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And for all this, nature is never spent;

There lives the dearest freshness deep down things

—Gerard Manley Hopkins, God’s Grandeur
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Preface

I didn’t come up with the title for this book. For that, I can thank the peo-
ple at the Johns Hopkins University Press, and in particular, Trevor Lip-
scombe, with whom I worked quite closely at various stages as the book
came together. But this I will say: the title does about as good a job of cap-
turing the essence of particle physics as any string of three monosyllabic
words possibly can. Deep down within the atomic nucleus, deeply within
the paradoxical richness of empty space, deep inside the synapses of the
great scientific thinkers of the twentieth century—this is the territory of par-
ticle physics. The connection to the devotional poetry of Gerard Manley
Hopkins is also well made; whether one is religious or not, to appreciate par-
ticle physics is to appreciate the miracle of nature. In fact, my only reserva-
tion about the title is that, as you will shortly see, it implies a degree of lit-
eracy to which I can’t lay claim.

It will come as no surprise to anyone if I admit that writing a book is a
massive and perhaps ill-advised undertaking. In this case, publication will
have taken place more than four years since the time when, full of myself
after having gotten tenure at the University of California, Santa Cruz, I first
sat down to compose an explication of the Standard Model of particle
physics for anyone interested enough to make a go of it. The students that
gave me the first encouraging feedback on the early chapter drafts have long
since moved on, pursuing advanced degrees, and I hope raising the intel-
lectual Cain that we tried to train them to. For my part, when I think of all
the late-night television I missed it almost makes me want to cry. But I guess
that’s all water under the bridge now.

In any regard, one doesn’t emerge from a process such as this without fa-
vors to return, and it seems to be standard practice to put a few hasty ac-
knowledgments at the front of the book and hope they stand as fair recom-
pense.



First and foremost, I thank Trevor, fellow physicist and editor-in-chief at
the Hopkins Press, whom I now consider, along with my seventh-grade and
college-freshman English teachers, to be one of the three most effective
writing instructors I have had. I also need to thank Trevor for letting 
me write the book the way I wanted to; for his wealth of clear and well-
motivated suggestions, and for not being heavy-handed about them. In this
vein, I also need to thank my astronomy colleague Stephen Thorsett for
pointing me toward Trevor and the Hopkins Press.

I need to thank my good friend Bill Rowe, whose talent for illustration
so ideally complements the content and tone of the book. Perhaps Bill and
I will find another excuse to collaborate at some point in the future.

Debts of gratitude are owed to my physics department colleague Michael
Riordan, himself a successful writer, and John Wilkes of our renowned sci-
ence communication program. Their advice was invaluable as I negotiated
my way through the unfamiliar world of publishers and literary agents.

And then there’s the small army of theoreticians on whom I relied to get
my thinking straight for me. Each of the following took time out to read a
chapter of the book, confirming my conceptions and politely disabusing me
of my misconceptions, playing out my scheme to avoid exposing the large
and embarrassing gaps that tend to mottle experimentalists’ understanding
of their own work. From the Stanford Linear Accelerator Center: Tom
Rizzo and Lance Dixon (JoAnne, you had your chance!). From the UCSC
physics department: Michael Dine, Howie Haber, and Tom Banks. Thanks
also to UCSC’s Joel Primack for his bibliography of accessible books on cos-
mology. And I need to throw in another scientist: my mother (Margot
Schumm, retired chemistry professor at Montgomery College in Mont-
gomery County, Maryland), who gave me some particularly helpful com-
ments on chapter 3, as well as one-half of the gift of life (for the other half,
I need to thank my father, Richard Schumm, also a retired chemist).

And lastly, I need to thank you, the reader, for choosing to take this book
on, rather than joining me in my quest to update my background in con-
temporary television programing. From my perspective, your abstinence
will be well rewarded, for you are on the verge of a noble journey. Like
Ulysses’ slog through the perilous adventures of the Odyssey, the going may
not be easy, but persistence will be rewarded. Honestly, I wish you the very
best. Bon voyage!
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1

Introduction

Within the past century, our understanding of the natural world has taken
such a vast step forward that, looking back, the state of our scientific knowl-
edge one hundred years ago seems almost laughably naive. Today, as we
probe deeper and deeper into the workings of the universe, the responsi-
bility for digging out the most fundamental and overarching of its operat-
ing principles has fallen, by and large, to a group of scientists known col-
lectively as particle physicists. This is a book about the Standard Model of
particle physics—the view of the natural world put forth by this community
after a remarkable period of development stretching back fifty years or so.

As inhabitants of an astonishingly fertile island in the otherwise inhos-
pitable reaches of interstellar space, we have developed a common-sense
view of our world that is shaped by the microcosm in which we live. The
laws of this world are known to everyone: find shelter from the elements;
develop a livelihood that will enable easy access to food, to a means of trans-
portation, and to whatever creature comforts might be available; and con-
duct life in a way that will allow others to do the same. These are the sorts
of things that we need to know to make do in our corner of the universe.

Over the last few centuries, though, we have invented tools that allow us
to extend our senses into previously unimaginable realms, and as a result,
we have been forced to reformulate our conception of the rules that govern
the physical world. The deeper we look, the more we find that our refined
descriptions diverge from our original intuitive notions of natural law, and
the more parochial those original notions seem.

The human body, we find, is not really a single object unto itself but



rather an uncountable collection of individual and specialized cells, each
almost with a life of its own, cooperating in comprehensible ways to enable
the bodily functions that sustain life. Looking more deeply, we find that
cells are composed of molecules, and those molecules are composed of
atoms. As we attempt to understand and codify the rules of existence at this
level, we enter the realm of quantum mechanics, with its jarring meta-
physical implications.

Probing yet more deeply into the nugget of the atomic nucleus or to the
core of the quantum-mechanical muck surrounding the electron, we enter
the realm of particle physics. Particle physics is the study of the “within that
lies within”: of rules of order that take us into the world of the abstract math-
ematician, beyond the comparatively pedestrian realm of the quantum
physics of atoms and molecules. Particle physicists attempt to understand
the workings of the ultrasmall and ultraenergetic (a connection we’ll come
to understand in due time); within this realm lie many of the clues that are
necessary to unravel the mystery of the nature and origin of the universe.
What these clues suggest about that nature is, as we’ll see, rather eye-
opening.

As we undertake this fundamental exploration of the universe, we begin
to discover that the natural world is a place of striking physical simplicity.
This notion enters our blood as a philosophy and drives us toward the tan-
talizing goal of a precise formulation of the fundamental laws of nature in
terms of a single, all-encompassing principle. At the same time, though, we
begin to grasp the sophisticated mathematical underpinnings of natural or-
der and how this mathematical structure acts to set the stage for the devel-
opment of life. One of the most gratifying turns in the development of par-
ticle physics is the extraction of the abstract mathematician from the ivory
tower of pure thought into the workaday world of physical science.

Einstein held that any physical theory worthy of respect must be explic-
able to any clear-thinking person. This book represents my attempt to elu-
cidate the currently accepted theory of particle physics—the paradigm of
the Standard Model—for the interested public. It is not, first and foremost,
a story about the history of particle physics or of the lives of its protagonists.
Nor is it a book of anecdotes about the culture and society of particle physi-
cists. It is a book that presents, at a level well beyond the superficial, the con-
ceptual ideas that underlie those physicists’ view of the world.

To be deeply interested, however, does not mean to be steeped in the for-
mal content, mathematically or scientifically, of physics. In particular, I pre-
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sume little in the way of mathematical background—just some very basic
notions from algebra and the concept of orders of magnitude.

It is impossible, though, to elicit the central notions of the theory of par-
ticle physics without an involved discussion of the mathematics that un-
derlies it. The beautiful connection between the worlds of the mathemati-
cian and the physical scientist is one of the most interesting threads we’ll
follow and one for which there is precious little material available to non-
professionals. That the abstractions of higher mathematics bear some rela-
tion to the physical world—in fact, seem to lie at the very heart of its order
and operation—is one of the most profound revelations of the modern era.

The mathematics that we’ll discuss, though, is not the calculation-mired
pursuit that confronts one in introductory college-level courses but rather
that of the abstract mathematician whose tools are more those of logic and
generalization than the application of endless pages of arithmetic opera-
tion. It’s a different sort of mathematics than most of us are used to—an
evolved discipline that bears little resemblance to the practical, everyday
manipulations from which it sprang. More so than numbers and equations,
this mathematics is an exploration of structure and, in particular, the pat-
terns exhibited by that structure. And it is through these patterns that, in the
latter half of the twentieth century, the deep connection between abstract
mathematics and the basic organizing principles of the physical universe
were first recognized.

Before the mathematics, though, we’ll need to ground ourselves in the
backdrop of physics from which the Standard Model sprang in the fertile
period of the 1960s. Illustrating the limits of the adjective modern in label-
ing any human development, this grounding begins with the quaint old
“modern” physics of the early part of the twentieth century—Einstein’s spe-
cial relativity and conventional quantum mechanics. A discussion of the
contemporary framework of causation that evolved from this base—the
“quantum field theory” of Richard Feynman and others—then describes
how the nineteenth-century notion of action-at-a-distance has been sup-
planted by the idea that physical forces are conveyed by the exchange of
subatomic particles. Following this, we learn about the array of known sub-
atomic particles, making note of the repeating patterns into which these par-
ticles fall, thus setting the stage for the ensuing discussion of abstract math-
ematics.

The Standard Model is the focus of the last three chapters of the book,
with the introduction of gauge theory, the Higgs field, and spontaneously
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hidden symmetry. At last, we will be able to appreciate the development of
this theory as the coalescence of the millennia-long quest to understand the
fundamental nature of the universe into a paradigm whose success repre-
sents one of the most remarkable triumphs in the history of human thought.
In the final chapter, we’ll see why the years ahead hold great promise for
further deepening our understanding of the natural world.

I hope that you enjoy the journey. Although the experimental and theo-
retical threads leading into the development of the Standard Model have
had a telling effect on the way that we live our day-to-day lives, it is really
the satisfaction of innate human curiosity and the attendant appreciation
and awe of the workings of nature that stand as the historical and continu-
ing motivation for particle physics research. While numerous practical spin-
offs have arisen from this research, to date its funding decisions have been
solely based on whether the proposed program stands to clarify and deepen
our understanding of the order of the natural world. And while the program
has been profoundly successful, garnering no fewer than twenty Nobel
Prizes, our success at returning the fruits of particle physics research to its
benefactors—the citizens of the many nations of the world that support it
through their governments’ science programs—has been more limited. I
hope this book acts in some measure to redress this deficiency.

Viewed from this perspective, the list of patrons is lengthy. Particle
physics research is a truly international and cooperative pursuit. The three
traditional centers of the development of particle physics—Western Eu-
rope, Eastern Asia, and North America—have been roughly equal partners
over the last fifty or so years. Increasingly, more and more nations and re-
gions are being drawn into the effort, and all the continents (including
Antarctica) are now represented. It is a pursuit, like many others in science,
for which national allegiances play a relatively minor role, and collabora-
tive professional and personal relationships spring forth quite independent
of cultural background.

The support for particle physics research provided by this worldwide
community does need to be acknowledged because it is not small. The an-
nual global outlay for particle physics research is several billion U.S. dollars
per year; for example, the United States’ contribution to this total is about
$800 million per year.

As we move into discussing the conceptual basis of particle physics, keep
in mind that what follows is not fantasy, nor, for the most part, speculation.
Instead, it is, to the best of our knowledge (and backed up, as we’ll see, by
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impressive experimental verification), scientific fact. What it tells us about
the world in which we live is an accurate and faithful representation of phys-
ical reality. The theory works, and as exacting tests performed in the decade
of the 1990s demonstrated, it works remarkably well. It is as much of an ab-
solute as any paradigm of the workings of nature could ever be.

Our world is an interesting place to live (in fact, is a place in which life
itself is possible) because the world is rife with causation—the ability of
things to influence other things. And the way that physical objects influence
one another, whether as contiguous neurons in the taxed brain of a strug-
gling physics student or as celestial bodies gliding through the depths of
outer space, is through the exertion of forces. So it is here that we will be-
gin, with a delineation and description of the four forces of nature.

In fact, there are neither four of them, nor is the notion of “force” quite
the appropriate term for discussing the phenomenon of causation. But we
do need to start somewhere, even if it’s in the presentation of a point of view
that we’ll eventually need to refine substantially. Welcome to the world of
particle physics!
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2

The True Movers & Shakers

The Forces of Nature

The world would be a dull place if the objects within it couldn’t influence
one another. Of what use is a can opener if it cannot open a can? Every-
thing of interest to us in our everyday lives—conveying and receiving in-
formation, moving about through our surroundings, all of the biological
functions that make life itself possible—is predicated on the ability of sys-
tems of matter to exert an influence on one another. The way things influ-
ence one another is by exerting forces.

It is often stated that there are four forces of nature—four fundamental
and distinct ways in which objects can exert their influence on the world
around them. These forces are gravity, electromagnetism, and the strong
and weak nuclear forces. But how many forces are there really?

This remains an open question, providing a significant motivation for
continued research into particle physics. One can ask how many of the four
known forces are truly independent phenomena or merely different mani-
festations of a smaller number of underlying physical laws. Why should
there be four separate laws of influence, each with its own peculiar set of
rules, that somehow magically cooperate to underlie the myriad workings
of the known universe? The fewer the laws, and the less arbitrary their rules,
the easier it is to make sense of the whole picture.

Before the work of the Scottish physicist James Clerk Maxwell in the
early 1860s, electricity and magnetism were thought to be separate forces.
Maxwell developed a unified theory of electromagnetism, incorporating



electricity and magnetism into a single theoretical framework and, as a div-
idend, explaining the phenomenon of light as wavelike disturbances in the
electromagnetic force field. Even today, his work stands as one of the great
triumphs of physics.

As we’ll see, the Standard Model of particle physics reveals that two of
the four forces of nature (electromagnetism and the weak nuclear force) are,
similarly, manifestations of a single, unified “electroweak” force. So you
might say that now we are down to three. However most particle physicists
would consider it a bit of a defeat if, at some point, we don’t reduce the num-
ber to just one.

Einstein spent a lot of effort trying to do just this—to merge the known
forces into a single, “grand-unified theory of everything.” Given the theo-
retical framework within which he worked in the middle of the twentieth
century, this task lay beyond even his formidable intellectual powers. To-
day, we have much better tools at hand, and a large number of our most ad-
vanced theorists are still attempting to achieve this lofty goal. Success has
so far eluded even these modern crusaders, although there is reason to be
cautiously optimistic (note 2.1).

So, it’s not clear that there really are four, or even three, separate forces
of nature. However, it’s convenient to begin our discussion of the nature of
physical forces in terms of the traditional four forces.

There are a number of attributes that can be used to distinguish the fun-
damental forces among one another. Below we’ll characterize each of the
four forces in terms of three properties: the overall strength of the force; the
range of the force; and the characteristic of any particular object, known as
its “charge,” that determines how severely the object is influenced by the
given force.

The Electromagnetic Force

Atoms are composed of negatively charged electrons orbiting positively
charged atomic nuclei. The negative electric charge of the electrons exactly
cancels the positive electric charge of the nucleus so that, viewed from the
outside, the atom has no net electric charge; we say that the atom as a whole
is “electrically neutral.” Inside the atom, though, the charge is separated be-
tween the stationary nucleus and orbiting electrons (see fig. 2.1). “Oppo-
sites attract,” so the opposite charges of the orbiting electrons and station-
ary nucleus keep the whole system bound together in perpetuity. It is this
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attractive electromagnetic force that keeps the orbiting electrons bound
into their tight orbit around the nucleus.

If the weather is not too damp, and you have washed your hair within the
last month or so, you can do an experiment that demonstrates this attractive
force rather strikingly. Go to your bathroom sink, and turn the water on just
enough to get a thin, steady stream rather than a rapid succession of drops.
Comb your hair vigorously with a cheap plastic comb. When you place the
comb close to the stream of water (without quite touching it) you should
see a noticeable deflection of the stream. If conditions are right, this de-
flection can exceed 45 degrees.

The phenomenon you will observe is the electromagnetic attraction be-
tween the electrons you rubbed off your hair onto the previously uncharged
comb and the nuclei of the water molecules. By the way, this works only be-
cause water is “polarizable,” which means that the electrons in the water
molecules like to move out of the way of the electrons on the comb, leav-
ing the positively charged nuclei contained within the water molecules to
be attracted by the electrons on the comb. The ready polarizability of wa-
ter is directly related to it being a very good solvent, that is, ideal for wash-
ing, which you already knew, since you apparently washed your hair some-
time in the last month. Let’s consider this electromagnetic interaction
between positively charged nuclei and negatively charged electrons.

Fig. 2.1. The helium atom. The negative charges of the two electrons are of ex-
actly the same magnitude as the positive charges of the two protons, so that
the atom as a whole is electrically neutral (no net electric charge).



First, the interaction is strong. Even after rubbing the comb through your
hair, the comb is largely composed of neutral atoms. To a small fraction of
those neutral atoms, an electron that formerly belonged to your hair is cling-
ing. These few electrons, though, are able to exert a substantial force on the
stream of water as it exits the faucet.

Second, the interaction is long ranged. The distance between the elec-
trically charged comb and the stream of water may not seem far to a human,
but it is huge compared with the width of an atom (one ten-millionth of a
millimeter, with a millimeter being about one twenty-fifth of an inch), or
the width of a nucleus (one-millionth of a millionth of a millimeter). For-
mally, the electromagnetic force is known as a 1/r2, or inverse square force,
which means that the degree to which two charged objects influence each
other decreases with the square of their separation—twice the separation,
one quarter the force, and so on. This may not sound like a characteristic
of a long-ranged force, but it’s enough to allow electromagnetic forces to be
explored with everyday apparatus, such as that found in the lab of an intro-
ductory physics class. As we’ll see, not all of the forces are so amenable.

Third, the influence exerted by the comb on the stream of water depends
on the electric charge of the comb—in other words, how many excess elec-
trons happened to accumulate on the comb when you ran it through your
hair. In general, the electromagnetic force is strong, but the precise strength
of the electromagnetic influence between two objects depends on how
much electric charge is accumulated on the objects. Note that electrons are
not “electric charge”—they do possess electric charge, but then, so do the
protons within atomic nuclei. As it turns out, most (but not all) fundamen-
tal particles possess electric charge—electric charge is an attribute of the
particle, but particles are not electric charges in and of themselves.

Electrons and protons have a specific amount of electric charge associ-
ated with them (�e and �e, respectively, where e � 1.6021773 � 10�19

coulombs, for what it’s worth) (note 2.2). You can charge an object with any
given multiple of this value (�2e, �56e, 12934582e, etc.). You cannot
charge it with a fraction of this value; for example, 12934582.4e is not pos-
sible. No exception to this rule has ever been observed (later on, when
quarks are introduced, this statement will be qualified somewhat, but it will
remain true in essence).
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Gravity

Try to jump as high as you can against the pull of gravity. No matter how
hard you try, you always come back down—and rather quickly. You might
think that the force of gravity is fairly strong.

If you were one of the lucky few who has had a chance to do this exper-
iment on the moon, you might arrive at a different conclusion. If you con-
ducted this experiment on the surface of a small celestial body, such as an
asteroid 1 kilometer in diameter, you would find that by jumping up you
would entirely escape the gravitational pull of the asteroid and float off into
space. The “escape velocity” at the surface of such an object is about 1 me-
ter per second, or 2 miles per hour. This is how fast you would have to be
traveling just after your jump to escape the pull of gravity and head off 
irretrievably into outer space.

Just as the electromagnetic force between two objects depends on the to-
tal amount of electric charge contained by each, the gravitational force be-
tween two objects depends on something related to the overall size of the two
objects. In the thought experiment above, one object’s size (ourselves) was
fixed, and we saw that the strength of the gravitational force between our-
selves and the given planetary body depended on the size of that body. If you
performed the experiment carefully with a large number of objects, you
would discover that the mass of the two objects establishes the strength of the
gravitational pull between them (for those not familiar with the difference
between “mass” and “weight,” it is acceptable for our purposes to use them
interchangeably). Thus, the “charge” associated with the gravitational force,
completely equivalent to the notion of the electric charge of an object for
the electromagnetic force, is just the mass of the object (note 2.3).

The gravitational force is not strong; in fact, it is quite weak. The gravi-
tational force we experience on the surface of the earth feels fairly strong,
but then think of the magnitude of the gravitational charge of the object
that exerts the force on us; it’s the mass of the entire earth! If we were to re-
move the earth and replace it with something of a more everyday size, such
as another person, the gravitational pull between us and the other person
would be unnoticeable—among the sensations associated with someone
moving close to you, gravitational attraction is absent. Put another way, the
gravitational attraction between two electrons is roughly 1042 times weaker
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than the electromagnetic repulsion between them—a difference of 42 pow-
ers of ten (or orders of magnitude). Gravity is intrinsically weak.

Like electromagnetism, the gravitational force is inarguably long ranged.
The gravitational force binds the planets into orbit around the sun, clusters
the matter of the universe into galaxies, and even generates the overall struc-
ture of space and time in the cosmos.

The range of the gravitational force is, in fact, identical to that of the elec-
tromagnetic force. They both fall with the inverse square of the separation
between the correspondingly charged objects. Why then are the large-scale
properties of the universe established by gravitational effects rather than by
the effects of the much stronger electromagnetic force? The answer is due
to a quirk of nature that, for the time being, is beyond us to explain.

Electric charge comes in two “signs”—positive and negative. Further-
more, the balance between positive (nuclear) and negative (electronic)
charges seems to be exact, so that the net electric charge of the universe is pre-
cisely zero. Thus, strong electromagnetic forces are, by and large, limited to
locales where for one reason or another excess positive or negative charge has
temporarily accumulated, such as on the surface of the comb after passing
through your hair. However, gravitational charge comes in only one sign—
there does not appear to be any negative mass in the universe. No objects fall
upward when released in the earth’s gravity. Thus, even though the gravita-
tional force exerted by any small chunk of matter is quite small, every little
chunk of matter in the universe makes a small positive contribution. The re-
sulting effects, added up over all of the matter in the universe, are colossal.

The Strong Nuclear Force

Beyond the realm of what we can experience and explore with our own
senses lies the workings of the two nuclear forces. Not only are these two
forces inaccessible to our tactile senses, but even their most qualitative de-
scription requires some surprising and counterintuitive notions.

The strong force is the force responsible for the binding of “nucleons”—
protons and neutrons—into atomic nuclei. Since World War II and the de-
velopment of nuclear warheads and nuclear energy sources, most people
have been aware of the awesome power that is associated with the aptly
named strong force. Surprisingly, the protons and neutrons that are bound
into nuclei are neutral with respect to the charge of the strong force.
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We now know that neutrons and protons are composed of more funda-
mental objects known as quarks—more specifically, “up-” and “down-”type
quarks. Quarks are the indivisible carriers of the strong force charge in the
same sense that electrons are indivisible carriers of the electromagnetic
charge (in fact, quarks are also indivisible carriers of electric charge; the
electric charge of the proton is simply the sum of the individual electric
charges of its constituent quarks).

An atom is a collection of negatively charged electrons bound to the pos-
itively charged nucleus by the electromagnetic force. Atoms are electrically
neutral, containing no net electric charge because the negative charges of
the electrons exactly cancel out the positive charge of the nucleus. Thus for
the most part, two neutral atoms will not interact with each other electro-
magnetically: The electric charge of each is zero. However, when two atoms
get very close to each other, the fact that the negative charge carried by the
electrons is separate and distinct from the positive charge carried by the nu-
cleus allows a weak residual force to develop that can bind the atoms into
molecules. This residual binding force, while entirely due to the electro-
magnetic interaction, is much weaker than the force that would arise if the
protons of one atom were attracted by the electrons of the other, without
the repelling effects of the other’s electron cloud.

An analogy, very apt as we’ll see, for the consideration of the strong nu-
clear force, is provided by an image of a white tennis shirt on the screen of
a color television. To a viewer sitting on a couch, relatively far away from
the screen, the white image has no effect on (causes no interaction with)
the color-sensing receptors in the eye. When the eye of the viewer gets
within a millimeter or so of the image on the screen, however, the image
begins to resolve itself into the profusion of minuscule, colored dots from
which it is composed. Resolved in this way, these dots interact with the color
sensors of the eye but in a much weaker way than they would in the case of,
say, a red image, for which every dot would be red. There is an interaction
between the picture and the color receptors of the eye, but because of the
overall color neutrality of the picture, the interaction is short ranged (you
need to get very close to see the dots) and relatively weak.

The nucleons (protons and neutrons) in the nucleus are essentially
strong-force atoms—quarks bound together into objects that have no net
strong-force charge, just as conventional atoms have no net electromagnetic
charge. The force that binds the nucleons together into nuclei is a residual,
molecular-type interaction between the nucleons like that for the molecu-
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lar electromagnetic force, which is uncharacteristically weak relative to the
actual force that underlies it.

Yet, it is this relatively weak residual force between the strong-force-
neutral nucleons in the nucleus that provides the tremendous power re-
leased in nuclear explosions and power generation. However much respect
we hold for this conventional (residual) nuclear force between the nucle-
ons in the nucleus, it is only the tip of the iceberg with respect to the strength
of the true, underlying strong force. Were we able to harness this force,
modern nuclear power would seem feeble in comparison. Nuclear power,
however, relies on the existence of substances such as uranium-235 and plu-
tonium, whose nucleons are configured in ways that render the nucleus
only marginally stable. These substances can be induced to break up (fis-
sion) with relatively little prodding, leading to the possibility of a chain re-
action. No similar states of matter seem to exist for which the quarks them-
selves beg to be prodded into a more stable configuration, with the
corresponding release of a truly staggering amount of energy. This is prob-
ably a good thing.

So the strong force is indeed strong. It is also in principle long ranged,
like the electromagnetic and gravitational forces. All matter that is measur-
ably stable, however, is assembled from quarks that are, as we’ve seen for 
the case of nucleons, strong-force-charge neutral when combined. Thus, for
the reasons just discussed, the strong force is in practice short ranged. The
bundling of quarks into strong-force-neutral protons and neutrons masks the
long-range nature of the strong interaction just as the bundling of electrons
and nuclei into electrically neutral atoms masks the long-range nature of
the electromagnetic force. Were free quarks ever observed, however, the
strong force between them would be measured as long ranged—funda-
mentally, the strong force is long ranged.

As intimated by our television-picture analogy, the charge associated
with the strong force is known as color charge. Unlike electromagnetism and
gravitation for which there are only one type of charge (electric charge and
mass, respectively), there are three separate types of color charge, arbitrar-
ily referred to as red, green, and blue charges. For example, a red quark (note
2.4) has a red charge of one and green and blue charges of zero, and so forth.
By contrast, an electron always has an electric charge of minus one (in units
of the proton charge).

While all quarks are, as far as we know, fundamental particles, not all
fundamental particles are quarks. A separate category of fundamental par-
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ticles known as leptons, of which the electron is the best-known example,
are, unlike quarks, neutral with respect to the color charge of the strong nu-
clear force. Being indivisible fundamental particles unto themselves, lep-
tons are not composed of color-force-neutral combinations of quarks. In-
stead, they are color neutral simply because nature, for reasons not yet
understood, deemed that they should possess none of the color charge that
the strong nuclear force concerns itself with.

The Weak Nuclear Force

At last we come to the most obscure of the forces of nature—the weak nu-
clear force. The most widely recognized consequence of the weak nuclear
force is the process of nuclear beta decay in which unstable atomic nuclei
transform themselves via the emission of an electron (and a “neutrino”). For
the most part, the weak force is shrouded in obscurity: It doesn’t bind atoms
or their nuclei together, and it isn’t responsible for the gyration of the plan-
ets around the sun or any other aspect of our everyday experience.

Paradoxically, to the particle physicist, the weak force is the most inter-
esting of all. Outside of the fact that it is weak (which, as we’ll see, is really
an illusion), its properties are the richest and most complex of the known
forces. The weak force is really the maverick—the rebel—among the forces.
A fair number of physical laws held sacrosanct by the other three forces are
violated, some of them grossly, by this rogue force. In fact, the violation of
a number of these laws is essential for the existence of life.

For example, consider the symmetry between matter and antimatter.
Each fundamental particle has an antimatter counterpart that is like the
matter particle in every way except that the charges associated with each
force (other than that of the gravitational force—there appears to be no such
thing as negative mass) are of opposite sign. For example, the antimatter
counterpart of the negatively charged electron is the positively charged posi-
tron (discovered by Carl Anderson of the California Institute of Technology
in 1933) and the antimatter counterpart of the positively charged proton is
the negatively charged antiproton (discovered by Owen Chamberlain and
Emilio Segrè at the University of California at Berkeley in 1955); put these
two antimatter constituents together and you get antihydrogen (produced
by humans for the first time at the pan–European CERN laboratory in
1995). The antimatter counterpart of a given type of quark is simply the cor-
responding antiquark. Protons and neutrons are composed of up- and down-
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type quarks; antiprotons and antineutrons are composed of up- and down-
type antiquarks.

Any two objects that are matter/antimatter counterparts of each other
have the curious property that when they come in contact with each other
they annihilate and convert their combined mass into an equivalent amount
of energy, admitted, as we’ll see in the next chapter, by Einstein’s famous
relation, E � mc2 (the released energy is just the annihilated mass times the
square of the speed of light). Thus, a universe composed of equal parts mat-
ter and antimatter would be hostile and unstable, not the sort of place that
chunks of matter the size of planets could exist in relative peace and stabil-
ity for billions of years.

Luckily for all of us, there is not a symmetry between matter and anti-
matter. There’s a tremendous amount of matter in the universe, but natu-
rally occurring antimatter particles are rare (note 2.5). Somehow, matter was
preferred over antimatter as the universe evolved. Yet, the three more famil-
iar forces—the electromagnetic, gravitational, and strong nuclear forces—
are all unprejudiced in their effects on matter and antimatter. Whatever
these forces do unto matter, they do equally unto antimatter. If one of these
three forces is responsible, say, for the decay of some unstable particle, then
the rate at which that particle decays will be identical for both the particle
and its antiparticle partner. All other aspects of the decay—the nature of the
decay products and the distribution among these products of the energy left
over after the decay—will be identical for particle and antiparticle. Further-
more, in any reaction caused by these three forces, if new particles are pro-
duced, they will always be produced with equal amounts and types of mat-
ter and antimatter. How can these forces thus account for a universe in which
matter dominates so convincingly over antimatter? They cannot.

At Long Island’s Brookhaven National Laboratory in 1964, James Cronin
and Val Fitch (then at Princeton University) discovered that, for electrically
neutral kaons (a relatively common type of subnuclear particle), whose de-
cays were known to be due to the weak force, there is a subtle difference in
the decays of neutral kaons and neutral antikaons. This profound discovery
revealed a mechanism by which the matter/antimatter asymmetry, a criti-
cal ingredient for the development of life, could have arisen in the primor-
dial universe. It is only this fourth force—the feeble but irreverent weak
force—that exhibits this surprising but essential property. For this discovery,
Cronin and Fitch were awarded the 1980 Nobel Prize in Physics.

To incorporate and to understand this property within a consistent the-
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oretical framework is one of the great challenges and opportunities facing
today’s particle physicists. Recent advances in particle accelerators and de-
tectors allow for the development of exacting experiments that explore this
phenomenon to a degree unimaginable back in the time of its discovery.
Two such modern experiments (the so-called B Meson Factory experi-
ments) are now underway—one at the Stanford Linear Accelerator Center
(SLAC) at Stanford University in California and the other in Japan at the
KEK National Laboratory.

There is but one type of weak charge, which can be both positive and
negative, known as weak isospin. As for the other types of charge, weak
isospin charge is a property of any given object; electrons, for instance, have
a weak isospin of �1⁄2, while protons have a weak isospin of �1⁄2.

The weak nuclear force is, well, weak. Neutrinos, ghostlike fundamen-
tal particles that interact only via the weak force, can pass entirely through
the body of the earth without being deflected. Unless you have tremen-
dously sensitive apparatus and a good deal of patience, you can only sense
the workings of the weak force if, for some reason, none of the other forces
are at play in the process under study. However, since there are a number
of laws respected by the other three forces that are violated by the weak
force, the study of any process violating one of these laws (such as the sym-
metry between matter and antimatter) is a direct study of the weak force.
Once you know where to look, it’s actually not that hard to conduct sensi-
tive studies of the weak force. Many have been done, and we now know a
great deal about the workings of this force.

Finally, the weak force is short ranged. Two objects interacting via the
weak nuclear force need to be within 10�18 meters of each other to do so.
On this scale, even the inside of the diminutive proton (radius 10�15 me-
ters) is a vast, cavernous expanse. The weak nuclear force is truly a subnu-
clear force.

Final Word on the Four Forces

The cornerstone of the Standard Model of particle physics is the unifica-
tion—the melding into an overarching theory governed by a single, com-
mon physical law—of the electromagnetic and weak nuclear forces. It’s not
surprising that it took physicists until relatively recently (the late 1960s) to
achieve this, for on the surface this is an absurd proposition. The electro-
magnetic and weak forces could hardly be more different. One is responsi-
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ble for almost everything we experience daily; the other is responsible for
nothing we experience daily. One is relatively strong, the other seems quite
weak. The charges associated with each force are completely independent;
one set of fundamental subnuclear particles, the neutrinos, are electrically
neutral (have electric charge zero) but do possess weak isospin. The elec-
tromagnetic interaction is long ranged, which leads to effects that can be
easily observed by the unaided senses (recall the experiment at the begin-
ning of the chapter), while the other operates only over inconceivably short
distances. Showing that these are merely two different facets of the same un-
derlying physical law is truly a daunting task.
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3

The Great Reawakening

The Modern Physics Revolution

In his 1894 address at the dedication of the Ryerson Physical Laboratory at
the University of Chicago, the American physicist Albert Abraham Michel-
son set forth what has become one of the most memorable forecasts in the
history of physics: “The most important fundamental laws and facts of phys-
ical science have all been discovered . . . Our future discoveries must be
looked for in the sixth place of decimals.”

The notoriety of this premature eulogy lies in the juxtaposition of its
broad acceptance in the waning years of the nineteenth century against the
staggering developments of the early twentieth century, collectively known
as the “modern physics revolution.” Within ten years of Michelson’s pro-
nouncement, a Swiss patent clerk by the name of Albert Einstein had com-
pletely reshaped our notions of space and time; it is ironic that Michelson’s
own work (for which he was awarded the 1907 Nobel Prize) provided the
initial experimental basis for Einstein’s theory of relativity. Within thirty
years, the development of quantum theory had forced humankind to dis-
card the Newtonian notion of scientific determinism.

The work of these early “modern” physicists so thoroughly awoke physics
from its complacent torpor that the twentieth century stands as the greatest
century the field has ever known and perhaps ever will (another prognosti-
cation!). The beacon of physics was relit so brightly that it illuminated
reaches of scientific exploration that lay far outside the imagination of the
classical physicists of the nineteenth century.



Einstein’s Relativity

The first of Einstein’s two great theories of the nature of space and time—
special relativity—is particularly beautiful. It rests on two deceptively sim-
ple postulates. The first is that the speed of a beam of light as it moves
through a vacuum will always be measured at exactly 299,792,458 meters
per second, regardless of how much you might speed up in an attempt to
catch up with it (this is what the meticulous work of Michelson demon-
strated, to no one’s greater surprise than his own). The second postulate is
that the laws of physics are the same for all observers, independent of how
any given observer may be moving through space. Another way that this sec-
ond postulate can be stated is that there is no experiment one can do that
will distinguish one observer’s frame of reference as somehow being “pre-
ferred” (closer to being at rest with respect to the universe as a whole) over
that of any other observer.

From these two seemingly benign statements flow a host of apparently
nonsensical, yet experimentally verifiable, conclusions that completely re-
arrange one’s sense of space and time—the very fabric into which the work-
ings of the universe are stitched. Rulers shorten, time slows, the boundary
between the notions of space and time erodes, matter and energy become
interchangeable facets of a single physical quantity, “mass-energy,” and 
so on.

To a particle physicist, special relativity is second nature. It is simply a
tool of the trade. It is as familiar to him or her as, say, the federal tax code is
to an accountant. Fortunately, relativity is much less arbitrary and substan-
tially easier to fathom than the tax code.

From our discussion of special relativity, it will be important to remem-
ber the relationship between mass and energy. This relationship, as we will
see, is as follows: Mass and energy are essentially the same thing.

Before the work of Einstein, the energy EK of an object not under the in-
fluence of any external force was thought to be one-half the product of the
particle’s mass, m, and the square of its speed, v:

EK � 1⁄2 mv2.

The subscript K, for “kinetic,” indicates that this energy arises if and only if
the object is in motion; that is, if and only if the speed v is not zero.
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This quantity plays a central role in our description of the physical world
because energy is conserved (an extremely important and well-founded ex-
perimental fact). No matter what happens, there is always the same amount
of energy around before something happens as there is afterward. If an ob-
ject moving with speed v collides with some other objects, whatever kinetic
energy our original object gains or loses (when slowed or sped up by the col-
lision) will be lost or gained, in some form or other, by the system of objects
with which it collides. Energy conservation will play a critical role in a num-
ber of places later on in this book.

Einstein modified this relation considerably, and in so doing, he penned
the most celebrated relation in all of physics (but which, by the way, is not
known as “Einstein’s equation” to card-carrying physicists):

Em � mc2,

where c is the well-known, ever-unchanging speed of light—the velocity of
the propagation of James Clerk Maxwell’s wavelike electromagnetic force-
field disturbances (note 3.1).

Ignoring the factor c2 for the moment, we see that this equation states
unambiguously that mass is the same thing as energy. The factor of c2 in-
dicates just how much energy is associated with each kilogram of mass m.
The fact that this proportionality constant, the speed of light, is so large
(299,792,458 meters per second) means that the amount of energy associ-
ated with everyday amounts of mass is shockingly large. For example, a sin-
gle gram (one-thirtieth of an ounce) of mass, if somehow converted entirely
into wall-plug-style electrical energy, would produce the equivalent of an
entire day’s output from a large (gigawatt) modern-day power plant. The
idea that an inanimate object possesses energy—and a lot of it—is coun-
terintuitive. But such counterintuitiveness is the nature and, in large mea-
sure, the beauty of Einstein’s theory of relativity.

Thus, in addition to the “kinetic” energy associated with motion, we
must also consider the energy Em associated with the mass of an object. This
“mass-energy” contributes to the object’s overall energy regardless of whether
it is in motion. Simply, the object’s total energy is just the sum of its mass-
energy and kinetic energy.

In a collision, both of these contributions to the colliding objects’ ener-
gies must be taken into account when doing the before and after energy-
balance accounting required by energy conservation. If conditions are
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right—say, if a particle is colliding with another particle that just happens
to be its antimatter counterpart, leading to the mutual annihilation of both
particles—the result can be a complete conversion of mass-energy into ki-
netic energy. Alternatively, and again if the conditions are right, the con-
version of kinetic energy into mass-energy can also be complete.

In this latter fashion, relatively light and relatively ordinary particles
(such as electrons and antielectrons, or positrons) can be hurled against
each other with great opposing kinetic energy, only to have that kinetic en-
ergy be converted into the mass-energy of an exotic, and heavy, new parti-
cle—the kind of new particle that spirits theoreticians to their blackboards
and the study of which leads to great advances in scientific understanding.
This approach has been a central theme in much of experimental particle
physics throughout its fifty-or-so-year history.

This connection between mass and energy has become so familiar to par-
ticle physicists that they have taken on the habit of quoting the masses of
their favorite particles exclusively in terms of the associated mass-energy. In
fact, it’s even worse than that. The unit of energy used by particle physicists
is not the familiar joule or erg of introductory physics but rather the 
electron-volt, or eV, which is a unit wholly inspired by the particle physi-
cist’s favorite toy—the particle accelerator.

Think of an accelerator as an immense and exceedingly expensive TV
set. Electrons from a source inside the set are accelerated toward a target—
the screen—by the electric force. So, forgetting about the screen for the mo-
ment, a TV set is just an electron accelerator.

The magnitude of the accelerating electric force, times the distance over
which the acceleration occurs, is known as the potential difference, or volt-
age. An electron accelerating through a given voltage obtains a well-defined
amount of kinetic energy (energy of motion); if the voltage is exactly 1 volt
the electron obtains precisely 1 eV of kinetic energy during the accelera-
tion (for comparison, wall-plug voltage is about 100 volts).

The essential point regarding the electron-volt unit of mass-energy is that
an object with a mass-energy of 1 eV, and without any kinetic energy to start
with, would release precisely this much kinetic energy if it were annihilated
by its antimatter counterpart.

The electron-volt is a general expression for a particular amount of en-
ergy. The energy of any object can be expressed in electron-volts, whether
that energy is possessed by an electron in the TV set, the tennis ball that
rockets back and forth over the net during the match you are watching on
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that TV set, or the caloric content of the chips and soda that you consume
as you watch the match.

In these terms, the electron, which is the lightest particle whose mass has
been definitively measured, has a mass of about 511,000 eV. Again, this
means that if you somehow convert the electron’s mass-energy to kinetic en-
ergy, the amount of kinetic energy released will be 511,000 eV—the
amount of energy an electron would gain after accelerating through a hefty
511,000 volts of electrical potential. Similarly, the mass-energy of a proton
is about 938,000,000 eV. The heaviest known fundamental particle, the top
quark, has a mass-energy of about 175,000,000,000 eV (note 3.2). This also
is about the reach, or kinetic energy per beam particle, of today’s most en-
ergetic particle accelerators. In contrast, the maximum energy of an elec-
tron in a TV set is a few thousand electron-volts, so if we think of particle
accelerators as TV sets whose images somehow reflect the fundamental
workings of the universe, then these are big TV sets indeed.

Although it’s not directly related to the subject matter of this book, we
can’t really take leave of our discussion of Einstein’s relativity without at
least a mention of the general theory of relativity. The formulation of this
theory took ten years of Einstein’s professional life—from 1905 to 1915—
which he later admitted to being a difficult and uncertain period. In the
end, it was well worth the effort because what came out was a theory whose
reshaping of the special-relativistic notion of space and time was as radical
and profound a departure from special relativity as the latter was from the
classical, prerelativistic, common-sense notions of space and time. The uni-
verse of general relativity is one in which the pedestrian, three-dimensional
world of our senses is twisted and distorted through higher dimensions, in
ways not perceivable by our senses, just as the curvature of a flat piece of pa-
per into a sphere would not be perceivable to a two-dimensional person liv-
ing on the sheet of paper. The curvature of space-time is related to the dis-
tribution of mass-energy in the universe according to a single equation,
properly known as “Einstein’s equation.” Just as for special relativity, the
general theory is readily verifiable; it now serves as the basis of the field of
cosmology—the theory of the origin and evolution of the universe.

Quantization: The Next Great Leap

The second component of the modern physics revolution (Einstein’s rela-
tivity being the first) was the development of quantum mechanics. Although



no single figure played as central a role in the development of quantum me-
chanics as Einstein played in the development of relativity, one can point
to two physicists whose work and ideas propelled the rapid crystallization of
the quantum hypothesis into a fully rigorous and quantitative theory. These
two physicists, Erwin Schrödinger (of the Schrödinger equation) and Wer-
ner Heisenberg (of the Heisenberg uncertainty principle), were largely re-
sponsible for the synthesis of a number of disparate and somewhat qualita-
tive notions into a concise and powerful theory during the few short years
of the mid-1920s. To mention only these two does a great disservice to nu-
merous others, Einstein among them, whose willingness to interpret certain
physical phenomena in clever and radical ways laid the groundwork for the
quantum renaissance of the 1920s.

If a gas composed of a vast number of similar but free atoms, such as that
contained in the tube of a neon light, is excited, the gas will begin to glow.
This glow is due to the emission of an immense number of brief flashes of
light from the individual atoms in the gas. If you shine this light through a
prism so that it is broken up into its constituent colors, you will not see the
familiar “rainbow” spectrum that passes continuously from a rich purple
through green and yellow to red. Instead, the light is composed of ten or
twenty discrete colors, or “spectral lines”; the rest of the rainbow is missing.
The colors and patterns of observed spectral lines are characteristic of the
particular type of atom composing the gas—a principle that is often used to
identify the composition of unknown gases.

The reason that a discrete, rather than continuous, spectrum is observed
is that individual atoms in the gas cannot emit light of any color; they can
only emit certain “permissible” colors. We say that the atomic system is
quantized, in the sense that we can assign a number (a quantum number)
to each of these well-defined colors. This number simply acts to delineate,
or quantify which of the various possible colors we see when we pick out
one particular spectral line emerging from the prism. This property—that
physical systems can only exhibit behavior associated with their assumption
of one of a limited number of discrete, permissible states—is the essence of
the phenomenon of quantization.

Quantum mechanics states that all physical systems, not just atoms, are
quantized. For the effects of this quantization to be noticeable, however, the
system must be small. Even for large systems, such as a piece of iron heated
to a white-hot glow, which when viewed through a prism appears to emit
the full rainbow of possible colors, the possible states are still discrete. It’s
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just that there are so many states that are so closely spaced that it looks like
the permissible states of the system constitute a continuum of possibilities—
a continuous rainbow of color—even though they really don’t. For the ex-
cited gas of the neon light, however, each atom emits its light independently
of all the other atoms in the neon plasma, so that system of interest is really
just the single neon atom, which is small enough that quantum behavior is
quite evident.

Quantum theory gives us an explicit notion of the meaning of the word
“small,” that is, of the physical scale at which quantum mechanical effects
become appreciable. This number, known as Planck’s constant (h), is, along
with the speed of light (c), one of a handful of fundamental quantities that
characterize the scale of natural laws. The value of Planck’s constant can
be looked up in any physics text: h � 6.6 � 10�34 joule-seconds, where the
joule is an everyday amount of energy—specifically, the amount of energy
required to lift 1 kilogram (2.2 pounds) about one-tenth of a meter (4 inches
or so) (note 3.3). The minuteness of Planck’s constant—about thirty-three
orders of magnitude (factors of ten) less than one—tells us that the natural
scale of quantum mechanics is small indeed (note 3.4).

Of Balls and Beams: Waves versus Particles

Even more than the phenomenon of quantization, quantum mechanics is
concerned with the wavelike properties of matter. It was through quantiza-
tion, and not wavelike behavior, that the physicists of the early twentieth
century first began to unlock the secrets of the small-scale behavior of mat-
ter. Thus, the designation “quantum mechanics” is a bit of a historical ac-
cident; a name that more directly encapsulates the essence of the new
physics’ departure from classical notions would be “wave mechanics.”
Somehow, though, “quantum” sets a more revolutionary tone than “wave,”
so perhaps quantum mechanics is a better choice—at least from a rhetori-
cal point of view.

Particles are hard and discrete, like miniature billiard balls. When two
particles collide, they bounce off each other, heading off with directions and
speeds different from those before the collision. Even more important, how-
ever, particles enjoy the following property: you can tell where they are. If
you are asked about the location of a given particle, you can develop a pro-
cedure (such as taking a picture of it) to answer the question definitively.
So, for a particle, the notion of position is a sensible one. At any given time,
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the particle is localized at a well-defined position—a position that, at least
in principle, can be determined by experimentation.

Waves are everything that particles are not. Bob a stick steadily up and
down in a pond and a wave emanates forth, eventually filling the pond with
evenly spaced undulations traveling outward from the stick. Exactly where
in the pond is the wave? It’s not a sensible question to ask. The wave is not
localized at a single position; it’s everywhere in the pond at once.

In fact, the wave isn’t really a “thing” at all, is it? Certainly, the wave car-
ries with it some energy, which can be substantial, as anyone who has spent
time at the beach knows. But the wave itself is nothing more than the mol-
ecules in the body of water moving up and down in an organized way. The
particles (in this case water molecules) seem to be real objects, taking up
space and so forth, but the wave is nothing more than a description of the
way in which those particles convey energy—from the bobbing stick, the
wind, or whatever.

Now, if two sticks are bobbed up and down at different points in the pond,
the two waves that are created don’t bounce off of each other, as particles
would be expected to. Rather, they move through each other, interfering
with each other as they do, but not changing their individual courses.

Picture two equal-sized waves that are passing through each other. If at
some point both waves are peaking, then the peak is doubly high (con-
structive interference); if a peak from one wave meets a trough from the
other, they cancel each other out (destructive interference) and the pond
surface is at the same height as it was before either wave arrived. Interfer-
ence is an essential wave property and is one of the features that distin-
guishes waves from particles. If two entities interfere with rather than
bounce off of each other, then those entities must be waves.

If waves are not characterized by position, then what characterizes them?
In a nutshell, four things: wavelength, frequency, amplitude, and phase.
There are other ways to characterize a given wave (such as the speed at
which the wave travels through the water), but those other properties can
always be expressed in terms of the four listed above.

Imagine yourself in a sailboat afloat on the ocean. You set anchor so that
the boat is at rest and climb the mast. Looking ahead, you see an endless se-
ries of uniform wave crests stretching out toward the horizon. The crests
move toward you, wash into the bow, pass along the boat, and then roll away
from its stern. You want to radio to your friend on shore, who gets seasick
on heavy days, the properties of the waves so that he can decide whether to
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risk it and join you. He has a lot of experience with being seasick so he wants
to know everything of relevance about the waves before he makes his deci-
sion.

First, you notice that the boat bobs up and down in a regular cycle as the
waves wash by the boat. You measure the number of times the boat bobs up
and down each minute—the frequency of the wave—and write it down.

Second, you notice that there is a consistent difference in height between
the peaks and troughs. This difference, known as the amplitude, determines
just how violently the ship bobs up and down between successive wave
crests, so you measure it carefully, for certainly your not completely sea-
worthy companion will want to know this.

Third, you notice that the peaks and troughs of the ocean waves are sep-
arated by a well-defined distance—the wavelength, or distance between suc-
cessive peaks of the wave. This peak-to-peak distance is the same whether
you are looking at the ripple closest to the boat or the one a mile away. You
measure the wavelength, and write it down.

Finally, you recognize that if your friend is to know exactly when the boat
will be at the top of its bob and when it will be at the bottom, you need to
measure something about the phase of the wave—when your watch reads
exactly noon, are you sitting on top of a wave crest, in a trough, or some-
where in between? How will you measure and convey this piece of infor-
mation in a respectably quantitative fashion?

The solution to this problem is provided by the following critical insight:
Riding waves is very similar, in a certain way, to going around and around
in a circle. This insight will be an essential component of our development
of the notion of gauge theory in chapter 8, so you will want to keep it in
mind.

Figure 3.1 shows a dog tethered to a pole in the front yard of a house.
The dog awakens from her nap, and looks around. Very quickly, she gets
bored and tries to move away from the pole. Pulling taut against the tether,
the dog can only go in circles about the pole. After one full circle, or 360
degrees of turning about the pole, she is back where she started.

Now with some work, and for want of anything better to do on a summer
afternoon, you could probably train this dog to snap a picture from a cam-
era mounted to her collar every time she walked over an X painted on the
ground. Assume that, somehow or other, you had managed to do this and
that the dog was taking a nap on such an X. When she wakes up, she snaps



a picture; then, as she goes around and around on the tether, she snaps an-
other picture every time she gets back to her former resting place.

What do you see when you develop the film? Thirty-six full-color land-
scapes of exactly the same thing. The point is this: When the dog goes
around a full circle—exactly 360 degrees—she gets back to where she
started from. Just looking at the pictures, you have no idea whether she
snapped all 36 pictures standing stationary on the X or whether she went
around once, or more than once, between each snapshot.

Similarly (see fig. 3.2), after bobbing down one crest and up to the top
of the next wave crest, even though you know that you have bobbed up and
down one wave, there is nothing you can see that verifies this. You are on
top of the wave, just as you were before you started bobbing. If you took a
picture every time you were on top of a wave crest, someone looking at the

Fig. 3.1. Going around in circles is very similar to floating up and down on an
endless series of waves. When the dog returns to the same point (the X-shaped
dog bones) on the circle, everything looks the same as it did before she ran
around the circle. Likewise, when you float back to the crest of the next wave,
everything looks the same as it did when you were on the crest of the previ-
ous wave (see fig. 3.2).
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developed role of film would have no idea whether you snapped the whole
roll quickly while on the crest of a single wave or, instead, snapped away at
a leisurely pace, waiting for one or two waves to pass by between pictures.
Either way, all you would see in the picture is an infinite number of waves
receding toward the horizon, the nearest crest of which you happened to be
floating on when the picture was taken. Just like going 360 degrees around
a circle, you’re effectively back where you started: at the crest of one of an
infinite sea of waves.

You now notice that at precisely noon the boat is exactly at the bottom
of a trough, halfway between successive crests. Making use of this circle
analogy, you know how to record your phase—where you are, quantita-
tively, relative to the next wave crest. Since you are exactly at the bottom of

Fig. 3.2. After riding exactly one wave cycle, from the crest of one wave to the
crest of the next, there is no change in the way the world appears. Nothing
you can see allows you to determine which wave crest you are on, just as, in
going around a circle, there is nothing you can see that tells you how many
times you’ve gone around the circle.
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the trough of the wave, then you are halfway between successive crests—
halfway between 0 degrees (the top of one crest) and 360 degrees (the top
of the next crest). Since halfway between 0 and 360 degrees is 180 degrees,
you write down your phase at noon as 180 degrees. Halfway around the cir-
cle puts you on its opposite side; halfway between crests of the undulating
wave puts you on the part of the wave that opposes the crest; that is, it puts
you in the trough. This is the direct, and exceedingly useful, analogy be-
tween going endlessly around in circles, returning time and time again to
the same point, and bobbing endlessly up and down on ocean waves, re-
turning time and time again to the crest of an endless succession of indis-
tinguishable waves.

From this observation of the wave’s phase, and given your record of the
frequency (rate at which the wave crests wash by), your friend should be
able to figure out exactly when it is that he will find himself at a crest, trough,
or anywhere in between. You are to be congratulated for being so clever and
complete in your measurements, or at least so it would seem. You radio your
findings back to shore, and then head below deck for a game of solitaire
while awaiting your friend’s decision.

At last, the long-awaited answer comes back. The wavelength, frequency,
and especially amplitude, all seem amenable to him. However, he cannot
believe that you went to all the trouble to measure and report the phase to
him. How could it possibly make any difference to him whether he’s in a
trough at 1:01 or on a peak at 2:07? In fact, he is so discouraged by your ap-
parent lack of critical thinking skills that he’s decided to stay on shore and
reevaluate his commitment to his relationship with you.

Well, that’s the way friends are sometimes. But if you’re interested in
quantum mechanics and, particularly, in its application to the Standard
Model of particle physics, then he’s taught you a very important lesson. For
in quantum mechanics, the overall phase just doesn’t matter. Not only does
the phase not influence anything we might care about, but there’s no ex-
periment that you can do to determine the overall phase of a quantum-
mechanical system. The quantum-mechanical phase of a physical system is
simply unmeasurable (note 3.5). Since, as we’ll shortly see, all systems have
wavelike properties, this is an important point of which to take heed.

Paradoxically, it is precisely this irrelevance that places the notion of
quantum-mechanical phase at center stage in the mind of particle physi-
cists. Dogged adherence to this principle—this meaninglessness of phase—
coupled with its generalization to ensure consistency with the tenets of rel-



ativity and the quantum theory of force fields, leads directly to a profound
reinterpretation of the fundamental nature of the behavior of matter. It’s not
that the phase of quantum mechanical systems becomes relevant but rather
that the irrelevance of phase is understood to be, in and of itself, tremen-
dously relevant. The rigorous formulation of this notion, known as gauge
theory, is a theory of the relevance of irrelevance; within this oxymoronic
inspiration lies one of the most profound intellectual leaps in the storied
history of particle physics.

Wave-Particle Duality 1: Particles of Light

That light is a wave, and not particle-like, seems obvious now that we’ve
sharpened up our notions of what it takes to be a wave or a particle. If you
shine two flashlight beams so that they intersect, they don’t slam into each
other and go crashing to the ground. Instead, they pass through each other
essentially unaffected, as you would expect of waves in good standing. Light
can be focused and reflected and can diffract around corners, illuminating
regions that are not in the direct path of the original light beam (this is why
shadows of objects tend to have fuzzy edges). All of these properties are due
to the essential wavelike property of interference.

Waves are, in essence, an organized form of energy transfer through a
“medium”; in the case of water waves, the medium is the water at the sur-
face of the pond. What is the corresponding medium for light?

The answer, as mentioned in chapter 2 (and thanks to James Clerk
Maxwell, the greatest of the many heroes of the theory of electromagnet-
ism), is that light is a wavelike disturbance in the electric and magnetic force
fields, that propagates through space at, not surprisingly, the speed of light,
c � 2.997 � 108 meters per second, or about 186,000 miles per hour. The
electromagnetic field exerts forces on objects possessing electric charge,
such as the molecules inhabiting the receptors of the human retina; if the
force-field disturbance associated with a ray of light reaches your eye, it in-
duces chemical reactions in those receptors. The sensation of color is noth-
ing more than the brain’s way of differentiating between different frequen-
cies of oscillation (waving) of the strength of the force field associated with
the given ray of light. Brightness is also easily explained; it’s simply the am-
plitude of that oscillation.

Visible light falls roughly within the range of 4 � 1014 to 8 � 1014 oscil-
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lations per second, with the red end of the rainbow at lower frequencies and
the indigo end at higher frequencies. Directly below the lower-frequency
end of the visible spectrum lies the realm of the infrared, while directly above
the high-frequency end of the spectrum lies that of the ultraviolet.

A very hot object—such as the filament of an electric stove—begins to
glow red as it heats up. Made even hotter, its color changes from red-hot to
white-hot. Whatever the color, if you put your hand anywhere near the ob-
ject (without touching it, mind you), you can sense the heat radiating from
it. The light you see, and the infrared light you do not see, are both com-
posed of electromagnetic waves, which transmit some of the thermal energy
of the hot object to the surface of your hand. Experiments conducted in the
nineteenth century provided accurate measurements of the spectrum—the
relative amount of energy contained in each range of color of radiated
light—emitted by hot objects. Among other things, these measurements
showed that, by and large, the spectrum of emitted radiation depends only
on the temperature of the hot object and is more or less independent of what
it is that’s being heated up.

This spectrum, classical physicists reasoned, is thus a basic attribute of
matter and so should be possible to understand. Turning their attention to
this problem, though, the physicists of the late nineteenth century hit a
snag: the resulting classical blackbody theory (note 3.6) of the spectrum of
the radiation of light from hot objects was in stark disagreement with the
measurements that had been made. In fact, this classical theory predicted
that an infinite amount of energy would be radiated at high frequencies—a
failing that came to be known as the ultraviolet catastrophe. The physicists
of that day recognized this was absurd, but that’s what they got when they
applied their classical theory of electromagnetism in an attempt to under-
stand the spectrum of glowing objects.

In 1900, after much thought and reexamination of the assumptions that
went into this classical blackbody theory, a soon-to-be-famous German
physicist by the name of Max Planck hit on an idea that seemed to resolve
the problem. Planck’s hypothesis, when used to modify the classical black-
body theory, not only resolved the ultraviolet catastrophe but also produced
a prediction for the spectrum of radiation that was in astounding agreement
with experimental observations. Planck’s hypothesis is simply stated: The
energy E transferred by electromagnetic waves (light) of a given frequency
(color) f must come in discrete, quantized packets of magnitude



E � hf,

where h is Planck’s diminutive constant.
In other words, the quantity hf represents the minimum amount of en-

ergy that a given color of light can possess as it is radiated. Light of the fre-
quency f must come in packets of energy hf, so the energy of light radiated
from the object at a frequency f can be 2hf, 3hf, and so on, but nothing in-
between. The emission of light is quantized, with the minimum allowed en-
ergy hf corresponding to the energy of one quantum of light. In fact, we now
appreciate this hypothesis as the first conjecture that nature is quantized, al-
though Planck himself had no idea, at the time, just how profound a leap
he had made.

To understand how Planck resolved the ultraviolet catastrophe with his
hypothesis, consider its implications. The bigger the frequency f, the more
energy E it takes for the hot object to release a single quantum of light,
which is the minimum amount of energy the object needs to give up to ra-
diate at that frequency. For frequencies that are too high (too far into the ul-
traviolet end of the spectrum), this minimum energy requirement is just too
demanding. Thus, instead of the prediction put forth by the classical theory
of an infinite amount of energy radiated in ultraviolet light, the theory mod-
ified by the hypothesis of light quanta (flashes of light with a well-defined
minimum energy content of hf ) led to a prediction of no radiation for very
high ultraviolet frequencies. Because it takes so much energy to create an
ultraviolet light quantum, no energy is radiated in the ultraviolet, and the
ultraviolet catastrophe is resolved.

At first, Planck did not consider his conjecture about the quantization of
light to be that revolutionary. He assumed there was some detail about the
way in which the light was emitted that no one quite understood. Five years
later, however, in the same year as his publication of the special theory of
relativity, Einstein published a paper on the photoelectric effect in which
electrons are knocked out of certain materials when those materials are il-
luminated with visible or ultraviolet light. Based on careful observations of
the behavior of the photoelectric effect, performed and published by a
number of experimental researchers, Einstein was able to argue convinc-
ingly that the photoelectric effect was explicable only if the quantization of
light into individual packets of energy E � hf was a fundamental property
of light itself, rather than of the emission process, as Planck suspected.

But, in the photoelectric effect, the individual packets of light behaved
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as if they were particles! Each released electron was knocked out of the ma-
terial by a single packet, or quantum, of light that, to knock the electron out
of the solid, had to collide with the electron in the jarring manner of a par-
ticle. This radical idea was eventually accepted by the international physics
community; soon afterward the American physicist Arthur Compton coined
the term photon for these indivisible particles of light. Interestingly, Ein-
stein’s 1921 Nobel Prize, which followed three years after Planck’s own No-
bel, was awarded more for Einstein’s explanation of the photoelectric effect
than it was for his theories of relativity. Today, Einstein is respected for the
former but revered for the latter.

So is light a wave, as Maxwell said, or a particle, as evidenced by the pho-
toelectric effect? We need to to put aside our calculations, switch off our ex-
perimental apparatus, grab a cup of tea, and reflect for a moment on what
we have learned. Light is clearly a wave—the evidence for this comes di-
rectly from our everyday experience with flashlights, lenses, and especially
these days, lasers. When you look more carefully, though, at phenomena
for which Planck’s tiny constant sets the scale of activity, there’s plenty of
experimental evidence that demands we treat a ray of light as if it’s com-
posed of a large number of light quanta particles.

So, which is it, wave or particle? Which of these two apparently exclu-
sive poles is representative of the fundamental nature of light? The answer,
Einstein argued, is both. In some contexts, light behaves as if it is composed
of little particles moving along together. In other contexts, it behaves like a
wave—something our intuition has a difficult time associating with a “real”
object that can bounce off other things. Yet the wave is the particle, and vice
versa. Light has a dual nature, part wave, part particle.

This is the notion of wave-particle duality—a notion central to quantum
mechanics in general and particle physics in particular. Indeed, the pho-
ton, and particles like it, play a central role in the Standard Model of parti-
cle physics and will figure heavily in the discussion to come.

If you have an electric stove, turn it to “high” until it glows red. (If you
have a gas stove, as I do, you can hold a needle in the flame until the nee-
dle turns red.) Take a good look at the light. The explanation of what you
are seeing, as simple a phenomenon as it may seem, launched one of the
greatest revolutions in the history of scientific thought.
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Wave-Particle Duality 2: Matter Waves

A common conviction of physicists is that, at its most fundamental level, na-
ture prefers uniformity and simplicity over disparateness and complexity. In
1924, a French prince and graduate student by the name of Louis-Victor de
Broglie was struck by a sudden insight. He hypothesized that Einstein’s con-
jecture of the dual nature of light represented merely the tip of an iceberg
and that the notion of wave-particle duality should extend to all of nature.
If light, which common sense suggests should be classified as a wave, can
exhibit particle-like properties, then why can’t matter particles, such as elec-
trons, protons, atoms, molecules, dust, animals, planets, and so forth, ex-
hibit wavelike properties?

According to Einstein, the connection between light’s wavelike property
of frequency (f ) and its particle-like property of kinetic energy (E) is given
by Planck’s relation E � hf. Simply stated, de Broglie’s hypothesis was that
this relation should also hold for matter. If we look carefully enough, de
Broglie argued, we should see that matter can exhibit wavelike properties,
consistent with Planck’s relation between a photon’s energy of motion and
its frequency.

In fact, this is not quite the form in which de Broglie’s hypothesis is most
commonly stated and readily applied. Rather than being expressed in terms
of kinetic energy and frequency, de Broglie’s hypothesis is usually expressed
in terms of wavelength l and momentum p. If you’re unfamiliar with the
distinction between momentum and kinetic energy (energy of motion),
don’t worry: throughout this book, it will be fine to think of them as one and
the same. In any regard, a straightforward mathematical argument that I
won’t reproduce here shows that, in these terms, de Broglie’s hypothesis can
be restated as

This expression is properly known as the de Broglie relation, and states
that any material object exhibits wavelike properties, with a wavelength in-
versely proportional to its momentum: the bigger the momentum/energy,
the smaller the associated wavelength. And as usual, the scale of the object’s
wavelike behavior is set by Planck’s constant h, which we know to be very
small.

   
l = h

p
.



What’s small to a human, however, is not necessarily small to an atom:
de Broglie’s relation tells us that the wavelength of an electron that has been
accelerated through 50 volts of electrical potential (i.e., with an energy of
50 eV; see discussion in this chapter titled “Einstein’s Relativity”) is about
2 angstroms, or about 2 � 10�10 meters. This, it turns out, is roughly the
spacing between the atoms of a crystal. It also turns out that the regular, uni-
form spacing of atoms in a crystal lattice are ideal for studying the effects of
interference—the phenomenon that is so uniquely characteristic of wave-
like behavior.

In 1927, the American physicist Clinton Davisson was studying the way
50 eV electrons bounce, or scatter, off a plug of pure nickel. A minor fail-
ure of his apparatus led to a contamination of the nickel sample, and so he
had to repurify it by heating the sample in an oven. Although he didn’t im-
mediately recognize it, the nickel sample became crystallized in the
process. When he again began studying the scattering of the 50 eV elec-
trons, he noticed a peculiar effect—the scattering was much weaker in gen-
eral, although for particular scattering directions, it was quite pronounced.

Davisson quickly realized that such behavior would be expected if the
nickel sample had crystallized and if the electrons were exhibiting wavelike
behavior—if the electron waves reflected from each of the individual, reg-
ularly spaced atoms in the crystal were interfering with one another to form
the pronounced pattern that was observed. This would only work if the
wavelength associated with the electrons’ wavelike behavior was roughly the
same as the spacing between the nickel atoms in the crystal lattice. This is
precisely the prediction of de Broglie’s hypothesis, so both de Broglie (1929)
and Davisson (1939) eventually found themselves in the company of the
Swedish king, receiving their respective Nobel prizes. One had predicted
and the other had shown that particles of matter—electrons—exhibit wave-
like properties.

So, waves (such as light) have particle-like properties, and matter parti-
cles (such as electrons) have wavelike properties. The concept of wave-
particle duality is, as de Broglie conjectured, universal. In general, any
corporal object has associated with it a wavelength, which can easily be cal-
culated using de Broglie’s hypothesis. For instance, I estimate the wave-
length of this book, traveling with the momentum required to propel it to-
ward the wastebasket in the corner of your room, to be about 10�35 meters.

This is a development with a notable practical application. Have you
ever seen an atom or a molecule through a conventional microscope? It’s

The Great Reawakening 35



DEEP DOWN THINGS36

impossible, even with the best microscope, because you can’t see any fea-
ture of the sample under study with a size smaller than the wavelength of
the wave you’re using to illuminate the sample. Visible light has a wave-
length of between 4 � 10�7 and 7 � 10�7 meters, while atoms and mole-
cules are about 10�10 meters across, which is too small to be seen with vis-
ible light. However, a relatively languid 50 eV electron has a wavelength of
about 2 � 10�10 meters. Increase the energy a little (recall that electron
beams in TV sets typically have an energy of a few thousand electron-volts),
develop a way to focus electron beams (say, with magnetic forces), and you
now have a hope of recording ultraprecise images. Thus, the field of elec-
tron microscopy was born.

But why stop there? What happens if, instead of a 1,000 eV electron, you
bombard a sample with, say, 100 million eV electrons from a particle ac-
celerator? The corresponding electron wavelength will be much smaller
(recall that wavelength is inversely proportional to momentum/energy); in
fact, it will be about 10�15 meters. Correspondingly, Robert Hofstadter’s ex-
periments at Stanford University in the late 1950s were the first to “see” that
the proton was not pointlike but had, in fact, a measurable radius of about
10�15 meters. Buoyed by this success (which was further bolstered by Hof-
stadter’s receipt of the 1961 Nobel Prize in Physics), a much larger accel-
erator was assembled—the Stanford Linear Accelerator Center (SLAC)—
on Stanford University land. The accelerator began operation with electron
energies of 10 billion eV (10 GeV) and corresponding electron wavelengths
of 10�17 meters. This allowed physicists to peer deeply inside the proton,
leading to the discovery of its internal constituents, known as quarks, in the
late 1960s.

Heisenberg’s Uncertainty Principle

Were there to be an award for the physicist who most reshaped the way we
think about the world around us, it might well go to the German scientist
Werner Heisenberg for his development of the uncertainty principle. The
statement that, at some level, the world is unknowable—not just as a prac-
tical matter but fundamentally so—struck a fatal blow to the notion of sci-
entific determinism that had taken root 250 years before due to the work of
Isaac Newton.

The uncertainty principle follows directly and necessarily from de Brog-
lie’s assertion that matter should possess wavelike properties. Consider an



object whose momentum/energy is known exactly, not just very precisely
but really, truly exactly. Then, according to de Broglie, its wavelike nature
(or, in the lingo of quantum mechanics, its wave function) should be rep-
resented by a wave of wavelength l � h/p. Again, l is the wavelength (in
meters, yards, or whatever), p is the object’s momentum (closely related to
its kinetic energy), and h is Planck’s constant.

A wave is not localized. There is no point in space to which you can point
and exclaim, “See. The wave is right there.” Recall the sailor bobbing 
up and down in the boat—the wave of wavelength l extended as far in front
and behind as the eye could see. The wave was characterized by its wave-
length, frequency, amplitude, and (essentially irrelevant) phase but not its
position because it had no definable position. Heisenberg reasoned that if
de Broglie is correct, a particle with a precisely known momentum p must
exhibit the properties of a wave with wavelength l � h/p, which is com-
pletely unlocalized: if the momentum of an object is exactly known, then ab-
solutely nothing can be known about its position.

The exact value in meters of the wavelength l is not material to the dis-
cussion. The point is simply that if the particle’s wavelike properties corre-
spond to a definite wavelength l, then the particle behaves like a pure wave,
which is completely unlocalized (at any given time, the undulations of a
pure wave extend infinitely far forward and backward in space), so nothing
whatsoever can be said about its position.

The above is not quite the Heisenberg uncertainty principle but is rather
just a special case of it, for what if the momentum is not known precisely
but is known to lie instead within some range? In other words, what if the
object’s momentum is known to some degree, but there’s some uncertainty
about what its momentum really is? The following paragraphs will address
this question, and with the help of figures 3.3 and 3.4, lead us to a formal
statement of the uncertainty principle.

Say you put together a slingshot that, when drawn back as far as it can go,
fires pebbles that have momentum between 0.9 and 1.1 kilogram-meters
per second (kg-m/s; the standard yardstick for measuring momentum). So,
your slingshot fires objects with momentum of about 1.00 kg-m/s, but for
any given object, you will be uncertain of the momentum by about 0.1 kg-
m/s. Now, in this case, de Broglie is not so incisive. He is not able to tell us
that the wavelike properties (wave function) of any given object from the
slingshot will be characterized by a wave of a single wavelength l � h/p. In-
stead, the de Broglie relation tells us that the wave function will be com-
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posed of a combination of waves, with wavelengths varying between h/0.9
and h/1.1 meters. If there’s a range of momenta p at play, then there must
be a corresponding range of wavelengths l at play.

To understand what’s meant by the expression “combination of different
waves,” think of two children on opposite sides of a pond making waves of
slightly different wavelengths by bobbing sticks up and down in the pond at
slightly different rates. From each stick, a wave will emanate outward; when
these waves meet, they will combine (really, interfere) to produce a more
complicated wave form.

Heisenberg knew that when you combine waves with only slightly dif-
fering wavelengths, something interesting happens: the combined wave be-
comes localized. Say that you add waves together, with wavelengths that dif-
fer, but lie in the narrow range between h/0.9 and h/1.1 meters. Even
though each individual wave is completely unlocalized, undulating infi-
nitely far backward and forward in space, the combination of the waves en-
joys a region where all the waves are peaking—adding together (interfering
constructively) to generate an even bigger wave form. This region of con-
structive interference is surrounded by a region where the peaks of some of
the waves are cancelled by the troughs of the other waves (destructive in-
terference); in these regions, the size of the combined wave form is zero.
But the object cannot exist in a region where its wave function is cancelled
out to zero, so the object represented by the combination of waves will not
be found in the region where the waves cancel each other out. The pres-
ence of the object is restricted to locales for which the combined wave func-
tion is nonzero: the object is localized.

The accompanying diagrams of figure 3.3 illustrate this point. Figure
3.3a shows an object whose momentum is known perfectly, so is repre-
sented by a single wave of wavelength h/1.00 meters; the wave undulates
smoothly throughout space and exists everywhere in space with equal prob-
ability. For figure 3.3b, the object is represented by the combination of two
waves with slightly different wavelengths: one with l � h/0.9 meters and the
other with l � h/1.1 meters; you can see regions where the combined un-
dulations of the two waves cancel each other out. Figure 3.3c shows the
combination of several waves with slightly differing wavelength between h/
0.9 and h/1.1 meters; localization is becoming evident. Finally, in figure
3.3d, the infinitude of waves of all possible wavelengths between h/0.9 and
h/1.1 meters are combined, representing the case of the slingshot: the mo-
mentum of the pebble could be anything between 0.9 and 1.1 kg-m/s. In
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this case, the localization is complete. You can see that there is a well-
defined region in which the particle exists, and that the probability of find-
ing the object quickly goes to zero as you look farther and farther away from
the region of localization.

Localization is a defining characteristic of material objects; it makes
sense to ask, does anyone know where my glasses are? since eyeglasses, as
objects, are localized, and it’s conceivable that some observant individual
might actually be able to tell you where they are. So if objects are to have
wavelike properties, then this is how we need to represent the wave func-
tion of objects—as the combination of an infinite number of waves with
wavelengths l � h/p corresponding to some range of momenta p. The ex-
tent of this range of momenta is just the extent to which you know the ob-
ject’s momentum—it’s the uncertainty on the object’s momentum. In prac-
tice, because Planck’s constant is so small, everyday objects will be well
localized even if the object appears to be completely at rest to a casual ob-
server. Even if very small, there’s always some amount of uncertainty in the
motion of everyday objects that allows them to be localized.

The essence of the uncertainty principle is as follows. Figure 3.3d rep-
resents the wavelike characteristics of the pebble just as it leaves the sling-
shot. While the pebble is indeed localized, it is so only within a certain re-
gion of space and not at a single point in space. For our pebble with
wavelengths between h/0.9 and h/1.1 meters, the pebble’s position at this
moment in time is not specified by a single, well-defined point in space but
rather by the small region of space defined by the extent of the hump in the
object’s wave function. The object is in there somewhere, but within those
bounds, the object’s position is uncertain, not merely as a practical matter
but fundamentally.

In other words, all you can say about the position of the pebble is that it
lies somewhere within the hump shown in figure 3.3d. If you measure the
pebble’s position by, say, bouncing light off it, you will indeed find it at some
well-defined point within the hump, but you cannot predict ahead of time
(before the measurement) just where inside the hump you will find the peb-
ble. The pebble’s position (before you disturb its wave function by trying to
measure it) is uncertain to that degree.

So, even with this complete localization, allowed by the fact that the peb-
ble’s wave function consists of the combination of an infinite number of
waves with wavelength between h/0.9 and h/1.1 meters, there’s still uncer-
tainty in the position (location) of the pebble. And now the critical point:



the property that determines the extent of the region of localization of the
pebble, and thus the uncertainty in the pebble’s location, is the magnitude
of the uncertainty in the pebble’s momentum. The less uncertain the mo-
mentum (the better the momentum is known), the larger the region of lo-
calization (the wider the hump in figure 3.3d) and the more uncertain the
position.

Figure 3.4 shows just this—the localization achieved when the degree
of uncertainty in the momentum is reduced. For this case, waves are com-
bined with a range of wavelengths between h/0.95 and h/1.05 meters, cor-
responding to the lesser range of momenta between 0.95 and 1.05 kg-m/s—
exactly half that of figure 3.3. The corresponding uncertainty in position in

Fig. 3.3. If an object’s wave function is represented by a single wave, the wave function
extends uniformly throughout space. The object is no more likely to be in one region of
the universe as it is in any other region. As we begin to add together waves with dif-
fering wavelengths (b and c), we see that there are regions of space in which the object
is more likely to be found than others. If we add together the infinite number of waves
corresponding to all wavelengths within a certain range of wavelengths about the orig-
inal wavelength of a, the object becomes completely localized. There is one region of
space in which the object is to be found, and the object will not be found anywhere else.



the pebble’s wave function (shown in fig. 3.4d), for this case of lesser mo-
mentum uncertainty, is double that of figure 3.3d.

The comparison of figures 3.3d and 3.4d evokes the essence of the un-
certainty principle. Since the uncertainty in the momentum grows when
the uncertainty in position shrinks and vice versa, their product—the result
of multiplying the two uncertainties together—might reasonably be ex-
pected to stay the same. This is the quantitative message of the uncertainty
principle. If we let Dp represent the uncertainty in the object’s momentum
(about 0.1 kg-m/s in the case of fig. 3.3, or 0.05 kg-m/s in the case of fig.
3.4) and Dx represent the uncertainty in its position (the widths of the hump
in fig. 3.3d or 3.4d), then Heisenberg’s arguments tell us that

Fig. 3.4. This figure is very similar to figure 3.3 except that the range of wavelengths we
add together to form the object’s wave function is halved. From d, we see that the 
effect of halving the range of wavelengths—of halving the uncertainty in wavelength 
or, by de Broglie’s relation, halving the uncertainty in momentum—is to double the
range of possible positions. In other words, lessening the uncertainty in momentum in-
creases the uncertainty in position. This is the essence of Heisenberg’s uncertainty prin-
ciple.



the product of the uncertainties of an object’s momentum and location 
is the constant h/4p, where p h 3.14159 is, as usual, the magical ratio be-
tween the circumference and diameter of a circle (note 3.7). In particular,
if Dp becomes zero (no uncertainty on the momentum, i.e., momentum
known exactly), then Dx must become infinite to compensate (if you mul-
tiply zero by anything less than infinity you get zero, which won’t satisfy the
above equation), and nothing at all is known about the position x. This is
the special case that we discussed in the beginning of this section.

The uncertainty principle is one of the striking revelations of quantum
mechanics, and it pervades the theory as a fundamental tenet that cannot
be violated. Any result of the full theory of quantum mechanics must be
demonstrably consistent with the uncertainty principle.

More interestingly, it is a revelation that seems to address questions of
deep philosophical import. With the advent of the uncertainty principle,
determinism, the notion that the laws of nature set forth an inextricable
course of events from which no deviation is possible, becomes indefensible.
According to the uncertainty principle, the exact course of events is funda-
mentally unknowable. There is always some uncertainty in the physical
properties of any given object; not even nature herself knows how this un-
certainty will resolve itself the next time the object makes its influence
known, say, by the interaction with another object by way of one of the four
forces. It’s not just a matter of building a better instrument for determining
these properties. The exact value is simply unknowable, even in principle.
Many have gone on to conjecture that Heisenberg’s uncertainty principle
is the very source of human free will, but this remains to be demonstrated.
Heisenberg’s principle is on such solid empirical footing that it is now ac-
cepted as one of the fundamental attributes of the natural world.

Another interesting and philosophically important notion that follows
from the uncertainty principle is the loss of distinction between the observer
and the observed. What is meant by this?

To say that an object whose momentum is known to be within a certain
range will have a corresponding uncertainty in its position is not to say that
the object’s position can never be determined with greater precision. Con-
sider an object whose momentum is known so precisely that the uncertainty
in its position is large, say, a full meter (again, according to the uncertainty

D Dp x
h=

4p
:
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principle, an object with a precisely known momentum will have a poorly
known position). You want to measure the position of this object more ac-
curately, so you place a chamber of some special gas in the path of the par-
ticle. During the course of the particle’s motion through the gas, it collides
with a gas molecule, causing the molecule to emit a flash of light. Now, at
the exact time that you observe the flash of light, you know that the object
is in the vicinity of that particular gas molecule. You now know the position
of the object to great precision, to about 10�10 meters, which is the size of
a gas molecule. However, the uncertainty principle cannot be violated, so
your knowledge of the momentum of the particle is now correspondingly
much worse.

The point is this: to observe the particle, it must interact with something
from the system of the observer (in our case, the observer’s system is the gas,
the apparatus that detects the light flash, the electronics that amplify the sig-
nal from the apparatus, and the human or computer that records the am-
plified signal). That interaction itself necessarily influences the object—al-
ters the wave function that governs the object’s physical properties—in such
a way that the uncertainty principle is never violated. One can never pre-
cisely and simultaneously determine both the position and momentum of
an object because in determining one, the process of observation always
changes the other to some new, and indeterminate, value. The physical sys-
tem of the observed object and the system of the observer become thus in-
tertwined in the process. If you want to make an observation of some phys-
ical system, you cannot just consider the properties of that system in
isolation; to really understand what’s going on, you have to consider the
properties of the observed system and the properties of the observing system,
and how they interact. The true system under consideration must always be
the combination of the system of the observed with that of the observer. In
the (thoroughly verified) theory of quantum mechanics, the distinction be-
tween the observer and the observed has to be discarded.

Physical quantities whose uncertainties are linked via the uncertainty
principle are known as conjugates. As we’ve just seen, position and mo-
mentum are conjugate, but there are also a number of other conjugate
quantities. Energy and time are conjugate; for example, the certainty to
which you can determine the mass-energy of an object is inversely related,
according to the uncertainty principle, to the amount of time you hold it in
your sights as you measure its mass-energy. Angular position and angular
momentum are also conjugate—the degree to which you can determine
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the angle through which an object has spun is inversely related to the de-
gree to which you know how fast the object is spinning. In all cases, the prod-
uct of the uncertainties of conjugate quantities that specify the disposition
of an object will be roughly equal to Planck’s constant, as it is for the con-
jugate quantities of position and momentum.

A Master Formula for Quantum Mechanics:
The Schrödinger Equation

So far, we’ve considered only free objects—objects that execute an unwa-
vering, linear motion through space, absent any influence of the forces of
nature (note 3.8). But nature is only interesting to the extent that things in-
fluence one another through these forces, so we need to understand how to
incorporate forces into our thinking about the wavelike nature of matter.
This was first accomplished in 1926 by a forty-year-old Austrian physicist at
the University of Berlin named Erwin Schrödinger, in the guise of a cele-
brated mathematical relation known as the Schrödinger equation.

Schrödinger did not find it most natural to introduce forces into the
newly emerging quantum theory in terms of their push and pull on the ob-
ject being described but rather in terms of the potential energy associated
with the force doing the pushing or pulling. Let’s take a moment to intro-
duce the notion of potential energy.

An object in motion has momentum and kinetic energy associated with
its motion. The faster the motion, the greater the energy/momentum asso-
ciated with that motion.

Consider a car out of gear (in neutral) coasting up a hill, and ignore the
friction in the wheel bearings and between the tires and road. As the car
climbs the hill, it loses speed. Its motion slows, so it loses kinetic energy. But
remember that energy is a conserved quantity. The car must have as much
energy at the bottom of the hill, when it was moving fast, as it does at the
point on the hill when it stops and begins rolling backward down the hill
again.

So what happens to the energy that was in the form of kinetic energy (en-
ergy of motion) when the car was at the bottom of the hill? The answer is
that it gets converted to gravitational potential energy as the car coasts up-
hill, slowing as it rises against the pull of gravity. At exactly the point at which
the car reaches its maximum height, just before it begins to roll back down
the hill, its speed is zero, and all of the car’s kinetic energy has been con-
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verted to gravitational potential energy. The amount of potential energy
possessed by the car at that point is exactly equal to the kinetic energy the
car possessed before it started coasting up the hill.

The reason this gravitational energy is called “potential” is that it has the
potential to do work on the car, thereby restoring the car’s original kinetic
energy. When the car reaches the bottom of the hill after coasting back
down, it has the same speed as it did just before it started up the hill (as long
as there’s no friction). The gravitational potential energy fully realizes its po-
tential to convert itself to kinetic energy of motion as the car coasts back-
ward down to the bottom of the hill.

If we had slipped blocks behind the wheels of the car just as it reached
its maximum height on the hill, we would have locked the potential energy
in place. But the energy would still be there, a very concrete aspect of the
car’s physical state, just waiting for someone to remove the blocks so that it
could exercise its potential to expend itself in the task of creating kinetic en-
ergy. Potential energy is a form of energy that’s stored in an object by virtue
of the object being under the influence of some force.

Potential energy depends on the location of the car. In the language of
mathematics, we would say that the potential energy is a function of the car’s
location. In this case, the location of the car at any point in its coast is just
the distance x along the road that the car has traveled from the bottom of
the hill. At the bottom of the hill, the potential energy is zero—no kinetic
energy has yet been transmuted to potential energy. As the car rolls up the
hill, at each successively higher point the speed, and thus the kinetic en-
ergy, is less. This is precisely because the value of the gravitational poten-
tial energy is correspondingly greater at each successively higher point—the
higher the car, the more potential there is for gravity to do work on the car
as it eventually rolls back down to the bottom of the hill. Because overall
(kinetic plus potential) energy is conserved, then whatever the car loses in
kinetic energy it must gain in potential energy.

If we denote the value of the gravitational potential energy by V, then we
would write V(x) to represent this potential energy function. The expression
V(x) is nothing more than mathematical shorthand for the statement “the
potential energy V has a well-defined value at any given location x, which
is just the value V(x) of the function at the point x.”

In our example, the potential energy is gravitational potential energy and
the object is the car. However, in general, the potential energy could be due
to any of the four forces and the object anything that bears some amount of
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the charge appropriate for that force (recall that mass is the charge associ-
ated with the gravitational force).

What follows is the full mathematical expression of the Schrödinger
equation as you would see it in a physics textbook. To be candid, this is a re-
stricted form of the Schrödinger equation, appropriate for one-dimensional
motion only—the car is restricted to move forward and backward along the
road and cannot veer off the road into the second dimension or rise toward
the heavens into the third dimension (note 3.9). Nevertheless, what follows
is a useful relation, and one that physicists have spent much time working
with over the years:

As those who have mastered calculus may recall, this is a differential
equation, involving the operation of differentiation in one or more of its
terms (in our case, represented by the derivative operator d2/dx2 in the first
term). Don’t worry. You need not understand how to solve this equation to
continue on from this point. However, a few words of explanation are in or-
der.

In everyday algebra, an equation represents a precise quantitative rela-
tionship between an unknown quantity and one or more known quantities,
allowing the value of the unknown quantity to be determined by the appli-
cation of mathematical rules. For a differential equation, the unknown is
not a single quantity but rather an entire function. For the case of the
Schrödinger equation, this unknown function, represented by the symbol
y (x), is the object’s wave function.

In a nutshell, the Schrödinger equation is a prescription for determining
the wave function y (x) of an object. It is a complete prescription, contain-
ing everything that can possibly be of use to establish the properties of an
object of mass m and energy E under the influence of some force whose po-
tential energy function is V(x). If you think of this differential equation as a
game that physicists play, then the way they win the game is by finding all
possible wave functions y (x) that solve this equation. It’s the function V(x)
that specifies the physical situation—an electron under the electromagnetic
influence of a proton in a hydrogen atom has a certain V(x); a car coasting
up and down the hills of a country road has a different V(x) and so on.

What, then, does the wave function y (x) represent? Again, the Schrö-

   
− + =h

m

d

dx
x V x x E x

2

2

2

28p
y y y( ) ( ) ( ) ( ).

DEEP DOWN THINGS46



dinger equation represents all we need to know to determine the physical
condition of an object, while incorporating all the tenets and constraints of
quantum mechanics. The wave function y (x), derived from the Schrö-
dinger equation through its rules of solution, thus represents all that can pos-
sibly be known about the physical state of the object. It is an economical
encoding of the full gamut of physical information that would be accessi-
ble to anyone attempting to measure the properties of the object.

Although y (x) has no physical meaning, any physical property of the ob-
ject can be determined once y (x) is known. If you want to know the prob-
ability of finding the object at any point in space, you simply perform a spe-
cific procedure on y (x)—in this case, just squaring (multiplying it by itself
once) the value of y (x) at that particular point in space. If you want to know
the object’s kinetic energy, you perform a different procedure (in this case,
involving taking some derivatives, that is, performing a little calculus). If
you want to know the object’s speed and direction of motion (to the accu-
racy permitted by the uncertainty principle), there’s a procedure for finding
that and so forth.

Now, if the particle is perfectly free (not under the influence of any
force), then there is no potential energy V(x), or V(x) � 0, so you can for-
get about that term in the Schrödinger equation. It turns out that, in this
case, the solutions y (x) to the Schrödinger equation are just the pure waves
with which we began our discussion of quantum mechanics, with a wave-
length given by l � h/p, the original conjecture put forth by de Broglie. So,
the Schrödinger equation does just what we wanted it to—it allows us to
generalize de Broglie’s hypothesis to the case where the particle is not free
but is rather waving around quantum mechanically under the influence of
a force.

Since this theory is called quantum mechanics (although, as mentioned
previously, it may well be better described as wave mechanics), we’d better
discuss where the notion of quantization fits into the picture.

When we do put in the forces using the term in the Schrödinger equa-
tion containing the potential energy function V(x), we find that, for our
given V(x), solutions to the Schrödinger equation exist only for certain “al-
lowable” values of the total energy E. This general property is true for any
potential energy function V(x) (note 3.10). The particular allowable values
of E depend on the particular form of the function V(x), but the fact that
only select values of E work is a general property of solutions y (x) of the
Schrödinger equation.
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Thus, the Schrödinger theory is consistent with observed quantum be-
havior, such as the fact that only certain colors (energies) of light can be
emitted by a given atom—those energies correspond to the change of the
quantum state of the atom between two of its allowable energies. The en-
ergy of the emitted light quantum, or photon, is just the difference between
the energies of states before and after the change (energy conservation
again!). Since only certain energies are allowable for the states, then only
certain energies (colors) are allowable for the emitted light.

By the way, since each type of atom has its own unique potential energy
function V(x), the emitted colors are characteristic of the type of atom that’s
emitting (or absorbing) the light. This, for example, is how astrophysicists
can determine the composition of stars by analyzing their light as it reaches
earth.

Finally, notice that the Schrödinger equation consists of three terms: two
to the left of the equals sign (separated by the “�” sign) and one to the right
of the equals sign. The first term is the mathematical representation of the
procedure that, once you know y (x), tells you how to determine the kinetic
energy possessed by the particle at any location x. The second term, to the
right of the “�” sign, is the potential energy times the value of the wave
function at the location x. The third term, to the right of the “�” sign, is the
total energy times the wave function y (x).

So, if we look at the factors that multiply the wave function in the
Schrödinger equation, we find that to the left of the equals sign we have the
sum of the kinetic plus potential energies at the point x, while to the right
of the equals sign, we have the total energy. Thus, the Schrödinger equa-
tion is just the wave-mechanical statement that the sum of the kinetic and
potential energies at any given point is just equal to the total energy—the
Schrödinger equation is simply the quantum-mechanical version of the no-
tion of energy conservation. From this quantum-mechanical formulation of
energy conservation arises the full set of constraints that prescribe the pos-
sible quantum mechanical wave functions for the object. This again illus-
trates the central importance of the idea of energy conservation (note 3.11).

It is a testimony to the essential role played by quantum mechanics that
its development spawned a number of entirely new fields in physics, in-
cluding atomic and molecular physics, the physics of solids (which includes
the physics of semiconductors and microelectronic devices), and particle
physics. It was with the development of these fields that the phenomenon
of specialization arose, and scientists who contributed broadly across several
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fields of physics became rarer (but not extinct; the late Italian American
physicist Enrico Fermi being a particularly notable exception).

Beyond this point, however, our discussion must reflect this trend toward
specialization, so we’ll need to leave the exploration of these other rich
fields for another time. We can do this without regret because what lies
ahead on our chosen path is certainly worth the journey. Indeed, our next
destination, quantum field theory, is a further development of basic quan-
tum theory, considered by some to be as profound a leap forward in our un-
derstanding of the fundamental workings of nature as the original quantum
theory itself.
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4

The Marriage of Relativity
& Quantum Theory

Relativistic Quantum Field Theory

In 1927, the field of physics was in an interesting state. Based on the bold
hypothesis of Louis-Victor de Broglie, Erwin Schrödinger and Werner
Heisenberg had put forward a new theory of the behavior of matter that fun-
damentally reshaped the way in which physicists view the natural world. As
the only theory providing a description of the behavior of matter on atomic
scales, quantum mechanics seemed destined to become a cornerstone of
modern physical science. At the same time, however, the physics commu-
nity was in no position to be smug about its accomplishments, for the quan-
tum mechanics of Schrödinger and Heisenberg was inconsistent with the
other great success of the modern physics revolution—Einstein’s relativity.

Schrödinger and Heisenberg were able to explain why the electron in a
hydrogen atom remains in perpetual orbit rather than spiraling quickly in
to fix itself inertly against the proton. Their theory also provided a precise
accounting for the observed energy levels, or allowable states, of the hydro-
gen atom. Yet, for their nonrelativistic quantum theory, space and time
played distinct roles, quite at odds with Einstein’s notion of a single, inte-
grated underlying fabric of space-time. Despite the great achievements of
Schrödinger and Heisenberg, it was clear that much work remained to be
done.

This challenge ignited the imaginations of a number of brilliant young



physicists, who found themselves in close contact under the guidance of
Neils Bohr and his institute for physics in Copenhagen. Barely a year passed
before a reformulation of quantum mechanics consistent with the tenets of
relativity was put forward by the Englishman Paul Dirac. The ensuing de-
velopment of relativistic quantum mechanics and the quantum theory of
fields took some time, but with the work of Richard Feynman and others,
relativistic quantum field theory reached its current state of perfection in
the late 1940s.

Force Fields

To a physicist, a field is some aspect of the properties of a region of space
that can be quantitatively assessed at every point in that region. The room
in which you sit has a temperature that varies from here to there; the set of
numbers that represent the readings of a thermometer at each point in the
room is referred to as the “temperature field” of the room.

An electrically charged object at some point in the room will attract or
repel a second electrically charged object placed in the room. The strength
and direction of that attractive or repulsive force depends on where in the
room the second object is placed. The electric force field or, more simply,
the electric field of the first object is just the set of numbers that represent
the strength and direction of the force that the second object would expe-
rience at any given point in the room.

Isaac Newton’s theory of gravitation and James Clerk Maxwell’s theory
of electromagnetism are classical, or non-quantum-mechanical theories of
the gravitational and electromagnetic fields. For classical field theories, the
field associated with the force in question can be represented by a function
of space and time (note 4.1). Mass (gravitational charge) generates a gravi-
tational field in a prescribed way, electric charge generates electromagnetic
fields in a somewhat different but equally definitive way, and so forth.

Although any given charged object is localized, existing at a well-defined
point in space, the field generated by the charge (such as that of the elec-
trically charged object we placed in the room just above) extends through-
out space. Thus, in this classical picture, fields are responsible for a phe-
nomenon of action-at-a-distance, the ability of an object carrying the charge
associated with a certain force to influence another object that also carries
the appropriate type of charge but is not in direct contact with the first ob-
ject. The earth orbits the sun, not because the sun reaches out a fiery arm
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and turns the earth about it but because the considerable mass of the sun
generates a gravitational field throughout the solar system, through which
field the massive earth moves, and whose resulting continual tug keeps the
earth from flying off into interstellar space.

Knowing the field, it’s easy to work out the strength of the force that a
charged object would feel if placed in the field without knowing anything
about the charge or charges that generated the field in the first place. The
force that the object would feel is simply given by the value of the field at
that point in space and time, multiplied by the magnitude of charge pos-
sessed by the object.

For those who like math, the following example illustrates this point. If
an object possessing an electric charge of magnitude Q is placed at rest a
distance r from a stationary electric charge of magnitude q, the expression
for the electric force exerted on the charge Q by the charge q is quite sim-
ple, and was determined by a series of careful experiments performed by the
French physicist Charles Coulomb in 1785. The electrostatic, or “Coulom-
bic” force, FQ exerted on the object carrying charge Q obeys the inverse
square law

doubling the distance r between the two charges reduces the strength of the
force by (1⁄2)2 � 1⁄4 and so forth. The electrostatic force constant k is a num-
ber, determined by experiment, that expresses the overall strength of the
electrical force between two charged objects; k is a fundamental constant
that is completely situation independent; no matter what the charged ob-
jects are, or what values their charges and separation take, k always has the
same value (note 4.2).

To introduce the electric field, we rewrite this in terms of the equivalent
expression

Then, by fiat, we declare the magnitude E of the electric field generated by
the charge of magnitude q, at a distance r from that charge, to be the sec-
ond of these two factors:
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With this definition, we see that the force felt by the object of charge Q
is given by

FQ � Q � E; (3)

it’s simply, as stated above, the product of the strength E of the electric field
at the object’s location, times the magnitude of the object’s charge. Know-
ing the electric field E at every point in space, we know the force. We don’t
have to worry about what generated that field—a single stationary charge q,
as in this example, or a multitude of q’s placed at different positions about
the object with charge Q. The electric force on the charge Q will always be
related to the resulting electric field according to the simple expression (3).

But why bother. Isn’t this just a vacuous mathematical manipulation?
Who cares whether we express the force between two charged objects di-
rectly using expression (1) or break it up into two steps and make use of ex-
pressions (2) and (3)? In fact, the latter seems less economical, arbitrarily
requiring the introduction of an unnecessary physical entity known as elec-
tric field.

The answer lies within Maxwell’s fully unified theory of electromagnet-
ism. In this theory, time-varying electric and magnetic fields can support
each other, leading to electromagnetic-field disturbances that propagate
endlessly through free space, in the complete absence of any nearby electri-
cally charged objects. So, the fields do seem to possess an independent phys-
ical meaning. Furthermore, Maxwell’s theory not only predicts the possi-
bility of such electromagnetic field disturbances, it also relates the speed at
which this disturbance travels through space to the electrical force constant
k and the corresponding magnetic force constant m0 (note 4.3). Plugging in
the numbers for k and m0, Maxwell found that such a disturbance would
propagate through space with a speed of about 299,800,000 meters per sec-
ond, or about 186,000 miles per hour—the speed of light.

Thus, Maxwell succeeded in explaining the origin of light, nature’s pre-
mier mode of transporting energy and information between physical (and
biological) systems. Without the introduction of the notion of a field, this
work would not have been possible.

As we reshape our notion of force fields from the point of view of quan-
tum field theory, we should keep one thing in mind. Quantum field theory
is not really, in and of itself, a single theory of nature. Instead, it is some-
thing of even greater stature. Quantum field theory is really a framework on
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which all current theories of the fundamental interactions of matter are
based. These theories, which bear such names as the electroweak theory,
quantum electrodynamics, quantum chromodynamics, supersymmetry,
quantum gravity, and the like, whether supported by experimental evidence
or merely conjectural, are all different deployments of the principles of
quantum field theory and its generalizations. We’ll soon see why it is that
physicists have so much confidence in this field-theory framework.

The Quantization of Fields

For conventional quantum mechanics, objects move in the presence of
forces whose field strengths vary smoothly from point to point in space.
These fields are incorporated into the Schrödinger equation (the quantum
mechanical wave equation that the all-encompassing wave function must
satisfy) in terms of their associated potential function V(x). The potential
function represents the amount of work the object must do against the force
in moving to the position x, for any position x. The requirement that the
wave function satisfy the Schrödinger equation associated with the particu-
lar potential function V(x) leads to the quantization of the motion of the ob-
ject; when probed, the object will be found in one of a finite number of pos-
sible states, each of which corresponds to a specific value of the object’s total
energy.

Quantum field theory takes this notion one step further, asserting that
the fields themselves are quantized. This view of the nature of fields is rad-
ically different from that of conventional quantum mechanics.

From Maxwell’s classical perspective, light is a self-supporting distur-
bance in the electromagnetic field that carries energy from the original
source of the disturbance (such as a wiggling electric charge in a faraway
star) to the observer. But according to the quantum-mechanical notion of
wave-particle duality, in some contexts, a ray of light behaves as if it were
composed of an immense number of tiny particles, known as photons.
These tiny, indivisible packets of light are prime candidates for the quanta
of the electromagnetic field. The electromagnetic field, rather than being
a quality of space that varies smoothly from point to point, instead becomes
something entirely different: an assemblage of photons, each with a specific
energy given by

E � hf,
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where h is Planck’s constant and f is the frequency (color) of the photon.
Since photons, as particles of light, travel at the speed of light, any attempt
to develop a quantum-mechanical description of their behavior must be
consistent with Einstein’s relativity. Since the Schrödinger equation is not,
we will need to introduce at least one new quantum-mechanical wave equa-
tion in this chapter.

Particle Exchange: A Fresh Look at the Nature of Forces

If the fields are quantized into discrete bundles that carry energy and be-
have like particles, how do we understand the mechanism by which they
exert their characteristic forces? To answer this, let’s strap on a pair of skates
and head down to the local rink.

Picture two ice skaters facing each other, one of whom holds a large ball
in her hands. As she throws the ball toward the other skater, she recoils
against the action: as the ball flies away, she begins to slide backward. The
harder she throws the ball, the quicker she recoils, but once the ball is
thrown, her speed is set, and it doesn’t change again.

In catching the ball, the second skater absorbs its momentum and en-
ergy, and goes sliding back in the other direction. The speed at which he re-
coils after catching the ball again depends on how hard the ball is thrown,
but once the ball is caught, his speed is set too, and it doesn’t change again.

So, the result of the exchange of the ball is simply that both skaters slide
off in opposite directions, just as if they had exerted some sort of force on each
other. From the point of view of quantum field theory, this is exactly how
forces are conveyed. Replace the two skaters with two electrons, and the ball
with a photon. Seen in this way, the repellent force between the two elec-
trons is the result of an exchange of one or more photons—the quantum of
the electromagnetic field—between the two electrons.

This point of view seems completely at odds with the action-at-a-distance
principle of classical field theories. However, once you know how to make
use of it, you can show that for two charged objects sitting at rest quantum
field theory predicts that the force (and field) will have just the properties
that one would expect from the classical approach, as if they were indeed
influencing one another according to action-at-a-distance. So quantum
field theory doesn’t invalidate the classical theory of fields; it merely substi-
tutes a more refined notion of how those fields are generated. Ultimately,
this allows for the extension of the force-field interpretation of the interac-
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tions of matter into regimes for which the classical approach is inade-
quate—regimes for which quantum mechanics and relativity must be taken
into account.

Where do the photons come from that are exchanged between the two
electrons as they repel each other? They come from nowhere. They are cre-
ated (thrown) and absorbed or annihilated (caught) for the sole purpose of
transmitting the force. Before and after their brief passage between the elec-
trons, they do not exist.

But this is fine because according to the tenets of relativity, it is not true
that matter can neither be created nor destroyed. Instead, what is true is that
energy can neither be created nor destroyed (as long as mass is properly ac-
counted for as energy according to the expression E � mc2); energy is con-
served. If at some instant in time there are just two objects (two electrons)
and at a slightly later instant there are three objects (two electrons plus one
photon), then everything is fine, as long as the total energy of the system is
unchanged.

Instead of having the two electrons repel each other at rest, what if you
throw them at each other? If you work out the energy balance, making sure
that energy is conserved at every step of the way as the electrons repel each
other, you find that some of the exchanged photon’s energy will be ac-
counted for as mass. The exact amount of mass required of the photon de-
pends on how hard the electrons are thrown at each other and how close
they come before they repel, but in this case, the photon always has to have
some amount of mass.

But photons don’t really weigh anything (how much does a light beam
weigh?), so how could this particle-exchange-force idea possibly be right?
We are saved by Heisenberg’s uncertainty principle. The uncertainty (DE)
in the energy of an object is related to its lifetime (Dt) according to

with h, as usual, as Planck’s constant.
The photon that is exchanged lives for only a short time Dt (while it flies

at the speed of light between the two electrons). As a result, there is a sub-
stantial uncertainty in its energy, and, because mass and energy are closely
related, its mass. Thus, in the odd world of relativistic quantum mechanics,
a given particle, known experimentally to have certain mass (e.g., zero for
the photon), can have an entirely different mass if it lives only for a brief pe-
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riod as it is exchanged between two interacting objects. Technically, we say
that such a short-lived particle, required by energy conservation to have a
mass different than its known value, is off mass-shell (note 4.4). Such parti-
cles are also referred to as virtual particles.

The Four Forces Again

From the point of view of quantum field theory, the electromagnetic force
is a consequence of the exchange of virtual photons—the quanta of the elec-
tromagnetic field—between electrically charged objects. It’s easy to extend
this notion to the description of the other three forces. Each force is gener-
ated by the exchange of the quantum of the associated force field between
objects that carry the charge appropriate for that force (electric charge for
the electromagnetic force, mass for the gravitational force, color charge for
the strong nuclear force, weak isospin for the weak nuclear force).

To describe any given force, we need to state what the associated force-
field quanta are and describe their properties (e.g., mass, charge, and “spin,”
the last of which will be described below). Developing a quantum field the-
ory for a given force requires the identification and classification of the field
quanta that get exchanged when the force is at play.

In the case of the electromagnetic force, there is a single field quantum
(the photon), but in general, there need not be just one. For example, the
weak nuclear force has associated with it not one but three separate field
quanta. Two of these, the “W bosons,” are like each other in every way, ex-
cept they have opposite electric charge; the third, the “Z0 boson” (or sim-
ply Z boson) is heavier and electrically neutral. One can ask why it is that
two of the three quanta of the weak nuclear force carry the charge associ-
ated with the electromagnetic force. For now, we’ll say that this is merely
one of the properties of the weak force-field quanta that make the weak force
what it is and leave it at that. In the bigger picture, this suggests that the elec-
tromagnetic and weak nuclear forces are intimately related to one another.

In reality, there’s a bit more to the specification of the quantum field the-
ory associated with a given force than the identification and description of
its associated field quanta; there’s another ingredient that needs to be in-
cluded. This ingredient is the nature of the “coupling” between the field
quanta and the charged objects that toss these quanta back and forth—the
details governing the process of the creation of a given field quantum by the
tossing object and the absorption of the quantum by the receiving object.
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One aspect of this coupling is its overall strength—the stronger the cou-
pling, the more quanta are exchanged in a given interaction, or the greater
the likelihood that quanta will be exchanged at all (for our skaters, a stronger
force would correspond to a greater likelihood, in any given instant, that 
a ball would be exchanged between them). The strength of a force’s cou-
pling to an object is related to the magnitude of the associated charge car-
ried by the object. For example, the more mass (gravitational charge) car-
ried by an object, the more gravitational field quanta it will toss out or
absorb every second and the greater the resulting pull of gravity on the ob-
ject will be.

A second aspect of the description of this coupling between a field quan-
tum and appropriately charged objects is referred to as its space-time prop-
erty. The weak nuclear force is particularly interesting because of its ten-
dency to irreverently violate basic symmetry principles, such as the
equitable treatment of matter and antimatter. It is the space-time property
of the coupling that determines, among other things, whether this (and
other) symmetry principles are respected or violated and, if so, to what ex-
tent.

In practice, this is not as much of a complication as it may appear be-
cause there are only a handful of different space-time properties consistent
with the tenets of Einstein’s relativity that are available to the coupling be-
tween field quanta and charged objects. In addition, once the field quan-
tum is identified, its characteristics (specifically, its spin) restrict the possi-
ble space-time properties of the coupling even further. So, once the field
quanta are identified and their properties determined, it’s usually fairly clear
what the appropriate space-time property of the coupling must be, and then
the theory is essentially complete.

The development of quantum field theory was a great leap forward in
our understanding of nature. It provides a description of the behavior of
forces with phenomenal quantitative power, while at the same time sim-
plifying and extending our description of those forces.

Maxwell’s classical theory of electromagnetism, triumph that it was, is
stated in terms of four rather intimidating interrelated (differential) equa-
tions, the development of which spanned a century of painstaking experi-
mentation and brilliant theoretical strides. With quantum field theory, one
need only identify and describe the electromagnetic field quantum (the
photon) and its straightforward coupling to electrically charged objects, and
the job is done. Moreover, the resulting quantum field theory of electro-
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magnetism is more broadly applicable than the classical theory, reproduc-
ing the results of the classical theory for the everyday applications that drove
the development of classical electromagnetism, while providing the appro-
priate modification of that description in the case that high energies (rela-
tivity) or short distances (quantum mechanics) are at play. Even more, the
particular properties of the strong and weak nuclear forces (especially the
fact that these forces are short ranged, operating only over nuclear scales of
10�15 meters or less) make it impossible to deduce the corresponding
Maxwell-like classical field equations for these interactions. Their descrip-
tion is only possible within the framework of quantum field theory.

Feynman Diagrams

One of the primary proponents of the development of quantum field the-
ory and its use in the description of the electromagnetic force was the Amer-
ican physicist Richard Feynman (note 4.5). Feynman’s contributions play a
central role in the formal, quantitative structure of quantum field theory,
most of which lies beyond the scope of this book. However, one of these
contributions, the representation of quantum field theory processes in terms
of “Feynman diagrams,” provides a straightforward way to visualize and de-
scribe the possible interactions between objects subject to the influence of
a given force. Feynman diagrams will be of great use to us throughout the
remainder of this book.

To understand the meaning of a given Feynman diagram at the level ap-
propriate for our discussion, there is one mathematical hurdle to overcome:
the description of the motion of a particle in terms of a graph of position
versus time. Such a graph is known as a space-time plot, or space-time dia-
gram.

Take a look at figure 4.1, the coordinate axes of a graph with the hori-
zontal (x) axis representing the position of the object and the vertical (t) axis
representing the time at which the object has the given position x in space.
By convention, distance increases from left to right, and time increases
(elapses) from bottom to top, as you might expect. If you like, you can think
of the x-axis as a meterstick (or yardstick) with numbers increasing to the
right, while the t-axis represents the readings on a ticking stopwatch.

Figure 4.2 shows how an object at rest would be represented on such a
graph. If it’s at rest, with a speed of zero, then it’s not going anywhere. Its po-
sition, represented by its location along the x-axis, is fixed in time. You might
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Fig. 4.1. For the axes of the position versus time (space-time) plot, distance x
increases to the right, and time t increases toward the top of the page.

Fig. 4.2. For an object at rest, the position x is fixed, so only the time changes.
Note that the arrows point from lesser to greater times: the particle is moving
forward in time, as you would expect!



expect such a particle to be represented by a dot on this graph, but re-
member, time waits for nobody or, for no object, so for this particle at rest,
time marches inexorably forward. Even though this particle is happily en-
joying its repose, going nowhere in space (i.e., possessing an unchanging
position along the space, or x-axis), it is traveling through time, so it is rep-
resented by a line parallel to the t-axis—a line that has associated with it a
constant value of the spatial position x but an ever-increasing value of the
associated time t. Furthermore, this passage through time has a well-defined
sense—physical objects, we know from experience, must always travel for-
ward in time. This sense of elapsing time is represented by the arrow, which
points from lesser to greater time.

Now, take a glance at figure 4.3a. The dotted lines show us that when
the particle is at the (space-time) point A, it has time T1 and position X1. At
some later time T2 (remember that time elapses from bottom to top), the
particle is at the space-time point B and has a greater reading, X2, for its spa-
tial position; as time elapses, the particle moves toward larger and larger
readings on the meterstick. Thus, this graph represents a particle moving
through space, from left to right, with some speed. The exact value of that
speed, in meters per second, is not important for us to specify. The arrow
on the line again reminds us that the particle is moving forward through
time. Similarly, the line in figure 4.3b represents a particle moving with
some speed or other, but in this case, it is going in the opposite direction,
from right to left.
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Now we are ready to draw our first Feynman diagram. Since these dia-
grams are Feynman’s way of depicting the interaction of two objects by way
of a given force, to be definite, we’ll pick the electromagnetic force, and for
the objects, we’ll pick two electrons, which carry the appropriate charge
(electric charge) for influencing each other by way of the electromagnetic
force. Since this is supposed to be a Feynman diagram, and we know how
much Feynman loved his quantum field theory, this diagram had best rep-
resent the conveyance of the electromagnetic force from the point of view
of field theory.

Take a look at figure 4.4a. Using the interpretive skills developed in the
last few paragraphs, what we see represented there is the following: At early
times (toward the bottom of the plot), two electrons approach each other,
one from the left moving toward the right, and the other from the right mov-
ing toward the left. At point A, the electron on the left emits (tosses out) a
photon (labeled g), the quantum of the electromagnetic field. This photon
carries energy and momentum away from the electron that emits it, caus-
ing that electron to recoil and to move back toward the left. The photon
moves to the right until it is absorbed by the second electron at point B, at
which point the second electron recoils to the right. This process of photon
exchange occurs over a very short distance, typically, the length of the pho-
ton’s path will have atomic dimension (10�10 meters) or less, so the details
of the photon exchange process are lost to the observer. What the observer
would see is two electrons, originally moving toward each other, repelling
each other and scattering back in the directions they each came from. What
this diagram represents is one way, in fact, the simplest way, that two elec-
trons can influence each other through the electromagnetic force from the
point of view of quantum field theory.

Figure 4.4b is similar to 4.4a except, in this case, the photon is emitted
by the right moving electron at point B, and absorbed by the left-moving
electron at point A. Again, we have to step back and ask what the observer
would see: two electrons, originally moving toward each other, repelling
each other and scattering back in the directions they came from. In other
words, exactly what the observer would see in figure 4.4a. The processes are
identical in the sense that there’s no way for the observer to tell whether
process 4.4a or 4.4b caused the electrons to scatter away from each other.
To make that distinction, the observer would have to cut into the diagram
and detect the photon, but then the observer’s apparatus would absorb the
photon, and it wouldn’t make it over to the other electron to play out the
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transmission of the force. The process we were interested in studying would
be kept from happening.

Since we do want the two electrons to scatter, we cannot disturb the scat-
tering process to observe the photon and determine whether the electron
on the left or the electron on the right threw out the virtual photon. So,
there’s no point in distinguishing between the two possibilities. The scat-
tering process is the combination of these two different indistinguishable
and identical pieces (fig. 4.4a and 4.4b). Thus, we might as well represent
the process as shown in figure 4.4c, which we know will always really mean
the combination of figure 4.4a and 4.4b. Figure 4.4c is the true Feynman
diagram for this process.

Our Feynman diagram only represents motion in one dimension. We
know, however, that things, in general and electrons, in particular, move
through three-dimensional space, not just back and forth on a line. Even if
the electrons are really approaching each other from opposite ends of a line
segment, after they influence (scatter from) each other, they will usually be
found going off in some completely different direction, which requires the
other two dimensions of space to describe. So, the Feynman diagram (fig.
4.4c), you would say, cannot really represent, in full generality, the process
of the scattering of two electrons through the exchange of a single photon.

Fig. 4.4. Two separate but indistinguishable ways in which two electrons can influence
each other through the electromagnetic interaction (a and b). The Feynman diagram for
these processes is shown in c, which represents both the possibilities of a and b. In other
words, a graduate student charged with calculating the probability that the process rep-
resented by the Feynman diagram c will take place must add together the probabilities
of processes a and b.



This is not the case. No matter how many dimensions you need to de-
scribe the motion of the electrons before and after the scatter, it’s still fun-
damentally the same process—two electrons influencing each other through
the exchange of a single photon. The purpose of Feynman diagrams is to
categorize and describe the different possible types of interactions between
a given set of interacting particles through a given force and not to repre-
sent the exact motion (speed and direction) of the particles after the inter-
action. After all, this is quantum mechanics, and the uncertainty principle
guarantees that the result cannot be the same every time the scattering is
performed. What characterizes the type of interaction taking place is sim-
ply the list of particles taking part in the interaction (two electrons and a
photon in our case) and the pattern of interconnection of these particles in
the Feynman diagram (the photon connecting the two electron trajecto-
ries). Mathematicians would like us to say that the geometry of the diagram
doesn’t matter, just the topology.

Feynman diagrams are so useful because they contain all the informa-
tion that one can possibly know about the process that is represented (here,
the electromagnetic interaction between two electrons conveyed, or medi-
ated, by the exchange of a single photon). A person who knows quantum
field theory can look at the Feynman diagram associated with a given
process and with enough paper and pencil lead (or pen ink if they’re really
experienced) turn this diagram into an explicit, quantitative calculation of
everything that can possibly be predicted about the interaction.

This calculation will reveal two things. The first, known as the total cross
section, is the probability that the two particles moving toward each other
will actually exchange the photon and interact rather than just pass by each
other unheeded. The second, known as the differential cross section, is just
the relative probability of any given final result of the scatter, assuming 
that the scatter really did occur. Choose the energy and direction you would
like the particles to have after the interaction has taken place. The differ-
ential cross section provides the probability that your chosen energy-direc-
tion combination will be achieved, relative to the probability of any other
possible energy-direction combination.

Think of the popular boardwalk game in which you pay a few dollars for
a chance to throw balls at a target that, when hit, will cause a particularly
annoying individual to fall into a vat of cold water. The total cross section
for this process is related to the probability that any given throw will dunk
this fellow. The differential cross section is related to the probability that,
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given that the target has been hit and this grating fiend is going to take a
drink, the ball you threw will bounce off the target with a given speed and
direction—such as briskly back into your face, providing the irrepressible
cad with even more ammunition for his taunts once he climbs back out of
the tank.

What more could you ask to know about a process like this in which two
electrons influence each other for an exceedingly brief period and then go
on their scattered ways as if they had never met each other (note 4.6)? The
description in terms of the total and differential cross sections is complete—
it gives us all the possible a priori (before-the-fact) predictive power admit-
ted by the probabilistic nature of quantum mechanics.

Vertices and the Minimal Interaction

In this chapter, we have come to know the electromagnetic force as the
force between electrically charged objects caused by the exchange of one
or more photons between the charged objects. As we’ll see shortly, the use
of Feynman diagrams allows us to expand our notion of what the electro-
magnetic force really is and, in fact, will even incline us to drop the use of
the expression “electromagnetic force” in favor of the more general notion
of the “electromagnetic interaction” (although we’ll continue, somewhat
loosely, to use the two terms interchangeably throughout the remainder of
the book).

Take another look at figure 4.4c, the Feynman diagram depicting the mu-
tual repulsion of two electrons through the exchange of a single virtual pho-
ton. Is this the only possible type of interaction between these two electrons?
Is there another possible way for these two electrons to influence each
other?

There is, and figure 4.5 is an example of just such a process—the inter-
action of two electrons through the exchange of two photons. From what
we know about quantum field theory, there’s no reason why this shouldn’t
happen—and it does! As Feynman has said, anything that can happen does
happen. Since good old-fashioned quantum mechanics lies at the heart of
this picture, it’s not that the force is exerted through the exchange of one
photon some of the time and two photons other times. Rather, whenever
the electrons repel each other and go flying back, there’s a certain proba-
bility that it was due to the exchange of one virtual photon and a certain
other probability that it was due to the exchange of two virtual photons. We
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can never know (without disturbing the interaction) which it was, so it was
both, every time. This progression doesn’t stop with the exchange of one or
two photons—any number of photons can be exchanged, so the true elec-
trostatic repulsion of the two electrons comes about by a combination of all
of these (and other) possibilities.

In general, there’s always an infinite number of different ways that any
given process (such as the scattering of two electrons by way of the electro-
magnetic force) can take place, each one represented by its own unique
Feynman diagram. The electrons can exchange any number of virtual pho-
tons—one, two, six, forty, whatever. If this is the case, then how can quan-
tum field theory be of any use at all? If there’s an infinite number of diffi-
cult calculations to do every time you want to make a prediction, how can
you ever hope to finish the calculation?

What saves us is the coupling between the photon and the electron. Look
again at figure 4.5. Every time an electron and photon meet in the Feyn-
man diagram, we have to remember to take into account the coupling
strength between the electron and the photon. This coupling is less than
one; for the electromagnetic force, it’s about 1⁄100 (note 4.7). For every inter-

Fig. 4.5. The Feynman diagram representing the interaction of two electrons
through the exchange of two photons.



section between the electron and photon we add to get the new diagram,
we pay a price of about 100 in the probability that that diagram contributes
to the overall process. Comparing figures 4.4c and 4.5, we see that figure
4.5 has two extra electron-photon intersections, so we would expect it to be
roughly (1⁄100) � (1⁄100) � (1⁄10,000) as likely as figure 4.4c. It doesn’t make a whole
lot of difference whether you include the more complicated diagrams in-
volving two, three, and more exchanged photons. Only if you’re interested
in getting a really precise prediction would you be compelled to include
these more complicated higher-order diagrams.

Thinking about Feynman diagrams in this way brings about a sea change
in our thinking about the way objects interact. We can start thinking of these
intersections, or vertices, between electrons and photons, rather than the ex-
change of photons, as the defining element of the electromagnetic force.
Every photon exchange involves two such electron-photon vertices, so per-
haps the vertices are indeed more fundamentally characteristic of the elec-
tromagnetic interaction than is the process of photon exchange.

We can make use of our new fundamental element—the electron-
photon vertex—to construct a strikingly different Feynman diagram (fig.
4.6). It begins, at early times toward the bottom of the diagram, with a real
(nonvirtual) photon, from a laser beam perhaps, coming from the left, ap-
proaching an electron coming from the right. At point A, the photon is ab-
sorbed by the electron at an electron-photon vertex—the vertex that, in our
revised point of view, is the fundamental and characterizing element of the
electromagnetic force. (Note that the vertex at A is identical to either of the
vertices in fig. 4.4c—a wiggly line representing a photon terminates on a
solid line representing an electron.) Then, at point B, the diagram employs
another vertex at which the electron spits out a photon—a different photon,
which, in general, has a different energy than the initial one.

Technically, to conserve mass-energy at all times, the mass of the elec-
tron has to be slightly different than its true mass during the time interval
between the absorption of the first photon and the emission of the second.
But, just as for the virtual photon of figure 4.4c, that’s fine because of the
uncertainty principle (recall this discussion toward the end of “Particle Ex-
change: A Fresh Look at the Nature of Forces” in this chapter). In this case,
instead of having a virtual photon, we have a virtual electron.

By viewing the electromagnetic force in terms of electron-photon ver-
tices rather than photon exchange, we are inclined to expand out list of
processes governed by that force. The photon exchange of figure 4.4c is just
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one possible mode of interaction afforded by the electromagnetic force. If
we consider the more basic vertices as the fundamental description of elec-
tromagnetism and play around a bit, we get the diagram of figure 4.6, a
whole new process in which an electron beam can scatter photons from a
light beam by absorbing the photons and reemitting them with different di-
rections and energies.

It’s one thing to conjecture about the consequences of describing elec-
tromagnetism in terms of electron-photon vertices; demonstrating that this
hypothesis is correct is another thing altogether. In this case, experimenta-
tion actually preceded conjecture. In 1923, well before the development of
quantum field theory, the American physicist Arthur Compton discovered
that gamma rays (energetic photons) sometimes lost energy as they bounced
off the stationary electrons in a carbon block. Compton was able to show,
with further experimentation, that this Compton scattering process was con-
sistent with the absorption and reemission, at a different energy, of the
gamma-ray photon, the process depicted, in modern terms, by figure 4.6.
This work garnered Compton the 1927 Nobel Prize in Physics.

It is the more basic and general electron-photon vertex that we should

Fig. 4.6. The Feynman diagram representing the most basic way that an elec-
tron and photon can interact by way of the electromagnetic interaction. Such
interactions are known as Compton scatters, after the American Nobel Laure-
ate Arthur Compton, who identified the process.



look to as the fundamental component of the electromagnetic force, not
photon exchange, which is only one of several modes of interaction that can
be constructed from electron-photon vertices. This most basic, irreducible
action of electromagnetism is known as the minimal interaction vertex. The
job of anyone developing a quantum field theory of any given fundamental
force is to make a list of all minimal interaction vertices associated with the
force and to delineate the strength and space-time property of each inter-
action vertex.

For electromagnetism, there is only one such minimal interaction ver-
tex. This is the electron-photon vertex, or, more accurately, the fermion-
photon vertex, the electron being but one member of a family of particles
known as fermions that interact with photons by virtue of their electric
charge (we’ll learn what “fermions” are shortly; the family of fermions in-
cludes both leptons and quarks, not all of which possess electric charge).
This vertex has a coupling strength equal to about 1⁄100 and, technically speak-
ing, the space-time property of a vector. That’s it. That’s basically all there
is to our quantum field theory of electromagnetism, known as quantum elec-
trodynamics, for which Feynman and two others ( Julian Schwinger of the
United States and Shin’ichiro Tomonaga of Japan) won the 1965 Nobel
Prize. Well, not quite all, because as construed above, the theory doesn’t
quite work. Fixing it up requires another leap into the world of the coun-
terintuitive; it was this leap that most impressed the 1965 Nobel Commit-
tee. We’ll discuss this problem and the technique of renormalization that
solved it toward the end of the chapter.

Note that no one ever talks about the electromagnetic force between
electrons and light, and for good reason—there isn’t any. Light doesn’t get
bent by charged objects. Take a house key laden with a painfully large
amount of static charge (easily produced on a dry day on a plastic play-
ground slide) and hold it up to a light, whether from the sun, a light bulb,
or a laser beam. The charge on the key will not bend the light passing near
it. Electrically charged objects do not exert a force on light, but they do oc-
casionally interact with it by absorbing and reemitting it in a different color
(with a different energy). However, two statically charged objects do exert a
force on each other. In both cases, light and charge or charge and charge,
the workings of the interaction can be described in terms of a single funda-
mental component, the electron-photon vertex. Only in one of the two
cases is a force exerted, but in both cases, there is an interaction. Thus, in
quantum field theory, we speak most correctly in terms of theories of fun-
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damental interactions; forces (as we usually construe them in terms of the
action-at-a-distance interplay between two appropriately charged objects)
are just one facet of the more general notion of an interaction.

In the mid-1800s, Faraday’s introduction of force fields liberated our
thinking in a way that led eventually to the explanation of the phenomenon
of light. In the mid-1900s, the quantization of these very same fields led to
a further liberalization of our thinking, allowing the concept of force to be
generalized to the notion of interaction, thereby permitting the incorpora-
tion of a host of new types of behavior into our understanding of the fun-
damental workings of nature.

Relativistic Quantum Mechanics, Antimatter, and Spin

At this point, we digress to consider some of the “relativistic” aspects of rel-
ativistic quantum field theory (which we have shortened to quantum field
theory, or even field theory, in the previous discussion). We’ll begin the di-
gression with the introduction of angular momentum.

Let’s take another look at Planck’s constant h. Planck’s constant sets the
scale for the most basic quantum mechanical behavior, including the wave-
length of material objects (de Broglie’s relation: l � p/h, where p is the ob-
ject’s momentum) and the uncertainty principle (DpDx � h/(4p)). The unit
of Planck’s constant—the measuring stick used to establish its (minute)
size—is joule-seconds, where the joule is the unit of energy. The joule-
second, it turns out, is the unit of something called angular momentum.

To get a feel for angular momentum, consider a carousel at an amuse-
ment park spinning about its axis (note 4.8). During the ride, the carousel
has a lot of energy of motion. If you were to try to stop the carousel by plant-
ing your feet and grabbing one of the horses, the horse would certainly win
the contest. Yet, this energy of motion (kinetic energy) is not in the form
that we are used to. This kinetic energy is not associated with the motion of
the carousel through space—the carousel is fixed at a point and, despite its
great energy, poses no threat to anyone with enough wits not to walk into it.
The energy derives not from the motion of the carousel through the amuse-
ment park but rather from the spinning of the carousel about its axis.

Analogous to the carousel, particles such as protons and electrons can
also spin about their axes. Unlike the carousel, fundamental particles can-
not be made to spin faster or slower or have their spinning motion stopped.
The intensity of spinning, the angular momentum, is a fixed property of the

DEEP DOWN THINGS70



particle. Just like a particle’s mass, the angular momentum associated with
this spinning motion, known simply as spin, is a characteristic of the parti-
cle at hand. The direction of the axis about which the particle is spinning
can be changed, but the rate of spinning about that axis, no matter which
way it points, cannot be changed.

We’ve seen that quantum mechanics is required to understand and de-
scribe the behavior of individual particles. Thus, we might expect that quan-
tum mechanics and, in particular, its attendant scale factor h, might have a
role to play in the spin of fundamental particles, especially since the unit of
h, as we’ve seen, is just that of angular momentum.

The amount of angular momentum possessed by an electron or a proton
is 1⁄2h̄, where for expediency we have introduced the reduced Planck’s con-
stant h̄ � h/2p (to be read as “h-bar”). An individual photon, on the other
hand, possesses an angular momentum of h̄. We often forget about the h̄ and
just say that electrons and protons are spin-1⁄2 and that photons are spin-1.

The set of particles with half-integer spin (spin equal to an odd number
of half multiples of h̄, such as 1⁄2h̄, 3⁄2h̄, 5⁄2 h̄, and so forth) are known as fermi-
ons. It’s a testament to the incredible breadth of Enrico Fermi’s work that,
in addition to Nobel-caliber accomplishments in nuclear physics, particle
physics, and the physics of solid materials, he was also the first to work out
the quantum-mechanical laws governing the interplay of objects with half-
integer spin.

The corresponding set of particles, with spin a pure integer multiple of
h̄ (1h̄, 2h̄, 3h̄, and so on), are known as bosons. The work of Satyendra Nath
Bose on the quantum-mechanical properties of systems composed of iden-
tical bosons impressed Einstein, who was subsequently able to secure Bose
a professorship at India’s Dacca University with a recommendation written
on the back of a postcard, despite the fact that Bose never bothered to earn
his Ph.D.

Each of these classes of particles—fermions and bosons—plays a distinct
role in the world of particle physics. Spin-1⁄2 fermions (such as electrons and
quarks) are the components of what is conventionally thought of as matter,
while the fundamental bosons (such as the photon) are the conveyers of
force.

Schrödinger’s and Heisenberg’s theory of quantum mechanics was a
stunning success but only as long as none of the particles in the system un-
der study were traveling so fast that Einstein’s relativity needed to be taken
into account, in which case their nonrelativistic theory fell to pieces. In
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tackling this problem in the late 1920s, the set of young physicists who ini-
tiated the development of relativistic quantum mechanics established
themselves as the brightest of their generation (note 4.9). As we’ll see, the
imposition of relativity on the new quantum theory did not come easily, but
through these physicists’ brilliant reinterpretation of what had seemed like
fatal flaws in their work, a much deeper and richer understanding of nature
arose than anyone had dared anticipate.

Recall the discussion of chapter 3. The Schrödinger equation is the
quantum-mechanical statement of energy conservation: The energy due to
motion (kinetic energy) and the energy due to fighting against the field of
whatever force you are considering (potential energy) is just equal to the to-
tal energy, a number that is fixed for all time (since energy is a conserved
quantity) as long as the system under consideration is not disturbed from
the outside. Relativity, though, tells us that the mass of the particle that we
are trying to describe quantum mechanically also needs to be included in
the total energy. This requires a modification of the wave equation.

To keep things from being too complicated, the proponents of the rela-
tivistic theory decided to begin with the description of free particles—parti-
cles moving freely through space, not under the influence of some external
force. So, the term in the Schrödinger equation associated with fighting
back and forth against the force, the potential energy or V(x) term, could be
forgotten about. This is really no loss at all, for in relativistic quantum field
theory, which grew out of this formulation of relativistic quantum mechan-
ics, the forces are reintroduced through the minimal interaction vertices
and the exchange of field quanta. So, free-particle relativistic wave equa-
tions are all that we’ll need to consider.

What comes out of this consideration is the quantum mechanical ver-
sion of relativistic energy conservation for a free particle. The sum of the ki-
netic energy and the energy associated with the particle’s mass is just the to-
tal energy, which again must be conserved. (If we create a virtual particle at
a minimal interaction vertex, it’s now OK because the mass-energy of this
newly created particle is correctly taken account of in the energy balance
of this relativistic formulation of quantum mechanics. The modeling of a
force through the creation and absorption of virtual particles is an intrinsi-
cally relativistic point of view.) The resulting (differential) equation is known
as the Klein-Gordon equation, and there’s nothing to stop us from solving
it (instead of the nonrelativistic Schrödinger equation) to find the wave
function of a particle moving with relativistic speed.
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There is, however, something to make us unhappy with some of the wave
functions we wind up with. Half of the various possible solutions of the
Klein-Gordon equation have negative energy. In addition, in quantum me-
chanics, when you square a particle’s wave function (multiply it by itself at
every point in space), you get a function that gives the probability of find-
ing that particle at any given point in space. If you square the wave function
of a negative-energy solution to the Klein-Gordon equation, the probability
is negative, a result that makes no physical sense (note 4.10). Negative en-
ergy solutions with negative probabilities—this does not sound healthy.

Many would have seen this as a fatal flaw but not Paul Dirac. Dirac was
convinced that a meaningful relativistic wave equation ought to exist. He
analyzed the failings of the Klein-Gordon equation to find the cause of the
negative probability solutions, enabling him to propose a wave equation
with the same physical content (kinetic energy plus energy due to mass
equals total energy for a free particle) but which avoided the plague of neg-
ative probability. This task was not particularly straightforward because what
Dirac ended up with was a “matrix equation”—four separate but inter-
twined differential equations that needed to be simultaneously satisfied by
its wave function solution. Messy though this approach may seem, it imme-
diately provided two wonderful dividends: while the negative energy solu-
tions remained, the negative probabilities were gone, and the new equation,
in its complexity, precisely incorporated the behavior of spin-1⁄2 particles.

With these successes, Dirac was convinced that the final hurdle—the ex-
planation of the negative energy solutions—must be surmountable. His in-
sight was that the negative energy solutions could be interpreted as positive
energy solutions for antimatter particles that would behave in every way like
their particle counterparts but would have opposite charge. This suggestion
was unspeakably bold. No one had seen or even thought of antimatter at
that time; it wasn’t even yet the stuff of science-fiction novels. Dirac pro-
posed it to satisfy his conviction that his candidate for a relativistic wave
equation describing spin-1⁄2 particles had to be correct. Antimatter was sim-
ply the ingredient that he needed to make it all work. So he proposed the
existence of a whole new set of particles with very specific properties that
nobody had ever dreamed of before.

In 1932, Carl Anderson of the California Institute of Technology, in a
balloon-borne experiment in the upper atmosphere, observed a particle
with all the properties of an electron except that it bent the wrong way in
the experiment’s magnetic field. Anderson immediately knew what he had
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seen: the positively charged partner of the negatively charged electron—
Dirac’s antimatter positron. It was not long after this that both Dirac and 
Anderson were invited to Stockholm (Dirac shared the 1933 Nobel with
Schrödinger, while Anderson received his in 1936).

The place in quantum theory that Dirac carved out for antimatter, a nec-
essary component for the self-consistency of the relativistic quantum theory,
remains to this day, although the precise interpretation of the role of anti-
matter in the relativistic theory (i.e., the precise way in which it solves the
negative energy problem) has undergone some evolution. The modern in-
terpretation is due to none other than Feynman and is the interpretation
most appropriate for application to quantum field theory. This interpreta-
tion is an essential step in our discussion. Feynman’s take on the issue,
which dates from 1948, is a curious one. It has become such an accepted
part of the particle physicist’s thought process that it’s easy for professional
physicists to lose touch with just how unusual it is.

The wave function of a free particle that solves the (nonrelativistic)
Schrödinger equation can be split into two factors—one dictating how the
wave function varies from point to point in space and the other dictating
how the wave function varies from instant to instant in time. The factor y (t)
describing the time (t) dependence is rather simple:

y (t) � e�iaEt,

where E is, as usual, the particle’s total energy (kinetic energy plus the en-
ergy due to the particle’s mass) and a is just a fixed number whose value
doesn’t really concern us. The number e � 2.718281828 is the base of nat-
ural logarithms, and i is the “imaginary” value of ��1. We don’t need to
know what it means to have an imaginary number as an exponent (note
4.11); what we do need to know is that the quantity �aEt in the superscript
of this equation involves the product of the particle’s energy E and the time
t at which you want to know the value of the wave function y. If t is posi-
tive, and the energy E is positive, then �aEt is negative (less than zero),
simply because of the minus sign.

For wave functions that solve relativistic wave equations, such as Dirac’s
wave equation for spin-1⁄2 particles, half of the solutions are of this form,
while the other half are of the form

y (t) � e�iaEt � e�ia(�E)t.
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(Remember, when you multiply two minus signs together you get a plus
sign, so that these two expressions for y (t) are indeed the same; the minus
sign in front of the a multiplied by the minus sign in front of the E in the
right-most expression give the plus sign in the middle expression.) So, look-
ing at the right-most expression, and comparing it to the previous equation,
we see that this half of the solutions have negative energy. As previously
mentioned, this was the cause of considerable consternation until Dirac was
able to identify them as solutions describing the behavior of antiparticles.

Feynman, however, looked at this function and saw something that was
apparently as ridiculous as it was obvious: If we remove the minus sign from
in front of the E and instead place it so that it is in front of the t, then for
these nettlesome solutions we can write

y (t) � e�iaEt � e�iaE(�t).

Comparing this to our original equation, we see that we are, in some sense,
saved. The energy E is again positive, as our common sense requires. How-
ever, the price we have to pay for this repair job seems quite steep: That the
wave function now depends on �t rather than t means that this wave func-
tion describes a particle moving backward in time. For some reason, this didn’t
faze Feynman. As boldly as Dirac predicted antimatter five years before it was
discovered, Feynman made the statement that as far as the quantum theory
was concerned antiparticles are simply particles traveling backward in time.

As outrageous as this sounds, when you apply it to what we know about
quantum field theory, everything falls neatly into place. Consider again the
minimal interaction vertex of quantum electrodynamics, the quantum field
theory of the electromagnetic force, shown in figure 4.7a. An electron mov-
ing through space to the right emits a photon (eventually to be absorbed by
another charged particle, we presume) and, in doing so, recoils to the left.
What if, at the vertex, the photon connects the incoming positive-energy-
electron solution to an outgoing positron (antielectron) solution rather than
an outgoing electron solution? As shown in figure 4.7b, this particle, which
we can think of as an electron traveling backward in time, must recede back
in time from the electron-photon vertex as indicated by the arrow. Now we
see why we bothered to carry those heretofore meaningless arrows around
in our Feynman diagrams. When you change the direction of the arrow, you
switch between descriptions of particles going forward in time and antipar-
ticles—particles going backward in time.
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Now, no one has ever observed a particle traveling backward in time.
What an observer of this process would see is not a particle receding in time
from the interaction vertex but rather an antiparticle positron proceeding
forward in time toward an interaction at the vertex.

And what does this positron appear to do in that interaction? Look again
at figure 4.7b. The interaction happens at a specific time, which is just the
height of the vertex along the vertical (time) axis. Before this time, there are
an electron and its antimatter counterpart, a positron, approaching each
other. After this time, there is just a photon. The electron and positron have
destroyed each other! This diagram represents the annihilation of matter
and antimatter, the conversion of mass (remember that the electron and
positron have identical, nonzero mass) into a state of pure energy. It is the
relativistic quantum field theoretical rendering of the most famous of Ein-
stein’s assertions about relativity: E � mc2. Even more notably, the process
represented by this diagram represents another entire class of interactions,
succinctly described by the single common denominator of quantum elec-
trodynamics: the vertex of the electron-photon minimal interaction.

Fig. 4.7. The electron-photon minimal interaction vertex (a). If we instead have
the outgoing electron going away from the vertex backward in time, the same
minimal interaction vertex now represents the annihilation of an electron with
its antimatter partner (a positron), forming a photon (b). Note that, regardless
of whether the particle travels forward or backward in time in our quantum field
theory calculation, particles we observe in the laboratory always travel forward
in time, so what we observe is, as stated, an electron and positron fusing to-
gether (annihilating) to form a photon.



Feynman’s receding time interpretation of the negative energy solutions
is wonderfully general. Not only did it allow the Dirac equation to become
the basis of the description of spin-1⁄2 particles in quantum field theory, it
also resurrected other attempts to make quantum theory consistent with spe-
cial relativity. For instance, Feynman’s approach simultaneously solves both
the negative energy and negative probability problems of the Klein-Gordon
equation, quandaries that had set Dirac on a course that eventually led to
the development of the Dirac equation. Successful as the Dirac equation
may be, it only provides a description of spin-1⁄2 particles. To develop a full,
general relativistic quantum field theory of particle interactions, we need
relativistic quantum mechanical descriptions of other types of particles. For
example, for the electromagnetic interaction, the spin-1 photon must be de-
scribed if we want to put electrons and photons together into minimal in-
teraction vertices. With Feynman’s approach, it was soon recognized that
the Klein-Gordon equation provides the basis for the description of spin-0
particles. From the comparison of the Klein-Gordon (spin-0) and Dirac
(spin-1⁄2) equations, it was possible to deduce the proper form for the de-
scription of spin-1 particles (known as the Proca equation), allowing for the
description of photons and other spin-1 particles.

Finally, one can ask whether Feynman’s receding-time approach is
merely a formal development, allowing for the description of antimatter
within the domain of quantum field theory, or whether it is a physical dis-
covery, reflecting some deeper truth about the differing relationship of mat-
ter and antimatter to the underlying fabric of space-time. It seems that, as
of yet, there is no definitive conclusion; perhaps the answer will become
clear in the deeper context of some future step forward in our understand-
ing of nature.

The Living Vacuum

The development of relativistic quantum field theory was a great leap for-
ward. Field theory simultaneously simplified and expanded our under-
standing of the fundamental mechanism that underlies the way in which
objects in the universe influence one another. Inspired as it may seem, how-
ever, the theory as presented so far simply doesn’t work. The problem lies
in a set of interaction processes represented by a progression of Feynman di-
agrams that we have so far ignored.

Consider again the mutual repulsion of two electrons through the elec-
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tromagnetic force. In its most basic form, this interaction is represented by
the exchange of a single virtual photon, as shown in the space-time plots of
figures 4.4a and 4.4b, which together are represented by the single Feyn-
man diagram of figure 4.4c. This interaction can also proceed by the ex-
change of any greater number of virtual photons (e.g., the process involving
the exchange of two virtual photons is shown in fig. 4.5). But every time you
add another minimal interaction vertex involving a photon and an electron
to the Feynman diagram, the probability that the interaction takes place ac-
cording to the new diagram is about 1% of that represented by the original
diagram. Since every time you add another virtual photon you have to add
two new vertices to the diagram, the mistake you make by ignoring the pos-
sibility that more than one virtual photon can be exchanged is rather small.

Now that we’ve understood how it is that antiparticles fit into the picture,
however, we are prepared to discuss an entirely different way in which the
basic diagram (fig. 4.4c) describing the repulsion of two electrons can be
modified. This modification is represented in figures 4.8a–4.8c.

In these figures, we see that the picture of electron-electron repulsion
presented by quantum field theory admits the following possibility: the pho-
ton exchanged between the two electrons can, through a standard minimal
interaction vertex, instantaneously turn into an electron-positron pair, only
to revert to a photon again at a second vertex. (Note that in figs. 4.8a and
4.8b, one of the particles in the loop in the middle of the diagram travels
forward in time and, as a result, is an electron and the other travels back-
ward in time and, as a result, is a positron.) This second photon is then ab-
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sorbed by the second electron, completing the transmission of the force. As
for figure 4.4a and 4.4b, in figure 4.8a, the photon is emitted by the elec-
tron coming in from the left and absorbed by the electron coming in from
the right, while in figure 4.8b, the roles are reversed. Also as for figure 4.4,
the two possibilities (figures 4.8a and 4.8b) are indistinguishable to any ob-
server, so they are packaged into the single Feynman diagram of figure 4.8c.

Again, we might question whether the process represented by the dia-
gram of figure 4.8 is consistent with the notion of mass-energy conservation
since the mass of a system consisting of an electron and a positron (both of
which have a mass-energy of about 511,000 eV) is decidedly not the same
as the mass of the photon (zero) that produced them. Again, we are rescued
by Heisenberg’s uncertainty principle. Since the electron-positron pair ex-
ists only for a brief period, its mass-energy is uncertain, so mass-energy can
still be conserved, even though the nominal mass of the electron-positron
pair is different than the nominal mass of the photon. Just as the short-lived
and unobserved photon exchanged between the electrons in figure 4.4 is
known as a virtual photon, electron-positron pairs such as that of figure 4.8
produced by an instantaneous fluctuation from and back to a photon via
two minimal interaction vertices are known as virtual electron-positron
pairs.

Comparing the Feynman diagrams of figures 4.4c and 4.8c, we see that
the latter diagram includes two extra vertices, so, again, we would expect
the probability of the more complicated, higher-order process of figure 4.8
to be (1⁄100) � (1⁄100), or about one ten-thousandth, less likely than that of fig-
ure 4.4. However, counting vertices is not the only thing that goes into the
calculation of the interaction probability of a given Feynman diagram; it’s
merely a crude rule of thumb. There is a big difference between the higher-
order diagrams of figures 4.5 and 4.8c that leads to a much different result
for the interaction probability.

The essence of the difference is this: When the virtual photon fluctuates
into the virtual electron-positron pair, its energy must be shared, part going
to the electron and part to the positron. But there are a large number—in
fact, an infinite number—of different ways the energy can divide itself be-
tween the positron and electron. The energy of one of the two can be pretty
much anything, as long as the other has the correct amount of energy to
compensate and to make the total add up to the virtual photon’s energy
(note 4.12). When all these different possibilities are taken into account,
the interaction probability of figure 4.8c, instead of being 10,000 times
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smaller than that of figure 4.4c, is larger—much larger. In fact, because
there’s an infinite number of ways for the process to take place, the calcu-
lated interaction probability is infinite.

This is an unacceptable state of affairs. When this more complicated di-
agram is included (which it must be—recall Feynman’s rule that anything
that can happen must happen), we find that our quantum field theory can-
not predict the relative probability of electrons scattering off each other into
the various directions that you might mount a detector because the proba-
bility of scattering into any given direction is predicted to be infinite. Since
the most that a probability can be is one, something is wrong.

So, after all its great insights and advancements, some of them strikingly
confirmed by experiment, are we to conclude that quantum field theory is
useless, having been pecked to death by these ephemeral matter-antimatter
fluctuations?

Luckily, no. But it took some serious soul searching by Feynman and oth-
ers to recognize the source of the problem and to dream up a fix for it. The
approach that was eventually successful in overcoming this hurdle is known
as renormalization.

Feynman and others argued that quantum field theory is so profoundly
successful on a number of fronts that it must be correct. So, when two elec-
trons repel each other, it must be true that the description of this process in-
cludes the diagrams of both figures 4.4c and 4.8c (as well as those of fig. 4.5,
although as mentioned, these don’t much matter). The way to incorporate
these diagrams without having the theory fall apart, Feynman argued, is to
step back for a moment and think hard about exactly how the theoretical
predictions of quantum field theory relate to physically observable quanti-
ties that can be measured in the lab.

Think again about the process represented by figures 4.4 and 4.8. What
is observed in either case is the scattering of one electron off another. What
goes on between the two electrons during the scatter is, according to the
most basic tenets of quantum mechanics, off-limits to the prying eyes of ex-
perimentation. The intermediate particles cannot be directly observed with-
out disturbing the whole process so profoundly that it can no longer be in-
terpreted as simply one electron scattering off another.

Let’s say that the electron coming in from the left in figure 4.8 is the “pro-
jectile” in the scattering experiment, while the one coming in from the right
is the “target” (feel free to switch projectile and target if you wish; it will
make no difference to the argument). Now consider figure 4.9, which is
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identical to figure 4.8c except that there is now a dashed circle encompass-
ing the target electron’s electron-photon vertex and the virtual electron-
positron pair. There’s nothing physical about the circle; it’s just there to
evoke an interesting interpretation of the process of figure 4.8c. Figure 4.8c
inclines us to think of the process as one in which the projectile emits a vir-
tual photon that fluctuates momentarily into a virtual electron-positron pair
and then is absorbed (again as a virtual photon) by the target electron.

Figure 4.9, however, suggests that we think of the process instead as the
exchange of a single virtual photon between a projectile and target electron
in which the target electron is not just the bare electron represented by the
single deflecting line but rather the electron “dressed up” by everything in-
side the circle—the bare electron itself plus the fleeting “vacuum fluctua-
tion” engendered by the virtual electron-positron pair and the other virtual
photon. From this point of view, it’s not that the exchange mediating the re-
pelling interaction between projectile and target can occur in two different
ways (figs. 4.4c and 4.8c) but that the target electron can have two different
forms, the bare form of figure 4.4c or the dressed form of figure 4.9.
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Since this is quantum mechanics and you can’t ever tell what’s going on
between the two electrons, who is to say which is the correct point of view?
They’re both equally valid, so let’s pick the interpretation that serves us best
in trying to connect our theoretical picture with the realities that confront
us in the lab. We’ll see that this is the second interpretation—that of figure
4.9 rather than of figure 4.8c.

We now introduce the essential realization that underlies the procedure
of renormalization: Whenever one makes a measurement involving an
electron as a target, one is simultaneously measuring all possible manifes-
tations of the target electron, the bare target electron of figure 4.4 as well as
the target electron dressed by the fluctuation of the virtual photon into an
electron-positron pair in the vacuum immediately surrounding the target
electron. The bare electron of figure 4.4 is not a physically observable par-
ticle; what is observable is the electron that is the combination of the bare
electron of figure 4.4 and the dressed electron of figure 4.9. In fact, it’s not
just a matter of including the processes of figures 4.4 and 4.9. Now that we
know the rules for cobbling together electron-photon minimal interaction
vertices, we can surround the target electron by an arbitrarily complex
morass of virtual electron-positron pairs connected together by equally vir-
tual photons. Figure 4.10 shows one of the infinite number of possible dia-
grams that we could draw. Indeed, the vacuum surrounding the target elec-
tron is veritably seething with these vacuum fluctuations, and if you want
to talk about the physical electron, the one you will sense when you do ex-
periments on electrons, you had better include in your considerations the
full set of these fluctuations.

Thus, when you measure anything at all about the electron—say, the
strength of the electron’s charge, which you must do by an experiment such
as repelling another charged object from it—you are not measuring the
strength of the charge of the bare electron but rather the strength of the
charge of the bare electron plus whatever effects are added in by this fool’s
gallery of virtual vacuum fluctuations. What we can then do is adjust, or
renormalize, the charge of the bare electron so that, when you add in the
effects of the seething vacuum surrounding the electron (represented by di-
agrams such as fig. 4.10), the result of the corresponding field theory cal-
culation yields precisely the measured value of the electron charge.

Since the charge you measure by scattering off an electron is really that
of the bare electron and its attendant cloud of vacuum fluctuations and
since you can never measure the bare charge directly (the dubious under-
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world of virtual particles will always be there), then you are free to make the
bare charge whatever you need to in order to make the effective charge of
the electron plus vacuum entourage agree with observation. You need not
worry about what the value of the bare electron’s charge becomes in this
process. The charge of the bare electron cannot be measured. In fact, the
value that you need to choose for the bare electron charge to compensate
for the infinite probabilities imposed by the diagram of processes like those
of figures 4.9 and 4.10 is, predictably enough, infinity.

So the charge of an electron, theorists tell us, is infinite. But they also tell
us that no experiment you ever mount will measure that infinity. Who cares
if this seems ridiculous? This choice, outlandish as it may seem, restores the
ability of quantum field theory to make reasonable predictions for the out-
come of any experiment that can be done to measure the electron’s charge.

If, for a proposed quantum field theory of any of the forces of nature, the
adjustment of a finite number of parameters (such as the bare electron
charge and mass) renders the calculation of the outcome of all observable
processes finite, then the theory is workable and is a possible fundamental

Fig. 4.10. An even more complicated process by which two electrons can scat-
ter off one another. The vacuum is indeed a busy place, and to understand what
really goes on when objects influence each other, we are compelled to take the
“business” of the vacuum very seriously.



theory of that force. Such theories are called renormalizable. If this is not
the case, then the theory is classified as unrenormalizable and is not a can-
didate for the fundamental description of the force.

Looking toward the latter part of this book, there is a certain subset of the
possible implementations of quantum field theory, known as gauge theories,
whose underlying structure tend to make them renormalizable. For this and
other equally fundamental reasons, which will be discussed in chapter 8,
gauge theories enjoy an elevated position in the society of particle physics
theories.

In this chapter, the implementation of quantum field theory under dis-
cussion is specifically that of quantum electrodynamics, the fundamental
theory of the electromagnetic interaction. In this implementation, it is in-
deed true that calculations of all observable processes are rendered finite by
the adjustment of a few underlying parameters. Quantum electrodynamics
is renormalizable and is our current candidate for the relativistic quantum
theory of the electromagnetic interaction. In due time, we shall see that
quantum electrodynamics is itself a gauge theory, in fact, the simplest pos-
sible gauge theory that can be constructed.

Infinitely charged particles that can travel forward or backward in time
and a vacuum that’s as alive and shimmering as the air above a suburban
parking lot on a hot summer’s day—these are just a few aspects of the pro-
foundly bizarre world-view that quantum field theory would ask us to take
to heart. Doing so, though, we are led to consider some interesting conse-
quences.

The first of these is a process that flies in the face of everyday common
sense, while simultaneously providing hard evidence for the existence of the
sea of virtual electron-positron pairs that populate the vacuum. By arrang-
ing the participants in the right way, we can join together two minimal in-
teraction vertices to represent the process of figure 4.11: a real photon, com-
ing in from the left at the speed of light after being emitted from a distant
source, suddenly finds itself absorbed by an electron-positron vacuum fluc-
tuation (point A in fig. 4.11). Instead of fluctuating back into a photon, one
of the two charged particles (in this case the electron) finds itself absorbing
a second photon that happens to be nearby (point B in fig. 4.11). After the
dust clears, we’re left with a real electron-positron pair that go happily off
on their own, both with the possibility of being sensed by a well-placed par-
ticle detector (note 4.13).

This diagram, a necessary consequence of the tenets of relativistic quan-
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tum field theory, makes the rather profound assertion that it’s possible to
conjure matter from light. We all know that when two flashlight beams are
shined against each other, nothing happens. They pass right through each
other without effect. However, quantum field theory predicts that if one
beam is made energetic enough (by, say, bouncing it off an energetic elec-
tron beam), then every once in a while two of the photons from the flash-
light beams will interact, with the very concrete result that two matter par-
ticles (one electron and one positron) are produced from the collision of
the two light beams.

In a 1995 experiment at the Stanford Linear Accelerator Center (SLAC),
directed by Adrian Melissinos of the University of Rochester, the leading
edge of a powerful laser beam that had been Compton scattered (bounced
off an energetic electron beam) to high energy by the SLAC electron beam
was directed back against itself. Every once in awhile, one of the high-
energy scattered photons combined with a photon in the unscattered laser
beam in the manner of figure 4.11 to form an electron-positron pair that
was subsequently identified in a detector surrounding the collision point of
the two beams (note 4.14).

Fig. 4.11. The Feynman diagram for the most basic process by which two pho-
tons can fuse to form an electron-positron pair that flies off in independent di-
rections: matter is “conjured from light.”



Although not for the first time, but perhaps more poignantly than ever
before, this experiment showed that the living vacuum—this seething mag-
got’s nest of virtual particle-antiparticle pairs—is very much alive and real.
For there, making their presence known via highly characteristic flashes of
light in the detector of the Melissinos experiment, were just those pairs of
electrons and positrons, jarred into a concrete existence by photons from
the two colliding light beams of SLAC experiment E144.

Another surprising and counterintuitive consequence of our quantum-
field-theoretical reformulation of electromagnetism was pointed out in
1948 by the Dutch physicist Hendrik Casimir. Casimir recognized that, if
all space were in fact alive with virtual electron-positron pairs, then there
ought to be a net interaction between the virtual particles in this not-so-
vacuous vacuum and the free electric charges in an electrically neutral con-
ductor (note 4.15). 

Casimir predicted that two parallel metal plates, electrically neutral and
thus uninterested in each other according to classical electromagnetic 
theory, should be attracted to each other by the effect of the electron-
positron fluctuations in the interceding vacuum. This Casimir effect was 
finally measured in 1996 by Steven Lamoreaux of the University of Wash-
ington, confirming the strength of the attraction predicted by Casimir to
within the 5% accuracy of the experiment, and providing yet another strik-
ing confirmation of the unusual world of quantum field theory.

Another surprising consequence of quantum field theory, with rather
profound implications for the whole of particle physics, is the dependence
of the charge of the electron (or of any charged object) on the energy of a
probe that senses the charge. Consider the scattering of one electron off an-
other through electromagnetic repulsion; suppose that one of the electrons
is a probe (such as the electrons in an electron microscope), while the other
electron is the target (such as the sample in the electron microscope). Ac-
cording to de Broglie’s relation l � h/p, as the momentum of the probe
electron increases, its wavelength decreases accordingly. Thus, as the mo-
mentum of the probe increases, its ability to see the target electron for what
it really is—a bare electron stripped of its cloud of virtual hangers-on—
becomes better and better (but never so good that it sees the target electron
purely as the bare, underlying particle, with its infinite charge). If the con-
cept of renormalization is correct, then as we go to higher and higher probe
momentum, the effects of the virtual cloud should diminish, and we should
observe that the value of the electron charge increases and becomes closer
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to its true, bare value (of infinity). This happens very gradually as the energy
of the probe is increased. With the advent of modern particle accelerators,
however, which achieve electron energies equivalent to the acceleration of
the electron through 100 billion volts, the effect should be observable. Cur-
rent measurements show that, at these high energies, the electron’s charge
is about 2 percent greater than it is when measured with a low-energy table-
top experiment, which is in perfect accord with the predictions of quantum
electrodynamics.

This property—the dependence of the charge on the momentum, or
scale, of the interacting particles—is known as running, and in this sense,
all charges run. Intriguingly if you look at the momentum dependence of
the electromagnetic, weak, and strong force charges of the fundamental
particles, they all appear to be running toward roughly the same value. We
measure the variation of the charge from everyday scales out to interaction
energies of about 100 billion electron-volts (100 GeV); if we take the ob-
served values and momentum dependence of the charges and use this in-
formation to extrapolate to higher momentum, the values all seem to coa-
lesce at an interaction energy of about 1016 GeV (note 4.16). (For now, the
measurement of the running of gravitational charge is beyond the limits of
our experimental capabilities.)

To physicists, this strongly suggests that the various forces of nature are
in fact merely different facets of the same underlying “grand unified” in-
teraction, a single natural phenomenon that governs the way objects in the
universe influence each other, and would thus be fully responsible for every
phenomenon that the universe puts forth. Although substantial strides have
been made toward the formulation of this ultimate paradigm, it remains an
unattained goal. Particle physicists believe, however, that the next genera-
tion of experiments, due to be completed during the period between 2005
and 2020, have the potential to move us substantially toward that goal. In-
deed, the discussion of the design of these near-future experiments, some
of which are only in their earliest planning stages, is driven in large mea-
sure by the search for this “theory of everything.”

Stunning Precision

Our archetypical quantum field theory is quantum electrodynamics, the
quantum field theory of the electromagnetic interaction. It is to this theory
that we turn for the most exacting test of the tenets of quantum field theory.
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Throughout this chapter, we have made frequent reference to the elec-
trical repulsion of like-charged objects, in particular electrons. We have
barely mentioned magnetism, but certainly our theory of electromagnetism
should provide as thorough a description of magnetism as it does of the elec-
trical force.

It is a property of electric charge (the sole type of charge associated with
the phenomenon of electromagnetism) that, when it is in motion, it creates
magnetic fields. When a charged objects orbits in a circle about some point
in space, it generates a magnetic field, which is to say, it acts like a magnet.
A charged object also generates a magnetic field if it spins about its axis. All
electrons spin, possessing an angular momentum of magnitude 1⁄2h̄ associ-
ated with their continual and unyielding rotation about their axes. So each
electron acts, among other things, as a tiny magnet. In fact, everyday house-
hold magnets, such as the one holding your unpaid bills to your refrigera-
tor, are magnetic by virtue of the collective magnetic effect of all the spin-
ning electrons (magnetizing a piece of iron amounts to getting a fraction of
the electrons’ axes of rotation lined up and pointing in the same direction).

The ratio between the angular momentum (1⁄2h̄ for the electron) associ-
ated with a charged particle’s spin and the strength of the correspondingly
generated magnetic field is known as the particle’s gyromagnetic ratio,
which is usually represented by the Greek letter m. Now, recall that the
Dirac equation provides the appropriate quantum-mechanical description
of spin-1⁄2 particles, such as electrons. One of the nice things that follows
from this description is a prediction for the value of these particles’ gyro-
magnetic ratio:

where q is the particle’s electric charge, m is its mass, and c is the speed of
light. Since all these quantities are known with tremendous precision for
the electron, this expression provides an exacting prediction for the elec-
tron’s gyromagnetic ratio.

However, it’s quite possible to measure the strength of the electron’s mag-
netic field, thereby determining its gyromagnetic ratio experimentally. If
you place a magnet (such as a spinning electron) close to another magnet
(such as the precisely calibrated magnetic coil in the experiment we’re
about to discuss), the magnetic part of the electromagnetic force will try to
align the first magnet in the direction of the field of the second magnet, just

   
mpred = 2q

mc
,
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as a compass needle (which is nothing more than a little magnet) tries to
align itself with the earth’s magnetic field. However, if the first magnet (the
electron) is placed in the field of the second magnet so it is not quite
aligned, it will begin to rotate (precess) about the direction of the second
magnet’s magnetic field. It’s exactly like a top, if you can remember the last
time you played with one. If you get a top spinning and set it down on the
table perfectly vertically (aligned with the earth’s gravitational field, which
points up and down), it just stands there. However, if you set it down so it’s
a bit tilted, it slowly rotates (precesses) about the vertical.

For the case of the two magnets (the electron and the experiment’s mag-
netic coil), the frequency of precession (number of seconds per rotation)
depends in a well understood way on the strength of the two magnetic fields.
So, if you measure this frequency and you know the strength of the coil’s
magnetic fields, you can calculate the strength of the electron’s magnetic
field. This is a beautiful technique because it’s relatively easy to measure a
frequency with precision. You just need to trap the electron in the region of
the coil’s field and watch it go around and around for as long as you can
bear. You then divide the number of rotations by the time elapsed; that’s
your measured frequency. The longer you watch it, the more accurate your
measurement.

These measurements confirmed, more or less, Dirac’s prediction of the
size of the electron’s gyromagnetic ratio. Modern experimental technique,
however, allows electrons to be trapped for a long time, so recent experi-
ments are extraordinarily precise. With all of this precision, a small devia-
tion from Dirac’s prediction emerged. If we let gmeas represent the ratio of
the observed gyromagnetic ratio of the electron to that predicted by Dirac,
that is,

then the result of the most accurate modern experiment is

gmeas � 1.00115965219

to within an uncertainty of about one in the very last digit.
The fact that g is not precisely one means that Dirac’s prediction is not

quite right. It’s not wrong by much, just a little over one-tenth of a percent.
But the experiments are so accurate that even such a small discrepancy is

   
gmeas

obs

Dirac
=

m
m

,
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extremely significant, insofar as it is no less than eight orders of magnitude
larger than the uncertainty on its measurement.

But, and this is the critical point, Dirac’s relativistic wave equation is not
our quantum theory of the electromagnetic interaction, it is merely one (al-
beit very important) ingredient in that theory; specifically, the ingredient
that allows us to determine the wave functions of the spin-1⁄2 particles (elec-
trons) that enter into the Feynman diagrams of the full theory. So quantum
field theory tells us that Dirac’s prediction for the electron’s gyromagnetic
ratio is just a start, and to make an accurate prediction we need to use the
full theory. We need to calculate all of the Feynman diagrams associated
with the interaction of the quantum of the magnetic field (the photon) with
an electron.

Now, as we’ve seen, when we include the quagmire of virtual particles
that crawl continually in and out of the vacuum, there are many diagrams
we need to calculate. As usual, the relevance of each possible diagram de-
creases with increasing number of vertices (as long as we use the appropri-
ately renormalized electron properties), so we can ignore the really com-
plicated ones. However, the experimental result for gmeas is so accurate that
we need to include some of these more complicated diagrams if the accu-
racy of our theoretical prediction is to match that of the experiment: We
need to include all Feynman diagrams with up to seven minimal interac-
tion vertices. These diagrams are shown in figure 4.12.

The calculation of these diagrams took several years, but in the end,
Dirac’s original prediction did need to be modified. The value gpred of the
predicted modification was

gpred � 1.0011596522.

Comparing this predicted modification to the measured difference

gmeas � 1.00115965219
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Fig. 4.12. The set of Feynman diagrams that were calculated to provide a pre-
diction of the electron’s gyromagnetic ratio with an accuracy consistent with
that of experiments. The calculation of these diagrams took several years.
Reprinted from Donald H. Perkins, Introduction to High Energy Physics, 2nd
ed. (Reading, MA, 1982), fig. 8.2.



from above shows an agreement to mind-boggling precision. Quantum 
field theory predicts the value of the electron’s gyromagnetic ratio to better
than one part in 1010, or about three parts in 100 billion! This establishes
quantum field theory in general (and quantum electrodynamics in partic-
ular) as the most quantitatively successful theoretical framework ever de-
vised. Quantum field theory—this collection of innovative, counterintu-
itive, irreverent, and sometimes almost perverse, but inarguably profound,
ideas—has received the loftiest possible imprimatur that could ever be af-
forded to a physical theory: precise, quantitative confirmation to a fraction
of a fraction of a fraction (if that) of a gnat’s eyelash. It must be right.
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5

Patterns in Nature

The Fundamental Building Blocks

If you corner a particle physicist and ask her to explain the Standard Model
of particle physics to you in 30 minutes or less, about the best she can do is
to describe the so-called building blocks of matter, the relatively small set
of fundamental constituents that, when cobbled together in various com-
binations, fully account for the contents of the material universe. The dis-
covery of these indivisible building blocks was a great stride forward, but say-
ing that a list of them represents the full content of the Standard Model is
somewhat akin to describing a musical work by citing its progression of
chords—it provides a fair picture of the mechanical structure of the work,
but doesn’t get to the essence of its beauty. Nevertheless, one does need to
delineate the progression of chords to understand the work, and likewise,
we need to introduce the list of fundamental (indivisible) particles to ap-
preciate fully the conception of nature into which they are incorporated.

Three Quarks for Muster Mark: The Eightfold Way

The rapid development of particle physics experimental technique (in par-
ticular, the development of the particle accelerator and the “bubble cham-
ber,” which provides a visible record of the paths of individual subatomic
particles emanating from a high-energy collision) led to a great expansion
of the list of elementary particles in the 1950s and early 1960s. At first, par-
ticle physicists were euphoric about the rapid pace of discovery, but as the



list grew longer and longer, with no apparent underlying order or structure,
the euphoria gradually gave way to frustration and the sense that this bur-
geoning array of new particles carried with them some important message
about the structure of matter that we were simply unable to comprehend.
The American physicist Willis Lamb, in his acceptance speech for the 1955
Nobel Prize (for the discovery of subtleties in the spectrum of light emitted
from hydrogen atoms that could only be explained via the application of rel-
ativistic quantum field theory, and thus provided one of that theory’s earli-
est confirmations) put it this way: “the finder of a new elementary particle
used to be rewarded by a Nobel Prize, but such a discovery now ought to be
punishable by a $10,000 fine.”

In retrospect, the particles that those physicists discovered were not ele-
mentary but were instead combinations of a much smaller number of truly
(at least as far as we know at this point) indivisible particles known as quarks.
The problem is that the aptly named strong force binds these quarks to-
gether so tightly inside these prior-day elementary particles that it is impos-
sible to pry an individual quark away and observe it in isolation. The direct
experimental evidence for the presence of quarks, which emerges only
when the energy of the probe being used to look for them is large, is subtle.
It required a good deal of head scratching in the late 1960s to recognize that
such probes were recoiling off something small and hard inside of the
naively designated “elementary” particles of the 1950s.

But we get a bit ahead of ourselves here. In the early 1960s, a physicist
at the California Institute of Technology by the name of Murray Gell-Mann
interpreted the patterns observed in the emerging array of elementary par-
ticles as being due to a symmetry possessed by a much smaller set of inter-
nal degrees of freedom—quarks—without ever splitting those particles
apart with high-energy particle beams. This insight established a well-
defined structure within the disparate array of elementary particles, an
achievement for which Gell-Mann was awarded the 1969 Nobel Prize in
Physics.

The development that set the apple cart right again was Gell-Mann’s sta-
tic model of the strong nuclear force, often referred to as the eightfold way.
Quantum electrodynamics is a theory of the electromagnetic interaction
that purports to describe everything that electromagnetism has to offer, from
high-energy matter-antimatter annihilation to the most basic binding prop-
erties of atoms. The eightfold way, on the other hand, provided a framework
by which the array of fundamental particles, previously a jumbled mass of
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vaguely related particle states, could be understood in terms of a basic un-
derlying principle. But it did not provide a theory of the interactions of these
particles with each other. Gell-Mann’s model is a static one in that it can
describe and codify the array of particles as they exist “statically” on their
own. It does not attempt to describe the “dynamical” rules that such parti-
cles adhere to when they bounce off one another. The more complete dy-
namical theory would have to wait another ten years or so, until the devel-
opment of quantum chromodynamics, the current candidate quantum field
theory of the strong interaction.

Gell-Mann’s eightfold way was perhaps the first conscious application of
the results of the pure mathematical field of group theory and, in particu-
lar, the theory of “Lie groups,” to a problem in physics. Lie groups, named
after the nineteenth-century Norwegian mathematician Sophus Lie (pro-
nounced Lee), lie at the very heart of the connection between physical sym-
metries—the patterns that are observed to order the behavior of the natural
world—and the detailed content of the theories that describe that behavior
(we’ll learn a lot more about Lie groups beginning in chapter 6). Nowhere
does this connection play more of a role in governing the nature of physi-
cal theory than in modern particle physics.

That Gell-Mann was not much aware of the preexisting body of work on
Lie groups, and ended up rediscovering most of the necessary mathemati-
cal results on his own, does not detract from the beauty of this marriage be-
tween the abstract pursuits of the pure, ivory tower mathematicians and the
world of theoretical physics. Today, the connection between abstract math-
ematics and formal theoretical physics is even stronger, and one of the lat-
ter’s greatest practitioners (Ed Witten of the Institute for Advanced Study at
Princeton) was the recipient of the 1990 Fields Medal, the moral equiva-
lent of the Nobel Prize in the world of pure mathematics.

Underlying Gell-Mann’s eightfold way, playing out the intangible sym-
metries of the Lie group, was a cast of three characters, whimsically referred
to as quarks in reference to an obscure line from James Joyce’s Finnegans
Wake: “three quarks for Muster Mark” (note 5.1). These three quarks, when
assembled in various combinations, would economically account for the
myriad of elementary particles that had been discovered over the course of
the prior decade. Furthermore, argued Gell-Mann, if the strong force obeys
this Lie-group symmetry, then the particles formed by binding the quarks
together with the glue of the strong force have to fall into patterns that are
characteristic of the Lie group (in the language of the mathematicians, the
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patterns of the “irreducible representations” of the Lie group). This is pre-
cisely what was observed: the formerly daunting array of elementary parti-
cles fell neatly within the patterns of Gell-Mann’s eightfold way. There were
one or two missing particles, associated with unobserved combinations of
quarks allowed by the eightfold way, but they were soon discovered, with
precisely the predicted properties.

Two of these three quarks can be combined together in various ways to
produce ordinary nuclear matter—neutrons and protons. These two quarks
were given the names “up” (u) and “down” (d). In the eightfold way, the up
quark has an electric charge of �2⁄3, (two-thirds of the charge of the proton),
while the down has a charge of �1⁄3 (�1⁄3 the charge of the proton, or one-
third of the charge of the electron). So, for example, if you combine two up
quarks and a down quark, you have a charge of 2⁄3 � 2⁄3 � 1⁄3 � �1—the
charge of the proton. In the eightfold way, a proton is just that, a combina-
tion of two u’s and one d. Similarly, a neutron is one u and two d’s, a com-
bination that has no net electric charge.

A third quark was required by the eightfold way to allow for the con-
struction of a set of unstable particles that had been observed only in cos-
mic radiation and in bubble chambers that intercepted high-energy parti-
cle beams at particle accelerators. Relative to ordinary nuclear matter, the
properties of these particles was rather strange, so this quark was given the
name strange (s). To piece everything together properly, the s quark needed
to have a charge of �1⁄3, just like the d. But the strange quark differentiates
itself from the down quark in other ways; in particular, strange quarks are
quite a bit heavier than the down quarks (with a mass of about 1⁄3 of that of
a proton, while a down quark’s mass is only a small fraction of the proton’s
mass).

To Gell-Mann, the question of whether quarks really exist or are, instead,
just a mathematical construct, was not of central importance; it seems that,
at the time, Gell-Mann leaned toward the latter point of view. The impor-
tant thing was that the theory allowed the previously senseless array of ele-
mentary particles, the particle zoo, to be neatly arranged in sensible, well-
ordered patterns that were understood in terms of a basic and overarching
principle: a Lie group symmetry associated with a small set of underlying,
indivisible states—the three quarks. Even better, the theory had predicted
new particle states that were found in later experiments. The theory worked.

In the late 1960s, a team of physicists from the Stanford Linear Acceler-
ator Center (SLAC) and the Massachusetts Institute of Technology (MIT)
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conducted a series of experiments in which high-energy electrons were scat-
tered from protons in a target composed of hydrogen. Unexpectedly, they
observed a substantial number of scatters for which the electron bounced
off of the proton at a sharp angle. The rate of such scatters was much larger
than would have been expected if the proton were a uniform blob of charge
1 fermi (10�15 meters) across (the size of the proton had been measured on
the Stanford campus by Robert Hofstadter and colleagues ten years earlier,
an experiment that garnered Hofstadter the 1961 Nobel Prize in Physics).

The results of these experiments were rather surprising. It would be like
throwing a ball bearing into a vat of tapioca pudding and having it bounce
back at you. It would only be possible if, instead of being a uniform gelati-
nous blob, the pudding were a suspension of small, hard objects. Every once
in a while, when you happened to hit one of these small objects just right,
the ball bearing would take a hard bounce and come flying back at you.

In the SLAC/MIT experiment, the electron scattered off the charged
proton electromagnetically through the exchange of a virtual photon. Re-
call the de Broglie relation: If the momentum of the virtual photon is large,
then its wavelength is small. Accordingly, it will scatter off a small region
somewhere amid the proton’s volume of electric charge. In the SLAC/MIT
experiment, the wavelength of the photon for the highest-energy scatters
was about 10�16 meters, or about one-tenth the proton radius. If the proton
is a uniform blob of charge, then these electrons will scatter off only a small
fraction of the stuff of the proton, and this small fraction won’t have much
mass. But when something moving very fast bounces off something light, it
won’t get deflected very much. The fact that a lot of the SLAC/MIT elec-
trons bounced off the proton at sharp angles suggested, instead, that the stuff
of the proton was concentrated in some sort of subparticle, which itself is
much smaller in radius than both the proton and the wavelength of the vir-
tual photon that it absorbs in the scatter.

The data thus suggested that the proton was mostly empty space, inside
of which whirled tiny subparticles whose combined properties produced
the bulk properties of the proton. The proton, it seems, is a sort of subnu-
clear atom.

It was quickly realized that these subnuclear particles could well be the
quarks of Gell-Mann’s eightfold way and further scattering experiments
conducted from this point of view confirmed that they had precisely the
properties predicted by that model. For this demonstration of the physical
existence of quarks, Jerome Friedman and Henry Kendall of MIT, and
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Richard Taylor of SLAC, received the 1990 Nobel Prize in Physics (note
5.2).

Since then, accelerator energies have increased substantially, allowing
us to probe atomic nuclei (or, more accurately, to probe the quarks within
the nuclei) with wavelengths as small as 10�18 meters—one-thousandth of
the proton radius—and the high-angle scatters of the incoming probe are
still observed. Thus, with photon wavelengths of 10�18 meters, we are not
breaking up quarks into smaller objects the way we were able to break the
protons up into quarks with our 10�16 meter wavelength photons. So, to the
best of current experimental knowledge, quarks are the fundamental, indi-
visible constituents of nuclear matter. They will be one of the categories of
particles that will appear on our list of truly fundamental particles.

No one claims that quarks have been shown definitively to be the fun-
damental building blocks; it’s just that, with any experiment that we can do
today, we can’t “see” anything smaller than roughly 10�18 meters across,
and quarks are apparently smaller than that. For now, we can safely label
them as fundamental.

Even with the immense economy of description provided by quarks and
the eightfold way, the list of the fundamental constituents of matter is still
fairly long; there are twelve particles, six of which are quarks. Some theo-
retical physicists hypothesize a smaller set of even more fundamental par-
ticles (commonly referred to as preons) from which these twelve particles
are constructed, much as the daunting array of particles that so dismayed
Willis Lamb are economically constructed from arrangements of the three
quarks (u, d, s) of the eightfold way. No experimental evidence exists for
such sub-subnuclear particles. But then again, there’s really no reason to ex-
pect them to be as large(!) as 10�18 meters.

Leptons: The (Not-So) Light Ones

Quarks are not the only class of fundamental constituents of matter. We now
understand that quarks make up the nuclei of atoms, but we’ve known for
even longer that atoms are not composed of nuclei alone; we also need elec-
trons. Electrons are the most well-known member of a second class of par-
ticles, known as leptons, from the ancient Greek word for light (“light” as
in “not heavy”). As we’ve discussed, it’s the strong nuclear interaction that
binds protons and neutrons (well, really quarks) together into nuclei. Elec-
trons are not bound into nuclei. They simply don’t carry the charge associ-
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ated with the strong interaction, so they can’t join the protons and neutrons
in the tightly bound nucleus. In fact, this is the defining characteristic of
leptons: leptons do not carry the strong-force, or color, charge. As a result,
they don’t interact with other matter as readily (as strongly) as objects con-
stituted from quarks.

In a 1937 experiment with cosmic radiation, Cal Tech physicists Seth
Neddermeyer and Carl Anderson (the same Anderson as that of the 1933
positron discovery) observed a second type of particle that did not partici-
pate in the strong interaction. This particle was similar in character to the
electron but with a much greater mass. While the electron mass-energy is
about 0.511 MeV (an “MeV” is a million electron-volts, so this is 511,000
eV) (note 5.3), making it light relative to the proton’s mass-energy of nearly
1 billion electron-volts, the mass-energy of this new particle, dubbed the
muon, was about 100 MeV. So this lepton is not so light; its lack of a strong-
force charge is what places it in a class with the electron. Finally, in 1975,
a team led by Martin Perl of SLAC (co-recipient of the 1995 Nobel Prize
in Physics) discovered yet a third lepton with electron-like properties—the
t lepton, sporting a mass-energy of about 1,780 MeV—slightly less than two
billion electron-volts. Light indeed!

Our story of the somewhat inappropriately named leptons does not end
here. We can step back and follow an independent thread, dating back to a
rather bold hypothesis regarding the radioactive decay of atomic nuclei put
forth in 1930 by Wolfgang Pauli. The process of nuclear beta decay changes
the nucleus of one type of atom into the nucleus of another (with atomic
number different by one from that of the original nucleus) in conjunction
with the release of an electron or positron. In fact, the inability of physicists
of that day to describe beta decay in terms of the three known forces of na-
ture (gravitational, electromagnetic, and nuclear) prompted them to intro-
duce the fourth force, the “weak nuclear force,” the only purpose of which
(at that time) was to permit beta decay.

Some careful experiments in the 1920s had shown that energy was ap-
parently not conserved in beta decay. The energy of the decay products, in-
cluding the mass-energy of the new nucleus and produced electron or
positron, was measured to be less than that of the mass-energy of the origi-
nal nucleus. Even though the putative weak force behind this process was
new and poorly understood, Pauli believed that it could not violate the sa-
cred principle of energy conservation, so he hypothesized that there was a
third object taking part in beta decay. To have escaped detection in all of
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the beta decay experiments, this object would have to interact very reluc-
tantly with matter. It would have to be able to pass straight through the de-
tectors in these experiments without leaving a trace.

This object would have to have properties different from those of any pre-
viously known form of matter, and so Pauli felt compelled to hypothesize
the existence of a wholly new and different type of particle. This new parti-
cle would have to be a lepton, with no strong-force charge, for otherwise it
would interact readily with the matter in the detectors and have been dis-
covered long before. In addition, this particle could have no electric charge,
for even the electromagnetic interaction would be enough to have exposed
this particle in the earlier experiments. The great Italian American physi-
cist Enrico Fermi, who eventually made essential use of this particle in the
first rigorous theory of the weak interaction (receiving the 1938 Nobel but
for more or less unrelated work in nuclear physics), dubbed this ghostlike
particle the neutrino, which is an Italian-language-inspired way of saying
“little neutral one”: an electrically neutral (uncharged) lepton.

Partaking only in the weak and gravitational forces, the latter of which is
extremely weak even when compared with the weak force, the bashful neu-
trino truly despises making its presence felt. A beam of neutrinos can travel
through the entire breadth of the earth with little attrition. In fact, trillions
of neutrinos from the nuclear reactions that fuel the sun pass through your
body every second, very few of which (thankfully) pause to introduce them-
selves. Nevertheless, callous human ingenuity eventually was able to ferret
out the hermit neutrino, and in 1958, Fred Reines (who, with Martin Perl
of the t lepton, received the 1995 Nobel Prize in Physics), and Clyde
Cowan of the Los Alamos National Laboratory developed a detector that
was able to observe the interactions of neutrinos coming from the core of a
powerful nuclear reactor.

These days, a surprising amount of physics is done with neutrino beams,
including, among other things, the study of the properties of quarks. In fact
I owe my 1988 release from the indentured servitude of graduate study to
such an experiment.

The neutrino story, even our highly abridged version of it, requires fur-
ther discussion. In 1962, a small team of physicists from Columbia Univer-
sity in New York led by Leon Lederman, Mel Schwartz, and Jack Stein-
berger (the three shared the 1988 Nobel Prize in Physics), working at the
Brookhaven accelerator laboratory on Long Island, found there were two
distinct types of neutrinos. One of them, produced in association with an
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electron at the point of origination of the neutrino beam, always turned back
into an electron in the course of its interaction with the matter of the de-
tector at the end of the beam line. The other, produced in association with
a muon (one of the two heavier lepton cousins of the electron) always
switched back to a muon in its interaction with the detector.

It might be mentioned here that the great contribution of Columbia Uni-
versity, the home institution of Lederman, Schwartz, and Steinberger, to
the development of particle physics is underrepresented in this book. An-
other such institution (perhaps somewhat reflecting my alumnus bias) is the
University of Chicago, Enrico Fermi’s home institute after taking his leave
of fascist Italy. For better or worse, it was at Chicago that the human race
created the first artificial sustained nuclear reaction, unlocking, for the first
time, the staggering power of the strong nuclear force. The site of this infa-
mous accomplishment, across the street from the present-day Enrico Fermi
Institute, is marked by a small, but particularly haunting, work by the En-
glish sculptor Henry Moore.

In any regard, although it was not recognized at the time, the discovery
that there are two distinct types of neutrinos was arguably the first step in
the incubation of our modern-day view—the Standard Model—of the fun-
damental interactions of matter. The essence of the Columbia/Brookhaven
two-neutrino discovery, from the modern point of view, is that the funda-
mental constituents—the building blocks—of matter come in repeating
patterns, known as generations.

In 1962, there were two known charged leptons—the electron and the
muon. The two-neutrino experiment demonstrated that each charged lep-
ton has a neutral lepton partner. The electron has its electron neutrino,
which only consorts with electrons, and the muon has its muon neutrino,
which will only break quantum mechanical bread with the muon. There
are two pairs, or generations, of matter particles: one consisting of the elec-
tron and its electron neutrino and the other of the muon and its muon neu-
trino. Thus, we see a pattern emerge: an electrically charged lepton (elec-
tron) is paired with an electrically neutral lepton (electron neutrino),
forming an electron-like generation. This generational pattern repeats itself,
showing up again in the muonlike generation (charged muon plus neutral
muon neutrino).

To get somewhat ahead of ourselves, it is precisely this pattern (which,
in addition, is mirrored in the arrangement of the quarks) that provides the
essential clue to the profound and powerful connection between the con-
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crete world of natural law and the abstract world of mathematical construct.
And, surprisingly enough, it will be through the weak nuclear interaction,
the most obscure and uncooperative of the four known modes of causation,
that this connection will be made.

When the fundamental constituents are listed on paper, it’s conventional
to arrange the members of the same generation within parentheses (as
shown in fig. 5.1). The muon is represented by the Greek letter mu (m). The
neutrino is represented by the Greek letter nu (√), with the subscript indi-
cating the type (electron or muon) of neutrino. The neutrinos get top billing
because their electric charge is larger than that of their associated charged
lepton (in the system of whole numbers, 0 is larger than �1).

But there are three, not two, known charged leptons; recall Perl’s t. By
the time of Perl’s 1975 discovery, the generational structure had been fully
established (see “The November Revolution” section that follows), so it was
immediately suspected that Perl’s lepton was a member of a new genera-
tion, a previously undiscovered third generation of matter.

It is interesting that the existence of the third generation was not com-
pletely unexpected. This point merits a brief digression.

Antimatter is thankfully quite rare. Otherwise, the matter that might
form useful systems such as stars, planets, and the bodies of living creatures,
would be subject to annihilation by antimatter. Without some difference in
behavior between matter and antimatter, the egalitarian matter/antimatter
soup present just after the big bang could not have evolved into the com-
fortable matter-dominated universe of today.

In 1973, the Japanese theorists Makoto Kobayashi and Toshihide Mas-
kawa, two years before Perl’s discovery of the t lepton, recognized that if
there were at least three generations of matter, then it would be possible for
the theory of the weak interaction to exhibit a preference for matter over an-
timatter. In other words, if there are three or more generations of matter,
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then it might be possible to explain why it is that almost all of the antimat-
ter present in the primordial universe disappeared, leaving the essential mat-
ter abundance of today.

Following this line of reasoning, Kobayashi and Maskawa predicted the
existence of the third generation of matter (note 5.4). With this prediction,
they also provided one of the first hints that particle physicists might be able
to aid cosmologists in their ambitious quest to understand the origin and
evolution of the universe, a connection that has grown over the years into a
fascinating, successful, and rather well-funded scientific pursuit.

If matter comes in generations, which include one neutral lepton for
each charged lepton, and the t lepton is the lepton of the third generation
of matter, then what about its associated t neutrino? This, too, is an inter-
esting story.

As late as the turn of the millennium, a vexing footnote to the array of con-
stituents of the Standard Model read as such: we know that the t neutrino
must exist, but they’re hard to produce in great quantity. The t neutrino had
not yet been seen, but we knew that they were out there somewhere.

Finally, in August 2000, the t neutrino was unambiguously identified in
an experiment at the Fermi National Accelerator Laboratory (Fermilab, cur-
rently the world’s forefront particle accelerator) in suburban Chicago. In
this experiment, a neutrino beam was passed through a vat of photographic
emulsion, quite literally taking a three-dimensional snapshot of any neu-
trino interaction in the emulsion. On review of the emulsion after a pro-
longed exposure to the beam, a number of the interactions embedded in
the emulsion clearly showed the spontaneous emergence of a charged t lep-
ton—the unambiguous signature of the interaction of a t neutrino in the
body of the emulsion.

Hats off to this persevering team of physicists, for they were able to iso-
late what, in all likelihood, was the last undiscovered fundamental con-
stituent of matter. Why do I say this?

In 1988, two accelerator laboratories (SLAC in California and CERN,
the bastion of pan-European particle physics on the French-Swiss border
outside Geneva) began almost simultaneously to produce copious numbers
of Z0 bosons, the neutral member of the set of 3 particles responsible for the
weak nuclear interaction. The Z0 decays rapidly and numbers among its de-
cay products all the different quarks and leptons, as long as the mass-energy
of the quark or lepton is less than half of the Z0 mass-energy of about 90 bil-
lion electron-volts.
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Charged leptons can be pretty heavy (the t has a mass-energy of about 2
billion electron-volts); the same is true for quarks. So, fourth-generation-
charged leptons or quarks, if they exist, might be too heavy to be produced
by the decaying Z0, thus their existence cannot be ruled out by studying
what the Z0 decays to. However, neutrinos are known to be much lighter,
no heavier than about 10 million electron-volts. So, if there were a fourth-
generation neutrino, it’s a virtual certainty that it would have been dis-
cernible through the measurements of the Z0 decay properties. One of the
most prominent activities of the particle physics program over the decade
of the 1990s was the measurement of the properties of the Z0 to high pre-
cision, and there are clearly only three neutrinos available for the Z0 decay.
It looks as if three, the minimum number of generations necessary for mat-
ter/antimatter symmetry violation, is precisely the number of generations
that exist. With the year 2000 discovery of the t neutrino, all of the mem-
bers of these three generations (including the quarks) have now been ob-
served.

How much do neutrinos weigh? At this point, our understanding of neu-
trino masses is in a funny state. We know from studying the decays of the
charged leptons, which always involve the emission of a corresponding neu-
trino, that none of the three neutrinos is heavier than about 10 million elec-
tron-volts. This data, though, is also consistent with the hypothesis that all
the neutrinos are massless.

However, we now believe that neutrinos do indeed have mass. If neutri-
nos are not massless like photons but, instead, have differing masses like
their charged lepton counterparts, then it is possible for the different neu-
trino types to oscillate, to change their identity from one type to another as
they travel through space.

During the 1990s, initially sparse data hinting at such oscillations, using
neutrinos from the sun as a naturally produced neutrino beam, were bol-
stered with the addition of data from modern neutrino experiments. The
leader in this pursuit is the Super-Kamiokande experiment in Japan, which
makes use of neutrinos produced by cosmic rays as they bombard the earth’s
atmosphere. Additionally, an accelerator-based neutrino experiment (the
LSND, or Liquid Scintillator Neutrino Detector, experiment at Los
Alamos) also reported a likely observation of neutrino oscillations: the ap-
pearance of electrons in interactions of their nominally pure muon neutrino
beam. These experiments don’t appear to be mutually consistent, but it
seems fairly certain that at least one of the experiments is observing neu-
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trino oscillations, certain enough, at least, to attract the attention of the 2002
Nobel Committee. Ray Davis Jr. of the University of Pennsylvania and
Masatoshi Koshiba of the University of Tokyo—proponents of the experi-
ments conducted with solar neutrinos—shared the 2002 Nobel Prize in
Physics. So neutrinos do seem to have mass, although it’s unclear at this
point what specifically those masses are.

At this point, neutrino physics is a growth field, for this all must be sorted
out. Again, this aspect of particle physics reaches beyond the nominal
boundaries of the field because if the elusive but abundant neutrino does
have mass, then it is certainly an important player in the overall—the cos-
mological—structure of the universe.

The November Revolution

If there’s any single discovery that established the Standard Model as just
that—the Standard Model—it was the discovery of the “charmed” quark. It
is also a classic story of competition between two competing and comple-
mentary approaches—those of electron-beam and proton-beam accelera-
tors.

Historically, the field of particle physics has benefited vastly from the in-
terplay of these two approaches—the precise, controlled measurements
generally permitted by lower-energy electron machines complement the
greater reach of the higher-energy, but intrinsically sloppier, proton ma-
chine experiments. In the case of the charmed quark, however, it was not a
question of complementarity but, rather, one of direct competition.

In late fall of 1974, experimenters at the SLAC electron-positron collider
(SPEAR), independently of and simultaneously with an experiment ana-
lyzing the products of catastrophic collisions of the Brookhaven proton
beam with beryllium nuclei, obtained clear evidence of a new particle, with
a mass-energy of about 3,100 MeV (remember, again, that the “M” in
“MeV” stands for million). Although quite different in nature, the data of
either experiment provided convincing evidence for the new particle. This
new particle received two names: it was called the J particle by the East
Coast experimenters (from Brookhaven and MIT, although an entirely dif-
ferent MIT group than that of the discovery of quarks several years earlier
at SLAC), and the y by the West Coast team (SLAC and the University of
California, Berkeley). Today, this particle is known as the J/y.

The Brookhaven-based group on the East Coast of the United States
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had been sitting on its evidence for the new particle, with a journal paper 
awaiting final approval from the collaboration’s leader, MIT professor Sam-
uel C. C. Ting. Ting is nothing if not a very careful experimenter, and even
in the face of solid evidence, he had his team ensure that every feature of
the experiment’s data was understood and explained. The nature of elec-
tron machines being as it is, though, the evidence for the discovery of the 
J/y at SLAC on the West Coast was more than just solid, it was numbingly
obvious.

In Ting’s experiment with the Brookhaven proton beam, the short-lived
J/y particles were observed by measuring the energy of the electron and
positron they occasionally decayed into. At an energy corresponding to the
mass-energy of the new particle, there was an excess of about 250 electron-
positron pairs over what would have been expected were there no new 
particle; this excess was culled from the products of billions of proton-
beryllium collisions accumulated over a number of months.

In the SLAC electron-positron experiment, led by Burton Richter, the
J/y was produced through the annihilation of electron-positron pairs from
countercirculating beams, the reverse of the Brookhaven experiment’s use
of the decay to electron-positron pairs. In electron-positron accelerators, the
energy is precisely controlled and is quite uniform from particle to particle
in the beam. If the sum of the energy of a colliding electron and positron
from the countercirculating beams is not precisely equal to that of the J/y,
a J/y cannot be produced in the collision. However, if the sum of the en-
ergy is precisely that of the J/y, the particle will be produced and produced
in great quantity.

In early November 1974, the SLAC/Berkeley team was exploring the en-
ergy region around 3 billion electron-volts with the SPEAR electron-
positron beams. The electron-positron collision rate didn’t quite agree with
expectations. As a result, it was decided to explore the energy region in fine
steps, taking a little data at a lot of different, closely spaced energies. When
the sum of the electron and positron beam energies reached exactly 3.105
billion electron-volts (the mass-energy of the J/y) it’s not too much of an ex-
aggeration to state that all hell broke loose. The collision rate jumped by a
factor of 100. If the combined beam energy was increased or decreased by
as little as 0.010 billion electron-volts, the collision rate went right back 
to normal. If the beam energy was tuned back to precisely 3.105 billion 
electron-volts, the collision rate went right through the roof again. The con-
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clusion was unavoidable; a new particle, the J/y, had been discovered. Sev-
eral thousand were produced at SPEAR in a single weekend.

With this great collision rate, it was possible to check and cross-check the
SLAC data in a matter of days rather than months, and a paper announc-
ing the result was drafted over the weekend of November 9–10, 1974. As
the story is commonly told, Ting got wind of the excitement at SLAC and
called Richter to inform him of the evidence in the Brookhaven data.
Richter then apprised Ting of the details of the SLAC result, and it became
clear that they were seeing independent and confirming evidence of the
same exotic new particle. The two papers, one from the MIT/Brookhaven
group and the other from the SLAC/Berkeley group, were submitted on No-
vember 12 and 13, respectively, and appeared back-to-back in the Decem-
ber 2, 1974, edition of the Physical Review Letters. For their efforts, Ting
and Richter shared the 1976 Nobel Prize in Physics.

In all academic pursuits, there are times when a result or an idea has its
authors bursting at the seams to make it public and to mark it once and for
all as theirs. It is also often the case that the result or idea has arisen from a
certain ripeness—an overall evolution within the particular pursuit toward
the result—and, in such cases, there is always the risk that others are rapidly
closing in on the same goal. In such cases, the pressure to announce, to pub-
lish, to claim the prize at the expense of care and certainty is enormous.
Ting, with the profound result within the Brookhaven data clamoring for
the open air, opted for the high road and withheld the promulgation of the
discovery of the J until certainty was at hand. However, the SLAC experi-
mentalists did not try to scoop the longer-standing Brookhaven data but, in-
stead, worked cooperatively toward a joint announcement. Both groups de-
serve, in addition to the highest scientific accolades, credit for their restraint.

It could be argued that this restraint cost Ting and Richter half a Nobel
Prize. But, in the end, there are no semi-laureates. You’re either a Nobel
Laureate or you’re not. Most of us are not; Ting and Richter are, and de-
servedly so.

But what exactly is the J/y? Why was its unearthing in 1974 deemed a
revolution, rather than just an interesting discovery? The answer lies in its
relation to a theory connecting the electromagnetic and weak nuclear in-
teractions that emerged in the late 1960s primarily due to the work of Shel-
don Glashow (Harvard University as well as various points west), Steven
Weinberg (MIT and the University of California, Berkeley), and Abdus
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Salam (Pakistan; via Imperial College, London). This theory is today’s Stan-
dard Model of Particle Physics; for their work in developing the Standard
Model, these three theorists shared the 1979 Nobel Prize in Physics.

The Standard Model derives its inspiration from, and is heavily reliant
on, the generational pattern exhibited by the quark and lepton constituents
of matter. We again need to get a bit ahead of ourselves and discuss some
aspects of this model to understand how the J/y acted to establish this pat-
tern as a central component of the fundamental properties of the natural
world.

Before the development of the Standard Model, it was thought that the
weak interaction was mediated by a pair of electrically charged particles
known as W bosons (again, a boson is any particle with spin, or intrinsic an-
gular momentum, that is an integer multiple of the reduced Planck’s con-
stant h̄ � h/2p). The W� boson possesses a positive charge of the same mag-
nitude as that of the proton, while the W� boson (the antimatter partner of
the W�) is negatively charged, with the same electric charge as the elec-
tron.

In neutrino experiments, the neutrino is detected by the sudden ap-
pearance of a charged lepton. Figure 5.2, representing the interaction of a
neutrino with a down quark (charge �1⁄3) from a neutron or proton in a nu-
cleus, shows why this is the case.

In figure 5.2a, the neutrino (say, a muon neutrino) emits a W� boson;
for the overall electric charge not to change, the neutrino must turn into
something negatively charged. Since this is a muon neutrino (√m), the neg-
atively charged particle it turns into is a muon (m�). The W� is then ab-
sorbed by the down quark, changing its charge and turning it into an up
quark (since up quarks have a charge of �2⁄3, one unit of charge greater than
that of the down quark, everything works out). What one sees in the detec-
tor after the interaction is the muon (the telltale sign of an incoming muon
neutrino) and a splash of energy associated with the up quark, which is
ripped from the nucleus by the interaction. Figure 5.2b shows the same
process except the interaction is instead mediated by the passage of a W�

boson from the stationary down quark to the incoming neutrino. The Feyn-
man diagram for this process is shown in figure 5.2c, which represents the
quantum-mechanical combination of both of these (experimentally indis-
tinguishable) processes.

Looking at figure 5.2, we see that the weak interaction associates leptons
of the same generation. To interact weakly, a lepton must exchange a W bo-
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son; in doing so, it must change its charge. To figure out exactly how to
change its charge, the lepton looks within its own generation for the parti-
cle with the appropriate charge, and that’s what it turns into. An electron
neutrino turns into an electron, and a muon neutrino turns into a muon.

On the other side of the Feynman diagram of figure 5.2, you might ex-
pect the same thing to be true for the quarks. Perhaps the quarks are also
arranged in generations, with the W boson connecting the negatively
charged down quark with the up quark—the positively charged quark that
lies within its quark generation. But there was a problem: the experimental
evidence available before 1974 was incompatible with this point of view.

The eightfold way tells us that there are three quarks—u, d, and s. How
do you arrange an odd number of quarks into generations, each with two
quarks in it? In reactions such as that of figure 5.2, the up (u) quark con-
nects with the down (d) quark, leaving the strange (s) quark completely out
of the picture. Arranging three quarks into generations of two quarks each,
someone has to get left out, and that someone is the s quark.

Well, more or less. Even this statement needs to be hedged because ex-
perimental particle physicists noticed occasional evidence for “strangeness
changing” weak interactions, such as that shown in figure 5.3—reactions
that are in every way identical to that of figure 5.2, except with the initial
quark being a strange (s) quark rather than a d quark.

Fig. 5.2. a and b are the space-time diagrams associated with the scattering of a down
quark in an atomic nucleus by a muon neutrino in a neutrino beam through the exchange
of a W boson. c is the corresponding Feynman diagram for the process. a and b show
why it is that to absorb a W � or emit a W � boson, the down quark must turn into a quark
with one additional unit of electric charge (remember the principle of charge conserva-
tion). The up quark, with two-thirds of a proton’s charge, is an obvious candidate for the
quark q that exits the interaction.



Studies of the relative rate of occurrence of the processes of figures 5.2
and 5.3 showed that, in a given neutrino interaction, the likelihood of hav-
ing the process of figure 5.3 take place was only about a twentieth of that of
the process of figure 5.2. So, in early 1974, the problem was not just that it
was impossible to arrange the three known quarks into neat generations of
two quarks each. In addition, the observation of the reaction of figure 5.3,
albeit at a twentieth of the level of that of figure 5.2, showed that one
couldn’t simply pair the u and d quarks into a generation, leaving the s quark
hovering alone on the sidelines. The social life of the s quark, while limited,
was not nonexistent.

So, it seemed as if the whole idea of generations—pairs of particles dif-
fering by one unit of electric charge and related by their behavior in weak
interactions—fell apart when you started talking about quarks. This was not
good news for the Standard Model of Glashow, Salam, and Weinberg,
which is based on this generational pattern.

After the revolution of November 1974, it became clear how to remedy
this situation. This remedy requires another entirely new type of exchange
force: that of the neutral weak interaction.

Fig. 5.3. The Feynman diagram representing the process of scattering a strange
quark by a neutrino through the exchange of a W boson. Again, in the process
the strange quark must turn into a quark with a charge of �2⁄3.



One of the most compelling aspects of the Standard Model is that it pre-
sents a picture in which the electromagnetic and weak nuclear forces are
unified—seen to be different facets of a single underlying electroweak force.
The electromagnetic field quantum, the photon, is electrically neutral. In
developing the unified electroweak theory of their new model, Glashow,
Salam, and Weinberg found it necessary to introduce an additional weak in-
teraction field quantum that is complementary to the electromagnetic pho-
ton, and thus is also electrically neutral. This third (in addition to the
charged W� and W� bosons), electrically neutral weak field quantum is
known as the Z0 boson, the superscript “0” referring to its lack of electric
charge.

By exchanging a neutral weak interaction field quantum, neutrinos (say,
in a neutrino beam) can interact with matter (say, in the detector of a neu-
trino experiment) without turning into their corresponding charged lepton.
Such a process is shown in the Feynman diagram of figure 5.4—since the
muon neutrino emits (or absorbs) an electrically neutral Z0 boson, it doesn’t
have to turn into a muon—it can just remain a muon neutrino (in contrast
to fig. 5.2 for W boson exchange). Similarly, the d quark that’s struck by the
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Fig. 5.4. The Feynman diagram representing the process of scattering a down
quark by a neutrino through the exchange of a Z0 boson. Since the Z0 boson
carries no electric charge, the d quark can retain its identity after the scatter.



exchanged Z0 can remain a d quark after it’s been struck. Such processes
were observed for the first time in mid-1973 by the Gargamelle neutrino ex-
periment at CERN.

Now, take a look at figure 5.5, a Feynman diagram for which a muon
neutrino again exchanges a Z0 boson with a nucleus in the target, remain-
ing a muon neutrino after the scattering. Unlike the process of figure 5.4,
though, in this process the d quark is changed into an s quark when it ab-
sorbs the Z0. Since both the d and s quarks have the same electric charge
(�1⁄3), there’s nothing obviously wrong with this diagram. The electric
charge of the neutrino and quark together is the same before and after the
exchange of the Z0. If the exchange of the charged W� and W� bosons in
figures 5.2 and 5.3 can connect the u quark with both the d and s quark,
then perhaps the neutral Z0 boson can connect the d and the s quark di-
rectly together, leading to the hypothetical process shown in figure 5.5.

According to the Standard Model, this process should be able to take
place sometimes, given the quarks (u, d, and s) known in the early 1970s to
be available for participation in the weak interaction. The problem is that
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Fig. 5.5. The Feynman diagram representing the process of scattering a down
quark by a neutrino through the exchange of a Z0 boson, but with the d quark
turning into an s quark in the process. Since, like the d quark, the s quark has
a charge of �1⁄3, there’s nothing wrong with this process from the point of view
of charge conservation. However, this process does not take place!



processes like that of figure 5.5 are not observed in nature. The incorrect
prediction of the existence of processes like those of figure 5.5 was a real
stumbling block for the nascent Standard Model.

In 1970, though, Glashow, along with John Iliopoulos, from Greece, and
Luciano Maiani, from Italy, realized that they could dispense with this
problem if there were a fourth type of quark, whimsically designated the
“charmed,” or c quark. The u quark connects with both the d and s quark
but prefers to connect with the d quark by a margin of twenty to one. If this
fourth quark could replace the u quark in figures 5.2 and 5.3, except with
an exactly complementary twenty-to-one preference for the s quark over the
u quark (rather than the other way around), everything would be fine again.

The idea lurking between the lines here is that this fourth quark allows the
critical generational pattern to be established for the quarks, but it does so in
a funny way. The generational partner of the u quark is not the d quark but is
instead 19⁄20 d and 1⁄20 s. We say this because the diagram of figure 5.2 is about
twenty times as likely to happen as that of figure 5.3. So let’s call the genera-
tional partner of the u quark the d� quark: d� and not just d since it’s mostly d
but has a little s in it. Similarly, the generational partner of the c quark is the
complementary mixture of 1⁄20 d and 19⁄20 s, so we’ll call the generational part-
ner of the c quark the s� quark: mostly s, but with a little bit of d.

Now, a process such as that shown in figure 5.5 can actually happen in
two ways: one for which the d and s both take part as a d� (likely for d, un-
likely for s) and the other for which the d and s both take part as an s� (un-
likely for d, likely for s). What Glashow, Iliopoulos, and Maiani realized was
that these two possibilities would always exactly cancel out each other.

So, if such a fourth quark exists, filling out the generational pattern of
the quarks in a way that mirrors that of the leptons, then processes like that
of figure 5.5 in which the quark type is changed by the exchange of a Z0 bo-
son are forbidden from taking place. This would be a good thing, since that’s
exactly what the experimentalists were seeing (or, actually, not seeing): Z0

exchange associated with a change of quark type does not take place in na-
ture. This prescription for the introduction of a fourth type of quark, which
fills out the generational pattern of the quarks and thereby acts to nullify the
possibility of reactions like that of figure 5.5, is known as the GIM mecha-
nism, where GIM is an acronym of its creators’ names.

But why introduce the GIM mechanism, with all its complications, to
motivate the need for the charmed quark? If you accept the claim, unmo-
tivated as of yet, that the Standard Model is predicated on the existence of
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generational pairs of quarks and leptons, then it seems as if the strange quark
needs a generational partner. This should serve as reason enough to moti-
vate the search for the charmed quark, and indeed, that’s correct: the
charmed quark completes the second quark generation, in a way that mir-
rors the arrangement of the first two lepton generations, as shown in figure
5.6. But that’s just not the way this most-celebrated chapter in the history of
particle physics unfolded, and to understand the nuance of the discovery of
the J/y, one needs to appreciate the GIM mechanism.

In any regard, the 1973 discovery of the Z0 exchange process begged the
following question: Where, if anywhere, is the charmed quark? In 1974,
everything hinged on this question: the explanation for the lack of the
“strangeness changing” neutral weak (Z0) interactions of figure 5.5 as well
as the establishment of the generational pattern for the quarks, mirroring
that of the leptons.

This is where the J/y fits in. The electrically neutral J/y is not the
charmed quark itself, which must have an electric charge exactly two-thirds
that of the proton to fit into the generational pattern of figure 5.6. Rather,
the J/y is a composite particle, a short-lived subnuclear atom composed of
a charge �2⁄3 charmed quark and a charge �2⁄3 antimatter anticharmed quark
that orbit around each other for about 10�20 seconds—the amount of time
it takes the charmed quark and anticharmed antiquark to realize that they’re

Fig. 5.6. The first two generations of matter, including the quark generations
that mirror the lepton generations.



matter/antimatter counterparts and annihilate each other, which is why the
J/y decays.

The revelation of the discovery of the J/y, the so-called November Rev-
olution, was that the charmed quark does exist, that quarks do have a gen-
erational structure that mirrors that of the leptons, and that the Standard
Model may well be a valid description of nature. It was at this point that the
Standard Model achieved the central status in the field of particle physics
that is reflected by its name.

The charmed quark, and the array of current-day particles that contain
it, escaped prior detection due to the charmed quark’s large mass-energy
(half the J/y mass-energy, or about 1.5 billion electron-volts), which placed
it beyond the reach of earlier accelerators. In the 1960s, when none of these
heavier particle states had been observed, the known elementary particles
were fully accounted for with the three quarks (u, d, and s) of Gell-Mann’s
eightfold way. Rather than rendering Gell-Mann’s static model invalid, the
inclusion of the charmed quark acted instead to extend the notions of Gell-
Mann into a new realm, that of charmed particles. On the other hand, by
the time of the discovery of the J/y, the new dynamical theory of quantum
chromodynamics was beginning to emerge, a loftier and more powerful the-
ory of the strong nuclear interaction than that of Gell-Mann’s eightfold way.

Why We Need Top Quarks

The most profound result of the November Revolution was to establish the
dance card for the individual quark types by filling in the generational part-
ner of the s quark with the newly discovered c quark. At the time, this es-
tablished a beautiful symmetry between the known lepton types and the
known quark types. The leptons seemed to come in two generations (the
electron and muon generations), each of which had an upper member (a
neutral neutrino) and a lower member (a negatively charged electron or
muon). With the addition of the charmed quark, the quark types were sim-
ilarly seen to fall into two generations, each with an upper member pos-
sessing �2⁄3 of a proton’s electric charge (u and c, respectively) and a lower
member possessing �1⁄3 of a proton’s charge (d and s, respectively).

The connection that establishes two fundamental constituents (two
quarks or two leptons) as quantum-mechanical dance partners (members of
the same generation) is their association through the weak interaction
process of W boson exchange (as shown in the Feynman diagram of fig.
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5.2c). On either side of the exchanged W in this diagram, the two partici-
pating constituents are two members of the same generation.

As we’ve seen, there’s a caveat to this distinction. Leptons, which we can
think of as being puritanical, always respect their generational commitment
and will never offend our graces by waltzing with a partner from a different
generation. If a muon neutrino emits or absorbs an (electrically charged) W
boson, it is always the muon and never the electron that will consort with
the muon neutrino to compensate the loss or gain of the W boson’s electric
charge.

Quarks, however (perhaps because they are a discovery of the late 1960s),
like to swing a little. It’s not the case, for example, that the s quark connects
solely with the c quark during W boson exchange, for ample evidence ex-
ists that the Feynman diagram of figure 5.3 does take place. For quarks, then,
we are forced to be more open minded in how we establish generational
partnerships. It’s not that d dances exclusively with u and s dances exclu-
sively with c; instead, what we observe is that d connects preferentially with
u and s preferentially with c, but once in a while (roughly 5 percent of the
time), d will pick up with c rather than u, or s with u rather than c, a phe-
nomenon known as generational mixing, or, simply, mixing. Such mixing
is a good thing, for within the context of the Standard Model, it is exactly
this phenomenon that is thought to be the source of the weak nuclear force’s
divergent treatment of matter and antimatter (again, as long as there are
three or more generations to mix in this way). So in this roundabout way, it
would seem, mixing is essential to the existence of life (note 5.5).

This beautiful symmetry between the known generations of quarks and
leptons did not last long. It was only nine months later, in August 1975, that
Perl’s discovery of the t lepton was submitted to the Physical Review for pub-
lication. The t, like the electron and muon, needs generational partners to
keep the pattern intact. As we’ve seen, the t neutrino, the generational part-
ner of the t, was finally detected in July 2000. But what about the quarks of
the third generation?

It wasn’t too long after the discovery of the t that this question was an-
swered. By 1977, Fermilab (in suburban Chicago) had overtaken Brook-
haven as the site of the premier American proton accelerator. In an experi-
ment led by Leon Lederman of Columbia University, which was essentially
a higher-energy version of the Brookhaven experiment that codiscovered
the J/y, a particle was observed with properties similar to the J/y, only much
more massive. Further study revealed that this particle, dubbed the U (or
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upsilon), consisted of a quark of charge �1⁄3 and an antiquark of charge �1⁄3,
in orbit about each other. This clearly was a candidate for the lower mem-
ber of the third quark generation and was accorded the name of bottom, or
b, quark. This is a truly heavy quark, with a mass-energy of about 4.5 billion
electron-volts, about three times as heavy as the relatively heavy charmed
quark and about five times as heavy as a proton, which is composed of the
even lighter up and down quarks.

Rounding out the dance card this time, with the bottom quark’s genera-
tional partner, required more than just slamming the tremendously power-
ful Fermilab (or CERN) proton beam into a stationary block of material. To
develop enough energy to produce the sixth and final quark, it was neces-
sary to collide the high-energy proton beam with an equally high-energy
countercirculating antiproton beam—like the electron-positron collider at
SLAC, but with protons and antiprotons instead. This required some effort,
but even when these machines were completed at CERN and Fermilab in
the early 1980s, the bottom quark’s partner eluded detection.

The race was on, and with eventual increases in the proton/antiproton
beam energies (to just about a trillion electron-volts each), and some ele-
gant developments in particle detector technology, the sixth quark, dubbed
“top” or t, was discovered at last at Fermilab in March 1995. Taking place
in the era of truly modern particle physics experimentation, the groups that
mounted this detection effort (the CDF and D0 collaborations) each con-
sisted of many hundreds of physicists and supporting technologists from all
over the world.

If the bottom quark is surprisingly heavy, at roughly 5 billion electron-volts,
then the top quark is colossally so, for it weighs in with a mass-energy of no
less than 175 billion electron-volts, a single, fundamental particle with a mass
almost 200 times that of the proton. This fact is not lost on the theoretical
physicists of the world, who have given substantial thought to why this parti-
cle’s mass lies in a league of its own, and whether perhaps this experimental
fact is trying to tell us something important about the way the universe oper-
ates. In a nutshell, however, we have no idea why “top” so tips the scales.

The quality of fundamental particles that we have been referring to as
“type” in fact has a more formal, if somewhat whimsical and arbitrary,
name: “flavor.” Thus, there are six flavors of quarks. In some sort of order,
they are d, u, s, c, b, and t. Sometimes b and t go by the names of beauty
and truth, respectively, rather than the more staid nomenclature of bottom
and top.
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Similarly, there are six lepton flavors; the complete list of quark and lep-
ton flavors will be presented in an orderly fashion in section “Reprise: The
Fundamental Building Blocks.” Measuring the properties of the different
quark and lepton flavors and understanding their interrelations (such as the
parameters that establish the degree of mixing between the generations) is
a pursuit referred to as flavor physics.

Finally, although so much stock is put into the symmetry between the
quark and lepton generations, this property of the fundamental building
blocks is not understood in the context of the Standard Model. Within ei-
ther of the categories—quark or lepton—the origin of the generational pat-
tern is understood and provided one of the central insights that led to the
development of the Standard Model. But there is nothing within the Stan-
dard Model that suggests why it is that there are equal numbers of quark and
lepton generations. To be sure, this symmetry does seem necessary within
the Standard Model; without it some of the predictions of the model make
no sense. But this is not to say that the reason for the symmetry between the
quark and lepton generations is understood.

So, it’s simply not yet understood why, if there are three generations of
leptons, there should necessarily be precisely three generations of quarks. It
could just be an accident of nature, but past experience suggests that a sym-
metry pattern as simple and clear as this provides an essential, if yet unde-
ciphered, clue about the workings of nature.

Particles of Force

The fundamental particles introduced so far, the six quark and six lepton
flavors, are what we currently believe to be the basic constituents of matter.
Atoms are made up of electrons in orbit around a nucleus composed of pro-
tons and neutrons. The protons and neutrons are themselves composed of
up and down flavored quarks. Thus, ordinary matter is composed of mater-
ial that comes strictly from the first generation, and from this generation,
only the electron neutrino is missing as a component of ordinary matter—
because it’s so weakly interacting that it can never be bound to anything.
Nonetheless, given that a flux of trillions of electron neutrinos from the
processes that fuel the sun are passing through our bodies every second, per-
haps we can even say that the electron neutrino is ordinary matter.

In high-energy cosmic ray events and in high-energy physics laborato-
ries, heavier forms of matter can be formed using components from the sec-
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ond and third generations (the array of matter particles that one can con-
struct from quarks will be examined in the section “The Particle Zoo” at the
end of this chapter). In general, these exotic matter states are either, in the
case of leptons, the fundamental particles themselves or are assemblages of
either two or three quarks, usually only one of which is a member of the sec-
ond or third generation. In one case, an experiment at Fermilab did suc-
ceed in producing atoms consisting of a muon in orbit about a charged pion
(up quark and down antiquark combination). Such states are invariably
fleeting, decaying away on time scales for which a microsecond is a verita-
ble eternity, but they do leave experimental evidence that uniquely identi-
fies them when they either pass through or decay within modern particle
physics detectors.

More specifically, quarks and leptons constitute the set of fundamental
(indivisible) fermions. Again, a fermion is any particle with an amount of
spin angular momentum that is a half-integer (some integer plus one-half )
multiple of h̄ � h/2p, where h is Planck’s constant. All of the fundamental
fermions, both quarks and leptons, are spin-1⁄2, that is, spin on their axes with
an angular momentum of h̄/2. Matter, we say, is built up from the funda-
mental fermions and, in most cases, made of the fermions from the first gen-
eration.

But if you build a single object, such as a proton, a pion, an atom, or a
ball bearing, out of smaller components, you need somehow to glue those
components together so that the object moves around like a single, rigid
body; this is where the forces come in. From the vantage point of quantum
field theory, forces are mediated by the exchange of field quanta, such as
the photon of electromagnetism, or the W�, W�, and Z0 bosons of the weak
nuclear force.

All of the mediating particles, the field quanta, are bosons and possess an
integer multiple of h̄ of spin angular momentum. Thus, matter consists of
fermions (quarks and leptons) bound together by one or more of the forces.
The forces, in turn, are characterized by the identity of the exchanged field
quanta, or, more precisely, by the properties of the exchanged boson field
quanta, and the nature of interaction vertices that connect the exchanged
boson field quanta to the fermions that exchange them.

The field quantum of electromagnetism is the photon, usually denoted
by the Greek letter gamma (g) (note 5.6). Photons are massless and have
spin angular momentum exactly equal to 1 � h̄; they are “spin-1.”

As we have seen, there are three field quanta of the weak nuclear inter-
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action—the W�, W�, and Z0 bosons. All three of these were first observed
directly at the CERN SPS proton/antiproton collider in 1983, leading to
1984 Nobel Prizes for Carlo Rubbia (the leader of the experimental collab-
oration that detected the particles) and Simon van der Meer (for his inno-
vative contributions to the development of the proton/antiproton collider).
The superscripts “�,” “�,” and “0” refer to their electric charge, relative to
that of the proton. W and Z bosons are, like the photon, spin-1. Unlike 
the photon, however, they are quite heavy, possessing roughly 100 billion
electron-volts of mass-energy (100 proton masses) each. This, as we’ll see in
later chapters, is an important point.

The field quantum of the strong nuclear force is known as the gluon,
whose tongue-in-cheek name has to do with the fact that gluons mediate
the incredibly strong forces that bind quarks together into nuclei. The exis-
tence of gluons was first confirmed in 1979 at the PETRA electron-positron
collider in Hamburg, Germany. PETRA was the first electron-positron col-
lider with high enough energy to allow for the detection of occasional ex-
tra (third) jets of particles emerging from the annihilation of the electron
and positron to quark-antiquark pairs. Two of these jets (collimated bursts
of subatomic particles) were associated with the quark and antiquark. The
third was due to a gluon that radiated from one of the quarks, just as a mov-
ing electron in a radio transmitter sends out radio wave photons into the sur-
rounding space (the parallel between the electromagnetic process of pho-
ton radiation and the strong-force process of gluon radiation is nearly
perfect, once you reach energies high enough so that the latter can happen).

There are really eight quanta of the strong nuclear force field. Gluon is
a generic term that pertains to all eight of the field quanta without distin-
guishing between them. One can never tell which of the eight possible
quanta partakes in a given interaction; as far as measurable quantities go
(such as mass, electric charge, etc.) they all look exactly the same. The dif-
ferences between the eight field quanta collectively known as the gluon are
subtle. Generically, though, gluons are massless, have spin-1, and are usu-
ally denoted “g.”

Finally, the field quantum of the gravitational field is known as the gravi-
ton, whose existence is purely speculative; the graviton has never been ob-
served. Even worse, we don’t even know how to formulate a quantum field
theory of gravity, so there’s not even a theory that makes use of the graviton
to calculate gravitational forces. Despite this, we do know that, should any-
one ever come up with a workable quantum theory of gravity (and there are
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quite a number of people trying), its graviton will be massless, with spin-2
(having an intrinsic angular momentum of two times h̄). The symbol for
the graviton is g, about the same as that of the gluon. Not to worry, for the
gravitational force and its putative field quantum are really no concern of
ours.

Of all these force-mediating particles, only those of the weak nuclear
force—the W and Z bosons—have any mass. This sets the weak nuclear
force quite apart from the other three forces. The mass-energy of the W and
Z, about 100 billion electron-volts, corresponds according to the de Broglie
relation to a wavelength of about 10�19 meters. This is the energy at rest;
when you get one of these things moving, thereby adding in additional ki-
netic energy, the wavelength only gets shorter. So, this is the distance over
which the weak nuclear force holds sway. If you’re not within 10�18 meters
or so of an object, you’re not going to interact weakly with it.

To reiterate this essential point: The weak force is exceedingly short
ranged, a fact entirely due to the mass of the associated W and Z field
quanta. However, a massless field quantum can have an arbitrarily low en-
ergy/momentum and thus an arbitrarily long wavelength and a corre-
spondingly large sphere of influence.

Because mass plays such a central role in distinguishing the behaviors of
the weak and electromagnetic interactions, a central hurdle that had to be
overcome in the unification of these two forces is the interpretation and in-
corporation of the W and Z boson masses. This challenge was met, but at a
certain cost: that of the introduction of another particle, known as the “Higgs
boson,” which plays a role unlike that of any other particle that we know of.

The Higgs, as it is often called, has yet to be observed, and the pursuit of
its discovery is currently the single most concerted effort in experimental
particle physics. Substantial experimental evidence suggests that, if the
Higgs exists at all, its discovery is near in which case the Higgs should be
observed before 2010. On the other hand, what the evidence may be sug-
gesting is that there simply is no such thing, a scenario that may well prove
more exciting than the former alternative’s confirmation of the Higgs’ exis-
tence. Only time will tell.

Finally, while photons carry none of the charge (electric charge) associ-
ated with the (electromagnetic) force mediated by photon exchange, the
same cannot be said of the other field quanta. The W and Z bosons, in ad-
dition to electric charge, also carry the weak isospin charge associated with
the weak force. Gluons also carry their force’s charge, the color charge of
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the strong nuclear force. Each individual gluon carries both a color (posi-
tive) and an anticolor (negative) charge. There are enough different types
of color charge (so-called red, blue, and green charge) that one can form
eight different combinations of a color and anticolor charge (note 5.7). It’s
the different color charge combinations that distinguish between the eight
field quanta of the strong force that are collectively known as the gluon.

This fundamental difference between the photon and the other field
quanta has notable implications—both in terms of the relation of this dif-
ference to the underlying mathematical description of the mediated force
and to the striking consequences associated with having the field quanta
carry the very charge with which they interact. In chapter 8, our discussion
of bosons that carry the charge of the interaction they mediate will under-
score the remarkable dependence of the everyday workings of nature on the
obscure mathematical properties of Lie groups.

Reprise: The Fundamental Building Blocks

So far we’ve met, depending on how you count, seventeen fundamental par-
ticles—twelve fermions and five bosons. We have strong suspicions that this
list is incomplete (the hypothetical graviton and Higgs boson are the least
of our worries in this regard), but for now, this is what we’ve got. A compi-
lation of these basic building blocks is presented in tables 5.1 and 5.2.

The fundamental fermions comprise three up-type quarks of electric
charge �2⁄3, three down-type quarks of electric charge �1⁄3, three electrically
neutral neutrinos, and three negatively charged leptons. These twelve par-
ticles are arrayed in three generations (table 5.1). The five bosons, all quanta
of the various force fields, include the photon, the two W bosons, the Z bo-
son, and the gluon (of which there are really eight). These are listed in table
5.2. The epoch of the discovery of these fundamental constituents extends
slightly beyond one century, from Sir J. J. Thomson’s 1897 discovery of the
electron to the July 2000 announcement of the t neutrino discovery. The
discovery and identification of this set of constituents is one of the major tri-
umphs of twentieth-century science.

There’s one thing that’s been left out of the tables 5.1 and 5.2—anti-
matter. This is because the rule for determining the antimatter constituents
is so simple that it doesn’t bear repeating the tables just to list them. The
rule is this: Each matter fermion has an antimatter counterpart that is op-
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positely charged but otherwise identical to the associated matter fermion.
(The charge associated with each of the forces, with the exception of grav-
ity, is opposite for the antiparticle.)

To denote an antiparticle, we just place a bar over the particle’s symbol.
For example, the antimatter counterpart of the u quark—the up anti-
quark—is the ū antiquark, while the electron generation’s antineutrino is
denoted √̄e. The exceptions to this labeling rule are the charged leptons—
the antimatter counterpart of the electron (e�) is the positron (e�), of the

Table 5.1 Spin-¹�₂ Fermions

Electric Generation Generation Generation
charge 1 (mass) 2 (mass) 3 (mass)

�²�₃ u (3 MeV) c (1.2 GeV) t (175 GeV) Quarks 
�¹�₃ d (7 MeV) s (120 MeV) b (4.2 GeV) (all 

interactions)

0 �e (�3 eV) 	



(�0.2 MeV) 	
�

(�18 MeV) Leptons
�1 e� (0.511 MeV) 
� (106 MeV) �� (1.78 GeV) (no strong

interactions)
Plus antiparticles

⎞⎥⎠

⎞⎥⎠

⎞⎥
⎠

⎞⎥⎠

⎞⎥
⎠

⎞⎥⎠⎞⎥
⎠

⎞⎥⎠

⎞⎥⎠

⎞⎥
⎠

⎞⎥
⎠

⎞⎥
⎠

Table 5.2 Integer Spin Bosons

Interaction Boson(s) Mass-energya Spinb

Electricity and Photon (�) 0 1
magnetism

Weak nuclear W� 80.42 1
W� 80.42 1
Z0 91.19 1

Strong nuclear Gluon 0 1
(g:eight of them)

Gravitational [Graviton g] [0] [2]

Higgs boson [H] [
110] [0]

Note: Brackets mean unconfirmed.
a In units of billions of electron-volts (GeV).
b In units of h̄� h/2�.



muon (m�) is the positive muon ( m�), and of the tau (t�) is the positive tau
(t�). By the way, matter/antimatter annihilation takes place if and only if a
matter particle comes into contact with its exact antimatter counterpart: a
u quark will annihilate a ū antiquark but not a d̄ antiquark, nor a √̄e anti-
neutrino.

The bosons are their own antimatter partners. The antimatter partner of
the photon is just the photon itself, of the W� is the W�, and so forth. An-
timatter fermions interact with each other through the exchange of the
same field quanta bosons that matter fermions exchange—there are no spe-
cial antifield quanta for the antimatter to use.

The mass-energies of all of the fundamental particles are listed in the ta-
bles 5.1 and 5.2 in units of billions of electron-volts, or GeV. Field quanta
masses were discussed above; the heaviness of the W and Z bosons is an im-
portant aspect in the “phenomenology” (observed behavior) of the weak nu-
clear force.

The fermion masses increase as you go to higher generations. The choice
we make to order the generations in terms of increasing mass is based on
the observation that, when ordered in this way, the mixing between quark
flavors (see the section “The November Revolution”) is greatest for quarks
from neighboring generations. We don’t yet understand the source of this
correlation between the masses and mixing properties of the fermions, but
we suspect this correlation may well be an important clue.

While we now think that neutrinos have mass (because of the observa-
tion of the phenomenon of neutrino oscillation), none of the neutrinos has
had its mass directly measured. Neutrino oscillation experiments measure
the differences between the masses of the three neutrino types. Assuming
that the electron-type neutrino is very light ( just an assumption), the neu-
trino oscillation data seems to suggest a muon-type neutrino mass of several
thousand electron-volts, and a tau-type neutrino mass of several million
electron-volts (a little greater than the mass of the relatively light electron).
However, it’s premature to put much faith in these numbers.

Finally, as this book is being written, the Higgs has yet to be discovered,
but were its mass-energy less than 110 GeV or so it would have been dis-
covered; therefore, 110 GeV is a lower bound on its mass-energy.

As far as charges go, not all of the constituents partake in all of the four
interactions, which is to say that not all the particles carry all four of the
charges associated with each of the interactions. All matter fermions (and
all bosons, for that matter) have mass-energy, and so all take part in the grav-
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itational interaction (the first direct confirmation of Einstein’s general the-
ory of relativity was the deflection, by the sun, of photons reaching the earth
from a distant star).

Likewise, all of the fermions carry weak isospin, the charge associated
with the weak nuclear force. Strictly speaking, it’s according to the value of
the fermion’s weak isospin that the pairs of fermions in a generation are
arranged: the upper member of each quark or lepton pair always has a weak
charge of �1⁄2 (in some units or other, which we’ll ignore for now), while
the lower member always has a weak charge of �1⁄2.

The leptons distinguish themselves from the quarks precisely because
none of the leptons carry the strong nuclear (color) charge, while all of the
quarks do. Finally, the electromagnetic charge is explicitly listed in tables
5.1 and 5.2; of the fermions, only the neutrinos have no electric charge. So,
we see that quarks partake in all four forces, charged leptons in all but the
strong nuclear force (which is lucky because if the electron had color
charge, it wouldn’t orbit the nucleus at such a relaxed distance, and we
could forget about atoms), and neutrinos only have gravity and the weak
force to concern themselves with.

To round out the picture for the bosons, we note first that the photon has
no charge other than its gravitational mass-energy. Insofar as it is the field
quantum of electromagnetism, the photon will form Feynman-diagram ver-
tices with anything that’s electrically charged, but it doesn’t carry any elec-
tric charge. However, W and Z bosons, in addition to being the mediators
of the weak nuclear force, carry the weak-isospin charge associated with that
force. Moreover, the W bosons are electrically charged. Gluons carry color
(strong-force) charge but are both electrically and weak-nuclear neutral.
The Higgs carries weak isospin but is color and electromagnetically neu-
tral. The graviton is expected to carry no other charges than mass-energy.
As you can see, there’s not much order to the list of which bosons carry
which charges, but nevertheless, the Standard Model of the electroweak
force does explain these photon, W, Z, and Higgs boson properties, and the
corresponding theory of the strong force (quantum chromodynamics) ex-
plains why the gluons need to have color charge.

Whether a particle is stable or decays rapidly into other particles is not a
fundamental property of the particle but, rather, follows directly from the
other fundamental properties previously discussed above. Since everything
that happens in the physical universe is thought to be brought about by the
four known interactions, then the natures of the four interactions determine
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which particles will be stable and for those that aren’t, just how long or short
their lifetimes will be. Exactly how this plays out is shown, for example, in
the three Feynman diagrams of figure 5.7, depicting muon decay (fig. 5.7a)
and an example of c quark decay (fig. 5.7b), both through the weak inter-
action, and a typical J/y decay through the electromagnetic interaction (fig.
5.7c; recall that the J/y is composed of a c quark and c̄ antiquark bound in
orbit about each other).

Recall Feynman’s rule—anything that can happen must happen—so
these diagrams, which follow all our rules about the workings of the associ-
ated interaction, must take place. The muon, the c quark, and the J/y are
all unstable. The individual particles in a sample of muons, for example,
live for an average of 2.19703 � 10�6 seconds; the lifetime of the J/y is mea-
sured to be 1.26 � 10�20 seconds.

Not everything is unstable. To the best of our knowledge, electrons and
protons live forever. Interstellar hydrogen atoms produced shortly after the
big bang billions of years ago are still alive and well today. How does this
square with the arguments of the previous paragraph: Why, for instance,
can’t one simply replace the symbol e for m, and vice versa, everywhere in
figure 5.7a? This would seem to produce a Feynman diagram for the decay
of an electron into a muon, electron neutrino, and muon antineutrino, as
shown in figure 5.8. Such a diagram is fine as far as the rules for weak in-
teraction vertices go, but there’s something else that we’ve forgotten to take
into account—the principle of energy conservation.

Fig. 5.7. Examples of particle decay: muon decay (a), charmed quark decay (b), and the
decay of the J/y (c) through the annihilation of the two charmed quarks from which it is
composed.



Even if we ignore the neutrinos, the mass-energy of the muon alone is
greater than that of the electron. So, there’s no way that an electron, sitting
at rest and minding its own business, can suddenly turn into a muon plus
other stuff. Before the decay, the energy of the system under consideration
is that of the electron’s mass-energy. After the decay, you would have the
mass-energy of the muon and the two neutrinos, plus whatever energy of mo-
tion is carried off by the muon and neutrinos. Energy is always positive (even
for antiparticles) so all of these add together. The mass-energy of the muon
alone is enough to guarantee that the energy after such a decay would be
greater than the energy before the decay, so such a decay would violate the
sacrosanct principle of energy conservation. Feynman’s rule that anything
that can happen must happen still applies. It’s just that this particular (elec-
tron decay) Feynman diagram can’t happen. When you add up the decay
product energies, the sum will always be greater than that of the original elec-
tron. There is no electron-decay Feynman diagram that can be drawn for
which energy is conserved, so electrons don’t decay—they’re stable.
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Fig. 5.8. A potential Feynman diagram representing the process of electron de-
cay. This diagram obeys all the rules of the weak nuclear interaction. However,
it does not obey the law of energy conservation, so it is forbidden. Electrons
are thought to be completely stable, living forever unless annihilated by a
positron, the electron’s antimatter counterpart.



What would the world be like without stable electrons (and similarly, sta-
ble protons)? It’s hard to imagine, but it wouldn’t be a nurturing place. En-
ergy conservation is a good thing.

So, it’s the heavier forms of matter that are unstable, and it’s the lighter
forms that are stable, not because the forces treat the heavier generations in
any fundamentally different way than the lighter generations, but simply be-
cause of energy conservation.

All of the neutrinos are light enough so that each by itself is stable. Other
than this, there is not a single stable particle or combination of particles that
contains anything other than members of the first generation (although the
opposite is not true, there are many unstable particles that are composed
only of material from the first generation). Also, there’s nothing intrinsically
unstable about antimatter. The positron (the electron’s antimatter counter-
part) is perfectly stable on its own. However, bring it into contact with an
electron, and they’ll both disappear in a flash of light (literally). An an-
timuon (m�) is exactly as unstable as a muon (m�), by which I mean that
their short but precisely measured lifetimes are identical.

There’s a little more to this stability-of-matter issue that we need to get
out in the open. Say a top quark is produced, either in an accelerator ex-
periment or in a natural cosmic ray event. If there’s not an antitop quark
that just happens to be lurking nearby to annihilate it (and there usually
isn’t), how are we going to get rid of it? It will have to decay into lighter
quarks (as shown in fig. 5.9). Whatever interaction is responsible for this de-
cay must have the following property: it must be “flavor-changing.” It must
allow the t quark, through the emission of a field quantum, to change spon-
taneously into a lighter quark (in fig. 5.9, this is a b quark, although an s or
even a d quark is also possible, although less likely). Otherwise, you couldn’t
get rid of the t quark, and matter containing the top quark would be stable,
in contradiction with observation.

There’s only one interaction that allows for this change of flavor, and it’s
the weak interaction, specifically, the part of the weak interaction that is gov-
erned by W (rather than Z) boson exchange. Because the weak interaction
behaves in this way, because of the mixing properties of the section “The
November Revolution,” the stuff of the universe is composed almost en-
tirely of the constituents from the first generation of quarks and leptons,
which happens to be the stuff from which we can create atoms and mole-
cules. Again, we see that the weak interaction’s renegade properties, rather
than making life difficult, come to our rescue and render life possible.
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It’s even more interesting than that because the weak nuclear interaction
is, as its name implies, weak. This means that, because the decay of heav-
ier quarks and leptons is controlled by the weak interaction, their lifetimes
are not necessarily unfathomably short. The weaker the interaction, the less
likely the decay is to take place at any instant of time and the longer the par-
ticle will live on average. On the other hand, particles that decay by way of
the relatively strong electromagnetic interaction have lifetimes of 10�15

seconds or less, while particles that decay through the strong nuclear force
tend to have only about 10�23 seconds to get their affairs in order.

Weakly decaying particles fair much better. For example, three of
them—the c and b quarks and the t lepton—all have a lifetime of roughly
10�12 seconds. Now, this is a very interesting number, for a particle with
this lifetime moving close to the speed of light will travel a millimeter or so
before decaying into a spray of more stable particles. Thus, if you can de-
tect these short distances between the production and decay of these heavy
forms of matter, you’ve got an iron-clad way to distinguish them from the

Fig. 5.9. The process of top-quark decay. To conserve energy in the decay, the
top quark must change flavor (in this case, it changes into a bottom-flavored
quark). The only interaction that allows quarks to change flavor is the charged
weak interaction (the interaction mediated by the W boson), which is what is
depicted here.



more mundane lighter forms of matter. This lifetime of 10�12 seconds,
short as it may seem, provides a potent tool for the detailed study of the prop-
erties of these exotic heavy forms of matter.

In the 1980s, when this picture began to come together, measuring these
millimeter decay lengths lay just beyond the limit of the capability of parti-
cle physics detectors. Being trained to tackle just this sort of problem, ex-
perimental particle physicists dove in, and by the mid-1990s had developed
detectors sensitive enough to detect these moderate lifetimes. The use of
such a lifetime tag to identify particles containing these heavy forms of mat-
ter has become a standard capability of all the major experiments; the top
quark, which almost always counts among its decay products at least one b
quark, owes its discovery in 1995 to just such a tag.

In addition, it soon became clear that the resulting advances in particle
detection that were developed in pursuit of this fortuitous lifetime scale of
10�12 seconds, in the realms of both detector technology and the associated
sensitive electronic readout, have broad application throughout the field of
imaging (medical imaging, microscopy, astronomical imaging, etc.). Today,
many particle physicists can be seen working side by side with colleagues
from these other scientific fields.

The Particle Zoo

While quarks are truly the fundamental, indivisible building blocks of nu-
clear and subnuclear matter, they suffer the empirical drawback that they
are never observed freely in nature. It’s impossible to isolate and study an
individual quark as you can an electron or a proton. Quarks, which carry
the color charge of the strong force, always come in groups that are color
neutral. In other words, any observable particle that contains quarks must
be composed of combinations of quarks for which the combined strong
charge of the combination exactly cancels, just as the electric charges of the
protons and electrons cancel in an atom, which is electrically neutral.

This property, known as confinement, is a consequence of the vast
strength of the strong nuclear force, and the fact that the strong force-field
quanta, the gluons, themselves carry the charge of the strong force. These
conspire to concentrate the force field between two color-charged objects
(e.g., two quarks) in such a way that the energy of their binding increases
with their separation. This is very counterintuitive; usually, you would think
that as two objects get farther and farther apart from each other, their influ-
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ence on each other would wane rather than grow stronger. But such is not
the case for the strong nuclear force.

As a result, the energy associated with this separation grows as the sepa-
ration increases, until there’s enough energy around to create some new
quarks (out of the perpetually fluctuating vacuum) with color charges that
cancel those of the two quarks you’re trying to separate. Each of the new
quarks pairs up with one of the old quarks, producing two new color-
neutral objects.

As a result, if you try to separate the two quarks in a color-neutral object,
the instant the two quarks get much more than a fermi (10�15 m) away from
each other, you suddenly find yourself holding two color neutral objects
composed of a total of four quarks. The energy required to create the two
new quarks came from you because you had to exert energy to pull the orig-
inal two quarks apart. It is impossible to pull a single quark out of nuclear
matter and isolate it in the laboratory.

Strong-force (color) charge comes in three different types: red, blue, and
green. While any electromagnetically charged object has some net positive
or negative amount of electric charge, a color-charged (or “colored”) object
has some net positive or negative amount of red charge, some net positive
or negative amount of blue charge, and/or some net positive or negative
amount of green charge. To specify the color charge of an object, you need
three numbers: one each for the red, green, and blue contribution to the
overall color charge. If the object is strong-force charged, one or more of
these numbers will be nonzero.

Electrons always have an electric charge of �1 (in units of the proton’s
charge), but quarks come in three varieties: red, blue, and green, each con-
taining a positive unit of the appropriately colored charge. Antiquarks also
come in three colors, each containing a negative unit of the appropriately
colored charge.

Any particle that is composed of a color-neutral collection of quarks is
known as a hadron. There are two observed (and theoretically understood)
ways in which colored quarks can be gathered together so that the resulting
combination is color neutral. The two different ways of making color-neu-
tral assemblages of quarks lead to two different types of hadrons: mesons and
baryons.

A meson is formed when a quark of a certain color is paired with an an-
tiquark of the same color. Just as a system containing an electron and
positron (“positronium”) is electrically neutral because the electron’s and
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positron’s charges have opposite signs and cancel each other out, the color
charge of a red quark is opposite to that of a red antiquark. So, a particle
formed with a red quark and red antiquark is color neutral. Mesons are
color-charge neutral combinations of a quark and an antiquark, bound to-
gether by the strong nuclear force.

The assembly of quarks into baryons exhibits a remarkable property of
color charge. If you take one red, one blue, and one green quark (or one
red, one blue, and one green antiquark), and put them together, the result
is also color neutral. You combine three different types of positive color
charge (or three different types of negative color charge if you’re using an-
tiparticles) and, amazingly, the result is neutral! This is counterintuitive but
follows directly from the mathematical properties of the Lie group that un-
derlies the behavior and properties of the strong force and its associated
color charge. So, baryons are combinations of three quarks bound together
by the strong nuclear force, which are color-charge neutral because the
three quarks contain each of the three possible colors of color charge (note
5.8).

The particle zoo that so dismayed particle physicists before the advent of
the eightfold way is just the myriad of such mesons and baryons that can be
formed by combining the underlying quarks. In what follows, we’ll not ex-
plicitly mention the colors of the quarks involved in these combinations;
once we know the ways colors can be combined to form color-neutral
hadrons (mesons and baryons), we can forget about color.

For example, let’s make some baryons. The most stable possible combi-
nation we can imagine is one composed entirely of first-generation materi-
als. Each of the three quarks is either a u or a d. Quarks have spin, internal
angular momentum of 1⁄2h̄. As it happens, the lowest energy and most sta-
ble possible configuration of the quarks is one for which two of the spins are
clockwise and the other is counterclockwise (or vice versa) and also where
all the quarks are at rest inside the baryon, so there’s no additional motion
adding energy (and thus mass) to the overall baryon. Within these con-
straints, we have four choices: uuu, uud, udd, and ddd, with charges of �2,
�1, 0, and �1, respectively.

For somewhat subtle quantum-mechanical reasons, the uuu and ddd
choices are not allowed for this lowest-energy configuration of spins and in-
ternal motion. This absence of the uuu and ddd states confused particle
physicists for some time. In fact, it was precisely the recognition that quarks
come in three different colors—red, blue, and green—that made the quan-
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tum-mechanical arguments forbidding the uuu and ddd combinations work
out. The absence of the uuu and ddd combinations in the lowest-energy
(lowest mass) configuration of the baryons in the particle zoo was one of the
first pieces of experimental evidence for the existence of color charge.

So, we expect two most-stable baryons: a uud combination, with electric
charge �1, and a udd combination, which is electrically neutral (since u
and d quarks have charges of �2⁄3 and �1⁄3, respectively). The positively
charged uud baryon is the proton, while the neutral udd baryon is the neu-
tron.

These particles are indeed quite stable, although not perfectly so; free
neutrons, on their own out in the world, have an average lifetime of 14.8
minutes (note 5.9). For their part, free protons have never been observed to
decay, although substantial effort has been expended searching for the phe-
nomenon of proton decay.

Why do physicists suspect that protons might be unstable? If protons de-
cay then hydrogen atoms (which are just protons with electrons orbiting
about them) are not stable, and star formation would never have gotten
started in the early universe. Protons are definitely quite stable; the question
is whether protons have an immensely long, yet not infinite, lifetime. At-
tempts to unify the electromagnetic, weak, and strong forces into a single,
all-encompassing theory of particle interactions as well as to understand the
origin and evolution of the universe (our theories of “cosmology”) tend to
prefer that protons decay, albeit with an exceedingly long average lifetime.
Current experiments (the Super-Kamiokande experiment in Japan being
the most prominent) would have seen a proton decay if the mean lifetime
were less than about 1031 years, and they haven’t. So, these experiments
have demonstrated that the lifetime of the proton is greater than 1031 years.
How can they make the claim that the lifetime of the proton is at least 1 sep-
tillion (1021) times the current age of the universe?

Simple. All you have to do is monitor vast quantities of protons all at
once, with electronic sensors that are sensitive enough to pick up the signal
from a single decaying proton. Such is the case for modern proton-decay
experiments. Since the amount of water it takes to fill up the bottom of an
abandoned mine shaft (far underground so that cosmic rays that fake pro-
ton decay don’t penetrate) contains on the order of 1031 protons, and since
none of these experiments has ever observed a proton to decay after watch-
ing for a few years, we now know that protons live longer than 1031 years.
Such is the property of the random decay process. If any given proton will
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decay in 1031 years, then, on average, you would expect one proton out of
a sample of 1031 to decay in any given year. Analogously, the chance of you
getting struck by lightning on any given day is small, but in the population
at large, it’s a common occurrence.

You may recall that it was the Super-Kamiokande experiment, for want
of something better to do after failing to observe proton decay (it’s not their
fault; protons just don’t decay very fast, if at all), that mounted the most con-
vincing evidence to date for neutrino oscillations. As is often the case in sci-
ence, great discoveries (in this case, profound enough to garner a piece of
the 2002 Nobel Prize in Physics) arise in unforeseen ways due to a combi-
nation of well-designed experimental apparatus and the creative scientific
thinking of its proponents. The history of the advancement of science is pep-
pered with such discoveries.

Beyond protons and neutrons, stability goes out the window. The vari-
ous combinations you can make by replacing one of the u or d quarks with
the next lightest quark, the s, are known as L and S baryons (these are the
lowest energy uus, uds, and dds combinations). These decay through the
weak interaction; although they are unstable, they are not horribly so by par-
ticle physicists’ standards, with lifetimes of about 10�10 seconds. If, instead
of swapping one of the u or d quarks for an s, you form a baryon of u and d
quarks, but with all the quarks’ spins in the same direction (all clockwise or
counterclockwise), you get the D baryons. Or, if you leave the spins alone
and instead give the quarks inside the baryon some orbital energy (get them
turning in orbit around each other), you get the N baryons. In both situa-
tions, these new baryons can decay by way of the strong interaction by falling
apart into a proton (or neutron) and a p meson (to be introduced below).
Things that decay through the strong interaction are truly short lived: 10�23

seconds is typical.
Because there are six different quark flavors to use to make baryons and

because for any given quark combination there are a number of different
ways to configure the spin and orbital properties of the quarks in the baryon,
you can see that the “zoo” of elementary particles, or at least the particles
that were thought to be elementary before Gell-Mann’s hypothesis of the
eightfold way and the subsequent discovery of quarks, contains quite a num-
ber of exotic animals. The hypothesis and discovery of quarks was a tremen-
dous simplification, as can be seen by the diminutive table of truly funda-
mental matter particles (table 5.1).

Nevertheless, it’s not the bare quarks but, rather, their combinations in
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baryons (and mesons) that are directly observable. To this day, the number
of species interred in the particle zoo continues to increase, overseen by the
Particle Data Group, an energetic team of gamekeepers headquartered at
the Lawrence Berkeley National Laboratory just up the hill from the Uni-
versity of California, Berkeley (an appropriate place, if ever there was one,
to house a particle zoo). Their ever-updated publications, which comprise
a sort of scripture for the congregation of particle physicists and their ilk, are
available free to the general public and contain much more than dry lists
of particles and their properties (note 5.10).

But what about mesons—nature’s quark/antiquark approach to produc-
ing color-neutral quark combinations? As for the baryons, the most stable
mesons are formed of quarks from the first, and lightest, generation: from a
u or d quark combined with a ūor d̄ antiquark. The spins of the two quarks
will be in opposite directions, one clockwise and the other counterclock-
wise, and the two quarks will be at rest within the meson. A quick bit of re-
flection reveals four possible combinations: ud̄, dū, uū, and dd̄, with electric
charges of �1, �1, 0, and 0, respectively. The last two of these, with charge
0, get lumped together into two particles, each of which contain some uū
and some dd̄ (you can do this sort of thing in quantum mechanics); the re-
sulting quartet of mesons consists of a trio of particles known as the p-
mesons, or simply the pions: p�, p0, and p�, and a neutral particle known
as the h (eta). The difference between the p’s and the h is that the pions pos-
sess nuclear isospin, while the h doesn’t (we’ll introduce nuclear isospin in
chapter 7).

All of this is incorporated and subsumed, in an elegant and encompass-
ing fashion, by the formalism of Gell-Mann’s eightfold way. The pions and
the h are understood to be part of a larger pattern of particles, a pattern that
manifests itself in the mathematical space of the amount of electric charge
(really, nuclear isospin, which is only incidentally related to electric
charge), and strangeness (net number of strange quarks minus strange anti-
quarks) possessed by each particle in the pattern. This is as true for the
mesons as it is for the baryons—there is no known particle formed from
quarks and antiquarks that does not fall neatly into a prescribed and neces-
sary place in one of the grand patterns of the eightfold way. Figure 5.10 be-
low shows one such pattern—that of the so-called pseudoscalar meson
octet; we’ll revisit this pattern in a little greater depth in chapter 7.

Since the p0 is composed of matter/antimatter quark pairs, its quarks
eventually find each other and annihilate. When this happens, the p0 al-
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most always decays to two photons through the electromagnetic interaction.
Since the electromagnetic interaction is reasonably strong, the p0 has a cor-
respondingly short average lifetime of 8.4 � 10�17 seconds. The quarks in
the p� and p� are not matter/antimatter pairs and cannot annihilate each
other. Instead, the charged pions must decay weakly (primarily to a muon
and muon antineutrino), so they have a relatively long lifetime: 2.603 �
10�8 seconds. These charged pions are the most stable (longest-lived)
mesons. The h decays both electromagnetically and strongly (it has a num-
ber of different possible decay modes), with a lifetime of about 10�18 sec-
onds.

As with the baryons, you can make a staggering array of different mesons
by swapping quark and antiquark flavors or by leaving the flavors alone and
instead playing with the way the quark and antiquark spin and orbit each
other. Doing the latter gives you sets of mesons with names such as r, h�, w,
f0, and a1. If you take a pion and swap one of the u or d quarks or antiquarks
for an s quark or antiquark, you get a set of mesons known as kaons, or K
mesons. You can take the kaons and rearrange their quarks’ spin and orbital
properties, giving rise to the K*’s, K1’s, K2*’s, and so on. Don’t forget that
there’s also the charmed, bottom, and top quarks to play with. What a zoo!

Fig. 5.10. The pattern of the pseudoscalar meson octet. The quark content of
each of the pseudoscalar mesons is shown in parentheses.



The Particle Data Group’s full-sized Review of Particle Properties, updated
every other year, weighs in at a few pounds (in paperback).

Figure 5.10 shows the pseudoscalar meson octet—the eightfold-way pat-
tern occupied by the pions, kaons, and the h—along with their quark con-
tent. Again, the h and p0 are not the same: the p0 possesses the soon-to-be
introduced quality of nuclear isospin, while the h does not. The eightfold
way knows all about isospin, and makes a sharp distinction between the two
particles, even though they have the same electric charge and strangeness.
That this eightfold-way pattern has precisely eight unique particle states is
no coincidence. That’s where the name “eightfold way” comes from.

A parting question: What role do the members of this vast array of nearly
fundamental subnuclear particles play in the overall workings of the uni-
verse? Clearly, we need the protons and neutrons—uud and udd combina-
tions arranged so that the resulting three-quark baryon has the lowest possi-
ble internal energy—to construct everyday matter. But what about all of this
other junk: the unstable baryons and mesons that are jarred into a brief ex-
istence during one of the few earthly high-energy laboratory experiments or
the occasional collision of high-energy cosmic radiation with the other,
more stationary matter in the universe? Are they somehow a necessary com-
ponent of the evolution of the universe from the chaos of the big bang to
the eventual emergence of sentient beings?

My sense is that the answer is no. We know that we require three quark
generations (six quark flavors) to allow for the mechanism of matter/anti-
matter asymmetry that provides for the necessary absence of antimatter in
our evolved universe. We also suspect that the exact correspondence be-
tween the number of quark and lepton generations reflects a deep and nec-
essary connection, not yet understood, between the strong and electroweak
(unified electromagnetic and weak nuclear) interactions. However, the
myriad states composed of various quark and antiquark combinations, all
bound together by the strong nuclear force, seem to be more a by-product
of the fundamental and necessary components of nature (quarks, leptons,
and the forces that influence them) than to be necessary building blocks
themselves. There may be some beneficial roles played by a small number
of these particles; for instance, particularly violent cosmic ray collisions in
our upper atmosphere produce a lot of pions, which quickly decay to
muons, which keep us bathed in a fairly constant flow of ionizing radiation,
and which may hasten the process of genetic mutation and the adaptation
of species. Overall, however, I am hard pressed to think of truly fundamen-
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tal and necessary biophysical roles played by these obscure and short-lived
particles.

Yet, particle physicists spend long hours and substantial resources in the
study of these particles. Their motivation is that, when it comes to quarks,
we don’t see the fundamental level—the quarks themselves. What we do
see in particle physics experiments are large numbers of baryons and
mesons. These composite particles contain the only clues we have about
the fundamental world at work within them. Without a careful program of
search and classification of these particles in the 1950s, for example, we
never would have had an inkling of the presence of quarks. Things have not
changed; to this day, one often relies heavily on our understanding of the
properties of these particles, which come flying away in copious numbers
from the violent collisions induced by modern particle accelerators, to un-
ravel the fundamental physical behavior taking place at the core of those
collisions. The taxonomy of the curious creatures in the particle zoo is no
less central to the work of the particle physicist than that of earthly animals
is to the evolutionary biologist.

With that said, it’s time to leave the sullied warrens of the particle zoo
behind us. Our next destination will be the ivory tower world of pure math-
ematics; please remember to clean your shoes well as we take our leave.
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6

Mathematical Patterns

Lie Groups

Much has been said about the ever-growing and almost miraculous inter-
connectedness between the abstractions of pure mathematics and the con-
crete study of natural phenomena. That the former provides such an es-
sential tool for the pursuit of the latter is a continual source of inspiration
and wonder for those who reflect on it. The ancient Greeks, whose devel-
opments in abstract mathematics retain a solid standing in the body of mod-
ern mathematical knowledge and who also put considerable effort into the
interpretation of the natural world, made only limited headway in the ap-
plication of simple mathematical principles toward the description of na-
ture. The connection is just not that obvious.

It was with the rise of the western university system in the early renais-
sance that the connection between the abstract world of numbers and the
infinitely complex and rich world of natural phenomena became firmly es-
tablished. In the middle of the fourteenth century, academics at Merton
College of Oxford University and at the Universities of Paris and Bologna
developed the first rigorous descriptions of motion, including quantitative
notions of speed and acceleration. This development reached a pinnacle in
Isaac Newton’s seventeenth-century formulation of calculus, and his appli-
cation of this new mathematical tool to the description of celestial motion.

Mathematics has hardly stood still since the time of Newton, and as its
development has led in increasingly more arcane and abstract directions,
its application to the natural world has become all that more remarkable.



The specific example of group theory, and its application to the funda-
mental description of natural processes, provides an opportunity to convey
a sense of this profound connection and to show how the musings of ab-
stract mathematicians, sequestered in their ivy-clad garrets, have provided
an essential component of the modern understanding of natural phe-
nomena.

Group theory is one of the most gratifying topics in the domain of ab-
stract mathematics. The requirements that an object must satisfy to be
deemed a “group,” in the strict mathematical sense, are deceptively easy to
state. Yet the delineation and study of groups has entertained a lot of top
mathematical talent over the years, particularly in the latter part of the nine-
teenth century, during which much of the theory of finite groups (groups
composed of a finite number of objects) was laid out. Our interests, how-
ever, do not lie within the theory of finite groups but, rather, with that of in-
finite, or more specifically, continuous groups. In fact, our interests are fo-
cused even more narrowly than this—on a specific class of continuous
groups known as Lie groups (note 6.1), first defined and studied in the 1870s
by the Norwegian mathematician Sophus Lie.

Lie groups are at the heart of the description of a surprisingly large num-
ber of physical phenomena and enjoy broad application throughout the
fields of natural science. In particle physics, Lie groups play such a central
role that it is impossible to proceed further without their introduction. It
wasn’t until after Murray Gell-Mann’s introduction of the eightfold way, an
application of Lie groups to the categorization of the particle zoo (see chap-
ter 5), that physicists realized that they had begun to speak the language of
group theory. Nowadays, the connection is firmly established and in mak-
ing this connection, physicists have benefited greatly from the abstract
mathematicians’ exhaustive treatment of Lie groups.

An Exercise in Abstraction: Mathematical Groups

To a mathematician, a group is any set of objects with an associated rule, or
operation, that combines pairs of objects in the set. The obvious examples
of operations and the ones from which the more general notion of opera-
tion was abstracted, are addition and multiplication. For example, if x and
y are two numbers, say, the monthly bill for the two separate phone lines in
your house, then z � x � y is the combination of x and y that tells you how
much you are obligated to enrich the phone company this month. The op-
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eration of addition takes the pair of numbers x and y and combines them,
yielding a third number, z.

The nice thing about addition and multiplication is that, without any ex-
ternal reference, most of us know how to take any given numbers x and y
and combine them into the result z. To a mathematician, however, the
group’s operation could be absolutely any rule that combines the objects in
the set as long as the operation satisfies four specific requirements (de-
scribed later in this section)—even if the only way to delineate that rule is
to write out a complete table of pairs of numbers x and y and their com-
bined result z. Generically, the process of operation is often represented by
the symbol “*”; the expression x * y denotes the combination of the objects
x and y according to the rules of whatever operation you have chosen to as-
sociate with the group’s set of objects, of which ordinary multiplication and
addition are just two of many possibilities.

Not every set with an associated operation on its elements comprises a
group, however. To form a group, the set and its operation must satisfy four
criteria, the defining axioms of group theory.

First, the set of objects must be closed with regard to the operation. This
is a shorthand way to say that if x and y are objects in the group, then the re-
sult z of their combination (under the operation associated with the group)
must also be an object in the group. For example, the set of positive whole
numbers 0, 1, 2, 3, 4, and so on is closed under the operation of addition:
the sum of any two whole numbers is always a whole number. Similarly, we
could consider the set of positive whole numbers with the associated oper-
ation of multiplication; again the set (whole numbers) exhibits closure un-
der the chosen operation (multiplication). However, the set of whole num-
bers under the operation of division is not closed; for instance, one divided
by four is 1⁄4 or 0.25, which is decidedly not a member of the set of whole
numbers.

The second axiom, known as the associative law, is the most obscure of
the axioms. It won’t play much of a role in our discussion, but we need to
include it for completeness’ sake. Let’s say that you have not two but three
elements, a, b, and c, that you wish to combine according to the rules of the
associated operation, yielding some final element z within the set. The ob-
vious thing to do is to combine two of them first, say b and c, and then com-
bine the result with a: z � a * (b * c), where the parentheses indicate which
of the two indicated “*” operations should be performed first. On the other
hand, one could also imagine combining a and b first, then combining the
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result of that operation with c: z � (a*b)*c. The requirement of the second
axiom—the associative law—is that both of these double operations yield
the same result z. One reason the associative law is relatively uninteresting
is that it’s hard to think of an operation that doesn’t obey it. You can easily
convince yourself that ordinary arithmetic operations such as addition and
multiplication do obey it. Nonetheless, many of the rich and powerful re-
sults that form the mathematical theory of groups do require that the asso-
ciative law hold true, and so it must be included as an axiom.

There are even more ways to combine the three elements a, b, and c,
such as z � (b * c) * a or z � (c * a) * b. These are all different combina-
tions of the three elements a, b, and c. Shouldn’t they give the same result
z as above? The answer is, emphatically, not necessarily. For these two lat-
ter operations, the order of the elements themselves (and not just the order
of the operations) has been changed relative to those of the previous para-
graph. The operation associated with the group is not required to be the
same when the order of the elements being operated on is switched. In other
words, it is not necessarily true that x * y � y * x—that x and y “commute”—
for all elements x and y in the set (matrices, for example, familiar to many
from high school math, do not commute when combined together under
the rules of matrix multiplication). Groups that possess this additional prop-
erty are known as commutative, or Abelian groups. Most Lie groups, how-
ever, are noncommutative, or non-Abelian, a fact that will be seen to have
rather profound physical consequences when we encounter their applica-
tion to gauge theory in chapter 8.

The third axiom requires that the set possess the identity element of the
chosen operation. This means that the set must possess an element, call it I,
for which I * x � x for any object x in the set. For example, for the whole
numbers under the operation of addition, the identity element is “0”: 0 added
to any number just gives the same number back again. Similarly, the iden-
tity element of the whole numbers under multiplication is the number 1.

The fourth axiom associated with the definition of a mathematical group
prevents the positive whole numbers, under either addition or multiplica-
tion, from forming a group. This axiom requires that for each and every el-
ement x in the set there must be one and only one element x�, also in the
set, for which x * x� � I, where I is again the identity element. For exam-
ple, if the operation “*” represents multiplication (for which the identity el-
ement I is 1) the fourth axiom requires that for each element x, there be a
corresponding element x� such that x � x� � 1, or, equivalently, x� � 1/x.
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The element x� is known as the inverse of x under the chosen operation. In
these terms, the fourth axiom states that each element in the set must have
an inverse under the chosen operation.

Consider the set of positive and negative whole numbers . . . , �3, �2,
�1, 0, 1, 2, 3, . . . also known as the set of integers. The integers do not form
a group under the operation of multiplication. For example, what number
x� has the property that 3 � x� � 1? The answer is 1⁄3, which is not an inte-
ger. The integers do form a group when the associated operation is addition,
with identity element 0. Once you recall that the operation of subtraction
is really just the addition of a negative number, it’s easy to see that the in-
verse of any integer n is �n.

To recap: A group consists of a set with an associated operation, or rule
of combination. The set and operation must satisfy four axioms if the sys-
tem of set and operation is properly to be called a group: closure, or the re-
quirement that the combination of two elements must always yield a third
element within the set; associativity, (a * b) * c � a * (b * c); the possession
of an identity element, or an element which, when combined with any
other element, gives the other element back again; and finally, for each el-
ement in the group, the existence of an inverse which, when combined with
the element, yields the identity element. If, beyond this, the group exhibits
the property that a * b � b * a for any elements a and b in the set, the group
is Abelian. Most of the groups that will interest us, however, will be non-
Abelian.

These four axioms are neither good nor bad. Concerned only with the
ethereal world of abstraction, mathematicians are free to introduce this no-
tion of a group and to require that anything that is a group satisfy these cri-
teria. These axioms are neither right nor wrong; they are simply the rules
that mathematicians have chosen to require of something that they have de-
cided for some reason or other to call a “group.”

Having somewhat arbitrarily specified what it means to be a group, how-
ever, one can then develop a theory of groups based on postulates that fol-
low directly from the four defining axioms. This theory is no more or less
arbitrary than the axioms underlying the definition of the group. All that
one can say is that since the mathematical entities known as groups satisfy
(by fiat) all four criteria, then they possess a number of other properties, and
exhibit a number of other characteristics, that can be mathematically
proven to follow inexorably from the four axioms. For example, two ques-
tions (of many possible questions) that you might hope your theory of groups

Mathematical Patterns 143



might answer are, (1) how many distinct Abelian groups (if any) contain ex-
actly 675 elements? or (2) for the group with 3,698 elements, how many dis-
tinct subsets of elements in the group’s set form groups in their own right
under the associated operation?

To the mathematically inclined, there is a deep beauty in the creation of
the web of interlocking results that lead eventually to the solutions of basic
questions one might ask about mathematical structures such as groups. It’s
like doing a crossword puzzle. When you’re finished, you haven’t produced
anything that is likely to launch the next Fortune 500 company, but you
have met and triumphed over an intellectual challenge.

There is a difference, however, between working crossword puzzles and
the pursuit of higher mathematics. In the case of mathematics, you don’t
triumph over the capricious machinations of another human being (the de-
signer of the puzzle) but, rather, over the absolute fabric of logical relations.
The body of knowledge you have developed has the enviable characteristic
of being demonstrably and absolutely true, given the set of assumptions (ax-
ioms) underlying your contemplations, irrespective of the foibles of your
own human limitations, indeed, irrespective of the existence of humanity
itself. And, as an added bonus, if it should so happen that the set of axioms
on which your intellectual fortress is built is somehow relevant to the phys-
ical world, then you can even walk away with a deeper understanding of
your natural surroundings. The wonder of group theory is that its relevance
to the disciplines of both mathematics and natural science far exceeds the
self-contained boundaries within which it was first developed.

The Mathematics of Clocks

There’s nothing that illustrates an idea better than a concrete example, so
here’s a description of a particular group—in fact one of the smallest possi-
ble groups, which has only four elements in its set. This group is sometimes
referred to by mathematicians as “Mod(4).”

The division of the terrestrial day into twenty-four hours is an arbitrary
one. Let’s consider a culture that instead chooses to divide the day into only
four hours. Also, let’s assume that this culture is sufficiently relaxed that its
citizenry doesn’t care about the minutes within the hour. Thus, clocks in
this culture consist of dials with four markings—one through four—and a
single hand that moves four times a day from one hour to the next. Figure
6.1 shows this clock.
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The four markings (the numbers one through four) will form the ele-
ments of our set. The associated operation will be that of adding elapsed
time, in these long hours, to the current time of day to get the time of day
after the elapsed interval. Thus, if it’s now one o’clock, and we want to know
what time of day it will be after two more hours have elapsed, we consult
the rules of our operation to deduce that 1 * 2 � 3. The operation repre-
sented by the “*” in this case behaves an awful lot like conventional addi-
tion, but it’s not.

For example, what if the current time is two o’clock, and we want to know
what time it will be after three more hours have elapsed. We consult our
clock face to find that, after passing through four o’clock, the time cycles
back to one o’clock. The day has changed, but that doesn’t concern us be-
cause the elements of the set are just the four hours representing the time
of day; the date itself is of no relevance. So, after 3 more hours have elapsed,
the time of day is one o’clock: 2 * 3 � 1.

It’s easy to see that the set of numbers is closed under this operation,

Fig. 6.1. A clock with but four possible readings: the hours one through four.



which is sometimes referred to as clock arithmetic. No matter how many
hours you add to the current time, all you’re going to do is spin the dial
around to one of the four hours between one and four o’clock—the result
of the operation of combining any two numbers between one and four is
just a third number between one and four. In addition, no matter what time
(t) of day you start with, if you add four elapsed hours to that time, you go
through exactly one full day and get back to the original time of day: t * 4
� t, for any t � 1, . . . , 4 in the set. Comparing this expression to that of the
definition of the identity element above, we see that the number 4 is thus
the set’s identity element. Also, once you get the feel of clock arithmetic, it’s
easy to convince yourself that the associative law (the second axiom) holds.

That the fourth and final criterion (that every element in the set have a
unique inverse within the set) is satisfied is demonstrated by considering the
following three clock arithmetic operations: 1 * 3 � 4, 2 * 2 � 4, and 4 *
4 � 4; you can verify that these operations are correct according to the rules
of clock arithmetic with four elements. Recall that the inverse of an element
is the element that, when combined with the original element according to
the rules of the operation, yields the identity element. So, we see that the
elements 1, 2, 3, 4 have the inverses 3, 2, 1, 4, respectively. And that’s it; the
numbers one through four, under the operation of clock arithmetic, form a
group (note 6.2).

It can’t be overemphasized that, to a mathematician, this particular
group, Mod(4), or any other group for that matter, is purely an abstraction.
The symbols 1, 2, 3, 4 are nothing more than labels for the elements of the
group’s set. The elements bearing these convenient labels could be, as far
as the mathematician is concerned, absolutely anything: a pencil, a ham-
mer, a bowl of spaghetti, and a glass eye, say, would work just fine. Then, to
be the group Mod(4), the rule of combination would say that when you op-
erate on a pencil and another pencil you get a hammer (1 * 1 � 2), on the
pencil and the pasta you get an eyeball (1 * 3 � 4), and so forth.

As absurd as this seems, as long as you have the same number of elements
as Mod(4), and the operation gives the exact same relations between all the
elements as that of Mod(4), then the mathematician is happy to deem your
odd assortment of objects and silly rule for combining them the group
Mod(4). She might wonder why you went to all the trouble, but she would
be compelled to grant you the designation you desire. Even more than that,
she would exhibit tremendous insight in doing so, for the ability to ab-
stract—to see the deep connections between things that on the surface seem
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to have nothing in common—is perhaps the single most defining charac-
teristic of the human intellect (note 6.3).

Thus, rather than the nature of the objects themselves, it’s the interrela-
tions between the objects in the group—the pattern of relationships be-
tween the elements of the group that is given by the associated operation—
that establishes the group’s unique mathematical identity. It is through such
patterns that the connection between the tangible world of particle physics
and the ethereal world of abstract mathematics was first established in the
1960s.

Into the Continuum: The Lie Groups R(2) and U(1)

Groups need not have finite numbers of elements. Consider the set of in-
tegers, whole numbers from negative infinity to positive infinity, under the
operation of addition. This set forms an infinite group—a group with an in-
finite number of elements.

Now, for each consecutive pair of whole numbers, add in all the frac-
tions that fall between them. There’s an infinite number of fractions be-
tween each consecutive pair of whole numbers and an infinite number of
consecutive pairs of whole numbers. This infinitely infinite set of numbers,
known as the rational numbers, also forms a group under the operation of
addition; the sum of two fractions is always just another fraction, and so
forth.

If we add in transcendental numbers—numbers whose decimal expan-
sions (like that of p � 3.14159 . . .) do not terminate or exhibit repeating se-
quences in their decimal expansions (which all fractions do), we get the real
numbers. Mathematicians have been able to show that, surprisingly, there
are an infinite number of transcendental numbers between any two frac-
tions that one chooses, no matter how close together those chosen fractions
are. This is hard to imagine because it’s possible to choose two fractions that
are arbitrarily close together (since there are an infinite number of them be-
tween each two whole numbers, such as zero and one). But it’s demonstra-
bly true.

The infinitely infinite set of real numbers also forms a group under ad-
dition. Real numbers have a special berth within natural science, in that the
result of the measurement of any physical quantity is expected to be a mem-
ber of the set of real numbers. The set of real numbers forms a continuum
of possible numbers. There are no gaps between successive real numbers,
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no holes between which you could squeeze another number that might be
the result of a physical measurement. The set of real numbers under the op-
eration of addition is a continuous group.

Similarly, all Lie groups are continuous. In fact, the set of real numbers
under addition is one of the most straightforward examples of a Lie group,
although not a particularly useful one for illuminating the special proper-
ties of Lie groups. For instance, most Lie groups are non-Abelian, but the
group of real numbers under the operation of addition is Abelian because
for any numbers x1 and x2, x1 � x2 � x2 � x1.

Without yet saying exactly what a Lie group is, let’s discuss another rel-
atively simple example of a Lie group. This Lie group will also be Abelian,
but nonetheless will be of direct relevance to us in that it forms the basis of
the gauge theory of electromagnetism, the most modern and up-to-date re-
casting of the quantum theory of electromagnetism. As such, it is also one
of the two Lie groups underlying the unified Standard Model of electro-
magnetic and weak nuclear interactions.

Take a rectangular object—a piece of paper, a small box, or a book—and
set it on a table in front of you. Place your finger on a corner of the object,
and press down firmly, so that when you push on the object with your other
hand, it will rotate around the corner that is fixed beneath your finger. If,
in doing so, you hold your finger vertically above the object, your finger will
represent the axis about which the object rotates, just as an axle represents
the axis about which the wheels of a car rotate.

As you rotate the object about the axis defined by your finger, the object’s
position will change. Just how much the position changes depends on just
how much you rotate the object. If you rotate it minutely, then its position
changes some, but very little. If you give the object a real twist, the position
of the object will change substantially (unless the twist is just about 360 de-
grees or a multiple of 360 degrees). In fact, the possible positions of the ob-
ject after the rotation form an infinite continuum. For every possible angle
between 0 and 360 degrees (i.e., for every real number between 0 and 360),
there is a unique position at which the object comes to rest after the rota-
tion. Note also that if you rotate the object through some angle and then
again through some other angle, the result is just as if you rotated the paper
once through some third angle, which is just the sum of the first and sec-
ond angles.

This is starting to smell a lot like a continuous group. To see that this sys-
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tem does indeed obey the axioms required of a group, however, involves an
interesting application of mathematical abstraction.

A group consists of both a set and a rule of combination, or operation,
on that set. It’s natural to think of an operation as some sort of action, so you
might expect the act of rotation to be the operation in this case. However,
this is not so. The act of rotation represents the elements of the group’s set,
not the operation. The elements of the set are all the possible rotations of
the object about the axis defined by your finger; there’s one such rotation
for each angle through which you can rotate the object. So, just as the pos-
sible angles between 0 and 360 degrees form a continuous set of numbers,
the possible rotations of the object form a continuous set of elements of this
group.

The operation—the rule of combination—is the successive application
of two rotations. A rotation of 32.4 degrees followed by a rotation of 19.1 de-
grees is the same thing as a single rotation of 51.5 degrees. If we represent
with the symbol Rq the element of the group’s set corresponding to the
counterclockwise rotation of the object through an angle q, then we can
write

R19.1 * R32.4 � R51.5.

The result of the combination of the group elements corresponding to 32.4
and 19.1 degrees of rotation is a third element, also within the group, cor-
responding to a rotation of 51.5 degrees. If the two rotations are large, so
that the total rotation is somewhat greater than 360 degrees, you will go all
the way around and wind up with a total rotation that is identical to that of
one of the rotations less than 360 degrees, like going all the way around the
face of the clock in the clock arithmetic of the group Mod(4).

Once we make the abstraction that recognizes the different possible ro-
tations as the elements of the group’s set and the accumulation of the effect
of two successive rotations as the operation associated with the group, we
see that the axiom of closure (that the result of the operation must always
lie within the set) is satisfied. There’s an easily identified identity element:
a rotation by 0 degrees. In other words, the group element R0 has the prop-
erty that R0 * Rq � Rq; for any angle of rotation q, the successive applica-
tion of rotation through q degrees followed by rotation through 0 degrees
leaves you with your original rotation of q degrees. That each element has
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an inverse is also easy to see: a rotation through an angle q, followed by a
rotation through an angle of 360� � q, yields a combined rotation of q �

(360� � q) � 360�. But going around by 360� (full circle) gets you right back
to where you started and is the same as a rotation of 0�, the identity element.
Thus, the inverse of a rotation through the angle q is just a rotation through
an angle of 360� � q. I’ll leave it to you to show that the associative prop-
erty (the second of the axioms we introduced) holds.

None of the rotations we’ve done in this section involve more than two
of the three dimensions of space. As we turn the object around on the sur-
face, the two-dimensional surface, of the desk, we need not concern our-
selves with rotations that lift the object up into the air above the table. Our
rotations involve only the two horizontal dimensions of the surface of the
table, not the third, vertical dimension.

Accordingly, this set of rotations, which we now recognize to be a formal
mathematical group, is known as the group of rotations in two dimensions,
or R(2) for short. Since there is a continuum of possible angles of rotation
in two dimensions, R(2) is a continuous group. Also, R(2) is Abelian. The
order in which you perform the rotations (when combining them accord-
ing to the rules of the operation) makes no difference whatsoever. A rota-
tion through 32.4 degrees followed by a rotation through 19.1 degrees is the
same as a rotation through 19.1 degrees followed by a rotation through 32.4
degrees. In both cases, you wind up with a rotation through 51.5 degrees.

It’s convenient here to introduce another Abelian Lie group: the group
U(1) of rotations in one complex dimension. Mathematically, U(1) is really
just the same thing as R(2); to understand this, we need to pause for a mo-
ment to introduce the notion of complex numbers. This digression will be
of real use to us further down the road because in quantum mechanics, the
value of the wave function at any point in space is in fact a complex num-
ber.

Whenever you square a number (multiply it by itself ), no matter what
number you start with, the number you end up with is positive. This all boils
down to the fact that two minuses, when multiplied together, make a posi-
tive, so if you square a negative number, the two minus signs combine to
give a plus sign, and the result is positive. There’s no way around this. Well,
no way unless you’re a mathematician and thus schooled in the art of mak-
ing up whatever wacky thing you need to satisfy your latest whim.

In this spirit, let’s invent a number i that, when multiplied by itself
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(squared) gives the result �1: i � i � i2 � �1. Thus, if b is any real number
whatsoever, then the quantity b � i (the little dot is a more compact way of
representing multiplication, which we also represent as “�”) has the prop-
erty that its square is negative: (b � i) � (b � i) � (b � b) � (i � i) � (i � i) �
(b � b) � �1 � b2 � �b2. Numbers such as b � i, that have negative squares,
are known as imaginary numbers. A complex number is a combination of
a real number and an imaginary number. In other words, if z is a complex
number, then we can always write z � a � b � i, for some real numbers a
and b. If a is zero, then z � b � i is an imaginary number; if b is zero, then
z � a is a real number. When you put together a real number and imagi-
nary number, you get something a bit more complex, hence the name.

We know how to put real numbers in order. Given any two real numbers,
anyone could say which one is bigger—which one they would prefer to re-
ceive, say, as the dollar amount of a gift from a benevolent uncle. But how
do you discern the size of a complex number z � a � b � i? Which is big-
ger: 100.2 � 22.6 � i, or 1.3 � 67 � i? By the whim of convention (albeit a
very useful whim in this case), the size s of a complex number z � a � b � i
is defined to be the square root of the sum of the squares of the sizes of its 
real and imaginary pieces: s � �a2 � b2.

The interesting thing about this rule is that two different complex num-
bers can have the same size. In particular, there is more than one complex
number z that has a size of s � 1. You can easily verify on a calculator that
the numbers 1�0 � i, 0.64�0.36 � i, and 12⁄13 � 5⁄13 � i all have a size of one
according to this rule for calculating sizes. In fact, there is a continuum of
complex numbers of size one, since for any real number a between �1 and
�1, you can find a real number b (also between �1 and �1) such that 
�a2 � b2 � 1, so that the number z � a � b � i has size one.

Whenever you multiply together two complex numbers of size one, the
resulting complex number also has size one. Thus, it turns out that the set
of complex numbers of size one, together with the operation of complex
number multiplication (note 6.4), forms a continuous group. This group is
known as U(1), the group of complex numbers of size one under the oper-
ation of multiplication.

To get a better feel for the group U(1), let’s go back to our exercise of ro-
tating a rectangular object around on the surface of a table. Imagine draw-
ing a 1-inch-long arrow—a size-1 arrow—along one edge of the rectangu-
lar object, with the base of the arrow lying at the corner where your finger
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presses. As the object rotates, while the base of the arrow remains fixed, the
tip of the size-one arrow can come to rest at one of an infinitude, a contin-
uum, of points, depending on which direction the arrow happens to point
after the rotation. As shown in figure 6.2a, the arrow can point at any angle
between 0 and 360 degrees on a two-dimensional plot. For all such angles,
the points lying at the tip of the arrow form a circle. We label the point ly-
ing at the tip of any given arrow according to the point’s coordinates along
the x- and y-axes of a two-dimensional plot (see fig. 6.2a).

Now, from the point of view of figure 6.2b (note 6.5), since the elements
of the group U(1) are complex numbers of size one, they are similarly rep-
resented by points at the tips of arrows with angles from 0 to 360 degrees.
The graph in figure 6.2b is exactly the same as that of figure 6.2a, only in-
stead of having an x-axis and a y-axis, we have a real, or a-axis, and an imag-
inary, or b-axis. With real numbers, any point on a circle with a radius of 1
inch is given by two numbers, x and y. However, the same point on the cir-
cle is given by a single complex number z � a � b � i. In the ordinary world

Fig. 6.2. The correspondence between the groups R(2) of rotations in two real dimen-
sions and U(1) of rotations in one complex dimension (any point on b is specified by
a single complex number z � a � b � i, so the “complex plane” of b represents a sin-
gle complex dimension). Any point on a circle of radius 1 in two real dimensions can
be specified by the value of the angle q shown in a. Likewise, any point of length 1 in
one complex dimension can be specified by the value of the angle q shown in b. In
both cases, q lies between 0 and 360 degrees. So, mathematically, R(2) and U(1) are
equivalent.



of real numbers, circles are two dimensional, but in the imaginary world of
complex numbers, circles are only one dimensional.

Thus, the elements of the group U(1), the group of complex numbers of
size one, correspond exactly to the possible angles q of the two-dimensional
rotations that form the group R(2). Furthermore, the multiplication of two
complex numbers of size one is completely equivalent to the operation of
combining rotations for R(2). If a size-one complex number z1 is repre-
sented in figure 6.2b by an arrow at an angle of 32.4 degrees and z2 by an
arrow at an angle of 19.1 degrees, then the product z2 � z1 is represented by
an arrow at an angle of 32.4 � 19.1 � 51.5 degrees, just as following a 32.4
degree rotation with a 19.1 degree rotation is the same as a single 51.5 de-
gree rotation.

At first blush, R(2) and U(1) look very different, but after some thought,
we see that they are really the same. The fact that the two groups are based
on different number systems (two real vs. one complex dimension) and em-
ploy entirely different operations (successive rotation vs. complex number
multiplication) is immaterial. The mathematician recognizes that, while
they are represented quite differently, the groups R(2) and U(1) are, in their
essence, identical. This is an archetypical example of the workings of math-
ematical abstraction and a necessary step in the process of unveiling the
connection between these mathematical entities and the structure of the
physical universe.

The designation U(1) may be a bit obscure. For the set R(2) of rotations
in two (real) dimensions, we read the “R” as “rotation in real space” and the
“2” as “in two dimensions.” In the case of the complex group U(1), how-
ever, we saw that we admit the possibility of something mathematically
equivalent to rotation with just a single complex number—a single com-
plex dimension. Furthermore, these “rotations” involve themselves solely
with the complex numbers of size one—of unit length. Thus, for U(1), we
read the “U” as “the set of unit-length numbers” and the “1” as “in one com-
plex dimension.”

Adding the Next Dimension: The Lie Group R(3)

The three-dimensional version of the group R(2) of rotations in a plane is,
not surprisingly, the group R(3) of rotations in three real dimensions. The
increase in complexity associated with the expansion from two to three di-
mensions leads to a number of interesting properties.
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For one, the group R(3) is non-Abelian: The order in which you com-
bine the elements of the group matters. This is a bit counterintuitive, but
it’s easily demonstrated. Another property of R(3) is that we can think of the
infinite continuum of its elements as being generated by a finite number of
prototypical elements of the group. This latter characteristic is the essence
of what makes any continuous group specifically a Lie group. Both of these
properties will have direct consequences on the nature of physical law when
we eventually incorporate them into the formalism of gauge theory (see
chapter 8).

To explore the properties of R(3), the set of possible rotations in three-
dimensional space, find a cardboard box, a thick book, or some other such
rectangular solid, and mark one of the eight corners with a pen. The object
that you may have used above in exploring R(2) would be fine, as long as
it’s thick enough to prompt thinking in three dimensions. If you got by with-
out the prop in the discussion of R(2), it might be helpful to actually go
through the physical exercise in this case.

The marked corner will form the origin, the fixed point about which we
will perform our rotations, similar to the corner that we held fixed in our
discussion of R(2). The three edges that connect at the origin define three
lines in three-dimensional space—the x-, y-, and z-axes of a three-dimen-
sional Cartesian coordinate system. Label them x, y, and z (see fig. 6.3).

Figure 6.4 shows three basic types of rotations that we can do with this
three-dimensional object. Practice rotating the box exclusively about the x-
axis so that the edge you’ve labeled x remains in the same place as you turn
the box back and forth (see fig. 6.4a). Rotate the box back to its original po-
sition, and then do the same exercise about the y- and z-axes (edges), again
making sure you return the box to its original position before going on from
the y-axis to the z-axis rotation. This is all just warm-up; the only thing you
might want to notice is that, by the time you’ve gotten through all three ex-
ercises (the x-, y-, and z-axis rotations), there will be one, and only one, point
on the box that hasn’t moved the entire time—the corner you marked as the
origin.

Now we’re ready to begin our exploration of the group R(3). In what fol-
lows, we’ll refer to these three types of rotations, by some unspecified angle
but with one of the three axes (x, y, or z) fixed, as the three exercise rota-
tions. Keep this terminology in mind because it will come in handy in later
chapters.
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Fig. 6.3. The prop to use as an aid to learning about Lie groups.

Fig. 6.4. The three basic “exercise” rotations about the x-axis (a), y-axis (b), and z-axis (c).



Place the box squarely in front of you, as before, with the origin of the
box resting on the dot on the paper. Make a mental note of the position of
the box. Now, pick up the box, and in the air above the table, spin the box
around in some arbitrary way so that its orientation in space is random. Pre-
serving this orientation, lower the box back to the table so that the origin
again touches the dot on the piece of paper. (Because the surface of the
table is rigid and won’t let any of the box pass through it, not all possible ori-
entations of the box will work, but there are enough orientations that do
work that this doesn’t really present a problem. Just pick one of the random
orientations that does work.)

Now, compare this position of the box to the original position, of which
you made a mental note. The two positions are related by an arbitrary ro-
tation of the three-dimensional box about its marked corner—the fixed ori-
gin of the coordinate system. The set of all such possible rotations, includ-
ing the ones you couldn’t do because the table was in the way, form the
elements of the group R(3). We can label these different elements of the ro-
tation group R(3) by the angles at which the x-, y-, and z-axes end up after
the rotation.

Just as for R(2), these actions, the set of possible rotations of the box, are
the elements of R(3), not the associated operation. The operation, again, is
the combination of two rotations by their successive application.

Note that the exercise rotations, the rotations exclusively around the x-,
y-, or z-axis, by any angle between 0 and 360 degrees, lie within this set of
elements. Also among these elements resides the possibility of no rotation
whatsoever ( just leaving the box sitting there unmoved); we still want to
think of this as a rotation, albeit one that leaves the position of the box un-
changed. This rotation of the box by nothing is the identity element of the
group R(3), just as it was for the case of R(2).

The set of rotations R(3), in concert with the operation given by the suc-
cessive application of rotations, forms a group. If you rotate the box, and
then rotate again, what you always wind up with is just some other rotation.
So, R(3) is closed under this operation. The identity element is the rotation
of the box by nothing. The inverse of any rotation is the complementary ro-
tation that undoes the given rotation by returning the box to its original po-
sition, so that the combination of the given rotation with its inverse leads to
a net rotation of nothing—the identity element. The associative law holds,
although again we won’t care to show it.

We need to be able to specify the different rotations that form the ele-
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ments of the group R(3). We’ll do this in a way that gets right to the heart
of its designation as a Lie group.

If the arbitrary rotation that you just performed was complicated enough,
you will see that it is not possible to move the book from its original (rest-
ing) position to its final (held) position with just a single exercise rotation
about either the x-, y-, or z-axis. However, any arbitrary rotation can be
achieved by a succession of no more than three exercise rotations of the ap-
propriate angle—one about the x-axis, another about the new y-axis (note
that after the rotation about the x-axis, the orientation of the y-axis has
changed, giving a new orientation to the y-axis), and a third about the even
newer z-axis. Thus, instead of distinguishing between the different possible
rotations by designating the angles at which the former x-, y-, and z-axes end
up, we can instead simply designate the angles qx, qy, qz associated with the
three exercise rotations necessary to produce the overall rotation.

This is the essence of what makes a group a Lie group. A Lie group con-
tains an infinite continuum of elements; yet, its structure is delineated by a
finite number of elements, known as generators, from which the continu-
ous infinitude of elements are easily obtained. In the case of R(3), there are
three such generators: the small exercise rotations about the x-, y-, and z-
axes. Once you know what the generators of the Lie group are, all you need
to do to specify any given element of the group is to figure out how much
of each of the generators contributes to the formation of that element. In
the case of the Lie group R(3), this amounts to picking the values (between
0 and 360 degrees) of the three angles qx, qy, qz that produce the rotation
that you desire. Absolutely any element of R(3), any rotation in a three-
dimensional space, can be produced in this way.

In our discussion of R(2), the group of possible rotations of an object in
only two dimensions, we made no mention of generators. This is not be-
cause the group R(2) (which is a Lie group) has no generators. For the group
R(2), the elements (rotations) were specified by the single angle q through
which we rotated the object. Thus, if you think about it, R(2) is a Lie group
generated by a single basic exercise rotation: a small turn about the single
available axis of rotation in the system. R(2) and U(1), which we argued is
mathematically identical to R(2), are Lie groups formed from a single gen-
erator.

To recapitulate, Lie groups are continuous groups (composed of an infi-
nitely dense succession of elements) whose elements are derivable from a
finite number of generators. The properties of the generators alone, their
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number—three for R(3)—and their relations under the group’s operation,
definitively establish the properties and interrelations of the infinite con-
tinuum of elements in the full group.

Order Matters: The Lie Algebra

Since any Lie group is characterized by its generating elements, by explor-
ing the properties of its generators alone we can answer the question of
whether the order of combination of the group’s elements matters.

To see that the generators of R(3) don’t commute, that the order of ap-
plication of the different exercise rotations does matter, place your labeled
box once again squarely in front of you. Let the symbol X90 denote an ex-
ercise rotation of 90 degrees about the x-axis (which should still be labeled
as such on your box). Similarly, let the symbols Y90 and Z90 denote exercise
rotations of 90 degrees about the y- and z-axes, respectively.

Now, let’s consider the behavior of two of these generators under the
group’s operation (note 6.6). The combination, or successive application,
of the 90-degree exercise rotations about the x- and y-axis can be performed
in two different orders:

Rxy � X90 * Y90,

Ryx � Y90 * X90.

We’ll adhere to the rather confusing mathematical convention that the or-
der of combination proceeds from right to left, for example, the first of these
expressions directs you to rotate by 90 degrees about the y-axis first, and then
by 90 degrees about the x-axis (which will have changed position but will
still be labeled with the x on your box).

Try these two combinations, and see whether you can confirm what is
depicted in figures 6.5a and 6.5b—the two different orders of combination
result in combined rotations Rxy and Ryx that are completely different. The
order in which the elements are combined by the group’s operation (suc-
cessive rotation) does matter—the generators of R(3) and thus, more gen-
erally, the elements of R(3) that are constructed by taking different amounts
of these fundamental generating rotations do not commute. The group R(3)
is non-Abelian.

To make this point more clear, it’s helpful to consider a counterexample:
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Fig. 6.5. The combined rotations Rxy � X90*Y90 (a) and Ryx � Y90*X90 (b). The
order of the elements in the operation does matter!



a Lie group with three generators in which the generators do commute.
Let’s go back to rotation in two dimensions about a single axis—the system
we used to introduce the group R(2)—and consider a case for which we
have three separate objects stacked atop one another, lined up, and ready
to rotate about the same axis of rotation (see fig. 6.6).

Rotations in this system are again determined by three angles: qL, qM,
qU, the independent angles by which the lower, the middle, and the upper
objects are rotated. The three generators of these rotations, from which all
possible rotations of the system can be made, are just small rotations of each
of the three objects (lower, middle, and upper) individually about the com-
mon axis of rotation. It’s easy to see that in this case the generators do com-
mute. It makes no difference which order you apply the separate rotations
of the objects to compose any overall rotation in the group.

As we’ll discuss in chapter 8, a physical theory based on this Abelian Lie
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Fig. 6.6. The group R(2) � R(2) � R(2), that is, three separate copies of R(2)
(represented by the three two-dimensional planes) that rotate independently
of one another. This group, like R(3), has three generators, but it’s a different
group than that of the rotations of an object in three-dimensional space.
Among other things, this group is Abelian, while R(3) is not.



group, which is known as “R(2) � R(2) � R(2)” would have significantly dif-
ferent characteristics than one based on the non-Abelian group R(3), even
though both of these groups have the same number (three) of generators.

So, it’s not only the number of generators, but also their interrelation un-
der the group’s operation, that specify the identity of a Lie group. The ex-
act nature of this interrelation—the precise difference between the combi-
nation of pairs of generators when combined in opposite order for all
possible pairs of generators—is known as the group’s Lie algebra. Even
though R(3) and R(2) � R(2) � R(2) have the same number of generators,
they are entirely different Lie groups because all pairs of the three genera-
tors of R(2) � R(2) � R(2) commute with each other, while none of the
generators of R(3) do. To identify a given Lie group, you must specify both
the number of generators and the Lie algebra of differences in the order of
combination of all pairs of those generators.

When Lie groups are associated with the description of the natural
world, as they will be in chapter 8, the specifics of the Lie algebra will be
seen to have profound consequences. For example, were we able to some-
how alter the Lie algebra of the group underlying the description of the
strong nuclear force, we could do so in a way that would prohibit the for-
mation of atomic nuclei. The dependence of physical law on the Lie alge-
bra is not a subtle one.

The Lie Group SU(2)

We’ve already introduced the group U(1), the group of size-one complex
numbers with the associated operation of complex-number multiplication.
We argued that, mathematically, U(1) has precisely the same structure
(number of elements and their interrelation under the group’s operation) as
the group R(2) of rotations in two real dimensions. Given this, we might ask
two questions: Can one construct a group of rotations in two complex di-
mensions, and if so, is this group mathematically equivalent to a group of
rotations in some number of real dimensions? The answer to the first of
these questions is an unqualified yes; we can also answer the second in the
affirmative, although in this case, with some interesting qualifications.

To see what is meant by rotation in two complex dimensions, let’s first
remind ourselves about rotation in two real dimensions. Take a piece of pa-
per and mark a dot on it. Then, draw an arrow whose base is at the dot, ex-
tending in some direction or other on the surface of the paper (see fig. 6.7).
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Press your pencil on the dot so that you can rotate the arrow about its base
(the pencil represents the axis of this rotation). No matter how you rotate
the arrow in the two real dimensions of the page, its size is always the same.
Mathematically, we note that as the arrow is rotated, the x and y coordinates
of its tip change (for example, to the coordinates x� and y�, shown in fig. 6.7),
but its size s, given by the relation s � �x2 � y2 � �(x�)2 � (y�)2, is un-
changed. Rotation in two real dimensions does change the x and y coordi-
nates of any point (say, the point at the tip of the arrow) but in such a way
so that the distance s of the point from the origin remains unchanged (note
6.7).

Rotation in two complex dimensions is not that different. Instead of a
plane of two real coordinates x and y, we have a plane of two complex co-
ordinates sx and sy (fig. 6.8). In real dimensions, x and y are the size of the
real numbers that represent the values of the real coordinates. In complex
dimensions, sx and sy are the size of complex numbers that represent the val-
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Rig. 6.7. Rotation in two (real) dimensions. When the arrow is rotated, the co-
ordinates of its tip change from x and y to x� and y�, but its length s stays the
same.



ues of the complex coordinates. The arrows of figures 6.7 and 6.8 don’t look
any different because they’re not. One points to a location in a real 
two-dimensional plane and the other to a location in a complex two-
dimensional plane. And, just as in two real dimensions, a rotation in two
complex dimensions will preserve the overall size s � �s2

x � s2
y of the

two-dimensional complex number.
This seems to suggest that rotation in two complex dimensions is math-

ematically equivalent to rotation in two real dimensions: that the group of
rotations in two complex dimensions is identical to R(2). But in the section
“Adding the Next Dimensions” above, we argued that the group U(1) of ro-
tations in one complex dimension is equivalent to R(2), so we must be miss-
ing something.

What we’re missing is that each of the complex coordinates sx and sy is a
complex number’s size, not a complex number in and of itself. Take, for ex-

Fig. 6.8. Rotation in two complex dimensions. When the arrow is rotated, the
complex coordinates of its tip change from sx and sy to sx� and sy� , but again its
overall size s remains unchanged.



ample, the coordinate sx. This coordinate represents the size of a complex
number ax � bx � i, with the size sx � �a2

x � b2
x. Similarly, sy represents a

complex number ay � by � i whose size sy is given by sy � �a2
y � b2

y. But
there are an infinite number of combinations of ax and bx that give the same
size sx and an infinite number of combinations of ay and by that give the
same size sy.

The point is that, since rotate means preserve the size of, there are really
three different ways to rotate in two complex dimensions. Analogous to ro-
tation in two real dimensions, we can rotate the arrow of figure 6.8 so that
we get a new arrow with new sx and sy coordinates but with the same over-
all size. We can, instead, simply pick a new ax and bx so that sx (and sy) re-
main unchanged. Or, we could instead pick a new ay and by so that sy (and
sx) remain unchanged. In all three cases, we’ve changed the complex num-
bers involved but have preserved the overall size s � �s2

x � s2
y of the arrow

in the two-dimensional complex plane. The latter two of these three modes
of rotation are unique to complex dimensions; rotation in two complex di-
mensions is much richer than rotation in two real dimensions.

Just as the set of rotations in two real dimensions forms a Lie group, R(2),
the set of rotations in two complex dimensions also forms a Lie group,
known as SU(2) (read “ess-you-two”). Again, the numeral 2 refers to the fact
that two dimensions (in this case, complex dimensions) are at play. The let-
ter U stands for the word unitary, which just means size-preserving, the bell-
wether property of a rotation. The letter S stands for the word special, and
the explanation of its origin is not of interest to us.

The operation under which R(2) becomes a group is the successive ap-
plication of two rotations, the result of which is a third, combined rotation
that is always a member of R(2). Likewise, the result of the successive ap-
plication of two complex two-dimensional rotations is always some other
complex two-dimensional rotation. This operation, the successive applica-
tion of complex two-dimensional rotations, also satisfies the other require-
ments listed at the beginning of this chapter, so SU(2), the set of rotations
(size-preserving changes) in two complex dimensions is a group: a Lie
group.

Because SU(2) is a Lie group, its infinitude of elements must derive from
a small number of basic elements, or generators. For R(2), there was but a
single generator: a small rotation about some fixed point (axis) on the two-
dimensional plane. Similarly, the group R(3) of rotations in three dimen-
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sions has three generators: rotations about each of the x-, y-, and z-axes or,
in terms of the prop we used, the three exercise rotations about each of the
three different edges of a box that emanate from one of its corners. Any ro-
tation in R(3), any possible final orientation of the three box edges, can be
achieved by three rotations of the appropriate size about the three box
edges. These three types of rotations, one for each axis or box edge, gener-
ate R(3).

Furthermore, the rotations of R(3) do not commute; the order in which
you perform any two successive rotations does make a difference, leading in
general to a different final orientation of the box, depending on which of
two successive rotations is applied first. The precise way in which the rota-
tions fail to commute—the difference between the successive application
of two of the generating rotations in first one order and then the other—is
a characteristic property of the Lie group. The list of these properties, the
order differences in the successive application of each pair of generating ro-
tations, is known as the algebra of the Lie group. It is this algebra that dif-
ferentiates between different Lie groups with the same number of genera-
tors, such as the two three-generator Lie groups R(3) and R(2) � R(2) �
R(2).

What about SU(2)? How many generating rotations do we need to be
able to achieve any two-dimensional complex rotation? In two real dimen-
sions, there is but one mode of rotation: turning in the plane about the given
axis. So, R(2) has but one generator. However, as described above, there are
three different ways to rotate in two complex dimensions, so SU(2) has just
that many generators, three.

But we know not to stop here, for if we really want to compare SU(2) and
R(3), we need to know more than just the number of required generators.
We also need to compare the behavior of the combination (under the
group’s operation) of pairs of generators when we change the order of their
combination. We need to compare the Lie algebras of the two groups.

Once you know how to represent the elements of SU(2) and R(3) math-
ematically (note 6.8), this is quickly done because there are only three
unique ways to form pairs of two generators out of a set of only three gen-
erators. When you perform these three calculations, first for pairs of gener-
ators of SU(2), and then for pairs of generators for R(3), you find something
rather surprising. The algebra of the two groups is precisely the same! In
other words, the commutation, or ordering, difference between the first and
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second generators of SU(2) is precisely the same as that of the first and sec-
ond generators of R(3), and so forth, for each of the three possible pairs of
generators for each group.

At this point a warm feeling washes over us as we conclude, just as for
U(1) and R(2), that the three-generator non-Abelian groups, SU(2) and
R(3), are different manifestations of the same Lie group. It seems that the
powers of abstract reasoning triumph over the pedestrian world of the merely
apparent, revealing SU(2) and R(3) for what they are: the same individual,
dressed in slightly different clothing. Mathematically, they are the same.

This epiphany is almost, but not quite, correct.
Let’s go back to the intuitively accessible R(3) and the box we used as a

prop to evince its properties. Consider any one of the three generating ex-
ercise rotations of the box, and rotate the box through 360 degrees of that
rotation. You get back to where you started. A rotation of 360 degrees, or a
multiple thereof, about any axis is the same as doing nothing; in other words,
it is the group’s identity element. Such is not the case for the group SU(2).
For SU(2), it takes 720 degrees, twice 360 degrees, of (complex) rotation to
get back to where you started! Requiring a rotation of 720 degrees rather
than 360 degrees to restore a system to its original orientation may sound
strange, but there’s a relatively simple physical system that also has such a
property (see fig. 6.9).

Place the palm of one hand near the cheek on the same side of your body,
and face the palm straight upward (you’ll need to be standing for this to
work). Place a small box or book on your palm so that it rests comfortably
with no other support than the palm itself, with the book resting near your
ear like a waiter holding a tray in a fancy restaurant. Making sure the top of
the box always faces upward, rotate your forearm about your elbow so that
your palm (and the box) passes through 360 degrees of rotation about your
elbow. If you’ve done it right, you’ll now be in a mildly uncomfortable po-
sition, with the top of the box still facing up, but now below rather than above
your elbow, with the book at about waist level and your palm pointing rear-
ward. The system is in a different configuration than it was before the 360-
degree rotation. A continuation of the rotation by another 360 degrees, for
a total of 720 degrees, restores the system to its original configuration, with
the book resting on your palm right near your ear, above the elbow. So, even
though this system has little to do with SU(2), we see that it’s actually not
that out of the ordinary for a system to require 720 degrees rather than 360
degrees of rotation to get back to its original orientation.
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So, the mathematician hedges. She would say that, “locally,” SU(2) and
R(3) are the same group—the number of generators and the algebra are the
same for both groups. But she would say that “globally,” there are some dif-
ferences; it takes 720 degrees, not 360 degrees of rotation to get back to
where you started with SU(2), while for R(3), it only takes 360.

Physically, when we begin to apply Lie groups to our understanding of
the natural world, it will be the local (Lie algebra) properties of the group
that determine the basic behavior of the system governed by the structure
of the Lie group. So, for example, SU(2) and R(3) both generally describe
the behavior of systems with angular (rotational) motion. However, the
global properties of the group establish what specific types of systems can
be described. Thus R(3), with its mere 360 degrees of rotation, is more lim-
ited and can only describe systems with orbital angular motion. SU(2), with
its 720 degrees of possible rotation, is more general and can describe sys-
tems with either (or both) orbital or spinning angular motion.
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Fig. 6.9. A system for which 720 degrees (not 360 degrees) of rotation is nec-
essary to restore the system to its original position.



Lie Group Wrap-Up

Having introduced the group R(3) of rotations in three real dimensions, and
the group SU(2) of rotations in two complex dimensions, we can wonder
about rotation groups in higher dimensions, both real and complex. It turns
out that the connection between complex and real rotation groups—the
fact that R(2) and U(1) are one and the same mathematically and that R(3)
and SU(2) are closely related—is fortuitous and is not a general property
connecting the worlds of real and complex rotations. The next-higher-
dimensional real rotation group R(4) (the group of rotations in four real di-
mensions) has six generators, while the next-higher-dimensional complex
rotation group SU(3) (the group of rotations in three complex dimensions)
has eight generators.

This lack of correspondence between real and complex rotations, how-
ever, is immaterial. The point is that we can determine, using the tools of
abstract mathematics, exactly what the properties of these higher-dimen-
sional rotation groups are. We can deduce the identity of their generators,
work out the algebra of these generators, and even derive, if interested, the
groups’ global “topological” properties. Armed with this, we can fully explore
the implications of physical theories based on each of these groups (what
we mean by the statement “physical theory based on these groups” will be
the subject of the next two chapters).

To this point, we’ve found that the groups that provide successful physi-
cal theories are U(1) and SU(2), together providing the basis for the theory
of the electroweak force, and SU(3), which provides the basis for the the-
ory of the strong nuclear force. So it’s these Lie groups—the groups of ro-
tations in one, two, and three complex dimensions—to which we’ll need to
return in the chapters ahead.
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7

The World Within

Internal Symmetries

It is often stated that the German Emmy Noether (1882–1935) was the
greatest of all female mathematicians. Few would take issue with this claim,
but it seems to me to sell her a bit short. There are few figures in the long
history of mathematics, male or female, whose contributions stand clearly
above those of Noether.

Like other great female scientific thinkers of her day (Marie Curie comes
to mind), Noether’s establishment in academic circles came only after a
prolonged battle, championed, in her case, by her mathematical colleagues
at Germany’s University of Göttingen (David Hilbert and Felix Klein in par-
ticular) over the stodgy objections of the university administration. Against
this inconducive backdrop, her achievements are all the more impressive,
although there are also some male figures of similar renown (Karl Weier-
strass being perhaps the most notable example) who overcame prejudice
and other sorts of demons to advance and reshape mathematical thought
(note 7.1). Mathematical genius has a way of bubbling forth inextricably
from those few who possess it. Exposure to elevated discourse seems more
critical an element than encouragement in the development of truly inde-
pendent thinkers. Luckily, Noether happened to be the daughter of the re-
spected mathematician Max Noether; one wonders how much innate
mathematical genius has been squandered due to a simple lack of such ex-
posure.

The abrupt and premature end of Noether’s career in Germany was not



due to her gender but, rather, to the accident of having been born Jewish
in Hitler’s Germany. Noether spent the last two years of her life as a visiting
professor at Bryn Mawr College in the Philadelphia suburbs.

Noether’s contribution to higher mathematics was primarily in the de-
velopment and elevation of the study of mathematical systems known as
rings, sets of elements on which, not one, but two interrelated operations
are defined (note 7.2). While groups and rings are closely related, our in-
terest does not reside in Noether’s work on abstract algebra.

Instead, our interest in her work stems from her brief foray into the world
of mathematical physics in the years surrounding 1915. In addition to work
supporting the development of Einstein’s general theory of relativity, Noe-
ther published a result showing the general relation between the sorts of in-
variance, or symmetry exhibited by physical laws and the existence of “con-
served quantities”—measurable attributes of a physical system that remain
unchanged over time, regardless of what other complex behavior the sys-
tem may undergo. For instance, the principle of energy conservation, which
has played several roles in prior chapters, is understood in this way to be due
to the invariance of physical laws with respect to the passage of time. In
other words, we believe that energy is conserved because the laws govern-
ing the behavior of the universe remain steadfastly fixed as time goes by.
This notion of the fundamental origin of energy conservation is a specific
application of Noether’s more general result, published in 1915, and now
referred to as Noether’s theorem.

Noether’s Theorem

To understand the statement of Noether’s theorem (our only ambition; we
won’t attempt the proof here), we need to introduce the notion of symme-
try, or invariance, a concept with widespread application throughout the
quantitative sciences.

Suppose an introductory physics student does an experiment on static
electricity in the teaching laboratory of some university, say, at the Univer-
sity of California at Santa Cruz, just to pick one at random. After a period
of getting used to the apparatus, he is able to verify, to whatever degree of
accuracy the apparatus permits, that the repulsive force between two
charged objects is proportional to the static charge on either object and that
the force diminishes as the square of the distance between the two objects.
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He has provided experimental evidence in support of Coulomb’s law of
electrostatic repulsion.

In a phone conversation later that week with a friend enrolled at the Na-
tional Autonomous University of Mexico, the student discovers that his
friend has performed the identical experiment in her classroom in Mexico
City. Because they are both good students working with quality apparatus,
they both reach the same conclusion: Coulomb’s law of electrostatic re-
pulsion does an excellent job of describing the interaction of electrically
charged objects. The laws of physics are no different among the redwoods
in Santa Cruz than they are a thousand miles southeast and seven thousand
feet higher in Mexico City.

This probably comes as no surprise, and to acknowledge it even sounds
sarcastic: “You know, the laws of physics are no different in northern Cali-
fornia than they are in Mexico City.” To Noether, however, this was noth-
ing short of remarkable, reflecting something about the underlying fabric
of the space into which the workings of the physical world are woven. If one
performs an experiment in northern California, then moves, or translates
the experiment to Mexico City (or any other location) and performs the ex-
periment again, one expects to find, and indeed does find, that the outcome
of the experiment in either case is governed by the identical set of physical
laws. The laws of physics are independent of location: one does not have to
include in his or her description of the physical laws the exact location at
which the laws apply; if they apply somewhere, then they apply everywhere
identically. A physicist would say that physical laws are invariant with re-
spect to translation, or symmetric with respect to translation.

Note also that the teaching lab experiments do not have to be redesigned
every semester. Once an experiment is put together, as long as the appara-
tus remains in good repair, it will provide the same result year after year.
You can’t wriggle out of a poorly executed lab period by claiming that the
laws of physics have evolved over time so that results achieved today might
differ from those of a prior term. The laws of physics do not change over
time; the prior measurements stand, and you had better prepare yourself for
the humiliation of a poor grade. So, just as the laws of physics are invariant
with respect to translations in space, they are also invariant with respect to
translations in time. These are but two (actually, four; one for time, and one
each for translation in the three independent spatial dimensions) of a num-
ber of symmetries obeyed by all known physical laws.
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And now for Noether’s theorem:

For every symmetry exhibited by a physical law, there is a corresponding
observable quantity that is conserved.

In other words, for any invariance exhibited by a physical law such as the
electromagnetic interaction, there is some measurable quantity that re-
mains unchanged over time, no matter how complex the behavior of the
system being governed by the physical law. Thus, for example, since all
physical laws are thought to be invariant with respect to translations in both
space and time, there must be four quantities (one for each of the three pos-
sible independent dimensions of spatial translation, plus one for translation
in time) that are conserved by all physical laws. What are these four con-
served physical quantities?

Let’s take one of these four symmetries, say, translation in the east-west
dimension. What physical quantity is conserved, according to Noether, due
to the fact that all physical laws, and really space itself, are invariant with re-
spect to such translations?

The answer is precisely that portion of an object’s momentum associated
with east–west motion. The amount of momentum associated with the
east–west motion of any physical system can never change on its own, with-
out the influence of something external to the system. The reason for this,
according to Noether’s arguments, is fundamental: conservation of mo-
mentum in the east-west direction is a direct consequence of the fact that
space itself appears perfectly uniform as you move east or west within it.

The claim that space is uniform as you move east or west within it may
not sound correct. Certainly, the scenery changes dramatically as you move
east from Santa Cruz into the interior of California. But that’s not the issue.
The point is that, independent of what you choose to clutter it with, space
itself is unchanging as you move from point to point within it.

The earth moves continually through space as it orbits the sun and drifts
along with the Milky Way, but the natural laws one derives from studying
physics do not change as this motion plays itself out. Likewise, the mo-
mentum associated with motion in the north-south and up-down directions
is conserved, again due to the uniformity of space in these directions.

What about invariance under translation in time—the fact that the re-
sult of any experiment is independent of when the experiment is under-
taken? While spatial invariance leads to the principle of momentum con-
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servation, time translation invariance, according to Noether, leads to the
conservation of energy. Considering these four symmetries and their asso-
ciated conserved quantities together, we can state that the principle of en-
ergy/momentum conservation is understood, thanks to Noether, to follow
necessarily from an innate, intuitive property of space-time: the fact that the
precise form of all physical laws that govern the workings of nature are in-
dependent of the location and time at which those laws find themselves at
play. Such a profound implication from such a seemingly obvious and in-
considerable quality of the natural world!

The utility of the principle of energy/momentum conservation can be
illustrated with a simple example. Consider a cigar box (taped shut) with
some toads in it. To make it interesting, let there be not just one or two, but
many toads, a whole squadron of them, kicking angrily about, wondering
what malicious force of nature conspired to bring them together within the
crowded and dingy confines of the box. Furthermore, let’s assume that you
and I know what this malicious force is, and that it’s the funding arm of the
National Institutes of Health, which has been twisted into action by a pro-
posal to study a possible link between zero gravity and the spontaneous re-
mission of warts.

Space shuttle mission leader Sally Ride, after packing the hapless am-
phibians into the box, gives them a small shove, sending them gliding slowly
over to scientific mission specialist Steven Hawley. The system, box plus
toads, has some specific amount of energy associated with its motion and a
specific amount of momentum in a specific direction (from Sally to Steve).
As the toads thrash, the box jerks wildly about. But, thanks to the miracle of
energy and momentum conservation, at no time during this glide does the
system, box plus toads, have an overall energy or momentum any different
than it did just after Sally pushed it or just before Steve caught it. The amount
of energy and the amount and direction of momentum of the system of box
plus toads, taken as a whole, is precisely the same at each point in time dur-
ing the glide, irrespective of how the incensed toads move about. As long as
nothing external to the box of toads exerts an influencing force on it (which
it doesn’t, since the box glides through the space between Sally and Steve at
zero gravity), its overall momentum and energy will not change. Sally can
send the box off to Steve with no concern whatsoever about what the system
of angry toads, isolated within the confines of the box, will do.

So, energy/momentum conservation is a powerful overarching princi-
ple, and, thanks to Noether’s insight, one that we know to be attributable to
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the fact that space-time is invariant under spatial and temporal translations.
If the toads were only aware of the beauty of the principles underlying their
motion, perhaps they would be happier with their plight.

Conservation laws, of which energy/momentum conservation is just one
example, play an absolutely central role in physics and its corresponding de-
scription of nature. If nothing else, the Schrödinger equation, the master
equation of quantum mechanics, is nothing more than a statement of the
meaning of energy conservation for objects that have wavelike properties (as
all objects do). Noether’s connection of energy/momentum conservation
to the fundamental structure of space-time was a profound insight.

Noether’s theorem establishes an essential link between the symmetries of
a physical system and the rules that govern its behavior. It is precisely this con-
nection that will take us beyond relativity, quantum mechanics, and quan-
tum field theory to the next great leap in our understanding of the natural
world: the development of gauge theory. The notion of symmetry and its as-
sociated mathematical underpinnings (Lie groups) will remain close at hand.

Lie Groups and Noether’s Theorem

Lie groups are the mathematical entities that represent the full set of actions
one can perform on a system exhibiting some given symmetry that, due to
the symmetry, leave the physical properties of the system unchanged. For
this reason, Lie groups are sometimes referred to as symmetry groups. For
example, translation of a physical system through space leaves its overall
properties unchanged; the set of all possible spatial translations forms a Lie
group (although not one that we’ve discussed or named).

Recall that a Lie group is a group composed of a continuous infinitude
of elements, each of which can be gotten by taking just the right amount of
a small number of generating elements. So, for example, any of the infini-
tude of possible rotations in three dimensions, any member of the group
R(3), can be achieved by the successive application of the appropriate
amounts of the three generating exercise rotations: about the x-, y-, and z-
axes of a Cartesian coordinate system (the axes defined by the three edges
of a box that emanate from the corner of the box that is fixed by the rota-
tion).

Similarly, any of the infinitude of possible translations of an object
through space can be achieved by the successive application of appropri-
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ately sized versions of the three generating translations. If you want to trans-
late your lab apparatus from Santa Cruz to Mexico City, you can do it by
first translating the apparatus straight up by 7,000 feet, then straight south
by a thousand miles or so, and then straight east by a few hundred miles.
Translations in the east-west, north-south, and up-down dimensions are the
three generators of the continuously infinite Lie group of possible transla-
tions.

Now, we’ve seen above that each of these generating translations corre-
sponds to a unique, conserved physical quantity; in this case, the momen-
tum in the east-west, north-south, and up-down dimensions, respectively.
So, we make the following general conjecture: If a given physical law is sym-
metric, or invariant, with respect to a set of actions that forms a Lie group
(such as the Lie group of translations in space), then Noether’s theorem tells
us there is a conserved physical quantity associated with each generator of
the Lie group (such as the momentum in each of the three corresponding
directions in space in the case of invariance with respect to spatial transla-
tion).

Not all symmetry principles observed by physical laws are represented by
Lie groups in the way that translational symmetry is. One particular sym-
metry that will interest us is invariance under mirror-reflection, known also
as parity inversion (note 7.3). In this case, there is no continuum of possi-
bilities. You’re either in the normal world or the mirror-reflected world. If
you reflect once, you’re in the reflected world. If you reflect again, you’re
back in the normal world. The group representing mirror reflection has but
two elements: reflected and unreflected. If the laws of physics are the same
in the reflected and unreflected world, then we have a symmetry, albeit a
discrete yes or no–type symmetry rather than a continuous symmetry such
as translation. Nevertheless, something analogous to Noether’s theorem still
applies, and there is an associated measurable physical quantity, known as
parity, that is conserved.

The reason parity conservation is of interest to us is precisely because
there is a particular law of physics that does not obey parity conservation—
a law that is not invariant under mirror reflection. And that particular law
of physics, you may have already guessed, is the law governing the behavior
of the weak nuclear force, our favorite renegade. In fact, the failure of the
weak force to conserve parity was one of the primary clues along the path
leading to the development of the Standard Model. Today, measurements
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of the quantitative extent of weak-force parity violation comprise the most
exacting tests of the ideas underlying the Standard Model. All this in good
time.

Rotations and Angular Momentum

Let’s head back to our introductory physics lab and return to our experiment
on electrostatic repulsion. There’s another aspect of the spatial disposition
of our apparatus that we haven’t yet considered; its orientation. Once again,
we carefully measure the strength of the repulsive force between two elec-
trically charged objects as a function of the distance that separates them.
But now, we rotate the experimental apparatus about its center, so that the
overall location of the experiment is unchanged, but it has a different ori-
entation in space. We again perform the experiment and log the result. In-
tuitively, you would expect that our results will be the same. We don’t ex-
pect the laws of physics to depend on the direction that a system governed
by those laws happens to face.

Although intuition does sometimes have a way of leading you astray, this
is not such a case. The laws of physics do seem to be independent of orien-
tation, or in more formal language, invariant with respect to rotation. Thus,
no matter which of the continuous infinitude of possible three-dimensional
rotations we pick—no matter which element of the Lie group R(3) we
choose—we find that Coulomb’s law of electrostatic repulsion applies
equally as well after the rotation as before. The group R(3) of rotations in
the three dimensions of space is a symmetry of the law of electrostatic re-
pulsion and of natural laws in general.

So, since physical laws are invariant under rotations, Noether’s theorem
tells us that there are one or more quantities associated with this invariance
that are conserved. And since these rotations are related among one another
according to the structure of a Lie group, R(3), we can figure out what these
conserved quantities have to be. There’s one for each generator of R(3)—
one each associated with rotations about each of the three axes, x, y, and z,
of a Cartesian coordinate system (each of the three edges emanating from
one corner of a box).

The conserved quantity associated with the invariance of space with re-
spect to translation in any of its three dimensions is the momentum associ-
ated with motion in that dimension. Accordingly, the conserved quantity as-
sociated with the invariance of space with respect to rotation about any of
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its three axes is the angular momentum (energy of orbiting or spinning)
about that axis.

In our example above, no matter how the toads twist and spin as they ric-
ochet off the walls of the box and each other, the total energy associated
with angular motion (rotation) of the system of box plus toads, separately
about each possible axis of rotation, is unchanged as the box glides from
Sally to Steve.

Thus, another useful and overarching property of motion is understood
in terms of its source deep within the structure of space-time. Toads or no
toads, we begin to see that the universe possesses some remarkably beauti-
ful organizing principles.

In fact, physicists like to believe that, in its essence, the universe is guided
by a small set of such beautiful organizing principles—principles free of
complex hypotheses that do little more than telegraph our ignorance, prin-
ciples that are smooth and clean and devoid of the warts of contrivance and
ad hoc conjecture. As we’ll continue to see, our science has made great
strides toward this goal.

A Surprising Paradox: The Story of Spin

The connection between Lie groups and the physical world is brought to
the fore when we grapple with spin within the context of quantum me-
chanics. Planck’s constant h has the units of angular momentum; its value
of 6.626 � 10�34 kilogram-meters-squared per second represents a partic-
ular amount of energy/momentum associated with angular motion, a qual-
ity possessed by an object that is either in orbit about a fixed point (such as
the earth about the center of the sun) or spinning steadily about its axis (such
as the daily rotation of the earth about its poles).

Experience with the behavior of microscopic systems, such as individual
atoms, for which the rules of quantum mechanics play an important role,
tells us clearly that angular momentum is quantized. In other words, the
amount of angular energy/momentum possessed by a system cannot be just
anything but must instead be one of a discrete set of possibilities. For the
case of orbiting motion, the angular momentum must be a multiple of h̄ �

h/2p � one of the values 0h̄, 1h̄, 2h̄, 3h̄, and so on. For spinning motion,
however, there are twice as many possibilities: the angular momentum of a
spinning object may be any half-integer multiple of h̄ and may take any of
the values 0h̄, 1⁄2h̄, 1h̄, 3⁄2h̄, 2h̄, 5⁄2h̄, and so on.
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Spin in this context is something very specific: it is a fundamental prop-
erty (quantum number) associated with each type of particle. Spin is the
amount of intrinsic angular momentum possessed by a particle of any given
type. The spin of a given particle is unchanging and unchangeable—as long
as the particle exists, it will possess its characteristic amount of spin angular
momentum—no more, no less. Depending on conditions it may also 
possess some amount of orbital-type angular momentum (which can be
changed) about some other object. Whether or not it has orbital angular
momentum, the spin will always be there, adding its fixed amount of an-
gular momentum into any system containing the particle.

Most atomic nuclei, for example, possess angular momentum. For any
given nucleus, some of the angular momentum is due to the accumulated
spin angular momentum of the nucleus’s protons and neutrons as they turn
about their own individual axes, while the remainder is due to the orbital
angular momentum associated with the motion of the neutrons and protons
as they orbit each other within the nucleus. For nuclei that possess no over-
all angular momentum, it’s not that the protons and neutrons within don’t
possess spin and orbital angular momentum, but, rather, that the accumu-
lated effects of the angular momenta of the individual neutrons and protons
conspire to exactly cancel each other out.

This picture is not quite correct. The angular momentum associated
with spin, while indeed an intrinsic property of a given particle (in this case,
of each individual proton or neutron within the nucleus), is not really
caused by the spinning of that particle about its axis. Paradoxically, it’s not
really clear exactly what it is, physically, that spin is due to. This is an in-
teresting point, and one that will play a role in the discussion of the enig-
matic question of internal symmetry spaces that is soon to follow. For the
moment it helps to regard the spin of a proton or neutron as being the re-
sult of its intrinsic spinning motion about its own axis, even though we know
this picture to be inaccurate.

Recall our distinction between fermions and bosons from chapter 4. Par-
ticles whose intrinsic spin is a strict multiple of h̄ are known as bosons, while
particles whose intrinsic spin is an odd multiple of h̄/2 (1⁄2h̄, 3⁄2h̄, etc.) are
known as fermions. Photons, the quanta of the electromagnetic force field,
have a spin of exactly h̄, and so they’re bosons. Electrons have spin 1⁄2h̄, and
so are fermions. For ease of expression, we conventionally drop the h̄, since
we know it’s always there. So, we say that photons have spin-1 and electrons
have spin-1⁄2.
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To understand the paradoxical nature of spin, we need to introduce the
notion of a projection. Suppose you find yourself happily bored on an equa-
torial beach at exactly noon on the equinox, in other words, with the sun di-
rectly overhead. For some reason, you are equipped with two metersticks,
one of which you lay down so that it lies flat on the beach. You take the other
and dangle it so that it hangs straight down; its bottom edge just touching
the middle of the meterstick lying on the beach. Since the sun is directly
overhead, the dangling stick casts no shadow on the prone meterstick.

If you were to lower the upright meterstick toward the one that’s lying on
the beach, keeping its lower end fixed to the same point on the middle of
the prone stick, you would see a shadow develop on the prone stick (see fig.
7.1). The more you lower the upright stick, the longer the shadow on the
prone stick becomes. We call the length of this shadow the projection of the
upright stick on the axis defined by the prone stick—it’s the length of 
the upright stick that’s projected by the vertical light rays from the sun onto
the horizontal line defined by the prone stick.

The World Within 179

Fig. 7.1. The shadow represents the projection of the upright stick onto the hor-
izontal stick.



If we define one direction on the prone meterstick (toward the end that
reads 0 centimeters, say) to be negative and the other direction to be posi-
tive, we see that the projection of the upright stick on the axis defined by
the prone stick can have a continuum of values, but it can be no more than
1 meter and no less than �1 meter (note 7.4). Such is the nature of pro-
jections. They can have any length whatsoever, as long as that length is no
greater than the length of the projected object and no less than the nega-
tive of the length of the projected object.

Now think of a bicycle wheel—just a wheel in a bike shop, unattached
to the rest of the bike. When the wheel spins, it spins about its axle, with the
rod forming the axle defining an axis that can point in any direction in three
dimensions. Similarly, the spin of a spin-1⁄2 particle, such as a proton or neu-
tron, will also be directed along its axis (fig. 7.2). We can think of the spin
angular momentum of a spin-1⁄2 particle as being like a stick of length 1⁄2h̄,
pointing along the direction of the axis about which the particle is spinning
(note 7.5). Just as for our bicycle wheel, the direction of this axis, the direc-
tion associated with the particle’s intrinsic angular momentum, can have
any orientation in space.

Say that you want to measure the spin of this particle. Since it’s a single
submicroscopic particle, you can’t very well hold it in your hand and mea-
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which it spins. In this case, the axis points up, but by manipulating the axle of the bicy-
cle wheel (or the axis of the proton’s spin), it can be made to point in whatever direc-
tion we choose.



sure its spin by watching it turn in a circle about its axis. The best you can
do is to define a measurement axis (typically, given by the direction of a mag-
netic force field you conjure in the lab) and determine the projection of the
particle’s spin along that axis. For this measurement, the particle’s spin an-
gular momentum is like the upright stick on the beach, while the chosen
measurement axis (given by the direction of the magnetic field) is like the
prone stick onto which the upright stick is projected by the sun’s rays.

In quantum mechanics, the result of such a measurement must come
from a limited set of possible results, and all of these possibilities are sepa-
rated from one another by some multiple of h̄ (in fact, it is this property that
is properly known as the “quantization of angular momentum”). For ex-
ample, figure 7.3 shows the possible spin projection measurements along
any given axis for a spin-1⁄2, spin-1, spin-3⁄2, and spin-2 particle (a spin-0 par-
ticle will always be measured to have a spin projection of 0 along the cho-
sen axis) (note 7.6). These possibilities are all separated by an amount ex-
actly equal to h̄.

For spin-1⁄2 particles there are only two choices: the projection, when
measured, must have a value of either �1⁄2h̄ or �1⁄2h̄, corresponding to the
particle’s spin lying directly along or directly against the axis that you arbi-
trarily chose to project the spin onto when you decided to measure it. After
you make the measurement, probing and disturbing the particle, the parti-
cle’s wave function will have coded into its undulations one of these two
possibilities: a spin projection of �1⁄2h̄ along the chosen measurement axis,
or a spin projection of �1⁄2h̄ directly against the axis. It doesn’t matter which
measurement axis you pick; the result of your measurement will always be
one of these two possible outcomes.

But what about the state of the particle before you disturb it by trying to
measure its spin? Before you pick your measurement axis and force it to
have one or other of the two allowable spin projections, it could be in a
mixed state, with some fraction of it (or really, of its probability; remember
that the wave function is an encoding of probabilities) with projection �1⁄2h̄
along your eventual measurement axis, and the remainder with projection
�1⁄2h̄ against the axis. Until you measure it and force it into one or the other
of these two, it can possess any arbitrary combination of these probabili-
ties—as long as the total probability of finding the particle in one projec-
tion or the other is precisely equal to one, so that the particle will always be
found in one or the other of these two possibilities when its spin is mea-
sured.
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Fig. 7.3. The measurable spin orientations of objects with spin-1⁄2, spin-1, spin-
3⁄2, and spin-2. The possible projections of the spin orientation along the axis
you are measuring it against are shown by the dots on the axis. The laws of
quantum mechanics dictate that these dots are each separated by exactly 1
unit.



Let’s formalize this notion by constructing an abstract two-dimensional
space for which one dimension (the x-axis) is associated with the amount of
probability that the particle has a spin projection �1⁄2h̄ along your eventual
measurement axis and the other dimension (the y-axis) is associated with
the amount of probability that the particle has a spin projection �1⁄2h̄.

There’s nothing physically significant about this abstract space. You can
take any two quantities and make a mathematical space out of them. One
that comes to mind is a space where one dimension represents time and the
other represents the magnitude of my checking account balance. Clearly,
there’s nothing physically relevant about this particular “space”; it’s just a
convenient way of conveying information. The inexorable downward
march of the line, representing the time dependence of the balance, toward
and beyond zero has an emotional force far greater than that of just looking
at the raw digits on a succession of monthly statements. But there are no
alien creatures inhabiting this balance versus time space, despite what I 
may tell my creditors in a moment of desperation. So that’s all our two-
dimensional spin projection state-space is, just a way to visualize, graphi-
cally, the amount of the wave function’s probability associated with the two
possible projections of the spin angular momentum.

Figure 7.4 shows two points—typical but not in any way special—repre-
senting two of the many possible choices for the spin projection probabili-
ties encoded in the particle’s wave function. The arrows pointing from the
origin (axis crossing) of the space to the two points are just there to guide
the eye. Point 1 is close to the �1⁄2h̄ dimension axis, which means that when
you eventually measure the particle’s spin projection, you’re much more
likely to find it with spin projection �1⁄2h̄ than �1⁄2h̄. But it’s not right on the
�1⁄2h̄ dimension axis, so there’s still a small probability that you’ll measure
�1⁄2h̄. Point 2, however, is about equally faraway from each of the axes, so
you’ll have about a fifty-fifty chance of finding it in either projection when
you do the measurement. The arrows associated with each of the two points
are exactly the same length, which shows that the total probability of mea-
suring the particle with either one projection or the other is the same (one!)
in both cases.

Now, if you were to write down on paper the mathematical expression
representing the wave function of point 1 (it’s not hard to do, but somewhat
beyond the scope of our discussion), and you wanted to turn it into the ex-
pression representing the wave function of point 2, what would you do? The
answer is intimated by the angle q shown in figure 7.4. You perform a rota-

The World Within 183



tion, a two-dimensional rotation in the abstract, but conceptually illumi-
nating, space of spin-projection probability.

So, the set of mathematical manipulations that changes the spin-projec-
tion probabilities of the wave function of a particle with spin-1⁄2 seems to be
the set of rotations in two dimensions. As we’ve mentioned in passing in pre-
vious chapters and will discuss in detail in the next chapter, wave functions
are complex. To every point in space and time, the wave function associates
not an everyday real number but a complex number. So this set of opera-
tions that change the spin-projection probabilities of a spin-1⁄2 particle is not

Fig. 7.4. The purely mathematical space in which we represent the orientation
of an object with spin-1⁄2. If the point lies on the �1⁄2 axis in this mathematical
space, then its spin lies along the measurement axis in physical (real) space, as
shown by the upward-pointing arrow in the first diagram of figure 7.3. If the
point lies along the �1⁄2 axis in this mathematical space, then its spin lies against
the measurement axis in physical space, as shown by the downward-pointing
arrow in the first diagram of figure 7.3. For points 1 and 2 in this figure, then,
the orientation of the object’s spin is partway between straight up and straight
down. Note, however, that when the orientation is measured, it will be found
as either straight up or straight down, and not somewhere in-between. The
closer the point is to the �1⁄2h̄ axis, the more likely it will be found with spin
straight up when measured.



R(2), the set of rotations in two real dimensions, but, rather, is SU(2), the
set of rotations in two complex dimensions. (By the way, this is how you
make use of the concept of rotations in complex spaces, not in the context
of physically meaningful spaces but, instead, in conceptual, abstract math-
ematical spaces, such as our spin wave function space.)

But wait again. There you are, rotating the spin of your particle around,
in ordinary, three-dimensional space. Let’s go back to the bicycle wheel ex-
ample. The wheel spins about its axle, and the direction that the axle points
is the direction that we assign to the spinning motion. If you want to change
that direction, you rotate the axle through some angle in three-dimensional
space until the axle points in the new direction that you want. So, if we lis-
ten to our intuition, we should forget about both R(2) and SU(2). When we
rotate particle spins, you would think, you are rotating the orientation of the
axis about which the particle spins through some angle in everyday three-
dimensional space. To change the orientation of a particle’s spin, it would
seem, one must do it through some member of the group R(3) of rotations
in three real dimensions.

But this time, our intuition does fail us. It is, in fact, the group SU(2),
operating in the abstract complex space of spin-projection probabilities, that
governs the physics of reorienting quantum-mechanical spins, not the
group R(3) of rotations in our three real, everyday dimensions. And this is
where the curiosity of quantum-mechanical spin lies.

Remember last chapter: as mathematical abstractions, the Lie groups
R(3) and SU(2) are almost the same thing. Both have three generators, and
the Lie algebra that relates the generators to one another is identical for R(3)
and SU(2). The difference is that, while for R(3), as common sense would
dictate, you get right back to where you started when you rotate by 360
degrees, it takes 720 degrees of rotation to go full circle in SU(2). If you
don’t take this into account when you work out the quantum mechanics of
spin-1⁄2 particles, you get answers that disagree with well-established experi-
mental results. Ask any physics graduate student; most of them have learned
this the hard way. Thus, for our work, we are rewarded with something that
almost makes sense, but not quite, for the system we develop to describe the
angular momentum associated with spin has the hard-to-figure property that
a rotation of 360 degrees doesn’t get the system back to where it started. And
yet it is physical spins—real, concrete, observable angular momentum axes
being oriented and reoriented in our concrete, tactile three-dimensional
space—that we are playing with. How could it be that when you take the
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axis about which an electron is spinning and rotate it through 360 degrees,
you wind up with a wave function that differs, albeit subtly (by an overall
factor of �1, to be exact) from what you began with? Is the space in which
quantum-mechanical spin lives really the three-dimensional space of our
common perception?

In fact, spin has other aspects that render it a bit difficult to understand
physically. For all we know (and we’ve now tested this assumption down to
sizes of less than 10�18 meters), electrons and quarks are pointlike particles
that take up no space whatsoever. How can a particle with no spatial extent
really be spinning about its axis and have energy associated with its spin-
ning? If a particle has some extent, then the pieces of it on the surface have
some speed as they rotate about its axis. If a particle has no spatial extent,
then all points within the particle lie precisely on the axis about which the
particle turns. But a point that lies exactly on the axis of a spinning ball does
not move; so for a particle with no spatial extent, it would seem that there
can be no motion, no angular momentum, associated with its spinning.
Thus, it would seem impossible for there to be any energy/momentum as-
sociated with a fundamental particle’s intrinsic spin. Yet, experiment shows
clearly that spin-1⁄2 particles do have an angular momentum of 1⁄2h̄, so the
very existence of the angular momentum of fundamental particles is mys-
terious.

On the up side, the first quantum-mechanical wave equation to incor-
porate Einstein’s special relativity into the quantum theory (the Dirac equa-
tion; see chapter 4) specifically provides a description of the behavior of
spin-1⁄2 particles (note 7.7). Relativistic wave equations describing particles
with intrinsic spin other than 1⁄2h̄ followed soon after the groundbreaking
development of the Dirac equation; each spin possibility has its own form
of relativistic wave equation. As perplexing as the concept of intrinsic spin
may appear, its existence does seem to be a necessary ingredient of a uni-
verse (such as ours) that adheres simultaneously to the laws of quantum me-
chanics and relativity.

So, we’re stuck with the mysterious nature of quantum-mechanical
spins, and the unnerving fact that the space in which particle spins exist is
a space for which it takes not one, but two complete revolutions to get back
to where you started. No matter how we may choose to represent this space
in the abstract (such as the two-dimensional probability space of fig. 7.4),
there’s no question that this space is directly associated with the physical
world, as the spins of electrons, quarks, protons, and so forth, are measur-

DEEP DOWN THINGS186



able quantities that play a fundamental and indispensable role in nature.
But this space is subtly different from the space that we comfortably think
ourselves as being part of.

So the question arises, what exactly is spin and this oddly construed spin-
space in which it lives?

On the one hand, it’s quite real, having associated with it the measurable
physical quality of angular momentum. Furthermore, the angular mo-
mentum associated with ordinary orbital angular momentum is the same
physical quantity as spin angular momentum: the total angular momentum
of any physical system is just the sum of the various orbital and spin angu-
lar momenta of the components of the system. The fact that total angular
momentum is observed to be conserved means, according to Noether’s the-
orem, that physical laws are no less invariant with respect to orientation in
spin-space than they are with respect to orientation in normal space.

On the other hand, a particle with no spatial extent shouldn’t possess an-
gular momentum, and the axis about which it spins shouldn’t have to be ro-
tated through 720 degrees to return the particle to its original state.

We don’t really have a clue about the physical origin of spin. To describe
spin as “intrinsic angular momentum” is like your best buddy describing
how your car’s differential works by explaining that it “employs a mechani-
cal linkage”; the only useful information contained in this statement is that
its author probably knows next to nothing about how a differential actually
works.

The question of the origin of quantum-mechanical spin and the nature
of spin-space is a conundrum that physicists have yet to solve. If you’ve un-
derstood, even vaguely, what you’ve read in this chapter, then your guess is
truly as good as mine. And, interestingly, it gets even better (or worse, de-
pending on your outlook) as we move on to other more arcane, but equally
fundamental, properties of elementary particles.

Into the Within: The Story of Isospin

In 1911, working at Manchester University in Great Britain, New Zealan-
der Ernest Rutherford demonstrated that the pattern of a radiation scattered
off metal foils indicated that atoms contain a small and dense nucleus in-
side of which reside the atom’s positively charged protons. Somewhat later,
in 1932, working at Cambridge University’s esteemed Cavendish Labora-
tory, Briton James Chadwick was able to demonstrate that when bombarded
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with a radiation, atomic nuclei sometimes release an electrically neutral par-
ticle with a mass about the same as that of the proton, which was promptly
given the name neutron (note 7.8). Thus, the concept of the atomic nucleus
as a dense collection of protons and neutrons was born, opening the way for
great strides over the ensuing twenty to thirty years in what became the field
of nuclear physics.

Since element type is determined by the number of protons in the nu-
cleus, irrespective of the number of neutrons, a given element can have
many different possible nuclei, corresponding to different numbers of neu-
trons bound into the nucleus with the given number of protons. Versions of
the same element with different numbers of neutrons are known as isotopes
(typically, only a few of these isotopes are stable with respect to radioactive
decay).

For example, the nucleus of hydrogen, or at least that of 99.985% of the
hydrogen you find in everyday things such as water, food, and gasoline, is
formed of a single proton, with no neutrons. For the remaining 0.015%, the
proton finds itself bound to a single neutron, forming a particle known as a
deuteron (which is nothing more than just that: a proton and neutron bound
together). 

Deuterium, the 0.015% of earthly hydrogen that has a deuteron, rather
than a proton, for a nucleus, has precisely the same chemistry as hydrogen
and can be used instead of ordinary hydrogen to bind chemically with oxy-
gen atoms, forming a substance known as heavy water.

The isotope of hydrogen with a nucleus formed of a proton and two neu-
trons, known as tritium, is not stable, decaying with a half-life (typical decay
time) of twelve years to an isotope of helium plus an electron and a neutrino.
This is why tritium is not a component of naturally abundant hydrogen.

Now, if you have a collection of positively charged particles, such as the
protons in the nucleus of a heavy element, being held closely together, you
had better have a pretty strong force holding them together (recall that like
electric charges repel). This is the role that the strong nuclear force plays in
the constitution of atoms.

As experimental results on many different atomic nuclei accumulated, nu-
clear physicists began a systematic comparison of “mirror nuclei”—nuclei for
which the total number of “nucleons” (neutrons plus protons) is the same,
but the numbers of protons and neutrons are switched. For example, the iso-
topes lithium-7, with three protons and four neutrons, and beryllium-7, with
four protons and three neutrons, possess mirror nuclei. This study revealed
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that the strength with which mirror nuclei are bound—the amount of energy
it would take to pull the nucleus apart into its individual nucleon compo-
nents—is the same for both nuclei (after taking into account the extra elec-
tromagnetic repulsion associated with the extra proton in beryllium-7).

This, and similar evidence, suggested that the degree of attraction of the
strong force that binds nucleons into nuclei is independent of whether the
nucleon is a neutron or a proton. Two neutrons attract each other with 
the same strong-force pull as two protons, or as a proton and a neutron. The
nuclear force is unprejudiced. It doesn’t care, in fact it can’t even tell, if the
particles making use of its services are all protons, all neutrons, or some mix-
ture thereof.

This circumstance was extremely suggestive to Werner Heisenberg and
led him to introduce an otherwise unprecedented physical quality that he
called nuclear isospin. This intuitive leap was to have tremendous unfore-
seen consequences, eventually playing a central role in the development of
the scientifically compelling but philosophically unnerving notion of in-
ternal physical spaces.

Recall electron spin: given any axis, the measured projection of the elec-
tron’s 1⁄2¯ spin angular momentum along that axis has but two possibilities.
Ignoring the factor of h̄, which we’ll remember is always there, the spin can
lie along the axis (�1⁄2) or against the axis (�1⁄2). But, regardless of which of
these two states the electron happens to find itself in, it will always behave
like an electron when it’s measured. Physics is rotationally invariant (in this
case, as we’ve seen, in the enigmatic three-dimensional space in which spin
lives), and a spin �1⁄2 electron is just a spin �1⁄2 electron that’s been rotated
by 180 degrees, and vice versa.

Heisenberg’s insight was the following. The invariance of all physical
laws with respect to rotations in space, as manifested by spin-1⁄2 electrons
with their two possible spin projections, is very similar to the invariance of
the physical law that binds nuclei together (the action of the strong force)
with respect to the swapping of neutrons with protons. Purely by analogy,
we might think of protons and neutrons as being in fact one and the same
particle—the nucleon—possessing some abstract quality known as isospin
with a magnitude, analogous to the electron’s true spin, of 1⁄2 (note 7.9). In
this vein (see fig. 7.5), we hypothesize that protons are nucleons that are
isospin up (note 7.10) in the abstract space of isospin (isospin projection �1⁄2
along some hypothetical vertical measurement axis), while neutrons are
isospin-down nucleons (isospin projection of �1⁄2).
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Electrons with spin up (true spin, not isospin) and electrons with spin
down are all just electrons. Because an electron happens to find itself with
spin up, while its neighbor finds itself with spin down, doesn’t make either
of them any more or less an electron than the other. Nor does one have any
intrinsically different physical behavior than the other. The electron with
downward-oriented spin follows precisely the same physical laws as the elec-
tron with upward-oriented spin. An electron is an electron, and that’s that.

But, as we’ve just seen, as far as the strong nuclear force is concerned,
protons and neutrons are similarly undifferentiated. As far as the strong force
is concerned, a nucleon with isospin up (a proton) has the same binding

Fig. 7.5. Heisenberg asks us to think of a proton and a neutron as being one
and the same particle—the nucleon. The nucleon possesses one-half of a unit
of spin in a somewhat enigmatic space known as isospin space. If this isospin
points up in isospin space, the nucleon manifests itself as a proton; if it points
down, the nucleon is a neutron.



properties as a nucleon with isospin down (a neutron). A nucleon is a nu-
cleon, and that’s that. The other three forces do care about the difference
between a neutron and a proton (e.g., the proton has electric charge, while
the neutron has none), but in regards to isospin, we’re considering the
strong force alone.

There is nothing at all physical or real about the space in which we ro-
tate nucleon isospin, changing neutrons into protons, and vice versa.
Isospin space is just another abstract space, like the spin wave function space
of figure 7.4 or the bank balance–versus–time space discussed earlier. Ro-
tations in isospin space have nothing to do with rotations in real, three-
dimensional space or even the quasi-real three-dimensional space of real
spin. The rotation in isospin space that changes neutrons into protons does
nothing whatsoever to the physical orientation of the system that’s being ro-
tated. If I can convince the bank to wait a week before debiting my account
for any check of mine it receives, then I have translated my graph of account
balance versus time forward by one week, allowing my next paycheck to ar-
rive before the graph crosses zero and the collection agency is called in. But,
have I really moved time by one week? No, not in the physical world in
which clocks run and trains need to be caught and diapers need to be
changed. All I have done is to move time in my abstract space of account
balance versus time. Likewise, if I rotate the wave function of a nucleon in
the space of isospin, all I’ve really done is erase all the n’s (neutrons) and p’s
(protons) on my page of calculations, and replace them with p’s and n’s. I
haven’t gone in and actually done anything physically to a proton and a neu-
tron. So, the space in which isospin rotations take place is an abstract, un-
physical one, associated with the task of keeping track of when I’m talking
about protons versus when I’m talking about neutrons as I perform nuclear
physics calculations. It’s just a bookkeeping crutch. Or so it would seem.

It would seem that Heisenberg’s analogy between true spin and isospin
is nothing more than an academic reinterpretation of the observed behav-
ior of protons and neutrons under the influence of the strong force; clever,
but with no further use in deepening our understanding of nuclear physics.
Let’s not take this for granted; instead, let’s pursue this question, making use
of some things we learned earlier in the chapter.

Noether’s theorem tells us that the invariance of any physical law with
respect to a group of actions will have associated with it a physical quantity
conserved by that law. If, in addition to invariance with respect to transla-
tions and rotations in ordinary space, the strong nuclear force is invariant
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with respect to the rotations in isospin space that swap neutrons with pro-
tons, what quantity associated with this new invariance will be additionally
conserved by the strong force?

Recall that the invariance of physical laws with respect to rotations in or-
dinary space is associated by Noether’s theorem with the conservation of an-
gular momentum. It can be similarly shown, perhaps not surprisingly, that
the conserved quantity associated with invariance with respect to rotations
in the abstract space of isospin is isospin itself.

What this suggests, then, is that for any system under the influence of 
the strong force (the particular physical law that we propose to be invari-
ant with respect to rotations in isospin space), the amount and orientation
of the system’s isospin will be unchanged over time, no matter what strong-
force-induced ruckus goes on inside the system. So, if Heisenberg’s analogy 
between true spin and isospin is valid, isospin conservation ought to be a
principle of the behavior of the strong nuclear force.

The notion of isospin conservation is right up the alley of experimental
particle physicists. Given the set of toys available to them in the 1950s and
1960s, the issue could be explored quite thoroughly. Experiments in which
particles (say, two protons) were slammed together, producing several frag-
ments (protons, neutrons, and mesons, such as the pions and kaons that we
learned about in chapter 5) were able to demonstrate the conservation of
isospin rather strikingly.

A particle that was studied thoroughly in those experiments was the D�

baryon that, like the proton, is composed of two up quarks and one down
quark. Rather than the proton’s intrinsic spin of 1⁄2h̄, though, the D� has a
spin of 3⁄2h̄, so it’s a different particle than the proton. In addition, the D� is
highly unstable, decaying via the action of the strong nuclear force into a
nucleon and a pion with a lifetime of about 10�23 seconds.

Just as the D� baryon has a spin of 3⁄2 to the proton’s 1⁄2, for quite inde-
pendent reasons the isospin of the D� is also 3⁄2, again to the proton’s value
of 1⁄2; however, both the proton and D� possess an isospin projection of �1⁄2
on the “vertical” axis against which we measure things in isospin space. By
the same measure, pions (p’s) have an isospin of exactly 1, with a projection
of �1 for the positively charged p� and of 0 for the neutral p0.

We know all this because there are four D baryons: the D��, D�, D0, and
D�. These four baryons are the �3⁄2, �1⁄2, �1⁄2, and �3⁄2 projections of the
generic isospin-3⁄2 D baryon, in the same sense that the proton and neutron
are the �1⁄2 and �1⁄2 projections of the generic isospin-1⁄2 nucleon (see fig.
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7.6). Similarly, the p�, p0, and p� are the �1, 0, and �1 projections of the
generic isospin-1 pion.

Now, the D� has the same electric charge as the proton, so when it de-
cays into a nucleon and a pion, it has two choices. It can decay into a pro-
ton and an electrically neutral pion (pp0) or an electrically neutral neutron
and a positively charged pion (np�). Now the critical point: Since the D�

decays through the action of the strong nuclear force, then if the strong force
conserves isospin, the magnitude and projection of the isospins of the nu-
cleon and pion left over after the decay must combine to equal those of the
decaying D� baryon.

Fig. 7.6. As for the proton and neutron manifestations of the nucleon, the qual-
ity that distinguishes the four D baryons (D��, D�, D0, and D�) among one an-
other is the orientation of their isospin in isospin space.



To avoid an impromptu lesson in quantum mechanics, I’ll state without
demonstration that the isospin axes of a proton and a p0 can indeed be ori-
ented such that, when added together, they give a total isospin of 3⁄2, with a
combined vertical projection of �1⁄2, the total isospin and isospin projection
of the D�. Likewise, the isospins of a neutron and a p� can be combined to
yield the isospin (3⁄2) and isospin projection (�1⁄2) of the D�. So the decays
of the D� can indeed conserve isospin, as long as the isospin axes of the de-
cay products have this proper orientation after the decay.

The more telling point, however, is that according to the rules of quan-
tum mechanics, the first of these possible decays, pp0, is exactly twice as
likely to find itself with this isospin-conserving orientation as the second
combination, np�. Thus, if isospin is conserved, the D� should decay ex-
actly twice as often to pp0 as np�: the decay of the D� should be 2⁄3pp0 and
1⁄3np�. In fact, this is precisely what is observed.

Let’s think about this for a moment. The D� baryon has two possible ways
of decaying: to pp0 and to np�. An obvious guess would be that the D� de-
cays to both of these with equal likelihood, but nature dictates something
quite different. The actual decay fractions—2⁄3pp0 and 1⁄3np�—are not at all
what intuition would suggest, but they are a prediction of Heisenberg’s no-
tion of isospin invariance. Furthermore, no physicist has ever come up with
an alternative explanation of why it is that these two decay fractions are un-
balanced in this way. Isospin is not just a convenient analogy: it’s an essen-
tial component of our basic understanding of nature.

For the case of regular spin, we had to take spin-space seriously because
it was associated with a concrete, measurable, physical quantity—angular
momentum. This was only mildly uncomfortable because, although spin-
space has the somewhat hard-to-stomach property that you have to turn all
the way around twice to get back to your original condition, it’s otherwise
pretty much like regular space. Isospin space, however, is completely ab-
stract; it bears no relation whatsoever (other than through analogy) to any-
thing we can grasp with our faculties of perception. How could rotations in
such a space possibly have anything to do with the physical world? And yet
the physical manifestation of the invariance of the strong force with respect
to rotations in this space, the conservation of isospin, is a solidly established
fact in the world of experimental science.

So, what then is isospin-space from a physical point of view? Physicists
usually describe it as an internal symmetry space, but what’s that, really? It’s
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your old buddy again, telling you that your car’s carburetion system “works
on a vacuum principle.” How’s that going to help you to understand and fix
the thing? It isn’t.

Regarding the physical interpretation of the notion of isospin space,
again your guess is as good as mine. Perhaps its experimental manifestations
are hinting at some new and deeper truth about the universe that lies just
beyond the current limits of our comprehension. Perhaps not. But one
thing, however, is true: The introduction of the idea of internal symmetry
spaces, of which isospin space was the first example, was an essential step
forward in our understanding of the universe and the nature of the laws that
govern it.

The Eightfold Way Revisited

Murray Gell-Mann’s development of the eightfold way was one of the defin-
ing moments in the history of contemporary physics. It brought to our at-
tention a particularly rich internal symmetry of the strong interactions, with
a number of surprising predictions that could be (and were) addressed by
the experiments of the day. While Heisenberg can be credited for intro-
ducing the notion of internal symmetry spaces, Gell-Mann can be credited
with thrusting them into the forefront of our scientific consciousness in such
a compelling way that they have been haunting our thoughts ever since.

If you know the properties of a Lie group’s set of generators—how many
there are, and what their algebra is (the interrelations between the genera-
tors associated with their dependence on the order in which they’re com-
bined under the group’s operation)—you know pretty much everything you
need to know to characterize the group. Any other group with the same
number of generators and the same Lie algebra will be essentially the same
Lie group describing the same underlying physics. The groups R(3) and SU(2)
both have three generators, which exhibit the same ordering differences,
and, correspondingly, they both describe rotations in three-dimensional
space. The only difference is that while R(3) is adequate for systems that
have angular momentum that is an integer multiple of h̄, SU(2) must be
called in if one is asked to consider the rotation of objects with half-integer
multiples of h̄—if one needs to consider particles’ intrinsic spin. But none-
theless, R(3) and SU(2) both engender the set of rules for the same physi-
cal process: rotations in three dimensions.
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Given this, one can turn the question around and probe the mathemat-
ics of Lie groups from what is essentially the opposite point of view. In this
vein, the question one might ask is the following.

Given a Lie group’s characterizing information—the number of gener-
ators and their associated Lie algebra—what are the concrete sets of elements,
and rule for their combination, that manifest, or represent, the properties of
the group? In the language of mathematics, what are the representations of
the given Lie group?

Consider a system that possesses some amount of angular momentum.
When this angular momentum is measured by determining its projection
along a chosen measurement axis, the result must be one of a finite num-
ber of possibilities, each separated from the next by a unit of h̄ of angular
momentum. We can view this set of results as a pattern, a set of points along
a line, representing the possible outcomes of the measurement. Figure 7.7
shows two such patterns of the many that we could depict: one for the case
that the system possesses an angular momentum of 3⁄2h̄ (fig. 7.7a) and the
other of 3h̄ (fig. 7.7b).

These patterns of points each form a representation of R(3) or SU(2) in-
sofar as, when you take a state represented by any of the points in a given
pattern, and perform any rotation from R(3) or SU(2), the result is a state
represented by other points on the same pattern. Application of any element
of R(3) or SU(2) moves you around within the pattern and doesn’t take you
outside of it to, say, a state with a larger angular momentum than you started
with.

Rather than beginning with the hypothesis that the physics of angular
momentum is governed by the Lie groups R(3) or SU(2), leading to ob-
servable patterns like those of figure 7.7, we might instead ask how the ob-
servation of such patterns might allow us to infer the underlying nature of
angular momentum. Were we to look at systems possessing orbital angular
momentum alone, we would see that the set of measurement possibilities
falls within patterns such as that of figure 7.7b, containing an odd number
of evenly separated points (with the exact number of points depending on
the overall angular momentum of the system). A mathematician would
then tell us that such patterns engender the properties of the Lie group
R(3)—the set of all such odd-numbered patterns form the representations
of the Lie group R(3). Similarly, were we also to consider systems with spin
angular momentum, the observed patterns would be both even- and odd-
numbered, and the mathematician would tell us that we were seeing the
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telltale signs, the representations, of SU(2). In either case, we have uncov-
ered the underlying structure of the physical law. The pattern has revealed
the paradigm.

Admittedly, in this case, the patterns are a bit uninspiring: a few dots on
a line, the line being the projection axis, and the dots, all separated by an
amount h̄ of angular momentum, being the possible projections of an ob-
ject’s angular momentum.

For the group SU(3) (the Lie group of rotations in three complex di-
mensions), however, the patterns are distinctive. This is largely because

Fig. 7.7. The pattern of allowable spin projections onto any chosen axis of measurement
for objects with spin-3⁄2 and spin-3.



those systems that exhibit invariance under the transformations of SU(3)
have not one but two separate axes on which to project the properties of
physical states. So, instead of a progression of dots on a line, the represen-
tations of SU(3) are given by striking patterns of points in a two-dimensional
plane. If you happen to observe states in nature that fall into some of these
distinctive patterns, then it’s abundantly clear: there’s some (internal) space
at play, and the physical law responsible for forming those states is invariant
with respect to SU(3) rotations within that space.

Now, cut back to the early 1960s, by which time years of particle hunt-
ing at accelerator facilities had yielded, as mentioned in chapter 5, a daunt-
ing array of “elementary” particles that seemed to beg for some deeper un-
derstanding of the principles underlying their existence. In addition to the
brute force task of finding each member of this lengthy list of particles,
much clever thought and painstaking work had gone into identifying each
particle’s quantum numbers—its type (meson, hadron, antimeson, etc.),
mass-energy, intrinsic spin, and so forth. It became clear that there were
well-defined groupings of particles with similar quantum numbers, so physi-
cists began to wonder what secrets might be hinted at by the properties of
the particle states within these groupings.

It was Gell-Mann who recognized that these sets of particles with simi-
lar quantum numbers fell into suggestive patterns if one made use of two
projection axes. On the x-axis, Gell-Mann plotted the magnitude of the pro-
jection of Heisenberg’s isospin (the quantity depicted in fig. 7.6). On the y-
axis, Gell-Mann plotted something of his own invention: a property he re-
ferred to as hypercharge, for which he concocted a quantitative formula
whose value depended on whether the particle was a meson, a baryon, or
an antibaryon and whether the particle possessed a somewhat nebulous
quality known as strangeness. We now know that the value of a particle’s hy-
percharge is related to the net number of strange quarks in the particle, but
keep in mind that quarks had yet to be proposed; we’ll get to them in a mo-
ment.

An example of a pattern produced in the mathematical space of isospin-
projection versus hypercharge, that of the pseudoscalar meson octet intro-
duced back in chapter 5, is shown in figure 7.8 (ignore the quark content
labels for the moment). The particles that form this pattern are grouped to-
gether because they are all mesons (quark-antiquark combinations bound
together by the strong nuclear force) and because they share two quantum
numbers: each has an intrinsic spin of 0 and odd “intrinsic parity” (particles
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with odd intrinsic parity enjoy a change of sign of their wave function when
they undergo mirror reflection, while particles with even intrinsic parity are
unaffected by mirror reflection). Technically, a spin-0 particle is known as
a pseudoscalar if it has odd intrinsic parity (and as a scalar if its intrinsic par-
ity is even). Since there are eight of these spin-0 mesons with odd intrinsic
parity, this set of particle states is known collectively as the pseudoscalar me-
son octet. Another technical point: for mesons, hypercharge and strange-
ness happen to be one and the same, so the hypercharge axis of this plot
could also be called the strangeness axis, as it was in chapter 5.

In figure 7.8, each of the eight particles is represented by a dot; the x co-
ordinate (position) of the dot is the particle’s isospin projection Ip, and the
y coordinate is its hypercharge Y. Now this is a distinctive pattern: a hexag-
onal shape, with a definitive separation in Ip and Y between each point, and
with not one or three but precisely two particle states at the center point
(note 7.11). Gell-Mann recognized this distinctive signature—this pattern
that he referred to as the eightfold way—as one of the representations of
SU(3) and, in doing so, established an entirely new way of thinking about
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the natural world. Let’s explore this notion, and its implications, a bit fur-
ther.

One thing that Gell-Mann noted was that this eightfold hexagonal pat-
tern was not the most basic representation (pattern) one could use to real-
ize the abstract properties of the Lie group SU(3)—the pattern of the eight-
fold way can be constructed by combining two much simpler patterns. The
first was a pattern containing just three points (see fig. 7.9a), which is the
fundamental, or most basic, representation of SU(3). The second pattern
(see fig. 7.9b), known as the antifundamental representation, is just the re-
flection of this first pattern, with all the Ip and Y values taken to their nega-
tives. If you’re willing to play with the graphs a bit, you can convince your-
self that the eightfold way pattern of figure 7.8 can be formed by centering
a separate copy of figure 7.9b around each point of figure 7.9a. When you
construct the octet pattern in this way from the more basic patterns of fig-
ure 7.9, you’re building your own meson states out of quarks and antiquarks.

Gell-Mann noticed that all the patterns formed by the groupings of ele-
mentary particles, not just the pseudoscalar mesons of the eightfold way but
also the other sets of mesons or baryons for which the particles within the
set all have similar quantum numbers, could be constructed in this way
from various combinations of figure 7.9a and 7.9b. If you want to make
mesons (which contain a quark and an antiquark), you combine a figure
7.9a pattern together with a figure 7.9b pattern in the way we just learned.
If, however, you want to make the known baryons (which contain three
quarks), you combine three figure 7.9a patterns. If you want antibaryons
(which contain three antiquarks), you combine three figure 7.9b patterns.
Thus, the three states contained in figure 7.9a struck Gell-Mann as the truly
fundamental components of the known, dauntingly large, array of previ-
ously thought to be elementary particles. The states of figure 7.9b, being the
same as those of figure 7.9a but with the signs of Ip and Y changed, repre-
sent the antiparticle states of figure 7.9a.

The literate Gell-Mann, recalling the line “three quarks for Muster
Mark” from James Joyce’s Finnegans Wake, dubbed these three states
quarks. Given the (arbitrary) choice that the measurement axis in isospin
space is vertical, the figure 7.9a state with Ip � �1⁄2 has its isospin pointing
up (so that its projection on the vertical axis is positive). Thus, this state was
dubbed the up (u) quark. Similarly, the Ip � �1⁄2 state was given the name
down (d) quark. The third state, with Y � �2⁄3, has no isospin and doesn’t
appear in ordinary matter, which must have struck Gell-Mann as a bit
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strange, so it became known as the strange (s) quark. Correspondingly, the
states of figure 7.9b are the anti-up (ū), anti-down (d̄), and anti-strange (s̄)
antiquarks. None of the accelerators of the day (early 1960s) was powerful
enough to produce heavier (charmed, bottom, top) quarks, so only these
three quarks entered the picture at the time.

Having proposed quarks to explain the patterns observed in the proper-
ties of the elementary particles, and thereby organizing and vastly simplify-
ing our perception of these basic states of matter, Gell-Mann nonetheless
considered quarks to be no more than a convenient mathematical con-
struct. If you can have internal spaces (such as isospin) dictating the way
particles form themselves and behave, but having no real connection to the
three-dimensional space of everyday life, then why not have a similar set of
internal particle states? To Gell-Mann, the quarks could do their job well
enough even if they weren’t physical states that you can detect in the labo-
ratory. But then came the groundbreaking scattering experiments at SLAC
in the late 1960s (see chapter 5) that showed clear evidence for the presence
of quarks within protons and neutrons. Quarks are no less real than the pro-
tons and neutrons (and pions and kaons and lambda baryons and so forth)
that they comprise.

But where does the notion of symmetry work its way into all of this? Re-

Fig. 7.9. The fundamental representation of SU(3), which houses the quarks in Gell-
Mann’s eightfold-way model. The antifundamental representation of b is that of the an-
tiquarks.



call the original motivation for introducing isospin space and SU(2) rota-
tional symmetry: two particle states, the neutron and proton, look entirely
the same as far as the strong nuclear interaction is concerned. As far as the
strong force is concerned, for a nucleus with some number of nucleons in
it, it doesn’t matter how many of the nucleons are neutrons and how many
are protons: the strong force will hold them together with the same amount
of attractive pull. No matter what SU(2) rotation we perform in isospin
space, completely or partially swapping protons with neutrons (or, from the
modern viewpoint, up quarks with down quarks) the strong force doesn’t
care; it stoically binds the whole mess together as if it couldn’t tell the dif-
ference. This is what we mean by invariance under, or symmetry with re-
spect to, SU(2) rotations.

Well, the same is true of SU(3) rotations in flavor space, except now, in-
stead of just swapping up and down quarks, we’re interchanging three
quarks—up, down, and strange—among one another. If the strong force is
invariant under the full set of SU(3) rotations in flavor space then, all other
things being equal, the binding provided by the strong force should be the
same regardless of what quarks are being bound together. The pseudoscalar
meson of figure 7.8 that is formed from an up quark and down antiquark
should be bound just as energetically, and thus have precisely the same mass
(recall Einstein’s relativity), as the pseudoscalar meson of figure 7.8 that is
formed from, say, a strange quark and up antiquark. In fact, for the particles
contained within any given representation, such as the octet, all other
things are equal as far as the strong force is concerned; the only difference
between the particle states is the flavor of the quarks they contain. So, all
the particle states of any given representation, such as that of figure 7.8,
should have the same mass. And this is what is observed, at least after you’ve
taken into account the fact that the electromagnetic forces change a little
when you interchange quark flavors (because the different quarks carry dif-
ferent amounts of electric charge) and that the different quarks themselves
have somewhat different masses, so that combinations of different quarks
can have somewhat different masses, even if they are bound with equal
strength by the strong force (note 7.12).

Real space, spin space, isospin space, and so forth: In the physical world,
there seem to be many different spaces (real or internal) at play. One of these
spaces is the internal space in which rotations, governed by the rules of
SU(3), swap quark types among one another; physicists needed to give this
internal space a name. Somehow the different quark types came to be
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known as quark flavors, consistent, I guess, with the fact that quark is also a
type of cheese, although few physicists seem to be aware of this. So, the in-
ternal space in which the three quark flavors (up, down, strange) are
swapped around by rotations whose properties are governed by the Lie
group SU(3) is known as SU(3) flavor space.

In any regard, the observation of “multiplets” of particle states with sim-
ilar quantum numbers and roughly similar masses, arrayed in the charac-
teristic patterns of the representations of SU(3), is abundant evidence that
an internal SU(3) symmetry space is at play. And, with that knowledge
firmly in hand, one can then use the properties of this space and of the
group SU(3) and its representations to make testable predictions about the
nature of the physical world.

In particular, if SU(3) governs the array of particle states through the pat-
terns of its representations, then every particle must be part of such a pat-
tern. But also, every pattern that has some particles in it must have a com-
plete set of such particles, all with similar masses and quantum numbers.
It’s not enough to see that there are, say, five pseudoscalar mesons that lie
on five of the eight points of figure 7.8. There have to be precisely eight such
mesons, no more and no less, and they need to lie on each of the eight points
of the pattern in figure 7.8, one particle state per point.

When Gell-Mann first proposed the eightfold way, one of the baryon
(three-quark combination) representations was missing one of its members.
In the frenzy of discovery during the 1950s that had prompted Gell-Mann’s
ruminations about SU(3), nine baryons with spin-3⁄2 and even intrinsic par-
ity, and with masses all about 11⁄2 times that of the proton, had been discov-
ered. For these nine particle states, the different values of isospin projection
Ip and hypercharge Y—the physical quantities from whose values the SU(3)
patterns are formed—fit nicely onto nine of the ten points of the decouplet,
the SU(3) representation with ten points in it. The problem, of course, was
that there shouldn’t be just nine such particle states; if they are really states
of the tenfold decouplet representation of SU(3), then there need to be ten
of them.

Not only that, but the missing tenth particle needed to have exactly the
properties associated with the remaining uncovered dot in the decouplet
pattern, which, in this case, turned out to be an isospin projection of Ip �

0 and a hypercharge of precisely Y � �2. If you look back at the quark rep-
resentation of figure 7.9a and ask how to get a total of Ip � 0 and Y � �2
by adding together three quarks, you’ll realize that the only way to do this is
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if all three quarks are strange quarks (each strange quark has Ip � 0 and 
Y � �2⁄3). Confident that this particle must be out there, Gell-Mann boldly
predicted the existence of this particle, the W�, the strangest, if you will, of
all possible particles.

Accordingly, this particle was discovered at Brookhaven National Labo-
ratory (the Long Island, New York, atom smasher) in 1964. Two years after
Gell-Mann’s first papers on the subject, this discovery provided a dramatic
confirmation of the notions of SU(3) symmetry and the eightfold way. It’s
one thing to come up with a model that fits all the existing data. It’s quite
another to use that model to unambiguously predict something new about
the natural world—something as odd and unique as a particle formed from
three strange quarks—and have the prediction confirmed by experiment.
The discovery of the W�, the confirmation that it had the correct mass, and
that it was composed of three strange quarks (by studying the way it decayed
into other, less exotic particles), plastered Gell-Mann’s model of internal
SU(3) symmetry solidly into the firmament of revolutionary twentieth-cen-
tury physical theories. It didn’t take long for the larger community to come
to this recognition: Gell-Mann was awarded the Nobel Prize in Physics in
1969, just as experiments at the Stanford Linear Accelator Center were pro-
viding the ultimate confirmation of Gell-Mann’s model of the eightfold way
by publishing the first evidence for the existence of the quarks themselves.

Two Further Thoughts

What, if anything, are internal symmetry spaces? Do they have any physi-
cal presence, in the sense of ordinary three-dimensional space, any “bulk”
within which the motion and actions of physical objects play themselves
out?

The sober answer is no. They are mathematical edifices, spaces with no
more physical content than the space in which I plot my checking account
balance against the unyielding advance of time. The employment of such
a mathematical space can provide useful information and even help me live
a more rewarding life, but the space of bank balance versus time is definitely
not a space with physical extent, with a bulk that can support motion and
interaction and all the things we associate with physical behavior.

It’s easy for us to say that the various internal symmetry spaces—isospin
and its extension to the space of SU(3) flavor transformations, and the in-
ternal spaces we’ll meet in the next chapter—are equally unphysical con-
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structs of the mathematical mind. Rather than being true physical spaces,
they are (from this point of view) merely elegant ways of encapsulating the
rules behind some aspects of the fundamental behavior of the natural world.

But then, what about spin-space? Rotations of the spin axis of spin-1⁄2 par-
ticles (a category into which many of our most favorite particles fall) don’t
follow the rules of R(3), the group of rotations that you and I can perform
with an object in everyday three-dimensional space. Instead, these rotations
follow the rules of SU(2), which operates within a somewhat different sort
of space than that of R(3), a space for which a rotation of 360 degrees does
not get you back precisely to where you started. And yet spin-space is very
much a real space: When you rotate a spin-1⁄2 particle’s spin by half a cir-
cle—180 degrees—about the x-axis in spin-space, it does go from pointing
up to pointing down in our everyday, three-dimensional space, as physicists
have demonstrated experimentally time and time again.

So perhaps this point of view is unnecessarily puritanical. An argument
that might countervail it (if you will permit me a moment of untethered
speculation) goes as follows.

We live in a world for which our perceptions, the mechanisms of our five
senses, are governed by chemical behavior. Chemistry is really nothing
more than the rich brand of physics for which information and actions are
brought forth by exchanges that have an energy of the order of 1 eV. Chem-
ical behavior was what was available to be made use of by life on earth as it
developed, and it is what human senses and perceptions naturally and nec-
essarily evolved to interpret.

Now, the energy scale of chemistry, of 1 eV and thereabouts, is far below
that of high-energy physics. With exchanges of 1 eV of energy, you can’t
sense the behavior of the individual quarks inside the nucleons or even the
nucleons within the nucleus or even the nucleus within the atom. You can’t
even rotate the spins of the spin-1⁄2 electrons that are orbiting about the nu-
clei in the atoms of tangible substances.

The point is this: The physical processes that we humans have evolved
to make use of in probing the world around us, the various chemical be-
haviors that form the basis of our senses, are just not energetic enough to
probe the behavior that we have been discussing in this chapter. Would hu-
mans have developed a sense of the bulk of ordinary three-dimensional
space if we hadn’t, through the chemistry of our senses, been able to invoke
and perceive motion through that bulk?

Without the extension provided by sophisticated scientific apparatus, our
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senses, our biochemical senses, are just too anemic to invoke or perceive
motion in the spaces we have introduced and discussed in this chapter.
Might it be possible that the internal spaces of this chapter are in fact no
less real than the three-dimensional space of our everyday perception?
Could it be that, absent any way to influence or perceive motion in these
realms, we simply lack the tools and motivation to evolve the ability to per-
ceive them?

I’ll leave you to mull this over while moving on to the second and final
discussion of this section: that of an important qualification of the nature of
the symmetry transformations we’ve been considering. So far, we’ve been
restricting our thinking to what are known as global symmetry transforma-
tions.

When you hear the word “global,” what is usually meant is something
that applies equally and all at once everywhere in the world. That’s more or
less what’s meant here, except the world of particle physics covers more than
just the surface of our remarkable planet; it includes the whole universe;
the full extent of whatever space the symmetry transformation happens to
be operating within. Universal symmetry transformation may have been a
better expression, but global conveys the notion well enough.

The point is that, when we apply one of the actions that is a member of
the symmetry group of interest, we are applying it globally—equally and si-
multaneously everywhere in the space associated with the transformation
(real space-time in the case of spatial or temporal translations and rotations,
isospin space in the case of isospin transformations, and so forth).

Noether’s theorem tells us, for example, that the conservation of overall
angular momentum is due to the invariance of physical laws under rota-
tions of the entire body of physical three-dimensional space. Conservation
of angular momentum follows directly from the fact that, regardless of how
the space surrounding you is oriented with respect to the lab equipment you
just set up, the physical laws you derive will always be the same. When you
rotate your laboratory equipment to test the hypothesis that physics is in-
variant under rotations, you are rotating the apparatus with respect to the
entire body of space (or, equivalently, rotating the entire body of space with
respect to your apparatus; there’s no difference).

However, Noether’s theorem doesn’t follow from the consideration of
the behavior of physical laws under rotations of small pockets of space. Any-
thing reaching the boundary of such a pocket would exhibit a behavior as
arbitrary and unpredictable as the rotation that was somehow imposed on
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the space inside the pocket. Angular momentum would certainly not be
preserved for a system crossing such a boundary, the object would undergo
a sudden and spontaneous reorientation at the point of crossing, quite in-
dependent of what forces were acting on it at the time. In doing such an op-
eration only in a local region of space, you are doing more than rotating
space, you are distorting it beyond recognition.

So, to get the same experimental result, to derive the same laws of
physics, the entire space has to be reoriented, and all at once. The symme-
try operation has to be global. In this light, there’s obviously no merit what-
soever to the consideration of symmetry transformations that are not global,
that are local, in the sense just described.

Unless you happen to be a particle physicist . . .
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8

Physics by Pure Thought

Gauge Theory

The role of the scientist is not to dictate natural law but, rather, to uncover
and elucidate it. However, if it were up to physicists to choose the theoreti-
cal framework within which the physical world operates, gauge theory
would be a promising candidate. It is through gauge theory that science
makes its greatest inroads toward the reduction of the full spectrum of phys-
ical behavior into a single inevitable underlying principle of causation.

It’s a bit of a shame, and a detraction from the elegance of the theory,
that the Standard Model can’t be presented at the end of this chapter as an
example of a “pure” gauge theory. Instead, gauge theory is merely a com-
ponent of the formalism of the Standard Model, and we’ll need to move on
to chapter 9 and its discussion of hidden symmetry to complete the picture.
Nonetheless, much of the elegance of gauge theory, hidden or not, does
carry over to the complete Standard Model, so the lessons of this chapter
should not be discounted.

Gauge theory provides the intellectual cornerstone of the Standard
Model; accordingly, this chapter really forms the crux of this book. I will
therefore say, without apology, that it will be a long and involved chapter,
covering a lot of ground while synthesizing a good deal of the material from
previous chapters. We’ll need to draw on and sew together threads from all
of those chapters, including our discussions of quantum mechanics and the
wave equation (chapter 3), field theory (chapter 4), the natures of the elec-
tromagnetic and weak nuclear interactions and their associated field quanta



(chapters 2 and 5), Lie groups (chapter 6), and internal symmetries (chap-
ter 7). All these topics were introduced in service of a single-minded pur-
pose: the eventual introduction and description of gauge theory, and its con-
nection to the workings of the natural world.

Phase Revisited

In chapter 3 we discussed the concept of the phase of a wave and spent some
time emphasizing that the overall phase of the wave function of any system
of objects can have no bearing on the physical properties of the system (re-
call our afternoon at sea, during which our naiveté about the irrelevance of
phase put a significant dent into our social life). In this chapter, we’ll take
a deep look at this notion, and explore its surprisingly rich consequences.

At this point, we need to discuss exactly how it is that phase is treated in
the quantum-mechanical representation of physical systems. Since any
quantum-mechanical system is fully specified by its wave function, this just
boils down to a discussion of how phase is incorporated into the wave func-
tion.

In several previous chapters it was mentioned, almost parenthetically,
that wave functions are complex. A real (i.e., noncomplex) function is just
a rule that assigns an ordinary real number to each point in space and time,
so a complex function is nothing more than a rule that assigns a complex
number to each point in space and time. For a quantum-mechanical wave
function, the complex number assigned to any given point in space and
time obeys the following rule: the square of the assigned complex number
must be the relative probability of finding the object at that particular point
in space at that particular time. Let’s recall our discussion of complex num-
bers in the section “Into the Continuum” in chapter 6 in which we intro-
duced the Lie group U(1).

A complex number z is a number of the form z � a � b � i, where a and
b are any real (ordinary) numbers, and i is the make-believe number whose
square is negative one: i � i � �1. As mentioned in chapter 6, we know how
to put real numbers in order: the number 10 is bigger than the number p �

3.14159, which is bigger than the number �12.5267, and so forth. How-
ever, which of the following two complex numbers is bigger: z1 � 12 � 3.1 �

i or z2 � 3.6 � 10 � i? The “real” part is larger for z1 (12 for z1 vs. 3.6 for z2),
but the imaginary part is bigger for z2 (10 vs. 2.1), so it’s not immediately
clear which is bigger.
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In chapter 6, we resolved this quandary by defining the size �z� of any
complex number z � a � b � i to be �z� � �a2 � b2 (by definition, we only
use the positive square root). It’s very important to note that since a2 and b2

are always positive real numbers (the square of any real number is always
some other positive real number), then the size �z� of the complex number
z is always a positive real number (the positive square root of any positive
real number is always some other positive real number). Since we all know
how to order positive real numbers such as �z�, then this gives us a rule for
ordering the underlying complex numbers z � a � b � i according to their
size.

However, one quickly realizes that while no two real numbers have the
same size, it’s easy to find sets of complex numbers that, under this rule,
have the exact same size. For example, you can easily verify that the com-
plex numbers 5 � 0 � i, 3 � 4 � i, and 0 � 5 � i all have the same size (which
is 5).

To see how it is that this discussion of the nature of complex numbers re-
lates to the phase of a quantum mechanical wave function, let’s recall the
discussion surrounding figure 6.2 in chapter 6. This recollection will be
aided by figure 8.1, which is quite similar to figure 6.2b.
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Again, we choose to represent the complex number z � a � b � i as a
point on a two-dimensional graph, for which instead of having x- and y- axes,
we have a horizontal real axis and a vertical imaginary axis. We find the
point corresponding to z by going out a distance a along the real axis, and
then up a distance b along the imaginary axis, placing a dot corresponding
to the complex number z � a � b � i at the point at which we end up.

If we draw an arrow from the origin (point at which the axes cross) to the
point representing z, the length of the arrow is nothing more than the size
�a2 � b2 of the complex number z (note 8.1). If this complex number z
represents the value of the (complex-valued) wave function y (x) of a quan-
tum-mechanical system at some point in space and time, then the relative
probability of finding one of the objects in the system at that point in space-
time is just the square (a2 � b2) of the length of this arrow.

Let’s dwell on this for just a moment to make sure that one thing is clear.
The position of the point z in the complex plane plot of figure 8.1 has noth-
ing to do with location in real space. Instead, it’s just a way of representing
the value of the complex-valued wave function for whatever point in space
and time you want to know it. When we discuss the wave function y (x), x
represents the point in space at which we want to know the value of the wave
function. The value of the complex wave function, the complex number as-
sociated by the function y (x) to the point x in real space, is just some com-
plex number z, such as that represented by figure 8.1. Since complex num-
bers are, well, complex, you can’t represent them by a position on a simple
number line. Instead, they have to be represented by a point on a two-
dimensional plot.

So, for any given space-time point, the representation of figure 8.1 pro-
vides complete information about the value of the wave function at that
point. If we consider a different point in space-time, say, a point 2 centime-
ters to the right and 4 seconds earlier, we need to draw a new complex plane
plot for the new complex number z1 representing the value of the wave
function at that space-time point. Thus, to represent fully the entire wave
function in this way, we would need an infinitude of such plots, one for each
of the infinite number of space-time points in the universe. It’s important to
keep this all in mind as we discuss what it means to change the phase of the
wave function y (x).

In any regard, we now need to note that in addition to the length of the
arrow pointing to the complex number z we also need an angle (represented
by q in fig. 8.1) to specify exactly how to draw the arrow pointing to z. If we
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change the angle of the arrow to some new direction (new angle q� in fig.
8.1), but without changing its length, the resulting complex number z� has
the same length as the original complex number z and represents the iden-
tical probability of finding an object at the given point in space and time.
This probability only depends on the length �a2 � b2 of the arrow point-
ing to z or z�, and not on the angle q or q� that the arrow makes with the
“real” axis. So the observable, the thing we can measure experimentally, is
encoded into the length of the arrow representing the value of the complex-
valued wave function at that point in space-time. Its angle (q or q�) is un-
observable; it’s immaterial like the phase of the wave function is immater-
ial. And that’s just the point, this angle is the phase of the wave function!

In chapter 3, we saw that it makes no real difference whether the sailor
is at the bottom of a trough, the top of a crest, or anywhere in-between, at
precisely noon. Similarly, there is no consequence to the physical state of
an object if the complex value of its wave function is represented by an ar-
row (such as that of fig. 8.1) that points along the real axis, the imaginary
axis, or any direction in between. What does matter is the length of the ar-
row.

We argued in chapter 3 that bobbing up and down on an endless series
of waves is very similar to going around and around in a circle and that the
phase of the bobbing motion at any given point in time is analogous to the
angle through which you’ve turned on the circle. Here, we see that all com-
plex numbers of a given length lie on a circle and again the notion of phase
is provided by the angle through which you turn to get to the complex num-
ber z that represents the value of the wave function.

So, this is how the notion of phase is incorporated into the complex-
valued quantum-mechanical wave function. The phase angle q tells you
where you are in relation to the crests and troughs of the quantum-me-
chanical wave: if q is 0 or 360 degrees, you’re at the top of the crest, if q is
180 degrees, you’re at the bottom of the trough, and so on. It’s cast in a funny
sort of way, in terms of the “real” and “complex” parts of the complex wave
function, but it’s the same thing.

This will be an essential component of the connection that we’ll soon
make between abstract Lie groups and the wave functions of physical ob-
jects. Remember that we introduced Lie groups as complete sets of rota-
tions in a given space: R(3) for rotations in ordinary three-dimensional
space, SU(2) for complex two-dimensional space, and so forth. The moti-
vation for introducing complex Lie groups, such as SU(2), is that the com-
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plex nature of the Lie group allows it to change the phase of the wave func-
tion: the complex character of the Lie group’s elements allows the phase of
the wave function to be rotated around the circle of complex numbers (see
fig. 8.1).

Global Irrelevance

The notion discussed in the previous section—that the overall phase of any
quantum-mechanical system can have no physical consequence—is usu-
ally referred to by the rubric “global phase invariance.” In this context, in-
variance means precisely the same as it did in the general discussion of in-
variance of chapter 7. Since the overall phase of the system has no bearing
on its physical properties, the system is “invariant” under the (purely math-
ematical) operation of a change in its overall phase.

The term global in the phrase global phase invariance, contrary to its cus-
tomary connotation, is a condition that actually restricts the nature of the
phase transformations, the set of possible changes of phase of the wave func-
tion describing the system, under consideration. In this context, global
doesn’t mean “encompassing all conceivable possibilities.” Instead, it im-
plies that the transformations under consideration are only those that are
identical throughout space and time—globally uniform. Thus, global phase
transformations are purely mathematical operations by which the phase of
the wave function describing a quantum-mechanical system is changed by
the same amount everywhere in space and time.

In view of the above discussion of quantum-mechanical phase, this
amounts to nothing more than picking some single angle between 0 and
360 degrees, and then rotating the arrow representing the (complex) value
of the wave function at each and every point in space-time by exactly this
amount. If the phase transformation is global, then this angle of rotation,
whatever we chose it to be, must be the same everywhere in space and time.

It turns out that the notion of global phase invariance is, like everything
else in quantum mechanics, built directly into the wave equation, which
dictates the precise form of the wave function corresponding to any given
physical system. We discussed a number of such wave equations; for exam-
ple, the Schrödinger equation governs the behavior of nonrelativistic sys-
tems, while the Dirac equation provides us with the appropriate description
of the behavior of relativistic spin-1⁄2 particles. Luckily, the discussion of
phase invariance (both global and local) that is to follow is identical in
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essence for all forms of the wave equation, and thus we are free to carry out
this discussion in the context of the more familiar Schrödinger equation.

In chapter 3, we presented the rigorous mathematical statement of the
Schrödinger equation, for the special case that the object being described
is moving in just one dimension (backward or forward along the x-axis).
Here it is again:

Let’s reiterate some of the points that were made about this expression when
it was introduced.

This equation explicitly represents the condition that the wave function
must satisfy to represent appropriately the behavior of an object (of mass m)
under the influence of one or more forces; the wave function itself is rep-
resented by the symbol y (x). Wherever you are in space, whatever the value
of x is, the (complex) number y (x) is just that number whose square (size
squared) is the relative probability of finding the object at that point.

The influence of the forces that are at play are introduced through the
potential function V(x) in the second term on the left-hand side of the
equals sign. If an object is under the influence of some force or set of forces,
it takes some amount of energy to move it to the point in space represented
by the value of x (think of a car rolling against the force of gravity some dis-
tance x up a hill; it has to expend some amount of its energy to do this). If
we let V(x) be that amount of energy for all points x in space, we can plug
this V(x) into the Schrödinger equation above, and then solve the equation
for the wave function. What we wind up with is the wave function y (x) that
describes the behavior of an object under the influence of the force de-
scribed by the energy function V(x). The E in the term to the right of the
equals sign is the object’s total energy—the potential energy V(x) associated
with moving it to x plus whatever kinetic energy the object has because it’s
still moving when it gets to the point x.

The first term—the one associated with the kinetic energy the object has
because it’s still moving when it gets to point x—is the one that we want to
concentrate on because this term will make all the difference when we
switch from the consideration of global phase invariance to the considera-
tion of the more demanding and much more interesting requirement of lo-
cal phase invariance. This first term involves a derivative (that’s what the
symbols d2y (x)/dx2 stand for), so let’s talk about derivatives for a moment.
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The function y (x) gives the value of the wave function at any point x in
space. If we change x a little (move to a slightly different point in space),
then y (x) can be expected to change some, too. The derivative dy (x)/dx of
y (x) is nothing more than the rate of change of y (x) when you change x. If
y (x) changes a lot when you move from one point in space to a nearby point,
the derivative dy (x)/dx is some relatively big number; if it changes only a
little, then dy (x)/dx is a smaller number. Actually, this first term involves a
second derivative, which is the rate of change in the rate of change as you
move from point to point in space—but that distinction is not necessary to
grasp for the ensuing discussion.

Now, suppose that y (x) represents a wave function that satisfies the
Schrödinger equation for some potential energy function V(x). This means
that the rate at which the wave function y (x) changes as you move from
point to point in space (first term in the Schrödinger equation), when mul-
tiplied by the precisely known combination of numbers �h2/8p2m, is just
what you need so that when you add it to the potential energy (second term),
you just get the object’s total energy (term to the right of the equals sign).
To satisfy the equals sign in the Schrödinger equation, there must be a del-
icate and precise balance between the rate of change of the wave function
in the region surrounding the point x and the potential energy of the object
at the point x, for each and every point x in space.

In other words, the total energy E on the right side of the equation is
fixed for all points in space (due to energy conservation) so as V(x) changes
from point to point, the rate of change of the wave function y (x) must it-
self change in just the right way such that the sum of the first and second
terms in the Schrödinger equation is exactly the total energy E. If V(x) is
very small at some point x, then the rate of change of the wave function
y (x) in the region surrounding the point x must be correspondingly large,
and vice versa.

Now, suppose that you arbitrarily decide to make a change of phase of
this wave function—to change, at every point in space, the angle q that the
complex number y (x) makes with the real axis in figure 8.1. Here’s the crit-
ical point: If this phase change is global, if the amount by which you change
the phase angle q is the same everywhere in space, then this change of phase
will not destroy this delicate and essential balance. Why is this?

First, by changing the phase of the wave function y(x) you certainly don’t
change the potential energy V(x) at all, so the energy of the second term in
the Schrödinger equation is unchanged. The energy of the third term in the
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Schrödinger equation, to the right of the equals sign, is also unchanged be-
cause the total energy E is conserved, and so is the same everywhere in space
and time. But, in addition, if you change the wave function’s phase by the
same amount everywhere, you are also not changing the rate of change (de-
rivative) of the wave function. So, the energy of the first time—the object’s
kinetic energy—is also unaltered by the global phase change.

To understand this, think of a slide on a playground. There is some func-
tion that represents the height of the slide at any point x along its length. We
can label this function whatever we want to; so let’s call it y (x). Don’t be
confused here: We are using the height of the slide simply to give ourselves
a way to visualize the value of a function y (x) of position x; in this analogy,
the height of the slide has nothing whatsoever to do with gravity and the po-
tential energy function in the wave equation.

The slide has a certain slope, which is the rate of change of the height
function y (x) as you change x, that is, move from point to point along the
length of the slide. So, this slope is the derivative of the height function y (x).

If you move the slide to the top of a hill, being careful to change its height
by the same amount at every point along the slide, the slope of the slide does
not change. This global change of height, a change of height by the same
amount at each point on the slide, leaves the derivative of the height func-
tion unchanged. Similarly, a global change in the phase of the wave func-
tion leaves the derivative of the wave function, and thus the kinetic energy
(represented by the first term in the Schrödinger equation, which is the term
with the derivatives), unchanged.

So, this global change in the phase of the wave function leaves all three
of the terms in the Schrödinger equation unchanged, and the phase-changed
wave function, call it y�(x), still satisfies the Schrödinger equation. The new
wave function y�(x) still describes the behavior of an object under the influ-
ence of the force represented by V(x). As far as observable, physical behav-
ior goes (the only kind of behavior that counts), y (x) and its globally phase-
changed partner y�(x) are one and the same wave function. In this sense,
the notion of global phase invariance is built in to the Schrödinger equation,
or any quantum-mechanical wave equation, for that matter.

The Real Trouble with Globalization

In the mid-1950s, two physicists, C. N. Yang of the Institute for Advanced
Study at Princeton University, and R. L. Mills of Brookhaven National Lab-
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oratory, became deeply interested in the question of the phase invariance
of quantum mechanics. What intrigued them most was that, on reflection,
the idea of global phase invariance didn’t quite wash with Einstein’s notions
of the nature of space-time. Yang and Mills were perfectly happy with the
idea that the observable properties of a quantum-mechanical system should
be independent of the phase of the wave function, as discussed at length
above. What bothered them was that, to exhibit this independence of phase,
one had to change the phase globally, by the same amount everywhere in
space-time. We haven’t yet demonstrated that changing the phase locally—
by an amount that differs from point to point in space and time—disrupts
the delicate balance of the Schrödinger equation, but we will in due course.
In any regard, the need to require that quantum-mechanical systems be un-
altered only by global changes of phase seemed to Yang and Mills to be very
unnatural.

To understand Yang and Mills’ queasiness with the notion of global
phase invariance, let’s recognize that, whatever the situation being de-
scribed, the wave function needs to have some phase or other. The value of
the phase we’ve said time and again is immaterial, but waves have phases,
so we’ve got to pick something. In other words, to write down the wave func-
tion describing the quantum-mechanical state of an object, we have to
choose its phase, but the choice that we make is arbitrary. It’s like the slide
on the playground: it doesn’t matter whether the slide is installed down by
the creek or on top of the hill. The choice of the height at which to install
the slide is an arbitrary one.

However, once you put one of the legs of the slide down, then the heights
at which the other legs rest is anything but arbitrary: they must be at just the
right level, or the slope of the slide will be wrong; it will be either too steep
to be safe or too shallow to be fun. Similarly, once you choose the phase of
the wave function at one space-time point, the requirement of global phase
invariance fixes it at all other space-time points.

In their 1954 paper in the Physical Review, Yang and Mills duly noted
that the choice of the wave function’s phase is an arbitrary one. They con-
tinued:

As usually conceived, however, this arbitrariness is subject to the fol-
lowing limitation: once one chooses [the phase of the wave function] at
one space-time point, one is then not free to make any choices at other
space-time points.
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It seems that this is not consistent with the localized field concept that
underlies the usual physical theories. In the present paper we wish to ex-
plore the possibility of requiring all interactions to be invariant under in-
dependent [choices of phase] at all space-time points.

From the time of the first introduction of the idea of a force field, by
Michael Faraday in the 1830s, up through the development of quantum
field theory, great effort has been expended to avoid the disquieting notion
of action-at-a-distance. Our innermost being tells us that if something is to
be influenced by a force, the agent of influence had better be where the in-
fluenced object resides when it is acted on and not meters, or millimeters,
or even microns away. If you’re going to push on something, you’ve got to
push on it, not just stand there flailing your arms some distance away!

Indeed, Einstein’s relativity tells us that no object possessing mass-energy
can travel faster than the speed of light, and since the exertion of a force by
one object on another generally requires that energy be exchanged between
the objects, no agent of force can act instantaneously at a point removed in
space from that agent. Even more, quantum mechanics tells us that the very
transfer of information from one point to another requires an exchange of
energy (otherwise, how would the system of the observer be able to receive
the transferred information?), so even information, in whatever form it may
take, can be transferred from point to point at a speed no faster than that of
light.

Given this, how could the value at point x of the universe’s wave func-
tion, at exactly noon tomorrow, know what arbitrary choice was made for
the phase of the universe’s wave function at some distant point x� at precisely
the same time? If the transfer of information regarding the choice made at
x must obey the fundamental speed limit of 186,000 miles per second, what
sense does it make to require that the arbitrary choice made at point x� be
the same as that of point x? Information cannot be exchanged instanta-
neously between the two spatially separated points, so they can’t know about
each other; the two space-time points (x at noon tomorrow and x� also at
noon tomorrow) are not causally connected. Nothing that happens at point
x� at noon can influence point x at noon, since to do so, the information of
what happened at x� would have to travel faster than the speed of light.

So the tenets of Einstein’s relativity weigh against the possibility that the
wave function at noon at point x can make itself aware of the properties of
the wave function at the same time at point x�. In particular, the wave func-
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tion at noon at point x won’t be able to conform to whatever arbitrary choice
was made for the phase of the wave function at noon at point x�, since it
can’t know about the value of that choice of phase. The requirement that
the arbitrary choice be global—unchanging throughout space and time—
makes no sense because that’s not the way nature seems to operate. This is
what concerned Yang and Mills, as expressed in the quote from their semi-
nal paper on gauge theory that we just read.

Local Irrelevance

Consider an electron somewhere out in the world, maybe under the influ-
ence of some force or set of forces, whose physical state is encapsulated in
its wave function. Again, there’s a certain freedom, or arbitrariness, in this
wave function. We are free to change the phase of the wave function, in the
manner of figure 8.1, as long as we change it globally, by precisely the same
amount at every point in space and time.

But now, Yang and Mills admonish us that we shouldn’t really talk about
global phase invariance because not all points in space-time are causally
connected. So, it makes no sense to require that the choice of change of the
wave function’s phase be the same everywhere in space-time. Instead, we
must consider local changes of phase, that is, changes in the phase of the
electron’s wave function by an amount that varies from point to point in
space-time.

But there’s a major problem with this. As we’ve seen, the wave equation,
to be satisfied by a given wave function, requires a delicate and precise bal-
ance between the rate of change of the wave function in any region of space
(kinetic energy) and the value of the electron’s potential energy in that re-
gion. These two must add up to the electron’s given total energy, which is
conserved; the total energy is the same no matter where the electron is and
when it’s there. However, if we take a wave function that originally satisfies
the wave equation and change its phase by an amount that varies from point
to point in space, we corrupt this delicate balance; what we wind up with
no longer satisfies the wave equation. It no longer provides a valid descrip-
tion of any physical state of the electron, much less the state that we started
with.

Let’s make this point a little more accessible by assuming that the elec-
tron under study is not under the influence of any forces as it moves through
space, that is, we are studying a free electron. In this case, the potential en-
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ergy is zero everywhere in space (remember: we introduced the concept of
potential energy precisely to allow the incorporation of external forces into
the wave equation, so if there are no forces at play, there is no potential en-
ergy to worry about), and the wave equation becomes

because V(x) � 0, we can drop the V(x)y (x) term that appeared in the wave
equation.

Again, the term to the left of the equals sign, the mathematical notation
for the rate of change of the wave function y (x) times the well-known com-
bination of numbers �h2/8p2m—reveals the electron’s kinetic energy,
which is just the electron’s total energy since, in this case, it doesn’t have
any potential energy. The term to the right of the equals sign is just the elec-
tron’s total energy times the wave function. So, the free electron’s wave
function must still satisfy a precise and delicate balance, albeit a very sim-
ple one: the product of the rate of change of the wave function times the
well-known number �h2/8p2m, in any and all regions of space-time, must
be precisely equal to the electron’s energy.

Again, the essential point is that a change of phase of the free electron’s
wave function that varies from point to point in space will upset this deli-
cate balance and render the electron’s wave function unphysical. We can
understand why this is with a fairly simple analogy.

Let’s pack a sandwich and some juice and head back to the local play-
ground, where we found the slide that helped us to visualize the notion of
global phase invariance. As before, we’ll think of the height of the slide as
the value of the wave function y (x) at the point x in space. The value of x
just represents the point along the length of the slide at which you want to
know its height; x corresponds to some point between the launching pad at
the top of the slide and the bottom end of the slide from which wide-eyed
children (and adults who should know better) come flying, only to be jarred
to a halt in a cloud of dust.

In this analogy, the rate of change (derivative) of the wave function y (x)
is the rate at which the height of the slide changes as you move down it—
the steepness of the slide. When you multiply this steepness by an appro-
priate factor, which includes your mass, the pull of gravity, the drag of fric-
tion, and so forth (analogous to the factor h2/8p2m in the wave equation),
you get the kinetic energy E associated with your motion as you exit the
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slide. For a given energy E, there’s one and only one slope, one solution for
the function y (x) for the height versus position of the slide, that will result
in your motion as you exit the slide having precisely that energy. There’s a
delicate and precise balance between the rate of change of y (x) and the en-
ergy E of your trip down the slide.

As for true quantum-mechanical wave functions, there’s an arbitrariness
associated with the specification of y (x) analogous to the phase of the wave
function. We talked about this a few pages back: it’s the overall height of the
slide above sea level. It doesn’t matter whether you place the slide at the
lowest or highest point on the park grounds. As long as you mount the slide
in the same way, ensuring that the launching platform is perfectly level in
either case, your trip down the slide will be characterized by the same ki-
netic energy E. All that matters is the slope of the slide; the choice of the
slide’s overall height (phase) is arbitrary.

So, the system of slide and slider is invariant under a change of phase of
the wave function y (x). If you arbitrarily decide to change this phase by re-
locating the slide at the top of the hill, you don’t change the dynamics of
the system. The amount of sand that gets lodged beneath your skin as you
grind to a halt in the dirt below the slide is the same in either case. The en-
ergy E that you attain is invariant with respect to the overall height of the
slide.

But as we’ve discussed, this is a global, not a local, invariance. In mov-
ing the slide from the bottom to the top of the hill, we changed the phase,
the height of the slide, by an identical amount at each point x along the
length of the slide. If the top of the hill was 5 meters higher than the bot-
tom, then we changed the height of the entire slide—the launching plat-
form, the bottom of the slide, and every point in-between—by precisely that
5 meters. The transformation of the slide’s height was global.

What if, instead, we had performed a local phase transformation, by
changing the slide’s height by an amount that varied from point to point
along the slide? Say, for instance, that we raised the launching platform by
the full 5 meters but raised the bottom of the slide by only 4 meters? The
top of the slide goes up by some amount, but the bottom of the slide goes
up by 1 meter less than that, the middle of the slide by 1⁄2 meter less than the
top, and well, you get the picture. The amount by which we raised the slide,
that is, changed the phase of the wave function y (x), varies from point to
point in the space of distance along the slide.

Thus, we would have increased the slope of the slide, and we’d come off
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the bottom of the slide with even more energy. The transformed height
function (wave function) y�(x) does not satisfy the same wave equation that
had the original, smaller energy requirement for its solution. The wave
equation and its wave function solution are not, in this analogy, invariant
under local changes of phase.

By changing the height function (wave function) by an amount (phase)
that varies from point to point in space (i.e., locally), we alter the steepness
(derivative) of the height function. This change in the derivative of the wave
function is what destroys the delicate balance between the wave function’s
derivative and the object’s energy and makes the wave function incompat-
ible with the notion of local phase invariance.

It’s at this point that Yang and Mills enter the scene, reminding us that,
given what we know about the nature of space-time, it makes no sense to re-
strict ourselves strictly to global transformations, for which the slope of the
slide remains fixed when it’s moved.

We know that phase is irrelevant. The choice of the phase of an ob-
ject’s—or a system of objects’—or the universe’s wave function is arbitrary.
On the one hand, the hallowed wave equation tells us that the arbitrary
choice of phase must be consistent from point to point in space and time or
all hell breaks loose. On the other hand, as Yang and Mills point out, this
requirement appears to be incompatible with Einstein’s well-supported no-
tions of the nature of space and time. The contradiction is direct and de-
mands a resolution, so something has to give. And, as has so often been the
case in modern science, in reconciling these two apparently incompatible
points of view, Yang and Mills were led down a path that profoundly and
fundamentally augmented the way physicists view the operating principles
of the natural world (note 8.2).

The Relevance of Irrelevance: The Gauge Principle

As we’ve seen with our slide analogy, the aspect of local changes of phase
that wreaks havoc with our wave function and its solutions is their effect on
the slope of the function—the rate of change, or derivative, of the function.
Here, once more, is the wave equation for a particle free of the influence of
external forces:
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The term to the left of the equals sign, involving the derivative operator,
causes the trouble, so this was the term that Yang and Mills worked on. They
hoped to resolve the conflict by forcing the wave equation to be invariant
under local changes of phase. What they did was to add, completely by fiat,
another term to the left side of the wave equation, as follows.

Whenever the phase of the wave function changes locally (by an amount
that varies from point to point in space), the result of the derivative (rate of
change) operation changes, introducing some “mistake” that causes the
new wave function to no longer satisfy the wave equation. The thing—the
only thing—we require of this new term we’re going to add is that it com-
mit precisely the same mistake, but with a negative sign, so that when the
mistake from the term with the derivative is added to the mistake from the
new term, they exactly cancel out, and everything is OK. In other words,
Yang and Mills cheated; when nobody was looking, they added another
term that got rid of the problem caused by the effect of the rate of change
operation.

Think of a high-school student who solves a word problem with an ex-
pression that gives an answer that is too high by, say, three. Having found
this out by looking at the answer in the back of the book, the student slyly
adds another term into his expression: a term that subtracts three from the
answer. Now the answer works out, although the student has done some-
thing arbitrary and logically indefensible in making it do so. But at least the
answer is correct.

Yang and Mills’ new term did exactly that: It precisely canceled out the
“mistake” introduced by the derivative operator when the wave function’s
phase is changed locally, so that the phase-changed wave function still sat-
isfies the (now somewhat modified) wave equation. The only difference be-
tween the high-school student’s cheating and that of Yang and Mills is that
the latter’s cheating term varies from point to point because the amount of
the mistake introduced by the derivative varies from point to point, so the
cheating Yang and Mills do to make up for that mistake must also vary from
point to point. Explicitly, this new term took the form

qA(x)y (x),

where y (x) is the value of the wave function at point x in space, and q is just
some fixed number whose importance we’ll come to understand in due
time. The critical factor in this expression is our fudge-factor function A(x),
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which can be any function whatsoever as long as it satisfies one criterion:
whatever damage the rate-of-change term in the wave equation causes when
the phase of the wave function y (x) is changed locally, A(x) must have just
what it takes to undo that damage.

On the face of it, this really doesn’t sound so promising. Like the student
who cheats on his math test, we’ve added an arbitrary term into the wave
equation that (still forgetting about q for now) involves some function A(x)
about which we can say very little. And what we can say about A(x) is not
very inspiring: If the phase of the wave function changes, the function A(x),
whatever it may be, must change in such a way as to exactly cancel out the
problems introduced by the derivative operator in the wave equation. So,
even though the wave function still solves the (somewhat modified) wave
equation when we change the wave function’s phase locally, it only does so
because we’ve changed A(x) and thus changed the wave equation itself in
such a way so that everything works out. We’re after invariance—having the
physical description provided by the wave function be unchanged by local
phase changes. This cheating, by construction, does allow the phase-
changed wave function to solve a wave equation, but it’s a different wave
equation than that satisfied by the original wave function because of the
cheating term we added in. If the phase-changed wave function satisfies a
different wave equation than the original wave function, then it must be de-
scribing a different physical situation than the original wave function. This
doesn’t sound much like invariance to me.

So, this seems thoroughly useless. Until, that is, you recognize one crit-
ical point—the point that is the central epiphany of gauge theory. This point
involves the almost magical appearance of the most interesting source of
natural phenomena that we know of—the electromagnetic interaction.

Take any electromagnetic force field that you can imagine—the field in-
side a television set, the field generated by a powerful radar gun, or that of
a quasar in the depths of intergalactic space; it doesn’t matter. For this par-
ticular force field (i.e., for this particular array of magnitudes and directions
of the electric and magnetic force at every point in space), write down a
function, and call it A(x), which represents the potential energy of that force
field at every point x in space. Now, let this function A(x) be the one we put
into the wave equation above so that things would hang together when we
changed the phase of the wave function locally. Now, go ahead and make
a local change, one that varies in amount from point to point in space, in
the phase of the wave function. Then make the corresponding change in
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A(x) that you need to so that the phase-changed wave function still satisfies
the wave equation.

The startling fact exploited by Yang and Mills was that, when you make
this change to A(x), despite the fact that it’s a completely different function,
it still describes precisely the same electromagnetic force field. Sure, you’ve
changed the form of A(x) in the wave equation in some funny way to com-
pensate for the local phase change in the wave function but only mathe-
matically. Physically, in terms of observable qualities (again, the only ones
that matter), you haven’t changed the wave equation at all. After the local
phase change and the corresponding change in A(x), the wave function sat-
isfies a completely equivalent wave equation—the wave function describes
the same physical situation after the local change of phase. The wave equa-
tion, and its wave function solution, are unaffected by—are invariant with
respect to—local phase transformations. Thus, we can alter the wave equa-
tion in a way that satisfies our strong conviction that quantum mechanics
be invariant under local changes of the wave function’s phase.

Now, this begs some further explanation, for how is it that we can change
the potential energy function A(x) associated with a force field without
changing the force field itself? Consider the following analogy.

It takes some amount of energy to climb a twelve-foot-high staircase—to
increase your gravitational potential energy by twelve feet. However, it
doesn’t make any difference whether the staircase is at sea level or the last
flight of stairs at the top of Chicago’s Sears Tower, it takes the same amount
of energy to climb those twelve feet of stairs. Only differences in potential en-
ergy matter: you’re free to put the staircase itself at any elevation you please.
No matter where you put it, although the potential energy (elevation) of the
staircase is different, the energy exerted against the force of gravity in as-
cending the stairs is the same. You can change the potential energy function
by any amount you want (by moving the whole flight up stairs up or down-
hill), but the force of gravity you experience on the steps is always the same.

So, there’s a freedom of choice. No matter what value you choose for the
potential energy function at the bottom of the stairs, the force associated
with that function, the force you fight in going up the stairs, is always the
same. By choosing a different value for the potential energy at the bottom
of the stairs (by putting it at the top of a tall building rather than at sea level),
you can change the potential energy function for the stairs. But the physi-
cal aspects of the system, the things you can feel and measure, are un-
changed. The force of gravity is the same regardless.
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Similarly, to compensate for a local change of phase, you are asked to
change A(x) in some particular way, depending on just how the phase is
changed throughout space and time. But, analogous to the staircase exam-
ple, the corresponding changes that you are required to make to A(x) are
unphysical. They have no bearing on the actual forces represented by the
function A(x). There’s a freedom of choice in the way that you express A(x),
and this is exactly the freedom of choice you need so that A(x) represents
the same array of electromagnetic forces regardless of how you are asked to
change it to compensate any given local change of phase.

So, the changes you need to make to A(x) to compensate for the “mis-
takes” that are introduced by local changes in the wave function’s phase are
just those that are allowed by the freedom of choice one has in specifying
the electromagnetic potential energy function for the electromagnetic
fields that happen to be around. This quantum-mechanical requirement of
local phase invariance, miraculously, just matches the freedom of choice
one has in specifying the electromagnetic potential energy function for
those fields. And so everything works out.

This freedom of choice that you have in writing down the potential func-
tion for a given field—be it the gravitational, electromagnetic, or even
strong or weak nuclear force—is known as gauge freedom. It’s from this term
that the expression gauge theory arises. The precise nature of the gauge free-
dom for the case of electromagnetism is more complex and difficult to de-
scribe than it is for the case of earthly gravity that we discussed above, but
the principle is the same; there are many different ways to write the poten-
tial energy function A(x) for whatever electric and magnetic force field may
be present.

To recapitulate: to make the wave equation and its wave function solu-
tion unaltered by local changes of the wave function’s phase, you need to
introduce a new term into the wave equation. This term contains an un-
specified function A(x) that itself changes when the phase of the wave func-
tion changes. But, if this function is the potential function of the electro-
magnetic field, then A(x) changes in a way that doesn’t matter in any
concrete way, the wave equation and its wave function solution are essen-
tially unaltered, and everything works out; we achieve the local phase in-
variance we so desperately need.

Beyond requiring A(x) to change in a specific way when we change the
phase of the wave function, we have said nothing about what the function
A(x) is; it could really be anything. But that’s great! There are a lot of possi-
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bilities for the exact way the electromagnetic field can array itself in space,
so no matter what particular electromagnetic field we find around us, we
can pick an A(x) that describes it, plug it into the new term in the wave equa-
tion, and we’ve described the effect of that field on the object.

In fact, one possibility is that the field is zero everywhere, which is just
fine. There’s a set of potential energy functions A(x)—that change into one
another appropriately when you change the phase of the wave function—
that all are associated with zero electromagnetic field. If we chose such an
A(x) for the “cheating” (phase-change compensating) term in our wave
equation, what we have is a wave equation that, physically, is no different
than the free-particle equation with no cheating term, except now, the wave
equation is indeed invariant with regard to local changes of phase.

Thus, in addition to an object under the influence of any conceivable
array of electric and magnetic fields, we can also describe a free object, one
not under the influence of any force whatsoever, in this way. In other words,
to make the wave equation invariant under local changes of the wave func-
tion’s phase, we don’t need the electric field to be present; we simply need
there to be such a thing as the electric field! This point has rather interest-
ing implications, to which we’ll return toward the end of this chapter.

One more point needs to be made. The quality of an object that deter-
mines how forcefully a given electromagnetic field pushes it around is its
electric charge q. If q � 0, then the object will feel no influence from the
fields, while the bigger q gets, the more the object will be influenced. But
look again at the term qA(x)y (x) that we included. The factor q sets just how
much of a contribution the potential energy function A(x) makes to the
wave equation. If q � 0, then the qA(x)y (x) term is 0, and the object feels
no effect from the fields. As q gets larger, the object feels a proportionally
larger effect as qA(x)y (x) gets bigger. So, in Yang and Mills’ cheating term,
q is just what it needs to be: the value of the object’s electric charge. If q �

0, then the object is electrically neutral, and so the term containing the ef-
fect of the fields (the A(x) term) will have no effect.

In summary, instead of being a burden, the cheating function A(x) that
we introduced to enforce invariance under local phase change is seen to be
a great boon. It is not an arbitrary function that, when tacked on to satisfy
our philosophical whim, renders the resulting wave equation meaningless.
Exactly the opposite is true. What we have found ourselves forced to include
is something that we are exceedingly thankful for. The requirement that the
wave equation be invariant under local changes of phase has necessitated
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the introduction of electromagnetism, the physical force that lies at the
heart of virtually everything we experience in our daily lives. Furthermore,
the apparently discouraging requirement that the function A(x) change
when we arbitrarily change the phase of the wave function solution to the
wave equation is seen to correspond to nothing more than an inconse-
quential change in the gauge of the electromagnetic potential function, that
is, in the particular way we happen to choose to represent the physical elec-
tromagnetic force field in terms of its potential energy.

Our adherence to the notion that the phase of the wave function y (x) is
irrelevant—of no consequence to the physical, observable information en-
coded in the wave function—has led to something very relevant indeed: a
precise and comprehensive incorporation of the phenomenon of electro-
magnetism.

Quantum Electrodynamics—Again

The above discussion was presented in the context of the Schrödinger equa-
tion: the wave equation of conventional nonrelativistic quantum mechan-
ics. However, if it is to be of any use to us in our attempts to describe the
natural world as we now understand it, the discussion must be recast within
our true framework for the description of the behavior of the fundamental
elements of nature: the relativistic quantum field theory of chapter 4.

With the hard work done, the development and interpretation of the
gauge principle for the nonrelativistic Schrödinger equation, all we must do
is apply the same principle to the appropriate relativistic wave equation.
Everything we just learned about the relation between local phase invari-
ance and the introduction of the electromagnetic interaction, through the
cheating potential function A(x), applies verbatim.

Recalling what we learned about quantum field theory in chapter 4, we
should recognize that what the factor A(x) really represents is the quantum
of the electromagnetic field—the photon. The inclusion of A(x) thus in-
corporates, within the field-theoretical description of the particle’s behav-
ior, the possibility that the particle emits or absorbs a photon, that is, the
possibility that the particle emits or absorbs a quantum of the electromag-
netic field. The probability that the particle does so, at any given point in
space and time, is proportional to the coupling strength q, which is simply
the magnitude of the particle’s electric charge.

In the language of chapter 4, what the inclusion of the qA(x)y (x) term
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has done is to introduce the minimal interaction vertex (fig. 8.2a) that con-
nects charged particles (such as electrons) to the electromagnetic field
quantum (the photon). As we saw in chapter 4, this then allows us to model
all sorts of behavior associated with the electromagnetic interaction of par-
ticles and field quanta, such as the electrostatic repulsion of two electrons
(fig. 8.2b), Compton scattering of light by electrons (fig. 8.2c), and so forth.

In fact, after including the function A(x) into the relativistic wave equa-
tion, we find that the description of the minimal interaction vertex that
arises is precisely the same, in every detail, as the description that was em-
ployed in the theory of quantum electrodynamics, the stunningly success-
ful field-theoretical description of electromagnetic interactions that we dis-
cussed at length in chapter 4.

So, in view of the discussion in the beginning of this chapter, the inclu-
sion of the theory of quantum electrodynamics into our relativistic descrip-
tion of the natural world is necessitated by a single, succinct requirement:
that the quantum-mechanical description of an object’s behavior, as repre-
sented by the wave equation and its wave function solution, be invariant un-
der local changes of phase. If somehow the field of physics had blundered
its way into the late 1950s without the development of quantum electrody-
namics, this exploration of Yang and Mills’, and their subsequent discovery
of the gauge principle, could have allowed the entire theory of quantum
electrodynamics to be developed essentially by a process of pure thought.

Fig. 8.2. A reminder of the nature of the electron-photon minimal interaction vertex (a)
in quantum electrodynamics; b and c are the Feynman diagrams for electron-electron
and photon-electron (Compton) scattering, two of many processes you can construct
by cobbling together copies of the minimal interaction vertex of a.



Electromagnetism, the prime mover behind so many phenomena that
make the universe and life within it what it is, is understood, at the most
fundamental level, to be a necessary consequence of the conviction that ob-
jects are described by wave functions and that this description should be in-
variant under local changes of that wave function’s phase.

It is hard to imagine how a development in our understanding of the
workings of nature could be more fundamental—and profound—than this.
The ancients looked about them, beholding a world of such myriad com-
plexity that it could only be attributed to the machinations of a large set 
of capricious and quarrelsome gods. Today, after millennia of lurching ad-
vancement, we now describe the full representation of the primary causa-
tive element in the world—electromagnetism—in terms of this single in-
exorable property of the wavelike nature of matter. All of electromagnetism
derives necessarily, and with mathematical precision, from this single sim-
ple notion.

Finally, it should be noted that while Yang and Mills were uncomfort-
able with the requirement that the wave function be restricted to global
(uniform) changes of phase, the locally invariant wave equations they de-
veloped were indeed invariant under global and local changes of phase. Any
wave equation invariant under local changes of phase must also be invari-
ant under global changes of phase. A local change of phase is one for which
the amount by which you change the phase is a function of where you are
in space-time; a global change of phase is, too. It’s just that, for global
changes of phase, that function happens to have the same value through-
out space and time. So, global changes of phase are just special cases of lo-
cal changes of phase, and if a wave equation is locally invariant, it will be
globally invariant also.

Now, in chapter 7, we introduced Noether’s theorem, which demon-
strates that, for every global invariance of the wave equation, there’s a cor-
responding physical quantity that is conserved. Our global phase invariance
is such a case, and the conserved quantity is nothing other than the net elec-
tric charge q of the system. This, to the best of our current knowledge, is the
physical origin of electric charge conservation—the requirement that, no
matter what happens when bodies interact, the net electric charge must be
the same before and after the interaction.

The notion of charge conservation is something that is probably, perhaps
without your being conscious of it, fully ingrained in your own intuitive
sense of natural law. In chapter 2, when we conducted the experiment on
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static electricity with the comb that became charged when we rubbed it
through our hair, it was natural to assume that the electric charge that wound
up on the comb was transferred from our hair to the comb. It likely would
have struck you as strange if I had claimed that the process of rubbing a
comb through one’s hair magically creates an electric charge on the comb
where before there had been none. This is because most of us intuitively
expect that electric charge is indeed conserved, and the net charge (differ-
ence between the amounts of positive and negative charges) in any given sys-
tem must be unchanged over time. So the charges on the comb had to come
from somewhere (our hair) rather than just materialize out of nowhere.

Even in the more ethereal world of quantum field theory, with its virtual
particles continuously popping in and out of existence in places one would
think they would have no right to be, the virtual particles are always pro-
duced in pairs, with a net charge of zero, so even they don’t violate the prin-
ciple of electric charge conservation. To the best of our knowledge, the
principle of charge conservation is completely inviolable.

Beyond Mere Phase 1: Lie Groups and Phase

Were the application of the gauge principle solely limited to this recasting
of our understanding of the phenomenon of electromagnetism, the gauge
principle would not be considered to be much more than an academic cu-
riosity. As we saw in chapter 4, our preexisting theory of electromagnetism,
quantum electrodynamics, does a more than satisfactory job of describing
electromagnetic behavior. The theoretical developments that excite us
most are not those that reinterpret past successes but, rather, the ones that
propel our understanding forward into new realms.

With the application of the principles of mathematical abstraction of the
sort discussed in chapter 6, we can understand how the gauge principle can
be used to do just that and why it has become a tool in the development of
essentially all new fundamental theories. It will be in this section that we
revisit the mathematical constructs known as Lie groups and stitch them
into our discussion of the gauge principle. The gauge principle, extended
through the incorporation of Lie groups, will provide an essential step to-
ward the incorporation of the weak nuclear force into our fundamental the-
ory of causation. It will also provide the framework for our understanding
of the strong nuclear force which, according to our current understanding,
is provided by the pure gauge theory known as quantum chromodynamics.
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Recall that ample experimental evidence on the behavior of atomic nu-
clei led to the realization that the strength of the force between any two nu-
clear constituents is independent of the identity of the participating parti-
cles. Thus, two protons interact in precisely the same way as two neutrons,
or as a proton and a neutron. This fact led Werner Heisenberg to suggest
that the neutron and proton are one and the same particle, the nucleon,
that possesses an abstract property he called isospin. Just as the true spin of
a particle can point either up or down (or perhaps, more sensibly stated,
forward or backward) along any given direction in space, what we call a pro-
ton is really just a nucleon with its isospin pointing up along some chosen
axis in the internal isospin space (isospin up), while the neutron has isospin
down.

This is illustrated in figure 8.3; the double arrow represents the orienta-
tion of the given nucleon’s isospin in isospin space. If the angle c is 0 
degrees, the nucleon is a proton; if c is 180 degrees, it’s a neutron. If it’s
somewhere in-between, as shown in the figure, it’s a quantum-mechanical
combination of a proton and neutron, with some corresponding probability
that it will show up as either when a measurement is made on the system.

So, if in the course of some calculation, you want to change protons into
neutrons or vice versa, all you need to do is rotate the given system by 180
degrees in isospin space: up goes to down and down to up, and you’ve done
it. Since the strong nuclear force is unchanged (invariant) when protons
and neutrons are interchanged with each other, we thus say that the strong
force is “invariant with respect to rotations in isospin space.” This notion
leads to numerous experimental predictions, and in the vast body of exper-
imental results, no data have ever been unearthed that disagree with any of
these predictions.

If all this sounds familiar by now, it’s because the preceding discussion
was meant to serve as a reminder only; nothing new was said in the last five
or so paragraphs that hasn’t been introduced before. Now, with this in mind,
let’s consider one or two things that we might require of a quantum-me-
chanical description of nuclear behavior. Since, in the context of the strong
nuclear force (the force that binds neutrons and protons together into nu-
clei), the proton and neutron are really just different manifestations of the
nucleon, then our description will be one of how nucleons, and not protons
and neutrons, behave under the influence of the strong force (note 8.3).

So, let y (x) be the combined wave function of all the nucleons in some
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nucleus that’s under study, moving around under their mutual strong-force
attraction. Since this is quantum mechanics, this wave function and the
wave equation it satisfies had better be invariant under changes in the phase
of the wave function; this is always true for quantum-mechanical wave func-
tions, regardless of the context. In addition, since these are nucleons mov-
ing under the influence of the strong force, the wave function must be, at
the same time, invariant under rotations in isospin space that interchange
the proton and neutron realizations of the nucleon among one another.
What we ask the system to be invariant under is a generalized sort of phase

Fig. 8.3. The orientation of this nucleon’s isospin in isospin space is neither
purely up nor purely down, so it is a quantum-mechanical mixture of “pro-
tonness” and “neutronness.” If detected, it will manifest itself as either a pro-
ton or a neutron, but until that measurement is done, it exists in a mixed state,
with a certain probability of showing up as either. The smaller the angle c, the
more likely it is that it will be detected as a proton.



invariance in which we can change either or both of the phase angle q of
the wave function (see fig. 8.1) and the angle c that the nucleon makes with
the proton/neutron axis in isospin space (see fig. 8.3).

Thus, to develop a quantum-mechanical description of nuclear behav-
ior, we need to generalize, or abstract, the notion of quantum-mechanical
phase. We must incorporate the additional possibility any given phase
change includes, simultaneously with changes in the ordinary phase of the
wave function, rotations in isospin space that transform protons into neu-
trons. For a system of nucleons within a nucleus, the quantum-mechanical
description provided by the wave equation and its wave function solution
y(x) should be just as indifferent to this sort of a change as it is to ordinary
changes of phase in the “wave” of the wave function.

To understand precisely what the nature of this abstraction is, we need
to recall some things from the discussion of Lie groups from chapter 6. Re-
call that Lie groups are continuous groups, such as the real numbers on the
number line, the elements of which form a continuum with no holes, and
whose elements can be generated by the combination (according to the
group’s rule of combination) of an appropriate number of basic generating
elements. The quintessential example of a Lie group that we held forth was
the group R(3) of rotations in three-dimensional space. Any given orienta-
tion of an object in three-dimensional space can be achieved by rotations
of appropriate magnitudes about the three axes (x, y, and z) of a three-
dimensional coordinate system. Thus, the group R(3) has three generating
elements, or generators, which are the exercise rotations about the x-, y-, and
z-axes that we introduced in chapter 6.

In the section “Into the Continuum” of chapter 6, we introduced the Lie
group U(1), which can be represented by the set of complex numbers z �
a�b � i of size 1, that is, that satisfy the condition that a2 � b2 � 1. The op-
eration associated with this group (remember that a mathematical group is
defined in terms of both a set of objects and an operation governing their
combination) is complex number multiplication.

Once again, take a look at figure 8.1. The arrow you see in this figure
points to the location on the complex plain that represents the complex
number z. If we operate on z with some member of the group U(1) (that is,
multiply z by a complex number of length 1), we get a new number (call it
z�) of z (note 8.4). However, the orientation of the arrow pointing to the new
z� will change, which means that we’ve changed the phase of the wave func-
tion. Thus, any member of the Lie group U(1), when used to operate on
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the wave function at a given point in space-time, just acts to change the
phase of the wave function at that point. Different elements of the group
U(1) move the angle through different amounts; in fact, we can character-
ize each of the elements of U(1) by how much angle it moves the arrow
through or, alternatively, by how much it changes the phase angle q of any
complex number z. The Lie group U(1) is just an abstract representation of
the group of possible changes of phase of the wave function at any given point
in space-time!

For this reason, physicists refer to invariance under changes in quantum-
mechanical phase as “invariance under U(1),” or, more succinctly, “U(1)
invariance.” And so quantum electrodynamics, formulated in terms of a
gauge principle based on requiring the relativistic wave equation to be in-
variant under local changes of phase, is referred to as a “U(1) gauge theory.”
As we’ve seen, this succinct phrase encapsulates an appreciable portion of
the natural laws that shape our day-to-day experience.

We should pause here for a moment and reflect on what we have just
done. Earlier in this chapter, our discussion of the gauge principle allowed
us to appreciate the profound relation between quantum-mechanical phase
invariance and the origin and specification of the theory of electromagnet-
ism. What we have done in the paragraphs just above is to step back and ex-
amine the nature of phase change in terms of its mathematical properties,
not in the sense of the arithmetic of manipulating complex numbers but,
rather, in the overall structural terms of the abstract mathematician. In dis-
covering that this structure is that of a Lie group, we have uncovered an es-
sential link between the world of abstract mathematical construct and the
underlying structure of natural law.

Now, back to our attempt to develop a quantum-mechanical description
of nucleons under the influence of the strong nuclear force. Again, the set
of phase changes under which our nucleon wave function must be invari-
ant is more general than the set of phase changes under which our electron
wave function was required to be invariant. This is because, in addition to
being invariant under changes in the conventional phase of the wave func-
tion, as described above, the wave function has to be simultaneously in-
variant under rotations in isospin space that swap protons and neutrons with
each other. The critical step before us is to determine the mathematical
structure of this more inclusive set of phase changes.

The beauty of the abstraction we made above for the electromagnetic
force case of simple U(1) phase invariance is that we managed to connect
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the notion of phase change to the mathematical construct of Lie groups.
So, we might suspect that the more inclusive set of phase changes for this
more complicated case, involving both conventional phase changes as well
as isospin rotations, will correspond to the members of some other, more
complicated Lie group. What we need to do now is to figure out which Lie
group it is.

Let’s make a two-dimensional graph in another abstract mathematical
space. Like the bank balance–versus–time space of the previous chapter,
this space has no pretense whatsoever of being a true physical space. This
space is not isospin space; it’s just a bookkeeping space whose sole purpose
is to help us keep track of whether a nucleon is a proton or a neutron.

This graph is shown in figure 8.4. The horizontal (x)-axis represents “pro-
tonness” and the vertical (y)-axis represents “neutronness.” If a nucleon’s
wave function represents a proton, we draw an arrow lying along the x-axis;
don’t worry about whether it points to the right or the left; that’s a subtlety
that need not concern us. If the arrow lies along the x-axis, the wave func-
tion represents a proton.

Similarly, if the nucleon’s wave function represents a neutron, we draw
an arrow along the y-axis. Or, if the wave function is some quantum-
mechanical combination of proton and neutron (i.e., a measurement of the
properties of the nucleon would have some probability of revealing the nu-
cleon as proton, but also some complementary probability of showing it to
be a neutron), then the arrow falls at some angle between the x- and y-axes,
which is the case shown in figure 8.4.

When you look at it from this point of view, what you see is that the ro-
tation of the nucleon’s isospin in isospin space, which swaps protons with
neutrons, rotates the value of the nucleon’s wave function around in the ab-
stract space of this graph. If you start with a proton (which would be repre-
sented by orienting the arrow along the x-axis in fig. 8.4) and then go into
isospin space and change it into a neutron (arrow along the y-axis in fig. 8.4),
you would represent this operation in the abstract space of figure 8.4 by ro-
tating the arrow by 90 degrees around its base.

We learn the following: the set of possible rotations in the isospin space
of figure 8.3 is nothing more than the set of possible rotations of the nu-
cleon’s wave function in the two-dimensional space of protonness and 
neutronness of figure 8.4. However, the space of figure 8.4 is not a two-
dimensional space of ordinary real numbers. Because wave functions are
complex, this is a space of rotations in two complex dimensions. In isospin
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space, we can rotate the wave function between protonness and neutron-
ness, and we then keep track of our choice by pointing the arrow in figure
8.4 in the correct direction. But once we’ve done that, the values of the neu-
tron and proton components of its wave function are two independent com-
plex numbers, and we still have complete freedom to choose their phase.
So, the wave function of a nucleon should be invariant under rotations in
isospin space but also, independently and simultaneously, invariant with re-
spect to changes in the complex-valued wave function’s phase. But this is
precisely what we mean by the expression “rotations in two complex di-
mensions.” And, from chapter 6, we know that the set of rotations in two
complex dimensions comprises the Lie group SU(2). The wave function of
a nucleon under the influence of the strong force is invariant under isospin
rotations and phase changes, the set of which has the mathematical struc-
ture of the Lie group SU(2).

To reiterate: We saw that the set of possible phase changes of an electron’s

Fig. 8.4. This figure represents the same nucleon as that of figure 8.3, but in the ab-
stract mathematical space of protonness and neutronness. This is a different, but equiv-
alent, way to keep track of neutrons and protons that lends itself more readily to the
mathematics that we take advantage of in particle physics.



wave function (no isospin) is equivalent to the Lie group U(1), which, as we
see in figure 8.1, is really just the set of rotations in one complex dimension.
When we instead consider a nucleon (with isospin), we need to consider
two complex dimensions: one for the protonness and one for the neutron-
ness of the wave function. Any such rotation, or transformation, will yield a
new wave function that, as far as the strong nuclear force is concerned, is
no different from the old one. The strong nuclear force is invariant under
the group SU(2) of phase and isospin transformations.

Beyond Mere Phase 2: Lie Groups and the Gauge Principle

The wave function solutions of the wave equation that describe a nucleon
must be invariant with respect to a more inclusive set of phase changes. This
set is the group SU(2) of rotations in the complex two-dimensional space of
isospin.

Fine. So, consider the value of a nucleon’s wave function at some point
in space and time. Pick an element of the Lie group SU(2), that is, an
amount by which to rotate (transform) the nucleon from protonness to neu-
tronness, as in figure 8.4, and amounts by which you want to change the
phase of its neutronness and protonness, as in figure 8.1. Now, go to some
other point in space and time. Again, pick an amount by which you want
to rotate its isospin and amounts by which you wish to change its phase.

Since we subscribe to the philosophy of Yang and Mills, even if we
choose different elements of SU(2) at the two separate space-time points,
the transformed wave function should still describe the same physical state
of the nucleon. This is what we mean by local invariance under SU(2), ac-
cording to Yang and Mills, the only kind of invariance that makes sense to
require.

As before, let’s consider the wave equation for a free nucleon n, that is, a
nucleon not under the influence of any external force, so that the potential
energy function V(x) is zero everywhere. This free-particle wave equation
is no different than the one we wrote down for the electron, but here it is
again:

The only difference is that, while the electron’s wave function was asked to
be invariant under changes in quantum-mechanical phase, a set of changes
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characterized by the Lie group U(1), the nucleon’s wave function yn(x)
(subscript n for “nucleon”) is expected to be invariant under simultaneous
changes of phase and rotations from protonness to neutronness in isospin
space, a more complicated set of changes characterized by the Lie group
SU(2).

Just as for the electron, we can try to transform the phase of yn(x) by pick-
ing some element or other from the Lie group SU(2) and performing the
associated phase changes and isospin rotation. And, as before, if the amount
by which we change phase and rotate, if the particular SU(2) element we
choose changes from point to point in space, then the result of the rate-of-
change calculation (derivative operation) in the wave equation changes.
Just as before, this upsets the delicate balance between the left- and right-
hand terms in the wave equation. This free-nucleon wave equation and its
wave function solutions are not invariant under local phase/isospin trans-
formations from the group SU(2).

We need to fix up the wave equation, and as before, we’ll do this by
adding in cheating terms whose sole apparent purpose is to correct the 
mistake made by the derivative operator when we make phase/isospin-
orientation changes to the wave function that vary from point to point in
space-time. To understand what happens when we do this, we need to re-
member a little about what we learned in chapter 6 about Lie groups and,
in particular, about the Lie group SU(2).

In the section “The Lie Group SU(2)” of chapter 6, we discussed how
the Lie group SU(2) is quite similar to the much more intuitively accessi-
ble group R(3) of rotations in three dimensions. Except for the fact that you
have to rotate through 720 degrees to get back to where you started (recall
the exercise of placing a book on your palm and rotating it above and be-
low your elbow), SU(2) is identical in every way to R(3).

In particular, both groups have three generators, that is, three basic ele-
ments from which any other element in the group can be attained. In the
case of R(3), these generators are just the exercise rotations about the three
mutually perpendicular axes x, y, and z of three-dimensional space. It’s fairly
easy to convince yourself that, as required of Lie group generators, any ro-
tation in three-dimensional space can be built up by the application of the
right amount of each of these three basic rotations. The fact that SU(2), just
like R(3), has exactly three generators—no more and no less—will be of im-
mediate concern to us.

But, even more, the three generators of R(3) and SU(2) have the same
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Lie algebra. Recall that we were able to demonstrate that the group of ro-
tations in three dimensions is not Abelian; somewhat surprisingly, the order
in which you apply the generating rotations does matter. If you rotate a box
first about the x-axis and then about the z-axis, the box ends up with a dif-
ferent overall orientation than if you rotate first about the z- and then the x-
axis. The precise difference between these two oppositely ordered combi-
nations of generating rotations, for each possible combination of two of the
three generators, specifies the Lie algebra of the group. Therefore, the state-
ment that the Lie algebras of R(3) and SU(2) are identical means not only
that they are both non-Abelian (that the ordering of the elements, or rota-
tions, must be taken into account when combining them), but also that the
difference between the application of the generators in opposite order is pre-
cisely the same for both groups.

Because the number of generators and the Lie algebra of those genera-
tors is the same, we are free to think, when it behooves us, of SU(2) and R(3)
being one and the same Lie group. This should help us to maintain an in-
tuitive feel for the group SU(2), since we already have a pretty good notion
of what rotations in three dimensions are all about.

So now, it’s time to go back to the free-nucleon wave equation and add in
the cheating term with the intent of compensating for the problems caused
by the derivative operator when we make SU(2) phase/isospin-orientation
transformations that vary from point to point in space-time. When we con-
sidered the local phase, or U(1), invariance of the electron’s wave function,
we added in a cheating term of the form qA(x)y (x), eventually discovering
that q was just the value of the electron’s charge and A(x) the potential en-
ergy function of the electromagnetic field. Here, the cheating term we’ll in-
troduce will be gW(x)yn(x). This is exactly the same sort of term; we’ve just
changed the names of the symbols because now we’re considering a nu-
cleon, with both phase and isospin orientation to worry about, rather than
an electron, for which phase was the only invariance we had to pay atten-
tion to.

But things are indeed more complicated for our nucleon wave function,
and this time, we don’t get away with our cheating trick. With both phase
and isospin orientation to worry about, the cheating function W(x) cannot
compensate for the full gamut of damage done by the derivative operation
when we both change the phase and rotate the isospin of the nucleon wave
function yn(x).
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Say, for example, that our nucleon just happens to be everywhere in
space-time, a proton with a quantum-mechanical phase of 0 degrees on the
diagram of figure 8.1. We know that this nucleon’s wave function yn(x) must
be invariant under local changes of phase, so we change the phase of yn(x)
by an amount that changes from point to point in space. As always, this
changes the result of the derivative operation in the wave equation, but now
our cheating term gW(x)yn(x) is there to compensate. Just as before, W(x)
changes (simply because we make it change) in just such a way as to can-
cel the error from the derivative operation. So far, so good.

But now, we also need to worry about local rotations in isospin space, by
which we just mean changes that transform our proton into a nucleon with
some neutronness in it and for which the amount of neutronness we end
up with varies from point to point. And it’s here that we get stuck because
no matter how hard we might try, we simply cannot come up with a single
function W(x) that can compensate for both phase changes and isospin ro-
tations. If W(x) is engineered to compensate for local changes of our pro-
ton’s wave function, then it can’t compensate for the problems caused by
local changes in the neutronness of its wave function. If, however, we re-
quire that W(x) compensate for local isospin rotations, then it can’t com-
pensate for local phase changes.

So what do we do? Simple. We cheat more! If we can’t do it with one
function W(x), then we try doing it with two functions W1(x) and W2(x). If
that doesn’t work, we try three functions, then four, and so on.

When we do this, we discover something very interesting. The number
of W(x) functions that we need to compensate for all possible phase/isospin
changes to the wave function is three—the number of generators of the Lie
group SU(2). In fact, this is a general rule for wave equations for which we
insist on these more complicated sorts of invariance. If the invariance we
require has the mathematical structure of Lie group X, then the number of
cheating terms that we need to introduce into the wave equation (to estab-
lish its invariance with respect to local changes of phase, isospin orienta-
tion, or whatever sorts of invariance we are requiring) is always equal to the
number of generators of the Lie group X.

Note, for example, that we recognized (in retrospect) that the set of or-
dinary phase changes we considered for the electron’s wave function has the
properties of the group U(1). But U(1) has but one generator; you can gen-
erate any phase change in figure 8.1 by the repeated application of a single
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basic transformation: the change of the phase angle q by some small
amount. So, for U(1) invariance, we need only one cheating function, the
A(x) of the electromagnetic interaction.

But for the case of SU(2) invariance, instead of one cheating function
A(x), we use three cheating functions: W1(x), W2(x), and W3(x), one for
each of the three generators of SU(2). Just as we included the cheating func-
tion in the electron’s wave equation by adding in the extra term qA(x)y (x),
we now must add three extra terms into the nucleon’s wave equation:

gW1(x)yn(x) � gW2(x)yn(x) � gW3(x)yn(x).

Just as we came to understand that A(x) represented the potential energy
function associated with the electron’s electromagnetic interaction, the
three cheating functions W(x) together represent the potential associated
with some interaction acting on the nucleon.

What interaction? Recall that we are exploring the consequences of re-
quiring local invariance under rotations in isospin space, that is, in the swap-
ping of protons with neutrons. But invariance under such transformations
is a property associated with the strong nuclear interaction. So that must be
the answer. We have taken a local symmetry associated with the strong nu-
clear force—invariance associated with changes of phase and rotations in
isospin space—and required this of the free-nucleon wave equation. This
necessitates the inclusion of new interaction terms into the wave equa-
tion—terms thus associated with the strong nuclear force. Without know-
ing anything more about the strong force other than its indifference to
whether the nucleon it’s influencing is a neutron or a proton, we have ap-
parently derived a complete theory of its influence in nature. Such is the
power of the gauge principle.

However, to avoid unnecessary confusion later on in the chapter, I need
to state clearly and emphatically that this is in fact not a workable theory of
the strong nuclear interaction. The reason for this is that, unlike electrons,
nucleons are not fundamental particles. They are composed of quarks that,
as we have discussed, are the truly fundamental constituents of matter that
partake in the strong interaction. To derive a workable theory of the strong
interaction, then, we need to think hard about the invariance of quark, not
nucleon, wave functions. We’ll come back to this in the section “Quantum
Chromodynamics” where we’ll introduce our true theory of the strong nu-
clear interaction.

DEEP DOWN THINGS242



In fact, what we’re really learning about here is the weak nuclear inter-
action! As we’ll discuss shortly, there is an SU(2) invariance exhibited by
quarks and leptons, the truly fundamental constituents, with respect to the
weak interaction. If you’ve seen one SU(2) theory, you’ve seen them all, so
what we’ve just learned applies directly to the theory of the weak nuclear in-
teraction that we’re about to develop. Unlike the theory of the strong inter-
action that we just tried to put together, this theory of the weak interaction
will not be a sham. It will provide an essential step toward the development
of the full electroweak theory of the Standard Model.

True Gauge: The Theory of the Weak Interaction

Take a glance once again at the table of fundamental matter particles (see
table 5.1). Recall that, in this table, the fundamental constituents of matter
are arrayed in conspicuous patterns, known as generational doublets—pairs
of associated particles, such as the up and down quark or the electron and
its neutrino, that are related via the workings of the weak interaction. In par-
ticular, a quark or lepton partaking in the charged weak interaction
(through the exchange of a W� or W� boson) will be exchanged for its gen-
erational-doublet partner (e.g., look again at the Feynman diagram of fig.
5.2).

Now, just as the strong-force interaction between two nucleons is un-
changed when neutrons and protons are swapped, the weak nuclear force
is similarly unchanged when a lower member of one of the doublets (d
quark, b quark, electron, muon, etc.) is swapped for its corresponding up-
per doublet partner (u quark, t quark, electron neutrino √e, muon neutrino
√m, etc.) or vice versa. The experimental study of the weak nuclear interac-
tion being a bit of a challenge, the demonstration of this invariance of the
weak nuclear force was somewhat indirect and retrospective, but it stands
nonetheless, and the pairwise generational pattern exhibited by the funda-
mental particles provides one of its strongest pieces of evidence.

Thus, analogously to rotations in “conventional” isospin space that trans-
form protons and neutrons into each other, leaving the strong-force inter-
action properties unchanged, we have a new symmetry space: that of weak
isospin. Just as the strong nucleon binding force is invariant under proton/
neutron (isospin-up/isospin-down) swapping rotations in conventional iso-
spin space, the weak nuclear force is invariant under upper/lower doublet-
member-swapping rotations in weak isospin space.
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It must be emphasized that, other than their connection through this
analogy, the respective internal symmetry spaces of strong-force isospin and
weak isospin are wholly different notions. What we are introducing here is
an entirely new internal abstract space, associated with the fundamental na-
ture of the weak (as opposed to strong) nuclear force. However, while just
an analogy, the strong-isospin/weak-isospin analogy is nonetheless a rigor-
ous and complete one, so our discussion of local strong-isospin invariance
from above is directly applicable to the discussion of local weak-isospin in-
variance that follows. For the case of weak-isospin invariance, however, we
are considering an invariance associated with the behavior of truly funda-
mental particles—quarks and leptons—under the influence of the weak
force, so what will emerge is, unlike our physically inaccurate model of the
strong interaction between nucleons, a rigorous candidate for the theory of
the weak nuclear interaction. It is a theory we’ll need to reckon with.

That we can move so easily from the discussion of strong isospin to weak
isospin and the theory of the weak interaction is a tribute to the power of
gauge theory and, in particular, to its basis in the abstract mathematical the-
ory of Lie groups. If you were to reread the previous section, you would con-
firm that the specifics of our “sham” theory of the strong nuclear interac-
tion, the introduction of the three cheating functions W1(x), W2(x), and
W3(x), were dictated solely by the identity of the underlying group SU(2)
of symmetry transformations. As we further flesh out the properties of this
theory (now in the guise of the theory of the weak interaction), we will con-
tinue to rely solely on the identity of this underlying symmetry group for
guidance. Almost all of our work in constructing this theory will take place
at this abstract level, for which we could as easily be talking about our “toy”
theory of the strong interaction as our true theory of the weak interaction.
Only at the very end, when we specify the nature of the charge that the in-
teraction concerns itself with being that of the weak isospin (recall the dis-
cussion of the weak nuclear force charge in chapter 2), will the theory be-
come specifically that of the weak nuclear interaction.

The first step in this development is to convince ourselves that SU(2) is
the appropriate group of underlying symmetry transformations. Let yd(x)
(subscript d for “doublet”) represent the wave function of a particle from
one of the doublets of table 5.1; just to be specific, let’s choose the muon
and muon-neutrino doublet. Just as, for the case of strong isospin, the nu-
cleon wave function yn(x) could represent a proton, a neutron, or a mixture
thereof, the doublet wave function yd(x) can represent a muon, a muon
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neutrino, or a state of mixed “muonness” and “neutrinoness.” Our set of
symmetry transformations must allow for rotations between muonness and
neutrinoness in the two-dimensional weak isospin space analogous to that
between protonness and neutronness in the conventional (strong-force)
isospin space of figure 8.4. And, as always, the set must also include changes
to the quantum-mechanical phase of figure 8.1, meaning that the muon-
ness and neutrinoness dimensions in figure 8.4 are complex. As in the case
of strong isospin invariance, the symmetry group has the structure of the set
of rotations in two complex dimensions; it is indeed SU(2).

So now, when we ask for local invariance under changes in weak isospin
orientation and quantum-mechanical phase, we have the identical set of
problems to cure as for the case of strong-force nuclear isospin. Our rule—
add one cheating term for each generator of the underlying Lie group of
symmetry transformations—requires only that we identify the Lie group at
play. Since that group is the same for weak isospin as it is for nuclear isospin,
we need to add the same three cheating terms, one for each of the three
generators of SU(2):

gW1(x)yd(x) � gW2(x)yd(x) � gW3(x)yd(x),

as we did for the case of nuclear isospin, thereby introducing the three po-
tential energy functions W1(x), W2(x), and W3(x). These three terms rep-
resent the potential energy of the interaction of the doublet particle (muon,
muon neutrino, or combination thereof) with the weak interaction force
field. In other words, the wave equation (or at least its relativistic counter-
part) modified in this way represents our theory of the weak nuclear inter-
action.

One important point is that, for the mathematics of the cheating func-
tions to work out, all the g’s must be the same. If we were to have different
g’s for each of the cheating function terms, we would find that the wave
equation and its wave function solutions, even with the cheating terms,
would not be invariant under local changes of SU(2) “phase” (real phase
plus orientation in isospin space).

Identifying the physical meaning of this factor g is the next thing we need
to do in developing our theory of the weak interaction. What is this g?

In the case of our discussion of quantum electrodynamics, we discussed
symmetry under the Lie group U(1), changes in the phase alone of the wave
function, and introduced the cheating function through the term qA(x)y (x).
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In this case, the number q turned out to be the electric charge, and it was
the conserved quantity associated with invariance under changes of the
phase of the wave function that is dictated by Noether’s theorem. Now, for
the weak nuclear interaction, invariance under isospin requires, again by
Noether’s theorem, that there must be an associated conserved quantity. Fol-
lowing Noether’s prescription, we find that the conserved quantity is just
weak isospin itself; the amount of spin that the particle possesses in weak-
isospin space and which we are dialing around as we rotate the orientation
of the particle’s weak isospin in that space.

So, in this theory, the number g reflects the amount of weak isospin, the
amount of the object’s associated weak-interaction charge, possessed by the
object. The greater the particle’s weak isospin, the bigger g will be, leading
to a correspondingly larger effect of the three weak-interaction cheating
terms gW(x)yd(x). The greater the object’s weak-interaction charge, the
greater the effect of the weak interaction on the object; that makes sense.

In chapter 2, we claimed that to characterize a force, you need both to
identify the nature of the charge associated with the force, as well as the
overall strength of the force. We’ve done the first of these; another way to
look at the second is to ask how much weak-isospin charge g is carried by a
matter particle. As we just discussed, all the g’s are the same, so it doesn’t
matter whether we ask this for quarks, charged leptons, or neutrinos. The
answer we get will be the same.

There’s only one way to answer this: empirically (deducing it, say, from
the value tm � 2.19703�0.00004 microseconds, the measured lifetime of
the weak-force-decaying muon, which tells you precisely how readily the
muon and its decay products partake in the weak interaction). With the
value of g determined, our SU(2) gauge theory of the weak interaction is
complete.

The measurement of the overall strength of the interaction, along with
the identification of the underlying symmetry group, SU(2) in this case, are
the only experimental inputs necessary to develop the complete gauge the-
ory of a force of nature (note 8.5). Again, we underscore the power and econ-
omy of gauge theory.

To implement our development of the SU(2) gauge theory of the weak
nuclear interaction, we need to figure out how this discussion plays out in
the context of the quantum field theory of chapter 4, rather than that of the
conventional quantum-mechanical wave equation we’ve considered so far.

In our discussion of the simple U(1) phase of the electron’s wave func-
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tion, the cheating function A(x) that we introduced turned out, in the con-
text of quantum field theory, to be a representation of the field of the pho-
ton, the quantum of the electromagnetic field. Thus, all we need to do is to
recognize that the W(x)’s—W1(x), W2(x), and W3(x)—are the potentials as-
sociated with the quanta, the exchange particles, of the weak nuclear force.
It’s these three field quanta that are tossed around by particles as they exert
themselves through the weak nuclear interaction. In the language of chap-
ter 4, each term gWi(x)yd(x) (where the letter i can be either 1, 2, or 3) rep-
resents a minimal interaction vertex of the quantum field theory of the weak
interaction. The factor “yd(x)” is the wave function of the particle being in-
fluenced by the interaction, the factor “Wi(x)” represents the wave function
of the field quantum that’s responsible for the influence and the factor g sets
the strength of that influence.

In other words, when we construct the Feynman diagrams that represent
the exchange of a quantum of the weak force mediating the interaction of
matter particles, we have not one but three minimal interaction vertices in
our basket of building blocks. These three vertices are shown in figure 8.5;
each consists of matter particles emitting one of the three field quanta.
These diagrams are presented in terms of the second-generation lepton dou-
blet of table 5.1, which contains the muon and its neutrino, but this choice
was arbitrary. We could have chosen any of the six quark or lepton doublets.

There’s a bit of formal quantum field theory necessary to get from the ar-
guments presented above to the exact form of vertices in figure 8.5, but we
can see that the emission of a W1 quantum is associated with a transition
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from an upper member of the doublet (weak-isospin-up √m) to a lower mem-
ber (weak-isospin-down m). Likewise, the emission of a W2 induces a tran-
sition from a lower doublet member to an upper doublet member, while
for the W3 diagram the doublet member’s identity is preserved.

You’ll notice that we also have labeled the W1 as the W�, the W2 as the
W�, and the W3 as the W0. The designation “�,” “�,” “0” has to do with
the electric charge of the W field quanta in terms of the standard bench-
mark of the proton’s charge. If you remember that the upper doublet parti-
cle always has an electric charge one greater than the lower doublet par-
ticle, the principle of electric charge conservation demands that the charges
of the W’s be such.

Now, the fact that the W1 and W2 minimal interaction vertices are asso-
ciated with a transition between members of the participating generational
doublet is a consequence of the fact that, in this SU(2) theory of the weak
interaction, the W’s themselves carry weak isospin, the very charge associ-
ated with the interaction they mediate. This is a very intriguing notion, hav-
ing everything to do with the abstract mathematical structure of the under-
lying SU(2) symmetry group, and it leads to some very interesting behavior;
we’ll come to this in the section “Commute Issues.”

For the sake of clarity, we should use these minimal interaction vertices
to construct the Feynman diagrams for a couple of weak-interaction
processes. To do this, it will help to recall one of the rules from the quan-
tum field theory of chapter 4. This rule says that we can manipulate a min-
imal interaction vertex by swapping a particle for its corresponding anti-
particle, as long as we change the trajectory of the particle so that the
antiparticle we swap it for is represented by the corresponding particle trav-
eling backward in time.

Figure 8.6 shows the minimal interaction vertices we get when we take
the three vertices of figure 8.5 and swap the incoming particle for its an-
tiparticle; recall that the antiparticle partner of the m� is written as m�, while
the antiparticle of a neutrino is written as v̄. Recall also that the arrows in
the diagram point the wrong way for the antimuon and antineutrino since
in the field theory antiparticles are represented as particles traveling back-
ward in time. In other words, in the laboratory, the antiparticles of figure
8.6 are really flying away, forward in time, from the W field quantum they
emit at the vertex (you observe the antiparticle traveling forward in time,
not the particle traveling backward in time).

We can also represent the vertices of figure 8.6 in terms of absorption of
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the W ’s (rather than emission), as shown in figure 8.7. In this case, we’ve
just changed the direction of time for the W ’s, swapping each W for its an-
tiparticle partner (remember from chapter 5 that the W� and W� are a par-
ticle/antiparticle pair, while the neutral weak-interaction quantum is its
own antiparticle), and so now the W’s are absorbed at the minimal interac-
tion vertex rather than emitted. You can confirm that the charge of the ab-
sorbed W boson is appropriately conserved by the leptons that fly away from
the vertex.

Let’s construct a diagram with, say, the vertices of figure 8.5b and figure
8.7a. In figure 8.5b, a muon emits a W�, turning into a muon neutrino.
Then, in figure 8.7a, the W� decays into another muon and a muon anti-
neutrino. This Feynman diagram of this two-vertex process is shown in fig-
ure 8.8a. The reason for the big “NO!” below figure 8.8a is that the mass-
energy of what you end up with (a muon and a muon neutrino and
antineutrino) is greater than what you started with ( just a muon), so it’s for-
bidden by the inviolable principle of energy conservation.

However, we could just as well have drawn the vertex of figure 8.7a with
particles from the first lepton generation: that of the electron and electron
neutrino. If we had, then the resultant Feynman diagram would be that of
figure 8.8b, which has less mass-energy after the interaction than before—
the difference being made up in the kinetic energy of the muon neutrino,
electron, and electron antineutrino that you end up with. This process can
and will happen. If you look at the diagram again, you will recognize this
process as that of muon decay: m� r e�√m√̄e.

Fig. 8.6. The minimal interaction vertices of figure 8.5, with the incoming particle
swapped for its antiparticle.



Two more interesting diagrams, out of the many that we could form from
the variants of the three weak-interaction vertices, are those of figure 8.9,
which we introduced in a different context in chapter 5. The first is a process
by which a neutrino interacts with a down quark (in the nucleus of some
material that lies in the neutrino’s way) through the exchange of a W� field

Fig. 8.7. The minimal interaction vertices of figures 8.5 and 8.6, with the additional swap-
ping of the W field quanta for their antiparticles.

Fig. 8.8. Making use of the minimal interaction vertices of figures 8.5 and 8.7 to
construct two Feynman diagrams that represent the process of muon (m�) decay.
While consistent with all the rules of the weak interaction, a violates the principle
of energy conservation, so it doesn’t take place.



quantum. Since the W� is electrically charged, such a neutrino interaction
is referred to as a charged current neutrino interaction (the motion of the
W� being a current of electric and weak-force charge).

The second of these is a process by which a neutrino interacts through
the exchange of a neutral weak field quantum: the W0. If the diagram of fig-
ure 8.9a represents a charged current neutrino interaction, then that of fig-
ure 8.9b ought to represent a neutral current neutrino interaction; indeed,
that is how it is known, which brings us to our next topic.

An Experimental Triumph: Weak Neutral Currents

The development of the theory of the weak nuclear interaction has its ori-
gins in the 1930s, when it was first recognized that the process of nuclear
beta decay was not explicable in terms of the force responsible for binding
protons and neutrons together into atomic nuclei. By the 1960s, as the
gauge theory of the weak interactions began to emerge, the idea that weak-
force processes such as beta decay and neutrino interactions should be me-
diated by the exchange of charged field quanta was already firmly estab-

Fig. 8.9. Making use of the minimal interaction vertices of the weak SU(2) interaction to
form Feynman diagrams for charged current neutrino-down-quark scattering (a; the
charged W boson is exchanged in the interaction) and for neutral current neutrino-down-
quark scattering (b; the neutral W boson is exchanged).



lished as a way to interpret the data that had been accumulated on such
processes. So, the notion of charged field quanta—the W� and W�—did
not originate with gauge theory. What is unique and was not predicted by
any data accumulated throughout the 1960s, was the possibility of pro-
cesses, such as that of figure 8.9b, mediated by the neutral W0 weak inter-
action field quantum. Such processes were a clear and bold prediction of
gauge theory.

The diagram of fig. 8.9b was drawn quite often in the early 1970s, par-
ticularly by a pan-European group of neutrino physicists known as the
Gargamelle collaboration. Their interest in this particular weak neutral cur-
rent diagram stemmed from the fact that this process would produce a strik-
ing experimental signature, which would clearly confirm the contribution
of the W0 to the workings of the weak nuclear interaction.

Let the incoming neutrino be a member of a beam of high-energy neu-
trinos from a particle accelerator, and the d quark be one of many quarks
in a nucleon deep within the sensitive region of a particle detector. Since
neutrinos are very shy (the only charges that they possess are those of the
feeble weak and gravitational interactions), they interact only infrequently.
However, when they finally do interact, they transfer a good deal of their en-
ergy to the target, just like any other high-energy particle in an accelerator
beam. Thus, were the interaction represented by this diagram to occur,
what the detector would record is a burst of energy (due to the mightily
jarred d quark) appearing suddenly in its midst, and nothing else. No trail
leading into the interaction, and no trail leading out because if the neutral
W0 is responsible for the interaction, the scattered neutrino remains a neu-
trino and is thus very unlikely to interact again in the detector. All that
would be observed would be an isolated splash of energy in the depths of
the target, at the correct time to be associated with the passage of the neu-
trino beam through the detector. The observation of such events would be
a sure sign of W0 exchange.

And so it was, at the CERN laboratory in 1973, with the observation of
about 100 such events in the Gargamelle bubble chamber. Weak neutral
currents, processes mediated by W0 exchange, were observed as predicted,
providing a major triumph for the notion that the weak interaction is rep-
resented by an SU(2) gauge theory and for gauge theories in general. Let’s
reflect on the magnitude of this accomplishment.

The study of electromagnetism dates back hundreds of years and, dur-
ing that time, occupied some of the greatest minds ever to address problems

DEEP DOWN THINGS252



in physics. The emergence of the current, exceedingly successful, theory of
electromagnetic interactions (quantum electrodynamics) in the middle
part of the twentieth century, great achievement as it was, reflects the result
of this tremendous effort, made possible in part by the vast base of experi-
ence that had been amassed with respect to the everyday workings of elec-
tromagnetism.

The weak nuclear force was only recognized as a distinct natural phe-
nomenon in the middle of the twentieth century, and our realm of experi-
ence with its consequences is all but nonexistent, amounting to little more
than the observation and measurement of the properties of nuclear beta de-
cay (electron and positron emission by unstable atomic nuclei) in reactors
and physics laboratories. There is absolutely nothing from the world of
everyday human experience that is related to or predicated on the workings
of the weak nuclear interaction.

And yet, exploiting the paradigm of gauge theory, informed by nothing
more than the simple doublet pattern observed for the elementary matter
constituents (fermions) of table 5.1, we arrive at a theory of the weak inter-
action that is every bit as complete a description of the weak interaction as
quantum electrodynamics is of the electromagnetic interaction. In addition,
the resulting SU(2) gauge theory of the weak interaction strongly suggests
that the weak interaction is more complex and more richly endowed with
different types of essential behaviors than the electromagnetic interaction.
An additional class of weak-interaction behaviors that are entirely absent in
the case of the less intricate electromagnetic interaction—those due to the
non-Abelian nature of SU(2)—will be the topic of the next section.

This is the tremendous power and inspiring beauty of gauge theory. We
start with very little more than a vague notion of the form and structure of
some underlying internal symmetry space, a two-dimensional complex
space rotated around on itself by the elements of the Lie group SU(2), and
wind up with a complete, quantitatively precise, fundamental description
of a vast set of weak-interaction phenomena even richer than the stagger-
ingly diverse set of electromagnetic phenomena of everyday experience.

Now, as we’ll see in chapter 9, this gauge theory of the weak interaction
is not quite correct, although it’s a big step in the right direction. As we al-
ready know, the electrically neutral quantum of the weak interaction is re-
ally known as the Z0, not the W0, and it has subtly different properties than
those we’ve discussed here. It was in fact evidence of the exchange of the
Z0 that the Gargamelle group sought, and found.
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It’s not that there’s anything wrong with gauge theory; rather, this basic
SU(2) theory is just not quite the complete gauge theory for the weak in-
teraction. However, as we’ll see, the SU(3) gauge theory of the strong nu-
clear interaction is, in its pure and unadulterated form, the correct and
complete theory of that force of nature. The paradigm of gauge theory is,
without a doubt, one of the notable achievements of twentieth-century sci-
ence.

Commute Issues

In the previous section, we succeeded in presenting what is perhaps the cen-
tral theme of this book: the deep connection between the ethereal world of
abstract mathematics and the concrete world of the interactions that un-
derlie the behavior of the natural world. The discussion, however, is so far
incomplete in that we’ve neglected to consider one aspect of the nature of
the Lie group SU(2) that we dwelt on at some length when we introduced
the group in chapter 6: the fact that SU(2) is non-Abelian. At that time, I
promised that this would have profound consequences when we began to
understand the connection between Lie groups and the behavior of natural
processes.

Recall that a group is labeled as non-Abelian when its elements fail to
commute with each other, when we can identify at least two elements a and
b of the group for which a * b � b * a when combined under the operation
“*” of the group. In other words, a group is non-Abelian when the order in
which you combine its elements matters.

In chapter 6, we discussed how it is that the Lie groups R(3), of rotations
in three real dimensions, and SU(2), of rotations in two complex dimen-
sions, are almost one and the same. In both cases, you can generate the
group from combinations of varying amounts of three basic elements. In the
case of the Lie group R(3) of rotations in three real dimensions, these were
the three exercise rotations: simple rotations about the x-, y-, and z-axes of
a Cartesian coordinate system (or, if you prefer, about the axes defined by
the three edges emanating from one corner of a box).

For the Lie group SU(2) of rotations in two complex dimensions, the
three generating elements can’t be so easily described (it’s hard to envision
a space with complex dimensions), but the relationship between the group’s
elements and the three generators is identical to that of R(3). The only dif-
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ference is that, for SU(2), you need to go around twice—rotate by 720 de-
grees rather than 360 degrees—to get back to where you started.

The reason for making this connection here is that, for R(3), it’s easy to
see that the group is non-Abelian—that it matters in which order you com-
bine the group’s elements (rotations) using the group’s operation (succes-
sive application of those rotations). As discussed in chapter 6, if you rotate
a box first about the x-axis and then about the y-axis, the box ends up with
a different orientation than if you instead start with a y rotation and follow
it with an x rotation. The total rotation you end up with (the element of
R(3) that you end up with) is different for the two cases. The order of com-
bination matters, so R(3), and by extension SU(2), is non-Abelian. In both
cases, the elements of the group fail to commute.

Recall from earlier in this chapter that the gauge principle—the need to
include interaction terms in the free-particle wave equation to ensure local
invariance under some group of possible changes to the wave function—is
all about cancellation. The new “cheating” terms, the interaction terms,
that are introduced are put there solely to cancel the deleterious effects
caused by the local changes to the wave function, that is, changes for which
the chosen member of the Lie group of possible changes varies from point
to point in space and time. The fact that these cheating terms represent in-
teractions—that they have exactly the form they need to represent the in-
teraction of the object with an external force field—was an exceedingly wel-
come by-product of the exercise of establishing the local invariance of the
wave equation and its wave function solution.

Now, the types of cheating terms that one needs to add and the nature
of the corresponding force-field interaction intimately depends on the na-
ture of the Lie group of possible changes to the wave function. If this group
is the Lie group U(1) of simple phase changes to the wave function, one
only needs to add a single minimal interaction vertex, which turns out to
have precisely the properties of the minimal interaction vertex of a photon
(electromagnetic field quantum) with an electrically charged particle, and
the theory we end up with is nothing other than quantum electrodynamics,
our quantum theory of the electromagnetic force. If the Lie group is more
complicated, then one needs to add more minimal interaction vertices, as
many as there are generators of the Lie group. If we require that the wave
equation and its wave function solution be invariant under a set of changes
(e.g., phase/isospin-orientation) that form the Lie group SU(2), we wind up
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with cheating terms corresponding to three new interaction terms since
SU(2) has three generators. Each of the three terms corresponds to a new
minimal interaction vertex of the object with a new field quantum. The set
of three new field quanta are just the quanta of the new force that we needed
to introduce.

Here’s the interesting point: If the Lie group of possible changes to the
wave function is non-Abelian, if the order of combination of the group’s el-
ements matters, then it is not sufficient to just add one cheating term (min-
imal interaction vertex) for each generator of the Lie group. You do need
those terms, but then, to take care of the extra complication caused by the
fact that the elements of the group don’t commute (I’m afraid that you need
to work through the math to see this), you need to add in even more cheat-
ing terms. Indeed, after playing around a bit, you can find a set of additional
cheating terms that do work to cancel the remaining problems caused by
the local changes to the wave function—the additional problems caused by
the fact that the elements of the Lie group don’t commute with each other.

When you do this, and then look at the result from the point of view of
quantum field theory, what you discover is that you added more minimal
interaction vertices into the wave equation. However, these are not mini-
mal interaction vertices between the object and the field quanta but, rather,
between the field quanta themselves! For example, three of the minimal in-
teraction vertices between the W field quanta of our weak-isospin SU(2) in-
teraction are shown in figure 8.10. These vertices don’t represent a com-
plete set but are rather a few examples. Perhaps you can think of a few more
yourself.

Remember, the field quanta will only interact (form minimal interaction
vertices) with objects that carry the charge of the interaction they mediate.
Since, in these vertices, the field quanta are forming vertices with them-
selves, we are led to the surprising conclusion that, for forces arising from
local invariance under non-Abelian Lie groups, the field quanta carry the
charge associated with the force: the field quanta themselves are charged.
And since they carry the charge associated with the force, they are subject
to the influence—the interactions—of that force.

For example, figure 8.11 shows three possible interactions that you can
form by connecting together some of the minimal interaction vertices of fig-
ure 8.10. In both cases, you start with two SU(2) field quanta and end up
with the same SU(2) field quanta but moving off in new directions; the two
field quanta have bounced off each other.
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If this doesn’t strike you as a bit odd, consider (or perform) the following
experiment. Take a flashlight and switch it on inside of a dark room, prefer-
ably one that’s a bit dusty. The beam of light that you see is nothing more
than a beam of photons, composed of quanta of the electromagnetic field.
Now, take a second flashlight, turn it on, and point it so that it passes through
the beam from the first flashlight. What you observe is just that: the two
beams pass through each other. That is, after all, what waves do. What did
you expect?

Well, if you had learned about non-Abelian gauge interactions, such as
our weak-isospin-charge SU(2) interaction, before having this experience
with photon beams, you might well have expected something quite differ-
ent. If instead of being the quantum associated with an Abelian, U(1), gauge
interaction, the photon was a quantum associated with a non-Abelian gauge
interaction, then photons would carry the charge appropriate for that in-
teraction, and they would interact with each other. The quantum field the-
ory representation of that interaction would just be that of figure 8.11c but
with photons rather than W0 field quanta. So, were this the case, the two
flashlight beams would not pass benignly through each other but, rather,
would bounce off each other and scatter throughout the room.

It’s pretty obvious that the world would be a vastly different place if pho-
tons bounced off each other. For one thing, there would be no mechanism
for the biophysical phenomenon of vision. If we go outside on a sunny day
to play softball, we can only see the ball because photons in sunlight

Fig. 8.10. Some examples of minimal interaction vertices of the weak SU(2) interaction
that involve the W field quanta alone, and lead to interactions between the field quanta
themselves, as shown in figure 8.11.



bounced off the charged particles on the surface of the ball and made their
way directly to our eyes. If after bouncing off the ball, the photons then
bounced again off all the rest of the photons continually streaming from the
sun, very few of the photons carrying information about the ball would
reach our eyes, and those that did would be too disturbed by the journey
from ball to eye to do any good. In fact, you wouldn’t even have eyes be-
cause there would have been no evolutionary advantage to having devel-
oped them. This is a truly striking consequence of abstract mathematicians’
recognition that the generators of a given Lie group don’t commute with
each other.

But the photon is the gauge quantum of electrodynamics, a gauge inter-
action that arises from local U(1) invariance, and U(1) is Abelian, so light
beams pass through each other, and fancy things like eyes are of some use
to us (note 8.6). Luckily, the most ubiquitous (at least as far as everyday ex-
perience goes) interaction is electromagnetism, a simple Abelian gauge in-
teraction.

While we can now draw the numerous new minimal interaction vertices
between the three SU(2) force-field quanta (of which the vertices of fig. 8.10
are several of the possibilities), there’s also the question of what it is that de-
termines the precise properties of these vertices.

Just drawing all the different possible vertices is enough to get an idea,
qualitatively, of what types of field-quanta interactions are demanded by the

Fig. 8.11. Some Feynman diagrams that can be constructed from the minimal interac-
tion vertices of figure 8.10. These diagrams, which are consistent with all the rules of the
weak nuclear interaction, as well as the principle of energy conservation, represent the
interaction of the W field quanta among themselves.



requirement that the wave equation be invariant with respect to SU(2) trans-
formations. But, as we’ve seen, quantum field theory provides an exceed-
ingly precise prescription for the modeling of the behavior associated with
any given interaction. To take advantage of this, we need to begin with an
equally precise knowledge of the properties of each of these minimal inter-
action vertices.

What we need to know is the exact magnitude of the strength of each of
these vertices, which is just the quantitative statement of how likely the oc-
currence of each of these minimal interactions is. The answer to this ques-
tion lies in the structure of the Lie algebra of the underlying Lie group
SU(2).

The need to introduce the unusual vertices connecting the field quanta
to themselves was caused by the fact that the SU(2) is non-Abelian—the fact
that the elements and, in particular, the generators of SU(2) don’t commute
with each other. Now, as we’ve discussed, each of the three field quanta W+,
W− , and W0 is associated with one of the three generators of the Lie group
SU(2). We also just argued that the new minimal interaction vertices con-
necting the field quanta to each other arise because the SU(2) generators
don’t commute with each other; they arise because, when you combine any
two of the generators of SU(2) according to the group’s operation, the order
in which you do so matters.

So, it stands to reason that the precise way in which the generators fail
to commute with each other will establish the properties of these vertices.
If we take SU(2) generator A and combine it with SU(2) generator B, we
get some element of SU(2). However, if we start with generator B and then
combine it with generator A, we get some other element of SU(2). There’s
a difference—a very well defined difference—between these two elements.
The set of such differences, for each pair of generators A and B, is what pre-
cisely establishes the strengths of all the vertices that connect the field
quanta to each other.

But, flipping back through the pages of chapter 6, we are reminded that
this set of differences, for all pairs of generators, is nothing other than the
group’s Lie algebra. We now appreciate that the precise form of the group’s
Lie algebra has a direct and unavoidable consequence on the nature of any
physical interaction associated, through the gauge principle, with that Lie
group.

In chapter 6, we discussed the claim of a nineteenth-century abstract
mathematician that to specify a Lie group, to determine, abstractly, which
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Lie group you happen to be considering at any moment, you need to know
two things about the group: the number and the identity of its generators
and the Lie algebra of those generators. We have now seen how both of these
characteristics play a profound role in shaping the fundamental character-
istics of the natural world. The number and identity of the generators estab-
lishes, with definitive accuracy, the types of interactions between charged
objects (objects carrying the charge associated with the interaction) and the
interaction’s field quanta. The Lie algebra then establishes, in an equally
precise fashion, the existence and nature of the interactions between the
field quanta themselves. If the forces of nature do indeed arise from the re-
quirement of local invariance under various Lie groups of transformations
within enigmatic internal symmetry spaces (such as that of weak isospin),
and we now have strong evidence that they do, then these abstract Lie group
properties, the nature of the Lie group generators and their associated Lie
algebra, have everything to do with the way we live our lives. In fact, they
have everything to do with the very fact that we have lives to live in the first
place.

We’ll close this section with an observation, tying up a loose end that
might otherwise be a point of confusion.

You might ask: Well, which will it be then? Should an object interact in
the manner of electromagnetism, as established by requiring local invari-
ance under U(1) changes to its wave function’s phase, or rather should it in-
teract in the manner of the strong nuclear force, as established by requiring
local invariance under SU(2) changes to its wave function’s phase/isospin-
orientation? How does the object know which of these principles it needs
to pay attention to?

The answer is that it doesn’t need to decide. It needs to adhere to both of
these principles continuously and simultaneously. These wave function
transformations, the U(1) set of changes in the wave function’s phase and the
SU(2) set of changes in the wave function’s phase/isospin-orientation, act on
the wave function in entirely different domains. For example, the transfor-
mations from the Lie group SU(2) that change the orientation of the object’s
weak isospin do so only in the internal symmetry space of weak isospin, an
entity that is completely divorced from the “real” four-dimensional space-
time in which we apparently live our everyday lives. If the object carries the
charge associated with the interaction (in this case, weak isospin), then the
wave function must express itself within this weak-isospin space to com-
pletely incorporate the physical properties of the object.
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The question (unanswered to date) of whether internal symmetry spaces
such as isospin space are in any sense real is not of particular relevance. In
addition to familiar space-time, the wave function of an object possessing
some amount of both the electromagnetic and weak-interaction charges
must extend, at least mathematically, into both the one complex–dimen-
sional U(1) space of changes to the phase of the wave function, and into the
two complex–dimensional SU(2) space of changes to the orientation of the
object’s weak isospin in weak-isospin space. The object, represented by its
wave function, must obey the rules of local invariance in both of these
spaces, simultaneously and independently. Thus, finding itself spreading
into these internal symmetry spaces, the wave equation governing the be-
havior of the object must exhibit the interactions associated with local in-
variance in these spaces, those of electromagnetism and the weak nuclear
force, as imposed according to this chapter’s gauge principle.

So, the number and nature of the independent interactions that are avail-
able to influence physical objects, the set of so-called forces of nature, is de-
finitively established by the number and nature of such internal symmetry
spaces. The nature of each of these internal spaces is definitively estab-
lished, in turn, by the identity of the associated Lie group of transformations
that reorient the wave function within the internal symmetry space and un-
der which transformations we demand (precisely because the space is an in-
ternal symmetry space) that the wave equation and its wave function solu-
tion be invariant.

Thus, it seems that we now understand that interaction—really, the es-
sential phenomenon of causation—arises quite specifically because, to rep-
resent the wave function of objects possessing a given type of charge, that
wave function must express itself in an appropriate independent, abstract
symmetry space. Enigmatic as they may be, our current notion of the ori-
gin of fundamental interactions relies intimately on the existence, at least
mathematically, of these internal symmetry spaces.

Further Plaudits: Gauge Theory and Renormalization

In chapter 4, we discussed the framework for modeling fundamental inter-
actions in a way consistent with both quantum mechanics and Einstein’s
special theory of relativity. This framework, known as relativistic quantum
field theory, was based on the notion of the minimal interaction vertex be-
tween matter particles and the force-field quanta associated with the inter-
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action in question. From these minimal interaction vertices, one can con-
struct Feynman diagrams representing any physically permissible process
mediated by the interaction. Each such Feynman diagram represents an ex-
plicit calculation, which when carried out gives the corresponding interac-
tion or decay probability of the process as well as the precise way in which,
on average, the particles that are left over after the interaction or decay ar-
ray themselves in energy and in direction of motion.

Compelling as this may be, after motivating and presenting this frame-
work in the context of the specific theory of quantum electrodynamics, we
were nevertheless confronted with a serious caveat: the theory gives results
that are utter nonsense. Any single diagram representing a given process,
uniquely identified by the number and character of initial and final parti-
cles, yields a sensible calculated result. However, when one considers the
full set of Feynman diagrams associated with the given process, reflecting
the infinitude of different ways in which the process can be influenced by
the lively and ever-fluctuating vacuum of quantum mechanics, the results
of the calculation for the process become infinite and therefore nonsen-
sical.

In the section “The Living Vacuum” in chapter 4, we remedied this
shortcoming by introducing the technique of renormalization. This scheme
was based on the following insight: that any process we would use in the lab
to measure a physical quantity, such value of the electron’s charge, must
necessarily be representable by such a set of Feynman diagrams.

We know from the basic tenets of quantum mechanics that to measure
is to probe—to influence the observed object in a way that it yields infor-
mation about itself—and the only way to influence objects is through one
of the forces of nature. So, if you want to measure some electromagnetic
property of an object (e.g., the electric charge of an electron), you do so by
probing it with the electromagnetic force, the probing of which is repre-
sented by some set of Feynman diagrams, which in turn are cobbled to-
gether from the minimal interaction vertices of quantum electrodynamics.
These diagrams range from the very basic, with only one minimal interac-
tion vertex (fig. 8.12a) to the very complex, for which a large number of such
vertices connect together to represent an interaction beset with a consider-
able amount of activity in the vacuum (e.g., fig. 8.12b).

The result of the measurement is inarguably finite and sensible (mea-
suring the charge of the electron is a popular laboratory experiment in the
undergraduate physics curriculum); yet, by doing the calculation, we would
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find that the combination of all the different diagrams representing our
measurement process gives a result that is nonsensical.

We got out of this mess by speculating that the electron whose charge we
are measuring is not the “bare” electron represented by one of the incom-
ing legs on the Feynman diagram, but, rather, incorporates the myriad of
possible vacuum fluctuations that cause us the trouble in our naive calcu-
lations. The real electron, the electron that we are probing with our exper-
iments in the lab, is not the entity represented by the incoming and outgo-
ing straight lines in figure 8.12a. Instead, the electron that we probe in the
lab is the combination of all the activity contained within the circles of di-
agrams such as those of figure 8.12b. The electron we observe contains, as
a part of its intrinsic substance, all of the possible vacuum fluctuations of
the sort shown in figure 8.12b. It is this measurement—of the electron and
its vacuum entourage—that leads to the sensible value for the electron’s
charge (1.602 � 10�19 coulombs, for what it’s worth) observed by the stu-
dents in the lab.

Thus, what we need to do is to renormalize, or simply adjust, the value
of the bare electron charge that enters and exits the diagrams, such as those
of figure 8.12, that represent the process of measuring the electron’s charge.

Fig. 8.12. Measuring the charge of the electron by shining light on it; a is the basic process
of the absorption of light by the electron; b would be observed as the same process but
incorporates substantial vacuum activity.



We just set this value, artificially, to whatever it needs to be so that when we
calculate and combine all the possible diagrams like those of figure 8.12,
we get the result that we measure in the lab.

More cheating! What value is a theory such as this? It seems as if we’ve
lost all of our predictive power by playing with the properties of real, tangi-
ble matter (electrons) just so that our theory will work out. It seems like any
theory at all can be made to work in this way. Any set of rules for calculat-
ing the behavior of some physical process can be made to give the right an-
swer if you’re allowed to adjust its inputs artificially to make it agree with ex-
periment.

The critical point, we argued, is this: If we can, through the renormal-
ization of a finite number of parameters (charge, mass, etc.) render the re-
sulting full calculation finite for any and every physical process permissible
by the interaction and at every possible interaction energy, then the theory
is indeed quite useful. By artificially adjusting a few parameters, we arrive
with a theory that works in an infinitude of possible situations. For example,
the magnetic properties of the electron, the measurement of which gave us
our stunningly precise confirmation of quantum electrodynamics at the end
of chapter 4, are not members of this set of arbitrarily renormalized param-
eters; they are a true prediction of the theory.

Such a theory, one definable in terms of a finite number of artificially
renormalized parameters, is known as a renormalizable theory. If such is not
the case, then the theory is nonrenormalizable, and can at best only be a
crude approximation to a true theory of the interaction.

The mathematical process by which a theory is demonstrated to be renor-
malizable (or not) is very technical and quite challenging. In fact, what is
found is that, beyond quantum electrodynamics (the most straightforward
possible implementation of quantum field theory), it is exceedingly difficult
to engineer theories that are renormalizable. Early attempts at descriptions
of both the strong and weak nuclear forces, while partially successful in de-
scribing observable phenomena, notoriously lacked this quality.

The remarkable, perhaps even miraculous, thing about gauge theories,
that makes them such a potent weapon in the theoretical particle physi-
cist’s arsenal, is that there is a deep connection between local gauge in-
variance and renormalizability. Gauge theories tend to be renormalizable
and are about the only implementations of quantum field theory that are
so. Quantum electrodynamics is renormalizable, but after reading the sec-
tion “Quantum Electrodynamics—Again” we now appreciate that this is
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only because quantum electrodynamics is a gauge theory, albeit one based
on the simplest possible Lie group: the group U(1) of changes in the phase
of the wave function.

For a more complex theory, such as the SU(2)-based theory of the weak
interaction, it’s only a remarkably delicate balance between the character-
istics of the various minimal interaction vertices that establishes its renor-
malizability. If any of these minimal interaction vertices are ignored or even
have their characteristics altered slightly, the balance is ruined and the re-
sulting theory is not renormalizable.

Thus, for gauge theories based on non-Abelian Lie groups, for which the
resulting field quanta are predicted to have the unusual property of inter-
acting with themselves, these interactions are essential to the health—the
renormalizability—of the theory. If we leave out any of the minimal inter-
action vertex ingredients associated with these self-interactions, renormal-
izability is forfeited. Or, even more tellingly, if the characteristics of the min-
imal interaction vertices involving the interaction of the field quanta with
themselves are altered slightly from the characteristics that are rigorously
and uniquely established by the Lie algebra of the underlying symmetry
group, renormalizability is again lost. Trying to establish a complex funda-
mental theory, such as the quantum theory of the weak interaction without
the guidance provided by the principle of local gauge invariance would be
like looking for a needle in a haystack.

Quantum Chromodynamics

The thrust of this book is the presentation of the conceptual basis of the
Standard Model of electroweak physics. We’ve talked so far about separate
theories of the electromagnetic and weak force based on underlying inter-
nal symmetry groups and the application of the gauge principle; the fully
unified gauge theory of the electroweak interaction, however, awaits its pre-
sentation in the next chapter and that chapter’s discussion of spontaneously
broken, or hidden, gauge symmetry.

However, there is another force for which a successful quantum theory
exists—the strong nuclear force. We won’t say too much about this force,
but what we do want to discuss is appropriately interjected here because the
quantum theory of the strong nuclear interaction—quantum chromody-
namics—is a pure gauge theory. Thus, the theory of the strong nuclear force
is completely prescribed by the principles we’ve discussed in this chapter.

Physics by Pure Thought 265



In this light, the development of the underlying theory of quantum
chromodynamics involved two steps. The first was the identification of the
nature of the charge associated with the strong nuclear force, the so-called
color charge (hence, the “chromo” in “chromodynamics”) possessed by the
strong-force-abiding quarks. The leptons—electrons, muons, tau leptons,
and their associated neutrinos—do not possess color charge and, as a result,
do not take part in the strong interaction.

The second step was the identification of the associated Lie group—the
group SU(3) of rotations in an internal symmetry space (color space) of
three complex dimensions. As for the theory of the weak nuclear force and
for gauge theories in general, the identity of this underlying mathematical
structure of the strong force was revealed by the patterns evidenced by the
properties of the fundamental participants in the theory—by the color-
charge properties of the quarks.

With this in hand, the identification of the set of strong-force minimal
interaction vertices and their precise properties followed in an orderly and
prescribed way from the application of the gauge principle. The final step
in specifying the theory was the determination of the single empirical (ex-
perimental) input to the theory: the overall strength, gs of the color charge.

The assignment of credit for the development of the theory of quantum
chromodynamics is not completely cut and dried. The introduction of the
concept of quark color, as far back as 1965, is generally attributed to the es-
timable Japanese theorist Yoichiro Nambu of the University of Chicago.
The first conjecture that the strong nuclear interaction should be described
by a gauge theory based on SU(3) transformations in the internal symme-
try space of color charge seems to have come in 1973 from Harald Fritzsch
and Murray Gell-Mann of the California Institute of Technology, the latter
already quite familiar to us because of his invention of the eightfold way.

However, for quantum chromodynamics, the task of employing the rules
of the minimal interaction vertices in the calculation of laboratory processes
is a particularly thorny one. Much credit is given to David Gross and Frank
Wilczek (Princeton) and H. David Politzer (Harvard) for demonstrating
later in 1973 that the theory of quantum chromodynamics provides a fun-
damental explanation of why it is that quarks only manifest themselves
when nuclear matter is explored with an energetic probe. Unlike protons
and neutrons, quarks cannot move freely about; they can only be freed (and
then only for exceedingly short periods of time) if they are struck very hard
by one of the force-field quanta. This property, known as asymptotic free-
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dom, is the reason the discovery of quarks eluded us until relatively recently
and is perhaps the single most characteristic property of the strong nuclear
force. The appearance of asymptotic freedom in the theory of quantum
chromodynamics is intimately connected with the mathematical properties
of the Lie group SU(3), which we’ll return to briefly below.

To kick off our discussion of quantum chromodynamics, let’s recall that
the fundamental arena of the strong force is not the interplay of nucleons
(protons and neutrons) and their binding into nuclei but, rather, the bind-
ing together of quarks into individual nucleons, as well as into other (un-
stable) particles that are made up of quarks.

Quark-containing hadronic matter particles come in two types: mesons,
which are bound quark/antiquark pairs (such as p� � ūd) and baryons,
which are triplets of three mutually bound quarks (such as the proton, p �

uud). In the 1960s, when people were trying to make sense of the proper-
ties of hadrons in terms of Gell-Mann’s eightfold-way quark model (see the
section “Three Quarks for Muster Mark” in chapter 5), it was found that it
was simply impossible to construct, given the presumed properties of the
three constituent quarks, a wave function that represented the known prop-
erties of the proton and neutron. Only by hypothesizing, with no other mo-
tivation than to make these wave functions work out, that quarks carry a
novel property known as color (recall the discussion of color in chapter 5)
was the quark model rescued.

According to the theory of color, each quark can come in one of three
colors: red (R), blue (B), or green (G). No one, of course, is claiming that
quarks actually come in three decorative shades; it’s just that, mathemati-
cally, when an extra factor is added into the wave function to account for
this possibility, the rest of the wave function suddenly makes physical
sense. Modified in this way, the quark model led to a number of significant
predictions regarding the production of quarks and the properties of exotic,
unstable baryons that were later confirmed in experiments at particle ac-
celerators. For example, in producing quark/antiquark pairs through the
annihilation of high-energy electrons and positrons, the collision rate was
exactly a factor of three higher than one might otherwise expect: for any
given flavor of produced quark/antiquark (say, down/antidown), the reac-
tion could produce any of the three colors: a red/antired, a blue/antiblue,
or a green/antigreen version of the down/antidown pair, leading to the fac-
tor of three enhancement in the annihilation rate. However, while this very
strongly supported the notion of color, the physical meaning of this new
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property of matter was not understood at the time these measurements were
first performed (note 8.7).

Time passed, and the origin of the property of quark color remained a
curious mystery. However, in 1973, Fritzsch and Gell-Mann proposed that
color, or more specifically, rotations in an abstract color space that swap the
three colors among one another, may be responsible, through the gauge
principle, for the strong nuclear force experienced by quarks.

Recall that rotations in the two complex dimensions of the Lie group
SU(2) that swap upper and lower weak-isospin doublet members (√e and e�;
u and d quarks, etc.) among one another, were responsible, through the
gauge principle, for the generation of the weak nuclear interaction. In other
words, when we ask that the free-particle wave equation and its wave func-
tion solution be invariant under local rotations between upper and lower
doublet members (rotations by amounts that vary from point to point in
space and time), we found that we needed to introduce the W� and the W0

field quanta that are the mediators of the weak nuclear force.
For the SU(2)-based theory of the weak interaction, the amount of 

upper-doublet particle in the complex wave function represents the first
complex dimension in weak-isospin space (represented by distance along
the x-axis in complex two-dimensional weak-isospin space). Similarly, the
amount of lower-doublet particle content represents the second complex di-
mension (represented by distance along the corresponding y-axis).

According to Fritzsch and Gell-Mann, the group of transformations that
rotate the three quark colors into one another must be the group of com-
plex three-dimensional rotations: one complex dimension for each quark
color, just as for the weak force we had one complex dimension for each of
the two members of the weak-isospin doublet. The strong force doesn’t care
which of the three quark colors is at play, just as the weak force doesn’t care
which doublet member, upper or lower, is involved in the interaction.
Thus, any wave equation and corresponding wave function solution de-
scribing a quark had better be invariant under transformations swapping the
colors among one another, that is, under any rotation belonging to the
group SU(3) of rotations in the three complex dimensions of the internal
symmetry space known as color space.

That there are three quark colors is, in and of itself, not quite enough to
specify that the underlying internal symmetry group is necessarily SU(3).
There are other possible Lie groups operating in three complex dimensions
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that could conceivably serve instead of SU(3) as the underlying symmetry
group in our internal color symmetry space. For example, we could restrict
ourselves to rotations in color space that leave the amounts of “redness,”
“blueness,” and “greenness” in the wave function unchanged but change
the complex (ordinary quantum-mechanical) phases of the red, blue, and
green components of the wave function by some amount.

However, the nature of the Lie group SU(3) has something interesting
to say about the pattern of interrelations between the color charges, should
the three color charges indeed be related by SU(3) rotations in the complex
color space. To be specific, this pattern of interrelations provides that the
combination of all three color charges, in equal amounts, yields a net color
charge of zero (note 8.8)! This property is quite unusual. It’s somewhat akin
to combining three particles with positive electric charge and winding up
with a combined object that is electrically neutral—only the three particles
have equal positive amounts of three different kinds of strong-force charge:
red, blue, and green. Recalling the discussion of the section “The Particle
Zoo” of chapter 5, this property is essential: The existence of baryons,
among which we count protons and neutrons, is predicated on the fact that
the three quarks that form them, when combined, have no net color charge.

This property of color charge—its pattern of interrelations—is uniquely
characteristic of charges related through rotations from the group SU(3)
and hence our conviction that SU(3) is the true underlying symmetry group
of the strong nuclear interaction. Again, the patterns exhibited by nature, in
this case the three colors of strong-force charge and the interrelations be-
tween the three colors of charge, provide the essential clue to the underly-
ing mathematical structure that organizes its fundamental behavior.

Thus inspired by the thought that the strong nuclear interaction arises
from the invariance of the wave equation with respect to SU(3) rotations in
this internal color symmetry space, the next step is to apply what we’ve
learned in this chapter to construct the corresponding gauge theory of the
strong interaction. Again, the arguments of Yang and Mills compel us to
think of this invariance as a local symmetry, and in forcing it to be so, we
are thus required to entertain the notion that the quarks are subject to the
influence of gauge fields Ac(x). The subscript c reminds us that these gauge
fields arise from the requirements of local invariance under transformations
in this SU(3) color space, as opposed to the SU(2) space of weak isospin or
the U(1) space of quantum electrodynamics. Here’s a summary of how this
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works; nothing in the paragraph below is new; it’s just a recap to remind you
of what’s involved.

Again, the gauge fields, or interactions, Ac(x) need to be introduced into
the free-particle wave equation to patch up the damage caused by color-
space rotations that swap the quark colors among one another by amounts
that differ as you move from point to point in space-time. Over there, you
rotate, or transform, a blue quark into a half-green, half-red quark, while
over here, you transform a blue quark into a pure red quark (and maybe
change the quantum-mechanical phase of the resulting wave function by
some amount also). These differing transformations alter the way the wave
function changes from point to point in space. This, in turn, destroys the
delicate balance, required by the wave equation, between the rate of change
in the wave function around any point in space and the energy of the ob-
ject described by that wave function. We thus find it necessary to introduce
gauge field (interaction) terms of the form gs Ac(x)y (x) as “cheating terms”
that act to restore this delicate balance and thus make the wave equation
and its wave function solution invariant with respect to local SU(3) color-
space rotations.

As before, the Ac(x) turn out to be the fields associated with a new force—
in this case, the color force between quarks—that we hypothesize must just
be the strong nuclear force. The resulting theory, detailing the workings of
quark interactions—quark dynamics, as opposed to the statics of Gell-
Mann’s eightfold way—under the influence of the color force is known as
quantum chromodynamics, or QCD.

As we emphasized above, this theory, being a gauge theory, provides a
complete and definitive specification of the rules by which the strong-force
interactions of quarks play themselves out. If you’re fortunate enough to be
well schooled in the techniques of relativistic quantum field theory, you can
use the theory of QCD to calculate the properties of any process that in-
volves the interaction of quarks via the strong, or color, force. While these
calculations lie beyond the scope of this book, we do now know enough to
say something about the sorts of minimal interaction vertices that QCD sets
forth to use in building up the Feynman diagrams that represent these
processes; we leave the maddeningly complex task of calculating such dia-
grams to those who actually get paid to do so.

We know that there will be not one interaction term but, rather, ex-
actly as many different interaction terms gs Ac,1(x)y (x), gs Ac,2(x)y (x),
gs Ac,3(x)y (x), . . . , gs Ac,8(x)y (x) as there are generators of the Lie group
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SU(3). As mentioned in chapter 7, the group SU(3) has eight generators, so
this means that there are thus eight gauge fields, which is why the above list
ran from one to eight. The factor gs, common to all eight of the interaction
terms, just represents the overall strength of the color-force (strong nuclear)
interaction, the one and only input to the theory that must be determined
by precise experimentation.

Now, this is quantum field theory, so these eight interaction terms really
represent the introduction of eight separate field quanta: the strong force
has eight photonlike particles to run around and express its will, which is
simply to have quarks influence one another. Again, this influence, or in-
teraction, between the quarks is exactly what causes them to be able to bind
together into useful things like protons and neutrons; these field quanta are
the glue, if you will, that binds the quarks together into everyday matter.
Hence, physicists have chosen, somewhat tongue-in-cheek, to refer to these
eight field quanta as gluons. There are indeed eight of them, although
they’re so similar, differing only in the type and amount of color charge that
they each carry that we just call them collectively “the gluon.” This gluon
(really, each of the eight gluons) forms a minimal interaction vertex with
any given quark in the usual fashion (see fig. 8.13a). Note that by conven-
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tion the gluons are represented by curly lines, as opposed to the wavy lines
of the photon and W and Z particles.

In chapter 6, we made the point that the group of rotations in three or
more dimensions of everyday space is non-Abelian. When you successively
apply two rotations to an object, such as the box we used for our prop in
chapter 6, the final orientation of the object generally depends on the or-
der in which the two successive rotations are applied. Earlier, we noted that
the group SU(2) of rotations in two complex dimensions is also non-
Abelian, and here we’ll note that, not surprisingly, the group SU(3) of rota-
tions in three complex dimensions is also non-Abelian.

We’ve also learned in this chapter that the non-Abelian nature of the un-
derlying Lie group of internal symmetries has a very direct and profound
consequence on the nature of the corresponding interaction: for any such
interaction, the field quanta introduced to ensure local invariance under
the Lie group’s rotations will interact with themselves. Thus, when you
work through the process of introducing the eight gauge fields that you need
to ensure invariance under local SU(3) transformations, you will find that
the corresponding quanta—the eight gluons—each carry some of the red/
blue/green color charge that we originally identified as being a property of
the quarks. Thus, you get minimal interaction vertices that involve the field
quanta alone (see fig. 8.13b).

Furthermore, the properties of these gluon-only interaction vertices (re-
member that there are eight gluons, so there are a lot of possibilities) are set
by the central characterizing property of the Lie group itself—the Lie alge-
bra of ordering relations between the eight generators of SU(3). Thus, a 
critical test of quantum chromodynamics is the verification of the existence
of the gluon-only, or triple-gluon, minimal interaction vertices of figure
8.13b and the demonstration that their properties are precisely those ex-
pected from the Lie algebra of the group.

A particularly interesting diagram, representing a mixture of weak and
strong interactions (enabled by the fact that quarks carry both weak and
strong [color] charge) is shown in figure 8.14. In this diagram, the interac-
tion is begun by the annihilation of an electron and a positron into a weak
nuclear force Z0 gauge quantum, which subsequently decays into a quark/
antiquark (qq̄) pair. From there, however, the strong nuclear force takes
over. In this diagram, the quark (it could just as well have been the anti-
quark) employs a quark/gluon minimal interaction vertex to emit (radiate)
a gluon. The gluon then exploits the existence of the triple-gluon vertex,
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our current focus of interest, to produce a total of two gluons flying out from
the collision point in addition to the quark/antiquark pair.

Thus, for the process represented by this diagram, what begins as an elec-
tron and positron hurtling toward each other with great energy winds up as
four fundamental “colored” (strong-force-charged) particles moving quickly
outward from the collision point. So, an experiment that looks for such
events, for which exactly four fundamental colored particles emanate from
the point of annihilation of an electron and positron, will be able to confirm
the existence of the triple-gluon vertex and measure its properties (note 8.9).

Such experiments were done in the mid-1990s at the Large Electron
Positron (LEP) collider at CERN. It was found that (1) eight different glu-

Fig. 8.14. In this mixed interaction, a quark-antiquark pair is produced through
the annihilation of an electron and a positron to the neutral weak field quan-
tum (which, as we’ll see in chapter 9, is really the Z 0, rather than the W 0 that
we introduced above). Then, the strong interaction takes over, employing both
quark-gluon (fig. 8.13a) and gluon-gluon (fig. 8.13b) vertices to produce two
more gluons. Quite a number of collisions like this, with a total of two quarks
and two gluons coming away from the collision, were observed by the exper-
iments at CERN and SLAC that studied the production of Z 0 bosons produced
through electron-positron annihilation.



ons are needed to explain the results; (2) the results cannot be explained
without the process of figure 8.14, that is, that the triple-gluon vertex exists;
(3) the characteristics of the triple-gluon vertex of figure 8.14 necessary to
explain the LEP four-particle data are precisely those prescribed by the Lie
algebra of SU(3). These experiments thus explored, and confirmed, a very
specific prediction of the SU(3) gauge theory (quantum chromodynamics)
of the strong nuclear force, a prediction that lies at the heart of the remark-
able connection between the abstract mathematical properties of Lie groups
and the concrete world of matter and its interactions.

You might come away from this discussion with the impression that the
consequences of the non-Abelian nature of SU(3) are somewhat inciden-
tal, providing a definitive way to test the connection between the gauge prin-
ciple and the properties of SU(3) to the force that binds atomic nuclei to-
gether but, otherwise, having little to do with the essential qualities of that
force and the way it shapes the world in which we live.

Nothing could be further from the truth. The existence and precise na-
ture of the by-product of the non-Abelian structure (Lie algebra) of SU(3),
the triple-gluon vertices of figure 8.13b, seems to be an essential ingredient
in the recipe for making nucleons (neutrons and protons), and so is an in-
dispensible component of what it is that makes atomic nuclei, and thus
atoms, and thus molecules—and thus us—possible. Before we can discuss
why this is the case, we need to learn a little more about the electroweak
force in chapter 9. We’ll then be ready to return to this issue in the context
of our discussion of “grand unification” in chapter 10.

For now, though, suffice it to say that it is precisely the non-Abelian char-
acter of SU(3) and the manifestation of this character in the three-gluon ver-
tices that leads to the essential strong-force characteristic of “asymptotic
freedom,” as Gross, Wilczek, and Politzer managed to show in their 1973
papers. What is meant by the term “asymptotic freedom” is that quarks, im-
bued as they are with the powerful color charge, are not observed in nature
as independent particles, free of partners that bind with them to form long-
lived particles with no net color charge. So, for example, one doesn’t ob-
serve the quarks within the proton that forms a hydrogen nucleus but,
rather, sees the proton as a whole.

Unless one probes the proton with a high enough energy probe. As the
energy transferred to the proton by the probe gets large, approaching the
mass-energy of the proton itself, the probe can begin to discern the individ-
ual quarks within the proton. It’s not that the quarks become free, it’s just
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that the energy of the probe begins to exceed the energy with which the
quarks are bound into the proton, so they can begin to manifest themselves
as individual particles. As the energy of the probe (say, a high-energy pho-
ton released from a scattered electron) gets higher and higher, the struck
object looks more and more like one of the individual quarks, rather than a
bulky proton. At very high probe energies—“asymptotically high,” if you
will—the quarks manifest themselves as fully individual particles, com-
pletely free of the binding effects of the proton in which they reside. Hence,
the term “asymptotic freedom.”

At everyday energies, however, quarks are not free, asymptotically or oth-
erwise, and the unit that we must concern ourselves with in our physics is
that of the nucleon—the proton and neutron. But it’s these particles, and
not individual quarks, from which we construct the nuclei of atoms. In other
words, the other side of the coin of asymptotic freedom is the tight binding
of quarks into color-neutral nucleons, without which atoms and molecules,
and thus biological systems, would not be possible.

When we return to this discussion in chapter 10, we’ll see that the phe-
nomenon of asymptotic freedom is a result of the fact that the overall
strength of the strong force, as represented by the size gs of the strong-force
charge, itself varies with the energy of the probe. The precise way in which
it does this is intimately connected to the nature of the Lie algebra of SU(3),
as it manifests itself through the triple-gluon vertices; the first people to es-
tablish this connection, quantitatively, were our three young QCD enthu-
siasts: Gross, Wilczek, and Politzer.

Parting Thoughts

On one level, particularly to the first-time reader, the principles of gauge
theory may seem woefully complex. Once one becomes comfortable with
the mathematical language of gauge theory, however, one realizes that 
the notion of local gauge invariance, with its implications in terms of pre-
cise laws of interaction, is tremendously efficient, providing an underlying
framework of almost comical physical simplicity, but which is, at the same
time, both profoundly general and stunningly precise.

Ponder for just a moment the nature of the world around you, that greets
you at every turn through the window of your senses—the tastes, the smells,
the feel of sand between your toes, the view of the cosmos permitted by a
clear and moonless night. The gamut of sensual experience seems so vast
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and incomprehensibly diverse that one can begin to wonder how it is that
our species ever surmised that it could be comprehended in terms of some
finite number of definite and infallible organizing principles.

And yet so we have, and within the last few decades of the most recent
century, our success at doing so has begun to seem great indeed. There is
no known physical phenomenon that can be held forth as being at odds with
the notion that the workings of the universe are influenced by the four forces
of nature that were introduced in chapter 2. As complex as any given nat-
ural behavior may be, and even though it may be all but impossible to pro-
vide a precise and quantitative description of the behavior in terms of its un-
derlying fundamental basis, it is nevertheless invariably consistent with the
notion that it is originated and controlled by these underlying principles
(note 8.10).

Of these, three (the electromagnetic, the weak nuclear, and the strong
nuclear interactions) are understood, from the now well-established outlook
presented by gauge theory, to be nothing more than an inevitable conse-
quence of certain redundancy in the natural world.

Quantum mechanical phase, and its generalization in the context of in-
ternal symmetry spaces, is an unavoidable component of the wavelike na-
ture of matter—the direct implication of the renowned notion of wave-
particle duality originally introduced in the 1920s, and now on about as
solid an experimental footing as any conjecture known to science. While
the relative phase of the various objects in a system is a crucial determining
characteristic of the behavior of the system (via its bearing on the precise
way in which the objects’ representative waves interfere with each other
within the system, as discussed in chapter 3), the overall phase of the sys-
tem’s combination of waves can have, as we have discussed rather exten-
sively, no physical consequence.

Wave functions that differ only in their overall phase provide equivalent,
and redundant, representations of any given physical system. A direct ex-
ploration of the consequence of this redundancy, consistent with the notion
of the locality of space-time—that the behavior of any system at two well-
separated space-time points must be to some degree independent—leads 
inexorably to the conclusion that the objects within the system must be sub-
ject to some precisely construed law of interaction. The connection be-
tween these two notions, the invariance of the wave equation with respect
to changes in phase (or, more generally, rotations in some internal symme-
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try space) and the corresponding introduction into the wave equation of
terms providing a definitive description of a natural mode of causation (in-
teraction), is just what we have been referring to as the gauge principle.

From the point of view of gauge theory, there are but two questions that
need to be addressed to develop the fundamental picture underlying the
rich array of phenomena that comprise the actions and implications of any
given law of physical interaction: the specification of the nature of the
phaselike invariance obeyed by the wave functions of natural objects (i.e.,
the underlying symmetry group) and the nature and strength of the charge
associated with that invariance.

Given the list of abstract Lie groups that specify the structure of the var-
ious internal symmetry spaces and the nature and strength of their associ-
ated charges, the fundamental rules of the behavior of matter are com-
pletely delineated. This delineation is as precise as it is complete in the
sense that it provides, through the framework of quantum field theory, an
exact prescription for the calculation of the properties of the interaction be-
tween any set of fundamental objects. Furthermore, the approach thus de-
lineated, when one considers the connection between local phase invari-
ance and renormalization, seems to be the only self-consistent approach to
modeling fundamental interactions that anyone has dreamt up to date.

But we can pursue this line of thought even a bit further because upon
some additional reflection, the gauge principle seems to suggest the onto-
logically comforting notion that interaction, and thus causation, are inexo-
rable properties of a quantum-mechanical universe. Let’s look into this a bit.

Be it the electromagnetic, the weak nuclear, or the strong nuclear force,
the gauge principle introduces the corresponding interaction through the
“cheating terms” of the form gA(x)y (x), where A(x) represents the field (re-
ally, potential, for those still keeping track of the distinction) of the interac-
tion, y (x) the wave function of the interacting object, and g the amount of
the interaction’s associated charge possessed by the object. For the moment,
let’s focus on the latter of these factors: the charge g in this expression for
the “cheating” interaction term.

If an object possesses none of the charge associated with the interaction
(electric charge, color, weak isospin), then g � 0 for that object, and the
cheating term is also zero because anything multiplied by zero is zero. This
should come as no surprise. If an object doesn’t have the charge associated
with a given interaction, then it won’t influence or be influenced by that in-
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teraction, and so it shouldn’t form any of the minimal interaction vertices
with the field quantum A(x) that are implied by the term gA(x)y (x).

In other words, if g � 0, there won’t be any minimal interaction vertices
of the form gA(x)y (x) connecting the object, represented by its wave func-
tion y (x), to the force field of the interaction, represented by its potential
function A(x). And this is exactly what we expect because according to the
most basic aspects of the description of a force, an object bearing none of
the charge associated with that force will not be subject to the influence of
that force.

Recall the weak-isospin doublets that generate the characteristic patterns
of the fundamental particles shown in table 5.1. These were just the isospin-
up and isospin-down pairs of fermions (quarks and leptons), such as the u
and d quark, t and b quark, muon (m) and muon neutron (√m), and so forth.
Our conjecture that the weak nuclear interaction can be modeled as an
SU(2) gauge theory was based on the observation that none of the proper-
ties of any given weak interaction process are changed when you rotate, or
reorient, the wave function of all participating objects in the complex two-
dimensional space of weak isospin, that is, interchange isospin-up particles
with isospin-down particles and vice versa.

Recall also that, in the process of modeling the weak nuclear interaction
in this way, we learned that the charge associated with the weak interaction
is just weak isospin itself. In other words, if an object possesses weak isospin,
that is, is doing something that we can think of as spinning about some axis
in the abstract internal space of weak isospin, then it possesses a weak-
interaction charge g, and it will thus form minimal interaction vertices with
the A’s, the weak-interaction force-field quanta (which we initially called
the W1, W2, and W3 but will soon rename as the W�, W�, and Z0).

If the weak-interaction charge g is zero, then the object possesses no
isospin. But, in this case, the notion of reorienting the axis in weak isospin
space (about which the object is weak-iso-spinning) is meaningless. If the
weak-interaction charge is zero, then the object has no weak isospin, and so
it has no axis to reorient, via rotation elements from the group SU(2), in the
abstract internal space of weak isospin. A particle with no weak isospin (no
weak-interaction charge) simply has no truck whatsoever with the abstract
internal space associated with the weak interaction; its wave function sim-
ply doesn’t extend into weak-isospin space.

Let’s turn this argument around. For an object to extend itself into the
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internal space associated with a given force, it must possess some of the
charge associated with that force. You can think of it like an invitation to an
exclusive party: possessing the charge associated with a given force is like
possessing an invitation to enter the internal symmetry space of that force.
With some of the charge of the weak nuclear force in hand, you are cor-
dially invited to enter into and perform your SU(2) gyrations within weak-
isospin space; without the charge, you are condemned to lurk forever out-
side of the party, under the unwaveringly watchful eye of the particularly
stern and surly weak-isospin-space bouncer.

But once you are inside, then you have to behave yourself according to
one inviolable rule: your physical (experimentally observable) behavior
simply cannot depend on how you find your weak isospin oriented in weak-
isospin space as you wheel and turn within it, even if you do so locally, that
is, turn in isospin space by an amount that depends on where you are in or-
dinary space-time. This, in turn (as demonstrated by Yang and Mills), means
that you must partake in the weak nuclear interaction, with a behavior
specifically and definitively governed by the properties of the group SU(2)
of possible gyrations on the dance floor of weak-isospin space.

But the content of the universe—what the universe is—is nothing more
or less than the set of objects it contains. As far as we can tell, there is no
such thing as “pure energy” that exists independently of the objects, or fun-
damental particles, that populate the universe. When we peer down to the
most fundamental level, all the energy we know of is either kinetic energy,
associated with the motion of objects, or potential energy, associated with
the mass of the constituent objects and the configuration of force fields.
Thanks to the development (and stunning confirmation) of quantum field
theory, we now understand that even this field energy only arises in associ-
ation with fundamental particles: the force-field quanta.

So, a universe without particles is nothing. But, just so, a particle with-
out any charge whatsoever (be it even just the mass-energy charge of the
gravitational interaction) is equally nothing. There is no substance, or be-
ing, that we can ascribe to a particle that possesses none of the charges as-
sociated with the known forces of nature. It is precisely in terms of these
charges—mass, electric charge, weak isospin, and so forth—that we iden-
tify and differentiate different fundamental particles. So, for the universe to
be something, we need particles, and for there to be particles, we need to
have some sort of charge for these particles to carry around with them.
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And now, for the point of all this: if a particle possesses the charge of some
particular interaction, and it must possess the charge of at least one such in-
teraction if it is to be a particle, then it lives in the internal symmetry space
of that interaction, so it must obey the rules associated with that privilege.
It must partake in and be influenced by that interaction. Gauge theory sug-
gests that charge is, most fundamentally, an entrée into an internal world—
an internal symmetry space within which an object’s orientation can have
no physical relevance—that bears with it the onus of subjugation to the in-
fluence of an interaction.

So, there is no charge without interaction, and equally, there is no uni-
verse without charge; thus, we conclude, there is no possibility for a universe
without interaction. Any universe must, at its most fundamental level, be in-
teresting. So, perhaps it’s not so surprising that ours is so much so.

But even more than this, quantum mechanics demands some sort of in-
ternal space of possible changes to the wave function under which the wave
equation and its wave function solution are invariant. As we discussed some
pages ago, the overall phase of the wave function—the precise time at which
the undulating wave function has a value of zero at a given point in space—
can have no physical meaning. The size, the wavelength, and the speed of
propagation through space of this undulation all have direct consequences
on the behavior of the object being described by the wave function, but its
phase does not.

Thus, at the very least, the wave equation and its wave function solution
must be invariant under changes of phase of the wave function. The set of
changes to the wave function that produces these changes in phase can form
any of the Lie groups acting within the various internal symmetry spaces
that we’ve considered above—the straightforward U(1) of electromagnet-
ism or the more intricate SU(2) or SU(3) of the nuclear forces, or even an-
other of the many Lie groups we haven’t talked about. The group U(1) di-
rectly represents the set of possible changes of phase of the wave function.
The other Lie groups, while more complicated, nevertheless also count
simple changes of phase of the wave function among the possibilities rep-
resented by their elements.

But, once we have one or more of these internal symmetry groups at play,
which we must if the basic tenets of quantum mechanics are to be satisfied,
then the contention of Yang and Mills applies: since well-separated points
in space can’t be in immediate communication with one another, then the

DEEP DOWN THINGS280



invariance evidenced within the internal symmetry space must be a local
one. But, as we’ve discussed, the imposition of local invariance under the
Lie group of symmetry transformations requires the introduction of an in-
teraction into the wave equation.

We can only conclude, then, that gauge theory tells us that any universe
with a behavior consistent with the tenets of quantum mechanics must
count elements of causation among its fundamental physical laws. Quan-
tum mechanics, completely independently of what particles may or may
not have emerged, ruled out the possibility that the universe that evolved
just after the big bang would be one devoid of the meddling intertwinings
of its fundamental constituents, devoid of the stuff from which organization,
structure, and life itself, spring forth. Interaction is as inexorable a quality
of the universe as the very space-time that defines its presence.

We conclude this chapter with a philosophical musing that underscores
a similar rhapsody from the end of the previous chapter. In that chapter,
we reflected on the physical nature of the (global) symmetry spaces that
are associated through Noether’s theorem with conserved physical quanti-
ties.

Invariance under rotations in three-dimensional space, a very real space
from any vantage point, led to the conservation of angular momentum. In-
variance under rotations in “spin space,” a seemingly real space with some
unreal twists, was associated with an extension of the notion of angular mo-
mentum conservation to include particle spin in addition to the conven-
tional angular momentum a particle possesses because it’s in orbit at a dis-
tance from some axis. Finally, invariance under rotations in nuclear isospin
space, within which neutrons can be turned into protons and vice versa—
a thoroughly unreal space, it would seem—was nevertheless associated with
the very real phenomenon of the conservation of nuclear isospin. This
begged the question of whether this nominally abstract internal isospin sym-
metry space is in fact concrete and physical.

In this chapter, we deepened this mystery by fathoms, for now our (lo-
cal) symmetry spaces are not associated with demonstrable but admittedly
arcane physical properties of subatomic particles but, rather, with the very
essence of the natural world, with the nature and existence of the causative
agents that render the universe both interesting and knowable. Yet, still, we
have no more substantial a notion than before of what these internal sym-
metry spaces really represent in terms of the basic nature of the physical uni-

Physics by Pure Thought 281



verse. The only thing we can say with certainty is that our interest in this is-
sue is piqued all the more. And, since that’s all we can say with certainty on
this topic, then that’s the last we’ll hear of it. You are, at last, left to draw your
own conclusions about the relation of these internal spaces to the tangible
world of physical reality or, perhaps, about the nature of physical reality it-
self.
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9

The Current Paradigm

Hidden Symmetry, the Standard Model & 

the Higgs Boson

In the mid-1960s, as the United States was in the midst of its murky military
engagement in Southeast Asia, there was a less heralded struggle underway
in the particle physics community. This was not a battle that pitted various
camps of physicists against one another so much as it united them against
their perennial enemy: ignorance. The battle being waged was that of the
formulation of a workable theory of the weak nuclear interaction.

In a terse two-page note in the November 20, 1967, edition of the Phys-
ical Review Letters, thirty-four-year-old Steven Weinberg of the Massachu-
setts Institute of Technology and the University of California at Berkeley
outlined a somewhat speculative but seemingly self-consistent model of the
weak interactions of electrons (e�) and their corresponding neutrinos √e.
This model incorporated a gauge theory based on local invariance (sym-
metry) with respect to the Lie group SU(2) of rotations and phase changes
in weak-isospin space (the space in which the weak-force identical particles
e� and √e are swapped between each other).

This theory also incorporated a U(1) gauge symmetry, the same sort of
symmetry that reduced Feynman’s theory of quantum electrodynamics to a
single principle of almost juvenile simplicity.

One telling aspect of this model is that its “photon”—the single gauge
quantum associated with the U(1) symmetry—is not the true photon-field



quantum of the electromagnetic interaction. The properties of the associ-
ated minimal interaction vertex between this U(1) gauge quantum (known
as the B0) and the electron do not quite reproduce those of the well-estab-
lished theory of quantum electrodynamics. In addition, though two of the
three SU(2) field quanta are identifiable as the W� and W� weak field
quanta, the third, electrically neutral W0 quantum was a prediction of the
model without an experimental basis. Recall (chapter 8, “An Experimental
Triumph”) that weak-interaction processes involving the exchange of an
electrically neutral weak field quantum were not discovered until 1973.

For this model, the U(1) B0 and SU(2) W0 field quanta, both electrically
neutral, are really quite similar to each other. They’re not precisely similar,
but they’re similar enough that one could never tell whether, in any given
fundamental process, the B0 or the W0 was responsible for the interaction.
For example, figure 9.1 shows such an interaction between two electrons.
In 9.1a, the U(1) B0 quantum is exchanged, while in 9.1b, the SU(2) W0

does the honors. Comparing these two diagrams, there’s no way to tell,
based on what went into and came out of the reaction, which of the two
field quanta is responsible. In both cases, all you see are two electrons
bouncing off each other.

Since, in any such interaction, there’s no way to tell whether the B0 or
W0 is exchanged, then it’s entirely possible that the exchanged quantum
could be a combination of the two. That this model needed to be consid-
ered seriously hinged, to a large degree, on the fact that it was able to take
a piece—a certain well-defined amount—of the B0, and combine it with a
supplementary and similarly well-defined piece of the W0, to arrive at a
combined field quantum with precisely the properties of the photon of
quantum electrodynamics.

It’s just like forming an alloy of two metals. You have a pure gold coin,
which is wonderfully impervious to corrosion but very soft. You also have a
copper coin, which is hard but tarnishes easily. If you take 80% of the gold
coin and 20% of the copper coin and melt them together, you come up with
an alloy. It looks pretty much like gold, but if you make a wedding band out
of it, it’s not just shiny, it is (for better or worse) also durable. It has just the
properties the jeweler wants. Likewise, an alloy of precise amounts of the B0

and W0 field quanta (roughly 80% and 20%, respectively) has just the prop-
erties the quantum-electrodynamicist wants; it’s precisely the photon.

Then there are the leftovers, the 20% of the B0 (the gold coin) and the
80% of the W 0 (the copper coin). You can melt these together into a 
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quantum-mechanical alloy, and the result is a second electrically neutral
field quantum that’s available to mediate an interaction between matter par-
ticles. This leftover piece is the quantum of the neutral interaction of the
weak nuclear force; since this carrier of the neutral weak force is not quite
a gauge-field-quantum partner of the W� and W�, it needs a somewhat in-
dependent name, and for want of a more descriptive term, it has come to
be known as the Z0 boson.

Weinberg’s model (really, as we’ll see, the Glashow-Salam-Weinberg
model) is not a model of independent electromagnetic and weak nuclear
forces. Rather, it is a model of single, interconnected electroweak force,
with two separate facets: the observed electromagnetic and weak forces. The
Glashow-Salam-Weinberg model is based on both a U(1) and an SU(2)
gauge symmetry, neither of which is exclusively associated with either the
weak or electromagnetic force. Instead, they are together representative of
a combined, a unified, electroweak interaction.

Because the properties of the photon are so well known, the exact
amounts of each of the U(1) B0 and SU(2) W0 needed to make a photon
are known very precisely. Correspondingly, the complementary amounts of

Fig. 9.1. The mutual repulsion of two electrons through the exchange of the U(1) B0 bo-
son and the neutral SU(2) W 0 boson. There’s no way to tell which of the two actually
participates in any given interaction, so the exchanged field quantum is thus a quantum-
mechanical mixture of the B0 and W 0.



leftover B0 and W0 needed to form a Z0 are inferred with equivalent preci-
sion. Because of this, the properties of the Z0 are a characteristic and pre-
cisely predicted mix of the properties of the B0 and W0 field quanta.

It’s not that you can separately measure the properties of the B0 and W0

and then combine these properties to predict those of the Z0; you can’t! It’s
not the B0 and the W0 but, rather, their alloyed states of the photon and Z0,
that are the physically real—the observable—field quanta. Instead, given
our precise knowledge of the properties of the photon, and the unequivocal
nature of Weinberg’s model, we can derive exceedingly sharp predictions of
the properties of the Z0. The experimental confirmation of these precisely
predicted properties was, during the decade of the 1990s, a focal point of
the effort of the particle physics community and absorbed a large fraction
of my own time during that period.

Weinberg appreciated that his model applied equally well to weak inter-
actions involving the heavier m� lepton and its neutrino √m; with the dis-
covery of quarks soon after, it was quickly appreciated that the model ap-
plied to the electroweak interactions of all known fundamental particles.

Thus, with the discovery of Z0-mediated weak neutral currents in 1973,
as the United States called in its troops from the less fruitful conflict in
Southeast Asia, the international physics community declared a tentative
victory in its battle over the secrets of the weak nuclear force. Not too long
afterward, in 1978, exacting experiments masterminded by Charles Prescott
of the Stanford Linear Accelerator Center and Lev Barkov and Max Zolo-
torev of the Budker Institute in Novosibirsk, Russia, were the first to quan-
titatively confirm the precisely mixed (part B0, part W0) properties of the Z0.

The physics community was compelled to acknowledge that this model
was able, at last, to provide a unified and strikingly accurate description of
the electromagnetic and weak nuclear interactions. For his work in devel-
oping this “Standard Model” of the electroweak interaction, Weinberg was
accorded the 1979 Nobel Prize in Physics. He shared the prize with the two
other physicists who lend their name to the Glashow-Salam-Weinberg
model. Sheldon Glashow (at the Neils Bohr Institute in Copenhagen at the
time) had, in 1961, published a model based on U(1) and SU(2) gauge sym-
metry but which lacked the notion of spontaneously broken symmetry that
will soon enter our discussion. The Pakistani theorist Abdus Salam of Im-
perial College in London had independently developed a model essentially
identical to that of Weinberg’s, publishing only slightly later, in 1968. The
Nobel Committee appropriately recognized that Weinberg and Salam had
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worked contemporaneously and that both had benefited greatly from
Glashow’s earlier work. The three were cited by the Committee for “their
contributions to the theory of the unified weak and electromagnetic inter-
action between elementary particles, including, inter alia, the prediction of
the weak neutral current.”

Were this chapter restricted to a discussion of the theoretical forging and
experimental assay of the alloyed Z0 boson, it would be mercifully short.
There is a thorny problem, however, that needed to be addressed on the way
to developing the Standard Model. While the W�, W�, Z0 field quanta are
all quite massive, each with about 100 times the proton mass, the field
quanta generated by gauge theories are always massless. The solution to this
problem required the introduction of an entirely new and decidedly subtle
notion: that of hidden gauge symmetry. Out of the formalism of hidden
symmetry arose, in addition to the masses of the weak-interaction field
quanta, the prediction of an exotic new field quantum—the Higgs boson.

Gauge Theory and the Strength of Forces

A standard first-day-of-class lecture demonstration that beginning students
of electromagnetism find themselves sitting through is the following. The
lecturer rubs two materials together, then divides the static charge accu-
mulated on one of the materials between two separate conducting spheres.
The spheres are then suspended, close to each other but not touching, from
two insulating threads. The point of the exercise is simply to demonstrate
that the like charges deposited on the spheres repel each other. The stu-
dents are told (and none seem to question it) that the repelling force is that
of static electricity, and the lecturer then goes on to probe the qualitative
properties of the electrostatic force by varying the amount of charge on the
balls, their separation, and so forth.

But is it really true that the electrons added to the spheres interact and
repel each other solely by the electric force? We know that there is not one,
but four forces through which objects can interact with one another. What
about the other three forces?

Since leptons, in general, and electrons, in particular, don’t carry color
charge, we don’t need to concern ourselves with the strong nuclear force.
However, electrons do carry the charges, mass and weak isospin, appropri-
ate for participation in the gravitational and weak nuclear interactions (note
9.1). There’s no reason why the static charges on the spheres shouldn’t also
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interact with each other through these two other forces, and in fact, they do.
It’s just that gravity and the weak force are so much weaker than the elec-
trostatic force that their effects are too minute to matter. The lecturer’s claim
that the demonstration probes the properties of the electrostatic force alone
is correct, for all practical purposes.

But why is it that the gravitational and weak forces are so weak? In the
case of gravity, all we can say is that the relative size of the gravitational and
electric charge of an electron is vastly different (note 9.2).

In the case of the weak nuclear force, the weak-isospin charge of the elec-
tron is not that different in magnitude from its electric charge; were this not
the case, the Standard Model, which provides an intermixed description of
the electromagnetic and weak nuclear forces, wouldn’t work. The strengths
of the U(1) and SU(2) interactions of the Standard Model need to be about
the same if we’re going to combine the U(1) B0 field quantum with the
SU(2) W0 quantum to make the physical photon and Z0.

So if the weak-isospin and electric charges of matter particles are roughly
the same, then why is the weak force weak? As mentioned in the section
“Particles of Force” in chapter 5, the answer has to do with the large mass,
roughly 100 proton masses, of the W� and Z0 field quanta. Recall the de
Broglie relation

the wavelength l of an object is inversely proportional to its energy/mo-
mentum p. The W and Z field quanta, each possessing substantial mass-
energy, thus have associated with them a very short wavelength, about 10�18

meters, which is small even in comparison to the 10�15-meter radius of the
proton.

So it’s not that the W and Z weak field quanta interact with matter any
less readily than the photon but, rather, that their sphere of influence sim-
ply doesn’t extend very far. If two objects, such as the repelling spheres of
our lecture demonstration, are not within 10�18 meters or so of each other,
then they can’t influence each other through the weak force. Put another
way, it’s not that the electron’s weak-force charge is too weak, it’s just that,
as far as the weak force is concerned, they simply miss each other. It’s easy
to misinterpret this lack of contact as an inherent feebleness in the weak
force and that is what was done in the early days and why physicists mis-

   
l = h

p
;
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takenly thought of the weak force as being weak when, in fact, it is really
just short ranged.

If this picture is correct, then to the extent that particles such as electrons
become fast-moving objects in an accelerator, rather than static charges in
an introductory physics demonstration, the now sizable energy/momentum
that can be possessed by the exchanged photon should be associated with a
substantially shorter photon wavelength, again according to the de Broglie
relation. Thus, as we go to higher and higher energy in the lab, the sphere
of influence of photons that exchange a lot of energy should begin to shrink,
and the likelihood of the electrons interacting with each other through the
electromagnetic force should get less and less.

This is exactly what happens, and at beam energies of the order of the
mass-energy of the W and Z or higher, the electromagnetic force is indeed
observed to be roughly the same strength or really, of similar influence, as
the weak force. At these energies and above, the unification of the weak nu-
clear and electromagnetic interactions becomes patently clear.

In any regard, we have a point of absolutely central importance to our
development of a unified theory of the electroweak interaction. Our theory
is a gauge theory, based on chapter 8’s principle of local invariance under
a U(1) gauge group of phase changes and a separate SU(2) gauge group of
phase/weak-isospin changes. Identifying the gauge group(s) at play is most
of the work we need to do to specify any given gauge invariance–based the-
ory, but we also need to specify the nature of the charge associated with each
gauge group, and then determine the overall strength of that charge with
some appropriate experiment (such as measuring the strength of the repul-
sive force between two fundamental particles).

The charge associated with the SU(2) gauge group is, as we have dis-
cussed at some length, a quality known as weak isospin. The charge associ-
ated with the U(1) force, however, is something new, which we haven’t yet
discussed. Just as the photon acts to exert an influence between particles
that carry electric charge and the W�, W�, and W0 act to exert an influ-
ence between particles that carry weak isospin charge, the U(1) field quan-
tum (the B0) acts between particles possessing something known as weak
hypercharge.

What exactly is weak hypercharge? To be frank, we don’t really care be-
cause there is no U(1) field quantum; the real field quanta are the photon
and Z0, which are mixtures of the U(1) and neutral SU(2) field quanta.
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Since the photon concerns itself solely with electric charge, electric charge
is thus some combination of U(1) weak hypercharge and SU(2) weak
isospin. Flip it around, and you see that weak hypercharge is just some com-
bination of weak isospin charge and electric charge. So, if you really want
to know what weak hypercharge is, there’s your answer.

But the essential point is that, whatever the U(1) weak hypercharge and
SU(2) weak isospin charges are, they have about the same strength for any
given fundamental matter particle, quark or lepton. We haven’t discussed
how they are determined experimentally, and we won’t, because the prin-
ciple of hidden symmetry obviates the need to do so. But they are of about
the same magnitude, and the “weakness” of the weak force—the charac-
teristic of the weak force that first led physicists in the early twentieth cen-
tury to suspect that it was a new and independent force—is due to the fact
that its field quanta happen to be very massive, rather than massless like the
photon. It is clear that the issue of field-quanta masses must play a central
role in any useful theory of the weak, or electroweak, interaction.

Massive Force Quanta: The Downside

But there’s a serious problem. There’s no straightforward way to incorporate
the mass of force-field quanta into a gauge theory. Everything begins with
the quantum-mechanical wave equation—the Schrödinger equation, Dirac
equation, or whichever of the several possibilities is appropriate for the task
at hand. The requirement of invariance under local transformations be-
longing to a Lie group of “gauge symmetries” then leads to the introduction
of the quanta of the interaction’s force field. Recall, though, that the wave
equation is just a quantum-mechanical representation of the notion of en-
ergy conservation. Since Einstein tells us that there is energy associated with
mass, then if we want our gauge quanta to have mass, we have to include
their mass-energy in the energy balance accounting represented by the
terms in the wave equation.

The precise form of these additional mass-energy terms is beyond our
scope, but the procedure for including them is well defined and can be
found in any modern textbook on relativistic quantum field theory (note
9.3). What can also be found in these same books is a straightforward, two-
line demonstration that such a term, incorporating the mass of the field
quanta into the wave equation, destroys the local Lie group (gauge) invari-
ance of the wave equation that we worked so doggedly to preserve. It doesn’t
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matter what Lie group of phase/internal-symmetry transformations we’re
working with. If we try to incorporate field quanta masses by brute force—
by just adding into the wave equation the extra terms that account for the
mass-energy of the field quanta—the wave equation will no longer be in-
variant under local transformations selected from the Lie group.

Is this really something to worry about? We are trying to develop a work-
ing theory of the electroweak interaction. Maybe we could arrive at such a
theory in two steps. First, we adhere, as Yang and Mills instructed, to the
principle of local gauge invariance to introduce the field quanta and de-
velop the rules for their minimal interaction vertices. With that done, per-
haps we could just throw that principle out at the last minute by then adding
in the terms accounting for the mass of the field quanta. We’d still be mak-
ing use of the principle of local gauge invariance to develop the theory’s
rules of interaction, although the final wave equation we end up with, after
tacking the mass-energy terms on, would no longer exhibit local gauge in-
variance. But who cares; as long as the theory works, we should be satisfied.

But it won’t work! To write down a relativistic quantum field theory for
any given force—a set of field quanta and associated minimal interaction
vertex rules for their associations with appropriately charged matter—is one
thing. To have this theory yield sensible results for the modeling of all pos-
sible processes (Feynman diagrams), and for any energy of the participating
particles—to be renormalizable—is another. But the only theories we know
of that are renormalizable are theories based on local gauge invariance. So
any term we wantonly tack onto the wave equation that compromises this
invariance necessarily destroys the theory.

So the brute force introduction of the mass-energy terms in the wave
equation, with their corresponding destruction of local gauge invariance,
does a much more practical damage to our theory than the loss of a mere
philosophical tenet. It renders the theory useless as a representation of the
interaction we are attempting to model. Without local gauge invariance,
there are guaranteed to be processes whose calculation within the theory
gives results that are nonsensical. Gauge theory and intrinsically short-
ranged forces mediated by the exchange of massive field quanta are simply
incompatible, it would seem, and this incompatibility deeply threatens all
the progress we have made heretofore.
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Screening and Effective Mass

You can’t listen to a portable radio if you’re sitting, fully enclosed, inside of
a conducting metal cage. A metal box—or even a metal mesh—somehow
absorbs the radio waves that would otherwise make it to the radio’s antenna.
However, radio waves seem to make it just fine through most building ma-
terials and through stretches of the earth’s atmosphere in excess of 100 miles.

The reason for this is that a metal conductor, unlike the insulators that
comprise the atmosphere and most building materials, have a high density
of electrons that are free to move under the influence of electric and mag-
netic fields. These electrons, known as conduction electrons, are the one or
two electrons per atom that exploit the regular pattern of closely spaced
atoms in the metal to become the property of the metal as a whole, rather
than that of the individual atoms to which they belonged before the metal
was forged, and thus are able to move freely about within the conductor.

Radio waves are relatively low frequency waves of electromagnetic radi-
ation, like light, but with a relaxed oscillation frequency of roughly 1 mil-
lion cycles per second (visible light has a frequency of roughly 1016 cycles
per second). The medium that oscillates in the case of electromagnetic ra-
diation is the electromagnetic field, the magnitude and direction of the
force that would be exerted by the radiation (radio wave) on any electrically
charged object placed in its path.

Electrons, of course, are electrically charged, so if an electron that’s free
to move, such as a conduction electron in a piece of metal, is in the path of
a wave of electromagnetic radiation, it will begin to jiggle back and forth at
the frequency of whatever radiation is incident on it. But jiggling electri-
cally charged particles create electromagnetic radiation of their own, and
this induced radiation acts to cancel the incident radiation as it moves
through the metal.

No single electron will respond enough, in its jiggling motion and sub-
sequent canceling radiation, to diminish much of the original radio wave’s
amplitude. However, if a large number of free electrons are packed densely
together, as they are in a conductor, the accumulated effect of each of the
large number of individual free electrons lying in the path of the radio wave
will lead to the incident wave’s total cancellation in the region beyond the
conductor. For example, in a good conductor such as aluminum or copper,
the density of free electrons is high enough so that a foil just a few tenths of
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a micron (roughly one hundred-thousandth of an inch) thick will com-
pletely cancel any radio wave incident on it.

So, if you’re sitting inside a conducting box, even if the walls are rela-
tively thin, no electromagnetic radiation from outside the box will penetrate
the box to the antenna of your radio. This property of conducting surfaces—
their tendency to block the passage of electromagnetic radiation—is re-
ferred to as screening.

The relevance of this discussion to that of the massive force-field quanta
is direct (note 9.4). From the point of view of quantum electrodynamics,
electromagnetic radiation is composed of a stream of electromagnetic force-
field quanta (photons) propagating in an organized way through space.
These photons have a range of influence that is essentially infinite; you can
often pick up an AM radio station hundreds of miles from its transmitter. In
fact, the field of radio astronomy is predicated on the detection of radio wave
signals from sources located in the farthest reaches of the universe.

However, if you place a conductor—a high density of free electrons—in
the path of a radio wave, the radio wave will penetrate only a short distance
into the conductor. The range of influence of the photons that comprise the
radio wave is no longer infinite but is instead reduced to a mere fraction of
a micron.

Now, we’ve argued that the weak nuclear force is not really weak; it only
appears so because it is short ranged, with a range of influence much smaller
than even the radius of a proton. The short range of the weak force is due,
in turn, to the fact that its field quanta—the W and Z particles—are mas-
sive. If the quanta associated with the mediation of a given force are mas-
sive, then the range of influence of the force becomes limited.

But when a photon, which we know in truth to be massless, enters a con-
ductor, its range of influence becomes limited. It’s as if, on entering the con-
ductor, the photon suddenly becomes a massive field quantum: the cumu-
lative screening of the electrons in the conductor acts to make the photon,
in effect, massive. We say that the screening process generates an “effective
mass” for the photon.

Formally, then, we can model the behavior of electromagnetic radiation
inside a conductor by treating each photon in the radiated wave as a mas-
sive field quantum. However, to say that we can formally treat a photon in-
side a conductor as being massive is not to say that a photon really does be-
come massive when it enters the conductor.

In fact, we know that this “mass” is really not a property of the photon it-
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self because it depends on the environment in which the photon happens
to find itself at any given time. The more dense the free electrons in the
conductor, the greater the screening effect, and the larger the effective mass
of the photon. The assignment of the property of “mass” to a photon inside
a conductor is really just a fabrication, a modeling tool with no physical ba-
sis. To find out what the mass of the photon really is, we have to study its
properties in a vacuum, when it’s not under the influence of any jiggling
charged particles. When we do that, we see clearly that the range of influ-
ence of the photon is unrestricted: the photon is massless.

But what if the whole universe were a conductor (technically, a
“plasma”) filled with a uniform density of free electrons? In this case, no
matter where we did our experiment to probe the properties of the photon,
it would always behave as if it had a particular mass. This mass would de-
pend on the density of electrons in the universe, but since that density
would be uniform (unchanging from point to point in space), the effective
mass of the photon would always be the same, no matter where one did the
experiment. There would be no place at which one could study the prop-
erties of the photon away from the influence of the jiggling electrons, for
the jiggling electrons would be everywhere. How then would one know that
the photon is, in truth, massless? We wouldn’t.

The Solution, Part 1: The Higgs Field

At this point in our discussion, our U(1) and SU(2) gauge theory of the elec-
troweak interaction is under a grave threat from the need to introduce gauge
symmetry-destroying masses for the W and Z force-field quanta. In the next
couple of sections, we’ll rescue the theory, and the general notions that will
save it from the scrap bin are those of “background fields” and “hidden
gauge symmetry.” These ideas and their application to the theory of the elec-
troweak interaction did not spring forth at a discrete point in time from a
single imaginative mind. Instead, they were developed steadily over a pe-
riod of roughly seven years, between 1960 and 1967, through a series of con-
jectures put forth by a number of physicists, not all of them particle physi-
cists, among whom we can find some of the greatest theoreticians of the
time.

In 1960, the Japanese American physicist Yoichiro Nambu of the Uni-
versity of Chicago suggested that it’s not necessary to think of the vacuum,
the seeming void that forms the bulk of space in the universe, as being
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empty. Roughly ten years earlier, the development of quantum field theory
had introduced the notion of the living vacuum in which virtual particle-
antiparticle pairs are continuously popping into and then annihilating
themselves out of existence in the void of space. Nambu suggested that we
are free to take this one step further. There’s no reason, he claimed, to de-
mand that the fluctuations of the living vacuum occur against a backdrop
of nothingness. The underlying, unfluctuated state of the vacuum could in-
stead be one in which some fields—be they fields associated with the pres-
ence of matter, forces, or even something altogether new and different—
provide an enduring background presence, against which the machinations
of the universe play out.

The behavior of an electromagnetic field in a conductor, a phenome-
non more likely to pique the curiosity of a solid-state physicist interested in
the bulk properties of matter than a particle physicist, can be treated for-
mally by ascribing an effective mass to the photon. Accordingly, it was Philip
W. Anderson of Bell Laboratories in Murray Hill, New Jersey, one of the
most influential figures in the history of solid-state physics, who first sug-
gested that the phenomenon of screening could be responsible for the mass
of force-field quanta. Anderson’s original suggestion, however, was in the
context of the strong nuclear force, an interaction we now believe to be me-
diated by the massless gluon.

Several papers that appeared in 1964, the most prominent of which was
due to Peter Higgs of the Institute of Mathematical Physics at the Univer-
sity of Edinburgh in Scotland, enunciated Anderson’s connection between
screening and mass in the full context of relativistic quantum field theory.
This was the point at which the name Higgs became associated with the de-
veloping notion of hidden gauge symmetry.

Finally, the 1967 work of Weinberg and Salam applied the notion specif-
ically to the U(1) plus SU(2) gauge theory of the electroweak force, clear-
ing the last major hurdle in the formulation of the Standard Model of the
electroweak interaction.

We’ll begin by considering Nambu’s 1960 conjecture. According to
Nambu, there should be nothing wrong in principle with the notion that
the vacuum—the nothingness that fills the voids in our predominantly
empty universe—contains an appreciable, uniform average value of the
free-electron matter field, that is, a uniform density of electrons.

Were this the case, the nature of the electromagnetic interaction—the
repulsion, say, of two like electric charges—would be drastically altered.
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The electromagnetic field quantum (photon) that the two charges ex-
change to effect this repulsion would now be screened by the ever-present
background matter field. Thus, to model quantitatively the nature of the re-
pulsion, we would ascribe to the photon a mass—effective, but a mass none-
theless—of a magnitude set by the density of the uniform background elec-
tron field. As a result of this effective mass, the interaction mediated by the
photon would become short ranged, and so any two charged objects sepa-
rated by an appreciable distance—by a distance greater than the restricted
range of influence of the now-massive photon—would have essentially no
effect on each other. For example, the two charged spheres in the physics
demonstration at the beginning of this chapter would no longer repel each
other, and the theory of the electric force that we teach college students
would be vastly different from its current form.

But now, consider the question posed at the end of the previous section:
If the average value of this background electron field is uniform, pervading
every nook and cranny of space-time, how would we ever know that the pho-
ton is actually massless? How could we tell that the short-ranged nature of
the electromagnetic interaction is due to the fact that the fundamentally
massless photon is only acting as if it has a mass? We couldn’t. Since there
would be no unpolluted region of space free of this pervasive background
field in which to mount an experiment to determine the true mass of the
photon, we would have no way of knowing that the photon is massless. We
would conclude, from the result of any experiment done to determine it,
that the photon is massive.

Although possible in principle, physically this is not the case; the pho-
ton is observed to be massless. Instead, our interest in these ideas stem from
the realization that this picture may well be appropriate for the description
of the massive W and Z force-field quanta of the weak nuclear interaction.
Let’s explore this possibility.

If we try to interpret the observed masses of the W and Z quanta in this
way, we need to hypothesize that there is a background density of some field
with which the apparently massive W and Z quanta (but not the massless
photon) interact. For example, neutrinos take part only in the weak inter-
action, so a background neutrino matter-field density would generate an ef-
fective mass only for the field quanta of the weak nuclear force. So, the neu-
trino matter-field would be a candidate for this background field, although
there are many other possibilities.

Since we can’t yet say much about this hypothetical background field
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(other than the fact that it carries weak-isospin charge so that the weak force-
field quanta interact with it), it could possibly be a new and, heretofore, un-
observed fundamental field. For all we know, at this point in the discussion,
it could be the matter field associated with the neutrino, but it also could
be some new matter field similar to that of the known quarks and leptons,
some new force field similar to that of the known force-field quanta, or
something completely unlike any fundamental field that has been observed
to date. For the moment, absent any information as to what this field might
actually be, we’ll give it an arbitrary name. We’ll call it the “Higgs field.”

The Solution, Part 2: Hidden Symmetry

Intriguing as this suggestion may be, that the mass of the weak nuclear force-
field quanta may be a convenient but physically misguided interpretation
of the screening effect of some pervasive background field, one can ask what
it buys in our attempt to formulate a theory of the weak interaction. Re-
gardless of whether the mass is real or is an effective mass generated by
screening effects, if we include the mass-energy term of the force-field
quanta into the wave equation, won’t our precious gauge symmetry still be
violated, leaving us with the same quandary we started with?

The answer is no, not necessarily. However, to introduce force-field
quanta masses, even effective masses generated by screening effects, with-
out violating gauge symmetry, we must be very clever. This is where the no-
tion of hidden gauge symmetry enters.

Most of us who are unfortunate enough to remember what life was like
when we were thirteen years old will recall that one of the predominant in-
fluences that shaped our lives at that age was the unrelenting coercion of
peer pressure.

Picture a schoolyard on a crisp December morning, with a delicate layer
of frost adorning the otherwise brown grass. Add to the picture several hun-
dred barefoot teenage boys, each one confronted by a choice between one
of four pairs of jogging shoes produced by four different manufacturers.
Frankly, even in the best of conditions, it doesn’t really matter which pair
one chooses; they are all comfortable and well constructed. And for the sit-
uation at hand, a schoolyard full of young men shuffling around barefoot
in the cold, it should matter even less. Any of the four pairs will separate the
souls of their feet from the numbing cold.

The situation is symmetric with respect to the choice of shoes; the desired
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effect (saving one’s toes from frostbite) is independent of which company’s
shoes each student chooses. But each student does have to make a choice.

Teenage mentality being as it is, none of the boys dares to put on a pair
of shoes, for fear of picking the pair that exposes their lack of awareness of
fashion. Eventually, some student decides he can’t take the cold any longer,
and he grabs one of the pairs of shoes and puts them on as quickly as his
numbed fingers permit. His neighbors, accepting his cue, quickly follow
suit, and in relatively short order, the entire field of adolescents stands in a
state of relax, uniformly clad in the same brand of shoe.

At this point, a department store employee on his way to work happens
to glance over to the schoolyard and sees the multitude of young men stand-
ing there, all wearing the same brand of shoe, surrounded by discarded pairs
from the three other manufacturers. His gut reaction is to rush into work to
tell the manager to order a large number of the selected brand’s shoes, but
on further reflection, he thinks better of it. Why?

The reason is that the symmetry, the intrinsic underlying equality of all
four brands, still pertains. A student from another school who hadn’t been
at this particular schoolyard at the time of the arbitrary selection of the cho-
sen brand would be no more likely to purchase that brand than any of the
other three. In our schoolyard on that frigid December morning, the sym-
metry was not broken by the capricious selection of one of the brands over
the others, but it was masked, or hidden, by the choice. A careful study, in
this case, appropriate interviews by a person well schooled in adolescent psy-
chology, would reveal that the symmetry is still there. Eventually, the school
counselor would get the students to admit they couldn’t have cared less
which of the pairs of shoes ended up on their feet.

This is the essence of the notion of hidden symmetry. One can be pre-
sented with a physical system whose appearance is one of broken symmetry
(the selection of the same pair of shoes by all the students seems to suggest
that pair is somehow preferable) that belies the true underlying symmetry
of the system (the fact that there really is no difference whatsoever in the
quality of the four choices of shoes, and the choice of a particular pair was
completely arbitrary). Some additional external factor, in our example, the
discomfort of standing around barefoot, required that some choice, no mat-
ter how arbitrary, be made by the system. Once the choice was made, some
internal property of the system—the psychological interdependence of the
students—required that the entire system adopt the same arbitrary choice,
leading to the masking, or hiding, of the true underlying symmetry. But the
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symmetry is still there. No one really could give a damn about which pair
of shoes are on his feet.

Back in the world of particle physics, the question in the early 1960s was
whether it is possible to use this hidden symmetry idea to introduce the mass
of the W and Z weak force-field quanta in such a way that the correspond-
ing mass-energy terms in the wave equation reflect a hidden, as opposed to
a broken, gauge symmetry. If so, then at its core, the model would still be a
U(1) and SU(2) gauge invariant, and the theory might thus be well behaved.

A slightly different point of view may shed more light. If we include the
mass-energy terms in the wave equation, gauge invariance, symmetry with
respect to local U(1) and SU(2) transformations, is destroyed. The two-line
mathematical demonstration that the inclusion of the mass-energy terms
into the wave equation ruins the gauge symmetry is clear and incontrovert-
ible. The theory as such will not work.

However, perhaps there are additional, compensating terms that we can
add to the wave equation, along with the mass-energy terms, that fix things
up for us by restoring the gauge symmetry of the model. Mathematically,
it’s not possible to do this in a way that leaves the wave equation apparently
symmetric with respect to local U(1) and SU(2) transformations. It is possi-
ble, however, to introduce terms that reflect a hidden symmetry.

Thus, by introducing the mass terms for the W and Z quanta along with
additional, compensating terms, it’s possible to avoid the completely broken
symmetry that is suffered when the mass-energy terms are inserted by them-
selves into the wave equation. Might it be that these extra terms, which re-
store a hidden, rather than apparent, gauge symmetry to the wave equation
are enough to rescue the self-consistency of the theory?

The answer is yes, and the key to the procedure is to introduce all of these
terms, the mass-energy terms as well as the additional, compensating terms
that restore the hidden gauge symmetry, using the introduction of a new,
all-pervasive background field: the Higgs field.

The Standard Model

In table 5.1, the table showing the array of currently known fundamental
matter particles, the quarks and leptons come in groups of two. This group-
ing reflects an essential property of the weak force: that the weak nuclear in-
teraction cannot distinguish between leptons and their associated neutrino,
or between associated up-type and down-type quarks. This led us to hy-
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pothesize that the weak force should be invariant under changes (really, lo-
cal transformations) that come from the group SU(2) of transformations in
weak-isospin space—transformations that swap electrons with neutrinos,
down quarks with up quarks, and so forth. The SU(2) invariance of the weak
force is telegraphed by the fact that fundamental particles come in doublets
whose members can be freely substituted for one another in any given weak
process without changing the nature of the process.

When we apply the gauge principle of chapter 8, our desire to preserve
invariance with respect to these transformations in weak-isospin space
forces us to introduce three massless force-field quanta: W�, W�, and W0.
When we mix the neutral W0 quantum with a little of the B0 quantum of
the U(1) “weak hypercharge” symmetry group, we get the Z0. Together, the
W�, W�, and Z0 act as the three field quanta of the weak nuclear force but
with one important shortcoming. Since the weak interaction is short
ranged, the W�, W�, and Z0 must all be massive, but introduced in this
way, they are massless, so something additional must be done to make this
SU(2) and U(1) theory work out. Here’s how Weinberg and Salam used the
ideas of the previous two sections to finesse this issue in their presentation
of what has come to be known as the Standard Model of the electroweak
interaction.

The idea is to hypothesize a new doublet of fields that, just like the quark
or lepton matter-field doublets, is invariant under SU(2) and U(1) transfor-
mations in the spaces of weak isospin and hypercharge (see fig. 9.2). As for
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is a complex field, that is, a function that assigns a complex number (repre-
senting the strength of the field at that point) to each point in space and time.



any of the doublets of matter fields in table 5.1, we ask that this Higgs dou-
blet of fields be invariant with respect to local SU(2) transformations. Just
as for all the other doublets, this introduces a minimal interaction vertex be-
tween the Higgs doublet fields and the W and Z field quanta: the particles
of the Higgs doublet fields can interact with each other by exchanging W
and Z bosons.

But that’s not what we’re after! What we want to do is to have the Higgs
field be an all-pervasive background field, so that the interaction of the W�,
W�, and Z with the Higgs field leads to the screening effect we just learned
about (in the section “The Solution, Part 1”), and thus generates the (ef-
fective) masses of the W�, W�, and Z0 that we need if the theory is to make
sense. We don’t need a theory that describes the interaction of the particles
of the Higgs doublet; we’ve never observed such particles, so we don’t fur-
ther our understanding of nature by describing their interactions. What we
do need is a Higgs field that, rather than as a discrete particle that exists at
a single point in space and time, manifests itself as a uniform presence
throughout space-time, providing the ubiquitous background field that we
need to generate the effective masses of the W�, W�, and Z0. Recalling
Yoichiro Nambu’s inspiration, we need to hypothesize that the vacuum of
the cosmos, rather than being blank and empty, is uniformly filled by the
Higgs field.

And herein lies the beauty of hidden symmetry. Let’s take one of the two
fields of the Higgs doublet, say, the lower member of the Higgs doublet of
figure 9.2, and ask what happens if that field pervades every nook and cranny
of the cosmos. Just as we don’t perceive the continual fluctuation of virtual
particle/antiparticle fields in and out of the living vacuum of quantum field
theory, we can’t perceive this uniform background presence of the lower
field of the Higgs doublet. Yet, we hypothesize that it is indeed there, ex-
erting a sort of cosmic drag force on anything that interacts with it, and
thereby giving mass to the W and Z quanta.

What have we done? We’ve hidden the symmetry of the Higgs doublet.
By choosing one of the two doublet fields and not the other to provide our
all-pervasive background field, we seem to be suggesting that the universe
is not symmetric with respect to the SU(2) transformations that swap the
two doublet fields. The swapped universe, with the background provided by
the upper Higgs doublet field, is a manifestly different universe than the uni-
verse we chose. The symmetry appears to be broken.

But the symmetry is not broken. The W and Z particles still interact just
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as readily with the upper as the lower Higgs doublet field. It’s just that the
upper Higgs doublet field isn’t present everywhere in space, and the lower
doublet field is. For some reason (more on this reason in a moment), the
universe had to choose one of the two Higgs doublet fields to be the all-
pervasive background field, and it chose the lower. It could just as easily
have chosen the upper, but it didn’t. Just as the barefoot students had to
make a choice of tennis shoes to protect their feet from the cold, the uni-
verse had to ( just after the big bang) make a choice of which Higgs doublet
field will develop a uniform presence throughout space. Due to the under-
lying symmetry, the choice was arbitrary, but the choice had to be made.
And once made, the choice led to a physical state that belies the true, un-
derlying symmetry of the Higgs doublet field.

And this is exactly what we need. Hiding the symmetry of the Higgs dou-
blet in this way provides an all-pervasive background field that, through the
screening effect we discussed a few pages back, generates the mass of the
W�, W�, and Z0. But, in addition—and this is the essential point—it pro-
vides that mass through interactions between the Higgs, W, and Z fields for
which the SU(2) symmetry is hidden, rather than broken outright. By pre-
serving the underlying gauge symmetry in this way, Weinberg and Salam
speculated that this approach would lead to a self-consistent, or renormal-
izable, theory.

Now, this being physics, and (I hope) not fiction, we need to compel the
symmetry to hide itself according to some physical principle—we need to
give the universe a concrete reason to hide the SU(2) symmetry by arbi-
trarily choosing a preference for one of the two members (upper or lower)
of the Higgs field doublet. In the model of Weinberg and Salam, this was
accomplished by introducing a new and somewhat ad hoc notion into the
picture: that of the Higgs potential.

To understand the role of the Higgs potential, consider the following
analogy. A large number of identical weights, each attached to its own iden-
tical spring, lie flat on a lab bench. Lying flat, there’s nothing to compel the
springs to extend; the value of the spring extension field throughout space
(for all springs) is zero. But now, dangle the springs from a clothesline, and
suddenly an external property, the pull of gravity, causes each mass to ex-
tend its spring by an amount that is the same from spring to spring. Dan-
gling, the value of the spring extension field is nonzero and uniformly so
from spring to spring (point to point in space). The Higgs potential, in this
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analogy, is provided by the external pull of gravity; the value Higgs field is
just the degree of extension of each of the springs.

Or, in terms of our schoolyard metaphor, the external Higgs potential is
the sensation of cold on the feet of the students, and their resulting physio-
logical need to get something on their feet, while the magnitude of the
Higgs field can be one of two possibilities: zero (no shoes on) or one (one
of the four equivalent pairs of shoes on each student’s feet).

So, the role of the external Higgs potential is to compel the universe to
adopt a particular magnitude, at every point in space, for the value of the
Higgs field. Which of the two components of the field—upper or lower—
the universe selects to develop this pervasive field is arbitrary. The external
property (gravity in our analogy) compels the universe to adopt a nonzero
value of some component of the Higgs field (the amount of extension of
each hanging spring) uniformly throughout space-time (from spring to
spring), but the choice of which component of the Higgs field develops this
uniform magnitude is arbitrary.

So the external Higgs potential, whatever it is, compels the universe to
adopt a nonzero value of one component of the Higgs field that uniformly
pervades all of space and time and, as a by-product, gives mass to the W and
Z bosons. The universe, arbitrarily, has chosen this to be the lower of the
two Higgs field components. What role, then, does the upper component
play?

Consider, say, the upper component of the up/down quark doublet of
table 5.1—the up-quark matter field. A nonzero value of this field at any
point in space-time indicates that, at that location and at that time, one or
more up-flavored quarks is present. At most space-time points, the value of
the up-quark matter field is zero, but wherever there happens to be an
atomic nucleus that contains up quarks, the value of this field is nonzero.
Similarly, a nonzero value of the down-quark matter field indicates the pres-
ence of one or more down-flavored quarks, and so on for all the matter- and
force-field quanta of tables 5.1 and 5.2.

Now, what I would like to be able to say is the following. Just as a nonzero
value of the up-quark matter field indicates the presence of an up quark, a
nonzero value of the upper component of the Higgs doublet field indicates
the presence of a quantum of the upper-component Higgs field. Thus, the
upper component of the Higgs doublet is a field associated with a Higgs par-
ticle, a particle that goes by the name of the Higgs boson.
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In spirit, this is true, and for the most part we won’t get into any trouble
thinking of the Higgs boson in this way. However, throughout this book, I’ve
taken some pains to avoid confusing those readers who have some back-
ground in this field, so in that spirit, the next few paragraphs will provide a
more accurate picture of how the Higgs boson arises from the Higgs dou-
blet field.

The Higgs doublet is in fact a doublet of complex fields; rather than two
fields components, it represents four field components: one component for
each of the real and imaginary parts of the upper and lower field in the dou-
blet (note 9.5). Also, just as the upper and lower components of the matter
fields of table 5.1 differ by one unit of electric charge, so do the upper and
lower Higgs field components; the upper component is charged, while the
lower component is electrically neutral.

In quantum field theory, the representation of a massive spin-1 particle
(such as the W and Z force-field quanta) is qualitatively different from that
of a massless spin-1 particle. The massive spin-1 particle has more types of
motion available to it, so it takes more field components to describe its mo-
tion. So, when the two W and one Z boson get effective mass from the
screening effect of the pervasive Higgs field background, they need to in-
corporate more field components into their description. They do this by co-
opting three of the four components of the (complex) Higgs doublet field.
The two charged W bosons each take one of the two charged (upper) com-
ponents, while the neutral Z boson takes one of the two neutral (lower) com-
ponents. The leftover neutral component is the one that has developed the
uniform, pervasive nonzero value (in response to the influence of the ex-
ternal Higgs potential) that causes the screening effect that makes the W
and Z bosons behave as if they have mass.

The leftover component of the Higgs field—the one that develops the
uniform nonzero value—can deviate, at any individual point in space-time,
from this pervasive uniform value. Differences relative to this uniform back-
ground value (rather than differences relative to zero) indicate the presence
of the quantum of this component of the Higgs field. This quantum, an
electrically neutral, spin-0 particle, is the Higgs boson.

Whether you think of it the easy but less precise way presented first or in
the more rigorous terms of the preceding three paragraphs, one point stands.
The Standard Model of Weinberg and Salam is able to account for the
masses of the W and Z bosons through the introduction of a new field, the
Higgs doublet field, which is symmetric with respect to the group SU(2) of
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transformations in the internal space of weak isospin. Imposing an external
factor (the Higgs potential) that hides this symmetry, the W and Z bosons
get an effective mass but in such a way that the theory remains intrinsically
symmetric with respect to SU(2) weak-isospin transformations. When this
is done, though, something altogether new pops out of the theory: an as-of-
yet undiscovered particle, electrically neutral and with no spin, known as
the Higgs boson.

The Higgs boson, if in fact real, is unlike any currently known field quan-
tum; among other things, there are no known fundamental particles with
no intrinsic spin (spin-0), as the Higgs is predicted to be. At energies high
enough to excite this quantum of the Higgs field, the Higgs boson would
mediate a new type of electroweak interaction that lies completely beyond
the realm of our current experience. In addition to the effect this would
have on our view of the fundamental interactions of nature, determining
the properties of the Higgs boson and associated Higgs potential would
likely have (although in ways we won’t discuss) a profound influence on our
formulation of cosmology, the theory of the birth of the universe and of the
evolution of its overall structure.

The success of the Standard Model (to be emphasized shortly) compels
particle physicists to go out on a limb—to predict the existence of a new and
unprecedented fundamental component of nature. Just as Paul Dirac cor-
rectly postulated the existence of antimatter to make his relativistic theory
of quantum mechanics work, contemporary particle physicists feel confi-
dent that the Higgs, or something very much like it, lies within the reach of
the next generation of particle accelerators.

One more thing: although we’ve talked at length about the mass of the
W and Z force-field quanta, we’ve made no mention whatsoever about the
masses of the other fundamental particles, the leptons and quarks. In one
very important way, the twelve matter-field quanta are no different than the
W and Z force-field quanta: the brute force inclusion of their masses in the
wave equation destroys the underlying Lie group gauge symmetry that we
so covet. Just as we need to be ingenious by introducing the force-field
quanta masses in a way that hides, rather than destroys, the underlying
gauge symmetry of the theory, we must be similarly clever when we incor-
porate the matter-field quanta (fermion) masses.

Luckily, the background Higgs field accomplishes this for us with no ad-
ditional effort. The fundamental fermions all carry weak-isospin charge
(they all interact with the W and Z weak force-field quanta), and so they all
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interact with the Higgs background field. The screening process responsi-
ble for providing the quarks and leptons with their (effective) masses is es-
sentially identical to that of the force-field quanta.

So we pose the following question: If this Higgs mechanism approach is
correct, then what objects can we point to as being truly and fundamentally
massive, rather than having instead an apparent mass due to the screening
effects of the background Higgs field? Everything we know of is composed
of various combinations of the twelve quarks and leptons, bound together
by the continuous exchange of force-field quanta. If the Higgs mechanism
is conceptually accurate, all of these fundamental constituents derive their
inertial properties—their appearance of massiveness—from Higgs field
screening effects. As we’ll see shortly, there is substantial circumstantial ev-
idence (although falling short of direct proof for now) that nature does in-
deed employ the Higgs field in the generation of effective masses for the
fundamental particles.

Additionally, according to Einstein’s relation E � mc2, for a system of two
or more objects that are bound together by the forces of nature, internal en-
ergy associated with the mutual orbital motion or the continual exchange
of force-field quanta between the objects will also manifest itself as mass.
All but a few percent of the mass of protons and neutrons, and thus of the
stuff we think of as ordinary matter, is due to such internal energy.

Thus, one of the most basic and common-sense attributes of a physical
object—that of mass—has been removed from the conceptual lexicon by
the juggernaut of modern physics, having been exposed as the combination
of two illusory effects: those of internal mass-energy and of the Higgs field
screening currents. The notion of mass, it would seem, is a sham.

The Reflected Universe

Watching a movie or TV show, you may have seen the following. A scene
unfolds, apparently normal in all respects. As the camera pans out, an in-
congruous border suddenly appears on one edge of the picture. As the cam-
era pans even farther back, you realize that the scene is being reflected into
the camera lens by a mirror.

Until the edge of the mirror appears, there is nothing whatsoever to hint
at the fact that the scene is being filmed in the reverse image of a mirror re-
flection. There’s nothing evident from the flow of activity, from the se-
quence of physical events in the scene, that seems out of place. Either view
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of the scene, the direct or the mirror-reflected, seems to flow perfectly nat-
urally. The physical laws that govern the activity in the mirror-reflected
scene are, by all appearances, identical to those of our direct-image, unre-
flected world.

One is thus drawn to the two following, and equivalent, conclusions.
First, the laws of physics are unchanged, or invariant, under the operation
mirror reflection. Second, there is no experiment that one can do, nor ob-
servation that one can make, that can distinguish between the following two
possibilities: (a) that the experiment was performed in our universe or (b)
that the experiment was performed in a universe that is a mirror reflection
of ours but precisely identical to our universe in every other way.

Mirror reflection, or more formally, parity inversion (note 9.6) is an ex-
ample of what is known as a discrete symmetry operation. When we talk
about a particular symmetry of a given physical law, we imply that there is
a group of operations under which the law is invariant, or symmetric. In the
case of parity inversion, the group of operations has but two elements—one
for which you do nothing to the system under study, and one for which you
mirror-reflect, or parity-invert, the system. If you parity-invert the same sys-
tem twice, you get back to where you started from, the uninverted system.
(Given this, can you convince yourself that this two-element set satisfies all
the requirements of a mathematical group that were laid out in chapter 6?)

The label “discrete” arises because parity inversion is all-or-nothing—
either the system is mirror reflected or it isn’t. For rotations, one has a full
range of possible angular changes to the system’s orientation; there is a con-
tinuum of possibilities, corresponding to the continuum of possible angles
of rotation. The invariance of physical laws under such changes of orienta-
tion establishes rotation as a continuous symmetry of nature. For all-or-
nothing parity inversion, there is no corresponding continuum of possibili-
ties that smoothly ease the system from a direct to a mirror-reflected
orientation. Instead, the transition is discontinuous, or discrete, with but two
elements: mirror-reflect or do nothing. Parity inversion is a discrete sym-
metry of nature.

Since the two-element (mirror-reflect or do nothing) parity group repre-
sents a symmetry respected by natural laws, there ought to be, in the spirit
of Noether’s theorem, an associated conserved physical quantity. This phys-
ical quantity is known, fittingly enough, as “parity,” and it has only two pos-
sible values, usually referred to as “even” and “odd” (note 9.7). Thus, any
system with, say, odd parity, and governed by laws that are parity-inversion
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invariant, as it seems our familiar physical laws are) will remain with odd
parity in perpetuity, unless acted on by some external agent.

Now, in the mid-1950s, among the confounding zoo of elementary par-
ticles were two near twins: the q and t mesons (the latter not to be confused
with the t lepton, discovered twenty years later). In almost every respect, the
q and t were alike. They had the same mass and lifetime, and they decayed
into similar sets of particles. The only difference was that when the q me-
son decayed into a collection of lighter particles at the end of its lifetime, it
decayed into a system with even parity, while the t meson decayed into a
system with odd parity.

Now, under the assumption that physical laws are parity-inversion in-
variant, the process of particle decay, which is governed by those laws, can-
not change the parity of the system. So, the q meson, decaying in isolation,
must possess an intrinsic parity that is even, while the t meson must have
odd intrinsic parity. The q and t, even if differentiated only by their intrin-
sic parity, thus have different properties and so must be different particles.

Physicists of the day were uncomfortable with the notion that different
particles should somehow have identical masses and lifetimes, so much so
that they referred to the situation as the “t/q paradox.” They also knew that
there was an easy way to resolve the paradox. If the physical law governing
the decays of the t and q is not invariant under mirror reflection, in which
case parity is not conserved, then the t and q could in fact be one and the
same particle, decaying sometimes to a system with even parity and some-
times to a system with odd parity.

The problem with this possibility is that it flies so directly in the face of
physical intuition that it just can’t be the case. The notion that space is ro-
tationally invariant—that the orientation of an experiment performed in
outer space should have no affect on its outcome—seems manifestly obvi-
ous. Similarly obvious is the notion that the experimental outcome should
not be altered in any way if you rebuild the experiment to look like its mir-
ror image. Electrical charges should repel one another as strongly, radiate
light as readily, and so forth. What difference could mirror reflection possi-
bly make?

There was one thing, however, that everyone agreed on: the relatively
long (by particle physics standards) 10�8 second common lifetime of the t
and q mesons clearly established that the decay was being governed by an
interaction that was not particularly strong. The decay of the t and q had to
be mediated by the weak nuclear force.
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In 1956, T. D. Lee (Columbia University) and C. N. Yang (Princeton
University [note 9.8]) recognized, in the spirit of Einstein, that intuition,
while often guiding us onto the golden pathway to the truth, can at other
times be our biggest impediment toward finding that path. Lee and Yang
decided to look carefully at the full corpus of experimental data on weak-
interaction processes in an attempt to find supporting evidence for the ob-
vious notion that the weak interaction is invariant under parity inversion.
To no one’s greater surprise than their own, they were able to find none.
Their exhaustive analysis revealed that the experimental data available at
the time shed no light whatsoever on the issue.

Thus, as far as the experimental evidence of the day was concerned, the
issue of the parity-inversion invariance of the weak interaction, the most ob-
scure of all the physical forces, was a completely open question. Could it
be that the weak nuclear interaction, the instigator of t and q meson decay,
is not parity-inversion invariant? Does the weak interaction not conserve
parity?

Performing and comparing the outcome of experiments that are set up
as mirror reflections of each other is well within the capabilities of the con-
temporary particle physicist. And the key to the execution of such compar-
isons is the manipulation and measurement of the orientation of the in-
trinsic spin of elementary particles.

Spin and Parity

Consider a particle, say an electron, moving through space. The line along
which the electron moves forms an axis through the electron; let’s assume
that the electron’s 1⁄2h̄ spin angular momentum is oriented along this axis,
as shown in figure 9.3. If you view the electron as it moves directly away
from your eye, the axis about which it spins extends straight from your eye
to the electron. The electron can spin about that axis in one of two senses,
clockwise or counterclockwise. Now, notice that if you take your right
thumb and point it in the direction of the electron, the fingers of your right
hand will naturally curl in a clockwise direction. For this reason, we say that
a particle is right handed if its spin is seen to be clockwise as it moves away
from the viewer. Likewise, if its spin is counterclockwise, we say that it is
left-handed.

There’s a direct connection between this handedness of the electron’s
spin and the operation of parity inversion. Consider an initially right-
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handed electron after it has been reflected back into your eye by some sort
of “electron mirror,” in just the way a ray of light is reflected by an optical
mirror. After the mirror reflection—the parity inversion—you’ll still see the
electron spinning clockwise, as before, but now the electron is coming back
toward your eye. But the handedness of the electron is determined by the
sense of its spinning as it goes away from your eye, so to determine the hand-
edness of the mirror-reflected electron, you need to turn your head around,
letting the electron pass through from the back to the front of your head,
and then study it as it recedes.

You can simulate this as shown in figure 9.4, using a pencil in place of
the electron. Take the pencil and spin it clockwise as you move it away from
your eye; now continuing to roll the pencil in the same direction, pretend
that the pencil bounces off a wall back toward your eye. As you keep rolling
the pencil in your fingers, direct it past your face so that it begins to travel
away from the back of your head. Turn your head by 180 degrees and ob-
serve. You’ll see that the spin is now perceived to be counterclockwise as the
pencil moves away from your eye. What you have just shown is the follow-
ing essential point: mirror reflection (parity inversion) changes the hand-
edness of spinning objects.

Now this is something that Lee and Yang could sink their teeth into!
Consider some set of particles taking part in a process mediated by an in-
teraction that is invariant with respect to parity inversion. Since parity in-

Fig. 9.3. This is a right-handed electron. If the thumb of your right hand points in the di-
rection the electron’s moving, then the fingers will curl in the same direction that the
electron spins. For right-handed electrons, the spin is seen to be clockwise as the elec-
tron travels away from your view. For left-handed electrons, the direction of spin is coun-
terclockwise, or in the direction that the fingers of your left hand would curl.



Fig. 9.4. Mirror reflection changes the handedness of spinning objects.



version flips the handedness of spinning particles, if the interaction is to be
invariant with respect to parity inversion, then the process must proceed
identically regardless of the handedness of the spin of the particles taking
part in it. Or, conversely, if the characteristics of the process change in any
way when the spins of all the participating particles are flipped, then the 
interaction that mediates the process does not respect parity invariance—
the interaction violates parity. Exploring how various weak-interaction pro-
cesses depend on the handedness of the participating particles, Lee and
Yang argued, would be an iron-clad way to ascertain whether the weak in-
teraction violates parity-inversion symmetry.

In late 1956, prompted by the work of Lee and Yang, C. S. (“Madame”)
Wu, a nuclear physicist at Columbia University, teamed up with a small
group of low-temperature physicists led by Ernest Ambler at the National
Bureau of Standards in Washington, D.C. The 1⁄2h̄ spins of the collection
of twenty-seven protons and thirty-three neutrons in the isotope cobalt-60
lineup in such a way the cobalt-60 nucleus possesses a net spin of 5h̄. If a
sample of cobalt-60 is made very cold (close to absolute zero; hence, the
need for the expertise of the Ambler group) in a magnetic field, it will be-
come polarized, which is to say that the axes of rotation of the majority of
the 5h̄ cobalt-60 nuclear spins will align themselves with the direction of
the magnetic field, like compass needles seeking magnetic north in the
earth’s magnetic field.

Now, cobalt-60 is unstable, disintegrating via beta decay to nickel-60 by
switching one neutron to a proton, with the subsequent emission of an elec-
tron and an electron-type antineutrino. Using a straightforward argument
based on the well-established notion that angular momentum is conserved
(note 9.9), it can be shown that right-handed electrons will tend to be emit-
ted in the direction of the cobalt-60 nuclear spin (northerly in our compass
analogy), while left-handed electrons will tend to be emitted in the oppo-
site (southerly) direction. Thus, if nuclear beta decay—the archetypical
weak-interaction process—exhibits parity violation by preferring to emit
right-handed over left-handed electrons, one will simply observe more
northward-traveling electrons than southward-traveling electrons; if the
weak interaction prefers left-handed over right-handed particles, one would
observe more southward-traveling electrons. For parity to be conserved in
this process, the number of northward- and southward-traveling electrons
would have to be identical.

Using an elegant system of controls and cross-checks, the Wu/Ambler ex-
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periment demonstrated a clear preference for the emission of southward-
traveling electrons. Parity-inversion symmetry is violated by the weak inter-
action! This resolved the nettling t/q paradox: t and q mesons are one and
the same thing, which just turns out to be the kaon (in the language of the
quark model of the eightfold way, the kaon is the state formed by combin-
ing an s̄ antiquark with a u quark). In doing so, the Wu/Ambler experiment
opened up a fertile new avenue for the exploration of the weak nuclear
force: that of parity-violation experiments. The Wu/Ambler experiment is
an example—and one of the few (the precise measurement of the electron’s
magnetic properties, discussed in chapter 4, being another)—of a major ex-
perimental advance in particle physics made on a tabletop, without the use
of high-energy particles from a particle accelerator or from natural cosmic
radiation.

Since the electrons in the Wu/Ambler experiment were emitted prefer-
entially in the southerly direction, the weak interaction manifests its parity
violation via a penchant for left-handed particles (note 9.10). With that
demonstrated, it’s natural to wonder just how strong this prejudice is.

The cobalt-60 nucleus, with its sixty nucleons continually bouncing off
one another, is too messy a system to obtain a precise quantitative answer
to this question. However, the properties of muons, fundamental particles
that are the heavier cousin of the electron, are understood quite well, so
electrons emanating from the decays of muons, which decay through the
weak nuclear interaction, can be used quite effectively to explore this ques-
tion.

The Feynman diagram associated with the decay of the muon, which
we’ve come across before, is shown again in figure 9.5. The negatively
charged muon emits a negatively charged W� weak-interaction field quan-
tum, turning into a neutral muon-type neutrino in the process. The W�

subsequently converts into an electron and an electron-type antineutrino.
Experimentally, it’s possible to measure the angle at which the electron

comes out relative to the direction the muon was traveling just before it de-
cayed. As with the beta decay of cobalt-60, we can use angular momentum
conservation to calculate the relative rate of forward decays (electron emit-
ted in the general direction of the muon’s original flight direction) versus
backward decays (electron emitted opposite to the muon’s flight direction).

The result of this calculation is as follows. If the W� forms minimal 
interaction vertices solely with right-handed particles, the forward-to-
backward ratio will be two to one. If only left-handed particles connect with
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the W�, the ratio is one to two. If the W� shows no preference one way or
the other, the ratio will be one to one.

Based on the cobalt-60 studies, which definitively established a prefer-
ence for left-handed electrons on the part of the weak interaction, we ex-
pect a forward-to-backward ratio of between one to one and one to two—
more backward decays than forward decays. The bigger the predominance
of backward decays, the stronger the preference for left-handed particles.

In the late 1950s, there were many smallish (by today’s standards) parti-
cle accelerators, known as cyclotrons, scattered throughout the world, and
perhaps the most productive of all of these was the Nevis cyclotron in the
New York City suburbs, operated by Columbia University. Aware of the Wu/
Ambler result before its formal publication (by dint of the fact that they
shared hall space with Wu at Columbia), a team of three Columbia physi-
cists led by Richard Garwin (note 9.11) quickly assembled an experiment
that could analyze the decays of muons that were brought to a halt in a car-
bon absorber after being produced by the cyclotron beam.

Their result, if not shocking, was quite interesting. To within experi-
mental accuracy (about 10% on the measured ratio), they found the for-
ward-to-backward ratio to be exactly one to two. The weak interaction con-
sorts exclusively with left-handed particles; it will have nothing whatsoever
to do with right-handed particles (note 9.12). 

Fig. 9.5. The Feynman diagram representing the process of muon decay; a re-
peat of figure 8.8b.



We often say that, for the weak interaction, parity violation is “maxi-
mal”—you can’t imagine any greater prejudice toward left-handedness than
the complete preference it exhibits.

These two experiments, those of the Wu/Ambler and Garwin groups,
were published back-to-back in early 1957 in the 105th volume of the Phys-
ical Review. They provided the first hint that, although the most obscure of
the interactions from the point of view of everyday experience, there is
something entirely special and out of the ordinary about the weak interac-
tion. It marches to the beat of its own drummer, so to speak, and in doing
so is responsible for a number of phenomena, such as nuclear stability pat-
terns and the fundamental differentiation between the behavior of matter
and antimatter, that we now appreciate as being absolutely essential for the
development of life. The discovery of parity violation in the weak interac-
tion was clearly of Nobel Prize caliber, and this time it was the theorists, Lee
and Yang, who found themselves draped with gold medallions as the co-
recipients of the 1957 Nobel Prize in Physics.

Parity Violation and the Electroweak Force

In the preceding discussion, we’ve ignored one essential qualification. The
processes we’ve discussed, beta decay of cobalt-60 and muon decay, involve
the exchange of a charged W� weak field quantum but neither involves the
exchange of a neutral Z0 weak field quantum. Thus, the 1957 experiments,
while demonstrating that the weak force exhibits maximal violation of par-
ity-inversion symmetry, did so only for the charged-current weak force me-
diated by W� field quanta. In fact, the first suggestion (due to Glashow) of
a neutral weak force was still four years away, and its experimental confir-
mation (the CERN/Gargamelle weak neutral current experiment) lay fully
sixteen years in the future.

The Standard Model, published ten years after the discovery of parity vi-
olation in the weak interaction, predicted the existence of the Z0, which is
formed mostly from the neutral W0 quantum of the SU(2) interaction, with
a little bit of the B0 of the U(1) interaction thrown in for good measure. What
does the Standard Model have to say about the degree of parity (mirror-
symmetry) violation in the interactions of the Z0 with matter particles?

The charged weak-interaction field quanta are just the basic, unadul-
terated W� particles from the SU(2) gauge symmetry Lie group. The 1957
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parity-violation experiments showed that these two quanta, the W� and
W�, will mediate an interaction if and only if the matter particles (quarks
or leptons) involved in the interaction are left-handed.

Thus, in the Glashow-Salam-Weinberg model, the third SU(2) field
quantum, the W0, must also participate only in interactions with left-
handed particles, just like the W� and W�, its SU(2) field-quanta partners.
This neutral SU(2) quantum, though, is “unphysical”—it’s a component
of both the photon and Z0 boson, which mediate the electromagnetic and
neutral weak interactions, but it does not itself mediate interactions.

Now, although it’s been looked for quite carefully, the electromagnetic
force has not been observed to violate parity; it does respect parity-inversion
symmetry. In quantitative terms, the photon exhibits precisely zero prefer-
ence between left- and right-handed matter particles.

But the photon is a combination of a lot of the B0 and a bit of the W0.
So, since the SU(2) W0 quantum interacts only with left-handed particles,
then the B0 must show some (partial) preference for right-handed particles,
just enough so that when combined with the small amount of the W0 ap-
propriate to form a photon, the partial right-handed preference of the B0

exactly compensates for the complete left-handed preference of the W0,
leaving the photon with, as observed, no preference whatsoever for left- or
right-handed particles.

We can now answer the question at hand: that of the degree of handed-
ness preference (parity violation) of interactions mediated by the Z0 boson,
the neutral carrier of the weak nuclear force. The Z0 is composed of a large
amount of the SU(2) W0 quantum and a complementary small amount of
the U(1) B0 quantum. As we’ve just seen, the large piece of the W0 inter-
acts solely with left-handed particles, while the small bit of B0 interacts with
a mild preference for right-handed particles. Alloyed in this way from the
W0 and B0, the Z0 quantum interacts with a partial preference for left-
handed particles—the dominant W0 component of the Z0 exclusively
prefers left-handed particles, although this preference is watered down (but
not eliminated) by the mild preference for right-handed particles of the less
predominant B0 component.

So, neutral-current weak interactions, mediated as they are by the Z0 bo-
son, take place more readily for left-handed than for right-handed particles,
although they still occur at some level for right-handed particles. This state-
ment lies at the heart of recent exacting tests of the Glashow-Salam-Wein-
berg Standard Model of the electroweak force.
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Precision in Collision

The model put forth by Weinberg and Salam in 1967 was encouraging in
that it laid out a unified theory of the electromagnetic and weak nuclear in-
teractions that was consistent with the experimental data of the day. Yet, it
was rather speculative. The incorporation of the W and Z force-field quanta
masses through the introduction of a Higgs field with hidden gauge sym-
metry brought with it the hope that the theory was self-consistent (renor-
malizable), but the work of Weinberg and Salam fell short of actually
demonstrating this essential property.

Thus, the first substantial confirmation of the Standard Model came
from the theorists, who have merely to lock themselves in a room with a
blackboard and coffee maker to conduct their business. In 1971, Martinus
J. G. Veltman and his precocious student Gerardus ’t Hooft, of the State
University of Utrecht in the Netherlands, demonstrated that the effort ex-
pended in introducing mass via the Higgs mechanism had paid off. Velt-
man and ’t Hooft succeeded in proving, with mathematical certainty, that
the Standard Model is renormalizable. We need delve no deeper into the
detail and difficulty of this task than to say that, for their troubles, Veltman
and ’t Hooft were awarded the 1999 Nobel Prize in Physics. With this crit-
ical issue resolved, the task of confirming the Standard Model fell into the
hands of the experimentalists.

Were you to read back through the previous two chapters, highlighting
the points at which quantities that need to be determined by experiment
were introduced into the Glashow-Salam-Weinberg theory, you would end
up with two highlighted passages. These two passages would be associated
with the determination of the two overall coupling strengths of the SU(2)
and U(1) gauge groups—the magnitude of the weak isospin and weak hy-
percharge (or equivalently, the weak-isospin and electric charges) of the
electron. There’s no way to deduce the size of these two charges; they must
be measured.

In fact, there really should be a third highlighted section: the discussion
of the value of the background Higgs field dictated by the Higgs potential.
The stronger this background Higgs field, the more massive the W and Z
force-field quanta. So, reversing the argument, a measurement of the W or
Z mass yields a determination of the strength of the background Higgs field.
Again, the value of this parameter is not predicted by the theory; it must be
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inferred from a measurement of either the W or Z boson mass (the W� and
W�, being a particle/antiparticle pair, have the same mass).

Once these three quantities are precisely measured, everything else
about the theory—the enumeration of all its minimal interaction vertices
and the delineation of the prescriptions for their application to the calcula-
tion of any resulting electroweak interaction process (i.e., of any Feynman
diagram one can construct from these vertices)—is specified with corre-
sponding precision. The behavior of any fundamental process governed by
the electroweak interaction is definitively predicted once these three quan-
tities are known.

One thing, in particular, that is thus predicted by the SU(2)-plus-U(1)
Standard Model is the precise amount of each of the (unphysical) neutral
B0 and W0 gauge quanta that go into making a Z0 force-field quantum. This
quantity, the small amount of B0 in the Z0 (or, correspondingly, the small
amount of W0 in the photon), is referred to by particle physicists as sin2qW

(sine-squared theta-W), with qW known in turn as the weak mixing angle.
Don’t worry about the trigonometry in this expression; think of sin2qW as a
single number: the admixture of the unphysical B0 quantum of the U(1) in-
teraction that one mixes in with the equally unphysical W0 gauge quantum
of the SU(2) interaction to form the physical Z0 quantum of the neutral
weak interaction.

Here’s the explicit expression relating the three measured inputs to the
Standard Model to the value of sin2qW:

The symbols a and GF represent, respectively, the magnitude of the elec-
tric and weak-isospin charges of the electron, while MZ is the mass of the
Z0 field quantum. The value of p is the usual ratio of the circumference to
the diameter of a circle.

The point of showing this formula is to underscore the statement that
once the three experimental inputs to the Standard Model are deter-
mined—the mass of the Z0 boson and the magnitudes of the electric and
weak-isospin charges—the admixture of B0 in the Z0 is completely speci-
fied. Armed with precisely measured values of a, GF, and MZ (note 9.13),
and a calculator, it’s straightforward to calculate the value of sin2qW . Doing
so, one finds that sin2qW is precisely 0.21215.
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Thus, the recipe for the Z0 is the following. Take precisely 21.215 per-
cent of a U(1) B0 neutral gauge quantum and 78.785 percent of an SU(2)
W0 neutral gauge quantum. Mix together until well blended. Yield:
Enough to mediate one (1) neutral weak interaction. Note: You must fol-
low this recipe exactly, or you’ll screw up the universe.

Now, recall the discussion from the end of the previous section. The Z0

boson, in its interactions with electrons, exhibits a partial preference for left-
handed matter particles. The extent of this preference is dictated by the
amount of B0 and W0 that are mixed together when a Z0 is formed. If the
Z0 were made purely from the W0, with no admixture of B0, then the pref-
erence for left-handed electrons would be absolute. If the Z0 were pure B0,
then its preference would be for right-handed electrons, not to the exclu-
sion of interactions with left-handed electrons but partial to right-handed
electrons nonetheless (note 9.14). To the extent that the Z0 is composed of
a mixture of these two, its preference for particles of a particular handed-
ness lies somewhere between these two poles.

But we know, if the Standard Model is correct, that the Z0 is composed
of 78.785% W0 and 21.215% B0. With the composition of the Z0 so pre-
cisely specified, the exact extent to which the Z0 prefers to interact with left-
handed over right-handed electrons is thus predicted with corresponding
precision. The degree of this preference, the “quantitative extent of parity
violation” in the interaction of the Z0 quantum with matter particles, is the
most stringent prediction of the Standard Model accessible to particle
physics experimentation. If the Glashow-Salam-Weinberg model of the
electroweak interaction is to be accepted, this prediction must be found to
be true within the limits of experimental accuracy.

With the advent in 1988 of electron-positron accelerators of energy high
enough to produce the Z0 boson, this issue—the degree of parity violation
in the interaction of the Z0 with electrons—could be explored head on. The
process employed in this study is shown in the Feynman diagram of figure
9.6. An electron and a positron come in from opposite directions and anni-
hilate, producing a Z0 force-field quantum. This quantum lives, on average,
to the ripe old age of 3 � 10�25 seconds after which it disintegrates into any
matter/antimatter pair (quark or lepton) from table 5.1, whose presence is
then sensed by detectors in the experiment mounted around the collision
point. By comparing the annihilation probability for a beam of left-handed
(counterclockwise-spinning) electrons with that for a beam of right-handed
(clockwise-spinning) electrons, one directly and unambiguously measures
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the extent of parity violation in the interaction of the Z0 boson with elec-
trons.

In 1988, with a freshly minted Ph.D. from the University of Chicago, I
took a fellowship at the University of California’s Lawrence Berkeley Na-
tional Laboratory to pursue this measurement with a team of physicists
based at the Stanford Linear Accelerator Center. Although CERN’s pan-
European LEP electron-positron collider was also soon to begin running at
energies high enough to produce the Z0 boson, only the Stanford Linear
Accelerator offered the possibility of running the experiment with polarized
beams—with separate beams of left- and right-handed electrons. The LEP
experiments, running with an electron beam composed of equal numbers
of left- and right-handed electrons, were still able to measure Z0 parity vio-
lation, but their approach without separately polarized beams was neces-
sarily less direct. However, many other essential studies, including the pre-

Fig. 9.6. The basic process of Z0 field quantum production through the mutual
annihilation of an electron and positron. The Z0 is exceedingly short lived and
decays almost immediately into any fermion-antifermion (quark-antiquark or
lepton-antilepton) pair whose combined mass is less than that of the Z0 (i.e.,
anything except a top-antitop pair).



cise measurement of the Z0 mass, could best be performed at the European
LEP machine.

By 1998, after ten years of steadily improving running at Stanford, the re-
sult for the left-handed preference of the Z0 boson was found to be 15.06%,
with an experimental uncertainty of 0.24%: to within an uncertainty of
0.25% or so, a left-handed electron is 15.06% more likely to annihilate with
a positron to form a Z0 than is an electron from an unpolarized beam with
equal numbers of left- and right-handed electrons. Working backward in the
Glashow-Salam-Weinberg theory, this corresponds to a value of sin2qW, the
small amount of the unphysical B0 in the physical Z0, of 23.097%, with an
experimental uncertainty of 0.027%. This result could be combined with a
corresponding (albeit less direct) value from the LEP experiments, leading
to a combined measurement of sin2qW of 23.156%, with an uncertainty of
0.017% (note 9.15).

Now, as we’ve seen, based on the strength of the electric and weak
charges and the mass of the Z0 boson, the Standard Model predicts a Z0 in-
gredient fraction of 21.215% B0; this is what we got when we plugged the
measured numbers into the somewhat complicated formula for the ingre-
dient fraction sin2qW from a couple of pages back. Compare this with the
value 23.156% measured in the parity violation studies. While the differ-
ence is only about 2%, it’s many times greater than the experimental un-
certainty of 0.017%. In this business, close doesn’t really count. A predic-
tion must agree with its experimental verification to within roughly the
experimental uncertainty, or the prediction is wrong.

So, after all this, is the Standard Model wrong? No. The reason the pre-
dicted and measured values of the Z0 ingredient fraction fail to agree with
each other lies at the heart of the framework—quantum field theory—that
forms the basis of the Standard Model.

The shortcoming in the way we executed our parity-violation Z0 ingre-
dient-fraction test is the following: In formulating our theoretical prediction
(the prediction represented by the somewhat complicated formula for
sin2qW), we ignored all but the simplest process by which an electron and
positron can annihilate to form a Z0. The Feynman diagram of figure 9.6,
which was used to derive the prediction, is the most basic diagram that can
be drawn that connects an electron-positron initial state to a fermion-
antifermion (lepton-antilepton or quark-antiquark) final state through the
production of a Z0. In actuality, there are many more (infinitely more) ways,
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all more complicated, by which the electroweak interaction can mediate
this process. If we want to make the prediction accurate enough to compare
with the demanding precision of the measurement, we need to include the
effects of at least the most simple of these more complicated processes.

An example of another such process is shown in figure 9.7. In this figure,
the Z0 involves itself with a “virtual loop” from the vacuum, temporarily
fluctuating into a virtual fermion-antifermion pair (pick your favorite
fermion type; any one of the twelve will do) before decaying into a real
fermion-antifermion pair.

Recall chapter 4: the greater the number of minimal interaction vertices
employed by the Feynman diagram, the less likely it is that the process will
contribute to the interaction. Diagrams like that of figure 9.7, with an extra
two vertices relative to the diagram of figure 9.6, won’t contribute very much
to the overall probability of electron-positron annihilation to a Z0. Nonethe-
less, the experimental data are precise enough that these processes need to

Fig. 9.7. Another way to produce a fermion-antifermion pair in an electron-
positron annihilation experiment through the production of a Z0 boson. In this
case, the Z 0 interacts with an independent fermion-antifermion vacuum fluc-
tuation before decaying into the final fermion-antifermion pair.



be considered. These more complicated diagrams slightly alter the predic-
tion for the composition of the Z0, so one might hope that the addition of
these more complicated diagrams might fix up the disagreement between
the predicted and measured ingredient fractions.

With a combination of hope and anxiety, we can draw the twelve dia-
grams represented generically by figure 9.7 (one for each of the six lepton
and six quark flavors) and calculate how each of these diagrams acts to
slightly change the predicted ingredient fraction of the Z0. Taking all these
small changes into account, we might hope that the theoretical prediction
is brought into agreement with experiment.

There was a hitch, however. As the precise experimental data began to
accumulate in the early 1990s, the top quark had yet to be discovered. Fig-
ure 9.8 is the specific case of figure 9.7 for which the virtual loop is formed
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Fig. 9.8. According to the Heisenberg uncertainty principle, because the
fermion-antifermion vacuum fluctuation is short lived, its constituents can have
a mass-energy greater than that of the Z0 boson from which it springs. Thus,
it is entirely possible, necessary even, that the vacuum fluctuation will some-
times be to a top-antitop pair. Because of this, the process of electron-positron
annihilation to a fermion-antifermion pair depends on the properties of the top
quark, even though the top quark itself cannot be produced by the interaction.



by the top quark. To calculate the effect of figure 9.8, theorists needed to
know the top quark’s mass. Without having observed the top quark, there
was no way to know how much it weighed and thus no way to predict, with
a precision commensurate with that of the new experimental data, the in-
gredient fraction of the Z0.

Instead, theorists took the opposite tack and calculated the value of the
top quark mass that would be required to make the Standard Model pre-
diction agree with the data. The answer they came up with was shockingly
large. The top quark would have to have mass energy nearly 200 times that
of the proton if the Standard Model prediction were to be correct. The next
heaviest quark, the bottom (b) quark, has a mass-energy of about five times
that of the proton, heavy but nothing compared to this. With a mass-energy
approaching 170 GeV, the top quark would be the heaviest known particle,
weighing in at almost twice the mass of the 91 GeV Z0 boson.

In short order, the top quark was found. Its discovery at the Fermi Na-
tional Accelerator Laboratory was announced in 1995, along with the first
measurement of its mass. In another triumph for the standard model, the
mass-energy of the top quark was found to be 174 GeV, with an experi-
mental uncertainty of about 5 GeV.

In addition to providing a stunning confirmation of the Standard Model,
this work also compellingly demonstrated the indispensable complemen-
tarity of the two primary approaches to particle physics experimentation.
The parity violation measurements that led to the prediction of the top quark
mass were performed at the SLAC and CERN electron-positron colliders,
while the top quark itself was found at the Fermilab proton-antiproton
(Tevatron) collider. Without both of these accelerators operating contem-
poraneously and with commensurate energies, particle physicists would not
have enjoyed this critical and timely advance. As we contemplate the next
generation of powerful accelerators, this complementarity between elec-
tron and proton machines remains a primary consideration.

With the top quark mass accurately measured at Fermilab, the process
of figure 9.8 can be included in the prediction for the ingredient fraction of
the Z0. When this is done, the prediction is found to disagree with experi-
ment by about 0.1%. This is much better than the 2% discrepancy we started
with, but it’s still not good enough since the measurement is accurate to
about 0.02%, a margin of error that remains substantially less than the level
of disagreement.

There is, however, another diagram that we have yet to consider—figure

DEEP DOWN THINGS324



9.9. Just as with figures 9.7 and 9.8, the Z0 produced by the annihilation of
the electron and positron involves itself with a virtual loop of the fluctuat-
ing vacuum. In this case, instead of being comprised of a matter particle/
antiparticle fluctuation, the loop is due to a spontaneous fluctuation into
an entirely different type of field quantum: that of the Higgs boson.

This diagram is every bit as central to the workings of the Standard
Model as those of figures 9.7 and 9.8, so it must also be included in our at-
tempts to predict the ingredient fraction of the Z0. While the effect of this
virtual Higgs boson loop is expected to be substantially smaller than that of
the top-quark loop of figure 9.8, the precision of the Z0 parity violation mea-
surements is fine enough that this process needs to be considered.

As for the top quark before 1995, the Higgs boson has yet to be discov-
ered. So again, as we did with the top-quark loop process before the discov-
ery of top, we turn the question around and ask the theorists to calculate the
value of the Higgs boson mass-energy required to make the prediction of the
Z0 ingredient fraction agree with the measurement.

Fig. 9.9. It’s also possible for the vacuum fluctuation to involve the Higgs bo-
son, making this process sensitive to the properties of the Higgs (should such
a thing actually exist!).



The answer is enticing: the Higgs boson mass-energy needs to be rela-
tively small, about 85 GeV; roughly the same as the Z0 mass-energy. How-
ever, the effects of the diagram of figure 9.9 are minute enough that the pre-
cision of the Z0 ingredient fraction measurement, impressive as it is, admits
a fairly wide range of possible Higgs boson mass-energy values. Neverthe-
less, given the accuracy of the ingredient fraction measurement, we can say
with better than 95% certainty that the mass-energy of the Higgs boson
should be less than 200 GeV. This will be well within reach of our next gen-
eration of particle accelerators.

Were the measured value of the Z0 ingredient fraction slightly differ-
ent—by as little as 0.1%—it would be at odds with the prediction for any
value of the Higgs boson mass-energy. Remarkably, this is not the case. Our
measurement is indeed consistent with the narrow range of possibility ad-
mitted by the Standard Model, given that the Higgs mass-energy is not
known. But even beyond this, the measurement is precise enough to pin
down, to a substantial degree, where within the range of possibilities nature
happens to lie. If the Standard Model, as formulated in 1967 by Weinberg
and Salam, is correct, then in all certainty, we will find the Higgs boson with
a mass-energy between 35 and 200 GeV.

On the other hand, we’ve already observed several particles in this mass
range. The top quark, with a mass-energy of about 175 GeV, has been
clearly observed, while for the Z0 boson, at 91 GeV, tens of millions were
produced at the CERN and SLAC machines. Why has the Higgs not been
discovered?

The answer is that the Higgs boson, related as it is to the background field
that generates the (effective) mass of the fundamental particles, doesn’t re-
ally like to interact with the light forms of matter—up and down quarks and
electrons—that make up particle beams. The mass of a particle is directly
related to the readiness with which it interacts with the Higgs field, so the
light, ordinary forms of matter found in particle beams are not overly dis-
posed to forming Higgs bosons when they collide.

The process by which one would produce a Higgs boson in an experi-
ment based on colliding beams of electrons and positrons is shown in fig-
ure 9.10. The Higgs boson is happy to interact with the massive Z0, but
there’s a price to pay: this process requires the production of both a Z0 and
a Higgs boson. Thus, the energy of the colliding electron and positron
beams must be high enough to produce both of these field quanta at the
same time. In other words, if the Higgs boson were to happen to have a mass-
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energy identical to that of the Z0, the electron-positron collision would have
to have twice as much energy to produce a Higgs boson in combination with
a Z0 than it would to produce a Z0 boson alone.

In 1995, after accumulating a sample of about 20 million Z0 particles,
physicists at the LEP electron-positron collider began a program of steadily
increasing its electron and positron beam energies above the 91.187 GeV
required to produce the Z0 boson in isolation. In mid-2000, in a devil-take-
all push, the LEP electron-positron collision energy was inched up to a
record 207 GeV. Taking into account the Z0 mass-energy, this allowed the
experiments at LEP to search for a Higgs boson with a mass-energy of 116
GeV or less, not all the way up to 200 GeV at the top of the expected range,
but well within the region of interest. While some intriguing collisions were
observed, with properties consistent with the production and decay of a
Higgs boson of 115 GeV, clear evidence was lacking. We do know from this,
however, that the Higgs boson has a mass-energy greater than 110 GeV;
were it less than this, the LEP physicists certainly would have seen it.

Unable to push the LEP machine any higher in energy, CERN physicists
have dismantled it and are assembling in its 27-kilometer-circumference

Fig. 9.10. If the combined energy of the electron plus positron is greater than
the combined mass-energy of the Z0 plus Higgs, the Higgs boson will be pro-
duced by the process represented by this Feynman diagram.



tunnel a proton-proton collider to be known as the LHC (Large Hadron
Collider). When completed in 2007 or so, the LHC will operate with a col-
lision energy of 14 TeV, an amount of energy equivalent to that obtained
after acceleration through 14 trillion volts of electrical potential. Now, 
proton-proton (or proton-antiproton; at these high energies, it doesn’t make
much difference) colliders don’t get as much physics per volt of accelera-
tion as electron-positron colliders do; nevertheless, with a collision energy
seventy times greater than that of the LEP electron-positron collider, the
LHC will be the uncontested atom-smashing champion of the world when
it begins to collect data toward the end of the decade. By comparison, the
currently reigning champion proton-antiproton collider, Fermi National
Accelerator Laboratory’s Tevatron (the machine at which the top quark was
discovered) runs with a collision energy of 2 TeV. If the Higgs boson is out
there, the LHC will find it. If the Higgs boson has a mass-energy close to
115 GeV, as the LEP experiments hinted, the Tevatron may show evidence
for it even sooner.

Final Musings

We have laid out at last the conceptual basis of the Standard Model of the
electroweak interaction and discussed its compelling triumphs. Yet it was
the previous chapter on gauge theory that was presented as the intellectual
cornerstone of the Standard Model.

Born into this world, tabula rasa, we are overwhelmed by sensory input
coming at us with little apparent purpose or connection. As we begin to de-
velop, we become aware of order, of a relation between cause and effect in
our surroundings. Food satisfies our hunger, clothing our desire for warmth,
and a parent’s soothing embrace our need for companionship and protec-
tion. As time progresses and our experience mounts, we begin to perceive
a deeper connection between a relatively modest number of underlying
causes and the diverse phenomena they are responsible for. We take up the
systematic study of the guiding principles of these root causes, allowing us
to satisfy our curiosity about the nature of our surroundings, while at the
same time permitting us to advance technologically, offering the possibility
of increasing the degree of comfort and interest afforded by our lives.

Gauge theory is, at this point in time, the endpoint of this intellectual
trajectory. It condenses our understanding of all forms of physical causation
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(except gravity, for now) to the selection of three underlying internal sym-
metry groups—U(1) and SU(2) for the electroweak interaction and SU(3)
for the strong nuclear interaction—and the empirical determination of the
three coupling parameters, or charge strengths (electromagnetic, weak iso-
spin, and strong color) associated with each of the three symmetry groups.
Were there no mass (or, more precisely, as we have seen, no physical be-
havior that we describe via the notion of mass), then this would be it. The
majority of all physical effect, the only exception being gravitational pull,
would be comprehensively described in terms of this exceedingly simple set
of underlying assumptions, in concert with the application of the gauge
principle of invariance under local transformations in the internal spaces of
these symmetry groups.

Such, however, is not the case, and so we cannot get by with the elegance
and simplicity of gauge theory alone. To account for mass without destroy-
ing the self-consistency of our theory, we need to introduce another field,
whose sole purpose is to provide the all-pervasive cosmic screening effect
that causes particles that interact with this field to behave in every measur-
able way as if they have mass. This Higgs field serves no other purpose; it
provides the source of no other known physical phenomenon. It is an addi-
tional component that, while necessary for the health of our theory, com-
promises the wonderful economy and clarity of gauge theory. In this sense,
the Higgs field seems to be excess intellectual baggage. It is ad hoc.

Even more disconcerting, the existence of the Higgs field alone is not
enough to cause the various matter- and force-field quanta to behave as if
they have mass. We also require that this Higgs field have a nonzero aver-
age “vacuum expectation” value that uniformly pervades all space. We ful-
filled this need by introducing another arcane and ad hoc notion: the Higgs
potential.

This Higgs potential, the agent responsible for compelling the Higgs
field to adopt the specific, nonzero background strength that we require, is
again excess intellectual baggage, perhaps an even worse sort than the Higgs
field itself. There is no tenet of the Standard Model that demands that there
be precisely three generations of matter fields; there just are, and that’s that.
So, to add yet another field (albeit a Higgs field unlike any other field pre-
viously postulated) is perhaps not too dissatisfying. But to be forced to in-
troduce this arbitrary and unfounded potential, inexplicable in terms of any
known physical principle or property, is downright demoralizing. In this
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light, one might even say that the discovery of the Higgs boson would rep-
resent a bold step backward. It’s just the smallest step backward that we know
how to take.

What is the physical origin of the external Higgs potential? What is the
physical basis of the peer pressure–like internal organizing principle that
causes the Higgs field symmetry to be hidden in a uniform manner through-
out space-time? These questions, unanswerable within the Standard Model,
suggest that, beyond the unearthing of the Higgs boson, there may well be
some radically new facet of the natural world awaiting our discovery. To find
the Higgs boson and confirm that its mass is consistent with the exacting
parity-violation studies would be a wonderful confirmation of the Standard
Model. However, with further exacting studies of the Higgs boson’s proper-
ties and behavior, we may begin to get some insight into these open ques-
tions and be led onto the path of some altogether new and revolutionary
view of the way in which the universe is pieced together.

The call to arms is clear. From the perspective of the particle physicist,
there is no more compelling a goal than the discovery and delineation, to
the fullest extent permitted by ingenuity and resources, of the properties of
the Higgs boson.

The technology needed to address the issue is in hand. The LHC is es-
sentially guaranteed to see the Higgs boson of the Standard Model if it 
exists. And if the Higgs is observed at CERN’s LHC, a number of its prop-
erties, including its mass and some critical aspects of its disintegration pat-
terns, will be measured.

Further, and even more exacting, studies could be performed at a high-
energy electron-positron collider, the design of which is currently being fi-
nalized by a cooperative worldwide effort. The world’s community of parti-
cle physicists has reached a consensus that the construction of such a
machine should be its top priority after the completion of the LHC. It seems
likely that such a machine lies in our future.

But what if the Higgs field approach, the Higgs mechanism, is not the
route chosen by nature to manifest the properties of mass? Would we then
be in the unfortunate position, come 2010 or so, of having learned nothing
further about the fundamental workings of nature?

The possibility that we will learn nothing from our next stage of experi-
mentation, while not ruled out, seems to be unlikely. We can’t predict what
we’ll find with absolute certainty—such is the nature of experimentation at
the frontier of knowledge—but we believe that something new, Higgs bo-
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son or otherwise, must lie just beyond the reach of the experiments we’ve
done to date.

If a theory is not self-consistent, not renormalizable, then there will be
interaction processes, usually associated with very high energy for the in-
coming participants, that are predicted by the theory to have a likelihood of
greater than 100%. This is a clear failing of the given theory and suggests
that, if not dead wrong, the theory is at best incomplete.

Chapter 8’s pure SU(2) and U(1) gauge theory of electroweak interac-
tions (absent the introduction of the Higgs field), with all its successes, is
certainly not dead wrong. However, without some serious thought, the
SU(2) and U(1) gauge theory of the Standard Model is not renormalizable
when the mass of its W and Z force-field quanta is taken into account. It
was precisely this issue that forced us to introduce the Higgs mechanism,
with all its trappings. The pure SU(2) and U(1) gauge theory of the elec-
troweak interaction, in and of itself and without the Higgs mechanism to in-
corporate the masses of the fundamental particles, is incomplete.

This incompleteness manifests itself as the energy of the objects partici-
pating in the electroweak interaction gets large. For large enough energy,
the pure SU(2) and U(1) theory, without the Higgs field, falls apart just as
described; it predicts collision processes with probabilities of occurrence
greater than one. Something has to give. There must be some new interac-
tion, particularly relevant at high energy, that curbs the growth of the colli-
sion probability with the increasing energy of the incoming particles, keep-
ing it from becoming unphysical as the beam energy is increased. Physical
systems always behave physically, even if our theories that model them
don’t.

But the Standard Model—the SU(2) and U(1) gauge theory plus the
Higgs field with its hidden symmetry—is renormalizable; it does provide
sensible predictions for all interactions at all possible collision energies. So
what exactly is it within the Standard Model that protects the calculation of
these collision probabilities from becoming unphysically large (greater than
one) at high energy? The answer is, perhaps not surprisingly, the Higgs bo-
son. When its contribution to the collision process is added as a possibility,
the calculation of the collision probability remains less than one (note
9.16), no matter how high the collision energy.

While the collision energy at which the pure SU(2) and U(1) elec-
troweak theory begins to fall apart is very high, so also will be that of the
LHC and the proposed new electron-positron Linear Collider. Even if there
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is no Higgs, if the Higgs is nothing more than a figment of particle physi-
cists’ overactive imaginations, then something else must be there that keeps
the interaction probability from exceeding its maximum possible value of
100%. Since the energies of the LHC and the high-energy Linear Collider
will be high enough to probe the point at which the pure SU(2) and U(1)
theory begins to fall apart, they will necessarily be able to explore whatever
this “something else” is that nature has chosen instead.

As the data from the LHC and high-energy Linear Collider begin to roll
in, they must contain within them clues to the resolution of the mystery of
the origin of mass in the universe. The precise way in which the collision
probability behaves as we reach this energy is, with mathematical certainty,
guaranteed to reveal something new and unprecedented, be it the Higgs
mechanism or some other less-anticipated scenario.

The question, then, is not one of whether there is something new to be
found at the enhanced energies available to the upcoming generation of
particle accelerators but, rather, whether our experiments will be sensitive
enough to dissect this behavior and figure out what’s going on. If what’s go-
ing on is the Higgs mechanism, then we stand to learn a tremendous
amount. If it’s something else, who knows? This is where the excitement
and uncertainty of experimentation enters. The clues that will help us un-
ravel this mystery may hit us in the face even more abruptly than those ex-
pected from the Standard Model’s Higgs mechanism, or they may only be
vague hints that raise more questions than they answer.

Theorists are a tireless bunch, and a number of possible alternative sce-
narios have been dreamt up, some of which would yield copious and re-
vealing signals, while others would tax the limits of our experimental capa-
bilities. But one thing is clear: we won’t know what’s out there until we build
the machines and do the experiments. Our experimentation over the next
decade or two will take us deeply into the world of the unknown. The only
thing that we can say with certainty is that we know that there is indeed
something unknown out there!
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10

Into the Unknown

What Lies Ahead

No single book can aspire to a comprehensive presentation of the field of
particle physics. This book is no exception. It is as conspicuous for what it
leaves out as it is for what it includes.

We have talked little about quantum chromodynamics (QCD), the SU(3)-
based gauge theory of the strong nuclear force, that, along with the SU(2)
and U(1) theory of electroweak interactions, forms the basis of the Standard
Model of particle physics. Entire avenues of experimentation, including the
properties of matter containing heavy quarks (c, b, and t) and the explo-
ration of the inside of the nucleon, have been entirely ignored. We have en-
joyed but scant discussion of neutrino physics, and of “CP violation,” the
supposed source of the slight difference in the behavior of matter and anti-
matter that led to the elimination of the antimatter component of the uni-
verse as it evolved away from its nonpartisan beginning at the big bang. We
have had no discussion whatsoever of the immediate and far-reaching effect
that developments in the field of particle physics have had on our theory of
cosmology—on our understanding of the origin and evolution of the uni-
verse and its space-time framework (note 10.1).

Similarly, little mention has been made of the design and operation of
the world’s great particle accelerators. Nor has there been any discussion of
the principles underlying the detection and precise measurement of the tra-
jectories of the subatomic particles that burst forth from the powerful colli-



sions produced by these machines. Either of these would fill up several ad-
ditional chapters, at a minimum.

However, we have been able to present the essential elements of our cur-
rent view of the fundamental nature of matter and its interactions. We have
seen how this effort has, over the past century, continually clarified, simpli-
fied, and reshaped our notions of what lies at the heart of the tremendously
broad array of natural phenomena.

Considering those directly related to particle physics alone, in excess of
twenty years’ worth of Nobel Prizes have been delivered to the forty or so
most prominent foot soldiers in the march toward today’s elegant paradigm
of natural law. Add to this the forefathers—the generation of Einstein, Bohr,
de Broglie, Schrödinger, Heisenberg, Dirac, and others—and the list grows
substantially longer. To whatever extent the receipt of a Nobel Prize desig-
nates a research accomplishment as a triumph of the human intellect, the
pursuit of the fundamental laws of nature stands fully decorated.

Despite these successes, the exploration is far from over. Consider the
developments that occurred during the writing of this book alone. The last
of the twelve suspected fundamental fermions, the t-lepton neutrino √t was
discovered. Evidence for neutrino oscillations, spontaneous identity swap-
ping between the different species of neutrinos, became so compelling as
to merit the award of a Nobel Prize. A strong hint of the Higgs boson, per-
haps spurious but certainly suggestive, was observed at the now defunct LEP
collider at CERN. As we enter the twenty-first century, the pace of discov-
ery continues unabated.

As for the near future, the most basic tenet of physical common sense,
that the probability of a given event occurring can never be greater than
unity, tells us that there must be something else out there and that this some-
thing else will, in all likelihood, manifest itself clearly in the next genera-
tion of accelerator-based experiments. Of course, it’s remotely possible that
this most basic tenet of physical common sense may turn out to be nothing
more than common nonsense, rendering the projections for our future pro-
gram all but meaningless. This, however, would be as profound a discovery
as any scenario we may have envisioned ahead of time.

In many ways, the mandate for the progression to the next energy scale—
the next step in accelerator size and cost—has never been stronger. More
so than ever before, the questions we need to answer to peel the next layer
off the onion are well focused and clearly formulated, while the technology
needed to address these questions lies fully in hand. Existing theory, en-
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dowed with the weight of authority afforded by its dramatic experimental
confirmation, suggests in no uncertain terms that the exploration of the en-
ergy scale between roughly 100 and 1,000 times the proton mass-energy, the
electroweak scale, will be a rich and rewarding undertaking.

Yet, despite this, at the turn of the twenty-first century, the future of ex-
perimental particle physics lies somewhat in the balance. At the beginning
of the previous decade, the design of a proton-proton collider with a cir-
cumference of nearly 100 kilometers and a collision energy of 40 TeV (or
about 50,000 times the proton’s mass-energy and twenty times greater than
anything available today) was approved by the U.S. Congress, and con-
struction was begun at a site outside of Dallas, Texas. This machine—the
Superconducting Supercollider (SSC)—would have decisively explored
the electroweak scale. However, political support for this machine began to
falter in the face of cost overruns and a wilting economy, and in 1993, its
construction was abruptly terminated (note 10.2).

A competing effort in Europe, the LHC (Large Hadron Collider), has
continued to move forward since the demise of the SSC. This European
proton-proton collider has the advantage of smaller cost because it is being
built in the 27-kilometer tunnel formerly occupied by the LEP electron-
positron collider and will run at a substantially lower collision energy (14
rather than 40 TeV). What the LHC lacks in energy relative to the ill-fated
SSC, it makes up for, at least in part, with its ten-times-higher event rate, an
approach that, while less expensive, was thought to be a bit riskier due to
the problems associated with collecting data at such a high rate. Nearly ten
years later, technological development seems to have rendered this data rate
manageable, and the LHC promises an exciting ride beginning in the lat-
ter part of this decade.

At this time, early in the first decade of the twenty-first century, the in-
ternational physics community finds itself engaged in a debate about what
should follow the LHC. Given the decade-long lead time between proposal
and activation of these mammoth scientific instruments, the time to settle
on the next great initiative is drawing near.

A leading candidate has emerged from this debate: an electron-positron
collider with a maximum collision energy of roughly 1 TeV (1,000 proton
masses), whose various existing designs are known generically as the Linear
Collider (LC) (note 10.3). This machine would cost roughly the same as
the LHC; combined, the LHC and LC would cost the international parti-
cle physics community less than the United States alone would have spent
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on the SSC, with a potentially richer and more diverse program than that
of the SSC. Yet, there is a strong sense within the community, as well as with
the government officers who oversee the field, that even at this level the Lin-
ear Collider will be difficult to sell to world legislative bodies.

There is little question that the cost of the Linear Collider is great—
about 5 billion U.S. dollars. One can think of any number of worthy causes
that would benefit vastly from such a sum. But one must evaluate this cost
in view of the promise this research holds to advance one of our most per-
sistent and ineluctable intellectual pursuits. This research represents our
epoch’s contribution to the millennia-long struggle to comprehend the fun-
damental laws of nature.

The human capital required to execute this program resides with us now;
no amount of careful documentation of methodology can fully capture the
art of designing and operating the machines and detection apparatus that
are necessary to carry it out. If we are to do so, the thousand or so men and
women, sprinkled throughout the nations of the world, who have developed
this art will be the effort’s most essential resource. The time to do it, it seems,
is now.

This research is solely the domain of the science programs of the gov-
ernments of the world. The direct benefits of the knowledge we hope to
gain, in terms of technological advancement, are so far off in the future
(maybe infinitely so) that it would be folly for any private corporation to 
invest in this sort of research. What drives us forward with the energy and
motivation necessary to carry it off is not the hope of developing fancy new
technologies but, rather, our innate sense of curiosity about our natural sur-
roundings. We are driven forward, first and foremost, by the pursuit of knowl-
edge in its pure form, coupled with the well-grounded expectation that our
knowledge stands to increase measurably with this effort. The only agency
that can appropriately further this demanding program is the world’s system
of government, operating with the mandate of its constituency.

This, however, is not to say, and I emphasize this strongly, that resources
invested in fundamental research have not provided a significant benefit be-
yond the appeasement of our curiosity. By some estimates (admittedly done
by scientists), as much as half of the economic output of industrialized na-
tions is a direct outgrowth of this sort of fundamental scientific research.

In the case of particle physics, these contributions have been spin-offs,
incidental developments that were not part of the driving force behind the
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work. Nonetheless, the contribution that particle physics research has made
to our everyday lives is substantial.

The particle accelerator—the plaything whose development was driven
by physicists’ desire to peer more deeply into the nature of matter—has be-
come as widespread a tool outside the field of particle physics as it is within.
Particle beam therapy is the treatment of choice for a number of forms of
cancer and other malignancies. Synchrotron radiation, intense and highly
focused beams of high-energy photons that are a natural by-product of the
acceleration of charged particles, has become an indispensable tool in nu-
merous other scientific pursuits. Synchrotron facilities (a number of them
having been developed by co-opting outmoded particle physics accelera-
tors) provide a rich program of study in chemical and materials science, bio-
physics, and medical physics. The need of the electronics and computer in-
dustries to develop microchip circuitry with ever smaller features is spurring
the development of particle beam lithography, exploiting Heisenberg’s
recognition that a particle’s sphere of influence becomes finer and finer as
the particle’s energy is increased.

From the particle physicist’s perspective, there’s no reason to build more
powerful accelerators if the products of their collisions cannot be accurately
and comprehensively studied. As the energy and intensity of accelerator
beams has grown geometrically over the past few decades, the sensitivity and
the resilience of the corresponding particle physics detectors, and the so-
phistication of software tools necessary to process the information they pro-
vide, has kept pace. The apparatus that the particle physicist requires to con-
duct ever more exacting studies of high-energy particle collisions cannot be
purchased from a catalog; it must be continually reinvented through a pro-
gram of advanced research and development, carried on at national labo-
ratories and within university physics departments throughout the world.
The resulting detection and representation technology has been pressed
into widespread service in fields such as medical diagnosis, microscopy, and
microelectronics manufacturing, as well as “pure science” fields such as as-
tronomy, chemistry, and biophysics.

The most visible of all these contributions, and perhaps the most un-
foreseen, sprang forth from the need of particle physicists to disseminate de-
velopments quickly and freely throughout their global community. In 1991,
the Briton Tim Berners-Lee of the pan-European CERN laboratory began
to develop an information-sharing protocol and associated programming
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language (HTML) to take advantage of the growing information super-
highway, facilitating the search and attainment of electronic information
located at particle physics institutions throughout the world (note 10.4).
The value of such a system was immediately recognized by many outside of
particle physics, and the World Wide Web’s ability to link together networks
of computers at particle physics institutions rapidly expanded into the all-
pervasive system that delights and informs us today.

Of its avenues of return to the society that patronizes it, particle physics’
least tangible benefit is perhaps its greatest. In the United States, about 100
students are granted doctorates in particle physics each year. While many
of these emerge as the field’s future leaders, roughly an equal number leave
particle physics behind, either immediately or after several years as post-
doctoral fellows. While they’re in the particle physics program, these men
and women immerse themselves for five or ten years in an intense profes-
sional community for which both creativity and precision are essential to
success. Many of them see firsthand how all but insurmountable problems
are attacked and solved. Consciously or not, many of these young scientists
come away with a greatly expanded sense of the limits of human and, in par-
ticular, their own, ingenuity. Most of the students who leave particle physics
go on to rewarding careers in a broad range of fields, such as electronics and
high-technology industries, computer design and programming, informa-
tion technology, finance, and education. In a world driven increasingly by
the forward march of technology, these uniquely trained individuals repre-
sent a substantial resource.

Despite all this, though, the economic return on our investment in par-
ticle physics research does not stand as its primary justification. The study
of fundamental behavior is not driven by the goal of bringing new tech-
nologies to market. To the extent that it does, the benefit is almost always
fortuitous, having been foreseen neither by the protagonists of the research
nor the leaders of its funding agencies. The motivation, and expected re-
turn, of this sort of research is nothing more or less than the deep but be-
nign insight that it provides into the nature of the universe and our existence
within it.

What Are We Still Looking For?

The study of physics has a way of sprouting forth vital new shoots just when
it seems that all the fertile ground has been fully explored. We’ve seen how

DEEP DOWN THINGS338



the modern physics revolution grew out of the ashes of the complacency in-
duced by James Clerk Maxwell’s profoundly successful classical theory of
electromagnetism. We’ve also seen how the frustration and despair associ-
ated with the ever more perplexing array of elementary particles discovered
in the 1950s eventually yielded to the inspiration of Murray Gell-Mann’s
eightfold way, initiating the appreciation of the deep connection between
Lie groups and physical law. On these and other occasions, pronounce-
ments of the impending demise of branches of physics, or even the entire
field itself, have been laughably premature.

Yet, make note of the fact that even Lazarus, having himself risen from
the dead to live life anew, is no longer with us. The few centuries that have
passed since Newton, or even the millennia that have elapsed since the time
of the philosophers of antiquity, seem fleeting when compared with the vast
reaches of time that stretch behind and before us. Our success at probing
deeply into the laws of nature will almost certainly reach an end, regardless
of how many times we mistakenly foresee that end. From the wizened per-
spective of the universe whose fundamental behavior these studies purport
to unveil, the culmination of this work must be very near at hand.

At the dawn of the third millennium, however, we hold a strong convic-
tion that our odyssey is far from over. The Standard Model, our current the-
ory of all known interactions except gravitation, does a remarkable job of
describing, and in some cases predicting, the complete set of natural phe-
nomena that have confronted us so far. Yet, at interaction energies not too
far above those we currently have access to, and restricted to operate with
the ingredients that have been observed to date, the Standard Model begins
to fall apart. As the next generation of particle accelerators comes online,
we are all but guaranteed to uncover some resounding new characteristic
of the natural world, providing insights that run deeply into the heart of both
particle physics and cosmology. Our current best guess for this new com-
ponent of nature is the Higgs field, although there’s no way to know with
certainty what will confront us until we actually create it in our laborato-
ries. And even if it is the Higgs field that awaits us, its discovery will raise a
host of new, interesting, and experimentally addressable questions.

Independent of the question of the origin of the phenomenon of mass,
there are other compelling suggestions that even greater discoveries lie
ahead.

In the 1960s, when the eightfold way was formulated, no subatomic par-
ticles containing quarks other than the lightest three flavors—up, down, and

Into the Unknown 339



strange—had been observed. As time passed, however, a total of six quark
flavors were found to exist. In addition, experimentation revealed the num-
ber of lepton flavors also to be six. As shown in table 5.1, these twelve mat-
ter-field quanta fall into a very clear pattern. Quarks and leptons each fall
into sets of two, with the two quanta in each doublet being distinguished by
a difference of one unit of electric charge. Each quark doublet has an asso-
ciated lepton doublet; together these four particles form a “generation.” As
discussed in chapter 8, it was this pattern of repeating doublets of matter-
field quanta that led to the hypothesis of an underlying SU(2) and U(1)
gauge symmetry, and the subsequent formulation of the Standard Model of
electroweak interactions.

But there is nothing within our current understanding of nature that ex-
plains why, as shown in table 5.1, there are three generations of matter-field
quanta. That these quanta appear as doublets separated by one unit of elec-
tric charge is understood, at a satisfyingly deep level, to be due to the un-
derlying SU(2) and U(1) gauge symmetry. That symmetry, however, would
be perfectly well reflected were there any number of quark and lepton dou-
blets and regardless of whether the number of quark doublets is the same as
the number of lepton doublets.

To be sure, the phenomenon of CP violation (the origin of the prefer-
ence for matter over antimatter in the constitution of the cosmos) requires
at least three generations. In addition, due to the subtle influence of the
quantum-mechanical vacuum, the Standard Model’s predictions for the
properties of fundamental interactions only make sense if the number of
quark and lepton generations is identical. But this falls short of being a sat-
isfying explanation of why it is that the quark and lepton doublets fall into
a mutually repeating pattern of precisely three generations. Given the cur-
rent state of our knowledge, all we can say is that, thankfully, that’s the way
the chips fell when the universe came into being.

To a particle physicist, no statement could be more dissatisfying. In the
1950s, the burgeoning list of subatomic particles, whose constitution bore
no apparent relation to the fundamental nature of matter and its interac-
tions, compelled Willis Lamb to proclaim that anyone who discovered an-
other such particle should be fined. What’s the point of looking for all these
new particles if they provide no insight into the nature of things? But in the
end, with the help of Gell-Mann, they were found to provide a critical in-
sight into a deeper and much more elegant natural order.

Similarly, particle physicists are convinced that the generational pattern
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of quarks and leptons is suggestive of an even deeper and more concise un-
derlying organizing principle, just as the notion of quarks and quark flavor
underlies the complex patterns of the 1950s-era subatomic particles. Our
experience with patterns in nature, from those of biological systems down
to those of the fundamental matter-field quanta, gives us the conviction that
the generational pattern of quarks and leptons is unlikely to be a mere ac-
cident of nature. Something has to be responsible for it, and we will not con-
sider our work done until we uncover it.

Another experimental result that gives us substantial enthusiasm for the
future relates to the discussion of renormalization in the “The Living Vac-
uum” of chapter 4. To make sense of quantum field theory, the stunningly
successful framework in which the fundamental forces are represented in
terms of minimal interaction vertices and the Feynman diagrams that can
be constructed from them, we had to recognize that the object whose prop-
erties we measure in an experiment on electrons is not just a “bare” elec-
tron. Instead, we probe en masse the assemblage of the electron and its
seamy cloud of virtual hangers-on, the photons and matter/antimatter par-
ticle pairs of the living vacuum surrounding the electron. This persistent
cloud of virtual field quanta acts to screen the charge of the bare electron,
reducing its apparent strength just as a shade of smoked glass will reduce
the brightness of a light bulb that it surrounds.

As the properties of an electron (really, electron plus virtual cloud) are
explored with higher and higher energy probes, the definition of the probe
becomes successively finer (due to the uncertainty principle). In interact-
ing with the electron, the probe penetrates deeper and deeper into the elec-
tron’s virtual cloud, and as a result, the charge of the underlying bare elec-
tron is screened less and less, so the apparent charge sensed by the probe
grows successively larger. Exploiting our light bulb analogy, we could liken
this to penetrating the glass shade; the further into the shade we press, the
brighter the light source at its center will appear.

Now recall chapter 8 and its discussion of gauge theory. When we rein-
terpret the relativistic quantum theory of electromagnetism in terms of a
gauge theory based on invariance under the group U(1) of changes of the
wave function’s phase, the strength of the electron’s charge becomes the sin-
gle aspect of the theory of electromagnetic interactions that cannot be de-
rived. It must be measured, and once measured with a probe of a given en-
ergy, its magnitude establishes the overall strength of electromagnetic
interactions. All the other rich and varied aspects of that interaction follow
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directly from the formalism of gauge theory. In particular, once we deter-
mine the strength of the electromagnetic interaction at some energy, we
know exactly what it should be at any energy, including energies far beyond
those that we can reach in the laboratory.

Today, we know that the electromagnetic force is really just one facet of
a more encompassing electroweak force, described by a gauge theory based
on both the Lie groups U(1) and SU(2). In addition, the strong nuclear force
is now understood, with substantial experimental backing, to be a gauge in-
teraction based on the Lie group SU(3). The more complicated gauge
groups SU(2) and SU(3) are non-Abelian: when you apply two successive
transformations from either of these groups to the wave equation and its
wave function solution, the identity of the resulting combined transforma-
tion depends on the order in which you apply them.

In the section “Beyond Mere Phase 1” of chapter 8, we saw that for non-
Abelian gauge groups such as SU(2) and SU(3), the application of the gauge
principle forced us to include additional, and wholly unusual, minimal in-
teraction vertices. Rather than connecting together the matter-field quanta
with the force-field quanta, this additional set of vertices connects the force-
field quanta to themselves, allowing, for example, a gluon to mediate a
strong-force interaction between two other gluons. In such interactions,
there need be no matter-field quanta involved at all—matter doesn’t mat-
ter, if you will. But, in quantum field theory, force-field quanta associated
with a given interaction will only form minimal interaction vertices with ob-
jects that carry the charge appropriate to that interaction. For interactions
arising from non-Abelian gauge groups, then, the force-field quanta them-
selves carry the charge associated with the interaction.

Going back to our electron and its attendant cloud of virtual particles,
let’s replace the electron with a quark (any flavor will do). Bear in mind that,
unlike electrons, quarks possess color (strong-force) charge, and so partake
of all three of the strong, weak, and electromagnetic interactions.

Just as for the electron, if we probe this quark electromagnetically by
bouncing a photon off it, the magnitude of the quark’s electric charge seen
by that photon will depend on the energy of the photon. The greater the
photon energy, the more effectively it slices through the cloud of virtual par-
ticles surrounding the quark, and the more directly it probes the quark’s
charge. The magnitude of the quark’s charge—the strength of the quark’s
electromagnetic interaction—increases with the greater definition pro-
vided by a higher-energy probe.
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What if, rather than electromagnetically, we were to probe this quark via
the strong interaction by firing a gluon at it? Quantum mechanics is still at
play; a higher-energy strong-interaction probe will still cut through the vir-
tual cloud surrounding the quark more effectively than a lower-energy
probe. As for the electron, this virtual cloud contains both matter particles
(quarks) as well as force-field quanta (gluons). In this case, however, the
force-field quanta themselves carry the charge of strong interaction being
used to probe the quark.

The non-Abelian nature of the strong interaction’s SU(3) gauge group—
the fact that the order in which SU(3) transformations are applied makes a
difference—leads to a qualitative change in the character of the virtual
cloud surrounding the quark relative to that surrounding the electron. For
the quark, both the matter quanta and the force-field quanta in the cloud
contain the charge that the probe is looking for, and both will affect the re-
sult you get when you probe the quark with the gluon. But force-field quanta
(gluons) in the virtual cloud interact with the incoming gluon probe in a
much different way than its matter-field quanta (quarks); the minimal in-
teraction vertex connecting an incoming force-field quantum to another
force-field quantum has quite different properties than that of the vertex
connecting the incoming field quantum to a matter-field quantum. It’s no
longer obvious that probing deeper and deeper into the virtual cloud will
lead to an increase in the associated charge seen by the probe.

In fact, for non-Abelian gauge interactions, it can go either way. Whether
the overall charge seen by the probe, and thus the strength of the interaction
itself, gets stronger or weaker for higher-energy probes depends on the
specifics of the theory. It depends on the precise nature of the way in which
the ordering of the underlying gauge group transformations matters (the
group’s Lie algebra). It also depends on the number and nature of particles
that can fleetingly appear as particle/antiparticle pairs in the virtual cloud.
In the language of our light bulb and smoked glass shade analogy, it’s as if
the smoked glass shade is itself emitting some light. Whether the light ap-
pears brighter or dimmer as you get rid of more and more of the shade de-
pends on whether the shade emits more light than it absorbs or vice versa.

But what is true, regardless of the character of the underlying gauge
group and of the specific nature of the virtual cloud, is that the strengths of
the three interactions are not fixed. All three of their strengths are expected
to depend on, in one way or another, the energy of the object that is prob-
ing that strength.
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In the late 1980s, the first precise studies of large samples of Z0 bosons
allowed physicists to accurately determine the strength of the SU(3) (strong
nuclear) interaction for probes with the energy of the Z0 mass-energy (about
100 GeV). Since the strength of the strong nuclear interaction had already
been measured for lower probe energies, it was possible to compare expec-
tation against hard data. In this way, this curious aspect of quantum field
theory—that the strengths of the fundamental interactions depend on the
amount of energy at play—was convincingly demonstrated. In fact, given
the Lie algebra of SU(3) and the particles available (tables 5.1 and 5.2) to
populate the virtual cloud surrounding quarks, the strong nuclear interac-
tion was expected to decrease in strength with increasing probe energy, and
this is what was observed.

However, it is even more interesting to use the properties of the Standard
Model to predict what will happen to the three interaction strengths as the
energy of the probe increases above that of the Z0 boson mass-energy. Since
the calculation of this prediction requires nothing more than a little scratch
paper, there’s nothing to keep us from making the prediction for probe en-
ergies far above the reach of any conceivable future accelerator.

Doing this, one discovers something very tantalizing. The SU(3) inter-
action, already observed to be decreasing in strength with increasing probe
energy, continues to do so. The next strongest of the three interactions, the
SU(2) interaction of the electroweak force (note 10.5), is also predicted to
decrease in strength with increasing energy; however, its rate of decrease
with energy is not quite as fast as that of the SU(3) (strong nuclear) interac-
tion. Both strengths are decreasing, but the stronger of the two is weaken-
ing faster than the weaker of the two; as a result, at a point sufficiently high
in energy, the strengths of the SU(3) and SU(2) interactions should become
identical. This energy is very high, about 1017 GeV, or the equivalent of
about 1017 times the proton mass-energy. Since the highest collision energy
of any accelerator, current or planned, is only about 10,000 (104) GeV, this
energy at which the SU(2) electroweak and SU(3) strong-interaction
strengths are predicted to become identical lies far beyond the realm of di-
rect experimental confirmation.

The situation becomes more interesting when the strength of the U(1)
electroweak interaction, the weakest of the three, is calculated for energies
above the Z0 mass-energy. Recall that the U(1) Lie group, the most rudi-
mentary of the three Standard Model gauge groups, is Abelian. No matter
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what, its interaction strength will increase with energy. With the stronger
SU(2) and SU(3) interaction strengths weakening with higher interaction
energy, there will necessarily be an interaction energy for which the U(1)
and SU(2) strengths are the same and another such energy for which the
U(1) and SU(3) interaction strengths are the same.

Given what we know about quantum field theory, gauge theory, and the
array of fundamental particles that contribute to the virtual cloud sur-
rounding an object, we expect there to be interaction energies for which
each pair of two of the three fundamental interactions have identical
strengths. In all cases, the energies associated with these equal-interaction-
strength points are far above that of any conceivable accelerator (although
not above that thought to be available just after the big bang). This is inter-
esting, but so what?

What if these three points—the separate energies at which the SU(2) and
SU(3), U(1) and SU(3), and U(1) and SU(2) interaction strengths become
the same—are in fact one and the same point? In other words, what if the
strengths of these three fundamental interactions coalesce at a common en-
ergy, becoming at that point the single, overarching interaction strength of
all the fundamental interactions of nature, barring gravity? This would be
compelling evidence that, just as electricity and magnetism were joined to-
gether in the 1860s into a unified electromagnetic force, with a common
interaction strength given by the value of the electron’s charge, the SU(2)
and U(1) electroweak force and the SU(3) strong force are, similarly, merely
different facets of a single interaction—the grand unified interaction.

Intriguingly enough, this is indeed what the predictions tell us, more or
less. As shown in figure 10.1, the ever-growing strength of the Abelian U(1)
electroweak interaction (you can think of it, if you like, as electromagnet-
ism, although as we’ve seen in chapter 9, the U(1) interaction is in fact pol-
luted by a small piece of the weak neutral interaction) approaches the de-
creasing strengths of the non-Abelian SU(2) and SU(3) interactions at
roughly the same energy, 1017 GeV, at which the SU(2) and SU(3) inter-
action strengths meet.

Ignoring for the moment the “more or less” and the “roughly,” it seems
as if this result is nudging us, trying to tell us that our view of the SU(2) plus
U(1) electroweak force and SU(3) strong force as separate interactions is
short sighted. And we, as physicists, know that. The problem is that, to this
point, we haven’t been able to develop a model that exploits this revelation,
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unifying the existing electroweak and strong nuclear interactions in a way
that’s both theoretically self-consistent and in agreement with experimen-
tal observation.

This is where the hedge—the “more or less” and the “roughly”—may in
fact come to our rescue. The U(1), SU(2), and SU(3) interaction strengths
do not quite meet at precisely the same interaction energies. They’re rather
close: the U(1) and SU(2) strengths meet at about 1013 GeV, and the U(1)
and SU(3) strengths at just above 1016 GeV, both a tad below (logarithmi-
cally speaking) the interaction energy of 1017 GeV at which the SU(2) and
SU(3) strengths coincide. The differences between 1013, 1016, and 1017

GeV may seem large when quoted in this way, but a glance at figure 10.1
shows that it wouldn’t take much of a change in the way the interaction
strengths grow and diminish with increasing interaction energy to bring
them all together at a common energy. They almost coalesce as it is.

Now, the fact that they don’t all come together at quite the same energy
could mean that the forces don’t unify—the closeness of the three points at
which the different pairs of two of the three interaction strengths come to

Fig. 10.1. The variation with interaction energy of the U(1), SU(2), and SU(3)
charge strengths suggests that the strengths probably coincide at an interac-
tion energy of roughly 1016 GeV (1016 times the proton mass-energy), or about
1013 times the interaction energy of the world’s largest particle accelerators.
Such a coalescence is the bellwether of a single overarching, unified force that
would be the sole source of causation in the natural world.



equal each other could just be pure coincidence. However, our prediction
of the way in which the interaction strengths change with energy depends
on knowing the complete list of ingredients available to concoct the virtual
cloud surrounding the object being interacted with. So the failure of the
three interaction strengths to coalesce precisely could instead mean that we
need to add a little something extra to the Standard Model.

It’s quite plausible that there are undiscovered particles, with energies
out of reach of current accelerators, that will slightly alter the makeup of
the virtual cloud, subtly modifying the way the three strengths change with
interaction energy. This small difference in the “evolution” of the interac-
tion strengths with energy might be just what is needed to allow them to co-
alesce at a single interaction energy, a unification point energy, somewhere
between 1013 and 1017 GeV. And if this is the case, these exotic new parti-
cles probably lie just out of reach of current accelerators: the lighter these
new particles are, the earlier they change the slopes of the lines in figure
10.1 and the greater chance they have of bringing those lines into coales-
cence at a common point.

But the notion of unification—of the reduction of the list of indepen-
dent natural phenomena to a single, all-inclusive underlying agent of cau-
sation—is all but an assumption of modern science. Given what we cur-
rently observe and measure in the lab, the predicted strengths of the SU(3),
SU(2), and U(1) interactions come so close to unifying that it just must be
the case that they do in fact unify and that there are undiscovered particles
that establish this unification lying somewhat beyond the reach of current
accelerators.

And, in fact, there is a compelling theoretical framework that provides
just the array of particles necessary to establish the unification of the inter-
action strengths. This framework, which goes by the name of supersymme-
try, is currently the most promising development in the search for a “grand
unified theory” of the electroweak and strong nuclear interactions. The ba-
sis of supersymmetry is the notion that each and every field quantum, mat-
ter, force, or Higgs, has a supersymmetric counterpart that has properties
identical to the original quantum, except for two things: the mass of the su-
persymmetric counterpart can be much different than its conventional part-
ner; and if the original particle is a fermion, then its supersymmetric coun-
terpart is a boson, and vice versa (note 10.6).

While far from confirmed, supersymmetry does enjoy the support of a
number of suggestive notions. If supersymmetry is a correct description of
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nature, we need to include the supersymmetric partners of the conventional
matter and force-field quanta of tables 5.1 and 5.2 in the virtual cloud sur-
rounding any particle being probed by the U(1), SU(2), or SU(3) interac-
tions. As suggested just above, when this is done, it is indeed found that the
three interaction strengths coalesce at a single interaction energy (at an in-
teraction energy of between 1016 and 1017 GeV). In this and other more
technical ways, supersymmetry seems naturally disposed to providing a de-
scription of nature for which the U(1) and SU(2) electroweak interaction
and SU(3) strong interaction are unified into a single overarching interac-
tion.

Another suggestive aspect of supersymmetry is that it requires the Higgs
boson (actually, the lightest of the set of at least four Higgs bosons that are
necessary to incorporate the phenomenon of mass in supersymmetric the-
ories) to be in the range of 50 to 150 proton masses. As we’ve seen in the
section “Parity Violation and the Electroweak Force” of chapter 9, this is ex-
actly what precise measurements of the ingredient fraction of the Z0 boson
seem to be telling us.

A third suggestive notion is the fact that the large-scale structure of the
universe seems to be influenced by more than we see when we look out into
space with our most sensitive astronomical equipment. Over the preceding
chapters, we’ve made use of notions from Einstein’s special theory of rela-
tivity; physicists qualify this theory with the label “special” because there is
an additional, even more powerful theory of relativity known as the “gen-
eral” theory (I mentioned this in passing in chapter 3). Einstein’s general
theory of relativity tells us how to relate the large-scale properties of the uni-
verse (those properties that we observe when we look at the spatial and tem-
poral relationships between the most distant objects we can see) to the
amount of mass-energy embedded within it. Our measurements of these
most basic structural properties suggest that the universe contains much
more mass-energy than we see by adding together the mass of all the stars,
galaxies, nebulae, stray light, and so forth, that our astronomical instruments
record. So, if we believe the general theory, then much of the universe is
composed of “stuff” that we can’t see—so-called dark matter. The super-
symmetric partner particles are leading candidates for the composition of
dark matter.

But all this stands merely as circumstantial evidence—compelling, but
not enough to establish the certainty of the universe as being supersym-
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metric in a court of natural law. The evidence needed to convict—the
smoking gun—is the direct observation of one of the particles from this
shadow world of field quanta with spins that are complementary to those of
ordinary matter. And, try as we may, this evidence has yet to be uncovered
by any study dedicated to its discovery.

But given the experiments that we have been able to do so far, this lack
of evidence is not necessarily inconsistent with the expectation of super-
symmetric theories. According to those theories, the masses of all of these
exotic field quanta may well be so large that they are simply beyond the
reach of our current panoply of accelerator facilities. These same theories
tell us, however, that the next generation of experiments, to be performed
at the upcoming LHC and the proposed electron-positron Linear Collider,
should be much more definitive in either finding direct evidence for su-
persymmetry or ruling it out altogether.

And so we again find ourselves anxiously awaiting the results of experi-
ments that are to be performed as the next generation of accelerators comes
online. Accordingly, this next step on our inward march toward an under-
standing of the basis of natural phenomena stands that much more strongly
motivated.

Epilogue

It seems inevitable that the study of particle physics will someday reach its
practical end. It was barely more than seventy years ago that the American
physicist E. O. Lawrence developed the first cyclotron, ushering in the era
of accelerator-based particle physics experimentation. Several living parti-
cle physicists, one or two of them still active, were young men at the time.
With the LHC not coming on until well after 2005, however, the expo-
nential growth in accelerator energy enjoyed over those seventy years has fi-
nally begun to taper off. Research and development programs are under-
way that are beginning to point the way to the next factor of ten or so in
accelerator energy beyond the LHC and Linear Collider, but for the first
time, fiscal limitations are beginning to play a central role in setting the
scope of our imagination.

However, it may well be nature herself and not our own inability to de-
vise ever more powerful scientific instruments that ultimately limits our in-
terest in pushing forward toward higher and higher energy collisions. The
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upcoming LHC and proposed Linear Collider will probe the electroweak
scale between 100 (102) and 1000 (103) GeV, an energy range that holds
significant promise to provide a wealth of exciting discoveries and mea-
surements.

Beyond this, it may soon be technologically and fiscally possible to reach
energies of 104 or even 105 GeV, but the motivation for doing so will have
to arise out of the upcoming studies at the electroweak scale. These studies
may well suggest that there’s nothing more to be learned from collisions
with energy less than that of the grand unified scale, requiring particle ac-
celerators with beams of energy 1015 GeV or greater. Even in the best of the
old days of rapid technological advancement, no one dreamt of a step for-
ward of ten orders of magnitude in accelerator energy. If the next realm of
interest does indeed lie at the grand unified scale, then the best we will be
able to do is to discern the physics of the electroweak scale (which may well
contain important clues about what’s going on at the grand unified scale)
as precisely and comprehensively as possible and then, effectively, call it
quits. It’s impossible to predict what the case will actually be as we complete
our studies at the electroweak scale, but this scenario is as likely as any.

Whether it’s 50, 100, or 500 years from now, the active pursuit of parti-
cle physics is destined to wind down eventually. What then will become of
all that we have learned?

Perhaps we can gain some insight from the institution of medieval schol-
arship, which occupied the minds of those given to deeper thinking during
a period when political and social conditions did little to foster advances in
natural philosophy. While, at least by modern standards, the progress of
Western scientific thought was glacially slow during this period, the great
strides that had preceded this fractious time were hardly forgotten. A major
component of formal medieval thought was given over to the reading and
interpretation of the works of the classical philosophers, providing a con-
tinuous intellectual thread that preserved these advances until they began
to be supplanted in the fourteenth century by the seeds of modern empiri-
cal science.

There is within human nature, it seems, a desire to know, regardless of
whether the attainment of knowledge is accompanied by the thrill of dis-
covery or is won merely by the toil to competence within an established
body of thought. I am optimistic that the lessons of particle physics will not
fade away as the currency of their pursuit wanes. I suspect that the essential
core of this body of knowledge will be preserved over the ages, unless it is
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itself supplanted by some far-in-the-future and unforeseeable philosophical
advance.

The defining characteristic of our modern era is its frenetic drive toward
the understanding, domestication, and control of natural causation. We
thrill in our scientific insights and revel in the ever-evolving gadgetry that
these insights bring forth. There is deep within the psyche of the modern
human a sense of forward motion, an expectation of a daily pace of intel-
lectual and technological achievement.

Particle physicists, in this sense, are quintessentially modern. Being re-
sponsible for the most fundamental notions of how the universe operates,
we push at the leading edge of this defining element of human nature. More
so than anything else, then, the eventual cessation of particle physics re-
search may well telegraph the transition to a fundamentally different, post-
modern intellectual perspective. Rather than being driven forward by the
promise of incessant scientific and technological advance, we will perhaps
be forced to look back within ourselves, to make use of our art and artifice
to live full and interesting lives within well-defined and no longer rapidly
expanding boundaries. Perhaps then, at last, sustainability and the appreci-
ation of the beauty of the natural world will overtake expansion and devel-
opment as primary societal values.

Or maybe not. But one thing is fairly certain: there’s plenty of horizon-
expanding left to do. Enough, in fact, that neither you nor I will ever know
if the musings of the last few paragraphs are even remotely on target.

In any regard, if you’re reading this, then I suspect you’re due something
along the lines of a congratulation, for it’s been a long and action-packed
ten chapters. Not that it’s been a breeze for me either. The task of writing a
book such as this, and perhaps even more dauntingly, unearthing a pub-
lisher desperate enough to take it on, should not be underestimated. But
here we are, together, celebrating a process that I hope has enriched and
enlivened you as much as it has me.

So, I think I’ll head downstairs and crack open an ice-cold beverage. Not
a “lite” one, mind you, but a robust draft fit for the occasion, along with
some rich and salty snacks that will provide additional justification for liq-
uid refreshment. I suspect that none of this will do wonders for my waist-
line, but then again, if future experimentation indeed demonstrates that the
Standard Model is correct, I can safely reinterpret the mass of my well-
upholstered frame as being a mirage—the illusory effect of the pervasive
drag imposed by the background Higgs field—rather than just the excess
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weight that my bathroom scale would have me naively believe I’ve accu-
mulated. And that’s good enough for me.

So, you see, particle physics does have immediate application to every-
day life. Peter Higgs, this one’s for you.

Cheers!
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Appendix

Exponential Notation

Any scientist will eventually find herself or himself confronted by numbers
that are, by everyday standards, either extremely large or extremely small.
For example, the number of molecules in a “mole” of any given sub-
stance, which is a specific number of molecules that corresponds to an
amount of a solid that fits comfortably into your palm, is about
602,000,000,000,000,000,000,000, while the mass of an electron is about
0.000000000000000000000000000000911 kilograms (1 kilogram weighs
about 2.2 pounds).

Obviously, we need a way to save ourselves from writing all of these vex-
ing zeros, and our saving grace is known as exponential notation. We define
the mathematical expression 10n, where n is some whole number, to mean
the number 1 followed by n zeros. So, 106 is just 1,000,000, or 1 million.
Likewise, 5.2 � 105 is just 520,000, or five-hundred and twenty thousand.

If the number n is negative, then n represents one greater than the num-
ber of zeros following the decimal point; for instance, 10�6 is 0.000001
(one-one-millionth), and 5.2 � 10�5 is 0.000052.

In these terms, then, Avogadro’s number (the number of molecules in a
mole) is about 6.02 � 1023, while the mass of the electron in kilograms is
about 9.11 � 10�31. If you like, you can count the zeros in the first para-
graph to make sure the typesetter was paying adequate attention.
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Notes

Chapter 2 The True Movers and Shakers
2.1 One such cause for optimism, a set of developments that form the field of

“string theory,” has been described thoroughly and accessibly in a remarkable
book, The Elegant Universe, by Brian Greene, a theoretical physicist on the
faculty at Columbia University.

2.2 If you’re unfamiliar with the exponential notation used in the expression for
e, please see the appendix on exponential notation for a discussion.

2.3 This notion was modified with the advent of Einstein’s general theory of rela-
tivity in 1915. In this theory, which now rests on a very solid experimental base,
the gravitational “charge” is not mass but “mass-energy,” or, even more accu-
rately, “stress energy.” The distinction is not important for our discussion.

2.4 For those who already know about the different flavors of quarks (up, down,
strange, charm, bottom, and top), this may be a bit confusing. Any one of these
six flavors of quarks can come in any of the three colors. Technically, there are
thus eighteen different types of quarks, although the observable effects of quark
color are subtle enough that we usually lump all three quark colors together.
So, the term strange quark usually refers to the full set of red, blue, and green
strange quarks, without regard to the color of any individual strange quark that
may be under consideration.

2.5 Technically, it is still possible that all the antimatter is lurking on the “other
side” of the universe, but no current theory of cosmology (the science of the
birth and evolution of the universe) can explain how such a possibility is con-
sistent with the known properties of the universe, particularly that the universe
seems to be expanding from a single point from which it exploded in a big
bang 10 to 20 billion years ago.

Chapter 3 The Great Reawakening
3.1 It is no coincidence that Einstein originally formulated special relativity to ad-

dress apparent logical inconsistencies in Maxwell’s theory of electromagnet-
ism that had to do with how observers in different reference frames (i.e., in
motion relative to each other) would have to divide up observed electromag-



netic forces between their electric and magnetic contributions. In fact, Ein-
stein’s original paper on special relativity, published in the German journal
Annalen der Physik, was entitled “Zur Elektrodynamik bewegter Körper,” or
“On the Electrodynamics of Moving Bodies.” Einstein demonstrated that the
logical inconsistencies were not a failing of Maxwell’s theory but rather of the
common-sense notions of space and time.

3.2 To avoid writing numbers that are too big and cumbersome, we need a short-
hand. One thousand eV will be denoted “1 keV” (kilo-electron-volt); one mil-
lion, “1 MeV” (mega-electron-volt); one billion, “1 GeV” (giga-electron-volt);
and one trillion, “1 TeV” (tera-electron-volt).

3.3 Recall that we discussed another unit of energy—the electron-volt (eV). One
electron-volt is about 1.6 � 10�19 joules, which is quite small. But individual
charged particles (electrons, protons) are pretty small too, so they wouldn’t be
expected to obtain energies on the everyday scale of the joule.

3.4 A wonderful book, Mr. Tompkins in Wonderland, somewhat whimsically spec-
ulates about what the world would be like if Planck’s constant were much
larger—close to one—and the speed of light were much smaller—say, a few
meters per second. The book was written by the Russian American physicist
George Gamow, who was one of the more prominent contributors to the de-
velopment of the quantum theory of particle interactions. After a successful
international career, Gamow spent the last years of his professional life at the
University of Colorado at Boulder. From the robustness of the prose in Mr.
Tompkins, one can speculate that he enjoyed the skiing.

3.5 Most precisely, if two or more wavelike systems interfere, then the relative
phases of the interfering systems are important factors in determining the phys-
ical properties of the system. However, the phase of the overall system—the
full many-body system that comprises all the interfering subsystems—has no
physical relevance.

3.6 The term blackbody refers to the fact that the calculation of the color spec-
trum of hot objects is most easily done for materials that, when cold, absorb
all electromagnetic radiation (light) that hits them, that is, for objects that are
perfectly black before they are heated to temperatures at which they begin to
glow.

3.7 The equal sign (�) in the expression of the uncertainty principle should re-
ally be a greater than or equal to sign (�). h/(4p) is really the minimum pos-
sible value of the uncertainty product; technically, the true value depends on
exactly how the localization is achieved. For most physical systems, the un-
certainty product is within a factor of two or so of this minimum.

3.8 An object’s wave function takes the form of a perfectly uniform wave, extend-
ing over all space, only if the object has a precisely defined momentum and is
free of external influences. If, in particular, the object is acted on by one or
more forces (as will be discussed immediately below), the wave function can
be rather complicated. This makes sense: Shortly, we’ll claim that the wave
function encodes within itself all that can possibly be known about the object’s
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physical state. This means that the wave function will in general have to ex-
hibit at least some degree of complexity to encode that information if the ob-
ject is under the influence of some external force.

3.9 What actually follows is the time-independent one-dimensional Schrödinger
equation. The time-dependent part of the Schrödinger equation, the part that
tells you how the wave function varies with passing time rather than with lo-
cation, has been factored out into a separate equation (not shown here), which
concerns us less than the time-independent equation presented here. Rest as-
sured, however, that the time-dependent factor of the full Schrödinger equa-
tion is much simpler, mathematically, than the time-independent factor pre-
sented here, so you are getting your full dose of the quantum theory. We’ll
come back to the issue of the time-dependence of the wave function in chap-
ter 4, where we’ll discuss its peculiar connection to the representation of an-
timatter.

3.10 Strictly speaking, this property holds if and only if the object is bound—re-
stricted to move in a certain well-defined region in space—by the force rep-
resented by the potential energy function V(x). A good example of such an ob-
ject is an electron that is bound electromagnetically to a proton in a hydrogen
atom.

3.11 The concept of energy conservation came along surprisingly late, given its
central importance throughout the fields of science. This is because, unlike
momentum (also a conserved quantity), energy can come in many different
forms—kinetic energy (of both translation and rotation), potential energy (of
numerous different forms), heat, radiation, and so forth. The notion of energy
conservation seems to have emerged simultaneously with the development of
the modern theory of heat in the mid-1800s. Among its earliest proponents
were a German physician by the name of Julius Robert Mayer and a British
experimentalist named James Prescott Joule, whose professional roots lay in
the business of brewing beer.

Chapter 4 The Marriage of Relativity and Quantum Theory
4.1 The modern notion of the “force field” was first introduced by the British

physicist Michael Faraday in the 1830s to interpret his revolutionary experi-
ments on the interrelation between the electric and magnetic forces. The story
of Faraday’s rise from humble beginnings as a laboratory apprentice in Lon-
don’s Royal Institution to the receipt of persistent offers to assume its leader-
ship (all politely refused) is a particularly inspiring one.

4.2 Technically, k � 8.99 � 109 newton-meter2 per coulomb.
4.3 The relation Maxwell derived is simple; if we denote by c the speed with which

the disturbance travels through space, then

   
c

k= 4

0

p
m
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where p � 3.14159 is, as usual, the ratio between the circumference and di-
ameter of a circle, and m0 � 4p � 10�7 Tesla-meters per amp is the experi-
mentally measured strength of the magnetic force.

4.4 We also use this term to describe colleagues who continually put forth con-
jectures that don’t make any sense to us.

4.5 In the popular culture of the United States, Feynman was relatively well
known for his collections of humorous anecdotes (both scientific and nonsci-
entific) as well as his brinkmanlike demonstration in a congressional hearing
that the thermal properties of the material used to make the O-rings was cul-
pable in the midflight explosion of the Challenger space shuttle, a hypothesis
later adopted as the most likely explanation for the disaster. Within the culture
of professional physicists, Feynman is considered to be one of the most pro-
nounced and free-thinking physicists since the great icons of the early twenti-
eth century.

4.6 Technically, there is one more thing you could ask for: the quantum me-
chanical phase (see chapter 3) of the scattered wave function. This is neces-
sary to know if you have to combine the results of the calculated process (say,
single photon exchange) with the result of the calculation of another process
(say, double photon exchange) that has the same input and output particles.

4.7 This coupling goes by another name—the fine structure constant. In the early
days of atomic physics (before quantum field theory revealed the true mean-
ing of the fine structure constant to be the strength of the coupling between
the electron and photon), it was thought to have a value so close to being pre-
cisely 1/137 that numerologists started to establish cultish associations with
the number 137. However, quantum field theory tells us that the fine struc-
ture constant actually depends on the energy of the virtual photon and is only
very close to 1/137 at low energy—that is, the energies available to experi-
menters in those early days of atomic physics. So, there’s nothing magical
about 1/137. Quantum field theory predicts, and experiments confirm that at
virtual photon energies equivalent to about 100 proton masses (remember that
mass and energy are related by way of E � mc2) the value of the fine structure
constant is about 1/128.

4.8 The boardwalk in Santa Cruz, California, has a particularly nice carousel that
turns to the music of a 1900s vintage mechanical calliope. It’s well worth the
visit if you ever find yourself in town.

4.9 The English physicist Paul A. M. Dirac and the Austrian physicist Wolfgang
Pauli are perhaps the most prominent of this crowd, both of whom were in
their late twenties when this work was done. Soon after this work, Dirac was
awarded the Lucasian Chair of Mathematics at Cambridge University, per-
haps the most prestigious academic position on the planet, which has also
been held by such greats as Isaac Newton and the renowned astrophysicist
Stephen Hawking.

4.10 Don’t be discouraged if you’ve been told that the square of any number is a
positive number. This is only true for real numbers. In general, solutions to
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any quantum-mechanical wave equation, relativistic or not, are complex. This
means that the solutions contain factors of i, the number that when squared
(multiplied by itself ) somehow gives �1. We’ll hear a lot more about complex
numbers in coming chapters.

4.11 Raising e, the base of natural logarithms, to an imaginary number that is a mul-
tiple of i � ��1 (like i a Et) is just a mathematically convenient way to repre-
sent functions that oscillate in time or space, that is, sine and cosine functions.
So, such complex exponentials are appropriate for representing quantum-
mechanical wave functions. By the way, the constant a is simply 1/h̄, in case
you were wondering.

4.12 There may appear to be a logical inconsistency here. We require energy to be
conserved absolutely, in that the sum of the energies of the electron and
positron precisely add up to the energy of the virtual photon from which they
derive. In the paragraph of the main text just above, however, we relied on the
uncertainty principle in a way that may appear to release us from the require-
ments of energy conservation, so that the fact that real (nonvirtual) photons
have zero mass does not restrict the virtual photon from temporarily fluctuat-
ing into an electron-positron pair. These two statements are not inconsistent—
the reconciliation of these two apparently incompatible statements lies in the
recognition that, uncertainty principle or not, we always require energy to be
conserved; it’s just that, in doing so, the mass of a short-lived state (photon,
electron-positron pair, etc.) can temporarily be different from what it would
be for the corresponding state with indefinite lifetime whose mass you would
measure in the lab. So the mass-energy of the virtual photons is equal to the
mass-energy of the virtual electron-positron pair, although neither is equal to
the mass-energy of either a real photon or the sum of the electron and positron
mass-energies.

4.13 Note that a photon in isolation cannot “fall apart” by getting absorbed by an
electron-positron vacuum fluctuation, which would result in the spontaneous
conversion of photon into an electron-positron pair. Since both states (the ini-
tial photon and the final electron-positron) live arbitrarily long, there is no un-
certainty on either’s mass-energy, so the differing mass of the initial isolated
photon and final electron-positron pair will prohibit (due to energy conserva-
tion) the reaction from happening. Instead, a single, isolated photon that is ab-
sorbed by an electron-positron vacuum fluctuation will always quickly fluctu-
ate back into an isolated photon. The second photon of figure 4.11 is
absolutely essential if the electron and positron are to be made to stick around
in the observable final state.

4.14 A laser beam, though intense, is composed of photons that are themselves
rather ordinary. The energy of any photon, whether in a laser beam or com-
ing from a child’s night-light, is given by the product of Planck’s constant and
frequency f (or color) of the photon: E � hf. So, the individual photons in a
laser, no matter how intense the laser may be, are no more energetic than the
photons in the night-light. What makes lasers so interesting and powerful is
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that there are an unspeakably large number of photons concentrated in a small
region of space, and, what’s more, all with synchronized phase (coherent).
However, once the laser beam is bounced off a high-energy electron beam,
you have a situation in which both the density and the energy of the individ-
ual photons are tremendous, and interesting things can happen (such as the
creation of matter from light).

4.15 An electrically neutral, or unchanged, conductor (such as a chunk of copper)
is just a bunch of neutral atoms connected in some sort of regular pattern.
What makes the conductor a conductor is that the outermost (most weakly
bound) electrons in the atoms become free to wander at will about the con-
ductor. Thus, the conductor contains a large number of free electrons (of or-
der one per atom) even though the conductor as a whole is electrically neu-
tral. These are the electrons responsible for the conduction of electricity when
the conductor is hammered into the shape of a wire and connected between
the two terminals of a battery.

4.16 For any given particle, the charge strengths associated with the three different
forces (electromagnetic, weak, and strong) don’t quite coalesce at the same en-
ergy unless additional physical laws, beyond those currently known to apply,
are introduced. A set of physical laws that seem to lead quite naturally to the
fine adjustments necessary to make these three separate extrapolations pre-
cisely coalesce are those provided by supersymmetry, a discussion of which can
be found in Brian Greene’s book The Elegant Universe. This is an intriguing
hint that supersymmetry may underlie the next great leap forward in our fun-
damental understanding of nature. We’ll discuss supersymmetry briefly in
Chapter 10.

Chapter 5 Patterns in Nature
5.1 When I was in graduate school at the University of Chicago, I once came

home to the sight of a laden cheesecloth dripping its whey into the kitchen
sink. When I asked my Czech housemate about the contents of the cloth, she
perkily replied: “Quark!” Quark, it turns out, is a creamy, low-fat cheese that
is popular in Europe. However, I’ve never heard one way or the other whether
Joyce’s Muster Mark ate the stuff.

5.2 A fascinating and detailed recounting of this intense period in the develop-
ment of particle physics and of the November Revolution (see “The Novem-
ber Revolution” in chapter 5), is contained in a book by Michael Riordan en-
titled The Hunting of the Quark.

5.3 Recall our discussion in chapter 3 of physicists’ tendency to quote the mass m
of objects in terms of their equivalent energy E using Einstein’s famous for-
mula E � mc2, where c is the speed of light.

5.4 Makoto Kobayashi and Toshihide Maskawa have never been recognized for
their work with a Nobel Prize because, perhaps, while it is true that the third
generation admits matter/antimatter symmetry violation within the Standard
Model, it remains to be demonstrated that their approach accounts quantita-
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tively for the observed violating effects. Today, there is an intense global effort
to address just this issue, a major component of which are two “B meson fac-
tories” (intense intermediate-energy particle accelerators) at SLAC in Cali-
fornia and KEK in Japan. Should Kobayashi and Maskawa’s conjecture be
confirmed, their qualifications for the Nobel would seem strong.

5.5 The recently discovered neutrino oscillations (see the section “Leptons: The
(Not-So) Light Ones” in chapter 5) are only possible if there is a similar sort
of mixing among the leptons. Much less is known about the nature of this “lep-
tonic mixing.” Should the current neutrino oscillation results be borne out,
this promises to be a fruitful area of study over the next few decades. The ques-
tion of what experiments can be done to best understand this phenomenon—
and what new technologies can possibly be developed to abet these experi-
ments—is one of the major developmental threads in current experimental
particle physics.

5.6 This g is one and the same as that of “g radiation” from radioactive nuclei,
which results from the release of high-energy photons when an unstable nu-
cleus re-arrays itself into a more stable configuration.

5.7 This is not obvious; to work this out, you really need to know a little about the
mathematics of the Lie group that underlies the behavior of the color force.
We’ll learn a little about Lie groups in chapter 6.

5.8 Note the analogy with colored light: when red, green, and blue light are com-
bined with equal intensity, the result is color-neutral white light. The choice
of the term color to identify the charge associated with the strong nuclear force
is an appropriate one.

5.9 Neutrons in the nuclei of stable atoms live forever because, were they to de-
cay, the sum of the mass-energy of the resulting nucleus plus the electron and
antineutrino that go flying off after the decay would be greater than that of the
original nucleus with the undecayed neutron, thus violating energy conserva-
tion. On the other hand, the process of nuclear beta decay is essentially just
the decay of a neutron within the nucleus. The task of understanding which
nuclei forbid beta (neutron) decay due to energy conservation, and are thus
stable, fell squarely on the shoulders of the nuclear physicists of the 1930s and
1940s, when our basic understanding of nuclear behavior first emerged.

5.10 I recommend the group’s pocket-size booklet; write them at Particle Data
Group, MS 50R6008; Lawrence Berkeley National Laboratory; One Cyclo-
tron Road; Berkeley, CA 94720, U.S.A. Or visit their Web site at http://pdg
.lbl.gov. By the way, I was within days of accepting a job with this group 
(to clean cages, as I recall) when the opportunity to instead do physics on the 
redwood-studded beaches of Santa Cruz presented itself.

Chapter 6 Mathematical Patterns
6.1 Here, “Lie” is pronounced “Lee.”
6.2 Here’s an interesting challenge: can you find another distinct operation (rule

for combining the numbers 1 through 4) that still satisfies all the axioms re-

Notes to Pages 116–146 361

http://pdg.lbl.gov
http://pdg.lbl.gov


quired of a group? If so, then you’ve discovered a second, distinct group with
four elements.

6.3 Whether the superior intellectual capabilities of the human species renders it
somehow intrinsically more deserving or worthwhile than all the other ani-
mals is a debate into which this author would prefer not to enter, considering
that, as a cat “owner,” I don’t want to offend the true masters of the household.

6.4 The rule for multiplying together two complex numbers z1 � a � b � i and z2
� c � d � i is what you might expect, given the rules of algebra: z1 � z2 � a �
c � a � d � i � b � c � i � b � d � i � i � (a � c � b � d) � (a � d � b � c) � i, since
i � i � i2 � �1.

6.5 Technically speaking, the condition �a2 � b2 � 1 is the equation of a circle
of radius one in this complex plane. The tip of an arrow forming the radius of
this circle reaches every point on the circle as it sweeps through an angle of
360 degrees, so each point on the circle can be labeled by an angle between
0 and 360 degrees.

6.6 Here, we’re playing fast and loose about what specific elements of R(3) are ac-
tually the generators. The three generators are, strictly speaking, exercise ro-
tations (about the three axes, x, y, and z) by infinitesimal angles—angles q that
are vanishingly small but still not quite zero (such a concept will make sense
to those familiar with calculus). For our purposes, it won’t do any harm to think
of the generators in terms of the three 90-degree exercise rotations.

6.7 More precisely, rotations are those transformations that are both length and
shape preserving. Consider two arrows, of sizes s1 and s2, that have a common
base at the axis of rotation but are separated by an angle q in the direction that
each points. After a rotation, both arrows will have changed direction, but all
three quantities—s1, s2, and the angle q that separates the two arrows—will be
unchanged. The shape formed by two arrows on a complex two-dimensional
plane can be defined analogously to that on a real plane and is similarly pre-
served in complex rotation.

6.8 For the mathematically inclined, this is most easily done with two-by-two com-
plex matrices for SU(2) and three-by-three real matrices for R(3); the group
operation is then simply matrix multiplication.

Chapter 7 The World Within
7.1 To continue this irrelevant but interesting digression: For most of us not

steeped in the ethereal world of higher mathematics, it should be said that Karl
Weierstrass is widely credited as the father of the mathematical field known as
analysis, the formalization and generalization of the techniques of calculus.
In the 1850s, as the German Weierstrass was struggling to retain a post as a sec-
ondary-school teacher, a young American mathematician by the name of John
Pierpont Morgan was garnering offers for academic positions at prestigious
German universities. As most of us are aware, J. P. Morgan had a few extra-
curricular interests, and soon returned to the States to seek his fortune on the
bustling streets of Lower Manhattan.
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7.2 Think of, for example, the set of all whole numbers (integers), with the two
operations being addition and multiplication. The interrelation between the
operations is given by the “distributive law”: If l, m, and n are three integers,
then l � (m � n) � l � m � l � n. So, you can see that the concept of a “ring”
is an abstraction of a mathematical system somewhat closer to our everyday
system of numbers than that of a “group,” with its single associated operation.

7.3 More precisely, parity inversion is the operation that takes each point (x, y, z)
in three-dimensional space and inverts its coordinates—moves the point to
(�x, �y, �z). If you think about this a bit, you’ll see that this is not quite the
same as a mirror reflection. Nonetheless, mirror reflection and parity inver-
sion have many of the same properties; for instance, both of these are impos-
sible to produce with any combination of the three generating rotations; no
amount of successive rotation about the x-, y-, and z-axes will yield the same
result as a parity inversion or mirror reflection. In what follows, we will use the
terms parity inversion and mirror reflection interchangeably, although, tech-
nically, only the true operation of parity inversion is relevant to our discussion.
In fact, to be completely accurate, the mathematical representation of the
process of mirror reflection is the combination of parity inversion followed by
two 180-degree rotations: one about the resulting x-axis and then one about
the resulting z-axis.

7.4 For those who remember a little trigonometry, the projection of an object of
length L onto a given axis is given by L cos q, where q is the angle between
the axis and the projected object.

7.5 More correctly, the spin angular momentum points in the direction about
which the particle is spinning clockwise; the axis about which it is spinning
counterclockwise is the same line in space but pointing in the opposite direc-
tion. We have to pick one direction or the other, and the convention is to
choose clockwise. This is the same convention as that of mechanical screws,
which turn clockwise as they tighten away from you into a board. The selec-
tion of clockwise over counterclockwise has to do with the fact that the ma-
jority of human beings are right-handed. If your thumb represents the axis of
spin, the fingers of the right hand curl in the clockwise direction as your thumb
points away from you.

7.6 Actually, the intrinsic angular momentum associated with a particle of spin s
is not sh̄ but, rather, �s � (s � 1)h̄, so for example, a spin-1⁄2 particle has an in-
trinsic angular momentum of �1⁄2 � 3⁄2h̄ � 0.866h̄, slightly greater than 1⁄2h̄.
This distinction is not important for us, though.

7.7 For the glutton, some more specifics on this. Recall that in nonrelativistic
(Schrödinger) wave mechanics, the wave function associates a complex num-
ber with every point in space and time, whose size (complex square) is related
to the probability of finding the object described by the wave function at that
point in space at that particular time. To incorporate both quantum mechan-
ics and relativity, Dirac found he had to have a wave function that associated
a point in two complex dimensions (a point in the space represented in fig.
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7.4) with every point in space and time. The square of the overall distance of
this point from the origin still represented the probability of finding the parti-
cle at the space-time point of interest. Dirac soon realized, however, that the
extra information gained in going from one to two complex dimensions al-
lowed him additionally to encode within the wave function whether the par-
ticle’s spin was aligned with projection �1⁄2h̄ or �1⁄2h̄ relative to any chosen
measurement axis � information, as we’ve seen, that’s critical for the descrip-
tion of a spin-1⁄2 particle.

7.8 Both Rutherford and Chadwick received Nobel Prizes, Chadwick in physics
in 1935 and Rutherford in chemistry in 1908. Rutherford was somewhat
piqued by the fact that the Nobel Committee had turned him into a chemist.

7.9 The term isospin is short for isotopic spin. The name derives from the analogy
with conventional spin, combined with the fact that the operation of ex-
changing neutrons and protons can be used to generate the wave functions as-
sociated with different isotopes of a given element. We won’t worry about the
physical units of isospin; they’re certainly not the same as those of angular mo-
mentum.

7.10 The choice of vertical is merely a convention; we could as easily have defined
our measurement axis to be horizontal in isospin space in which case protons
would be isospin right and neutrons isospin left. All we require is that, what-
ever direction the proton’s isospin points, the neutron’s points the other way.

7.11 What is it then that distinguishes the two states in the middle, making them
two distinct particles? Consider, for a moment, a state formed from binding
together two particles, a proton (isospin projection �1⁄2) and a neutron (isospin
projection �1⁄2). The combined state has to have a total isospin projection of
1⁄2 � 1⁄2 � 0 but can have a total isospin (the magnitude of the isospin that’s be-
ing projected) of either zero or one (to understand this statement, it may help
to look at the p0 state in figure 7.8; the p0 has a total isospin of 1 but an isospin
projection of Ip � 0). So that’s what distinguishes these two states. While both
have an isospin projection of Ip � 0, one (the p0) has a total isospin I � 1 and
the other (the h) a total isospin I � 0.

7.12 Well, this is a bit of an oversimplification. For example, even if the strong force
is invariant under rotations in isospin space, it can have a different binding
strength for isospin-0 and isospin-1 states that are otherwise identical, such as
the p0 and h of figure 7.8. In addition, the fact that the quark masses are some-
what different means that SU(3) is only an approximate symmetry of the strong
force. But these distinctions are beyond us, unnecessary for our discussion, and
do not invalidate the statements we make nor the conclusions we draw.

Chapter 8 Physics by Pure Thought
8.1 Those who remember the Pythagorean theorem will have no trouble seeing

why this is true. Recall that this theorem, proved to be true over the millennia
in a multitude of ways (one, in fact, due to the former American president
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Theodore Roosevelt), states that the length of the hypotenuse of a right trian-
gle with sides of length a and b is just �a2 � b2.

8.2 It should be pointed out here that it was not C. N. Yang and R. L. Mills in
1954 but, rather, the German mathematician Hermann Weyl in 1929, who
first recognized the profound implications of local phase-change invariance.
However, Weyl did this in the context of the existing theory of electromag-
netism, while Yang and Mills were the first to use the principle in an attempt
to further our description of the behavior of the natural world.

8.3 In what follows, I will be using nuclear isospin as an analog to the weak-isospin-
based theory that is the actual gauge theory of the weak nuclear interaction.
The idea of introducing this more accessible analogy is borrowed from I. J. R.
Aitchison and A. J. G. Hey’s Gauge Theories in Particle Physics, Adam Hilger,
1982.

8.4 Those who are arithmetically inclined may want to demonstrate for them-
selves that the product of two complex numbers with sizes �z�, �z�� is a third
complex number with size �z� * �z��. The rule for complex number multipli-
cation is what you would expect algebraically:

(a � b � i) * (c � d � i) � a * c � (a * d) � i � (b * c) � i � (b * d) � (i * i) �
a * c � b * d � (a * d � b * c) � i.

You’ll need to remember that i * i � i2 � �1 and that for a complex number
a � b � i of size one, �a2 � b2 � 1.

8.5 In fact, there is one other essential property of the interaction that cannot be
predicted solely based on the characteristics of the group SU(2). This is the is-
sue of parity violation, the extent to which two interactions that are mirror re-
flections of each other have the same overall interaction strength g. It’s possi-
ble for the interaction to have not one but two separate g’s: one for our everyday
universe, and one for the universe you would end up with were you to reflect
our universe through a vast mirror. While the possibility that these two values
of g might differ was recognized right off, it was not taken seriously until it was
discovered to be the case for the weak nuclear interaction. This discovery was
made by T. D. Lee of Columbia University and C. N. Yang of the Institute for
Advanced Study at Princeton (they shared the 1957 Nobel Prize); the latter is
already familiar to us as one of the originators of gauge theory. The issue of
parity violation played a major role in the development of the unified elec-
troweak theory, so we’ll get back to it in depth in chapter 9; for the strong nu-
clear and electromagnetic forces, the value of g is the same for both the regu-
lar and mirror-reflected universe. We’ll ignore this subtlety for the remainder
of this chapter.

8.6 To be perfectly honest, photons do in fact bounce off each other at some level,
even if they aren’t charged. The way that they do it (I’m about to describe a
particular Feynman diagram that represents the process in quantum electro-
dynamics) is by having one of the photons fluctuate into a virtual electron-
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positron pair, which then absorbs the second photon. Then, the excited elec-
tron-positron pair reemits a photon (a different photon, but how can you tell?),
and then finally fluctuates back into a second photon. However, the likelihood
of this contrived, yet real, process is so slight that you would only observe it by
passing laser beams of most extreme concentration through each other. How-
ever, if photons were electrically charged, a process such as that of figure 8.11c
(with the W’s replaced with photons) would be likely enough that crossed
flashlight beams would exhibit observable scattering.

8.7 As mentioned before, don’t confuse quark color with quark type, or flavor. A
quark of any flavor (d, u, s, c, b, t) can come in any color (R, G, B) and vice
versa. Color is a completely new and independent property of quarks.

8.8 In the language that we introduced in chapter 7, we would hypothesize that
the three differently colored quarks, being fundamental objects, must fall into
the most basic and fundamental manifestation, or representation, of SU(3).
This fundamental representation is a pattern of three points into which each
of the three colored quarks fall. This pattern is centered around zero (no net
color charge), so that when all three colors are combined in equal numbers,
the result is just that: zero, or no net color charge.

8.9 This may be a bit confusing because above I claimed, in so many words, that
any colored particle, including gluons, can never be observed in isolation.
This is true, and what the Large Electron Positron (LEP) experiments really
observed was events with four “particle jets,” each revealing the presence of a
final-state quark or gluon in the diagrams of figure 8.14. Colored particles live
on their own for about 10�23 seconds, during which time they literally tear
other quarks and antiquarks out of the vacuum until everything is paired (or
tripled in the case of three-quark baryons) in color-charge neutral particles.
Thus, the particle jets that are observed in the detector are fairly well colli-
mated sprays of mesons (pions, kaons, etc.) and baryons (protons, antineu-
trons, etc.), all of which are long lived enough to travel the meter or two it
takes to be observed and measured in today’s state-of-the-art particle detectors.

8.10 This does not necessarily mean that absolutely everything in the human ex-
perience is attributable to the fundamental physical forces. For example, the
nature of human consciousness has not yet yielded itself to the definitive ex-
planation of the natural scientist; although in recent years biologists are be-
ginning to address this most profound issue, the full explication of conscious-
ness remains the subject of a relentless and perhaps unresolvable debate. It
does however seem that, whatever human consciousness is or is not, it is not
associated with the capacity to influence directly the motion or condition of
external objects. Thus, for the elucidation of the nature of human thought and
self-recognition, natural scientists must, by and large, defer to the true experts
on the subject, who tend to occupy chairs in the philosophy and psychology
departments on the other end of campus.
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Chapter 9 The Current Paradigm
9.1 Given our current understanding of the weak interaction, it may not seem ap-

propriate to continue to call it the weak nuclear force. What’s “nuclear” about
two free electrons repelling each other through the weak nuclear interaction?
This designation, historically due to the fact that the interaction was first rec-
ognized in the context of nuclear beta decay, has been kept nonetheless.

9.2 Why they are so different is not understood, although an interesting line of
speculation that has arisen in the past few years suggests that the gravitational
charge may not be so small. Instead, it may be the case that most of the grav-
itational force-field leaks out into spatial dimensions beyond the three that
we’re used to, making gravity seem weak when it really isn’t.

9.3 Aficionados take note. We really should be having this discussion in the con-
text of the Lagrangian, from which the wave equations for the various field
quanta can be derived via a variational principle. I have studiously avoided the
introduction of the Lagrangian in this book insofar as I feel it to be an unnec-
essary complication.

9.4 The following presentation of screening and hidden symmetry is inspired by
that of I. J. R. Aitchison and A. J. G. Hey’s Gauge Theories in Particle Physics.
The authors, in turn, attribute this approach to explaining the idea of hidden
symmetry to the estimable condensed matter physicist Philip W. Anderson.

9.5 Again, any complex number z can be written as z � a � b * i, where a and b
are ordinary real numbers and i is the mythological square root of �1. Thus,
a and b * i are the real and imaginary parts of z, respectively.

9.6 Again, parity inversion is the operation that swaps each of the three coordi-
nates in three-dimensional space with its negative, so that if, for example, one
of your atoms is at the point (x, y, z) � (2, �3.8, 9.1) before parity inversion,
it will be at the point (�2, 3.8, �9.1) after the inversion operation. Mirror re-
flection, or at least our perception of it, only reverses the horizontal (x) coor-
dinate, leaving the height (y) and depth (z) coordinates unchanged. In fact,
mirror reflection is really the combination of two operations on space: parity
inversion, as described above, followed by a rotation of 180 degrees about the
x-axis. Regardless, mirror reflection, like parity inversion, cannot be achieved
by any sequence of ordinary rotations. So, if some physical law is not invariant
under parity inversion, it won’t be invariant under mirror reflection, and vice
versa. Thus, in our discussion, we’ll ignore the distinction between mirror re-
flection and parity inversion and treat them as if they’re one and the same.

9.7 The notion of the physical quantity of parity is potentially confusing. The par-
ity of a system is a property of the system in our own unreflected universe. The
parity of the system simply catalogs what would happen to it if the system were
to be mirror-reflected. If the value of the system’s wave function changes sign
(goes from positive to negative and vice versa) when we mirror-reflect, the par-
ity of the system is odd. If the wave function is unchanged when we mirror-
reflect, the parity of the system is even. Mathematically, we would say that
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y (�x, �y, �z) � y (x, y, z) for even parity, and y (�x, �y, �z) � �y (x, y, z)
for odd parity.

9.8 This C. N. Yang is one and the same as the Yang of Yang and Mills, the duo
who brought us local phase invariance and the seeds of gauge theory.

9.9 For the curious, the argument goes as follows. Since the spin axes of the cobalt-
60 nuclei are all aligned and pointing north like a bunch of compass needles,
imagine yourself viewing the cobalt sample from the south, so that all the nu-
clear spins are clockwise. Now, nickel-60, the nucleus left over after the beta
decay, has a net spin of 4h̄, one h̄ less than that of cobalt-60. So, to conserve
angular momentum, the 1⁄2h̄ electron and antineutrino spins must both be
clockwise, so that combined they have the h̄ clockwise spin needed to make up
the difference between cobalt-60 and nickel-60. So, if the clockwise-spinning
electron recedes from you (to the north in our compass analogy) it’s right-
handed; if it comes toward you (south) it’s left-handed. Therefore, as claimed,
right-handed particles tend to go north and left-handed particles south.

9.10 Technically, this prejudice is accommodated within quantum field theory
through the space-time property of the minimal interaction vertex of the elec-
tron and weak-interaction field quantum.

9.11 The team also included Leon Lederman, co-recipient of the 1988 Nobel Prize
in Physics for demonstrating that the electron- and muon-type neutrino are
distinct particles. Lederman also served a long stretch as the director of the
Fermi National Accelerator Laboratory outside of Chicago and is the author
of the popular book The God Particle.

9.12 If you are one of the victims of congenital left-handedness, you may well be
standing up in your chair and shouting something like: “Aha! I knew it! We
really are better than them! The very universe itself prefers left-handedness!”
Being left-handed myself, I will happily concede you this point. By the way,
the complementary processes for antimatter, achieved by exchanging all par-
ticles for their antimatter counterparts, give the same results—maximal parity
violation—although for antiparticles, it’s right-handedness that’s exclusively
preferred. Note that our universe is composed of matter, not antimatter, so the
first part of this footnote still pertains.

9.13 In the year 2000 Review of Particle Properties, the compendium of particle
physics data put out annually by the Berkeley Particle Data Group, one finds
that the least accurately measured of these quantities, the Z0 boson mass, is
now known to a precision of about 20 parts per million. From that book, we
find that a � 0.00729735253 � 0.00000000003, GF � 0.0000116639 �

0.0000000001 per GeV2, and MZc2 � 91.188 � 0.002 GeV, where in each
case the second number is the extent of experimental uncertainty on the mea-
sured value. (We multiply the Z0-boson mass MZ by the square of the speed of
light so that we can quote its mass-energy rather than its mass, which is the
convention in particle physics.) The resulting value of sin2qW calculated
above is quoted to the number of decimal places that are meaningful, given
the precision of these measurements.
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9.14 It may occur to you that, for all this to work, we have to know the exact amount
of right-handedness preference of the B0. In fact, we do know this because we
know that the photon has exactly zero preference between right- and left-
handed particles. Since the amount of W0 in the photon is also specified by
the number sin2qW, we know exactly how much B0 right-handedness prefer-
ence it takes to cancel precisely the complete left-handedness preference of
the W0.

9.15 A word on what is meant by experimental uncertainty. The convention is that
the true value should fall with about 68% probability within the range
bounded by the measured value minus the uncertainty and the measured
value plus the uncertainty. Then, assuming Gaussian, or bell-curve statistics
(a good assumption in many cases), the probability increases to about 95% for
a range of plus or minus twice the uncertainty and 99.75% for plus or minus
three times the uncertainty. The probability quickly approaches one as the
range increases beyond three times the quoted uncertainty.

9.16 Remember—these calculations are done in the context of quantum field the-
ory, which is an extension of old-fashioned quantum mechanics. In quantum
mechanics, waves can interfere constructively or destructively. In the latter
case (destructive interference), the addition of a new process, a new source of
quantum-mechanical waves, will actually reduce the calculated collision prob-
ability. Such is the case for the additional modes of collision admitted by the
introduction of the Higgs boson.

Chapter 10 Into the Unknown
10.1 Recently, a number of readable books have been published that present some

of the latest thinking in the field of cosmology and the large-scale structure of
the universe. Joel Primack, a colleague of mine at the University of California
at Santa Cruz and a renowned cosmologist, has recommended the following.
For well-formed text enhanced with beautiful color plates, The Little Book of
the Big Bang by Craig Hogan and One Universe: At Home in the Cosmos by
Neil de Grasse Tyson, Charles Tsun-Chu Liu, and Robert Irion are sure to
please. A more descriptive, but nonetheless concise, book is Trinh Thuan’s
The Birth of the Universe, while a more comprehensive text is provided by Tim-
othy Ferris’ The Whole Shebang. Finally, all of the recent books by the emi-
nent British cosmologist Martin Rees (Just Six Numbers, Before the Beginning,
and Our Cosmic Habitat) provide good background on the ideas behind the
modern-day theory of cosmology and its implications.

10.2 A detailed and insightful account of the rise and fall of the Superconducting
Supercollider, tentatively entitled Tunnel Visions—The Rise and Fall of the
Superconducting Supercollider, and coauthored by physicist and science his-
torian Michael Riordan, should soon be available.

10.3 Charged particles that travel on circular paths, such as those in a circular col-
liding beam accelerator, must be continually reaccelerated due to the fact that
the magnetic forces that keep them going in a circle cause them to radiate their
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energy away. For electrons and positrons, which are about 2,000 times lighter
than protons, it becomes prohibitive to continually restore this lost energy for
beam energies greater than one-tenth of a TeV or so. An alternative approach,
pioneered at the Stanford Linear Accelerator Center (SLAC) at Stanford Uni-
versity, is to collide beams from two opposing linear (rather than circular) ac-
celerators; hence, the name Linear Collider. With technology in hand today,
accelerator physicists believe that, for about the cost of the LHC, a 1 TeV lin-
ear electron-positron collider can be built. Alternative Linear Collider accel-
eration schemes under development at this time hold out the hope that the
Linear Collider may eventually reach collision energies in excess of 5 TeV.

10.4 Accordingly, the first Web site in the United States was developed at the Stan-
ford Linear Accelerator Center.

10.5 Recall that the weak force is not really weak, in that the weak-isospin charge
of the fundamental particles, which sets the strength of the weak interaction, is
roughly the same size as that of the electromagnetic and strong-force charges.
Again, the weak force appears weak because its associated force-field quanta—
the W�, W�, and Z0—each have a mass of about 100 times that of the pro-
ton. Because of this mass and Heisenberg’s uncertainty principle, the range of
influence of the weak interaction is very limited, making the interaction ap-
pear weak even though its true strength (as measured by the magnitude of the
weak-isospin charge) is in fact slightly greater than that of the electromagnetic
interaction.

10.6 Recall that bosons have spin that is an integer multiple of h̄, while fermions
have spin that is a half-integer multiple of h̄, i.e., the spin of a fermion is an
integer multiple of h̄ plus 1⁄2h̄.
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