. In his years
of experimentation, Rhine ran many telepathy tests with a series of
individuals. These usually consisted of running through a pack of “Zener”
cards, each displaying one of five possible symbols, with the subject
attempting to transmit the card value to another person by telepathy. These
cards came in packs of twenty-five. One test subject, Mr.A.J. Linzmayer
managed to guess fifteen cards in a row correct. Rhine announced
triumphantly that “The probability of getting 15 straight successes on these
cards is (1/5)15 which is one over 30 billion.”

Here the cherry-picking involved is quite subtle, because Rhine selected
that particular run. If he had literally done the test once with the fifteen
cards, then the probabilities he cited would technically have been correct,
but a single run wasn’t enough to establish good reliability. This meant that
the highly successful run was just part of one test of many hundreds. The
test with the run of fifteen cards wasn’t selected at random. It was
specifically chosen because it had this sequence. Making that choice was,
itself, an act of cherry-picking.

Apart from cherry-picking, there is a wide range of statistical methods,
not all of which apply in all cases, yet it is not uncommon for an
inappropriate method to be used. Perhaps the most common issue is with
small samples and the selection of the sample. Many “soft science”
experiments are done with a small number of participants, which means it is
rarely possible to make any definitive conclusions from the outcome. The
selection part comes in because it is easy to select participants that reinforce
a particular view. A blatant example (that has happened) would be for
someone taking a survey of what car people liked best to choose a sample
of people who currently owned one particular model of car. They inevitably
would not represent the population as a whole.

Even the design of an experiment can bias the results. In some areas of
psychology and parapsychology testing, the experimenters are looking for
very small deviations from the expected norm. Let’s say that they are
undertaking an experiment where purely randomly you would expect that



you would get result A 50 percent of the time and result B 50 percent of the
time. And let’s run the test multiple times to get a better picture. Say
twenty-five times. By choosing an odd number, immediately there is no
way to get an exact 50/50 split of outcome.

There are plenty of tests to show how likely the data collected would
have occurred by chance. And you will often see in reports that a particular
psi ability must surely exist, because the probability of these results
occurring by chance are very low. However, in presenting this information,
the experimenters make a leap too far. Apart from anything else,
psychologists tend to use much lower standards of chance prevention than
physicists. It’s common for psychology experimenters to consider an
outcome that had a 5 percent chance of occurring randomly, to not be
random—but, of course, such things happen all the time. Worse, though,
just because they have shown that the results were unlikely to be the result
of random chance does not show that a particular hypothesis is true—that
they were caused by psi abilities.

This aspect of interpretation can result in researchers who have made
perfectly acceptable use of statistics to still find it extremely difficult to
explain just what their results mean. That was certainly the case in the
discovery of the Higgs boson at CERN’s Large Hadron Collider (LHC).
Finding a Higgs boson, predicted to exist by the standard model of particle
physics to give some of the other particles their mass, is not like finding a
rare tiger in the wild. You can’t catch it, take photographs, or take a blood
sample and test its DNA to make sure that it is what it appears to be, as you
could with the tiger. Apart from anything else, the experiment does not
actually show us a Higgs boson at all. What it does instead is to reveal the
indirect traces left by other particles that are assumed to be the result of the
Higgs particle decaying. Because of the indirect nature of the discovery, all
researchers can do is to offer a probability of what had occurred—and this
is where the problems begin.

The way that probability is often presented by scientists is in terms of
“sigmas,” which refers to the symbol for the statistical measure called
standard deviation. If you imagine plotting a distribution of the number of



times particular outcomes occur randomly from a particular event, they
often form a bell-shaped curve in what is called a normal distribution.
Think, for instance of the range of weights of cell phones. They will mostly
fall within a fairly tight range and will tend to be distributed pretty evenly
around the average weight.

Not every random occurrence obeys a normal distribution, because the
nature of the information being plotted can mean that it forms a different
shape. Textbooks sometimes give human height as an example of a set of
data that fits a normal distribution. But it doesn’t. The average height of a
U.S. male is around 5 foot 6 inches, which gives a clue to what’s happening
here, because the typical U.S. male (the median height in statistical speak)
is taller than this. The right-hand side of the distribution, where height is
getting bigger, only extends for about a foot above the average before the
numbers get tiny. There are very few men taller than 6 foot 6 inches. But
the left-hand side of the distribution extends more than 2 feet below the
average. The outcome is that the distribution is not truly normal, but is
“skewed” to the right with a long shallow tail to the left.

Standard deviation is a measure of the shape of a distribution (it is only a
helpful measure in a symmetrical distribution like the normal distribution).
The standard deviation tells us how the distribution of occurrences spreads
out—whether there is a very wide spread of data, or whether most are close
to the mean (average). If a particular outcome is given a 1-sigma level, then
just over 68 percent of the time we would expect the outcome to fall within
that range as a random occurrence. With a 2-sigma level it would fall within
that range around 95 percent of the time. This is the kind of level often
adopted in the “soft sciences” like psychology. However, for the Higgs
boson, the 5-sigma level was adopted. In that case we’re looking at an
occurrence that would only fall outside that range in 1 in 3.5 million cases.
But how can we describe that in terms of the certainty (or otherwise) of
actually having discovering the Higgs boson?

This caused a terrible minefield for the media when they tried to explain
what had happened. What the statistics show is that it is very, very unlikely
that the results produced by the LHC were produced by chance alone. But



like the Sally Clark case, we can’t just invert this to say that the unlikeliness
of these results occurring at random means it’s very, very likely that the
Higgs exists. It doesn’t actually show it’s likely that a Higgs exists, merely
that there was very likely a cause, which we are assuming to be a Higgs.

To make matters even worse there is a very subtle distinction here that
it’s almost impossible to avoid tripping over. Some news outlets reported
that the results meant that there was a 1 in 3.5 million chance of there not
being a Higgs boson. But in reality the statistics show there was a 1 in 3.5
million chance of this data occurring without a cause. The measure doesn’t
say how unlikely it is that this outcome happened as a result of chance. It
says how unlikely this data is, if there were no cause. It’s the difference
between saying “given these results, the chance there is no cause is very
small” (wrong) and “given a totally chance occurrence, these results would
only occur very infrequently” (right). That subtle difference in stress makes
a significant difference in terms of its value to science.

What seems to be the case with probability and statistics is that, applied
correctly, they can have a good match to reality. This makes sense. We are
not truly modeling a real-world process in abstract mathematics here.
Instead we take a numerically based fact, or near-fact about the physical
world—for example “a fair coin has a 1/2 probability of tossing a head and
a 1/2 probability of tossing a tail”—and use the numerical methods that are
relevant when this numerical fact is the case. We are not so much applying
mathematics to the universe as applying mathematics to numbers.

When probability and statistics are applied correctly, the problem tends
to be that understanding does not come naturally to us. Because we
recognize and understand the world through patterns (see page 28), we see
patterns where they don’t exist all the time. This makes us uncomfortable
with the real nature of randomness and distributions of events, making
probability-based statistics a tool that has to be handled with care, even by
the professionals.

Probability and statistics have proved increasingly important to
mathematically based physics—and not just in the hunt for the Higgs. But
before probability proved to be at the heart of the nature of the tiny particles



that make up all matter, another tipping point was reached in the way that
mathematics was driving scientific thinking. A tipping point that had light
at its heart.



 
____________________
* In the three-card trick, the operator has a stack of three cards in one hand and appears to lay them
out by dropping a card from the bottom of the stack. With practice, though, especially if the cards are
slightly bent, it’s possible to make the card come from the top, which is how the trick is worked.



11 Maxwell’s Mathematical Hammer

A few years ago, I took part in a debate at London’s Royal Institution (RI).
The idea was, in a fun way, to decide who was the first scientist. It is no
coincidence that all four of the characters put forward in that debate have a
place in this book. In the debate, the early work of Archimedes and Roger
Bacon (my candidate) was trumped by Galileo, whose modern scientific
credentials made him the winner. But there was one much later candidate,
James Clerk Maxwell, put forward by the resident historian of science at the
RI.

On a trivial argument Maxwell could take the title, as the word
“scientist” was not coined until his time. Up until then, the accepted term
was the clumsy “natural philosopher,” but it was argued in 1834 that just as
an artist worked in art, it seemed reasonable that a scientist should be a
person who worked in science. (Thankfully they didn’t go for “savant,”
which was one of the alternatives suggested at the time.) But the argument
presented on Maxwell’s behalf in the debate was more subtle than this.
Maxwell was the first in the field of science who put forward a theory
where the mathematics operated in true abstraction from reality.

Maxwell was not the first scientist to use mathematics of course.
Newton, as we have seen, wove magnificent scientific spells with his math.
But Maxwell’s work on electromagnetism, which also defined the nature of
light, was more tightly tied to the mathematics. The final version of his
stark, beautiful equations stood aside from any consideration of the physical
reality, derived from a pure mathematical formulation. And so began a
painful separation. Newton’s basic mathematics is surprisingly simple if
you can get past his deliberate attempts to make it obscure. But Maxwell’s



work reaches the state where his results are incomprehensible to the casual
observer, who has to then take the theory’s predictions on trust, which has
important implications for both science and the support of science in
society.

If you haven’t heard of Maxwell, it’s not particularly surprising. It would
be interesting to take a poll of physicists, asking them for three names: the
greatest physicist in history, their favorite physicist of all time, and the
physicist most underrated by the general public. Isaac Newton or Albert
Einstein would be likely to win the first category. Richard Feynman would
top the second poll hands down. But James Clerk Maxwell would be most
likely to triumph as that underrated individual. It’s notable that Einstein had
three pictures on his wall: Newton, Faraday, and Maxwell.

Maxwell’s life story has been told often enough in popular science
books, though it is worth noting where his unusual name came from.
Maxwell’s father John was born John Clerk, but John’s father inherited an
estate and title from the Maxwell side of their family. When John’s father
died, the title and the main Middlebie estate went to John’s older brother,
while John took on the subsidiary Glenlair estate, at which point he tacked
“Maxwell” onto his name to emphasize the connection, so James was born
a Clerk Maxwell, but the name is not hyphenated and is shortened to
Maxwell.

After a privileged upbringing that allowed much freedom to go his own
way and explore the natural history of the countryside around his home,
Maxwell began a physics degree at Edinburgh University, but transferred to
the more prestigious Cambridge, where he began a career that would take
him up to Aberdeen and down to King’s College, London, before spending
a period of time financing his own work on the Glenlair estate. He
apparently enjoyed the lack of pressure that came from working outside of a
university, and it was only the opportunity to become the first Cavendish
professor at Cambridge, designing a brand-new laboratory that would push
Cambridge to the heart of the physics of the day, that drew him back into
formal academia.



Along the way, Maxwell worked on a whole range of topics, notably on
the use of statistics in thermodynamics (see page 133), the use of polarized
light to monitor strain in transparent materials, and the nature of color
perception, even producing the first ever color photograph. But his real
legacy was his work on electromagnetism. Maxwell’s predecessor as the
master of electricity and magnetism, Michael Faraday, had come up with a
revolutionary way of considering these phenomena by imagining that
electrical charges and magnets produced a field. His concept of a field was
something like a contour map, filling all space, where the values of the
contours reflected the strength of the electromagnetic phenomena. When a
wire cut through the contour lines of a magnetic field, it would produce an
electrical current because of its interaction with the field.

Although Faraday was without doubt a visionary scientist, he had no
mathematical training and made very little use of math in his work. Other
scientists had applied numbers to electrical and magnetic effects, but they
treated them as an indirect “force at a distance,” just as Newton had
considered gravity. Maxwell was arguably the first to see the real power of
Faraday’s field concept, and found a way to apply mathematics to the
concept of fields that would transform the understanding of electricity and
magnetism.

To model a field mathematically required a way of adding up its
influence from many points in space, because the extravagant thing about
fields was that they extended infinitely through three-dimensional space. Of
itself, the mathematics was straight-forward stuff—the calculus of Newton
and Leibniz was designed for exactly this kind of operation (though rarely
in three dimensions). But Maxwell had to go one step further, extending the
reach of calculus. In Faraday’s “force fields” like those of magnetism and
electricity, the value at each point in space was the force produced by a
magnet or electrical charge. And a force is a vector. Unlike, say, mass,
which is just a number (referred to as a scalar), a force has both a size and a
direction. Mass just sits there and is, but a force has to act in a particular
direction. A vector is a double mathematical value that combines two



quantities. In the case of a force, it describes how strong the force is and in
which direction it pushes.

At the time Maxwell was working, the mathematics of vectors was just
starting to be developed—a necessary extension because it was pretty
obvious that a vector couldn’t just be treated like a simple number. It was
known, for instance, that to add two vectors was more like an exercise in
geometry than arithmetic. The simplest way to add vectors was to draw two
arrows, with the length of each arrow representing the size of the vector
(the force, or instance) and the direction of the arrow indicating the
direction in which the vector is pointing. The process begins by drawing an
arrow representing the first vector, then drawing the next arrow starting at
the head of the previous one. The result of the addition was found by
drawing a third arrow replacing the other two that ran from the starting
point of the first arrow to the head of the second. However, Maxwell needed
more than simple addition of two fixed values. To explore the calculus of
vectors he had to deal with changing values that varied from point to point
throughout space, and it was by using this that he began to work on
electromagnetism.

Initially Maxwell did not move too far from the mechanical pictures of
the world that were used to model pretty well everything at the time. He
played with describing electromagnetism (the combination of electricity
and magnetism) as a fluid flowing through an imaginary porous solid, with
the flow of the fluid representing the lines of electromagnetic force. Like all
good models, his attempt not only matched the observed values that were
used to produce the model in the first place, but also made predictions that
could then be verified, notably predicting the way that the strength of the
fields fell with the inverse square of the distance from their source.

His “fluids in a porous solid” model was a useful first tool, but only
went so far. Most significantly, the fluid flows, representing the lines of
force, were fixed in position by the channels through the solid. But in the
vast majority of cases, for example in Faraday’s increasingly successful
electric motor and generator, the lines of force were moving. To model this
would need a total transformation of Maxwell’s model, which as yet he



could not fathom. It would be a good five years, in part because he packed
up and moved down to London at around this time, before he could rework
his ideas with any success.

A lesser scientist may well have tried to modify his existing model to
deal with moving fields, but it’s often the case that great scientists are those
who realize when to throw away their old approach, even if they had
invested considerable time and effort into it, and start again with something
fresh. In this case, Maxwell moved from a model involving the movement
of fluids, even today among the trickiest aspects of physics to deal with
accurately, to the better-understood field of mechanics. He began by
looking at magnets and the need for his model to produce magnetic lines of
force that would have tension in one direction, corresponding to the
attraction of opposite magnetic poles, and pressure at right angles,
corresponding to repulsion of like poles.

He imagined that a magnet was made up of a collection of tiny cells that
were free to rotate. When a real body, like the Earth, rotates, it bulges
around the equator and squashes up a bit at the poles because of the
rotational forces acting on it. This would also happen to his tiny cells. If a
collection of the cells had the same axis of rotation, then there would be
tension along that axis as the cells squashed up, and outward pressure at
right angles where the cells were bulging, exactly the effect required to
model the action of the magnet.

So far, so good, but in practice the cells would tend to seize up as they
interacted, and Maxwell was missing the electrical part of the equation. To
allow for this, he envisaged that there were far tinier spheres surrounding
each cell, in the same way that ball bearings are used to prevent friction
around rotating axles. Unlike the cells, which could only rotate in place,
these little balls could flow through the material, corresponding to the flow
of electrical current. Although it was only a crude representation, it was
startling how close Maxwell came to a picture of metal composed of atoms
with electrons flowing through it, well before the electron, or even evidence
for the existence of atoms, was discovered.



At this stage, Maxwell’s model worked well for some aspects of
electromagnetism, but couldn’t explain induction, the essential physics
behind the transformer—how a changing current in one wire produces a
surge of current in another. Faraday had correctly deduced that switching
the current on or off produced a magnetic field, which expanded out and
contracted back through the second wire, producing electricity. Maxwell
managed to use his cells (which by now he had transformed to be
hexagonal) and tiny balls to model this operation. By considering the way
different layers of cells would interact as the balls flowed around them and
by adding in a resistance to the balls’ movement that meant they would
slow down over time, he extended his model to produce induction.

With this addition, the only aspect of electricity and magnetism that his
model did not adequately cover was the interaction between electrical
charges. This is where, for instance, a force is generated between small
pieces of paper and a comb, which has been electrically charged by running
it through dry hair. Like many others before him, Maxwell found that taking
a little time away from the problem brought the solution to him with
relatively little effort.

He had assumed that in an insulator like paper or ceramic, the little balls
were fixed to the cells, so the balls could not flow as they did in a metal.
But if he imagined that the cells in an insulator were rubbery—that they
could twist a little in place—then the twist in the cells could act like a
spring, storing up energy to be released. By comparison, the cells in a metal
would be rigid, with very little tendency to twist. Not only did this work
and was able to model the behavior of real materials with startling accuracy,
it also gave a real insight into the nature of electromagnetism, with the
electrostatic force being more like the potential energy of a spring, while
the magnetic force was more like rotational energy. And neither could act in
isolation. There was always an interplay between the two. All was going
extremely well, but then Maxwell noticed something highly unlikely that
could have made his whole model worthless.

Faraday’s fields were assumed to be everywhere—even in empty space.
And since space was a good insulator, it ought to have elastic cells



according to his model. One of the characteristics of elastic things is that
you can send waves through them—in fact waves require elasticity to
propagate. So this seemed to imply that it would be possible to send
electromagnetic waves through empty space. What’s more, the twist of the
elastic cells would produce a magnetic field, twitching the adjacent little
spheres to produce an electrical field. There should be a self-sustaining
wave with magnetic and electrical components at right angles to each other
and the direction of travel. An electric wave would produce a magnetic
wave, which produced an electric wave . . . and so on indefinitely.

It had been established by then that light appeared to be a wave that,
uniquely, wiggled from side to side in the medium it moved through.
(Usually a wave had to be on the edge of a medium to go side to side.) And
it was known from experiments that there seemed to be a relationship
between light and magnetism. Was it so unreasonable, then, Maxwell
thought, that light was his electromagnetic wave? After all, light effortlessly
crossed the empty space from the Sun to the Earth. As an impressive
reinforcement of his model’s power, Maxwell estimated the speed of his
hypothetical waves and found that it was near enough the same as the speed
of light in a vacuum.

There was no doubt that Maxwell’s achievements to date had involved
an impressive use of mathematics—far beyond the reach of most of his
predecessors, but after a brief dalliance with the viscosity of gases, he came
back to have a further attempt at electromagnetism, throwing away his
model once more and starting from scratch. And this is where he made the
leap to an approach that would be very familiar to the modern physicist by
attempting to build his model not from an analogy, like the flow of a fluid
or the rotation of mechanical cells, but from pure, unadulterated
mathematics. There was still a model, but in this case the model was simply
a set of numbers that behaved according to a collection of logical rules.
There was no picture, no analogy; there was no easy mechanism to grasp
what was going on. Maxwell brought to play a method devised in the
previous century by the Italian mathematician Joseph-Louis Lagrange. This
so-called Lagrangian (a contraction of Lagrangian function) made it



possible to write a series of differential equations (linked equations making
use of calculus) that described how a system that changed with time
evolved, based on factors like the momentum of its components and the
kinetic energy in the system.

The elegant (to a mathematician) thing about the Lagrangian was that it
was a black box. To use it was simply a matter of putting in the known
factors, turning the handle and out came results—without ever needing to
know any details about the physical nature of the system. It was a modeling
process based solely on numbers.

The result, after some complex manipulation and the need to extend
Lagrange’s work for the special requirements of electromagnetism, was a
set of relatively simple equations that between them described the way that
electricity and magnetism behaved. Maxwell’s original version of these
equations was refined and compacted by his predecessors, using more
modern notation to produce these frightening-looking four, short equations:

To a modern physicist these equations are straightforward, bread-and-
butter stuff (though most would admire their sophistication). But at the time
he produced his original version, Maxwell’s ability to model with
mathematics alone was considered daunting by most scientists. William
Thomson, Lord Kelvin, a significant contemporary of Maxwell’s who had
become a physics professor at an even younger age, was among many who



struggled to deal with this degree of abstraction. It didn’t help that no one
had seen electromagnetic waves other than light, yet the theory suggested
that such waves should be generated simply by sending an electrical charge
up and down a piece of metal (an aerial as we now call it). It was a good
twenty years before Heinrich Hertz produced the first radio waves this way,
helping to make Maxwell’s remarkable achievement a solid success.

Although mathematics had made Maxwell’s work possible, at this stage
even he was not prepared to take on all the implications that came out of the
formulas. He might have modeled with mathematics, but he wasn’t
assuming that the numbers were a direct basis for the nature of reality. In
two separate ways, Maxwell was prepared to turn a blind eye to what the
numbers said. One was in making an assumption—the other in simply
ignoring one of the predictions that came out of the equations, because it
seemed too strange.

The assumption was about the ether. Maxwell’s electromagnetic waves
depended on empty space being able to sustain electrical and magnetic
fields—and it was those fields that supported the waves. There was no need
for a medium for the waves to travel through. In fact, as mentioned above,
had there been such a medium that behaved like an ordinary physical
material, the waves would be odd indeed, because transverse waves that
wiggle from side to side can’t travel through the middle of a medium, as the
medium would damp down the side-to-side oscillation. Usually such waves
travel on an edge—say on the surface of water, or in the side-to-side
vibration of a violin string. When waves travel through a medium, like
sound through air, they tend to be compression waves, wiggling in the
direction of travel.

However, despite his model clearly predicting that there was no need for
the ether so that light could travel through empty space from the stars,
Maxwell resolutely stuck to his assumption that the ether must exist. All
good scientists are a mix of iconoclast and traditionalist. They need to bring
fresh new ideas, replacing old ones, but at the same time they can’t start
from scratch with everything. They need to build on existing concepts. And
all too often, those concepts last long past their sell-by date, as happened



with the ether. Interestingly some modern physicists, like the Nobel Prize
winner Frank Wilczek, think that in a sense the ether does still exist—as
long as we are prepared to consider the existence of the various fields, like
the electromagnetic field, that mathematically fill space as a new way of
looking at the concept of an ether.

The prediction that Maxwell (and all his contemporaries and successors
for well over fifty years) ignored was far more startling than the existence
or nonexistence of the ether. It was a requirement for there to be waves that
could travel backward in time. To illustrate what happened it is worth
briefly thinking about a trivial math problem. What is the value of x here?

x2 = 4

Even if the very word “algebra” fills you with fear and loathing, dealing
with this equation isn’t too scary a proposition. We’re just looking for the
value of x that, when multiplied by itself makes 4. And it’s not too difficult
to spot that an answer to this is 2. But if you were to give this as the
solution to the equation in a test at school, you would only get half marks,
because there is another solution. It is equally valid to say that x is –2. The
equation has two solutions, 2 and –2.

This is always the case with some classes of equations, like the familiar
quadratic equation, of which this is a simple form. And, as it happened, it
was also true of the way that Maxwell’s equations predicted the potential
for a self-supporting electromagnetic wave to exist. The equations had not
one, but two solutions, which were given the names “retarded” and
“advanced” waves. According to the equations, when a familiar
electromagnetic wave—light in all its forms from radio through to X-rays
and gamma rays—travels from A to B, this is the retarded wave. But the
equations also describe a second wave, the advanced wave, which travels
from B to A, setting off at the moment in time that the retarded wave arrives
at B and traveling backward in time to arrive at A just as the retarded wave
departs.



There were clearly two huge problems with this. No one had ever seen
these advanced waves, and if they did exist, they seemed to perform the
impossible feat of traveling backward in time. Although there was nothing
about the mathematics that said one solution should be ignored and a
particular one should be preferred, this was precisely what everyone did,
because the alternative seemed too strange to contemplate. Mathematics
had made a prediction that the real world seemed unable to match—yet the
equations were so good for the rest of the behavior of electricity and
magnetism that they had to be used.

It was only in the 1940s that two American physicists, John Wheeler and
Richard Feynman, realized that advanced waves were not only predicted by
the equations, but could be useful for physics. Although science requires a
degree of open-mindedness to progress, most scientists are fairly blinkered
by the current scientific theories. Wheeler and Feynman were both
particularly good at ignoring the accepted wisdom.

The time-traveling advanced waves would come in useful in dealing
with one of the problems facing quantum electrodynamics (QED), the
model that Feynman and others had developed to explain the interaction of
light and matter. This approach had a downside in that it tended to produce
infinities in the math (see next chapter). This continues to be the case both
for QED and its more modern siblings like quantum chromodynamics. An
example of the type of problem that was facing QED, when Wheeler and
Feynman came up with their audacious idea, was electron recoil. When an
electron dropped in energy within an atom and released a photon, the
electron recoiled like a gun firing a bullet (photons don’t have mass, but
they do have momentum, which has to be conserved).

To cause that recoil, the electric field of the electron had to act on the
electron itself—and this was exactly the kind of result that tended to shoot
off to infinity in what was effectively a feedback loop. Yet it was known
that electrons gave off photons all the time—that’s where the vast majority
of the light we experience comes from. Wheeler and Feynman realized that
by changing the viewpoint from the usual idea of a single photon being
produced, to thinking of a pair of photons, one being the advanced photon



traveling backward in time, the recoil could be explained without producing
embarrassing infinities.

There is no doubt that Wheeler and Feynman’s approach produced a
useful result, but generally speaking this has been interpreted as an effective
mathematical trick, rather than a result that has any implications for the
nature of reality. Certainly most of those who have made use of it (if not
Wheeler and Feynman) have pretty much dismissed the idea that advanced
waves or advanced photons truly exist in the physical universe, but it was
one more example where the numbers produced a remarkable (and in this
case unexpected) parallel to what was actually observed. Our common
sense tells us that waves can’t travel backward in time, but the mathematics
predicts this, and that mathematical weirdness proved more valuable in
reflecting reality than a more straightforward approach. Arguably, here,
numbers were more real than intuition would allow.

To a modern mathematician, whichever way you interpret the solutions,
the symbols of Maxwell’s equations are relatively trivial pieces of work,
even if coming up with them in the first place was a work of genius, but
even the mathematical professionals had their limits, as Maxwell’s
contemporary Georg Cantor would discover.



12 Infinity and Beyond

Not entirely surprisingly, infinity is a topic that never fails to stimulate the
mind. Thoughts about the nature and existence of infinity go back all the
way to the Ancient Greeks. They were certainly aware that a sequence of
numbers like the positive integers, the simple counting numbers would go
on forever. If there were a biggest integer—call it max—then there surely
could always be max + 1, max + 2, and so on. But the whole idea of infinity
made the Greeks uncomfortable. Their word for it, apeiron, suggested
chaos and disorder.

The Greek philosopher who took the definitive approach to infinity for
the period (a point of view that would remain dominant for centuries to
come) was Aristotle, born in 384 BC in northern Greece. Aristotle argued
that infinity was both necessary and impossible. He used examples of
aspects of the universe that he considered infinite. The integers, as we have
seen, or the span of time—which he argued had no end. And he believed
that something could be divided up an infinite set of times. But equally he
came up with a range of often confusing arguments as to why infinity could
not exist in the real world. For example, he pointed out that a body is
defined by its boundaries. If a body were infinite it would have no
boundaries, hence it could not exist.

After what was clearly a considerable mental struggle, Aristotle finally
decided that infinity was a potential, rather than a concept that was fulfilled
in reality. This “potential infinity” was something that could be aimed for,
but could never practically be achieved. Infinity existed, but could not be
made real on demand. To illustrate the concept he used the neat example of
the Olympic games. The games existed—there was no doubt of that. It



wasn’t a fictional concept. But generally speaking, if someone asked you to
show him or her the Olympic games, you couldn’t. The games were a
potential entity, rather than something you could point at and identify.
Aristotle was careful to point out, though, that some potential entities were
going to become actual at a point in space or time, yet this wasn’t the case
with infinity.

This neutered concept of potential infinity was exactly what Newton and
Leibniz (see chapter 9) were dealing with when they devised calculus. The
infinity of calculus is something that we head toward—it is a limit that is
never practically reached. And the target is exactly what the familiar
symbol for infinity, the lemniscate (∞) represents. It is the symbol for
Aristotle’s potential infinity. The lemniscate was introduced by Newton’s
contemporary, John Wallis, who had written a rather dull treatise on the
three-dimensional shapes known as conic sections, which are the result of
cutting a pair of cones positioned point to point along various planes. (No
one can accuse mathematicians of not knowing how to have fun.) Wallis
just throws in a line that says “let ∞ represent infinity” without ever
explaining where this symbol comes from.

For the vast majority of mathematicians, with one notable exception, this
was sufficient to carry all the way through to the nineteenth century. In fact,
potential infinity was generally considered to be the only respectable way to
think about the infinite. For example, Carl Friedrich Gauss, the eminent
nineteenth-century German mathematician definitively remarked:

I protest against the use of an infinite quantity as an actual entity; this is never allowed in
mathematics. The infinite is only a manner of speaking, in which one properly speaks of limits
to which certain ratios can come as near as desired, while others are permitted to increase
without bound.

The exception to this blinkered thinking was the remarkable Galileo
Galilei. The first thing that springs to mind when Galileo is mentioned was
his championing of the Copernican theory that put the Sun rather than the
Earth at the center of the universe, leading to his trial by the Inquisition and
permanent house arrest. However, in scientific terms his most significant



work was the book he published in 1638 called Discorsi e Dimostrazioni
Matematiche Intorno a Due Nuove Scienze (Discourses and Mathematical
Demonstrations Concerning Two New Sciences). This was his masterpiece
of physics, laying the ground for Newton’s triumphant completion of this
work on mechanics, forces, and movement.

Like his book on Copernican theory that got him into so much trouble,
this new work was structured as a conversation between three characters, a
format that was very popular at the time. Written in conversational Italian
rather than stuffy Latin, it remains far more readable today than the formal
and often near-impenetrable work of Newton. Given his position, serving a
life sentence for the publication, it was remarkable that Galileo got the book
published at all. He attempted to do so originally in Venice, then proud of
its independence from Rome, but there was still a requirement to get the go-
ahead from the Inquisition, which had issued a blanket prohibition on
printing anything that Galileo wrote.

If there was one thing that Galileo excelled in, it was stubbornness.
Despite the prohibition, despite the risks of even indirectly evading it, when
the Dutch publisher Lodewijk Elzevir visited Italy in 1636, Galileo
managed to get a copy of his new manuscript to him. One fascinating aspect
of the book as it finally came to print is the dedication. In earlier years,
Galileo had always attempted to dedicate his writing to a power figure, who
might as a result give him patronage. This book he dedicated to a former
pupil who was now the French ambassador to Rome, Count François de
Noailles. However, where previously Galileo could simply lavish as much
praise as was possible (and plenty was possible in the sycophantic style of
the time), here he had to be more careful, as the last thing he wanted to do
was get No-ailles into trouble with the Inquisition.

In the wording, Galileo combined deviousness with an apparent naïveté.
It is highly unlikely that the Inquisition fell for his attempt at deception—
though, in practice, they seemed to have turned a blind eye. According to
Galileo:

I had decided not to publish any more of my work. And yet in order to save it from complete
oblivion, it seemed wise to leave a manuscript copy in some place where it would be available



at least to those who follow intelligently the subjects which I have treated. Accordingly I chose
first to place my work in your Lordship’s hands . . .

So, on the one hand Galileo was thanking Noailles for his help. But at
the same time he didn’t want to make it sound as if Noailles had been
directly responsible for the publication, so he threw in some mysterious
intermediaries:

I was notified by the Elzevirs that they had these works of mine in press and that I ought to
decide upon a dedication and send them a reply at once. This sudden unexpected news led me
to think that the eagerness of your Lordship to revive and spread my name by passing these
works on to various friends was the real cause of their falling into the hands of printers who,
because they had already published other works of mine, now wished to honor me with a
beautiful and ornate edition of this work.

He could thank Noailles, but also managed to blame unnamed friends of
the ambassador for passing the manuscript to the printer. It’s clear that the
idea that all this had happened without Galileo’s knowledge until the book
was almost ready to print was a fiction. Not only did he ensure that Elzevir
received a copy of the manuscript on his Italian visit, there was a
considerable correspondence between Galileo and Elzevir over the content
of the book. Galileo was the kind of author that cause publishers to tear
their hair out, wanting to tweak his output to the last possible moment
before going to print. This is bad enough with today’s electronic printing,
but was a nightmare when each page had to be carefully set up in movable
type and made into a physical printing plate. But whether the Inquisition
was fooled or simply looked the other way, it did not intervene and the book
was published, if unavailable for sale in Galileo’s native Italy.

The “two new sciences” in the book’s title were those of the nature of
solid matter and an analysis of motion, and it was in the first section that the
topic of infinity came up. In trying to understand why solid matter sticks
together so effectively—why, for instance, a piece of metal is so hard to
break up—one of Galileo’s protagonists suggested that it is the vacuum
between the tiny particles of matter that held them together. (He was wrong,
it is electromagnetism, but it wasn’t a bad idea.) This theory was queried by
Simplicio, whose role in the book was to challenge new thinking, mostly



sticking to Ancient Greek ideas. Simplicio argued that there could only be a
tiny bit of vacuum in so small a space, which could only apply a tiny force
—far smaller than the powerful force that holds a piece of metal together.

This led on, with the trio thinking about how a very large number of tiny
forces could add up to a massive amount. “Thus,” said Sagredo, one of the
characters, “a vast number of ants might carry ashore a ship laden with
grain.” Any resistance, he suggested, as long as it is not infinite, could be
overcome by a multitude of minute forces. Salviati, who primarily spoke
with Galileo’s voice, mocked the proviso “as long as it is not infinite,”
saying that it was perfectly possible to have an infinite number of vacua in a
finite object.

This seems to have been an excuse to play with some entertaining ideas
on infinity, as Galileo next spent a considerable amount of time exploring
the nature of the subject. And this was not Aristotle’s feeble potential
infinity that kept the mathematicians happy for so long, but the real, naked
thing. Galileo illustrated the way infinity works in a mind-boggling fashion
using an illustration of a strange imaginary device.

He dreamed up a pair of hexagons, one smaller than the other, with the
small hexagon stuck onto the front of the big one, both aligned the same
way. Each rested on a horizontal rail. Now, the others were asked by
Salviati to imagine rotating the hexagons through 1/6th of a turn. The
wheels would move forward by the length of the side of the large hexagon
as it shifted onto its next side. This was not surprising. But the small
hexagon’s sides were much shorter. Even though it had only gone through
1/6th of a turn along its rail, so should have moved forward the length of
one of its small sides, it had actually moved forward by the size of the side
of the big hexagon.



This was possible because as the big hexagon turned, it lifted the small
hexagon off its rail and shifted it forward by a jump equal to the difference
between the lengths of the two sides. So the small hexagon had both the
movement of the length of its side plus the jump, adding up to the length of
the large hexagon’s side.

So far, so good. Galileo now imagined increasing the number of sides on
the wheels, more and more. As he did so, to produce 1/6th of a turn
required the new device to turn through more and more of the sides of the
large wheel, with more, but shorter, jumps between the sides of the smaller
wheel. Here’s the clever bit. He imagined going all the way to a pair of
circular wheels. In effect, the number of sides has become infinite. If he
now turned the wheel 1/6th of a turn, then the smaller wheel had also
rotated by 1/6th of its circumference—yet it had still managed to move
forward as far as the big wheel. And in this case, because the wheel was
perfectly circular, it never appeared to lift off the rail.

This seemed puzzling (particularly to Simplicio). Galileo in the form of
Salviati argued that this is because the small wheel had undergone an
infinite number of infinitely small jumps, which collectively added up to
provide the extra distance that the small wheel moved along its rail.
Salviati, admitted ruefully that this was startling, but then asked permission
to have a little deviation from the topic of the book to consider infinity
further, and the others were delighted to have the diversion.

After an obscure example involving a geometrical proof that a point and
the circumference of a circle could be the same size, the discussion returned
to the wheels. Simplicio has noticed that what the first example seemed to
be saying was that there were two infinities—the infinity of points around



1/6th of the circumference of the big wheel and the infinity of points around
1/6th of the circumference of the small wheel. Both were infinite in number,
yet one somehow managed to produce a result that was bigger than the
other. Salviati initially fobbed this off as a problem of trying to understand
the infinite with a finite mind, but then set out to prove to Simplicio that
this kind of oddity was an inherent part of the nature of infinity.

The proof involved the squares of positive integers—the counting
numbers. Every counting number, Salviati pointed out, had a square.
Simplicio was happy with this. So Simplicio asked him to imagine the
infinite list of such numbers, each of which has a square corresponding to it
—so there were clearly the same number of squares as positive integers.
And yet, at the same time, there were plenty of positive integers that
weren’t themselves squares. Numbers like 2, 3, 5, 6, 7, and so on. So there
was a square for each counting number, and yet there were far more
counting numbers than squares.

What Galileo had realized, and made explicit in his discussion, was that
when dealing with the “real” infinity, the conventional rules of arithmetic
do not apply. Concepts like “equal,” “smaller,” and “bigger” lose their
traditional meanings. We would now say that an infinite set (the positive
integers) can contain an infinite subset (the squares). One reason that
Galileo’s characters were struggling was that they were trying to treat
infinity as if it were a number—Galileo refers to it as such. We now don’t
think of infinity as a number. We can refer to an infinite set of things, but
not an infinite number, for reasons that would become clear a couple of
centuries later.

After Galileo, all eyes returned to the less scary potential infinity until in
the nineteenth century, when Georg Cantor was prepared to take on the real
thing. Cantor was a mathematician whose career, and eventually whose
mind, was destroyed by a combination of his belief in the reality of infinity
and by the opposition of other mathematicians who felt that he was playing
with fire. Cantor believed that mathematics and mathematicians could take
on the stark, unshielded reality of infinity. His work on the topic, proving
the apparent impossibility that there has to be something bigger than



infinity, had no obvious practical applications in the real world, but there
was more to Cantor’s achievements.

He also codified a kind of metamathematics, set theory, that seemed to
explain the workings of mathematics itself, and we need to get a feeling for
what Cantor did here to be able to appreciate his wizardry with the infinite.
Right back in the first chapter we came up against the problem of what
numbers are and how they relate to the world around us. Set theory gives a
formal definition of the numbers, apparently based on reality and yet
capable of being abstracted to stand alone in the mathematic universe
outside our Platonic cave. Set theory is roughly the equivalent in
mathematics of atomic theory in science. Just as we got along without
acknowledging the existence of atoms for millennia, but once we accepted
they existed they became the building blocks of our understanding of
nature, so we managed to do mathematics quite happily for millennia
without consciously using set theory, but once it was developed it became
the foundation of the rest.

A set is nothing more or less than a collection of things, whether
physical objects or concepts. They can be things that share a common
identity—the set of things called “Brian” or the set of things that look like a
donut—or a random collection linked only by location or time. The set of
things that are on the sidewalk in New York, or the set of things you
thought of this morning. Some of the language of set theory has escaped
into general usage. A “subset” is a part of a set where the members also
share a different common linkage—it is a set within a larger set. So, for
instance, the set “Americans” form a subset of the set “Human beings.”
Each individual item in a set is called a member of that set—so unless you
are an artificial intelligence, you form a member of the set “Human beings.”

You’ve probably seen visual representations of sets in the form of Venn
diagrams. They can be handy to understand the way that sets intersect and
combine. So, for instance you could have a diagram showing the
intersection between the sets “Human beings” and “Things that live in New
York,” many of which will not be human. The overlapping segment
represents “Human beings who live in New York.”



We often unconsciously handle sets when we use a search engine. When
we use terms like “AND” and “OR” and “NOT” these so-called Boolean
algebra terms are mechanisms for combining or selecting from sets. So if
you were searching online for images and put in the following search terms:

(car AND American) (Ford OR Chevrolet) (NOT red)

we would be selecting the subset of “cars” that was American, either Ford
or Chevrolet, and any color but red. At least, that used to be the case. These
days a search engine like Google or Bing considers itself too clever to be
told what to do, so they rarely follows these Boolean terms literally.

When dealing with sets, there is a distinction between two possible ways
that we can use numbers that need to be clarified. For most of this book we
have used numbers like 1, 2, and 3 as counting numbers. These are the
“cardinal numbers” meaning that the numbers are being used in their
principal role. However, it is also possible to use numbers to specify the
position in an order that a member of a set holds—which are the “ordinal
numbers.” So when considering a set of oranges, for instance, the number 3
could either refer to the number of oranges in the set, or the third orange in
the set (“orange number 3”).

We tend to think of ordinals as relatively minor though valuable uses of
number, but some anthropologists have suggested that ordinals came into



use before cardinals. This would require a very different picture to our goat
counting in chapter 2. The suggestion is that counting was not first used for
something so mundane as trade, but rather for religious rituals, where the
important thing was to get stages of a ritual in the right order, and so it was
the numbering of order that came before the numbering of objects. There is
no good evidence for this, and it could easily be seen as anthropologists
trying to claim greater significance for their outlook on life over that of
bean counters—but it certainly is likely that ordinal counting came in
relatively early, even if it couldn’t claim priority over a handger of goats.

Cardinality, the measure of the size of a set, is very useful because we
can use it as a mechanism to compare the size of sets, whether or not we
have a numeric value for how big the sets are. If we imagine lining up two
sets alongside each other and we can pair off the members of the sets, so
that there is a one-to-one correspondence between each pair of members—
each member in one set has a unique corresponding member in the other set
—then we can say that the sets have the same cardinality, even if we don’t
know how big the sets are. That last proviso will prove very useful when it
comes to dealing with infinity.

To get the idea of using cardinality to compare sizes of sets, imagine, for
instance, we had two sets, one being the main compass directions and the
other the seasons. We could pair off North with winter, East with spring,
South with summer, and West with fall. At this point we’ve used up all of
the directions and all of the seasons, each pairing off with a different
element from the other set. So we can say that the two sets have the same
cardinality, even if we didn’t know how many seasons or directions there
were. As it happens, in this case we do know how many. (It’s four.) But the
important point is that we don’t need to know. As long as we can provide a
repeating mechanism to make that one-to-one pairing we know that we
have sets of the same cardinality.

Remember the oddity that confused Simplicio. Each counting number
could be paired off with a square. So we know that the sets of the counting
numbers and the squares have the same cardinality—yet we also know that
the squares form a subset of the counting numbers. One of Cantor’s



discoveries would be that it’s always possible to find a subset that has the
same cardinality as an infinite set.

Before Cantor got to work on sets, they had already been used by the
Italian mathematician Giuseppe Peano to define the counting numbers.
Back in chapter 2 we derived a number system from real objects—initially
only with goats, but eventually applicable to a whole range of objects. What
Peano did was to abstract the numbers so they could exist without the
objects, based purely on the nature of sets. One of the reasons this approach
could not have been taken in the early days of mathematics is that it relies
on the fundamental concept of emptiness, zero personified. Specifically, the
starting point was the empty set, a set with nothing in it, which was the
basis for zero.

The next biggest set was the one that contained just one thing—the
already defined empty set. So this provided Peano with the cardinal number
1. He then produced the set containing that set. This contains two sets—the
empty set and the set containing the empty set, giving him the cardinal
number 2 . . . and so on. The whole set of the “natural numbers” (0 and the
positive integers) is built from the ground up this way, using sets that nest
like a set of Russian dolls.

Physicist Roger Penrose argues that this ability to define these numbers
this way means that they can “seemingly be conjured up by, and certainly
accessed by, the mere exercise of our mental imaginations, without any
reference to the details of the nature of the physical universe.” However,
this argument seems to me to incorporate unsupportable sophistry. There is
no doubt that we did not “conjure up” the natural numbers by mere exercise
of our mental imaginations, and it’s hard to imagine that in total absence of
physical objects that we ever would.

Even more so, the whole concept of sets as a collection of entities
requires the existence of entities in order to be able to conceive of them in
the first place—and without countable objects in the real world around us,
it’s hard to imagine any way that such thinking would ever occur. Say, for a
moment, there existed a thinking being that has no physical form and that
had no access to the physical world. How would it ever even begin to



consider the kind of multiplicity that we experience in the world around us
and that produced concepts like the natural numbers and sets, when this
being has no experience of anything other than its own oneness?

Set theory, in Peano and Cantor’s hands, took arithmetic a step away
from counting goats to become the theoretical foundation for basic numbers
in mathematics. In one sense this was a powerful abstraction, moving away
from counting objects to the essence of numbers themselves. But it was also
a move that worried (and continues to worry) some mathematicians, as set
theory has a disturbing paradox at its heart. The man who first pointed out
the difficulties was British philosopher and mathematician Bertrand
Russell.

Just as Peano used sets with other sets as their members to produce the
counting numbers, Russell looked at another class of sets that incorporated
sets. Specifically he considered sets that did or didn’t contain themselves as
a member. This sounds painfully recursive, but it becomes clearer with
specific examples. Consider, for instance the set “Dogs.” This implies an
antithesis, the much bigger set of “Everything that is not a dog.” Assuming
we are happy that we can have an “Everything” that does not just
encompass physical objects, then the set “Everything that is not a dog” is a
member of itself. Because it’s a set, which makes it not a dog. For the same
reason, the set “Dogs” is not a member of itself.

Here comes the twist that Russell devised. Let’s consider the set of “All
sets that are not members of themselves.” So this is a set that includes the
set “Dogs” but doesn’t include the set “Everything that is not a dog.” Let’s
call the new set the “Not-Members” set. The question Russell asked is
whether or not NotMembers is a member of itself.

By now it’s easy to for the brain to have got in an agonizing twist—but
that’s exactly what Russell had in mind. If NotMembers is a member of
itself, then it is, by definition, a set that is not a member of itself. Because
that’s how NotMembers is defined. Similarly, if NotMembers is not a
member of itself, then it is not a set that is not a member of itself. So it
should be a member of itself. It’s like trying to deal logically with the
statement “This is a lie,” which is effectively a phrase that is the equivalent



of NotMembers. The wording makes it self-contradictory. In effect, Russell
had shown that set theory has an inherent, built-in contradiction—which
was not something that endeared it to mathematicians. Yet set theory
remained the basis for the nature of numbers and simple arithmetic.

We’ll come back to the problems of set theory that Russell uncovered,
but first let’s take a look at the way that Cantor opened up the implications
of infinite sets. If we take Peano’s method for constructing the counting
numbers to the limit, we end up with an infinite set. It’s not the potential
infinity represented by the lemniscate, and so Cantor gave it a new label,
calling it aleph-null or aleph zero (X0)—the first letter of the Hebrew
alphabet with the zero to indicate that this was the basic infinite set. As you
might expect from infinity, and as Simplicio discovered in Galileo’s book,
arithmetic does not work in the way that we are familiar with for aleph-null.
It follows from the nature of the set that, for instance:

X0 + 1 = X0

X0 + X0 = X0 and
X0 × X0 = X0

The set theory approach effortlessly does away with the problem that
Galileo faced with squares and integers. As we’ve seen, we can work out if
two sets have the same cardinality if the elements of the two sets can be put
in one-to-one correspondence. And that’s exactly what we do with the
integers and the squares, pairing them off, one square per integer. Because
we can do this, we know they have the same cardinality—they are both sets
of cardinality X0. This makes sense of the odd aspect that an infinite set can
be put into one-to-one correspondence with a subset, because as we saw
with the compass directions and seasons, it isn’t necessary to know how
many members are in a set to establish that they have the same cardinality.

The problem comes when we try to understand the mathematical
processes in terms of the world that we experience around us. We struggle
with the behavior of an infinite set because we expect it to behave like a
finite number—specifically like a finite collection of real-world objects.



But a set isn’t a number, even though it is valuable in understanding them, it
is a mathematical construct. And it is only by being clear that we are
dealing with an entirely different kind of entity—even if it has relationships
that help us understand numbers—that we can cope with an infinite set’s
strange nature.

So set theory had enabled Cantor to get a hold on the infinity of the
counting numbers, X0, and it may seem that this was all that could be said
about infinity. But being a mathematician, Cantor was not happy to take
anything on trust—and that was the implication of his appending the zero or
null part of “aleph-null.” This was the basic infinity, but it had not been
proved that a set of this cardinality applied to the whole range of numbers
beyond the integers. And it was this that Cantor then set out to explore. In
doing so he used unusually accessible mathematical proofs. Look at a
modern mathematical proof and it is likely to be crammed with page after
page of equations. Andrew Wiles’s twentieth-century proof of the famous
Fermat’s Last Theorem stretches to over 100 pages. Yet Cantor’s infinity
proofs can mostly be appreciated without using any equations.

There is a slight compression in the way we will look at them—the
actual mathematical presentations for a solid proof do require more than the
conceptual manipulation of simple diagrams, as they have to formalize the
process that is undertaken, but the proofs can be understood in terms that
are so visual that a Greek geometer would be happy with them. It’s
unfortunate that some of Cantor’s contemporaries didn’t feel the same.

The first kind of number Cantor assessed was the rational fractions. He
imagined drawing up a table that contained every positive rational fraction
by simply adding 1 to the top number of the ratio as you head from left to
right in the table, and 1 to the bottom number of the ratio as you head
downward from row to row. The outcome is a table like this:



Clearly, the whole table cannot ever be drawn because it is infinitely
large. But we can see how it takes shape. It will contain every possible
rational fraction—plus the number 1 represented an infinite set of times,
down the diagonal. Now all that Cantor needed to do to show that the
elements of this table had the same cardinality as the counting numbers was
to find a simple, repeating path that could be used to step through the table.
He needed a set of rules, an algorithm (see page 76) that would enable a
straightforward mechanical process of walking through the table,
encountering each entry. Something like this:

1.   Start at the top left.
2.   Take a step right.
3.   Move diagonally down and left until you reach the edge of the table.
4.   Take a step down.
5.   Move diagonally up and right until you reach the edge of the table.
6.   Repeat from step 2.

This process will eventually lead you through the whole table, taking in
every single rational fraction along the way.



There are other routes that you could take, but the main thing was that
Cantor had established a step-by-step route through the table. We’ve now
got one step per entry in the table—and all we need to do is pair those steps
off with the integers. There’s a one-to-one correspondence step by step,
which means that overall we can say that the entries in the table have the
same cardinality as the integers. There are X0 rational fractions.

Of itself, this doesn’t seem hugely surprising. After all infinity is
infinity, and as we know that this equation holds:

X0 × X0 = X0

it seems intuitively reasonable that the rational fractions fit the same
pattern. However, mathematics is not always intuitively reasonable. And
when Cantor took the same approach with another set of numbers he came
up with a shockingly different result.

Let’s take a look at all the numbers between 0 and 1. (Cantor actually
worked with a different range, but this is the simplest one to consider.)
What do we mean by “numbers” here? It’s not just the integers—there are
only two of those, assuming we’re using 0 to 1 inclusive. And it’s not just
the rational fractions, where we would end up with the first column of the
table on page 178, a nice X0 subset of the fractions—the ones with 1 on the
top and every integer on the bottom. There are also the irrational numbers—



numbers like the square root of 2, though here we are looking for all the
irrational numbers with values that fall between 0 and 1.

In essence, then, what Cantor was considering was every decimal value
(or “real number”) between 0 and 1, which should take in every possible
number in that range. To make this mechanism accessible, we need to
scramble the list up, otherwise it will begin with an infinite set of numbers,
which have zeroes for as long as you can fit on any piece of paper. Having
done that, we end up with something like the table below:

0.64720421758957932691046174...

0.31572957103747274827437333...

0.61957274945711757299527421...

0.91136728457382356563361221...

0.16223462751225557982367149...

0.23625055851936721524947325...

...

Cantor’s stroke of genius was to highlight one digit in each number,
moving along one decimal place each time. He then added one to each
number (if the number was 9, it became 0). This sequence of digits was
extracted to make a decimal between 0 and 1. In the case of our table, the
number is:

0.720441784983 . . .

Now, this is a very interesting number. It isn’t the first number in
Cantor’s table, because the first decimal place is different. It isn’t the
second number, because the second decimal place is different. It isn’t the
third . . . and so on, throughout the table. What we have produced is a
number that isn’t anywhere in the table.



If we had been able to successfully put every number between 0 and 1
into our list, we could then have paired them off, one by one, with the
positive integers, and so would have discovered that this set of decimals had
the same cardinality as the infinity of the counting numbers, X0. But in
reality, it didn’t work out. Cantor had shown (and in his formal version,
proved) that there were more numbers between 0 and 1 than there were
integers. This set has a higher cardinality. It’s a bigger infinity than infinity.

Cantor also took his exploration further, into different dimensions. The
cardinality he had just produced, referred to as Xc because it is the
cardinality of the continuum of numbers between 0 and 1, was effectively
the size of the set of points that exist on a number line, between 0 and 1.
However we often describe points on a two-dimensional map, or in three-
dimensional space, while mathematicians merrily consider as many
hypothetical dimensions as you like. Did the same infinity apply in these
cases?

Once more, Cantor’s proof can be explained painlessly with hardly any
mathematics. If you think of the way a point in a two-dimensional plane is
usually identified, it is by a pair of coordinates—the Cartesian coordinates
that we have already met (see page 103). These could be x and y on a chart,
or latitude and longitude on a map. So all of the points in a 1 × 1 square can
be identified by two real numbers between 0 and 1.

It seems intuitively right that as X0 × X0 = X0, then the same should
apply in scaling up the cardinality of numbers between 0 and 1 to cover all
the points in a square—but that’s not a proof. What Cantor realized was that
it was possible to simply interlace the digits of the two numbers that were
used to identify the coordinates of a point, producing a single unique
decimal that identified that point. And as soon as that was done, it comes
down once more to the cardinality of the values that lie between 0 and 1. By
interlacing more and more sets of digits, the same applies to as many
dimensions as you like. Once more, the infinity of the continuum applies.

Considering the infinity of the numbers between 0 and 1 on the number
line produces one of the best of the mind-bending paradoxes that infinity
has a tendency to produce. We know that the rational fractions have the



same cardinality as the integers, thanks to Cantor’s proof. And we’re going
to use another set of fractions alongside them—the sequence 1/2, 1/4, 1/8,
1/16. . . . It is simple enough to show that these also have the same
cardinality. And we already know (see page 39) that the sum of this whole
series is just 1. With this established, the fun begins.

Imagine we wanted to protect a positive number line from getting wet.
What we are going to do is issue each rational fraction along the line with
an umbrella. The umbrella will be a simple T shape. The first umbrella we
give out is 1/2 a unit of the number line across the T. The second umbrella
is 1/4 of a unit of the number line across and so on. Once every rational
fraction has an umbrella, it seems that the whole number line is covered.
The umbrella extends half its width in either direction—so, for instance, the
first umbrella will cover all numbers for 1/4 of a unit to its left and 1/4 of a
unit to its right. Note that this is a rational fraction—and adding it to or
subtracting it from the starting point (itself a rational fraction) will reach
another rational fraction.

Okay so far? Each umbrella spans from its starting point to a rational
fraction on either side of it. Now bearing in mind we’ve issued an umbrella
to each rational fraction, the whole number line is covered, because there’s
at least a meeting of umbrellas and in most cases they are going to overlap.

We have just covered the whole line from 0 to infinity with our
umbrellas. But, remember how wide the umbrellas were. Their widths form
the infinite series 1/2 + 1/4 + 1/8 . . . so with no overlaps, the maximum
amount of the number line those umbrellas can cover is 1 unit—and with
overlaps they will cover even less. A set of items with a width of just 1
covers a line that goes all the way to infinity. Confused? This is the kind of
thing infinity does to the brain.

However, despite all Cantor’s achievements, one discovery would
constantly elude him, perhaps contributing to his eventual descent into
madness. Cantor believed that there should be a hierarchy of infinities, of
which the infinity of the continuum, Xc, was just the first above the basic
infinity of the integers. His belief in this structure verged on the religious—
in fact he associated the ultimate infinity with the deity. But he could not



prove that the infinity of the continuum was aleph one. There may have
been another infinity in between. Cantor did not live long enough to
discover that his quest was pointless—because it would be mathematically
proved that it was not possible to establish whether or not his assertion,
called the continuum hypothesis, was true.

The proof was the work of the German-Czech mathematician Kurt
Gödel, an implication of his incompleteness theorem. This theorem was any
mathematician’s nightmare. It demonstrated that whatever your system of
mathematics above a very basic level of complexity, it must have some
problems that can be formulated in that system that are not possible to
solve. The system is the fundamental set of rules underlying the
mathematics. Sometimes, even in one world, more than one set of rules can
apply, as we’ve already seen for the behavior of parallel lines on flat and
curved surfaces (see page 48). But any attempt to use mathematics to model
the real world requires a defined set of rules to be used.

However, at the heart of Gödel’s work was the proof that there would
always be some problems in any system where the outcome could not be
determined. Mathematics was fundamentally imperfect. At a basic level,
Gödel’s argument was similar to Russell’s paradox that we discovered on
page 175. It sets up a statement that can’t then function properly within the
rules of the mathematical system. Gödel managed to show that Cantor’s
continuum hypothesis was not inconsistent with the axioms of set theory—
he couldn’t show it was true, but it had the potential to be true. Later,
another mathematician, Paul Cohen, would show that set theory was
independent of the continuum hypothesis. In other words, set theory would
manage just fine if the hypothesis wasn’t true.

Between them, in essence, they had shown that it was impossible ever to
prove whether or not the infinity of the continuum was X1, the next biggest
infinity above X0—at least as long as the existing axioms of set theory were
unchanged. Gödel himself emphasized this when he said that the continuum
hypothesis must be true or false and that “its undecidability from the
axioms as known today can only mean that these axioms do not contain a
complete description of reality.”



As we have already seen, axioms are the fundamental assumptions
underlying a branch of mathematics. They provide the “given” starting
points that have to be assumed to be true for mathematicians to then build
the mathematical structure on them. There are always such axioms in place
whenever anything is mathematically proved, though the correctness of the
axioms is inevitably a matter of dispute, because in the end they are
assumptions, and assumptions can always be challenged.

Set theory, the fundamental basis of all Cantor’s infinity work, not to
mention the basic concepts of number and arithmetic from the
mathematician’s viewpoint, relies on a set of axioms known as ZFC named
for Zermelo and Fraenkel, two mathematicians who formalized Cantor’s
work on sets, with the “C” referring to the axiom of Choice (this axiom is
singled out for reasons that will become obvious). The eight axioms are
reasonably approachable for twentieth-century math:

1.   The axiom of existence—there exists at least one set. The cardinal
numbers are built from the empty set, the set with nothing in it. But
there needs to be something to start with.

2.   The axiom of extension—two sets are equal if and only if they have
the same members. This is typical of a mathematical axiom in
making what appears to be an obvious statement, but one that is
required to pin down the mathematics.

3.   The axiom of specification—for every set and every condition, there
corresponds a set whose members are exactly the same as those
members of the original set for which the condition is true. In other
words, however you choose some of the members from a set, those
members will themselves form a set. So for instance, if we apply the
condition “having no positive divisors other than itself and 1” to the
set of all natural numbers greater than one, we get another set, the
set of prime numbers.

4.   The axiom of pairing—for any two sets there exists a set to which
they both belong. So effectively you can make a set out of two other



sets.
5.   The axiom of unions—for every collection of sets there exists a set

that contains all the members that belong to at least one of the sets in
the collection.

6.   The axiom of powers—for each set there exists a collection of sets
that contains among its members all the subsets of the given set.

7.   The axiom of infinity—there exists a set containing the empty set
and the successor of each of its members.

8.   The axiom of choice—for every set we can provide a mechanism for
choosing one member of any non-empty subset of the set.

Most of these axioms are solid and harmless, but that last, number 8, is
the serious problem with ZFC, as soon as we are dealing with infinite sets.
The catch is what the “mechanism” can be. Of course, given a set, we could
always dip in at random and pick out a member, but “random selection”
isn’t considered a good enough mathematical method. Although we as
human beings could pick a physical object out of a set of objects with no
particular reason for choosing it, to select at random using a mathematical
mechanism is harder because it is difficult to define how to truly select at
random for anything other than a set that has a known number of members.

For finite sets we don’t even need to take a random choice. It’s always
possible to define a mechanism like “take the first member of the set.” But
with, for instance, the set of all integers, stretching off toward infinity in
both negative and positive directions on the number line, how do we define
the mechanism for selecting a specific member of this subset of all
numbers? It’s possible it could be done by the rule “select the median
value,” but is it obvious what the median—the “middle value”—of an
infinite set is?

The good news is that there are now options to “fix” ZFC that would
generate a specific answer on the matter of the continuum hypothesis. Most
mathematicians agree that it would be best either to use an approach known
as “forcing axioms” or another using something known as the “inner-model



axiom,” which is given the catchy alternative title “V = ultimate L.” The
only problem is that the forcing axioms approach produces the outcome that
the continuum hypothesis is false, while the inner-model axiom makes the
continuum hypothesis true.

The two possibilities go to the heart of the nature of mathematics and its
relevance to the real world. Set theory is one of the absolute fundamentals
of the practical math we use every day, and yet it is based on this arbitrary
selection of axiom. Going one route makes the mathematics more exotic
and interesting for mathematicians to explore. Going the other makes it
closer to the kind of reality we think is the universe we live in. As far as
pure mathematics is concerned, there really isn’t a problem. There are
simply two different mathematical systems at play here—just as there are
mathematical systems based on there being thousands of spatial dimensions
that have no equivalent in the real world. But for the mathematics we base
our science on, we expect a single, definitive approach.

While set theory’s problems have a real impact on the application of
mathematics to science, there is less of an issue with Cantor’s infinity work.
We have seen how Newton, Leibniz, and their successors made use of
potential infinity in performing calculus to work out equations involving
change and values that could be deduced from combining an infinite set of
infinitely small slices—and it’s impossible to deny the value of infinity, or
at least Aristotle’s potential infinity, in this context. It is less clear whether
or not Cantor’s “real” infinity has any relevance beyond the totally abstract
world of mathematics.

The simple answer is that as yet we really don’t know if infinity has any
meaning in the real universe. It is possible that the universe is infinite in
expanse. The big bang theory does not preclude this. All we know is that
the observable universe is about 90 billion light-years across, a figure
combining the distance light could travel in the assumed lifetime of the
universe with the expansion the universe has undergone during that time.
But it is entirely possible that there is no limit to the expanse of the
universe, whether it is considered a single entity or just one bubble in an



infinite sea of universes, as many modern big bang models assume that
there have been many big bangs in a far bigger multiverse.

In some ways, an infinite universe appears to be more attractive than a
finite one, as a finite one begs the question of what happens beyond the
boundaries of the universe. However, mathematicians already have one
potential answer for that problem—which is that it is perfectly possible for
a finite universe to exist that has no boundaries at all.

This might seem counterintuitive, because we have to think beyond the
usual three dimensions to properly envisage it, but we can easily envisage a
two-dimensional equivalent—the surface of the Moon. (I have chosen the
Moon rather than the Earth to avoid the discontinuity provided by oceans.)
What we have on the Moon is a finite space—the surface of our satellite—
yet it has no boundary. We can continue walking forever in any direction
without ever reaching an edge. To picture a similar effect in the universe,
just as we fold the apparently flat surface of the Moon (when standing on it)
through a third dimension to join up the edges and make it boundless, we
have to fold the volume of the universe through a fourth dimension, so that
taking a step that would apparently result in leaving one side of the universe
would result in entering the opposite side.

Another possibility for a true infinity in the realms of reality is time,
which Aristotle imagined would never have an end, and so could be thought
of as infinite in expanse. Some cosmological theories have no beginning for
the universe either, though the preferred big bang theory gives it a starting
point. Some would argue, though, that the universe will end, if eventually
the whole universe winds down to the extent that there is no difference from
moment to moment. If that is the case, it’s possible to argue that time no
longer really exists, because there is no way to mark its passing.

Aristotle also believed (he wasn’t an atomist) that both time and space
could be divided up forever into infinitely small sections. Most physicists
now think that this may be untrue—that just as the rest of physical reality is
quantized—broken up into discrete particles—so must time and space be,
especially if gravity is ever to become part of the quantum framework. The
best candidates for a measure of the granularity of space are the Planck



length and time, units derived from three fundamental constants, the speed
of light, the gravitational constant G, and Planck’s constant h.

The idea, when they were first dreamed up, was to define units that
weren’t artificial and man-made, but were fundamental to the universe. The
Planck length is √hG/c3 and comes in at around 1.6 × 10–35 meters, while the
Planck time is √hG/c5 making it around 5.4 × 10–44 seconds. There is a third
Planck unit that rarely gets a mention, the Planck mass, which at √hc/G is
the only one that is comparable with things we have experience of, at
around 2.2 × 10–8 kilograms. (I haven’t given nonmetric equivalents for
these units as such small values aren’t ever measured any other way.) It is
possible, though certainly not definitively true, that if space and time are
quantized, these values could give a measure of their granularity. (The
Planck mass is certainly not the smallest possible mass—for comparison,
the mass of an electron is around a trillion trillion times smaller. In fact, if
anything, it has been argued it could be the largest possible mass for a
fundamental particle.)

One interesting possibility of a kind of true infinity emerges from the
field of quantum physics. A quantum particle like an atom or an electron
has properties that are quite unlike the ones we are familiar with for objects
in the “macro” world. If, for instance, you take the property of quantum
particles called spin (quantum spin is only analogous to something spinning
round, not a literal spin), we can’t produce an actual value for it. Instead
what is found is that if spin is measured in any particular direction it will
always be either “up” or “down” in that direction (hence the quantization).

Before the measurement is made, we can’t know what the outcome will
be, because the spin of the particle has no true value. Instead the spin is in a
state called superposition, where it might, for instance, have a 27 percent
probability of being spin up and 73 percent of being spin down. If we
repeatedly made the measurement in that particular direction, 27 percent of
the time the result would come out up and 73 percent down—but we can
only predict the probability (thanks to Schrödinger’s equation—see page
214), not the outcome.



In the superposed state, the spin can be thought of as a direction. Think
of it as an arrow that points up to represent a 100 percent probability of spin
up and down for a 100 percent probability of spin down. In the superposed
state, it is as if the arrow points in an intermediate direction. (A 50/50
probability would be the direction at 90 degrees to the up/down direction.)
So, in effect, what we have is a representation of a real number, an infinitely
long decimal in the form of the direction produced by the superposition of
spins. This is why quantum computers, based on such particles, rather than
the traditional 0/1 bit of a conventional computer, have the potential to do
such impressive work. And if X0 is ever going to intrude into reality, it is
perhaps with such quantum bits or qubits that it will become accessible—
and even then only indirectly, as we can never read off the value of the
direction, but it is real in the sense that it has a direct impact on the result of
measurement.

However, one thing that is definitely true is that infinity, which presents
an elegant toy for mathematicians to play with, is often a nightmare in
science. All too often in physics, as we’ve already seen with the recoil of an
electron, values of infinity turn up. Whether we’re dealing with the innards
of a black hole or something as everyday as that electron, there is always
the possibility for infinity to emerge. Another issue with the electron is that
it is thought to be a point particle with no dimensions. But this means that
as you get closer and closer to it, its electrical field strength heads off to
infinity. And there’s nothing closer than the electron is to itself.

The electron’s self-energy, the result of it interacting with its own field,
is just one of the infinities that plague QED (see page 157), the physics that
explains the electromagnetic interaction of light and matter particles that is
central to almost all our everyday experience. And yet QED is generally
regarded as the most successful theory ever in terms of predicting observed
values. How does it get over those infinities? By a mechanism known as
renormalization that amounts to replacing ridiculous infinite values with
observed ones.

It’s not that physicists always have trouble with infinity. The potential
infinity that is employed in calculus comes into play all the time. But it is



the embarrassing tendency of physical theories to throw up “real” infinities
that causes problems. Physicist Max Tegmark argues that by supporting
theories that allow for real infinities we are storing up problems for the
future of physics.

He points particularly to cosmic inflation, the patch that was applied to
fix some issues with the original big bang theory. The idea is that after the
big bang, the space of the universe expanded massively, far faster than the
speed of light to begin the development of the universe we now observe.
And the current version of inflationary theory agrees well with observation.
(In a sense, it ought to, because this was how inflation was pragmatically
dreamed up, and then changed several times to make it closer to new data.
However, for some time now the theory has lined up with many
observations that have been made long after the current theory was first
produced.)

According to Tegmark, the trouble with inflationary theory is that it
allows for a universe that inflates to an infinite volume, which then totally
wipes out the ability to make sensible predictions in a wide range of areas,
because inflationary theory should, as a result, produce an infinite set of
spaces that contain all possible physical situations. When all things are
possible, nothing is truly predictable, which undermines the whole point of
science. With this viewpoint, inflationary theory is a bit like a killer
computer virus that if released unchecked could destroy the whole of
scientific theory.

Tegmark has suggested that there should be a limit on inflation’s ability
to stretch the universe, based on the quantum nature of space-time—just as
the finite atoms in a rubber band stop it from being stretched forever, as in
principle could be the case if the material was truly continuous. He argues
that such a limit would do away with everything from the problems of the
infinitely dense black hole singularity to the mathematical issues that get in
the way of quantum theories of gravity. We don’t need a real infinity is
Tegmark’s cry.

He concludes: “Our challenge as physicists is to discover this elegant
way and the infinity-free equations describing it—the true laws of physics.



To start this search in earnest, we need to question infinity. I’m betting that
we also need to let go of it.” As yet Tegmark stands as something of a
maverick, but his thinking could represent a new beginning in science.

Unlike the embarrassing infinities of physics, the mathematics of infinity
that Cantor worked on never really had a significant impact on everyday
life and science. From our viewpoint of examining the relationship between
numbers and reality, what is more interesting out of this whole field is the
impact of Gödel’s work and the arbitrariness caused by the problems with
the axiom of choice. Set theory is at work at the foundation level of
mathematics. And yet it has this fascinating flaw. Perhaps more than
anything else, these developments show the danger of assuming that reality
is directly and literally based on mathematics. Presumably if it were, then
reality too would have arbitrariness at its foundation.

However, despite the lack of application of Cantor’s infinities, toward
the end of his life, physics took on a new direction with mathematics more
solidly at its heart than ever. A direction that would change practically
everything that was known—and that would transform everyday existence.



13 Twentieth-century Mathematical Mysteries

There is something very strange about the approach taken to teaching
physics in schools. All the way up to the end of high school, students learn
the same physics as was taught at the end of the nineteenth century. They
may have a few tiny peeks past 1900, yet they are unlikely to get any
significant teaching of twentieth-century physics (let alone twenty-first)
unless they continue to study the subject at university.

It’s hard to think that this would happen in other subjects. Imagine, for
instance, an English class that considers nothing written since the 1890s—it
would be bizarre. And yet literature has changed far less than physics has in
this period. Because almost everything that was known before 1900 had to
be modified or thrown away as a result of two huge revolutions in the
twentieth century: relativity and quantum theory. And each formed part of
the new science that had mathematics as an important driver at its heart.

Relativity as a basic concept dates back to Galileo’s day, and lovers of
symmetry (see next chapter) will point out that relativity is all about
invariance, the idea that there is a force or object or property of an object
that doesn’t change as a result of making a change to its circumstances—the
essence of symmetry. Invariance means that something will work exactly
the same way, producing exactly the same results, when a specific change is
made. In the case of the original, Galilean relativity, that change involved
steady motion.

Galileo was famous for trashing a number of the fond beliefs of the
ancient world, and relativity does just this. According to legend, Galileo
demonstrated his concept during an outing on a lake. He and a number of
friends were being rowed at some speed across Lake Piediluco. Galileo



asked to borrow a heavy object and his friend Stelluti came up with the key
to his house, a large, solid iron object that was irreplaceable. Galileo took
the key and hurled it straight up in the air. As the boat was moving forward
as fast as six oarsmen could drive it, Stelluti tried to hurl himself off the
back of the boat to catch his key as it fell. Galileo’s other friends restrained
him, and the key fell straight back into Galileo’s lap.

What Galileo proposed, and this “experiment” demonstrated, was that
when something is in steady motion, like the boat, you can undertake pretty
well any physical experiment that doesn’t involve interaction with the world
beyond the boat and the results will come out just as they would if you
weren’t moving. If Galileo had been sitting still on the shore, Stelluti would
have expected the key to go straight up and back down again. And that,
Galileo knew, would also happen on the boat. The “relativity” part was the
realization that as far as the key was concerned, the boat wasn’t moving.
Steady motion can only be defined or detected relative to something else.
This is the reason for the “world beyond the boat” proviso. Compared with
the shore, for instance, the boat was moving, and it could be easily
experimentally detected.

Galileo used no complex math in his workings, yet even Galilean
relativity tends to be ignored in school science curricula. The very word
“relativity” seems to produce fear in most educators. We teach children the
consequences, but we don’t really hammer home the crucial nature of
relativity. I think most teachers would argue they don’t go any further
because the subject is too difficult. And certainly when we get to general
relativity and quantum theory, the math does reach a level that is well
beyond high school students. But there’s nothing that is too difficult to
grasp in the concepts of relativity and quantum theory. In fact, I find when
giving talks in schools that children find it easier to get their heads around
these than adults, presumably because young people are more used to
learning new and weird stuff.

However, Einstein’s first move to enhance Galilean relativity, the special
theory, is not even particularly mathematically challenging and there really
is no excuse for omitting this from the school curriculum. Yes there is math



here, and it is different from the basic workings we are used to when
dealing with, say, Newton’s laws—but it is mathematics that takes no
outrageous leaps. And yet this is truly sexy science—the sort of thing that
makes students sit up and listen. It’s a vehicle for time travel, for example.
It makes no sense at all that it is not taught in high school.

In essence what Einstein did was to take Galileo’s idea of relativity and
to extend it to encompass the nature of light that had emerged from
Maxwell’s work. As Maxwell had shown, one of the definitive features of
electromagnetic waves was their speed. In conventional Galilean relativity,
if we move alongside something else that is moving, both of us traveling at
the same speed, then as far as we are concerned that “something” isn’t
moving at all. That’s why Galileo could throw Stelluti’s key up in the air
and have it fall back down in his lap. But if this also held for light, then
moving alongside light would also change its speed. And if light didn’t
travel at the specific speed that defines it, it would cease to exist.

A lesser scientist might have just assumed that Maxwell was wrong, but
Einstein was deeply impressed by Maxwell’s line of argument and reasoned
therefore that, unlike everything else, a beam of light didn’t change speed
when you moved with respect to it. This seems a relatively small change,
yet when it was plugged into the basic mathematics of motion dating back
to Galileo and Newton it had a truly surprising effect on the nature of
reality.

The simplest example to think of, to see how the impact occurs, is a so-
called light clock. This is a device for which each “tick” of the clock is a
beam of light flicking back and forth between a pair of horizontal mirrors.
The beam travels up and down in a straight line. Let’s imagine we had this
clock on a transparent spaceship, and had a super telescope that enabled us
to see the light clock from Earth. If the ship weren’t moving with respect to
the Earth, then the people on Earth and the people on the ship would see
exactly the same thing when checking out the clock. As the clock was not
moving for either of them, the beam of light would travel in a perfect
vertical line as it bounced between the two mirrors.



Now let’s consider what would happen if the ship was in flight at high
constant speed compared to the Earth. Thanks to Galileo we know that as
far as the people on the ship are concerned, nothing has changed inside their
vessel. The clock is still not moving for them and the light continues its
steady up and down straight-line paths. But the people on Earth will see
something different. Imagine the beam sets off from the top of the clock. In
the time it takes the light to reach the bottom mirror, the ship will have
moved sideways. The effect will be that instead of dropping vertically, the
light will pass down a longer diagonal path. The same happens on its return
journey up to the top of the clock. Now the light is zigzagging in diagonals.

Things would be very different if traditional Galilean relativity had
applied. If we imagine watching Galileo’s boat on Lake Piediluco from the
shore, and he had something like the light clock that fired a stream of ball
bearings from top to bottom, then from the boat the “clock” would not be
moving and the balls would zip down in a vertical straight line. From the
shore we would see both the boat and the balls moving sideways, so we
would add together the two motions for the balls to produce a new
combined speed. But assuming Einstein was right and light always goes at
the same speed however we move with respect to it, we wouldn’t see the
equivalent from the Earth, looking at the light clock. The light would have
farther to travel, but would not be able to change its speed.

This means that something else would have to give way. Something
would have to be stretching to allow the light to make its destination on
time. When he did the math, Einstein discovered there were three resultant
effects. Time slowed down on the ship as seen from the Earth, distances
contracted in the direction of movement, and the mass of moving objects
went up. According to special relativity, space and time can no longer be
considered entirely separate entities, and it becomes con venient to work
with a mash-up of the two, space-time.

As it happens, the mathematics required to cope with this—and it’s the
reason why special relativity should be accessible to school students—is
little more than a touch of ancient Greek geometry and the ability to deal
with square roots. Einstein worked out from the geometry of the light clock,



and other thought experiments, that the key factor, often given the name
gamma (γ) is just √(1 – v2/c2) where v is the velocity of the moving object
as far as the observer is concerned, in our case the spaceship, and c is the
speed of light.

In the case of the light clock, for instance, when a time t has elapsed as
far as the spaceship is concerned, for the viewers on Earth the time that has
passed by is t/γ, which is t/√(1 – v2/c2). That may look like heavier
mathematics than you’d like to deal with, but it is pretty straightforward.
When v is 0 and the ship isn’t moving, then v2/c2 is 0, so we just divide t by
1 and end up with t. Both the ship and the Earth see time ticking along at
the same speed.

But as v gets closer and closer to the speed of light (c), then the amount
that t gets divided by gets smaller and smaller—which means that the time
as seen by the people on Earth gets longer and longer. If γ is 1/2, then it’s
t/1/2—which is the same as 2t. If γ is 1/4, then the elapsed time seen from
Earth is t/1/4 or 4t. As far as the people on the ship are concerned, time is
passing entirely normal. But from the Earth’s point of view, time on the ship
is passing slowly, so that when t has elapsed on the ship, 4t has gone by on
the Earth.

Perhaps the weirdest thing about all this is that relativity is totally
symmetrical. On Earth we tend to take the surface of the Earth as the
definition of “not moving,” but that is an arbitrary (if usually convenient)
decision. After all, the Earth is spinning around its axis, flying around the
Sun in its orbit, and moving through space at high speed with the rest of our
galaxy. We tend not to think of it that way, but from the viewpoint of
Galileo’s boat, the boat isn’t moving forward, the world is moving
backward. Similarly, from the point of view of the people on the spaceship,
the ship isn’t moving at all. It’s Earth that is shooting away from them at
high speed. There is no good reason to choose one over the other as the
fixed point (or “frame of reference” as scientists tend to call it). So if the
passengers on the ship could see a light clock on the Earth, they would see
that time on the Earth was running slowly as a result of the Earth’s motion
away from the ship.



It’s not really the point of this discussion to go into all the implications
of traveling at near light speed—you’ll find a lot more in my book How to
Build a Time Machine—but it is worth briefly pointing out why this
symmetry doesn’t hold in the best-known example of this “time dilation”
effect. In this thought experiment, a pair of twins are involved in a space
mission. One is a mission controller; the other flies off on the spaceship on
a long mission at near the speed of light. Let’s say both twins are thirty
when the mission starts. The astronaut experiences five years passing by, so
returns aged thirty-five. But she discovers her twin on Earth has aged ten
years and is now forty.

It seems wrong that this should happen if the picture were totally
symmetrical as described above. And symmetry would have been in play
for the period of the journey when the ship was moving at a steady pace
away from the Earth. But then the symmetry would have to be broken. At
some point the spaceship had to have a force applied to it to slow it down,
then to accelerate it back toward Earth. When it reached home, again a
force would have to be applied to match its speed to Earth. It is this change
to the ship that doesn’t happen to the Earth that effectively resets the clocks
so that the ship returns to Earth time, but having only experienced the
passage of five years.

There is no doubt that surprising results emerge from the mathematics of
special relativity, whether it is time dilation, the way that a massless particle
like a photon has momentum or the ultimate equation relating energy and
mass, E = mc2. Generally speaking, though, the basic mathematics used is
rarely challenging for an advanced high school student. The same can’t be
said for the general theory of relativity, though. Here even Einstein had to
get help with the math, and although the key equations look simple enough,
they hide a multidimensional complexity that is challenging enough that
they can only be solved for special cases, rather than universally.

The basics behind general relativity, though, which brings acceleration
and gravity into the mix (and hence makes this version of relativity more
general than special relativity), are reasonably straightforward. Einstein’s



starting point was what is now called the equivalence principle, based on an
idea that he referred to as his “happiest thought.”

This thought occurred to Einstein when he was still an amateur scientist,
working at the Swiss patent office. (The whole of the special theory was
developed here, though the meat of the general theory would come later
when he had finally achieved academic recognition.) He later commented:
“I was sitting in a chair in the patent office at Bern when all of a sudden a
thought occurred to me: ‘If a person falls freely he will not feel his own
weight.’ I was startled. The simple thought made a deep impression on me.
It impelled me toward a theory of gravitation.”

If you aren’t already clued up on general relativity, it isn’t immediately
obvious what Einstein was getting at in that quote. What he meant is that if,
for instance, someone falls off a high building, then he accelerates toward
the ground at a standard rate determined by the gravitational pull between
the Earth and his body. But at the same time, he feels weightless. He floats
around as he falls, just as much as astronauts do in the International Space
Station (ISS). That’s if you ignore the buffeting caused by the air he is
moving through—it’s probably better to think of him falling inside a box,
with both him and the box in free fall. In fact the only reason that the
astronauts on the ISS feel weightless is because they too are falling.

Remarkably, the strength of the Earth’s gravitational pull is actually very
similar to ground level at the height the space station flies—it’s around 0.9
times normal Earth gravity. But the reason the astronauts are effectively
weightless is that the space station is plummeting toward the Earth, just as
much in free fall as the person who falls off the building. They only
difference is that the space station is also moving at high speed sideways, so
it keeps missing the Earth as it continues to fall. This is what being in orbit
entails: falling and missing.

So those floating astronauts are a real, everyday demonstration of
Einstein’s observation that people who fall freely don’t feel their own
weight. As they accelerate downward, the pull of gravity that they should
feel is canceled out. By comparison, if we accelerate downward faster than
gravity’s effect, we feel as if we are in a gravitational field pulling in the



opposite direction. Think what happens when you are on a plane and it
starts to accelerate along the runway. You feel a gravity-like pressure
pushing you back into your seat. If the acceleration is great enough to give
the kind of “g-forces” experienced by astronauts or fighter pilots, your body
will feel extremely heavy.

So we see what Einstein was getting at. The fact that astronauts and
other falling things feel no weight in free fall reflects the way that
accelerating and experiencing gravity are exactly equivalent. He had
produced, mentally, a similar situation to that envisaged by Galileo. In
Galileo’s original thoughts on relativity, he imagined being inside the cabin
of a steadily moving boat that had no windows. He realized that no
experiments that he could do within the cabin would determine whether he
was moving or stationary. With special relativity, Einstein added in the
invariant nature of the speed of light. Now, bringing in acceleration, he had
something more.

Imagine, for instance, that you are inside a spaceship without windows
and you feel a constant force pulling you toward the back of the ship, giving
you weight. According to Einstein, there is no experiment you can do inside
that ship to determine whether your craft is sitting on a planet with just the
right force of gravity to pull you toward the back of the ship, or whether the
ship is out in space, constantly accelerating under the push of its motors.
The gravitational pull and the acceleration are equivalent and
indistinguishable.

Pedants (and being pedantic tends to go hand in hand with science) will
point out that strictly speaking there is a way to distinguish the two cases.
This is because it is possible to move around inside the spaceship. So if you
did the experiment twice, once right at the back of the ship, and once right
at the front, you would expect to see no difference if the ship were
accelerating, because the acceleration would be the same in both places. But
you would see a tiny difference under the pull of gravity, as the front of the
ship would be farther away from the planet, so you would feel slightly less
gravitational force. While strictly true, this misses the point of the



equivalence principle, which is about what happens at a chosen point in
space, not when wandering around a ship.

While we’re on the imaginary ship, we can try out another experiment
that is of great significance. Let’s imagine we’ve got the light clock that
was used in the special relativity experiment. If you remember, while the
ship is moving steadily, as far as the people on the ship are concerned, the
clock is not moving and the light continues to travel from top to bottom
between the mirrors, undisturbed. But imagine that we now switch on the
ship’s motors so that the clock isn’t moving at a constant speed with respect
to the Earth, but is accelerating. Even inside the ship, we are aware of the
acceleration. We know that the mirrors are feeling a force that accelerates
them while the light is in flight between mirrors. And the light will no
longer produce a clear, vertical straight line traveling from mirror to mirror.
Instead, as it travels from top mirror to bottom, the people on the ship will
see the light following a curved path.

That’s interesting in its own right. It makes it clear that Galileo’s “no
experiment can distinguish” relativity doesn’t hold true when there is
acceleration. But we didn’t need a light experiment to realize this. We can
feel the effect on our bodies—or on the accelerometer built into a cell
phone. However, the principle of equivalence tells us something much more
interesting. We have seen that when the ship is under acceleration it makes
the path of light bend. In that case, it must also happen when the ship is in a
gravity field. Einstein realized a fundamental aspect of the nature of gravity.
It is effectively the ability of matter to warp space-time. The presence of
matter with mass makes space-time warp, as a result of which we see the
light beam, which is simply trying to head off in a straight line, travel
through a curve.

This might sound familiar. Remember the space station orbiting the
Earth? It too is traveling in a straight line, at a tangent to the Earth, and
should fly off into space. But the mass of the Earth warps space-time and
the space station curves into an orbit. This explains why things curve
around massive objects as they travel, but it is less obvious why a stationary
item, like an apple, starts accelerating toward the ground. The important



thing to notice here is that it is not just space that is warped but space-time.
And though the apple is stationary in space it isn’t stationary in space-time
—time is ticking on. So effectively that acceleration is a result of the
warping of time.

This gives us a feel for the general theory of relativity at the explanatory
level. But no mathematics has yet been involved. It’s enough for us to have
a picture of what general relativity does, but not enough to make use of it
scientifically. One of Einstein’s great abilities was to visualize a situation in
a thought experiment with limited mathematical content, which he would
then populate with the mathematics to give clarity to what the thought
experiment seemed to say should happen. In the case of general relativity,
that plugging in of the math would take several years, primarily between
1911, when he took a rest from the quantum theory that had been plaguing
him, and 1915.

The first problem Einstein faced was to move away from the geometry
that Euclid had expounded so clearly a couple of thousand years previously
(see chapter 4). As we’ve seen, one axiom that the Greeks didn’t bother to
state was that they were undertaking Pythagoras’s theorem, and all the other
theorems of Euclidian geometry, on a flat surface. That was just taken for
granted. However, when you think about it, this was an odd assumption to
make. Apart from anything else, in the ancient world there would have been
far fewer truly flat surfaces than we have today. While true flatness was
okay for Plato’s perfection of archetypes, the shadows in the real-world
cave were inevitably flawed. It was formally stated that the lines in
geometry could have no thickness, unlike the real world, but no one
bothered to state the assumption that they were working on a flat surface.

Another reason that it was slightly odd that the Greeks never even
noticed they were assuming flatness is that they knew that Earth wasn’t.
Flat, that is. It’s still commonly put about that a flat Earth was the standard
model all the way to medieval times, but no one educated in the period
thought that the Earth was anything other than a sphere, and that had been
demonstrated back in Ancient Greek times. So the geometry of which the
Greeks were so proud, a science whose name tells us it was about



“measuring the Earth,” was actually not appropriate for work on the curved
Earth’s surface.

We’ve already seen (see page 48) one way that this is the case. Because
parallel lines that run perpendicular to the equator meet at the poles. And it
becomes even more obvious when dealing with that most typical of
geometric shapes, the triangle. Proposition 32 of Euclid’s Elements (Book I)
tells us: “In any triangle, if one of the sides is produced, then the exterior
angle equals the sum of the two interior and opposite angles, and the sum of
the three interior angles of the triangle equals two right angles.” To put it in
a more familiar form, according to Euclid, the angles of a triangle add up to
180 degrees.

In Euclid’s elegantly constructed, step-by-step system (remember that he
didn’t get to this until he’d gone through thirty-one other propositions),
there is no escaping this fact; it has to be. However, it simply isn’t true
when you move away from a flat surface. On a sphere like the Earth
(approximately a sphere, at least), the equivalent of straight lines are called
great circles. Clearly no lines can be truly straight in all three dimensions—
they bend with the curvature of the Earth. A great circle is any line that, if
continued around the Earth would form a circumference of the Earth.

We can do a very simple test with a triangle made with great circles that
will blow Euclid out of the water. Imagine we take two points on the great
circle that is the equator, some distance apart. From each we draw a line
(along another great circle) at 90 degrees to the equator, heading for the
North Pole. The two lines meet at some angle at the North Pole. The farther
apart the points on the equator are, the bigger the angle at the North Pole.
So let’s add up the angles of the triangle. We’ve got two 90 degrees for the
corners on the equator, plus whatever the third angle is. These have to add
up to more than 180 degrees. In fact, if we choose two points on the equator
10,000 kilometers apart (which happens to be the distance from the equator
to the North Pole, as that’s how the kilometer was originally defined), we
get an equilateral triangle. Each side is the same length. And the result is
that we have a total of three 90-degree angles—it’s a triangle whose angles
add up to 270 degrees.



If we make the leap from Euclid to Einstein, it soon became clear that to
deal with the curvature of space-time in general relativity, Einstein could
not make use of mathematics that assumed the flat realities of Euclidean
geometry. His mathematical tools had to deal with curved surfaces. And
even more scarily, it had to cope with situations where four dimensions—
three of space and one of time—were all curved. Einstein’s friend Marcel
Grossmann pointed him in the direction of the most advanced geometry of
curved space available in his day, developed by the German mathematician
Bernhard Riemann.

Einstein’s work was by now coming under scrutiny, particularly by the
leading German mathematician David Hilbert. This was particularly the
case after Hilbert invited Einstein to lecture at Göttingen, Hilbert’s
university. The mathematician seemed to decide that he ought to finish off
Einstein’s work, at the time still containing several flaws, before Einstein
could. In fact, although Einstein published his first complete paper on
general relativity before Hilbert, it was thought for some time that Hilbert
had in fact completed the equations first, but published later. More recently
it has turned out that Hilbert’s original unpublished paper itself had a
number of flaws, and was corrected in response to Einstein’s paper, so
Einstein would probably still have priority.

Whoever practically got there first, there is no doubt that the work was
started by Einstein, and there were no recriminations here as there had been
between Newton and Leibniz over calculus. Hilbert graciously accepted this
was Einstein’s baby. The result of all this work was a deceptively simple
equation, which can be represented as

Gμν + Λgμν = (8πG/c4) Tμν

This looks harmless enough, apart from that fourth power on the speed
of light, but the elements of the equation with the μν subscripts are not
simple variables, they are tensors, the powerful but hard to manipulate tool
that Einstein took from Riemann’s work. A tensor compresses a
multidimensional relationship between different values, vectors, and other



tensors into a single term. Hidden behind the apparent simplicity of that
term is typically a matrix of variables. The tensors in the gravitational field
equation unpack to produce ten different underlying differential equations,
dealing with values that change depending on location in space and time.
Underneath that elegant surface, all hell is breaking loose.

When Newton worked out his theory of universal gravitation it implied a
simple underlying equation (Newton didn’t use it himself) of

F = Gm1m2/r2

All that is involved is the constant G, the masses of the two bodies and
the distance between them (r). That familiar G crops up also in Einstein’s
equation, but the rest of it had to deal with far more than the influence of
mass, important though this remains. One of the key factors was the
observation from the special theory of relativity that the mass of an object
doesn’t have a fixed value, but is modified by movement. Energy
contributes to mass—and Einstein would show that it also made a
contribution to gravitation. The mass part of the effect primarily produced a
warp in time.

Then there was the space warping that started the whole business when
we considered the beam of light being twisted in the accelerating spaceship.
Unlike time, for space we have to consider each of three dimensions along
both directions, effectively bringing six extra factors into play. And finally,
Einstein had to incorporate some oddities. One was the factor known as
frame dragging, where due to relativistic effects, a moving object generates
a small gravitational pull at right angles to its movement. And the final
contribution came from the way that gravity generates a form of energy
(think, for example, of the potential energy of an object high up in a
gravitational field, like a rock on the top of a high mountain). As we’ve
already seen, energy produces gravitation. So there’s a small feedback loop
where gravity itself is a source of yet more gravity.

Unlike special relativity, general relativity used mathematics that is not,
and never will be, familiar to the general public. And cracking these



complex equations has proved extremely challenging. Although solutions
rapidly began to emerge for special cases, there is no general solution. One
of the first of those solutions, like Maxwell’s predictions of electromagnetic
waves was an early example of a mathematical prediction being used to
bring an unexpected physical entity into being—in this case, the black hole.

As a concept, the black hole dates back to the eighteenth century, when
the English astronomer John Michell realized that if a body were massive
enough, its escape velocity—the speed you have to throw something for it
to escape the pull of the body—would be so high that it would exceed the
speed of light. Even light would be trapped by such a dark star. But
Michell’s work was long forgotten when the German physicist Karl
Schwarzschild revisited the concept as a response to Einstein’s theory.

This was in 1916, when Schwarzschild was fighting in the First World
War. Just months after the publication of his theory, Einstein had only
managed an approximate partial solution, making a prediction that could be
tested about a variation in the orbit of Mercury. But somehow,
Schwarzschild found time in the trenches to produce an exact solution for
the special case of the black hole, a star that had collapsed effectively to
nothing, unable to resist its own gravitational pull as the fuel that had been
puffing it up ran out.

Schwarzschild didn’t call his solution a black hole—the name would not
crop up until the 1960s. It is usually ascribed to John Wheeler, who was
certainly one of the first to use it. However, he doesn’t seem to have been
the first to think of it. The term was bandied about by someone other than
Wheeler, at an American Association for the Advancement of Science
meeting in January 1964, and as a result appeared in print in a Science News
Letter article about the event written by Ann Ewing. It came out of the
meeting, but no one knows for sure who first used it.

Wherever the name came from, we know where black holes came from:
from mathematics. The way we test the effectiveness of a scientific model
tends to be in its ability to predict real-world outcomes that weren’t used to
create the model in the first place. This is why Einstein was so enthusiastic
about producing a partial solution to predict how Mercury’s orbit should



behave, and soon after, the predictions of his theory about gravity bending a
beam of light would be tested by observing stars whose light passed close to
the Sun, visible during a solar eclipse. But the prediction of the black hole
was one of the first examples of a model predicting the existence of a whole
new entity that no one had seen or was even looking for.

Even now, black holes are more the product of mathematics than of
science. Astronomers have observed many objects in deep space that
behave from indirect evidence as if they were black holes. The evidence is
strong, but remains indirect. We have never observed a black hole. Instead
we have a prediction from the mathematics that we would expect to
produce the kind of effects that we see, for instance, at the center of our
galaxy where it is suspected there is a supermassive black hole. In terms of
the overall thesis of this book, this is mathematics absolutely on the
borderline of reality. It seems to have a bearing on the real universe, but that
has yet to be proved and some, like Max Tegmark (see page 192) suggest
that the link between the math and reality will never be good enough—that
the predictions will prove wrong if we ever get to analyze what appears to
be a black hole up close.

Important though relativity was to prove, there was another equally
transforming branch of physics emerging at the same time, in which
Einstein also had a significant hand—quantum physics, the physics of the
very small. At the start of the twentieth century, atoms were not considered
definite existing entities, but rather they were seen as a useful conceptual
tool to help predict how matter would behave. But with the early years of
the century it was demonstrated not just that atoms did, indeed, exist—
Einstein was primarily responsible for that demonstration—but that they
behaved in ways that seemed entirely unnatural, a true paradox since most
of nature was based on such quantum particles.

This isn’t the place to detail the complexities of quantum physics—the
study of the universe on the scale of tiny particles like atoms, electrons, and
photons of light—but there are two key observations from the way it was
developed that are important in understanding the impact of mathematics on
our view of the universe. The early workers in the quantum field like



Einstein and the Danish physicist Niels Bohr quickly realized that they
would have to throw away many assumptions about the way that matter and
light behaved when looking at the world at the quantum level. Light, for
instance, had clearly been established to be a wave, and Maxwell’s work
seemed to confirm this. But the new quantum sages would show that light’s
wave behavior was nothing more than a model. Light had wave-like
properties, certainly. But it could equally be described as a collection of
particles or as a disturbance in a field.

Bohr tried to explain the way that electrons in an atom interacted with
light by placing those electrons in orbits, like planets around the Sun, a
model that we still see in almost all graphic design representations of the
atom, even though this model was out of date before the 1920s. Bohr
quickly realized that such orbits were impractical and instead put the
electrons, in effect, on rails, able to jump between sets of rails, but not to
exist in the space in between. “Real” objects that we are familiar with at the
level of things we can touch and see don’t behave like this, but these
quantum particles seemed to do so.

Bohr’s work on the atom was limited in its application, and rising young
scientists, notably Werner Heisenberg and Erwin Schrödinger, took on the
task of extending the mathematical description of quantum interactions far
beyond Bohr’s simple atomic model. Heisenberg in particular took a purely
mathematical approach, developing a description of the behavior of
quantum particles called matrix mechanics that made no attempt to take into
account a model that could be visualized of what was happening. Instead he
manipulated matrices—arrays of numbers—turned the handle, and this
black box model, like that eventually used by Maxwell on
electromagnetism, turned out useful predictions.

Schrödinger was less happy with such an abstract approach and instead
took a parallel look at modeling quantum behavior by using the more
familiar form of waves. His equation, still a key component of
understanding quantum physics, is another that looks a lot simpler in its
commonly used form than it truly is



There are a number of reasons why this is mathematically scary. One is
the presence of i, the square root of –1 (see page 97). And rather like the
tensors in Einstein’s equation, the symbols Ψ (Greek letter psi) and H with a
hat on here are not what they seem. Psi is the wave function, a complex
formula that describes the nature of a particular system, and the H-hat is a
“Hamiltonian operator” a shorthand way of representing the energy in a
system and applying it to the wave function.

Initially it was thought that the wave function in Schrödinger’s equation,
or rather the square of its value (thankfully losing that worrying i)
represented the location of particles in the system, but if that were the case,
it seemed to predict that all quantum particles spread out over time, getting
bigger and bigger, for which there was no experimental evidence.
(Thankfully—it would make for a very strange universe.) It was realized
that, instead, the equation predicted the probability of finding a particle in a
particular location or a system in a particular state.

Quantum theory went on far beyond just this equation and in its use of
convoluted mathematics. There was, for instance, the Dirac equation,
bringing in relativity to the behavior of quantum particles (and predicting as
a side effect the existence of antimatter), the extension of quantum theory to
quantum electrodynamics, predicting the interaction of light and matter, and
more. But we only have to get to Heisenberg and Schrödinger to see the two
big steps forward in the ability of scientists to “believe” what was coming
out of the mathematics, rather than observation.

First, Heisenberg produced a totally mathematically oriented description
in his matrix mechanics. Then Schrödinger’s equation brought probability
into the mix. This was the point where Einstein parted company with the
theory he had done so much to bring into being. Einstein hated the idea that,
at the level of quantum particles, when nothing is being measured, all that
exists is probability. A quantum particle doesn’t have a location unless it
has just been measured, for instance. It is often stated that quantum particles



can be in two places at once, but the reality appears to be far stranger. All
that exists is the web of probability.

In essence, quantum physics appears to make reality fundamentally
mathematical. According to the theory, there is no real world, no observable
equivalent to this dependence on probability, when measurements are not
being made. It might seem at first sight that this is just a variant on what
happens when we toss a coin. In a fair coin toss we usually say that there is
a 50/50 chance of the outcome being heads or tails. But in reality, once the
coin has been tossed, there is a 100 percent chance of one outcome and a 0
percent chance of the other. We just don’t happen to know which that value
is until the coin is revealed. But if we had a quantum coin, there would
literally only be the 50/50 probability with no underlying certainty until a
measurement is made and the result is produced.

While this relationship between a mathematical concept and real
quantum entities seems unlikely, it has been confirmed by a great many
experiments over the years. However, it turns out to be an exaggeration to
say that it is truly a case of the real world being based on mathematics. In a
sense, it isn’t as surprising as it first seems. We are still dealing with models
of reality, rather than an absolute description. And probability is rather
different from the abstract mathematics that so often drives modern physics,
in that it was developed all along as an applied mathematical tool—it
derives from an observation of real operations like coin tosses, it’s just that
in the quantum form, it takes on an independence that was never there in the
original formulation. It doesn’t mean that the quantum particle is a
probability, merely that all we can usefully say about it is in the form of
probabilities.

Even in the time of Galileo and Newton, symmetry kept cropping up in
physics, whether it was in the pleasing reflective symmetry of Newton’s
third law of motion, or the way that different views in relativity have a
symmetrical impact. But as the twentieth century rolled on, symmetry
began to play a new and dramatic role in the shaping of scientific theories.
The math was truly taking over.



14 Symmetry Games

Science and mathematics have yet to produce many great female role
models—not because women are worse at the subjects, but simply because
they were for so long excluded by a bizarre culture that was sure that
anything so mentally challenging would cause their little brains to overheat.
Ask anyone to name a great female figure in math or science before the
second half of the twentieth century and they might mention Marie Curie,
Ada Lovelace, or maybe, at a push, Caroline Herschel, but they are unlikely
to pick out Emmy Noether. Yet this German mathematician was single-
handedly responsible for the way that mathematics began to set the agenda
in physics. Specifically, Noether identified the importance of symmetry,
discovering that it wasn’t just easy for nature to produce symmetrical
structures, but that the mathematics of symmetry appears to be behind many
of the physical laws.

More often than not, math now leads the way and an attempt to obtain a
match to reality follows. Noether’s discovery that symmetry produced the
laws of conservation was directly responsible for completing this shift,
started by Maxwell. Our standard model of the fundamental particles that
make everything up does not originate from fancy experiments like the
Large Hadron Collider, but from the mathematics of Noether and her
successors. And in many ways this has proved remarkably successful. Yet
sometimes it seems as if the whole process has gone too far.

It is probably unfair to say that the only reason Emmy Noether is an
unfamiliar name is because she was a woman. If you were to ask the
general public to name any twentieth-century mathematicians, it’s likely
that they couldn’t come up with a single name who wasn’t actually a



scientist rather than a mathematician—in fact given the amount of publicity
Noether has received recently, she may well be one of the few who has a
possibility of being named. Yet because of her work’s importance to the
way physics has developed, it’s arguable she should be as well known as
Schrödinger and Heisenberg.

Born in Bavaria in 1882, Noether was the daughter of a respected
mathematician, Max Noether. Her parents named her Amalie, but from a
young age Noether called herself Emmy, which was soon accepted by
everyone. Unlike many great mathematicians and scientists, Noether
showed no great interest in the subjects at school when growing up—she
first qualified to teach languages and it wasn’t until 1903 that she registered
as a student at the University of Erlangen, gaining a PhD in mathematics in
1907, only the second German woman to do so.

In 1909 she moved to the University of Göttingen at the suggestion of
Einstein’s challenger, David Hilbert, and it was here in 1915 that Hilbert put
Noether forward for habilitation, the unique German requirement of
producing a kind of second postdoctoral thesis to become a professor. This
was not an option legally available for women, so Hilbert and his supporters
petitioned the government to make a special exception in Noether’s case.
The original petition was rejected and it wasn’t until 1919 that Noether was
allowed to habilitate, though even then she did not become a professor. Like
many mathematicians, she did what is generally considered her most
important work while still young. Noether’s theorem, which we will return
to shortly, was devised early in her time at Göttingen. She did make a
number of other very significant mathematical discoveries, but none that
would have the same impact outside pure mathematics.

Things went relatively smoothly at the university until 1933, when
Noether was removed from her position by the newly ascendant Nazi party.
This has often been linked to her Jewish ancestry, and that may have been a
contributing factor, but like a number of her colleagues who weren’t Jewish
but were also expelled, she had communist sympathies and had taken on a
guest professorship in Moscow in 1928—it is more likely that it was this
connection that proved her immediate downfall. Noether attempted to



return to Moscow, but this proved difficult in those turbulent times, so she
moved to the United States where she died in 1935, age just fifty-three.

To understand Noether’s theorem and why it has become so important to
theoretical physicists, we need to know what symmetry is, why it produces
these remarkable results and how far this approach stretches the relationship
between mathematics and reality. In ordinary English usage, when we talk
of symmetry we mean reflection symmetry—the kind of symmetry that we
see in a mirror image. Many living things have this kind of symmetry,
which can be recognized when the organism has a “left” and “right” side
that are pretty much mirror reflections of each other. In fact, this
symmetrical nature is central to our idea of human beauty.

Beauty may be in the eye of the beholder, but there are certain features
that we look for in, say, a beautiful face, and symmetry appears to be one of
the most important. Repeated testing has shown that humans—and,
strangely, chickens—consider humans with the most symmetrical faces to
be more attractive than those whose faces are less symmetrical. It is thought
that this may be because a pronounced lack of symmetry is often produced
by illness, and if beauty is primarily an indicator of a potential mate, then
lack of symmetry may mean reduced reproductive capability. Searching for
symmetry may make sense as an evolutionary trait.

Mathematicians recognize a whole swath of symmetries as well as the
simple mirror variety. Generally speaking, a symmetry is present if we can
make a change in an object and after that change, the result is
indistinguishable from the original. So with left/right mirror symmetry, we
can swap the left-and right-hand sides of the image and make no change to
the outcome. It can be easier to think of a simple shape to illustrate
symmetry: if you imagine swapping the left and right halves of a rectangle
or a square, we get that indistinguishable mirror outcome.

Another simple possibility is symmetry of rotation. Take the square and,
unlike the rectangle if you rotate it through 90 degrees, once more it is
indistinguishable from the original. But rotate it through, say, 45 degrees
and this is not the case. We can tell that something has happened. The
appearance of the object changes. Compare this with a circle, which has the



highest level of rotational symmetry possible. You can spin a circle around
by however many degrees you like, or even by fractions of degrees, and the
outcome is unchanged.

To go beyond these simple symmetries, we have to slightly extend the
way that symmetry is applied. For example, we could consider symmetry in
time. If the view we see is unchanged after a period of time has elapsed,
then it can be considered symmetrical in time during that period. A totally
static object has the maximum symmetry through time, as it always looks
the same, while an object undergoing a cyclical change—the second hand
of a watch, for instance—has a limited symmetry through time, rather like
the rotational symmetry of a square.

It is in thinking of symmetry through time that we see the most obvious
example of the way that relativity has an influence on symmetry. It’s one
thing to say that a totally static object has maximum symmetry, but the
concept “static” is a relativistic one. It is not an absolute. If you imagine the
symmetry through time of a spaceship, for instance, it has that maximum
symmetry due to not moving from the viewpoint of an observer on the ship.
To them there is no change in its appearance (limiting our comparison to the
outer hull and excluding any wear and tear). But to an external observer
who sees the ship shoots past, the symmetry through time is clearly broken.

Another kind of symmetry that needs a mathematician’s brain to be
totally comfortable with is translational symmetry. Here we take time out of
the equation, but just consider two snapshots and ask if the outcome is the
same. For example, if I take my square and move it one square’s width in
space to the right, then after doing this, it is obvious in the real world that
the outcome isn’t truly symmetrical. I can see that the square has moved.
But what mathematicians do instead is to imagine that the square forms part
of an infinite surface on which it occurs in a repeating pattern. They then
ask, could you tell the difference if this sideways move took place? and the
answer is “No”—so there is a translational symmetry in the pure
mathematical world. However, if the square moved sideways by a distance
involving a fraction of its width, rather than the whole width, the result
would not look unchanged and the symmetry would not exist.



There is no doubt that nature often approximates to symmetry. Plenty of
physical structures have a near-symmetrical form, not because symmetry
has some magical power, but simply because it is an efficient way to grow,
or because the forces forming the structure are the same in all directions.
Most animals have some kind of symmetry, whether it’s the bilateral, side-
to-side mirror symmetry we have already met, or the more exotic rotational
symmetry of a starfish. Raindrops and eggs and blades of grass and stars all
exhibit symmetry, or at least its Platonic shadow form, as in reality these
things are not perfect in their symmetry—arguably the only “real” thing that
can achieve this is a black hole’s event horizon . . . assuming black holes
are real (see page 212).

What’s more, there is a lot of symmetry in physics. Not just the
reflecting symmetry of Newton’s third law with its “for every action, there
is an equal and opposite reaction,” but also in the way that you can apply
shifts in time and space, or rotation, and still find that exactly the same rules
apply. The universe would certainly be an interesting place if, for instance,
the relationship between force and acceleration changed when we turned
around and faced in a different direction, but such inconsistency would
make science hard to deal with in a practical manner.

Similarly, we have to assume that physical laws remain unchanged as a
result of shifts in position and time, because we couldn’t do physics unless
we made this assumption. Thankfully, experience to date makes it seem
likely that this is the case, though it can never be proved. If the force of
gravity were constantly changing, it would be impossible to make any sense
of the physics involving gravity. Almost all our scientific models start with
an axiom that the laws and constants of physics are symmetrical in this
fashion. This is a purely pragmatic decision. For instance, pretty well all
cosmology and astronomy would be messed up if the speed of light were
constantly changing, because we make the assumption of its constant speed
to make deductions about how far we are looking into the past when we see
a distant object.

Occasionally iconoclasts will make tweaks to this axiom. So, for
instance, physicists Andreas Albrecht and João Magueijo have suggested



that the speed of light has shifted significantly in the lifetime of the
universe, as a result of which it would not be necessary to introduce the
concept of inflation, which requires the universe to have gone through a
sudden and unexplained phase of massive expansion to allow areas of the
universe to have come into equilibrium that are now too far apart to have
been in contact during the assumed lifetime of the universe. But mostly the
axiom remains unchallenged, because without that assumption it becomes
pretty well impossible to do physics.

The approach taken is a bit like the old scientists’ joke about someone
searching for the keys that he dropped on his way home. The person knows
that the keys were lost before he reached the street he lives in. Yet he
spends all his time looking in his own street. “Why?” asks a friend. “You’ll
never find the keys here.” The answer is simple. Because the street he lives
in is the only one on his route home with streetlamps. As it’s dark, there’s
no point looking anywhere else. Similarly, while the assumption that laws
and constants don’t change with shifts in time and space may be entirely
wrong, there is no point trying to do science outside the “light” of this
axiom.

Having said that, we do have evidence that shows at least some physical
constants and laws are symmetrical through time, giving more weight to the
assumption. A good example would be the size of the electrical charge. We
can check this is true going back a good 2 billion years because of some
remarkable natural nuclear reactors that were discovered in 1972 at Oklo in
Gabon, West Africa. Back when these natural reactors were formed, there
was significantly more of the uranium-238 needed for fission reactors,
enough that where the isotope was particularly concentrated at Oklo, a
nuclear chain reaction began, pouring out heat and radiation.

As it happens, one of the products of this reaction, samarium, could not
have formed had the mass of its nucleus been slightly different. Yet we
know that the mass of the nucleus is somewhat dependent on the charges of
the protons confined in the nucleus, because of the equivalence of mass and
energy. And from the samarium found in these ancient reactors, it is
possible to deduce that the electric charge we measure on a proton could not



have been more than 1 in 10 million different from what it is today, or the
samarium would not exist. This kind of measurement makes it possible to
establish that at least some familiar laws and constants have remained pretty
much unchanged over billions of years, though it is worth noting that any
variation would most likely have happened in the very early days of the
universe, over 13 billion years ago (and even that number is dependent on
these assumptions), rather than a mere 2 billion years back.

What Emmy Noether proved with her breakthrough theorem was that
there are unbreakable links between symmetry and conservation. If it turns
out that the laws of physics are unchanged with a translation in time, for
instance, then it follows that energy has to be conserved in a closed system.
And, for that matter, if we discover that energy is being conserved, then the
laws of physics have to be symmetrical in time. The same applies to other
symmetries. If there is no change in the way a system acts when it is
rotated, then angular momentum must be conserved. If translation through
space makes no difference, it means that linear momentum is conserved.

Not only did symmetry prove to be a way of understanding the reason
for the existence of conservation laws that had been until that point
something of an assumption, it enabled new directions to be taken,
particularly once quantum field theories like QED transformed the physics
of the very small. And symmetry would be behind the discovery of new
levels of complexity in the nature of the particles that seem to form the
basis of everything around us.

What has all this to do with the roiling, random, confusing mess that
appears to be going on at the level of quantum particles? Physicists need
simplification to understand and model reality. And symmetry offers a
significant path to making that simplification, even if it is at a cost of
impenetrable math. This move started off with the discovery of the neutron
in the nucleus. When British physicist James Chadwick proved the
existence of a particle that Ernest Rutherford had predicted some while
earlier, a particle that exists in most atomic nuclei that has no electrical
charge, it extended the reach of whatever unknown force (what we now call
the strong force) was holding protons together.



Protons are positively charged, and when collected together, as is always
the case with like electrical charges, they repel each other. Because they are
so close together in the nucleus, the repulsive force between them has to be
huge, which implies that there is an even stronger force keeping them
together. Now, with Chadwick’s discovery, it seemed that this force also
attracted the uncharged neutrons. It wasn’t obvious that this would be the
case before neutrons were discovered. If there had only been protons in the
nucleus, there could have been an opposite equivalent of the electrical
charge, which meant that like charges were attracted to each other. But this
force also worked on neutrons, making it something completely different.
The man to give symmetry a central role in explaining the behavior of the
nucleus was Werner Heisenberg.

As we saw in the previous chapter, Heisenberg did not have a problem
using mathematical models for quantum interactions that had no equivalent
in the macro world, with no real-world analogy to understand how or why
the model worked. The numbers in his matrices matched what was
observed and as far as he was concerned, nothing more was required. Now
he made the audacious step of using a symmetry that didn’t really exist to
work on the nucleus. Instead, what he made use of was a “sort of
symmetry,” a near miss that seemed close enough to imply that there was
something important behind it.

Heisenberg noted that protons and neutrons had very similar mass,
differing by only around 0.14 percent. What’s more, atoms tended to have
roughly similar numbers of protons and neutrons in their nucleus.
Admittedly there were plenty where the numbers weren’t the same.
Hydrogen, for instance, the simplest atom, has just 1 proton and no neutrons
at all, while the main isotope of the simple element lithium, lithium-7, has 3
protons and 4 neutrons. However, generally speaking, the most stable nuclei
are those with similar numbers of protons and neutrons.

It seemed reasonable to Heisenberg, inspired by a sense of symmetry
(though not by actual data), that the force holding the nuclear particles
together had the same strength for protons and neutrons. Heisenberg
imagined turning neutrons into protons and vice versa—in an atom with the



same number of each in the nucleus, there would be no change in the
situation. There seemed to be a kind of symmetry here. Heisenberg called
the symmetry isospin for no obvious reason apart from the opportunity to
cause confusion, as the concept has nothing to do with spin. By assuming
that protons and neutrons had equal and opposite isospin charges (+1/2 for
the proton and –1/2 for the neutron), Heisenberg was able to make
predictions about nuclei that were matched by reality.

As various other particles were discovered, the American Murray Gell-
Mann, extended the concept of isospin with a second dimension of
symmetry that he called strangeness. The result was that the particles fell in
neat arrays of differing strangeness and isospin—when plotted out on a
chart, they formed groups of eight in an appealing symmetrical fashion.
Such a symmetry suggested that there was some underlying cause for their
structure, some connecting feature that makes the symmetry emerge.

Yet though there was a good symmetry among the particles in terms of
the assumed isospin and strangeness charges, there was a problem because
this was all based on increasingly flaky reasoning. The symmetry was
imperfect to begin with. The neutron and proton don’t have the same mass,
for instance. Things were even worse when the other particles were brought
in. Particles known as “cascade particles” that formed part of the same
group as neutrons and protons had masses that were about 40 percent
greater than their fellows. If there really was symmetry here, it had
somehow been broken. Yet the concept—the mathematics—seemed too
appealing to let it go.

Gell-Mann looked for an underlying structure the particles could share
that could produce this kind of symmetry, and the most obvious cause was
that particles that were assumed to be fundamental like the proton and the
neutron had subcomponents, which were responsible for the way that the
charges were distributed. Just as the atom was made up of smaller particles,
so it seemed that protons and neutrons and the zoo of new particles being
discovered in cosmic rays and particle accelerators were also made up of
smaller particles, working together to produce the varying electrical,
isospin, and strangeness charges that were observed or assumed.



We now call those subcomponents quarks, the name that Gell-Mann
chose for them. It is often assumed that he took the name from the James
Joyce “novel” Finnegans Wake, which features the line “Three quarks for
Muster Mark!” However, Gell-Mann himself said that the name had come
to him first as a sound—quork—and it was only afterward that he linked the
sound to the phrase and adopted the spelling that has resulted in quarks
being pretty much universally mispronounced. However the word is
spoken, it’s a more interesting name than “aces,” which was given to a
similar concept developed independently by George Zweig at CERN. In the
end it was “quark” that stuck.

Just as Planck had first suggested the photon as a theoretical concept to
make the mathematics work, Gell-Mann did not really see quarks as
particles that truly existed, simply as a useful way to simplify the
mathematical structures, but now they are accepted as true particles that are
(probably) fundamental. Gell-Mann originally envisaged quarks as coming
in three “flavors”: up, down, and strange (hence the effectiveness of the
Joyce quote). By combining these in pairs and triplets, the various observed
particles could be produced. What’s more, by assigning small differences in
the mass of the up and down quark, which made up protons and neutrons,
and a significantly larger mass to the strange quark, the reason for the
symmetry between the particles being broken is explained. There is a true
symmetry of fundamental particles underlying the observed particles, but
not a symmetry of masses.

As it happened, this simple set of flavors was not enough. The more
observations were made, the messier the situation seemed to be. The
outcome, after around twenty years, was quantum chromodynamics (QCD),
named by Gell-Mann by analogy with the successful quantum
electrodynamics (QED) theory that described the interaction of light and
matter. QCD assumed that the force between quarks, carried by particles
called gluons, is not a simple one, but rather one that comes in a range of
“colors” (nothing to do with actual colors, just as the flavors aren’t really
flavors)—red, green, and blue. In effect, each quark came in three different



colors, and the antiparticles of the quarks had complimentary colors, known
as anti-red, anti-green, and anti-blue.

The clever part of this system was that quarks always combined in such
a way to make white (or at least in the combination that would be white if
these were lights). So particles like protons and neutrons made up of three
quarks always had to have one each of the red, green, and blue flavors,
while particles made up of two quarks, like mesons, had to have one each of
a color and its anticolor. To make this work, there had to be color-specific
gluons as well—eight of them in total. The neat thing about this approach
from the mathematical viewpoint is that it rebuilt the symmetry around this
“color charge.” While the symmetry with quarks was inevitably incomplete
because of their different masses, the symmetry among the massless gluons
was perfect.

The more theoretical physicists and applied mathematicians delved into
symmetry, the more it seemed to provide the foundation of the universe.
Symmetry seemed to be a natural tendency, which meant that the
mathematics of symmetry were applied more and more to make deductions
about the nature of reality. However, there was a problem. We have already
seen a lack of true symmetry in the masses of particles. And when we look
at the different forces of nature, they are hugely different. It would seem
that if there were a true underlying symmetry it had to have been broken in
a big way. The emerging models that were being deployed to represent the
early start of the universe implied that it began in total symmetry, which
was now long gone. But how had that happened?

This produced a problem that is a bit like the axiom of choice in set
theory (see page 187). It is easy enough to see how to make the choice of an
element with human intervention, but how do you make it without someone
to do the choosing? Similarly, if symmetry had once existed and had then
been broken, what had caused the symmetry to break? The need was to find
some mechanism for “spontaneous symmetry breaking.” A picture that is
often used to illustrate this is a pencil that is balanced on its tip. The pencil
will inevitably fall over, breaking the symmetry of its upright position by



now pointing in one direction or another. But we can’t predict which way it
will fall from its initial condition.

Unfortunately, this is a flawed picture. If the pencil truly had perfect
symmetry, it would never have fallen, because there would be no force to
start the movement. Instead, like the spinner in the movie Inception, the
pencil would remain in an apparently unnatural upright position. It’s only a
small lack of symmetry, either in the way the pencil was balanced, the
shape of the pencil tip, or any subsequent forces applied to it like an air
current, that will result in it falling. We expect it to fall because we live in
an asymmetrical world.

As we will see, symmetry is being used widely as a mechanism to drive
our understanding of the universe, making it a prime mechanism to generate
physical theories, but we do have to be careful. Nobel Prize winner Leon
Lederman points out when describing how the assumption of symmetries
being real can result in the construction of misleading scientific models:

Symmetry can be a powerful tool, even when it is only an approximation to reality. But our
human species has often made mistakes, assuming some things have or are perfect symmetries
when the symmetries are actually only illusory or accidental consequences of something else.

Nonetheless, despite this flaw, we certainly get spontaneous near-
symmetry breaking and it is thought that this has resulted in the variety of
forces, for example, that we see today. This tends to happen when a system
goes from a relatively high-energy state to a lower one. The high-energy
state is more likely to be randomized, and hence will be more symmetric.
The pencil standing on its end has more potential energy than when it is
lying on the desk. Similarly, a traditional magnet loses its magnetism when
heated above a certain point because it no longer has aligned magnetic
domains within it—the kinetic energy of heat has randomized them. By
driving understanding from a mathematical model it was possible to
produce a picture that unified the weak and the electromagnetic forces, a
situation that appears to have been a reality in the early days of the
universe, but as the universe cooled, spontaneous symmetry breaking
resulted in the two forces splitting.



However, elegant though the mathematics was, it did not actually fit
observed reality. The symmetry approach required the boson particles that
communicated forces, like photons for the electromagnetic force and gluons
for the strong force, to have no mass. And this was the case in those two
examples. But the third force, the weak force that crops up in nuclear
fission and is responsible for changing one type of particle into another, was
carried by three different particles, all of which did have mass. And that
seemed to throw the whole symmetry idea out of the window.

Because this loss of the power of symmetry seemed unacceptable to
those whose physical outlook was entirely driven by mathematics, there had
to be a fix that would enable symmetry to continue its rule. And so a truly
outrageous suggestion was made. What if those weak force carrier particles
were indeed massless, but there was an extra force in nature, produced by a
field that ran throughout the universe, just as the electromagnetic field (and
others) appeared to do? This would be a very peculiar field whose only real
role would be to provide a kind of drag on particles, giving the bosons that
carried the weak force the illusion of having mass. The field was given the
name of one of the (several) developers of the theory, becoming known as
the Higgs field.

With the patch of the Higgs field added, it was possible to bring a hidden
symmetry back into the process. The only problem was that there was no
evidence for this Higgs field. It was an arbitrary fix to theory without any
experimental evidence to back it up. Hence the importance of the search for
the Higgs boson, the carrier particle of the Higgs force. And, as the news
media delighted in getting confused over in 2013, the Large Hadron
Collider at CERN produced results that were compatible with the existence
of the Higgs boson—though it should be emphasized that this was all very
indirect confirmation, especially as the theory could not predict what mass
the Higgs particle would have.

We are in the position now where we have a mathematically derived
model that has achieved a wide range of real successes. The standard model
of particle physics, based on the symmetry approach described, has been
very successful at making predictions that matched reality, despite a few



remaining issues. However, the model has a lot that is plugged in from
observation rather than predicted by the underlying structure. As yet the
model can neither explain the nature of the dark matter that is thought to be
more prevalent in the universe than ordinary matter, nor does it explain why
particular symmetries and masses apply—they just do. And there is no
obvious relationship between the very different matter and force carrier
particles.

There have been attempts to get around some of these problems, mostly
heavily driven once more by mathematics. So the joy of symmetry has led
some to suggest that there is a whole new level of symmetry, so-called
supersymmetry, which links those two broad families of particles. The only
problem is that this is a “simplification” that would make the standard
model far more complex, because every particle would need to have a
supersymmetric partner that is of the opposite kind. Force-carrying bosons,
such as the photon and gluon, would need matter-type equivalents called
photinos and gluinos. At the same time, matter-like fermions, such the
electron and quark, would need force-carrier equivalents, known as the
selectron and the squark.

There is no evidence for any of these supersymmetric particles existing
at the time of writing. If this theory were correct (and there is no
particularly good reason why it should be), then in a perfect symmetrical
world, particles and their superpartners would have the same mass—so it
should be easy to detect, for instance, selectrons. As they haven’t been
detected to date, symmetry needs to be well and truly broken here, pushing
the masses of the superpartners up to or beyond that of the Higgs. This
means that one of the targets of future, higher energy runs of the Large
Hadron Collider should be able to increase, or more likely decrease, the
chances of supersymmetry being useful.

Supersymmetry is only a starting point, though. This rabbit-out-of-a-hat
production of theory from pure mathematics has gone even further with
string theory, which adds whole new layers to “simple” supersymmetry.
String theory is one of those ideas that sounds beautifully simple when
described at an overview level, but that proves to have immense



complications when studied closer. The devil really is in the detail. The
overview concept is that string theory replaces the messy zoo of
fundamental particles with a single entity, a one-dimensional object called a
string.

This obviously isn’t a real piece of string any more than an electron is a
little ball. However, this apparently simple fundamental entity is imagined
producing all observed particles, whether matter particles or force carriers,
by vibrating in different ways and in alternate configurations, like an open
string or a closed loop. After piling layer on layer of abstract mathematics,
theoreticians managed to get string theory working—but at a significant
cost. Initially there were five major variants of string theory that seemed
incompatible, but these were brought together into an overarching theory
called M-theory.

String/M-theory faces significant challenges, however. The relatively
minor one is that they don’t work with the conventional three dimensions of
space and one dimension of time. They require nine (string theory) or ten
(M-theory) spatial dimensions to work. Dimensions that we clearly don’t
see. So there needs to be a “fix” like symmetry breaking—in this case by
assuming that all the unseen dimensions are curled up so small we don’t
notice them, though they can still have an influence.

The bigger issue is that string theory is massively open to different
possibilities. There are more possible solutions in string theory than there
are protons in the universe. There is an inconceivably large set of different
outcomes, and the mathematics gives us no way to choose between them.
As physicist Martin Bojowald has pointed out, string theory is definitely a
theory of everything, because anything and everything can happen in it.
And the theory gives no testable predictions to give it any attachment to
reality.

British physicist Paul Davies has commented: “[the complexity and lack
of predictions] leaves string/M theorists without much of a reality check.
Where this enterprise will end is anybody’s guess. Maybe string/M theorists
really have stumbled upon the Holy Grail of science, in which case one day
they might be able to tell the rest of us how it works. Or maybe they are all



away in Never-Never Land.” As some suggest, the dependence on abstract
mathematics may have gone too far. Is there a point when mathematically
derived theory becomes fantasy?

There is no inherent reason for mathematics to bear any resemblance to
the physical world. Those first, stumbling uses of numbers whether
counting goats or bags of grain might have had direct real-world analogs,
but it soon became clear that interesting math could be done with quantities
like negative numbers and their square roots that did not really have an
existence in the world around us. To the pure mathematician, engaged in
knot theory, for instance, which involves knots unlike any the real world
has ever seen, or topology, where there is no difference between a donut
and a teacup, this doesn’t matter. It is only the challenge of proving
relationships and deriving results that is significant. And as long as we
don’t try to pour tea into a donut we should be fine.

In a way, this freedom is highly empowering. None of our real-world
constraints need apply to the pure mathematician. Don’t like 2 + 2 = 4?
Find it a trifle boring? Then let’s make 2 + 2 = 5 and think through what the
consequences might be. It might not hold true with oranges, but it is
perfectly possible in math. Similarly the limitations of three dimensions of
space and a fourth of time have long been arbitrary to mathematicians. It
can often be useful to work in “phase space” that has as many dimensions
as an object has possible states—potentially trillions upon trillions of
dimensions. These dimensions don’t exist in the real world, but play a
useful role in mathematics. And when mathematicians pushed physics in
the direction of string theory, it seemed irrelevant that this involved having
nine or ten spatial dimensions, even if technically they appeared not to
exist.

Perhaps it’s time to bring up Popper. The philosopher of science Karl
Popper is somewhat out of fashion with the leading lights of science these
days. This is because Popper himself put forward an extreme version of his
ideas on the nature of science, saying that science should not use inductive
inference. This is where we make predictions based on existing but
incomplete observations. So, for example, we infer that light travels at a



certain speed because we have always observed it do so. According to
Popper, this isn’t good enough because it could change tomorrow. Without
inductive inference we could hardly do science, and this aspect of Popper’s
ideas is clearly impractical. But this doesn’t discredit a kind of Popper Lite,
based on another aspect of his philosophy of science.

This was Popper’s claim that a scientific theory had to be capable of
being refuted by observation. The argument against this part of Popper’s
work is usually that we would reject theories too often if they were falsified
by any observation to the contrary, so we have to be more sophisticated in
its application, in knowing when and where to dismiss a theory. There
clearly are limits to the application of Popper’s falsification mechanism.
The falsification needs to be checked and reproduced before it becomes a
serious challenge. But in the end it doesn’t stop this being a very powerful
assertion that is often necessary to deal with what I’d call invisible dragons
—and that also is relevant to a swath of modern physics that has been
derived pretty well solely from mathematics.

The invisible dragons argument shows why science needs to have
Popper’s requirement for refutation in its armory. Imagine that someone
said “I have invisible dragons in my garage” and asked a scientist to verify
this claim. The scientist clearly can’t see the dragons, and can’t necessarily
find them by feeling around, both because it could be risky, dragons being
what they are, and also because the dragons could just fly out of the way. So
the scientist might scatter flour on the floor to detect the dragon’s footprints.
But the dragon owner points out that her dragons are special massless
animals. This means that they won’t leave footprints. So the scientist sets up
infrared detectors. But the dragon owner points out that her dragons are
perfectly insulated. So the scientist looks for disturbances in the air caused
by the dragon moving—but the dragon owner points out that her dragons
move by quantum tunneling and don’t displace air at all.

The result of this inability to make an observation is that it is impossible
for science to say anything about the invisible dragons. It doesn’t mean that
they don’t exist. They may indeed exist and have all these capabilities that
prevent detection. But if it is not possible to disprove their existence



through observation, the dragons have to fall outside science. And this
would be true even if the dragon owner could produce the most elegant
mathematics that seemed to show that there should be invisible dragons in
her garage.

It might seem odd that Popper required it to be possible to disprove a
theory. Here, what the owner hoped to do was to prove that there were
dragons in her garage. But disproof is the only possible certainty. If paw
prints had been found, there could have been another cause. Perhaps the
owner faked them with dragon footwear when the scientist wasn’t looking.
But if dragon theory made a testable prediction and that could be shown to
definitely be wrong, then we would know that dragon theory was incorrect.
That’s unless the theory were changed, incorporating the failed prediction,
as often happens with real science, which makes the Popper approach
sometimes difficult to apply in practice. This doesn’t, however, stop it from
being useful.

Science generally isn’t capable of producing a proof. It doesn’t work in
“fact” but in “theory best supported by the evidence.” The traditional
example of this is the black swan. For hundreds of years in Europe it was
assumed that all swans were white, because every swan that was observed
was white, which meant “All swans are white,” was a good theory
supported by all the available evidence. But this didn’t make it a scientific
proof. You can’t prove that all swans are white, just that all the swans that
you have ever seen are white. And as soon as someone produced a black
swan from Australia it became possible to definitively disprove the theory
“all swans are white.” (Or at the very least, move to the more sophisticated
theory “All European swans are white.”)

Similarly, if we look at the big bang theory in cosmology, we can never
prove that this is an accurate model of the origin of the universe. However,
it would be easy to come up with evidence that disproved it. Since the
1950s this has, indeed, happened a number of times, requiring cosmologists
to patch up and alter the theory to match the new evidence. (The
astrophysicist Fred Hoyle bitterly pointed out to the last that his opposing
steady state theory was never given the same opportunity to be patched up



to match new data, which he demonstrated admirably could be done.) At
the moment, with a few issues, the big bang theory matches the data very
well—but it is always capable of being disproved, so it stands up as a good,
Popper Lite approved theory.

The same can’t be said for theories that are constructed from layer upon
layer of mathematics without any strong reference to reality. In Popper Lite
terms, string theory is not yet (and may never be) an acceptable scientific
theory. This doesn’t mean that it is not worth investigating. That could
result in discovering predictions that the theory makes that enable it to be
falsified. But at the current state of development of string theory, after
hundreds of scientists have dedicated decades to it, there is still no way to
disprove it. The name really should arguably be the “string hypothesis” at
best. A theory should be testable, where a hypothesis is more of a
suggestion that as yet does not have the need for rigorous checking.

If you play with language it is possible to set up a scientific theory in
such a way that it isn’t possible to use the Popper test. If I made the swan
example into the theory “Black swans exist,” then it can’t be disproved. But
when I produce a black swan, I have proved the theory. But that reflects the
simplicity of this particular theory—this kind of reverse-wording approach
is only possible with very simple concepts. In this case, all that I am testing
is whether or not a label is valid, and I can do so by direct observation. But
when we get to fields like particle physics or cosmology, all the evidence is
indirect. I can’t prove something exists because it is impossible to get my
hands on it and experiment with it. (This indirect nature was true, for
instance, with the hunt for the Higgs boson.) It is in these circumstances
that the need to be able to disprove a theory becomes essential.

The nagging doubt that there had to be some connection between the
mathematics and reality was tucked away in string theory by saying that the
extra dimensions were rolled up, too small to see, though this doesn’t deal
with the vast number of solutions. But had math finally become too far
removed from reality? Had science forgotten what it was supposed to do: to
be our means of understanding and explaining the workings of the
universe?



15 Cargo Cult Science?

As we come toward the end of our exploration of the relationship between
mathematics and reality, it is hard to avoid the suggestion that, in physics at
least, the tail now wags the dog—it is mathematics that has the upper hand,
and the outcome can easily make for an uncomfortable separation between
what scientists consider everyday and what makes sense to everyone else.

The physicist Eugene Wigner told a story where two high school friends
are discussing their careers. One has become a statistician, and proudly tells
his friend about his work. The statistician produces a paper describing the
way populations change with type and shows his friend the way that a
particular type of distribution, the Gaussian distribution, is used to make
predictions about those populations. Inevitably he has to explain the various
obscure symbols that crop up in the paper along the way.

The friend is suspicious. He can’t see how the statistician could possibly
know that the chart he has drawn in his paper, really just a visual
representation of an abstract collection of numbers, could somehow predict
how a human population, a group of living, thinking individuals, could
behave. But he discovers there is worse still hidden among the mathematics.
The friend points to one symbol in the paper and asks what it means.
“That’s pi,” says the statistician. “You know what that is. The ratio of the
circumference of a circle to its diameter.” The friend shakes his head. “Now
I know you’re messing with me. What has the population got to do with the
circumference of a circle?”

Wigner tells a version of this story as an introduction to an attempt to
explain what he describes as the “unreasonable effectiveness of
mathematics in the natural sciences.” This comes up in two ways, because



mathematics works where there seems no obvious reason that it should
(such as the surprise occurrence of pi in the behavior of people) and
secondly, just because the mathematics fits the same pattern, it does not
definitely mean that there is any connection between the mathematics and
reality—it could be a coincidence, or it could be that there could be
multiple matches, and this just happens to be the one we’ve tried, which
works so far, but might stop working tomorrow or when we try to apply it
to a different example.

It’s useful to go back to the very beginning, to the creation of
mathematics. In the opening chapters we saw how numbers were likely to
have first come into play as representation of actual physical objects.
Numbers that may have originally been simply a match of fingers to goats
were probably abstracted first to a match of the same fingers to other things,
and then abstracted even further to symbols that stood in for those fingers.
But at this stage, what was being dealt with was still something with a clear
and direct relationship to physical objects. As math developed we took a
step back with negative numbers—just about conceivable to represent how
many objects have been removed from a larger collection—and then off
into the wilderness with anything from imaginary numbers to aleph-null.
Wigner notes:

Most more advanced mathematical concepts . . . were so devised that they are apt subjects on
which the mathematician can demonstrate his ingenuity and sense of formal beauty.

What we see mathematicians doing, and can at the same time be both
amazed and baffled by, is pushing the bounds of what is possible, setting
limits to keep their math legal within the framework they are employing,
and generating a series of concepts that fit together logically even if that
whole structure has no application or parallel in the real world. This process
is amazing and beautiful, because the mathematicians—mere human beings
—are building worlds, managing to achieve so many consistent results
(even if this sometimes involves tweaking the rules, as when 1 ceased to be
a prime number). The process is also baffling to the outsider because it is



not always clear why anyone should put effort into a particular topic, unless
it is a vehicle to show off how clever they are.

As with science, though, it is not practically possible to steer
mathematics purely in a practical direction. We need to give
mathematicians the freedom to experiment as we never know when an
obscure piece of mathematical chicanery will result in a practical tool. This
often provides a real difficulty for politicians and others outside of science
and mathematics who are responsible for funding. It looks like they are
paying people to play—and in the case of the pure mathematicians, paying
them to play with abstract and irrelevant concepts. But we just don’t know
when they may come in useful.

Mathematicians and scientists are like hoarders, tucking away all sorts
of apparent junk because it might come in handy some day. And when it
does, it can have a major impact. Few people outside of mathematics—
certainly not Albert Einstein—had any real awareness of what might be
possible with non-Euclidian geometry (see page 208) at the start of the
twentieth century. Outside of navigating on a curved Earth it seemed purely
abstract. But then it was needed to complete the general theory of relativity.

Mathematicians are perfectly entitled to pursue their trade without ever
coming close to reality. If we try to justify what they do based on
applications, it’s a bit like trying to justify the manned exploration of space
based on spin-offs—the benefits that society has accidentally gained as a
result of the investment of thought and money needed to get people into
space. Some of these are genuine, though the impact is usually relatively
minor. Some of the suggestions don’t follow through logically. I have seen
the likes of GPS satellite navigation, weather satellites, and space
telescopes all being put forward as a justification for manned space flight,
but in reality these could have been done, and mostly have been done, apart
from one maintenance mission to Hubble, without any expensive and
dangerous human missions.

Finally there are the justifications that depend on spin-offs that are just
downright wrong. I’ve seen it said that it’s thanks to NASA that we have
the nonstick material PTFE, used everywhere from frying pans to



plumbing, Velcro, and personal computers. In fact the first two predate
NASA by decades, coming from perfectly normal research and
development—they just happen to have been used by NASA. And while it’s
true that the NASA engineers did have to think about ways to shrink a
computer to go in a space capsule, by far the biggest driver for personal
computing was not this, but the potential of a mass market, much more
significant in making things happen than small-scale specialist applications.
Instead, we have to forget the spin-off “benefits” and take manned space
travel for what it is: a glorious adventure and a potential survival
mechanism for humanity.

Similarly, although we can try to justify what mathematicians do in their
explorations of abstract mathematics by looking at the “spin-off”
applications of pure math, it isn’t why most mathematicians do their
research. Such a focus on applications probably wouldn’t bring the biggest
and most important breakthroughs. Mathematicians do what they do for the
challenge and for the fun of the mental achievement. Physicists, though,
usually have ties to reality that should prevent them from spending too long
on pure flights of fantasy. Although in principle we could envisage a breed
of xenophysicists (perhaps they exist, though my spellchecker doesn’t think
so), who explore and construct the physics of wholly theoretical worlds—
and though much actual physics work is done on models of the universe
that are so simplified that they bear little resemblance to reality—the role of
physics is to predict and to explain the behavior of nature. It should always
have the same tie to reality as the goat-counter’s fingers do to actual, smelly
goats.

A starting point to understanding what physics really does is to get a
better feel for the concept of models. There is an old joke, popular among
scientists that I retell at every possible opportunity, both because it
illustrates perfectly the nature of scientific models, and because it is a great
way to tell the difference between people who understand science and those
who don’t. The ones who don’t understand science at best laugh politely.
The joke features a geneticist, a dietician, and a physicist, arguing about the
way to produce the best racehorse. The geneticist says, “We need to breed



horses through many generations, selecting for the right characteristics until
we have the perfect runner.” In response, the dietician says, “No, it’s more a
matter of ensuring that the horse has the perfect nutrient balance for muscle
growth as it matures.” The physicist shakes her head. “Let’s assume the
racehorse is a sphere.”

This kind of simplification in a model works well as a joke, but there’s
more than an element of truth in it. I remember being irritated by physics
problems at school that started by saying, “Assume there is no friction or air
resistance.” That seemed to be cheating, because there is friction and air
resistance. You might as well say, “Assume I know the right answer.”
However it reflects the fact that physicists have to be far more pragmatic
than mathematicians, who have perfect control over their numerical
universes. Think, for example, of the physics of an object you should be
very familiar with—your body. There has to be simplification, rather than
dealing with every single atom individually, both because atoms are
quantum particles and have a probabilistic nature, and also because there
are so many of them. Your body contains somewhere around 1027 atoms:
1,000 trillion trillion atoms. No one could ever sensibly make predictions
about the behavior of each atom, so we have to take the whole as a lump
and model that.

Given the complexity of everything around us, what is surprising is that
physics manages to make any predictions at all about how things behave.
And yet it does, primarily via simplified mathematical models. In principle
these don’t have to work. But as we have seen, the universe conspires to
help the physicist by, generally speaking, being consistent. If, for instance,
values that we regard as fundamental constants like the speed of light were
constantly changing in value, it would be impossible to do physics. Leaving
aside the disastrous implications for all kinds of physical systems, we
couldn’t say how anything would behave, because this afternoon it could be
totally different from the way it was this morning.

We also expect that things that work on Earth will also work the same
elsewhere. That doesn’t seem to be reflected in reality. We know, for
instance, that things weigh a lot less on the Moon than they do back home.



So machines, for instance, will behave differently. But one of Newton’s
great innovations was the daring assumption that gravity was universal.
That it worked the same way on the Moon as it does on the Earth. And to
date, with a few possible exceptions, this seems a valid assumption. It’s not
a provable fact—but unless we make assumptions of this kind and see
where they take us, there is no point attempting scientific endeavors.

Thankfully we seem to be able to get away with this kind of assumption
a lot of the time, and that means that we can be surprisingly successful with
our application of mathematical models to reality. The principle of
invariance can often be applied—which generally means that a physical
“law” that we model will work wherever it is applied in the universe of time
and space.

What is less obvious, and causes all kinds of confusion with those who
are enthusiastic about, say, homeopathy or who believe that they are
sensitive to electromagnetic radiation or see ghosts, is that although science
is invariant on who performs the experiment—it doesn’t matter if it’s a man
or woman, young or old, of any ethnicity or race—not all “experiments” are
of the same quality. They don’t all have the same degree of control.
Professional scientists put a huge amount of effort into isolating a
phenomenon so that the data emerging from it can’t be confused with the
impact of something else. This is relatively easy to do in the controlled
environment of a laboratory, but is almost impossible to do perfectly
outside of a controlled space.

This is why, for instance, in 2014–15 the BICEP2 experiment results,
which were first thought to have detected gravitational waves, were later
dismissed as an effect of dust in the Milky Way. Any astronomical or
cosmological observation has the real potential for unexpected factors to
play a part. And the same is true of everyday experience. There’s an old
saying in science that “the plural of anecdote is not data.” Just because we
experience something, does not mean whatever interpretation of that
experience springs to mind is a good scientific model. If I feel better after
taking a homeopathic remedy, I have no way of knowing if that remedy was
the cause of my recovery, because I have no controls in place. There could



have been many, many causes. Most likely I would have gotten better
anyway. Or I just feel that I am better, but have not undergone any actual
physical change. So we have to be aware that the assumption of invariance
does not mean that an anecdote provides scientific evidence.

As Eugene Wigner points out, “[T]he laws of nature can be used to
predict future events only under exceptional circumstances—when all the
relevant determinants of the present state of the world are known.”
Generally speaking this never applies. We don’t know everything about the
circumstances we are dealing with, and when that is the case, we have to
make assumptions and simplifications. Our models become more abstracted
from reality and are more likely to produce incorrect results.

Even so, in some areas as we have seen, mathematics has proved a
surprisingly effective tool, producing results where there is no model based
on analogy, but rather it is abstract mathematics that seems to be making a
prediction that happens to match reality. Wigner gives the example of the
Lamb shift, a small difference in two electron energy levels in an atom that
was one of the steps toward the development of quantum electrodynamics.
As Wigner puts it: “The quantum theory of the Lamb shift, as conceived by
Bethe and established by Schwinger, is a purely mathematical theory and
the only direct contribution of experiment was to show the existence of a
measurable effect. The agreement with calculation is better than one part in
a thousand.”

However, the success of such approaches is in no sense an assurance that
this kind of modeling will always be possible. It is always an empirical
matter. At the moment, for instance, we have two different mathematical
structures dealing with quantum theory and relativity, the two great pillars
of physics that emerged in the twentieth century. These structures cannot be
merged. The assumption made by pretty well all physicists is that there will
be a way to do it, either by changing one theory or the other so that it will fit
with the other’s mathematical structure, or by coming up with a new
structure that can cope with both. However, it is entirely possible that these
will remain the best workable models and that no union, no “theory of
everything” can ever be reached.



There doesn’t have to be a universal mathematical system that can cope
with both. Despite claims to the contrary I would argue that the universe is
not inherently mathematical, except in the sense that some (but not most)
mathematics is based on an observation of reality. Instead, mathematics is a
great tool with which to build models of the universe. Models that will
always have limitations. To quote Wigner again: “[F]undamentally, we do
not know why our theories work so well. Hence, their accuracy may not
prove their truth and consistency.” As Wigner so powerfully points out, just
because a mathematically based theory gives excellent predictions does not
necessarily make it of any value.

That seems bizarre. How can mathematics make an effective prediction,
but not be in any sense an accurate representation of reality? Because, as
we’ve already discovered, almost all physics depends on immense degrees
of simplification and assumption. We could be missing huge swaths of what
actually lies beneath the surface of the black box universe that we are
modeling. Let’s take a trivial example. Here’s a computer program to
predict whether the Sun will rise tomorrow morning:

IF YEAR < 3000
PRINT “Sun will rise”
ELSE
PRINT “Sun will not rise”
END

That is effectively a mathematical model, it’s just that most of us are
more familiar with the way computer programs go about logic than we are
with the symbolic structures of mathematics. I can say that this model will
predict what will happen with unerring accuracy until the year 3000, when
(I hope) it will go wrong. You might argue that there is no connection
between the specific date I have put in and reality. But that, in a sense, is the
whole point. We don’t know that there is a connection between the
constants and formulas we put into scientific equations and reality either.
All we can say is that there has been a good match with reality where and
when we have looked. But the contents of those equations don’t necessarily



have any more connection to reality than does my impressively accurate but
worthless program.

Throughout this book we have met a series of remarkable
mathematicians who have brought new and powerful mathematical
concepts into being. Sometimes these were developed as an exercise in pure
mathematics. When Girolamo Cardano dreamed up the imaginary number
back in the sixteenth century, for instance, he had no idea how it would be
used. But imaginary numbers became a powerful tool in the hands of
scientists and engineers. Less often, mathematical techniques have been
developed with the conscious intent of producing a new practical method,
most obviously in Newton’s method of fluxions that became calculus.

In establishing just how real mathematics is, whether numbers are truly
real, it can be useful to think of mathematicians like the blacksmiths of old.
Blacksmiths were the tool builders of the community. They made the
essential equipment for the other trades. But they were also artists, finding
new and interesting ways to work metal that did not necessarily have a clear
application. Similarly mathematicians have acted as tool builders for the
sciences, even though they may themselves have been more interested in
the abstract world of pure mathematics.

Despite all the successes science has had with math, it is possible for
assumptions about the applicability of mathematics to be taken too far. The
American physicist Richard Feynman once referred to “cargo cult science,”
which happened when pseudo-scientists followed the form of scientific
investigation, but didn’t do real science. However, I think there’s a better
use for the term. The cargo cults of the Melanesian islands supposedly
made models of real things like airplanes in the first half of the twentieth
century and may have confused them with reality (the history is rather less
certain than the myth is on the subject of cargo cults), hoping they would
attract real airplanes—and I think that some scientists also confuse their
models with reality.

The mathematics that was supposed to be a tool to help us understand
and explain the physical world has become a freestanding entity, producing
results that we then have to scramble to fit to the observation. Despite



hundreds of highly intelligent people trying to do this with string theory, for
example, it seems entirely possible that they will never succeed. As physics
professor Sabine Hossenfelder puts it: “Somewhere along the line many
physicists have come to believe that it must be possible to formulate a
theory without observational input, based on pure [mathematical] logic and
some sense of aesthetics. They must believe their brains have a mystical
connection to the universe and pure power of thought will tell them the laws
of nature.”

Of course, physics is not all there is to science. Other disciplines are still
catching up in terms of the use of mathematics. As we have seen (see page
137), all too often those working in the soft sciences, like psychology,
struggle with apparently simple, but deceptively counterintuitive tools like
statistics and produce erroneous results. There are parts of science where
the understanding of math still has to be improved to properly be able to
model what is observed. But in physics, perhaps it is time to indulge in a
little more stamp collecting and a little less of the ivory-tower mathematics.

This is not a Luddite cry. Mathematics that is beyond the abilities of 99
percent of us is needed to understand the theory behind the quantum
technology that is deployed in everyday devices like smartphones. But
equally, we perhaps need to be looking for different, better explanatory
models that derive more from experiment and less from mathematical
theory. Because, in the end, science is not purely about modeling reality at a
numerical level. It is also about constructing models that reflect the
observations we make of the world around us to help all of us understand it.
And there is never a single way of doing this.

Statisticians have long warned that correlation is not causality. Just
because two sets of data move together over time does not mean that one is
the cause of the other—nor does it mean that this correlation will continue
into the future (which requires a causal link to be sure of the continuance).
A classic example of correlation without causality was that after the Second
World War, imports of bananas into the UK were well correlated with
pregnancies. As the number of bananas went up, so did the pregnancies
(and vice versa). No one sensibly believes that the pregnancies were caused



by the bananas (in practice, both were probably linked to a third factor), but
generally speaking the correlations we encounter seem far less ridiculous,
so more likely to be accepted as a causal link at face value.

There are plenty of readily available weird correlations that certainly
aren’t causal. There is even a website that produces them automatically,
where you can learn that the number of suicides by hanging was very
strongly correlated with U.S. spending on science, space, and technology
over a ten-year period, or that the per capita consumption of margarine
strongly followed the divorce rate in the U.S. state of Maine over a similar
period of time. And this strong mathematical linkage is obviously
meaningless. Yet we rarely raise an eyebrow when a news anchor tells us
that the stock market has gone down as a result of new government policy
—even though, once again, the causal relationship is only assumed.

One of the reasons that scientists are so enthusiastic to perform tests in
laboratory conditions is that it enables them to keep far more of the possible
variables under control than would be possible “in the wild.” When
researching my book on powers of the mind, Extra Sensory, it became very
obvious that there was a huge difference between claimed abilities in
properly controlled conditions and in a performance environment. In the lab
causality is relatively easy to establish, but on the stage it is much easier to
produce correlation where misdirection hid the true cause of the
phenomenon.

This difficulty of pinning down causality is why it can be so tough to get
a definitive story on the impact of different diets on human health.
Scientists might notice, for instance, that people with a diet rich in tomatoes
have a lower chance of heart disease. But we can’t assume that all we need
to do is increase our tomato consumption to improve our health. Because in
the complex world we inhabit day to day, as opposed to a highly controlled
experiment, we will find that people who have a diet rich in tomatoes have
a whole host of other differences from, say, someone who eats a lot of junk
food—and it may not be the tomatoes that are making the difference.

If we could put thousands of people in a lab and control what they eat
for months, then we could have rigorous scientific analysis, but as it is,



most diet studies have to take a whole mess of differences together (and
often also have to rely on notoriously inaccurate self-reporting) and so
struggle to achieve scientific accuracy.

Things aren’t quite so bad for a physicist working in a lab, but the same
kind of issues dog the kind of science we can’t control so easily—like
cosmology. Even in the lab there can be plenty of circumstances where the
situation being studied is complex, or observations are highly indirect—
such as the complex and messy results from the detectors of the Large
Hadron Collider. In such circumstances, it can be tempting to fit a
mathematical approach because it “looks right” and is aesthetically
appealing, rather than because there is any observation-driven reason for
applying that mathematics in the first place. The result can be to produce a
mathematical model that churns out numbers that match experimental
results, but where the model has no linkage to reality. The overreliance on
math is something that a number of contemporary physicists have
highlighted.

There have been plenty of instances in the history of science when this
kind of mismatching occurred. For example, the system of epicycles used in
the astronomy of Ptolemy was based on fitting a mathematical model to
observation and fine-tuning it to what was observed. The approach would
remain in use for more than 1,300 years and did indeed fit observation
fairly well, because of that fine-tuning. But there was no good scientific
reason for choosing the model of circles rotating in circles that had evolved
to describe the way that planets moved. The model was doomed because it
was based on an incorrect physical assumption—that the Earth was at the
center of the universe. After that, it didn’t matter how clever the math was
at fitting observation. Mathematics alone wasn’t enough and it never can
be.

A leading physicist who is uncomfortable with the way that mathematics
seems to be in the driver’s seat, pushing experiment into second place, is
Neil Turok, director of the prestigious Perimeter Institute, who recently
commented:



We’ve been given these incredible clues from nature and we’re failing to make sense of them.
In fact we’re doing the opposite: theory is becoming ever more complex and contrived. We
throw in more fields, more dimensions, more symmetry—we’re throwing the kitchen sink at
the problem and yet failing to explain the most basic facts.

In essence, Turok is complaining about the science being driven by the
math. One way of looking at the difference between mathematics and
science is that mathematics is fundamentally about truth and facts. You
can’t argue with a fact within a mathematical system. In our traditional
arithmetic 2 + 2 will always be equal to 4. It is a fact. It follows from the
rules. There can never be evidence to dispute this fact, because it emerges
from the nature of the mathematics system used. As the scientist and
science-fiction writer Isaac Asimov said: “As time goes on, nearly every
field of human endeavor is marked by changes which can be considered as
correction and/or extension . . . Now we can see what makes mathematics
unique. Only in mathematics is there no significant correction—only
extension.”

It’s important to be careful with the words. It is perfectly possible for 2 +
2 to be equal to something else, if we use a different number base (to base
3, for instance, 2 + 2 equals 11) or if we use the arithmetic we met in
chapter 1, where instead of numbers constantly growing with addition, they
reach a maximum value, then start again, like the numbers on a clockface.
And as far as a mathematician is concerned, neither conventional nor clock
arithmetic is more “real,” even though one applies to all conventional
physical objects while the other is only relevant to cyclical events in the real
world. But within the specific system we use for conventional arithmetic, it
is not possible to move away from the facts that the system is based on.

Science, however, is not like that. When scientists speaks about the big
bang occurring 13.7 billion years ago, starting the expansion of the
universe, they are not describing the same kind of fact as is presented when
we write 2 + 2 = 4. The big bang is our best theory, based on current data.
The particular theory that has that “best” accolade at the time of writing has
been revised at least three times when data proved an earlier version was



wrong. And it may well be that the whole thing will get thrown out and
replaced with something better at a later date.

Science is always provisional. It is not about finding an absolute truth. It
is not about facts at its heart. This doesn’t mean that facts don’t play a huge
part in science. In the “stamp collecting” aspects of science that Rutherford
was so dismissive about there is a lot of fact collection, in part because a lot
of what is being done is assigning labels—constructed facts. And there are
often observational facts, whether it’s the fact that there is one and only one
keyboard under my fingers as I type or that my computer uses energy. It is
when science provides explanatory theories that we need to be aware that
facts have left the room. If I say light is a wave or a stream of particles or a
disturbance in a quantum field, I am not describing light, I am describing a
mathematical theory or an analogy. It’s one thing to say that light or atoms
exist. It’s quite another to have a theory that describes what they are or how
they work, because they operate on a scale and in an environment that is
entirely different to the macro world we observe.

Scientists frequently fail to mention the indirect relationship between
science and the truth, or even forget it. This is probably because there is a
danger of making it sound like all ideas, all theories, have the same weight.
As a science writer I am constantly being sent theories by people who
believe that they have shown that Einstein was wrong about relativity. And
other people believe in magic that totally disregards science, whether they
think that energy can be produced from nowhere or that homeopathy works.
But science does a much better job than giving every possibility equal
weight. People are very welcome to challenge Einstein—but for the
moment, relativity delivers extremely well, and to shift to some new theory
would require new and convincing evidence of a theory that better matched
experiments and observations of the universe. To dismiss science altogether
and move to magic would require even better data.

I would suggest that this shows us why those who believe that science is
mathematics, or that the universe is mathematical in nature are wrong, even
if some of them are immensely clever and intellectually superior to the rest
of us. Because the two disciplines are inherently different in this way. One



(math) is a collection of facts, which we are able to establish because we fix
the rules, and the other (science) is a collection of models and theories,
which we can test against data, but can never call the actual truth.

An important factor to consider in establishing just how much weight we
should give to mathematics that is divorced from the world is that while it is
possible for mathematicians to weave their magic in splendid isolation from
the real world, and to truly base everything on mathematics, this is not
really how the application of math to science works. As mathematician
Richard Hamming, who we met in chapter 2, comments:

We select the kind of mathematics to use. Mathematics does not always work. When we found
that scalars did not work for forces, we invented a new mathematics, vectors. And going
further we have invented tensors . . . we select the mathematics to fit the situation, and it is
simply not true that the same mathematics works every place.

Science has done remarkable things and will do even more. Mathematics
has proved a remarkable tool as a method for reliably modeling aspects of
the universe, and will continue to be a wonderful tool. Using math in an
appropriately scientific manner remains by far the best way of
understanding the fundamentals of physics and the universe—this is not a
call for a free-for-all where anything goes. It is equally important that the
scientific community does not confuse models with reality, but always
remembers that mathematics has many worlds, which may, like a mirror
image, sometimes succeed in reflecting reality. This does not make the two
the same thing. There is no mirror mathematical world for Alice to go
through the looking glass and visit.

Some numbers and mathematical processes are, without doubt real, or at
least have a one-to-one correspondence with real objects and actions. The
natural numbers, the nonnegative integers were definitely originally derived
from physical objects, and undergo exactly the same arithmetical processes
as real objects do. It took a while for negative integers to be so grounded,
but they can be seen in operation in the arithmetic of electrical charges. As
soon as we move further, the gap between mathematics and reality becomes
clearer. Both fractions and geometry, for example, though having very clear



parallels in the real world, are refinements that can never truly match
reality’s messiness. Like Plato’s cave, we inhabit a world where it isn’t
possible to truly have geometric shapes with zero width lines, nor can we
make a true, perfect division of cake into perfect fractional pieces because
of the grainy, atom-based nature of reality.

Admittedly we can divide something like money in exact fractions . . .
sometimes. So 25 cents is exactly and precisely a quarter of a dollar. But
that is because money is quantized by definition. It comes in ready-made
divisions that allow us to apply those fractions. However, such an approach
has its own mathematical cost. We can indeed produce a perfect quarter of a
dollar, but there is no mechanism to produce a third of a dollar. It simply
does not exist in reality, even though it is easy enough to represent
mathematically.

As we have seen in our journey in this book, from the mathematician’s
viewpoint, fractions and geometry are just the beginning of vast landscapes
of awesome mathematical power and splendor. They are landscapes where
mathematicians can spend their entire lifetimes exploring without ever
coming across anything that could be considered to be real. Sometimes,
though, the mathematical structures and mechanisms do parallel the real
world. Such numbers and procedures may not actually be real, but they can
still help answer our questions.

Despite its ability for abstraction, we need to keep our practical
mathematics grounded in the physical so that the language of science can
speak to us all. To come back to the question in the title of the book—
numbers, I would suggest, are real at their most basic, but most of
mathematics isn’t. It’s a fantasy world that sometimes mirrors and parallels
our own, and as such can help provide us with tools to help understand
reality. But it needs to be kept in its place. And as long as we (and
scientists) remember this, we can’t go far wrong.
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