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PREFACE 

There are two general rationales for performing signal processing: (1) for the acqui- 
sition and processing of signals to extract a priori desired information; and (2) for 
interpreting the nature of a physical process based either on observation of a signal 
or on observation of how the process alters the characteristics of a signal. The goal 
of this book is to assist the reader to develop specific skills related to these two ra- 
tionales. First, it is hoped that the reader will enhance skills for quantifying and (if 
necessary) compensating for the effects of measuring devices and noise on a signal 
being measured. Second, the reader should develop skills for identifying and sepa- 
rating desired and unwanted components of a signal. Third, the reader should en- 
hance skills aimed at uncovering the nature of phenomena responsible for generat- 
ing the signal based on the identification and interpretation of an appropriate model 
for the signal. Fourth, the reader should understand how to relate the properties of a 
physical system to the differences in characteristics between a signal used to excite 
(or probe) the system and the measured response of the system. 

A core text in biomedical signal processing must present both the relationships 
among different theoretical measures of signals and an understanding of the infor- 
mation these measures provide regarding the sources of signals and the behaviors of 
their sources in response to natural or imposed perturbations. A useful didactic 
framework to achieve these goals is one in which signal processing is portrayed as 
the development and manipulation of a model of the signal. In this framework the 
“model” becomes a surrogate for the signal source and it is natural to ask to what 
degree this model is reasonable given one’s knowledge of the signal source and the 
intended application. Thus this framework provides a smooth transition from theory 
to application. Furthermore, the topic of filtering, in which the model of the output 
signal is derived from the input signal model and the properties of the filter, is in- 
cluded naturally. This signal modeling perspective is the framework within which 
this book is developed. 

Because biomedical engineering involves the application of engineering meth- 
ods for the improvement of human health, the signals encountered by biomedical 
engineers are typically derived from biological processes. Often such signals are not 
well represented by the simple deterministic signals favored for illustrating the ba- 
sic principles of signal processing. Real-world biomedical signals usually include 
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Xii PREFACE 

large stochastic components; they also may be fractal or chaotic. Often we are too 
ignorant of the properties of their sources to know a priori what the character of the 
signal will be. Therefore the biomedical engineering student must first recognize 
the range of possible signal types and be able to determine the most appropriate 
type of analysis for the signal of interest. Unfortunately, this choice is not always 
clear. Of special importance is knowing not only the basic ways of processing each 
type of signal, but also recognizing indications that the selected analysis method 
may have been inappropriate. Even when the method is correct (or, more likely, 
when there is no indication that it is nor correct), the best way to process the signal 
will depend on the user’s objectives. 

By presenting signal processing as the process of developing and manipulating a 
model of the signal, this book attacks the problems discussed above using an inte- 
grated framework. Three issues-(l) choosing a class of signal model, (2) selecting 
a specific form of the model, and (3) evaluating indicators of adequacy of the mod- 
el-are emphasized in the book. The question of what information a given class of 
signal models can provide naturally lends itself to a format in which each chapter 
discusses one class of models and how to manipulate them. It is then straightfor- 
ward to discuss the criteria for choosing a “better” model, although such a discus- 
sion will encompass the models from previous chapters as well. The question of 
which general class of model to utilize is more difficult to discuss because of its 
breadth, although this question is raised in each chapter in which a new class is in- 
troduced. Part of the motivation for the interactive exercise that starts each chapter 
is to demonstrate the limitations to the knowledge that the reader has hopefully ac- 
cumulated to that point and motivate the introduction of a new way to look at sig- 
nals. Nonetheless, this question of choosing an appropriate class of signal model for 
a specific application needs repeated emphasis by an instructor, who should raise 
the question in lectures and discussions. 

This book has been developed completely from a biomedical engineering per- 
spective, in the hope of conveying to the reader that measuring, manipulating, and 
interpreting signals is findamental to every practitioner of biomedical engineer- 
ing, and that the concepts being presented are fundamental tools needed by all bio- 
medical engineers. With the breadth of the field of biomedical engineering and the 
wide availability of computer software for signal processing, the nuances and de- 
tailed mathematical variations of algorithms are less relevant to many practitioners 
than is the relationship between theoretical concepts and applications. This book 
strives to emphasize the latter issue by presenting many examples, sometimes at 
the expense of omitting certain details that are common in signal processing 
books-for example, the various algorithmic implementations of the Fast Fourier 
Transform (FFT). These details are readily available from other sources. 
Otherwise, I have attempted to present the material in a mathematically rigorous 
fashion. 

Although the book is self-contained, the MATLAB files that implement many of 
the examples provide repetition of the material, enhanced visual feedback, more de- 
tailed explanations of the biomedical applications, and opportunities for exploration 
of related topics. These files are available from a web site of the publisher and from 
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the author’s anonymous Ap site (ondine.image.uky.edu, or 128.163.176.10). The op- 
timal way to master the material in the textbook involves reading the text while sit- 
ting in front of a computer on which MATLAB is running. Hopefblly the reader will 
call forth the MATLAB-based demonstrations and exercises as they are encountered 
in the text and experiment with them. Also the value of the examples of real-world 
biomedical signals that are available as . mat files is greatest if they are utilized at 
the time they are encountered in the text. The reader is encouraged to examine these 
signals when the text discusses them. 

Unless stated otherwise, whenever the text uses a phrase like “we can show,” it is 
assumed that the motivated reader will be capable of supplying the missing steps of 
a procedure. Exceptions are those situations in which the material is beyond the 
scope of the book, and these situations are noted. 

Of the approximately twenty exercises at the end of each chapter, about half are 
intended primarily to reinforce the theoretical concepts through repetition. The re- 
mainder attempt to relate the theory to biomedical applications. My intent is to em- 
phasize the process of translating qualitative descriptions of biomedical phenomena 
into quantitative descriptions amenable to the analyses developed in the book. Giv- 
en this emphasis and the exigencies of the book format, the discussions of the appli- 
cations often are simplistic. For those who wish for more detailed and insightful dis- 
cussions of specific applications, I hope that the present material provides a suitable 
foundation upon which to build. 

This book is written at a level for use in a first-semester graduate course in bio- 
medical engineering or an advanced undergraduate course, with the expectation that 
interested students will take a subsequent course in biosystems analysis. Therefore 
the text focuses on signal processing with the intent to present material that is rele- 
vant to students in all subspecialties of biomedical engineering and to lay a founda- 
tion for a biosystems course. It assumes the reader has prior exposure to Fourier 
(and Laplace) transforms and has a basic understanding of human physiology. Ide- 
ally, a graduate from an ABET-accredited undergraduate engineering program 
would be familiar with the basic concepts in Chapters 3-5 and would have been in- 
troduced to the material of Chapters 6 and 7. In that case, the book could be covered 
in a three-hour, one-semester course. Alternatively, one might incorporate the com- 
puter exercises into a companion one-hour laboratory course. The text could be 
used for a one-semester, senior undergraduate course, but it is likely that the in- 
structor would need to omit major sections, 

This book also could serve as an introduction to biomedical engineering for en- 
gineers from other disciplines and as a reference book for practicing biomedical en- 
gineers. It presents biomedical applications of signal processing within a framework 
of signal modeling. Because both classical and modern signal processing methods 
are developed from this same framework, it is natural to answer the same two im- 
portant questions about each method: (1) What assumptions does the method make 
about the signal? (2) What information can the method provide? These questions 
are especially important to the practitioner who needs assistance in choosing a 
method of analysis for his or her particular application. Physiologists and neurosci- 
entists with a background in differential equations should find the text approach- 
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able. Physicists, mathematicians, or chemists who wish to apply their knowledge to 
biomedical problems may appreciate the breadth of biomedical examples. 

Although one might be tempted to attribute the intellectual content of a book 
only to the creative efforts of its author, an author’s teaching style and philosophy 
evolve through interactions with other teachers and students. I owe a debt to all of 
those who praised or critiqued my efforts, especially to the late Dr. Fred Grodins, 
whose clarity of explanation and rigor in applying theory to biomedical practice 
stimulated the interest of a young electrical engineer in the then new field of bio- 
medical engineering. I also wish to recognize the insightful discussions of the role 
of engineering in physiology during my collaborations with Professor Curt von 
Euler of the Karolinska Institute, and Dr. Neil Cherniack, then at Case Western Re- 
serve University. Although neither is a biomedical engineer by training, each is able 
to transcend mathematical formulas and apply theoretical concepts to real biomed- 
ical processes. Of course, one’s thought processes are honed continually by gradu- 
ate students. In particular, the challenge of quenching the intellectual thirsts of Mo 
Modarreszadeh, Mike Sammon, and Xiaobin Zhang has motivated my continual 
searching for new wellsprings of signal processing enlightenment! 

Special thanks go to the consultants who guided my efforts to include examples 
of applications outside of my own fields of experience. I assume full responsibility 
for any errors in the presentation of these examples; the errors would have been 
much more numerous without their guidance. I wish to express special thanks to 
Tim Black and Tom Dolan, for their assistance in preparing the final typed manu- 
script and the artwork. 

A book becomes reality only when sufficient resources are made available to the 
author. In this regard I am heavily indebted to the Whitaker Foundation for support 
through their Teaching Materials Program. This funding allowed me to reduce my 
academic responsibilities during the time of writing and to engage assistants who 
helped assemble the examples and exercises and verified that the exercises could be 
solved! Dr. Charles Knapp, Director of the Center for Biomedical Engineering at 
the University of Kentucky, has been very generous in providing relief from aca- 
demic chores so that I could maintain the necessary writing schedule. More impor- 
tantly, he has vigorously supported my vision of developing a textbook for this 
field. I also wish to thank Dr. Peter Katona, whose encouragement was the final 
push needed to embark on this project. Finally, without the understanding and con- 
tinued support of my wife, Peggy, this book would still be a project for the future. 
Although she knew from experience the disruption it would cause, she also knew 
that some dreams have to be pursued. 

/ 

EUGENE N. BRUCE 
February 7, 2000 
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1 

THE NATURE OF 
BIOMEDICAL SIGNALS 

1.1 
SIGNAL PROCESSING 

THE REASONS FOR STUDYING BIOMEDICAL 

It may seem obvious that signal processing concepts should be part of the core 
training in biomedical engineering because students in such an applied field must 
learn to “deal with” signals and systems. The motivation for studying this topic, 
however, is more profound and can be related to fundamental approaches to concep- 
tualizing and solving biomedical problems. A fundamental construct for interpret- 
ing both quantitative and qualitative data in all of biomedical engineering is the con- 
ceptualization that measurable, real-world behavior results from interactions among 
sources of energy and modifiers (or dissipators) of energy. Since a signal is just a 
record of energy production by a process, this findamental framework naturally 
gives rise to questions concerning: (i) the inferences that one can draw from a signal 
about the properties of the source of the energy, and; (ii) the relationships among si- 
multaneously observed energy records (i.e., signals). These are exactly the ques- 
tions that signal processing addresses. 

The biomedical engineering student should understand that signal processing 
(and the closely related field of systems analysis) comprises more than just mathe- 
matical manipulations that are only useful to control systems engineers. Indeed, 
these topics provide a fundamental framework for conceptualizing and analyzing 
physical behavior in a rigorously organized manner, whether that behavior is the 
output of an electronic control system, the flow of blood through a defective aortic 
valve, or the reaction of an implant with surrounding tissue (to give a very few ex- 
amples). Furthermore, while the computational side of signalslsystems can produce 
precise analyses, a qualitative understanding of these subjects is just as important. 
For example, a student proposing to use wavelets to detect abnormalities in the elec- 
trocardiogram signal surely needs to understand the mathematics of wavelet trans- 
forms. On the other hand, a student with neurophysiological interests who wishes to 
study the effects of whole-body vibration on visual function needs to understand the 
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2 THE NATURE OF BIOMEDICAL SIGNALS 

qualitative concept of resonance (even if that student cannot remember the form of 
a second-order differential equation to quantifL the phenomenon!). Similarly, a stu- 
dent who addresses neural control of heart rate needs to understand the concepts of 
memory or correlation and the causes of temporal variability in energy records, 
whether or not the student will utilize methods based on statistics of random 
processes to describe heart rate. The primary objectives of this textbook are to instill 
in the student a qualitative understanding of signal processing as an essential com- 
ponent of knowledgefor a biomedical engineer and to develop the student k skills in 
applying these concepts quantitatively to biomedical problems. 

A more direct approach to defining these objectives is to ask: “What skills 
should the student possess after studying this text?” Such skills fall into two broad 
categories: (1) skills related to the acquisition and processing of biomedical signals 
for extracting a priori desired information, and (2) skills related to interpretation of 
the nature of physical processes based either on observations of a signal or on ob- 
servations of how a process alters the characteristics of a signal. More specifically, 
the objectives can be summarized by four phrases, which describe what the student 
should be able to do: (1) measure signals, (2) manipulate (i.e., filter) signals, (3) de- 
scribe qualities of the source based on those of the signal, and (4) probe the source. 
Expanding these objectives, the student first should be able to quantify and (if nec- 
essary) compensate for the effects of measuring devices on the signal being mea- 
sured. Second, the student should be able to identify and separate desired and un- 
wanted components of a signal. Third, the student should be able to uncover the 
nature of phenomena responsible for generating the signal, as well as anticipate its 
future behavior, based on the identification and interpretation of an appropriate 
model for the signal. Fourth, the student should be able to relate the properties of a 
physical system to the differences in characteristics between a signal used to excite 
(or probe) the system and the measured response of the system. 

The didactic framework adopted in this textbook to achieve the goals described 
above is one in which signal processing is presented as a process for the develop- 
ment and manipulation of a model of an observable variable (the signal). In this 
framework the “model” becomes a surrogate for the signal source, and one natural- 
ly asks to what degree this model is reasonable given one’s knowledge of the signal 
source and one’s application. Thus there is a natural connection to real-world prob- 
lems. This approach is discussed in more detail later in this chapter. 

Often in signal processing textbooks there is heavy emphasis on computation 
and algorithms. For students eager to expand their knowledge in signals and sys- 
tems, this approach may become a boring repetition of familiar material; for stu- 
dents who see no need for this knowledge, the relevance of the material is not made 
apparent by such an approach. Yet both groups of students are missing the main 
message that physical (observable, real-world) behaviors can be described in an or- 
ganized manner that permits both insights into the underlying physical processes 
and prediction of unobserved behavior. The “icing on the cake” is that these tech- 
niques are independent of the devices used to acquire signals. In other words, the 
methods are equally applicable to signals from heart rate monitors, signals from 
strain gauges in an Instron bone test device, spectra from chemical spectroscopy as- 
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says, data fiom a cell sorter, or essentially any other biomedical data. Biomedical 
engineers have the real-world problems, and signal processors have many excellent 
solutions. This text will attempt to unite the two by discussing many examples hav- 
ing a real-world connection and by emphasizing those aspects of the theory that are 
relevant for deciding whether the theory is truly applicable to a particular real-world 
problem. 

1.2 WHAT IS A SIGNAL? 

The electrical current induced in an antenna wire by the electromagnetic field trans- 
mitted from your favorite radio station, hourly readings of the atmospheric pressure, 
and the hum of a mosquito all are examples of signals (see Fig. 1.1). In each case 
the signal is the output of a sensing device (i-e., antenna, barometer, and ear) and the 
temporal variations in the signal convey information. To make sense of that infor- 
mation, however, may require some processing of the signal-for example, we learn 
to recognize the sound signal created by the pressure waves generated by the mos- 
quito and associate its frequency with the insect and its itching bite. How the audi- 
tory system discriminates frequency is a complicated story that is not yet fully un- 
derstood, but the underlying transduction of the pressure wave and manipulation of 
the resulting neural signals is an example of signal processing by a biological sys- 
tem. 

A signal is a single-valued representation of information as a function of an in- 
dependent variable (e.g., time). The specific type of information being represented 
may have real or complex values. In the case of physical processes, the information 

FIGURE 1.1 Examples of common signals: current induced in a radio antenna, humming of 
a mosquito, hourly readings from a barometer. 
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FIGURE 1.2 (a) Instantaneous mean blood flow velocity in the middle cerebral artery of a hu- 
man subject obtained from the Doppler shifts of a reflected ultrasound beam. Time marker = 1 
s; (b) Electromyogram (EMG) from two wires heM firmly under the tongue by a mouthpiece. 
Subject contracted tongue, then relaxed. Time marker = 0.2 8; (c) Angle of rotation of knee ob- 
tained from an angle sensor (Data courtesy of James Abbas); (d) An electrocardiogram (ECG) 
recording (Data courtesy of Abhijit Patwardhan); (e) Instantaneous head rate (beatdmin, recip- 
rocal of beat-to-beat interval) for 100 consecutive heart beats. Implicit independent variable is 
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FIGURE 1.2 (continu@ 'heart beat number"; (9 x-axis: Intensity of fluorescence from cells 
excited by incident lasw light beam. y-axis: Number of cells displaying a given intensity. From 
cells stained with a fluorescent dye that binds to phospholipids (Data courtesy of Margaret 
Bruce). 

often is a measure of some form of energy produced by the process. Signals that 
arise from strictly mathematical processes and have no apparent physical equivalent 
are commonly considered to represent some form of mathematical energy. A signal 
may be a finction of another variable besides time or even a finction of two or more 
variables, but often we will consider time-dependent functions. Indeed, a great 
many signals in practice are real-valued, scalar functions of time. Nonetheless, the 
reader will be reminded throughout that many important biomedical signals are not 
time-dependent functions-for example, in image processing the intensity values 
are functions of x and y coordinates-and that the methods being presented apply 
equally to such signals. For practical purposes, often one can define a signal as the 
output from a measuring or sensing device (or the result of mathematical operations 
on such an output), although this definition is too restrictive for some biomedical 
applications. For example, I can create a function to represent the bases in a DNA 
molecule by assigning a unique number from 1 to 4 to each of the four bases. Then 
if I plot the position of each base along the DNA strand as the independent variable 
and the value of the function for that base as the dependent variable, I have created a 
signal that is not derived from a sensor or measuring device (nor is it a function of 
time). As we shall see, if I can represent the signal mathematically, then I can ma- 
nipulate it using the concepts from this book. 

1.3 SOME TYPICAL SOURCES OF BIOMEDICAL SIGNALS 

The sources of biomedical signals are infinite in variety and we shall identify only a 
few as examples of the different types of these signals. A large class of biomedical 
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signals comprises those which are electrical in nature. The electrocardiogram 
(ECG), which can be recorded by placing electrodes on the chest, is one such signal. 
It records the electrical potential at the electrode (or the potential difference be- 
tween two electrodes) induced by the presence of time-varying electrical activity in 
cardiac muscle associated with the generation and propagation of action potentials. 
Each heartbeat produces a sequence of electrical waves (the P, Q, R, S, and T waves) 
and by examining the shape of the ECG waveforms (Fig. 1.2(d)) a physician can ob- 
tain considerable insight about whether the contractions of the heart are occurring 
normally. In practice, the physician usually compares the electrocardiogram signals 
from several sites on the body. Although visual inspection of ECG signals is usefbl 
clinically, analyses of electrocardiograms can be very sophisticated and involve 
considerable signal processing. For example, there is substantial interest in detect- 
ing small changes in the shape of the ECG waveform occurring after the large peak 
(the R-wave) during the time that the ventricles are recovering from their contrac- 
tion. Several approaches being used involve spectral analysis of the ECG signal, a 
technique which will be discussed in Chapter 9. Another question of clinical rele- 
vance is whether the heart is beating regularly or irregularly. (Believe it or not, too 
much regularity of the heartbeat is considered unhealthy!) Some of the most sophis- 
ticated biomedical signal processing in the research literature is aimed at character- 
izing the type and degree of irregularity of the cardiac rhythm. A portion of the ir- 
regularity in heart rate seems to be spontaneous random changes caused partly by 
random events at the membranes of sinus node pacemaker cells. As we shall study 
in a later chapter, however, the variations in heart rate at times that are several tens 
of seconds apart are related. Recently developed signal analysis techniques for char- 
acterizing such temporal dependencies are among the most sophisticated and excit- 
ing new methods for biomedical signal processing. Chapter 10 will introduce these 
methods. 

Another example of a bioelectrical signal is the electromyogram (EMG). EMG 
signals are recorded by placing electrodes in, on, or near a muscle and amplifying 
the electrical potential (or potential difference between two electrodes) that results 
from the generation and propagation of action potentials along muscle fibers. A 
multiple-unit EMG (MUEMG) records the potentials from many muscle fibers at 
once (Fig. 1.2(b)). The presence of MUEMG activity indicates that a muscle is ac- 
tively contracting and many researchers have attempted to develop techniques for 
filtering of the MUEMG signal to produce another signal that is proportional to 
the force that the muscle is generating. This goal is important because it would al- 
low one to estimate muscle force without having to connect a force transducer to 
the muscle-something that is often impossible to do on human subjects. (How, 
for example, could one attach a force transducer to the extraocular muscles?) 
MUEMG signals are utilized also in rehabilitation engineering for controlling a 
prosthetic device. The subject is trained to contract a muscle that he or she can 
still control voluntarily and, the amplitude of the MUEMG is taken as a measure 
of the desired degree of activation of the prosthesis-for example, the gripping 
force to be produced by an artificial hand. But since the MUEMG is inherently 
noise-like, it must be filtered to extract a smoothed signal which varies with the 
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amplitude of the MUEMG. Other examples of bioelectrical signals are the elec- 
troretinogram (ERG), electrogastrogram (EGG), and the electroencephalogram 
(EEG), which is a recording of brain electrical activity from electrodes on the 
scalp. Processing of EEG signals is an active research area because the EEG is 
wed to determine if a person is asleep and to identify the sleep state. For exam- 
ple, the EEG contains predominantly oscillations in the 8-12 Hz range (alpha 
rhythm) when the person is awake. In contrast, predominant oscillations in the 1-4 
Hz range (delta rhythm) indicate non-dreaming (also called slow-wave or non- 
REM) sleep. 

In Chapters 6 and 8 we will study both analog filters and their digital counter- 
parts that could be used to filter bioelectrical and other signals. We study digital fil- 
ters because so much of biomedical signal processing is performed on sampled (i.e., 
digitized) signals. Furthermore, it will become apparent that digital filtering has an 
important advantage, in that there are many digital filters which have no analog 
counterpart. 

The field of imaging provides many examples of both biomedical signals and 
biomedical signal processing. In magnetic resonance imaging (MRI) the basic sig- 
nals are currents induced in a coil caused by the movement of molecular dipoles as 
the molecules resume a condition of random orientation after having been aligned 
by the imposed magnetic field. These current signals are complex and substantial. 
Signal processing is required just to properly detect and decode them, which is done 
in terms of the spatial locations of the dipoles that caused the currents and the rate 
of relaxation of the dipoles (which is related to the type of tissue in which they are 
located). Much of the associated signal processing is based on Fourier transforms, 
which will be studied in Chapters 5 and 7. Although this book will consider only 
one-dimensional Fourier transforms and MRI utilizes two-dimensional Fourier 
transforms, the basic concepts are the same. In addition, once an image is construct- 
ed it often is desirable to “process” it to enhance the visibility of certain features 
such as the edges of a tumor. Although there are many advanced methods of image 
processing involving techniques beyond the scope of this book, the basic techniques 
are based on concepts derived from digital filtering theory, which we shall en- 
counter in Chapter 8. Indeed, even though other imaging modalities such as positron 
emission tomography (PET), ultrasound, and x-ray utilize different physical princi- 
ples for acquisition of the image, the signal processing methods for enhancing im- 
ages are similar. 

When an ultrasound beam strikes a moving object, the frequency of the reflected 
beam differs from that of the incident beam in proportion to the velocity of the ob- 
ject (Doppler shift). Because high-frequency ultrasound signals can penetrate hard 
biological tissues (such as thin bones), this property provides a means of measuring 
velocities of inaccessible tissues such as blood cells (Fig. 1.2(a)). Although this 
measurement is not a direct assessment of the bulk flow of blood, it is used in hu- 
mans to identify vessels in the brain in which flow is sluggish. 

Sensors that transduce mechanical actions into electrical signals are common in 
biomedical engineering applications. In studies of whole-body biomechanics, ac- 
celerometers record the acceleration of limbs or joints (Fig. 1.2(c)) and force plates 
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use strain gauge sensors to measure the reaction forces where the feet contact the 
ground. Although the outputs of such sensors are electrical signals, it is usual to cal- 
ibrate the electrical signals in terms of the mechanical signal being measured and to 
think of the electrical signal as the mechanical signal. That is, one does not describe 
the accelerometer output as “the electrical equivalent of the acceleration signal” but 
as the acceleration signal itself. Since accelerometers are sensitive to noisy vibra- 
tions, it is usually necessary to remove the noise on (computer-sampled) accelerom- 
eter signals using digital filters, such as those described in Chapter 8. 

Force transducers, displacement transducers, and pressure transducers are addi- 
tional types of sensors which produce electrical signals that correspond to mechani- 
cal actions. Some of these transducers can be made quite small-for example, to fit 
inside an artery for measuring blood pressure. Some can be miniaturized for mea- 
surements, for example, from single excised muscle fibers or from cells grown in 
culture. In some of these situations the transducer modifies the measured behavior 
because its mechanical characteristics are not negligible compared to the system un- 
der study. In such cases it is necessary to correct the measured signal for this “load- 
ing” effect. Often this correction comprises designing a digital filter based on the 
frequency response of the transducer. The concept of hquency response will be ex- 
amined in several chapters, beginning in Chapter 4, and the difficulties in designing 
these inverse filters will be discussed in Chapter 8. 

As biomedical engineers become more involved in probing behavior at the cellu- 
lar and molecular levels, sensors for events occurring at the microscopic level have 
assumed greater importance. Often these sensors directly or indirectly measure 
products of biochemical reactions. For example, the concentration of calcium ion in 
a cell can be measured indirectly by introducing into the cell a chemical (Flura2) 
which fluoresces with an intensity that is a hnction of the calcium concentration. 
One then focuses a microscope on the cell in question and directs the light at the 
eyepiece to a photocell through an optical system that is tuned to the frequency of 
the fluorescent light. The electrical output from the photocell is proportional to the 
calcium concentration. A similar approach using a voltage-sensitive dye permits 
one to measure intracellular potentials by optical means. Other types of optical 
biosensors measure the absorption (or reflectance) of an incident light beam con- 
taining one or a few frequencies of light. For example, the hydrogen ion concentra- 
tion in a thin tissue can be determined by staining the tissue with a particular red 
dye and measuring the relative transmission of light through the tissue at two differ- 
ent Frequencies. Some newer approaches to measuring the concentration of protein 
in a sample utilize a bioactive electrode that reacts with the desired protein. For cer- 
tain reactions, the reflectance of an imposed laser light having a specific frequency 
is proportional to the concentration of the reactant. Again the signal of interest is 
derived by leading the reflected beam to a photocell or photosensitive solid-state de- 
vice (i.e., CCD). Ofien in such sensor systems the analysis of the signal involves 
taking a ratio or some nonlinear processing such as logarithmic scaling. For ratios 
or nonlinear scaling the noise might be amplified disproportionately, so it becomes 
important to filter the signal from the photocell to reduce this effect. Furthermore, 
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there may be contamination by background light which should be removed by filter- 
ing. The digital filters we will analyze in Chapter 8 could be used for these purpos- 
es. Finally, if there is motion of the environment, movement of such small sensors 
might introduce a time-varying artifact. In some cases one can reduce this latter 
type of artifact using adaptive filtering techniques, but these methods are beyond 
the scope of this book. 

Up to this point the discussion has assumed implicitly that biomedical signals 
comprise a combination of a desired component which represents a true measure of 
a physical behavior and an undesired component categorized generally as noise. We 
need to recognize that certain biomedical signals which visually resemble noise ac- 
tually represent true physical behavior. If, for example, one uses a fine-tipped glass 
microelectrode to measure the current flowing through a tiny (i.e., a few microns 
square) piece of a cell membrane, the fluctuations of the current with time appear to 
be rather random but this apparent randomness can be explained by applying certain 
simple rules which determine the conformation of proteins that form the channels 
for conducting ions through the membrane. The consequence of these rules is that 
the openings and closings of channels for ionic current flow exhibit a self-similarity 
across many scales of time. This self-similarity causes the appearance of rapid fluc- 
tuations in the signal, thus creating the illusion of unpredictableness (i,e., random- 
ness) in a signal that is obeying simple rules. Such signals are said to befractal. 
Chapter 10 will introduce the analysis of fractal signals. 

1.4 CONTINUOUS-TIME AND DISCRETE-TIME 

Many biomedical measurements such as arterial blood pressure or the torque at a 
joint are inherently defined at all instants of time. The signals resulting from these 
measurements are continuous-time signals and it is traditional to represent them as 
explicit functions of time in the form x(t), p(t), and so forth. On the other hand, we 
could sample the values of a continuous-time signal at integer multiples of some 
fundamental time increment and obtain a signal that consists of a sequence of num- 
bers, each corresponding to one instant of time. OAen we ignore the time increment 
and represent this discrete-time signal as a function of the integer multiple of the 
time increment, saying that the argument of the function can assume only integer 
values-that is, the first entry in the sequence corresponds to zero times the time in- 
crement and is called x[O], the second entry corresponds to one times the time incre- 
ment and corresponds to x [  11, and so on. Notice that in order to distinguish continu- 
ous-time and discrete-time signals, their arguments are enclosed in different types 
of brackets. 

Example 1.1 An example of obtaining a discrete-time signal by sampling a con- 
tinuous-time signal at a constant rate is shown in Fig. 1.3. Note the different ways of 
graphically representing continuous-time (CT) and discrete-time (DT) signals. 
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n (samples) 
25 

FIGURE 1.3 Examples of a continuous-time (CT) rlgnal (top) and a discrete-time (DT) signal 
(bottom), the latter in this case being obtained by sampling the former at a uniform rate of 5 
sampleds. 

Discrete-time signals can arise from inherently discrete processes as well as from 
sampling of continuous-time signals. Within the biomedical realm one can consider 
the amount of blood ejected from the heart with each beat as a discrete-time vari- 
able, and its representation as a fbnction of a time variable (which assumes only in- 
teger values and increments by one with each heartbeat) would constitute a discrete- 
time signal. If one were counting the number of cells in a culture dish at hourly 
intervals, then a plot of this count versus an integer index of the time would be a dis- 
crete-time signal. Figures 1.2(e) and 1.2(f) show “discrete-time” signals which, 
however, are displayed as if they were continuous-time by connecting consecutive 
points with interpolating straight lines. Often we aggregate data by counting events 
over a fixed time interval-for example, the number of breaths taken by a subject in 
each minute, the number of action potentials generated by a neuron in each sec- 
ond-and thus create a discrete-time signal from an inherently continuous-time sig- 
nal (e.g., Example 1.2 and Fig. 1.4). 

Example 2.2 Figure 1.4 demonstrates a common method for obtaining a DT sig- 
nal from biomedical data. The top tracing is a representative extracellular recording 
from a neuron, showing its action potentials during a 10-second time interval. The 
number of action potentials which occur each second are counted and graphed in 
two different ways. In the middle tracing a CT signal is constructed by holding a 
constant value during each one-second period. This constant value equals the action 
potential count during that time period. In the bottom tracing a DT signal is con- 
structed from these same data by plotting single values, representing the number of 
action potentials which occurred during the previous second, at one-second inter- 
vals. 
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FIGURE 1.4 Constructing CT and DT representations of the firing rate (number of action po- 
tentials per second) of a neuronal spike train. See Example l .2 for further explanation. 

1.5 ASSESSING THE RELATIONSHIPS BETWEEN TWO SIGNALS 

The above examples have the common theme of extracting information from obser- 
vations (i,e., measurements) of spontaneous behavior. Another broad area of signal 
processing involves assessing the relationship between two signals. By discussing 
such a relationship, we are implying that there exists some interconnection between 
the sources of these signals. Figure 1.5 indicates the two general possibilities for 
this interconnection: (1) one signal directly activates the source of the second sig- 
nal; (2) a third signal activates the separate sources of the initial two signals. To con- 
tinue this discussion we need to formally define what the boxes in Fig. 1.5 repre- 
sent. In the most general sense these boxes, which will be called systems, represent 
any mechanism through which one signal depends on (or is derived from) another 
signal, and we shall define a system as any physical device or set of rules which 
tmnsforms one variable (i.e., signal) into another variable (or signal). A typical sys- 
tem has an input variable and an output variable, although some systems have an 
output with no explicit input. These latter systems are called autonomous systems, 
whereas those having an explicit input are called non-autonomous systems, It 
should be noted that a system may be a physical device (or collection of devices 
which interact with one another) or may simply be a set of rules which can be writ- 
ten down. Because this book is a signal processing text, we shall place considerable 
emphasis on the viewpoint that a system tmmforms one signal into another signal 
and we shall devote some effort to formal descriptions of various classes of trans- 
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FIGURE 1.5 Two ways by which two signals, x(i) and y(t), could be related. 

formations. Transformations will be symbolized as T[.J, as shown in Fig. 1.5. Often 
we will utilize the attributes of linear transformations, which obey certain properties 
that are discussed in Chapter 2. An example of a physical device that can be consid- 
ered a system is an electronic amplifier into which an electrical signal can be led, 
and which produces an output that is a scaled version of the input signal. A pressure 
transducer can be described as a system whose input and output are the pressure on 
the sensor and the electrical voltage at its output terminals, respectively. Analysis of 
the blood flow through an artery may be cast in the framework of a system in which 
the input is blood pressure, the system comprises a description of the mechanical 
properties of the arterial wall and the blood, and the output is the blood flow rate. 
Rule-based systems are common in the fields of artificial intelligence and firzzy 
logic. In biomedical applications a simple model of information processing by the 
nervous system may be based on a set of rules since detailed neurophysiological in- 
formation may be lacking. A system may have more than one input. Consider, for 
example, the system comprising the extraocular muscles and the eyeball. The inputs 
to this system are the neural signals that activate the muscles and the output is the 
position of the eyeball in its orbit. If one were to consider the control of both eyes 
simultaneously, then the previous multiple-input, single-output system would be- 
come a multiple-input, multiple-output system. 

Example 1.3 The systems framework is very important in many applications of 
biomedical signal processing. In developing drug therapy regimens, for example, 
one needs to know how the target behavior will respond to a given amount of drug. 
Thus, when a drug such as sodium nitroprusside is given to maintain blood pres- 
sure, it is desirable to be able to predict the amount of drug needed to raise the blood 
pressure by the desired amount. Conceptually, one could inject several different lev- 
els of the drug, measure the blood pressure responses, and establish a look-up table 
for determining the drug dose. In some applications this approach may be viable, 
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but a better alternative will be developed in Chapter 3. For many systems one can 
calculate the response of the output variable of a system (e.g., blood pressure) to 
any input signal (e.g., amount of drug injected into the blood) if one knows the re- 
sponse of the output to certain specific input signals. Even when this method is not 
directly applicable, it is often possible to approximate the behavior of a system over 
restricted ranges of its input and output signals. 

Even in the case of observing spontaneous behavior (when there is no observed 
input signal) it is possible to apply signal processing methods by pretending that the 
signal being observed is the output of a system. The choice of a specific signal pro- 
cessing method will dictate what the fictitious “input” signal is assumed to be. This 
conceptual framework, which is developed later in this chapter, provides a common 
basis for comparing signal processing methods and explicitly highlights implicit as- 
sumptions underlying the use of each method. 

Obviously the above illustrations are only a few of the many examples of bio- 
medical signals and signal processing and many more will be introduced in the dis- 
cussions and homework problems of this book. The student surely will encounter 
many others in his or her own work. The purpose of presenting these examples is in 
part to illustrate the breadth of biomedical engineering. Another purpose is to 
demonstrate that signal processing is a critical element of biomedical engineering 
activities, whether they address problems at the whole body, organ system, tissue, 
cell, or molecular level. 

1.6 WHY SIGNALS ARE ”PROCESSED” 

Signal processing can be defined as the manipulation of a signal for the purpose of 
either extracting information fiom the signal, extracting information about the rela- 
tionships of two (or more) signals, or producing an alternative representation of the 
signal. Most commonly the manipulation process is specified by (a set of) mathe- 
matical equations, although qualitative or “fuuy” rules are equally valid. There are 
numerous specific motivations for signal processing but many fall into the follow- 
ing categories: ( I )  to remove unwanted signal components that are corrupting the 
signal of interest; (2) to extract information by rendering it in a more obvious or 
more useful form; and (3) to predict future values of the signal in order to anticipate 
the behavior of its source. The first motivation clearly comprises the process of fil- 
tering to remove noise and this motivation will be encountered in almost every 
chapter, as most methods of signal processing implicitly provide some basis for dis- 
criminating desired from undesired signal components. (An important issue is the 
basis on which the user decides what is desired signal and what is noise!) The gen- 
eral problem of discriminating noise from signa1 is discussed later in this chapter 
and the major focus of Chapter 8 will be the use of filters for noise removal. 

The idea of applying signal processing to extract information is pervasive in 
biomedical applications. Often the objective is to discriminate abnormal from nor- 
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ma1 signals and on this basis diagnose the presence of disease. Just as the physi- 
cian utilizes auditory discrimination to detect abnormal heart or lung sounds, bio- 
medical engineers often separate a signal into a sum of basic signal types in order 
to detect the presence of abnormal signals that are suggestive of disease. Many of 
these approaches involve searching for unusual features in the Fourier transform 
of a signal. For example, in several cardiorespiratory diseases, such as congestive 
heart failure, blood pressure oscillates with a period of a few or several tens of 
seconds. To detect this oscillation one can examine the power spectrum (which is 
proportional to the squared magnitude of the Fourier transform) of blood pressure. 
On the other hand, we shall find that many biomedical signals do not adhere well 
(in a practical sense, not in a mathematical sense) to the basic premise of the 
Fourier transform: that the signal can be expressed as a sum of sinusoids. 
Consequently, an active and important area of research is to develop alternative 
methods for decomposing a signal into basic signal types that better represent the 
properties of biomedical signal sources. 

The need to predict future values of a signal arises in two different situations. 
Most commonly this need occurs when one is interested in controlling a behavior- 
for example, regulating the blood glucose level by periodic injections of insulin. Be- 
cause the result of any control action requires some finite time before its effect is 
evident, it is useful if one can predict the behavior of interest a short time in the fu- 
ture. In this way one can apply a control action based on the anticipated behavior at 
the time that the control action will be effective. The concepts of control theory un- 
derlying such applications are not discussed in this textbook, but in Chapters 3 and 
9 we will address the question of how one processes a signal to predict its future 
values. The other biomedical situation in which the prediction of fbture values is 
important is the early detection of the onset of a disease process. Ofien in this case 
the problem is to predict the limits of future normal behavior so that small devia- 
tions from normalcy which might signal the onset of disease may be identified. This 
type of application has been a “Holy Grail” of biomedical signal processing since 
its inception. It is exemplified today, for example, by attempts to correlate indices of 
fractal behavior of heart rate with the presence or absence of disease. This area is an 
active research field whose theoretical advances are driven, in part, by the need for 
better methods for applications involving biomedical problems. 

1.7 TYPES OF SIGNALS DETERMINISTIC, STOCHASTIC, 
FRACTAL AND CHAOTIC 

As one examines the examples of signals in Fig. 1.2, there is the impression of qual- 
itative differences among them. Some appear to be smooth and one has the impres- 
sion that it is possible to predict how these signals would behave beyond the period 
of measurement. In contrast, other signals are quite variable and give the impression 
that it would be difficult to predict their exact future behaviors. Such impressions 
are correct and reflect a fundamental problem for biomedical signal processing: 
There are different types (or classes) of signals. The class to which a signal belongs 
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strongly influences the inferences one can draw from the signal regarding the source 
of the signal and determines, to a certain extent, the applicable signal processing 
methods. 

We shall recognize four classes of signals: (1) deterministic, (2) stochastic, (3) 
fractal, and (4) chaotic. Examples of these types of signals are shown in Fig. 1.6. 
Deterministic signals are encountered commonly in textbook examples but less fre- 
quently in the real world. A deterministic signal is one whose values in the future 
can be predicted exactly with absolute confidence if enough information about its 
past is available. Often one only requires a small amount of past information. For 
example, once I know one cycle of a sine wave, I can predict its value at any time in 
the hture. All of the common textbook signals such as impulses, steps, and expo- 
nential functions are deterministic. In fact, any signal which can be expressed exact- 
ly in closed mathematical form as a function of time is deterministic. 

Stochastic signals are signals for which it is impossible to predict an exact hture 
value even if one knows its entire past history. That is, there is some aspect of the 
signal that is random, and the name “random signal” is oAen used for these signals. 
This book will follow this practice but it should be noted that some random signals 
are completely unpredictable (i.e., uncorrelated), whereas others can be predicted 
with greater (but not absolute) confidence. For example, predictions of the direction 
of change of these latter signals may be right more often than not, even though pre- 
dictions of their exact value will almost certainly be incorrect every time. 

Random signals are abundant in physical processes. Noise generated by elec- 
tronic components in instrumentation is a common type of random signal that is 
present in much biomedical data. Although contemporary electronic design mini- 

(a) Deterministic (b) Filtered white noise 

(c) Fractal noise (d) Chaotic 

FIQURE 1.6 Examples of the four types of signals. Note the visual similarities. The reader 
should explore other examples of these signal types wing the m-file sigtype .m See text or 
m-file for description of how these signals were generated. 
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mizes this noise, it can be significant compared to signals from microminiature bio- 
medical sensors such as extracellular potentials recorded with glass microelec- 
trodes. Almost all bioelectrical measurements contain random noise caused by ran- 
dom fluctuations of ionic currents and by the stochastic nature of action potential 
generation. In addition, because most biomedical systems are complex, it is, not pos- 
sible to appreciate all of the factors that influence a measurement. Often we classify 
those parts of a signal which are not understood as “noise.” Because of our igno- 
rance, these signal components may appear to vary randomly relative to known 
mechanisms, thereby reinforcing the impression of stochastic behavior. Further- 
more, it is often valid to treat these signals as stochastic. 

The presence of fractal signals in biomedical processes has become widely rec- 
ognized in the last decade. Fmctul signals (Fig. 1.6(c)) have the interesting property 
that they look very similar at all levels of magnification, a property referred to as 
scale-invariance. For example, if I create a new signal from the one in Fig. 1.6(c) 
having one-fourth of the time resolution (Le., by averaging the first four consecutive 
points, then the next four points, etc.), 1 cannot discriminate between that and the 
initial one-fourth of the original signal using many of the usual measures for quanti- 
fying a signal (Fig. 1.7). Visually they are not the same signal but they look very 
much alike. You might expect that random signals would exhibit this property also, 
but there are important quantitative differences between the scaling properties of 
fractal signals and of random signals. These differences will be discussed in Chap- 
ter 10. There is very good evidence that a part of the beat-to-beat heart rate signal 
(e.g., Fig. 1.2(e)) is fractal, as well as the signal representing current through a sin- 
gle ionic channel of a cell membrane. It is likely that many other biomedical signals 
are fractal. Furthermore, the concept of fractals can be applied to spatial variations, 
such as the branchings of blood vessels or airways or inhomogeneities in an elec- 
trode, as well as to temporal variations. More applications of spatial fractals in bio- 
medicine are likely to appear. If a signal is shown to be fractal, then the challenge is 
to understand how the structure and properties of its source could produce the scale 

Original 
signal 

4-point 
average 

FIGURE 1.7 The similarity of fractal signals observed at different scales is seen by compar- 
ing (top) 50 points from the signal of Fig. 1.4(c) with (bottom) a 50-point signal constnrcted by 
averaging groups of four consecutive data points of the same signal. 
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invariance described above. Many of the simple physical processes that are often in- 
voked as sources of biomedical signals cannot reproduce this property. Directly 
proving that a signal is fractal is difficult at this time, although there are fairly re- 
producible (but complex) techniques for determining indices of scale-invariance. 
One’s confidence in a specific calculated value for any of these indices, however, 
may not be strong. 

Chaotic signals are deterministic signals that cannot be predicted exactly in the 
future. The apparent contradiction in this definition is explainable on the basis of 
the “sensitive dependence on initial conditions” of chaotic signals. For some deter- 
ministic signals their trajectories in the future are so sensitive to their past values 
that it is impossible to specifjr those past values with sufficient accuracy that we can 
predict ahead in time with certainty. Thus, in theory, these signals are deterministic, 
but beyond a short time into the future the error of the prediction becomes very 
large. Because a chaotic signal is not fully predictable, visually its behavior has 
some characteristics of a random signal (but random signals are not chaotic and 
chaotic signals are not random!). As was the case with fractal signals, it is only in 
the last decade or so that researchers have recognized that biomedical systems could 
generate chaotic behavior that is reflected as chaotic signals. Again, the challenge is 
to understand the underlying structure and properties of a physical process which 
could produce this sensitive dependence on initial conditions and the unpredictable 
fluctuations in the signal. 

Proving that a signal is chaotic is difficult at this time and developing new meth- 
ods for such proof is an active research topic. One of the difficulties is the essential- 
ly universal presence of stochastic signal components, which seriously corrupt the 
analyses for chaotic signals. Another difficulty is that a process which is chaotic un- 
der some circumstances may not be chaotic under a different set of conditions. 
There is evidence, however, that some immunological and biochemical regulatory 
processes can exhibit chaotic behavior, and that EEG activity and breathing may 
have chaotic characteristics. Several neurophysiological systems, ranging from mul- 
ticellular oscillators to single neurons, have been reported to exhibit chaos and the 
spread of disease in recurring epidemics has been assessed from this perspective 
also. Although evidence of chaotic behavior in real-world signals has been circum- 
stantial, often it is possible to demonstrate the potential for chaotic behavior in a 
mathematical model of a biomedical process and then infer that the real-world 
process might also exhibit this behavior. 

Example 1.4 Figure I .6 displays signals of the four types discussed above which 
were generated using the file sigtype . m. The signals were constructed as fol- 
lows: The deterministic signal is a sum of five sine waves having randomly selected 
values of amplitude and frequency. The stochastic signal is the output of a linear, 
lowpass filter whose input is uncorrelated white noise. The fractal Brownian noise 
signal was constructed using the spectral synthesis method with 300 frequency 
components and H= 0.8. The chaotic signal is the solution for the Henon map with 
parameters (1.4,0.3) and randomly chosen initial conditions. 
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You may create other examples by running the file s igtype . m, which will 
generate other examples of these signal types. It is strongly recommended that you 
examine other examples of these types of signals because different realizations 
from these examples can be visually quite different. Use the MATLAB command 
help sigtype to retrieve information about the parameter values in sigtype. 

1.8 SIGNAL MODELING AS A FRAMEWORK 
FOR SIGNAL PROCESSING 

Signal processing was defined above as the manipulation of a signal for the purpose 
of either extracting information from the signal (or information about two or more 
signals) or producing an alternative representation of the signal. The parallels be- 
tween this definition and the previous discussion of a system should be obvious. In 
signal processing the original signal is analogous to the input signal of a system, the 
rules specifying the manipulation process are analogous to the system itself, and the 
information (in the form of a derived signal) or the alternative representation of the 
original signal is analogous to the system output (Fig. 1.8). “Manipulation process” 
is simply another name for the transformation that specifies the input-output rela- 
tionship of a system. The viewpoint of this book is that signal processing can be for- 
mulated as a process of applying a transformation to a signal. In this case, however, 
one does not necessarily describe the transformation in the same terms that would 
be used to describe an electronic amplifier, for example. A transformation is just a 
compact way to describe how to combine current and past (and perhaps future) val- 
ues of the input signal in order to determine the current value of the output signal. 
The algorithms for signal processing often are not mathematically simple, but they 
can be expressed in a form that by analogy accomplishes this same end. An advan- 
tage of this framework is that signal processing algorithms can be grouped accord- 
ing to their similarities, and generalizations about the group can be derived. This 
structure will be called the analysis framework for signal processing. As an exam- 
ple, consider the construction of a Fourier series representation of a periodic signal. 
As shown in Fig. 1.9(a), the input to the “signal processing system” is the periodic 
signal, the system in this case is the set of equations for calculating the Fourier se- 

Rules Information 

Equations derived signal 
or signal 

FIQURE 1.8 System model of signal processing. 
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signal - I Fourier Series 
Analysis 

Equations 

sin Q t -B 
c o s q t  - 

Fourier Series 
Synthesis 

sin In %t] -* Equations 
cos [n qt]  - > signal 

FIQURE 1.9 (a) Signal processing analysis model of Fourier series calculations: (b) Signal 
processing synthesis model of a periodic signal based on Fourier series summation of sinu- 
soidal inputs. 

ries coefficients, and the output is the ordered sequence of coefficients (which can 
be considered to be a discrete signal). 

Another way to view this process is shown in Fig. I .9(b). Here we represent not 
the analysis process but the model of the signal that is implied by the Fourier series 
analysis. This “signal modeling” structure will be called the synthesis framework 
for signal processing. This approach explicitly presumes that the observed periodic 
signal can be represented as a specific transformation of a large number of harmon- 
ically related sine waves. The transformation T[.] is exactly the usual equation for a 
Fourier series expansion with the appropriate values for the coefftcients. It should 
be apparent that knowledge of the input signals and the transformation equation(s) 
is equivalent to knowledge of the output signal. Both the analysis and the synthesis 
frameworks will be important for developing signal processing methods and the 
reader is strongly urged to clarify in his own mind the distinctions between these 
two approaches. (This specific example will be developed in detail in Chapter 5. )  

Erample 1.5 The synthesis framework for Fourier series analysis can be carried a 
step hrther by utilizing a normalized time scale-that is, let the duration of one cy- 
cle be normalized to one and the frequencies of the input sine waves be integer mul- 
tiples of unity. Then, in order to construct the output signal another parameter is 
needed to complete the description of the input signals, the fundamental frequency 
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to be used. Now this model structure for Fourier series analysis is analogous to the 
ARMA model structure for random signals, which is studied in Chapter 9. In the 
latter case the input signals are sample functions of a white noise process and the 
additional parameter that is needed is the variance of the white noise. 

A differential equation that expresses a relationship between a function, say f i t ) ,  
and its derivatives and a forcing function, say x(t), and its derivatives may be con- 
sidered to be a signal processing model in the synthesis form. That is, the differen- 
tial equation relates how one “constructs” the current value of r(t) by adding (or 
subtracting) current and past values of x(t )  and past values offit). To visualize this 
result, think of the approximation 

d f i t )  fit) - y( t  - At)  -= 
dt  At 

Consequently, any situation that can be described by a differential equation also can 
be considered as an example of signal processing. 

1.9 WHAT IS NOISE? 

To a considerable degree the direct answer to this question does not lie in the realm 
of signal processing. Rather, the ultimate basis for deciding what constitutes noise 
should derive from considerations about the experimental or clinical measurements 
and the known properties of the source of a signal. Ideally the biomedical engineer 
decides a priori the criteria for judging whether certain components of a signal rep- 
resent the desired measurement or not. Then the signal processing method is chosen 
to enhance the desired signal and reduce any undesired signal components. That is 
not to say that the user should be able to visually identify the noise in the signal be- 
fore any signal processing occurs; but he or she ought to be able to specify proper- 
ties of the noise which will permit specification of signal processing parameters 
that will reduce it. In some cases this information may not be known a priori and it 
may be necessary to examine the results of the signal processing steps to assess 
whether the output signal exhibits some apparent separation into desired and noise 
components. The user is strongly cautioned, however, to try to understand this sepa- 
ration relative to the original signal through a process of “reversing” the signal pro- 
cessing steps, if at all possible. Any determination that a signal component is un- 
wanted noise ideally should be a reflection of knowledge of the process under study. 
Signal processing should implement that knowledge rather than being the sole basis 
of its determination. 

Example 1.6 In many cases it will be obvious that certain components of a sig- 
nal are noise, and one will not even contemplate that this result is based on knowl- 
edge of the properties of the signal source. Consider, for example, a recording of 
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EMG activity from an intercostal muscle of the chest in Fig. 1.10. The ECG sig- 
nal invariably is present within a chest muscle EMG recording, but we recognize 
from the shape of the waveform, from its regular timing that is asynchronous with 
muscle contraction, and from its amplitude, that the ECG is not part of the EMG. 
Note that those discrimination criteria are independent of the signal processing 
steps. (The reverse is not true, of course. The signal processing steps are likely to 
be designed to reduce the ECG signal components based on their waveshape and 
timing.) 

It is important to reiterate two related points made earlier: First, just because a 
signal “looks like” noise, it may not be noise. An obvious possibility is that it has a 
fractal character or that it arises from a chaotic system. Second, by deciding what 
will be considered noise, the user may well have limited the choice of signal models 
that can reasonably be applied to the non-noise signal. 

Example 1.7 Assume I have a measurement that appears to be a sine wave with a 
lot of added noise (Fig. I .  1 l(a)). With this model in mind I can devise a method of 
filtering that removes as much of the “noise” as I can. Probably the resultant filtered 
signal could reasonably be analyzed only as a sinusoid. On the other hand, I might 
assume that the original signal represents a filtered random signal that has a strong 
component at one frequency (Fig. 1.1 l(b)); therefore both the desired and noise 
components are random signals. Unfortunately, there are no easy guidelines to re- 
solve dilemmas like this. One must incorporate other information about the process 
under study and even then it may be necessary to test several models of the signal 

FIGURE 1.10 Example of a chest wall EMG during two breaths, showing contamination by 
the ECG signal (top). Signal processing can detect and remove the ECG signal (middle). After 
recttfying and lowpass filtering, one obtains a signal representing ’amplitude” of the EMG 
(bottom). Short line (lower right) represents one second. 
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FIOURE 1-11 Two possible models of a noisy sinusoid-like signal: (a) as a pure sine wave 
plus added noise; (b) as white noise passed through a filter with a strong resonant behavior. 

and try to judge which one is best. Once again, that type of assessment is an area of 
very active research. 

Several examples of the need for noise removal by filtering were mentioned in 
the previous discussion of the sources of biomedical signals, although the causes of 
noise were not always discussed. Noise from electronic instrumentation is invari- 
ably present in biomedical signals, although the art of instrumentation design is 
such that this noise source may be negligible. Sometimes signals of interest are con- 
taminated by signals of a similar type from another source. One example was given 
above: records of EMGs from muscles of the chest invariably contain an ECG sig- 
nal which one wishes to minimize, usually by filtering. An extreme example of this 
type of noise contamination occurs during the recording of potentials from the scalp 
that are evoked by a brief sensory test stimulus such as a flash of light. Often the 
evoked potential is not even apparent in the recording because of the background 
EEG activity and a great deal of signal processing is necessary to permit visualiza- 
tion of it. Sometimes the motion of recording devices cannot be escaped and this 
motion adds a contaminating component to the signal being recorded. Other exam- 
ples of unwanted signal components in biomedical applications are ubiquitous. 

1.10 SUMMARY 

This chapter has discussed the reasons for studying biomedical signal processing, 
presented some examples of biomedical signals, explained the different types of 
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signals which appear in biomedical applications, established some basic definitions, 
and described a framework for the introduction and analysis of signal processing 
techniques. A signal is a representation of information as a function of an indepen- 
dent variable, which is often time. Signals may be either continuous-time or dis- 
crete-time. From the signals they acquire, biomedical engineers want either to ex- 
tract particular information or to draw inferences about the properties of the sources 
of the signals. In other applications they need to determine the relationships be- 
tween two signals. Signal processing is the manipulation of a signal for obtaining 
information from the signal, deriving an alternative representation of the signal, or 
ascertaining the relationships of two or more signals. Often the intent is to extract 
information by suppressing unwanted signal components, but the determination of 
what constitutes noise should be based on knowledge of the signal source, if possi- 
ble, In some applications it is desired to predict future values of the signal. 

There are four types of signals that might be encountere-1) deterministic, (2) 
stochastic, (3) fractal, and (4) chaotic-and it is important to determine to which 
class a signal of interest should be assigned. Often, however, this task is very diffi- 
cult because the methods for identification of fractal and chaotic signals are evolv- 
ing. 

Signal processing can be viewed in the same framework as systems analysis- 
the signal is the input to a “black box” which contains the rules for processing the 
signal, and the output is the desired information or derived signal representation, 
This framework would be considered the analysis model of signal processing. In ad- 
dition, each signal processing method can be placed into a “signal modeling” or 
synthesis framework. In this framework the signal under study is the output and the 
inputs are the signal waveforms which, according to the rules of the signal process- 
ing method, are to be used to construct the original signal. The “black box” then 
contains the rules for this construction. We will utilize both frameworks in the ensu- 
ing chapters. 

EXERCISES 

1.1 Consider how each of the following situations can be put into a systems 
framework. Specify the input and output signals, and describe the contents of the 
system “box” (i.e., the transformation process): 

a. A miniature, solid-state pH sensor is placed at the end of a catheter which is 
then inserted into an artery. Wires running through the catheter connect the sensor 
to an external amplifier to permit recording of the pH. 

b. To determine sleep state a neurologist examines a 12-lead EEG recording to 
determine the predominant rhythms (called alpha, beta, gamma, and delra). She 
also looks at a chin EMG recording to see if continuous muscle activity is present 
and at EMG recordings from the extraocular muscles to detect rapid eye move- 
ments. From these observations, every 30 seconds she classifies the sleep state into 
one of six possible states which are referred to as: awake; stage I, 11, 11, or 1V of 
nonREM; REM. 
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c. Nerve cells are grown in a culture dish. Every day the culture dish is exposed 
to an electromagnetic field of a particular frequency and intensity for four hours. 
Afterwards the lengths of any axonal processes are measured microscopically to see 
if the electromagnetic field promotes axonal growth. 
1.2 As traffic passes by a research building, the floor vibrates. To minimize vibra- 
tions of a microscope sitting on it, a table in the building has each of its four legs sit- 
ting in a tub of sand. The viscous damping provided by the sand should reduce the 
vibration of the table top relative to that of the floor. To assess the degree of damp- 
ing to be expected, a researcher wants to relate the displacement of the table top to 
that of the floor. Formulate this problem in a systems fiamework, identi@ the input 
and output signals, and discuss the system which relates these signals. 
1.3 Draw a block diagram for both the analysis and synthesis signal processing 
models for each of the following: 

a. Rectal temperature of a subject is measured continuously for four days and 
these data are approximated using four cycles of a sine wave having a period of 24 
hours. 

b. The floor vibrations in Exercise 1.2 are recorded with a sensitive accelerome- 
ter and found to have five main frequencies whose amplitudes each vary with time 
during the day. To model this signal it is represented as a summation of five sinu- 
soids whose amplitudes may change every hour. 

c. Instantaneous heart rate (IHR) is defined as the reciprocal of the duration of a 
beat. The heart rate of a subject in the Intensive Care Unit (ICU) is being monitored 
by averaging the IHR for all beats during each 5-minute time interval to obtain an 
index of the mean heart rate. 
1.4 Consider the following signals and decide which components of each are in- 
formation-bearing biomedical signals or noise. State your reasons for your choices: 

a. A new biomedical sensor continuously measures the glucose level in the 
blood. 

b. A set of ECG electrodes records the electrical activity of the heart and the 
electrical activity of respiratory muscles of the chest. 

c. An ultrasound beam is detected by an ultrasound microphone after the beam 
reflects off a solid tumor. 

d. A microelectrode implanted in the motor cortex of a monkey records action 
potentials from many neurons, but especially from one neuron that becomes active 
during a reaching movement with the right hand. 
1.5 Classifjl each of the following signals as CT or DT signals and specify either 
an appropriate unit of time for each signal or the independent variable (if it is not 
time): 

a. The instantaneous velocity of the left heel during a long jump. 
b. The concentration of calcium inside a muscle cell. 
c. The amount of blood ejected from the left ventricle with each heartbeat. 
d. The number of red blood cells passing through a pulmonary capillary each 

e. The average velocity of red blood cells in a pulmonary capillary. 
second. 
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f. The concentration of oxytocin in 5 ml samples of arterial blood taken every 

g. Pressure inside the eyeball. 
h. The number of nerve cells in a thin slice of the brainstem, where each slice is 

taken from a different experimental animal (but from the same location). 
i. The brightness of a light that is supplied with a current proportional to the 

work done by a subject peddling an exercise bicycle. 
1.6 Classify each of these signals as deterministic, stochastic, fractal, or chaotic, 
and explain your reasoning. (There may be more than one correct answer for some.) 

a. The signal from a blood glucose sensor after it is inserted into an artery. 
b. The signal from a blood glucose sensor before it is inserted into an artery. 
c. The signal from a pH meter whose electrode is in contact with gastric contents. 
d. The heart rate signal of Fig. 1.2(e). 
e. The intensity signal of Fig. 1.2(f). 
f. The EMG signal of Fig. 1.2(b). 
g. The three-dimensional coordinates of the path traced by the movements of a 

molecule of oxygen deep in the lung. 
h. x(r) = 0.5 cos(6nr) + 14 t u(r). 
i. The voltage across the membrane of a muscle cell of the heart. 

hour. 

1.7 Consider the set of all functions which can be constructed by linear summa- 
tions of scaled and delayed versions of the three basis functions shown in Fig. 1.12. 
Any such function can be represented in the forrnf(t) = a x(t - 7,) + 6 y(t - T ~ )  + c 
z(t - 7,) + d, where a, 6, c, and dare constants. Evaluate these parameters (a, 6, c, d, 
71, 72, TJ for each of the three functions graphed in Fig. 1.12. 

Ir- 0 0 1 0 I 

I Basis functions I 

.S 1 1.5 

T 

(b) 
FIGURE 1.12 See Exercise 1.7. 
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1.8 In the steady state the liters per minute that a subject inhales during breathing 
(i.e,, ventilation, symbolized as I$) is linearly related to the partial pressure of car- 
bon dioxide in the arterial blood (symbolized as PaC02). To calculate this relation- 
ship a physician measures ventilation and PaC02 from a subject and plots the for- 
mer versus the latter (Fig. 1.13). Because these data are noisy and do not fall on a 
perfectly straight line, he uses linear regression to fit a line through these data 
points. Draw an analysis model of this signal processing step, identifying the input 
signal and output(s), and describe the transformation processes which are occurring 
in the system. If you know about the procedure of linear regression, you should be 
able to give the equations of the transformation. 
1.9 One tool for assessing the presence of lung disease is to measure the maxi- 
mum expiratory aifflow effort that a subject can make, starting from his maximum 
inspired volume. Fig. 1,14(a,b) shows simulated data from such a maximal expira- 
tory flow maneuver. Theoretically the maximum flow is a function of the fluid me- 
chanical properties of the lung and it is a decreasing function of lung volume. 
Therefore it is usual to plot airflow versus expired volume, as shown in Fig. 1. lqc) ,  
and to compare such flow-volume curves to typical curves from normal subjects. A 
common problem is the noise near the peak of the flow signal (Fig. 1.14(a)), which 
is “spread out” over a large initial part of the flow-volume curve. Furthermore, it is 
often difficult to filter this noise from the flow signal without also removing too 
much of the desired flow signal. Let’s consider whether it is possible to filter the 
flow-volume curve directly. 

a. If I digitize the flow and volume signals during the measurement (in this case, 
at 25 samples per second) and make a “discrete-time” plot from these data, I obtain 
the graph in Fig. 1,14(d). Explain why the data samples are not spaced uniformly 
along the volume axis. 

.>- !z _1 lo 
‘ 

0 .  a 
4 - 
40 60 

Pac02 (Torr) 

FIGURE 1.13 Steady-state ventilation of a human subject vs. partial pressure of COz in arte- 
rial blood (PaC02). Solid circles: measured data. Dashed line: best fit line obtained from linear 
regression. 
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FIGURE 1.14 Simulated data from a maximum expiratory flow maneuver. (a) Air flow vs. 
time; @) Lung volume vs. time: (c) Air flow vs. volume of air expired (CT); (d) Air flow vs. volume 
of air expired (sampled signals). 

b. In theory, I could use interpolation of the data of Fig. 1,14(d) to generate sam- 
ples of flow at uniformly spaced increments along the volume axis. Roughly sketch 
the “discrete” flow-volume plot obtained by interpolating at every 0.1 -liter incre- 
ment. Have I obtained a digitized signal that could be processed like any other “dis- 
crete-time’’ signal? Explain your answer. 
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2.1 INTRODUCTION 

This chapter introduces the intimately related concepts of memory in physical sys- 
tems and correlation in signals. The concept of memory in a physical system reflects 
the degree to which the present behavior (or output) is influenced by (or “remem- 
bers”) past behaviors (inputs or outputs). Many physical systems exhibit memory. 
For example, if a pendulum is held at an angle to the vertical then released, it will 
oscillate transiently instead of dropping immediately to its rest position. The tran- 
sient behavior reflects some memory of its initial potential energy. Memory in a 
physical system is an expression of the inability of the system to dissipate or redis- 
tribute its energy instantaneously. If the system is well understood, often one can re- 
late this memory to specific parameters of the physical system. Thus there is poten- 
tially a great benefit from deriving a quantitative measure of memory based on 
observations of the output signal of a system, because such a measure might provide 
quantitative information about the parameters of an unknown system. Furthermore, 
as will be evident in Chapter 3, the input-output properties of a linear system can be 
almost completely described in terms of the memory properties of the system. On 
the other hand, virtually all methods of linear signal processing can be derived from 
the concept of correlation. 

Correlation in a signal relates to the degree to which the signal at the present 
time reflects its values in the past. The similarity between these heuristic definitions 
of memory and correlation suggest the possibility of strong linkages between corre- 
lation properties of a signal and memory properties of the system from which the 
signal arises. Indeed, analysis of correlation in signals from physical systems pro- 
vides a quantitative measure of memory, from which important properties of a phys- 
ical system can be inferred. 

This chapter begins by defining some basic properties of signal transformations 
and continues with an example and a discussion of memory in physical systems. 
Later the concept of correlation is defined mathematically and correlation analyses 
of several examples are presented. In this chapter the discussion will address deter- 

29 
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ministic signals only but the extension to stochastic signals in Chapter 9 will be 
straightforward. 

2.2 PROPERTIES OF OPERATORS AND TRANSFORMATIONS 

In Chapter 1 the input-output properties of a system were described by a transfor- 
mation operation, TI.], such that a system with input x(t) and output f i t )  could be 
described by the relationship 

assuming that the system has no initial energy before x(t) is applied at the input. 
(This assumption, which is equivalent to assuming that the output and all internal 
variables are initially zero, is critical. The reason is that for a given x ( f )  every differ- 
ent set of initial values of the system variables will produce a different output, f i t ) . )  
All systems can be represented by transformation operators and we shall assume 
that any transformation operation represents a system. Consequently the terms 
“transformation operation” and “system” will be used interchangeably. It was also 
emphasized in Chapter 1 that signal processing could be viewed in this same “sys- 
tems” framework-that is, the signal being “processed” would be considered the in- 
put to a transformation operation and the information or new signal derived from 
the signal processing procedure would be the output. Therefore both the analysis 
and the synthesis frameworks for signal processing can be expressed as transforma- 
tion operations. Because transformation operations are so common, it is necessary 
to discuss some of their basic properties. 

Transformations generally comprise one or more operations, many of which 
can be represented by mathematical operators. An opemtor expresses a mathemat- 
ically well-defined action on a signal or group of signals. Operators may represent 
simple actions, such as the addition of two numbers, or complex actions, such as 
the integration of a function or a mapping of an n-dimensional signal from one 
function space to another. A familiar operator is the derivative operator, D. The 
representation “Dx(t)” is shorthand for drldt. The distinction between operators 
and transformations is not absolute, but often one envisions transformations as in- 
volving an ordered sequence of operators. To be more specific we consider an ex- 
ample. 

Example 2.1 Transformation operator for a physical system The act of 
breathing involves the reciprocating actions of bringing air into the lungs (inspira- 
tion) then expelling it (expiration). These actions can be described from a biome- 
chanical perspective, as shown in Fig. 2.1(a). In a relaxed state with no airflow the 
pressure inside the lungs is. atmospheric pressure, PB. During inspiration the respi- 
ratory muscles-that is, the diaphragm and the rib cage muscles-contract and 
lower the pressure (P,,,(t), or pleural pressure) around the lungs inside the chest. 
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FIQURE 2.1. (a) Simple diagram of biomechanics of airflow into and out of the lungs. RAW = 
airway flow resistance; C,, lung compliance; Pe, atmospheric pressure; Pl(t), PJt), pressures 
in the lungs and pleural space; V,(t), lung volume; v(t), airflow. (b) System representation of the 
dependence of lung volume, V,(t), on transrespiratory pressure, P(t) = PB - PpXt). 

Because of their elasticity (described by their compliance, C,, the inverse of elas- 
ticity), the transmural pressure drop across the lungs causes the lungs to expand, 
momentarily decreasing the pressure inside the lungs (represented as PL(t)) and 
producing a pressure drop across the fluid flow resistance of the airways, RAW, 
which results in airflow through the airways and into the lungs. As long as the 
muscles contract with progressively increasing vigor, this process repeats and in- 
spiration (i.e., airflow into the lungs) continues. At the end of inspiration the expi- 
ratory muscles of the abdomen and rib cage may contract, forcing Pp,(t) to be 
greater than Pe, which drives air out of the lungs. (In resting breathing the expira- 
tory muscles do not contract, but relaxation of the inspiratory muscles allows 
Pp,(t) to increase above Ps.) 

This biomechanical process can be described mathematically from the physical 
properties of the structures involved. Like an electrical resistor, flow through the 
airway depends on airway resistance and the pressure drop across this resistance, so 
that 

where p(t) is the flow rate. Like an electrical capacitor, the compliance of the lungs 
relates the lung volume to the transmural pressure, as 
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Note that airflow and lung volume are related by 

V(t) = V(0) + p(s)ds. 
0 

Since it is a constant, we can assume that V(0) = 0. The first two equations can be 
combined to yield a first-order differential equation 

For simplicity, let P(t) = P ,  - P,,,(t). Then the general solution of this differential 
equation (with V(0) = 0) is 

One can visualize this process from a systems viewpoint (Fig. 2.1(b)), with the out- 
put V(t) resulting from the processing of the input signal P(r), as shown in the above 
equation. In transformation notation, 

1 1  

where T[x(t)]  = -1 e-(r-')'RAflL[x(s)]ds. V(t) = T [ P ( t ) ] ,  
R A W  0 

From the preceding example it is clear that system transformations may operate 
on functions and produce other functions as their output. A transformation, T[.], is 
said to be additive if it satisfies the condition 

for all functions x,( t )  andxz(t). T[ . ]  is said to be homogeneous if it satisfies the con- 
dition 

for all values of the real scalar a. The transformation TI.] is a linear transformation 
ifit is both additive and homogeneous. A system is linear if its transformation oper- 
ation is linear. Consequently, if T[.] represents the input-output relationship of a 
system (under the assumption that all variables of the system are initially zero), then 
the criterion for linearity of the system is that 
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for all real scalars (a, b) and all functions x&) and x2(r). Equation (2 .2)  is often 
termed the superposition condition. Note that if we let a= -b and x2(r) = x l ( t ) ,  then 
T[O] = 0 for a linear system. That is, a linear system cannot have a persisting nonze- 
ro output if its input is a function that always has a value of zero.‘ 

Example 2.2 The system described by f i t )  = 10 x(t - 2) + 1 is not linear. To prove 
this result it is suficient to find one violation of the additivity or homogeneity con- 
ditions. Scaling x(t)  by 2 ,  for example, does not scale y(t) by 2 because of the “+1” 
term. Consider the system given by y(t) = tx(r ) .  Even though this system has a time- 
varying coefficient multiplying x(t), one can show that it satisfies both of the condi- 
tions necessary for linearity. 
Erample 2.3 The biomechanical system for ventilating the lungs, described 
above, is linear. To show this result, choose two arbitrary input signals, P I @ )  and 
P2(t), and let P(t) be the weighted sum of these two signals, P(t) = aPl( t )  + bP2(t). 
By Eq. (2.1) the output V(t) is 

1 rt 

= aV&) + bV,(t), 

where V&) and V2(t) are the outputs for the individual inputs Pl(r) and P2(r). For 
systems such as this one that are described by differential equations, the system is 
linear (in the sense given above) if and only if the differential equation is linear. 
Ejcumple 2.4 A common method for smoothing a discrete-time (DT) signal is to 
pass it through a filter that averages several consecutive values of the input signal. 
Let the input signal be x[n]  and the output y[n]. In the case of three-point smooth- 
ing, this process can be described by the difference equation 

1 
y [ n ]  = 7 {x [n  - 21 + x[n - 11 + x [ n ] } .  

This equation is already in the formy[n] = T [ x [ n ] ]  and it is easy to show that this 
system is both additive and homogeneous, and therefore linear. Thus 

+ bx2[n]}= a T [ x * [ n ] ]  + bT[x2[n]] .  

(At several points in this book other properties of such filters, known as “moving 
averagers,” will be analyzed.) 
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A transformation operation, y(t) = T[x( t ) ] ,  is memoryless if lur all times tl ,  At,) 
depends only on x(t , )  and not on x(t)  at any other time. If a transformation is not 
memoryless, it is said to have memory. For example, the system represented by the 
relationship y(t)  = 5 x(t) + 4 is memoryless; however, the lung biomechanical sys- 
tem above has memory (because the output is determined by integration over past 
values of the input). Of course, a moving average filter also has memory. 

A transformation is time-invariant if shifting of the input in time by an amount to 
only has the effect of shifting the output in time by the same amount. That is, if 
T[x(t)]  = dt), then T[x(t  - to)] = y ( r  - to). Equivalently, one can describe a time-in- 
variant system by saying that the input-output relationship is independent of the 
chosen time origin. For example, the system y(t) = x(t) - y(0) is neither time-invari- 
ant nor linear (unless y(0) = 0). 

A transformation (and the system it represents) is causal if the output at any time 
depends on the input at that time or at earlier times but not on the input at fbture times. 
Specifically, ify(t) = T[x(t)], then a transformation is causal if for any chosen time, 
to, Ato) depends on x(t), t I to only. Loosely speaking, for a causal system there can 
be no response to an input before that input occurs. Equivalently, the output cannot 
anticipate the input. The condition of causality is important for physical realizability 
of a system but is less important for digital signal processing systems that have all of 
the input signal stored in memory and do not operate in “real” time. The lung biome- 
chanical system above is an example of a causal system because the integration to de- 
termine V,(t) involves the input signal up to and including, but not beyond, time equal 
to t. The two-point moving-average system described by the difference equation 

is not causal. 

form 
Many causal systems can be described by linear differential equations of the 

dN-’y dY & d‘x 

d P  
+ b M - ,  (2.3) + a , -  + aoy(t) = bG(t) + b l -  + * - * 

d”r 
dP dP- dt dt aN- + a & , y  + * * 

where (ao, al ,  . . . , aN, bo, . . I , bM} are scalar constants and M < N. If an equation 
of the form of Eq. (2.3) completely describes the input-output relationship of a sys- 
tem, and if it is not possible to do so after removing the N-th derivative term on the 
left-hand side, then the system is said to have an order equal to N. Similarly, the 
smallest value of N for which the input-output relationship of a discrete-time sys- 
tem can be written in the form 

is the order of the system. 
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2.3 MEMORY IN A PHYSICAL SYSTEM 

With a basic understanding of fundamental properties of transformations and sys- 
tems, we will now explore in depth the concept of memory as it applies to physical 
systems and mathematical descriptions of such systems. 

Thought Problem: Braking an Automobile 

Consider an automobile moving with an initial velocity, vo, to which a constant 
braking force,&, is applied beginning at time f = 0. The braking force is maintained 
until the car stops. (It is assumed that the driver also releases the accelerator pedal 
so that the engine force,f,, falls to zero immediately at t = 0.) A simplified diagram 
of this situation is presented in Fig. 2.2. Analysis of the motion of the car can be cast 
in a systems framework, in which the velocity of the car is related to the braking 
force by the transformation 

by writing and solving the differential equation of motion. The equation of motion 
for this system is 

where M is the mass of the car, Cf is the coefficient of friction, andfb is the braking 
force. 

Letting y = x, to = 0, i ( 0 )  = vo, one can write the above equation as 

Substituting T = M/CP which is the time constant of this system, the general solu- 
tion for this first-order differential equation may be written as 

mass = M J 
I \  

--+-%L fb 
ffr - X  

FIGURE 2.2. Simplified scheme of forces acting on a car. f,, braking force; f,, engine force; f*, 
friction force. 
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Consider the case when the engine force is removed but no braking force is ap- 
plied-that is,& = 0. Then from Eq. (2.7) the velocity as a function of time is 

Note that for any time tl > 0, the velocity relative to the initial velocity is given by 

That is, at t = t l  the “residual” velocity is a constant fraction of the initial velocity, 
independent of the initial velocity, and that fraction is a function of the system para- 
meters, M and C,. Furthermore, this “memory” of the initial velocity decreases as 
time increases. A more remarkable expression of this property is apparent from tak- 
ing the ratio of the velocities at any two times, rI and t2: 

(2.10) 

This ratio depends only on the time difference and not on the actual times. That is, 
for a given time direrence (i.e., t2 - t l )  the memory of the past velocity is a constant 
fraction of the past velocity independent of the actual times, tl and t2. One con- 
cludes that this memory of the past velocity must be an intrinsic property of the sys- 
tem because it applies equally to the initial velocity and all subsequent velocities. 
What does this property reveal about the physical system? Apparently the velocity 
of the physical system cannot be changed to an arbitrary value (in the absence of an 
externally applied force such as a braking force). To understand this statement con- 
sider that the velocity is one measure of the state of the system, where the system 
state is given by the set of simultaneously sampled values of all the system vari- 
ables. The system state is determined by the distribution of energy in the system. In 
the absence of external forces, in order for the system state to change, either some 
energy has to be dissipated or the energy in the system has to be redistributed. In the 
present example all of the energy is present as kinetic energy and after the engine 
force is removed, it is being dissipated by the friction. This dissipation can not occur 
at an arbitrary rate (which would be necessary to change velocity instantly to an ar- 
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bitrary value). The rate of dissipation has a simple time dependence that can be de- 
rived from the properties of the system and the basic definition of energy: 

E = If dx = I (MX)(i dt). 

For the present example the energy of the car, E(t), as a function of time is its initial 
energy at time to (i.e., Eo) plus the change in energy as it is dissipated by friction. 
Using Eq. (2.8), the preceding equation for energy becomes 

E(t) = Eo + f 0 M( 2 v,,e4f uM)(v,,e-cf "M)dr 

Therefore, 

E(t) = Eoe-2c/uM = E,D(t). 

The first term on the right side of the first equation in Eq. (2.1 1) is the initial kinet- 
ic energy of the automobile, and the second term is the cumulative energy dissipa- 
tion (which will be negative). On a semilog plot (Fig. 2.3(a)) it is apparent that 
In E(f )  decreases linearly with time. Note from Eq. (2.1 1) that the magnitude of the 

4 (a) b (b) 

In vo No braking force 

c c. w 
c - 

\ 
\ 

b 

\ 
\ 

Time Time 
\ 

FIGURE 2.3. Log of energy vs. time when the car of Fig. 2.2 decelerates (a) without any brak- 
ing force; and (b) with a constant braking force. Dashed curve in (b) indicates energy of re- 
verse motion that would result if the constant 'braking force" continued beyond the time when 
the velocity reached zero in the +x direction. 
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slope is proportional to the reciprocal of the system time constant. This relationship 
is a single straight line because this system has only one mechanism for storing en- 
ergy-the kinetic energy of the car-and one mechanism for dissipating energy- 
the friction of the wheels. If there were two energy storage mechanisms (e.g., if the 
car were towing a trailer connected to the car by a viscously damped hitch), then 
E(t) would contain two exponential terms and In E(t) would not be linear but would 
approach linearity asymptotically (with different slopes) at t = 0 and infinity. This 
latter system would exhibit a more complicated form of memory that would reflect 
both energy dissipation and energy transfer between the car and trailer, and the ve- 
locity would not exhibit the single decaying exponential relationship of Eq. (2.8). 
Thus memory in a physical system is simply an expression of the inability of the sys- 
tem to dissipate or redistribute its energy instantaneously. This memory (some- 
times called a “trace”) of the energy distribution of the past is reflected in the time 
courses of the variables of the system. 

Formally, a system is said to be memoryless if its output at any time t depends 
only on the value of its input@) at the same time. In other words, there is no mem- 
ory of the previous state of, or inputs to, the system. Systems which are not mem- 
oryless have memory. A system will have no memory if it has no mechanisms 
which store energy. In fact, it is difficult to design a physical system that has no 
memory, although any system describable by algebraic (and not differential) equa- 
tions is memoryless. In practice, some systems may respond so quickly compared 
to others under study that the former can be considered to be memoryless on the 
time scale of study. For example, responses of the nervous system are so fast com- 
pared to body movements during locomotion that one often considers the neural 
components of locomotor control systems to be memoryless in the sense defined 
above. (The irony of assuming the nervous system to be memoryless should be 
obvious!) 

Example 2.5 Do the following systems have memory? 
(a )y=xZ+x+ 1; 

1 r  
(b) r(t)  = z l  i(t)dt; 

dY 
(c) = -ay(t) + bu(t); 

(d) y[n] = aw[n] + bw[n - I]. 
System (a) is algebraic and has no memory. z(t) in system (b) depends explicitly on 
a summation (integration) of past values of i(t) and therefore has memory. In system 
(c) the derivative cannot be evaluated From only the current value offit). One needs 
also the value of r(t - 8) for some small 8. Therefore, a system described by a dif- 
ferential equation has memory. Finally, the output of system (d)-that is, y [ n ] - d e -  
pends explicitly on the immediate past value of the input, w[n - 11, as well as its 
current value, w[n], and thus has memory. 
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Memory in the Presence of External Inputs 

So far we have considered memory in the context of the dissipation or redistribution 
of preexisting energy in a system. How does memory affect the addition (or re- 
moval) of energy from a system by external inputs? Consider the general solution to 
the braking problem whenf, is constant (Eq. (2.7)): 

fb 
Cf 

i ( t )  = voe-CfuM - - [ 1 - e-cfuM] 

over the interval 0 5 t 5 tz, where tz is the time at which the velocity of the car 
reaches zero, at which time we assume the driver ceases braking and fb becomes 
zero. It is easy to show that 

[ ;?I* M 
cZ=- ln  1 + -  

The first term on the right of Eq. (2.7) is the zero-input response, which we have al- 
ready discussed as the “memory” function Qt).  The zero-input response expresses 
the output due to initial conditions when the input signal is zero for all time. The 
specific zero-input response depends on the chosen initial conditions but, for a lin- 
ear system, it always can be expressed as a weighted sum of (possibly complex) ex- 
ponential functions that are invariant for a given system. It is a direct expression of 
the memory of the system. The remaining terms in Eq. (2.7) constitute the zero- 
state response-that is, the response of the system to an external input when its ini- 
tial conditions are all zero. The zero-state response is an expression of the transfor- 
mation operation, T[.], of this system which (see Eq. (2.7)) would be expressed, for 
an arbitrary input forcef,(t), as 

c, 

Both the amplitude and the form of the zero-state response depend on the specific 
input signal applied. It is apparent that this response also depends on the memory 
properties of the system and that the memory properties are expressed in both o ( t )  
and Tlfb(t)] through the time constant, T = M/C’ 

The braking force in this example acts to dissipate energy in the same manner as 
the friction force-by causing the system to utilize some of its energy to move the 
opposing force through a distance “dx”. One can solve for the energy of the car as 
was done above but using the general solution for &x/d? obtained by differentiating 
Eq. (2.7). As shown in Fig. 2.3(b), E(1) falls more quickly, as expected, but the de- 
cline is not a mono-exponential. The dotted line represents the mathematical soh- 
tion for the theoretically realizable (but impossible) case in which the “braking 
force” continues to be applied after the velocity reaches zero. In this situation the 
car would start to move backwards and would achieve a steady-state velocity at 
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whichfb is exactly counteracted by the force of friction. The magnitude of the ener- 
gy becomes negative by convention because the force is acting along the negative 
direction of the x-axis. 

It is apparent, then, that memory not only influences the dissipation of energy in 
the zero-input case, but also influences the rate at which energy in the system is al- 
tered by external forces. This result is heuristically tenable for the present example 
because in both cases physical objects have to be accelerated or decelerated and it is 
intuitive that such actions cannot occur instantaneously in the absence of infinite 
forces, Furthermore, it is important to note that this result can be generalized to en- 
ergy considemtions for non-mechanical physical systems-for example, electrical 
circuits, chemical reactions. In these latter cases one utilizes analogous definitions 
of energies and forces. In electrical circuits, for example, voltage can be analogous 
to force and charge to displacement. Thus electrical energy becomes the integral of 
voltage times the differential of charge, or 

where v(t) is voltage and i(t) is current. Note also that by defining power to be the 
time rate of change of energy, we obtain the familiar result that instantaneous power 
equals voltage multiplied by current. 

Example 2.6 Memory in a DT system Consider the discrete-time system de- 
scribed by the input-output difference equation 

y b l -  ayin - 1 1  = x [ n l ,  la1 < 1 ,  A-11 =YO 

To find the memory function, D[n], of this system, one first determines the general 
solution for y[n]. Thus 

y[O] = ay[-l] + x[O] = ayo + x[O] 

y[ 1 3  = ay[o] + x [  1 1  = a2yo + ax[OI + x [  1 3 ,  

y [2]  = ay[ 1 3  + x[2]  = a3yo + a2x[0] + ax[ 1 3  + x[2], 

from which it follows that 

(2.13) 

As in Eq. (2.7), Eq. (2.13) contains both a zero-input response and a zero-state 
response. The zero-input response is yJn] = P+'y0, which has the form y[n] = 
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D[nly[O], where D[nJ = u"+'. Note that since D[n] is determined by the zero-input 
response of a system, one only needs to solve for the output with x[n]  = 0 (but with 
a nonzero initial condition on the output) in order to determine D[n].  

It may be apparent that the memory function at) (or D[n])  is just the homoge- 
neous solution of the differential (or difference) equation of a linear system. That is, 
the memory function expresses the influence of nonzero conditions at t = 0 on the 
future course of the system output, Although the exact function depends on the spe- 
cific initial conditions, for a given linear system the memory function can always be 
expressed as a linear combination of the same (possibly complex) exponential func- 
tions for any set of initial conditions. The following example illustrates this point. 

Example 2.7 Memoty in a continuous-timc (CZJ system A linear second-order 
system can be described by a differential equation of the form 

ji(t) + ufit) + by@) = cx(t), 

where (a, b, c)  are arbitrary, but real, fixed parameters. The homogeneous solution 
can be found by setting the input to zero and assuming the form of the solution is 

The parameters (Cl, C,, SI, S,) can be determined by substituting the expression for 
y,,(t) into the original differential equation and collecting all terms in SI (or S,) and 
setting their sum equal to zero. The CI (and C,) terms cancel and for both S, and S, 
one obtains the same equation: 

s! + asi + b = 0, for i = 1,2. 

Thus, 

a 1  
2 2  

si = -- f -m, 

SI and S, are called the eigenvalues of the system. CI and C2 are found by match- 
ing y,,(t) and d',,(t)ldt to the given initial conditions, y(0) and fi0). Thus, as asserted 
above, for any initial conditions the homogeneous solution for this system is a linear 
combination of (the same) two complex exponential functions. 

Because of its dependence on the specific initial conditions, the homogeneous 
solution (i.e., the zero-input response) is not optimal as a quantitative measure of 
system memory. A more useful measure, the impulse response of a system, will be 
introduced in the next chapter. It is based on the observation noted earlier that the 
zero-state response also reflects the memory properties of the system. 
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2.4 ENERGY AND POWER SIGNALS 

A force&), acting on a body imparts energy (which may be negative) to that body. 
Does it make sense to ask, “What is the energy ofAr)?” To ponder this question, 
consider again the car of Fig. 2.2. Let the car be initially at rest, with Eo = 0, and let 
the engine produce a constant force,f,(t) = F, t 2: 0. For simplicity, assume there is 
no friction. The energy imparted to the car by the engine is 

(2.14) F since Z(t)  = - M ’  
E(t) is proportional toh2(t) and, in the general case, iff,(?) is time-varying but is ap- 
proximated as having a constant value over each small time interval, At, then AE 
during that time interval will be proportional to the square of the force. But from 
Eq. (2.14) the energy thatf,(r) can impart to the car depends also on the mass, M, 
and therefore is not unique. Consequently, to assign a unique “energy” value to a 
force function,At), it is customary to assume that M = 1. This same line of reason- 
ing can be applied to electrical circuits to motivate the definition of electrical ener- 
gy of a voltage signal to be the energy imparted to a 1 0 resistor when the voltage is 
applied across the resistor. Generalizing from this reasoning, the total energy of a 
signal, x(t), is defined as 

or, in the case of a real-valued signal, 

(2.16) 

A signal x( t )  is said to be an energy signal if its total energy is finite and non- 
zero-that is, 

For example, the signal x( t )  = e-2c u(t) is an energy signal since 

E=[e4c&= - 1 

4 ‘  

(2.17) 

On the other hand, the signal z(t) = eat, --03 < t < 01, is not an energy signal. However, 
any signal that is bounded and is nonzero only for a finite time is an energy signal. 

A signal x(t)  is called a power signal if its average power is finite and nonzero, 
where average power, P, is defined as 
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P, = lim,.[ To I" -w p(t)12dt]. (2.18) 

Energy signals are not power signals because their average power is always zero. 
Likewise, power signals cannot be energy signals. Some signals, such as r(t) above, 
are neither energy signals nor power signals. By convention, however, bounded sig- 
nals that have finite duration (although they are energy signals) are also considered 
power signals because their average power during theirfinite interval of observa- 
tion is nonzero and finite. In essence, one is assuming that the observed portion of 
the signal represents its behavior for all time, and therefore one may calculate pow- 
er without letting To approach infinity. For a bounded signal x(t)  observed on the in- 
terval (t,, t2), average power is defined as 

1 
P,=- b(t)12dt. 

12 - 11 'I 
(2.19) 

Periodic signals can be considered power signals if their average power deter- 
mined over one cycle is nonzero and finite. Thus, for a periodic signal x(t)  with pe- 
riod TI, 

(2.20) 

Note that Eq. (2.20) will be finite for any bounded periodic signal. 
Equivalent definitions for energy and power signals exist for discrete-time (DT) 

signals. Thus a DT signal x[n] is an energy signal if its energy, E, is nonzero and fi- 
nite-that is, 

(2.21) 

For example, the signal x[n] = an u[n], where 0 < (a1 < 1, is an energy signal because 

Similarly, a DT signal x[n] is a power signal if 

DT signals can be periodic and in such cases power is defined analogously to Eq. 
(2.20) as the summation of the squared magnitude of the signal over one period di- 
vided by the length of the period. 
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Example 2.8 Consider the periodic signal x(t) = 10 cos(4.rrt + n/16), which has a 
period Tl = 0.5. Letting A = 10, the average power of this signal is 

Note that P, is independent of the frequency of the cosine signal. 
Example 2.9 To find the average power of z[n] = cos[9m], first we must deter- 
mine the period ofz[n]. The period, NI, must satisfy the condition that 9nNI = 27rk, 
where both N I  and k are integers. That is, N1 = 2M9, which has the solution NI = 2 
when k = 9. Therefore the average power of z[n] is 

1 1 1 N - I  

NI k-0 
px = - 2 lz[k121 = -(cos2[0] 2 + cos2[97r]) = $(I + 1) =: 1, 

2.5 THE CONCEPT OF AUTOCORRELATION 

The Deterministic Autocorrelation Function 

The concept of memory was derived principally from the result in Eq. (2. lo), which 
expresses the dependence of velocity at time tz on that at a preceding time t l .  Here 
we shall derive a more generalizable form of this expression starting from this pre- 
vious result. Using Eq. 2.10 and lettingy(t) be an arbitrary system variable, one can 
write that fit2) = D(t2 - tl)y(tl). Multiplying by fit l)  we obtain 

Assume that, for practical situations, a signal is observed only for a finite length 
of time, To. Letting the time tl  be an arbitrary time t and setting s = t2 - t, one ob- 
tains 

Now divide both sides of this equation by To and integrate from t = 0 to t = To. Thus 

(2.24) 

The term in the brackets on the right of Eq. (2.24) is the mean square value of 
f i t ) ,  represented as msv(y): The lefi-hand side of Eq. (2.24) is defined as the deter- 
ministic autocorrelation function of y, denoted as R,((s). Note that the dependence 
on t is integrated out of this equation by the definite integral, so that the autocorre- 
lation is a function of s only. The argument, s, of the autocorrelation function is usu- 
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ally referred to as the lug, since it represents the amount of time that y(t)  “lags be- 
hind” y(f + s). Since D(0) = 1, Ry(0) = msvb) and 

Ry(s) = D(s)R,,(O). (2.25) 

The interpretation of Eq. (2.24) and, therefore, of R,,(s), is straightfoward. The 
term on the left-hand side is the average of the product ofy  at time t and y at time t 
+ s, taken Over all of the time interval of observation. (The observant reader will 
recognize that y(t + s) will not be defined for t > To - s. We will assume that y = 0 
whenever its argument lies outside the interval [0, To].) Ry(s) therefore expresses the 
degree to which At) and y(t + s) change in a similar fashion, on average. If, for ex- 
ample, for a given value of s, f i t  + s) always lies above zero whenever f i t )  is posi- 
tive and always lies below zero when r(t) is negative, then their product is always 
positive and their average product will be relatively large and positive. If the oppo- 
site is true, then their average product will tend to be large and negative. If, on the 
other hand, y(r  + s) is equally likely to be either positive or negative for any value of 
f i t ) ,  then the integration of their product will tend toward a value of zero. Therefore, 
knowledge of R,,(s) for many values of s provides considerable insight into the prop- 
erties of &). It should be noted, however, that although each At) gives rise to a 
unique RJs) through Eq. (2.24), there may be many functions, y(t), that produce the 
same RJs). Therefore, the inverse mapping from RJs) back to At) is not unique, 

Since the term in brackets on the right-hand side of Eq. (2.24) is a constant, re- 
markably we find that the dependence of RJs) on s is determined solely by Qs), the 
function that expresses the memory of the system. That is, the autocorrelation func- 
tion offit) quantifies the memory of the system from which f i t )  arose. This result is 
intuitively compatible with the interpretation of Ry(s), discussed in the preceding 
paragraph. Furthermore, this result is quite general and will be extended to many 
types of signals. In general, one does not know the fbnction D(s) of a system except 
for simple cases; however, one always can calculate Ry(s) for any finite-length sig- 
nal f i t ) ,  0 5 t I To, from the relationship 

RJs) = -!-lr0y(t + s)y(t)dr. (2.26) 
To 0 

After calculating Ry(0), one could determine D(s) from Eq. (2.25). (For a system 
of second order or higher, for these results to be directly applicable one must evalu- 
ate 4s) by setting the initial condition on the output to one and other initial condi- 
tions to zero.) Usually one omits this last step and works with R,,(s) directly, since 
this fbnction includes additional information about msv(y) 

Iffit) is the output of a system and R,,(s) is nonzero for some s > 0, one cannot 
presume that this indication of memory in y(t) necessarily reflects properties of the 
system. If the input to the system exhibits memory, this feature of the input is likely 
to propagate to the output. Memory in the input signal, however, is likely to be mod- 
ified by the system. Therefore. memory in the output signal can be due both to sys- 
tem properties and to memory in the input signal. In Chapters 8 and 9 we will dis- 
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cuss important methods of system identification that are based on the relationship 
of output memory to input memory and the dependence of this relationship on sys- 
tem properties. 

Properties of Deterministic Autocorrelation Functions 

Ry(s) has three important properties: 

from Eq. (2.26) by first substituting -s for s, then replacing t by t + s. 

first that for any real values of the constants (u,b) the following must be true: 

1. R,(-s) = R,(s). That is, it is an even function of s. This result can be derived 

2. IR,,(s)l 5 lRy(0)l. This property is slightly more difficult to establish. Consider 

[uv(t + S) + by(r)l2 z 0. 

Expand this equation and divide by bZ. One obtains 

Now, after dividing all terms by To and integrating both sides from t = 0 to t = To, we 
get 

which is a quadratic equation in the variable ulb with coefficients Ry(0) and RJs). 
Let c = ulb. Since u and 6 can have any values, so can c. That is, for any value of c 
this quadratic equation must be greater than or equal to zero. One can show that in 
order to meet this condition the equation cannot have two nonidentical real roots for 
c, or otherwise there will be some extent of the c-axis for which the value of the 
equation is negative. The equation will not have two nonidentical real roots if the 
discriminant is less than or equal to zero, or 

4 R 3 ~ )  - 4R,,(O)R,,(O) 5 0. 

Bringing the second term to the right-hand side and taking the square root establish- 
es the above property. 

3. The autocorrelation operation is not necessarily linear. That is, if z(t) = x(r)  + 
At), then R&) # R,(s) + Ry(s) necessarily. An intuitive understanding of this prop- 
erty can be obtained by noting that in applying Eq. (2.26) to z(r) there will be a term 
involving the product x(t)y(r) which will not appear in either R,(s) or R,,(s). If this 
term happens to evaluate to zero (and it does in some important cases), then the au- 
tocorrelation finction of r(t) will be the sum of the autocorrelation hnctions of x(t)  
and f i t ) .  

Although most practical signals will be observed for a finite time, many theoret- 
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ical signals are not so constrained. In this case, one defines the deterministic auto- 
correlation function as a limit, as 

(2.27) 

For s = 0, the right-hand side of Eq. (2.27) (if it converges) is exactly the definition 
of the power of a signal. Therefore, from property 2 above, autocorrelation func- 
tions exist for power signals. Periodic signals are special cases of power signals and, 
analogously to Eq. (2.20), the autocorrelation function for a periodic signal, f i t ) ,  
with period P is 

(2.28) 

In this case we do not assume that f i t )  is zero outside of the interval [0, PI, since it 
is given that f i t )  is periodic. Therefore, Ry[s] can be calculated for s > P, and conse- 
quently periodic signals have periodic autocorrelation hnctions. 

For energy signals the limit in Eq. (2.27) will be zero for all s. It is sometimes 
convenient to define an autocorrelation function for such signals which omits the 
division by To in the bracketed term of Eq. (2.27) (see Exercise 2.8). While this def- 
inition of the autocorrelation function also is valid, one must be consistent about 
which definition is used in any given application. 

From the right-hand side of Eq. (2.24) it is apparent that Ry(s) is determined by 
two independent measures, msvQ) and D(s). Since it is the variation of Ry(s) with s 
that provides insight regarding the influences of memory processes on a signal, it is 
common to discuss the normalized autocorrelation function ry(s), where ry(s) = 
R,,(s)/msvQ). Since msvQ = RJO), property 2 above implies that Iv,,(s)l is less than 
or equal to one. 

Example 2.10 Autocorrelation functions Determine the autocorrelation func- 
tions for the following signals: (a) x(t)  = u(t) - u(t - 3), 0 I t s 9; (b) r(t) = c2' u(t). 

(a) x(t )  is shown in Fig. 2.4(a). By definition, 

and for s = 0, R,(O) = 1. For 0 5 t 5 3, Fig. 2.4(a) indicates that ~ ( t  + s) and x(r) 
overlap for 0 5 t 5 3 - s. Therefore, 

3-s S 1 3-s 

3 0  3 3 '  
R,(s)=--( (l)(l)dt=-=1-- 

For s > 3, R,(s) = 0. Recall that R,(-s) = R,(s). Finally, R,(s) is plotted in Fig. 2.4(b). 
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2 I 1 I I 1 

1.8 - 
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1.2 - - 
0.8 - I 
0.6 - I 
0.4 - I 

- 
1.4 - X( I+ l )  x(t) 

' 1 -  r'- I 

I 
I 
I 

0.2 - I I - 
I 1 I 1 1 I 

- 4 - 2 0 2 4 8  

Time (sec) La9 (-a 
FIGURE 2.4. (a) x(t) and x(t + 1) for the function x(t) = u(t) - u(t - 3); (b) Autoconelation and au- 
tocovariance functions for x(t). 

(b) Sincez(t) is defined for all t 5 0, R&) is determined from Eq. (2.27). But since 
z(t) has a finite value when integrated from zero to infinity, R&) = 0 for all s. If we 
use the alternative definition (i.e., without division by To), then R&) = fe-ts, s L 0. 

The Autocorrelation Function of Zero-Mean White Noise 

Consider a signal, w(t), that has the following properties: (1) its average value (for 
sufficiently large To) is zero; (2)  its value at each point in time is random; (3) its val- 
ue at each point in time is independent of its value at any other time. Such a signal is 
called zero-mean white noise. To evaluate R,(s), s > 0, first note the following: 

R,(s) = J-Ir0w(t + s)w(rwr = J-lrrs4t + s)w(tvr, (2.29) 

since we assume that w(t) = 0 outside of the interval of observation. Since w(t) is 
random, for a fixed s, w(t + s) is equally likely to be greater than or less than zero, 
and when one integrates w(t + s)w(t)  over a sufficiently large interval, To - s, that 
integral is very likely to be zero. So for large (including infinite) intervals, zero- 
mean white noise has an autocorrelation of zero (except when s = 0, of course, when 
R,(O) = msv(w)). The question of how large an interval is necessary in order to as- 
sure that the calculated autocorrelation function will be close to zero is considered 
later in this chapter. 

To 0 To 0 

The Deterministic Autocovariance Function 

The autocorrelation function has one complicating feature when the mean level of 
the signal is not zero. To envision this complication, consider the simplest such sig- 
nal, x(t )  = A, where A is a constant, and x(t )  is nonzero only on the interval [0, To]. 
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Thus, by Eq. (2.26), Rx(s) = A2,  for s 4 To. Similarly, if x(t)  = A +At), whereAt) is 
an arbitrary function with a mean level of zero, then 

TO 
Rx(s) = '1 [A +At + s)][A +At)]dt = A 2  + Rf(s), for s 4 To. (2.30) 

To 0 

That is, the autocorrelation of x(t) is the square of its mean level plus the autocorre- 
lation of the deviations of x(t) about its mean level. Since it is easy to calculate the 
mean level of a signal, since a sufficiently large A2 will obscure the dependence of 
Rx(s) on s, and since the mean level of a signal contributes only an offset to the au- 
tocorrelation, therefore it is common to remove the mean level of a signal before de- 
termining its autocorrelation function. To distinguish this calculation from the auto- 
correlation function, it is referred to as the deterministic autocovariance function, 
Cx(s). That is, the autocovariance fbnction is a measure of the memory in the devia- 
tions ofx(l) about its mean level. For a signal x(t)  obseped on the interval [0, To], 

C&) = ir [x(t + s) -Z ] [x ( t )  -$it,  (2.3 1) 

where 

- 1  x = --(*Ox(t)dt P (x(t))  
To 0 

is the mean level of x(t) .  C&) and R,(s) are related by 

Rx(s) = Cx(s) + 3. (2.32) 

If x(t)  has a non-zero mean level and f i t )  is defined as f i t )  = x(t )  - X, then 

RJs) = Cy(s) = Cx(s) = RJs) - 22. 

~~ 

Example2.JI To determine the autocovariance function for the example of Fig. 2.4 
one can subtract the squared mean of the signal (i.e., 1/9) from the autocovariance 
function. The autocovariance function is shown as the dashed line in Fig. 2.4(b). 
&ample 2.22 The mean level of x(t )  = A sin(not) is zero and Rx(s) = C,(s). Let P 
= 27r/f10. Then 

R,(s) = ' I p  A 2  sin(flo(t + s)) sin(not)dt 
P o  

= $[ [sin@& cos(fl$) sin(Rot) + cos(flot) sin(Qp) sin(llot)]dt 
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Therefore, 

(2.33) A2 R,($) = -cos(a@s). 
2 

Note that the autocorrelation and autocovariance functions of a sinusoid are cosines 
of the same frequency as the sinusoid, having an amplitude that is one-half of the 
squared amplitude of the original signal. Since msv(x) = R,(O), the mean square val- 
ue of a sine wave is A2/2. Previously we determined that the power of a zero-mean 
sinusoid of amplitude A is also A2/2. Therefore, R,(O) (which equals C,(O)) equals 
the power of a zero-mean sine or cosine wave. This important result will be general- 
ized later. 

The three properties described above for R,(s) also apply to C,(s). One can also 
define a normalized autocovariance function, c,(s), such that 

with the result that Ic,(s)l 5 1. 

2.6 AUTOCOVARIANCE AND AUTOCORRELATION FOR DT SIGNALS 

The concepts of autocovariance and autocorrelation are easily extended to DT sig- 
nals. Let x[n ]  be a bounded DT signal observed on the interval [0, No - 11. its deter- 
ministic autocorrelation function is 

(2.35) 

and its autocovariance function is 

where 

No-' x= - C x[k] .  
No k-0 

As in the CT case, we assume x[n]  = 0 whenever its argument is outside of the in- 
terval [O, No - 11. consequently, the upper limit on the summations could be re- 
placed by No - 1 - m. The three properties discussed for R,(s) and the relationship of 
Eq. (2.32), apply also in the DT case. C,[m] and R,[rn] will exist for discrete-time 
power signals but not for energy signals, as discussed above. Both functions will be 
periodic with period Nl ifx[n] is periodic with period N1. 
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~ 

Example 2.13 Autocorrelation function of a DT signal The signal x[n] = 
n{u[n]  - u[n - 41) is a truncated ramp which is nonzero for 0 5 n I 3 (Fig. 2.5). 
Therefore, No = 4 .  Its mean level is 

and 

l 3  1 
No k=o 

+ xtm + 31x[311 

R*[m] = - c x[k + mlx[k] = $x[mlx[O] + x[m + l)r[ 1 3  + x[m + 2]x[2] 

1 
4 

= -[x[m + 1 1  + 2x[m + 21 + 3x[m + 311, m 2 0 

Substituting specific values form we find 

R,[O]=f( l  + 4 + 9 ) = 3 . 5  

R J l ]  = f(2 + 6 + 0)  = 2 

0 1 2 3 4 5 
n 

R X m I  4 
4 -  

d l  

2 -  

0 ; -  t t _ = _ - ,  
-6 -6 -4 -3 -2 -1 0 1 2 3 4 5 6 

Lag, m 

FIGURE 25. The function x[n] = n{u[n] - u[n - 411 and its autoconelation function. 
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RJ2] = f(3 + 0 + 0) = 3/4 

RJm] = 0, m h 2. 

Recalling that R,[-m] = R,[m] allows one to plot the autocorrelation function 
(Fig. 2.5). This same result can be obtained from a graphical approach. The method 
is shown in Fig. 2.6 for the case m = 2. First one plots x[m + k] and x[k]  aligned 
vertically, then these two f'unctions are multiplied to generate the function 
x [ m  + k] x [ k ] .  This last function is summed from k = 0 to k = No - 1 and the sum is 
divided by No. By visualizing this process for each value of m it is possible to sketch 
the general shape of RJm] without actually calculating its values. Often knowledge 
of this shape is an important starting point of an analysis and the student is strongly 
urged to practice this semiquantitative, graphical appmach until it becomes second 
nature (see Exercises 2.13 and 2.14). 

Example 2.14 Autocovariance functions of white noise sequences The MAT- 
LAB function randn was used to generate three sequences of a discrete-time white 
noise signal, w[n], having lengths No = 64, 512, and 4096. The normalized autoco- 
variance fhnctions of these sequences were obtained via Eq. (2.36) and are plotted 
in Fig. 2.7. From the longest sequence it is apparent that c,[m] = 0 form > 0, except 
for small random variations (whose amplitudes would diminish progressively as No 
increases above 4096). For No = 64 there are too few data points for the averaging in 
Eq. (2.36) to produce a result that is consistently close to zero. Even for No = 512 
the averaging is insufficient, although on a visual basis one might conclude that the 

for m = 2: 

T 
x[2+k] 

0 

0 

T x[2+k] x[k] . ' : " ' = - >  
k -3 0 3 

FIGURE 2.6. Graphical approach for evaluating R,[m], in this case for m = 2. 
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0.5 No=64 - 
c,Iml - 

I I 1 I I I 
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-0.5 

No = 512 

c,[rn] 0.’ 
0 

-0.5 0 10 20 30 40 50 60 70 

No = 4096 

c,[ml o.~: 

0 10 20 30 40 50 60 70 
-0.5 

Lag, m 

FIGURE 27. Autocovariance functions for three sample records of zero-mean white noise. 
Record lengths were No = 64, 512, and 4096 data points, respectively. 

autocovariance “is expected to be” zero for m > 0. Compare this example with the 
example of Fig. 9.4, in which the mean value of white noise is estimated from se- 
quences of various lengths. 
Example 2.15 Biomedical =ample Autocovariance functions have an impor- 
tant role in the study of biomedical signals and systems. Consider, for example, the 
question of whether each breath that you take is independent of other breaths. This 
question is important to investigators who are attempting to define the neural net- 
works in the brainstem which interact to generate the oscillatory rhythm of breath- 
ing. Besides studying the neurophysiology of respiratory neurons in the brainstem, 
the usual approach is to implement a mathematical model of a neural network that 
simulates the physiological neurons and their hypothesized interactions. If the mod- 
el does not produce an oscillation like the respiratory rhythm, then it is rejected as 
an appropriate model of the physiological system. Even if it oscillates, to be accept- 
able the model must exhibit other behaviors that can be measured physiologically. 
All such models to date have exhibited the property that each breath is very nearly 
independent of other breaths. Does the physiological system behave this way? 

To answer this question define a discrete-time variable v[n] which is the volume 
which a subject inspires on the n-th breath in a sequence of N breaths. A typical 
time series of such data from an awake, resting human subject is shown in Fig. 
2.8(a). It is apparent that v[n] varies from breath to breath. To determine whether the 
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2 -  

1 ';" 
0.5 
0 '  

value of v on breath n is independent of v from breaths n - 1, n - 2, n - 3, . . . , the 
MATLAB routine xcov was used (with the "biased" option) to calculate CJm], 
which is plotted in Fig. 2.8(b). Several features can be noted. First the maximum of 
CJm] is at zero lag, as expected. Second, the autocovariance is positive for lags up 
to approximately 25. Third, for lags > 25, Cdm] is negative. Fourth, since the length 
of the data sequence is N = 120, CJm] is zero for Iml> 120. Note also that the sum- 
mation (Eq. 2.36) involves only No - 1 - m product terms, whereas the multiplier in 
this equation, l/No, is independent of m; therefore as m approaches No, CJm] will 
necessarily approach zero. From the plotted autocovariance function one concludes 
that if one breath volume is above the mean breath volume, then the next (approxi- 
mately) 25 breaths are more likely, on average, to be above the mean breath volume 
also. This conclusion contradicts the hypothesis that each breath is generated inde- 
pendently of every other breath. Therefore, it is likely that the mathematical models 
still lack the physiologically important features that are responsible for the nonzero 
autocovariance observed in this data set. 

. - 
1 - 

- 
- - 

- -  - 

Aside: To address the above problem one could have defined a new variable hav- 
ing a mean level of zero-for example, z[n] = v[n] - +Z&'v[n]-and then calculat- 
ed RJm].  R,[m] would equal the autocovariance function, Cv[m], plotted in Fig. 2.8. 

Breath Count 
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2.7 SUMMARY 

This chapter has introduced the concepts of memory in physical systems and corre- 
lation in signals. Memory is a system characteristic that reflects the ability of the sys- 
tem to increase, decrease, or redistribute its energy. It is dependent on the number 
(and size) of energy storage mechanisms in the system and on the mechanisms by 
which energy may be dissipated, absorbed, or transferred from one energy store to an- 
other. The time constants of the system are direct measures of the temporal properties 
of energy redistribution in a system, Because the rate of energy redistribution is lim- 
ited by the system time constants, system variables (which are determined by the dis- 
tribution of energy in the system) reflect memory properties in their time courses. 

Energy signals are signals that have finite, nonzero energy and power signals are 
ones that have finite, nonzero power. Some signals are neither energy signals nor 
power signals, Bounded periodic signals are always power signals whose power is 
defined as their average squared value over one cycle. The deterministic autocorre- 
lation function always exists for a power signal. In cases where a signal is observed 
(and is assumed to be nonzero) only for a finite time interval, the signal can be con- 
sidered a power signal, even though its power is zero by the formal definition, as 
long as power is calculated only over the interval of observation. 

The autocorrelation function, Rx(s) and Rx[rn], (and the related measure, the au- 
tocovariance function) represents the average degree to which a signal varies in re- 
lation to its past values, and is a function of the time lag into the past. A positive au- 
tocorrelation at a particular lag, s, implies that an increase in the signal at time t is 
more likely to be followed by an increase at time f + s than by a decrease. (But keep 
in mind that autocorrelation is a measure of the avemge relationship and “more 
likely” does not imply “always”.) The opposite is true for a negative autocorrelation 
value. The autocorrelation of a signal contains information about the memory in the 
system from which the signal arose. 

Autocovariance, Cx(s) or CJrn], is the autocorrelation function that is deter- 
mined after removing the mean level from a signal. It represents the correlation in a 
signal due to the deviations of the signal from its mean level. In fact, Cx(s) and 
CJm] represent all of the correlation and memory properties in a signal. 

There is a close relationship between the correlation properties of a signal and 
the memory properties of the system that generated the signal and one may use the 
autocovm’ance (or autocorrelation) function as a quantitative measure of system 
memory. For many physical signals autocovariance and autocorrelation approach 
zero for very large lags, reflecting the property that memory in a physical system 
often does not persist forever. Determination of autocorrelation and autocovariance 
functions is a fundamental tool for biomedical signal processing. 

2.1 
x is the input andy is the output. 

Classify the following systems as memoryless or having memory. In all cases, 
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a. f i t )  = x(t - 1) 
b. f i t )  = 2 ( t )  + 0.3x(f) 

d. y[n] = cos[O.6 b[n]1] 
e. y[n] = ~ [ n ]  

c. y[n] - 0.1 y[n - 11 = x [ n ]  

2.2 Derive Eq. (2.7) as the solution to Eq. (2.6). 
2.3 Show that r(f)  = e4' is not an energy signal. 
2.4 Determine whether each of the following signals is an energy signal, a power 
signal, or neither. 

a. 
b. 

d. 

e. 

C. 

2.5 

x[n] = u[n] 
x[n]  = (-0.3)n u[n] 
x( t )  = ae jw  
~ ( t )  = t[u(t) - u(t - 2)], 0 < t < 2 

n2 x[n]  = - {u[n] - u[n - 451) 0 5 n 5 44, otherwise x[n]  = 0 
2 

Determine the memory function (i.e., the homogeneous solution) for the sys- 
tems described by the following input-output differential or difference equations: 

b. 0,22(f) + O.Olz(t) + z(f) = h ( t )  
c. q[n] - 0.8 q[n - 11 + w[n] = 0 
d. ~ [ n ]  =0.1 x[n  - 21 + 0.2 x[n - 13 + 0.4x[n] + 0.2x[n + I ]  + 0.1 x[n + 21 

2.6 Calculate the power of the following periodic signals: 
a. s(t )  = 0.2 sin(3172t) + 0.5 sin(62m-t) + 0.1 s in (124~)  

2 

k l  

2.7 Find the fundamental period of each of the cosine functions of Exercise 2.6(b). 
2.8 Determine the autocorrelation function for y ( f )  = Be-%(t) using the alterna- 
tive definition (i.e., without dividing by To and taking the limit). 
2.9 Prove Eq. (2.30). 
2.10 Show that property 2 for the autocorrelation function also is true for the au- 
tocovariance function. 
2.11 Referring to the description in this chapter of the biomechanical properties 
of the lungs, a common situation is the need to ventilate a patient artificially. Some 
ventilators work by applying a constant positive (i-e., greater than P,) pressure at 
the airway opening to force air into the lungs (inflation) to mimic an inspiration, 
then open the airway to the room (via an electronically controlled valve) to allow 
the lungs to empty (deflation) without assistance, mimicking expiration. Figure 2.9 
shows a simple diagram and biomechanical model. The model is similar to that of 
Fig. 2.1, except that the compliance, C, now represents the compliance of the lungs 
and chest together. Typical values for a normal subject are: R = 4 cm H20/Ws, C = 
0.10 L/cm H20.  
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0 2 t 

FIGURE 29. (a) Simplified diagram of a patient connected to a ventilator by way of a tube 
that is inserted Into the airway (i.e., the trachea). An electronic valve connects the patient’s air- 
way either to the ventilator to permit inflation of the lungs, or to the room to permit the inflated 
lungs to deflate while the ventilator resets Itself for another inflation; (b) Simple biomechanlcal 
diagram of the ventilator and patient. Symbols the same as in Fig. 2.1, except: C, total compli- 
ance of lungs and chest; P,,,(t), pressure at the site of the tracheal tube; (c) Pressure pulse ap- 
plied by ventilator; P(t) is a measure of the amount by which P,,,(t), produced by the ventilator, 
exceeds atmospheric pressure. 

a. Write a differential equation to describe the dependence of V,(t) on P,,,(t) 
when the lungs are being inflated by the ventilator. Let f i t )  = P,(t) - PB and rewrite 
this equation in terms of transrespiratory pressure, P(t). Describe the memory prop- 
erties of this system. 

b. During deflation P,(t) = PB. Assuming that the lungs reached a final volume 
V, during inflation, write a differential equation to describe V,(t) during deflation. 

c. Assume that the single pressure pulse shown in Fig. 2.9(c) as P(t) is applied 
by the ventilator. Solve for VL(t), 0 < t < 4 s. 

d. Sketch V,(t), 0 < t < 12, if the above pressure pulse is applied: (i) every 4 s; 
(ii) every 3 s. 
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weight 
(mass = M) t 

Mg 
FIGURE 2.10. (a) A frog muscle is suspended from a rigid support and a mass is suspend- 
ed from the muscle by a thread; (b) Simple biomechanical model of the muscle and weight. 
The muscle is modeled as a spring with spring constant, K, in parallel with a viscous resis- 
tance, R. 

2.12 An excised frog muscle is suspended from a rigid support (Fig. 2.10). A 
weight with mass M is attached to the muscle and suddenly released. Consider this 
situation as a system with the input being the constant gravitational force, Mg, and 
the output being the position of the weight, x. Biomechanically the passive (i.e., not 
contracting) muscle can be represented as a spring in parallel with a viscous resis- 
tance. 

a. By considering the balance of forces on the mass, M, write a differential equa- 
tion whose solution will be the position, x ,  as a function of time. 

b. Evaluate the two components of the homogeneous solution of the above dif- 
ferential equation in terms of the parameters R, K, and M. Discuss the memory 
properties of this system. 
2.13 By visualizing x(t)  and x(t + s) for various values of s, draw a rough sketch of 
Rds) for each of the following functions. Indicate approximate values of s at which 
minima or maxima of RAs) occur. 

a. x(t) = 2 4 1 )  - 2u(t - 3) 
t , O S t < 2  [ 0, otherwise 

c. x(t )  = 4 cos(20Tt) 
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FIGURE 2.11. Autocovariance function of the first respiratory airflow slgnal from Fig. S.S(a). 
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2.14 By visualizing x[n] and x[n + m] for various values of m, draw a rough 
sketch of Rdm]  for each of the following functions. Indicate approximate values of 
m at which minima or maxima of Rdm]  occur. Finally, calculate the exact autocor- 
relation hnctions to check your answers. 

a. x[n] = u[n] - u[n - 21 
b. x[n]= 2 ~ [ n ]  - ~ [ n  - I ]  - ~ [ n  - 21 
C. x [ n ] = n 2  { u [ n ] - u [ n - 4 ] } .  

2.15 Fig. 9.6(a) presents eight examples of recordings of respiratory airflow pat- 
terns. The autocovariance function of the first signal of Fig. 9.6(a) is presented in 
Fig. 2.1 1. Interpret this result relative to possible memory properties of the physio- 
logical system that controls respiratory airflow. Estimate quantitative measures of 
memory from this graph. 
2.16 Figure 2.12 shows the autocovariance functions for the first, second, sixth, 
and eighth examples of respiratory airflow recordings from the file 
ranproc2 .mat (see Fig. 9.6(a)). Recalling that each example is from a different 
subject, interpret these results relative to possible memory processes in the physio- 
logical system that controls respiratory airflow and their similarities in different 
subjects. Give quantitative measures of memory. 
2.17 The file hrvl .mat contains a DT signal representing the beat-by-beat in- 
stantaneous heart rate in beats per minute (Lee, 60heat duration) obtained from a 
resting human subject. This heart rate signal and its autocovariance function are 
shown in Fig. 2.13. Interpret the autocovariance hnction with respect to possible 
memory properties of the physiological system controlling the heart rate. 
2.18 The file hrv .mat contains 10 records (organized in a matrix of 10 columns 
with 256 entries per column) of heart rate versus heart beat number from 10 differ- 
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FIGURE 2.12. Autocovariance functions of four respiratory airflow signals from Fig. S.qa), 
which are included in the file rangroc;! .mat. 
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FIGURE 2.13. A heart rate signal from hrvl .mat and its autocovariance function. Both are 
DT functions that are graphed as discrete points joined by straight lines. 
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ent observations from the same human subject. Use the MATLAB functions xcov 
and xcorr to calculate the autocovariance and autocorrelation functions for the 
signals in the file hrv.mat. Compare these results and interpret these functions 
with respect to possible memory properties of the physiological system controlling 
the heart rate. 



THE IMPULSE RESPONSE 

3.1 INTRODUCTION 

In Chapter 1 we discussed the fact that the transformation operator of a system de- 
scribes the relationship between the input and output signals of the system. That 
chapter also described the fundamental theme of this text that any signal processing 
algorithm can be viewed as a transformation operator. The input to the transforma- 
tion is the signal we wish to “process” and the output provides either the informa- 
tion that we wish to extract from the signal or an alternative representation of the 
signal. It is not necessary that transformations representing signal processing algo- 
rithms satisfy the conditions for linearity, but very many do. For example, any type 
of linear filtering can be framed as a signal processing operation that generates an 
alternative representation of the signal-for example, one with reduced noise com- 
ponents. Consequently, the study of linear systems and their properties is funda- 
mental to much of signal processing. 

In Chapter 2 it was stated that the input-output relationship for any linear, time- 
invariant system can be represented as a finite-order differential (or difference) 
equation. Assuming that the initial conditions of the system are zero, then the 
closed-form equation for the zero-state solution of the direrential (or digerence) 
equation can be considered the tmnsformation opemtor for the signal processing 
opemtion that the system is performing. To understand this assertion, consider that 
the zero-state solution is simply the means of specifying how the system is to gener- 
ate a modified, or alternative, representation of the input signal via the mathemati- 
cal operations that appear in the equations of the zero-state solution. That is, where 
the control systems engineer sees a system as a black box whose output is “driven 
by” its input, the signal processing engineer sees the same system as an ordered set 
of mathematical operations which generate an alternative representation of the input 
signal. Given this framework, a question naturally arises: Is it possible to determine 
the output of this linear signal processing system for an arbitrary but well-specified 
input by some method other than directly solving the zero-state equation? The an- 
swer is yes and the method to be developed in this chapter has the advantage that it 

63 



64 THE IMPULSE RESPONSE 

provides detailed insights into how the transformation operator acts to modify (or 
“process”) the time-domain input signal. 

Unless otherwise stated, we will consider only linear time-invariant (LTI) sys- 
tems (or, in the case of DT systems, linear shifbinvariant (LSI) systems). In these 
cases, if for a given input x(r)  one knows the output, q x ( r ) ] ,  then because of lineari- 
ty one also knows the output for any scaled version of the input, x,( t )  = Mt). Simi- 
larly, one also knows the output for any time-shifted input of the form xz(r) = x(t - 
to). Conceivably one could construct a table of such known inputs and outputs. From 
this table one could determine the output for any input that can be represented as a 
sum of these inputs. Such a process would be cumbersome, of course, and generally 
is impractical. In contrast, the concept to be developed below, the impulse response 
of a system, will provide a compact and elegant solution to the problem of deter- 
mining the output response to an arbitrary input. 

3.2 THOUGHT EXPERIMENT AND COMPUTER EXERCISE: 
GLUCOSE CONTROL 

The purpose of this exercise is to probe more deeply into the question of how to de- 
termine the output of a system in response to an arbitrary input, especially in the 
common biomedical situation in which the system transformation operator is not 
known. This exercise is based on the SIMULINK model glucos3 .mdl, which is 
a simulation of the regulation of blood glucose concentration by insulin in a diabet- 
ic adult human (Fig. 3.1). The SIMULINK model assumes that the patient has no 
capability to secrete insulin and therefore it is necessary for the patient to receive in- 
jections or intravenous infusions of insulin at appropriate times in order to maintain 
blood glucose near the normal level of 4.5 mmol/L. For convenience, we will as- 
sume that the patient has a programmable insulin pump (an infusion controller) that 
is connected to an intravenous catheter. Three questions need to be answered: 

I I 
insulin meal 

I infusion 

Metabol ic  
pathways 

Blood 
I r s .  all... 

. .-..-- 

insulin 
secretion 

Pancreas 

FIGURE 3.1. A simple model illustrating the control of blood glucose concentration by pan- 
creatic insulin secretion. When the feedback loop fails in disease, an artificial feedback loop, 
shown by the dashed line, may be instituted. Equations for the feed-forward loop are given in 
the text. Based on the model in Furler et al. (19s). 
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(1) What is the steady-state rate of insulin infusion that should be delivered in order 
to maintain a normal blood glucose level in the absence of disturbances? (2) If a 
blood glucose reading is found to be abnormal, how long must one wait to deter- 
mine the effect of the new infusion rate that the physician will request? (3) If one 
can anticipate a disturbance, such as a meal, can one design an insulin infusion pro- 
tocol to minimize the effect of the disturbance on glucose concentration? 

The SIMULINK model implements five differential equations: 

dG F G  - -  - [PI  -X(t)]G(r) -P,Go + -; 
dr V G  

1. 

cix - = P&(r) + P3[IF(t) - Io];  dt 2. 

where 

G = blood (plasma) glucose concentration; 
X= insulin concentration in a “remote” compartment; 
IF = free plasma insulin concentration; 

IBl ,  Ze2 = concentration of insulin bound to antibodies with high and low affinity for 
insulin, respectively; 

FG = exogenous glucose load-for example, due to eating a meal; 
F, = rate of inb ion  of insulin; 
I ,  = baseline insulin level (set to zero in this simulation). 

Other entries in the equations are various parameters of insulin and glucose kinet- 
ics. Their values in glucos3 .mdl have been adjusted to reflect a diabetic patient 
with no natural insulin secretion who is also partially “glucose resistant.” Additional 
information and instructions for use are included in the file glucos3 . m d l  and the 
reader is urged to reproduce the simulations discussed below. This simulation is 
based largely on the model of Furler et al. (1985). 

By running the simulation with the insulin infusion rate, FI, set to zero, we ob- 
serve that the steady-state value of C with no insulin control is approximately 10 
mmoVL, or about twice the desired level. Through trial and error one can establish 
that a steady insulin infusion rate, FI, of 0.9 U/hr will bring the glucose concen- 
tration to the normal level (Fig. 3.2). Note from the figure that the return of G to 
normal takes about four hours after the infusion is begun. Consuming a meal has 
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FIGURE 3.2. Response of glucose model to a step insulin infusion rate of 0.9 Uhr. 

a substantial efffect on blood glucose level (Fig. 3.3), even in the presence of the 
baseline insulin infusion rate of 0.9 Uhr. Ideally, one would increase the insulin 
infusion rate at the start of a meal and then readjust it to the baseline level as the 
glucose concentration approaches normal after the meal. This type of control 
should be possible when reliable, rapidly responding glucose sensors are available 
but the design of control algorithms for programmable i n b i o n  pumps now de- 
pends heavily on the ability to predict the glucose response to a change in insulin 
infusion rate. 

If F, is constrained to be pulses of varying amplitude and duration, then perhaps 
one can predict the response of G from knowledge of the step response shown in 
Fig. 3.2. This idea was tested by comparing the actual model response to an input 
pulse with that predicted from the step response. Thus, in Fig. 3.2 let r = 0 refer to 
the time of onset of the step function. Let the input step be ul(r) = 0.9 u(r) and the 
resulting change in G from its initial level (Fig. 3.2, bottom) be G,(r). Now select 
another input given by u2(r) = 0.2 [u(r) - u(r - 200)]. Assuming linearity, the predict- 
ed response to this input is 

0.2 
0.9 &, ( r )  = -[G,(r) - G,(r - 200)]. 

Figure 3.4 plots the actual response of the model (as the change in G from its ini- 
tial level) to u2(r) as well as &r). The prediction is very close to the actual re- 
sponse. If this process is repeated for an input u3(r) = 1 .O [u(r) - u(t - 200)], the pre- 
dicted and actual responses are quite different (Fig. 3.9, implying that the system is 
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FIQURE 3.3. Response of glucose model to a simulated meal with a steady insulin infusion 
rate of 0.9 U h r  (top) and with no insulin infusion (bottom). 

not truly linear. However, for pulses of suflciently small amplitude, the glucose re- 
sponse to a pulsatile change in insulin infusion rate is very nearly linear and pre- 
dictable from knowledge of the step response. 

Although one cannot avoid the fact that the glucose system becomes nonlinear 
for larger inputs, it is possible to satisfy the conditions for linearity if one considers 
only small changes of F, and G about their resting levels. Nonetheless, restricting 
the inputs to have the form of steps or pulses seriously constrains the types of con- 

0 400 800 1200 

Time, min. 

FIGURE 3.4. Change in output of glucose model to a 0.2 U h r  pulse of insulin lasting 200 
minute (dashed). Response to the same Input predicted by extrapolating from the step re- 
sponse of Fig. 3.2 (solid). 
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0 

FIGURE 3.5. Change in output of glucose model to a 1.0 U/hr pulse of insulin lasting 200 
minute (solid). Response to the same input predicted by extrapolating from the step response 
of Fig. 3.2 (dashed). 

trolling signals that can be utilized. There would be a significant advantage to being 
able to predict the glucose response to an arbitrary input because then the control al- 
gorithm could be designed to fulfill some criterion such as compensating as rapidly 
as possible for disturbances to G. This chapter will develop such a method and then 
return to this application. 

3.3 CONVOLUTION FORM OF AN LSI SYSTEM 

Unit-Pulse Response of an LSI System 

Consider a linear, shift-invariant, causal (LSIC) DT system described by the trans- 
formation operator f l . ]  (Fig. 3.6(a)). Let its input x[k] be the unit-pulse function 

Assuming zero initial conditions, its output is then given by 

where h[k] is defined as the unit-pulse response (also known as the impulse re- 
sponse) of the system. For a causal system one property of h[k] is immediately ap- 
parent. Since 6[k] = 0 for all k < 0, and since the output of a causal system can 
depend only on the past and current values of the input, h[k] for a causal system 
must equal zero for all k < 0. Discrete-time systems are classified into two groups 
based on their impulse responses. A DT system is called afinite impuhe response 
(FIR) system if h[k] = 0 Vk > K, where 14 < CQ. Otherwise the system is an infi- 
nite impulse response (IIR) system. Note that the time-invariance and linearity 
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x[i] S[k-i] 

T 
x[i] h[ko-i] 

x[i] h[ k-i] 

k 

1 1 7 I<-:- 
i ko 

(b) 

FIGURE 3.6. (a) An LSlC system. (b) Interpetation of a single term of the summation in Eq. 
(3.6). 

conditions imply that the response of the system of Fig. 3.6(a) to the input x[k]  = 
S[k - i ]  will be y[&] = h[k - i ]  and its response to the input x[k]  = aS[k] will be 

Consider now the response of this system to an arbitrary input x[k]  which may be 
y[k] = ah[k]. 

represented as 

x[k]  = , * * + x[-2]S[k + 21 + x[- l ]S[k  + 1 1  + x[O]S[k] + x [ l ] S [ k  - 1 1  

+ x[2]S[k-  21 + = . * . 

Now y [ k ]  = F[x[k]] and by linearity one can write 

y[k] = . . . F[x[-21$k + 211 + F[x[-I]S[k + I ] ]  + F[x[O]$k]] + F[x[ 1]6[k-  l ] ]  

+ F[x[2]S[k - 211 + = . . . 
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and from the definition of h[k] 

Equation 3.6 is a fundamental expression of the input-output relationship of an 
LSI discrete-time system known as the convolution sum. The indicated summation 
represents the convolution operation, or simply convolution, and it is symbolized 
as 

y[k]  =x[k] * h[k].  (3.7) 

Note that by a change of variables the convolution sum also can be written as 

If h[k] represents a causal system, the upper limit of the summation in Eq. (3.6) can 
be replaced by k and the lower limit in Eq. (3.8) by zero. Similarly ifx[k] = 0 for all 
k < 0, then the lower limit in Eq. (3.6) can be set to zero and the upper limit in Eq. 
(3.8) can be replaced by k. 

The convolution sum relationship establishes the primary importance of the 
unit-pulse response of a DT system: Knowing the unit-pulse response, 44, one 
can calculate the system output for any arbitrary input without having to solve the 
difference equation of the system. How does one determine this important fimc- 
tion for an LSI system? If the unit-pulse response is unknown but the difference 
equation of the system is known, one can solve the difference equation using a 
unit-pulse function as the input. The output then will be the unit-pulse response. If 
one is evaluating a physical system that has an accessible input, it is conceptually 
possible to apply a unit-pulse input to the system and measure h[k] as the output. 
Often it is simpler to apply a unit-step function, u[k], as the input and measure 
the unit-step response, g[k].  Since S[k] = u[k] - u[k - I ] ,  then h[k] = g[k] - 

The interpretation of the convolution sum can be developed from an under- 
standing of a single term in the summation of Eq. (3.6), x[ i ]  h[k - i ] ,  for specific 
values of k and i .  Keeping in mind that since x[i]  in Eqs. (3.4H3.6) refers to the 
specific value of the function x[k] when k = i, then the i-th term of the input sig- 
nal as expressed in the r.h.s. of Q. (3.4) is the hnction x[i]S[k - i ] ,  which is 
shown in Fig. 3.6(b). Now pick a specific value of k, say k = &,,, at which to eval- 
uate the output y[k,,]. In the figure a specific h[k] has been chosen for purposes of 
illustration. The output response to the i-th input term is x[ i l  h[R - i], as shown, 
which is also the i-th term in the r.h.s. of the equation (Eq. (3.6)) for the output, 
y [k ] .  At time k = &,,, the' output response of Fig. 3.6(b) contributes a value 
x[ i ]  h[k ,  - i] to the summation for y [ b ]  (obtained by setting k = k,, in Eq. (3.6)). 
Therefore for any value of k the convolution sum expresses the output, y [k ] ,  as the 

g [ k -  11. 
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h[k-i] t 
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FIGURE 3.7. Visualization of the convolution sum as the multiplication of the function x[q (top) 
by the function h[k - 4 (middle) to calculate the result, flk] (bottom). 

weighted sum of past values of the input, where each weighting factor is the val- 
ue of the impulse response at a time equal to the difference between the current 
time, k, and the time, i, at which the input occurred. 

A fruitful visualization of the convolution sum is presented in Fig. 3.7. Consider 
y[k] as given in Eq. (3.6) to be a time function, y[ i ] ,  that is to be evaluated at i = k. 
First plot x[ i ]  and identify the time i = k (Fig. 3.7, top). Then immediately below x[ i ]  
make a graph of h[k - i], which is h[ i ]  reversed in time and shifted to the right by k 
units of time (Fig. 3.7, middle). Now according to Eq. (3.6) one calculates y[ i ]  for i 
= k by multiplying x[ i ]  and h[k - i ]  point-by-point in time and summing all of the 
products. Now note that to calculate the next value ofy[i] (i.e., y [k  + l]), one simply 
shifts the time-reversed h[i]  in Fig. 3.7 (middle) one unit of time to the right and re- 
peats the multiplying and summing. Thus the convolution sum can be visualized by 
slowly shifting the time-reversed h[i]  to the right, stopping at each time point k only 
long enough to multiply x[ i ]  by h[k - i ]  and to sum these products to obtain y[k] .  For 
simple unit-pulse responses and simple input signals it is not difficult to calculate 
the exact output function by this graphical process. Furthermore, this process is 
very useful for approximating the convolution of two functions and the reader 
should practice until it is natural. 

Example 3.1 Determine the unit-pulse response of the system described by the 
difference equation 

~ [ n ]  + 0.4y[n - I ]  = 3 ~ [ n ] .  
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Solution: Let x[n] = S[n] and solve for y[n], n = 0, 1,2, . . . , assuming y[-1] = 0. 
Thus 

y[O] = 3~[0 ]  - 0.4y[-1] = 3 

y[  I ]  = 0 - 0.4(3) = -1.2 
y[2] = 0 - 0.4(-1.2) = 0.48 

y[kl= (-0.4)'(3) k 2 0 

Since x[n] is a unit-pulse function, 

h[n] =y[n] = 3(-0.4)"u[n]. 

Example 3.2 The response, y[n], of an LSIC system to the input 

is shown in Fig. 3.8(a). All initial conditions were zero. 
(a) What is the unit-pulse response of this system? (b) What is its response to the 

input x[n] = u[n] - u[n - 3]? 
Solution: (a) The input was a unit-step function, u[n]. Thus the output is the unit- 

step response,g[n], and h[n] =g[n] -g[n - 11. Therefore, from the graph of Fig. 3.8(a), 

h[O] = do] - g[-1] = 0 

h[l]=g[l]-g[O]=l-O= 1 
h[2]=g[2]-g[l]=2-1=1 

h[n] = 0, n > 3 

h[3] = g[3] - g[2] = 3 - 2 = 1 

A more general approach is to express y[n] as a convolution sum and expand this 
equation. Thus, using Eq. (3.8), 

Writing this equation for k = 0, 1,2, . . . , and using x[n] as defined above, 

y[O] = 0 = h[O] 

y[l] = 1 = h[O] + h[l] 
y[2] = 2 = h[O] + h[ I ]  + h[2] = h[2] = 1, 

h[l] = 1 
etc. 
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h[l -i] 
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FIGURE 3.8. Visualization of the convolution of Example 3.2. (a) The unit-step response Hn], 
of the system. (b) Calculating fll] In response to the Input x[n]=u[n] - u[n - 31. (c) Calculating 
y[2] in response to this input. 

(b)y[k] = (u[k]  - u[k-  31) * h[k] .  Since h[O] = O,y[O] = 0. Fig. 3.8(b,c) exhibits the 
next two steps in calculating this convolution graphically. Figure 3.8(b) shows the 
functions x[ i ]  = u[i] - u[i - 31 and h[ 1 - i ] .  Multiplying these two functions point-by- 
point in time and adding the products gives a value fory[ I ]  of 1. Similarly, Fig. 3.8(c) 
shows u[i] - u[ i -  31 and h[2 - i]. Multiplying these functions and adding the products 
givesy[2] = 2. Evaluatingy[k] for k >  2 is left as an exercise for the reader. 
Example 3.3 An LSIC system has an impulse response given by h[k] = aku[k], 
with /a1 < 1. Determine its zero-state response to the input 

k, 0 5 k 5 5 I 0, otherwise * 
x[k]  = 
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Solution: By the convolution sum, 

From direct calculation 

YPI = 0 

y [ l ]  = h[O] = 1 

y [ 2 ]  = h[ 13 + 2h[0] = a + 2 

y [ 3 ]  = h[2] + 2h[ I ]  + 3h[0] = a2 + 2a + 3 

y [ 4 ]  = h[3] + 2421 + 3h[ 1 1  + 4h[0] = a3 + 2a2 + 3a + 4 

y[5] = h[4] + 2h[3] + 3h[2] + 4h[ 1 1  + 5h[0] = a4 + 2a3 + 3a2 + 4a + 5 .  

For k > 5, x [ i ]  and h[k - i ]  overlap for i = 05 (see Fig. 3.9, for k = 7) and the general 
solution for y[k] is found directly from the convolution sum to be 

Example 3.4 A noncausal LSI system has an impulse reponse given by 

h[k] = 6[k + 1 1  - tqk - 1 3 .  

h[7-i] 

-3 0 3 6 9 

FIGURE 3.9. Calculating Vm by graphical convolution for Example 3.3. 
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(a) Determine its response to the input signal x[k] = cos[Pk]. The system is ini- 
tially at rest. 

(b) Calculate the output when P = 4; when P = 27r. 
Solution: 
(a) Call the output y[k]. Thus 

This system could be called a “two-step differencing filter” because the output at 
time k is the difference between input values separated by two steps in time-that is, 
the next input to come and the immediate past input. For the specified x[n] ,  

y[k] = cos[P(k + l)] - cos[P(k - I)] 

= cos[Pk]cos[P] - sin[Pk]sin[P] - (cos[Pk]cos[-PI - sin[Pk]sin[-PI) 

= 2 sin[P]sin[Pk]. 

(b) Substituting into the above solution, for P = 4, y[k] = -1.5 136 sin[4k]. For P = 
27r, y[k] = 2 sin[2w]sin[27rk] = 0 Vk. 

Properties of Discrete-Time Convolution 

Although the convolution operation was derived as a representation of the 
input-output properties of a system, convolution is a general mathematical opera- 
tion which can be applied to any two functions. Indeed, convolution arises naturally 
in many signal processing contexts. Consequently it is important to recognize some 
basic properties of the discrete-time convolution operator. This operator is: 

Associative: Given the bounded DT signals x[k], v[k] ,  and w[k], then x[k] * 

Commutative: x[k] * v[&] = v[k] * x[k]. 
Distributive: x[k]  * (v[k] + w[k] )  = x[k] * v[k] + x[k]  w[k] .  

(v[k] w[k]) = (x[k] * v[kl) * w[k] .  

These properties are readily provable from the basic definition of convolution. Thus 
to prove commutativity, one starts from the definition 

Substituting 1 = K - i, 
0) 

x[k] h[k] = c x[k - gh[d = h[k] * x[k].  
i--ar 
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Another important property is the shifting property of convolution, which leads 
to the sifting property of the unit-pulse function. Note that ify[k] = x[k] * h[k], then 
for an integer constant q, y[k - q] = x[k  - q] * h[k] = x[k] * h[k - q]. The first equal- 
ity is a basic property of convolution, provable from the definition; the second 
equality results from a change of variables-for example, let w = k - q, then let k = 
w and q = -q. Next, consider convolution of a function x[k]  with a unit-pulse func- 
tion: 

Thus, by the shifting property, 

~ [ k ]  * 6[k - q] = ~ [ k  - Q] * 6[k]  = ~ [ k  - q]. 

The consequence of convolving a function with a time-delayed unit-pulse function 
is just to “sift out” the value of the original function at that time delay (the sifting 
property of the unit-pulse function). Equivalently, to define a system which pro- 
duces a pure time delay, q, its unit-pulse response should be S[k - q]. 

Finally, the previously stated relationship between g[k], the unit-step response of 
a system, and h[k] of an LSIC system can be shown more rigorously. The unit-step 
response is 

k 
g [ k ]  = u[k] * h[k] = 2 h[ i ] .  

1-0 

and 

The Impulse Response and Memory 

Because the unit-pulse response can be interpreted as a set of weights that deter- 
mine the contribution of past inputs to the current output, this response is a direct 
expression of memory in the system. Recall that the autocorrelation function of the 
system output, y [ k ] ,  is a measure of memory in y[k] and that this memory may be 
due to memory processes in the system that generatedy[k] or to memory (i.e., auto- 
correlation) that was already present in the input to the system. Thus, for a given 
system, to determine the relationship between h[k] and R,,[m], it is necessary to ex- 
cite the system with an input that has no signal memory. It is trivial to show that the 
autocorrelation function of a unit-pulse function is also a unit-pulse function, im- 
plying that S[k] is uncorrelated and has no signal memory. Let us use this input sig- 
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nal and assume either that the response of the system to a unit-pulse input is ob- 
served for a very long time, N, or that h[k] = 0 fork> K, and K 4 N. Then for a unit- 
pulse input the autocorrelation hnction of the output, y[&], is 

(3.10) 

That is, the memory the system adds to the output signal is completely describ- 
able from the unit-pulse response. That this should be true seems obvious since h[k] 
represents the weights, or “gains” of the system, through which previous values of 
the input influence the current output. From Eq. (3.8) it may be seen that Ry[m ] = 
h[k] * h[-k]. It may seem that one also could calculate the unit-pulse response of an 
unknown system indirectly from the autocorrelation fbnction of the system output if 
it is certain that the input signal has zero autocorrelation everywhere (except at m = 
0). For an FIR system with K 4 Nit is possible to write a set of equations based on 
Eq. (3.8), for 0 m 5 k whose unknown r.h.s. terms are all finctions of h[k] ,  0 I k 
5 K. These equations, however, are nonlinear and their solution in the presence of 
typical noise levels is usually subject to considerable error. 

Relation to Signal Processing 

Applying a signal to the input of an LSI system (Fig. 3.6(a)) produces an output that 
is a modified form of the input signal, as indicated by the convolution sum equation 
(3.6). Our interpretation of this process is that the values of the input signal are 
weighted according to the values of the unit-pulse response of the system and 
summed to generate the output. This interpretation provides a convenient frame- 
work for visualizing signal processing in the time domain. Consider the unit-pulse 
response, h,[k],  presented in Fig. 3.10(a). By examining the hnction h , [ k -  i] it is 
seen that this system adds up five input values-the current and four previous input 
values-all weighted by one-fifth, to generate y[k] .  Such a system is known as a 
moving avemger because the selection of data points being averaged “moves along” 
the time axis as R increases. It is apparent that this system will tend to reduce the in- 
fluence of isolated events in the input on the output and that rapid changes in the in- 
put signal will be blurred in the output due to the averaging. In fact, one can readily 
show that a step change in the input signal will not be reflected completely in the 
output until four time units later. The system represented by the impulse response of 
Fig. 3.10(b) averages three previous input signal values but with unequal weight- 
ings. Now the fact that h2[2] is larger than other values of h,[k] implies that a sud- 
den change in the input signal will be better represented in the output than was the 
case for the moving averager; however, it will be delayed by two samples. Yet we 
would still expect that rapid changes in the input would be attenuated by the weight- 
ed summation implicit in h2[k]. Thus both of these examples could be classed as 
lowpass filters, meaning that they attenuate rapid changes in the input more than 
slow ones. Consider the unit-pulse response of Fig. 3.10(c). Because the action of 
this impulse response is to calculate the difference between the input at time k - 2 
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FIGURE 3.10. Three examples of interpreting the signal processing properties of a system by 
plotting the impulse response reversed in time. Left: impulse responses; right: Impulse re- 
sponses reversed in time and shifted to time point k. 

and one-half of the sum of the input values at times k - 1 and k - 3, a sudden change 
in the input will be relatively unattenuated (although delayed by two samples). The 
output for a slowly varying input, however, will be close to zero because x[R - 31, 
x [ k  - 21, and x[k  - 11 will be approximately equal. This system is a highpassfiffer. 

Example 3.5 A DTjilter A causal, three-point moving average filter has the 
unit-pulse response 

h[n] = )(u[n] - u[n - 31). 

Determine the response of this filter to the signal x[n]  = a" u[n] and specify whether 
the filter is highpass or lowpass. 

Solution. By convolution, 
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Note that 

Therefore, 

), n L 3. 
1 
3 

= -(an + + an-2 an 

3 
y[n] = -((a4 + a-' + a-2) 

By direct calculation from the convolution sum equation, 

y[O]=f ,  y [ l ] = f ( l  + a ) ,  y [2 ]=f ( l  +a+a2) .  

Note that if a = 1, then x[n] = u[n]. in this case the step change in the input signal 
becomes a slower, ramp change in the output (over the range n = [0:3]). Thus this 
system attenuates rapid changes in its input and is a lowpass filter. 

Aside. The following closed-form expressions for summations are often useful 
in problems like the preceding one: 

N- I 1 -aN 1 , la [<  I C a r =  - , v a. 
m 

I - a  1 - a  

3.4 CONVOLUTION FOR CONTINUOUS-TIME SYSTEMS 

Define the CT impulse function, &t), by the relationships 

&t) = 0, t # 0, and (3.1 1) 

For a linear, time-invariant continuous-time system specified by the transformation 
operation At) = F[x(t)] ,  its impulse response is defined as 

= F[&Ol. (3.12) 

Remember that the notation in Eq. (3.12) assumes that all initial conditions on 
the system are zero. As was the case for DT systems, if an LTI system is causal, then 
h(t)  = 0, for all t < 0. Also, by linearity, if x(t) = as(t - to), then At) = ah(t - to). 

Since it is not possible to apply a true impulse function to a physical system, h(t) 
must be evaluated by indirect means. If the differential equation of the system is 
known, one may solve it for the zero-state response using s(t) as the input signal. 
For example, consider the problem of determining aifflow into the lungs from 
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Chapter 2. Recall that the zero-state solution for the volume change of the lungs, 
V(t), in response to pressure, P(t), applied starting at r = 0 was 

Letting P(r) be an impulse function, 

Therefore, 

From the impulse response, one may evaluate the response of an LTI system to 
an arbitrary input. To prove this result, consider again the system specified by f i r )  = 
q x ( r ) ] ,  having impulse response h(t). Let x(t )  be an arbitrary but bounded input sig- 
nal. Note that 

which is an expression of the sifting property of CT convolution. Now, 

00 

= I, x(A)F[S(t - A)]& = fa x(A)h(r - A)dA. (3.13) 
--OD 

The final integral in Eq. (3.13) is called the convolution integral and it is another 
definition of the input-output relationship of an LTI system. This relationship is 
symbolized as 

f i t )  = x(A)h(t - A)dA = x(t )  * h(t). (3.14) 
a 

By a change of variables it is easy to show that 

x(t )  * h(t) = E x ( A ) h ( t -  A)dA = x(t - A)h(A)dA = h(t) * x(t) .  (3.15) 
-w 

For a causal LTI system whose input, x(t) ,  is zero for # < 0, the lower and upper lim- 
its on the integrals in Eq. (3.13) can be replaced by 0 and t, respectively. The inter- 
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pretation of CT convolution is the same as that for DT convolution, as seen in the 
following example. 

Example 3.6 An LTIC system has the impulse response h(r) = u(t) - u(t - 1). The 
input x(t) = u(t) - 2u(t - 1) + u(t - 2) is applied to its input. Determine the output, 

Solution. Figure 3.1 1 shows the two functions, h(t) and x(t), as functions of the 
fit). 

dummy variable A. Since x(t)  = 0 for t < 0, and since the system is causal, then 

f i t )  = ~ ( t )  II h(t)  = x(A)h(f - A)dA. I 
The figure indicates the functions inside the integral for t = 0 and for t = 1.5. For t = 
0, h(0 - A) and x (A)  do not overlap. Therefore the integral evaluates to zero and y(0) 
= 0. For 0 < t < 1, these two functions will overlap in the interval [0, t], and fit) = 
Ji(1)(1) dA = t. 

For 1 < t < 2 the interval of overlap will be [t - 1, t], and 

1 

y( t )  = (1Xl)dA + f(-l)(l)dA = 3 - 2t. 
I-1 I 

FIGURE 3.11. Graphical convolution for the CT example. Top: input signal; middle: impulse 
response of the system (solid) and time-reversed impulse response shifted to t = 0 (long dash- 
es), and to t = 1.5 (short dashes); bottom: output signal, Ht). 
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The figure indicates the overlap between x(A) and h( 1.5 - A). For 2 < t < 3, 

2 

I- I 
f i t ) = /  (-l)(l)dA=t-3. 

Finally, for t =- 3, fit) = 0. These results are plotted in Fig. 3.1 1. 

It is apparent from Fig. 3.1 1 that h(r) expresses the weighting factor by which a 
previous input at time to - t contributes to the output, Ht), calculated at time to, and 
that fito) comprises the integration (i.e., summation) of all past inputs multiplied by 
their weighting factors. To emphasize this point for an LTIC system one may rewrite 
Eq. (3.19, after a change of variables, as 

y(to) = (d4r(t)h(to - t)dt, where we have let t + to, A + t. 

In this form the weighting of past values of the input by the time-reversed and shift- 
ed h(t) is obvious. Thus the interpretation of CT convolution is equivalent to that of 
DT convolution even though the input x(t) now is defined for all instants of time. 
Furthermore, the graphical method of calculating the convolution sum applies also 
to the convolution integral as long as we integrate where previously we summed. As 
was observed for h[n] ,  h(t) also expresses the effect of system memory processes on 
the output. 

Aside. Probably we sometimes unconsciously test physical systems with a pseu- 
do-impulse input without thinking in terms of an impulse response. Consider a bas- 
ketball player who bounces the ball in order to "get a feel" for its mechanical behav- 
ior. Notice too that a very young child who is presented with a new food may tap it 
with his spoon as part of exploring it. It is a common experience also that a driver 
wishing to evaluate the mechanical response of a new car will apply a stepwise de- 
pression of the accelerator pedal and monitor the change in velocity. This latter ac- 
tion is related to the impulse response by way of the step response, as discussed af- 
ter the next example. 

Example 3.7 CT convolution us a weighted moving average The LTIC system 
of Fig, 3.12 has the impulse response h(t) = e-2fu(t). Find its output when 

x(t )  = [ 1 - cos(2m)]u(t). 

Solution. 
By convolution, 

Figure 3.12 shows plots ofx(t) and h(t). Note that x(t) starts at t = 0. 

f i t )  = fe-2(f-A)[ 1 - cos(27rA)ldA = e-2tr[dA - $A cos(27rA)]dA 
0 0 
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FIGURE 3.12. Response of a system with an exponentially decaying impulse response to a 
sinusoidal input having a nonzero mean level. Top: impulse response of the system; middle: 
input signal; bottom: output signal. 

e-l 
4+4d [e2'(2 cos(2nt) + 27r sin(2nt) - 2 ) ]  

1 = 31 [ 1 - e-2'1- - 

1 
[2 cos(27rt) + 2rr sin(27rt) - 2e-2t]. f i t )  = ~ [ l  - e-2'] - - 4+4d 

1 

This function is also plotted in Fig. 3.12. Note in At) the blurring of the abrupt on- 
set of the input signal due to the weighted averaging by h(t)  of inputs which were 
zero for t < 0. 

Given the LTIC system specified by At) = F[x(t)] ,  the response of this system to 
a unit-step input, u(f), is f i t )  = F[u(t)] = g(t), where g(t) is the unit-step response. 
But since 

u(t) = (I G(V)dr] = 1, 1 2  0, 
-03 

then 

g(t) = u(t) * h(t)  = (I [(I-*t3(q)dq]h(A)dA = (I h(A)dA. (3.16) 
0 0  0 
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That is, the unit-step response is the integral of the impulse response. (Similarly, for 
an LTIC DT system, we saw that the unit-step response is the summation of the 
unit-pulse response-i.e., g[n] = ZnM h[k] . )  This result provides a more practical al- 
ternative for evaluating the impulse response of an unknown physical system be- 
cause often one can apply a step input, whereas a true impulse input is impossible to 
generate physically. Therefore, to determine h(t) one excites the system with a 
scaled version of a unit-step input, Au(t), and records the output, At) = Ag(t). Then 

Properties of CT Convolution 

Continuous-time convolution is a general operator so that for any two bounded, in- 
tegrable functions w(t) and v(t) their convolution is defined by 

(3.17) 

if the integral exists. This operator satisfies many of the same properties as the DT 
convolution operator. Thus CT convolution is: 

Associative: (x(t) * w(t)) * v(t) = x(t) * (w(t) * v(t)); 

Commutative: w(t) * v(t) = v(t) * w(t); 

Distributive: x(t) * (v(t) + w(t)) = x(t) * w(t) + x(t) * v(t). 

In addition, if x(t) = w(t) * v(t), then x( t  - to) = w(t - to) * v(t) = w(r) * v(r - to). 
Convolution ofx(t) with the unit impulse function just produces x(t) again. Final- 

ly, a useful property of convolution is given by 

(3.18) 

From this latter property one may also derive the relationship of Eq. (3.16) in the form 

(3.19) 

All of the above properties are readily proven from the basic definition of CT con- 
volution. 

Before addressing some examples of convolution, one further property will be 
noted. Consider the cascaded LTIC systems with impulse responses h , ( t )  and h2(r) 
that are shown in Fig. 3.13. Let h(t)  be the overall impulse response of the cascaded 
system, such that y(t) = x(t) * h(t). To determine h(t)  note first that x l ( t )  = x(t) * 
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h 

FIGURE 3.13. Two LTlC systems cascaded (i-e., connected in series). h(t) is the equivalent 
overall impulse response of the cascaded systems. 

hl(t). Thereforefit) = h2(t) * x l ( t )  = h2(t)  * (x(t)  * hl(t))  = (h2(t) * h,(t))  * x(t). Con- 
sequently, h(t) = h2(t) * It&). If there are Nsuch systems cascaded, then the overall 
impulse response of the cascade is 

h(t) = hN(t) * hN-&) * . * h2(t) * hl(r).  (3.20) 

An identical relationship applies for a cascade of DT systems. 

Example 3.8 Biomedical application Consider once again the example of air- 
flow into the lungs. This system can be represented by the transformation V(t) = 
F[P(t)]. The impulse response of this system was given above as 

1 
h(r) = -e-"RAflLu(t). 

RAW 

Therefore, the system may also be represented by the convolution equation V(t) = 
P(t) h(t). Assume the following values for the parameters of a patient: RAW = 4 cm 
H20/L/s, CL = 0.10 Wcm H20.  (These values are typical for a subject without respi- 
ratory disease.) The impulse response for this subject, 

h(t)  = ie-"o.4u(r), 

is plotted in Fig. 3,14(a). Let P(t) be the single pulse shown in Fig. 3.14(b) and esti- 
mate the response of V(t) using graphical convolution. Confirm this estimate by cal- 
culating the exact solution. 

Solution. The plot of Fig. 3.14(c) shows P(A) and h(r - A) fort = 0, 1,2,3. From 
this figure the convolution result, V(t) = P(t) * h(t), can be estimated graphically. 
V(t), t C 0, is zero because P(A) = 0 for t < 0. V(0) = 0 since h(0 - A) and P(A) do not 
overlap. As increases above zero (but t < 2) there is increasing overlap between 
P(A) and h(r - A) and the value of the convolution integral 

V(t) = fP(A)h(t  - A)& 
0 
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FIGURE 3.14. Determining the response of lung volume to a pressure pulse from a ventilator 
using convolution. (a) Impulse response of volume to a pressure input using average values 
for biomechanical parameters from normal subjects. (b) The pressure pulse from the ventlla- 
tor. (c) Graphical convolution, showing the pressure pulse and the tlme-reversed impulse re- 
sponse at four different time shifts. (d) Sketch showing the expected shape of the resulting V(t) 
waveform as estimated from visual analysis of the graphical convolution. 

increases progressively. But because of the decaying shape of h(t - A), the incre- 
ment added to this integral for each At increment of t decreases as t increases. 
That is, the derivative of V(t) is continuously decreasing. Furthermore for t = 1, 
h(r - A) is almost zero for A < 0. Therefore, the integral is almost at a maximum 
value which changes only slightly for 1 < t < 2. For t > 2, there is decreasing over- 
lap of between P(A) and h(t - A) as t increases and V(t) falls progressively to zero. 
The rate of fall is largest near t = 2 and from the time constant of h(t) one esti- 
mates that V(t) reaches zero around I = 3.2 s. The plot of Fig. 3.14(d) indicates the 
inferred shape of V(t). The peak value of V(t) occurs at t = 2 and can be estimat- 
ed as 

2 

0 
V(2) = ( 10)(0.25e+AYo.4)dA = 2.5 e-u0.4dA = (2.5)(0.4) = 1 liter. 

This result can be confirmed by direct calculation of the convolution integral. 
For0 5 t 5 2 :  
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Thus V(2) = 1 - e-5 = 
~ ( 2 )  ,it-2~0.4. 

0.9933 liters. Similarly, one can show that for 2 < 1, V(f )  = 

3.5 CONVOLUTION AS SIGNAL PROCESSING 

The importance of convolution relative to signal processing derives from the under- 
standing that convolution of the impulse response of a system with its input signal is 
a means of performing a weighted average of past values of the input signal. This 
weighted averaging, which slides through time, is a form of signal processing and 
we can gain insight into the nature of the output from our understanding of convolu- 
tion. For example, if the input signal contains an impulse-like event, then for some 
time thereafter the output will “look like” the impulse response of the system. Simi- 
larly, if the input signal contains a step change in level, then for some time thereafter 
the output will “look like” the integral of the impulse response. Thus, if the impulse 
response is an exponentially decaying fbnction, the response to a step change in the 
input will not be a step but will be a slower exponential rise. Figure 3.15 presents 
six examples using graphical convolution to estimate the effect on a signal of pass- 
ing it through a system with a specified impulse response. The reader is urged to 
prove the qualitative validity of the right-hand column of plots using graphical con- 
volution. 

3.6 RELATION OF IMPULSE RESPONSE TO DIFFERENTIAL 
EQUATION 

Since the impulse response is the zero-state solution of the differential equation of a 
system when the input is an impulse function, the parameters of the impulse re- 
sponse are determined by the coefficients of the differential equation and one can 
infer certain properties of the impulse response from these coefficients. This rela- 
tionship is most useful for first- and second-order systems. Consider a first-order 
differential equation of the form 
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FIGURE 3.15. Six examples of signal processing by LTI systems. In the top three examples 
the system calculates a uniformly weighted summation of past inputs for 2 seconds. In 
the fourth example the summation is OVBI 0.1 seconds; therefore, for low-frquen~y signals 
the system mainly reduces the signal amplitude as shown. The fmh example is a second- 
order lowpass filter while the last example is a second-order highpaw filter. The reader 
should be able to predict the shapes of x(t)h(t) for these examples using graphical convolu- 
tion. 
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which can be rearranged into a standardized form as 

(3.21) 

Letting x( f )  = s(t) and defining T = klk2, solving for f i t )  yields 

1 At) = h(t)  = -e-%(t). 
kl 

Therefore the impulse response function is an exponential decay, as in Fig. 
3.14(a), whose rate of decay is determined by the time constant, T =  klk2. For larger 
values of T the decay is slower, implying a greater weighting of past values of the in- 
put for a longer time. Consequently, thinking in terms of the graphical convolution 
of h(r) with an input signal, for large values of the time constant a sudden change in 
the input signal will be severely attenuated. On the other hand, in the same situation 
high-frequency noise in the input will be removed from the output. 

The situation is slightly more complicated for second-order systems. A standard- 
ized form for the differential equation of a second-order system is 

f i t )  + a j q )  + by(t) = kx(t). (3.22) 

It is perhaps easiest to determine the impulse response of this system by calculating 
the unit-step response, then taking its derivative as indicated by Eq. (3.16). For x( t )  
= u(t), v(t) has two parts-the homogeneous solution, yh(t), and the particular solu- 
tion, y,(r). If the particular solution is thought of as the steady-state response to x(r), 
then the homogeneous solution provides the transient change from the initial condi- 
tions (assumed to be zero) to the mean level of the steady-state response to the input 
signal. For a step inputy,(t) is just a constant level, co. Substituting this solution for 
v ( f )  in Eq. (3.22) when x(r) = u(f) yields co = k/b. To find the homogeneous solution 
for a second-order system note that yh(t) has the form 

yh(t) = clesI' + c2es2'. (3.23) 

The parameters sl and s2 are determined by solving the homogeneous form of the 
differential equation-that is, by substituting Eq. (3.23) for y(t) in Eq. (3.22) and 
letting x( t )  = 0. Thus 

a v 7 z z  
2 

SI.2 =-- f 
2 (3.24) 

Consequently, the step-response is 

y(t) = clesl' + c2es2' + co 



90 THE IMPULSE RESPONSE 

and taking the derivative yields 

h(t) = - dV(0 = c 1 s l ~ i r  + cg2eSzt = dle'lf + d2eS2t, r 2 0, (3.25) dt 

where d ,  and d2 are determined by the initial conditions that 

y(0)  =$(O) = 0. 

Clearly, the impulse response of a second-order system is specified by the parame- 
ters sl and sz that, in turn, are determined by the coefficients of the differential 
equation of the system. Three different situations can be identified: 

1. u2 > 4b: The term inside the square root in Eq. (3.24) is positive and sI and sz 
are both real. Therefore, the impulse response comprises the sum of two exponen- 
tially decaying terms. For BIB0 stability, h(r) must be bounded (otherwise there 
will exist some inputs for which fir) will not be bounded). Consequently, both sI 
and s2 must be negative. Since h(0) = 0, then dz = -dl and h(t) has the general shape 
depicted in Fig. 3.1qa). For reasons that will become apparent imminently, these 
impulse responses are called overdumped. In terms of signal processing, an over- 
damped second-order system will modify input signals qualitatively like a first-or- 
der system, although there are some potentially important differences. First, the 
peak of h(t) is not at t = 0 as it is for a first-order system. Therefore, the recognition 
of input events in the output is slightly delayed. Second, for the second-order system 
there is a much greater variety of possible shapes for h(t). Consequently, the filter- 
ing effects of convolution can be adjusted more subtly in order to remove or empha- 
size certain features of the input signal. This latter effect is more striking in the next 
case below. 

25, 
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FIGURE 3.16. Impulse responses of second-order lowpass systems with various damping 
factors. (a) Overdamped responses. (b) Underdamped responses. 
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2. u2 < 46: The term inside the square root is negative and s1 and s2 are complex 
conjugates. Thus 

(3.26) 
a vziz? 
2 '  2 

sI = cr+jn, s2 = u-jf l ,  where u=-- R =  

and 

h(t) = d,emeJnr + d2eme-in' 

= dlea[cos(Qt) + j  sin@)] + d2[c0s(flt) - j  sin(flt)]. 

To make h(0) = 0 we must have d2 = -d,, as discussed above. Consequently, the 
cosine terms cancel. After defining d =$,, we have 

h(t) = dem sin(at)u(t). (3.27) 

That is, h(t)  is an exponentially damped sine wave. We can use a trick to find d in 
terms of the system parameters. Since the zero-state response to a unit-step input is 
the integral of h(t), we can express the final value of the unit-step response as 

d 
U2 + S l 2  

= -[euA(a sin(RA) + n cos(lU))Jl~ 

where 0, is the value of fl when a = 0 (Le., when there is no term in the differential 
equation related to d'/dt, meaning that the differential equation represents a pure 
oscillation) and is called the natumlfrequency. If a = 0, then 

- fi 4 a,. (3.28) u= 0 and h(r) = d sin(flt), where R = - - 6 
2 

That is, when u = 0, h(r) is an undamped oscillation having a frequency defined as 
the natural frequency of the system. Note that the natural frequency is readily iden- 
tifiable from the differential equation since R i  = b. 

Now, from the previous expression for the unit-step response, its final value is co. 
Since co must satisfy the original differential equation, Eq. (3.22), when x(t )  = u(t), 
then co = Mb. Using the fact that b = fit, equating the two expressions for the final 
value of the step response gives 

k 
from which d = - M k  -=- 

fl: a;' n '  
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Finally, the impulse response has the general form observable in Fig. 3.16(b). This 
important case will be discussed in more detail shortly. 

3 .  a2 = 46: In this case s1 = s2 = -a12 and 

h(t)  = d,em + d2rem, t 2: 0.  (3.29) 

The general form of this impulse response is given in Fig. 3.16(a), labeled “8 = 1 .O.” 
Consider again the situation when s1 and s2 (known as the eigenvalues of the sys- 

tem) are complex conjugates. Let’s explore how the impulse response changes as we 
vary the parameter a while keeping the natural frequency (and 6 )  constant. The X’s 
in Fig. 3.17 depict the locations of s, and s2 on the complex plane for some value of 
a such that 0 < a* < 4b. Notice first that at these locations the square of the length of 
the vector connecting sI (or s2) to the origin is 

-a 2 4b-a2  12 = d + Q2 = ( T )  + (7) = b = 0:. (3.30) 

FIGURE 3.17. Locations in the complex plane of the eigenvalues of a second-order system 
(i.e., the exponents of the exponential terms in the homogeneous response) as a function of 
damping factor. For 6 = 0 the eigenvalues are at +On. For 0 c S c 1, they lie on a semicircle of 
radius On, reaching the negative real axis simultaneously when the damping factor equals one. 
When 6 z 1, the eigenvalues are on the negative real axis. 
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That is, 

, = V Z G = n n .  (3.3 1) 

Now, define a damping factor, S, as the ratio of the magnitude of the exponential 
decay coefficient to the natural frequency. In other words, 

a=-=  Iu' cos(e), (3.32) a, 
where 0 is shown in the figure. For a given natural frequency the impulse response 
can be characterized by its damping factor. When S = 0, u = 0 and we previously as- 
certained that h(r) is an undamped sinusoid. In the complex plane of Fig. 3.17, sI 
and s2 will lie on the imaginary axis. As the damping factor increases in the range 
0 < 6 c 1, s, and s2 will move along the semicircle of radius a,, centered at the ori- 
gin. They will reach the real axis simultaneously when S = 1. Thereafter, one eigen- 
value will move left along the real axis and one right (but always to the left of the 
origin) with further increase of the damping factor. 

The location of the two eigenvalues reveals much regarding the structure of h(t) .  
Note that these parameters can be expressed as 

Then h(t) can be written in the form 

(3.33) 

(3.34) 

and h(t) can be graphed for various values of its parameters. When 0 c 6 < 1, h(t) is 
an underdamped oscillation as shown in Fig. 3.16(b), and when S > 1 ,  h(t) is over- 
damped. When 6 = 1, h(r) is said to be critically damped. Of course, when S > 1, we 
have the case discussed above when sI and s2 are both real. 

Thus one can readily sketch the impulse response of a second-order system 
from knowledge of the coefficients of the differential equation of that system. The 
signal processing implications of these impulse responses depends on the value of 
the damping factor. For S near 1 the interpretation is similar to that when the im- 
pulse response has two real exponential terms. But as 6 decreases, h(t) assumes a 
more oscillatory nature. This oscillatory behavior will "add on" to sudden changes 
in the input signal and possibly obscure them. On the other hand, .if the input sig- 
nal contains an oscillation near the frequency of oscillation in h(t), it should be ap- 
parent that the convolution process will amplify that input signal component while 
also attenuating higher frequencies. Therefore, an underdamped second-order sys- 
tem can be a sensitive detector of oscillation at a known frequency. This behavior, 
in which a system (that is not a true oscillator) oscillates at some preferred fre- 
quency in the presence of a weak input at that frequency, is known as resonance 
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and the damped oscillatory impulse response of a resonant system often is said to 
exhibit ringing. 

~~~ ~ ~ 

Example 3.9 Second-order systems Describe the impulse response of the LTIC 
systems described by the following differential equations: 

(a) f i r )  + 6fir) + 1 Oy(t) = 0.15x(r); 

(b) j;(t) + 1 O f i t )  + 6y(t) = O.l5x(t). 

Solutions. (a) Solve for sl and s2. Thus 

where u = 6, b = 10. Substituting, 
a m  

2 '  
S1,J = -- 

2 *  

Therefore, h(t) = d e-3f sin(8r) u(r). This impulse response is an exponentially de- 
caying sinusoid having a frequency of approximately 1.27 Hz. Its amplitude reaches 
zero in approximately three time constants-that is, one second. 

(b) In this case sl,2 = -5 * 8 = -13, -3. Thus h(t) has two real roots and h(t) = 
d(e-13' - e-3f u ) (0. 

3.7 CONVOLUTION AS A FILTERING PROCESS 

The process of convolving the impulse response of an LTI system with an input sig- 
nal is the time-domain representation of filtering. Consequently, convolution is a 
key concept for understanding the modification of signals by filters. Does this con- 
cept also have a role in understanding how physical biomedical systems respond to 
stimuli? Very definitely! As long as the assumption of linearity is valid, then knowl- 
edge of the response of an unknown system to a step unit will permit at least quali- 
tative insight into its impulse response, from which the response to any other stimu- 
lus may be estimated. It is important to recognize that it is not necessary to know the 
differential equation of the system in order to predict its behavior if one can deter- 
mine its impulse (or, equivalently, its step) response. In fact, in many applications a 
semiquantitative knowledge of the impulse or step response is sufficient. For exam- 
ple, if I know that the response of a blood pressure transducer to a step increase in 
pressure has an approximately exponential rise with a time constant of 500 msec, 
then I would not want to use that transducer to measure blood pressure fluctuations 
between heartbeats because the impulse response will perform a weighted average 
of past blood pressure values over a time interval of about three time constants, or 
1.5 s, which is larger than the typical intervals between heartbeats. 
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Example 3.10 Using convolution to predict the eflect offlltering on a biomed- 
ical signal Action potentials recorded from a nerve axon via an extracellular 
monopolar electrode have amplitudes on the order of microvolts. Thus it is neces- 
sary to amplify these signals in order to display or store them (Fig, 3.18(a)). This 
example will explore some of the necessary properties for electronic amplifiers de- 
signed to amplify action potential signals. A simple model of a train of action po- 
tentials is a sequence of pulses, each lasting a few milliseconds (Fig. 3.18(e)). An 
average “firing rate” of 10 pulses per second characterizes the behavior of many 
types of receptors and motor neurons. 

Second-order electronic amplifiers are easy to build and there exist standard im- 
plementations for such electronic filters (discussed further in Chapter 6). First, 

-50 ’ I 
0 0.05 0.1 0.15 0.2 

0.2 0 . 3 h  :.‘” *.*,, .. 1 
0.1 

* a .  0 
0 0.05 0.1 0.15 0.2 

0’ I 
0 0.05 0.1 0.15 0.2 

1, sec 

FIQURE 3.18. Determining the response of an amplifier to a train of Simulated action poten- 
tials. (a) Model of the amplifier as an LTIC system. 0) Impulse response of the amplifier for the 
specified parameters, S = 0.75, n, = 20w, galn = 10‘. (c,d) Input (c) and output (d) for a signal 
containing one action potential (solid) or two action potentials separated by 100 msec (dot- 
ted). (e) Simulated action potential train with 20 pulses per second. (t) Output in response to 
the signal of (e). 
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however, one must specify the desired gain, natural frequency, and damping factor 
for the filter. In the present application a gain of at least 10,OOO is necessary. Since it 
seems that having a strong oscillation in the output in response to a pulse-like input 
is not desirable (because action potentials are pulse-like), we specifL an under- 
damped system with a damping factor of 0.75. Finally, one might be tempted to 
specify a natural frequency on the order of the expected highest fiequency of action 
potentials-in our case, 10 per second. Therefore, am = 27r( 10) = 207r rad/sec. 

In order to estimate the effect of the amplifier on action potential signals, first 
find the output response to a single (simulated) action potential at the input. This re- 
sponse can be derived by convolution. Using the specified parameter values, 

= 368.3 e-lsm sin(8.75~). (3.35) 

h(t) is plotted in Fig. 3.18(b). The single simulated action potential is shown as 
the solid graph of Fig. 3.18(c). Its width is 4 msec. Assuming an LTIC system, the 
response of this system to the simulated action potential input is given by the convo- 
lution integral as 

At) = rx( t  - A)h(A)dA = rPo.,,,& - 0.002)[(368.3)e-15wA sin(8.757rA)]dA, (3.36) 
0 0 

where Po(t - I , )  is a unit-amplitude pulse of width a that is centered at t = 1,. This in- 
tegral can be evaluated using the general integration formula 

P 
a2 + b2 P sin(bx)dr = - (a sin(bx) - b cos(bx)). 

For t < 0.004, 

At) = 368.3s e-IswA sin(8.751rA)dh 
0 

368.3 
( 1 5 ~ ) ~  + ( 8 . 7 5 ~ ) ~  

- - [e15"A(-157r sin(8.757rA) - 8 . 7 5 ~  cos(8.75rh)l~. 

Simplifying, we obtain 

y(r) = 0.3839[8.757r- e-1sm(157rsin(8.75~) + 8.757rcos(8.75~))], t S 0.004. 

(3.37) 

To evaluate the convolution integral for t > 0.004, notice that in EQ. (3.36) this 
integral is written in the alternate manner of Eq. (3.15), in which x(t) is time-re- 
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versed instead of h(t). Now at any time t, x(t - A) is nonzero on the interval [t - 
0.004, r ]  only. Therefore, the limits on the convolution integral become t - 0.004 and 
t, and we may calculate fir) as 

f i t )  = 368.31( e-lSffA sin(8.75d)dA 
r-o.004 

[elSnA(-1 57r sin(8.75 TA) - 8 . 7 5 ~  cos(8.75~A)]1:-0.~. 
368.3 

( 1 5 ~ ) 2  + ( 8 . 7 5 ~ ) ~  
- - 

Simplifying, we obtain 

f i t )  = 0.3839eism[ 15mo*MTsin(8,757r[t - 0.0041) + 8.75~@.~~cos(8 .75f l r  

- 0.004]) - 157rsin(8.75~t) - 8.75~cos(8.75nt)]. (3.38) 

The output, f i t ) ,  is graphed as the solid line in Fig. 3.18(d). This result also can 
be obtained using the MATLAB command conv (x,  h) in which h is defined using 
Eq. (3.35) over a sufficiently fine time sampling-for example, At = 0.00025 s- 
and x is a single pulse defined using the stepfun fknction. Note that a single 
pulse-like event such as an action potential signal causes a slow rise and a slower 
fall in the output signal, which considerably outlasts the original event. The dotted 
graphs in Fig. 3.18(c,d) depict the input and output for two simulated action poten- 
tials separated by 100 msec. In this (and the following) case the output was generat- 
ed using conv ( x ,  h) . Basically one can obtain an indication of the presence of 
each action potential but the signal is so distorted that the original action potential 
shape (which may be informative with respect to pathological changes in the neu- 
ron) is essentially unrecoverable. Finally, Fig. 3.18(e,f) show the input and response 
of the amplifier to a train of four action potentials occurring at a rate of 20 per sec- 
ond. Although one has an indication of the Occurrence of each action potential, this 
signal is now so distorted that it must be deemed unreliable as a record of the action 
potential signal. An important conclusion is that designing a second-order system to 
achieve an acceptable level of distortion of a signal is not a trivial task. The reader 
may wish to use the m-file second052 . m to generate second-order systems hav- 
ing various parameter values and try to determine “best” parameter values for the 
present application. 

3.8 IMPULSE RESPONSES FOR NONLINEAR SYSTEMS 

Consider a system given by the transformation operation f i t )  = qx(t)] for which s[.] 
does not satisfy both the additivity and homogeneity conditions for linearity. From a 
mathematical viewpoint one may define an impulse response, h(r) = s[s(r)], but will 
knowledge of h(r) allow the calculation offit) for any arbitrary x(t)? To address this 
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question, consider the simple nonlinear system, v(r) = x2(t), which has the impulse 
response h(r) = @(r). This system fulfills the additivity criterion under many condi- 
tions. For example, let xl(r) = s(t) and x2(r) = 3s(r - to), yielding the outputs yl(r) 
and y2(r) respectively. If we now apply the input x(t) = xl ( t )  + x2(r), the output will 
be f i r )  = yl(r) + y2(t) except when ro = 0. In the latter case, to satisfjl additivity f i t )  
apparently should be lO@(r), but it will actually be la@(?). Thus knowledge of the 
response to the input xl(t) = s( f )  does not permit one to correctly predict the re- 
sponse to the input x(r) = 4s(r). In fact, the situation is more complicated because 
the homogeneity condition specifies that the response to x(t) should be 4@(t), not 
lO@(r)! 

Although the system ax(t)] = $(r) is not linear, it would still be possible to de- 
termine its output for an arbitrary input if one knew both h(t) and a “correction fac- 
tor” that could be applied to compensate for the system not being linear. To evaluate 
this correction factor, consider again the response to x(r )  = s(t) + 36(r). The re- 
sponse expected by linearity is yL(r) = ( 1  + 3)@(r), whereas the actual response is 
v(r) = (1 + 3)2@(r). The difference due to nonlinearity is yN(r) = [(l + 3)2 - (1 + 
3)]#(r) = 12#(r). Similarly, for any input of the form 

the output will be 

r(r) = ( I  + A)2#(r) = (1 + A)@(r) + [( 1 + A)2 - (1 + A)@(t)  

= (1 + A)#@) + (A2 + A)#(r). (3.40) 

The term (1 + A)@(r) is the linear response and the term (A2 + A)#(r) is the correc- 
tion factor. For an input occumng at any arbitrary time, rl, the situation is similar. 
Since q.] is memoryless, the output at time rl depends only on the input at that 
time. But since x(rl) can always be expressed as 

x(tl) = 60 - t l)  + [x(tl) - l]s(r - t l)  = s(t - r l )  + ~ 6 ( t  - r,), 

the output f i r l )  can always be determined from Eq. (3.40). In this example, there- 
fore, it is always possible to specify the output response to an arbitrary input if one 
knows h(t) and the “correction factor” equation y d t )  = (A2 + A)@(r).  (Of course, in 
this simple example it is easier to calculate 2(r) directly!) 

This approach can be extended to all time-invariant, analytic nonlinear systems 
although determining “correction factor” equations becomes much more complicat- 
ed if the nonlinearity is of higher order than quadratic and especially if the system 
has memory. In the latter case an input at time 1, will contribute to the output at 
times r2 > t l  until r2 - r l  exceeds the memory of the system. Therefore, although x(t) 
can still be expressed by Eq. (3.39), y d t )  is a function of the amplitude nonlinearity 
(as given in Eq. (3.40)) plus the linear and nonlinear effects of past inputs. Volterra 
has shown that even in this general case it is possible to define an input-output rela- 
tionship based on generalized impulse response functions. 
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The response of a time-invariant, analytic, nonlinear system, q.1, to an arbitrary 
input dr) can be expressed as 

fir) = h, + x(A)h,(t - A)dA + x(Al, A2)h2(t - A l ,  t - A2)dAldA2 
a a 4  

Equation (3.41) is called the Volterru expansion of the system and the h(. , .) 
hc t ions  are the Voltem Kernels. Although it looks as if h,( t )  is the impulse re- 
sponse of the system, h2(t1,r2) is the system response to two impulses, and so on, 
this simple interpretation is incorrect. Consider the impulse response of a system 
described by Eq. (3.41). Whenx(t) = Rt), every integral term contributes to the out- 
put, with the result that 

In other words, the impulse response comprises the diagonal parts of all of the 
Volterra kernels. 

In general, it is difficult to determine the Volterra kernels for a nonlinear system, 
in part because the different terms in Eq. (3.41) are not orthogonal. Wiener has de- 
rived a similar expansion for the input-output properties of a nonlinear system 
when it is excited by Gaussian white noise, in which the terms are orthogonal. Iden- 
tification of the Weiner kernels of a nonlinear system is generally easier than identi- 
fication of Volterra kernels and numerous examples of applications of the Weiner 
method to nonlinear biomedical systems are in the literature. Estimation of Weiner 
kernels is not trivial, however, and usually requires large amounts of data for accu- 
rate identification. The interested reader should consult an advanced textbook (e.g., 
Marmorelis and Marmorelis, 1978). 

3.9 THE GLUCOSE CONTROL PROBLEM, REVISITED 

At the beginning of this chapter we discussed the problem of predicting the re- 
sponse of plasma glucose concentration to an arbitrary infusion of insulin and de- 
cided that the biological system (or at least our model of the biological system) is 
nonlinear. On the other hand, for sufficiently small inputs the difference between 
the actual response and that predicted from a known response to a pulsatile insulin 
inh ion  by assuming linearity was negligible (Fig. 3.4). Often in biomedical appli- 
cations it is the case that linearity can be assumed for some restricted range of input 
amplitude and then convolution can be applied to predict the response of the sys- 
tem. To finish this exercise the reader first should determine the impulse response 
of the model using the SIMULINK file glucos3 .mdl. In actual practice, one 
cannot test a patient with a true “impulse finction” input, so it is necessary to utilize 
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a more practical input from which one can derive the impulse response. Specify 
such an input. Furthermore, because the glucose level is not zero when the insulin 
input is zero, one must define the impulse response relative to the change from 
some baseline level. Specify a baseline level and utilizing your input defined above, 
determine h(r). Then predict (using the MATLAB command conv) the responses of 
glucose to the various inputs discussed previously (see Figs. 3.2-3.5). Consider 
whether these predictions are sufficiently accurate by comparing them with the ac- 
tual responses of the model to these inputs. In addition, determine the impulse re- 
sponse measured at a different baseline level. For example, if your initial baseline 
level was the glucose level with zero insulin infusion, choose a new baseline corre- 
sponding to a steady insulin infusion rate of 0.9 Uhr. Compare the original and new 
impulse responses and explain any differences. 

3.10 SUMMARY 

This chapter has introduced the related concepts of impulse response and convo- 
lution. The impulse response of an LTI (or LSI) system is its zero-state response 
to a unit impulse function (or a DT unit-pulse function). Systems with memory 
have impulse (or unit-pulse) responses which are nonzero for some finite (but 
nonzero) range of r (or n). A DT system is classified as a finite impulse response 
(FIR) system if its unit-pulse response, h[n] ,  reaches zero at a finite n and remains 
at zero for larger n. Otherwise it is an infinite impulse response (IIR) system. The 
impulse response expresses the degree to which past inputs contribute to the cur- 
rent output; this contribution can be evaluated using the convolution sum or con- 
volution integral formulas. A graphical interpretation of convolution was devel- 
oped in order to visualize the process of multiplying x(t)  (or x [ k ] )  point-by-point 
in time by h(fo - 1) (or h[k, - k]), and then integrating (or summing) the product 
to calculate y(ro) (or y [ h ] ) .  The convolution operation is associative, commutative, 
and distributive. 

By viewing any linear system as a filter, one can visualize the signal process- 
ing effect of the system on an arbitrary input in the time domain through graphi- 
cal convolution. Thus signal processing interpetations were developed for firstsr- 
der and secondsrder systems. Because the impulse response of a system is 
determined by the coefficients of the differential equation of the system, we were 
able to develop insights into the filtering behaviors of first- and second-order sys- 
tems from their differential equations. Second-order systems, in particular, can ex- 
hibit varying types of filtering effects, depending on whether they are overdamped 
or underdamped. 

The concept of the impulse response can be extended to generalized impulse re- 
sponses for nonlinear systems. Otten, however, it is possible to utilize a linear sys- 
tem approximation to a nonlinear system, based on its impulse response, over a re- 
stricted amplitude range for its input signal. Usually a linear system approximation 
to a nonlinear system is valid only for small deviations around specific mean levels 
of the input and output signals. 
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EXERCISES 

3.1 Use graphical convolution to sketch the results of convolving each pair of 
functions in Fig. 3.19. 
3.2 Use graphical convolution to sketch the results of convolving each pair of 
fbnctions below, then calculate the exact answers and compare to your sketches: 

a. x(r)  = 2 u(r), h(t) = e4'5 u(r); 
b. w[n]  = 2 u[n] - 4 u[n - 21 + 2 u[n - 41, v[n]  = s i n [ 2 m / 4 ]  u[n]; 
C. ~ [ n ]  = ~ [ n  - 31, h[n] = -0.2Qn - 11 + 6[n]  - 0.2Qn + 11. 

3.3 Two discrete-time systems are connected in series as shown in Fig. 3.20. Their 
input-output difference equations are: 

a. Determine the overall input-output difference equation relating y [ k ]  to x[k] .  
b. Determine the impulse response of the overall system. 

3.4 Two systems are connected together as shown in Fig. 3.21 The input-output 
differential equations for these systems are: 

T2[.J: w(r) = OSy(r) T,[.J:fir) =-At) - 2y(t) + v(r), 

a. What is the overall input-output differential equation relating fit) to x(r)? 
b. Describe the qualitative behavior of the overall impulse response. 

t -1 O f  
-2 I 

FIGURE 3.19. See Exercise 3.1. 
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X [ L b ~ p - p - - p k I  

FIGURE 3.20. Two LSI systems connected in series. See Exercise 3.3. 

c. Compare the impulse response of the system with feedback to that of TI[.] by 
itself. 
3.5 A system has an impulse response h(t) = C'U(Z). Calculate its output when its 
input is x(r) = cos(2.rrt). 
3.6 A discrete-time LTIC system has the impulse response h[n] = 2u[n - I ]  - 2 
u[n - 31. Graph h[n] .  Calculate the output for the discrete exponential input x[n]  = 
O.Snu[n]. Discuss the signal processing characteristics of a system having the unit- 
pulse response h[n] .  
3.7 Calculate the convolution of x(r) = e"'u(t) with h(t) = e4'u(r). Sketch the re- 
sult for the case when a and b are both positive and b < a. 

3.8 The impulse response of a system is given by h(r) = es' s in (20~) .  Using 
graphical convolution sketch the system response to the following inputs: 

a. x( r )  = u(t) - u(t - .00001); 
b. x(r) = 10 ~ ( t ) .  

3.9 Let x(t)  = u(f + 2)  - u(r - 3) and h(t) = s(t + 2 )  + s(t - 1). If x(t) is the input to 
an LTI system and h(t) is the impulse response of the system, calculate and graph 
the output. Discuss the signal processing characteristics of a system having the im- 
pulse response h(r). Also calculate the output if the roles of x(r )  and h(r) are reversed 
and discuss the signal processing characteristics of this new system. 
3.10 If x[n]  is the input to an LSI system having the unit sample response, h[n], 
determine the output y[n]. x[n]  = a"u(n), h[n] = b"u[n], a # b. Sketch x[n] ,  h[n] ,  
and y[n]. 
3.11 Write the differential equation for the electrical circuit shown in Fig. 3.22 
with v(r) as the input and e( r )  as the output. Describe the signal processing charac- 
teristics of this filter. 

FIGURE 3.21. Feedback connection of two LTI systems. See Exercise 3.4. 
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C = l F  

t 

" v 

FIGURE 3.22. An electrical filter with input v(t) and output e(t). See Exercise 3.1 1. 

3.12 A DT differencing filter has a unit pulse response given by 

n = l  h[n] = 

1 0, otherwise 

Calculate the response of this filter to a square wave x[n] described as follows: 

1,0 5 n I 3  
- 1 , 4 5 n I 7  x[n] has a period of 8, x[n] = 

3.13 Draw the function that results from convolvingfit) and g(t) of Fig. 3.23 
when:(a)P=2;(b)P= 1. 
3.14 A common method of smoothing discrete-time data is to pass it through a 
weighted moving average filter. A filter of this type with 3-point Bartlett weighting 
is defined by the difference equationy[n] = 0.25 x[n] + 0.50 x[n - 11 + 0.25 x[n - 21. 
Determine the unit-pulse response of this filter. Determine its response to x[n] = 

3.15 A discrete-time system is described by the difference equation y[k + 13 + 
O.Sy[k] = 2x[k]. What is the impulse response sequence of this system? Discuss the 
signal processing characteristics of this system. 

@I* 

1 1 2 

FIQURE 3.23. 

SO) 

=L -P O P  

See Exercise 3.13. 
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3.16 An LSIC system has a unit-step response g[k].  The system receives the input 
x[k] = S$lci{u[k - k,] -u{k - kc,]}, where c kl c . . . c kwl and the c, are con- 
stants. Express the resulting output in terms of @] and time shifts of g[k].  Assume 
the system starts from the zero-state. 
3.17 A system comprises two cascaded subsystems as shown in Fig. 3.20. The dif- 
ference equations for these two systems are: 

Ti[.]: ~ [ k ]  +0.6 ~ [ k -  l]=x[k]; T2[.]:y[k]=~[k]-0.5 ~ [ k -  11-0.5 ~ [ k - 2 ] .  

a. Find one difference equation that expresses the overall input-output relation 

b. Use the result from part (a) to calculate the overall unit pulse response of the 

c. Find the unit pulse response for each of the two subsystems. 
d. Calculate the overall unit pulse response for a cascaded system by convolving 

the two individual responses found in part (c) and show that it is the same as your 
answer to part (b). 
3.18 An electrophysiological recording table is subject to floor vibrations. When 
the tip of a recording electrode is inside a nerve cell whose diameter may be tens of 
microns, very little table vibration can be tolerated. Often each leg of such a table is 
placed on a "damper" consisting of a dashpot and spring in parallel. Assume that a 
dashpot and a spring are placed under each leg of a recording table, which has a to- 
tal mass M, so that the combined damping resistance is R and the combined spring 
constant is K. A mechanical diagram representing the table and dampers is present- 
ed in Fig. 3.24. 

a. Write the differential equation for this mechanical system. The input is the 
up-and-down displacement of the floor and the output is the table displacement in 
the same direction. (Ignore lateral motions.) 

for these cascaded systems. 

cascaded systems. 

Mg 
Table + 
appara tus7  

FIGURE 3.24. Simple mechanical model of a microscope table subjected to vertical floor vi- 
brations. M = mass of table and apparatus; K i: sprlna constant; R = viscous damping resis- 
tance. d(l) is the floor displacement and v(r) is the reeutthrg table displacement. 
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b. Let M = 25 kg, K = 0.1 N/mm, and R = 100 N/m/s. Describe the characteris- 
tics of the impulse response of this mechanical system. 
3.19 To control blood pressure in a patient, a physician gives him a bolus injection 
of a vasoactive drug every hour. Consider each injection as a discrete event, x[n] .  A 
patient who has received no drug suddenly starts to receive the same dose, x[n]  = K, 
every hour and the change in his blood pressure (from its value before starting the in- 
jections), p[n] ,  is measured immediately after each injection. Assume the first injec- 
tion is given at n = 0. p[n]  is found to be: p[n] = 5K{ 1 - 0.7(0.5)" - 0.3(0.2)"}, n 2 0. 

a. Determine an equation for the impulse response, h[n] ,  of blood pressure to 
this drug and sketch h[n] .  

b. If instead of giving the patient a bolus of size K every hour, the patient is giv- 
en a bolus of size 6K every 6 hours, how will his blood pressure vary over a 24-hour 
time period ? To solve this part, use MATLAB (assume K = 1) and convolve the im- 
pulse response with an appropriate input signal. Do you think it is better to give the 
drug every hour or every 6 hours? Why? 
3.20 To control the position of a robotic arm it is desirable to design a controller 
that compensates for the time constants of the arm and provides a simple relation- 
ship between the input signal and the position of the arm. Assume the controller in 
Fig. 3.25 is well designed and provides the position response, P(t), for the input sig- 
nal, R(t), as shown. 

a. What is the overall impulse response of arm position to the controlling input 
signal? Let K =  10 inches, A = 10. 

b. Using convolution, calculate the position response to the input signal of Fig. 
3.25(c). 
3.21 (MATLAB exercise) Referring to the robotic arm of Exercise 3.20, when a 
mass load is placed on the arm the position response degrades so that in response to 
the input signal of Fig. 3.25(c) the arm position is 

P(t)=8[1-e47, O S t s T  
= 8e4('-n, 

= 0, t > 2T. 

T <  t = 2T 

a. Calculate the impulse response of the mass-loaded system. 
b. Develop a SIMULINK model of the mass-loaded system. Test your model by 

exciting it with the signal of Fig. 3.25(c) and comparing the output of the model 
with the response specified above. 

c. It is possible to measure P(t) continuously in real time using a displacement 
transducer. Assume this measurement is available and that the measurement or a fil- 
tered form of it can be fed back and added to the control input signal, as depicted in 
Fig, 3.21, to attempt to compensate for the degradation of the position response. 
What characteristics should the impulse response of TJ.1 possess in order to effect 
this compensation? Add this feedback path to your SIMULINK model and test your 
suggestions. 
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(a) 
CONTROLLER ARM 

FIGURE 3.25. See Exercise 3.20. (a) Model of robotic arm driven by an electronic controller. 
(b) Input, I?(& and arm positii output, P(t). (c) Test input. 

3.22 (MATLAB exercise) Figure 3.26 shows a simple model for the ingestion and 
disposition of a drug in the body. The drug is taken orally into the gut, is absorbed 
into the blood, and is removed from the blood and excreted by the kidney. (Of 
course, many other physiological actions are possible, but this is a simple model!) A 
fluid model of this process is diagrammed in the figure. Let x(t) be the rate of input 
of the drug to the gut, q(r) be the total amount of drug in the gut, f i t )  be the amount 
of drug in the blood, and z(r) be the rate of drug excretion. A usual approach with 
compartmental models such as this one is to assume that the rere of transfer of a 
substance between two consecutive compartments is proportional to the difference 
in amount of the substance in the two compartments. Thus, if k, and k2 are con- 
stants, the following relationships apply: 

a. Write the basic compartmental equations for the gut and blood compartments. 
Combine them into one second-order differential equation whose solution is f i r ) ,  
the amount of drug in the blood. (Usually the clinically effective dose is expressed 
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FIGURE 3.26. See Exercise 3.22. Top: simple conceptual model of the transport and eventu- 
al excretion of a drug that enters the gut at a rate x(t). Bottom: fluid mechanical model of drug 
transport and excretion. This model Ignores the removal of the drug from the blood via metab- 
olism. q(t) = amount of drug in gut; v(t) = amount of drug In blood: w(t) = rate of transfer of drug 
from gut to blood: z(t) = rate of removal of drug from blood by excretion. 

as the concentrution of drug in the blood rather than the amount, but we have sim- 
plified the problem.) 

b. Let k, = 0.02 mg/min/mg. Construct a plot of the damping factor of this sys- 
tem as a function of k2. Let the range of k2 be [0.001,0.10] mg/min/mg. 

c. Let k2 = 0.0 1 and k, = 0.1. Using MATLAB, determine the response ofy(r) to a 
drug dosage given by x(r) = 30[u(t) - u(r - I)]. (Hint: Determine the impulse re- 
sponse of the system from the parameters of the differential equation.) If the drug is 
clinically effective when f i r )  > 5 mg, how long does it take after the initial dose be- 
fore the drug is effective, and for how long is it effective? 
3.23 (MATLAB exercise) Functional neuromuscular stimulation is the procedure by 
which natural activation of muscles is replaced by activation through electrical stim- 
ulation using trains of electrical pulses. For best control of the resulting force it is nec- 
essary to develop a model of the response of the muscle to electrical stimulation, then 
to use this model to calculate the “correct” stimulus to deliver. Recently Bernotas et 
al. determined models for two muscles of the cat hindlimb, the plantaris and the 
soleus. In their experimental preparation (and in the resulting models) the muscle was 
stimulated with a constant-frequency pulse train and the width of the pulse was var- 
ied. Therefore, the models represent the change in force caused by a change in pulse 
width from the baseline value of pulse width. Qpical models were: 

soleus:y[k] =0.585y[k- 1]+0.147y[k-2] +O.OlIx[k- 11; 

plantaris: y[k] = 0.653y[k- I ]  - 0.060y[k - 21 + O.O18x[k- 11, 
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where in both cases x[k]  is the input pulse width and y[&] is the output force. In both 
cases the DT model was created by sampling the input and output signals every 
time that an input stimulus pulse occurred. For soleus, a stimulus pulse occurred 
every 30 msec and for plantaris, every 108 msec. 

a. Determine and plot the impulse responses of these two muscles. 
b. Plot the impulse responses again but convert the time axis to continuous-time 

by explictly accounting for the Frequency at which the data were sampled. From the 
impulse responses, can you tell which muscle is a fast-twitch muscle and which is a 
slow-twitch one? 

c. To compare the muscle responses to the same sinusoidal input, it is necessary 
to specify the input in CT and sample it at the corresponding frequency for each 
muscle. Generate a unit-amplitude, 1 -Hz sine wave that starts at t = 0 and persist for 
5 cycles, and sample it at 33.3 Hz (for the plantaris) and at 9.26 Hz (for the soleus). 
Excite each model with the corresponding DT input signal and determine the force 
output. Which muscle more closely follows this input signal? 
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4.1 INTRODUCTION 

From a biomedical engineering perspective there are several general goals that re- 
quire one to obtain a quantitative description of the transformation properties of a 
system. One such goal is simply the measurement of system properties for classifi- 
cation. The auditory evoked potential (AEP), for example, is a wave that is recorded 
in an EEG lead in response to an auditory click. It may be viewed as an approximate 
impulse response of the auditory system. The AEP has several peaks and troughs 
that are associated with various subsystems in the central nervous system that 
process auditory signals. By measuring the amplitudes and latencies of these fea- 
tures the neurologist can classify the auditory system of the patient as normal or ab- 
normal and suggest the site of an abnormality. Another example is the use of inert 
gas washout to determine the ventilation to perfusion ratio(s) in the lungs. In the 
MIGET technique the patient breathes a mixture of several inert gases, such as heli- 
um and argon, and the decay of the concentrations of these gases in the lungs is 
measured after resumption of air breathing. The “time constants” of these decays 
are indices of the transformation properties of the lung mechanisms for gas trans- 
port. From these time constants one may calculate ventilatiodperfusion distribu- 
tions and categorize them as normal or abnormal. 

The need to quantify the transformation properties of a system arises also in the 
context of replacing a natural controlling signal. This type of application is exempli- 
fied by the use of insulin infusions to control blood glucose concentration, as dis- 
cussed in the previous chapter. A third type of application requiring quantitative in- 
formation about system transformations is probably the most ubiquitous-the need 
to determine whether a measuring device distorts the signal being measured. For ex- 
ample, previously we discussed the suitability of a certain blood pressure transducer 
for measuring inter-beat pressure fluctuations. This issue may arise repeatedly dur- 
ing use of a transducer even when the initial performance is acceptable, as in the 
case of pH sensors, which can become progressively impaired by surface deposition 
of proteins when used in blood. 

In previous chapters two methods were discussed for deriving quantitative de- 
scriptions of the transformation of an input signal by a linear, time-invariant system: 
solving the differential equation of the system subject to the input of interest, and 
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convolving the input of interest with the impulse response of the system. Both of 
these methods are mathematically complete. Furthermore, the process of graphical 
convolution permits semiquantitative insights into the filtering properties of a sys- 
tem without requiring rigorous solution of differential or integral equations. 
Nonetheless, for certain classes of input signals one can obtain deep insights into 
the transformation properties of a system from alternative descriptions of the sys- 
tem. This chapter addresses one such alternative description, based on the transfor- 
mations ofperiodic input signals effected by LTI (and LSI) systems. Although few 
if any biological processes are truly periodic, often it is possible to approximate a 
biomedical signal as a periodic signal and obtain usefir1 insights about processes 
that respond to (or, filter) the signal. Furthermore, and more importantly, develop- 
ing an understanding of how linear systems manipulate periodic signals will lay the 
foundation for understanding how these systems manipulate nonperiodic signals. 

The previous chapter also established the principle that any system having an in- 
put and an output can be viewed as a filter. That is, for (virtually) any system the 
output signal will differ from the input signal because of the properties of the sys- 
tem, as reflected in its impulse response. In that chapter graphical convolution was 
utilized to assess the manner in which the weighting of past input values by the 
time-reversed impulse response function could reduce or accentuate time-depen- 
dent features of the input signal. Thus, in addition to the obvious example of an 
electronic amplifier, any transducer or measuring device is itself a filter. Also the 
reader should be comfortable with the notion that any biological system can be ana- 
lyzed as a filter for which the input is the stimulus or controlling signal of the bio- 
logical system and the output is the response of the system. Consequently, we will 
adopt the shorthand of referring to the transformation properties of a system as its 
“filtering” properties and will use the terms “system” and “filter” interchangeably. 

4.2 BIOMEDICAL EXAMPLE (TRANSDUCERS FOR 
MEASURING KNEE ANGLE) 

In order to assist paraplegic subjects to stand or walk, electrical stimuli are applied 
to various muscles of the legs in an attempt to mimic the natural use of these mus- 
cles. It is desirable to adjust the timing and intensity of stimulation in order to pro- 
duce the smoothest motion having the least energetic demands on the muscles. To 
do so requires knowledge of the exact position of each leg. An important measure of 
leg position is the angle of rotation between the lower and upper legs, the knee an- 
gle, Various types of transducers may be used to measure this angle; this example 
compares two of these types. The first is a tilt sensor that measures angle of rotation 
by sensing the movement of a thin, semicircular column of fluid. The second is an 
electromagnetic transducer that senses the local strength of an electromagnetic field 
produced by a companion device located at a fixed site. The strength of the field 
varies reciprocally with the distance of the sensor from the source. To compare the 
performance of these two sensors, investigators attached them both to a wooden bar 
that was hinged at one end so that it hung vertically. They then repeatedly rotated 
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the free end of the bar from the vertical position to a nearly horizontal position at 
different frequencies of rotation and compared the outputs of the two sensors. Ideal- 
ly, the readings from the two sensors should always be equal. 

Figure 4.1 presents data from these tests. The dashed curves in Fig. 4.l(a,b) are 
outputs from the electromagnetic transducer and the solid curves are from the tilt 
sensor. By plotting one signal against the other it is apparent that the two signals are 
very similar during the low-frequency movement (Fig. 4.1(c)). On the other hand, 
clearly they are different during the faster movement (Fig. 4.l(d)). We are forced to 
conclude that the behavior of at least one of the sensors (and perhaps both) depends 
on the frequency at which it is stimulated. The obvious explanation for the frequen- 
cy-dependent behavior of the tilt sensor is that its output depends on actual move- 
ment of a small fluid column and inertia will slow this movement. At higher fre- 
quencies of motion inertial slowing will cause a delay that becomes significant 
relative to the period of the motion. Furthermore, when direction changes at the 
peak of the motion, there may be some “sloshing” of the fluid that produces irregu- 
lar “bumps” in the signal. 

Frequency-dependent behavior is a universal phenomenon in physical systems 
and is another indication of the filtering properties of a system. Therefore, there ex- 
ists a close relationship between frequency-dependent behavior and the impulse re- 
sponse that will be developed in this chapter. It will become apparent also that fre- 
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FIGURE 4.1. (a,b) Angle measured by a tilt sensor (solid) and an electromagnetic (EM) sensor 
(dashed) during rotation of a Straight wooden board that is hinged at its upper end. (c,d) Tilt 
sensor output versus EM sensor output from “a” and ‘b,” respectively. Courtesy of J. Abbas. 
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quencydependent behavior does not always alter an input signal at high frequencies, 
as in the preceding example, but may have its effect Over any range of Frequencies. 

4.3 SINUSOIOAL INPUTS TO LTIC SYSTEMS 

Consider our standard LTIC system with input x(t), output u(r), impulse response 
h(r), and transformation operator 0.1 (Fig. 4.2(a)). This system can be described by 
the general linear differential equation 

Let x(t) = C cos(fld), Vt, where fl, is an arbitrary fiequency, and assume the sys- 
tem is in a zero state initially. Consider the r.h.s. of Eq. 4.1 subject to this input. 
Note that 

dr - = -floC sin(W) = floC cos(&t - 3d2) .  dr 

Likewise, 

Since a weighted sum of cosine functions, all of the same frequency, is another co- 
sine hnction at that frequency, then the r.h.s. of Eq. (4.1) simplifies to B COS(f ld  + 
q), where B is a constant and (p is the net phase angle. 

"1 

(b) 

FIGURE 4.2. Generic CT (a) and OT (b) linear systems. 
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Now consider the 1.h.s. of Eq. (4.1). Does y(t) have the form y(t)  = D cos(flot 
+ 8)? Either all of the terms of y(t) that are not of this form must cancel at all 
times (since there is no other form on the r.h.s.) or all terms ofy(t) have this form. 
The homogeneous solution of the differential equation is not likely to be purely si- 
nusoidal but it will cancel (i.e., sum to zero over all of the 1.h.s. terms) at all times. 
In the steady state, however, the homogeneous solution will have decayed to zero 
and then y(t) must be a cosine hnction. That is, after the homogeneous part of the 
response has fallen to zero, the output of an LTIC system having a steady-state si- 
nusoidal input must be a sinusoid of the same frequency as the input signal. 
Furthermore, there can be no other steady-state component in the output signal. Of 
course, the amplitude and phase of At) are almost certain to differ from those of 
x(0. 

The above result can be expressed in terms of the system transformation operator 
as 

where FJ.1 represents the steady-state response, and where G(SZo) is the steady- 
state gain of the system for a sinusoidal input having frequency no, and @no) is the 
steady-state phase shift of the system for the same sinusoidal input. Note that G(flo) 
and e(flo) together contain all the necessary information to specify the steady-state 
response of the system to a cosine (or sine) input signal of frequency a,. In other 
words, these two functions of frequency describe precisely the filtering properties 
of the system with respect to sinusoidal inputs. Together G(flo) and e(flo) specify 
the (steady-state) frequency response of the system. 

This analytical approach is readily extended to situations where x(t )  comprises a 
sum of two or more sinusoidal signals. For example, let x(t)  = a1 cos(fllt) + 
a2 cos(n2t). By linearity, in the steady state, 

Completely equivalent results can be demonstrated for DT systems (Fig. 4.2(b)) 
starting from the general difference equation for an LSIC system. Thus, ifx[n] is the 
input and y[n] the output of an LSIC system, the steady-state response to the input 
x[n] = C cos[w-,n] is y[n] = C * G(%) * c o s [ w  + e(*)], where G(%) and quo) are 
the steady-state gain and phase shift, respectively, of the DT system for sinusoidal 
inputs of frequency oo. 

Example 4.1 Steady-state response of a flrst-order system to a sinusoidal input 
To determine the steady-state output of the system f i t )  + lO00y(t) = 1000x(t) to the 
input x(t) = 5 cos( IOOOt), it is necessary to find the frequency response of this sys- 
tem at 1000 rads. Let G = G( lOOO), 8 = e(1000). In the steady state H I )  still must 
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satisfy the differential equation of the system. Using Eq. (4.2) for At) in the steady 
state and x(t) as given above, the system differential equation becomes 

- 5G (1000) sin( lO00t + 8) + 5(1000)G cos(1000t + 8) = lOOO(5 cos( lO00t)). 

This equation may be expanded using standard formulas for sin@ + b) and cos(u + 
b) to yield 

5000G[-sin( 1 OOOf) cos 0 - cos( 1 OOOt) sin 8 + cos( 1 Ooot) cos 0 - sin( 1 OOOt) sin fl] 
= SO00 cos( 1000t), 

from which, by equating the sin(not) and cos(fiot) terms on both sides of the equals 
sign, one obtains two relationships: 

1 
cos 0-sin 0= - G' cos @+sin 8-0. 

Using the result that sin2 + cos2 = 1, these equations may be solved to find 

Therefore, the steady-state output is 

Example 4.2 Frequency response of a biological system The blood flow 
through a vascular bed (Fig. 4.3(a)) is determined by the pressure drop across the 
bed and the biomechanical properties of the vessels in the bed. A simple model 
(Fig. 4.3(b)) assumes that the inflow artery can be described by lumped parameters 
representing flow resistance, R,, and wall compliance, C,. The capillaries of the 
vascular bed are assumed to be noncompliant; therefore, the bed is described by a 
net flow resistance, R,. Relative to the arterial pressure, P, pressure in the Venus out- 
flow is assumed to be zero. Now arterial pressure is the sum of a mean pressure plus 
the variations about the mean due to the heartbeat. A simple approximation is 

P = pmurn + U(r) = P,, + P o  cos(fiot). (4.3) 

The blood flow through the bed is the sum of the mean flow and the fluctuations in 
flow due to the heartbeat (i.e., the cosine term). The mean blood flow through the 
vascular bed is 

Pmn Q-=- R , + R , '  
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(b) 

FIGURE 4.3. (a) Simplified schematic of a capillary plexus with arterial inflow and venous out- 
flow. P, Instantaneous arterial pressure at the Inflow side;& d,, instantaneous blood flow into 
and out of the capillary bed; R,, Re, flow resistances of the artery and capillary bed; C,, com- 
pliance of the artery. @) Electrical analog of the pressure-flow relationships of the capillary 
network above. 

To determine the steady-state amplitude and phase of the fluctuations in blood flow 
through the bed due to the heartbeat requires finding the frequency response of this 
system at 0 = 0,. One approach is to ascertain the differential equation relating 
blood flow in the vascular bed to arterial pressure and then solve it for the cosine in- 
put term of Eq. (4.3). Begin by writing equations for the two loops of the model 
(Fig. 4.3(b)), considering only the AP(t) part of the input: 

Q u= R a Q ,  + -; 
Ca 

(4.4a) 

(4.4b) Q 
CIY 

0 = R c Q 2 -  -, 

where 

Q = Q, - Q2 = (lQldt - (lQ2dt. 
0 0 

(4.4c) 

Note that Q2(t) is the blood flow through the vascular (Lea, capillary) bed. Differen- 
tiating Eq. (4.4b), 

0 = RcQ2 -Qd j Q, = Q2 + C,RcQ2, ca 



11 6 FREQUENCY RESPONSE 

Substituting the above result in Eq. (4.4a), and then substituting for Q/C, from 
Eq. (4.4b) yields 

AP = (R, + R,)Q2 + RoCoRcQ2. (4.5) 

It becomes apparent that Eq. (4.5) describes a first-order system if we let X(r) = 
Q2(t). Thus, after making this substitution and rearranging, 

For purposes of illustration, take specific values for the parameters of the prob- 
lem. Thus let P,,,,,, = 100 Tom, Po = 9.6 TOK, C, = 1.2 mVTorr, Ra = 0.4 Torr/ml/s, 
and R, = 2.0 Torr/ml/s. Finally, assume the heart rate is one per second. Therefore, 
a, = 277(1) = 277. Eq. (4.6) becomes 

There are numerous methods for solving Eq. (4.7). One approach is to use the 
knowledge that the steady-state solution must also be a cosine wave of the same fre- 
quency as the input signal. Thus, assuming X(t) = A  cos(2m + e), where A and 8 are 
unknowns, and substituting into Eq. (4.7) yields 

-2nA sin(2m + 0) + 2.5A cos(2w+ 6) = 10 cos(2w). 

Expanding the sine and cosine terms and grouping gives 

[-2nA cos(6) - 2.5A sin(0)] sin(2w) + [-277A sin(8) - 2.54 cos(8)] cos(2.m) 
= 10 cos(2rrt). 

Since there is no sine term on the r.h.s., the coefficient of the sin(2.m) term on 
the 1.h.s. must equal zero. Thus 

-2 77 

2.5 
-2nA cos(0) = 2.5A sin(8) 3 tan(@) = - a 8=-1.19rad. 

Equating the coefficients of the cosine terms now permits evaluation of A. Thus 

-2nA sin(6) + 2.5A cos(0) = 10 s [-277(-0.929) + 2.5(0.370)] A = 10. 

Solving, A = 1.48 ml/s. Therefore, in the steady state the fluctuation in blood 
flow through the capillary bed due to the heartbeat (under the assumption that the 
pressure fluctuations are cosinusoidal) is 

Q2(t) = X(t) = I .48 cos(2w - 1.19) ml/s. 
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The mean level of the blood flow is found from the static relationship for series 
resistances presented above as 

= 41.7 ml/s. prnean 100 Q,,, = _c_ = - 
R,+ R, 2.4 

and the total steady-state capillary blood flow is the sum, Q2(t) + QrneBn. 
If the heart rate were to change, it would be necessary to evaluate the frequen- 

cy response at the new frequency. Alternatively, one may determine the frequency 
response of flow through the capillary bed as a function of by repeating the 
above solution for an arbitrary frequency, n. It is sufficient to let the input ampli- 
tude be unity since the system is linear and in the general case the output ampli- 
tude will be scaled in direct proportion to the input amplitude. Substituting W(t) 
= cos(nt), by Eq. (4.2) the steady-state solution to Eq. (4.6) has the form X(t) = 
G(n) cos(nt + s(n)). Substituting these results into Eq. (4.6) and proceeding as 
above, we find 

These two functions are graphed in Fig. 4.4. Thus the steady-state blood flow re- 
sponse to a cosine pressure wave having arbitrary amplitude, AP(t) = Po cos(nt), is 
given by 

&(t) = G(Q)Po cos(0t + @a)), (4.9) 

G ( 0 )  
10" 

1 d3 
1 o - ~  1 o-2 10-l 1 oo 1 o1 1 o2 1 o3 

FIGURE 4.4. Magnitude (a) and phase shift (b) of the frequency response of the capillary bed 
model relating flow through the bed to arterial pressure. 
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where G(n) is the frequency-dependent gain of the system and f3(n) is its frequen- 
cy-dependent phase shift. 

4.4 GENERALIZED FREQUENCY RESPONSE 

Eigenfunctions and Generalized Frequency Response Function 

Consider the LTI system with impulse response h(t), input x(t), and output f i t ) .  Let 
the input be a complex exponential function of the form x(t) = aem, Vt. By convo- 
lution one can express the resulting output as 

= aeln'H(n), where H ( n )  4 h(A)e-jnAdA. (4.10) 
-01 

For this special case, note from the definition of x(t)  that At) = x(t)H(n),  where 
H ( n )  is a (possibly complex-valued) constant. Therefore At) is a scaled version of 
the input. Any input signal for which the output of an LTIC system is simply a 
scaled version of the input is known as an eigenrunction of the system. Furthermore, 
because a complex exponential function is a generalized sinusoidal function, H ( 0 )  
is regarded as the genemlized frequency response of the LTI system. Since the gen- 
eralized frequency response may be complex-valued, the response of the system to a 
complex exponential input may be written as f i t )  = alH(n)lej('"+a~H(n)). (Keep in 
mind that this specific result applies only to eigenfunctions.) If one prefers to work 
with Hen instead of rads, the generalized frequency response can be defined 
equivalently as 

H ( f )  = h(t)e-J2@dt. (4.1 1) 
-01 

If the LTI system is also causal, then h(t)  = 0, t < 0, and the generalized frequency 
response is 

H ( 0 )  = h(A)e-jnAdA. 
0 

(4.12) 

The genemlizedjiequency response of an LTI system and the frequency response 
defned previously are equivalent. To prove this assertion, consider the response of 
the above system to a cosine input. That is, let 
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From the definition of the generalized frequency response, the steady-state output 
f i r )  can be expressed as 

since it is easily proven that H(-O0) = H*(n0).  Then by Euler's identity, 

Equation (4.15) is equivalent to Eq. (4.2) if we let G(O0) = IH(no)l and e(n0) = 
arg(H(n0)). Therefore it is justifiable to wfer to H(n) simply as "thefrequency re- 
sponse '' of the system, while remembering that the frequency response summarizes 
the steady-state gain and phase shift imposed by the system on a sine or cosine in- 
put waveform as a function of frequency. That is, the frequency response quantifies 
the steady-state filtering effect of the system on sinusoidal (and complex exponen- 
tial) inputs. 

Note that one may express the frequency response function as 
r m  ..m rm 

H ( n )  = J h(A)e--**dA = h(A) cos(nA)dA - j  h(A) sin(nh)dA. (4.16) 
-DD J- 4 

Therefore, the real part of the frequency response is an even hnction of frequen- 
cy, whereas the imaginary part is an odd function of frequency. Since the square of 
either term is an even function, IH(n)l is also an even fknction. The argument of 
H ( a )  depends on the ratio of the imaginary to the real part and is an odd function of 
frequency. 

Equation (4.10) suggests another method for determining the frequency response 
of a system whose differential equation is known: let x( t )  = ejn' and, assuming that 
the transient response has decayed to zero, let f i t )  = H(n)ej*. Substitute both of 
these relationships into the differential equation and solve for H(a). 

Output Power 

In the previous chapter the power, P,, of a sinusoid was defined as the energy calcu- 
lated over one cycle divided by the duration of the cycle. The power of the signal 
x(t) = A  cos(i2t) is A2/2. Ifx(t) is the input to an LTI system with frequency response 
H ( n ) ,  then the magnitude of the steady-state output will be AIH(n)l. Consequently 
the steady-state output power will be P,, = AZ(H(n)I2/2. The power gain of the sys- 
tem is the mtio of (sinusoidal) output power to input power in the steady state and it 
equals IH(n)lZ. The formal definition of the gain of a system in dB is 

IH(n)l, = 10 log(power gain) = 10 log((H(fl)(*) = 20 log(lH(n)J). (4.17) 
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Frequency Response of a First-Order System 

If the LTIC system shown in Fig. 4.2(a) is a first-order system, it can be described 
by the general first-order differential equation 

1 
f i t )  + - f i t )  = bx(t), 

7 

with h(t) = be-'%(t). 
From Eq. (4.12), 

1 . (4.18) 
b [e-(l lr+jfl)h- = - 

7 7 

-b H(a) = rh(A)e-jnAdA = ~e-"'e-jnAdA = - 1 lo1 
0 -+ja jR+- 

(4.19) 

Note that 

The gain function for a first-order system is graphed in Fig. 4.5(a). Because the gain 
decreases as frequency increases, this system is referred to as a lowpassfilter. The 
time constant defines the frequency, lh ,  at which the gain is l / f i  0.7071 of that 
at zero frequency. This frequency is called the cutoflfwquency, R,, although it is 
clear that input sinusoids having frequencies greater than the cutoff frequency are 
not "cut off " completely from the output. 

The phase shift of this filter is 

arg(H(R)) =-tan-' - = -tan-'($h). ( l??) 
Note that 

7T 
arg(H(0)) = 0 and arg( .( L)) = -tan-'( 1) = -- rad. 

7 

(4.20) 

This function is graphed in Fig. 4.5(b). The maximum phase shift for a first-order 
system is -9OO. 

Since the gain of a filter in dB is defined as 20 times the log of the magnitude of 
the frequency response, at the cutoff frequency 
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FIGURE 4.5. Magnitude (a) and phase shift (b) of the frequency response of a general first-or- 
der lowpass filter. Frequency is expressed as a ratio relative to the cutoff frequency. 

i.(-!-)IdB - IH(0)ldB = -20 l o g ( f i )  = -3 dB. (4.21) 

That is, at the cutoff frequency the gain is 3 dB less than the maximum gain. This 
result is applied to any lowpass filter by considering that the frequency at which 
gain (relative to the gain at zero frequency) is -3 dB is the cutoff frequency of the 
filter. For a lowpass filter it is common to refer to the frequency range below the 
cutoff frequency as thepassband of the filter and the frequency range above the cut- 
off frequency as the stopband (although, of course, these terms are relative). 

Example 4.3 Frequency response of ajlrst-order system Find the frequency re- 
sponse function of a system whose input-output differential equation is 

f i r )  + lOy(r) = h(r) 

and determine the steady-state filtering effect of this system on the input signal 
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x(t)  + 3 cos(67rt) + sin(w) 

Solution. T = 0.1, b = 2, and h(t) = 2e-10ru(t). Therefore, by Eqs. 4.18-4.20, 

Graphs of the magnitude and phase of this frequency response function would 
have the same shapes as those in Fig. 4.5. To determine the response to x(t) it is nec- 
essary to evaluate the frequency response at the frequencies of the two sinusoids in 
the input signal. Thus 

= 0.19 1 e--.304. 

Applying Eq. (4.15) to each of the terms in x(t), one obtains (in the steady state) 

y(t)  = 3(0.0938) cos(6w - 1.083) + 0.191 sin(7rf- 0.304). 

The filtering effect of this system on the input signal is severe. The output amplitudes 
of the two input components are reduced by 90.62% and 80.9%, respectively, and 
both components are phase-shifted. Figure 4.6 compares the input and output signals. 

Frequency Response of a Second-Order Lowpass Filter 

The general differential equation for a second-order LTIC system is 

4 

2 
A 

2 0  
-2 
-4 

10 11 12 13 14 15 

-0.05 - 
-0.1" ' " ' I  " ' 1  

10 11 12 13 14 15 

time, sec 

FIGURE 4.6. Steady-state input and output signals for Example 4.3. Note difference in the or- 
dinate scales. 
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j;(t) + aHf) + bv(t) = cx(t). (4.22) 

Previously it was discussed that the character of the impulse response of this 
system depended on the values of the parameters a and b. In the case of two com- 
plex exponents in the homogeneous response, the impulse response was shown to 
be 

where the complex roots of the characteristic equation are 

~ ~ , ~ = u f j l l ,  and a;=b, n= and u=-Sn,. 

Therefore, 

C 
- - (4.23) 

C 

($2 + S n n ) 2  + a;( 1 - sz) n; - a2 +J2Sn,R ' H(a) = p h(A)e-jnAdA = 
0 

The magnitude of the frequency response is 

(4.24) 

For a fixed value of the natural frequency (i.e., b), the frequency response is a 
function of the damping factor, S, which is a function of the parameter a (Fig. 4.7). 
When a = 0, then 

Icl 
a;-a2* 

S = 0, and H(n) = - 

For frequencies much greater than the natural fiequency, the gain of this filter de- 
creases monotonically, but at n = n,, the gain is infinite. That is, when an input si- 
nusoid at this frequency has zero amplitude, it appears that the output sinusoid can 
have nonzero amplitudethat is, the system can be an oscillator that produces an 
output in the absence of an input. For values of damping factor greater than zero but 
less than about 0.5, the magnitude of H ( n )  will exceed IH(0)l in some range of fre- 
quencies, implying that frequencies in this range will be amplified to a greater ex- 
tent than other frequencies. This effect, known as resonance, will be especially no- 
ticeable around 0 = a,, for S < 0.3. It reflects the frequencies at which energy 
redistribution within the system occurs with the least loss. 

When the damping factor is one, the gain function simplifies to 
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0.01 0.1 1 10 

wan 

0.01 0.1 1 10 

m n  

FIGURE 4.7. Gain (top) and phase shift (bottom) of the frequency response of a lowpass see- 
ond-order filter as a function of damping factor. Frequency is expressed as a ratio relative to 
the natural frequency. 

Now the gain is monotonically decreasing. In particular, when the input frequency 
equals the natural frequency, the gain is one-half of the gain at zero frequency-that 
is, 

The relative logarithmic gain in dB is 

20 loglH(O)( - 20 loglH(n,,)J = - 20 log(2) -6dB, when S = 1. 

When the damping factor is greater than one, the impulse response of a second- 
order system has two real exponential terms and the gain function is monotonically 



4.5 FREQUENCY RESPONSE OF DISCRETE-TIME SYSTEMS 125 

decreasing and everywhere below the gain function for S = 1 shown in Fig. 4.7. The 
maximum phase shift is -180" and at n = a,, the phase shift is - 9 O O .  

Highpass Filters 

A highpass filter is one for which the passband includes all frequencies greater than 
or equal to some cutoff frequency. The frequency response functions for first-order 
and second-order highpass filters can be visualized by reflecting the frequency re- 
sponse of the corresponding lowpass filter about the line = n, (first-order) or n 
= a,, (second-order). Whereas lowpass filters often are utilized for removing high- 
frequency instrumentation noise from a signal, highpass filters are used to remove 
artifactual low-frequency variations in the baseline of the signal. 

4.5 FREQUENCY RESPONSE OF DISCRETE-TIME SYSTEMS 

The generalized frequency response of an LSI system with unit-pulse response, 
h[n], and having the input x[n]  and output y[n],  is found in a manner parallel to that 
used for CT systems. Let x [ n ]  be a DT exponential signal of the form x[n] = uej-, 
Vn. The output is found by convolution to be 

Therefore, in this special case, y[n] = x[n]H(e'"), where 

(4.25) 

is the (genemlized) jj-equency response of the DT system and ej" is an eigenfunc- 
tion of an LSI system. 

H(e/") fulfills the same role for DT systems that H ( n )  serves for CT systems. 
Consider the steady-state response of an LSI system to the input x[n] = A cos[wn], 
Vn. Using Eq. 4.25 and Euler's identity, 

= AIH(ej")l cos[on + arg(H(ej"))]. (4.26) 

IH(e'")l and arg(H(ej") are known as the gain and phase sh@ of the frequency re- 
sponse, respectively. Because Eq. (4.26) was derived under the assumption that the 
input signal was present for all time, this relationship applies only to the steudy- 
state response to a sinusoidal input. 
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If the LSI system is also causal, then h[n] = 0, n < 0, and the generalized fre- 
quency response is 

(4.27) 

Note in addition that e-j& = e+(hzwp. Consequently, H(e'") is periodic withperi- 
od 27r. This result is necessary since the hnctions cos[q,n] and cos[(w,, + 2n)nl = 
cos[w,,n + 2 m ]  are identical DTfunctions. Therefore, the system must filter the two 
functions identically. Note also that the magnitude of H(ejw) is an even b c t i o n  of 
frequency (see Exercise 4.6), whereas the argument is an odd bc t ion .  

Example 4.4 Frequency response of a DT system An LSIC system has the unit- 
pulse response h[n] = a" u[n], where la[ < 1. Find its frequency response and discuss 
the steady-state filtering effects of this system on sinusoidal inputs. 

Solution. 

I. a sin(w) 
1 - a cos(w) 

arg(H(ejw)) = -tan-' (4.29) 

These functions are plotted in Fig. 4.8 for a = 0.70. Since the frequency response 
has period 2 n  and the gain (phase) is an even (odd) h c t i o n  of frequency, only the 
range 0 5 w I n is shown. The gain function is reminiscent of the gain function of 
a first-order, lowpass, CT system and one can define a cutoff frequency, w,, by the 
relationship fH(ej"c)l = (l/~)IH(@)I. Here w, = 1.192 rad/s. (See Exercise 4.7.) 
The phase shift is unlike those of previous examples of CT systems but is not un- 
usual for a DT system. 
Example 4.5 An LSIC filter has the frequency response H(ejw) = 0.5 cos(w)e-jds. 
Find the steady-state output for the input signal 
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0 . 5 ~  n 

0 0.5n 

Frequency 
l r  

FIQURE 4.8. Magnitude (top) and phase shift (battorn) of the frequency response of a first-or- 
der DT lowpass filter with a = 0.70. 

Solution. It is necessary to evaluate the frequency response at each of the two 
frequencies present in the input signal. Thus 

H(eJ'.*R) = 0.5 cos(0.21r)e-J~~~~ = 0.405e-fl."", 

H(efl.OZs) = 0.5 co~(O.025)e-fl.~~ = 0,5e-~0.00s, 

Taking the magnitude and phase of H(d") at each frequency we find 

y[n] = 2(0.405) sin - 0 . 0 4 ~  - 3(0.5) cos[0.025-n + 0.20 - 0.0051 3 
= 0.810 sin[ ?n - 0.04~ - 1.5 cos[0.025n + 0.1951. 

10 1 
Example 4.6 Determining the frequency response of an unknown system One 
way to determine the frequency response of an unknown physical system is to excite 
it with a sinusoidal input, then measure the amplitude and phase of the output after 
all transient responses have disappeared. The gain at the excitation hquency is the 
ratio of output amplitude to input amplitude and the phase shift is the phase differ- 
ence between the output and input. This process can be repeated at many different 
frequencies covering the desired range of the frequency response function. Further- 
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+ xrnl 

more, if linearity can be assumed, then the input signal can comprise the sum of sev- 
eral sinusoids having a range of frequencies. The output signal will contain a sum- 
mation of sinusoids at these same frequencies and selective filters can be applied to 
extract each output sinusoid individually. (Chapter 5 will discuss other methods for 
determining the amplitudes and phases of combined sinusoids.) By this method 
many measurements of the frequency response function at different frequencies can 
be obtained simultaneously. Figure 4.9 presents a diagram of this process. 

As an example of the above process, consider an "unknown" system that is a 
two-point moving averager-that is, its impulse response is 

* yrn1 Unknown 
system 

- 

h[n] = [0.5,0.5]. 

x+nI +El+ 
+ 

x&nl 

Let this system be excited by the input signal 

+ l t -  Y1["1 

y2[n1 - 

(4.30) 

I I 
I 

I I 

+El+ I 

The resulting steady-state output signal may be analyzed by using filters which 
have zero gain everywhere except in a narrow range around one of the input frequen- 
cies, where the gain is unity. (Such filters are examples of bundps  filters.) Figure 
4.10 shows input signal x[n]  defined by Eq. (4.30) and the steady-state output re- 

-El-+ I I I 
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(a) Frequency response of Remez bandpass filter 
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(b) Input and output of 'unknown" system 
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0.2 
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FIQURE 4.10. identification of the frequency response of a two-point moving averager filter 
using an input that is the sum of five sinusoids (Example 4.8) having frequencies of 0.15n, 
0.30~, 0.45~, O.Wn, 0.75~. (a) Frequency response of the bandpass filters tuned to pass sig- 
nals at the second of the five frequencies (w = 0.304. This filter was designed using the Re- 
mez algorithm (Chapter 8). (b) Steady-state input and output of the two-point moving average 
filter. (c) Steady-state outputs of the bandpass filter of (a) in response to the input signals x[n) 
and fin]. 
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sponse, y[n].  A bandpass filter was designed (see Chapter 8) to pass the signal com- 
ponents corresponding to k= 2 (Lea, w =  0.312); the frequency response of this band- 
pass filter, and the filtered signals x2[n] and y2[n] are also shown in the figure. The 
bandpass filtered signals are sinusoids having peak-to-peak amplitudes of 0.400 and 
0.358, respectively. Dividing the output amplitude by the input amplitude yields the 
estimated gain at this frequency of 0.895. The phase shift may be estimated by plot- 
tingy2[n] versusx2[n] and using Lissajou’s formula. It is simple to calculate the actu- 
al frequency response of this filter and show that these estimates are reasonably ac- 
curate (see Exercise 4.8). This example is available in the m-file idxdemo . m. 

The above unknown system is implemented also in the MATLAB function file un- 
known4 . m. (Use help unknown4 to learn how to call this function.) It would be 
instructive to test this system at each of the individual frequencies inx[n] (Eq. (4.30)) 
and demonstrate that one obtains the theoretical values for the gain and phase shift. 

4.6 SERIES AND PARALLEL FILTER CASCADES 

In many physical situations one encounters an ensemble of interconnected filters 
rather than one isolated system. For example, many measurement systems comprise 
a sensing device that provides an input signal to a high-gain amplifier whose output 
then is modified by a filtering stage, the output of the latter being presented to a dis- 
play device for viewing. To assess the net effect of the measuring system on the sig- 
nal being measured, one must know the frequency response of each intervening de- 
vice or amplifier/filter stage. The net filtering effect depends on how the filters are 
interconnected. Although the following discusses CT filters, the equivalent results 
for DT systems are obvious. 

Consider first the series connection of two filters shown in Fig. 4.1 l(a). Let x(r) 
= A cos(nor). Then in the steady state v( f )  = AIH,(Q,)J cos(n,$ + arg(H1(&))). Sim- 
ilarly, the steady-state output v(t) is f i t )  = .4/Hl(&)l~2(42,,)/ cos(&f + arg(H1(no)) 
+ arg(H2(no))). Therefore, the overall gain from x(t)  to f i t )  is the product of the in- 

H l W  

x(t) -r:z1F+7+ y(t) 

H2(W 

(b) 

FIGURE 4.11. (a) Series and (b) parallel connections of two arbitrary linear filters. 
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dividual gains of the two filters, and the overall phase shift is the sum of the two 
phase shifts. Consequently, if H(R) is the overall frequency response of the cascad- 
ed filters, then 

Note that the two parts of Eq. 4.3 1 are equivalent to the single relationship 

If the cascade consists of N filters connected in series, then the net frequency re- 

For the parallel connection of two filters shown in Fig. 4.1 l(b) it is apparent that 
sponse is the product of all of the individual frequency responses. 

the steady-state output in response to x(t) given above is 

The terms in Eq. (4.33) can be combined to evaluate the overall frequency re- 
sponse. For simplicity, write Hl(R) = HI = pl le jgHI ,  H2(R) = Hz = IH21ejdH2 If the 
overall frequency response is H(R) = H, then it is clear that H = Hl + H2. Since HI 
and H2 are complex numbers, 

After expanding, combining terms, and taking the square root, 

If the two filters produce the same phase shift, then Eq. (4.42) indicates that the 
overall gain is the sum of the individual gains. Equality of phase, however, is more 
likely to be the exception than the rule. 

If one is confronted with a more complex interconnection of filters than a simple 
series or parallel cascade, then it is necessary to successively combine series or par- 
allel subsets of filters until the overall frequency response is found. 

4.7 IDEAL FILTERS 

A filter allows sinusoidal waveforms in some frequency range that are present in its 
input signal to ‘‘pass through” to the output signal relatively unchanged, whereas si- 
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nusoidal waveforms in other frequency ranges are relatively attenuated in (or “cut 
out” of) the output signal compared to their amplitudes in the input signal. In the 
steady state, the relative amplification or attenuation (and the phase shift) as a func- 
tion of the frequency of the sinusoid is described by the frequency response of the 
filter. Earlier in this chapter the cutoff frequency of a filter was defined as the fre- 
quency at which the gain is approximately 70.71% of the maximum gain. 

Despite the name, the cutoff frequency usually does not represent a frequency 
that absolutely demarcates between frequencies for which the gain is nonzero and 
frequencies for which the gain is zero because most practical filters do not exhibit 
such sharp changes in gain. In practical situations, however, one may be able to 
specify the range of important Frequencies present in the signal of interest; there- 
fore, an absolute cutoff of sinusoidal components having frequencies outside of that 
range may be desirable. Of course, it is also desirable that the filter not distort those 
important frequency components that are not cut off from the output. A filter meet- 
ing these criteria is known as an “ideal” filter, and it is common to evaluate a practi- 
cal filter in terms of how closely it approximates the frequency response of an ideal 
filter. 

The magnitude response of an ideal filter has a gain of one for frequencies that 
should be passed through it unattenuated and a gain of zero for all other frequen- 
cies. Figure 4.12 plots the frequency responses of the four types of ideal filters: (1) 
lowpass, (2) highpass, (3) bandpass, and (4) band reject. The frequency range for 
which the gain is I is the passband of the ideal filter. 

In addition to complete attenuation of undesired frequency components, an ideal 
filter should not alter the timing relationships among the sinusoidal components 
that are not attenuated. This goal is achieved by specifying an ideal phase response 
that is a linear function of frequency. To show that timing relationships are not 
changed by this phase response, consider an input signal having two sinusoids: 

Frequency Frequency 

bandpass t band reject t 

Frequency Frequency 

FIGURE 4.12 General representations of the gain functions for the four different types of M e  
al filters. 
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x(t) = A sin(n,t) + B sin(0,t). Assume a filter frequency response H ( n )  such that 
the two frequencies lie in the passband of the filter and arg(H(n)) = m, where d is 
a constant. The steady-state output of the filter is 

f i t )  = A  sin(a1t - R,d) + B sin(n2t - n,d) = A  sin(n,(t - 6)) + B sin(n2(t - 4). 

That is, the output is just the input signal delayed by d seconds and the timing rela- 
tionship between the signal components is unaltered. 

4.8 FREQUENCY RESPONSE AND NONLINEAR SYSTEMS 

A simple example illustrates the difficulty of applying the concept of frequency re- 
sponse to a nonlinear system. Consider the algebraic nonlinear system given by y[n] 
= F { x [ n ] }  = 2 [ n ]  and let x[n]  = A sin[q,n]. The output is 

A2 

2 y[n] = A 2  sin2[w@] = -(1 - C O S [ ~ ~ , , ~ J ) .  

Using the relationship of Eq. (4.26) we find that the Frequency response of this 
sytem, F(ej@), has the apparent values F(e’@Q) = 0, F(efl@Q) = 00. It should be clear 
that for any choice of input frequency, the apparent gain at that frequency will be 
zero even though the apparent gain at that same frequency will be infinite if the in- 
put frequency is halved! That is, the gain depends on the input signal. One might 
suppose that the concept of Frequency response could be “extended” for this system 
by defining the gain as the relationship between the input amplitude at q, and the 
output amplitude at 2%. That gain would be A/2 and it would depend on the ampli- 
tude of the input signal. Therefore, the concept of Frequency response described for 
linear systems generally is not directly applicable to nonlinear systems. 

For certain combinations of a simple nonlinear system with a linear system, 
however, it is possible to account for nonlinear interactions such as those identified 
above and to describe the output (in response to simple inputs like a sum of several 
sinusoids) in terms of the frequency response of the linear system and the parame- 
ters of the nonlinear system. Bendat (1990) illustrates these approaches extensively. 
Obviously, for complex nonlinear systems, the specification of a “frequency re- 
sponse” becomes more problematical. Typically, any such response is a function of 
the mean level, amplitude, and frequency content of the input signal. 

In cases where the mean level of the input signal is constant and the amplitude 
of the input is small relative to the amplitude distortion produced by nonlinear 
gain, it often is possible to “linearize” the nonlinear system and approximate its 
behavior by the frequency response of a linear system. In the case of a static non- 
linearity, such as the above example, the linearization can be accomplished by 
computing a Taylor series expansion of the nonlinear function about the mean lev- 
el of the input signal. Thus, for the system given above, assuming the input has a 
mean level of one-half, 
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21, +.. .= P+(x[n]-a, , 
dy I y[n] = i? + (x[n] - 3- + (x[nI - az- s /i 

=i? + (x [n ]  -3. 

If we let = 2, Ay[n] = y[n] - j ,  Ax[n] = x[n]  - x', then Ay[n] = Ax[n] is the lin- 
ear approximation to this system at the operating point x' = 0.5. The gain of a filter 
whose output equals its input is, of course, one at all frequencies. (What is its phase 
shift?) The accuracy of this approximation decreases rapidly for x c 0.45 or x > 
0.55. For example, for x = 0.55, y SJ 2 + Ax = 0.2500 + 0.0500 = 0.3000. The cor- 
rect value is y = (0.55)2 = 0.3025. But for x = 0.60, the estimate and true value o fy  
are 0.3 100 and 0.3600, respectively. The linearized estimate is 16% too small. 

4.9 OTHER BIOMEDICAL EXAMPLES 

Frequency Response of Transducers 

The frequency response functions of biomedical transducers and amplifiers may 
impose distortions on a measured signal and it is imperative that the user certify that 
his or her transducers and amplifiers do not introduce misleading distortions of the 
signals. For example, Hartford, et al. (1997) discuss the use of fluid-filled catheters 
for measuring respiratory variations in esophageal pressure of neonates, which is 
used for calculating lung compliance. For the immature lung of the neonate, lung 
compliance is an important index of the biomechanical state of the lungs from 
which one infers the effort required to breathe. The authors used a loudspeaker to 
apply pressures to a water-filled chamber and measured the frequency response of 
the pressure signal from various catheters placed in the chamber. The results ob- 
tained from a Ven FG-size 8 nasogastric tube implemented as a water-filled catheter 
are presented in Fig. 4.13. This frequency response finction has a peak reminiscent 
of resonance in a second-order filter (see Exercise 4.20). Consequently, when using 
this catheter it may be necessary to filter the recorded signal with a filter having a 
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frequency response that approximates the inverse of that of the catheter. Then the 
series cascade of the catheter and the filter can have an overall relative magnitude 
response that is more nearly constant over the whole frequency range shown. 

Impedance of the Respiratory System 

In Chapter 2, Fig. 2.1 , we used a simple model of the biomechanical properties of 
the lungs in which the lungs were considered to be an elastic bag that fills and 
empties via a resistive flow channel, Because the actual structure of the lungs in- 
volves many branching airways and many compliant air spaces, a more complex 
model is necessary for a more complete description of pulmonary biomechanics; 
however, the large number of flow channels and air spaces overwhelms most mod- 
eling efforts. Consequently, the lungs are often modeled as a “black box” with the 
transpuimonary pressure (i,e., Pe - PpI in the figure) as its input and airflow as its 
output. This black box can be characterized by its frequency response and changes 
in the frequency response can be correlated with disease processes in the lungs 
and airways. Since measurement of PpI is an invasive procedure, for clinical diag- 
nosis the frequency response of the lungs and chest together is often measured. 
Generally in an intact subject one replaces the airway opening to the room with a 
mouthpiece connected to a pressure source such as a loudspeaker (Fig. 4.14(a)). 
The pressure source delivers sinusoidal pressure oscillations at one frequency at a 
time and the net pressure across the lungs and chest (i.e., pressure at the mouth, 
P,,,, minus pressure around the chest, Ps) is measured as the input signal. The re- 
sulting flow into the respiratory system ( p,,,) is the output signal, from which the 
gain and phase shift may be calculated. Instead of gain and phase shift, however, 
a more common approach is to calculate the reciprocal of the frequency re- 
sponse-that is, the pressure divided by the air flow. Since pressure is analgous to 
voltage and air flow to current, this relationship is a measure of generalized resis- 
tance known as impedance. The pressure-flow properties of the lungs and chest 
are characterized by measuring the magnitude of impedance and the phase shift 
(or, equivalently, the real and imaginary parts of impedance) at each frequency 
over a range of frequencies. In fact, contemporary methods for measuring pul- 
monary impedance utilize pressure signals that are sums of sinusoids or even ran- 
dom noise. The methods for separating such signals into their individual frequen- 
cy components will be discussed in Chapter 5 .  

The average results from one such study are presented in Fig. 4.14(b) (Peslin, R., 
et al., 1985). The real (Resistance) and imaginary (Reactance) parts of the imped- 
ance are shown for 14 normal subjects (top) and 10 patients (bottom) diagnosed 
with chronic obstructive lung disease (COLD). Clearly the Reactance varies more 
with frequency than the Resistance. Note, however, that the Resistance at any fre- 
quency is higher in the patient group and the Reactance is shifted to the right in 
COLD patients. By determining the range of values for Resistance and Reactance in 
a large group of normal subjects, it is possible to identify a patient with abnormal 
pressure-flow biomechanical properties from such measurements of respiratory im- 
pedance. 



136 FREQUENCY RESPONSE 

(b) 

FIGURE 4.14. (a) Experimental setup for applying oscillatory pressures at the mouth. See text 
for details. (b) Average frequency respofw of the resphatory system to sinusddal pressure 
applied at the mouth. Top: 14 normal subjects. Bottom: 10 COLD patients. Rddstance: real 
part of impedance. Reactance: imaginary part of impedance (Peslin 81 al., lQ85). 
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In order to determine the anatomical or physiological site of an abnormality, it is 
necessary to associate anatomical or physiological parameters with various features 
of the impedance graphs so that parameter values may be determined from the 
graphs. This objective is an area of active research. 

Frequency Response of the Auditory System 

To characterize overall performance of the auditory system, clinicians present pure 
sinusoidal tones (usually to one ear at a time) and determine the signal amplitude at 
which the sound is just audible to the subject. The frequency range of the sinusoids 
covers approximately 10 Hz to 16,000 Hz. If we consider the output to be a signal in 
the auditory cortex of “constant amplitude”-that is, a just-detectable signal-then 
a graph of the minimum input amplitude required for detection versus frequency is 
equivalent to the reciprocal of gain (as was the case for impedance above). Thus an 
audibility graph (Fig. 4.15(a)) is a type of frequency response plot whereas the au- 
diogmm (Fig. 4.15(b)) represents the difference from the audibility plot of an aver- 
age normal subject. The figure depicts both the normal auditory sensitivity versus 
frequency and the loss of high-frequency sensitivity often observed in elderly sub- 
jects. Although useful for diagnosis, such graphs by themselves are not very insight- 
ful for diagnosing the anatomical site of a hearing deficit because they represent 
overall hearing performance. The auditory evoked potential waveform mentioned 
earlier in this chapter has features that have been associated with different sites of 
information processing in the nervous system and abnormalities in these features 
can aid in identifying specific sites of hearing deficit. There is much research in- 
tended to develop mathematical models of auditory neural information processing, 
from which it is hoped that specific diagnoses will be possible by combining mod- 
eling results with assessments of auditory performance. Another important applica- 
tion of audibility curves is in the tuning of a hearing aid for optimal performance for 
an individual subject. 

FIGURE 4.15. (a) Audibility plot (sound intensity at hearing threshold vs. frequency) of a nor- 
mal young subject (solid) and a normal elderly subject (dashed). @) Audiogram (difference of 
audibility plot from normal) for the elderly subject (Ruch and Patton, 1965). 
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Other Biomedical Applications of Frequency Response 

Physiological systems for which the frequency of a stimulus is a relevant parameter 
often are characterized by frequency response graphs. Examples include touch re- 
ceptors and vision. Assessing the response of a muscle to the frequency of varia- 
tions of an applied electrical stimulus also is an important application of this con- 
cept. This information is needed for designing functional neuromuscular 
stimulation systems which apply artificial stimulation to a muscle in order to re- 
place natural control by the nervous system that has been lost due to injury. In some 
other applications the frequency response is determined in order to ascertain the fie- 
quency of resonance or the conditions which lead to resonance behavior. Many 
studies aimed at understanding the causes of periodic breathing and sleep apnea uti- 
lize this latter concept. It will become apparent in the next chapter that many rhyth- 
mic biological behaviors have been described, to a first approximation, by signals 
that are sums of sinusoids. As a result, it is natural to consider the frequency re- 
sponses of the systems generating these behaviors and of the functional mecha- 
nisms that are affected by the behaviors. The reader should be cautioned, however, 
that such "first approximations" often have developed because of familiarity with 
the methodology rather than on the basis of careful consideration of the most appro- 
priate descriptors of a biological behavior. 

4.10 SUMMARY 

The frequency response of a filter describes the steady-state transformation that the 
filter applies to an input signal that is a sine (or cosine) function. The magnitude of 
the frequency response (the gain) represents the degree to which the amplitude of the 
sine wave is amplified and the angle of the frequency response (the phase shift) rep- 
resents the phase change imposed on the sine wave by the filter. As a consequence of 
the close relationship between sinusoidal functions and complex exponential hnc- 
tions, the frequency response can be calculated from the impulse response of the fil- 
ter. Thus, for an LTI filter, H(Q) = J% h[A]e'-,"*dA, and for an LSI filter, H(e/") = 
Z;-- h[n]e+"'. For a filter having the Frequency response H(Q) (or H(e/")) and a 
steady-state input signalx(t) = sin(Qt) (orx[n] = sin[wn]), the steady-state output sig- 
nal will bey(r) = p(Q)l sin(Slr+ arg(H(0))) (ory[n] = IH(d")l sin[wt + arg(H(d"))]). 
The cutoff frequency of a lowpass (or highpass) filter is that frequency for which the 
gain is 3 dB less than the maximum gain at low (or high) frequencies. 

The cutoff frequency of a first-order filter is the reciprocal of its time constant. 
The frequency response of a second-order filter depends on its natural frequency 
and damping factor. When the damping factor is smaller than 0.5, the gain at fre- 
quencies near the natural frequency increases (relative to gain at lower frequencies), 
a phenomenon known as resonance. The fiequency response of a network of filters 
can be determined by considering them in subunits of series or parallel cascades. 
Ideal lowpass, highpass, bandpass, and band reject filters have a gain of unity in 
their passbands and a phase shift that is linear with frequency. Applying the concept 
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of frequency response to nonlinear systems is complicated by the fact that the fre- 
quency response may depend on the mean operating point of the system or on the 
amplitude of the input signal. 

The frequency response hnctions of biomedical transducers and amplifiers may 
impose distortions on any measured signal and it is imperative that the user certify 
that transducers and amplifiers do not introduce misleading distortions of signals. 
Frequency response measurements have been utilized to characterize physiological 
systems such as the mechanical state of the lungs and the state of information pro- 
cessing in the auditory nervous system. Diagnoses of abnormal hnction have been 
achieved on the basis of such measurements. 

EXERCISES 

4.1. An LTI system has the frequency response H(a) = 110 - (a[ 5 10. 
Sketch graphs of the magnitude and phase of the frequency response and calculate 
the steady-state output in response to the following input signals: 

a. x(t) = cos(3.51) - 4 sin(6t); 
b. x(r) = 3 cos(6t + d 6 )  + 2 COS(3t + d 3 )  + cos(l2t + ~112); 

4.2. The frequency response of an LTI system is 

5 Im-vl= a arg(H(a)) = -2a, 0 5 -= 25 and IH(fl)l= 0, 25. 

Calculate the steady-state output in response to the following input signals: 
a. x(t) = 2 cos(4t); 
b. x(r) = 2 cos( 10t - 1) - sin(2Or). 

4.3. Consider a causal system for which the input x[n]  and output y[n] satisfy the 
following linear, constant-coefficient difference equation: 

y[n] - iy [n  - 11 = x[n] - tx [n  - I]. 

a. Determine the unit-pulse response of this system. 
b. Use convolution to determine the response to the complex sinusoidal input 

c. Determine the frequency response of the system from its unit-pulse response. 
x[n]  = dw. 

Is it the same as your answer to part b? 

d. Calculate the steady-state response to the input x[nJ = cos 

e. Calculate the power gain of this filter as a function of w. 
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4.4. The unit-pulse response of a three-point averager with Bartlett weighting is h[n] 
= i &n + 11 + i S[n] + + q n  - 11. Determine the frequency response of this filter. 
4.5. Calculate the frequency response for a second-order system described by the 
differential equation 

Ci’Y dY - + 20- + loofir) = x(t). 
dtZ dt 

Calculate the power gain of this filter. 
4.6. Show that IH(ejW)l is an even function of frequency. 
4.7. Determine the cutoff frequency for the DT filter of Example 4.4. 
4.8. Calculate the theoretical frequency response of a two-point moving averager 
and show that the estimated gain of 0.895 at o = 0.3.rr(see Example 4.6) is an accu- 
rate estimate of the true gain at this frequency. 
4.9. A DT second-order differencing filter has an impulse response given by h[O] = 
1, h[ 11 = 0, h[2] = - 1, and h[n] = 0 for n > 2. Calculate its frequency response and 
power gain. 
4.10. A Buttenvorth filter of order Nis  the filter which has the maximally uniform 
gain in a given passband among all filters describable by linear differential equa- 
tions of order N. For N = 2, a lowpass Butterworth filter is a second-order filter hav- 
ing a damping factor S = l / f i  and unity gain at d l  = 0. SpecifL and graph the fre- 
quency response of a second-order Butterworth lowpass filter with a natural 
frequency equivalent to 10 Hz. Show that the -3 dB cutoff Frequency of this Butter- 
worth filter equals the natural frequency. 
4.11. In Fig. 4.1 1 let 

Determine the overall frequency responses of the series and parallel cascade net- 
works shown in the figure. 
4.12. A major limitation of pH electrodes is their slow response time. A typical 
“fast,” commercially available, pH electrode has a time constant of one second. 
(That is, if the response of the electrode to a step change in pH is modeled as a first- 
order response, the time constant of the firstsrder system is 1 .O s.) In arterial blood 
the primary oscillatory component of pH is due to respiration. Assume that this 
component is exactly sinusoidal. If the above electrode is used to measure the pH of 
arterial blood in vivo, and if the subject is breathing at 0.5 Hz, in the steady state 
how much will the true amplitude of the oscillation in pH be attenuated at the out- 
put of the pH electrode? 
4.13. Proper fhctioning of the neurons of the brain depends very much on the pH 
of brain tissue. Brain tissue pH has several oscillatory components. Assume that this 
pH, p(t), can be described by the following equation: 
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p(r) = 7.037 + 0,010 sin(2n(0.225)r) + 0.002 sin(2n(0.9)r) + 0.005 sin(2n(O.O1)1). 

If the pH electrode from the previous problem were used to measure this pH, what 
would the actual steady-state output from the pH electrode be? Which components 
of this measurement (if any) would have significant errors? 
4.14. An ideal linear lowpass filter has the frequency response 

- 2 s n s 2  
' H(a) = [ cn' otherwise 

Calculate its steady-state output when its input is 

4.15. An LTIC system has the frequency response 

1 
H(R) = - 

j n + l '  

Find its steady-state output for these inputs: 
a. x( r )  = cos(r + 1.732); 
b. x(t) = cos(t) sin(t). 

4.16. An LSI system produces the following steady-state output, y[n],  when its in- 
put is x[n] .  Calculate its frequency response at all frequencies for which there is suf- 
ficient information. 

x[n]  = 1 + 4 cos[ F n ]  + 8 sin[ g n  - :], y[n] = 2 - 2 sin[ T n  2.n - G]. 
4.17. The input signal 

" 1  2 
n i t  n r  nlr 

x(t )  = 1.5 + z[ - sin(n7rt) + - cos(n7rt) 

is applied to an LTIC system. The resulting steady-state output is 

1 1 
y(t)=0.5+2( sin(nnf+O.lnn)-- cos(n7rt+O.lnlr) , 

n-l n r  nlr 

Calculate H(a) at all frequencies for which there is sufficient information. 
4.18. The signal shown in Fig. 4.16 can be represented as 

f i t )  = 1 0.2 cos(0.2nlr)e-~~.2n~. 
OD 

n=-- 
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- - l2 t - -0 - I  

FIGURE 4.16. A train of impulses in which two impulses separated by 2 seconds occur every 
10 seconds. 

a. p ( f )  is applied as the input to the filter of Exercise 4.5. Determine the steady- 
state output. 

b. To visualize the effect of the filter, generate p(t)  and the filter in MATLAB, 
then calculate and plot the output signal. 
4.19. To measure respiratory biomechanical properties in humans, pressure within 
the esophagous is measured as an estimate of pleural pressure. Esophageal pressure 
may be measured by way of a catheter introduced through the nose. Hartford et al. 
(1997) measured the frequency response (Fig. 4.13) of a water-filled catheter used 
for recording esophageal pressure waveforms in infants.The authors asked whether 
the common assumption that such catheters have a frequency response like that of a 
second-order system is correct. Read values from this graph about every 5 Hz and 
use MATLAB to try to fit a second-order frequency response to these data. (Hint: 
See the command ord2) For what value of damping factor and natural frequency 
do you obtain the best fit? Would you agree with the authors that a second-order 
model is not a good one for this catheter? 
4.20. Kamen (1 990) presents a model of the control of the angular position of a hu- 
man eyeball in response to a sudden change in the position of a visual target (Fig. 
4.17). His model is described by the equations 

where R(t)  is the firing rate of action potentials in the nerve to the eye muscle, d is a 
time delay due to the central nervous sytem, and the other parameters are positive 
constants. 

a. Find the impulse response of this model. (Hint: Find the step response, then 
differentiate .) 

b. Determine the frequency response as a function of the unspecified parame- 
ters. Is this system first-order or second-order? 
4.21. A researcher is studying muscle tremor during constant mean force (Le., 
isotonic) contractions. She ,wishes to record the small-amplitude displacements of 
the tip of the thumb when the subject tries to produce an isotonic force by press- 
ing against a force transducer. The researcher will attach a miniature accelerome- 
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Target 

\ 
e’ * 

Initial eye and target position f 
FIGURE 4.17. A model of eye movement in response to a jump in position of a visual target. 
e.(t), e,.(t): angular position of eye and target (Kamen, 1990; pp. 180-161). (INTRODUCTION 
TO SIGNALS AND SYSTEMS by Karnen, 0 1990, Reprinted by permission of Prentice-Hall, 
Inc., Upper Saddle River, NJ.) 

ter to the tip of the thumb. The accelerometer has a constant gain from 1 Hz to 
lo00 Hz. It will be connected to a ValidyneTM PA89 vibration amplifier that can 
be set to have a constant gain in one of four frequency ranges: 040,  0-200, 
MOO, or 0-2000 Hz. From the literature the researcher has obtained some force 
tremor recordings from the thumb under similar experimental circumstances (Fig. 
4.18). Based on these data, select the frequency range setting that she should use 
and explain your choice. 
4.22. Schmid-Schoenbein and Fung (1978) describe a mechanical analysis of the 
response of the respiratory system to a small pressure disturbance such as that 
applied during a “forced oscillation” test (Fig. 4.14). Their final equation states 
that 

where E(t) is the applied pressure and &t) is the change in volume. They report typ- 
ical values of the coeflicients in normal human subjects as 

Calculate and graph the frequency response of the respiratory system based on this 
analysis. 
4.23. Chen et al. (1998) report successfilly detecting differences in control of sac- 
cadic eye movements in patients with Parkinsons disease compared to normal 
subjects. They measured horizontal saccades in response to sudden displacement 
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1 sec 
FIGURE 4.18. Tremor recorded from a thumb during contractions at the indicated force levels 
(Data from Allurn et el., 1978). 

of a visual target. (A lighted LED target directly in front of the subject was sud- 
denly extinguished and an LED placed laterally was illuminated simultaneously.) 
The authors measured the angular rotation of the eye as it moved to the new 
target and normalized it by its final value. They then found the best damping fac- 
tor and natural frequency to fit the unit-step response of a second-order filter to 
each measured response. lbo of their responses are shown in Fig. 4.19. The au- 
thors found damping factor values of 0.5229 and 0.9740 for the normal and 
Parkinsons disease subject, respectively. Digitize these responses by reading 10 to 
20 values from each graph. Use MATLAB to generate unit-step responses of vari- 
ous second-order systems and compare them to these data. (What should the gain 
at zero frequency be?) Choose some criterion for selecting the best values of S and 
a,, to fit each response (e.g., minimize the mean-square difference between the 
digitized data and the unit-step response) and compare your “best” values of 
damping factor with those found by the authors. Are you confident that the re- 
sponse curve from the normal subject clearly cannot be fit using the damping fac- 
tor found for the patient, and vice versa? How might you test or increase your con- 
fidence? 
4.24. The file sinenoiz .mat contains a sine wave signal with added random 
noise. Plot this signal and estimate the frequency of the sine wave. Now try to find 
the best m-point moving average filter to reduce the noise contamination of this 
signal, where an m-point moving average filter has the impulse response h = 
ones(m, l ) /m.  For several choices of m, use the MATLAB function f reqz to create 
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FIGURE 4.19. Saccadic position vs. time from a normal elderly subject (top) and an elderly 
subject with Parkinson's disease (bottom). The investigators' best-fit second-order models for 
these subjects produced damping factor estimates of 0.5229 and 0.9740, respectively (Chen 
et al., 1998). (Reprinted with permission from ANNALS OF BIOMEDICAL ENGINEERING, 
1998, Biomedical Engineering Society.) 

a graph of the frequency response of the filter and choose the value of m that you 
think will produce a filter that least attenuates the sine wave while best removing 
the noise. Filter the noisy signal and compare the filtered and unfiltered signals. 
How adequate is your filter? Can you suggest simple modifications to your chosen 
m-point filter that might produce a better filter? 



MODELING CONTINUOUS-TIME 
SIGNALS AS SUMS OF SINE WAVES 

5.1 INTRODUCTION 

In the previous chapter we found that transformations of steady-state sinusoidal sig- 
nals by linear systems can be described compactly using frequency response func- 
tions, This result is a direct consequence of the fact that complex exponential func- 
tions are eigenfunctions of linear systems. This elegant theory, however, might seem 
almost inconsequential for biomedical applications since so few biomedical signals 
are truly sinusoidal. On the other hand there are biomedical signals that are almost 
periodic and one might model such signals as periodic signals corrupted by added 
noise. This type of model probably is most appropriate when biomedical processes 
are driven by periodic stimuli. For example, many physiological processes such as 
endocrine function, body metabolism, body temperature, breathing, and heart rate 
exhibit oscillations linked to the daily light-dark cycling (Fig. 5.1). Therapeutic in- 
terventions also might be periodic-for example, injection of drugs at regular inter- 
vals or artificial ventilation of a patient. In such cases one might derive diagnostic 
information from knowledge of the frequency and amplitude of a “best” periodic 
approximation to the fluctuations in a signal. Thus there are certain situations in 
which modeling a biomedical signal as a noise-corrupted sinusoid or a noise-cor- 
rupted periodic signal is a valid approach. 

If a (possibly noise-corrupted) signal is represented as a sine wave, then it may 
be manipulated using the methods of the previous chapter. Are there similar advan- 
tages to representing a signal as a periodic signal that is not a simple sine wave? The 
answer is yes, but the advantages depend very much on the specific structure of the 
model that is chosen. Because sine and cosine signals are amenable to the analyses 
developed in the previous chapter, initially we will develop models of periodic sig- 
nals that comprise only these functions. Furthermore, we will extend this develop- 
ment to signals that are not periodic although the models are based on sine and co- 
sine functions. Even in these latter cases the methods of the previous chapter will be 
applicable. 

147 
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FIGURE 6.1. Body temperature (Tb) obtained by telemetry and oxygen consumption ( V A  from 
a chronically instrumented pigeon over a 48-hour period (Berger and Phillips, 1988). 

5.2 INTRODUCTORY EXAMPLE (ANALYSIS OF 
CIRCADIAN RHYTHM) 

Many species, from bacteria to humans, maintain a daily rhythm of life by way of 
a circadian clock. This clock is not invariant. Its periodicity is modifiable by cer- 
tain afferent inputs, but under controlled conditions its period is essentially fixed. 
Examples of the circadian variations in deep abdominal temperature ( Tb) and oxy- 
gen consumption (Yo*) from a chronically instrumented pigeon in a controlled 
light-dark environment are shown in Fig. 5.1. Although both variables exhibit clear 
daily fluctuations, in neither case is the signal truly periodic. One could assume, 
however, that in the absence of noisy disturbances both signals would be periodic 
and therefore it would be appropriate to model each as a periodic hnction. 
Consider using one sine wave to represent the body temperature signal. Clearly 
this sine wave should have a period of 24 hours, but what should its amplitude and 
phase shif? be? A typical approach to this question involves determining the com- 
bination of amplitude and phase that minimizes some measure of the error be- 
tween the sine wave approximation and the data. In Fig. 5.1 there are 18 data 
points per day sampled at intervals of At = 1.333 hours. Refer to the temperature 
data as T(n At), 0 5 n 5 35. Let the approximating signal be given by f i t )  = A 
sin(2d24 + 6) + T, where t has units of hours and T with an overbar indicates the 
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average (or "DC") value of the temperature signal. Each data point c.an be pre- 
dicted from the approximating signal in terms of the unknown amplitude, A, and 
phase, 0, as 

f i n  * At) = A  sin(2m At124 + 0) + T, 0 5 n 5 35. (5.1) 

J, the mean square error (MSE) of the prediction, is defined as 

1 N-1 
J =  - x [ f i n  - At)  - T(n * At)]*, N n d  

where N = 36 in this example. The task is to determine the optimal values of A and 8 
that together will minimize J. For this simple example it is reasonable to use a grid 
search method-that is, to select ranges for A and 8 that seem likely to encompass the 
optimal values, then evaluate J for many combinations of the two parameters and 
choose the combination that yields the smallest value of J. Since the vertical range of 
the data is approximately 38' to 4 1 So and ? = 39.3556, we choose to test values of A 
in the range [1.00, 2.501. Similarly, since the oscillations in the data are nearly in 
phase with the light-dark cycling, we choose -7212 5 8 I 7212. If we test 30 values in 
each range, then A can be resolved to the nearest 0.05 and phase to the nearest 6 de- 
grees. After evaluating J for these 900 combinations, the values that minimize J are 
A* = 1.85,P = 0, where * indicates the optimal value. (The reader may access these 
data from the file circadian. mat and test smaller intervals using the file f i t  - 
s ine  . m in order to define the optimal parameters more precisely.) 

Figure 5.2(a) shows the original data and the approximating signal, fit), using 
the optimal parameter values, while the dashed line in Fig. 5.2(b) shows the differ- 
ence between the two (i.e., the error of the approximation). As expected from visual 
inspection, the approximating sine wave provides a rough guide to the circadian 
variations in body temperature but there are significant deviations of these data 
from a sine wave as evidenced by the error signal. Interestingly the deviations are 
similar in the two cycles shown and seem to have a frequency of three per day. If 
one were to use the same approach to approximate the ermr signal in Fig. 5.2(b) 
with a sine wave having a period of 8 hours, this second sine wave could be added to 
the first to achieve a better approximation of the data. When the same method was 
utilized to fit such a sine wave to the error signal, the optimal amplitude and phase 
were 1 .WOO and 0.1047, respectively. The resulting approximating signal is depict- 
ed also in Fig. 5.2(b). Finally, the sum of these two approximating sine waves yields 
a better approximation of the original data (Fig. 5.2(c)). 

One could find the difference between the two signals in Fig. 5.2(c) and deter- 
mine whether another sine wave could usefully approximate this new error signal. 
Indeed this process could be repeated many times, although one has the impression 
that the error would soon become so small as to be negligible. In this way it would 
be possible to model the noisy periodic signal, Tb(t), as a sum of sine waves. The re- 
mainder of this chapter is devoted to formalizing this procedure. 
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FIGURE 5.2. (a) Tb data and optimal fit of a 24-hour sine wave to these data. @) Enor from the 
fit in (a) and optimal fit of an 8-hour sine wave to the emf. (c) Comparison of the sum of the 
optimal fit signals in (a) and @) to the r b  data. 

5.3 ORTHOGONAL FUNCTIONS 

Consider a collection of functions P = @,(I), i = 1, 2, . . . k,,} and some operator 
O[.]. The functions in P are said to be orthogonal under the operator O[.] if 

where KO is a constant. Depending on the specific choice of O[.] the functions 
might have to satisfy conditions related to such properties as boundedness, continu- 
ity, or integrability. If one considers thepXt)’s to be analogous to vectors, then o[.] 
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is analogous to a dot (or inner) product and Eq. (5.3) is analogous to the definition 
of orthogonal vectors. This analogy is appropriate, as the following example shows. 
Letpl(t) E P, and let x ( f )  = ap,(f) .  Now 

In other words, the result of the inner product of x ( f )  with each function in the set P 
is a scalar that expresses “how much” of each function is present in x(r). Just as one 
can expand arbitrary vectors as sums of scaled orthogonal vectors, it is possible to 
express arbitrary functions as sums of scaled orthogonal functions. The set of or- 
thogonal functions is called a basis set, or simply a baris, and all of the functions 
that can be expressed as a weighted sum of these basis hnctions together comprise 
the function space that is spanned by the basis functions. Any function in this space 
can be expressed as 

1 
where at = -OO[x(t)pi(t)]. x(r) = 2 aip,{t), 

id KO (5.4) 

Consequently, if the ai coefficients are unknown but the function x(t)  is known, it is 
possible to determine these coefficients uniquely using the second part of Eq. (5.4). 
Furthermore, because the basis functions are orthogonal, the value of any ai is inde- 
pendent of the values of the other coefficients. 

5.4 SlNUSOlDAL BASIS FUNCTIONS 

There is an infinite variety of basis sets but our current interest lies in representing 
arbitrary but periodic functions as a weighted sum of functions to which one may 
apply the concept of frequency response. Functions meeting the latter criterion are 
sine and cosine functions and one needs to consider under what operations such 
functions are orthogonal. For a periodic function it is natural to define operations 
that effectively average over one period. Therefore, let the first choice of basis set 
comprise the functions pl(r) = sin(Qof), p2(r) = cos(Qd). Note that /~d~pl ( r )p2(r )dr  
= 0. Consequently, if one defines the inner product operator as 0[.] = /,T[.]dr, where 
T = 27r/Q0, then the two functions are orthogonal. Unfortunately, relatively few 
functions could be expressed as weighted sums of p,(t)  and p2(r). Fortunately, the 
following generalizations of the above results allow one to define a very large set of 
orthogonal trigonometric functions: 
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n Z m ,  

n = m # 0; 
I,’ cos(nnor) cos(mwwr = n = m = O  (5.5b) 

TI2 = dQ0, 

These results establish that the infinite collection of functions PF = {sin(nW), 
cos(mrn), Vm, n} comprises an orthogonal function set with KO = T/2. (The only 
deviation from Eq. (5.3). occurs in 4. (5.5b) when n = m = 0, in which case the in- 
tegral of the squared cosine function equals 2KW) 

Establishing that functions in a set are orthogonal does not establish that this set 
may be used to approximate arbitrary functions. In fact, Fourier demonstrated the 
extremely powerful result that the set of trigonometric functions PF can be used not 
just to approximate, but to exactly represent, most periodic functions. That is, PF is 
a set of basis functions for a large class of periodic functions. Formally, any period- 
ic function x(r)  with period T can be written as a weighted sum of the sine and co- 
sine functions in the set of functions, PF, if it satisfies the following conditions 
(known as the Dirichlet conditions): 

1. x(t )  is absolutely integrable over one cycle-i.e., J’$cr(r)ldt < 00, 
2. x(t)  has a finite number of maxima and minima in the interval (0, 7). 
3. x(t)  has a finite number of discontinuities in the interval (0, ?). 

It appears that many measurable real signals should meet these conditions. 
Therefore, most periodic signals likely to be encountered will be decomposable into 
a weighted sum of sine and cosine functions, and the analysis methods of the previ- 
ous chapter will be applicable. The potential disadvantage is that PF comprises an 
infinite number of hc t ions  so it may be necessary to utilize a very large number of 
sines and/or cosines to represent a given signal. On the other hand, in practice it of- 
ten is possible to truncate the summation after a manageable number of terms with- 
out accumulating large errors. 

5.5 THE FOURIER SERIES 

Given a periodic function x(t), with period T and frequency no = 2 d T ,  that exists 
for all rand satisfies the Dirichlet conditions, it may be represented as the following 
functional expansion known as a Fourier series: 

x(r) = c [an  cos(nw) + b,, sin(ni&,r)]. 
n 4  

Note that because of the even and odd symmemes of the cosine and sine functions, re- 
spectively, it is not necessary to utilize the functions corresponding to negative values 
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of m and n in P p  Note also that it is assumed that T is the smallest interval that satis- 
fies the criterion that x(t + 7) = x(t) for all 1. no is known as theJundamentalfrequen- 
cy of the periodic function and the n-th term in the series is called the n-th harmonic. 

To evaluate the weighting coefficients in the Fourier series (i-e., a,, and b,,), first 
substitute k for n in Eq. (5.6) then multiply both sides by cos(nnot) and integrate 
over one cycle. Thus 

Due to the orthogonality properties of these basis functions, only one term on the 
r.h.s. (i-e., when k = n) does not integrate to zero. Therefore, 

and, therefore, 

2 F  
a, = - x(t)  cos(nnot)dt, n > 0. 

T I ,  

From Eq. (5.5b) there is a factor of 2 difference when n = 0. Thus 

1 F  1 '  
a, = Ti x(t) cos(0)dt = x(t)dt. 

(5.7) 

Note that a. is the mean level of the signal over one cycle. 

one finds 
Repeating this procedure after multiplying both sides of Eq. 5.6 by sin(nfkot), 

In particular, 60 always evaluates to zero. 
Since cos(0) = 1 and bo = 0, it is common to write Eq. (5.6) in the form 

W 

x(t)  = a. + 1 [a, cos(nnot) + b,, sin(nn,t)l. (5.10) 

The form of Eq. (5.10) makes it clear that x(r)  is being represented as the sum of its 
mean value over a cycle plus deviations from that mean value. 

n- 1 

Example 5.2 Fourier series representation of a square wave The signal x(t)  of 
Fig. 5.3(a) has period T and satisifes the Dirichlet conditions. Therefore it has a 
Fourier series representation. The Fourier series coeficients may be determined by 
substitution into Equations (5.7H5.9) using the relationship no = 2 d T :  
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+ +I-,+ + + 

I 
I 
I 

(b) 
FIOURE 5.3. (a) A square-wave signal that is the input to an LTI system. @) Representing the 
square wave as the sum of its Fourier series componente. 

TI2 T 

T o  TI2 
a0 = '[I (1)dr + (-1)drI = 0; 

2 T/2 T 2 1  
6, = r [ I, sin(nflor)dt - I sin(n&t)dr ] = - - n& [-2 cos(n?r) + cos(n?z) + 11; 

TI2 

n even 

n odd. 

Therefore, the Fourier series for x(r)  is 

1 1 
3 5 sin(fld) + - sin(3l-k~) + - sin(5flot) + . . . 

(5.1 1) 

4 =f sin((2n - 1) flat). 
,-1(2n - l)lr 

(5.12) 
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Figure 5.3(b) indicates that if one is interested in how an LTI system will trans- 
form such a square wave, one may model the input as the sum of sinusoids given by 
Eq. (5.12) and use the frequency response of the system to determine the transfor- 
mation at each frequency. 

Equation (5.12) indicates that the Fourier series requires an infinite number of 
terms to accurately reproduce the square wave signal. (Note: At a discontinuity the 
Fourier series converges to the average value of the signal before and after the dis- 
continuity.) If the series is truncated, the largest errors occur at the points of discon- 
tinuity of the square wave (Fig. 5.4, in which the series is truncated after 30 terms). 
This result, known as Gibbs phenomenon, illustrates that the higher-frequency har- 
monics of the Fourier series are most important at the times where the signal 
changes most rapidly. (The file gibbdemo . m provides a demonstration of Gibbs 
phenomenon.) 

Finally consider the effect of time-shifting the square wave (Fig. 5.3(a)) so that t 
= 0 occurs in the middle of the positive half-cycle of the signal. This new signal, call 
it v(r), equals x(t + 274). The reader may evaluate the Fourier series coefficients for 
v(t) and show that 

O0 4(-l)n+' 
cos((2n - l ) i l o r ) .  =,c, ( 2 n -  l)P (5.13) 

It is apparent that the cosine terms in Eq. (5.13) could be rewritten as phase- 
shifted sines, Comparing this result to Eq. (5.12), therefore, the same frequency 
components are seen to be present in v(t) as in x(t), and they have the same absolute 
magnitude in both signals but different phase shifts. This result, that time-shifting a 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

time, sec 

FIGURE 5.4. One cycle of a square wave compared to the sum of the first 30 components of 
its Fourier series. The presence of oscillations at discontinuities of the square wave is known 
as Gibbs'phenomenon. 
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signal merely changes the phase shifts of the frequency components of its Fourier 
series, is a general property of Fourier series. 

Some Properties of Fourier Series 

The following properties of Fourier series are easy to prove from the basic defini- 
tion, Eq. (5.6): 

1. If x(t )  is an even, periodic f ic t ion  (Lee, x(-1) = x(t)), then its Fourier series, if 
it exists, comprises only cosine terms. This property is self-evident because sine 
functions are odd and sums of odd functions are still odd; therefore, the Fourier se- 
ries cannot contain sine waves. 

2. Similarly, if x(t)  is an odd, periodic function (i.e., x(-t) = -x(t)), then its Fouri- 
er series, if it exists, comprises only sine terms. 

3. Ifx(t) has half-wave symmetry (i.e., x(t + T/2) = -x(r)), then its Fourier series 
coefficients are nonzero only for odd values of n. This property is not self-evident 
but is easily proven. (Note that if x(t) satisfies the condition x(t + 272) =x(t),  then its 
period should be considered to be T/2 rather than Z!) 

The value of the above properties is that one can greatly reduce the computation- 
al demands for calculating the Fourier series coefficients if one identifies symme- 
tries in a signal. 

Example 5.2 Half-wave rectiycation To find the Fourier series for a half-wave 
rectified cosine wave (e.g., Fig. 5.8(a)), note that this signal is an even function; 
therefore, its Fourier series contains only cosine terms. Consequently, since T = 
2rm0, 

For n 2 2, 

a, = - + 

sin([n - I]&t) 

from which we find 

For n = 1, a, = (2nd~)  .f,"'"" A cos2(nO)dt = (A/2).  
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The Fourier series also may be written in the form 

W 

x(t )  = co + c 2lc,l cos(nl2ot + en), 
n- 1 

(5.14) 

where co = a. and 

1 Ic ,~  = 7 m, 6, = - t ad [  :] = 4c,, a, = Zlc,,l cos( On), b, = -21cnl sin( On). 
.. ~ 

(5.15) 

This result is easy to prove by using the common expansion for cos(a + b) and 
equating like terms in Eq. (5.6) and in the expanded form of Eq. (5.14). (See Exer- 
cise 5.7.) In the form of Eq. (5.14) the Fourier series component at each frequency 
is represented by a magnitude and a phase shift. This form is easier to use than Eq. 
(5.6) if one wishes to calculate the effect of the frequency response of a system on a 
periodic input signal. Before illustrating this point we discuss a third form of the 
Fourier series. 

Complex Exponential Form of the Fourier Series 

Another form for the Fourier series becomes evident by substituting Euler’s formu- 
las into Eq. (5.10). Thus 

(5.16) 

where 

(5.17) 

Notice that the c, here are the same coefficients that appear in Eq. (5.14). Note also 
the different lower limits on the summations in Eq. (5.14) and Eq. (5.16). Finally, 
note that c,, = c+,, implying that Icnl = Ic,l and &c, = -4c,,. 

Given x(r), it is not necessary to evaluate the Fourier series of Eq. (5.6) first in 
order to find the c, coefficients. Proceeding as we did to determine a, and b,, multi- 
ply both sides of Eq. (5.16) by e-jnn@ and integrate over one cycle. These complex 
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exponential functions are orthogonal since the sines and cosines that comprise them 
are orthogonal, and again there is only one nonzero term on the r.h.s. Therefore, 

T T I, x(t)e+@dt = I, c,ejn@e-jn@dt = Tc, 

and 

I T  
c, = 7 I, x(t)e-Jnwdr, Vn. (5.18) 

(In the case of even or odd functions, there often is a computational advantage to us- 
ing limits on the integral of -TO and TI2 instead of 0 and T.) Once the c,'s have 
been determined, if the form of the Fourier series in Eq. (5.6) is desired, it is readily 
found by noting that a, = 2Re{c,} and b, = -Urn{c,}. 

Example 5.3 Exponential Fourier series for a pulse train The signal of Fig. 
5.5(a) is a pulse train with period T and duty cycle a/T. Its exponential Fourier series 
coeficients may be calculated using Eq. (5.1 8) as 

This equation is in the form sinc(x) = (sin(x)/x), x = n R 4 2  = n(2n/T)(u/2) = 
ndalT). Since sinc(x) = 0 whenever x is a nonzero integer multiple of v, c, will be 
zero if the equation nn(al7) = k n  has a solution (where k is any integer different 
from zero). For example, if a = T/3, then c, equals zero for n = 3k-that is, for n = 3, 
6 , 9 ,  . . . . These values of n = 3k correspond to the frequencies nno = 3m0 in Eq. 
(5.16), with 

2 v  2 n  2kn 
T 3a a 

3k&=3k- =3k- =k-. 

Figure 5.5(b) shows a discrete plot of c, versus noo = 2nn/3a for the case a = T/3. 
The continuous sinc function, (sin(hl2)/fkd2), that forms the envelope of the c, 
coefficients, is also drawn. Notice that the frequencies at which zero-crossings oc- 
cur (i.e,, 2nn/u)  depend on 'a' but not on T. Likewise the spacing of the c,'s along 
the frequency axis (i.e., 21~17) depends on T but not on 'a'. Thus, if T is unchanged 
but 'a' decreases, then the point 0 = 2 d u  moves to the right and the first zero coef- 
ficient occurs at n > 3. If 'a' is constant but T increases, then the frequencies nf lo  
move closer together and again the first zero coeficient occurs at n > 3. Although 
these Fourier series coeficients are all real, in general they may be complex. These 
important results will be used later in this chapter to obtain insights into the fre- 
quency content of signals for which T - +  03, 
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(b) 

FIGURE 5.5. (a) A pulse train and (b) its Fourier series coefficients (normalized by A d 7 )  ver- 
sus frequency, for the case alT = 113. Dashed line In @) is the sinc function that determines 
the envelope of the Fourier series coefficients. Dots: (sin(nd3)lnvl3) versus nfl, = ( 2 n d a ) .  

Amplitude and Phase Spectra 

From an analysis viewpoint, Eq. (5.14) can be considered as a decomposition of the 
periodic signal, x(t), into an infinite summation of weighted, phase-shifted cosine 
functions. (Alternatively, from a synthesis viewpoint, one may view Eq. (5.14) as 
specifying the construction of x(t)  from weighted, phase-shifted cosines.) Given the 
fundamental frequency, no, the coefficients c, embody all of the information neces- 
sary to specify this decomposition. A usehl synopsis is achieved by constructing 
graphs of the magnitude and angle of c, versus either n or nno. The graph of (c,( 
versus nno is the amplitude spectrum of x(t) whereas the graph of &C, vs. n i l o  is 
the phase spectrum of x(t). 

Example 5.4 Calculating the exponential Fourier series 
(a) Let x(t) = 2 + 2c0s(Q0t) + sin(i&,t). To find the complex exponential Fourier se- 
ries for x(& note that x(t) already is expressed in the standard form of Eq. (5.10). By 
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inspection, the only nonzero terms present correspond to u0 = 2, u1 = 2, and bl = 1 .  
Therefore, co = a. = 2. Also, 

2 + j  
c-1 - - c,=OVn #-1,0, 1. al-jbl  2 - j  - 

2 ’  C I = - = -  2 2 ’  

Thus, since (c,1= ( f i / 2 ) ,  &cl = -0.841 rad, 

(b) Find the exponential Fourier series for x(t) = cos(2t)sin(3r) and graph its am- 

Solution: By Euler’s formulas, 
plitude and phase spectra. 

The largest common frequency in these complex exponential functions is 0, = 1 .  
Since ~ ( t )  is already in the complex exponential form, it remains to specify the coef- 
ficients at each frequency. Thus co = 0, cI = (114~) = c5, c-~ = -(1/4/3 = c5. Other- 
wise c, = 0. The corresponding spectra are plotted in Fig. 5.6. 

(c) Evaluate the exponential Fourier series coefficients forfit) = 5 sin2(& 
Solution: First note that To = IT, implying that i& = 2n/T = 2 radJs. Again using 

Euler’s formulas, 

By inspection, co = 512, ct = -514, CQ = -514. 

1% I 
, . 5 1  

-LJLJ-b -5 0 5 nno 

(a) (b) 

FIGURE 5.6. (a) Magnitude and (b) phase spectra of the Fourier series of x(t) = cos(2t) sin(3t). 
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FIGURE 5.7. A general LTI system. 

5.6 THE FREQUENCY RESPONSE AND NONSINUSOIDAL 
PERIODIC INPUTS 

If the input, x(t), to the LTIC system of Fig. 5.7 is a steady-state sine wave of fre- 
quency &, then the steady-state output, f i t ) ,  may be found by multiplying the am- 
plitude of the input sine wave by IH(fl,)l and adding 4H(no) to the phase of x(r). 
Because of linearity, ifx(t) comprises a sum of sine or cosine functions, then y(r) (in 
the steady state) can be determined by applying this principle to every frequency 
component in x(r) and summing the resulting signals. That is, if 

a, 

x(t) = c'o + c 214 cos(na0t + &c',), 
n-1 

(5.20) 

then 

Note that since H(0)  = /Zh(f)e-fldt, if h(z) is real, then H(0) must be real and its 
angle is zero or +r. Conversely, if x(t )  has the representation of Eq. (5.20) and the 
Fourier series of the output is known-that is, 

a0 

At) = cyo + 21cynl cos(nn,t + 4c{), (5.22) 
n- 1 

then from Eqs. (5.21) and (5.22) the frequency response can be determined at multi- 
ples of R, as 

Example 5.5 Steady-state output via the Fourier series Determine the steady- 
state output of the system given by 
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in response to the periodic triangular signal satisfying 

0 s t I TI2 
4A(T- t)lT, T/2 I t C T ’ 

where T =  2.0 s (Fig. 5.8(b)). 
Solution: The reader may verify that the Fourier series for v(t) is given by 

8A 1 
v(t) = A  - -1 cos((2n - l)sz()z), n3. nil (2n - 1)* 

where Ro = T. Note that because v(t) is an even hnction, the b, coefficients are all 
zero. Call the outputfit). By Eq. (5.21) and the specified frequency response, 

cos((2n - 1)fi - (2n - 1)T). 
8A 

Although it is difficult to sketch y(t) ,  it is clear that the components in v(t) at 
higher frequencies will be relatively more attenuated than those at lower frequencies 
because of the 5/(6 + (2n - 1 ) ~ )  term. Therefore, we should expect that sudden 
changes in v(t), such as occur at its peaks and troughs, will be distorted. 
Example 5.6 Determiningfrequency response using a periodic input An alter- 
native approach to Example 4.6 is now apparent. Instead of using a bank of filters, 

FIQURE 5.8. Two even periodic functions: (a) Half-wave rectified cosine. (b) Triangular wave. 



5.7 PARSNAL’S RELATION FOR PERIODIC SIGNALS 183 

one could analyze the input and output signals using Fourier series. To determine 
the a, and b, coefficients for an actual data signal, one could implement approxima- 
tions to Eqs. (5.7H5.9) using numerical integration. For example, if a signal x( t )  is 
sampled every At seconds such that K samples are acquired, a simple approximation 
to Eq. (5.7) is 

2 K-1 

a“, = - c x ( k  * At) cos(nilo * k At)At, n > 0. 
T k-0 

Because of the orthogonality of the trigonometric functions, this process is reason- 
ably accurate if (1) K * At 4 T, where T is the fbndamental period of x(t) ,  and ( 2 )  At 
4 27r/Ni10, where N is the largest multiple of the fundamental frequency that must 
be considered in order to represent x( t )  sufficiently closely. Often the “rule of 
thumb” that N should be 10 is adequate (but it should be confirmed for a given sig- 
nal). In the next chapter a mathematically more elegant solution to this problem will 
be developed. 

5.7 PARSEVAL’S RELATION FOR PERIODIC SIGNALS 

Previously the power of a periodic signal having period of T was defined as the av- 
erage energy per cycle, or P, = (I/T)Jrx(t)x*(t)dt. If x(t)  has a Fourier series, one 
may express P as 

In other words, the power in the signal is distributed across the various frequency 
components in direct relation to the squared magnitudes of the Fourier series coefi- 
cients. This result is known as Parseval b relation for periodic signals. It is a direct 
consequence of the orthogonality of the functions in the Fourier series. The graph of 
lcnI2 vs. n i l ,  is the power spectrum of a periodic signal. Since power occurs only at 
discrete frequencies, this graph is known as a line spectrum. 

Example 5.7 Contamination of a biomedical signal by 60-Hz interference 
EMG signals usually are recorded using differential amplifiers. If the impedances 
of the two electrodes are not well matched, or if shielding is inadequate, the EMG 
signal will contain a 60-Hz component due to electromagnetic radiation from power 
lines. Often EMG signals are quantified by passing them first through a full-wave 
rectifier, then through a lowpass filter whose output approximates the mean level of 
the rectified signal over the preceding T,,, msec, where T,, might be 200 msec, 
for example. The frequency content of the rectified 60-Hz component will no 
longer be at 60-Hz. It may be determined by calculating the Fourier series for the 
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rectified, 60-Hz signal x(t)  = A(sin(2~(60)r)l. Note that 27r. 60 = 377 and that the 
period of x(r)  is half that of the original 60-Hz signal, or T = (1/2) * (2d377) = 
(7d377). Therefore, 

d377 A 24 
3773 7r 

A sin(377r)dr = - [-cos(377r)1;’377] = -. co = - 
T o  

Since x(r) is an even function with frequency no = 24120) = 754 rad/s, 

1 d377 A d377 
c, = ?;I, A sin(377t)e-i7”~r = - TI, sin(377t) cos(7~nr)dr  

A cos(2(0.5 - n)  - 377r) Cos(2(0.5 + n )  
5 -[- - 

T 2(0.5 - n)(377) 2(0.5 + nX377) 

That is, the spectral content of the rectified 60-Hz signal comprises a “DC” compo- 
nent plus all of the harmonics of 120 Hz.; however, the amplitudes of the third and 
higher harmonics are less than 5% of that of the original (unrectified) 60-Hz signal. 
The power of the original 60-Hz signal can be determined from its Fourier series, 
for which c1 = c - ~  = A R ;  therefore, its power is A2/4 at 60 and -60 Hz whereas the 
rectified signal has power (4A2/9n2), or about 18% of the power of the 60-Hz sig- 
nal, at 120 Hz (and -1 20 Hz). 

5.8 THE CONTINUOUS-TIME FOURIER TRANSFORM (CTFT) 

The Fourier series provides an alternative description of a periodic signal that is es- 
pecially usehl when one must evaluate the effects of filtering the signal. There is an 
obvious advantage if one also could model a non-periodic signal as a sum of 
trigonometric or complex exponential functions. In fact the derivation of a similar 
representation of a nonperiodic signal is straightforward if we consider the parallels 
between a nonperiodic signal and a periodic signal constructed by replicating the 
nonperiodic signal. Consider first a bounded, finite-duration, signal x(r) that is 
nonzero only on the inteval [-TI, T,] (Fig. 5.9). Now choose some T >  21T,J and cre- 
ate a periodic signal 

Then x(r) = X(t), -(T/2) S r 5 (T/2), and also x(r) = lirn,-[X(t)]. The periodic signal 
has a Fourier series of the form 

oa 

X(r )  = 1 c,ejnw, f lo = 2dT,  
I(-.-“) 
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.f -TI 0 T1 
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-T -TI2 1 0 1 TI2 T 

'T1 T l  

FIGURE 5.9. A bounded, finite-duration signal x(t) (top) and a periodic extension of that signal 
bottom). 

where 

(5.25) 

Defining 

then one may write that 

1 
T c, = -X(nao). (5.27) 

Substituting these values for c, into the Fourier series equation, 

If we now take the limit as T 3 03, then F(t) + x(t), Ro 
summation becomes integration. Thus, applying this limit to Eq. (5.28) yields 

cia, nRo + a, and the 

(5.29) 



166 MODELING CONTINUOUS-TIME SIGNALS AS SUMS OF SINE WAVES 

Equation (5.29) describes a reconstruction ofx(t) based on a function of frequen- 
cy, X(n), which is defined by Eq. (5.26). X(n) is the Fourier fmnsfirm of x(t)  and 
the reconstruction equation, Eq. (5.29), is the inverse Fourier tmnsform of X(n). 
Equation (5.27) expresses the relationship between the Fourier transform of x(t)  and 
the Fourier series coefficients of the periodic function x(r) that is constructed by re- 
peating x(t)  every T seconds. Regarding notation, the Fourier transform is symbol- 
ized as X(n)  = s(@)} and the inverse Fourier transform as x( t )  = s-*{X(a)}. The 
Fourier transform, X'n), is known as the frequency-domain representation of the 
time function, x(t). 

Viewing integration as a process of summation, one may interpret Eq. (5.29) as 
follows: The bounded, finiteduration signal x(t)  may be reconstructed via a weight- 
ed summation of an infinite collection of complex exponential functions. The weight 
at each frequency (or, more appropriately, for each dsZ range of frequencies) is given 
by (1/27r)X(i2)dn. Thus one's understanding of the Fourier transform is not funda- 
mentally different from that of the Fourier series. There are, however, two practical 
differences: (1) whereas a periodic signal can be reconstructed from a (possibly very 
large) number of discrete frequency components, reconstruction of a nonperiodic 
signal requires a continuous distribution of frequencies; (2) as a consequence, for a 
nonperiodic signal one does not talk about the weighting at each individual frequen- 
cy but the weighting of a dfl range of the continuous distribution of frequencies. 

Although the above requirement that x(t)  be bounded and have finite duration is 
more restrictive than necessary, not every nonperiodic signal has a Fourier trans- 
form. The ordinary conditions for a signal x(t) to have a Fourier transform are: (1) 
x(r)  must be absolutely integrable-that is, JZ,)X(t)ldt -c 00, and; (2) x(t) must have fi- 
nite numbers of discontinuities, maxima, and minima in every finite time interval. 
Because energy signals are square-integrable, every energy signal satisfies the first 
condition and continuous energy signals are likely to meet condition 2 also and have 
a Fourier transform. Signals such as x(r) = 1 and x(t) = u(r) are not absolutely inte- 
grable, however, and their ordinary Fourier transforms do not exist. Later in the 
chapter we will discuss a generalized Fourier transform which will be definable for 
some signals that do not meet the above integrability condition. 

Example 5.8 Fourier transform of a pulse train Previously the Fourier series 
coefficients for a pulse train (Fig. 5.10(a)) were determined to be 

A,,a sin(n&a/2) 
T n Q / 2  

c, = - 

Now create a nonperiodic signal, x(r), comprising only the pulse around t = 0 (Fig. 
5.1 qb)). The relationship between the Fourier series coefficients for the pulse train 
and the Fourier transform of x(t) is given by Eq. (5.27), X(n&) = Tc,. Letting Tap- 
proach infinity means that the pulse train converges to x(t) and noo n. Thus 

sin(SW2) X(n) = limT+&(nl&,)] = lim.~+-,[Tc,] = A @  * (5.30) 
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FIGURE 5.10. (a) A pulse train Z(t) and (b) a nonperiodic signal x(t) obtained by taking one 
pulse from the pulse train. (0) Normalized Fourier transform of x(f )  (solid curve) and T times the 
Fourier series coefficients of Z(t) (dots) for the case a i l  = l/3. (d) Magnitude and phase of the 
normalized Fourier transform of x(t). 
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Equation (5.30) has the form of sinc(x). It is plotted in Fig. 5.1qc) along with the 
points Tc, for a/T = 113. In this example (but not always) X(n) is real-valued. Note 
that the zero-crossings of X(n)  occur at integer multiples of 27da and, in particular, 
the first zero-crossing occurs at 2da.  That is, the frequency range that contains the 
complex exponential components of x(t) having the largest amplitudes is limited by 
[file 27da. It is common to quantify the width of this large central peak encompass- 
ing n = 0 as half of the distance between the zero-crossings that mark the edges of 
the peak. In this case the width would be 2 d a .  

As the width, a, of the pulse decreases, the first zero-crossing of the sinc func- 
tion moves further from n = 0. In other words, the narrower the pulse, the greater 
the width of the central (main) lobe of X@). Conversely if the pulse is very wide, 
the main lobe of X ( n )  is very MITOW. This relationship between the timedomain 
extent of a pulse and the width of the main lobe of its Fourier transform assumes 
major importance in signal processing. 

The intimate relationship between the Fourier series coefficients of the pulse 
train and the Fourier transform of the single pulse, x(t), can be visualized by plotting 
T * c, versus noo on the same graph withX(n). For illustration, let a/T= 1/3. There- 
fore, no = 27dT = 2d3a .  By Eq. (5.27), T * c, = X(n)l nl,,%; therefore, these points 
concide exactly with the plot of X(a )  at the frequencies n& (Fig. S.lO(c)). Note 
that if T/a = L, where L is an integer, then cj = 0, j = L, 2L, 3L, . , . . 

5.9 RELATIONSHIP OF FOURIER TRANSFORM 
TO FREQUENCY RESPONSE 

The frequency response of a general LTIC system, such as that of Fig. 5.7, is de- 
fined as 

This equation is equivalent to Eq. (5.26), from which it is clear that thefreguency 
response of an LTI system is exactly the Fourier tmnsform of its impulse response. 
Thus H(n) has two interpretations: (1) as a measure of the steady-state output of the 
system in response to unit-amplitude sinusoidal inputs, and (2) as the amplitudes of 
complex exponential signals (or, equivalently, phase-shifted cosine signals) that 
must be added together to construct h(t). These two interpretations are quite consis- 
tent as we can demonstrate by showing that the second interpretation implies the 
first. Consider the response of the system to x(t) = Z:-,,&t - n?). The output, of 
course, is y(t) = Z;-h(t - nr). The input and output are periodic signals. Now con- 
sider one pulse from the periodic input signal as we did for the pulse train above. Its 
Fourier transform is 
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Therefore, by Eq. (5.27), the input comprises complex exponential functions such 
that T c,' = 1. Similarly, the amplitudes of the frequency components in the output 
signal are such that T * c{ = H(n&), where no = 2 v / T  and H(n) is the Fourier trans- 
form of h(t). From Eq. (5.23) we know that the frequency response is obtained by di- 
viding the Fourier series coefficients of the output by those of the input. Thus 

c{ T * c {  H(nno) 
Frequency response = - = - = - = H(nRo). G T e e  1 

By letting T approach infinity we obtain the general result that H ( n ) ,  the Fourier 
transform of h(t), is indeed the frequency response of the system. 

5.10 PROPERTIES OF THE FOURIER TRANSFORM 

Using Euler's formula the Fourier transform of a signal x(r) may be written as 

X(ll)=rx(t)e-jmdt -a = rx(t)cos(nr)dt -w +j[-rx(t)sin(flt)dt] --m 4R(f2) +J(n). (5.3 1) 

Therefore, 

If x(t)  is real, then some special results apply. First, it is easy to show in this case 
that X ( 4 )  = A?@). Consequently, w(-sZ)l = p(n)l = w(n)l, implying that the 
magnitude of the Fourier transform is an even function of frequency. Similar con- 
sideration about the angle of X(4) leads to the conclusion that the angle of the 
Fourier transform is an odd function of frequency (when x(t )  is real). A graph of 
v(n)l versus a) is known as the amplitude (or magnitude) spectrum of x(t), while a 
graph of w(n) vs. 

The Fourier transform is a linear operator. That is, if 3 { x ( t ) }  = X(Q) and 3{y( t )}  
= Y(n), then 3{ar(t) + by(t)} = &(a) + bY(n). If x(t) is an even function of time, 
then ](a) = 0 (because the integral of an odd function between symmetric limits is 
zero) and the Fourier transform is entirely real. Similarly if x(t) is an odd function, 
then R(n) = 0 and the Fourier transform is entirely imaginary. There are numerous 
properties of the Fourier transform that either simplifjt its calculation or are important 
for linear filtering applications. Some ofthese properties are stated (without proof) in 
Table 5.1. Others that are important in signal processing are discussed below. 

Rme sh@ property: If x(t) has the Fourier transform X(n) ,  then the signal 
x(t- d), where d is a constant, has the Fourier transform e--YY(n). To prove this re- 
sult, let z(t) = x(t- d). Then 

is the phase spectrum. 
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TABLE 6.1 Fourier Transform Propertie8 

property Time domain Freqwncy domain 

Linearity WQ + bXZ0 Wn) + bxdn) 
Conjugation x‘Q m-n) 
Time shift x(t - to) e+mox(n) 

Time scaling 

Time reversal 
Modulation 
Duality 

t 4:) 

Frequency derivative 

Excrmpfe 5.9 Time shiftproPerry Let x(t) be the pulse of Fig. S.lO(b). (For sim- 
plicity, we shall represent a pulse of width ‘a’ as P,(t - c), where T= c is at the cen- 
ter of the pulse. Therefore, x(r) =A$&)). Let z(t) be the same pulse, delayed by a/2 
seconds so that it now begins at t = 0 and ends at t = o- tha t  is, z(t) = A,,P,(r - d2). 
By the time shift property, 

s in(W2) 
w2 

Z(fl) = e*-X(fl) = e-JwA@ 

Note that IZ(fl)( = le--jn”’*IW(fl)l = W(fl)l, and &Z(fl) = qX(fl) - (aW2). Therefore 
time-shifting does not change the amplitude spectrum of a signal; however, it alters 
the phase spectrum by adding an angle that increases linearly with frequency in di- 
rect proportion to, and of the same sign as, the time shift. 

In advanced applications involving fractal signals or wavelets it is necessary to 
consider signals that are scaled in time. That is, given a signal x(r), one must also 
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A 

FIGURE 5.11. An example of the effect of time-scaling a signal (a, b) on its Fourier transform 
(G a. 

consider the signal x(bt) where b is a constant. If b > 1, then x(bt) is a time-com- 
pressed version of x(t) (because the argument 'bt' increases faster than t). An exam- 
ple is shown in Fig. 5.1 1. Likewise, if b < 1, then x(bt) is a time-expanded version of 
x(t). Using the definition of the Fourier transform it is easily proven that if x(t )  has 
the transform X(n) ,  then x(bt) has the Fourier transform (l/[bl)X(ll/b). In other 
words, compression in the time-domain produces broadening of the Fourier trans- 
form (Fig. 5.1 1). For the particular case of x(t) real and b = -1, 

3 {x(-1)) = X ( 4 )  = xY(n). 

Because complex exponential functions are so important in linear signal process- 
ing, often one encounters signals of the form x(t)e". It is easily shown from Eq. 
(5.26) that the Fourier transform of this signal is x(n - a,,). 

One often encounters derivatives of signals in signal processing. When x(t)  has a 
Fourier transform, the Fourier transform of its derivative is 

(5.32) 

This property is provable by taking the derivative of Eq. (5.29). 
The convolution operation is encountered often in signal processing, especially 

in the context of filtering. If two signals x(r )  and v(t) have Fourier transforms X(n) 
and V(li), respectively, and if f i t )  = x(t) * v(t), the Fourier transform of f i t )  can be 
found as 
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(5.33) 

In other words, convolution in the time domain corresponds to multiplication in 
the frequency domain. Conversely, one can show that convolution in the frequency 
domain corresponds to multiplication in the time domain-that is, 

3-'{x(n) * V(n)} = 2 ~ ~ ( r ) v ( t ) .  (5.34) 

The most common application of Eq. (5.33) is to determine the Fourier trans- 
form of the output of a linear system given the input signal and the impulse re- 
sponse of the system (Fig. 5.7). Since f i t )  = h(t) * x(t), then 

Y(n) = H(n)x(n). (5.35) 

That is, relative to a small frequency range, d n ,  the amplitudes of the frequency 
components of the output signal are equal to the amplitudes of the corresponding 
frequency components in the input signal multiplied by the frequency response in 
that frequency range. This result implies the following two specific relationships: 

IY(Q)l= INn)lCu(Q)lY 4 y (n)  = Lcx(W + 4w-U. 

The property of duality is often usefbl in theoretical derivations involving Fouri- 
er transforms. If x(t) has the Fourier transform X(n), and if a time function is de- 
fined by substituting t for Q in X(n), then .%{X(f)} = 27rx(-n). 

Example 5.1 0 Amplitude modulation An amplitude-modulated signal is the 
product of two other signals: f i t )  = a(t) x(t). In the case of amplitude modulation a(?) 
usually varies much more slowly than x ( t )  so that the amplitude ofu(t) is determined 
by a(t). Sometimes the variations in time of a complex biomedical signal can be mod- 
eled as a basic signal whose amplitude is being modulated. For example, an EMG 
from a leg muscle varies cyclically throughout each cycle of walking. If one is most 
interested in the variations ofthe amplitude of the EMG signal (rather than its fine de- 
tails), this signal might be modeled as amplitude-modulated random noise. Then the 
modulating signal is a measure of the variations of the amplitude of the EMG. 

Another application of amplitude modulation occurs when a finite-duration sig- 
nal is represented as an infinite-duration signal multiplied by a unit-amplitude pulse 
(Fig. 5.12). Since real-world signals always are observed for finite times, this model 
is encountered frequently in practice. The Fourier transform of the signal may be 
determined readily from those of the infiniteduration signal and the modulating 
signal. Consider the example of Fig 5.12, in which y(t) = x(r) sin(W), and x(t) = 
P,(r). By Euler's identity, 
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y(t)=x(t)sin(not) 

FIQURE 5.12. (a) Representing a finite-duration sine wave, y(t), as the product of an infinite- 
duration sine wave and a unit-amplitude pulse. (b, c) Magnitude of the Fourier transform of the 
unit-amplitude pulse (b) and of the infinitsduration sine wave (c). (d) Magnitude of the Fourier 
transform of fit). 

(5.36) 

Using Eq. (5.30), 

sin(na/2) 
na/2 

x(n) = Pa(i2) = A @  

Therefore, 

sin((n + ao)a/2) sin((R - no)a/2) 
(i2 - n0)a/2 

- Y(i2) = - 
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The magnitude spectra of X(n) ,  Y(n) are graphed in Fig. 5.12(b,d). Note that in 
Y(Q) the magnitude spectrum of the modulating pulse is shifted so that it is centered 
at ino. This shifting is a direct consequence of the convolution of X(n)  (Fig. 
5.12(b)) with 3{sin(Q,r)} (Fig. 5.12(c)) indicated in Eq. (5.34). For an amplitude- 
modulated cosine wave the equivalent result to Eq. (5.36) is 

1 
2 3 { x ( t )  cos(nor)} = - [ X ( n  + no) + X ( n  - no)]. (5.37) 

This result may also be derived by expressing Eq. 5.34 in the general form 

5.1 1 THE GENERALIZED FOURIER TRANSFORM 

Previously we derived the Fourier transform of a unit-impulse function, x(t)  = s(r ) :  
3{ qt)} = X(n) = 1, Vn. If one defines a time function X(t) = 1, Vr, by the duality 
property its Fourier transform is 3 { X ( t ) }  = 27rs(-n) = 27rs(n). By this approach 
one is able to define the Fourier transform of a function x( t )  = 1 which does not 
meet the strict conditions for the existence of its Fourier transform. This type of 
Fourier transform is known as a generalized Fourier transform and it permits one to 
define the Fourier transform for many other functions besides constant finctions. 
For example, since by Eq. (5.37) 

3 { x ( t )  cos(n0t)) = +[x(n + no) + X(n - no)], 
if we let x(t )  = 1, then 

3{ 1 cos(not)} = n[qn + 0,) + qn - &)I. 

Similarly, the Fourier transform of sin(nof) isjnfs(n+ no) - s(n - no)]. Its mag- 
nitude spectrum is plotted in Fig. 5.12(c). 

By similar reasoning, since 3 { x ( t ) e j h ' }  = X(n - no), 3{ 1 * ejw} = 
27r&n - no). Based on this result, it is possible to write a generalized Fourier 
transform for any periodic function that has a Fourier series representation. Thus, 
if x(t)  with period T has the Fourier series x(t) = Z;-.,,,c,,ej"w, then X ( n )  = 
27rZ;-c, s(n - noo). This Fourier transform comprises a set of impulses located 
at noo along the frequency axis, each having the amplitude 27rc,,. 

The unit-step function, u(r), is important in signal processing and one can define 
its generalized Fourier transform, V(n),  as follows. First, let x(r) = -0.5 + u(r). Thus 
U(n) = X ( n )  + 3{0.5}. The derivative ofx(t) is an impulse function whose Fourier 
transform equals 1. But also by Eq. (5.32), 3(dr/dt} = jM(J2). Equating these two 
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results implies X(a )  = (l/jn). Since 934.5) = -7rs(sZ), then U ( n )  = (l/ja) + 
w-v. 

5.1 2 EXAMPLES OF FOURIER TRANSFORM CALCULATIONS 

Example 5.22 The function x(t)  = sin(n0t + 0) may be written as 

Therefore, X(n) = jnfe-jgs(n- nao) - ejes(n - nno). 
Example 5.22 The Fourier transform of h(r) = e4' u(t) may be calculated as 

Example 5.13 Let x( t )  be a one-second segment of a cosine wave: x( t )  = 
cos(m-f)P,(f). The Fourier transform of x(f)  may be determined from knowledge of 
that of P,(t) .  Thus 

sin(n/2) 1 
X ( 0 )  = -[P,(n + 7r) + P,(n - n)]. 

2 P,(n)= n/2  9 

Therefore, 

Example 5.24 The Fourier transform of many signals that start abruptly at t = 0 
can be determined easily. For example, let x(t) = sin(n&(t). Then 

i 
2 xn) = - [ u(n + no) - u(n - no)] 
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Example 5.15 Find x(t )  having the Fourier transform X ( n )  = P@) cos(&/4). 
This function is shown in Fig. 5.13(a). One may evaluate the inverse Fourier trans- 
form directly: 

1)) 
+ sin(R(d4 + #))I2 

2(7r/4 + t )  0' 

Evaluating the above expression, 

1 sin(d2 - 21) sin(lr/2 -t 2 t ) ] ,  + 
I T  [ d 2 - 2 1  Id2 + 21 

x(t)  = - 

This function is plotted in Fig. 5.13(b). 
Example 5.16 Determine the Fourier transform of a pulse train having its mini- 
mum value at zero, its maximum at five, a pulse width of two seconds, and a period 
of four seconds. We may substitute the following values into Eq. (5.19): a = 2, A. = 
5 ,  T= 4, fl, = 2 d 4 ;  therefore, the Fourier series coefFicients of&) are given by 

A,,a sin(nQ,,a/2) 5 2 sin(Zm/4) =- 
4 2m/4  

c, = - T nn,9/2 

and the Fourier series for x(t )  is x(t) = 8;- (WIT) ~in(n(.rr/2))e)""'~. Consequently, 
X ( n )  = 2;- (1  O h )  sin(n( ?r/2))s(l2 - n( 7d2)). 

- 0.4 - 

-3 -2 -1 0 1 2 3 
4 .2  - 

- 1 0 4  4 -4 -2 0 2 4 6 8 10 
a, radsec time, SBC 

(a) (b) 

FIGURE 5.13. (a) Magnitude of the Fourier transform X(n) = P4(a) M d 4 ) .  (b) Its inverse 
transform, x(t). 
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5.1 3 PARSEVAL’S RELATION FOR NONPERIODIC SIGNALS 

Let x(t), v(t) be arbitrary real or complex-valued functions that have Fourier trans- 
forms X(R), V(sZ) and let r(t) = x*(r)  v(t). Then, after noting that 3 { x * ( t ) }  = 

x*(-m 
\” P ( A  - R)V(A)dA. x*(t)v(t)e-”W = - 3 { x * ( t ) }  * V(R) = - 1 ”  1 

27r 27r -= 
Y(R) = - 2 7 r L  

Since this result applies at all frequencies, one may let R = 0. Thus 

Changing the variable of integration from A to sZ, we find that 

Finally, let v(t) = x(t). The above equation becomes 

(5.38a) 

Note that the 1.h.s. of Eq. (5.38) is the energy of x(t). This equation is known as 
Pursevulk elution for nonperiodic signals. It states that the energy in a signal, x(t) ,  
that has a Fourier transform is distributed across its frequency components such that 
the energy in each frequency interval (R, sZ + dfl) is proportional to the squared 
magnitude of X(n). Recalling the discussion of energy, memory, and correlation in 
Chapter 2, it is apparent that understanding the distribution of energy in a signal and 
how that distribution can be modified will provide insights about memory processes 
in the physical system that generated the signal. Parseval’s relation provides a con- 
venient tool, the Fourier transform, to dissect the distribution of energy in a signal. 

The energv spectral density (or, simply, the energy spectrum) of the determinis- 
tic signal x(t) is the graph w(R)12 versus R. This hnction is referred to as an energy 
“density” function because the actual energy in a dR band is proportional to 
X(R)dR. For a deterministic, finite-length signal observed on the interval [0, To], 
the power spectml density (or, simply, the power spectrum) is the energy spectrum 
divided by To. That is, 

Furthermore, we shall prove the very important result that 

(5.3 8b) 
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Given x(r), 0 5 r 5 To, by definition its autocorrelation function is 

The Fourier transform of R,(s) is 

yr(n)‘2 PX(fl) .  
1 

3{R,(s)} = --x(n)x(n) = - = 
TO TO 

This result is a foundation of signal processing because it relates the distribution of 
power in a signal across frequency to temporal correlation in the signal. It also pro- 
vides an alternative (and computationally fast) method for calculating RJs) by first 
using a fast Fourier transform (FFT) method (see Chapter 7) to calculate X(n), then 
using the FFT again to calculate 3-*{ P,(n)}.  
~~~~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~~~~~~ 

Example 5.17 Power spectrum of infinite-length, zero-mean, white noise Con- 
sider a zero-mean, white-noise signal, w(r). Previously we showed that R,(s) = 
msv(w) qs). For simplicity, let mv(w)  = &. Then the power spectrum of w(r)  is 

PJn) = 3{& 8s)) = s2, , vn. 
That is, the theoretical power spectrum of white noise is constant and has an ampli- 
tude equal to the mean-square value of w(r). 

5.14 FILTERING 

Earlier in this chapter we established two related facts: (1) the frequency response 
of an LTI system is actually the Fourier transform of its impulse response, and; (2) 
the Fourier transform of the output of a linear system equals the Fourier transform 
of the input signal multiplied by the frequency response of the system. Consequent- 
ly, the frequency response has importance that transcends its application to steady- 
state sinusoidal inputs: one may utilize the frequency response to obtain a measure 
of the alteration of the frequency content of any signal having a Fourier transform, 
such as nonperiodic signals and indeed even transient signals. Often this process is 
useful for removing noise. If a signal comprises a desired signal plus added high- 
frequency noise, and if one can estimate the frequency range for which the magni- 
tude of the Fourier transform of the desired signal is significantly above that of the 
noise, then it may be possible to find a linear filter having a frequency response that 
is esssentially constant over this frequency range and nearly zero elsewhere. In the- 
ory, passing the recorded signal through this filter will allow the important frequen- 
cy components of the desired signal to “pass through” to the output, whereas the 
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Q 0.5 
(3 0.4 

0.3 
0.2 
0.1 

frequency components associated with high-frequency noise will be very much at- 
tenuated in the output. A major limitation is that no real filter can have the sharp de- 
marcation between the passband and the stopband described for ideal filters in 
Chapter 4. Therefore, if one chooses a frequency response that avoids any distortion 
of the desired signal, some noise components at nearby frequencies will not be 
much attenuated. The topic of filter design will be the focus of later chapters. Here 
we discuss some common types of CT (or analog) filters. 

- 
- 
- 
- 
- 

Example 5.18 60-Hz notchfilter A common application of noise removal is the 
use of a filter to remove a 60-Hz signal from a bioelectrical recording such as an 
electromyogram. This type of noise may be due to electromagnetic fields that are 
not blocked because of inadequate grounding or shielding. The design of notch fil- 
ters whose gain has a null centered at 60 Hz can be quite sophisticated. An example 
of the frequency response of a 60-Hz notch filter is given in Fig. 5.14. 

Impulse Response of an Ideal Lowpass Filter 

The frequency response of an ideal, linear-phase, lowpass filter (Chapter 4) may be 
described compactly as 

(5.39) 

where B is its cutoff frequency. We can determine the impulse response, h(t) ,  of this 
filter using the duality property. Note that 

H ( n )  = PZB(n)  e-jm, VQ. 

Frequency, Hz. 

FIGURE 5.14. Magnitude of the frequency response of a tenth-order Bessel band-reject filter 
with cutoff frequencies of 55 Hz and 65 Hz. 
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Since by duality 

B sin(Bt) B sin(B(t-d)) 3-1 (P2&2)} = - - , then h(t) = - , Vt. 
w Bt w B( t -d )  

That is, the impulse response is a sinc function centered in time at t = d. Further- 
more, h(t) extends infinitely in both positive and negative time; therefore, this ideal 
filter is non-causal. 

Common Practical (Causal) Filters 
There are certain types of filters that are encountered often in practice because of 
their special properties. Butterworth filters are important because they meet a cer- 
tain criterion for uniformity of gain in the passband. Among all linear filters of or- 
der N (i.e., filters for which their differential equations have order N), the Butter- 
worth filter of order N has the most uniform gain in the passband (and its gain is 
said to have “maximally flat magnitude”). To achieve this goal the frequency re- 
sponse meets the criterion that the first 2N- 1 derivatives of IH(n)lZ equal zero at i2 
= 0. For N = 2, the lowpass Butterworth filter is a second-order filter with 6 = 
( l A 6 )  0.7071. Referring to the previous chapter, the frequency response of such 
a second-order filter (assuming a desired passband gain of unity) will be 

Its magnitude is 

(5.40) 

The frequency response of this filter is graphed in Fig. 4.7. 
A Chebyshev filter of order n has a sharper separation between its passband and 

stopband than is achieved by a Butterworth filter of the same order. On the other 
hand, Chebyshev filters exhibit strikingly nonuniform gain in either the passband or 
the stopband (but not both). The frequency response of an n-th order Chebyshev fil- 
ter is specified by an n-th order Chebyshev polynomial hnction that is defined re- 
cursively as 

The frequency response of the n-th order, Type 1, Chebyshev filter is 

(5.42) 
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FIQURE 5.15. Magnitude of the frequency response of a Chebychev fourth-order Type I (sol- 
id) and Type I1 (dashed) lowpass filter. 

Figure 5.15 shows this hnction for a second-order filter. (See also Exercise 5.18 
regarding deriving this frequency response.) ill is a design parameter that does not 
equal the cutoff frequency of the filter unless E = 1. Note that although the frequen- 
cy response magnitude is variable in the passband, each fluctuation in gain traverses 
from the same minimum to the same maximum value, and these values are related 
to the design parameter, 8. This behavior is known as an “equiripple” response. Type 
2 Chebyshev filters exhibit monotonically decreasing gain in the passband and gain 
fluctuations in the stopband. 

5.15 OUTPUT RESPONSE VIA THE FOURIER TRANSFORM 

On the basis of Eq. (5.35) it is possible to calculate the Fourier transform of the out- 
put signal from a linear system in response to many input signals besides sinusoids. 
If one then calculates the inverse Fourier transform, it is possible to determine the 
output for many nonperiodic and transient signals without directly solving the dif- 
ferential equation of the system! This last step may be difficult and typically one at- 
tempts to express the Fourier transform as a sum of terms, each of which has a form 
that is recognizable in a table of Fourier transforms (such as the brief list in Table 
5.2). The decomposition usually is accomplished using the method of partial frac- 
tion expansion. An example will illustrate the procedure, as well as the determina- 
tion of H(i l )  directly from the differential equation of a system. 

Example 5.19 Determining the frequency response and output of a system us- 
ing Fourier transforms An exponential signal, vl(t)  = &-%(t), is applied to the 
circuit of Fig. 5.16. If v2(0) = 0, what is the output voltage, v2(r)? 
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TABLE 6.2 Common Fourier Transform Pairs 

property Time domain Frequency domain 

Unit impulse 

Causal exponential 

Complex sinusoid 
Unit step 

Timeweighted exponential 

Sine wave 
Cosine wave 
Constant 
Rectangular pulse 

Impulse train 

Signum 

1 

r/(jn + 8) 

Solution: Consider the “system” to be the part of the circuit outlined by the 
dashed box in the figure. Its input is v,(r)  and its output is v2(r). For my v l ( r )  having 
a Fourier transform one may find the output as v2(r) = 3 -‘{Zf(fl)V1(fl)}, where 
H ( f l )  is the frequency response of the “system”. To find the frequency response, 
write the differential equation(s) of the system: 

Taking the derivative, 

Taking the Fourier transform of both sides, assuming initial conditions are zero, 

* 
1 I 

j .nV,(f l )  = - V,(fl) - - V,(-n). RC RC 
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I 

FIGURE 5.16. A simple electrical circuit viewed as a system having the frequency response 
H(Q = ~Z(nw,(n). 

Thus 

(5.43) 

Since the Fourier transform of the input is V,(fl) =V(l/(jll+ a)), then 

Equation (5.44) expresses the partial fraction expansion of the Fourier transform. 
The constants K 1  and K2 are evaluated as 

Thus 

Th inverse transforms of the terms on the r.h.s. 
inspection; thus, 

V 

f Eq. 5.44 can be determined by 
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The above example illustrates both the process of determining the frequency re- 
sponse of a system directly from its differential equation@) and the process of solv- 
ing for the output response using Fourier transforms. The former process is espe- 
cially important in biomedical signal processing when physical processes are 
describable by (linear) differential equations. By determining the corresponding 
frequency response (either from the differential equations or by direct experimental 
measurement), one achieves insight about the response of the system to arbitrary in- 
puts (i.e., stimuli). For example, one can at least qualitatively anticipate an unob- 
served system response to a stimulus that may have been observed during monitor- 
ing or that one is planning to apply. (See Exercises 5.14 and 5.20.) Conversely, if 
one observes a response from the system, it is possible to infer the characteristics of 
the input giving rise to that response. (See Exercises 5.21 and 5.23.) These benefits 
should not be considered trivial because in most biomedical applications it is diffi- 
cult to monitor many variables simultaneously. Often just basic knowledge, such as 
the passband of a system, permits one to infer whether a stimulus will be effective 
in eliciting a response-for example, whether an injected drug will achieve an em- 
cacious concentration at a distant site in a desired time. 

&ample 5.20 Filtering lo remove 60-Hz signals A signal that has features ap- 
proximately like an electrocardiogram signal with added 60-Hz noise is 

1.73 1 
e ( r )  = 0.4 + - [cos(81) - 0.5 cos( 161 + T) + 0.25 cos(401) 

IT 

+ 0.33 cos(32t + d 6 ) J  + 0.2 sin(l20mt). 

One could attempt to remove the 60-Hz signal by passing e(1) through a lowpass 
filter. The simplest such filter is a first-order filter having the frequency response 

where 117 is the cutoff frequency. Letting b = 1/7 so that H(0) = 1, choose a cutoff 
frequency above 40 rads but below 60 Hz (which is equivalent to 1 2 0 ~  radls). 
Choosing 100 rads, for example, the gain of the filter at the various frequency com- 
ponents in e(~) is: 0.9968, 0.9874, 0.9524, 0.9285, and 0.2564 at the frequencies 8, 
16,32,40, and 120nrads, respectively. For each of the non-noise components of 41) 
the gain of the filter is nearly unity although at 32 and 40 rads the gain is about 5% 
and 7% below unity. Probably this degree of alteration of the desired signal compo- 
nents is acceptable. But at 60-Hz the gain is still 0.2564, implying that the ampli- 
tude of the corresponding frequency component will be reduced only by 75%. Prac- 
tically, this degree of attenuation is probably too little. One could use a lower cutoff 
frequency to reduce the gain at 60 Hz but the desired signal would be further dis- 
torted. One concludes that a simple lowpass filter is inadequate for this application. 
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5.16 SUMMARY 

Periodic functions that satisfy the Dirichlet conditions can be represented by an or- 
thogonal function expansion known as a Fourier series. The Fourier series is an infi- 
nite summation of sine and cosine functions having frequencies that are integer 
multiples (i.e., harmonics) of the frequency of the original function. The weighting 
coefficient for each term in the series can be determined by integrating the product 
of the original signal and the corresponding sine or cosine term (or equivalently, the 
corresponding complex exponential function) over one cycle. In general, the higher 
harmonic terms are more important when the original signal has abrupt changes. A 
pulse train is a model for regularly recurring events. The amplitudes of its Fourier 
series coefficients vary as a sinc function. If a periodic signal is applied to the input 
of an LTI system, then by expressing the input as a Fourier series, one may utilize 
the frequency response of the system to determine the steady-state output. Parse- 
Val's Theorem for periodic signals expresses the power of the signal as the summa- 
tions of the squared magnitudes of its (exponential form) Fourier series coefficients, 
c,. The graph of Ic,I2 versus ni lo  is the power spectrum of a periodic, deterministic 
signal. 

The continuous-time Fourier transform (CTFT) extends the concept of the Fouri- 
er series model to nonperiodic signals. For a signal x(t)  that meets certain conditions 
(the foremost of which is absolute integrability), its Fourier transform is defined as 

From the inverse Fourier transform, 

1 .m 
1 ~~ 

x ( f )  = 3-'{x(n)} f - X(n)ejn'dn, 
2 T  J- 

one obtains the interpretation that x( t )  can be expressed as a summation of complex 
exponentials (or sines and cosines) of all frequencies. In each range of frequencies, 
[a, + d a ] ,  the weighting factor for this summation is proportional to X(n) .  There 
is a close relationship between the Fourier transform of a nonperiodic signal, x(t) ,  
and the Fourier series coefficients of a periodic extension of this signal, F(t). The 
generalized Fourier transform uses the duality property to extend this transform to 
some signals that are not absolutely integrable, such as the unit step function and 
sine and cosine functions. 

The frequency response of an LTI system is equal to the Fourier transform of its 
impulse response. Consequently the Fourier transform of the output signal of an LTI 
system equals the product of the Fourier transforms of the input signal and the im- 
pulse response. This result permits calculation of the system response to nonperiod- 
ic and transient input signals without directly solving the differential equations of 
the system. Conversely one can determine the frequency response from the Fourier 
transforms of the differential equations of the system. These results provide the 
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foundation for an enhanced understanding of filtering. The basic concept of filter- 
ing developed in Chapter 4 can be applied to nonperiodic as well as periodic signals 
and to finite-length as well as infinitely long signals. 

Parseval’s relation for nonperiodic signals states that the energy of a signal is 
proportional to the integral over all frequencies of the squared magnitude of its 
Fourier transform. This result permits one to define an energy spectral density func- 
tion, K(fl)l2 vs. fl, and a power spectral density function (power spectrum), 
Cy(fl))J2/To vs. a, for a signal observed on [0, To]. 

Although most biomedical signals are not truly periodic, situations in which 
stimuli are presented at regular intervals can be analyzed using Fourier series meth- 
ods. A great number of biomedical signals meet the conditions for the existence of 
their Fourier transforms, and Fourier transforms have important roles both in filter- 
ing of biomedical signals and in analysis of biomedical systems. 

EXERCISES 

5.1 Find the Fourier series in both the complex exponential and trigonometric 
(i.e., having sines and cosines) forms forfir) = cos(4r) + sin(5t). 
5.2 Consider the basic signalfit) = 2r - 1, -0.5 5 t < 0.5. 

determine its Fourier series. 
a. Construct a periodic signal, Xft), by making a periodic extension offit) and 

b. Find the Fourier transform of the signal 

At) = [fit), -0.5 5 t 5 0.5 
0, otherwise ‘ 

5.3 Find the Fourier series in trigonometric form forfir) = Isin(?rt)l. Graph its 
power spectrum. 
5.4 Exercise 4.14 presented a model of the periodic oscillations found in a record- 
ing of the pH of brain tissue. Determine the Fourier transform of this pH signal. 
5.5 A periodic functionp(t) with period P is also periodic with period 2P. In com- 
puting the Fourier series of&) I mistakenly use = 27d2P rather than no = 27dP 
as the fundamental frequency. Explain how it is possible to determine the correct 
Fourier series coefficients from the coefficients I calculated. 
5.6 Consider the periodic signal Xft) consisting of unit-amplitude delta-hnctions, 
as shown in Fig. 5.17. Calculate its exponential Fourier series. Let t = 0 occur in 
the middle of two of the impulses that are close together. Graph its power spec- 
trum. 
5.7 Derive Eq. (5.14) from Eq. (5.6) and prove the relationships given in Eq. 
(5.15). 
5.8 A signal x(r) is periodic with period T = 4. Its Fourier series coefficients are 
given by: 



EXERCISES 187 

FIGURE 5.17. A periodic pulse train 

n = O  
c,, = [ ";In, n = even. 

lln, n =odd 

Write its Fourier series as a sum of phase-shifted cosines. 
5.9 Consider the signal g(t) = [ 1 + cos(~~)]cos(f l l t ) ,  Ro S- i l l .  

a. Find the magnitude of the frequency component of g(t)  at R = fl,. 
b. g(t) is applied to the input of a Butterworth filter having the frequency re- 

sponse 

fl: 
H(n)= - a 2 +  1.414jn1n+fl:' 

What is the steady-state output at fl = R,? 

5.10 Consider the following coupled differential equations which describe a sys- 
tem with input x(t) and output yl( t ) :  

dYl dY2 =y2, - =-6Ooy2- 106y1 +x( t ) .  
dt 

Find H(n) for this system and calculate yl(r)  when x(t)  = 2 cos(2OOnt)u(t). 
5.11 Calculate the frequency response of the filter whose impulse response is h(t) 
= (t - 1)2e-z("1)u(t - 1). 
5.12 The pulse train shown in Fig. 5.18 as x(t)  is given as the input to an LTIC sys- 
tem and the output response is shown as&). For 0 s t < 1, fir) is given by the equa- 
tion y(t)  = e+'O.l5. 

a. Calculate the Fourier series offit) (in complex exponential form). 
b. The Fourier series coefficients for x(t )  are given by 

c,, = 0.001 [sin(0.0005nno)/ 0 . 0 0 0 5 n f l o ] e - J " . ~ 5 ~ ~ ,  

where lZ,, is the same as you determined in part a. Specify Ro and calculate 
H(nlZ,,)* 
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0 1 

(b) 
FIGURE 5.18. (a) A pulse train. (b) Response of a system to this pulse train. 

5.13 In Exercise 3.18 you determined the differential equation describing the dis- 
placement of a microscope table in response to floor vibrations. 

a. Find the frequency response of this system. 
b. Three motors in an adjacent room each cause a sinusoidal movement of the 

floor. Their amplitudes and frequencies (in the steady state) are: 0.0 1 mm at 60 Hz, 
0.03 mm at 30 Hz, and 0.05 mm at 10 Hz. Assuming there is no phase difference 
between these movements, calculate the resulting motion of the table. 
5.14 “Stretch” receptors in the airways of the lungs respond to stretching the wall 
of the airway, These receptors have been modeled as second-order systems whose 
input is the applied stretch, x(t), and output is the instantaneous firing frequency of 
the receptor, y(r). Assume that one such receptor can be described by the differential 
equation 

dzr dY a5 - + 2- + 4y(r) = lOx(t) + z- 
d12 dt 

a. Determine the frequency response of this receptor to stretching. 
b. There are devices that can apply sinusoidal stretch to a small segment of tis- 

sue. Calculate the steady-state response, fir), to stretching an airway segment ac- 
cording to x(t) = 2 cos(mt)u(f). 
5.15 A very sensitive, variable reluctance displacement transducer is being used 
to measure the compression of an excised vertebral disc in response to a sudden, 
impulse-like, compressive force applied to its top surface (Fig. 5.19). With this type 
of transducer an electronic circuit (known as a transducer coupler) applies a high- 
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FIGURE 5.19. (a) Diagram of a force applied to a vertebral disc. (b) The displacement, d(t), of 
the disc. (c) Output of the transducer. 

frequency sine wave, qn, to the electrical input of the transducer and the output, eout, 
is a sine wave of the same frequency whose instantaneous amplitude is directly pro- 
portional to the displacement. For a compressive impulse applied at r = 0, assume 
the actual displacement (i.e., the amount of shortening of the height of the vertebral 
disc) is found to be d(t) = 0.1 [ 1 - cos(SO?Zt)] mm, 0 si t 5 40 msec. This results in 
the e,,, signal x(t). This signal has the same frequency as the input, eim but its ampli- 
tude varies in direct proportion to d(t). (Assume a proportionality constant of unity.) 

a. Let ei, be a sine wave of frequency 1000 Hz and amplitude one. What is the 
Fourier transform of x(t)? 

b. I want to digitize x(r). I should lowpass filter x(t)  before sampling it in order 
to separate the signal components related to x(t) from any electrical noise. Specify 
an appropriate cutoff frequency so that this filter will pass all important components 
of x(r)  with little distortion of them. 

c. Specify the parameters of a second-order Butterworth filter (i.e., N = 2) to 
achieve the cutoff frequency you specified in part b, and write its equation for 
H ( W .  
5.16 Use the duality property to calculate the Fourier transform of h(r) = (lh), 
--03 < t < 01. A system having this impulse response is known as a Hilbert trans- 
former. Determine its response to the signal x(t)  = A, cos(Rd), Vr. 
5.17 The signal Pzo(t - a) is applied to an LTIC system, resulting in an output sig- 
nal whose Fourier transform is Y ( 0 )  = 4 ~ ~ A e - ~ ~ " ( s i n ~ ( ~ ) / ( ~ ) ~ ) .  Determine the 
frequency response of this system. 



190 MODELING CONTINUOUS-TIME SIGNALS As SUMS OF SINE WAVES 

5.18 Determine the magnitude of the frequency response of a Chebyshev Type I 
lowpass filter as a hnction of the parameters 8, ill for the particular case n = 2. 
5.19 Determine the Fourier transform of a sequence of three pulses, each of am- 
plitude B and width b/2, that begin at times t = -0.75 b, -0.25 b, and 0.75 6, respec- 
tively. 
5.20 In Example 4.2 a model of a capillary bed was formulated and differential 
equations to describe this model were developed. Starting from the differential 
equations and using the parameter values given in that example, determine the fie- 
quency response fbnction of capillary flow to the blood pressure input. Graph the 
magnitude and phase of the frequency response. Does the frequency response have 
a lowpass, highpass, or bandpass character? 
5.21 Figure 5.20 shows a simple model of a train of action potentials from a single 
nerve cell that are recorded using bipolar electrodes placed near the axon of the cell. 
(Assume the train is periodic and infinitely long.) Consider each action potential to 
be a single cycle of a sine wave, with period TI = 4 msec. Let the repetition period 
of the action potentials be T2 = 100 msec. The peak amplitude of each action poten- 
tial is 10 mv. The action potentials are being amplified by a second-order linear fil- 
ter with a frequency response specified by: il,,/27r = 150 Hz, S = 0.75, gain at zero 
frequency = 10,000. 

a. Find an appropriate Fourier representation for the action potential train. 
b. Write the equations for the magnitude and phase of the frequency response of 

the amplifier, and sketch these hct ions.  
c. Calculate the corresponding Fourier representation of the output of the ampli- 

fier when the action potential train is the input. 
d. Indicate in a drawing how the action potentials in the output signal differ from 

those in the input signal (if they do). If there are differences, suggest new values for 
the properties of the amplifier (still being second order) to reduce these differences. 
Show mathematically why your suggestion(s) should work. 
5.22 Amplitude-modulated signals can be usehl as test signals to test the fre- 
quency response of electronic amplifiers. One such signal is described by the 
equation z(r) = sin(CJ1t)cos(CJof)[Pd~(t)], where CJ, * no, the signal is non-zero 

, - - - ~ - -  

-1 I-Tl I 
I- 

T2 I 

FIGURE 6.20. Model of a train of action potentials in which each action potential is represent- 
ed as one cycle of a sine wave. 
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for -TI4 5 t 5 Tl4, and T = 27rlR0. Sketch this signal and calculate its Fourier 
transform. 
5.23 Variations in lung volume during breathing cause variations in heart rate, an 
effect known as respiretory sinus arrhythmia. The file rsa .mat contains two sig- 
nals measured from a human subject: instantaneous lung volume and heart rate at 
three different frequencies of breathing. Use the grid search method to fit a sine 
wave to each signal and determine the frequency response of heart rate to lung vol- 
ume at each frequency. Does the frequency response change with frequency? 
5.24 The signal x(t)  (Fig. 5.18) is the input to an LTIC system, yielding the output 

a0 

y( t )  = 1 [ 8  sin(O.Inr)] cos(2nnt + 1712). 
n= I 

Show that this system is an ideal differentiator having the frequency response H(R) 
E ne-/"/2, 



RESPONSES OF LINEAR 
CONTINUOUS-TIME FILTERS TO 

ARBITRARY INPUTS 

6.1 INTRODUCTION 

Up to this point we have focused on the frequency response of a linear system as the 
primary direct measure of its filtering properties. Thus, in Chapter 4 the frequency 
response was developed as a means of determining the system response to steady- 
state sinusoids and in Chapter 5 it was recognized that the frequency response may 
be utilized with any input having a Fourier transform, including transient signals. 
Practically speaking, though, calculation of the output of a linear system by way of 
the inverse Fourier transform was seen to be problematic for all but the simplest 
cases. One of the difficulties is that many real signals do not extend in time to nega- 
tive infinity but have a defined onset time, and the Fourier transforms of such sig- 
nals often contain delta functions as well as rational polynomials in n. These prob- 
lems are avoidable if one defines a new transform that expresses a signal as a 
weighted sum of waveforms that begin at t = 0. This chapter introduces one such 
transform, the (unilateral) Laplace transform. The Laplace transform models a sig- 
nal as a sum of exponentially decaying sinusoids having various frequencies and 
rates of decay. It is especially usehl for calculating the time response of a linear 
system to an arbitrary input. Thus the Laplace transform is an essential complement 
to frequency response analysis for signal processing in situations involving transient 
signals. Furthermore there is an intimate relationship between the frequency re- 
sponse of an LTIC system and the Laplace transform of its impulse response 
(known as the “transfer function). In most practical cases it is (usually) straightfor- 
ward to determine the frequency response of a filter if the Laplace transform of its 
impulse response is known. This last relationship will provide a basis (in Chapter 8) 
for designing discrete-time filters whose frequency response properties are derived 
from those of continuous-time filters. 

193 
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6.2 INTRODUCTORY EXAMPLE 

In the delivery of therapeutic drugs, the speed with which the concentration of the 
drug reaches the therapeutic threshold in the target tissue is usually an important is- 
sue. Concentrations at sites remote from the delivery site can be predicted using 
models of mass transport and storage. Often the parameters of such models are cal- 
culated from measurements of the change in drug concentration in response to an 
experimental dose. Typically these measurements are noisy and one may wish to fil- 
ter the data before estimating the parameters. One must consider, however, the ex- 
tent to which any temporal distortion of the data signal by the filter will alter the 
time courses of such signals and introduce errors in estimates of the parameter val- 
ues. In such a situation it may not be sufficient to choose a filter based on steady- 
state filtering properties because the experimental measurements are transient sig- 
nals. Consider the simple example of Fig. 3.26 which comprises a site of entry of a 
drug, two storage compartments, and a route of elimination. The differential equa- 
tion relating the concentration in the second compartment, f i t ) ,  to the inflow rate, 
x(t), was derived in Exercise 3.22 as 

In response to a rapid bolus input of x(t) (which is equivalent to having a nonze- 
ro initial condition on q(t)), f i t )  initially will rise with a time course that reflects the 
flow “conductance” from the first to the second compartment, then fall at an even- 
tual rate determined by the “conductance” of the elimination pathway. If we per- 
form an experiment in which x(t) = 0 and q(0) = qo and measure fit), we can theo- 
retically estimate the two parameters kl and k2 from the early and late rates of 
change offit). With this knowledge one could utilize the differential equation of the 
system (Eq. (6.1)) to predict the response in the second compartment to any time 
course of inhsion of the drug, 42). 

Estimation of the initial and final slopes offit) is subject to considerable error in 
the presence of noise. A more reliable approach to estimating values for R,  and k2 is 
possible. Assume the signal f i t )  is available after performing the experiment just de- 
scribed. In concept, one could calculate the first and second derivatives of f i t )  and 
use some parameter search algorithm, such as that utilized in Chapter 4, to fit Eq. 
(6.1) to these three signals and estimate values for u and 6, from which kl and k2 
may be calculated. If, however, f i t )  is noisy, we may need to filter it before calculat- 
ing the derivatives. For example, consider the response of the SIMULINK model 
drugdisg . m d l ,  which implements the model of Fig. 3.26, when x(t)  = 0 and qo = 
5 mg (Fig. 6.l(a). In this simulation kl = 0.1 mgh and k2 = 0.025 mg/s, and noise 
has been added to f i t )  to simulate noisy measurements. One may test the suggested 
method for estimating the values of kl and k2 by numerically calculating Hr) and 
%t), performing the parameter search (as if the values were unknown), and compar- 
ing the estimates of kl and k2 with the known values. It is desirable though to filter 
out the noise from fit) before calculating the derivatives. Since the peak offir) oc- 



6.2 INTRODUCTORY EXAMPLE 195 

2.5 I 1 

Time, sec 
(b) 

FIQURE 6.1. (a) Response of y(t) of the model drugdisp , mdl when x(t) = 0 and q(0) = 5 mg. 
@) Calculated response of the above model before (dashed) and after (solid) passing through 
a unity gain lowpass filter having a cutoff frequency of 0.04 Hr. 

curs after approximately 25 seconds, we might be tempted to choose a unity-gain, 
first-order lowpass filter with a cutoff frequency of 1/25 = 0.04 Hz. Will this filter 
cause an error in the estimated parameters? To answer this question we evaluate the 
exact, noise-flee solution to Eq. (6. l),  y*(t), and determine whether the filter would 
distort it significantly. 

Referring to Chapter 4, the zero-input response of a second-order system is 

where for the present example, 

= -0.2133, -0.01 17. 
a -  

2 2 
S I J  =-- * 

Now y*(O) = 0, but from the original mass balance equations of Exercise 3.22 we 
see that j * ( O )  = klq(0) = 0.5. From these two conditions one finds that cI = 2.480 
and c2 = -2.480. The impulse response of the proposed noise filter is h(t)  = 
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0.08m4~08%(t). Using convolution, after some algebra the output of the filter 
when y*(r) is the input is 

ybt) =y*(r) * h(r) = 2.60e4.0117f - 16.60e4.2133f + 14.0e4.25'3f, r 2: 0. 

(6.2) 

Figure 6.l(b) plots both y*(t) andybf). It is clear that the noise filtering does in- 
deed distort the initial rise of the response and would cause errors in estimating the 
parameters (especially k,). To avoid this problem the cutoff frequency must be high- 
er than 0.04 Hz. Of course, a higher cutoff frequency will permit more noise to pass, 
so the smallest acceptable cutoff frequency is best. The reader may wish to utilize 
the simulation to evaluate alternative filters. 

In this example it was necessary to determine the actual temporal output of the 
filter, a process that required calculating a convolution. Later we will revisit this 
problem using Laplace transform methods and find it much easier to solve. 

6.3 CONCEPTUAL BASIS OF THE LAPLACE TRANSFORM 

The conceptual basis of the Laplace transform will be developed in two steps. Ini- 
tially the development will parallel that presented for the Fourier transform and will 
culminate in defining the two-sided Laplace transform. This development will en- 
gender complications related to existence and uniqueness, so the second step will 
define the one-sided Laplace transform that is less burdensome so long as its use is 
restricted to signals that are zero for all t < 0. 

Consider the usual LTIC system with input x(t), impulse response h(r), and out- 
put fir). Let the input be a sinusoid having an exponentially modulated amplitude of 
the form ~ ( t )  = eW&. The resulting output may be calculated using convolution as 

It is tempting to define the integral on the r.h.s. of Eq. (6.3) as some function, 
H(s), so that one may write y(r) = e"H(s) = H(s)x(r) as was done earlier when dis- 
cussing frequency response. Caution is required, however, because this integral may 
exist for some values of u but not for others. Loosely speaking, the function h(7) 
must grow more slowly than the function eoZ so that the integrand, h(7)e-#', does not 
grow without bound. Consequently, one indeed may define a transform H(s), where 

(6.4) 

but it is necessary to specify also the range of u for which H(s) exists. 
Equation (6.4) is the two-sided Laplace rmnsform of h(t). The interpretation of 

H(s) is more apparent if we consider the function h'(f)  = h(r)cm, in which case Eq. 
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(6.4) may be considered the Fourier transform of h'(t). This Fourier transform may 
not exist for all values of u but for any value for which it does exist one may use the 
inverse Fourier transform to show that 

1 "  1 "  
h(t)  = emh'(t) = 272 e m k (  u + j f l )e /&dfl= - 2n p(u + jfl)eCw+jn)'dll. 

But since s = u + jfl, dfl  = ddj and 

Note that Eq. (6.5) is true for any value of u for which Eq. (6.4) converges and 
therefore as long as u is in the region of convergence, the determination of h(t) from 
H(s) is independent of the actual value of u. One may interpret Eq. (6.5) as follows: 
h(t) may be represented as an infinite summation of exponentially modulated sinu- 
soids, whose frequencies range over all possible values of fl, where the weighting 
factors in the summation are proportional to H(s). This interpretation leads us to de- 
fine the two-sided Laplace transform for an arbitrary signal x(r) as 

X(s) is defined for those values of u for which it converges. In the region of conver- 
gence (ROC) the inverse transform relationship is given by 

x(t) = - c>(s)e"ds. 

~~ 

Example 61 Y'b-sided Laplace transforms The signal x(f)  = e-'"u(t) has the 
two-sided Laplace transform 

This integral is identical to the Fourier transform of the function e-@+4)fu(t). From 
Chapter 5 ,  the integral converges to 

1 =- 1 
X(s) = 

u + a + j f l  s + a  

for u > -a The ROC is indicated in Fig. 6.2 on a plane defined by the real and 
imaginary parts of s. If one considers evaluating X(s) for various values of s on this 
s-plane, it is clear that the Laplace transform is generally complex-valued. Further- 
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FIGURE 6.2. Region of convergence of the two-sided Laplace transform of x(t) = e**u(t) is to 
the right of the dotted line. 

more, when s = -a, X(s) is unbounded. Consequently the point s = -a, which is 
known as a pole of X(s), cannot be in the ROC of X(s) (nor can any other pole loca- 
tion). The resemblance to the Fourier transform is more than accidental. Since the 
ROC includes (T =I 0, then X(s)(, = X(n). That is, if the ROC strictly includes the 
entire imaginary axis, then the Fourier transform equals the Laplace transform eval- 
uated along this axis. 

Consider now the signal f i t )  = -e*lu(-t) which equals zero for t > 0. Its Laplace 
transform is 

0 1 Y(s) = -Le*fe-sfdt = - s + a  

with the ROC specified by (T < -a. Thus, although x(t) and f i t )  are quite different, 
X(s) and Y(s) differ only in their regions of convergence. 

Because the relationships of Eqs. (6.6) and (6.7) are incomplete without specify- 
ing the region of convergence, the two-sided Laplace transform has limited useful- 
ness for signal processing. One may show, however, that the Laplace transform (if it  
exists) of any h c t i o n  that is identically zero for t c 0 has an ROC that always lies 
to the right of its rightmost pole in the s-plane, as seen in the example of Fig. 6.2. 
Furthermore, a given X(s) then corresponds to only one x(t) .  Consequently, by 
adopting the convention that the Laplace transform will be applied only to such 
functions, it is unnecessary to specify the ROC. This previous statement may seem 
inconsistent with Eq. 6.7, where it is indicated that the inverse transform requires 
evaluating a contour integral inside the ROC. Indeed to evaluate Eq. (6.7) it is nec- 
essary to know the ROC but fortunately there is an alternative method (see later) for 
determining inverse Laplace transforms that does not require explicit knowledge of 
the ROC. We shall adopt the convention that the Laplace transform will be applied 
only tofirnctions. x(t),for which x(t) = 0, t < 0, and shall consider the formal defin- 
ition of the Laplace transform to be a modified form of Eq. 6.6: 
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Equation 6.8 defines the one-sided (or unilateml) Laplace transform. To ensure 
that this convention is met, sometimes we will explicitly multiply x ( t )  by u(t). When 
x(t) is nonzero around t = 0, there is a question of exactly how to define the lower 
limit on the integral of Eq. (6.8). In part because of the importance of the delta- 
function in systems analysis, it is common to use a lower limit o f t  = 0- so that the 
integral of the delta-hnction is preserved. This convention will be utilized here. The 
inverse Laplace tmnsform, t - ’ { X ( s ) } ,  is still given by Eq. (6.7). 

Existence of the One-sided Laplace Transform 

In order for X(s> to exist it is required that the integral of Eq. (6.8) should converge. 
The following set of conditions on x(r)  is sufficient to ensure convergence 
(McGillam and Cooper, 1991; p. 221): If x(t) is integrable in every finite interval 
a < t < b, where 0 5 a < b < 03, and for some value c, limt4me-fk(t)l < m, then the 
integral of Eq. (6.8) converges absolutely and uniformly for Re{s} > c. Although 
many practical signals meet these conditions and therefore have a one-sided 
Laplace transform, signals that grow “rapidly” such as &*do not satisfy the above 
limit and do not have a Laplace transform. 

Relation of Fourier and Laplace Transforms 

There are two issues that confound the relationship between Fourier and Laplace 
transforms. The first is simply a notational issue; the second is the theoretical con- 
sideration of convergence properties (and ROC of the Laplace transform). Regard- 
ing the first, one should note that despite their similarity in name X(s) and X ( n )  are 
not referring to the same function using different variables as their arguments. This 
point is obvious from the following example: Previously we determined that 
L{e“‘u(t)} = X(s) = I/(s + a), whereas 3{e-%(t)} = X ( n )  = l/(jsZ + a). Clearly 
X(n) # X(S) \ , -~ .  In this case, in fact, 

Unfortunately, the relationships of Eq. 6.9 are not universal but depend on the lo- 
cations of poles in Xis). Whenever a unilateral Laplace transform has poles on& in 
the left half of the s-plane, then the imaginary axis will be in its ROC and the func- 
tion will have a Fourier transform that has the relationships to its Laplace transform, 
as indicated in Eq. (6.9). 

Conversely, whenX(s) is a valid unilateral Laplace transform that has poles in the 
right half plane, then x(?) does not have a Fourier transform because the ROC of the 
(unilateral) Laplace transform is always to the right of the rightmost pole ofX(s). 

If X(s) has complex conjugate poles on the imaginary axis, a further complica- 
tion arises because the signal x(t) is then a pure sinusoid that starts at f = 0 and does 
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not have a normal Fourier transform. Using a general Fourier transform, in Chapter 
5 it was shown that 

The Laplace transform of this function is 

(6.1 1) 

That is, X(s) has complex conjugate poles on the imaginary axis. Recognizing that 
the first term on the r.h.s. of Eq. (6.10) may be written as 

-= - ~8 - jsZ +jn0 jn - j h  ' 

it is clear that substituting s = jQ  into the Laplace transform gives the first term of 
the Fourier transform. However, the pair of imaginary-axis poles of the Laplace 
transform (Eq. (6.1 1)) also gives rise to a term ?rk1[&n + &) - s(n - &)I in the 
Fourier transform (Eq. (6.10)). K1 is known as the midue of the poles at s = *j%. It 
may be evaluated using a partial fraction expansion (see later). 

Example 6.2 Unilateral Laplace transforms 
a. Let x( t )  = ~ ( t ) .  Then 

b. Let f i r )  = s(t). Then Y(s) = ,f; s(r)e-sldt = 1 Vs. 
c. Let z(t) = e4'u(t). Then Z(s) = l/(s + 117) = d(7s + l), s > -1/7. 

6.4 PROPERTIES OF (UNILATERAL) UPLACE TRANSFORMS 

There are many important properties of the Laplace transform that facilitate its ap- 
plication to linear systems. For the following discussion of properties, let 
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Linearity: The Laplace transform operation is linear. That is, 

L{ar( t )  + bv(t)} = d ( s )  + bV(s). 

This result is proven easily from the definition, Eq. (6.8). 
Right shiJ in time (time delay): L{x(t - d)} = e-sdX(s). One may prove this re- 

sult by substituting 1' = t - d in Eq. (6.8). Note that a comparable result for x(t+ d) 
does not exist, since we are assuming that x(t) = 0 for t < 0. 

~~~ ~~ ~ 

Example 43. The unilateral Laplace transform of the function x(t)  = Pl(t )  does 
not exist because this function is nonzero for some t < 0. However, the shifted func- 
tion x(t) = Pl(t  - 0.5) does have a Laplace transform given by 

1 1 1 -e-s 
L{P,( t -0 .5)}  =L{u(t)}  -L{u( t -  1)) = - -e-'- = -. 

S S S 

Time scaling: Scaling in the time domain scales the transform reciprocally. 
That is, L{x(at)} = (l/a)X(s/a). Again, this property is easily demonstrated from Eq. 
(6.8). 

Multiplication by t": L{t"x(t)} = (-l)"d"X(s)/ds". This result is readily provable 
by induction. 

Example 44. The ramp function, r(t) = t u(r), has the Laplace transform given by 

d 1 
ds S2 

R(s) = (-l)'-U(s) = -* 

Similarly, L{ t"u(t)} =(n!/fl+l). 
~ ~~- 

Exponential modulation: From the definition, Eq. (6.8), one may show that 

L{ e%(t)} = X(s - a). 

Amplitude modulation of sinusoids: From Example 6.4 and the immediately 
preceding property, using Euler's formulas one may prove that 
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Likewise, if one replaces u(r) by an arbitrary x(r) ,  a similar derivation yields the re- 
sult that 

L{(x(r)cos(fl,,?)} = t[X(s +iflo) + X(S -jflO)]. 

The comparable result for an amplitude-modulated sine wave is given in Table 6.1, 

Exumple 6 5  The previous two results may be combined to determine the Laplace 
transform of an exponentially damped cosine function. Thus, if x(t) = cos(&,r)u(t), 

s + b  
(s + by  +a ' L{e4'cos(flot)u(r)} = X(S + b) = 

One of the most useful properties of the Laplace transform relates to the convo- 
lution of two functions in the time domain. As we saw for the Fourier transform, 
convolution in time corresponds to multiplication of the Laplace transforms of the 
two functions. That is, if x(t) and v(r) both have Laplace transforms, then 

L{x(r) * v(r ) }  =X(s)V(s). (6.12) 

TABLE 6.1 Properties of the Unilateral Laplace Transform 

property Time Domain Transform 

Linearity + bv(il aX(s) + bY(s) 

Time scaling i X ( t ) ,  b > 0 

Differentiation 

d7 
ds" 

(-ly-X(s), n an integer Modulation by t" t"X0 

Modulation by et e"X(t) 

Modulation by sine x(t) sin(nt) 
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The proof of this result parallels the proof of the corresponding property of Fourier 
transforms in Chapter 5 .  

Example 6.6 
v(t) = Pl ( t  - 0.5). By Eq. (6.12) and Example 6.3, 

Calculating a convolution using Laplace transforms Let x(t )  = 

(6.13) 

Using the result (Table 6.2) that L{ tu(t)} = ( l/s2), and that multiplication by edS 
corresponds to a delay of '&, then the inverse Laplace transform of Eq. (6.13) is 

x(t) * v(t) = tu(t) - 2(t - I)u(t - 1) + (I - 2)u(t - 2). 

One may compute this convolution graphically to verify this result. 

TABLE 6.2 Some Basic Unilateral Laplace Transforms 

Time Domain Transform 

I 

s + b  

1 
@+by 

92 + nz 
n 

92 + n2 

(S +by + n2 
n 

(S +by + nz 
92 + 2n2 

s(9 + 4n2) 
2n2 

s(s2 + 4239 

S 

s + b  
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Integration and differentiation are common time domain operations whose ef- 
fects in the transform domain can be determined. For example, iffit) = x'(t), where 
x'(t) = dr(t)ldt, then 

Y(s) = L{x'(t)} = sX(s) - x(0-). (6.14) 

The reader is referred to basic signal processing textbooks (e.g., McGillem and 
Cooper, 199 I), for the proof of this result and a discussion of the origin of the term 
x(0-). Eq. (6.14) may be applied repeatedly for higher derivatives. Thus 

L[ $1 = sZX(s> - sx(0-) -x'(O-), (6.15) 

Form of the Laplace tmnsform: Although there is no inherent restriction on the 
form of the unilateral Laplace transform, in very many cases it may be expressed as 
the ratio of two polynomials in s of the form 

N(s) 
D(s) 

b,,,s" + bm-lsm-' + b m - p z  + , . . + bls + bo 
a# + a,,-#'-1 + afi2s"-2 + . . . + als + a. 

*(s) = - = * (6.16) 

If the order of the numerator polynomial, m, is strictly less than the order of the de- 
nominator polynomial, n, then Eq. (6.16) is known as a proper rational function. 

Equation (6.14) defines the Laplace trans- 
form of x'(t). But one may also say that t {x ' ( t ) }  = Jgx'(t)e-sfdt. Rewriting this re- 
sult and equating it to the r.h.s. of Eq. 6.14 we note that 

Initial and final value theorems: 

m 

rx'(t)e-sfdt = x(O+) - x(0-) + x'(t)e-%ir = sX(s) - x(0-). 
& O+ 

Canceling the common x(0-) terms on either side of the second equality, and taking 
the limit as s approaches infinity, yields 

So long as t is greater than zero, the indicated limit of the integral is zero. Therefore, 

This result is known as the initial value theorem, which is valid only if X(s) is a 
proper rational function. A similar approach may be taken to derive thefinal value 
theorem, which states that if X(s) is a proper rational function, then 

limf+x(t) = lim,,,[sX(s)]. (6.18) 
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6.5 THE INVERSE (UNILATERAL) LAPLACE TRANSFORM 

It was stated previously that a given unilateral Laplace transform, X(s), corresponds 
to a unique x(r). In fact, two fimctions, x l ( r )  and x2(r), that have different values only 
at discontinuities can have the same Laplace transform as long as r;[x1(7) - x2(7)]d7 
= 0, Vt > 0. Given this restriction, it is usual to assume that the differences between 
the two hnctions have little "practical" consequence and that the functions are 
equal. Therefore, the previous statement regarding uniqueness of the inverse trans- 
form applies and any mathematically valid operation may be used to determine the 
inverse transform (including of course the definition, Eq. (6.7)). The easiest and 
most common general approach is the method of partial fractions. The basis of this 
method is to expand a transform, a s ) ,  into a sum of terms in which the inverse 
transform of each term is recognizable from a table of common transforms (e.g., 
Table 6.2). By the linearity of the Laplace transform operation, the inverse trans- 
form of X(s) is then the sum of the inverse transforms of the individual terms. 

To utilize the method of partial fractions it is necessary that the Laplace trans- 
form, as) ,  can be written as a ratio of two polynomials as in Eq. (6.16) and that m < 
n. I f a s )  is not a proper rational function, then it is necessary to divide N(s) by D(s) 
until the remainder hnction is proper. In such cases X(s) will have the form 

To evaluate the inverse Laplace transform of X(s) one handles the ratio of poly- 
nomial terms using partial fractions, as described below. The inverse transform of 
the initial terms may be evaluated using the general result that L{ 8")(t)} = s". 

Given that X(s) is already expressed as a proper rational function, then the poly- 
nomial functions N(s) and D(s) of Eq. (6.16) may be factored so that x(s) may be 
rewritten as 

Each I, is known as a zelo of X(s) since X(s)lr=? = 0. Similarly, each pi is known 
as a pole of a s )  since X ( S ) ~ ~ - ~ ,  = 00. The initial step of the partial fraction method is 
to express the product of terms in Eq. (6.19) as a sum of terms. Depending on the 
specific values of the poles, the method for calculating the inverse transforms of the 
terms in the sum will differ. The various possibilities will be considered separately. 

Partial Fractions: Simple, Nonrepeated Poles 

Note from previous examples (or from Table 6.2) that L-'{c/(s - p)} = c&"u(t). 
Therefore, if it is possible to expand X(s) into a sum of terms of this form, one can 
express the inverse transform as a sum of (causal) exponential functions. Assume 
such an expansion is possible. Then there must be one term for each pole. Thus 
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(6.20) Cn +.  . . + -. b , f l ~ l ( s  -2j)  ~1 c2 X(s) = =-+- 
anq=l(s-P,) $-PI s -p2  S - P n  

To evaluate any constant, ci, first multiply both sides of Eq. (6.20) by (s -p i )  obtain- 
ing 

Evaluating both sides of this equation at s = p i  causes all of the r.h.s. terms to evalu- 
ate to zero except the term involving c,. Therefore, 

Once all of the ci coefficients are determined, then the inverse transform of Eq. (6.20) 
is 

Example 6.7 Simple nonrepeatedpoles To find the inverse transform of 

s + 2  X(s) = 
s2 + 5s + 4 , 

first the denominator is factored into (s + l)(s + 4). Then by partial fraction expan- 
sion, 

CI c2 =-+-. s + 2  X(s) = 
(s+l)(s+4)  s + l  s + 4  

To determine cI: 

Likewise, 

Finally, the inverse transform is 

x(t)  = +eJu(t) + fe-%(t). 
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Partial Fraction Expansion: Repeated Simple Poles 

A given factor of D(s) may appear more than once-eg., r times. In this case Eq. 
(6.19) may be written as 

To determine c,+ to cn one proceeds as described above for simple, nonrepeated 
poles. Similarly it is apparent that 

Note also that differentiating the function (s -pl)'X(s) with respect to s leaves every 
term except the one involving c,-~ multiplied by some power of (s - pl). Conse- 
quently, if this derivative is evaluated at s = p I ,  then one may determine c,~. By tak- 
ing higher derivatives one may generalize this result to 

(6.25) 

~ ~~ 

Example 6.8 Repeated simple pole Let 

c2 c3 +-+- C1 

s + 1 
=- sz 

x(s) = (s + 1)2(s + 2) (s + 1)2 s + 2 ' 

One may calculate as above that c3 = 4. Using Eqs. (6.24) and (6.25), 

To determine the inverse transform, note from Table 6.2 that L{te"'u(t)} = 
l/(s + a)2. Therefore, x(r)  = -3e-'u(t) + re-'u(t) + 4e-2'u(t). 

Partial Fractions: Distinct Poles with Complex Roots 

Suppose that one of the factors of D(s) has a complex pole of the form p1 = LY + jp .  
Then if all of the coefficients of D(s) are real, there must also be a factor having the 
pole p 2  = a -j/3 = p I  *. In this case, cI and c2 may be evaluated in the usual manner 
for simple nonrepeated poles, and it is easy to prove that c2 = cI*. Thus X(s) has the 
form 
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(6.26) 

Recall from the discussion of the various forms of the Fourier series that c,,ejnn@ 
+ c:e-jn% = Zlc,lcos(nQ,,l+ &c,,). By direct comparison we conclude that 

xl(r) = 21clleu'cos(pt + i$cl). (6.27) 

Although there are other forms in which to express a transform having complex 
conjugate poles, their inverse transforms are all equivalent to Eq. (6.27) and we 
shall use this form. 

Example 4 9  Complwpoles To determine the inverse transform of 

sz + 3s + 1 
s3 + 3 9  + 4s + 2 ' X(s) = 

first it is necessary to factor the denominator, as). The result is 

D(s) = (82 + 2s + 2)(s + 1) = (s - (-1 +I-))@ - (-1 - j ) ) (s  + 1). 

Therefore, 

Then 

-1 - - Z-1. I -  2+3s+1 
c3 = 

(s + 1 -j)(s + 1 +/-) r - 1  -j* 

CI = 

Consequently, 

Thus, x(t)  = .\/3e4cos(r - 0.464) - e+, r 2 0. 

D(s) as a separate term. Then one may write the partial fraction expansion as 
An alternative method for such problems is to consider the factor 2 + 2s + 2 in 
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CIS + c2 c3 

s 2 + 2 s + 2  s + l  
+ -. X(s) = (6.28) 

c3 has the same value as before. Once c3 is known, one may combine the terms on 
the r.h.s. of Eq. (6.28) and set the numerator of the resulting expression equal to the 
numerator polynomial of X(s), then solve for cI and c2 by equating coefficients of 
like powers of s. 

When X(s) contains repeated complex poles, the partial fraction expansion is 
written with multiple Occurrences of the repeated pole just as in the case of a repeat- 
ed simple pole. It may be easier, however, to utilize the form for a complex pole giv- 
en in Eq. (6.28) and to solve for the coefficients using the alternative method dis- 
cussed in the previous example. 

6.6 TRANSFER FUNCTIONS 

The convolution theorem for Laplace transforms provides one of the most useful 
results for signal processing applications. Consider an LTIC system having input 
x(r), impulse response h(r), and output At). Let h(t) have a Laplace transform, 
H(s), where H(s) is known as the rmnsferfunction of the system. If the system is 
initially at rest, then f i t )  = h(t) * x(t). Therefore, the convolution theorem implies 
that the Laplace transform of the output signal is the product of the Laplace trans- 
forms of the impulse response and the input signal. That is, Y(s) = H(s)X(s). If we 
interpret X(s) and Y(s) as weighting functions for the reconstruction of x(t )  and 
f i r )  from an ensemble of exponentially damped sinusoids, then H(s) is the (com- 
plex-valued) gain for each specific combination of frequency, a, and exponential- 
decay coefficient, cr. This interpretation is a generalization of the interpretation of 
the frequency response, H(a). The latter may be determinable from H(s), as dis- 
cussed earlier. 

This result suggests a powerful method for determining the exact temporal re- 
sponse of a filter to any input signal x( t )  having a well-defined Laplace transform. 
If H(s) is known, then Y(s) may be determined as the product of H(s) and X(s). 
Finally, f i r )  may be found from L-l{ Y(s)} using the partial fraction method. A ma- 
jor practical limitation of this approach is that the direct calculation of the Laplace 
transform for an arbitrary input signal via Eq. (6.8) may have no closed-form so- 
lution. Consequently it often is difficult to apply the Laplace transform to a real 
data signal. On the other hand it is relatively easy to determine the exact response 
of a filter having a known transfer function to a variety of test inputs or to analyt- 
ical signals that approximate actual data signals. An example is presented follow- 
ing the next section. 
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The Transfer Function and the System Equation 

The properties of the Laplace transform related to differentiation and integration 
provide a convenient method of determining the transfer function (and usually also 
the frequency response) of an LTIC system from its differential equation. Recall 
from Chapter 2 that any LTIC system may be represented by a differential equation 
of the form 

Assume that x(f )  and all of its derivatives are zero at f = 0-. Taking the Laplace 
transform of this equation, 

n- 1 m 

1-0 i-0 
+ 2 [apiY(s) -fMO), Y(l)(O), . . . , yc’-’)(O), s)] = 2 b#X(s), 

where eachA(.) is a b c t i o n  of the initial conditions on f i t )  and its derivatives. Re- 
arranging, and combining all of the f(.) functions into one such function, A,), one 
obtains 

=xv(0),y’l)(O), , . . ,y(”-I)(O), s) + z b d X ( s ) .  
i-0 

Finally, solving for Y(s), 

According to Eq. (6.29) the output response, f i t )  comprises two components. 
One component is due to the initial conditions on y(t) and its derivatives and is 
called the zero-inpur response. The second component is the output due to the input 
signal when all initial conditions are zero and is called the zero-state response. But 
from the preceding section the zero-state response may be determined from the 
transfer function as Y(s) = H(s)X(s). Therefore, settingn.) = 0 in Eq. 6.29, we find 
that 

H(s) = (6.30) 
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Eq. 6.30 establishes the fundamental relationship between the transfer function of a 
single-input, single-output, LTIC system and the coefficients of its input-output dif- 
ferential equation. Given either the transfer function or the differential equation, it is 
trivial to specify the other. 

Example dl0 Output response via the Laplace transform In prior discussions 
of the frequency responses of sensors, emphasis was placed on assessing the steady- 
state filtering properties of the sensor. For example, if a displacement transducer 
has a cutoff frequency of 5 Hz, then it might not be adequate for measuring finger 
tremor because tremor frequencies may exceed 5 Hz. One might ask whether the 
same transducer could be employed successfully for measuring displacement of a 
finger in response to an abrupt, step-like activation of a finger flexion muscle. In 
this case it is the transient response of the sensor that is important and, although the 
transient and steady-state response characteristics are highly correlated, often the 
transient response to a specified input may not be directly apparent from knowledge 
of H(Q). Thus one must calculate the output response. 

Assume the displacement sensor can be represented as a first-order system with 
a cutoff frequency of 5 Hz. Thus its system equation has the form 

Assuming that all initial conditions are zero and taking Laplace transforms, 

1 
sY(s) + - Y(s) = bX(s), 

7 

from which one finds 

7 

(This result could have been obtained also from Eq. (6.30)). Now to approximate 
the experimental situation, let x(t) u(t). Then 

b 1 C I  c2 Y(s) = H(s)x(s) = - - = - + 1' 1 s  s 
S+- S + -  

7 7 

It is easy to show that cI = br, c2 = -br, and thus 

At) = brf1 - e+qu(t). (6.3 1) 

The cutoff frequency of 5 Hz corresponds to T =  M O T  = 0.0318 s. Let b = 117 
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0 0.1 0 2  0.3 0.4 

T i ,  Sec 

FIGURE 6.3. Theoretical step response of a displacement sensor modeled as a first-order 
system having a cutoff frequency of 5 Hz. 

so that IH(O)l= 1. The input and output signals are plotted in Fig. 6.3. Note the slow 
rise of At) due to the time constant of the transducer. One concludes that if resolv- 
ing the trajectory over the initial 100 msec were critical for interpretation of the 
data, then this transducer would not be suitable because of the distortion of the out- 
put signal relative to the rapid change in the input. 

Example 6.11 Step response of underdamped secondsrder system The LTIC 
system described by the equation 6y + 0.6y + 2 . 4 ~  = x has the transfer hnction 

1 
6L$ + 0.6s + 2.4 ’ H(s) = 

Its complex conjugate poles are p1 = -0.0500 +j0.631, p:  = -0.0500 -j0.631. 
The response of this system to the unit step, x(t) = u(t), may be determined using 
Laplace transforms. Thus, 

c, = = -0.2080 +j0.0165 = 0.2086e-p.221, 

and c2 = 0.41 7. Therefore, 

At) = 0.417e4.05’ cos(O.361f - 3.221)u(t) + 0.417u(f). 

This step response is plotted in Fig. 6.4. Note the long-lasting damped oscillation 
characteristic of systems having complex conjugate poles near (but not on) the 
imaginary axis. 

Example 6.12 System equation from transfer function What is the differential 
equation of a system having the transfer function 

2 
s2+6s+8? 

H(s) = 
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FIGURE 6.4. Step response of the underdamped second-order system of Example 6.1 1 

Set H(s) = Y(s)/X(s) and cross-multiply, yielding 

SZ Y(s) + 6s Y(s) + 8 Y(s) = Ws). 
Since H(s) is defined for a system initially at rest, assume that all initial conditions 
are zero. Taking inverse transforms we obtain 

Example 6.13 Transfer function of a filter Figure 6.5 shows the circuit dia- 
gram of an electronic filter. We may determine its transfer function, H(s) = 
E(s)/V(s), and frequency response by first writing the differential equations of the 
circuit, Using the current loops indicated in the figure and assuming all initial con- 
ditions are zero, these equations are 

(6.32a) 

(6.32b) 

FIGURE 6.5. Circuit diagram of the electronic filter of Example 6.1 3. 
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e(t) = Ri2(t). 

The Laplace transforms of Eqs. (6.32b) and (6.32a) yield 

1 1 1 
V(s) = I,(s)[ - + -1  -I2(&$-; sc, sc, sc2 

(6.32~) 

(6.32d) 

(6.32e) 

and from Eq. (6.32c), E(s) = R I,@). Combining Eqs. (6.32d) and (6.32e), after 
some algebra we obtain 

V(s) = 1 2 4  + sRci + sRc2], 
SCI 

from which we may solve for f2(s)/V(s) and then for H(s): 

(6.33) 

It is apparent that this filter is highpass with a zero at R = 0 and a pole at $2 = 
-(l/R(Cl + C,)). Since H(s)  has no complex conjugate poles on the imaginary axis 
and no poles in the right-half s-plane, the frequency response may be evaluated as 

Pole Locations and Stability 

An important issue for signal processing is whether certain fundamental properties 
of the input signal will be retained in the output from a filter. For example, if the in- 
put signal is bounded, will the output also be bounded? A filter meeting the condi- 
tion that the output signal will be bounded whenever the input signal is bounded is 
said to be bounded-input, bounded output (BIBO) stable. For an LTIC filter with a 
bounded input, x(t), the output is 

In other words, a sufficient condition for BIBO stability is that h(t) is absolutely 
integrable over the positive time axis. Then At) will be bounded if x(t) is bound- 
ed. 

This criterion may be expressed in terms of the pole locations of H(s) since, on 
the basis of a partial fraction expansion of H(s), one may express h(t) as the summa- 
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FIGURE 6.6. The various forms of the impulse responses of second-order lowpass systems 
have pairs of poles that are &her (1) on the negative real axis, with one close to the origin and 
one not close to the origin, or (2) are complex conjugate poles that are both closer to or further 
away from the negative real axis. 

tion of the time functions associated with the poles. Consider poles in the left half of 
the s-plane. For a pole on the negative real axis, the corresponding time function has 
the form e+‘u(t), where a > 0. This function will be absolutely integrable as required 
for BIBO stability. For second-order systems the situation is qualitatively similar, as 
depicted in Fig. 6.6. For complex conjugate poles in the left half-plane, the corre- 
sponding time f ic t ion  has the form e+’cos(bt + O)u(t) where a, b > 0. This function 
also is absolutely integrable. On the other hand, poles on the imaginary axis or in 
the right half-plane will correspond to time functions that are not absolutely inte- 
grable. Therefore, a sufficient condition for BIBO stability is that all poles of H(s) 
lie in the left half of the s-plane. 

6.7 FEEDBACK SYSTEMS 

Feedback refers to the sensing of the output of a system and transmission of this sig- 
nal back to the system input in order to influence the future output of the system 
(Fig. 6.7). Feedback is often utilized when it is desired to automatically adjust the 
input to a system if the output deviates from a desired output. Although conceptual- 
ly with knowledge of the transfer function of the system one may accomplish this 
goal by modifying the input signal itself, the use of feedback provide more precise 
adjustment of the input to a system in direct relationship to unanticipated changes in 
the output. By adding feedback one modifies the overall transfer function between 
the input signal and the system output and, by judicious choice of the properties of 
the feedback path, one may (within limits) “redesign” the transfer function to suit 
one’s objectives. Indeed there are many published algorithms for designing feed- 
back paths to satisfy various criteria of optimality such as minimizing steady-state 
errors, maximizing speed of response, or minimizing the energy expenditure of the 
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system to achieve a specified output. Feedback paths also may be designed to pro- 
vide compensation for changes in the properties of the original system so that the 
overall control of the output by the input signal is not seriously degraded by such 
changes (if they are small enough). Probably for this latter reason feedback paths 
have evolved in natural biological systems for many of their control processes. In- 
deed it seems to be the exception when a physiological process is controlled without 
feedback (called “open-loop” control), although there may be cases in which open- 
loop control is utilized initially to respond to a disturbance, followed by control by 
way of feedback (called “closed-loop” control) to achieve an appropriate steady- 
state response. Feedback is important in signal processing because the presence of 
feedback, or alteration of the properties of a feedback path, modifies the overall fre- 
quency response of a system. We will focus on this consequence of feedback, but it 
should be recognized that entire textbooks are devoted to the analysis and design of 
feedback systems. 

As indicated in Fig. 6.7, the basic linear feedback system comprises a feed-for- 
ward system, G(s), afeedbuck system, F(s), and a node which linearly combines the 
input signal, x(t), and the feedback signa1,ykt). If the node subtracts the feedback sig- 
nal from the input signal, the overall system is called a negutive-feedback system. 
Conversely, if the node adds the two signals, it is apositive-feedbacksystem. (In gen- 
eral, linear positive-feedback systems are unstable and therefore have less relevance 
to normal biological systems, although positive feedback may be relevant to under- 
standing certain disease processes. Positive-feedback systems can be physically real- 
izable if their outputs are “clipped”-for example, by saturation phenomena-so that 
they never require infinite energy.) Other names for G(s) are the open-loop system or 
the plant. The complete system with intact feedback path is called the closed-loop 
system. 

To determine the transfer function of a closed-loop, negative-feedback system, 
note first that 

Y(s) = G(s)[X(S) - Y’s)] = G(s)[X(S) - F(s)Y(s)]. 

U 
FIGURE 6.7. General schematic of a simple feedback system. Output of the linear mbiner  
(La, circle with plus sign) can be either x(t)+ y,(t) (positive feedback) or x(t) - y,(t) (negative 
feedback). 
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Solving for Y(s) yields 

from which one concludes that 

The potentially profound differences between H(s) and G(s) that may 
complished through the introduction of the feedback system, F(s), may not be ev- 
ident from this seemingly simple equation. Consider a G(s) that contains only one 
pole on the negative real axis. In the absence of feedback, that pole dominates all 
transient responses of f i t ) .  By introduction of an F(s) also having a single pole, 
one bestows on H(s) a second pole and a second component of the transient re- 
sponse that may be much faster or much slower than that of G(s) by itself. One ex- 
treme occurs when F(s) = s. Then yf(t) is the derivative of f i t )  and when f i t )  is in- 
creasing rapidly, the feedback adds a large negative signal to the input and 
decreases the rate of rise of fir) (assuming that G(0) > 0). When f i t )  is constant, 
yht) is zero but as soon as f i t )  deviates from a constant value-for example, in re- 
sponse to a noisy disturbance to the system-then the feedback quickly responds 
to force f i r )  in a direction opposite to its initial change. Derivative feedback is a 
powerful means of keeping a system output near a constant steady-state level. One 
of its disadvantages, however, is that it may be too sensitive to small disturbances 
in f i t )  and actually amplify their effect. In some biological systems derivative 
feedback has been combined in parallel with feedback paths having other proper- 
ties so that the overall feedback balances sensitivity to noise disturbances, steady- 
state output error, and speed of response. 

Proportional feedback, in which F(s) = kp a constant, is common in natural phys- 
iological systems. The control of many basic physiological process, from heart rate 
to insulin secretion to stages of the cell cyle, involve some sort of proportional feed- 
back. It should be noted, however, that in many real biological processes the propor- 
tional feedback also involves a nonlinear term such as the square of the feedback 
signal or the product of two signals. 

One profound effect of the introduction of feedback into a system is that the right 
type and amount of feedback may cause a nonoscillatory system to become oscilla- 
tory. Assume that G(s) is BIB0 stable, so that a!! of its poles are in the left half- 
plane. Introducing negative feedback will cause the overall transfer function (Eq. 
(6.35)) to have the denominator 1 + F(s)G(s). If there is some value of s on the 
imaginary axis, say so, such that so =jQo, and 1 + F(jQo)G(jQo) = 0, then we can 
conclude that: (1) there is another value of s, specifically s = s t ,  that also makes the 
denominator equal to zero; (2) so and s t ,  are poles of H(s); (3) the denominator 
polynomial has factors (s - so)(s - s t , )  = (s2 + bo12); (4) h(t) has a term that is an un- 
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(6.35) 

be ac- 
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. 

damped sinusoid. That is, if F(s)G(s) = -1 at some point on the imaginary axis, then 
the system produces an undamped, sustained oscillation in response to any input or 
nonzero initial condition. This statement is equivalent to the conditions: 
lF(jllo)G(jllo)l = 1 , i$F(jQ,)G(ifk,) = -7r. Because the gain of the feedback system 
“around the loop” is F(s)G(s), this criterion for producing an oscillation is often 
stated as “the loop gain must be equal to negative one”. 

~~ ~~~ - ~ 

Example 614 Determining H(s) for a feedback system The system of Fig. 6.8 
has nested feedback loops. To determine the overall transfer function, H(s) = 
P(s)/R(s), it is necessary to proceed in steps. First we evaluate the transfer h c t i o n  
from x(t)  tofit): G,(s) = Y(s)/X(s). By Eq. (6.35), the transfer function of this inter- 
nal feedback loop is 

Now the “plant” transfer function for the outer feedback loop is the transfer func- 
tion from x(r) to p(r), which is G(s) = G,(s)A(s). Thus the overall closed-loop trans- 
fer function is 
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Substituting the specified transfer functions of the four subsystems into this equa- 
tion yields 

24s + 5) 
= 

3s4 + 46s3 + 170~2 + 102s + 10 ' H(s) = 

s +  10 

Example 6 15 Comparison of proportional, derivative, and integral feedback 
Figure 6.9 diagrams a system for controlling the angular position of a robotic arm. 
The controller comprises a voltage-controlled motor and its associated electronic 
control hardware. Given an input voltage, r(t), the motor rotates a shaft by an angle 
proportional to r(t). The angle of the arm, p(t), is controlled by this shaft. In re- 
sponse to a sudden change in r(t), the arm does not move instantaneously to its final 
position because of inertia. When the feedback connection is disabled, the transfer 
function of the controller and arm together is given by 

10 
G(s) = C(s)A(s) = - 

s + 5 '  

That is, the open-loop system has a time constant, TOf, of 0.20 s. 
One may modify the response of the robotic arm by introducing negative feed- 

back, as shown in the figure. Consider first the use ofproportionalfeedback. In this 
case, F(s) = k, where k is a constant. Given that G(s) may be expressed as G(s) = 
b/(s + a), the closed-loop transfer function in the presence of proportional feedback 
will be 

Therefore, the system is still first-order, but the pole location has changed. If the pa- 
rameters (a, b) are positive, then the new time constant, rp = l/(a + kb), is smaller 

r(t) T-p-y-;-qTb P(t) 

FIGURE 6.9. Model of a control system for a robotic arm. 
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than the original time constant, = l/a, and the step response achieves its new 
steady state more quickly than without feedback. If, for example, k = 1 for the ro- 
botic arm system, then the new time constant is 0.067 s, or about one-third of T,,. 
This improvement in response, however, has a price. Using the Final Value theorem, 
the final value of&) when r(t)  is a unit-step h c t i o n  is 

Note that without feedback the final value of p( t )  would be b/a. Therefore, the 
steady-state gain has been decreased in the presence of proportional feedback. 
Defining an error, e(t) = r(t) -p(t), the final value of e(t) is larger with proportional 
feedback. 

For derivativefeedback, the feedback transfer function has the form F(s) = ks. 
Now the closed-loop transfer function is 

b 

Again, the system is still first-order, but the time constant now is T,, = (1 + kb)/a, 
or, assuming k > 0, T~ = (1 + kb)?,,, and thus the closed-loop system responds more 
slowly than the system without feedback. One may easily show that the steady-state 
response to a step input is the same for both the open-loop and closed-loop systems. 

Finally we may consider the effect of integmlfeedback, in which case F(s) = Us. 
The closed-loop response becomes 

Integral feedback adds another pole to the closed-loop transfer function, convert- 
ing the first-order system into a second-order system. Notice that adjusting the 
feedback gain will alter the natural frequency of the system but not its damping fac- 
tor. Perhaps the most profound effect of adding integral feedback occurs in the 
steady-state response to a step input. This response is 

lim,,o(sP(s)) = lim,,o 

The system has become a highpass filter with a gain of zero at zero frequency. 
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6.8 BIOMEDICAL APPLICATIONS OF LAPLACE TRANSFORMS 

Example 6.16 Simple postural control model A mass on an inverted pendulum 
(Fig. 6.10) provides a simple model of the use of hnctional neuromuscular stimula- 
tion (FNS) to maintain an upright posture. This model assumes that the entire body 
mass, M, is placed at the center of gravity of the body and is balanced atop a straight 
“stick” leg. T is the effective torque resulting from artificial activation of the leg 
muscles using electrical stimuli generated by a pulse generator and applied to intra- 
muscular wire electrodes or skin surface electrodes. This applied torque acts against 
three torque components of the system: (1) a torque due to circular acceleration of 
the body mass, (2 )  an equivalent torque due to rotational resistance at the ankle 
joint, and (3) the torque due to the component of the gravitational force that is per- 
pendicular to the “leg” at a distance L from the rotation point. The equation of mo- 
tion of this system is 

r(t)  = ML2 d(t) + R&t) + MgLNt). (6.36) 

Here the approximation sin(8) J 8 for small angles has been used in the third 
term on the r.h.s. of Eq. (6.36). Taking Laplace transforms and solving for the trans- 
fer function between the applied torque and the resulting angle of rotation (assum- 
ing zero initial conditions) yields 

1 IML 
Ls2 + (R1LM)s + g 

- NS) 

r(s) 
H(s) = - - 

The poles of H(s) are located at q 2  = -(R12ML2) f (gR21MzL2 - 4gLl2L). 
Consequently, if there is no rotational resistance, the poles are at sI,2 = *j g/L, 

implying that h(t) comprises an undamped oscillation. For the more likely case that 

I \  
W 

T 
FIQURE 6.10. Modeling postural control as the balancing of an inverted pendulum. Body 
mass, M, is assumed to be atop a rigid ‘stick” leg of length L. T is the net torque developed by 
applying electrical stimuli from a pulse generator to appropriate leg muscles. 



222 RESPONSES OF LINEAR CONTINUOUS-TIME FILTERS TO ARBITRARY INPUTS 

Tissues 
(0) 

R > 0, there are two possibilities. If R2 > 4gL3W,  then both poles of H(s) are on the 
negative real axis and the response of this system to a step change in applied torque, 
T, is dominated by the time constant associated with the pole nearest to s = 0. If 0 < 
RZ c 4gL3M, then H(s) has complex conjugate poles and h(r) comprises a damped 
oscillation. This last case (small but nonzero R) seems most likely physiologically. 
Example 61 7 Iron kinetics in blood Iron is an important element that is neces- 
sary for the production of hemoglobin, myglobin, and cytochromes. Dietary iron is 
transported in the blood (plasma) to erythropoietic and nonerythropoietic tissues 
(Fig. 6.1 1). There is a faster reflux of iron from the latter and a slower reflux from 
the former due to ineffective erythropoiesis. Some plasma iron is lost to other tis- 
sues and some is taken up directly by red cells and not recirculated. One may devel- 
op a compartmental model of iron kinetics in order to predict the plasma iron con- 
centration in response to a bolus injection of a tracer such as 59Fe. The following 
mass balance equations may be written for the model of Fig. 6.1 1 : 

dCI 
V l T  = - h C , ( ~ )  + a12Cz(O + a,,CdO + MW); 

a01 Early 
Reflux 

M Nt) - 4. (2) 

b ,-% b t e  

a21 Plasma 
(1) 

a41 
Reflux 
(3) , 

Red 
Cells 
(4) ~ 
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where Y =  volume of a compartment, C = concentration, M is the mass of the bolus 
of tracer, kl = + a2 I + a3 + a4 , and all concentrations are zero at r = 0. Let us ex- 
press these relationships in terms of the following dimensionless variables: 

After some algebra we find 

where 

Taking the Laplace transforms of these equations, we obtain: 

Combining and solving for the normalized plasma iron concentration yields 

from which we determine 
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Thus we see that the kinetics of plasma iron concentration following a bolus injec- 
tion are those of a third-order system having also two zeros. Given specific parame- 
ter values, one could use partial fractions to expand the above expression and then 
solve for Ol(f). 

Introductory Example Revisited 

Consider again the introductory example for this chapter, in which it was desired 
to determine the effect of filtering on the measured response of a two-compart- 
ment model of drug distribution dynamics following a bolus infusion of the drug 
into the first compartment. This response before filtering may be calculated by 
solving the differential equation using Laplace transforms. Taking the Laplace 
transform of both sides of Eq. (6.1), allowing for nonzero initial conditions, one 
obtains 

s~Y(s) - sHO) - HO) + ~ [ s Y ( s )  -y(O)] + by($) = kJ(s). 

The general solution for Y(s) is 

X(s), 
sy(0) + j(0) + U A O )  kl Y(s) = + 

s 2 + a s + b  s 2 + m + b  

Using the previously specified values for u, 6, y(O), j(0) and letting x(t) = 0, we 
calculate P(s) as 

0.5 
s2 + 0.255s + 0.0025 * 

P(s) = 

Note that the denominator may be factored into (s + 0.01 17xs + 0.2133). As 
specified previously, the filtered signal, yf(f), is the output of a first-order lowpass 
filter with unity gain and cutoff frequency of 0.2513 rads and input y*(r). Thus, if 
H(s) is the transfer function of the filter, 

0.5 0.25 13 
Yhs) = P(s)H(s) = * (6.37) 

(s + 0.01 17)(s + 0.2 133) s + 0.25 13 

Expanding Eq. (6.37) using partial fractions, 

c 3  

s + 0.2513 ' 
+ C2 

s + 0.2133 
+ C1 

s + 0.01 17 
YAS) = (6.38) 

It is readily shown that cI = 2.60, c2 = -16.60, c3 = 14.00. Therefore, the inverse 
Laplace transform of Eq. (6.38) is identical to Eq. (6.2). 
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6.9 SUMMARY 

The Laplace transform models a signal as a sum of exponentially decaying sinu- 
soids having various frequencies and rates of decay. Similar to the case with the 
Fourier transform, an infinite number of such signals are required to reconstruct 
an arbitrary function, x(t). The bilateral Laplace transform requires specification 
of the region of the s-plane over which it converges. By considering only time 
functions that are zero for all I < 0, one may define a unilateral Laplace transform 
for which each transform can be assumed to correspond to a unique function 
of time. Its region of convergence includes all of the s-plane to the right of its 
rightmost pole. The unilateral Laplace transform exists for most such functions (if 
they are integrable over all finite time intervals), unless one cannot find any con- 
stant, c, such that the magnitude of the function grows in time more slowly than 
8'. 

If a Laplace transform, X(s), of a function x(t )  has the form of a proper rational 
polynomial, and ifX(s) only has poles in the left-half plane andor on the imaginary 
axis, then the Fourier transform, X(n), may be determined from X(s). If there are 
only poles in the left-half plane, then X(n)  = X ( S ) ~ $ - , ~ .  

The usual approach for calculating the inverse Laplace transform is the method 
of partial fractions. Typically, one factors the denominator polynomial into a prod- 
uct of factors of the form (s - p,) where p i  may be real or complex. Real poles give 
rise to time f'bnctions of the form c,epi'u(t) ,  whereas pairs of complex conjugate 
poles correspond to time functions having the form c,eRC@i)'  cos(ImbPi}t + 
4 P i ) W .  

For an LTIC system having the impulse response h(f) ,  the Laplace transform 
H(s) is the transfer fbnction of the system. If its input signal has a Laplace trans- 
form, then the output signal has a Laplace transform given by the product of H(s) 
with the Laplace transform of the input. Because the Laplace transform of a deriva- 
tive accounts for the initial value of a signal at f = 0, from the Laplace transforms of 
the terms in a system equation one may solve for the complete output response of a 
system including both the transient response due to the initial conditions (zero-input 
response) and the response to the specific input signal (zero-state response). This 
capability is important in biomedical applications involving transient signals, for 
which the steady-state analyses based on frequency response functions are not read- 
ily applicable. The method of Laplace transforms also provides a convenient ap- 
proach for analyzing the transfer function, fiequency response, and transient behav- 
iors of systems comprising multiple subsystems connected in series, parallel, or 
feedback configurations. 

Because in many cases the frequency response of a filter is derivable from its 
transfer hnction, it will be possible to define discrete-time filters whose frequen- 
cy responses are related to those of specific continuous-time filters. To do so we 
must first develop an understanding of Fourier transforms applied to discrete-time 
signals and their relationship to a discrete-time counterpart of the Laplace trans- 
form known as the 2-transform. These topics are discussed in the next two chap- 
ters. 
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EXERCISES 

6.1 Calculate the Laplace transforms of the following signals: 
a. x(t) = t[u(t) - u(r - 2)]; 
b. w(t) = C O S ( ~ T C ) C O S ( ~ T ~ ~ ) ;  

d. v(t) = e-3' * e-5', t 2 0; 
e. g(t) = Pl(r - 0.5) - P2(t - 2) + Pl(t  - 3). 

c. z(t) = t cos2(~r)u(r); 

6.2 Given that X(s) = 2 4 s  + 4), find the Laplace transforms of the following sig- 
nals: 

a. At) = r(r) * x(t); 
b. r ( r )  = e"/*x(t); 

d. z(r) = x(t)sin(&,f). 
C. v(t) = ~ ( 2 t  - 5)~(2 t  - 5);  

6.3 Determine the inverse Laplace transforms of the following functions: 
2 

s 2 + 7 s + 1 2 '  
a. X(s) = 

r - 
b. Y(s)= -* s + l '  

5 
c. Z(s)=e-2-* 

s2 ' 
4 

s2($ + 2s + 6)  ' d. H(s) = 

3 s + 2  
s3+ 11s2+36s+36 e. G(s) = 

6.4 Determine the impulse response of the LTIC system having the transfer func- 
tion 

Y(s) 4(s + 10) 
X(s) s2+ 2s + 4  ' 

H(s) = - = 

6.5 Second-order, lowpass, Butterworth filters have a transfer function given by 
H(s) = nY(s2 + f i f l , s  + a!), where fl, is the cutoff frequency. Determine the step 
response of these filters. 
6.6 A filter has the impulse response h ( f )  = (t  - 1)2e-2('-1)u(t - 1). Calculate its 
transfer function and frequency response. 
6.7 The impulse response of an LTIC system is h(r) = e4cos(628r). What is its re- 
sponse to the unit ramp signal, x(r) = tu(t)? 
6.8 A negative feedback system comprises a plant having the transfer function 

s + 0.1 
(s + l)(s + 0.05) 

G(s) = 
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s + l  

and a feedback loop having the transfer function F(s) = 2. What is the overall trans- 
fer function of this system? 
6.9 Let the system depicted in Fig. 6.7 be configured as a negative feedback sys- 
tem described by the two coupled differential equations: 

Use Laplace transforms to determine the transfer function relating r(r) to x(?), and 
calculate the step response of this system. 
6.10 Arterial blood pressure,p(r), is regulated by a negative feedback loop involv- 
ing barorecepton. A simple model of this regulatory system is shown in Fig. 6.12. 
Arterial blood pressure is monitored by baroreceptors whose output is apparently 
compared to a reference pressure, r(t). Brainstem neural mechanisms modulate 
blood pressure through control of sympathetic and parasympathetic activities to the 
heart and vasculature. The parameters given in the figure provide rough approxima- 
tions to the temporal responses of these systems. 

a. Determine the transfer function relatingp(r) to the reference input, <?). 
b. What is the differential equation relating r(t) andp(r)? 
c. The brainstem controller includes an unspecified gain, K. If K is such that the 

transfer function of the closed-loop system has poles on the imaginary axis, then 
p(r) will oscillate even if r(?) is constant. Find the value of K that will lead to an os- 
cillation in blood pressure. 
6.11 Exercise 3.18 described an electrophysiology recording table that was sub- 
jected to floor vibrations. Consider this same table and let R = 100 N/m/s, K = 0.1 
N/mm, M = 5 kg. 

a. Recall, or solve for, the system equation for which vertical floor displacement 
is the input and vertical table displacement is the output. 

b. Determine the transfer function and the frequency response of this system. 
c. A motor running at 1500 rpm causes sinusoidal displacements of the floor 

Brainstem 
controller 

Heart and 
vasculature 

- 
Baroreceptors 

FIGURE 6.12 A linearized model of the control of arterial blood pressure, p(t), by barorecep- 
tor feedback. r(t)-reference input. K Is the gain of the brainstem neural control mechanisms 
at fl = 0. 
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with amplitude 2 nun. What will be the amplitude of the steady-state sinusoidal dis- 
placements of the table? 

d. Using MATLAB, determine the response of the (initially quiescent) table to a 
sudden floor displacement of 1 mm that lasts for 100 msec. 
6.12 Fig. 6.13 depicts a simple model of an excised frog muscle pulling a weight 
along a surface. The muscle model includes a series elastance, K, a parallel viscous 
resistance, R, and an active state generator, F. Movement of the weight, My is op- 
posed by frictional resistance, Rf 

a. Derive the differential equation relating the displacement of the weight, x(t), 
to the force&), generated by the active state generator. 

b. In response to a brief electrical stimulus applied via intramuscular electrodes, 
the active state generates the transient force shown in Fig. 6.13(c). If the force 
(grams) is given byf(r) = 2[e4.05' - e-O.9, calculate the resulting movement of the 
weight. Let K = 1 mdgram, R = 0.1 grams/(mm/s), Rf= 0.2 grams/(mds), M = 5 
grams. 

weiaht 

0 0.2 0.4 0.6 0.0 
t, sec 

FIQURE 6.13. (a) Schematic of an excised frog leg muscle that is attached to a rigid pole at 
one end and to a weight of mass M at the other. (b) Mechanical diagram of the muscle-weight 
system. F: active state generator; K: series elastame; R: parallel viscoue resistance; f ? ~  Mc- 
tional resistance. (c) Theoretical active state force generated as a result of applying a brief 
electrical stimulus to the muscle via intramuscular wire electrodes. 
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6.13 One method for measuring changes in the intracellular concentration of a va- 
riety of chemical species is to attach a fluorescent tag to the species of interest. This 
chemical tag fluoresces after exposure to light of a certain frequency (that is differ- 
ent for different tagging chemicals). After a flash of light of appropriate frequency 
is applied to the tissue, the intensity of fluorescent light is proportional to the con- 
centration of the tagged species. Assume that in response to a light flash a particular 
tagging compound fluoresces with an intensity that is proportional to the species 
concentration, ki, and that it decays exponentially with a time constant of 2 msec. 
The fluorescent light is detected by a photomultiplier tube and amplified by an elec- 
tronic system having a lowpass cutoff frequency of 1000 Hz. Compare the electron- 
ic output from the photomultiplier tube and amplifier with the specified time course 
of intensity of fluorescent light. Why is it possible to measure changes in concentra- 
tion even though the electronic signal is distorted dat ive to the known light intensi- 
ty? 
6.14 Some biomedical transducers operate on the principle that a physical action 
(e.g., a force, pressure, or movement) causes a change in the inductance of a coil of 
wire. (Such transducers are called “variable reluctance” transducers.) Inductance L2 
in Fig. 6.14 is a variable inductance. It is connected into a “transducer coupler” cir- 
cuit, with which it forms a bridge circuit as shown. 

a, Let H(s) = Ewt(s)/Ein(s). Determine H(s) for a fixed value of L2. 
b. Find the steady-state relationship between the magnitudes of ei, and eout when 

the former is a sinusoidal signal. If eh has a constant magnitude, determine the de- 
pendence of the magnitude of eout on L2. 
6.15 Oxygen sensors for use in blood often have a membrane over the sensor 
through which oxygen must diffise in order to be detected. This process limits the 
rapidity of response of the sensor to a change in oxygen level of the blood. A Clark- 
style electrode may have a time constant of several seconds. Assume that such an 
electrode has a time constant of 15 seconds. The electrode is situated in a small 

FIGURE 6.14. A bridge circuit containing a variable reluctance. Typically the bridge circuit, 
less L2, resides within an electronic amplifier known as a transducer coupler, while L2 is con- 
tained within a biomedical transducer that is connected to the coupler via cabling. 
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SO) i m(t) x(t) 

chamber of a blood gas analyzer and has been exposed to air for a long time, then a 
laboratory technician abruptly fills the chamber with blood sampled from a patient. 
If the partial pressure of oxygen, Poz, in the blood is 60 Torr, determine the time 
course of the ermr in the reading from the oxygen electrode. How long should the 
technician wait after injecting the sample before taking the reading? 
6.16 A small number of cells is placed in a cell culture dish and the cells are al- 
lowed to grow in the presence of a growth factor added to the culture medium. Let 
x(t )  be the normalized density of cells (i.e., fraction of the surface of the culture dish 
that is covered by cells), and assume that 4 0 )  = 0. Growth factor is added to the 
dish at a constant rate, s(f), of 2.5 ng/min for 60 minutes. Since the growth factor is 
consumed by the cells, its concentration changes with time. By periodic sampling 
and chemical analysis, the investigator ascertains that the concentration of growth 
factor is m(t) = 150[e-"300 - e-O.O3l ng. The investigator assesses x(t) by measuring 
the transmission of light through the culture dish using appropriate lens systems and 
a photomultiplier tube. By curve-fitting this data she determines that the fractional 
covering of the surface varies according to the relation x(t) = 1 - 0.5[e4'izoo - 
e""O0]. Note that the unit of time is "minutes". This system can be modeled as 
shown in Fig. 6.15. 

a. Calculate the apparent transfer function of each subsystem in Fig. 6.15, and of 
the overall system that relates x( f )  to s(r). 

b. The investigator wishes to determine the effects of adding a possible inhibitor 
of cellular metabolism to the culture dish. One could argue that the inhibition will 
be most apparent if the substance is delivered at the time of maximum rate of 
growth of the cells. Determine this time. 

c. Is it possible to modify s(f) to increase the maximum rate of growth while 
keeping the total mass of delivered growth factor constant? Test your suggestion(s) 
by solving explicitly for x ( f )  using the modified s(f)  as the input. 
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MODELING SIGNALS AS SUMS OF 
DISCRETE-TIME SINE WAVES 

7.1 INTRODUCTION 

Chapter 5 developed the Fourier series and Fourier transform as tools for modeling 
continuous-time signals as sums of sine waves. This chapter will extend both of 
these methods to discrete-time signals. Discrete-time signals arise naturally in bio- 
medical situations in which measurements are acquired in association with discrete 
events, For example, the amount of blood ejected from the heart on each beat 
(stroke volume) and the volume of air inspired on each breath (tidal volume) are 
measurements from discrete events. In both of these cases the “time” variable is the 
index of an ordered sequence of events (Lev, heart beats or breaths). As these exam- 
ples show, the ordered sequence of events may be indexed relative to variables other 
than time. A common example is the indexing of spatial sampling in imaging. View- 
ing the intensity values of each spatial pixel in an MR image as a “discrete-time” 
signal, one could ask, for example, whether there is a spatial (either linear or two-di- 
mensional) sinusoidal variation in pixel intensity. 

This concept is not restricted to MR images but may be applied to any array of 
physical sensors, such as a CCD array sensing intensity of fluorescent light over a 
tissue culture dish or an array of scintillation detectors exposed to an x-ray field. (It 
is important to recognize that measurements that are associated with discrete events 
often are continuously-graded variables. On the other hand, some truly continuous- 
time variables can assume only discrete levels. An example of the latter is the num- 
ber of cells in a culture dish as a f ic t ion of time.) 

Discrete-time variables also may originate from measurements that intentionally 
count (or average) signals over a pre-selected time period. In Chapter 1, Fig. 1.4 de- 
picts an example of this type of signal based on counting the number of action po- 
tentials generated by a neuron in one-second intervals. Another example is the count 
of the number of offspring per generation (the “time” variable) in studies of popula- 
tion dynamics. A histogram plot may be considered a “discrete-time” variable be- 

231 
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cause it counts the number of events occurring within preselected intervals of an in- 
tensity variable and presents the results in an ordered sequence of these pre-selected 
intervals. Fig. 1.2(f) shows such an example. 

Of course, discrete-time variables are generated most commonly by repetitive 
sampling of continuous-time variables, as discussed in Chapter 1. (We shall assume 
that this sampling occurs with a uniform inter-sample time.) The discrete-time vari- 
ables so created are also ordered (i.e., indexed) sequences of numbers and, in this 
sense, are not different from the examples of indexed sequences given above. Since 
one often is concerned with associating the characteristics of a continuous-time sig- 
nal with properties of the biomedical system fiom which it originated, a relevant is- 
sue is the relationship between models of discrete-time signals that were obtained 
by sampling and the Fourier series or Fourier transform representations of the con- 
tinuous-time signals that were sampled. This important issue will be a major focus 
of this chapter. 

7.2 INTERACTIVE EXAMPLE PERIODIC OSCILLATIONS IN THE 
AMPLITUDE OF BREATHING 

Some discrete-time signals are periodic, or nearly so, and can be modeled as a sum 
of sinusoids, as this example demonstrates. The amount of air inhaled on each 
breath (tidal volume) is not constant even when the environmental and other condi- 
tions of the subject are as constant as one can achieve. This variability in tidal vol- 
ume is especially evident in certain disease situations, such as congestive heart fail- 
ure, and in neonates. Figure 7.1 shows a record of tidal volume from a normal-term 
human infant during rapid-eye-movement (REM) sleep plotted as a discrete-time 
variable versus “breath number” (solid symbols connected by dotted lines). It ap- 
pears that this signal might be modeled as a noisy sine wave. The fitting process is 

50 c .. . .  

. .  . .  .. . -  
L‘ 

2 0 -  * 
0 5 10 15 20 25 

Time, breaths 
FIQURE 7.1. Breath by breath tidal volumes of a human infant in REM sleep (Hathorn, 1978). 
Dotted line: tldal volumes. Solid line: ‘best fit” sinusold of petiod 10 breaths. 
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identical to that utilized for CT signals, and the file f i tsine . m was used to fit a 
discrete-time sine wave with a period of 10 breaths to these data. The approximating 
sinusoid has an amplitude of 10.1 ml and a phase of -2.242 tad and is shown with 
open symbols connected by solid lines. The sinusoid is a reasonable approximation 
to the data but it should be noted that such “periodic” behaviors typically last only 
for a few cycles before the characteristics, such as amplitude or general shape, 
change, The reason may be that this process is not being driven by a periodic stimu- 
lus (as was the case for circadian variations studied in Chapter 5) .  Therefore, a sinu- 
soidal approximation may be used to represent the data plotted in the figure but it 
does not provide insights into the physiological mechanisms generating the varia- 
tions in tidal volume, which are not strictly periodic. 

One could proceed as was done for the data of Fig. 5.1 and fit another sinusoid to 
the error between the two signals of Fig. 7.1. The interested reader will find these 
data in the file vtdata .mat. Because longer records of such data reveal that the 
signal is not truly periodic, strictly speaking this approach is not appropriate. 
Rather, one should apply a DT analog of the CT Fourier transform. Later we will re- 
analyze these data from that perspective. First, however, we will develop the con- 
cept of the discrete-time Fourier series as a foundation for discussing the discrete- 
time Fourier transform. 

7.3 THE DISCRETE-TIME FOURIER SERIES 

A discrete-time sequence, x[n], is periodic with period N if x[n + N] = x[n]  for all n. 
To emphasize the periodicity of the signal, it will be symbolized as n[nJ Of course 
the functions cos[u,,n], and sin[w],  may fail to be periodic if there is no integer 
value of N that satisfies the condition for periodicity. However, given any N there is 
always a frequency o, having the period N. That frequency is w, = 2 d N .  

”bo real-valued periodic sequences, X,[n] and ZJn], both having period N, are 
said to be orthogonal if 

.. 2 ?,[k]X,[k] = 0. 
k-0 

(7.1) 

Note that either or both functions may have fundamental periods that are submulti- 
ples of N-for example, N/2, N/3. It is only necessary that there be some period N 
that is common to both. In particular, if a, = 2dN,  then the functions ejkW, k = 1, 
2, . . ., are mutually orthogonal and form a set of basis functions for expanding dis- 
crete-time periodic signals. That is, the periodic signal X[n] can be decomposed into 
a summation of complex exponential functions of the form 

where ak] are the weighting coefficients. 
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But since there are only N unique values of ?[PI], one needs at most N terms in 
th summation. This result may be seen by noting that dk+* = an&, = An. That is, the (k + N)-th harmonic of the fundamental complex exponential 
function is identically equal to the k-th harmonic. Thw the summation comprises 
only N unique functions. Consequently, the expansion of a periodic DT signal may 
be written as 

Eq. 7.2 is the Discrete Fourier series for X[n] and the q k ] ' s  are the Discrete 
Fourier series (DFS) coefficients. (The 11N term is equivalent to the l/Ko term in the 
CT orthogonal function representation. It is customary to include it in the DFS syn- 
thesis equation rather than in the analysis equation for the coefficients as was done 
for the CT Fourier series.) 

To evaluate the DFS coefficients we first multiply both sides of Eq. (7.2) by 
e - ? h n d  then sum over one cycle. Thus 

Recalling the previous result that St&?' = (1 - aN)/( 1 - a), one may show that 
the rightmost summation in Eq. (7.3) evaluates to N when k = r and to zero other- 
wise. Therefore, letting r equal k leaves only one term on the r.h.s. of Eq. (7.3 )-that 
is, ak]-and we conclude that 

Finally, note that one could evaluate Eq. 7.4 for k > N - 1 but due to the equality 
of the k-th and (k + N)-th harmonics (as noted above), ak + "J = ak]. In other 
words, the DFS coefficients also have period N. 

Example 7.1 The signal in Fig. 7.2(a) has period N = 10 and may be represented 
as a Discrete Fourier series with ~0 = 2d10 and DFS coefficients 
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Using Euler's formulas, Eq. (7.5) may be rewritten as 

The DFS coefficients are plotted as a function of both k and ko, in Fig. 7.2(b) 

Some Properties of Discrete Fourier series 

The DFS operation is linear in the sense that if 3 [ n ] ,  n n ]  both have period Nand 
one defines 2[n3 = d [ n ]  + bgn],  then the DFS coefficients of the latter can be 
found from those of the component signals as ak] = a 4 4  + b nk]. 

Time-shifting of a periodic function adds a phase shift to its DFS coefficients, 
Thus, if 3[n] has DFS coefficients 34, then the DFS coefficients of ?[n - rn] are 
e-*hflk]. If m is greater than N, then the m in the exponent of the complex expo- 
nential term must be expressed modulo N. This result is easily proven using Eq. 
(7.4). 
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If X[n] has DFS coefficients a k ] ,  then X*[n] has DFS coefficients p [ - k ] .  
Again, this result is easily proven from Eq. (7.4). If the DT function is real, so that 
Z*[n] = Z[n] ,  then P[-k] = a k ] ,  implying that 1&k]l = I aklland 4 441 = 

4 m1. 
Note that 3 0 1  = s/J X[n]e-fl= 2% X[n]. 

Periodic Convolution 

Given two period-N signals Z , [ n ] ,  X2[n],  having DFS coefficients Z1[k] ,  Z2[k], re- 
s ective9, one can define a third Discrete Fourier series whose coefficients are 
&k] = XJk] * fl[k]. To find the hnction x,[n] that has the specified DFS coeffi- 
cients, Z 3 [ n ] ,  first note from Eq. (7.4) that 

Substituting Eq. (7.7) into the definition of the Discrete Fourier series (Eq. (7.2)), 
and utilizing the common shorthand notation W, = e-*, 

Now since 

1, r = ( n - m ) + l . N  

0, otherwise 
, 1 an integer, 

1 N-1 & WiMn-m-r )  = 

Eq. (7.8) becomes 

Eq. 7.9 is the periodic convolution of the two period-N sequences. Unlike regular 
convolution, the summation is evaluated over one cycle only. 

Example 7.2 Discrete Fourier series The signal shown in Fig. 7.3 has a period 
of N =  4. Letting the cycle start from n = 0, its DFS coefficients are 
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0 3 6 n 

FIQURE 7.3. A pen'odic DT signal with a period of four. 

Evaluating this expression we find 3 0  : 31 = [4, 2,0 ,2] ,  , where we have used the 
id notation to indicate the range of indices of a sequence (as in MATLAB, where a 
sequence is called a vector). Therefore, by Eq. (7.2) this periodic function may be 
represented in closed-form as 

Consider the difference if the cycle of the signal of Fig. 7.3 is considered to start 
at n = -2. Now 

1 

n-2 
q k ]  = 1 21[n]ed*h = 0 + ( + 2 + ( 1)eJ lk  = 2 

That is, so long as the time origin itself is not changed, the DFS coefficients are inde- 
pendent of the point in the cycle at which one starts the summation. Consider, how- 
ever, the effect of shifting the time origin. In Fig. 7.3 let the point n = 0 be shifted to 
the left by two units of time to create a new periodic function K l [ n ]  = x[n  - 21. Now 

Evaluating this last equation, z,[O : 31 = [4, -2,0, -21 and K 1 [ n ]  = 1 - 0.5eji" - 
O.Se*". Thus, when the time origin is changed, the magnitudes of the DFS coeffi- 
cients, ak], are not altered but their angles are changed. The reader can confirm 
this result by applying the relationship discussed previously for the effect on DFS 
coefficients of time-shifting a periodic function. 
Example 7.3 Noky data For actual data that one expects should be periodic (e.g., 
the body temperature data of Fig. %I) ,  additive noise may distort the true periodic 
signal if the available data samples only one cycle of the periodicity. If one can ac- 
quire data covering M cycles, then it is valid to average the M data points at corre- 
sponding time points in each cycle to generate an "average" cycle in which noise 
should be reduced. One may then find a Fourier series for this data. Another approach 
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also is possible when Mcycles of data are available. To illustrate, assume that one has 
acquired two cycles of noisy data (i.e., M = 2 and the total number of data points is 
2N). First determine the DFS coefficients for the signal with period 2M 

ZN-1 N-I N-I 

n14) n-0 n 4  
m [ k ] = C z [ n ] W & = C  Y [ n ] W & + Z  Y[n +NJW&+W. (7.10) 

Note that W& = - I .  Therefore, 

N-l 

n-O 
m [ k ]  = c 3[n]W& [ I  + (-1)9. 

For odd k, the term in the brackets is zero. For even k, since W& = W F z ,  then 

N- 1 

(7.1 1) 
n-O 

where R k ]  is the DFS coefficient of the signal with period N assuming that the two 
cycles of sampled data are identical. If the two cycles are not identical, then the re- 
sult from Eq. (7.1 1) for even k is twice the value of the DFS coefficient of the “av- 
erage” cycle. This result generalizes to M cycles in the obvious manner. 

Often discrete-time data will be samples of a continuous-time signal, such as 
body temperature, and one might wonder if there is a specific relationship between 
the Discrete Fourier series of the sampled signal and the Fourier series of the contin- 
uous-time signal. On the one hand, reconstruction of the CT signal from the Dis- 
crete Fourier series would be straightforward because the mapping between the dis- 
crete-time index, n, and continuous time would be obvious: t = n At, where At is 
the interval between consecutive data samples. On the other hand, the CT and DT 
Fourier series coefficients are not equal. The general relationship between the fre- 
quency components of a CT signal and those of a DT signal obtained by uniform 
sampling of the CT signal will be derived later in this chapter based on the Discrete- 
time Fourier transform. 

7.4 FOURIER TRANSFORM OF DISCRETE-TIME SIGNALS 

In Chapter 4, Eq. (4.25), the frequency response of an LSI system was defined as 
m 

and it was noted that this function is continuous and periodic in w with period T = 
27r. Because it is periodic, it has a Fourier series representation (as a function of w, 
not t) of the form 
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(7.12) 

in which w replaces t as the "time" variable, the fhdamental period is 27r, and the 
fundamental frequency is (27r/T) = (2d27r) = 1. Comparing Eqs. (4.25) and (7.12) 
we conclude that ck = h[k] because of the orthogonality of the complex exponential 
functions. That is, the impulse response of a DT system is also the set of coeffi- 
cients in the Fourier series expansion (relative to w) of the frequency response of the 
system. Conversely, from Eq. (7.13) one may express h[k] as 

1 '. 
h[k]  = - H(ejw)eJwldw. 

27r I, (7.14) 

This latter equation describes h[k] as the summation (integration) of an infinite 
number of discrete complex exponential functions where the weighting of frequen- 
cies in the range (w, w + dw) is (1/27r)H(d")dw. This interpretation of H(ei") is 
analogous to that presented previously for the CT Fourier transform, H(n) ,  and mo- 
tivates defining H(e1") as the Discrete-Time Fourier Tmnsform (DTFT) of h[n]. For 
any sequence, x[n] ,  that is absolutely summable, its DTFT is defined on the basis of 
Eq. (4.25) as 

OD 

DTFT{x[n]} = X(eJ0) = 1 x[n]e+- (7.15) 
n=- 

and the inverse DTFT (on the basis of Eq, (7.14)) as 

1 ,  
27r -w 

x[n]  = -I X(ej")ej"dw. (7.16) 

Like the frequency response Jitnction, the Discrete-time Fourier tmnsform is a 
continuous function of frequency and is periodic in frequency with period 2n: As 
for the CTFT, the graph of w(eju)( versus w is the magnitude spectrum of x[n] and 
the graph of &X(ej") versus w is the phase spectrum of x[n]. Note that sequences 
that are not absolutely summable may have a DTFT if they are square summable. 

Properties of the DTFT 

The DTFT is a linear operator. Furthermore it is easy to show that if x[n] is real, 
then P(dw) = X(e9"). Consequently, Cy(d")J will be an even function of frequency, 
whereas &Y(ej") will be an odd function of frequency. Likewise, the DTFT{x[-n]} 
=: X+(ej"). Using this result one may show that the DTFT of the signal +(x[n] + 
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x[-n]), which is an even function of n, equals Re{X(ej")}, whereas the DTFT of the 
odd fbnction t (x[n]  - x[-n]) equals Im{X(e/~)}. 

It is trivial to show that 

DTFT{&n]} = 1. (7.17) 

Ify[n] = x[n  - no], then 

From Eq. (7.15) it is apparent that DTFT{ d"Tx[n]} = X(eJ("%)). Consequently, 
using this result and Euler's relationship, DTFT{x[n]cos[u,,n]) = f {X(eJc*oO)) + 
X(ej("+%))]. The corresponding result for multiplication by sin[u,,n] is presented in 
Table 7.1. Some other properties of the DTFT, and transforms of some common sig- 
nals, are given in Tables 7.1 and 7.2, respectively. 

Example 7.4 Calculating the DTFT The signal x[n] is defined as 

Its DTFT is 

TABLE 7.1 Properties of the Mscnte-Time Fourier Trandonn 

property Time Ikmain Frequency Domain 

Linearity a &in]+ b xzlnl &,(el? + Wd? 
Time shift XIn - nol e-l."ox(el? 
Time reversal x[-nl X(e +? 
Modulation x[nWW X(eM-3 
Conjugation X W I  We'? 
Convolution XInl v(n1 X(d.lV(e1.) 

Multiplication 
1 

-X(e/.) Y(d9 "I v[nl 2 r  

Frequency differentiation 
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TABLE 7.2 Dircrete-Time Fourier Transforms of Common Signals 

Signal DTFT 

Stnl 1 
1 27rs(w), Id = 7 r  

1 
1 -e+ + 7rs(w), id s7r 

-7rs(w), Id s7r 
1 

1 -e+ -u[-n - 11 . 

Example 7.5 DTFT of apulse Define a pulse function, P2,[n], as 

Its DTFT may be found by considering the function x[n]  = P,,[n - q],  from which 
P2,(d'") = dqX(d'").  Thus 

Consequently, 

(7.19) 

Erample 7.6 DTFTof a constant Because of its periodicity, the DTFT X(eju) = 
2~s(u), - T I w < T, comprises a train of impulses in frequency occurring at the 
frequencies i 2 h .  By Eq. (7.16), the corresponding sequence is 
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1 r n  

x[nl= "I Zns(w)e'"dw = 1, Vn. 
27T -w 

Therefore, ifx[nJ = A o ,  where A. is a constant, then DTFT{Ao} = 27rAos(0). 
Example 7.7 DTFT of a periodic signal The periodic signal of Fig. 7.3 was an- 
alyzed pryiously and shown to have the Discrete Fourier series representation f [ n ]  
= 4 + 2dT" + 2eh?". Although the complex exponential fbnction is not absolutely 
summable, we may define a generalized DTFT for this signal by utilizing the DTFT 
of a constant and the frequency shift associated with multiplication of a time signal 
by a complex exponential function. Thus, DTFT{AdkW} = 21rA40 - k q J ,  14 I 
n, and therefore, DTFT{X[n]} = 2 f i 2 n a n ] S ( o -  ku,,) = 87~&w) + 4 7 ~ 4 ~ -  (7r/2)] 
+ 4 7 ~ 4 ~ -  (37~/2)]. 

7.5 PARSWAL'S RELATION FOR DT NONPERIODIC SIGNALS 

The derivation of Parseval's Relation for this case parallels that for CT nonperiodic 
signals (Eq. (5.38)) and only the result is presented here. For a nonperiodic, deter- 
ministic, discrete-time signal, x[n], having a DTFT, 

(7.20) 

As in the CT case, w(d')(2 is interpreted as a deterministic energy spectral density 
fiinction for the signal, x[n] .  

Since power is energy per unit time, for a bounded finite-length signal, x[n], 0 I 
n 5 N - 1, one may define its deterministic power spectral density (PSD) function 
as 

(7.21) 

Example 7.8 PSD of DT biomedical data Because the data of Fig. 7.1 are not 
truly periodic, it is more appropriate to analyze these data using the DTFT instead 
of the DFS. Table 7.3 presents the power spectral density function determined from 
direct calculation of Eq. (7.15) at 12 frequencies. Note that the mean level was re- 
moved from the data before the calculations were performed; therefore, X(&) = 0. 
There is a large peak at 0.5236 radlsample, which is equivalent to 0.0833 
cycles/sample, or a period of 12 samples (i.e., breaths). This spectral peak reflects 
the major oscillatory component of the data. Note also the presence of smaller 
peaks at other frequencies (especially at the fourth harmonic of 0.5236), reflecting 
the fact that the data are not a pure sine wave. 
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TABLE 7.3 Power Spectral Density Function of 
the Data of Fig. 7.1 

Frequency Power 

0 
0.261 8 
0.5236 
0.7854 
1.0472 
1.3090 
1.5708 
1.8326 
2.0944 
2.3562 
2.61 80 
2.8798 

0 
3.222 

7.921 
1.043 
5.625 
0.1229 
0.3210 

0.2919 
0.4850 
0.00447 

14.34 

10.17 

There is an important relationship between the PSD and the autocorrelation 
function, the latter defined in Chapter 2, Eq. (2.35), (forx[n] a real-valued signal) as 

1 N-1 
R d m ]  = - c x[k  + mh[k] .  

Nk-0 

In general, x[n] may also be complex-valued and Eq. (2.35) must be revised by 
replacing one of the terms in the summation, say x[k], by its complex conjugate. 
Therefore, the DTFT of R d m ]  is 

0 N- I 
DTFT(RxIm1) = 2 [ $ &x*[kJr[m + k]]e-Jm 

m u  

The two summations may be recognized as the DTFT of x[k]  and its complex conju- 
gate. Thus 

1 
DTFT(RAm1) = zCy(e'p3(2 = PAeJ"). (7.22) 

Equation (7.22) expresses a fundamental and very important relationship be- 
tween the memory properties of a signal, which are reflected in R d m ] ,  and its deter- 
ministic power spectral density function. Essentially this equation states that the 
power at each frequency is a reflection of the magnitude of the sinusoidal compo- 
nent at that frequency in its autocorrelation function. 

The autocorrelation function of Eq. (2.35) defines the average behavior of 
x[k  + m] relative to x[k] for a given time difference (or lag), m. Given two func- 
tions, x[n] ,  y[n], both defined on 0 5 n 5 N - 1, one may define the average be- 
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havior of y [k  + m ]  relative to x[k] in an analogous manner. That is, the cross-cor- 
relation fitnction, 

reveals the extent to which temporal variations in x[n] are reflected in y[n]  after 
some time lag, m. Note that R d m ]  is not necessarily an even function; therefore, it 
must be calculated for negative values of m. One may also define a cross-covuri- 
ancefunction between x[n] and y[n] as 

N- I 
C d m ]  = 1 &[k + m] - 3 ( x [ k ]  -3' = R d m ]  -jE*. 

k-0 

The DTFT of R d m ]  is known as the cross-spectral density function (or simply, 
cross-spectrum), Pdej") .  

7.6 OUTPUT OF AN LSI SYSTEM 

Given an LSI system with input x[n], impulse response h[n], and output y[n] ,  let 
x[n]  = AejW. Then, since e J w  is an eigenfunction of any LSI system, y[n]  = 
H(ej"0)Aejw. Now if x[n] is the summation of complex exponential hnctions 
given by x[n] = (1/27r)J5,X(ejW)e/""'d0, then the output must be y[n]  = 
(1/27r)JJH(e9 X(e'")ej"do. Since by the definition of the DTFT, y[n] = 
( 1 /2  ?r)J?,, Y(ejw)ejWdu, equating these two results yields 

Y(ejW) = H(ej0)X(dW). (7.23) 

Note that since we know that y[n]  = h[n]  * x[n], this result establishes that 

DTFT{x[n] * h [ n ] }  = H(ej")X(ej"), 

which is true for any x[n]  and h[n] that have DTFTs. 

output of the LSI system. Thus 
Based on Eq. (7.23), we may derive an expression for the power spectrum of the 

Example 7.9 Ideal DTfirter The frequency response of an ideal DT lowpass 
filter is shown in Fig. 7.4. The impulse response of this filter may be determined 
from Eq. (7.16) to be 
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Clearly this (and every ideal) filter is noncausal. 

Example 7.10 Causal DTfilter A first-order DT filter has the impulse response 
h[n] = unu[n], la1 < 1. Its frequency response is 

This lowpass frequency response is also shown in Fig. 7.4 for three values of the 
parameter u. The reader can demonstrate that the frequency response of a system 
having the impulse response h ' [n ]  = (-u)"u[n], la( < 1, is H'(ej") = I/( 1 + ue-jw). 
This latter frequency response has maxima at w = +=v and a minimum at zero; 
therefore, it represents a highpass filter. 

Example 7.11 Digitalfilter design by impulse invariance One approach to de- 
signing a digital filter is to let the unit-pulse response of the digital filter equal the 
values of the impulse response of a CT (analog) filter at times f = nt,, where n is an 
integer and ts is a basic sampling interval. This approach is known as impulse invari- 
ance design and it will be studied in detail in Chapter 8. Here we shall examine the 
design of a simple, first-order, digital filter having the unit-pulse response, hD[n],  
based on sampling the CT impulse response hA(t) = ule-%(t). Thus, let hD[n] = 
bh,(nts), where b is a constant to be determined. Now HA(fl) = u,/(u2 +in), which 
is the frequency response of a CT lowpass filter with a cutoff frequency equal to u2 
rad/s. For the DT system, hD[n] = bh,(n#,) = bul(e*2's)"u[n]. By Example 7.10, its 
frequency response is 
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Let us choose b = (1 - e*Z's)/a, so that the magnitude of the DT frequency re- 
sponse is unity at zero frequency. The frequency responses of both filters are shown 
in Fig. 7.5. Notice that the resulting digital filter is also a lowpass filter, but there is 
not a simple relationship between the DT frequency response and the CT frequency 
response. Furthermore, the magnitude of the former never approaches zero unless 1, 
4 1. This result is a consequence of the periodicity of the DT Fourier transform. In 
effect, it is impossible (by this method) to map all of the CT frequencies, 0 5 n I 
00, into the DT frequency range 0 S o S n: (The specific relationship between n 
and w will be explored later in this chapter.) Although the impulse invariance design 
method has this limitation, Chapter 8 will demonstrate that under the right condi- 
tions it can be a viable method for designing digital filters. 
Example 7.12 Frequency response via the DTFT Savitsky-Golay smoothing of 
data is used commonly in analytical chemistry. The five-point version of this filter 
is given by the relationship 

y[n] = -0.0857 x[n ]  + 0.3429 x[n - 13 + 0.4856x[n - 21 + 0.3429 x[n - 31 

- 0.0857 x[n - 41, (7.26) 

where the x[n] may represent any sequence of data values from an analyzer and n 
may represent, for example, a series of wavelengths at which light absorption is 
tested. One may use the DTFT to characterize the frequency response of this filter. 
By Eq. (7.23), the frequency response may be determined by testing the filter with a 
known input and dividing the DTFT of the resulting output by that of the input. For 
example, let x[n] = PS[n - 21. The resulting output, y[n], can be calculated either 
from Eq. (7.26) or by convolution (Fig. 7.6(a)). Thus 

= -0.0857 ed4O) + 0.2572 e-j" + 0.7428 e-J2" + 1.0857 e-p" + 1 .OOOO e-fl" 

+ 1.0857 e-jsO + 0.7428 ed6" + 0.2572 e-nU - 0.0857 eyao. (7.27) 

The DTFT of the input is 

The frequency response of the five-point Savitsky-Golay smoothing filter is 



a. 

I I 
-2w 0 2 w  

o. rad/sample 

FIGURE 7.5. (a) Frequency response of a CT first-order lowpass filter with cutoff frequency a2 and impulse re- 
sponse h&. @) Normalized frequency response of a digital filter whose unit-pulse response is defined to be hdn] 
= h&J. where t, is the reciprocal of the sampling frequency. 
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(a) 
FIGURE 7.6. (a) impulse response @[nu for a five-point Savitsky-Golay filter (determined by 
letting x[n] I s(n] in Eq. (7.28)), test input @[no, and resutting output (V[nD signals. (b) Actual fre- 
quency response of the filter (solid line) and estimate of the frequency response (circles) ob- 
tained by dividing the OTFT of fin] by the DTFf of J@] 

which may be calculated at various frequencies (circles, Fig. 7.6(b)). Also shown in 
the figure is the actual frequency response calculated directly from the DTFT of 
h[n] (solid line). Obviously the two calculations are superimposable. (A note of cau- 
tion is appropriate here: This method of estimating the frequency response deterio- 
rates if the output signal contains noise (or if the measured input signal contains 
noise that does not pass through the system). In such cases the method may still pro- 
vide a starting point for estimating the frequency response.) 

7.7 RELATION OF DFS AND DTFT 

There is a relationship between the Discrete Fourier series and the DTFT that is the 
equivalent of the relationship between the CT Fourier series and the CTFT that was 
discussed in Chapter 5. As before, it is a relationship between the Fourier transform 
of a finite-length, nonperiodic function and the Fourier Series of a periodic function 
that is constructed by replicating the non-periodic function, as shown in Fig. 7.7. 
Note that 

- [ 2[n], 0 5 n 5 N -  1 
otherwise, x b l -  0, 

where N = 6 in the example of Fig. 7.7 and o, for the periodic hnction is 2 d N .  The 
DTFT of x[n]  is X(ejo) = Xf&[n]e-jw, whereas the DFS coefficients for the peri- 
odic extension of x[n] are 
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FIGURE 7.7. (a) A finite-duration DT signal. (b) The periodic signal constructed by replicating 
x[n] modulo 6. 

That is, the DFS coefficients equal the DTFT of the nonperiodic function evalu- 
ated at integer multiples of %, the fundamental frequency of the periodic signal 
constructed by replicating the nonperiodic signal. 

This relationship has a graphical interpretation. Consider a complex number, z,  
and the two-dimensional complex plane defined by the orthogonal axes, Re(z} and 
Im{z} (Fig, 7.8). Let z = e'", so that Iz( = 1, @ = w. Then letting the frequency vary 
over the range -a -C w I ?T is equivalent to letting z traverse the unit circle in the 

FIGURE7.8. The unit circle in the z-plane, showing (dots) the locations z = elo at which the 
Discrete Fourier series coefficients for an]  are equal to the DTFT of x[n] for N = 8. 
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complex plane (also called the z-plane). Consequentfy, one may consider that the 
DTFZ X(ejw), is afitnction that is evaluated at points around the unit circle of the z- 
plane. The DFS coefficients are equal to X(ejw) evaluated at specific values of fre- 
quency-that is, integer multiples of ZnhV-and therefore at specific points on the 
unit circle that are specified by z = e e k .  Thus there are N points, equally spaced 
around the unit circle, at which the value of the DTFT specifies the DFS coefi- 
cients (and vice versa). These points are indicated in Fig. 7.8 for N = 8. Note that 
30) is always evaluated at w = 0 (i-e., z = 1). 

Example 7.23 Figure 7.2(a) presented a periodic signal whose Discrete Fourier se- 
ries was analyzed earlier in this chapter. The DFS coefficients are given by Eq. (7.6) 
and are plotted in Fig. 7.2(b). Consider the nonperiodic signal formed by taking one 
cycle of the periodic signal over the range -5 5 n 5 4. It is easy to show that 

The magnitude of this DTFT is graphed in Fig. 7.9(a). The solid circles indicate 
the values l3k]1 versus k(27r/lv) from Eq. (7.6). Figure 7.9(b) indicates the locations 
on the unit circle at which X(elw) equals the values of the DFS coefficients. 

7.8 WINDOWING 

Windowing is a type of amplitude modulation in which a signal, x(t)  or x[n] ,  is mul- 
tiplied by a finite-duration signal, w(t) or w[n], for the purpose of: (1) forcing the 
resulting signal to be zero outside of a chosen range of n, and; (2) controlling the 

I X  :(JO)I 31 2 

0 0 

4 0 2 e I 

(a) (b) 

FIGURE 7.9. (a) Magnitude of the DTFT of the pulse signal of Example 7.13 (solid line) and 
magnitudes of the DFS coefficients (dots) of the puke train with period 10 that is a periodic 
extension of the pu_lse (Fig. ?.2(a)). (b) Locations on the unit circle corresponding to the fre- 
quencies at which x(k] = X(e'w). 
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abruptness of the transition to zero. A continuous-time example was presented in 
Fig. 5.12, in which an infinite-duration sine wave was multiplied by a unit-pulse 
hnction to create a finite-duration sinusoidal signal, When used in a windowing 
sense, the unit-pulse function is known also as a rectangular window. Because mul- 
tiplication in the time domain is equivalent to convolution in the frequency domain, 
the effect of truncating an infinite-duration sine wave by a rectangular window is to 
transform its Fourier transform from one having only impulses (Fig. 5.12(c)) to one 
in which the Fourier transform of the window function (Fig. 5.12(b)) is replicated 
and centered at the locations of the original impulses (Fig. 5.12(d)). If the signal be- 
ing windowed has a more complex Fourier transform, then the Fourier transform af- 
ter windowing will be more complex but it always will extend over a widerfrequen- 
cy mnge than that ofthe unwindowedsignal. Note from Fig. 5.12(b) that the width 
of the main lobe of the transform of the pulse hnction decreases as the pulse width, 
a, increases, Consequently, in the limit as pulse width increases, the transform of 
the windowed function approaches that of the unwindowed function. 

A typical application of windowing is to represent a real-world signal that has 
been observed for a finite time as the product of a signal of infinite duration and a 
windowing function. Since one cannot observe an infinite amount of data for a 
physical signal, a real-world finite-duration signal has implicitly been multiplied by 
a rectangular window that is as long as the finite-duration signal itself. Although the 
underlying infinite-duration signal will be unknown, it is important to recognize 
that the Fourier transform of the finite-duration signal differs from that of the infi- 
nite-duration signal due to windowing. This effect may be important when estimat- 
ing the energy spectral density (i.e.y the squared magnitude of the Fourier trans- 
form) of a signal, as discussed below. 

The abrupt onset and termination of the rectangular window in the time domain 
have undesirable consequences in the frequency domain. Recall that abrupt changes 
in a signal imply greater content of high-frequencies in its Fourier transform. There- 
fore, because the Fourier transform of the windowed signal equals the convolution 
of the Fourier transforms of the unwindowed signal and the window function, the 
frequency content of the windowed signal will extend to higher frequencies than 
that of the unwindowed signal. Furthermore, a large peak in the Fourier transform 
of the unwindowed signal will cause large artifactual signal components at neigh- 
boring frequencies in the Fourier transform of the windowed signal because of the 
breadth (in frequency) of the Fourier transform of the rectangular window. In some 
applications, such as estimating the energy spectral density of the unwindowed sig- 
nal, these distortions of the magnitude spectrum of the Fourier transform are unde- 
sirable. They may be reduced (but not eliminated) by multiplying the finite-duration 
signal by another window h c t i o n  that has less high-frequency content. Many alter- 
native window functions have been defined that have less high-frequency content 
than the rectangular window and all achieve this objective by imposing a smooth 
(rather than abrupt) transition from unity gain to zero gain. Typically one chooses a 
window length equal to the data length, then multiplies the signal, x[n ] ,  by the cho- 
sen window, w[n], before performing the desired data analysis. Some of the more 
common DT window functions are described in Table 7.4 and plotted in Fig. 7.10. 
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FlOURE 7.10. Time-domain graphs of various 51-point windows. 

A window function is characterized in the frequency domain by three parameters 
(Table 7.5, Fig. 7.1 I )  determined from the magnitude of its Fourier transform: the 
width of its main lobe, the peak side lobe level, and the average rate of change of 
magnitude at frequencies well away from the main lobe (rolloff). To discuss the im- 
portance of these properties, let y[n] = x[n]w[n],  so that Y(ej") = A'(&") * 
W(ej")/(Z?r). If w(ej")l contains two peaks at frequencies that are separated by less 
than the main lobe width of W(ej"), then these two peaks will be merged together in 
Y(dW)  and may not be reliably discernible. Therefore, to be able to detect signal 
components that are close in frequency, one must utilize a window with a main lobe 
whose width is less than the difference in frequencies of the two peaks. However, 
even if the main lobe is narrow, if the side lobes are large or if their amplitudes do 
not fall quickly enough, then a signal of large amplitude at one frequency may ob- 
scure a small signal at neighboring frequencies due to the sidelobes in W(ej"), a 

TABLE 7.5 Properties of Some Window Functions 

Type Main Lobe Width' Highest Sidelobe (dB) Rolloff Rate (dWoctave) 

Rectangular 
2r 
N 0.89 - -1 3.3 -6 

2n 
N 

2n 
N 
2* 
N 
2r 
N 

1.20- -26.5 -1 2 

1.44 - -31.5 -1 0 

1.30 - -43 -6 

1.33 - -42 -6 

Bartlett 

Hann 

Hamming 

Gaussian' 

'Haif-powcw width. 
"a P 2.5. 
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W 

FIGURE 7.11, Magnitude of M DTFT of various window functions, all of length N = 51. 

phenomenon known as leakage. (For this reason the rectangular window is almost 
never used for spectral estimation, even though it has the narrowest main lobe.) Re- 
ducing side lobe amplitude always requires increasing the main lobe width. C o w -  
quently, a large variety of window functions have been proposed, each displaying a 
particular trade-off between main lobe width and side lobe amplitude. Figures 7.10 
and 7.1 1 show just a few of these window functions. The Hann(ing) window is a 
good compromise because it has a high rolloff and its main lobe width is compara- 
ble to that of other common windows. The Hamming window is also popular for 
spectral estimation. (See Exercises 7.20 and 7.22.) 

A second application of windowing is for design of FIR filters. The method, 
which is based on truncating the impulse response of an IIR filter, will be discussed 
in Chapter 8 along with other methods of digital filter design. 

Example 7.14 Windowing Windowing must be utilized with care, as this exam- 
ple shows. Consider the analysis of the energy spectral density of a finite-length ob- 
servation of the signal x[n]  = sin[(2~/25)n], which has a period of No = 25, when 
one has either 64 or 640 samples of the signal. In both cases a Bartlett window is 
applied (Fig. 7.12(a)). For N = 64, there are only two complete cycles of the sine 
wave and windowing severely distorts the sine wave, whereas the distortion is rela- 
tively less, at least for a few cycles, when N = 640. The Fourier transforms of the 
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(a) (b) 

FIGURE 7.12. Effect of windowing on the energy spectral density function of a sinusdd. (a) A 
sine wave multiplied by either a &$-point (top) or a 640-point (bottom) Bartlett window. (b) En- 
ergy spectral density function for the two windowed sine waves (dashed, solid) and for the 
same sine wave windowed by a 64-point redangular window (dotted). 

windowed signals were calculated and their squared magnitudes are plotted in Fig. 
7.12(b). Because the width of the main lobe of the Fourier transform of the window 
is inversely proportional to the window length (in time), the peak in the spectrum of 
the 64-point record is broader and the energy is less well localized in frequency. The 
energy spectrum of the 64-point signal truncated by a rectangular window is also 
given in the figure. Its peak is even less well defined than the peak associated with 
the 64-point Bartlett window. 

7.9 SAMPLING 

In many applications it is desired to determine the magnitude and phase spectra of a 
CT signal, x&), 0 S t S To, when one has acquired the sequence of values of this 
signal, x[n ] ,  0 s n s N- 1, by sampling at some constant ratefs = 1/Tsuch that t = 
nT and To = NT. We will now derive an explicit relationship between the CTFT of 
x x t )  and the DTFT of x[n] ,  from which one may calculate the Fourier transform of 
the CT signal from that of the DT signal. 

The CTFT and its inverse are defined as: 

(7.30) 

(7.3 1) 
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x[n] has a DTFT, X(ej'), from which one can evaluate x[n]  as 

I - *  
2 n  --* 

x[n] = -\ X(ejo)ejWdo. (7.32) 

Now from the sampling process one can say that 

(7.33) 

Following Oppenheim and Schafer (1979, Eq. (7.32) may be rewritten as 

Afier a change of variables, in which we let jl = R - (2m/T),  the previous equa- 
tion becomes 

The preceding equation is almost an expression of the inverse DTFT (Eq. (7.32)) 
except that the integration is not calculated over the full range (-n, m). By another 
change of variables, o = PT, this equation may be written as 

Comparing Eq. (7.34) to Eq. (7.32), one concludes that 

(7.34) 

(7.35) 

Finally, since /3 is just a CT'frequency variable, it may be replaced by a more fa- 
miliar symbol so that the equation relating the CT and DT frequency variables may 
be written as o = RT. 

Eq. (7.35) is known as the sampling theorem. It expresses the DTFT as a summa- 
tion of an infinite number of replications of the CTFT in which: (1) each replication 
is scaled by l/T and shifted along the frequency axis by some integer multiple, r, of 
the sampling frequency, 4, where as = 2 j s  = (2.n/r), and; (2 )  the CT frequency 
variable, R, is set equal to the DT frequency variable, o, scaled by the sampling fre- 
quencyfs = (1/Q This process is diagrammed in Fig. 7.13. Note that the relationship 
between the CT and DT frequency variables implies that the frequency Q = sl, 
maps to the DT frequency o = RsT = 2 n .  (In terms of Hz, the sampling frequencyfs 



7.9 SAMPLING 257 

maps to the DT frequency 1 .O.) An observation of fundamental importance is ap- 
parent from Fig. 7.13: if the CTFT is such that X&) = 0, for 2 (..n) = fls/2, 
then there is no overlapping of the replicates of XdO) in X(ej") and 

(7.36) 

In this case, &(a) may be recovered completely from X(dw)  through the reverse re- 
lationship 

(7.37) 

That is, when the CTFT of a signal x(t) is zero for all frequencies above some f =fi 
(or O = OJ, then the CTFT of x(t)  is recoverable from the DTFT of its samples, 
x[n] ,  as long as the sampling frequency is higher than 2fi (or 201) .  This condition is 

FIGURE 7.13. The effect of sampling on the Fourier spectrum. Top: Fourier transform of a 
band-limited CT signal, XQ. Middle: Replication of the CTFT, with replicates centered at inte- 
ger multiples of the sampling frequency, that is implied by the sampling theorem. Bottom: 
DTFf of the sampled signal, x[n]. 
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called the Nyquist criterion and the minimum sampling frequency that permits re- 
covery of the CTFT (Lee, 2fi or 2QJ is known as the Nyqulstfrequency. 

Figure 7.14 indicates the overlapping of replicates ofX&) that occurs when the 
CTFT has nonzero magnitude at frequencies greater than one-half of the sampling 
frequency. This phenomenon, known as aliasing, produces a DTFT that is distorted 
relative to the CTFT. The CTFT cannot be uniquely determined from the DTFT in 
the presence of aliasing unless the range of nonzero magnitudes of the CTFT is fi- 
nite and is known a priori (which is not usual). 

Since one can recover the CTFT from the DTFT in the absence of aliasing, in 
theory one also should be able to recover the signal x&). Furthermore, since the 
DTFT is derived from the sampled signal, x[nJ, then x&) should be derivable fiom 
x[n] .  Considering that XdO) = 0, 2 d T ,  then xdt)  may be expressed as 

- - -  - - -  
b 
0 

-4r -2a -a 0 n 271 4a 

FIGURE 7.14. Same as Fig. 7.13 except that the sampling frequency is less than the Nyquist 
frequency. 
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Recognizing that the term in the brackets is a sinc function, we find that 

Figure 7.15 diagrams the reconstruction process implied by Eq. (7.38). Each sinc 
function is displaced so that it is centered at one of the original sampling times, t = 
kl: Furthermore, each sinc function evaluates to zem at every other sample time. 
This result implies, however, that at all times between sampling times every DT 
sample contributes to the reconstruction of the CT signal. Consequently this process 
may be computationally intensive to implement. 

~~ ~ 

Example 7.15 Sampling The CT signal xdt) = cos(5Ot) + cos(7Ot) is sampled 
every 31.416 msec to produce the DT signal x[n]. Assume that both x& and x[n]  
are infinitely long. The DTFT of x[n] may be determined by applying the sampling 
theorem to the CTFT of xdt) .  Since T = 0.031416 sec, the sampling frequency is 
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FIGURE 7.15. Reconstruction of a CT signal, x(t), from its unaliased samples, x[n). (a) The sinc 
function of the reconstruction formula (Eq. (7.38)), centered at t = 500 (T = 1). (b) Partial recon- 
stwction of x(t) based on three samples of x[n] and the corresponding slnc functions. x[4], x[5], 
461 are shown as heavy dots. Each conesponding slnc function is zero at every other sam- 
pling time. Between sampling times the CT function (heavy line) is the sum of the three slnc 
functions. 
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as = 2n(1/.031416) = 200 rad/s. Since XJn)  = ?r[s(n - 50) + s(n + 50) + 
s(n - 70) + s(Q + 70)], and nT= 2n(fi/ns), then 

I 1  1 1  
I 1  I 1  
I 1  I 1  
I 1  I I  
I 1  1 1  
I 1  I 1  
I 1  I 1  

1 
z- 

.031416 ?r[s(fl - 50 + 200r) + s(a + 50 + 200r) + s(fl - 70 + 200r) 

+ s(n + 70 + 200r)l. 

These functions are plotted in Fig. 7.16. The solid and dashed impulses indicate the 
locations along the w axis of the replicates of the primary features of Xdn). 
Example 7.26 Nyquhtfrequency The signal x ( f )  = sin(l256f) is to be sampled 
in order to calculate its energy spectral density function. At what sampling frequen- 
cy (fs, and for what finite length of time (To), should it be sampled (assuming that 
sampling starts at f = O)? 

Solufion: The theoretical CTFT ofx(f) is X ( n )  =jn[s(n + 1256) - s(n - 1256)l. 
Blindly applying the Nyquist criterion, we would say that the sampling frequency 

I X(@) 

FIQURE 7.16. The CTFT (top) of a signal comprising two sine waves with frequencies 50 and 
70 rads, and the D m  (bottom) of the signal obtained by sampling at 200 rads. Wid and 
dashed impulse functions indicate where the replicates of the original impulses of X&I) ap- 
pear in X(ej.3. 
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should be greater than 2 * 1256 = 25 12 rads. Since To is to be finite, however, the sig- 
nal that will be sampled is fit) = x ( f )  wR(t), where w&) is a rectangular window of 
length To. Therefore, we expect that the CTFT offif) will extend to frequencies above 
1256 rads. Since the half-width of the main lobe of WAQ) is 27r/TO, to a first ap- 
proximation the CTFT will be nonzero for 1256 -27r/T0 I w 5 1256 + 27r/T0. If sam- 
pling occurs at 400 Hz (equivalent to 25 12 rads), we cannot prevent aliasing. If sam- 
pling occurs at 500 Hz, then one needs to ensure that 1256 + (27r/T0) < 250(2~),  or To 
> 0.020 s. Another criterion related to To is the amount of artifactual “spread” in fre- 
quency we find acceptable in the energy spectrum. This smearing of the true spec- 
trum is due to the finite width of the main lobe of WR(Q). (See Fig. 5.12(b)). If we 
wish to localize the frequency of the peak energy in x(t) to within some uncertainty, 
say 5 Hz, then the half-power width of the window should be no more than 2~ * 5 = 
3 1.4 1 rads. Using Table 7.5, this condition implies that 0.89(2n/TO) 5 3 1.4 1, or To L 
0.1782 sec. If we let To = 0.200 sec and sample at 500 Hz (i.e., T = 0.002 sec), then 
we will acquire 100 samples offit). The DTFT ofy[n] will exhibit negligible aliasing 
and the frequency resolution relative to o will be approximately Am = (AQ)T = 
0.89(27r/To)T= 0.89(2~/0.2)(0.002) = 0.0178~. Note that because of windowing the 
energy of the signal will be “spread out” across frequencies near Qo = 1256, and the 
total energy may be estimated as the integral of the energy spectrum over no - 
(2w/TO) I Q S  no + (27r/T0), rather than as the height of the peak at Qo. 

7.10 THE DISCRETE FOURIER TRANSFORM (OFT) 

Just as the DT signal x[n] can result from sampling a CT signal x(f), the Discrete 
Fourier transform (DFT) of a signal x[n] is a sampled version of the Discrete-Time 
Fourier transform (DTFT) of x[n] .  In this case the sampling occurs at equal incre- 
ments of frequency, not time. Actually the DFT is derived from the Discrete Fourier 
series and it is the relationship between the DFS coefficients and the DTFT, ex- 
pressed in Eq. (7.29), that permits interpreting the DFT as a sampling of the DTFT. 

Consider the Fourier analysis of a nonperiodic, finite-length DT signal, x[n], 0 5 
n 5 N- 1. This signal may be inherently finite in length or may be the consequence 
of applying a time window to a signal of infinite duration. Its DTFT is 

(7.39) 

In general, this function cannot be expressed in closed form and one must calcu- 
late it explicitly for any frequency of interest. One approach is to evaluate X(eiw) on 
a sufficiently dense set of frequencies that there are unlikely to be “important” vari- 
ations in this function between sampled frequencies. A fairly conservative sampling 
is to choose the set of frequencies that are integer multiples of the lowest frequency 
for which one complete cycle can be represented in the available data, x[n]-that is, 
the frequency with period N, or 1/N cycledsample (or ~ T A V  radsample). Note that 
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the fastest periodic change possible in x[n] has a period of two, or a frequency of 0.5 
cycledsample (i.e., 7r radsample). As long as N is not trivially small, then some in- 
teger multiple of 1/N will be close to 0.5. In fact, if N is small, then the effect of the 
implicit rectangular window in x[n] will spread out any frequency content at 0.5 to 
nearby frequencies so the frequency sampling does not have to be exactly at 0.5. 

The DTFT is periodic in w with period 2 ~ ,  and over one cycle of the DTFT there 
will be N frequencies that are multiples of 27dN. These frequencies are exactly the 
Frequencies that occur in a Discrete Fourier series when a periodic function has a 
fundamental period of N. Consider constructing a periodic extension of the nonperi- 
odic, finite-length signal x[n] by defining 

Its DFS coefficients are given by 

N- 1 N- 1 

nd) N - O  
a k ]  = 2 X [ n ] e - - "  = 2 x [ n ] e - j p  = X(dw)JwE2- = X(e' f  ), (7.40) 

where X(ejw) is the DTFT of x[n]. 
The DFS coefficients are defined for all k but are periodic with period N. Define 

the Discrete Fourier tmnsfonn, q k ] ,  of the nonperiodic, finite-length signal, x[n] ,  
as one cycle of the DFS coefficients-that is, 

(7.41) 

By Eq. (7.40), 

x k ] = X ( d y ) ,  0 4 k s  N -  1. (7.42) 

In other words, the DFT of x[n]  equals the DTFT of x[n] evaluated at the N frequen- 
cies 

2 7rk 
w,= - OSkS N- 1. N '  

Because it is closely related to the DFS coefficients, the DFT has properties sim- 
ilar to those of the DFS coefficients; however, because the latter are periodic where- 
as the DFT is not, some of the properties of the DFS do not transfer directly to the 
DFT. Rather, they must be specified relative to modulus N(Tab1e 7.6). 

An important advantage of the Discrete Fourier transform is that its computation 
can be implemented very efficiently compared to calculating the summation of Eq. 
(7.40) directly. This efficiency is primarily a result of the uniform spacing of the fre- 
quencies wk and symmetries involved in evaluating the complex exponential terms. 
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TABLE 7.6 Properties of the Discrete Fourier Transform 

For example, consider the evaluation of 

which may be written as 

Now each of the summations in Eq. (7.43) may be recognized as an (N/2)-point 
DFT of half of the original data signal. Each of these summations in turn may be de- 
composed into two (N/4>point DFT calculations using one-fourth of x [ n ] .  This 
process is repeated until one achieves N/2 two-point DFT calculations. Thus the cal- 
culation of the original DFT becomes N/2 calculations of simple DFTs plus a large 
number of additions and multiplications by efldN. On the order of N l o g 0  mathe- 
matical operations are required using this decomposition method compared to N2 
operations to evaluate Eq. (7.40) directly. For N = 1024, the decomposition method 
requires about 5000 mathematical operations and the direct method about lo6! This 
decomposition method is an example of a decimation-in-time Fast Fourier tmns- 
form (FFV algorithm. There are numerous variations on this scheme, as well as 
decimation-in-frequency FFT methods, and other approaches based on factoring N. 
Most, but not all, of these FFTalgorithms require that N be an integerpower oft! 
In any case, the algorithms compute much faster if this latter condition is met. 

The Inverse DFT 

Calculating x[n] from X[k] is straightforward since the DFT, 34, of the nonperiod- 
ic signal, x[n] ,  equals the DFS coefficients of the periodic extension, ?[n] .  First one 
calculates the periodic signal as 

then 

(7.45) 
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Note that Eq. (7.44) is structurally similar to Eq. (7.4). Consequently, with only 
slight modifications the calculation of 2[n]  may be accomplished using a Fast 
Fourier transform algorithm also. Practical implementation of Fourier analysis for 
DT signals usually involves calculation of the direct and inverse Discrete Fourier 
transform of size N (Eqs. (7.40) and (7.44H7.45)) via an FFT algorithm. 

Circular Convolution 

Let x,  [n] and x2[n] both be nonzero only for 0 5 n I N - 1. If we form the periodic 
extensions of these signals, X,[n], X,[n], in the usual manner, and define a new set 
of DFS coefficients as the product of the DFS coefficients of these periodic func- 
tions-that is, &[k] = xl[k]f2[k]-then from Eq. (7.9) we know that 

Equation (7.9) describes the periodic convolution of two periodic sequences. 
Now define the nonperiodic hnction x3[n] by taking one cycle of X,[n], so that 

(7.46) 

From Eq. (7.9), x3[n] may be expressed as 

Equation (7.47) defines the circular convolution of two finite-length sequences 
that are both defined over the same indices, 0 5 n 5 N - 1. Circular convolution 
differs from normal convolution because expressing x2[n - m] relative to mod(N) 
means that x2[n] "wraps around" and repeats itself us ifif were periodic, as in the 
example below. 1 

Example 7. I7 Circular convolution Let 

O S n 5 5  
otherwise. xJn] = 6[n - 21, x,[n] = 

(Fig. 7.17). Let x3[n] be the circular convolution of these two signals. Then x3[1] = 

x2[1 - m]mod(6) is plotted in Fig. 7.17(b). x3[l] equals the value of this function 
when m = 2. Thus x3[ 11 = X2[5] = 1. Similarly, x3[2] is the value of x2[2 - m]rnod(6) 
when m = 2, or x3[2] = x2[O] = 6 (Fig. 7.17(c)). Finally, x,[n], which is nonperiodic, 
is shown in Fig. 7.17(d). 

zs,,s[m - 2 ~ 1 -  rn1mod(6). 
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U m 

0 8 n 

FIQURE 7.17. Demonstration of circular convolution of s[n - 21 with the function x2[n]. (a) 
xp[n]. @), (c) x2[n] after time reversal, replication modulo 6, and delayed one or two samples, 
respectively. (d) The result of the circular convolution. 

From a computational viewpoint, calculation of the circular convolution of two 
sequences can be fast because it may be accomplished in the frequency domain by 
multiplying the DFTs of the two sequences using an FFT method. Circular convolu- 
tion may be utilized to compute the standard linear convolution between two finite- 
length sequences, x[n]  and y [n] ,  if both signals are modified by adding N zeros to 
each first. That is, define 

and similarly for y , [ n ] .  Because of the zero-padding, the circular convolution of 
these length 2N sequences is equal to the standard linear convolution of the length N 
sequences. Therefore, we may use the DFT to calculate z[k] = X1[k]  Y l [k ] ,  where 
t[n] = x[n ]  * y[n] .  

Use of the FFT to Calculate the CTFT of a Signal x(t) 

This application of the DTFT is so pervasive that the process will be summarized 
here. Given that it is desired to calculate the CTFT of a signal x(t)  that is observed 
on the interval 0 5 t I To, we may determine the CTFT at N individual frequencies 
after sampling x(t )  to obtain x[n],  0 S n 5 N - 1. Let the sampling frequency be 
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0, = 27fs = 21r(l/T) and assume that the CTFT of x(r) is X&) and the DTFT of 
x[n] is X(eJw). In general, by Eq. (7.35) we h o w  that 

If, however, there is no aliasing (i.e., if w&l)l= 0, 2 n& = +as), then 

x(ejw) = Lx(+), -a I 0  I a; (7.48a) T 

Now make a periodic extension of x[n] such that 
OD 

~ [ n ]  = x[nlWN, = C x[n + rM. 

The DFS coefficients of this periodic function may be calculated using an FFT 
method as 

IM 

and the DFT of x[n]  is given by one cycle of the DFS coefficients: 

otherwise. 

Note that the frequency of the k-th component of the DFS is mk = (2aM9. Then 
from Eq. (7.48a), 

Leth = (kN)& and note that 2 g k  = 2aWNT. Substituting this result into the pre- 
vious equation yields 

X c ( 2 ~ k ) = . T x ( ~ 2 ~ k 3 . z T x [ k ] ,  O s k s N - 1 .  (7.49) 

That is, the DFT, xk], scaled by T, equals the CTFT at the frequency ok = 
(2akm?f, o r h  = (W. 
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The deterministic power spectral density hnction ofx(f) is 

(7.50) 

where 

At the specific frequencies corresponding to the DFT, combining Eqs. (7.49) and 
(7.50) yields 

(7.51) 

In some cases one may wish to identify the frequency response of a CT system 
by exciting it with a known input, x(t), measuring the resulting output,y(t), and then 
estimating the frequency response as H(Q) = Y(n)/X(n). This estimate may be eval- 
uated at the DFT frequencies if x(r)  and fit) are sampled simultaneously (without 
aliasing) to produce x[n]  and y[n],  0 I n I N - 1. Then 

(7.52) 

Two final comments about calculating the CTFT via the DFT for practical sig- 
nals should be noted. First, usually one removes the mean level from x[n ]  before 
calculating the DFT because the effect of the implicit windowing of x[n]  is to 
spread the component at zero frequency (represented by the mean level of xtn ] )  to 
adjacent frequencies. This effect may hide signal components if the mean level is 
even modestly large compared to variations about the mean level. Second, if the 
available FFT algorithm requires that N = 2 p ,  where p is an integer, then it may be 
necessary to augment the sampled data by adding enough zeros to the end of x[n]  to 
meet this requirement. This procedure does not alter the DTFT (or the DFT) of the 
signal but it does change the frequencies q andh at which the transforms are eval- 
uated. Of course, if one calculates the power spectral density, then it is necessary to 
divide the squared magnitude of the DFT by the original value of N rather than the 
augmented value. 

7.1 1 BIOMEDICAL APPLICATIONS 

Frequency Response of a Transducer 

Measuring the unknown frequency response of a transducer is difficult unless one 
can compare its response to another "gold standard" transducer having a wideband 
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response (with respect to the signals to be measured). To determine the frequency 
response of a Celesco@ model LCVR pressure transducer with model CD 10 camer 
demodulator, its pressure input port was connected in parallel with the pressure in- 
put port of an Endevco@ model 4428 transducer and demodulator having a known 
constant frequency response for frequencies up to 10 KHz. This common connec- 
tion was itself connected to a balloon. The output voltages from the two demodula- 
tors were sampled by a laboratory computer at 2000 Hz. A rapid pulse of pressure 
was applied to the balloon, causing a high-frequency transient pressure wave simul- 
taneously at both transducers. 

The two signals are shown in Fig. 7.18(a). The signal from the "standard" is 
pdt), and the signal from the transducer under test is p&). The CTFT, Pdn), was 
determined via Eq. (7.51) from the DFT of the sampled signal, pdn]. It confirmed 
that the frequency content of the signal was well within the range of uniform gain of 
the frequency response of the transducer used as the standard. pdt)  then was consid- 
ered as the input to the test transducer andpdt) as its output. The graphs ofpdt) and 
p&) indicate that the two signals were similar but not identical. The DFT of each 
sampled signal was determined, and the CT frequency response of the transducer 
under test was calculated at the corresponding frequencies via Eq. (7.52) (Fig. 
7.18(b)). (The dashed part of the plot represents the frequency range for which the 
input signal contained components of very small amplitude; therefore, the calculat- 
ed gain is unreliable.) The frequency response of the test transducer has a (3 dB) 
cutoff frequency of approximately 225 Hz. 

1 8 ~  
0.3 

0 
o 0.1 oz oa 0.4 0.5 
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(a) 

FIQURE 7.18. (a) The responses of two pressure transducers at two ampHRcations. ps(t)- 
from the standard transducer, pr(t)--from the transducer under test. 0) Relative gain of the 
transducer under test determined as the magnitude of the ratio of the DTFT of pdn] to the 
DTFT of ps[n]. Dashed line indicates unreliable data (see text). 
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Other Applications from the Literature 
The DTFT has been utilized to characterize the tendency of neurons to exhibit oscil- 
latory discharge patterns. For example, Gdowski and Voigt (1998) studied auditory 
neurons. The authors recorded the responses of these neurons to short tone bursts 
repeated at 1 -second intervals, from which the autocorrelogram of the neuron was 
calculated. The autocorrelogram is a measure of the probability of a neuron dis- 
charging in a time interval (to + R Ar, ro + (k + 1) * At) given that it discharged in 
some preceding interval (to, to + At). The time is discretized as to = n * At and the 
probability is averaged over all values of to. The calculation is repeated for a suffi- 
ciently large range of k to capture the range of nonzero autocorrelation in the dis- 
charge pattern. The top two tracings of Fig. 7.19 present two examples (although the 
discrete points corresponding to each k * At are connected by lines in the graphs). 
The power spectral density function (Fig. 7.19, bottom traces) is determined by cal- 
culating the DTFT of the autocorrelogram. Each neuron was then characterized by 
the magnitude and frequency of the largest peak in its power spectrum, as indicated 
for these two examples. 

An example of discrete-time filtering is found in flow cytometry. In Fig. 7.20 
lung fibroblast cells were stained with a fluorescent dye (Nile Red) to reveal the 
presence of lipids. The intensity of fluorescence from each cell is an indicator of 
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FIGURE 7.19. Examples of autocondograms (top) and spectral density functions (bottom) for 
two auditory neurons. See text for explanation of the autoconelogram. (Godowski and Voight, 
1998. Reprinted with permission from ANNALS OF BIOMEDICAL ENGINEERING. 1998, Bio- 
medical Engineeting Society.) 



270 MODELING SIGNALS AS SUMS OF DISCRETE-TIME SlNE WAVES 

AGURE 72U. Histogram: flow cytometry data. Mid a w e :  same data after fllten’ng with a 
Remez filter. See text for details. (Data courtesy of Margaret BNce.) 

the amount of lipid in the cell. The cells were then passed through a flow cytome- 
ter that counted the number of cells having intensities, 1, within specific bins &, 
Ik + Al) where Ik = k * AI. The figure plots the number of cells vs. intensity. Again 
these data are discrete because the intensity axis is broken into discrete intervals 
and the intensity axis could be specified by the integer k, where k = IdN. These 
data were smoothed by applying a DT filter designed using the Remez method 
(see Chapter 8) with an order of 21, a passband of 0 S w S 0.211., and a stopband 
of 0.311. S o I 11.. 

In another application Mao and Wong (1998) describe an optical method for 
measuring the average beat frequency of cultured cilia that entailed shining a 
632.8-nm laser light on the cells and collecting both backscattered photons from 
the beating cilia that underwent a Doppler frequency shift and photons from the 
stationary background. Mixing of the two photon streams at a photomultiplier tube 
(PMT) produced an interference pattern with intensity fluctuations at the frequen- 
cy of ciliary beating. Figure 7.21(a) shows a record of 2048 photon counts from 
the PMT, where each count is the number of photons received in a 4-msec window 
(or channel). The 100 most recent values were used to calculate the energy spec- 
tral density (Fig. 7.21(b)) by first calculating the autocorrelation function and then 
computing the FFT of this correlation hnction. The vanations of the spectra with 
time were revealed by plotting them on a three-dimensional graph (Fig. 7.21(b)). 
The peak in the energy spectral density was interpeted as the average ciliary beat 
frequency. 
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h 1JX104 I I 

FIOURE 7.21. (a) Count of photons arriving at a photomuttiplier tube in 4 msec time intervals. 
(b) PSD of photon count signal, taking 100 samples at a time, with succeeding spectra dis- 
placed correspondingly along the time axis. (Mao and Wong, 1998. Reprinted with permission 
from ANNALS OF BIOMEDICAL ENGINEERING. 1998, Biomedical Engineering Society.) 

7.12 SUMMARY 

Discrete-time signals may originate from measurements related to discrete events 
(such as the heartbeat), from processes that count or average data over fixed time in- 
tervals, or from sampling of continuous-time signals. The Discrete Fourier series 
(DFS) decomposes a periodic DT signal into a sum of DT complex exponential 
functions. In contrast to the CT Fourier series, if the period of a DT periodic func- 
tion is N, then there are only N unique terms in the DFS since the sequence of DFS 
coefficients is also periodic with period N. The DFS satisfies many properties that 
are analogous to those of the CT Fourier series. 

Nonperiodic DT signals can have a Discrete-time Fourier transform (DTFT) if 
they are absolutely (or square) summable. The DTFT is a continuous function of 
frequency, w, and is periodic with period 27r. A version of Parseval’s Relation estab- 
lishes that the sum of the squared magnitudes of the values of a DT signal is propor- 
tional to the integral of the squared magnitude of its DTFT over one cycle. This re- 
sult motivates the definition of the deterministic power spectral density (PSD) of a 
bounded, finite-length DT signal as the squared magnitude of its DTFT divided by 
its length, N. The PSD equals the DTFT of the autocorrelation function of the sig- 
nal. For an LSIC system with unit-pulse response, h[n] ,  its frequency response is the 
DTFT of h[n] .  Consequently, the DTFT of its output equals the frequency response 
multiplied by the DTFT of its input. 

For a periodic DT signal, X[n], with period N, each DFS coefficient, ak], multi- 
plies a term in the DFS summation. If a nonperiodic signal, x[n] ,  is generated 
by taking one c cle of the periodic signal, then its DTFT is related to the DFS coef- 
ficients as = ak]. This relationship motivates defining a Discrete Fourier 
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transform (DFT) to be one cycle of the DFS coefficients. The DFT then specifies 
the DTFT at N frequencies corresponding to N points uniformly spaced around the 
unit circle of the complex plane. The corresponding tiequencies are ok = 27rkLV, 
0 s k I N - 1. Because the DFT may be calculated very efficiently using various 
Fast Fourier transform (FFT) algorithms, this approach is the most common compu- 
tational implementation for calculating values of the DTFT. 

Windowing is an amplitude-modulation process in which one signal is multi- 
plied by a second, finite-duration signal in order to force the resulting signal to be 
zero outside of a specified time interval. The shape of the windowing signal deter- 
mines the rate at which the windowed signal approaches zero. The DTFT of the 
windowed signal is  proportional to the convolution of the DTFTs of the two signals 
that are multiplied. CT signals that are sampled for a finite length of time can be vi- 
sualized as infinite-duration signals that have been windowed. 

Sampling of CT signals at a uniform sampling rate preserves the Fourier compo- 
nents of the CT signal if the sampling rate is greater than twice the highest frequen- 
cy for which a Fourier component of the CT signal is nonzero (the Nyquist frequen- 
cy). In such a case the DTFT of the sampled signal is equal to the Fourier transform 
of the CT signal, scaled by the sampling rate, 1/T, with o = W a n d  --?r s o 5 7r. If 
the sampling frequency is too low, the DT signal is said to be aliased and there is no 
longer a simple relationship between the DTFT and the CTFT. The PSD of the CT 
signal equals the PSD of the sampled signal multiplied by T if there is no aliasing. 

Biomedical applications of the DFS, and especially of the DFT, are extensive. 
They include analysis of the CTFT based on analysis of a sampled signal, investiga- 
tion of periodic or nearly periodic behavior using the PSD, and analyses of frequen- 
cy responses for smoothing of DT signals and other types of filtering. The next 
chapter will investigate further the many varieties of DT filters. 

EXERCISES 

7.1 Each of the signals below is periodic over the interval shown but its funda- 
mental period may be shorter. Sketch and identify one period of each periodic sig- 
nal, and calculate its Discrete Fourier series. 

-5 I n 5 5, n .f: +2, -2 
n = +2, -2; [ -f: a. ?[n] = 

-6-54-3-2-1 0 1 2  
0 1 2 1 0  1 2 1 0 ;  

c. q n ]  = X & d ( n  - lOk]. 
7.2 Consider the problem of calculating the DTFT, F(eiW), of the signalflk] by 
making a periodic extension ofnk] and calculating its DFS coefficients, where 
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a. f[k] is a sequence of length 3. Calculate the DFS coefficients for the periodic 
extension which has period equal to three. Remembering that F(ej") is a continuous 
function of w, what problem do you encounter in this case when trying to determine 
the DTFT from the DFS coefftcients? 

b. Now define another sequence,f,[k], which has length eight, where 

k=O, 1,2  
ml={:; 3 5kS7. 

Make a periodic extension of this sequence and find its DFS coefficients. Can you 
use these DFS coefficients to evaluate the DTFT F(e'")? 
7.3 A continuous-time signal x(t) has the CTFT given by 

Sketch the DTFT, X(ej") of the signal x[n] which results from sampling x(t) with the 
sampling interval: 

a. T-2d300. 
b. T-2d600. 

7.4 Consider a continuous-time LTI system having the impulse response h(t)  = 
5e-2fu(t). If this system is given the input x(t) = u(t), its output will be y(l) = 
5[1 - e-"]u(t). 

a. Sample x(t) and y(t) using the sampling interval T = 0.10 sec. to obtain the 
discrete-time variables x[n] = u[n], and y[n] = 5(1 - e4.2n)u[n] Now assume that 
x[n]  was the input to a discrete-time LTI system and y[n] was the resulting output. 
Calculate the frequency response, H(e'") of this DT system. 

b. Assuming there is no aliasing, we have calculated a specific relationship be- 
tween the Fourier transform of a CT signal and the DTFT of a DT signal obtained 
by sampling the CT signal. That is, if the signal being sampled is h(i) ,  then H ( n )  = 
T * H(ei"3 Using your answer from part a, calculate the CT frequency response 
H(n) based on this relationship. What is the actual frequency response of the CT 
system described above? Why doesn't the relationship between the CTFT and the 
DTFT give the right answer for H ( Q ?  
7.5 Graph each of the following DT signals and determine its DTFT: 

a. x[n]  = f6[n + 13 + 6[n] + f S [ n  - I]; 

c. x[k] = (0.5)'' cos[6k]u[k]. 
b. ~ [ n ]  = u[n + 31 - u[n - 41; 

7.6 The signal x[n] has the DTFT X(ej") = 2/( 1 + 0.3e-1"). Determine the DTFT of 
the following signals: 

a. w[n] = x[n - 31; 
b. y[n] = efl"x[n]; 
c. r[n] = x[n]  * x[n]. 

7.7 In normal young subjects heart rate varies with respiration, often following a 
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nearly-sinusoidal variation. Since heart rate can be measured only once per cardiac 
cycle, any measurement of heart rate is necessarily a sequence of numbers. Call this 
sequence dn). For the present purposes I will approximate heart rate variations by 
the following: 

where F is the mean heart rate, and generate a sequence of 32 simulated heart rate 
values from this equation. Assuming that I do not “know” the frequency of the heart 
rate variations, I subtract the mean level from the values of dn], make a periodic ex- 
tension of this (zero-mean) finite-length sequence and then calculate the Discrete 
Fourier series of the resulting periodic sequence. The magnitudes of the coefficients 
I get are shown in Table 7.7. 

TABLE 7.7 DFS Coefficient8 for Simulated Heart 
Rate Date 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

1.93923058+001 
2.2639238e+Ool 
4.49073608+001 
7.5 1 84972e+W 1 
1.63484698+001 
8.36860348+000 
5.37523408+000 
3.8723213e+000 
3.0000000e+000 
2.4484381e+OOO 
2.08061018+000 
1.82757758+000 
1.651 53088+OOo 
1.5305354e+OOo 
1.451 51 63e+OOO 
1.40679088+000 
1.3923048e+OOO 
1.40679088+000 
1.45151638+OOO 
1.5305354e+OOo 
1.6515308e+000 
1.82757758+000 
2.08061 01 8+OOO 
2.4484381e+000 
3.0000000e+000 
3.872321 3e+OOO 
5.37523408+000 
8.3686034e+OoO 
1.63484698+001 
7.51 849728+OO1 
4.490736oe+001 
2.2639238e+001 
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a. Specib the frequency that corresponds to each DFS coefficient. 
b. Explain why the maximum DFS coefficient is not at the known sinusoidal fre- 

quency in the data. 
c. Explain why the DFS coefficient at the frequency nearest to the known sinu- 

soidal component in the data is not the only nonzero coefficient. Include diagrams 
to complement your explanation. 
7.8 Use MATLAB to generate a sequence of 32 data points from the equation for 
r[n] in the previous exercise, then calculate the corresponding DFT coefficients us- 
ing the f f t command. You should get the same answers given in Table 7.7. Now 
generate 256 data points (instead of 32) and calculate the new DFT coefficients. 
Make plots of the magnitudes of the old DFT coefficients versus frequency and of 
the new DFT coefficients versus frequency. Compare these two graphs. 
7.9 Generate 128 data points using the equation r(n) = F + 6 sin[(27~/16)n] Evalu- 
ate the corresponding DFT coefficients and plot their magnitudes vs. frequency. 
Why are there now nonzero values only at the known sinusoidal frequencies in the 
data? 
7.10 The response of a linear, discrete-time, shift-invariant system to the input 

1, n r o  

0, n < O  x[n] = 

is y [n]  = ( n  + 1){ u[n] - u[n - 21) + 3u[n - 31. 
a. Determine the unit-pulse response of this system. 
b. Determine its frequency response. 

7.1 1 A periodic discrete-time signal is given by F[k] = -2{ 1 - cos[ + ~ k ] }  Specify 
its period, N, and calculate all of its unique Discrete Fourier series coefficients. If 
the finite-length signal x[k]  consists of one cyle of X[k] ,  specify the frequencies at 
which X(ejw) equals Rk]. 
7.12 One method for decimation of a discrete-time signal, x[n],  involves replacing 
every other value of the signal by zero. Mathematically this process can be ex- 
pressed as: 

Equivalently, we could say that y[n] = x[n]p[n] ,  where p[n] = &s[n - 2k] = +( 1 + 
(-1)"). Express the DTFT Y(ejw) in terms ofX(ejo). 

7.13 Conceptually, one could design a digital FIR filter that approximates the fre- 
quency response of an IIR filter by truncating the impulse response of the IIR filter. 
For a simple example, consider two filters whose impulse responses are given by: 
h,[k] = aku[k], la1 < 1, and h2[k] = cr'u[k], 0 5 k 5 1, with h2[k] = 0, k > 1. 

a. Find the frequency response of both filters and compare them. How well does 
the FIR filter approximate the frequency response of the IIR filter? 

Hint: Think of other ways to express (-1)". 
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b. The difference equation for the first filter isy[k] + ay[k- I ]  = x[k]. Determine 
the difference equation for the second filter. 
7.14 The signal x(r) = [ 10 sin(40nt)]Pl(t - 0.5) is sampled with T = 5 msec for 0 
I t < 1 to form the sequence x[n], 0 5 nS 199. Sketch the magnitude of the DTFT 
of x[n]. If X(dw) is evaluated using a DFT method, at what specific frequencies will 
one be able to calculate the values of X(n)? 
7.15 Let x[n] be the input to an LSI system having the frequency response H(el") 
and y[n] be its output. 

a. Let x[n] = 2 cos[lOOn], h[n] = (-0.8)"u[n], and calculate the power spectral 
density ofy[n]. 

b. If x[n]  was acquired by sampling the signal x(r) = 2 cos( lOOOt) with T = 0.10 
sec, calculate the power spectral density of x(f), P,&l). 

c. If one uses a DFT with N- 1024 points for calculating the spectral density of 
x(t) from part b, at what DT and CT frequencies can one evaluate the spectral densi- 
ty function? 
7.16 Since in CT an ideal differentiator has the frequency response HAn) = i n ,  one 
might suppose that a DT approximation of this CT system would have the frequency 
response Hdej") = jo. If the input to the DT system, x[n] ,  is acquired by sampling the 
signal x(r) without aliasing, determine whether the output of the DT system will be 
the corresponding samples of the output of the CT system-that is, of Wdr. 
7.17 The delay time or center of gravity of a DT signal, x[n], is defined as 

Express No in terms of the DTFT of x[n]. 
7.18 A simple form of model for a natural population is an age structured model. 
Assume some population exists in only two age classes (juveniles or adults) and that 
juveniles produce& offspring per year and adults produceh offspring per year. Fur- 
ther assume that juveniles survive to adulthood per year with probability po and 
adults do not survive beyond one year. Then if/rk] is the number ofjuveniles, a[k] is 
the number of adults, and x[k ]  is the number ofjuveniles added per year from an ex- 
ternal source (such as a neighboring population), the population may be described 
by the relationship 

a. This system has two outputs,j[k] and a[k]. Find the impulse response of both 

b. Calculate the DTFT of both impulse responses and compare their frequency 
outputs when x[k] is the input. 

responses. Let& = 0.25,h = 0.50, po = 0.90. 
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7.19 The periodontal membrane connects the root of a tooth to the underlying 
bone and acts as a shock absorber. To test the biomechanical properties of this mem- 
brane, Okazaki et al. (1996) applied an impulsive force to the tip of a maxillary in- 
cisor tooth and measured the resulting acceleration of the tooth using a miniature 
accelerometer. The force was applied using a computer-controlled “hammer” and 
was quantified also as the acceleration of the hammer. Figure 7.22 shows data from 
one subject that is available in digitized form in the file tooth. m a t .  The two vari- 
ables in this file are the accelerations of the hammer and tooth, a&] and afEn], 
named acch and acct, respectively. They were sampled with an intersample inter- 
val of 0.1453 msec. 

a. Using the MATLAB function f f t calculate the DTFT of the acceleration of 
the tooth, adn], and plot the magnitude of this transform verus frequency. Similarly 
determine the DTFT of adn] and plot its magnitude versus frequency. 

b. Calculate and graph the frequency response of this system. 
c. If one assumes that the input is “sufficiently impulse-like”, one may deter- 

mine the frequency response simply from the DTFT of afEn]. Is this assumption 
valid? Explain. 
7.20 The distributed force and torque exerted by the ground on the foot of a stand- 
ing subject can be represented by a single net force vector (called the ground reac- 
tion force) located at a ground position called the center of force. The file 
sway. m a t  comprises samples of the antero-posterior location of the center of 
force, c(t), when a normal young subject attempts to stand still on top of a force 
plate with his eyes closed. (These data were obtained using a modified EquitestR 
system.) c(c) was sampled at 50 Hz for 20 seconds. 

a. Use the MATLAB hnction f f t to calculate C(e’”), the DTFT of the sampled 
signal c[n] ,  and then calculate and plot the power spectral density hnction of c[n]. 

hammer 
n +l[ 
9 -1 

0 10 20 30 40 
msec 

FlQURE 7.22. Acceleration signals of the hammer and tooth from the file tooth.mat. (Data 
from Okazaki et al., 1996. Reprinted with permission from ANNALS OF BIOMEDICAL ENGI- 
NEERING. 1996, Biomedical Engineering Society.) 
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b. Determine the power spectral density hnction of c(t) and identify the fie- 
quencies of any periodic oscillations present in &). 

7.21 The file hrs .mat contains beat by beat heart rate data from a human sub- 
ject. Consider this signal as a DT variable with the basic unit of time being one 
heartbeat. Remove the mean value from this signal-call the new signal hr[n]-and 
calculate the autocorrelation function of hr[n]. (Suggestion: Use the MATLAB func- 
tion xcov.) Can you detect any oscillatory behavior in hr[n] based on examination 
of its autocorrelation function? If so, what are the periods? Now use f f t to calcu- 
late the DTFT of the autocorrelation function-that is, the power spectral density 
function-and determine whether there are any peaks in this latter hnction that are 
indicative of oscillatory behavior in hr[n]. 
7.22 Calculate the PSD of the signal c[n] from sway. mat after windowing this 
signal with a Hamming window, and compare this result to the PSD calculated in 
Exercise 7.20(a). 



NOISE REMOVAL AND 
SIGNAL COMPENSATION 

8.1 INTRODUCTION 

Removing noise from a signal probably is the most frequent application for signal 
processing. As discussed in earlier chapters, the distinction between noise and de- 
sired signal is an heuristic judgment that must be determined by the user. Often the 
distinction is obvious-for example, 60-Hz interference in an EEG recording or 
temperature-related drift in the reading of a pH electrode. In other situations the 
user depends on experience and indirect knowledge of the signal and its source to 
decide whether or not certain features of a signal should be considered noise. For 
example, since the frequency components of the EEG are principally below 25 Hz, 
one would suspect that prominent signals in the EEG at much higher frequencies 
have another source such as the electromyogram activity of neck, jaw, or extraocular 
muscles. Once the distinction between the desired signal and noise has been re- 
solved, then removal of the noise with the least possible distortion of the desired 
signal is the goal. 

In concept, one may specify the frequency response of a linear filter that can effect 
the separation of the frequency components of the noise from those of the desired sig- 
nal. In many cases, however, the necessary frequency response may not be similar to 
that of the simple first- and second-order filters that have been discussed as examples 
in earlier chapters. In other cases the separation between the passband and the stop- 
band of a simple filter may be inadequate either because the stopband gain is not 
small enough or because the frequency components of signal and noise are too close 
together relative to the width (in frequency) of the transition between the passband 
and stopband. In these situations it is necessary to design a better filter. 

Because biomedical applications often involve the acquisition of continuous- 
time signals by digital sampling, one has the choice of filtering either before sam- 
pling using a continuous-time filter (analogfilter), or after sampling using a dis- 
crete-time filter (digital filter). Digital filters are more versatile and more 
convenient to modify for different applications. Analog filters, however, also have 
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certain advantages and there are pertinent reasons to employ them. First, to prevent 
aliasing one ulwuys should filter a CT signal with an analog filter before sampling 
it. Second, even if it is incomplete, any noise removal that one can effect with an 
analog filter before sampling reduces the requirements on any subsequent digital 
filter. Finally, the properties of some classes of analog filters are well-studied and 
these filters provide a foundation for designing “equivalent” digital filters. 

Because much filtering of biomedical signals is accomplished digitally, this 
chapter focusses on digital filters. (Furthermore, the reader will recognize that 
many newer biomedical instruments that acquire analog signals process these sig- 
nals by digitizing them, and often include built-in digital filters.) The chapter begins 
with an example of analog filtering that will be discussed later from the viewpoint 
of digital filtering. Because digital filters are designed using Z-transforms, this top- 
ic occupies the first half of the chapter. 

8.2 INTRODUCTORY EXAMPLE: REDUCING THE ECG 
ARTIFACT IN AN EMG RECORDING 

When an electromyogram (EMG) is recorded from muscles on the torso, the elec- 
trocardiogram (ECG) is commonly superimposed on the EMG signal because of the 
physical proximity of the heart and the large electrical amplitude of the ECG com- 
pared to many EMG signals. An example is presented in the bipolar recording of the 
EMG from the lower ventrolateral rib cage of a human subject shown in Fig. 8.l(a). 
The four bursts of EMG activity correspond to the contraction of muscles of the 
chest during the inspiration phase of four breaths. To better visualize the EMG sig- 
nal due to breathing, or for subsequent quantitative analysis of the signal, it is desir- 
able to filter out the ECG artifacts, Let us proceed by estimating the frequency 
range of the components of the EMG and ECG signals individually. 

Using Eq. (7.21) we may calculate separately the deterministic power spectral 
density functions for short segments of data that comprise mainly EMG and mainly 
ECG components. First we examine a segment of 256 samples (acquired by sam- 
pling at lOoO/s) encompassing the ECG signal near t = 2.30 s. Its power spectrum is 
plotted in Fig. 8.l(b) as the dotted line. Next we calculate the power spectrum for 
each of two 384-sample test segments of the EMG signal acquired from the middle 
portions of the second and third bursts, between the neighboring ECG signals. The 
average of these two spectra is also depicted in Fig. 8.1 (b). Because it is concentrat- 
ed in frequency and large in amplitude, the ECG has much greater peak power than 
the EMG. Furthermore, the frequency contents of the two signals seem to overlap 
below about 30 Hz. Therefore, removal of the ECG by filtering the EMG recording 
with a highpass filter will necessarily remove some EMG signal components also. 
Nevertheless, let us ascertain the degree to which the ECG can be reduced through 
application of a second-order filter. 

A second-order Butteworth highpass filter was designed and the EMG record- 
ing of Fig. 8.l(a) was filtered using the MATLAB function h i m .  Through trial and 
error it was found that a cutoff frequency of 70 Hz produced (visually) the largest 
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2 sec 

.. 

Frequency, Hz 

I101 
I 

50 1w 
Frequency, Hr 

150 

FIGURE 8.1. (a) Recording of electromyogram (EMG) from lower chest wall of a human sub- 
ject, showing respiratory muscle EMG and electrocardiogram (ECG). (b) Power spectra of 
EMG (solid) and ECG (dotted), the latter truncated because of its large amplitude. See text. (c) 
Recording from 'a' after being passed through "optimal" second-order Butterworth filter. (d) 
Power spectrum of EMG before (dotted) and after (solid) filtering. 

reduction of the ECG without severe degradation of the amplitude of the EMG sig- 
nal, The filtered signal is presented in Fig. 8.l(c), and Fig. 8.1 (d) compares the av- 
erage power spectrum of the two EMG test segments before and after filtering. 
There is a definite visual improvement in the EMG recording but the power spec- 
trum shows that filtering has essentially removed the EMG frequency components 
below about 30 Hz. Although the ECG signal components below 30 Hz are also 
greatly attenuated, the large original amplitude of these components offsets the 
small gain of the filter, the result being that the product of these two factors yields 
signal components in the filter output that are comparable in magnitude to the EMG 
signal. Thus the ECG is diminished but still very visible in the filtered signal! 
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Later we will address this same problem using digital filtering, with moderately 
better success because it is easy to implement high-order digital filters that separate 
passband and stopband more precisely. A markedly more successful approach to the 
difficult problem of ECG removal from EMG signals involves the application of a 
topic beyond the current text, namely, adaptive filtering. 

8.3 EIGENFUNCTIONS OF LSI SYSTEMS AND THE Z-TRANSFORM 

Eigenf unctions 

Consider an LSI system with unit-pulse response h[n], having input x[n] and output 
y[n]. Assume that the input may be expressed as a linear combination of some set of 
basis functions, so that x[n] = 2kakt$k[n]. The output of this system then will be y[n]  
= x[n] * h[n] = &~~t$~[n]  * h[n]. In other words the output may be expressed as a 
weighted sum of another set of basis functions, Odn], defined by &[n] = t$k[n] * 
h[n]. Indeed the weighting facton, uk, are the same for both x[n] and ~ [ n ] !  This re- 
sult is general as long as x[n] is definable in terms of a set of basis functions. If the 
basis of x[n] is such that the basis functions for y[n] are scaled versions of those for 
x[n]-that is, if ek[n] = bk&[n], then the members of the basis set &[n] are known 
as eigenfunctions of the LSI system and the coefficients bk are eigenvalues. If an 
eigenfbnction is the input to an LSI system, the output is the input signal scaled by 
the eigenvalue. If the eigenhnctions form a basis set for the input signal, 4113, then 
they also form a basis set fory[n]. 

Consider now the input signal x[n] = f, where z is any complex number. By con- 
volution, the resulting output of the system with unit-pulse response h[n] is 

where 
m 

H(z)= 1 h[rn]tm. (8.1). 
m=-= 

From the above definitions, f must be an eigenfunction of any LSI system and 
H(z) must be the corresponding eigenvalue. H(z) is known as the 2-tmnsform of 
h[n]. That H(z) is a generalized frequency response of the LSI system may be seen 
by expressing the complex number, z, in terms of its magnitude and angle, z = de, 
and letting r = 1. Noting that on the unit circle z = d*, Eq. (8.1) implies that 

That is, the Z-transform, H(z), evaluated on the unit circle in the complex plane 
equals the frequency response of the LSI system. 
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Note that ZC" is also an eigenfunction of LSI systems for any finite value of c. 
Therefore, any function x[n]  that may be expressed as a summation of terms in pow- 
ers of z is describable as a sum of eigenfunctions of LSI Systems. This class of func- 
tions is very large, especially when one considers power series expansions of func- 
tions like sines and exponentials. 

Consequently, as with previous transforms, we will extend the Z-transform to 
functions other than those that are unit-pulse responses of LSI systems. In general, 
we define the Z-transform of the sequence x[n]  as 

0) 

X(z) = c x[m]z-" LiZ(x[n]} .  
m--oo  

Note that Eq. (8.2) implies thatX(z)l,-du=X(e'w). That is, the DTFT ofx[n] equals the 
2-transform of x[n]  evaluated on the unit circle, assuming that the defining summa- 
tion for X(z) converges on the unit circle. That X(z) may converge for some values of 
z but fail to converge on the unit circle may be appreciated by writing X(z) in the form 

X(Z = re'? = C x[m]~me-Jm@, 

Clearly this summation may fail to converge for r = 1 and still converge for r # 1. 
Consequently, the 2-transform of a DT signal may exist even though its DTFT does 
not. 

0) 

m - - m  

Region of Convergence of the Z-Transform 

In general, the Z-transform, Eq. (8.3), will converge for some values of z but not for 
others; therefore, it is necessary to specify the region of convergence of X(z) in the 
t-plane. As with Laplace transforms, two different functions may have the same ex- 
pression for their Z-transforms but the regions of convergence will be different. 
A common example is the pair of real-valued functions x[n]  = a"u[n], y[n] = 
-u"u[-n - 11. Evaluating their respective 2-transforms, 

0) m 

Note that the ROC for each transform is specified based on the criterion for conver- 
gence of the corresponding summation. Figure 8.2 indicates the ROC for each of 
these 2-transforms. 

Convergence of the 2-transform of an arbitrary DT function x[n] requires that 

I m  I 
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(a) (b) 

FIGURE 8.2 Regions of convergence of: (a) x[n] = a"u[n]; (b) 44 = 4 u I - n  - 11. 

A sufficient condition for convergence is that the terms in this summation be ab- 
solutely summable since 1Z",--odc[m]r"l I, Z ;_,b[m]zml. Therefore, X(z) con- 
verges if 

m m 

Note also that the (finite) boundaries of the ROC of a Z-transform are circular. 
This result may be demonstrated by assuming that an arbitrary 2-transform X(z) 
converges for some value of z, corresponding to zl = rid% But by Eq. (8.4). X(z) 
also will converge for any z = rlde-that is, everywhere on a circle of radius r l .  

Certain general properties of the 2-transform often permit an easy determination 
of the ROC. Consider first a bounded, finite-duration signal, x[n] ,  nl S n zs nz. Its 
Z-transform may be written as 

So long as x[n]  is bounded, X(z) will be finite for any value of z, except possibly for 
z = 0, or z = 03. If nl  < 0, then X(z) will not converge for z = m since Z"I(~+,, 4 03 for 
negative nl .  In fact, if the ROC of X(z) includes z = a, then x[n]  must be causal (al- 
though it may be infinite in duration), If n2 > 0, then X(z) will not converge fo r t  = 0 
since P21z- ,o  + 00. Therefore, the ROC of a finite-duration sequence includes all of 
the z-plane, with the possible exceptions of z = 0 or 00. 

A right-sided sequence is a sequence x[n]  for which x[n] = 0, n < n 1. Its Z-transform 
is X(z) = Z L , x [ n I z + .  From the preceding discussion, X(z) will not converge for t  = 0 
nor, if nl < 0, for z = a. If nl 2 0, then z = 00 is in the ROC. To determine other proper- 
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ties of the ROC, assume that X(z) converges for some z = zI. Then the condition of Eq. 
(8.4) will be met for anyz such that bl> lz,l. But sinceX(z) cannot converge at any pole, 
then z1 cannot be inside the circle defined by the magnitude of the largest pole ofX(z). 
Consequently, the ROC for a right-sided sequence includes all of the z-plane outside 
of its largest pole, except for z = 00 if nl < 0 (e.g., Fig. 8.2(a)). Conversely, if it is known 
that the ROC ofX(z) is bll c bl c 00, one may conclude that x[n]  is right-sided, and ifz 
= 00 is included in the ROC, then x[n]  is causal. Note that for the DTFT of a right-sided 
sequence x[n]  to exist (which requires that X(z) converges on the unit circle), all of the 
poles of its Z-transform must lie inside the unit circle. 

A left-sided sequence is one for which x[n]  = 0, n > n2. The convergence proper- 
ties of the 2-transform of a left-sided sequence mirror those of a right-sided se- 
quence. The ROC includes all of the z-plane inside the circle defined by the magni- 
tude of the smallest pole ofX(z), but will not include z = 0 if n2 > 0. If a DT signal is 
the sum of a right-sided sequence and a left-sided sequence, then its ROC will be 
the region of the z-plane that is common to the regions of convergence of the indi- 
vidual sequences, if such exists. It will have the form lzll < Izl < 1z21 which describes 
an annulus centered at z = 0. 

Example 8.1 Common 2-transforms Z-transforms of many simple DT signals 
are easily computable directly from the definition. Thus 

for x[n]  = 6[n - Nj ,  X(Z) = z - ~ ,  121 > 0; 
m 

Note that V(z) also may be written as 

Z 
V(z) = -* 

2 -  1 

For x[n]  = u"u[n], as shown previously, 

1 
1 -uz-' ' X(z) = - lzl> a. 

Using the last result, if x[n]  is generated by sampling the CT hnction x(r)  = &'u(t) 
at a sampling frequency 1/T, so that x[n]  = e-R6T~[n], then X(z) = I/( 1 - e4Tz1),  IzI > 
eAT. 

Before discussing properties of the Z-transform we should note that the defini- 
tion of Eq. (8.3) is properly designated the bilateml Z-tmnsform. An alternative 
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characterization, for which the lower limit of the summation in Eq. (8.3) is m = 0, 
defines the uniluteml 2-tmnsform. Because the unilateral Z-transform assumes that 
the sequence is zero for n < 0 (i.e., a right-sided sequence), there is a unique se- 
quence corresponding to each Z-transform and it is not necessary to specify the 
ROC. This form of the Z-transform is especially usefbl for dealing with causal sys- 
tems with right-sided sequences as inputs and we shall consider it later. For now we 
address only the bilateral Z-transform. 

8.4 PROPERTIES OF THE BILATERAL &TRANSFORM 

Linearity: The 2-transform is a linear operator. Thus, ifx[n] andy[n] have the trans- 
forms X(z) and Y(z) defined on regions of convergence R, and R,,, respectively, then 

Z{ar[n] + by[n]} = d ( Z )  + bY(z), 

with ROC at least the intersection of R, and R, This property is easily proven using 
the basic definition, Eq. (8.3). 

Example 8.2 Lineario Let x[n] = & I ]  + 2(0.6)"u[n]. Then X(z) = 1 + 
2[ 1/( 1 - 0.6t1)]. The ROC of X(z) is the region bl> 0.6. 
Example 8.3 2-transforms of trigonometric functions The 2-transforms of 
trigonometric hnctions may be calculated using Euler's formulas and the Z-trans- 
form of @u[n]. Thus, ifx[n] = cos[w,n]u[n], 

with the ROC of both terms being bl> 1. The terms in X(z) may be combined to yield 

1 - 2-1 cos(u0) 
1 - 22-1 cos(u0) + 2 2  

X(2) = 

Similarly, 

I' sin( q,) 
Z{sin[u,,n]u[n]} = 

1 - 2z-1 cos(cL+J) + 2-2 * 

Zime shift: If Z{x[n]} = X(z) then 2 { x [ n  - dJ} = z-"X(z). Again, this result is 
easily demonstrable from Eq. (8.3). Since delaying a signal by one unit of discrete 
time corresponds to multiplying its Z-transform by r', often i1 is called a unit- 
delay opemtor. 

Scaling: If Z{x[n]} = X(z), Z{u"x[n]} = X(a-lz). That is, scaling of the ampli- 
tude of x[n] by the exponential term, u", corresponds to dilation (a > 1) or compres- 
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sion (a < 1) of the z-plane. If the ROC of X(z) is bll < JzI < lzql, the ROC for X(a-lr) 
is lazll < lzl c laz21. These results follow directly from the definition. 

Example 8.4 Scaling Let 

1 ,  O s n s N - 1  I 0, otherwise. x[n] = 

X(z) is found using Eq. (8.3) as X(z) = ZTdz-" = (1  - z-y/( 1 - 2-I) unless z = 1, in 
which case X(z) = N. Since x[n]  has finite duration and is causal, its ROC is the en- 
tire t-plane except 2 = 0. Now let y [ n ]  = 0.5"x[n]. By the scaling property, Y(z) = 
X(z/O.5) = (1 - O S N I N ) / (  1 - 0.52-I). 

Multiplication by n: Z{nx[n]} = -z(dx(z)/dz). This property is demonstrable by 
differentiating both sides of Eq. (8.3). Thus dX(z)/dz = Bf~[n](-n)r"- '  = 
-t18Fa(nx[n])r'. Dividing by z-l proves the desired result. 

Example 8.5 Let v[n]  = nu[n]. Then V(z) = -z(dl/(z)/dz) where V(z) is the 2-trans- 
form of the DT unit-step function. Thus V(z) = -z-I(-l/( 1 -TI)*) = (z-I/( 1 - z-')*). 

Time reversal: If x[n] has the transform X(z), then x[-n] has the transform 
X ( r l ) .  Furthermore the boundaries of the ROC for 4 - n ]  are the reciprocals of those 
for x[n] .  This property follows from Eq. (8.3) after a change of variables-for ex- 
ample, let k = -m. 

Time-domain convolution: Given Z(x[n]} = X(z), Z{v[n]} = V(z). If y[n] = 
x[n]  * v[n] ,  then 

Y(2) = X(z) V(2). (8.5) 

To prove this result, compute the 2-transform ofy[n]: 

1 0 

Y ( z ) = c  y [ n ] r = T  LT x[k]v[n-k] zn 
n-- n-4a -0 

m m 

This equation may be written as 
m m 

Y(2) = 2 v[m]z-mC x[k]z-" = V(z>x(z). 
m=- I r a  

The immediate application for this property is the determination of the 2-trans- 
form of the zero-state output response of an LSI system given the Z-transforms of 
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its input signal and its unit-pulse response. This application will be explored in 
depth later in the chapter. In order to determine the time response of the output, it 
will be necessary to determine the inverse 2-transform of Y(z). Methods to calculate 
inverse Z-transforms will be addressed shortly. 

A useful, related property permits the indirect calculation of the cross-correla- 
tion function of two sequences. Recall that R,[m] = Zt-ov[nk[n - m] = x[n]  * 
v[-n]. Taking the 2-transform of both sides of this equation and using the time re- 
versal property, 

R&) = X(Z)Z( v[-n] } = X(Z) V(2-I). (8.6) 

Similar to the case for convolving two sequences, the cross-correlation of two se- 
quences may be calculated by multiplying in the 2-domain, then evaluating the in- 
verse Z-transform. 

Initial value theorem: If x[n] is causal, then x[O] = lim,d(z). To prove this 
result, write X(z) as X(z) = x[O]zo + n>lx[n]z+'. Taking the indicated limit, clearly 
all the terms after the summation sign approach zero as z + 00 (since X(z) exists for 
a causal sequence) and the theorem is proven. These and other properties are sum- 
marized in Table 8.1. 

TABLE 8.1 Properties of the 2-Transform 

Property Time m a i n  Z-Domein 

Linearity eX(n1 + bvIn1 a(r3 + bYlz) 

e"xIn1 4:) !%ding by a" 

d 
-z-X@) m Multiply by n M n I  

Time convolution x[nl v[nl X@)V(z) (bilateral 2-transform) 
X(z)v(r) (unilateral 2-transform) 

Right shin (delay) x[n - kl +X@) @ i i a t d  2-transform) 
"I"] flnI4nl 

x[n - kl r*x@) + x[-tp44 (unilateral 2-transform) 

Left shin 
x[n - kN[n - k] 

x[n + k] 

xln + klubl 

+X@) (unilateral 2-transform) 
ZCXO (bilateral 2-transform) 

$x@) - & x[iy' (unilateral 2-transform) 
h-I 

Initial value 
Final value 

"1 = limz+J@) (x[n] causal) 
Sm,.px[nl = limz+,[(l -rl)X@] o((z) rational; 

magnitudes of poles of (1 -rOX(z) c 1) 
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8.5 POLES AND ZEROS OF 2-TRANSFORMS 

As seen from the examples presented in Table 8.2, many common Z-transforms 
have the form of rational functions-that is, a ratio of two polynomials in z - l  (or in 
2). Therefore, as was the case for Laplace transforms, the numerator and denomina- 
tor polynomials may be factored so that the transform has the form 

N(z) 
D(z) 

6 0  + b i t '  + . . . + b,&' 
X(z) = - = 

ao+a , t '  + .  . . + ahr2-N 

TABLE 8.2 Some Common 2-Transforms 

Signal 2-Transform ROC 

s(n1 1 all z 

n2u[n] 

n(n - 1) 
2! U b l  

z 
(z- 113 

lzl > 1 



(b) 
FIGURE 8.3. (a) Locations in the z-plane of poles and zeros of X@) = 1O(z - 0.9)/(23 - 0.- + 0.16). (b) Magnitude of Xo. White line i n d i e s  projection of 
unit circle onto the magnitude function. 
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where the u1 and bi coefficients are constants, and the zk and pk are the zeros and 
poles ofX(z), respectively. Assuming N >  M, then X(z) also has N- M zeros at z = 0. 
Note from Eq. (8.7) that if one knows the poles and zeros of a 2-transform, then it is 
possible to construct X(z) to within a gain constant. 

The representation of Eq. (8.7) is advantageous when one wishes to obtain in- 
sights into the DTFT, X(e'"). To see this, consider the graph (Fig. 8.3(a)) of the lo- 
cations in the z-plane of the poles and zeros of the 2-transform of a right-sided se- 
quence, 

10(z - 0.9) X(z) = 
z3 - 0.442+ 0.16. 

X(z) has a zero at z = 0.90, a simple pole at z = -0.80, and complex conjugate poles 
at z = 0.40 *j0.20. Its ROC will include the unit circle. Recall that X(ejU) equals the 
2-transform, X(z), evaluated on the unit circle. Knowledge of the locations of the 
zeros and poles of X(z) permits one to estimate the shape of the magnitude of the 
DTFT. Thus, when a zero of X(z) lies on the unit circle, then w(ejw)( = 0 at the cor- 
responding frequency. Furthermore, because a 2-transform has continuous deriva- 
tives in its ROC, if a zero lies near, but not on, the unit circle, the magnitude of the 
DTFT must be close to zero for frequencies corresponding to points on the unit cir- 
cle that are proximate to the zero ofX(z). Similarly, when a pole is near the unit cir- 
cle, the magnitude of X(z) (and of the DTFT) at nearby points on the unit circle 
should be very large. By such arguments one may obtain qualitative insights into the 
variation of Cy(e'")l with frequency. The magnitude ofX(z) in the present example is 
shown in Figure 8.3(b), from which one can conclude that F(ejU)l has the following 
properties: (1) it is nearly zero around w = 0 (i-e., near z = 1) because of the zero at 
z = 0.90 Cjust visible behind the twin, complex conjugate peaks in the figure); (2) 
for 0 < w < d 2 ,  it will exhibit a small peak due to the "skirt" of the complex conju- 
gate peak; (3) for 3-7~14 < w < 5 ~ 1 4 ,  there will be a larger peak because of the pole at 
= -0.80. Of course, w(e'")l in the range 0 > w > -r is the mirror image of itself for 

0 < w < - 7 ~  due to the symmetry properties of the DTFT. 

8.6 THE INVERSE 2-TRANSFORM 

The inverse 2-transform specifies the calculation of x[n]  from X(z). The most gener- 
al method utilizes the Cauchy integral theorem that may be given in one form as 

where C is a contour in the z-plane that encircles the origin. We apply this theorem 
to the definition of the 2-transform, Eq. (8.3), by multiplying both sides of this lat- 
ter equation by $-' and integrating over a contour C that lies entirely within the 
ROC of qz). Thus we obtain 
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By Eq. (8.8), the last term of Eq. (8.9) is nonzero only when k = n. Therefore, only 
the x[n] term from the summation remains, and 

1 
x[n] = - f X(z)z"-'dz. 

27j  c (8.10) 

Equation (8.10) is the general definition of the inverse Z-tmnsform. Eq. (8.10) 
may be evaluated using a residue theorem that states that the integral around the 
contour, C, is equal to the summation of the residues of all poles of X(z)z"-' con- 
tained within C, where the residue of a pole at z = zj is defined as Resj = 
(z - zj)X(z)z"-'(,=,. This method is always valid for any Z-transform and any value of 
N. Since in many cases X(z) has the form of a rational hnction, however, one may 
avoid contour integration and evaluate the inverse 2-transform using a partial frac- 
tion approach similar to that used with Laplace transforms. 

Before describing the partial fiaction method, it should be noted that if X(z) can 
be put into the form of the summation in Eq. (8.3), then x[n] may be inferred direct- 
ly. If X(z) is a rational function, this form may be achieved by dividing the numera- 
tor polynomial by the denominator polynomial. There are complications if x[n] con- 
tains both causal and non-causal signals, but assuming that x[n] is causal, then the 
described division will produce the result 

X(z) = x[O] + x[ 1 ] i t  + x[2]2-2 + x[3]t3 + . . . , 
from which x[n] is available by inspection. Of course, if one requires more than just 
the first few values of x[n], this method may become extremely tedious. 

Inverse Z-Transforms by Partial Fractions 

As was the case for inverse Laplace transforms, the goal is to express X(z) as a sum 
of 2-transforms, each of which has an identifiable inverse. One may start with X(z) 
expressed as either a h c t i o n  of ti or a function of z but the latter is more com- 
mon. Thus, given a valid Z-transform, X(z), in the form 

(8.1 1) 

first one must ensure that X(z) is proper by dividing N(z) by D(z) until the order of 
the numerator, M, is strictly less than the order, N, of wz) .  Thus X(z) will have the 
form 
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(8.12) 

Since the inverse transform of the summation term in Eq. (8.12) is Z L c k S [ n  + k], it 
remains only to determine the inverse transform of the second term, a proper ratio- 
nal polynomial. 

For simplicity, assume we begin with X(z) of Eq. (8.1 1) already a proper rational 
function with M < N. If X(z) is expressed as a function of 2-I, then multiply both 
N(z) and D(z) by ZN so that now 

(8.13) 

Here we have assumed that a. = 1 without any loss of generality since one may 
always divide both N(z) and D(z) by a. if it does not equal one. As will become ap- 
parent, in order to produce terms having identifiable inverse transforms it is neces- 
sary to expand P(z) = (X(z)/z) using partial fractions rather than X(z) itself. Assum- 
ing that D(z) comprises only simple, nonrepeated factors of the form (z - pi),  then 
the expansion will have the form 

We proceed exactly as for finding inverse Laplace transforms. Defining po = 0, 
the c,’s may be evaluated as 

Multiplying Eq. (8.14) by z, 

CN + .  . .+  -* c I 2  zP(2) = X(2) = co + - 
2-PI z-PN 

(8.15) 

(8.16) 

Either by inspection or by using Table 8.2, the inverse Z-transform of Eq. (8.16) 
is 

assuming that x[n]  is causal. 
Assuming that all of the coefficients in X(z) are real, then if X(z) has a complex 

root, pi,  it also will have another root that is the complex conjugate of pi .  By con- 
vention we assume that this latter root is indexed as pi+1.  Consequently, P , + ~  = p t  
and the expansion coefficients ci and ci+l will be related by ci+l = ct. Therefore, if ci 
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and pi  are expressed as ci = Icile'ui, pi  = lpile'pi, this complex pole pair will have a 
causal inverse transform given by 

= 2lcAbil" cos[Pp + ai]u[n]. (8.18) 

Example 8.6 Inverse Z-transform by partial fmctions To find the (causal) in- 
verse 2-transform of 

we first find a partial fraction expansion (using, for example, the MATLAB function 
residue) as shown below: 

X(Z) co c1 + CZ I c3 - = -  +- 
z z z-PI z-P2 Z-P/ 

where p ,  = -f - j ( f l / 2 ) ,  p2 = -+ + j ( f l / 2 ) ,  p3 = 2.  
Evaluating the coefficients in the usual manner, 

co = -1 I ,  cI = 0.0714 + j0.2062, c2 = cf, c3 = 0.3571. 

One may express p I  and cI as p 1  = (l)e&, cI = 0.2182e11.237. Then by Eqs. 
(8.17) and (8.18), 

1 
2 ~ [ n ]  = -s[n] + 0.3571(2)"~[n] + 2(0.2182)(1)" cos 

Repeated Poles 

Repeated poles in 2-transforms are handled in the same way as in Laplace 
Transforms-by taking derivatives of the partial fraction expansion and, after each 
derivative, evaluating the ci coefficient that is not multiplied by some power of 
(z - pi). Thus, in the case of a simple pole repeated t times, X(z)/z may be ex- 
panded as 
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The coefficients for the repeated poles are evaluated from the relationship 

(8.19) 

Table 8.2 indicates some causal time responses corresponding to poles of the form 
(2 -PI)". 

8.7 POLE LOCATIONS AND TIME RESPONSES 

Given an input signal, it is possible to calculate the exact output of an LSI system 
having a known impulse response, h[n] ,  (assuming both the impulse response and 
the input signal are Z-transformable); however, there are many situations in which 
graphical convolution may be useful to approximate the output. In other cases H(z) 
may be known but not h[n] .  In these cases it is useful to be able to approximate h[n]  
from knowledge of the poles of H(z). Using Eqs. (8.17) and (8.1 8) one may sketch 
the shape of the function h[n]  for various possible simple or complex poles. Be- 
cause of linearity, if H(z) comprises a sum of such poles, then h[n]  will be the equiv- 
alent summation of the corresponding time responses. Fig. 8.4(a-d) depicts the time 
responses corresponding to simple poles. Note that the unit circle is the boundary 
between responses that decay with time and those that increase in an unbounded 
fashion. One can conclude that a BIB0 stable system must have its poles inside (or 
possibly on) the unit circle. Note that a pole to the left of the imaginary axis corre- 
sponds to a time function that alternates in sign. From Eq. (8.18) we expect that a 
pair of complex conjugate poles will correspond to an amplitude-modulated DT co- 
sine waveform. We see from Fig. 8.4(e-f) that the unit circle also divides the z-plane 
in this case, so that complex conjugate poles inside the unit circle correspond to si- 
nusoids with decaying amplitudes whereas time responses related to poles outside 
the unit circle increase in amplitude without bound. Complex conjugate poles on 
the unit circle correspond to constant-amplitude cosine signals. Finally, Fig. 
8.4(g-h) indicates the responses for a repeated simple pole. Note the biphasic na- 
ture of the signal when the poles are inside the unit circle. Note also that a repeated 
pole at z = 1 does not correspond to a bounded signal, as it does when there is a sin- 
gle pole at this location. 

8.8 THE UNILATERAL 2-TRANSFORM 

Recall that the output of an n-th order linear system (i.e., the solution of its differ- 
ence equation) for n > no, where no is an arbitrary reference time, can be determined 
from knowledge of: (1) the system variables at time n = no, and; (2) the input for n 
1 no. To obtain the same information about the output using the bilateral Z-trans- 
form, however, requires knowledge of the input for all time. The unilateral Z-trans- 
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form circumvents this problem. The unilateral Z-transform of a signal x[n] is de- 
fined as 

a 

P ( z )  4 c x[n]z-". 
n = 4  

(8.20) 

Obviously, for any x[n] the unilateral 2-transform equals the bilateral 2-trans- 
form of x[n]u[n]. Furthermore, if x[n] is causal, then x[n] = x[n]u[n] and the unilat- 
eral and bilateral 2-transforms are equal. In this case the ROC of the unilateral 
transform is the same as that of the bilateral transform-that is, the exterior of a cir- 
cle defined by the largest pole. Likewise, in this case there is a unique relationship 
between P ( z )  and x[n] and it is unnecessary to specify the ROC except as it relates 
to boundedness of x[n] (or stability of an impulse response, h[n]). 

The unilateral 2-transform manifests most of the same properties as the bilateral 
2-transform; the important exceptions relate to time shifts of x[n]. If x[n ]  has the 
transform X+(z), then the delayed signal y[n] = x[n - k], k > 0, has the unilateral Z- 
transform P(z) = *[P(z)  + Z~=,d-n]z.], k > 0. This result is proven easily from 
the definition, Eq. (8.20). One may interpret this result as follows: If y[n] equals 
x[n] delayed by k samples, then for n 2 0, y[n] contains k samples that are absent 
from x[n]. Therefore, in addition to multiplying X+(z) by rk, it is necessary to add 
the 2-transform of the new samples, as reflected by the summation term in the 
above result. For example, ify[n] = x [ n  - 11, then Y+(z) = z-'X(z) + x[-I]. Ify[n] = 
x[n - 21, then P(z) = z2X+(z) + x[-l]c' + x[-2]. 

A similar consequence applies when a signal is advanced in time. If y[n] = 
x[n + k],  where k > 0, then Y+(z) = $[X+(z) - Z~-&[n]z-"]. The interpretation paral- 
lels that for time delaying, except that now the first k samples of x[n] (i.e., x[O] 
through x[k - 11) are "lost" due to the time advance. 

Use of the unilateral 2-transform is principally for calculating the output of a lin- 
ear filter when it is not initially at rest or when its input is causal. Note, however, 
that the bilateral 2-transform also is applicable when a filter is initially at rest and 
the input is causal. Here we first solve a specific example, then in the next section 
we will consider the general problem of this type and finally the explicit case of a 
filter initially at rest having a causal input. 

Example 8.7 Unilateral 2-transform Consider a causal filter described by the 
difference equation 

y[n] - uy[n - 11 =x[n], x[n]  = b"u[n], y[-l] = CI. 

Since in this case P ( z )  = X(z), one may apply the unilateral 2-transform to both 
sides of this equation, yielding 

1 
1 - b2-I ye(z)-ar'ye(z)-uy[-l]- -' 



288 NOISE REMOVAL AND SIGNAL COMPENSATION 

Therefore, 

1 1 yc(z)= 2% + --9 

1 - a t '  1 - a t '  l - b r '  (8.21) 

The r.h.s. of Eq. (8.21) comprises a sum of two signals, the response to the initial 
condition (zero-input response) and the specific response to the input signal (zero- 
state response). Since the input is causal, we may assume that the response will be 
causal and therefore the unilateral and bilateral 2-transforms are equal. Thus the in- 
verse transform of Eq. (8.21) may be determined by a partial fractions method to be 

8.9 
(DT TRANSFER FUNCTIONS) 

ANALYZING DlOlTAL FILTERS USING 2-TRANSFORMS 

In practice, one is often concerned with LSIC systems at rest having causal inputs, 
Such cases may be analyzed using either the bilateral or unilateral 2-transform and 
from here on we shall drop the "+" superscript in the unilateral Z-transform unless it 
is necessary to emphasize the explicit use of this form of the transform. 

We now consider the generic LSI system of Fig. 8.5. Just as the frequency re- 
sponse of an LSI system is defined as the DTFT, H(dW)  of its unit-pulse response, 
h[n], the fmnsferfincfion of an LSI system is the 2-transform, H(z), of h[n]. From 
the convolution property we already know that one may determine the 2-transform 
of the output from the relationship Y(z) = H(z)X(z). As the previous example indi- 
cated, Y(z) may be determined also by way of the difference equation of the system. 
The general difference equation of an LSI system is 

N-1 M 

fi-0 110 
y[n + = -s ahrsy[n + k] + c b&&l + &I. (8.22) 

Assuming that the system is initially quiescent, the 2-transform may be applied 
to this equation to yield 

N- 1 M 

FIGURE 8.5. A generic LSI system. 
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Since Y(z) = H(z) X(z), we conclude that 

(8.23) 

(8.24) 

Equation (8.24) may be rewritten as 

M 

where a. = 1, (8.25) B(4 
A@) ' 

C b M d  

C U N - k i  

=:- H(z) = 

&-a 

and 

That is, if H(z) has the form of a rational polynomial function, then the coefficients 
of the difference equation are obtainable by inspection of H(z), and vice versa. If the 
filter is also causal (i.e., LSIC), then either the unilateral or the bilateral Z-transform 
may be applied to determine H(z). 

Example 8.8 DTtransfer function An LSIC filter has the transfer function H(z) 
= (z-1 - 2r2)/( 1 - 3 1 '  + 3r2). To determine its difference equation we may multiply 
by (zW) to obtain the form of Eq. (8.25). This step, however, is unnecessary as we 
may simply set H(z) = Y(z)/X(z) and cross-multiply, obtaining 

Utilizing bilateral Z-transforms the inverse Z-transform operation yields 

y[n] - 3y[n - 11 + 3y[n - 21 = x[n - 11 - 2x[n - 21. 

This same equation would result from applying the unilateral Z-transform and as- 
suming that initial conditions are zero. 
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Evampfe 8.9 Output response of an LSICfifter To calculate the zero-state step 
response of a filter having the transfer fbnction H(z) = (z - 1)/(9 + z), first we set 
x[n] = u[n]. The Z-transform of the output is given by 

2-1 z 1 
Y(2) = H(Zyl(2) = - - = - 

z +  1 * z(z+ 1) z- 1 

Now 

Z 1 - -* 1 -= , :.y[n] = 6[n] - (-l)"u[n]. 
z+ 1 I +  1 

Example 8.10 Frequency response For calculating the power spectrum many 
biomedical signals can be modeled as the output signal of a linear filter whose input 
is random noise (see Chapter 9). If the signal has been sampled, then the modelling 
filter is an LSIC system. For the electromyogram (EMG) signal recorded by large 
surface electrodes overlying a skeletal muscle, a reasonable first approximation is 
obtained by using a filter of the type H(z) = bd( 1 + u l r l  + u g 2 ) .  Some realistic 
values for the parameters (taken from the report by Bower et al. (1984), assuming a 
sampling frequency normalized to one) are: bo = 2.0, a1 = -1.35, u2 = 1.7. To re- 
solve the type of filter represented by this transfer hnction, we evaluate the fre- 
quency response as 

2.0 
1 - 1.35(cos(w) -isin(@)) + 1.7(cos(2w) -jsin(w)) * 

- - 

Thus 

IH(ei*)l = 2[( 1 - 1.35 cos(w) + 1.7 c o s ( 2 ~ ) ) ~  + (1.35 sin(@ - 1.7 ~in(2w))~]-".~. 

This frequency response hnction is plotted in Fig. 8.6. It resembles the frequen- 
cy response of an underdamped, second-order, lowpass filter. If uncorrelated ran- 
dom noise is the input to this filter, then its output will have a power spectrum that 
approximates the power spectrum of the EMG signal. 

8.10 BIOMEDICAL APPLICATIONS OF DT FILTERS 

Biomedical applications for LSIC filters are abundant. Almost every sampled signal 
requires some sort of filtering for noise removal and we shall present several exam- 
ples later. The first example, however, demonstrates that digital filters may be ap- 
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FIGURE 8.6. Frequency response of a two-pole model of an EMG signal. 

plied to any signal that is sampled at uniform increments of another variable. Most 
commonly the “other” variable is time but it need not be. 

Example 8.11 Measurement of tissuepH using an optical dye Neutral Red is a 
dye that absorbs light in differering amounts at different frequencies. Furthermore, 
the wavelength of light at which maximum absorption occurs is altered in the pres- 
ence of hydrogen ions which attach to the dye in proportion to their concentration. 
At very high pH (i.e., low H’ concentration) the wavelength of maximum absorp- 
tion is around 465 nm, whereas at very low pH it is around 560 nm. To measure the 
pH of a thin strip of tissue, the tissue first is bathed in Neutral Red. Then a variable- 
wavelength light source is directed at the tissue so that light passes through the tis- 
sue to a photomultiplier tube. If percent transmission of light is measured at many 
discrete fiequencies, the pH of the tissue may be derived from the ratio of the per- 
cent transmission at 560 m and 465 nm. 

Percent transmission is measured at many frequencies because if the data are 
noisy, one might need to smooth the data in the vicinity of the two critical wave- 
lengths in order to estimate the true percent transmission better. To illustrate how a 
digital filter could be applied in this situation, we create an artificial example that 
can be solved analytically. Assume that the percent transmission, p, was measured at 
1 nm increments in wavelength from 450 to 650 tun, so that we may create a signal, 
p[n], where p[O] is the transmission at 450 nm, p [  I ]  is the transmission at 45 1 nm, 
and so forth, andp[n] comprises 201 sample points. Thus n = 15 corresponds to 465 
nm and n = 110 corresponds to 560 nm. For illustration, assume that p[n]  is a sine 
wave of the form 

p[n]  = 100 - 50 sin -n  + 10 sin - n  [:; 1 “5: I 
(Fig. 8.7(a)), where the first two terms on the right describe the “actual” absorption 
curve and the third term represents an added, high-frequency, noise. To reduce the 
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FIGURE 8.7. A simulation of the percent transmission, as a function of wavelength, of a tissue 
stained with Neutral Red dye. (b) Frequency response of a fivepoint moving average filter. 

noise effect, we will use a filter having the unit-pulse response, h[n]  = 0.2, 
0 s n 5 4, and h[n] = 0, otherwise. This FIR digital filter is a five-point moving av- 
erager that will be used to average across samples in wavelength instead of samples 
in time. Its frequency response can be determined from H(z). Thus 

4 1 - 1 5  

P O  1 -I' ' H(2) = 1 0 . 2 t "  = 0.2- and 

The magnitude of the frequency response is 

where "frequency" is relative to phenomena that are periodic along the wavelength 
axis instead of along the time axis. This latter function is plotted in Fig. 8.7(b). The 
filter has a lowpass characteristic and, at the frequency of the "noise" (i.e., 0 . 4 ~ )  its 



8.1 1 OVERVIM. DESIGN OF DIGITAL FILTERS 303 

'L Ha(n) 

gain is zero. If we filter p[n]  using this H(e/"), the noise will be removed entirely. 
Obviously in a realistic situation one could not design a filter to remove the noise 
completely, but the essential point is that digital filters are not restricted to functions 
of time. 

"1 Ybl 
CT-DT H(dW) - 

Another common biomedical application for Z-transforms is in the design of sys- 
tems for closed-loop control. For example, a digital controller might be designed to 
control the position of an arm prosthesis using stepper motors. In such systems a sen- 
sor provides feedback to a control system from the biomedical system being con- 
trolled. The control system combines this information with a model of the dynamic 
properties of the controlled system to predict its output at some future time. If the pre- 
dicted output differs from the desired output, then the controller modifies the input to 
the controlled system so that the predicted output response is correct. In many such 
applications it is either not possible to develop detailed realistic models of the con- 
trolled system, or too computationally intensive to compute predicted outputs for 
such models. A feasible alternative is to implement a linear approximation to the con- 
trolled system and use it to predict the needed change in output from the current lev- 
el. Typically the parameters of this linear model are reevaluated periodically to ensure 
that the model is still sufficiently accurate. For further development of this topic the 
reader is referred to the many textbooks on closed-loop control systems. 

8.1 1 OVERVIEW: DESIGN OF DIGITAL FILTERS 

The design of digital filters is an extensive topic whose practical implementation is 
eased considerably by the availability of modem computer software. Often we will 
refer to commands in the MATLAB Signal Processing Toolbox that may be utilized 
for designing specific types of digital filters. The intent here is to familiarize the 
reader with the principles and algorithms for digital filter design and with the ad- 
vantages and limitations of various design methods for different biomedical appli- 
cations so that design software may be utilized effectively. 

Although there are situations in which it is desirable to filter inherently discrete 
signals (as some previous examples have demonstrated), a very common problem is 
the need to remove noise from a sampled CT signal as shown in Fig. 8.8. Because it 
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is important to prevent aliasing by lowpass filtering of the signal x(r)  before sam- 
pling, it seems reasonable to accomplish noise removal with this filter as well. This 
goal is not always possible. For example, the noise might occur at frequencies near 
the important frequency content ofx(t) and, since anti-aliasing filters are analog fil- 
ters, usually it is not possible to achieve the narrow transition bands that are possible 
with digital filters except in very costly analog filters. Furthermore, low-frequency 
noise cannot be removed by the anti-aliasing filter. Also, one may need to preserve all 
of the signal content of x(r)  for one application but, at the same time, require only a 
subset of this frequency content for another application. A typical example is the 
analysis of saccadic eye movements: To determine the exact durations and amplitudes 
of saccades it is necessary to preserve high-frequency content of the movement sig- 
nal (at the cost of having to distinguish a noisy “blip” from a saccade by some other 
criteria), whereas if one only needs to count the number of large-amplitude saccades 
per unit time, then the signal may be lowpass filtered with a lower cutoff frequency. 

Previously it was established that an LSI system (i.e., a digital filter) may be 
classified as an IIR (infinite impulse response) or FIR (finite impulse response) fil- 
ter depending on the duration of its impulse response. The design methods for IIR 
and FIR filters differ and we will consider these two classes of filters separately. In 
addition, a digital filter may be designed to be (in some sense) “similar to” a specif- 
ic analog filter, or it may be designed by considering only its DT filtering proper- 
ties. Because practical (i.e., causal) analog filters possess infinitely-long impulse 
responses, their natural complements are IIR digital filters. One may truncate an in- 
finitely-long impulse response and develop an approximating FIR digital filter, of 
course, but it is likely that the filter order will need to be quite high in order to pre- 
serve the “similarity” to the analog filter. We will find that some simple digital filter 
design methods that begin from an analog filter specification are usefbl only for 
lowpass and some restricted bandpass filters. These filters have the advantage, how- 
ever, that their transfer functions can be represented by a few coefficients. FIR fil- 
ters may require many coefficients but contemporary design methods can produce 
elegant, highly selective filters. Here we initially focus on the design of lowpass fil- 
ters. Subsequently we will develop the means for transforming a lowpass digital fil- 
ter into a highpass or bandpass filter. 

An important question is whether a digital filter must be causal. If the entire sig- 
nal to be filtered is available in digital form, then this requirement is unnecessary. 
Noncausal filters have the advantage that they can be designed to produce zero 
phase shift. Thus, one does not need to compensate when determining the timing of 
events in sampled signals relative to external (i.e., unsampled) events such as the 
occurrence of a triggering event. (It is imperative, however, that signals being com- 
pared should be filtered identically!) On the other hand, for real-time applications 
such as control of a prosthesis causal filters usually are mandatory and, as men- 
tioned above, designs based on analog filters necessarily consider causal filters 
only. Because causal filters, are always applicable, we assume causality unless spec- 
ified otherwise. This assumption has nontrivial implications for the resulting filter 
design. First, by the Paley-Weiner Theorem (Proakis and Manolakis,1996; p. 616) 
the frequency response of a causal system cannot be zero except at a finite number 
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of non-adjacent frequencies. Consequently, as we established previously, an ideal 
filter cannot be causal. Second, the frequency response cannot be constant over a fi- 
nite frequency range and the transition from passband to stopband can not be infi- 
nitely sharp. Third, although it has not been shown here, the real and imaginary 
parts of the frequency response of a causal filter are interdependent and the design- 
er cannot specify both arbitrarily. 

Often IIR filters are specified (in the transform domain) as the ratio of two poly- 
nomials as in Eq. (8.25). Such filters also are known as recursive filters since the 
current output is used to determine future outputs (Eq. (8.22)). The transfer function 
of FIR filters is a single, finite-length polynomial-for example, B(z) in Eq. (8.25), 
with A(z) = 1. FIR filters are also called nonrecursivefilters. 

8.12 IIR FILTER DESIGN BY APPROXIMATING A CT FILTER 

Because many biomedical signals are continuous-time, one often has knowledge of 
the desired signal and the noise components of a signal relative to CT frequency. Thus 
it is a direct step to specify the parameters of an analog filter for noise removal. If 
noise removal is to be accomplished after sampling the data signal, one must design 
a digital filter that effects the same separation of frequency components that the ana- 
log filter would have achieved. This situation is diagrammed in Fig. 8.9. The data sig- 
nal, x(r), could be filtered effectively by the CT filter, H(s), but it has been sampled at 
the frequencyf, = 1/T to produce the signal x[n]  = x(nr). Can one determine a digi- 
tal filter, H(z), so thaty[n] =y(nT)?To address this question we need to establish a re- 
lationship between the CT transform variable ‘s’ and the DT transform variable ‘2’. 

Given a CT signal x(r) such that x(t)  = 0, f < 0, define the DT signal x[k] = x(kT). 
We will use the artifice of representing the “sampled” signal as a train of CT im- 
pulse functions. Thus 

I n  

FIGURE 8.9. Parallels between filtering of a CT signal, x(t), and filtering of the sampled signal, 
xhl. 



306 NOISE REMOVAL AND SIGNAL COMPENSATION 

The Laplace transform of Eq. (8.27) is 

0 0 

On the other hand, we may calculate the Z-transform of x[k]  and evaluate it at z = 
&T, yielding 

(8.28) 

Equation (8.28) establishes a relationship between the Laplace Transform of the 
sampled signal considered as a CT impulse train and the 2-transform of the cor- 
responding DT signal through the relationship z = eT. Appropriately the relation- 
ship between the CT and DT transform variables depends on the sampling inter- 
val, T! 

To better understand this result, we consider the mapping of s-plane regions 
onto z-plane regions via the relationship z = eT, as depicted in Fig. 8.10. It is easy 
to show that s = 0 maps to z = 1, and that the points A-E in the s-plane map to the 
indicated oints in the z-plane. For instance, C is the point s = j(?mi7), which maps 

width 2 d T  maps to one complete traversing of the unit-circle in the z-plane. 
Furthermore each corresponding portion of the 1.h.s. of the s-plane (such as the 
shaded section) fills the interior of the unit-circle. Therefore the mapping z = e‘T 
is a many-to-one mapping. It is apparent that T must be small enough (andf, high 
enough) that H(n) = 0, 2 2dT,  in order for there to be a simple, direct rela- 
tionship between the CT frequency response, H ( S ) ~ , = , ~  and the DT frequency re- 

to z = ej e = -1. Consequently each strip of the imaginary axis in the s-plane of 

FIGURE 8.10. The mapping from the s-plane to the z-plane implicit in the relationship z = er. 
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sponse, H(z)(,,,ju. In practice, this criterion means that all of the poles of H(s) 
must lie between the lines s = -j?r/T and s = +j?r/T. This criterion also implies 
that there will be negligible or no aliasing, in which case we have previously es- 
tablished that 

8.13 IIR FILTER DESIGN BY IMPULSE INVARIANCE 

An obvious approach to approximating a CT filter by a DT filter is to sample the 
CT impulse response, h[n], and set the DT impulse response, h[k], equal to this 
sampled signal-that is, h[k] = h(kT). The method is exemplified assuming that 
H(s) has only simple poles but it is readily extended to other situations. Assume that 
H(s) is given by 

C1 
N 

H(s) = c-. 
f-1 $ - P i  

Then the corresponding impulse response has the form 

Sampling this signal at intervals of Tproduces 44, 
N 

I- I 
h[k] = h ( k ~ )  = 1cIep ik~u[k ]  

and 

That is, for each pole, pi ,  in H(s) one finds a pole in H(z) at z = ePi? The residue 
at this pole is ci, the residue of the corresponding pole in H(s). To calculate H(z), 
one first determines the poles of H(s), then writes out the terms of the summation of 
Eq. (8.30), and finally combines these terms into a single ratio of polynomials of 
the form of Eq. (8.25). This approach is known as the method of impulse invariance 
design. Note that the sampling of h(t) must occur at a high enough frequency to pre- 
vent aliasing. For this reason the impulse invariance method cannot be used to de- 
sign highpass filters. Recall also that the CT and DT frequency variables are related 
by w = s1T. 

An advantage of impulse invariance design is that the digital filter will be BIBO 
stable if the analog filter is BIBO stable. To demonstrate this result, assume that 
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H(s) is BIBO stable, having all of its poles in the left-half s-plane. All of these poles 
will map to poles in H(z) that are inside the unit circle. But this placement of poles 
is the criterion for BIBO stability of an LSI system. 

A disadvantage of the direct impulse invariance method is that the zero-frequen- 
cy gains of the CT and DT filters are (usually) greatly different, that of the DT filter 
usually being larger. Because of the scale factor, T, in Eq. (8.29), often this method 
is implemented by multiplying the calculated H(z) by T so that x[&] and x(t) have 
comparable amplitudes. As a consequence, the scale factor, T, would have to be re- 
moved when applying Eq. (8.29). 

Aside: One should not assume that matching of the impulse responses of the 
CT and DT systems ensures that the outputs of the two systems will be matched for 
other inputs. In general, even the step responses of the two filters will not be equal. 
However, this approach of response matching is not limited to impulse responses. 
One could also design the digital filter by matching the step responses, or any other 
responses, of the CT and DT filters if it were important to achieve that specific 
matching. 

. Example 8.12 Impuhe invariance design Let H(s) = a/(s + a), with a = 0.10. 
Thusp, = -0.10. Set T= 0.01 s. Using Eq. (8.30) and including the scaling by T, the 
transfer function of the digital filter is 

(8.3 1) 

Substituting the given values, H(z)  = lO-'z/(z - e-O.Ool). The frequency response 
of the DT filter is shown in Fig. 8.1 1. The cutoff frequency of this filter is 

wc = ncT= O.lO(O.01) = 0.001 radsample. 

0 I - - -  2%zz7 
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FIGURE 8.11. Frequency response of a digital filter based on a first-order analog filter using 
impulse invariance design (solid) and bilinear transformation design (dashed). 
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8.14 IIR FILTER DESIGN BY BILINEAR TRANSFORMATION 

Another approach to designing a digital filter based on the transfer function of an 
analog filter is to explicitly utilize the relationship z = e(*. The problem, of course, is 
that it is difficult to manipulate this transcendental equation into an exact, closed- 
form, polynomial equation. One may utilize polynomial division to derive the rela- 
tionship 

L 

and obtain an approximation given by z = (1 + (T/2)s)/( 1 - (T/2)s), or, solving for s, 

2 z -1  
T z + l '  

.J= -- (8.32) 

(This result is also obtainable by numerical integration of the differential equation 
of a CT system using the trapezoidal rule.) To convert a given CT transfer function, 
H(s), to a corresponding DT transfer function, H(z), one substitutes the r.h.s. of Eq. 
(8.32) for each occurrence of 's' in H(s). This method is known as bilinear tmnsfor- 
mation design because the equations relating 's' and 'z' are bilinear mappings of the 
complex plane onto itself. 

In order to determine the relationship between the frequency variables w and R it 
is necessary to solve Eq. (8.32) for the mapping from thejR-axis of the s-plane to 
the unit circle of the z-plane. Thus, setting s =jR and z = eJ" we obtain jR = 
(2/T)(eIw - l)/(dw + 1). Solving for the relationships between the two frequency 
variables, we have 

w = 2 t a n j  71, f l T  or = 7 2 tan[ 3. (8.33) 

That is, the simple relationship w = RZT no longer applies when comparing the fre- 
quency variables of the CT and DT filters if bilinear transformation design is used. 
This distortion of the linear relationship between the frequency variables (Fig. 8.12) 
is known as frequency warping. The effect of frequency warping on the frequency 
response of the digital filter will be demonstrated in the following example. The fil- 
ter designer must be particularly aware of the effect of frequency warping on the 
cutoff frequency of the digital filter. As the cutoff frequency of the CT filter is 
changed, that of the DT filter changes nonlinearly. In addition, frequency warping 
distorts the shape of the frequency response, as shown in Fig. 8.13 and some of the 
later examples. Note that all types of filters may be designed using this method so 
long as one corrects for the effects of frequency warping. 
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FIGURE 8.12 Relationship between the DT frequency variable and the CT frequency variable 
when bilinear transform design is utilized (frequency warping). 

Example 8.13 Bilinear transformation design Let us design the digital filter of 
the previous example using bilinear transformation. Substituting Eq. (8.32) for 's' in 
H(s), we obtain 

0 
0 5 !  10 15 20 25 

FIGURE 8.13. Distortion of the frequency response of a digital filter due to frequency warp- 
ing. The CT filter is a second-order Butterworth filter with cutoff frequency of 7.56 rads. The 
digital filter, designed by bilinear transformation, has a cutoff frequency of 0 . 4 ~  radsample. 
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Using the given parameter values, 

The cutoff frequency of the digital filter is 

w, = 2 tan-' - = 2 tan-'[0.0005] - 0.0573 radsample. [";'I 
Thus impulse invariance and bilinear transformation designs have produced DT 

filters having different cutoff frequencies. This result reflects the fact that frequency 
warping causes the frequency response of the filter designed by bilinear transforma- 
tion to differ from that of the filter designed by impulse invariance (Fig. 8.1 1). 

If one wished to achieve the same DT cutoff frequency using bilinear transfor- 
mation as that resulting from impulse invariance design, one could "pre-warp" the 
cutoff frequency of the analog filter. Pre-warping is achieved by solving the second 
part of Eq. (8.33) for a, given the desired 0,. Then the analog filter is re-specified 
using this new cutoff frequency. When bilinear transformation design is applied to 
the new H(s), the digital filter will have the desired cutoff frequency. 

The user must recognize that two different relationships between and w are in- 
volved when one considers filtering of a sampled analog signal using bilinear trans- 
formation design. The first is the relationship w = nT that describes the effect of 
sampling on the frequency content of the CT signal. The second is given by Eq. 
(8.33) and is the relationship between the frequency axes of the CT and DT filter. 
The former is used when the frequency ranges of desired signal and noise are 
known for the CT signal. From this relationship one determines the corresponding 
frequency ranges of desired signal and noise after sampling, from which the cutoff 
frequency of the digital filter may be specified. Knowing this cutoff frequency, one 
utilizes the frequency warping equation (Eq. (8.33)) to calculate the equivalent cut- 
off frequency for the analog filter and specifies H(s) on this basis. Application of 
the bilinear transformation equation (Eq. (8.32)) to this H(s) then will produce a 
digital filter having the specified DT cutoff frequency. 

8.15 BIOMEDICAL EXAMPLES OF IIR DIGITAL FILTER DESIGN 

It is straightforward to design digital versions of the standard analog filters, such as 
Butterworth, Chebychev, and elliptic filters, using impulse invariance or bilinear 
transformation designs. Although software such as MATLAB usually contains com- 
mands to accomplish digital filter designs by these methods (see butter, chebl, 
chebl, e l l i p ,  for example) the user must specify the necessary order and cutoff 
frequency of the filter. The following examples demonstrate this process for Butter- 
worth and Chebychev filters. 

Next Page



MODELING STOCHASTIC SIGNALS 
AS FILTERED WHITE NOISE 

9.1 INTRODUCTION 

In previous chapters this text assumed that a biomedical signal could be modeled as 
the sum of a “true” signal plus added (usually white) noise. In many instances this 
model is too restrictive or even inappropriate because it implies that if a measure- 
ment were repeated under identical conditions, any differences between the two 
measurements are attributable to the added noise. The concept that each newly gen- 
erated white-noise signal should differ from other white-noise signals may seem in- 
tuitively believable as an explanation for differences between two measurements, 
but this concept may apply to the “true” signal also. Each time a measurement is re- 
peated, whether on the same subject or a different subject (where “subject” refers to 
any source of a signal, not just human subjects), some uncontrolled or unrecognized 
factors related to the subject are likely to differ from the time of the first measure- 
ment. Therefore, even after accounting for changes in the added noise, the underly- 
ing measurements are likely to differ (and to do so in ways that appear to be ran- 
dom). As a consequence, one is not able to discuss the exact temporal nature of the 
noise-free signal, because that signal differs among the data sets. 

We assume that repeated measurements possess some properties that are consis- 
tent from one data set to the next and that one may obtain insight into these proper- 
ties from each individual measurement. To obtain such insight, one must consider 
the probability that repeated measurements would resemble one another. If repeated 
measurements have been acquired from several subjects, then one may average 
these measurements at each point in time to generate an “average signal”, but this 
average signal does not necessarily represent the measurement that one would ob- 
tain from any given subject in the absence of added noise. It seems clear that a dif- 
ferent framework is needed for modeling such signals. This chapter first considers a 
specific example of these types of signals, then develops a general framework for 
addressing their properties, and finally formulates several methods for deriving the 
basic properties of these signals. 

345 
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9.2 INTRODUCTORY EXERCISE: EEG ANALYSIS 

The electroencephalogram (EEG) is a record of the electrical activity induced at the 
scalp by the flow of ionic currents across and along the membranes of neurons of the 
brain (Fig. 9.1). Because the cerebral cortex lies immediately beneath the scalp, the 
EEG recorded from the top of the head reflects activities of cortical neurons. For 
about 50 years it has been recognized that the cortical EEG changes its character as 
the state of consciousness changes. During relaxed wakefulness the cortical EEG (or 
just EEG) exhibits relatively low-amplitude, high-frequency voltages in the range of 
8-12 Hz known as the a rhythm. Of come,  this rhythm is not a pure oscillation like 
a sine wave and it is not the only signal component of the EEG. A trained neurologist, 
however, can recognize this dominant rhythm in a chart recording of the EEG (e.g., 
Fig. 9.1). Furthermore the intensity of a rhythm varies among recording sites and 
with other factors such as attentiveness. As a person enters the lighter stages of sleep 
(stages 1 and 2), the EEG develops more rhythms at lower frequencies ( 8  rhythm, 4-8 
Hz) and exhibits some other features such as sleep spindles and k-complexes, both of 
which are irregularly occurring high-frequency bursts of activity. In deep sleep 
(stages 3 and 4) a relatively larger amplitude, low-frequency (<4 Hz) activity (6 
rhythm) appears. In REM (rapid-eye movement) sleep, the state in which dreaming 
occurs, there is a predominant d i k e  rhythm. REM is distinguishable from wakeful- 
ness by the presence of eye movements which are detected by recording EMGs from 
extraocular muscles. During a typical night the sleep state of normal humans may 
change 15 times, encompassing several episodes of each of the above stages. 

In many pathological situations patients have a disruption of their normal sleep 
patterns. In order to document this disruption it is necessary to record the EEG sig- 
nals overnight and analyze them for sleep state (called “sleep scoring”). Usually a 
“score” is assigned every 30 seconds. This analysis is very labor intensive and many 

FIGURE 9.1 The electroencephalogram (EEG) is recorded simultaneously from many sites 
(e.g., 8,16, or 32 sites) on the scalp and displayed on a monitor or chart recorder. 
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researchers have sought to develop automated analyses of digitized EEG signals. The 
example below explores the development of an automated system for EEG analysis. 

~ 

Example 9.1 Analysis of EEG signals The objective is to propose a method for 
analysis of an EEG signal that will discriminate its three basic rhythms (a, 8, 6). For 
true sleep staging one would need to incorporate information about sleep spindles, 
k-complexes, and extraocular and chin EMG signals, but for the present purpose 
these refinements will be ignored. The analysis will need to assign a sleep stage 
score to the EEG signal every 30 seconds, based on which of the three rhythms is 
dominant-for example, if 6 rhythm is dominant, score the 30-second period as 
stage 3 4  sleep. Note that transitions in sleep state can occur in less than 30 seconds 
and that some patients with severe sleep disruption may leave a sleep stage less than 
2 minutes after entering it. 

Assume that the EEG signal is available in digitized form, having been sampled at 
50 Hz. To help visualize this problem, the file eegsim . m can be used to create a dif- 
ferent random sample of a simulated EEG signal each time it is invoked (Fig. 9.2). 

Contours of time-frequency spoctrrl plot 
.......... :... . . . . . . .  : . . . . . . .  ... :..........:...... 

0 50 100 150 200 
Time (sec) 

(b) 
FIQURE 9.2 (a) 20 seconds of a simulated EEG signal from eegsim.m, showing an abrupt 
transition from a delta rhythm to an alpha rhythm. (b) Contours of a time-dependent spectral 
analysis, which Indicate the presence of peaks In the power spectrum, for a simulated, 240-s, 
EEG signal. This analysis indicates that the simulated EEG signal begins as an alpha rhythm, 
then progresses to a theta then a delta rhythm. Around t = 120 8 the rhythm changes abruptly 
to alpha again, then progresses to the slower rhythms. Note that these simulated EEG signals 
are idealized approximations of true EEG recordings. 
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This simulated signal is sampled at 50 Hz for approximately 4 minutes and contains 
examples of all three EEG rhythms. The signal will exhibit abrupt transitions among 
the three rhythms at random times and each rhythm will last for at least 15 seconds. 
Compared to a true EEG, this signal is simplified in several respects: (1) transitions 
in true EEGs occur over several seconds or longer; (2) real EEGs also contain spin- 
dles and k-complexes; (3) the simulated EEG ignores stage REM; (4) apparent sleep 
stages are shorter in the simulated signal than in normal subjects; ( 5 )  amplitude 
changes are less than occur naturally. Nonetheless, there is a considerable challenge 
in the analysis of the simulated EEG signal. One possible approach is to pass the EEG 
signal through three parallel bandpass filters having passbands of 0-4,4-8, and 8-12 
Hz, respectively. Then the relative amplitudes of the outputs would have to be quan- 
tified, perhaps by calculating their mean square values every 30 seconds. The reader 
is encouraged to implement such filters in MATLAB and test this method using the 
simulated EEG signal from eegsim.m. The simulated EEG is accessible in the 
MATLAB workspace as a vector name eeg. Note that eeg is updated each time the 
m-file is invoked. 

To assist your interpretation of the simulated EEG signal, eegsim , m also ana- 
lyzes the signal using a method derived from the material of the present chapter and 
presents graphs of those results (Fig. 9.2). A later exercise will dissect the analysis 
method implemented in eegsim. m and seek improvements to it. 

9.3 RANDOM PROCESSES 

Consider a situation in which a physician wishes to know the level of oxygen in the 
arterial blood of a critically ill patient. A nurse takes a blood sample and sends it to 
the Clinical Chemistry Lab for analysis and the lab reports a partial pressure of oxy- 
gen of 50 Torr. One hour later this process is repeated and the lab reports 55 Torr. 
Assuming that no treatment has been applied to the patient, could this result imply 
that the patient’s clinical state has improved or is it possible that the difference in the 
two readings is due to some kind of random variability in blood oxygen level? Intu- 
itively one might select the latter alternative. It is possible to formalize a description 
of the kind of random effect assumed to be occurring in this illustration. 

Assume one wants to know the average blood pressure of normal humans. One 
approach to obtaining this information might involve measuring the blood pressure 
on many people and averaging the result. The population that you can most readily 
access is your group of peers, so let’s assume that they agree to the placement of ar- 
terial pressure catheters for the sake of science! Now, as you examine the blood 
pressure signals (obtained simultaneously from all subjects) you are dismayed to 
observe that blood pressure is changing continuously in every subject. One may try 
to circumvent this new problem by averaging the blood pressure from each subject 
over some time interval. One problem, of course, is that one does not know whether 
this average is an adequate representation of the long-term average blood pressure 
of each subject. 
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There is another issue that is more fundamental. By assuming that it is possible 
to determine an average blood pressure that is a biologically-relevant measure of the 
population, one has assumed that the underlying biological mechanisms that deter- 
mine blood pressure are structurally invariant from subject to subject except for 
possible random variations in their parameter values, the effects of which will be 
eliminated by averaging. Although this assumption seems reasonable for human bi- 
ology, and indeed may be the only sensible way to approach an understanding of the 
human organism, it is essential to recognize that this conceptualization is being in- 
voked by the simple act of averaging blood pressures across subjects. 

The assumption discussed above addresses the differences in blood pressure be- 
tween individuals but does not seem to account directly for the time variations of 
blood pressure in each subject. In fact, there are known mechanisms which explain 
some of this blood pressure variability, such as the coupling of heart rate with respi- 
ration, but even after accounting for these mechanisms blood pressure is not con- 
stant. To account for the remaining variations, recall the discussion of stochastic 
signals in Chapter 1. A stochastic (or random) signal is one whose future values 
cannot be predicted exactly (although one might be able to predict the probability of 
specified values occurring-for example, the probability that the future value will 
be greater than the present value). Random signals may arise from sources whose 
internal mechanisms truly vary randomly or they may represent mechanisms which 
we do not yet understand and so their activities appear unrelated to any explainable 
behaviors. In either case it is the continual influence of sources of random distur- 
bances which is assumed to cause the remaining (unexplainable) variability of 
blood pressure in each subject. It is important to note that one does not know how 
these random effects actually influence blood pressure-we assume only that they 
do exert such an influence and are the cause of the variability in the measurement. 
This model of a biological process, in which there exist random parameter varia- 
tions between subjects and random disturbances within a subject, is referred to as a 
random process model. It is also important to recognize that the true, undisturbed 
behavior of the random process could vary with time. Because of the randomness 
inherent in each measurement from an individual subject, however, the true function 
of time cannot be exuctfy determined fiom that measurement, 

A mndompmcess is a physical process that is structurally similar in all instances 
in which it is implemented-for example, in each subject in the population-but its 
behavior (or output) is not identically the same in all implementations because: (1) 
there are random variations of its parameters among implementations, and (2) each 
implementation is “disturbed” by random noise. Figure 9.3 presents this concept, 
For whatever process is being considered-for example, the neural reflex process 
for control of blood pressure, the neuromuscular process regulating eye movements, 
the biochemical process regulating intracellular potassium concentration, etc,- 
each subject in the population is one implementation of the process (called a real- 
ization of the process). For the examples of blood pressure and eye movements, the 
“population” comprises a group of human subjects and each person represents one 
realization of the random process. For the intracellular potassium example, the 
“population” is a group of cells and each cell is one realization. A record of the time 
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Realization I1 P,(t) 

Realization I2 PZ(t) 

P,(t) 

I I :  I 
FIGURE 9.3 Conceptual scheme of a random process, as applied to a biomedical process. 
The process is assumed to be structurally identical in all realkarations but parameter values dif- 
fer randomly between realizations. In addition the output of the process is influenced by ran- 
dom disturbances within each realization. Therefore the output signals from the process, pit), 
do not exactly represent the true undisturbed behavior of the process. Each p,#) is a sample 
function of the random process. 

history of the signal of interest from a single realization (e.g., blood pressure, eye 
position, or potassium concentration) is referred to as a sample function of the ran- 
dom process (Fig. 9.3). Sample functions from different realizations of the same 
random process are different. 

An important point is that the value of a single sample function at a specific time 
is formally a random variable. Although we will not probe this subject deeply, a mn- 
dom variable is a variable whose value depends on the outcome of a chance event 
such as the throw of a die or the spin of a roulette wheel. For example, a random vari- 
able, z, might be defined by assigning to t the number showing on the top face of a die 
each time it is thrown. In other words, the random variable assumes a new value each 
time the chance event-that is, a throw of the die-occurs. To extend this concept to 
random processes, consider a fixed point in time, t l .  Each sample h c t i o n  of the ran- 
dom process has a value at time t , .  Now a random variable, x, may be defined by ran- 
domly selecting a sample function from the ensemble of sample functions and as- 
signing to the random variable the value of the selected sample function at time t l .  
(The random selection of the sample function is the chance event.) Whenever anoth- 
er random selection of a sample function is made, a new value for x is determined. 
This example is completely analogous to the example based on throwing a die except 
in that case z could assume only six different values, whereas the sample functions of 
biomedical random processes are likely to assume many possible values. 

If the values assigned to another random variable, y,  are derived from the same 
set of sample functions but for a different time, t2, then in general x and y will as- 
sume different values even if the same sample function is chosen. Likewise, if one 
selects a sequence of these sample functions and assigns values to x and y, as above, 
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then the sequences of specific values of x and y will differ. Consequently a random 
variable, x, derived from random selection of sample functions of a random process 
is, in general, time-dependent. Usually this time-dependence is recognized by repre- 
senting the random variable explicitly as x(t). 

In this book the focus will be on deriving representations (i.e., models) of sample 
functions from mndom pmesses in order to deduce the properties and parameter 
values of the mndom processes. The reader is strong& cautioned to keep in mind 
that each realization of a random process differs from every other one, and therefore 
the parameter values that are derived will differ among the various sample func- 
tions. Just as the mean blood pressures of individual subjects can be averaged to ob- 
tain a population mean blood pressure, it is necessary to average any parameter de- 
rived from sample functions of random processes in order to obtain the most 
reliable estimates of the mean parameter value within the population. The reliability 
of such averages as estimates of the population mean values, and whether an aver- 
age from only one realization is useful, are important questions that will be ad- 
dressed later in this chapter. These topics are considered in more depth in courses on 
statistical signal processing. Why then do we address random processes here? There 
are two reasons: First, it should be recognized that almost all biomedical signals can 
(and in many cases, should) be viewed as sample functions of random processes. 
Second, there are numerous situations in which determining population mean val- 
ues is not the objective. Rather, one may want to predict the range of future values 
of an individual sample function, one may wish to determine if or when the features 
of an individual sample function change with time, or one may need to assay the 
signal for particular features such as an oscillation that may be obscured by stochas- 
tic disturbances. Such goals can be achieved with the introductory statistical under- 
standing of random processes presented here. 

It is customary to refer to a random process using a capital letter, such as X(t) or 
Xn], and to its i-th sample function using lower-case letters with a subscript, such 
as x,(t) or x,[n]. Often it will be simpler to use unsubscripted function names, such 
as x(t) or x [ n ] ,  to refer to any arbitrarily selected sample function of the random 
process and, by implication, to refer to the random process itself. 

Example 9.2 White noise processes The random number generator in a com- 
puter program like MATLAB is a simulation of a random process. Running the pro- 
gram one time generates one sample function of a “white noise” process. Recall 
from the discussion in Chapter 2 that a white noise signal is one for which memory 
is zero-that is, the autocorrelation between x[n]  and x[n + m] is zero for all m # 0. 
A white noiseprocess is simply a random process whose sample functions are white 
noise signals. mical ly  the computer program obtains a starting number--called a 
“seed’*-from a source that is random relative to the operation of the program, often 
the real-time clock of the computer. The program then generates a sequence of num- 
bers via rules which minimize the correlation between each new number and the 
ones that preceded it. (Note that this simulation is not perfect-for example, restart- 
ing with the same seed produces the same sequence of values.) 
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The present example uses the function randn to generate finite-length observa- 
tions of three sample functions of the Gaussian random number generator in MAT- 
LAB and studies their properties. These sample functions are DT signals. The sam- 
ple functions are plotted in Fig. 9.3 aspl(f),p2(t), andp,,(f) with linear interpolation 
between consecutive points. Figure 9.4 demonstrates the application of time-averag- 
ing to estimate the mean value of the random process (which should be zero). For 
each time point N, an average has been calculated asy][NJ = (l /N)I;L,x,[k], j  = 1,2, 
3, where the subscript "J' indexes the three original signals. Observe that the aver- 
ages approach zero only for log(N) = I .5, or, N = 32. Also notice that the average 
does not necessarily approach zero monotonically as N increases (Fig. 9.4(b)). 

One may generate other sample functions of this random process using a com- 
mand like xl = randn (2048,  1 ) ; which will create a sequence (i-e., sample 
function) of 2048 Gaussian random numbers. Using the definition of power spec- 
trum from Chapter 7, one may calculate the power spectrum of one of these sample 
functions and try to guess its theoretical properties. 
Example 9.3 Poisson random processes Poisson processes are very important 
in biology (as well as in the physical sciences) because they provide a fiamework 
for modeling events that occur randomly in time. The sample functions of a Poisson 
process are constructed as follows: Let each sample function be zero at f = 0. Now 
make a selection of a set of points, t,, randomly in time. Then define x i t )  such that 

0 0.5 1 1.5 2 2.5 3 3.5 

"'0 0.5 1 1.5 2 2.5 3 3.5 

U t o /  s! -1 

-GO 0.5 1 1.5 2 2.5 3 3.5 

iog(N) 

FIQURE 0.4 Estimating the mean of a zero-mean white noise process by averaging of data 
points of a single sample function. (a), @), and (c) each represent one sample function. log(N) 
is the base-10 logarithm of the number of points from the sample function that am averaged. 
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x,@) - xxa) equals the number of points from the set t, in the interval (a, b). Thus, 
x&) is the number of points in the interval (0, t ) .  Each sample hnction is a “stair- 
case” function (Fig. 9.5) that increments by one at every time point in t,. A new 
sample fbnction is generated by selecting a new set of points, t,. The random 
process having these sample functions is a Poisson process. 

One parameter characterizes a Poisson process-L, the average number of time 
points selected per second. Three sample functions of a Poisson process having L = 
0.2 are drawn in Fig. 9.5. The probability of having k points occurring in an arbi- 
trary time interval (a, b) has been shown to be 

[L(b - allA Prob{kpoints in (a, b)} = e-L(La-o) k! 

Letting a = 0 and b = t, and dropping the subscript ‘‘t’ one concludes that 

(LtY Prob{kpoints in (0, t)} = Prob{x(f) = k} = e-L‘- k! 

One may utilize this result, for example, to determine the probability that no 
event occurs in the interval (0, 1). This probability is 

LO 
O! 

Prob{x( 1) = 0) = e-‘- = e-L, 

Similarly, the probability that at least one event occurs in (0, 1) is 

Prob{x(l)l  1}=1-Prob{x(l)=O}= l -e -L .  

20 - 
n 

0 50 100 150 

time (sec) 
FIGURE 9.5 Three sample functions from a Poisson process with L = 0.2. Solid diagonal line 
is the time-dependent mean value of this random process. 
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Finally, one may define the average value of a random process at time t as the av- 
erage of all of its sample functions at that time. Although we have not established a 
formal method of calculating the average value of the Poisson process at any time, 1, 
one expects from Fig. 9.5 that the average value will increase with time. 

Another type of Poisson process may be defined by taking the derivative of the 
sample functions of the Poisson process. Thus let 

These sample functions comprise trains of impulses occurring at the time points t,. 
This random process is known as a Poisson impulseprocess. 

9.4 MEAN AND AUTOCORRELATION FUNCTION 
OF A RANDOM PROCESS 

Because of the stochastic nature of sample functions of random processes, the prop- 
erties of the collection of sample functions are describable only in a statistical 
sense. Given a random process, X(t), the mean value of the mndom process, m,(t), 
at any point in time, t,  is the average value of all of its sample functions at time t. 
That is, this average is computed across the ensemble of samplejinctions at a fixed 
time and therefore m,(t) is indeed a function of time. (Note that if the sample func- 
tions of a random process are DT functions, the mean value would be depicted as 
m,[n].)  Recall that one may define a random variable, x(t), that assumes the values 
of the sample functions of a random process at any time t. Therefore, m,(t) is the 
mean value of x(t). The mean value of a random variable, x, is determined by sum- 
ming, over all possible values of x, the product of the value of the random variable 
times the probability of that value occurring. In equation form, 

E { x }  = p x Prob{x 5 x < x + k}dx = m,(t), (9.la) 
-m 

where E { x }  is the mean or expected value of x, and Prob{x 5 x < x + dx) is the 
probability that x lies between x and x + dr and is known as the probability density 
function (pd’ of the random variable x. If x may assume only discrete values, the 
above integral is replaced by a summation over all of the possible discrete values of 
x and the pdf expresses the probability that x = x. Thus 

OD 

m,[n] = 1 x Prob{x = x}. 
2 - 4  

(9.1 b) 

For example, consider the random variable z defined above as the number on the top 
face of a fair die. The probability of any single number occurring on top is one- 
sixth. Thus one may calculate that 
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I E { z }  =z n Prob{z=n} = -[1 + 2  + 3  + 4  + 5  + 61 =3.5. 
n- I 6 

Note that the "expected" value of z is a value that z cannot assume! However, if 
one averages enough values of z as the die is thrown repeatedly, this average will ap- 
proach 3.5. Returning to a general random process, to determine mx(t) one integrates 
(or sums) over all possible values of the sample functions of the random process at 
time t. Necessarily, one must know the pdf of x(t) in order to compute m,(t). In the ab- 
sence of other information, it must be assumed that mJt) may change with time. 

The variance of a random process, X(t), is defined as the variance of the random 
variable x(r). Thus, 

Vx(t) = E{ Mr) - mx(t)12) = pb(t)12 Prob{x(t) 5 x(r) < x(t) + dr}& - [m,(t)12 (9.2a) 
-m 

and also may be time-dependent. The variance of a DT random process, X [ n ] ,  is 
given by the summation 

m 

VJn] = 1 2 Prob{x = x) - [mX(n)l2. (9.2b) 
%=-= 

Another measure of a random process is its autocorrelation function. In previous 
chapters auto- and cross-correlation functions played significant roles in the devel- 
opment of insights about physical systems from analyses of their signals. Auto- 
correlation functions have equal or greater roles in understanding random processes. 
The concept of the autocorrelation function of a random process, X(t), having sample 
functionsxdt), derives from the understanding that at any two times, t ,  and t2, its sam- 
ple fimctions form the random variablesx(r,) andx(r,). Therefore, one may assess the 
expected value of the product of the two random variables x(tl) and x(rz). This ex- 
pected value is the autocorrelation fknction of the random process and is defined as 

where Prob(x(t,), x(t2)) 4 Prob{x(t,) 5 x(rl) < x ( t l )  + dr, and ~ ( 1 ~ )  5 x(r2) < x(t2) + 
h2}. If the sample functions are DT signals, 

= 2 9 x[nllx[n2] Prob{w[nl] = x[nl] and x[nz] = x[n2]}. (9.4) 

In Eqs. (9.3) and (9.4) the Prob terms are known as the jointprobability density 
firnctionr of the random variables. One may develop a visual interpretation of Eq. 

x[nl]=-= x[n2]=-= 
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(9.3) (or Eq. (9.4)) by referring to Fig. 9.3. The autocorrelation function is calculat- 
ed for two specific times, t ,  and f2. One first enumerates all of the possible paired 
values of x(f,) and x(tz), then one multiplies each paired value by its probability of 
occurrence and integrates (or sums) over all possible pairs of values. In general, the 
autocorrelation function of a random process must be evaluated for every possible 
combination of rl and r2. Note that r,(f,t) (or r,[n,n]) equals the variance of the ran- 
dom process (Eq. (9.2)). 

If one defines probability as the relative frequency of occurrence of an event, 
then one may evaluate the Prob term in Eq. (9.4) as the ratio of the number of sam- 
ple functions in which both x[nr] = x[nl ]  and x[nJ = x[n2] to the total number of 
sample functions. Then (assuming each sample function has the same probability of 
occurrence) for a subset of sample functions, {xk[n],  k = I ,  2, . . . , K}, one may cal- 
culate an estimate of the autocornlation function as 

Conceptually the autocorrelation function of Eq. (9.4) may be determined by tak- 
ing the limit as K + 00 in Eq. (9.5). By this interpretation the autocorrelation function 
is the average across the sample hc t ions  of the product of two values from each 
sample function, in which the two values are always taken at times n l  and n2. 

Recall from the discussion of correlatioh in Chapter 2 that the autocorrelation 
function of a deterministic DT signal x[n] ,  0 I n 5 N - 1, is defined as 

1 N-1 
r,[m] = - c x[n)x[n + m],  0 5 m 5 N- 1. 

N a10 
(9.6) 

The concept of autocorrelation was related to “memory” in the signal-that is, to 
what extent the fact that x[n] differed from zero implied that x[n + m] also is likely 
to differ from zero. The autocorrelation function of a DT random process is analo- 
gous to that for deterministic signals with one variation. For deterministic signals 
one increments n so that the calculation involves an average of products of two data 
points formed by moving along the time axis but for a random process the two times 
are fixed and one moves across the ensemble of sample functions. The difference in 
one’s understanding of the autocorrelation functions in these two situations is sub- 
tle, but important. For deterministic signals the autocorrelation at lag M is an exact 
calculation of the average covariation of x[n ]  and x[n + m ] f o r  that signal. For ran- 
dom processes the autocorrelation function represents the average covariation of 
x [ n l ]  and x[n2] over all of the sample functions. 

9.5 STATIONARITY AND ERGODICITY 

Stationarity 

Although sample functions of random processes may be CT or DT functions, we 
shall focus on DT sample functions with the understanding that equivalent results 
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apply to random processes having CT sample functions. In general, the mean and 
autocorrelation functions of a random process can be functions of time. In many 
practical cases, however, the mean value may not be time-dependent. For example, 
consider the measurement of muscle force during an isometric contraction. At least 
until fatigue ensues, it is reasonable to assume that the mean force would be con- 
stant, The mean value, m,.n], of a random process, q n ] ,  will be constant-that is, 
m,[n] = m,-if the probability density function Prob{x[n] = x }  is independent of n. 
A process meeting this condition is said to befirst-order stationary. If one can mod- 
el experimental data as sample functions from a random process for which there are 
well-understood mathematical models (such as white-noise processes, Poisson 
processes, or Brownian motion processes), then one may calculate m,[n] directly 
and test it for timedependence. Many practical situations, however, may necessitate 
arguments for constancy of the mean based on knowledge of the physical process 
without complete knowledge of its density function. 

In most cases (except for certain processes such as white-noise processes) the 
autocorrelation function, r,[nl, nz] ,  is not independent of time. In many cases, how- 
ever, it depends only on the time separation, n2 - nl ,  rather than on the absolute 
times, n l  and n2-a property that greatly enhances its usefulness. This property is 
guaranteed if the joint probability density function of x[nJ and x[nz] depends only 
on the time difference, n2 - nl,  and a random process meeting this condition on the 
joint pdf is said to be second-order stationary. As above, it is possible to test this re- 
sult for many mathematical models of specific random processes. If this condition 
on the joint density function is satisfied, then 

where n2 - nl is known as the lag. Eq. (9.4) may then be written as 

r,[k] = E{x[nlx[n + k]}. (9.7) 

From the above discussion one may recognize the desirability of acquiring exper- 
imental data under conditions that restrict the time-dependence of the properties of 
the random process under study. In many cases the theoretical analyses to be devel- 
oped below only require that the random process exhibit a type of restricted time- 
independence known as wide-sense stationarity. A random process, a n ] ,  is wide- 
sense stationary (w.s.s.) if the following conditions are met: (1) mJn] = m, (a con- 
stant independent of time); (2) r,[nl, n2] depends only on n2 - nl;  ( 3 )  r,[O] - m:, 
which is the time-independent variance of the random process, c:, is finite. Wide- 
sense stationarity is a weaker condition than second-order stationarity discussed 
above (because condition (2) is a stipulation on the autocorrelation function, not on 
the joint pdf) but for processes for which the probability density finction has a 
Gaussian form, the two are equivalent. For arbitrary data one must test all three cri- 
teria to assess wide-sense stationarity. These tests are difficult and beyond the pre- 
sent text, and usually we shall assume wide-sense stationarity when it cannot be 
proven. 

The autocorrelation function of a W.S.S. process exhibits several important prop- 
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erties that will be stated but not derived here. Specifically: (1) the autocorrelation 
hnctions of such processes are even functions of lag; (2)  r,[O] = E{ Cu[n]12} = 4 + 
m,2 (a constant); ( 3 )  Jr,[O]1 z lr,[k]l, Vk. In addition, one may define an outocovari- 
ancejknction for a mndom process as 

which, for a W.S.S. process, becomes (from Eq. (9.7)) 

c,[k] = E(x[nl;[n + k ] }  - mt = r,[k] - 4. (9.9) 

Ergodicity 

Often in practical situations it is only possible to observe one sample function of a 
random process, and to observe that sample function only for a limited time. It is 
possible to estimate the mean and autocorrelation functions of the random process 
even under these conditions, as long as certain criteria are met. Here only an outline 
of the rigorous derivation of these criteria will be presented. Consider that one has 
observed one sample function, x[n], on the interval 0 S n 5 N- 1 from a WAS. ran- 
dom process, X[n].  One may calculate the mean of the observed data as a tentative 
estimate of the mean of the random process, as 

(9.10) 

To determine under what conditions this calculation provides an acceptable esti- 
mate of the true mean, m,, requires an understanding that this estimate is a weighted 
summation of n random variables, d n ] ,  n = 0, 1, . . . , N- 1. Consequently, h,[M it- 
self is a random variable and the appropriate measures of the properties of h,[M 
are its expected value and its variance (or standard deviation). Therefore, the ques- 
tion of whether h,[NI is a "good" estimate of the true mean, m,, only CM be an- 
swered from a probabilistic viewpoint and then two issues must be considered. First, 
for sufficiently large n it must be true that the expected value of the random vari- 
able, h,[iVJ, must equal m,. Second, at the same time the expected value of the vari- 
ance of hX"j should go to zero-that is, 

One may evaluate the limits stated above using the definition from Eq. (9.10) 
and show that sufficient conditions for the time-average mean (Eq. (9.10)) of a sam- 
ple function of a W.S.S. random process to converge to m, in the sense of Eq. (9.1 1) 
are that c,[O] < 00 and 

limk.+- c,[k] = 0, (9.12) 
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where cJk] is the autocovariance function of the random process. These conditions 
imply that the random process must have finite variance and be asymptotically un- 
correlated. If the conditions are met, the W.S.S. random process is said to be ergodic 
in the mean. 

If a random process is wide-sense stationary, then its autocorrelation function 
depends only on the lag and not the absolute times. Given only one sample function, 
x[n] ,  it is possible to calculate an estimate of the autocorrelation function in the 
same way that one calculates a deterministic autocorrelation function-that is, Eq. 
(9.6). That is, the estimated autocorrelation function is 

(9.13) 

Consideration of the criteria under which this estimate is acceptable parallels that 
above for estimating the mean. The estimate of Eq. (9.13) converges in the mean- 
square sense to the true autocorrelation h c t i o n  of the random process if - 

(9.14) 

A W.S.S. random process whose autocovariance function satisfies this condition is 
said to be autocorrelation ergodic. 

Testing for ergodicity is usually difficult when experimental data are acquired. 
Often the main check on the assumption of ergodicity is the reproducibility of the 
subsequent data analysis (although reproducibility does not guarantee ergodicity, of 
course). In the following discussions we use the term ergodic to mean that a W.S.S. 

mndom process is both ergodic in the mean and autocorrelation ergodic. 
One may calculate ;,[m] from a sample function of a random process but, as 

with all calculations based on sample functions, the calculated autocorrelation func- 
tion will be somewhat different for each sample function. Therefore, it is necessary 
to average these autocorrelation functions to obtain a measure of the average esti- 
mated autocorrelation function of the population of sample functions. Typically this 
averaging is performed as one might imagine - i.e., if ?ik)[m] is the autocorrelation 
function calculated from the k-th sample function and one has observed k sample 
functions, then the average autocorrelation function is 

(9.15) 

Because K is usually small compared to the size of the population, one expects 
that F[m] will not exactly equal r,[m] except by chance, but it is likely to be closer 
to the true r,[m] than the autocorrelation ?$k)[m] calculated from any single sample 
function. 



MODELING STOCHASTIC SIGNALS AS FILTERED WHITE NOISE 

Example 9.4 Gaussian white-noise process The autocorrelation function of a 
Gaussian white-noise process is easy to determine. The essence of white noise is 
that the value of the signal at any time is not influenced by its value at any other 
time. Therefore for white noise, w[n],  the autocorrelation f ic t ion  r,[m] is zero for 
all m # 0. Of course, as noted previously, the autocorrelation f ic t ion  at m = 0 is 
the variance, ~ 2 .  The panels of Fig. 9.1 1 each display the autocorrelation functions 
of three individual sample functions of a Gaussian white-noise process calculated 
using Eq. (9.13), based on acquiring either 64 data points (Fig. 9.1 l(a)) or 2048 data 
points (Fig. 9.1 l(b)) per sample function. In both cases the mean level of the auto- 
correlation at non-zero lag tends to zero, but more reproducibly so with more data 
points. 

Power spectrum of a random process 

The power spectrum was derived previously as a measure of a single deterministic 
function, x[n] ,  as 

(9.16) 

The formal definition of the power spectrum of a W.S.S. random process is 

That is, it is the Fourier transform of the autocorrelation function of the random 
process. Recall that rx[m] is defined formally by taking expected values across the 
ensemble of sample f ic t ions but one often estimates it by calculating Px[m], which 
is evaluated from a single sample function, x,[n]. When applied to x,[n],  the power 
spectrum defined in Eq. (9.16) can be shown to be equivalent to calculating the 
Fourier transform of Fx[rn].  That is, the function 

(9.18) 

is an estimate of the true power spectrum based on one sample function. The spec- 
tral estimate of Eq. (9.18) is known as the periodogmm. The two definitions of the 
power spectrum (Eqs. (9.17) and (9.18)) are not equal, but for an ergodic, w.s.s., 
random process, 

Unfortunately, there is another serious deficiency in the power spectrum calcu- 
lated from a single sample' function. Although its expected value is the true power 
spectrum, &(e/o) does not converge smoothly to SAeJ") as N increases. Conse- 
quently, power spectra based on finite-length observations of single sample h c -  
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tions exhibit a great deal of variability and it is necessary to average spectra from 
multiple sample functions or to impose some other smoothing procedure (see later). 

Example 9.5 A biological random process The file ranproc2 .mat contains 
measurements of respiratory airflow (sampled at 75 Hz) from 8 different rats 
breathing at rest. Each column of ranproc2 is a short-term observation of a sam- 
ple fimction of the random process that generates breathing in rats, with each sam- 
ple hnction representing one animal and comprising some 30-40 breaths. One may 
plot these data in one figure window-using, for example, the command 
strips (ranproca )-and compare the breathing of the different rats. As seen 
in Fig. 9.6(a), each animal breathes differently although there are general similari- 
ties, suggesting that the underlying process might be the same in each animal but its 
parameters might vary between animals. Additionally, for each animal there are 

FIQURE 9.6 (a) Respiratory airflow patterns obtained from eight different anesthetized rats 
during resting breathing. Note general similarities across animals and cycle-to-cycle variations 
within each record, suggesting that the generation of the breathing pattern may be modeled 
as a random process. @) Derivative of flow versus flow for the first tracing of Fig. 9.6(a). (c) 
Power spectrum @eriodogram) of the first tracing of Fig. 9.6(a). 
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small differences among individual breaths. Therefore one might assume that 
breathing in each rat is generated by a random process which, in the absence of dis- 
turbances, would produce a breathing pattern that is the same for every breath. Be- 
cause of parameter variations between animals and random disturbances, the air- 
flow patterns (and breathing fiequencies) differ among animals. 

It is easiest to observe the interbreath variability of the breathing patterns by ap- 
proximating the derivative of the airflow signal using the MATLAB command di f f 
and graphing the derivative of airflow versus airflow (e.g., Fig. 9.6(b)). Also, using 
Eq. (9.18), one may calculate the estimated power spectrum of each of the eight sig- 
nals (one of which is shown in Fig. 9 . q ~ ) ) .  Each has a sharp peak whose frequency 
represents the average respiratory frequency in that animal. Are these frequencies 
the same in every rat? From a random process viewpoint, does it make sense to av- 
erage these frequencies across the eight subjects? 
Example 9.6 Another biological random process The file ranproc3 .mat 
contains measurements of EMG signals (sampled at 500 Hz) from the tongue dur- 
ing a forceful contraction of the genioglossus muscle of the tongue. (See also Fig. 
1.2(b).) Each column of ranproc3 contains 256 samples of EMG signal from one 
contraction and there are 8 columns of data, each from a different contraction but all 
from the same subject. Therefore each contraction (rather than each subject) is one 
realization of the random process that controls electrical activation of the genioglos- 
sus muscle in this subject and each column is a short-term observation of one sam- 
ple function. One may graph these data in a common figure window as in the previ- 
ous example. As seen for the two examples shown in Fig. 9.7(a), it is difficult to 
discern any distinguishing characteristics of these sample functions. We may calcu- 
late and compare the power spectra of these signals. As seen in the example of Fig. 
9.7(b), there are no distinct peaks but (the reader may show that) all of the spectra 
have the same general shape, suggesting that they do represent the same underlying 
random process. It is not at all apparent, however, how to quantify these sample 

FIGURE 9.7 (a) Two trials of genioglossus EMG signal obtained during separate tongue mus- 
cle contractions. These tracings are the first and fifth records from the file ranproc3 .mat. 
(b) Periodogram-based power spectrum of the fifth record from ranproc3 .mat. 
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fbnctions or what sort of average across the population would reveal fundamental 
information about the underlying random process. The remainder of this chapter 
will discuss methods for modeling of sample functions of random processes that are 
especially useful for situations like the present one. 

9.6 GENERAL LINEAR PROCESSES 

Properties of white-noise processes 

Before proceeding it is necessary to formally define the properties of white noise 
processes because these processes will be fundamental to the methods for analyzing 
sample functions of arbitrary random processes. We will always assume that the 
true mean level of the sample functions of a white noise process is zero. The defin- 
ing characteristic of a white noise process, w n ] ,  is that its sample functions, wk[n], 
are uncorrelated-that is, r,[m] = r,[O]qm] = V,S[rn], where V,,, is the variance of 
the white-noise process, to which we assign the symbol v;. The true power spec- 
trum of this process is 

S,(e/U) = 3 { v 3 ( m ] }  = r7$ vo. (9.19) 

That is, its power is the same at all frequencies and equals the variance of the 
process. (Depending on one’s definition of the Fourier transform, power of a white- 
noise process can be defined as ui or as 27r v:. The former result is consistent with 
our definition of the DTFT.) Given a finite-length observation of a sample function, 
w[nJ, 0 s n 5 N, a white noise process, one can estimate the power level using a 
calculation of the statistical variance, s:, as 

l N  
N 6 1  

s; = - c (w[k] - hW)*, (9.20) 

where h, is the mean level of w[n] and is calculated according to Eq. (9.10). 
l b o  white noise processes differ if their variances are unequal, but they also 

can differ in another hndamental way. Because of their lack of correlation, it is 
not possible to predict the next value of a white noise sample function. One can, 
however, keep measuring these values and derive the probabilities of occurrence 
of various values. For example, assume that some process may be able to take on 
only 50 possible values at its output. As long as the choice at each time point is un- 
correlated with preceding values, the resulting signal meets the criteria for white 
noise irrespective of the relative frequencies of occurrence of the 50 possible output 
values. But the temporal features of the sample function will depend on the frequen- 
cies of occurrence. That is, different white noise signals will result when the fre- 
quencies of occurrence of output values change. Unless stated otherwise, we will 
assume that the frequencies of occurrence-that is, the probability density func- 
t ion-of the output values of a white noise process can be described by a “normal” 
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or Gaussian distribution (Fig. 9.8). A random variable, x, is Gaussian if its pdf is 
given by 

where mx and 0,2 are its mean and variance, respectively. To summarize, a white 
noise process has zero-mean sample functions, with frequencies of Occurrence of 
their values describable by a normal distribution. By definition, the autocorrelation 
of a sample finction is zero for rn # 0. Thus for our case the only free parameter to 
describe a particular white-noise process will be its variance or power, o?. 

Let us now consider the question of how to quantitatively describe biomedical sig- 
nals that are viewed as sample functions of random processes. First, assume the sam- 
ple functions are either inherently discrete-time or are sampled from CT functions. 
Because of the random disturbances inherent in a sample function, any description 
must include some characterization of these random disturbances. The difficulty is 
that these disturbances are not directly observable. Neither can one know the behav- 
ior of the random process in the absence of disturbances. Therefore, to simplify the 
problem let us consider only random processes whose mean values are time-invari- 
ant. If the mean is nonzero, its value can be estimated by calculating the mean value, 
5, of an observed sample function, s[n]. Now the signal x[n]  = s[n] - S represents the 
deviations ofs[n] from its mean level and if one can model x[n] ,  then it is trivial to add 
back the estimated mean value to obtain a model of s[n]. Consequently, unless other- 
wise specified, it will be assumed that the mean value of a mndom pmcess is zem. 

Given the assumption that s[n] would approach a constant mean value in the ab- 
sence of disturbances, it is obvious that x[n]  represents the effects of these random 

FIGURE 0.8 Histogram of 190,OOO samples of zc~o-mean, unit-variance Gaussian white 
noise generated by the MATLAB command randn. Relative frequency at any value x is the 
proportion of samples having values between x - 0.05 and x + 0.05. The cumulative relative 
frequency between any two values, x1 and x, (where Ix2 -x,l* O.l) ,  is an estimate of the prob- 
ability that a randomly selected sample of the white noise will have a value between x ,  and x p .  
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disturbances on the output of the random process. Therefore, it is intuitively reason- 
able to develop a model of x[n]  in which x[n]  can be interpreted as the response of a 
system to a random input signal (Fig. 9.9). More specifically, a zero-mean random 
process an] is a geneml linear process (GLP) if its sample functions can be repre- 
sented as outputs of a linear, time-invariant, causal (LTIC) system whose inputs are 
sample hc t ions  of a zero-mean, (Gaussian) white-noise process. That is, each 
sample function, xk[n], of the random process is the result of a sample function, 
wk[n], of the white-noise process passing through the LTIC system. Using the con- 
volution representation, the relationship between any input sample function, w [ n ] ,  
and the resulting output sample function, x[n] ,  can be expressed as 

where we have assumed the most general case in which the upper limit of the sum- 
mation is infinite. For an FIR filter whose impulse response has length N, the upper 
limit would be N - 1. In this form it is clear that x[n]  is expressed as a weighted 
summation of past and current values of the input, and this form is called the “mov- 
ing average” (MA) form of a general linear process. 

An equation similar to Eq. (9.21) can be written for any x[n - i ]  and it will con- 
tain a term h[O]w[n - i ] .  Therefore one can solve for w[n - i ]  and substitute into Eq. 
(9.21) to obtain: 

Now x[n]  is dependent on the present value of w[n] and past values of both x and 
w. One may repeat this process by solving Eq. (9.21) for w[n - i - j ]  in terms of 
x[n - i -11 and, after repeated substitutions for w[n - i -jj, 

x[n]  = -C p[ilx[n - i ]  + h[o]w[n]  (9.22) 

where the values ofp[i] are functions of the h[i] ,  0 I i 5 00. The exact form of thep[i] 
relationships may be difficult to determine, in general, but the essential point is that 
the dependence onpast values of w[n]  can be eliminated. That this should be so can 
be recognized by considering that past values of x[n]  contain information about past 

OD 

I= 1 

w[nI 

FIGURE Q.9 A General Linear Process model, representing a sample function, x[n], of a ran- 
dom process as the output of a linear system that is excited by a sample function from a white 
noise process. 
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values of w[n]. Therefore it ought to be possible to express the current output value, 
x[n], as a function of past values ofx[n],  plus the current value of the input, w[n].  This 
form of the input-output relationship for a general linear process is termed the “au- 
toregressive” (AR) form because x[n] appears to be regressed on past values of itself. 

There is a third form of the input-output relationship of a GLP which is derived 
by considering the LTIC system of Fig. 9.9 as a digital filter with transfer function 
H(z). Let 

(9.23) 

where A(z)  = 1 + 2 a(k)rc (9.24) 
c-1 

and B(z) = b(0) + 2 b(k)Tc. 
PI 

(9.25) 

Now cross-multiply the second and third terms of Eq. (9.23), then take inverse Z- 
transforms assuming all initial conditions are zero. Finally, solving for x[n] one ob- 
tains 

x[n] = -2 a(k)x[n - k] + 2 b(k)w[n - k]. 
k=l Ir=o 

(9.26) 

This form of the input-output equation contains both “autoregressive” and 
“moving average” terms and is called the ARMA form. Note that this form involves 
only p + q + 1 coefficients even if the AR or M A  form involves an infinite number 
of coefficients. 
To complete the picture we should acknowledge that the first two input-output 

relationships also can be expressed in 2-transform form. It is easy to show that the 
equation for H(z) based on the autoregressive form is 

Finally, if the moving average form (Eq. (9.21)) is expressed as 
m 

x[n] = 1 h[i]w[n - i ] ,  
1 1 0  

(9.27) 

then it is trivial to calculate that 

(9.28) 
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which is just the definition of the 2-transform of h[n] .  Note that all three forms of 
the equation for H(z) must be mathematically equivalent since they describe the 
same relationship. 

One might wonder whether there is any advantage to expressing an observed sig- 
nal, x[n] ,  in the above forms when typically w[n] cannot be observed. For the case 
of an FIR filter it is possible to determine the coefficients in these equations even 
without observing the input signal. Usually this form of modeling of a signal is not 
utilized to calculate the values of x[n]  that would result from a particular white 
noise sample fbnction at the input. Instead, this form of model is used as a compact 
representation of the properties of the signal. Recall that the only free parameter for 
describing a stationary Gaussian white noise process is its variance. Therefore, the 
input white-noise variance, plus the gain, poles, and zeros of H(z) contain much in- 
formation about the random process, x[n]  (but of course do not provide a means to 
determine the values of its sample functions at each point in time). In fact, as will 
now be proven, knowledge of the above parameters permits one to calculate the 
power spectrum of x[n] .  

First, recognizing that all three forms above can be represented in the AFWA 
form if one permitsp or q to be infinite, consider the case when 

(9.29) 

Referring to Fig. 9.9, to calculate the power spectrum of x[n ]  it is necessary first to 
determine r,[m]. From its definition, 

Interchanging summation and expectation, and using a shorthand symbol to rep- 
resent a summation over all values of its index, 

I t  

Lettingj = m - k, and recalling that rw[i] = a,$6[i], we obtain 

Thus 
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Now since 

Also recall from Chapter 7 that when a CT signal is sampled at a ratefs = 1/T for an 
observation time To = N T (i.e., 0 I t 5 (N - I)?), then the power spectra of the 
CT and DT signals are related by P J n )  = T PAdU)')Jw=nT. If x( r )  is a sample hnc- 
tion of a random process that has been digitized as x[n] ,  then 

(9.33) 

~ ~ ~~~ 

Erample 9.7 Forms of the GLP model Consider a signal that is modeled as the 
output of the simple linear system 

1 
1 - 0 . W  H(z) = 

To express this system in all three (i.e., AR, MA, and ARMA) forms, first note that 
it is given in the ARMA form, 80 by inspection 

A(z) = 1 - 0.52-I and B(z) = 1. 

Likewise, the given form can be considered an AR form with h[O] = 1 and 
m 

P(z) = 1 + p(i)z' = A(z) = 1 - 0.52-l. 
&==I 

Finally, to obtain the MA form one can divide 1 by A(z). To find the general solution 
let A(z) = 1 - az'. By long division one can show that 

m 1 
H(2) = - = 1 + 1 a V .  

1 -at' k=l 

Therefore, the MA form is H(z) = 1 + Z;10.5kz-k. 

Example 9.8 Power spectrum of an AR process A signal x[n] is generated by 
exciting the system from Example 9.7 with a sample function from a white-noise 
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0 (radkec) 

FIGURE 9.10 Power spectrum for Example 9.8. 

process having a standard deviation (i.e., square root of the variance) of 5.  What is 
the power spectrum of x[n]? 

From Example 9.7 and Eq. (9.32), the power spectrum of x[n]  is 

1 25 I 1 - O.Se--’u /2=  (1 - 0.5 COS(O))~ + 0.25 sin2(o) 
Sx(ejw) = 25 

This spectrum is plotted in Fig. 9-10. 

Example 9.8 addressed the question of calculating the properties of a random 
process when the a(k) and b(k) coefficients are known. In typical biomedical appli- 
cations, however, one is confronted with determining the a(k) and b(k) coefficients 
of a random process given a data set (i.e., an observation of one or a few of its sam- 
ple functions). The usual approaches to solving this latter problem utilize the auto- 
correlation function extensively. 

9.7 YULE-WALKER EQUATIONS 

Now we are ready to address the central question of this chapter: How can one con- 
struct a model of a random process from a measured sample function? The proce- 
dure is very straightforward in concept. First one assumes that the measured signal 
originates from a linear system that is driven by a sample function from a white- 
noise process. Then one estimates the “best” linear system model which will trans- 
form white noise into a process that has characteristics of the measured signal. 
Since sample functions from a random process are all different, one does not at- 
tempt to reproduce the sample function exactly. Rather, one models basic properties 
of the random process that can be determined from the measured sample function. 
One candidate “basic property” is the mean of the random process, but the mean is 
not very informative because it conveys no information about the temporal varia- 
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tions of the sample functions. On the other hand, the autocorrelation hnction of a 
zero-mean random process quantifies the average correlation of the sample func- 
tions at two different times and therefore is a measure of the temporal variations of 
the sample functions. Furthermore, autocorrelation can be related to memory in 
physical processes (see Chapter 2). Thus the typical approach involves modeling the 
estimated autocorrelation function of the measured sample h c t i o n  because this 
function (e.g., Fig. 9.1 1) is an estimate of the true autocorrelation function of the 
random process. The issue then becomes: How does one determine the linear sys- 
tem that will transform uncorrelated white noise into an output having the same au- 
tocorrelation hnction as the data? 

To begin, assume that x[n]  is a wide-sense stationary (w.s.s.), zero-mean random 
process. Therefore its autocorrelation and autocovariance functions are equal. Re- 
ferring to Fig. 9.9, one can represent a sample function, x,[n], as the response of a 
linear system to a white-noise sample hnction, wAn], using the General Linear 
Process (GLP) model in its ARMA form. Dropping the subscript ‘y’, one can ex- 
press (Eq. (9.26)) the ARMA(p,Q) process as 

P 4 

kl Po 
x[n]  = -c a(k)x[n - k] + 2 b(k)w[n - 4. 

Note that rJm] = E{x[n + m h [ n ] )  = E{x[n)r[n - m ] ) .  Therefore, multiply Eq. 
(9.26) by x[n - m] and apply the expectation operator to both sides. On the left side 
one obtains r,[m]. Since the expectation of a constant is just the constant itself, the 
a(&) and b(k) terms can be moved outside of the expectation operator and we obtain 

60 
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FIGURE 9.11 Estimated autoconelation functions (i.e., PJm] vs. m) calculated (using Eq. 
(9.13)) from three dlffwent sample functions of a Gaussian white-ndse process. (a) based on 
64 data samples each; @) based on 2048 data sample6 each. 
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P 4 

&-1 k-0 
r,[rn] = -c a(k)E{x[n - k]x[n - rn]} + c b(k)E{w[n - k)x[n - rn]}. 

Since x[n - k)x[n - m] can be written as x[n)x[n - (m - k)], and w[n - kJx[n - m] 
can be written as w[nh[n  - (rn - k)], this equation becomes 

(9.34) 

Here we have introduced an extension of the autocorrelation concept, the cross- 
correlation function between two variables. The definition of r,[rn] is an uncompli- 
cated extension of that of r,[rn]-that is, 

r,,[m] = E ( x [ n b [ n  + rn]} = E b [ n J x [ n  - m]}. (9.35) 

To form a visual picture of cross-correlation, refer to Fig. 9.3. One must think of 
two random processes whose sample functions are observed simultaneously. Now 
instead of computing an expectation by taking values from one set of sample func- 
tions at two different times, one takes values from one set of sample functions at 
one time, n, and from the other set of sample functions at a second time, n + m. The 
cross-correlation function expresses the memory of signal x at time n that is present 
in signal y at time n + rn. 

To proceed we must evaluate rw,[rn] for an arbitrary value of m (say rn = i ) .  By 
definition of the crosscorrelation function and using the convolution representation 
for the output of an LSIC system 

I) rw,[i] = E{x[n]w[n + i ] }  = 

W 

= h[0]rW[i] + 1 h [ k l r , ~ i  + k]. 
k - 1  

Since w[n] is white noise, rw[i] = a:6[i]. Therefore, 

(9.36) 

Substituting this result into Eq. (9.34)’ one obtains the following general result for 
an ARMA(p,Q) model of a random process known as the Yule- Walker equation: 

Next Page
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SCALING AND 
LONG-TERM MEMORY 

10.1 INTRODUCTION 

It is apparent that the methods from the previous chapter for modeling stochastic 
signals depend on approximating the autoconelation properties of the signal. Al- 
though these approaches provide considerable flexibility if one selects a model of 
sufficiently high order, there are cases in which the combination of a relatively rapid 
decrease in correlation at short lags and a slow decline at longer lags is difficult to 
model using low-order ARMA models. This difficulty can be explained heuristical- 
ly as follows: At sufficiently long lags the autocorrelation function of an ARMA 
model will be dominated by the pole closest to z = 1. At short lags the autocorrela- 
tion due to this pole will decay slowly. Thus, in order to retain significant autocorre- 
lation values at long lags, its contribution at short lags must be large. The least- 
squares techniques used in ARMA estimation will weight errors in the 
autocorrelation function of the model at shorter lags more heavily (since the auto- 
correlation values are generally larger at short lags). Therefore an ARMA model is 
likely to underestimate the true autocorrelation function at large lags. If one needs 
to model long-term correlations that decay slowly, then another approach may be 
more parsimonious. 

Signals possessing long-term correlation have been observed in many fields. 
Since the power spectrum is the Fourier transform of the autocorrelation function, 
one indicator of long-term correlation is the presence of broad-band, low-frequen- 
cy power in the spectrum. In particular, if the low-frequency spectrum grows in 
amplitude as the length of the data window increases, then one can suppose that 
the autocorrelation function is going to zero slowly relative to the window length. 
This behavior has been reported for heart rate measured in human subjects (Fig. 
10.1). The file hrlong.mat contains a sequence of 8100 heart beats from a hu- 
man subject. For three different segments of the data the power spectrum was de- 
termined by fitting an AR(6) model using the Yule-Walker method. Notice (Fig, 
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FlGURE 10.1. Spectral analyses of the heart rate data from file hrlong .mat using three dif- 
ferent data lengths (500,2500, and 8100 beats). 

10.1) that the low-frequency power increases progressively as the data length in- 
creases, suggesting that the autocorrelation function is significantly non-zero at 
very long lags. Note also that the spectrum based on all 8100 beats can be well 
approximated by a straight line over most of i: range (e.g., -1.2 5 log(o) s 0.4). 
This observation may be expressed as 20 log(P(e/”)) = A - B log(w), or b(@) = 
l 0°~05A/00~05B. Furthermore, this linear approximation likely fits the linear portions 
of the other two spectra also. Thus, there is the expectation that the linear spec- 
trum (on the log-log plot) may represent the spectrum at even lower frequencies. 
Of course this approximation cannot be valid at zero frequency because the log 
term would become infinite and physical signals cannot possess infinite power. 
Such spectra are generically referred to as “l/f’ spectra because of the reciprocal 
power-law dependence of power on frequency. 

Numerous classes of signals exhibit long-term correlation and/or llf spectra. 
The fractal signals introduced in Chapter 1 belong to one such class. These signals 
have the property that they “look similar” at many levels of magnification. Fig. 
10.2(a) shows an example of a fractal signal that was created using the spectral 
synthesis method (fracssm.rn). The power spectra, based on fitting an AR(6) 
model to this signal, were determined for four different data lengths (i.e., 256, 
500, 2048, and SO00 points) and are plotted in Fig. 10.2(b). Note that here the 
low-frequency power also increases with increasing data length and that the over- 
all spectrum is approximately linear, especially for the two longer data lengths. 
This example suggests that a fractal signal might be a more appropriate model 
for the heart rate data discussed above (and numerous researchers have demon- 
strated that fractal models. fit heart rate data well). This chapter will discuss the 
properties of fractal signals in detail, but first we will discuss the concept of self- 
similarity. 
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FIQURE 10.2 Analysis of a fractal signal (H = 0.7) generated using the spectral synthesis 
method. (a) The frectal.slgnal. (b) Spectral analyses using four different data lengths: solid, 
5000 points; long dashes, 2048 points: dot-dash, 500 points; short dashes, 256 points. 

10.2 GEOMETRICAL SCALING AND SELF-SIMILARITY 

A fundamental measure of a signal is the dimension of its graph. This chapter will 
consider only those signals that can be graphed on a plane; thus, the dimensions of 
these signals are no greater than 2. The concept of dimension, however, is consider- 
ably more complex than the simple Euclidian idea that the dimension of a line is 
one and that of a plane is 2, and so on. Furthermore, the dimension of a signal and 
its scaling and correlation properties are interrelated. Although our concern is with 
signals, some of the properties of the graph of a signal are best elucidated from a 
geometrical viewpoint. Thus, we initially address geometrical scaling and self-simi- 
larity. 

On polar axes the function 40) = ade  describes a spiral with decreasing radius if 
q < 0 (Fig. 10.3). This function is known as a logarithmic spiral and it has an inter- 
esting self-similarity property. If the graph is rotated by an angle 4 to create a new 
function r'(6) = ade++), then r'(B) = @+r(6). That is, rotating the function is equiv- 
alent to multiplying it by the scale factor, @+. An alternative interpretation is that af- 
ter scaling of r (@ by a factors, one can always recover the original graph simply by 
rotating the new graph by an angle 4 = In(s)/q. The graphs of 40) and r'(8) are geo- 
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FIGURE 10.3. Graph of a logarithmic spiral, In(r) versus 0, where r is the distance of a point 
from the origin and 0 is the angle. 

metrically similar. An object is geometrically similar to another object if one object 
can be derived by applying linear scalings, rotations, or translations to the other ob- 
ject. A transform that produces a similar geometrical object is called a similarity 
transform, and it comprises linear scalings, rotations, and translations (any of which 
might be omitted, of course). Thus, given a point (x, y) in a two-dimensional object, 
a similarity transform produces a point (x', y ' )  in the new object according to the re- 
lationships 

X' = s cos(8)x-s sin(8)y + d,, y' = s sin(8)x + s cos(8)y + dy, (10.1) 

where s is the scale factor, 8 is the angle of rotation, and d, and dy are translations in 
the x and y directions. The object is transformed by applying these relationships to 
all points in the object. For example, let s = 1/2, 8 = 7d6, d, = 1, dy = 0. Under this 
transformation the triangle of Fig. 10.4(a) becomes the smaller, rotated, and dis- 
placed triangle of Fig. 10.4(b). 

One also may apply this transformation to the transformed triangle of Fig. 
10.4(b), obtaining the triangle in Fig. 10.4(c). Thus, if one represents the original 
triangle as an object Po, then the object of Fig. 10.4(b) may be represented as P I  = 
TIPO] and that of Fig. 10.4(c) as P2 = T(2)[P0], where T[.] symbolizes the transfor- 
mation described by Eq. (10.1). Repeated application of T[.] produces the object P ,  

far along the x-axis. After every step the resultant object will be geometrically simi- 
lar to the original object, Po. 

A variation on this scheme of similarity occurs when the resulting object is the 
union of the objects created by applying several similarity transforms to Po. In this 

- - lim,,,T(")[Po], which will be a very small triangle that has been translated very 
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(a) (b) (4 
FIQURE 10.4. (a) A triangular object. (b,c) Similarity transformations of the object, Po (see 
text). 

case very complex objects may result. Consider, for example, the triangle of Fig. 
10.5(a), which we may call Po. Let T[.] be described by three different similarity 
transformations and let the output object be the union of the objects created by each 
transformation. Specifically, the three similarity transformations are defined by: (1) 
s = 1/2, 8- 0, d, = dy = 0; (2) s = 1/2, 8- 0, d, = 1/2, d y e  0; (3) s = 1/2, 8 =  0, d, = 
0, d,, = 1/2. Applying these transformations to the original triangle yields the three 
smaller triangles of Fig. 10.5(b), the union of which comprises TIPoJ, or, P I .  One 

L b  
(c) (d) 

FIGURE 10.5. Steps in generating a Sierpinski gasket. (a) The starting object. (b) After one it- 
eration. (c) After two iterations. (c) After many iterations. 
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may continue to iterate using this set of transformations. P2 is drawn in Fig. 10.5(c). 
Finally, in the limit one obtains an object like that of Fig. 10.5(d). This limiting ob- 
ject is one version of the Sierpinski gasket. Sierpinski gaskets (and related objects 
known as Sierpinski sponges) exhibit many interesting geometrical properties that 
are beyond our immediate concern. The reader is referred to the book by Peitgen et 
al. (1992) for insightful discussions of their properties. The process by which Fig. 
10.5(d) was generated is known, for obvious reasons, as an Iterated Function Sys- 
tem. Planar Iterated Function Systems have important applications in image pro- 
cessing that lie outside of the present interest in one-dimensional signal processing, 
but one-dimensional Iterated Function Systems will form the basis for understand- 
ing the concept of chaos in Chapter 1 I .  

The limit structure of the Sierpinski gasket has the property of geometrical self- 
similarity. An object is geometrically self-similar if one can recreate the object 
through the union of similarity transformations applied to the object. That is, given 
an object P, if there exists a set of similarity transformations TI[.], T2[.], , . . , TJ.], 
such that 

P = T,[P] u T,[P] u . I . u TJP] ,  (1 0.2) 

then P is geometrically self-similar. Furthermore, if one defines an operator 

f4.3 = TJ.1 u T2[.] u . . . u TJ.1, (1 0.3) 

then WP]= P and P is said to be invariant under the operator H. For example, if P is 
the Sierpinski gasket, then H may be defined as the union of the three similarity 
transforms given above for generating the Sierpinski gasket. Not only does H gener- 
ate this object, but the limiting object itself is geometrically self-similar and invari- 
ant under H. It will be shown below that the Sierpinski gasket is a fractal object. 
Note, however, that geometrical self-similarity alone does not imply that an object is 
fractal. The distinction is related to the concept of the dimension of the object, as 
explained below. 

The limit structure of the Sierpinski gasket is difficult to visualize because it 
contains so many “holes.” Although the initial triangle is clearly a two-dimension- 
al object in the Euclidian sense, the dimension of the Sierpinski gasket is not en- 
tirely clear, especially if we adopt the convention that any continuous line is topo- 
logically one-dimensional even if it wanders over (but does not completely fill) a 
plane. The question of determining the dimension of “strange” objects like the 
Sierpinski gasket will be considered shortly. First, consider the use of an iteration 
process to generate an object on a line that also contains many “holes”. The itera- 
tion proceeds as follows: (1) draw a line segment over the closed interval [0, 11 
(Fig. 10.6(a)); (2) remove the middle third of the line segment, creating two short- 
er line segments; (3) remove the middle third of each remaining line segment; (4) 
repeat step 3 without limit. The final object is a set of points on the original line 
segment known as the middle-thirds Cantor set, or Cantor dust. (There are also 
other forms of the Cantor set.) This Cantor set can be derived from an Iterated 
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FIQURE 10.8. (a) Steps in generating the middle-thirds Cantor set. (b) /og-log plot of the 
length of the middle-thirds Cantor set versus resolution. 

Function System approach. Given an x in an object (such as the original line seg- 
ment), let T[x]  comprise two transformations described by: (1) x ,+~  = 4 3 ;  ( 2 )  xi+, 
= -xi3 + U3. At each iteration the resulting object is the union of the objects gen- 
erated by applying these two transformations to every point in the initial object. 
Again, the Cantor set has numerous important properties but our interest is in un- 
derstanding how to determine the dimension of such an object. Both the Cantor 
set and the Sierpinski gasket are examples of objects having non-integer dimen- 
sions. 

10.3 MEASURES OF DIMENSION 

Consider the problem of measuring the total length of the Cantor set described 
above. Since all of its points lie either in the interval [0, 1/31 or in the interval [1/3,  
2/31, if the minimal resolvable interval of the measuring device is one-third of a 
unit, then the Cantor set appears to have a length of 2( 3 ) .  But if the measuring pre- 
cision is increased by reducing the minimal resolvable interval, s, to s = ( +)2 = f , 
then one can resolve that the intervals (1/9,2/9) and (719,819) contain no points of 
the Cantor set. Therefore, the length, I ,  appears to be 1 = 4(+)2. In general, as the 
minimal resolvable interval of the measuring device decreases according to s = (f)? 
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the length of the Cantor set increases according to I = 2k(+)k = ( f )k .  Defining the 
measurement precision as the reciprocal of the minimal resolvable interval, the 
length of the Cantor set is plotted as a hnction of the measurement precision, I ls ,  in 
Fig. 10.6(b). On this log-log plot, the relationship is linear and the slope of this line 
is 

Thus, if the equation of the line is log(l) = a + d log( Ih), then I is related to s as 1 
= 10"( l /~)~ .  This type ofpower law relationship is common for fractal objects and 
fractal signals. Note the seemingly paradoxical result that the apparent length of the 
Cantor set vanishes as the precision increases. 

A similar process may be applied to measuring the area of the Sierpinski gasket. 
After each iteration, k, let the minimal resolvable area be s = ( 1/2)k. Since there will 
be 3k triangles, their total area will be A = 3k(f)(f)k. In the limit of s + 0, the slope 
of the graph of area versus precision will be 

Measures of the dimension of an object typically are derived from iterative 
processes such as those used above to determine the length of the Cantor set and the 
area of the Sierpinski gasket. There are numerous definitions of the dimension of a 
geometrical object but we shall ignore many subtleties and focus on the two most 
immediately usefbl definitions for the present purposes, the similarity dimension 
and the box-counting dimension. The reader is referred to the books by Peitgen et 
al. (1992) and by Feder (1988), among several possibilities, for more extensive dis- 
cussions of dimension. 

Similarity Dimension 

The similarity dimension of a self-similar object is closely related to measuring 
the size of the object at various precisions. Similarity dimension expresses the re- 
lationship between the number of geometrically similar pieces contained in an ob- 
ject and the measurement precision, as the minimal resolvable interval approaches 
zero, As we noted above, at the k-th iteration step we expect the total measure of 
the object (e.g., length or area for the previous examples) to be the product of the 
number of similar pieces and the resolution raised to some power, D, where (we 
shall argue) D is the dimension of the object. For example, if one covers a line of 
length L with line segments of length s, then the number of similar pieces is Lls 
and the measured length I will be I = (Us) s'. That is, D = 1. Likewise, if one cov- 
ers a planar area A with squares having sides of length s, then the number of 
pieces will be Ah2 and the measured area will be a = (Ah2)  s2, so that D = 2. 
Generalizing from these results, we may presume that the number of similar 
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pieces, N, will be proportional to sD, or, N = b ~ - ~ .  D may be evaluated by taking 
the logarithms of both sides. Thus, as s approaches 0, 

and is called the similarity dimension. 

(10.5) 

Example 10.1 0, for the Cantor set and the Siepinski gasket For the Cantor 
set the measurement length at each iteration is s = ( l/3)k and the number of similar 
pieces is N = 2? Therefore, its similarity dimension is 0, = -[k log(2)l-k log(3)J = 
0.6309. This result implies that the dimension of the Cantor set is greater than that 
of a point (i.e., zero) but less than that of a line (i.e., I) .  For the Sierpinski gasket the 
measurement size is s = ( 1/2)k and the number of pieces is N = 3k. Thus its similari- 
ty dimension is 0, = -[k log(3)l-k log(2)I = 1.5850. The Sierpinski gasket has a di- 
mension larger than a line but less than a solid planar object. 

Note that both of the above self-similar objects have non-integer similarity di- 
mension! Self-similar objects having a non-integer similarity dimension are called 
fmctul objects. (The reader should be aware that the strict definition of a fractal ob- 
ject is that its HausdorfT-Besicovitch dimension is greater than its topological di- 
mension. Explication of the Hausdorff-Besicovitch dimension is beyond the present 
text but it is based on the concept of covering an object with small objects of vari- 
able sizes and examining the limiting relationship between the number of objects 
and a measure of their “size” as size approaches zero. For a self-similar object, the 
condition on the HausdorfT-Besicovitch dimension is satisfied if its similarity di- 
mension is non-integer.) It is common to assume that an object is fractal if some 
measure of dimension is non-integer although the various definitions of dimension 
are not always consistent. If an object comprises pieces that are geometrically simi- 
lar to the whole and is invariant in the sense of Eqs. (10.2)-(10.3), then it is fractal. 
In general, however, for practical purposes we shall loosen the definition and re- 
quire only that self-similarity extend over a finite number of scales (especially when 
considering the analysis of real data). Furthermore, we shall modify the definition 
of self-similarity to include similarities other than geometrical self-similarity, as 
will be evident below in the discussion of time functions. With these looser condi- 
tions one should emphasize the indices of self-similarity and their potential implica- 
tions regarding the mechanisms that created the object under study, and acknowl- 
edge that these indices create a presumption that an object is fractal rather than the 
proof that it is. 

Comparing the similarity dimension and the length (or area) relationship for the 
two fractal examples above, in both cases one notes that D, = d + 1. This result is 
general for self-similar objects. Consider a general measure of an object, u (such as 
length or area) measured using a minimal resolvable interval s. u is proportional to 
(l/sd) and we may assume that the unit of measurement is such that the proportion- 
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ality constant is unity. Thus log(#) = d log(l/s). Now the number of similar pieces at 
each s is N = ( so that log(N) = 0, log( lh). Finally, the total measure is the 
product of the number of pieces and the measure of each piece, the latter being s 
(because it was assumed that u = 1 when s = 1). Consequently, u = N . s and log(#) 
= log(N) + log(s), implying that d log( l/s) = 0, log( 11s) - log( lh), or 0, = d + I .  

The above result implies that one may calculate 0, for a fractal object either 
through the relationship of Eq. (10.4) or via the definition of Eq. (10.5). One also 
may generalize the concept of dimension to objects that are not self-similar by using 
the approach of Eq. (10.4) and adding unity to the calculated slope. This latter result 
is sometimes known as the compass or divider dimension. 

Box-Counting Dimension 

The box-counting dimension expresses the relationsip between the number of “box- 
es” that contain part of an object and the size of the boxes (Fig. 10.7). The box- 
counting dimension is simple to evaluate. One chooses boxes of side length s, cov- 
ers the object with a grid of contiguous boxes, and counts the number of them, N(s), 
that contain at least one point of the object. This process is repeated for several 
(preferably many) values of s with the expectation that N(s) varies as (I/&), where 
D, is the box-counting dimension. Therefore, a graph of log(N(s)) versus log( Us) 
should be a straight line with slope 4. If one uses box sizes s = 2-&, then one may 
use base 2 logarithms and plot log2(N(k)) vs. k and evaluate the slope. 

The box-counting dimension is not necessarily equal to the similarity dimension 
but it may be much easier to determine for an arbitrary object and may be applied to 
objects that are not self-similar. For instance, Peitgen et al. (1992) calculate the box- 
counting dimension of a map of the coast of England, arriving at a value of approx- 
imately 1.3 1, If one declares that a line with dimension one “fills” very little space, 
and if one visualizes a solid, two-dimensional, square as filling two-dimensional 
space, then one may say that a higher dimension corresponds to a more space-fill- 
ing structure. Shortly in this chapter these same concepts will be applied to signals 
rather than geometrical objects. 

FIQURE 10.7. Example of placing a grid of contiguous boxes over an object. 
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Example 10.2 Db for the Koch curve Construction of the Koch curve is indicat- 
ed on Fig. 10.8. Starting with a line segment that is one unit long, one removes the 
middle third and replaces it by two pieces, each one-third unit long, that meet the first 
and third segments of the original line at 120O. In each step the middle third of every 
line segment is replaced in this manner. The final shape has the same large-scale 
structure shown in Fig. 10.8 but this structure is apparent at every magnification. 

To determine the box counting dimension of the Koch curve, consider covering it 
with boxes having sides of length 1/3. The number of boxes required at step one will 
be four. If at the k-th step the box size is s = (+)&, then N(s) = 4k. Therefore, 

Random Fractals 

Not all fractal objects satisfy the condition of strict geometrical self-similarity, as 
the following example demonstrates. Consider generating the Koch curve, as above, 
with one simple variation. At each step let the new triangular piece be added ran- 
domly to either side of the line segment-for example, for horizontal line sege- 
ments, the triangle points either up or down with equal probability. Although the re- 
sulting object will have some visual similarity to the original Koch curve, there may 
be large differences between the two due to the random orientation of pieces in the 
former. Nonetheless, it is easy to show that both objects have the same length at 
each step and the same box-counting dimension, and therefore it is reasonable to 
conclude that both are fractal objects. One could extend this approach by making 
the replacement of the middle third of each line segment a random choice (with 

step 0 

I 
I 
I & step k 

FIGURE 10.8. Steps in generating the Koch curve. 
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equal probability). Then at each iteration the length of the curve would increase, on 
average, only half as much as that of the original curve. Thus one could develop 
some statistical comparisons between the original Koch curve at iteration k/2 and 
the modified random Koch curve at iteration k. For example, the mean length of the 
line segments of the latter at step k would approach that of the former at step W2 as 
k increases. This idea of basing similarity on statistical comparisons rather than on 
geometric shapes is the foundation of the following discussion regarding fractal 
time functions. Readers wishing more information on geometric fractals are re- 
ferred to Barnsley (1 993). 

10.4 SELF-SIMILARITY AND FUNCTIONS OF TIME 

Geometrical Self-Similarity for Time Functions 

On the assumption that a graph could be viewed as a geometrical object, conceptu- 
ally one may consider applying the concept of self-similarity, as described above, to 
the graph of a time function. This approach, however, is inappropriate because the 
abscissa and ordinate of such a plot have different units. On the other hand, if rota- 
tions are not allowed, one could consider a type of similarity transformation in 
which the two axes would be scaled by different factors, s, and s,,. In fact, objects 
that satisfy conditions like those for self-similarity, but with different scalings in 
different directions, are said to be self-aflne. Even so, it would be an unusual time 
signal that could be reconstructed exactly (in a geometrical sense) from a union of 
transformations of itself that are scaled in both time and amplitude. Although we 
will be able to calculate the box-counting (and other types of) dimension for graphs 
of time functions, for such functions a different concept of similarity is useful. 

Statistical Similarity for Time Functions 

With regard to functions of time, properties such as similarity are definable if such 
functions are regarded as sample functions of random processes. (At this point no 
assumptions are being made about stationarity.) Random processes are described by 
their statistical properties-in particular, their probability density functions and 
their joint probability density functions. A random process, X(t), is statistically self- 
similar if the processes X(r) and b-"X(bt) are statistically indistinguishable, where a 
is a constant and b is an arbitrary time scaling factor. This definition implies that 
Prob{X(t) 5 x}  = Prob{b-"X(bt) 5: x}. Consequently, assuming zero-mean process- 
es, since 

E{(b-aX(br))2} = E{XZ(t)} ,  

then 
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and 

Var(X(6t)) = 62akr{X( t ) } .  ( 10.6) 

The variance of X(t) depends on the properties of the random process, of course, 
whereas Eq. (10.6) is a consequence of statistical self-similarity. This result will be 
fundamental for several methods of estimating the amplitude scaling parameter, a, 
of a self-similar process. 

Perhaps the most familiar example of a self-similar process is one-dimensional, 
ordinary Brownian motion, B(t). In modeling Brownian motion, one assumes that a 
particle is subjected to frequent, microscopic forces that cause microscopic changes 
in position along a l i n e f o r  example, the x-axis. It is assumed that these increments 
of displacement-call them A@)-have a Gaussian distribution with mean zero and 
that they are statistically independent. Since it is not possible to observe every mi- 
croscopic displacement, any measurement of position of the particle, B(t), at the 
smallest possible observation interval, T, necessarily results from a summation of 
displacements occurring in the time interval of length T. Call the change in B(t)  over 
one time interval AB(T). A summation of zero-mean Gaussian random variables 
yields another Gaussian random variable having a mean of zero and a variance that 
is the sum of the individual variances. In this case, each of the original “microscop- 
ic” variables, A(r), is assumed to have the same density fbnction and same variance. 
Thus the variance of the summed variables at the end of the interval T will be pro- 
portional to rand we may write that m ( ~ )  = J;A(t)dt, and Var{hB(T)} = DT, where 
D is a constant that we will identie as the average diffusion coefficient. Since 
U(T) is Gaussian, its pdf is given by 

(1  0.7) 

where p is any particular value of hB(7). Fig. 10.9(a) shows a sample fbnction of 
discrete increments of Brownian motion, AB(i * T) having a mean of zero and unit 
variance. B(t) is the summation of these increments and the corresponding sample 
function is graphed in Fig. 10.9(b). 

To investigate the scaling properties of Brownian motion, consider the situation 
when the smallest observation interval is 27 and the net total displacement in this 
time interval, 8, is the sum of displacements in two intervals of length T. Let p, ,  
&, be the displacement in the first and second interval, respectively. Of necessity, 
&, = /3 - PI. Because we assumed that the incremental position changes are inde- 
pendent, 
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FIGURE 10.9. (a) 500 discrete increments of fractional Brownian motion (FBM). (b) The sam- 
ple function of FBM whose increments are shown in (a). 

The only difference from Eq. (10.7) is that the variance is twice as large. In 
fact, this result generalizes for an interval of any length. That is, the variance of 
the increments of Brownian motion, AB(t), depends on the frequency at which the 
increments are measured, increasing with the time between measurements. But, 
for a fixed observation interval the variance is constant and independent of time. 
One may simulate the example of doubling the observation interval by summing 
pairs of data points from Fig. 10.9(a). The resulting sequence, having half as many 
data points, is plotted in Fig. 10.10, along with the corresponding Brownian mo- 
tion sequence. It is apparent that if one scaled Fig. 10.10(a) by (fi)-*, then it 
would "look similar" to Fig. 10.9(a). In this instance "similarity" does not mean 
that the two functions are identical, but that they have the same statistical proper- 
ties. 

The scale invariance of records of Brownian increments can be demonstrated 
mathematically. Making the substitutions T'= b7, p'= b0.5P, the pdf may be written 
as 

(10.9) 

That is, a transformation that changes the time scale by b and the length scale by 
b0.5 produces a process that is equal in distribution to the original process. Equation 
(1  0.9) expresses the statistical self-similarity (or, strictly, self-affinity) of the incre- 
ments of Brownian motion. 
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FIGURE 10.10. (a) Increments of FBM produced by summing adjacent pairs of points from 
Fig. 10.9(a). (b) The FBM for which the data in (a) are the increments. 

The position of the particle is reflected by B(t). Since B(t) is essentially a sum- 
mation over the interval (to, t )  of increments having a Gaussian distribution, then the 
change in B(t) from &to) is also Gaussian and, by arguments similar to those above, 
its probability density function is 

(10.10) 

assuming that t > t,,. This function satisfies the scaling relationship 

p(b03[B(b(t)) - B(bto)]) = b-0.5p(B(t) - B(t0)). (10.1 1) 

Thus the Brownian motion process is also self-affine. Given these results it is easy 
to prove that 

E{B(t) - B(to)} = 0 and 

Vor(B(t) - B(to)} = 2D(r - to). (10.12) 

Equation (10.12) demonstrates clearly that Brownian motion is not stationary 
since its variance is a function of time. On the other hand the variance of the incre- 
ments, AB(t), is constant (for a given observation interval, T) and the process of 
Brownian increments is stationary. 
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10.5 THEORETICAL SIGNALS HAVING STATISTICAL SIMILARITY 

Fractional Brownian Motion (FBM) 

Fractional Brownian motion, BH(r), was introduced by Mandelbrot and Van Ness 
(1968) as an extension of the concept of Brownian motion. It is formally defined, 
for t > 0, by the following relations: 

(1 0.13) 

The increments of FBM, dB(t), are assumed to be zero-mean, Gaussian, indepen- 
dent increments of ordinary Brownian motion. H i s  a parameter that is restricted to 
the range 0 c H < 1. An equivalent mathematical form, that looks similar to a differ- 
ence between two convolutions, is the following: 

The form of Eq. (1 0.14) suggests that FBM is derived from a process of weight- 
ing past values of white noise by ( t  - s)H-1/2 and integrating. Note that for H = 112 
FBM becomes ordinary Brownian motion. This result may be determined from Eq. 
(10.14), where for H = 1/2 the fractional exponents, H - 1/2, become zero and the 
integrals become simple integrals of the Gaussian increments. 

The increments of FBM are stationary and self-similar with parameter H. That 
is, 

Consequently, FBM has no intrinsic time scale. (Compare this result to geometrical- 
ly self-similar objects that have no intrinsic spatial scale.) Mandelbrot and Van Ness 
(1969) derive the result that the variance of FBM is 

Var{BH(t() + 1 )  - &(to)) - 1 t y .  (10.16) 

Therefore, like ordinary Brownian motion, fractional Brownian motion is nonsta- 
tionary although it also is a zero-mean process. 

The character of FBM is dependent on the value of H. For H between 0 and 112, 
a record of FBM appears to be very irregular (Fig. 10.1 l(a)). If H = 112, FBM be- 
comes ordinary Brownian motion and has the appearance seen in Fig. 10.9(b). Fi- 
nally, as H increases from 1/2 towards 1, then a record of FBM becomes progres- 
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FIGURE 10.11. Two examples of FBM. (a) H = 0.3. (b) H I 0.8. 

sively smoother (Fig. 10.1 l(b)). This changing character can be predicte, on t..: ba- 
sis of the correlation between past and hture increments of FBM, which Feder 
(1988) derives to be 

For H = 0.5, this correlation vanishes, as expected, but for other values of H it is 
nonzero for all values oft. In particular, for H < 0.5 the correlation of past and h- 
ture increments is negative, implying that an increasing trend in the past is more 
likely to be followed by a decreasing trend in the future. The opposite is true for H > 
0.5, for which C(t) is positive. These two situations are sometimes referred to as an- 
tipersistence and persistence, respectively. 

These concepts may be applied to DT signals by considering the above theory 
for integer values o f t  and s. This approach thus assumes that DT FBM originates 
from sampling of CT FBM at a unit sampling interval. Alternatively, one may gen- 
eralize to an arbitrary sampling interval, ts. The primary effect of this alternative is 
to introduce a scale factor related to raising ts to some power that is a hnction of H. 
These cases will be identified as needed below. 

Of particular interest are the autocorrelation and spectral properties of FBM and 
of its increments. Derivation of these properties is mathematically nontrivial and 
here we summarize results and present heuristic arguments, referring the reader to 
other sources of detailed derivations. Because FBM is nonstationary, its power spec- 
trum is not definable in the standard manner. Flandrin (1989) utilized a time-vary- 
ing spectral analysis method known as the Wigner-Ville spectrum to characterize 
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FBM. Given a process having the autocorrelation function rx(t,s), its Wigner-Ville 
spectrum is 

7 ? 00 

WJt, 0) = 1 rx( t + -, t - --)e”‘d7. 
-m 2 2  

( 1 0.1 7) 

After calculating the time-varying Wx(t, 0) for FBM, Flandrin calculates the av- 
erage spectrum over a time interval, T, and shows that in the limit for long intervals 
the average spectrum approaches 

(10.18) 

That is, FBM has an average llf type of spectrum. 
Since ordinary Brownian motion may be properly defined as the integral of 

Gaussian white noise, there is the temptation to define fractional Brownian motion 
as the integral of a corresponding process that one might call “fractional Gaussian 
noise (FGN).” Since FBM is not differentiable, however, one must either formulate 
a smoothed, differentiable approximation to FBM or consider very small increments 
of FBM. Here we do the latter and define FGN as 

BH(t + 8) - BH(t) 
B,!,(t) = 

E 
( 1 0.1 9) 

and derive the spectrum of FGN from an heuristic argument. Since FBM is approx- 
imately the integral of FGN, and for an integrator H ( n )  = ( I / j 0 ) ,  the power spectra 
of FBM and FGN should be related as SEJn) = (S~,$n)ln~), implying that 

(1 0.20) 

This result is consistent with the derivation of Flandrin based on a more formal 
mathematical argument. Note that if the variance of FGN is scaled by some parame- 
ter c?, then both Eq. (1 0.18) and (1  0.20) are scaled equivalently. 

Because it is nonstationary, the autocorrelation function of FBM, rB(t,s), is a 
function of both t and s. Thus it is difficult to utilize this function for analysis of 
data. On the other hand, FGN is stationary and its autocorrelation function may be 
derived from the basic definition. Bassingthwaite and Beyer (1991) considered the 
case of discrete FGN, in which the FGN is viewed as small differences of FBM. For 
such discrete FGN, derivation of the autocorrelation between nearest neighbors- 
that is, r,.[l]-is conceptually straightforward, but the algebra is a little extensive 
and is omitted here. The result is 
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The derivation of the autocorrelation at lags greater than one is considerably 
more extensive although it again proceeds from standard concepts about indepen- 
dent Gaussian processes. Bassingthwaite and Beyer derive the result for discrete, 
unit-variance, FGN that 

re{m] = 0.5[(m + 11'" - 21m12H + lll~ - 1 12H] ( 1  0.22) 

This function is plotted for several values of H in Fig. 10.12, from which the long- 
term memory of the process is evident. Since discrete FGN is modeled here as 
small differences of FBM, it is possible to aggregate consecutive FGN samples- 
for example, add together consecutive pairs-to produce another set of differences 
of FBM. Note that Eq. (10.22) is independent of the degree of such aggregation 
so that the consistency of iB{m]  calculated from data with various degrees of ag- 
gregation provides an indication of the validity of assuming that the data are frac- 
tal. 

Relating Geometrical Dimension to Statistical Self-similarity 

Although it was argued earlier that the concept of similarity dimension was inappli- 
cable to graphs of statistically self-similar time signals, one may estimate the fractal 
dimension of such a record using the notion of box-counting (or simply, box) di- 
mension. In determining box dimension one looks for a relationship between the 
number of boxes, N(b), of size b that intersect with an object, expecting a relation- 
ship of the form N(b) - b-D, where D is the dimension. For FGN, one may cover the 
graph with boxes of width br in time and length ba in amplitude. If the time span of 
the record is T, then one needs T/br segments to cover the time axis. Furthermore, 
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0.4 
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-0.1 I I 
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FIQURE 10.12 Theoretical autoconelation function of FGN for H = 0.9,0.8, 0.55,0.3. 
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since the amplitude range is of the order ABAbr) = PAB,,(T), one requires 
WAB,,(r)/ba boxes of height ba to cover this range. Therefore, 

~ H A B ~ T )  T 
ba br 

N(b)  = - - p - 2 .  

But since N(b) - b-D, then 

D = 2 - H .  (1 0.23) 

This result is intuitively sensible. We know that as H approaches 1, the signal be- 
comes smoother and approaches a line that has a dimension of one. Conversely, as 
H approaches zero, the signal becomes increasingly irregular and its dimension ap- 
proaches 2. The relationship of Eq. (10.23) provides a convenient means of estimat- 
ing the dimension of the record of a fractal signal through estimation of H. 

10.6 MEASURES OF STATISTICAL SIMILARITY FOR REAL SIGNALS 

Rescaled Range Analysis 

The parameter H is called the Hurst exponent after the Egyptian hydrologist who 
first noticed an empirical relationship between the range of aggregated data and the 
size of the aggregates for numerous natural measurements (Hurst, 1951). This 
method of estimating H is known as rescaled range analysis. It seems to be less ac- 
curate than others but the method has historical interest. Given a one-dimensional 
signal x(r) ,  one forms aggregates of m consecutive data points with no overlap be- 
tween aggregates. Thus, if there are N total points, then one obtains Nlm aggregates, 
xj[n], 1 5 j 5 Nlm, 1 5 n 5 m. For each aggregate one calculates an accumulated 
sum, v,[n] = Z[t=,xj[&]. Two indices are calculated for each aggregate: (1) the range, 
R,{m), is defined as R,(rn) = max(vj[n]) - min(vj[n]); (2) the standard deviation, 
S(m), is calculated for vj[n] in the usual manner. Hurst observed for many natural 
variables the relationship R(m)/S(m) a m". Consequently, R(m) and S(m) are calcu- 
lated for several values of m and the logarithm of their average value at each m is 
graphed vs. log(m). H is estimated as the slope of a regression line on this log-log 
plot. If a reference aggregation size, mo, is chosen, then Hurst's equation implies 
that 

log[R(m)/S(m)] = log[R(mo)/S(mo)] + H log[mlmo]. (1 0.24) 

An heuristic argument validates this empirical finding when the method is ap- 
plied to FGN. Mandelbrot and Van Ness proved for FGN that the range, R(rn), satis- 
fied a statistical self-similarity condition so that R(bm) is equal in distribution to 
bHR(m). Furthermore, for a stationary process such as FGN, one expects S(m) not to 
vary systematically with m. Therefore, Hurst's relationship is plausible for FGN. 
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Mandelbrot and Van Ness suggested a modification of the rescaled range analysis in 
which the range of each aggregate is reduced by the range of a linear regression line 
fit to the data of the aggregate. The accuracy of this modification, and variations on 
estimating the slope of the regression line, have been investigated extensively (e.g., 
Caccia et al., 1997). 

Relative Dispersion 

The relative dispersion method was suggested by Bassingthwaite (1 989) as a means 
of estimating H from a fractional Gaussian noise signal. Although originally applied 
to a spatial fractal, it is equally applicable to a temporal fractal and the process of 
calculation is the same. Relative dispersion, RD, is defined as 

RD(m) = SD(m)/Xm, (1  0.25) 

where m indicates the size of the aggregates (or groups), S a m )  is the standard devi- 
ation based on groups of size m, and the overbar indicates a mean value. The 
method proceeds as follows (Fig. 10.13): First, one evaluates RD for group size m = 
1. That is, calculate the mean of the entire data set and the sample standard devia- 
tion of the data set, the latter defined as 

Here Zl = (l/N)XN&x[n]. For the second step aggregate adjacent data points into 
nonoverlapping groups of 2 (i.e., m = 2) and calculate their mean value. There will 
be Nl2 groups. Now, using the group mean values as data points instead of the x[n] 
values, calculate SD of the group means according to Eq. (10.26). Call this SD(2).  
Then RD(2) = SD(2)E2, noting that Z2 = Xl. Succeeding steps repeat step 2 using m 
= 4,8, 16, . . . , until the number of groups is “too smal l .”~ ica l ly  one stops when 

---- m = 4  

l-h- m = 8  

FlQURE 10.13. The first four steps in aggregating data for calculating relative dispersion. 
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N/m = 4, but note that this criterion is not absolute (Caccia et a1.,1997). In addition, 
one also may choose values of m that are not powers of 2 (Zhang and Bruce, 2000). 
It will be shown below that RD(rn) - mH-I. Therefore, one plots log[(RD(m)/RD(l))] 
versus log(m) and uses linear regression to estimate the slope of this graph, from 
which an estimate of H is obtained as 

H = 1 + slope. (1 0.27) 

In practice, since X, is independent of m, one may alternatively evaluate the slope of 
a plot of 

log[ z] vs. log(m). 

To validate the proposed relationship between RD(m) and m, consider the second 
step in which 2 original data points are averaged to produce a new data point. Let x1 
= x [ n l ] ,  x2 = x[nl  + 11 for some nl ,  and let z = t(xl + x2). The variance of z may be 
found from 

Var(z) = f var(x,)  + 3 Var(x2) + t Cov(x1, x2). 

Now Var(x,) = Var(x2) = 0:. The normalized covariance between adjacent samples 
of FGN (Eq. (10.21)) is rl = 22H-1 - 1. Therefore, 

Consider now the aggregation of pairs of values of z to create groups of size m = 
4. By the same argument as above, 

One may proceed in a similar fashion to show that for all levels based on pairwise 
averaging (RD(m)/RD(l)) = mH-l. (Raymond and Bassingthwaite (1999) provide a 
more rigorous derivation of this result for arbitrary m.) From this final result one 
finds that log[RD(m)J = log[RD( 1)J + (H - 1) log[m]. 

Example 10.3 RD analysis of a synthetic FGN signal An example using the 
relative dispersion method is presented in Fig. 10.14. The signal in Fig. 10.14(a) 
was generated using the spectral synthesis method (SSM, see later) with H = 0.65. 
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FIGURE 10.14. Relative dispersion analysis of a synthetic FGN signal having H = 0.65. (a) The 
FGN signal. (b) log-log plot of standard deviation versus scale. Slope of a linear regression fit 
to these points is -0.2692. Estimated H is 0.6308. 

The slope of the log-log plot of R a m )  versus m (Fig. 14(b)) was calculated using 
linear regression and H was estimated to be 0.6308. The difference from the speci- 
fied value of H is due primarily to using a finite data record but partly to known in- 
accuracies in SSM. 

Detrended Fluctuation Analysis (DFA) 

The DFA method utilizes a scaling property of the variance of FBM, although it is 
usually implemented using the standard deviation. (If the signal of interest is pre- 
sumed to be discrete FGN, then it is necessary to calculate a cumulative summation 
in order to apply the DFA method to the summed signal.) The algorithm is similar to 
that for relative dispersion. Given x[n],  0 f; n 5 N - 1, one forms aggregates of size 
m as above, x,[k], numbered as j = 1,2, . . . , Nlm. For each aggregate a linear re- 
gression line is fit to the data and subtracted from the data of that aggregate. If the 
regression line is described by .?j[k] = ak + b (where k is confined to the j-th aggre- 
gate), let the data after eliminating the linear trend be y,[k] = xi[&] -Xj[k]. Then the 
standard deviation of each detrended (zero-mean) aggregate is calculated as 

(1 0.28) 
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Next determine the average SD for this m by averaging the Nlm values: 

(1 0.29) 

The final step is to plot log[SD(m)] versus log[m] and estimate the slope of the 
linear portion of the graph using standard linear regression. This slope is the esti- 
mate of H. Note that it often is necessary to omit some points at both small and 
large m that do not fit a line well. The lack of fit occurs because there are too few 
points to obtain good estimates of SD for small m and too few estimates of SD to 
obtain a reliable average, SD(m), for large m. Raymond and Bassingthwaite (1  999) 
formally derive the result that log[SD(m)] - H * log[m]. 

10.7 GENERATION OF SYNTHETIC FRACTAL SIGNALS 

Several methods for generating synthetic fractal time series have been proposed. 
Some earlier methods, such as the successive random addition method, have been 
shown to be too inaccurate to be acceptable. One of the simpler methods, that is ac- 
ceptable only if modified from its original description as discussed below, is the 
Spectral Synthesis Method (SSM). The basis of this method is an approximation of 
the 1/R@ power spectrum of FBM, where = 1 + 2H, 1 d p 5 3. The approxima- 
tion is accomplished by generating a periodic signal having Fourier series compo- 
nents whose magnitudes vary with frequency as l /W.  Define a signal of length N +  
1 as 

x[n ]  = Nl2 x [ A j  cos[ 271j(i- 1) ] + Bj sin[ ''t- "I], 0 5 i 5; N. (10.30) 
j -  1 

The Fourier series coefficients, Aj and Bj, are determined from the following rela- 
tionships: 

Aj = Pj cos(Qj), Bj = Pi sin(Qj), 

where randn and rand are the Gaussian and uniform random number generators 
in MATLAB. The signal x[n] is a (sampled) fractional Brownian motion. To obtain 
FGN, one calculates successive differences of x[n]-that is, y[n] = x[n  + 13 - x[n], 
n = 0 , 1 , 2  ,..., N - I .  

Because the SSM approach generates a periodic signal, the autocorrelation of 
the generated signal does not decay appropriately for a fractal signal at long lags. 
This problem can be circumvented by generating a signal that is eight or more 
times the desired length, N, and then selecting N consecutive points beginning at 
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a random point in the long sequence, but also avoiding data near either end of the 
sequence. 

' Iko other approaches have been proposed that attempt to match the autocorrela- 
tion properties of the desired fractal signal more exactly. A method due to Lundahl 
et al. (1986) begins by calculating the autocorrelation values for discrete FGN ac- 
cording to the general result 

a2 
2 

r[k] = -[(k+ lIw- 21yZH+ Ik- 1lZH], (10.31) 

where c? is the desired variance of the signal to be generated, x[n]. One calculates 
as many values of dk], 0 s k 5 K, as one wishes to match. (K may need to be quite 
large in order to capture the long-term correlation of FGN.) The autocorrelation ma- 
trix, R, is then decomposed into R = L LT, where L is a lower triangular matrix, using 
Cholesky decomposition. The transformation y = L-lx produces a signal whose au- 
tocorrelation function is 

In other words, y[n] is uncorrelated with unit variance. Thus, if one generates 
y[n] ,  0 s n s N- 1, as unit-variance white noise, then x[n] may be determined 
through the relationship x = Ly. This method produces FGN that may be summed to 
yield FBM. The method apparently has not been tested extensively. 

Another approach to this same objective of matching the theoretical autocorrela- 
tion function of FGN has been discussed by Caccia et al. (1999). This algorithm 
(called Kip) has the property that the expected values of the mean and autocorrela- 
tion function of the generated signal converge to the theoretical ones. The procedure 
generates synthetic FGN of length N, where N is a power of 2. First one calculates 
the theoretical autocorrelation function values for 0 I k 5 N using Eq. (10.3 1). 
Then, for M = 2N, an autocorrelation sequence of length M + 1 is created in the 
form {do], r[l], . . . , dM12 - I], dMI21, r[Ml2 - I], . . . , r[l]}. The exact power 
spectrum of a process having this autocorrelation function is calculated as 

These spectral values should all be greater than or equal to zero. Now generate 
samples of Gaussian white noise having zero mean and unit variance, w, 0 s k I: 
M -  1. Define a sequence of randomized spectral amplitudes, v& such that 
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The final step uses the first N elements of the DFT of the sequence vk to com- 
pute the simulated FGN time series, 

(10.32) 

10.8 FRACTIONAL DIFFERENCING MODELS 

Fractal Brownian motion is not the only model of long-term correlation in a signal. 
A fractional differencing model represents a signal as the output of a special linear 
system excited by a white noise process. Consider a system having the transfer 
function 

Its difference equation is y[n] = y[n - 1 ] + x[n] .  That is, the system sums the input 
signal, and the transfer function (1 - z-')-I could be termed a first-order summer or 
a (-1)-th order differencer. This system may be generalized to be a d-th order sum- 
mer by specifying its transfer function as H(z)  = (1 - z-I)&, where d is not restricted 
to being an integer but must be in the range -0.5 < d 5 0.5. The impulse response of 
this system may be determined from a binomial expansion of H(z). Thus 

This expansion is valid for bI < 1 and implies that 

(k + d-  l)! 
k!(d - l)! k! 

d(1 + d ) . * * ( k - l + d )  
h[n] = (-1y = (-1y . (10.34) 

Given a white noise input signal, x[n]  = w[n],  the resulting output, y [n] ,  is given 
bY 

d ( l + d ) * . * ( k - I + d )  CD 

y[n]  = h[n] *w[n]  = I h [ k ] w [ n  - k] =C(-l)' w[n - k] .  
k4 b c l  k! 

(10.35) 

The power spectral density ofy[n] is S,,(e@) = a~lH(ej"')12. To evaluate this spec- 
trum we first express the frequency response as 
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Therefore, 

2-2d 

[sin(d2)lU Sy(eio) = 4 (10.36) 

Clearly, as o + 0, S,.(ej") - (1/02d). 
Consequently, this model can represent processes having long-term autocorrela- 

tion. Deriche and Tewfik (1993) have derived the exact normalized autocorrelation 
function ofy[n] to be 

( I  0.37) 
d(l + d ) - . * ( m - l  +d) 

ry[O] (1  -& 2-d)...(m-d) 
rAm1 - 

For large m, Eq. (10.37) behaves asymptotically as m-2d-1 and exhibits the hy- 
perbolically decaying autocorrelation characteristic of statistically self-similar 
processes. Examples of the normalized autocorrelation function for various values 
of d are presented in Fig. 10.15. One also may develop models for processes hav- 
ing d outside of the range -0.5 e d 5 0.5 by connecting a system having an inte- 
ger value of d in series with one having a fractional d. For example, for an effec- 
tive d of 2.2, one may cascade the system H,(z) = (1/(1 - z-')~) with a system 
having d = 0.2. 

Although fractionally-summed discrete white noise is a type of long-correlation 
process, the methods for estimating d from actual data are not well-developed and 
are beyond the present text-for example, see Deriche and Tewfik above. Nonethe- 
less, these models provide a reasonable alternative as models of long-term memory 
processes. Furthermore, one may combine them with linear systems and analyze the 
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FIGURE 10.15. Theoretical autoconelation function of a fractional integrator for d = 0.4, 0.2, 
0, -0.4. 
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properties of the combined system in a fairly straightforward manner. 

10.9 BIOMEDICAL EXAMPLES 

Bassingthwaite et al. (1 989) have described the spatial dispersion of measurements 
of local blood flow in the tissues of the heart using a fractal model. One example 
from a sheep heart is presented in Fig. 10.16. In this experiment a radioactive trac- 
er was injected into the circulation and after one minute the heart was removed 
and separated into many small tissue pieces of approximately equal size. The 
amount of radioactivity in a piece of tissue was taken as an index of the blood 
flow to that piece, and the SD of these measurements was calculated. Then adja- 
cent pairs of tissue pieces were pooled and the SD for the pooled data (i.e., m = 
2) was calculated. This process of aggregating was repeated over many levels and 
then R a m )  was plotted versus m on a log-log plot (Fig. 10.16). The fractal di- 
mension of the local myocardial blood flow was determined from the slope of the 
linear regression line as D = 2 - H = 1 - slope. In the example of Fig. 10.16, D = 
1.297. 

Hoop et al. (1 995) have utilized both rescaled range analysis and relative dis- 
persion to characterize the fractal behavior of spontaneous phrenic nerve activity 
recorded from the isolated brainstem-spinal cord preparation of the neonatal rat. 
This activity exhibits considerable variation when averaged over 2-second inter- 
vals (Fig. lO.l7(a)). Both the log(RIS) data and the log(RD) data are fit reasonably 
well by a straight line (Fig. 10.17(b)), the slopes of which were found to change 
depending on the concentration of acetylcholine (ACh) in the medium bathing the 
brainstem-spinal cord. From the RD plots, for which H = 1 + slope, H was found 
to be generally greater than 0.5, having a maximum near 0.85 at intermediate ACh 
concentrations. These findings suggest the presence of long-term correlations in 
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FIOURE 10.16. Relative dispersion analysis of local blood flow to a sheep heart (Bassingth- 
wake et al., 1989. Reprinted with permission from CIRCULATION RESEARCH). 
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FIGURE 10.17. (a) Two examples of phrenic nerve activity (integrated over 2-second inter- 
vals) from isolated brain stern-spinal cord preparations from neonatal rats. (b) Rescaled range 
(R/S) and relative dispersion (RD) analyses of a record of phrenic nerve activity (Hoop et al., 
1995. Reprinted with permission from CHAOS, 1995, American Institute of Physics). 

phrenic nerve activity that are the consequence of inherent central neural mecha- 
nisms. 

A direct demonstration of self-similarity in a probability density function was 
presented by Ivanov et al. (1 996), who analyzed variations in the heart rate of hu- 
man subjects. From a long ECG recording (e.g., >20,000 beats) they generated a 
time series of the lengths of R-R intervals. Using the wavelet transform they ex- 
tracted a signal representing the temporal variations of this signal over time inter- 
vals of length 30-60 s. This latter signal was demodulated and a histogram con- 
structed of the relative occurrence of various amplitudes in the demodulated signal. 
In Fig. 10.18(a), x represents the amplitude and P(x)  is the relative occurrence. Thus 
these curves are estimates of the probability density hnction of x. The curves are 
different for different subjects, but they become almost superimposable when they 
are scaled as shown in Fig.10.18@). This scaling may be represented as P { w }  = 
u-'P{x),  where u = PA is the peak of an individual curve in Fig. lO.l8(a). This re- 
sult demonstrates that the probability density fkction in an individual is just a 
rescaled version of a hndamental pdf. Of course, this result itself does not imply 
that the derived amplitude signal for each subject is fractal because statistical self- 
similarity was not tested for individual signals. 

A fractional Brownian motion model has been applied to the analysis of nu- 
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FIGURE 10.18. (a) Histograms of the frequency of Occurrence of values of a demodulated 
heart rate signal (see text). (a) Original data. (b) After normalizing amplitude and relative occur- 
rence scales, as shown (Ivanov et al., 1996. Reprinted with permission from NATURE (383: 
323-327). MacMillan Magazines Ltd). 

cleotide sequences in DNA. Peng et al. (1993) create a binary sequence u[i], from a 
nucleotide sequence by assigning a + 1 to any nucleotide position, i, that contains a 
pyrimidine and a -1 to any position containing a purine. Then a DNA random walk 
signal was defined as 

y[Q is viewed here as a discrete-time FBM signal. Fig. 10.19(a) is an example us- 
ing a rat emrbyonic skeletal myosine-heavy-chain gene (GenBank name: 
RATMHCG). The result of analysis of this signal using detrended fluctuation analy- 
sis is shown in Fig. 10.19(b). The regression line has a slope of 0.63, indicating the 
presence of long-term correlations in the nucleotide sequence that extend over a 3- 
decade range (i.e., about one-tenth of the sequence length). 

The concept of self-similarity has been applied to prediction of the distribution 
and abundance of species in an ecosystem. Harte et al. (1999) postulated that the 
fraction of species in an area A that are also found in one-half of that area is in- 
dependent of A. Specifically, if this area-independent fraction is a, after repeated 
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FIGURE 10.10. (a) Random walk generated by substituting +1 and -1 for pyramidine and 
purine bases in a DNA sequence and then cumulatively summing the resulting signal. (b) De- 
trended fluctuation analysis of the signal in (a) (Peng et al., 1993. Copyright 1993 by the Amer- 
ican Physical Society). 

bisection of A the number of species in the i-th bisection would be S, = aiSo. Since 
the area, A,, scales as 2-i, one may write that Si = cA;. This latter expression is a 
power-law relation known in ecology as the species-area relationship (SAR). The 
authors then derive the probability, PAn), that a species in area Ai contains exactly 
n individuals. Although unable to find a closed analytical solution, they derived 
the relationship PAn) = 2(1 - u)Pi+,(n) + (1 - (2[1 - u])ZZ;'IPi+,(n - k)P,,,(k). 
Their interest focuses on Po(n), the distribution of species in the entire ecosystem. 
Numerical solutions to this equation were derived for various values of u and m, 
where the total number of individuals in the ecosystem is So = ern and some of 
these solutions for a = 0.484 are shown in Fig. 10.20. For large n one expects 
Po@) to approach zero because the total population is limited to u - ~ .  Over sever- 
al In units, however, the function In[Po(n)] exhibits a linear variation with In[n] 
that is indepedent of the initial population size, implying self-similarity in the dis- 
tribution of species. This theory is supported by experimental observations. For 
example, the fraction of species common to two spatially-separated areas has been 
observed to vary as k2*, where d is the distance between the areas and b is a con- 
stant. It may be that some method such as relative dispersion could be applied suc- 
cessfully to estimating the possible fractal nature of species distributions from ac- 
tual data. 

There are numerous other examples of applying fractal and other scaling law 
models to biomedical data. Many of these are in the field of neuroscience. 
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FIGURE 10.20. log-log plot of predicted relative fraction of total species, Po, having n individ- 
uals in an eocsystem having a total of 0.484m individuals (Hatte et at., 1999. Reprinted with 
permission from SCIENCE (284: 334-335). Copyright 1999, American Association for the Ad- 
vancement of Science). 

10.10 SUMMARY 

This chapter has introduced the concepts of scaling and long-term memory. Many 
biomedical signals exhibit autocorrelation that decays more slowly with increasing 
lag than predicted by low-order ARMA models. Other types of models for such sig- 
nals are often based on the concepts of scaling properties and self-similarity. These 
properties of geometrical objects were studied both because the concepts may be 
applied to the geometry of biological structures and because the graphical record of 
a one-dimensional signal may be characterized as a planar geometrical object. A 
similarity transform is a transformation of an object that may include linear scaling, 
translation, and rotation. An object is geometrically self-similar if it can be recreat- 
ed through the union of similarity transformations applied to the object. The simi- 
larity dimension of a self-similar object is a measure of the relationship between the 
number of self-similar pieces comprising the object and the measurement precision, 
as the precision increases. Self-similar objects having non-integer similarity dimen- 
sion are called fractal objects. Another measure of dimension is the box-counting 
dimension. This measure expresses the relationship between the number of “boxes” 
needed to contain the object and the size of the boxes. The strict definition of a frac- 
tal object is based on its Hausdorf-Besicovitch dimension, but it is common to as- 
sume that an object is fractal if any measure of its dimension is non-integer; howev- 
er, it is more practically useful to utilize the dimension as a measure of the 
space-filling ability of the object and as an indication of possible self-similar scal- 
ing over some range of sizes, 

One may apply the concept of geometrical dimension to a graph of a time func- 
tion and interpret the dimension as a measure of roughness of the graph. Since time 
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and amplitude have different units and may be scaled in different proportions, their 
graphs may be self-afine rather than self-similar. 

A more general characterization for time functions is the concept of statistical 
self-similarity. A random process at) is statistically self-similar if it is statistically 
indistinguishable from the scaled process b”X(bt). Brownian motion, which is a 
nonstationary process derived as the summation of uncorrelated random perturba- 
tions, is statistically self-similar. Fractional Brownian motion (FBM) is an extension 
of Brownian motion that may be considered as a fractional integral of zero-mean, 
independent, Gaussian increments. FBM is characterized by a scaling exponent, H, 
known as the Hurst coefficient. The increments of FBM, known as fractional Gauss- 
ian noise (FGN), are statistically self-similar with parameter H. The character of 
FBM depends on H. For H <  0.5, FBM is very irregular. For H >  0.5, FBM becomes 
progressively smoother, and when H = 0.5, FBM becomes ordinary Brownian mo- 
tion. FBM and FGN both possess autocorrelation finctions that decay relatively 
slowly with increasing lag. Both have a llftype of spectrum. The geometrical di- 
mension of a record of FGN is related to H, specifically D = 2 - H. 

The methods for analyzing statistical self-similarity in a signal generally are 
based on scaling relationships of statistical measures such as the standard devia- 
tion, SD. Rescaled range analysis evaluates the ratio of the range of summed FGN 
over a time interval to its standard deviation. The log of this ratio is expected to 
increase in proportion to log of the interval length, with proportionality constant 
H. Relative dispersion, RD, is used to analyze FGN. RD is the ratio of SD to the 
mean, where both are evaluated over intervals of length m. log[RD(m)] is expect- 
ed to increase linearly with log[m], with the slope of this line being H - 1. A 
method for analysis of FBM is detrended fluctuation analysis. This method evalu- 
ates the standard deviation of detrended segments of FBM as a function of the 
segment length, m. On a log-log plot, one anticipates a linear relationship having 
a slope of H. 

There are two acceptable approaches to generating synthetic fractal signals hav- 
ing a specified value of H. The Spectral Synthesis Method (SSM) generates a Fouri- 
er series whose spectral amplitudes follow the spectral properties of FBM-that is, 
l/W, /3 = 2H + 1. This method requires one to generate a much longer signal than 
desired, from which a segment is extracted that avoids both ends of the long se- 
quence. A method due to Lundahl et al., and the fGp method both attempt to match 
the autocorrelation function of FGN. Currently the fGp method is probably the most 
precise method for generating a synthetic fractal signal, 

Fractional differencing models also exhibit long-term correlations and are close- 
ly related to the fractional integration interpretation of FBM. They are based on bi- 
nomial expansions of the function (1 - z-’)~. These models have infinite impulse 
responses and the methods for estimating d from experimental data are not well-de- 
veloped. 

The concepts presented in this chapter are finding increasing utility in biomed- 
ical applications. Numerous examples have appeared in the cardiovascular and neu- 
roscience fields and others are appearing in such diverse areas as DNA sequencing, 
biochemical properties of membranes, and ecology, 
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EXERCISES 

10.1 Calculate the box counting dimension for the middle-thirds Cantor set. 
10.2 The even-fifths Cantor set is constructed by iterating as for the middle-thirds 
Cantor set, but at each iteration each line segment is divided into five sections of 
equal length and the second and fourth segments are removed. Determine the simi- 
larity dimension of the even-fifths Cantor set. 
10.3 Calculate the box-counting dimension for the even-fifths Cantor set. Is it the 
same as the similarity dimension? 
10.4 The Koch snowflake is constructed similarly to the Koch curve, but the start- 
ing object is an equilateral triangle. Sketch the results of the first three steps in the 
iteration process and determine the similarity dimension of the Koch snowflake. 
10.5 The Menger sponge is constructed as follows: Given a solid cube, subdivide 
each face of the cube into nine equal squares. For three perpendicular faces of the 
original cube, cut a square hole straight through the cube by cutting along the edges 
of the small square at the center of the face. Next, for each of the eight remaining 
squares on all of the faces, divide the square into nine equal, smaller squares. Again, 
cut a hole straight through the original cube at the location of every central small 
square. The object that results from repeating this process indefinitely is known as 
the Menger sponge. Sketch the first two iterations of this procedure and determine 
the similarity dimension of the Menger sponge. 
10.6 Consider continuous-time, ordinary Brownian motion (OBM) as the integral 
of a white-noise process. That is, OBM is the output of a system with frequency re- 
sponse H(a) = (lljsl) when its input is a sample function of white noise. Using this 
model of OBM, calculate its theoretical power spectrum. Is it a IJspectrum? Also 
calculate its theoretical autocorrelation function, rOBM(q, T ~ ) .  

10.7 Consider discrete-time ordinary Brownian motion as the summation of dis- 
crete white noise. That is, DT OBM is the output of the system H(z) = 1/(1 - z-') 
when its input is a sample function of DT white noise. Calculate its theoretical pow- 
er spectrum. Under what conditions is this spectrum of the l/f type? Also calculate 
its theoretical autocorrelation function, roedm I ,  m2J. 
10.8 Construction of the Peano curve begins by replacing a line segment with nine 
line segments as shown in Fig. 10.21. Each new line segment is then replaced in a 
similar fashion. Sketch the object resulting from step two of this process and deter- 
mine the similarity dimension of the Peano curve. 
10.9 Generate 1024 points of Gaussian white noise and estimate H. Repeat this 
process 10 times and calculate the mean and standard deviation of the estimates. 
Based on these results, if you analyzed a data set comprising 1024 points and found 
an estimate H = 0.55, with what degree of confidence could you conclude that the 
data differ from Gaussian white noise? 
10.10 Use the RD method to analyze the heart rate data in hrs .mat. Over what 
range of m do the relative dispersion values scale according to expectations? Based 
on your estimate of H, are these data distinguishable from Gaussian white noise? 
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FIGURE 10.21. The first step (b) in the generation of the Peano curve from an initial straight 
line segment (a). 

Calculate the autocorrelation function for these data. What feature do you observe 
in this function in addition to the hyperbolic decay that is characterisic of FGN? 
10.11 Use the RD method to analyze the data file sway.mat that records the 
center of pressure in the antero-posterior direction of a human subject standing on a 
postural test system. Do the relative dispersion values scale according to expecta- 
tions? Is there any range of m for which the expected scaling relationship is ob- 
served? 
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NONLINEAR MODELS OF SIGNALS 

11.1 INTRODUCTORY EXERCISE 

Figure 11.1 is a model of a biochemical reaction in which an allosteric enzyme, E, 
reacts with a substrate, S, to produce a product, P. Additionally the product activates 
the enzyme as indicated by the upper arrow. Finally, P is recycled into S by a second 
reaction. Vis the rate of inflow, or injection rate, of Sand k8 is the effective rate con- 
stant for removal of product P. This simple system has been used as a model for gly- 
colysis in yeast and muscle (Goldbeter and Moran, 1988). This model is implement- 
ed in the Simulink file enzymel .m which calculates the normalized 
concentrations of S and P, symbolized as a and y, respectively. 

Figure 1 1.2 presents a 4000-second record of a (i.e., 1000 points sampled at 0.25 
Hz) from enzymel. Note that this signal is cyclic but not truly periodic. Is this be- 
havior typical or has the simulation not reached a steady state? We may answer this 
question by running the simulation for a longer time. (Change the maximum time in 
the ‘SimulatiodParameters’ menu. Note that the storage arrays in the ‘To Work- 
space’ blocks save only the last 1000 points of the simulation run.) If the simulation 
is run for a very long time (e.g., 16,000 s), the last 4000 points of the time series for 
a look qualitatively like the data in Fig. 1 1.2. This signal has the interesting proper- 
ty that it “looks” to be deterministic but it never reaches a steady state. On the other 
hand, a random process model does not seem appropriate for these data since the 
simulation model contains no random process. To gain more insight into the system 
generating this signal, the simulation may be tested with known inputs. 

The Simulink model enzyme2 .m is a duplicate of enzymel .m which per- 
mits specifying various combinations of steps and sinusoids as the injection rate, V. 
In this model Ycomprises a constant level, VO, plus a sine wave with amplitude VA. 
The frequency of the sine wave can be specified via the ‘Sine Generator’ block la- 
belled “Substrate rate, AC”. More information and instructions can be accessed by 
double-clicking the “Information” and “Instructions” blocks in the s imul ink 
block diagram. 

First we test the system for homogeneity. Let VO = 0 and set the frequency of the 
sine wave to be 0.0259-that is, its period is 242.3 seconds. Set VA to 1 .O. After an 

435 
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FIGURE 11.1. Model of enzyme reaction which is activated by its reaction product. S = sub- 
strate, € = enzyme, P = product, V = rate of injection of substrate. k. = effective rate of disap- 
pearance of P. (From Goldbeter and Moran, 1988. Reprinted with permission from EURO- 
PEAN BIOPHYSICS JOURNAL. Copyright 1988, Springer Verlag.) See the Simulink model 
enzyme2 .m for additional information. 

initial transient, the output LT stabilizes as an ocillation with peak-to-peak amplitude 
approximately 80 (Fig. 11.3a). Now repeat for VA = 1.5. The output amplitude in 
this case is approximately 120 (Fig. 11.3b), which seems to satisfy the criterion of 
homogeneity. If the reader repeats this test with VA = 2.0, however, it should be ap- 
parent that this system is not linear. 

Another common test of a system is to observe its responses to step inputs. Fig. 
1 1.4 shows the responses of enzyme2 to step inputs of three different amplitudes. 
When V = 0.04 u(t), the output looks like the response of a first-order (or over- 
damped second-order) lowpass system. On the other hand, an input V = 0.06 u(r) 
yields an output that has almost the same steady-state value as the previous step in- 
put, but the initial transient portion of the response is faster than before. Finally, in 
response to V = 0.08 u(f) the output stabilizes as an oscillation. It is clear that this 
system is not linear. 

When the injection rate, V, comprises a nonzero step and a sine wave of nonzero 
amplitude, the system exhibits the property that the very nature of the output de- 
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FIGURE 11.2. "Steady-state" normalized substrate concentration, a, for the model of Fig. 
11 -1, as implemented in the Sirnulink model enzyme1 . m. 
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time (sec) time (sec) 

FIQURE 11.3. Steady-state responses of the enzyme reaction model (enzyme2 .m) to a sinu- 
soidal rate of delivery of substrate. Period of sinusoid is 242.3 seconds. Amplitude equals 1 .O 
(a) and 1.5 @). 

pends on interactions between the components of V. In Fig. 11.5 are shown the 
steady-state responses of a when the size of the step component is 0.607 and K4 = 
0,0.607, and 0.20. The frequency of the sine component is 0.0250 rad/sec (period 
equals 25 1.3 s). As seen above, the system oscillates in response to a nonzero step 
by itself. When the input is a large sinusoidal input added to the original step, the 
system oscillates at the driving frequency. Finally, for an intermediate amplitude of 
the sinusoidal input component, the system exhibits irregular cyclic behavior that is 
not periodic (Fig. 1 1.5, bottom). 

The responses discussed above are commonly observed behaviors (in a qualita- 
tive sense) of nonlinear systems with internal feedback. The bottom response of Fig. 
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FIGURE 11.4. Responses of the enzyme reaction model to three step inputs of different am- 
plitudes. 
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FIGURE 11.5. Steady-state responses of the enzyme reaction model to substrate input rate 
comprising (top) a constant level (0.607), and a constant level (0.607) plus sinusoidal inputs 
having periods of 242.3 sec (middle) or 251.3 sec (bottom). 

1 1.5 is a chaotic behavior which will be discussed more fully shortly. We were able 
to obtain insights about this nonlinear system because we could manipulate the in- 
put. An extremely important question in biomedical applications is whether one can 
draw similar conclusions if one only can observe the spontaneous output signal. The 
remainder of this chapter will define and discuss signals generated by nonlinear 
systems and consider this important question. 

11.2 NONLINEAR SYSTEMS AND SIGNALS: BASIC CONCEPTS 

A nonlinear system 
for a linear system 
nonlinear signal is 

is, by definition, any system that does not satisfy the criteria 
(Le., additive and homogeneous). For the present purposes, a 
a signal that could not have been produced by a single-input, 

single-output linear system except by exciting a linear system with an input which 
is a linearly transformed version of the original nonlinear signal. In other words, 
the only way to obtain the nonlinear signal as the output of a linear system is to 
excite the system with an input that is linearly related to the nonlinear signal. 
Nonlinear signals must be produced by nonlinear systems, but under many cir- 
cumstances nonlinear systems produce signals that could be generated by a linear 
system. 

An example is presented in Fig. 11.6, which shows a linear system in series 
with a unity-gain system with hard saturation limits. For small amplitude inputs 
having a mean level of zero, this system appears overall to be linear. Of course, for 
sufficiently large inputs saturation will be reached and the nonlinear nature will be 
obvious. Often biomedical systems exhibit saturation that is not as abrupt as that 



11.2 NONLINEAR SYSTEMS AND SIGNALS BASIC CONCEPTS 439 

FIGURE 11.6. A simple nonlinear system consisting of a linear system in series with a saturat- 
ing linear gain. 

shown in the figure. Rather, the slope of the input-output response decreases pro- 
gressively over a range of the input amplitude. This type of “soft saturation” often 
causes the apparent gain to decrease gradually as the amplitude of the input signal 
increases. 

Because nonlinear signals must originate in nonlinear systems, it is instructive to 
begin by examining some basic properties of common nonlinear systems. Unless 
otherwke specijled, these concepts all refer to the long-term, steady-state behavior 
of the system afer any initial tmnsient behavior has dissipated. A fundamental 
characteristic of a nonlinear system is whether it is autonomous or non-au- 
tonomous. An autonomous system is capable of producing a nonzero steady-state 
output signal in the absence of an explicit input signal (perhaps because the genera- 
tor of the apparent input signal is an intrinsic part of the system). For example, the 
system comprising the heart and those aspects of the nervous system responsible for 
autonomic control of the heart could be considered an autonomous system. If a sys- 
tem requires an explicit input signal to produce a nonzero steady-state output, it is 
non-autonomous. The control system for the heart described above could be consid- 
ered non-autonomous if one were studying respiratory sinus arrhythmia, since the 
signals which effect respiratory modulation of heart rate originate outside of this 
control system. Another hndamental measure of a nonlinear system is the number 
of state variables which are necessary to describe its behaviors under all possible 
circumstances. As with linear systems, we will define this number as the order of 
the nonlinear system and equate order with the number of (linear or nonlinear) first- 
order differential equations needed to describe the system. Note that this definition 
implies that a static nonlinearity, such as that in the righthand block of Fig. 1 1.6, has 
an order of zero. In fact the concept of order is not as useful for nonlinear systems 
as for linear systems because the qualitative behavior can be extremely sensitive to 
small changes in system parameters. (The only analogous situation for a linear sys- 
tem occurs when a feedback system switches from producing an exponentially 
damped oscillation that eventually decays to zero to producing a sustained oscilla- 
tion at some critical value of feedback gain.) Because of the aforementioned sensi- 
tivity, the apparent order of a nonlinear system can vary with the values of its para- 
meters. Consequently it is often the custom to apply measures of the complexity of 
the system output instead of measures of the complexity of its differential-equation 
structure (or difference-equation structure for discrete-time systems). Before ex- 
panding on these issues we should explore some simple examples of nonlinear sys- 
tems. 



440 NONUNEAR MODELS OF SIGNALS 

Example 11.1 The model enzyme2 . m is an example of a non-autonomous non- 
linear system because it produces only a zero steady-state output when it has no in- 
put, even when its initial conditions are nonzero. It has already been shown that the 
qualitative output depends on both the type and size of the input, V. If one consid- 
ered the source of substrate, V, to be part of the system, then this system would be 
an autonomous system. 
Example 11.2 The van der Pol system A famous autonomous nonlinear system 
is the van der Pol oscillator, described by the equation 

i + p(2 - 1 ) i  + x = 0, 

This system is similar to a linear second-order system with nonlinear damping. That 
is, for positive p the damping term is positive if i.xl> 1 but it is negative if bl < 1. In 
other words, if x becomes sufficiently small, then damping becomes negative and 
the amplitude of x subsequently increases. 

The van der Pol oscillator can be written as two coupled first-order equations: 

x = y ,  

2=--p(x2-- 1)y-x.  

This system is implemented in the Simulink model vdp .m that is distributed 
with MATLAB. It is instructive to run this simulation for different values of p and 
observe the behavior of x after any initial transient effects have disappeared. A con- 
venient way to test whether the output is truly periodic is to construct a phase plot of 
1 (Le., y )  versus x for the steady-state behavior, as shown in Fig. 1 1.7. Each cycle ex- 
actly reproduces every other cycle on this graph, demonstrating that the behavior is 
periodic. A periodic oscillation is also called a limit cycle. 

A fued point of a CT system is any state of the CT system for which all of its 
derivatives are zero. Thus, when a system is at a fixed point, it remains there in 
the absence of any disturbances and all of its variables assume constant values. An 
n-th order system may be represented by n first-order differential equations in the 
form 

(11.1) 

or more compactly, as 2 =A&, t), where the underscores indicate vector quantities. 
The criterion for a fixed point, G, is that 

& =A&, t )  = 0. (11.2) 



11.2 NONUNEAR SYSTEMS AND SIGNALS: BASIC CONCEPTS 441 

R 
x o  

9 

X 

FIQURE 11.7. Steady-state responses of the van der Pol oscillator for p = 1. (a) x and ddd? 
vs. time; @) phase plot of &/& vs. x. Note the closed path (limit cycle) characteristic of a peri- 
odic signal. 

A system may have more than one fixed point. The fixed point of the van der Pol 
system is easy to calculate by setting its two equations equal to zero. Thus 

The solution of these equations is (x, y )  = (0,O). (In general, nonlinear systems have 
other fixed points besides the origin.) 

=A&) is also known as an itemted map. An iterat- 
ed map has a fixed point at I = a;, when & =A+). For example, the fixed points of 
the logistic map, 

A DT system of the form 

depend on the value of p. When 0 < p < 1, xp = 0, but when p = 1.25, the equation xp  
= 1 .25xp( 1 -xp) has two solutions, xp = 0 or 0.20, and the system has two fixed points. 
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By definition, if a system state equals a fixed point of the system, then the sys- 
tem will remain in that state forever. Fixed points, however, can influence system 
dynamics in other ways. The most important factor is whether the fixed point at- 
tracts the system variables or repels them. For an iterated map, a fixed point 5 is 
attracting if there exists a small neighborhood of diameter E such that for every 
point for which Ik - 511 < E, then lim,,f’”(z) = 4. Here the double vertical 
bars indicate some measure of distance and the superscript (n)  indicates the n-th 
iteration of the function$ For an attracting fixed point, 5, the set of all points for 
which lirn,,+,~)(&) = 4, is known as the basin of attraction of the fixed point. 
Similarly, the fixed point is repelling if for some E and for every point such that 

A simple criterion often can reveal whether a fixed point of a one-dimensional it- 
erated map is attracting or repelling. Within the € neighborhood of xp we may con- 
sider thatf(x) -f(x,,) and that x,,,~ * x,, +f’(x,)(x, -xp).  Clearly, to have x,,, + xp 
(i.e., xp is an attracting fixed point), it is necessary that r ( x p ) [  < 1. Furthermore, for 
lf’(xp)l > 1, the fixed point is repelling. If r(xp)l  = 1, one cannot directly conclude 
the nature of the fixed point. 

Consider, for example, the logistic map with p = 1.25. Sincef’(x) = p - 2 p ,  
then If‘(O)l= 1.25, lf’(0.20)j = 0.75 and we conclude that the fixed point at zero is 
repelling and that at xp = 1.25 is attracting. It is important to note that these proper- 
ties are defined in a neighborhood of the fixed point; therefore, it is quite possible 
(indeed usual) that there will exist some points, x, for which their iterations do not 
converge to an attracting fixed point. In the present example, x = 0 is one such point 
because the iteration of zero is always zero. In n-dimensional iterated systems, with 
n > 1, there may be several attracting and several repelling fixed points. Each at- 
tracting fixed point possesses its own basin of attraction and these basins do not 
overlap. The basins of attraction, however, may be interdigitated so extensively that 
the boundaries between basins are fractal. Furthermore, in such systems fixed 
points may be attracting when approached from one direction and repelling when 
approached from another direction. This topic will be continued later when charac- 
teristic multipliers and Lyapunov exponents are discussed. 

The basic definitions of attracting and repelling fixed points for CT systems par- 
allel those for DT systems except that one must address the forward solution of the 
differential equation. For the system f =f(&) in the vicinity of an equilibrium point, 
5, letting & = z - 5, one may approximate f(5 + &) - f(5) + Dxf(&lrap &, 
where D&) is a matrix of partial derivatives known as the Jacobian matrix, 

(11.3) 
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Since (ddt)(+ + &) = 0 + &, the linearized equation of the system about the 
fixed point is 

hx = D&J &. (11.4) 

For a first-order system, DJ(xp) = a, where a is a constant. Thus the solution to 
Eq. (1 1.4) is &(t) = c&‘, where c is a constant. Clearly, if x is to converge to x,,, then 
&(t) must converge to zero, implying that a < 0. The extension of this topic to sys- 
tems of dimension greater than one will be encountered later during the discussion 
of Lyapunov exponents. 

Example 11.3 The Rossler system The van der Pol oscillator has a limited 
repertoire of behaviors. The Rossler system is a third-order system and its qualita- 
tive behavior changes remarkably as its parameter values are varied. It is described 
by the following equations: 

x z - y - 2 ;  

p = x  + uy; 

i = b + L(X - c). 

Three-dimensional phase plots for this system (after initial transients have dissi- 
pated) are presented in Fig. 1 1.8 for four sets of parameters: a = b = 0.2, and c = 2.5, 
3.5,4.0, and 5.0. As the value of c is increased, the threshold for positive feedback 
in the third equation is raised. For c = 2.5 the system produces a pure oscillation. 
When c is increased to 3.5, the output is still a pure oscillation but the period of the 
oscillation has doubled. (This change is referred to as a period-doubling bfurca- 
tion.) The greater complexity of the oscillation is evident from the figure. But this 
increased complexity is merely the beginning, for when c = 4.0, there is another pe- 
riod doubling and when c = 5.0, the trajectory of the system in three-dimensional 
phase space wanders throughout a confined subspace but never crosses or dupli- 
cates itself! The signals from which these graphs were created are in the file ross- 
data. m and are named x2 5, x3 5, x4, and x5, respectively (with a similar naming 
convention for they and z variables). By examining x5 (the x vs. t variable for c = 
5.0) one may notice that the cyclic variations all seem to be different. One might 
rush to judgement and conclude that this behavior represents an oscillator with 
added random noise, or that it originates from a system that has not yet reached a 
steady state of behavior, but both conclusions would be incorrect. There is no noise 
in this simulation and the “steady state” is a state of continual variations, referred to 
as chaos. No noise-free linear system can produce this type of irregular behavior. 
Can biomedical systems behave thusly? There is strong evidence that some can, but 
since it is not possible to observe real behavior that has no noise, it is difficult to 
prove absolutely that a real signal originates from a nonlinear system behaving in a 
manner similar to this. We will examine chaotic behavior and its analysis later in 
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FIGURE 11.8. 3D phase plots for steady-state responses of the Rossler system. In all cases a 
= b = 0.2. The parameter c has the following values: (a) 2.5, (b) 3.5, (c) 4.0, (d) 5.0. 

this chapter. To appreciate this phenomenon, the reader should use the Sirnulink 
model rossler .rn and reproduce the graphs of Fig. 11.8, then examine the behav- 
iors for intermediate values of c. 
&ample 11.4 A DT nonlinear system As a final example we will consider the 
discrete-time system named the “logistic map,” described by the difference equation 

(Although this system will be considered to be a discrete-time system, the index “n” 
represents an iteration of the equation.) This system has only one parameter, p, but 
the behavior of x,, as n is iterated changes dramatically with p. Consider the case p 
= 2.0 shown in Fig. I1.9a. The system has an initial condition xo equal to 0.10. A 
simple way to assess the behavior of the system is to plot the logistic equation x,+, = 
2.0x,(1 - x,) and the line x,+~ = x, on the same axes. Starting from x, = xo = 0.10, 
one determines the value of x, from the graph of the logistic equation, as shown by 
the vertical line from 0.10 on the abscissa. Then moving horizontally to the identity 
line places one at the abscissa point x,, = xl. From there move to the logistic equation 
curve to find x,, then repeat this process for increasing values of “n.” As the figure 
indicates, eventually x, settles on the value 0.50. That is, for this value of p the 
steady-state behavior is a constant that is afiedpoinr of the system. 

Figure 11.9(b) shows the steady-state behavior of the logistic map for p = 3.3. x,, 
exhibits a period-2 oscillation during which it repeatedly cycles between the values 
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FIGURE 11.9. Examples of nonlinear discrete-time (iterated) systems. (a) Evolution of the out- 
put, @], of the logistic map for p = 2.0. Solid diagonal line: identity line. Dashed cwve: plot of 
logistic equation. Wid stair-step line: evolution of Nn], starting at x[O] = 0.10. Vertical seg- 
ments of stair-step end at logistic equation and Indicate the next value-that is, x[n + 1-f 
the signal. Horizontal segments move to the identity line and indicate where to place the value 
of x[n + 11 on the dn] axis In order to Initiate the next iteration. After only a few iterations the 
system in this example convergw to a constant steady-state value of 0.500. This value repre- 
sents a ffxedpdnt of the system and it is found where the logistic equation crosses the identi- 
ty line. @) steady-state x[n] vs. n for the logistic equation for the cases p = 3.3 (top) and 3.9 
(bottom). (c) M a p  of the evolution of x(n] for p = 3.3 and X[O] = 0.10. After almost converging to 
the fixed point mar 0.7, the system move8 away from this point until a period-2 cycle devel- 
ops, wlth 4/11 cycling approximately betweem 0.50 and 0.80. (d) Map of the evolution of x[n] for 
p = 3.9 and 401 = 0.20. This value of p with this initial condition leads to chaotic behavior. (e) 
Bifurcation diagram for the logistic map for p ranging from 2.5 to 4.0. The ordinate graphs all 
of the values aseumed by Hn] in the steady state for each value of p on the abscissa. 
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0.48 and 0.83. On the graph of the logistic equation and the identity line (Fig. 1 1.9c), 
this behavior appears as the largest closed rectangle as it is continually retraced. 

A small increase in p from 3.3 to 3.9 transforms x, into a non-fixed, non-oscilla- 
tory behavior that appears similar to random noise (Fig. 11.9(b,d)). Li and Yorke 
(1 975) proved that this behavior never converged to a fixed point or a periodic oscil- 
lation and termed the behavior “chaos.” This behavior is completely deterministic! 

A summary of the effect of p on the behavior of the logistic map is presented in 
the bifurcation diagmm of Fig. 1 1.9(e). For each value of the parameter on the ab- 
scissa, all of the steady-state values assumed by x, are plotted on the ordinate. Thus, 
for p less than approximately 3.0, x, converges to a fixed point whose value 
changes with p. Near 3.0 the behavior transforms into a period-2 oscillation and the 
two values of x, in this 2-cycle are graphed. When p is around 3.45 the graph has 
four values on the ordinate, indicating that the behaviour has transformed from a pe- 
riod-2 to a period-4 oscillation, and around 3.5 it transforms to a period-8 oscilla- 
tion. Each such sudden transformation of the steady-state behavior as a parameter 
value is changed is called a bijkrcation. (In this case these are calledpitchfork bifur- 
cations because of their shape on this diagram.) Furthermore these bifurcations are 
a specific type known as period-doubling bifurcations for the obvious reason that 
the period of the oscillation doubles at the bifurcation. As p continues to increase 
above 3.5, the bifurcations get closer together until, for certain values of the para- 
meter, the behavior becomes aperiodic or chaotic. Note that the extreme complexity 
of this bifurcation diagram is not fully revealed at the scale of Fig. 1 1.9(e). If the re- 
gions of density of this plot were enlarged, one would observe more regions of peri- 
odic and aperiodic behavior. Also note that the sequence of period-n oscillations 
with n = 1,2,4, 8, . . . , are not the only oscillations present. For example, around 
= 3.8282 there is a period-3 oscillation that is the beginning of a sequence of period- 
doubling bifurcations which culminates in chaotic behavior at p 5+: 3.857. These lat- 
ter bifurcations are examples of a different type of period-doubling bifurcation, a 
tangent biJirrcation. Tangent bifurcations have different dynamic properties than 
pitchfork bifurcations. With tangent bifurcations the behavior can almost seem to 
approach a fixed point for a while before it suddenly becomes very irregular again. 
Such behavior is termed intermittency. 

The m-file quadmap. m generates bifurcation diagrams for quadratic maps after 
the user specifies the starting and ending values of p, the number of equally-spaced 
values of p to investigate (100 is a good number), and the initial condition (Avoid xo 
= 0.). The reader may use this m-file to examine the bifurcation map near p = 3.8 
in finer detail. 

11.3 POINCARe SECTIONS AND RETURN MAPS 

The dynamics of a periodic CT system may be represented via an iterated mapping 
that describes the evolution of the system every T seconds, where T is the period of 
the system. This process may be visualized by placing a plane of section in the 
phase space (Fig. 1 1.10(a)) so that its position represents the same point within each 
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(a) (b) 

FIOURE 11.10, (a) A Poincere plane showing the Intersections of the plane and the trajectory 
of a system. @) A first-return map of the x-axis values of the intersection points in (a). 

cycle of one of the variables of the system. This plane is called a Poincad section. 
One then constructs a map from the points at which the trajectory “pierces” the 
plane. Consider the point #1 in Fig. 1 1.1 qa).  After T seconds this point is mapped 
to point #2 by the system dynamics, and point #2 is mapped to point #3, and so on. 
Clearly the properties of this mapping are related intimately to the dynamics of the 
system. For example, if the system behavior is strictly periodic with period T, then 
every point should map back to itself, and the PoincarC section shows a single point. 
In this case, if the iterated mapping function is = F(&), then the single point is 
an equilibrium (i.e., fixed) point of F. If the system has period 2T, then point #2 will 
differ from point #1, but point #3 should be the same as point # I .  Furthermore, if 
there were a point #4, it would have to be the same as point #2. Thus, the Poincark 
section would show two points. Note that the dimension of the Poincark section is 
one less than the dimension of the phase space. 

If the system is not periodic, we may augment it to produce a periodic variable by 
defining 6 = 2n(t/T), where T is some desired sampling interval, and then place the 
Poincd  plane so that it corresponds to 6 = 27r. In effect, we are sampling the sys- 
tem atfs = 1/T and displaying the samples in the phase space. If T has no relation- 
ship to the system properties, however, this procedure may not be insightful. 

If the points of the Poincarh section are labeled as &, then one may graph &+, vs. 
& to generate afirst-return map. Often one will extract one variable xi from the vec- 
tor and construct a two-dimensional graph of xj[i + 1 J vs. xj[il  (Fig. 1 1,10(b)). 

11.4 CHAOS 

Some Preliminary Concepts 

Before defining chaos we must recognize another important property of nonlinear 
systems: for many nonlinear systems their steady-state behavior depends on their 
initial conditions. Unlike stable linear systems, for which the only possible long- 
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term behaviors are (1) to decay to zero, or (2) to converge to a scaled form of the 
steady-state behavior of the input signal, nonlinear systems can exhibit multiple 
possible steady-state behaviors. The behavior that is reached is determined by the 
transient response. If the transient behavior due to initial conditions causes the sys- 
tem to get “close to” a fixed point or a periodic oscillation, and if the fixed point or 
oscillation is stable and “attracts” the system output (as observed in Figs. 11.9(a, 
c)), then that behavior becomes the steady-state response. An example of a system 
having multiple steady-state behaviors is seen in Fig. 11.9(c), where an initial con- 
dition, xo, of 0 or 1 produces a steady-state x, equal to 0 instead of the period-2 
oscillation discussed previously. Obviously the logistic map is only a simple exam- 
ple and other nonlinear systems will exhibit more complex regions of initial condi- 
tions that converge to different steady-state behaviors. In many cases the border be- 
tween two such regions is not an absolute line but is fractal in structure. It is 
important to recognize that this effect of initial conditions represents a general prop- 
erty of nonlinear systems. If, for example, a nonlinear system is subject to a tran- 
sient disturbance that drives it away from the region of initial conditions which con- 
verge to its current steady-state behavior, it may then converge to a diferent steady 
state even though its parameter values do not change. Carnavier et al. (1 993) have 
demonstrated such a situation in a model of the electrochemical behavior of a neu- 
ron (Fig. 1 1.1 1). 

For some nonlinear systems the initial conditions which lead to aperiodic steady- 
state behavior might be closely intermingled with those which lead to other steady- 
state behaviors. Consequently, very small changes in initial conditions can produce 
very large differences in eventual behaviors. But there is another critical facet to 
aperiodic behavior that is related to initial conditions. Ttvo nearby initial conditions 
that both lead to aperiodic steady-state behaviors can (and generally will) result in 

A 

A1 

FIGURE 11.11. Depending on the initial conditions the neuron model of Carnavier et al. (1993) 
converges to different steady-state behaviors for the same parameter values, as shown in A 
and B. On the right is an example of a transition from one steady-state behavior to another in- 
duced by a transient stimulus applied to this model at the arrow. 
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quantitatively different aperiodic behaviors. Such is not true for an attracting peri- 
odic behavior, for example, since all initial conditions leading to this periodic be- 
havior result in the same periodic cycle. In the latter example, even if the two behav- 
iors eventually have different phases, the “distance” between them (in the sense of 
their mean square difference over a cycle, for example), remains constant. But for 
two different aperiodic behaviors from the same system, measures of their “distance 
apart” increase continuously (on average) due to the random-like nature of aperiod- 
ic signals. These latter systems are said to exhibit sensitive dependence on initial 
conditions if they exhibit such a dependence over a nontrivial range of initial condi- 
tions-i.e,, not only at a few isolated points. It is difficult to visualize how two 
bounded behaviors (i.e., signals) can move progressively further apart for all time, 
and in truth the separation distance will plateau at a value comparable to the dis- 
tance between the upper and lower bounds of the signals; That is, sensitive depen- 
dence is a local property of system dynamics. 

hkample 11.5 Sensitive dependence on initial conditions The Rossler system 
of equations was solved (using rossler . m) starting from two nearby initial con- 
ditions, x,, = 0.5OOO and xo = 0.4630, with yo = zo = 0. The time history of x(t)  is 
shown for several seconds for the two different values of xo in Fig. 1 1,12(a). Notice 
that these trajectories initially remain close together, but eventually begin to sepa- 
rate and then assume qualitatively similar aperiodic behaviors that are quantitatively 
dissimilar at most points in time. 
Example 11.6 A biological example It is difficult to “restart” biological sys- 
tems from neighboring initial conditions but one can test for sensitive dependence 
by recognizing that the system state at any time (for an autonomous system) is in- 
deed the initial condition for all of its future behavior. Therefore one attempts to de- 
tect two spontaneous system states that are nearly the same but separated in time, 
then compares the evolution of the system behavior after it leaves those two states. 
An example is shown in Fig. 11.12(b), in which the respiratory rhythm is modelled 
as a planar oscillator. Because the behavior is cyclic, one can readily find similar 
system states from different cycles. In this example the authors selected a group of 
points near the top of the graph and followed their evolutions for one average respi- 
ratory cycle duration, marking their locations at this later time by the isolated sym- 
bols. They showed that atter such a short time the neighboring states were no longer 
neighbors, but were spread out over about 30% of the cycle (Fig. 1 1. I2(b), right). 
After severing the vagus nerves (which provide afferent feedback from the lungs to 
the respiratory neural pattern generator in the brainstem), there was much less dis- 
persion in a comparable time. 

An important limitation to this approach is the question of how many variables 
must be measured to fully describe the behavior of the system. In the present exam- 
ple there might be an important third variable, implying that the system behavior 
should be assessed in three-dimensional space. If so, the projection of two different 
3D behaviors onto a plane might render them more or less similar than they are. 
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FIQURE 11.12 (a) The divergence of two trajectories of the variable z(t) from the Rossler sys- 
tem (a = b = 0.2, c = 5) with two nearby initial conditions, z(0) (0.500 and 0.463). Note the sub- 
stantial differences in the responses of z(t) due to the slight difference in initial conditions. (b) 
Divergence of nearby trajectories in the phase plot of breathing of an anesthetized rat. Airflow 
is plotted versus lung volume. Several points that are close to one another (but from different 
breaths) near the top of the graph were chosen and appear as a clump of points in the right 
graph. Then each was followed forward in time for the same amount of time (one average 
breath duration) and their final positions marked. Note that this initially close group now is 
spread throughout about 30% of the phase plot. From Sammon et al. (1Q9l). 

Defining Chaos 

In nonlinear dynamics it is customary to consider any regularly repeating behavior 
(even a constant-valued signal, which is seen to be repeating the constant value) to be 
periodic. Given this definition of periodic behavior, an autonomous system is chaot- 
ic if, for a fixed set of parameter values: (1) it exhibits steady-state aperiodic behav- 
ior for many initial conditions; (2) it displays sensitive dependence on initial condi- 
tions; and ( 3 )  these behaviors do not depend on inputs from any random process. For 
our purposes we may assume that a system that exhibits sensitive dependence on ini- 
tial conditions will also display aperiodic steady-state behavior for some initial con- 
ditions. (Some authors require only sensitive dependence on initial conditions as the 
criterion for chaos, whereas,others require both conditions. In their famous paper Li 
andYorke (1975) demonstrate a connection between the two criteria for iterative dis- 
crete systems.) Formally one should worry about the density of the initial conditions 
in the phase space of the system which lead to aperiodic behavior. Also, initial condi- 
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tions may lead to periodic behavior quickly or only in the limit o f t  + 00, and the ini- 
tial condition is said to be a periodic point or an eventually periodic point, respec- 
tively, Thus a more precise definition is that an autonomous system with no random 
inputs is chaotic if there exists a sufficiently dense set of initial conditions spread 
throughout a nontrivial subset of the phase space that are not periodic or eventually 
periodic, and the system exhibits sensitive dependence on initial conditions. 

There is one condition for sensitive dependence on initial conditions that is nec- 
essary and sufficient: the system has a positive Lyapunov exponent (defined and 
discussed later in this chapter). Lyapunov exponents measure the average rate of di- 
vergence of behaviors associated with nearby initial conditions, and in practice the 
demonstration of a positive Lyapunov exponent for a system having a phase space 
of at least three dimensions is considered proof of potential chaotic behavior of the 
system. 

It is occasionally possible to apply the preceding definitions to systems describ- 
able by exact differential or difference equations and to confirm that the system meets 
the criteria for the existence of chaotic behavior. (Let it be stressed again that a po- 
tentially chaotic system might not exhibit chaotic behavior during an arbitrary obser- 
vation, depending on the associated initial condition.) Our concern is with signal pro- 
cessing, and we shall define a chaotic signal as a signal produced by an autonomous 
chaotic system in response to an initial condition that leads to aperiodic behavior. The 
typical application involves observing a signal from a (putative) nonlinear system 
and attempting to classify it as chaotic or non-chaotic and to determine some quanti- 
tative measure of the “degree” of chaos. Unfortunately these goals are especially dif- 
ficult to accomplish for real data at the present time. Below we discuss some common 
methods and auxiliary tests which, in combination, can increase the likelihood of a 
correct classification and provide an approximate measure of the degree of chaos. 

A simplified visualization of chaotic behavior is possible if one accepts that peri- 
odic behaviors may be mpelling as well as attracting. That is, if the system behavior 
approaches closely enough to a repelling periodic behavior, then it is pushed away 
from this fixed point or limit cycle. An analogy is a ball balanced atop a pyramid. If 
one can achieve such an exact balance, the ball will remain in place indefinitely (in 
the absence of other external forces). But this system state is a repelling one and if the 
balance is not exact or is disturbed even slightly, the ball will always roll away. Some 
authors have suggested that one might visualize chaotic behavior as the result of a 
system having many repelling periodic behaviors (which is a characteristic of many 
chaotic systems); the ultimate system behavior evolves as a wandering that repeated- 
ly is repelled by one or another repelling periodicity. Thus the behavior will never be- 
come periodic but for short periods of time it might assume an appearance similar to 
one of the periodicities which, nwertheless, will finally repel the behavior. 

11.5 MEASURES OF NONLINEAR SIGNALS AND SYSTEMS 

It was demonstrated above that the behavior of nonlinear systems may be altered 
dramatically by small changes in their parameters or in their initial conditions. This 
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dependence of qualitative behavior on parameter values and initial conditions com- 
plicates the assessment of properties of nonlinear systems from observations of 
their output signals. In a practical application one might utilize the signal process- 
ing techniques to be discussed below and conclude that “the signal cannot be proven 
to be nonlinear.” This result could mean that the signal arises from a linear system 
or that it originates from a nonlinear system whose parameter values or most recent 
initial conditions cause its behavior to be indistinguishable from that of a linear sys- 
tem. To proceed further, one would need either more information than that obtained 
from simply observing the signal or more sophisticated methods of signal analysis. 
Such issues are current research topics. 

As a result of the potential sensitivity of nonlinear systems to changes in parame- 
ter values and to differences in initial conditions, any analysis of a signal from such 
a system represents the system at that moment only. Given this caveat one may then 
ask whether there exist measures of signals which will uniquely distinguish nonlin- 
ear signals from linear ones. While such measures do exist in theory, applying them 
to real-world signals has been problematic. First we will present some of these mea- 
sures, then discuss their limitations relative to signals from the laboratory or the 
field. All of these measures are based on evaluating some index of the complexity 
of the signal. All assume that the signal represents a steady-state behavior and are 
not valid when applied to transient responses. 

Dimension 
There are a variety of definitions of the dimension of a signal and we shall utilize a 
basic definition which expresses the space-filling nature of the signal. Assume that 
an autonomous system has P, and only P, internal nodes from which P variables can 
be measured, and that the time history of any variable of the system can be com- 
pletely specified from knowledge of these P variables. When the system is in a 
steady-state behavior, construct a P-dimensional space in which each axis repre- 
sents the instantaneous value of one of the P variables and graph these variables. 
This graph is called a phase plot of the system and the P-dimensional space is 
called its phase space. (See, e.g., Fig. 1 1.8 for phase plots of the three-dimensional 
Rossler system.) In general, some of the P variables might be functions of the re- 
maining variables and exhibit no independent behavior, and therefore the effective 
number of variables required to describe the system might be less than P but that is 
inconsequential to our argument. Follow the system behavior and trace out its phase 
plot for all of the steady-state behavior up to t 4 m. The resulting shape that is 
drawn in P-dimensional space may be simple or very complex. The concept of di- 
mension refers to the spatial dimension of this resulting shape, not to the dimension 
of the space in which it is drawn. For example, a line has one dimension whether it 
is drawn on a two-dimensional plane or in three-dimensional space. The objective 
therefore is to determine the spatial dimension of the phase plot rather than that of 
the phase space. 

Strictly speaking, the phase plot described above exists on another mathematical 
object called the attmctor of the behavior and it is the dimension of the attractor that 



11.5 MEASURES OF NONLINEAR SIGNALS AND SYSTEMS 453 

is required. However, if the system behavior is observed for a sufficiently long time, 
it is almost certain that it will approach arbitrarily close to every point on the attrac- 
tor and the distinction between the phase plot and the attractor becomes unimpor- 
tant. The reader can anticipate one problem in applying the concept of dimension to 
actual data: real data has finite length and one cannot be certain that a phase plot 
based on a finite amount of data actually encompasses the entire attractor. 

Consider a stable autonomous linear system that is not oscillatory. Its steady- 
state output and all of its internal variables must be zero. Therefore, its P-dimen- 
sional phase plot is just a point-the origin. The dimension of this phase plot is the 
dimension of a point-that is, zero. If the linear system produces a sustained oscil- 
lation, the graph is a closed nonintersecting curve in P-space that is retraced on 
every cycle (Fig. 1 1.13). In this case the variables are constrained so that the phase 
plot follows a curved line, which (like all simple lines) has a dimension of one even 
though it exists in P-dimensional space. 

Zero and one are the only possible dimensions for the phase plot of a linear sys- 
tem, with one exception: If the system comprises a linearly combined set of indepen- 
dent oscillators having incomensurate frequencies, then the dimension of the phase 
space equals the number of oscillators. This result is easy to visualize (Fig. 1 1.14). 
Consider a system of two variables which produces a sinusoidal oscillation. Its phase 
space is two-dimensional (a plane) and its phase plot is a circle. Now add another 0s- 

cillator whose two variables represent (1) the distance of the origin of this plane from 
an origin in three-dimensional space and (2) the angle of a line from the origin of the 
plane to the origin of the three-dimensional space. For the second oscillator the dis- 
tance from the origin (Lea, the amplitude of the oscillation) is constant and the angle 
increases linearly with time but retraces itself every cycle. Therefore, the motion of 
the phase plot of the first oscillator (the circle) sweeps out a torus in three-space. This 
torus is the phase plot of a system having two independent oscillators with incom- 
mensurate frequencies. Its dimension is two because it comprises a closed, two-di- 
mensional surface. Similar arguments apply for an increased number of oscillators. 

Consider an autonomous nonlinear system for which the steady-state behavior 
can be a constant, an oscillation, a combination of oscillations, or an aperiodic wan- 

FIQURE 11.13. The two possible steady-state phase plots for a 2-variable linear system: a 
fixed point at the origin, or a periodic cycle. 
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FIGURE 11.14. Top: x[n] vs. n for a signal consisting of a summation of two incommensurate 
sine waves. Bottom: A three-dimensional phase plot of the signal above based on represent- 
ing each sinusoid as a rotating vector. The horizontal plane is a described by polar coordi- 
nates describing the angle of the low-frequency sinusdd and the magnitude of the projection 
of the vector sum of the two sine waves. The vertical axis is the vertical component of this 
same vector sum. Note that the phase plot traces over the surface of a torus, whose structure 
is clearly evident even with only a few thousand data points. 

dering. In the case of a combination of oscillations, the oscillations need not be si- 
nusoidal, so the phase plot of an individual oscillator need not be a circle. In fact it 
can have any closed, non-intersecting shape. When there are two independent oscil- 
lations, one can proceed as we did for the linear oscillators but the resulting surface 
need not be a regular shape like a sphere or ellipsoid. It can, in theory, be any closed 
two-dimensional structure in three-space. The graph of the Rossler system in Fig. 
1 1.8b is an example of the phase plot of a single nonlinear oscillator. 

It is difficult to picture any sort of regular structure for the phase plot of a chaot- 
ic nonlinear system whose variables exhibit aperiodic wandering, but the phase plot 
should be bounded in P-space. The graph of Fig. 11.8(d) shows a phase plot for a 
chaotic system. At this scale it is not apparent that the structure in this graph has 
thickness also. In general, the phase plot of a chaotic system can appear to have a 
simple or complex structure but in fact if one examines the structure closely, it is al- 
ways complex and frequently fractal in structure. The complete phase plot structure 
of a system lies on a geometric structure known as the aftmcfor of the system. (Re- 
member that a nonlinear system may converge to a different steady-state behavior, 
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and therefore to a different attractor, for different initial conditions.) If the attractor 
has a fractal structure, it is called a stmnge attmctor. 

What is the dimension of the phase plot of a chaotic system? The answer is that it 
may be any positive number less than or equal to P, including non-integer values 
(because a fractal structure does not fill up the space in which it resides). The aperi- 
odic wandering of a chaotic system in phase space must be bounded but the steady- 
state behavior cannot cross itself in phase space (otherwise two trajectories would 
land on the same point and merge, implying periodic behavior); therefore, when tra- 
jectories approach and pass one another, they must be separated slightly. Conse- 
quently the phase plot (strictly speaking, the attractor of the phase plot) has many 
thin layers, like a fractal structure. In Chapter 10 it was shown that the spatial di- 
mension of a fractal could be non-integer, so it is intuitive that the dimension of an 
attractor could be non-integer although Fractals in more than two dimensions were 
not considered there. An example of an attractor known to be fractal (from the 
Rossler system) is shown in Fig. 1 1.15. 
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FIQURE 11.15. Cross-sections of the three-dimensional phase plot of the Rossler system for 
a P b P 0.2, c = 5. (a) Each poM repnrsents the data pair (x,y) when the tr4ectory pierces the 
plane z = 0.20. Note the apparent "thickness" of this curve, especially to the right of the graph. 
(b) Magnification of the upper left section of the top graph. Again note the apparent "thick- 
ness" of the curve. It has been shown that these curves are cross-sections of a three-dimen- 
sional fractal structure. 
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The concept of dimension, therefore, provides one means by which nonlinear 
signals might be distinguished from linear signals because attractors of linear sig- 
nals cannot have non-integer dimension. Furthermore, the value of the dimension is 
also an index of the complexity of a signal in the sense that it indicates the complex- 
ity of the attractor of the phase plot of the system. On the other hand, one must keep 
in mind that it is not absolutely necessary that the attractor for a chaotic nonlinear 
system be a stmnge attractor with fractal structure; therefore, a non-integer dimen- 
sion is a useful indicator but not a necessary condition for a chaotic system. There 
are also stochastic systems that exhibit non-integer dimension. With these caveats, 
we will develop two common methods of estimating dimension-the box-counting 
(or simply, box) dimension and the correlation dimension. First we discuss another 
theoretical measure of the complexity of the behavior of a system, its Lyapunov ex- 
ponents. 

11.6 CHARACTERISTIC MULTIPLIERS AND LYAPUNOV EXPONENTS 

Characteristic Multipliers 

Characteristic multipliers of nonlinear systems are closely related to eigenvalues of 
linear systems. Consider the n-dimensional DT system = F(&) having a fixed 
point q,. In the vicinity of the fixed point this system may be linearized as 

where D.JQ&+ is the Jacobian matrix evaluated at the fixed point, and & = - 
5. Let M I ,  ml ,  . . . , m, be the eignenvalues of the Jacobian matrix, with correspond- 
ing eigenvectors hl, &, . . . , h,,. The trajectory of the linearized system resulting 
from an initial deviation from the fixed point, &, is 

Assuming the eigenvalues are distinct, the trajectory may be expressed as 

n 

j =  I 
a=+++cc jmjh j .  (11.7) 

Thus the eigenvalues of the Jacobian matrix at the fixed point determine the stabili- 
ty of the fixed point. If lmjl < 1 V’, then the fixed point is attracting, independent of 
the initial orientation of the vector &l. Since the eigenvectors are orthogonal, clear- 
ly one may find that the fixed point is attracting for initial points along some direc- 
tions and repelling for other directions, depending on the magnitudes of the corre- 
sponding eigenvalues. If the DT system is a Poincark section of the phase space of a 
CT system and the fixed point represents a periodic behavior of the CT system, then 
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the eigenvalues, mj, j = I ,  . . , , n, are known as the chamcteristic multipliers of the 
periodic behavior. 

=f(&, t), that has an equilibrium point (i,e., a 
fixed point) at some 5, we may consider linearizing this system in the neighbor- 
hood of the equilibrium point. Thus, with J(&) = DJ(& t )  being the Jacobian matrix 
of the CT system, the linearized system is 

Turning now to a CT system, 

h = J(&>&. (1 1.8) 

The response of the linearized system to an initial displacement from the equilibri- 
um point, &,, is 

Mt) = eJlst)'& = @(t, a$&, (11.9) 

where @(t, a;p> = e*N is the state transition matrix of the linearized system. If I,, I,, 
. . . , In are the eigenvalues of J(&) and &, . . . , are the corresponding eigenvec- 
tors, the above solution may be expressed as 

(11.10) 

An equilibrium point may be considered a periodic solution and we may sample 
the system at some interval Tand generate a Poincard map having a fixed point cor- 
responding to 5 and a set of characteristic multipliers, { m i } .  The trajectory result- 
ing from the displacement, &,, will "pass through" the Poincarb section every T 
seconds and its value at these times will be determined by the state transition matrix 
evaluated at t = T. Therefore, 

Comparing Eq. (1  1.1 1) with Eq. (1 1.6), we conclude that the eigenvalues of the 
state transition matrix of the linearized CT system must equal the eigenvalues of the 
Jacobian of the iterated mapping that describes the Poincar6 map, Since the eigen- 
values of a(?, 5) are 

t i ( t )  = $if, i = 1, . I , , n, (11.12) 

then 

mi = $iT. (11.13) 

Note that because {mil < 1 only if Re(1,) < 0, the characteristic multipliers and the 
eigenvalues of the state transition matrix provide equivalent information about the 
stability of the equilibrium point. 
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Lyapunov Exponents 

Lyapunov exponents generalize the concept of eigenvalues and permit assessment 
of the stability of behaviors other than those that are periodic. For a CT system and 
any initial condition, &, the Lyapunov exponents of & are defined as 

(1  1.14) 

where Li(t) is defined by Eq. (1 1.12). From the preceding discussion, the Lyapunov 
exponents at an equilibrium point are 

hi = lim [ lnl&j] = lim [ 1 InlP'i")W'm~'.i'l] = Re{li}. 
I+= I-bffi t 

In other words, in this case the Lyapnuov exponents are simply the real parts of the 
eigenvalues of the linearized system at the equilibrium point. 

Although the definition of the Lyapunov exponents refers to an initial condi- 
tion, the requirement that the limit be evaluated as t + 00 means that all points in 
the basin of attraction of the equilibrium point will have the same Lyapunov ex- 
ponents. 

For DT systems the Lyapunov exponents (or Lyapunov numbers) are defined as 

m, = lim(m,(k)(l'k. (1  1.15) 
k - m  

The Lyapunov exponents provide a direct measure of the sensitivity of the sys- 
tem to initial conditions. For a CT system, if any Lyapunov exponent is greater than 
zero, then an initial difference between two points, &, will grow as time progress- 
es. 

Example 11.7 Eigenvalues and stabiliw of a two-dimensional system The van 
der Pol oscillator may be expressed as a function of a real-valued, positive parame- 
ter E in the form 

d2X dr 
dtz dt 
- +E(xz-  1)- + x = o .  

By letting y = (dx/dt), this equation may be rewritten in standard form as & = 
J(z,  0, where 

As stated previously, the point (x, y) = (0, 0) is the only equilibrium point of this 
system. To evaluate stability at this point, we calculate the Jacobian matrix. Thus 
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l )  J = (  -2Exy-1 8-8x2 , 
0 

and at the equilibrium point 

Consequently, its eigenvalues are 

J=(  -1 E ') * 

For any positive real E, if 14 2 2, then both eigenvalues are greater than zero. If 
14 < 2, then the eigenvalues are complex but their real parts are positive. Therefore 
the origin is a repelling equilibrium point. Note that, by the Poincarb-Bendixon 
Theorem (see Gulick (1992)) a second-order CT system cannot exhibit chaotic be- 
havior. 
Example 11.8 Lyapunov exponents of a three-dimensional system Consider 
the Lorenz system with the specific parameter values given below: 

x = -lox + l0y; 

i = X y  - 3z. 

The Jacobian matrix of this system is 

~ ~ ( 3 0 ; ~  -10 10 i). 
Setting the derivatives equal to zero, one may use an iterative method to identify 

three equilibrium points for this sytem. These points are: 

At each equilibrium point we may calculate the eigenvalues of the Jacobian. For 
example, at the origin, 

-10 10 0 
J(O.O,O)=( 3: -: l). 

Next Page
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ASSESS I NG STAT1 ON AR ITY 
AND REPRODUCIBILITY 

12.1 INTRODUCTION 

Given a novel data signal, the first task in signal processing is to decide to which 
category (i.e., deterministic, stochastic, fractal, or chaotic) it should be assigned. In 
cases in which the objective is merely to filter the signal (e.g., to minimize aliasing), 
then the question of categorization may assume less importance. On the other hand, 
if the properties of the signal are changing with time, then some of the analyses that 
have been discussed can give erroneous results (the exception being the methods for 
studying deterministic signals). If one cannot assume that a signal is deterministic, 
therefore, it is necessary to assess the stationarity of signal properties. Furthermore, 
if one is seeking to draw inferences about the mechanisms that generated a signal, 
then assessing stationarity of signal properties may be a key step. 

Another fbndamental question about a novel signal is whether it carries more in- 
formation than (and therefore can be distinguished from) uncorrelated white noise. 
Once a signal has been determined to be white noise, then the only available infor- 
mation is its variance and its probability density function. The determination that a 
signal may be white noise does not preclude applying other analysis methods, but it 
does mean that one must be circumspect in interpreting those analyses. In such 
cases it is important to evaluate the range of outputs from a particular analysis that 
one might observe if the analysis were applied to sample finctions of true white 
noise. By doing so, one may determine whether the results of analyzing a novel data 
signal fall within this range. A related question is the expected range of outputs 
from an analysis if other data signals having properties similar to the novel data sig- 
nal were analyzed. For example, if one models a signal as an autoregressive process 
and calculates its power spectrum, how much must the spectrum differ from that of 
another signal in order to conclude that the underlying processes are different? 
Equivalently one might ask how precisely one can specify the parameters of a signal 
based on a particular analysis. This chapter will address such questions. 

, 
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Consider, for example, the question of whether the EMG signal recorded 
from the tongue of a human subject differs from white noise. The file 
t ongue-emg . mat provides an EMG signal from the tongue, recorded while the 
subject pressed his tongue against his incisor teeth with the mouth closed. This sig- 
nal is presented in Fig. 12. I(a). Visually the left and right halves of the data record 
appear to have different amplitudes, implying that the properties of the random 
process generating this EMG signal might be changing with time (Lea, nonstation- 
ary). Therefore, the power spectrum of each half was determined using the MATLAB 
hnction psd and an FFT length of 256 points. The resulting spectra are shown in 
Fig. 12.1(b). These spectra appear to confirm the impression that the amplitudes 
differ between the two halves of the data and also suggest that a spectral peak 
around w = 0.577 is absent from the second half of the data. Since the second spec- 
trum is almost uniformly lower than the first, one might feel comfortable conclud- 
ing that the two spectra truly differ. The question of a “missing” spectral peak, how- 
ever, is more perplexing since it is possible that any particular feature of a random 
process might be absent from any one finite-length sample function from that ran- 
dom process. One might conclude that the spectra “probably” are different. 

Assuming that the signal is at least wide-sense stationary over each half of the 
data, one may consider the question of whether the EMG signal from the first half 
of the data (call it emgl) can be differentiated from white noise. The theoretical 
power spectrum of white noise is constant and, for white noise having the same 
mean power as the emgl signal, its spectrum would be that given by the solid line in 
Fig. 12.1(c). On the other hand, because of the finite data length one expects the cal- 
culated power spectrum of a sample hnction of white noise to vary about its theo- 
retical level. Therefore, the fact that the spectrum of emgl differs from the theoreti- 
cal spectrum of noise is not convincing evidence that emgl differs from white noise. 
One might be tempted to utilize the variance of the emgl power spectrum as an esti- 
mate of the variance of the white noise spectrum, but one expects that approximate- 
ly 5% of the power spectrum of emgl would lie outside of+/- 2 standard deviations 
(SD) from the mean. Given (in this example) that the spectrum comprises 128 fre- 
quency samples, one might expect six to seven points to lie more than two SD from 
the mean. Thus the observation that five points lie above the dotted line represent- 
ing the mean + 2 SD (Fig. 12.l(c)) is not very informative. 

The preceding discussions have led to “soft” conclusions because we lack the 
theoretical foundations for assessing stationarity of signals and reproducibility of 
signal processing results. This chapter will develop these foundations. Unless noted 
otherwise, it is assumed that signals are being analyzed in discrete-time form. 

12.2 ASSESSING STATIONARITY OF A RANDOM PROCESS 
FROM A SAMPLE FUNCTION 

In general, it is not possible to test rigorously for strict stationarity; however, if one 
can show that data are Gaussian and wide-sense stationary, then one may conclude 
strict-sense stationarity because of the properties of Gaussian probability density 
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FIGURE 121. (a) EMG signal (sampled at 500 Hz) from the file tongue-emg.mat. (b) Peri- 
odograms of the left (solid) and right (dashed) halves of the tongue EMG signal. (c) Peri- 
odogm of the left half of the tongue EMG signal, the mean level of the periodogram (solid 
line) and two standard deviations above the mean level (dotted line). 
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functions. Therefore, we focus on testing for wide-sense stationarity. There are two 
general approaches, the first being a direct statistical test of the data and the second 
being an assessment of tlrc: reproducibility of analyses of the dt i t~ .  

The runs test is a measure of time invariance of statistical measures of the data. 
To perform this test, one segments the total data points of a record, N, into k non- 
overlapping groups of Nlk consecutive data points. The statistic of interest-for 
example, the mean value-is calculated for each of the k groups. Represent these 
values as pi, 1 S i 5 k. Next pmed, the median value of these pi statistics, is cal- 
culated. Then another sequence, di =pi -Prned, is generated and the number of sign 
changes in this latter sequence, n,, is counted. The number of runs is one plus n,. 
Marmorelis and Marmorelis (1 978) have tabulated the bounds on a stationary 
Gaussian random process for the number of runs for a given value of k, on the the- 
oretical basis that the mean is k/2 + 1 and its variance is k(k - 2)/(4(k - 1)). If at 
a given significance level the number of runs lies outside of these bounds, one 
concludes that the data are not stationary. This test may be applied to both the 
means of the segments and their variances in order to test both first-order and sec- 
ond-order moments of the data. Note, however, that demonstrating time-invariance 
of the mean and the variance does not, by itself, prove wide-sense stationarity. In 
applying the runs tests one needs to select k so that there are enough samples of 
the test statistic to provide a meaningful result (e.g., k 2 10) but also small 
enough that the number of points per segment, N/k, provides a meaningful calcu- 
lation of the variance. 

The second approach to testing for stationarity involves dividing the data record 
into two halves and calculating various measures for each half. If one can determine 
statistical confidence limits for these measures, then it is possible to test the hypoth- 
esis that the measures from the two halves of the data are equal. Means, variances, 
autocovariance functions, and power spectra all may be tested for equality. If no dif- 
ferences are found between the two halves of the data record, one has greater confi- 
dence that the data are wide-sense stationary during the interval of observation. 

Tests for equality of means and variances are standard statistical procedures that 
may be found in most textbooks of statistics. Let the data signal x[n ] ,  0 5 n S 

N - 1, be divided into two equal segments of length N I  and N2 (which either will be 
equal or will differ by one if N is odd). Let Ej, j = 1 , 2 ,  be the sample means of the 
two data segments and $, j = 1, 2,  be their sample variances. The test statistic for 
testing the equality of the means of two independent samples of data is a t statistic 
given by 

where sf2 is a pooled variance estimate given by 

(12.1) 

(12.2)  
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The statistic T has a Student’s t distribution with v = Nl + N2 - 2 degrees of free- 
dom. For a given confidence level, a, (typically 0.05), if T falls within the range 

then one concludes that the two means are not different. Note that this test assumes 
that the two sample variances are equal. Therefore one should compare these vari- 
ances, as described in the next paragraph, both to determine stationarity of the vari- 
ances and to validate the test for equality of the means. 

Equality of variances is testable using a Fisher statistic. This statistic is defined 
as 

(1 2.3) 

where vI = N, - 1, v2 = N2 - 1, and the sample variances are unbiased (i.e., when 
calculating variances, divide by N, - 1 or N2 - 1 instead of NI or N2). The F statistic 
has two indices of freedom, and the confidence interval for F is 

where fractional points of the F distribution for various degrees of freedom are 
available from tables in standard statistics texts. If F lies within this confidence in- 
terval, one concludes that the variances do not differ. 

~~~ ~~~~ ~ ~~ ~~~~ 

Example l2:l Testing for stationarity A runs test was applied to the tongue 
EMG signal of Fig. 12.l(a) by sectioning the data into 10 segments and calculating 
the standard deviation of each segment. Figure 12.2 shows the deviations from the 
median standard deviation for the 10 segments. There is only one sign change and 
thus the number of runs equals two. From the table in Marmorelis and Marmorelis 
(1 978) the 95% confidence interval for the number of runs, R, when k = 10 is 3 5 R 
5 8. Therefore we conclude that the data are not stationary. 

Comparing the means and variances of the first and second halves of this data set 
also indicates a lack of stationarity. The two mean values are -14.09 and -14.14, 
and the T value from Eq. (12.1) is not significant, implying that the means do not 
differ statistically. On the other hand, the two variances are s12 = 4772, s$ = 3 1 14. 
The F statistic of Eq. (12.3) is 2.3486, whereas the 95% confidence limit for F is 
F1023,1023;.02j = 0.8846 5 F 5 F1023,1023;.975 = 1.1305. Since F does not lie within 
this range, one concludes that the variances from the two halves of the data are un- 
equal and the data are not stationary. 
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Segment 

FIQURE 12.2. Runs test applied to the tongue EMG data. Differences of the standard devia- 
tion (SO) of each of 10 data segments from the median SD (SO,, = 3692) are plotted vs. seg- 
ment number. 

12.3 STATISTICAL PROPERTIES OF AUTOCOVARIANCE 
ESTIMATORS 

In order to compare autocovariance functions that have been estimated from two 
halves of the data record, it is necessary to evaluate the bias and variance of the esti- 
mates, The bias is the difference between the expected value of an estimator and the 
true value of the parameter being estimated. For the estimated autocovariance func- 
tion calculated from a finite observation of one sample fbnction, y[n] ,  0 I n 5 
N - 1 of a zero-mean random process, 

It is easy to show that 

(12.4) 

That is, unless N + 00, the expected value of the autocovariance function is not 
equal to the true autocovariance. If we focus on a small range of m such as Iml 5 
0. lN, then this bias error is small. 

The other type of uncertainty in the estimated autocovariance function, its vari- 
ance, is more relevant to the comparison of two estimates when each is based on a 
similar amount of data. By definition (for m > 0), 

var{2y[m]} = 8 { S 3 m ] }  - E2{Sy[m]} 
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By linearity, the expectation operator on the right-hand side of Eq. (12.5) may be 
moved inside the summations. For processes that are fourth-order stationary and 
Gaussian, this expectation may be expressed as (Shiavi, 199 1 ; p. 196) 

E b [ n b [ n  + mly[kb[k + m ] }  = c:[m] + e [ n  - k] + cy[n - k + m]c,,[n - k - m].  (12.6) 

Note that in Eq. (12.6) the indices of the two summations always occur as n - k; 
therefore, the double summation may be written as a single summation, with the re- 
sult that 

Id 1 N-I-m 

Var{2y[m]} = - 1 (1 - ~) (cyZ[r ]  + cy[r + m]cy[r - m]). (12.7) 
r--N+m+l 

For large values of N this equation simplifies to 

Thus lim-, Var{Zy[m]} = 0 if IcJO]l< 03 and lirn,,,+, cy[m] = 0. Recall that these 
two conditions are the criteria for a random process to be autocorrelation ergodic. 

Note that an alternative definition of the autocovariance function that is some- 
times encountered utilizes l/(N - Iml) in front of the summation instead of (l/N). 
This change renders the expected value of the estimated autocovariance function 
equal to the true autocovariance function. This desirable consequence, however, has 
too high a price because the (VN) term in Eq. (12.8) now becomes V ( N -  [mi), and 
the variance of the estimate becomes very large for all but small values of m. There- 
fore, it is usual to employ the biased estimator. 

According to Eq. (1 2.8), in order to calculate the variance of the estimated auto- 
covariance function, it is necessary to know the true autocovariance function. In 
most situations, however, one must utilize the estimated values of the autocovari- 
ance function to calculate an estimate of the variance. For practical purposes one 
may calculate the 95% confidence interval of the autocovariance estimate at each 
lag, m, as the estimate plus or minus 1.96 times the square root of the variance at lag 
m. When comparing two estimated autocovariance functions over a range of lags, it 
is difficult to compare them quantitatively because of the problem of statistically 
comparing multiple correlated estimates having different variances. A practical 
guideline is that the autocovariance estimates are likely to be different at some lag if 
their 95% confidence intervals do not overlap. 

Example 12.2 Comparing autocovariance functions To demonstrate the statis- 
tical testing of autocovariance functions, the tongue EMG signal of Fig. 12. I(a) was 
divided into two non-overlapping 1024-point signals, x ,  [n]  and x2[n]. The biased au- 
tocovariance functions for these two signals were evaluated using the MATLAB 
command xcov and are plotted in Fig. 12.3 along with the 95% confidence inter- 
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vals calculated as tx [m]  f 2dVar{tx[m]. The autocovariance functions are some- 
what different over the first few lags but, in fact, the confidence intervals overlap. 
For greater lags the confidence intervals overlap extensively. Thus there is a sugges- 
tion that these functions differ but the clearest difference is at zero lag-that is, cor- 
responding to the variances, which we have shown to be unequal by a more strin- 
gent statistical test. 

12.4 STATISTICAL PROPERTIES OF THE PERIODOGRAM 

Consider a zero-mean, w.s.s., random process for which one has observed one sam- 
ple function y[n],  0 I n 5 N - 1. Previously we defined the periodogram spectral 
estimator in two equivalent ways: 

(1 2.9) 

where F,[m] is the estimated autocorrelation function of y[n] (which equals t y [ m ]  
since it was assumed that the process has a mean of zero). 

Using the second definition, 

The term inside the parentheses of the preceding equation is the equation for a 
Bartlett window. Using the frequency-domain convolution theorem for the DTFT 
and recalling that the true power spectrum of a random process is the DTFT of its 
autocorrelation function, we may write 
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where we[m], We(eJw) refer to the Bartlett window in the time and frequency do- 
mains, respectively, and P,(ejW) is the true power spectrum of the random process. 
Thus the periodogram is a biased estimator because its expected value does not equal 
the true power spectrum. Note that the Bartlett window in the frequency domain is 

For large N this function approaches an impulse and the expected value of the peri- 
odogram approaches the true power spectrum. 

For comparing two periodograms based on approximately the same amount of 
data, the important statistical measure is the variance of the periodogram. To derive 
this measure we first determine the variance of the periodogram when y[n]  arises 
from a Gaussian white-noise process having variance $. This periodogram is 

The next step is to evaluate E{iy(dwl)iy(eJq)}. From Eq. (12.1 I )  it is apparent 
that this expectation will involve the product of four terms involving y[n] .  Following 
Hayes (1996), this term may be written as 

~ C v ~ ~ l Y * [ ~ Y [ ~ l Y * ~ ~ l l  = E{Y[klY*[Q lECv[mIy*[nl} + ECv[~ly*bl }ECv[mlr*[rl}. 
( 1 2.1 2) 

The first term on the r.h.s. is zero except when k = 1 and m = n, when it equals 4. 
Likewise, the second term is nonzero only when k = n and m = 1. Applying these 
conditions on the indices, one may show that 

We may now derive the covariance between periodogram estimates at two different 
frequencies as 

Cov{~y(ejul)ky(d~)} = E{iy(ejwl)ky(ejq)} - E{$,,(ej"l)}E{Fy(ej"2)). (12.14) 

For the case of white noise, the expected value of the periodogram is approxi- 
mately equal to the value of the true power spectrum, which is $. Therefore, setting 
wl = y = w, the variance of the periodogram of white noise is 
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We observe that the variance equals the square of the true power spectrum of the 
white noise. 

To generalize the above result for arbitrary (but w.s.s., zero-mean) random 
processes is difficult, but an approximation can be derived by assuming that y[n] is 
the output of an LSI system excited by unit-variance white noise, w[n]. Assume the 
frequency response of the system is H(d"). Then the power spectrum ofy[n]  is 

Now for simultaneously observed sample functions, y[n],  w[n], 0 5 n 5 N - 1, 
by neglecting end effects we may say that y[n] - h[n] * w[n]. Consequently, 
lY(ejw)12 - IH(e'")121 W(ejw)12. Dividing both sides of this latest equation by N yields 

This result implies that 

(12.16) 

( 1 2.1 7) 

since by Eq. (12.15) the variance of the periodogram of white noise equals the 
square of the white-noise variance, which was specified to be unity. Therefore, in 
the general case the variance of the periodogram at any frequency is approximately 
equal to the square of the periodogram value at that frequency. Note that this result 
is true even as N --+ 03, implying that accumulating more data in a single data record 
will not reduce the variance of the periodogram! (In practice, one acquires as many 
different data records as possible, finds the periodogram for each one, and averages 
the periodogram values at each frequency. There are many variations on this ap- 
proach and other subtleties that may be applied to reduce the variance. The reader is 
referred to an advanced textbook such as Hayes (1 996)) 

Example 12.3 Comparison of two periodograms The tongue EMG signal was 
tested for stationarity by comparing the periodograms of the first and second halves 
of the data set. Fig. 12.4 presents the two periodograms and the upper 95% confi- 
dence limit for the smaller periodogram (which is from the second half of the data). 
The confidence limit was determined by evaluating 1.96 times the square root of the 
variance (Eq. (1  2.17)). (Note that for clarity the periodograms were smoothed in the 
frequency domain by a five-point moving average.) The other periodogram lies 
within this confidence limit except in the range 0 . 4 6 ~ - 0 . 6 4 ~ ,  suggesting that spec- 
tral features in the first half of the data are absent from the second half. This result 
suggests nonstationarity of the data but is not conclusive. A more rigorous test was 
implemented by comparing averaged periodograms. Each data set of 1024 points 
was segmented into 15 data segments of 128 points with adjacent segments overlap- 
ping by 64 points. This approach achieves considerable reduction of the variance of 
the periodogram because of averaging, albeit at the expense of frequency resolution. 
The variance of the averaged spectrum is not one-fifteenth of that of one spectrum 



12.4 STATISTICAL PROPERTlES OF THE PERIODOGRAM 485 

8 
& 
a 

4 

0 
0 0.2 0.4 0.6 0.0 1 

0 In 

FIGURE 124. Periodograms of the tongue EMG segments @&I, solid; xz[n], long dashes). 
Dotted line: upper 95% confidence limit for the periodogram of x&]. 

because the data segments are correlated (due to overlapping). For 50% overlap (as 
here) the variance of the averaged spectrum is approximately 0.0078 of that of one 
spectrum (Hayes, 1996). One also could approximate the variance of the averaged 
spectrum by calculating the variance of the 15 spectral estimates at each frequency. 

The trade-off of poorer frequency resolution for reduced variance is beneficial 
for testing stationarity, as Fig. 12.5 indicates. It is likely that the two averaged peri- 
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FIGURE 125. Periodograms of the tongue EMG segments (x,[n], long dashes; xz[n], solid) 
based on averaging fifteen, half-overlapping, 128-point subsegments each. Dotted: lower 
95% confidence limit for pen'odogram of x#]. Short dashes: upper 95% confidence limit for 
periodogram of xz[n]. 
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odograms in this figure differ near W/T = 0.50 since the two confidence intervals do 
not overlap. 

12.5 ANALYSIS OF NONSTATIONARY SIGNALS 

It is important to recognize that one may utilize methods for deterministic signals if 
one is confident that any random process component in the signal is trivially small. 
For example, under some circumstances the control signal to a prosthesis might be 
modeled appropriately as a deterministic signal and one may apply any of the meth- 
ods for modeling and analysis of deterministic signals without concern for station- 
arity. Our emphasis here is on the situation in which one must distinguish between 
stochastic, fractal, and chaotic signals. 

Often in experimental data a signal is nonstationary because its mean is chang- 
ing with time due to incomplete control of some additional variable during the 
measurement. Consider, for example, the measurement of diurnal variations in 
oxygen consumption of pigeons discussed in Chapter 5.  If the environmental tem- 
perature had been allowed to increase slowly throughout the day (possibly due to 
heating of the cage by the metabolic heat production of the pigeon), then one 
would expect a corresponding increase in oxygen consumption associated with in- 
creasing demands of thermoregulation. In such situations, so long as one expects 
that the underlying process controlling diurnal variations in oxygen consumption 
is not altered by the thermoregulatory effects, it is permissible to remove the best 
estimate of the nonstationary event from the data in order to produce a stationary 
data signal. Often the best estimate is achieved by fitting a linear regression line 
to the original data. One generates the modified data signal by subtracting the re- 
gression line from the original signal. That is, given an original signal x [ n ] ,  the 
modified signal is 

x,[n] = x [ n ]  - ( a n  + b), ( 12.1 8) 

where 

( 1 2.1 9) 

(1  2.20) 
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One may test the statistical significance of this regression by calculating 95% 
confidence limits on the slope, a. Given the variance of the original data about the 
regression line, 

1 N-I 

N n-0 
sf = - C ( x [ n ]  - (an + b))2, 

using the Student's t-test one may evaluate the confidence limits on a as a f 1 . 9 6 ~ ~ .  
The reader is referred to any standard statistical text (e.g., Zar (1998)) for further 
details. If the 95% confidence limits do not include zero, then one concludes that 
the regression line is statistically significant and should be removed from the data. 
Of course, the nonstationarity may differ from a linear change. While one may use 
polynomial regression to remove more complex nonstationary signal components, 
ofken such an approach will be expected to remove some frequency components of 
the desired signal as well if the order of the polynomial is significantly greater than 
unity. On the other hand, a polynomial of too low an order might fail to fit certain 
features of the nonstationary part of the signal and emphasize other temporal fluctu- 
ations in the modified signal because the terms in a polynomial function are not or- 
thogonal. 

If a signal is found to be nonstationary, one might ask whether an FBM model is 
appropriate. An initial test is to determine whether its first differences are stationary 
and whether the power spectrum of this latter signal is of the llftype. If the data are 
limited, these two tests may be satisfied but the results may not be compelling. The 
next step would be to apply the method of relative dispersion to the signal of first 
differences and examine the goodness of fit to linear scaling on the log-log plot, If 
this fit is acceptable, one may conclude that the data exhibit scaling behavior con- 
sistent with the original signal having the characteristics of FBM. 

Example 12.4 Eflect of a linear trend Even a small linear trend may corrupt a 
spectrum noticably, as this example demonstrates. "ho signals were generated. 
dl[n] is the numerical derivative of the pressure transducer under test in Fig. 7.18 
while d2[n] is the same signal with an added linear trend that has an amplitude of 
0.0025 at n = 0 and declines linearly to zero by the end of the graph in Fig. 12.6(a). 
This small trend produces a significant change in the spectrum at low frequencies 
compared to the spectrum of dl[n],  even altering the height of the major peak near o 
= 0.03.rr(Fig. 12.6(b)). 

126 NONSTATIONARY SECOND-ORDER STATISTICS 

If rx[ml, m2], the autocorrelation function of a random process, x[n], is not strictly a 
h c t i o n  of ml - m2, then the process is nonstationary. For example, if one compares 
the autocovariance hnction from two halves of a data record and finds that they dif- 



498 ASSESSING STATIONARITY AND REPRODUCIBILITY 

0.12 

0.08 - dl[n] .-.... 
d2lnI - 

-0.04 
0 1 00 200 300 

n 
(a) 

3.5 
3 

2.5 

g 2  
1.5 

1 
0.5 
0 

x 10-3 
I 1 

0 0.05 0.1 0.1 5 0.2 

FIGURE 12.6. (a) A transient signal dl[n] and the same signal after adding a small linear trend 
d&]. (b) Periodograms of dl[nJ (dotted) and d,[n] (solid). 

fer, then this function (and almost certainly the autocorrelation finction) depends 
on the time at which the data were acquired. Consequently the process cannot be 
stationary. In such cases the power spectrum as we have defined it cannot be evalu- 
ated. Of course, one may calculate the periodogram as a measure of the determinis- 
tic power spectrum by ignoring the stochastic nature of the signal, but the lack of re- 
producibility of the data under such circumstances, which will be reflected in the 
periodogram, may prevent meaningful use of the data. It should be recognized that 
time-dependence of the autocorrelation function is independent of whether or not 
the mean is time-dependent. Next we consider some methods for analysis of nonsta- 
tionary signals. 

Complex Demodulation 

If a signal contains one or a few oscillatory components whose amplitudes and 
phases (but not frequencies) are changing slowly with time, these temporal changes 
may be detected using a process known as complex demodulation. Let the random 
process be described as a summation of cosine terms with time-varying amplitudes 
plus white noise. Thus 

(12.21) 
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where it is assumed that the oJ& are ordered in terms of increasing frequency. If the 
frequencies, oh are known and are sufficiently separated, then the time-varying am- 
plitudes, Adn],  may be determined as follows: First, multiply x[n] by e+""". Consid- 
er an arbitrary term in Eq. (12.21) after this multiplication. Thus 

Observe that (for k = 1) the modified signal will have a component 2AI[n]ejbl, 
plus other components at frequencies q f wI. If Ak[n] varies slowly with n so that 
its fiequency content is well below the smaller of y - q and 2w1, then the signal 
y[n] = e-Jwl"x[n] may be passed through a narrow lowpass filter to extract Al[n]ej". 
The magnitude and phase of the filter output are estimates of the time-varying am- 
plitude and phase of the cosine component at ol. This method may be applied to de- 
termine the time-varying amplitude and phase of the k-th cosine component by mul- 
tiplying x[n] by e-Jwk". 

The method of complex demodulation may be sucesshlly applied even if the fre- 
quencies are known only approximately. Consider a signal that has only one time- 
varying cosine component, 

x[n] =A,[n]cos[w,n + 411. 

Now multiply this signal by e-JW, where q-, - wI, and filter the modified x[n]  
signal by a noncausal FIR filter having impulse response g[n]  such that g[-n] = 
g[n]. The frequency response of this filter, 

G 

G(ej")= 9 g[n]e-j" 
n=-GI 

will be a real, even hnction of frequency. The output of the filter will be 

y[n] = e-jWx[n] * g[n] = 2 g [ u h [ n  - u]e++-U]. (12.22) 

Assuming that A l [ n ]  changes slowly over any time interval of length 2GI, we 

u--G~ 

may assume that A l [ n ]  is constant relative to Eq. (12.22). Therefore, 

y[n]  = fA,[n] 2 g[ul[e-j(wwIx-kbl- e-/(%+wIXn-u)++l] 
u - 4 1  

1 
2 

= -A [n][G(e-j(q-wl ))e-j(wwi)fi-41 - G(e/(w+o~ ))e-i(w+wl )n+bi]. ( 1 2.23) 

If the filter meets the condition that G(eJw)ll+zw0 = 0, then the second term in 
Eq. (12.23) vanishes. Thus, recognizing that y[n] will be complex-valued, we have 
the result that 
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(12.24) 

Therefore, multiplying x[n ]  by the complex exponential e-jW whose frequency 
is close to that of x[n ] ,  then filtering through an appropriately designed lowpass fil- 
ter, can permit recovery of the time variations of the amplitude, A l  [n ] .  Furthermore, 
one may plot fin] vs. n and look for a linear variation with n. The slope of this linear 
variation should be OJ,, - ol, thereby permitting identification of the unknown fre- 
quency, wl, and its offset provides an estimate of 41. 

Example 12.5 Complex demodulation To demonstrate the capabilities of this 
method, a heart rate signal was simulated under two different conditions. In both 
simulations the heart rate was represented as the R-R interval in milliseconds, and 
the R-R interval was modulated by sine waves at 0.03 Hz and 0.10 Hz to reflect 
known physiological modulators. R-R interval also is modulated by breathing, and 
in the first instance the simulated R-R interval signal also was modulated by a sinu- 
soid at frequency 0.30 Hz having an amplitude of 9 msec. The resulting simulated 
R-R interval signal is shown in Fig. 12.7(a). It was desired to extract the amplitude 
and phase of the modulation at 0.30 Hz using the complex demodulation technique. 
When a demodulating signal at exactly 0.30 Hz was used, the estimate of the ampli- 
tude, A[n] ,  was variable over a small range (Fig. 12.7(b)) and close to the actual am- 
plitude used in the simulation (i.e., 9 msec). Likewise, the phase estimate, f in ] ,  
(Fig. 12.7(c)) was close to the actual value of -0.678~. 

In the second simulation the modulating signal at 0.30 Hz was itself modulated 

20 sec 

FIGURE 12.7. Estimating the amplitude and phase of a modulating, 0.30 Ht, sinusoid using 
complex demodulation. R-R interval: the simulated heart rate signal (see text). A[n]: the de- 
modulated amplitude. €44: the demodulated phase. (This example courtesy of Dr. Abhijit Pat- 
wardhan.) 
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so that its amplitude was time-varying. This amplitude variation was sinusoidal with 
a period of 100 seconds and an amplitude of 9 msec. The simulated R-R interval 
signal, the signal modulating the amplitude of the 0.30 Hz sine wave, and the ampli- 
tude and phase of the demodulated signal (again demodulating at the exact frequen- 
cy of 0.30 Hz), are shown in Fig.12.8. A[n] follows the amplitude of the signal A,[n]  
fairly closely whereas q n ]  clearly refects the changes in sign of this latter signal. 
Note that e[n] is offset by the mean phase of the 0.30 Hz signal (i-e., -0.67812). 

The Short-Time Fourier Transform (STFT) 

A simple approach to estimation of a time-varying spectrum is to choose time seg- 
ments of the desired resolution and apply the periodogram to each time segment. 
If each segment is L points in length, one may overlap adjacent segments by L - 
1 points but such a fine increment of time probably is not warranted. An overlap 
of M points, where U4 I M I L/2, is a reasonable compromise. Therefore, given 
a signal x[n], 0 I n S N - 1, and the assumption that the data are w. s. s. over 

"1 :) 
..... . . . . . . . . . . . . . . . . . . . . . . . . . . .  

-9 
aY- - .. . . . . . . . . . . . . . . . . . . . . . . . . . .  

-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

40 sec 

FIQURE 128. Estimating the amplitude and phase of a modulating, 0.30 Hr, sinusoid whose 
amplitude is also varying with time, using complex demodulation. R-R interval: the simulated 
hsart rate signal (see text). A&]: signal modulating the amplitude of the sinusoid that is mod- 
ulating heart rate. A[n]: the demodulated amplitude. @]: the demodulated phase. (Example 
courtesy of Or. Abhljit Patwardhan.) 
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some time interval L,  one chooses an overlap of M points and segments the data 
into sub-records 

The total number of time segments is J + 1. For each x,[n] one calculates the pe- 
riodogram in the usual manner. It is typical to plot these spectra as if they were two- 
dimensional slices of a function P,,(ej", n)  using a three-dimensional graph having 
frequency and time as the two independent axes. 

Serious limitations to this approach are the large variance of the periodogram 
and the poor frequency resolution that one achievqs using short data records. The 
variance problem may be reduced by convolving P,,(ej", n)  with a time-frequency 
window hnction. But because this convolution further reduces the frequency reso- 
lution, an alternative approach is suggested. After segmenting the data as descibed 
above, one may apply an AR spectral estimation method to each data segment in- 
stead of the periodogram. This approach was utilized in the m-file t f ar . m to pro- 
duce the time-frequency spectral plot of Fig. 9.2(b). The order of the AR model may 
be adjusted to minimize sensitivity to the length of the data segments; the actual 
time resolution, however, is still determined by L. 

Example 12.6 Short-time AR spectral estimation The file eegsim . m was 
used to generate a 6000-pointY simulated EEG data record sampled at 50 Hz. Its fre- 
quency content changed abruptly at t = 40 sec. This signal was analyzed using a 
fifth order autoregressive model in tfar .m by segmenting the signal into non- 
overlapping records of 250 data points each. A three-dimensional plot of the esti- 
mated time-varying spectrum is presented in Fig. 12.9. Each spectrum is plotted at 

FIGURE 12.0. Short-time AR spectra of a simulated EEG signal whose spectral characteris- 
tics change abruptly at t = 40 sec. An AR(5) model was fit to consecutive, nonoverlapping, 
segments of 250 data points. 
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the beginning of the 5 second time interval that it represents. Note that the abrupt 
change in the spectral characteristics was not detected until 5 seconds after it oc- 
curred. 

AR Spectral Estimation via Recursive Least Squares 

The essence of this method stems from the recognition that one may determine the 
coefficients of an AR(p) model using a least squares approach instead of the Yule- 
Walker equations. (In fact, the two methods turn out to be equivalent computation- 
ally.) It is convenient to approach the method from the viewpoint of estimating the 
coefficients of a Linear Prediction Filter (LPF) instead of an AR model. The two 
models are equivalent, as seen by comparing their system equations. For an AR@) 
model of a process x[n], the predicted value,i[n], is 

(12.26) 

whereas, by definition, an LPF of orderp predicts the next data point on the basis of 
p prior points as 

(1 2.27) 

Clearly the only difference between the two models is a sign difference, and thus 
a[i] = -c[i]. 

Given x[n], 0 I n 5 N - 1, one may write Eq. (12.27) for each time point n, 
thereby generating N + p equations in p unknowns. Using the fact that we desire 
i[n] = x[n], these equations may be written in matrix form as 

0 
X[Ol 

x b -  11 
. . .  

. . .  
x[N- 11 

0 

. . .  
0 * . .  

9 . .  

... 

. . .  0 

(12.28) 

Of course, one is unlikely to find coefficients c[i], 1 5 i I p,  to achieve exact 
equality for all of these equations and therefore the optimal coefficients may be es- 
timated using an ordinary least squares (OLS) approach. The optimal coefficients 
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may be found by minimizing the sum of squared errors, e[n], where e[n] = i[n] - 
x[n], and the sum of squared errors is 

N+D N+D 

J = $[n] = r ( i [ n ]  - x[n])*. 
n= 1 n= I 

(1 2.29) 

Equation (12.29) is in standard form for an ordinary least squares approach. 
Rewriting Equation (12.28) as 

XP& =XI, (1 2.30) 

where X, is the matrix of Eq. (12.28) and 

& = [c[ I], c[2], . . . , c[p]]r, & = [x[l], 421, . * * , x [ N -  11, 0, 9 . . , oy. 
The least squares solution to Eq. (12.30) is 

& = (x,’x,)-~x,~l. (12.3 1) 

If one defines an autocorrelation matrix R such that R(i,j) = rxu - i ] ,  1 5 i j  5 p, 
where, similar to the definition in Chapter 2 (but omitting dividing by N), 

then R = X,’X,. Furthermore, XJzl is a vector of autocorrelation values which we 
may define a s g =  [ r x [ l ] ,  rx[2], . . . , rxlp]lrand rewrite Eq. 12.31 as 

r, = ”’8. (12.33) 

The solution provided by Eq. (12.33) applies to a stationary signal, x [ n ] .  The co- 
efficients of an AR@) model for x[n] may be found from the relationship o[i] = 
-c[i], from which the power spectrum may be calculated in the usual manner (as 
discussed in Chapter 9). This AR@) model is equivalent to that found by the Yule- 
Walker method. To apply this method to nonstationary data, two modifications are 
necessary. First we develop a recursive method for solving Eq. (12.33) when x[n] is 
augmented by one new data point, then we explain how to “forget” past data in or- 
der to allow for time-varying model coefficients. 

Assume that the solution given by Eq. (12.33) based on acquiring n data points, 
x[k], 0 5 k 5 n - 1, is available. If we now acquire one more data point, x[n], it is 
possible to solve for the new estimates of the coefficients by applying a “correc- 
tion” to the original estimates. At time step n - 1 the matrix R,-I and the vector&, 
based on the original n data points are known and the solution at this time is &‘-I) = 
R;21g,,-l. Now note that Rn may be written as 

n 

( I  2.34) 
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where & = [x[k], x[k - 13, x[k - p  + Similarly, 

(12.35) 

To calculate the solution at step n, however, requires R;I. By expressing R, in the 
form given in Eq. (12.34), we may use the Matrix Inversion Lemma to find R,,-I. 
The Matrix Inversion Lemma states that if A ,  B are square matrices and B = A + 
ur, then the inverse of B may be calculated as 

Letting B = Rn, A = R,,-l, 1~ = &, the inverse of R, is found to be 

(12.36) 

Now 

When the r.h.s. of Eq. (12.37) is expanded, the first term will be R;!lg,,-l, which 
equals &-I). Defining the error in predicting x[n ]  based on the coefficients at step 
n -  1 as 

e[n[n - 11 = x[n] - (&‘-l))T&l, (1  2.38) 

after some algebra we may express the new estimate of the vector of coefficients as 

@) =$-I) + a[n]e[n(n - l]R;Al&, (1 2.39) 

where 

(12.40) 

The above procedure for determining $1 from $-I) and R;L1 is known as the 
Recursive Least Squares (RLS) method. To summarize, this method proceeds as 
follows: First one chooses a small starting value for the inverse of the autocorre- 
lation matrix, E! = $1, where I is the p-th order identity matrix and s2 B 1. Then 
for n = 0, 1, 2, . . . , one acquires x[n] and calculates the vector of coefficient es- 
timates by calculating e[nln - 11 using Eq. (12.38), a[n] using Eq. (12.40), and $) 

using Eq. (12.39). Finally, one calculates R;‘ from Eq. (12.36) since it will be 
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needed in the succeeding step. For this calculation Eq. (12.36) may be rewritten in 
the form 

R;’ = R;!’ - (~[nlR;!~~x~R;!~. (12.41) 

This iteration is repeated until all of the data points, x[n], have been acquired, at 
which point the final solution will be exactly identical to the result of a batch analy- 
sis of the entire data set using the ordinary least squares method. 

Up to this point the RLS method has no advantage with respect to identifying 
spectra that vary slowly with time because each new data point is aggregated with 
all of the previous data. To adapt to changes in signal properties, we utilize a sum of 
squared errors that weights errors on “older” data less than errors on recently ac- 
quired data, in effect “forgetting” x[k] when k is sufficiently far from n. To accom- 
plish this objective the squared error function is revised to be 

n 

lpo 
J = cAn-ke2[k] ,  (12.42) 

where A is a positive number less than unity known as aforgetting factor. Typically 
A is chosen in the range 0.90-0.99, with a smaller value implying that older data are 
“forgotten” more quickly. This modification of the RLS method is known as expo- 
nentially weighted RLS (EWRLS). In the formulation of the recursive structure of 
the EWRLS method, we now define R, andg, as follows: 

The recursion equations (Eq. (12.41) and Eq. (12.40)) become: 

(1 2.43) 

(12.44) 

(1  2.45) 

(12.46) 

With these two substitutions the E W E S  method proceeds as described for the 
RLS method. At each time point n one may obtain an AR(p) model from the rela- 
tionships 

an[O] = 1, an[i] = -c,[i], 1 zs  i I p .  
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To estimate the power spectrum at each step it is necessary to estimate the noise 
variance for the AR model. The mean square error from the least squares estimation 
is taken as the estimated noise variance. This may be derived from the LPF model as 

(12.47) 

in which rn[i] is defined by Eq. (12.32) and c,[i] is the i-th element of $1. One may 
evaluate the r,[i] recursively also via the relationship 

The power spectrum is calculated at step n in the usual manner as 
&: 

(1 2.48) 

MATLAB includes a recursive implementation for AR model estimation in the 
finction rarx and one of its options implements the EWRLS method. The 
EWRLS method is perhaps the most direct extension of the standard Yule-Walker 
approach to spectral estimation. It is more complex to calculate than approaches 
based on the LMS algorithm (see Hayes (1996)) but is less prone to instability. 
Least squares methods have the advantage of possessing one global minimum and 
one may tune the value of A to achieve adequate resolution for slowly varying spec- 
tra. Obviously this method will not immediately detect rapid changes in the spec- 
trum. Other methods based on generalized concepts of time-dependent autocorrela- 
tion hnctions, such as the Wigner-Ville Transform, or on wavelets are more 
appropriate for such applications, but these methods are beyond the present text. 
The reader should refer to the numerous available books (e.g., Akay (1997)) and re- 
view papers (e.g., Cohen (1996)) on these latter topics. 

Example 12.7 Spectral estimation using EWRLS An actual EEG signal (chan- 
nel 7 from the file montage .mat)was subsampled to an effective sampling rate of 
50 Hz and the MATLAB hnction rarx was used to estimate a time-varying AR(4) 
model by the EWRLS method with A = 0.975. This h c t i o n  provides a new model 
for every data point. At every 20th data point the model parameters from five con- 
secutive data points were averaged and a spectrum was calculated using the aver- 
aged parameters. These spectra are plotted in Fig. 12.10. Note that the low-fiequen- 
cy range of the spectrum exhibits a clear variation with time, with increases and 
decreases in amplitude over the temporal range of the data. The reader may confirm 
that these results are sensitive to the choice of forgetting factor in that the temporal 
changes become obscured if h is less than 0.95. 
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FIGURE 12.10. Spectral analysis of an EEG signal using the EWRLS method with p = 4 and 
A = 0.975. 

12.7 SUMMARY 

This chapter has discussed topics related to assessing stationarity of signals and re- 
producibility of analyses. Stationarity of the mean and variance of a sample hnc- 
tion may be tested using the runs test if a sufficient amount of data is available. An- 
other approach is to separate a data record into two halves and test for the equality 
of the two means and variances using standard statistical methods. To compare the 
estimated autocovariance functions or the estimated power spectra from two halves 
of the data record, it is necessary to evaluate confidence limits on these estimates. 
Approximate values were derived for the variances of both sample autocovariance 
functions and periodogram spectral estimates. It was noted, in particular, that the 
variance of the periodogram is quite large, being approximately equal to the square 
of the periodogram value at any frequency. 

If a signal is found to be nonstationary, one may attempt to generate a stationary 
signal by removing any linear trend from the original signal using the method of lin- 
ear regression. If the signal is still nonstationary, then removal of a polynomial re- 
gression curve may be attempted so long as one compares the effects on stationarity 
and signal spectra of several different polynomial orders. When the autocorrelation 
function or power spectrum is found to be time-dependent, there are some basic ap- 
proaches to evaluating the time-varying frequency components of the signal. Com- 
plex demodulation is useful when the signal contains only a few time-varying oscil- 
lations, each having a fixed, frequency. Another alternative is to break the data into 
short segments and apply the periodogram or an AR spectral method to each seg- 
ment. When used with an AR method, this approach can successfilly follow slowly- 
varying spectra. This latter method may be extended as a formalized recursive algo- 
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rithm for estimating AR spectra known as the Recursive Least Squares method. To 
adapt to time-varying spectra, the RLS method must be implemented with a forget- 
ting factor, A, that gradually reduces the contribution of past data to the squared er- 
ror function. 

EXERCISES 

12.1. In Fig. 12.l(c) the mean level of the periodogram was plotted as an esti- 
mate of the true spectrum of white noise that has the same average power as the 
EMG signal. Determine the upper 95% confidence limit for estimates of the noise 
spectrum assuming that the line plotted in Fig. 12.l(c) is the true white noise spec- 
trum. 
12.2. The autocovariance function of a discrete-time Poisson process having an 
average level of L events per second is r[m] = LS[m]. Calculate approximate confi- 
dence limits on a periodogram based on 512 samples of this process. Repeat for 
5 120 samples. 
12.3. Find the confidence limits for the autocovariance function in Exercise 12.2. 
12.4. The file sigtype .m generates samples of four different types of signals 
each time it is invoked. Generate one such set of signals and use the runs test to de- 
termine whether the mean level of each signal is stationary. 
12.5. A signal comprising 256 samples is divided into two, non-overlapping seg- 
ments of 128 points each. The mean levels for the two segments are 0.00745 and 
0.00386, and their standard deviations are 0.0 1 120 and 0.0 1340, respectively. Are 
their means and variances statistically equal? 
12.6. Statistically compare averaged periodograms for the two halves of the EEG 
signal in channel 2 of the file montage. mat. Choose an appropriate number of 
segments to average. 
12.7. Use the signal in the file ma3sig .mat to create a signal having a linear 
trend by adding to the signal in the file a line that starts at zero amplitude and has a 
final value equal to the standard deviation of this signal. Calculate the periodogram 
of the signal with the trend in three ways: (1) with no trend removal; (2) after re- 
moving the trend by linear regression; (3) after removing the trend by filtering with 
a highpass filter of any design you choose. Compare the resulting periodograms and 
explain why highpass filtering does not work well to remove a linear trend. 
12.8. The two signals in the file cdmsigs .mat each contain a sinusoidal com- 
ponent having a frequency near 56 Hz. Use complex demodulation to extract the 
(constant) amplitudes of these components. On what basis can one discern that the 
frequencies are not exactly at 56 Hz? 
12.9. Determine whether the heart rate signal in the file hrvl .mat is stationary. 
12.10. A heart rate signal representing 1025 heart beats from a human subject is 
contained in the file hrs .mat. Use short-term AR estimation to calculate the time- 
varying spectrum of this signal. Test several AR model orders and several degrees of 
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segmenting the data until you are confident that the results follow the changing 
spectrum adequately without introducing spurious spectral peaks. 
12.11. Run the m-file sigtype .m and plot the signal s4 that will be in the work- 
space. It is likely that the spectrum of this signal is not stationary. Use the EWRLS 
method (see the MATLAB function rarx) to track the spectrum of this signal. Test 
various values of the forgetting factor in order to determine what spectral features 
are consistent and what ones depend on the value of A. 
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