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Preface

Medical imaging has experienced significant growth in terms of both method-
ologies and instrumentation in recent years. It has played a major role in
modern medicine for providing important and often essential information for
medical diagnosis and treatment as well as preventive healthcare. Since the area
is very broad and fast-growing, it is not possible for a single volume to cover
every aspect of medical imaging. The book places emphasis only on frontier
development in medical imaging with three parts: (1) theory, techniques and
physics, (2) image processing, (3) emerging methods and medical imaging
systems. Some chapters may belong to more than one of the three parts. The
book has a broader coverage of medical imaging than the companion volume
Computer Vision in Medical Imaging (hereafter noted as CVMI Book) edited by
myself and recently published (Nov. 2013) also by World Scientific Publishing
with table of content attached to the Preface.

In Part 1, Chapter 1 by Prociask et al. deals with minimal invasive
coronary angiography by multi-slice computed tomography (MSCT-CA). This
chapter focuses on the feasibility to derive quantitative tissue composition
measurements from the plaque Hounsfield Units (HU) distribution and shows
the first steps towards further development of the method for clinical use.
MSCT-CA does have the advantage over intravascular ultrasound (IVUS) in
that the complete coronary artery tree is visualized. Chapter 2 by Szirmay-
Kalos et al. presents Monte Carlo estimates to compute forward and back
projections in iterative PET reconstruction and proposed two techniques to
improve the accuracy. Chapter 3 by Majumdar reviews the online dynamic MRI
reconstruction techniques. In general, any online reconstruction technique
consists of two steps: prediction and correction. Broadly, there are two classes
of techniques: the compressive sensing based method and the Kalman filtering
based techniques. A hybrid method is proposed that can better meet the online
reconstruction need. The theory of longitudinal brain image registration is

v
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well-developed. Chapter 4 by Fletcher surveys the current literature and then
proposes an approach for enhancing specificity using prior information. It has
demonstrated increased ability to distinguish between Alzheimer’s disease and
normal subjects, as well as increased statistical power, reflected in decreased
sample size needed to detect change beyond normal aging. While X-ray
computer tomography (CT) has been popular in diagnosis and treatment
planning of cancer, it lacks the ability to image multiple processes at the
molecular level and thus may be difficult to differentiate benign from cancerous
modules. Chapter 5 by Li and Kuang presents, as a proof-of-concept, an X-ray
fluorescence computed tomography (XHCT) system as a promising modality
for multiplexed imaging of high atomic numbers probes. Chapter 6 by Xu
et al. presents a dictionary learning based approach for low dose CT data that
tends to be noisy and incomplete. The dictionary learning approach aims at
capturing localized structural information and suppressing noise so that image
reconstruction with a sparse representation in terms of dictionary can perform
well. Chapter 7 by Lu et al. describes algorithms for diagnosis of psoriasis
severity using only 2D digital skin images. Segmenting the symptoms in a
digital image and using the segmented image to make a diagnosis can both
be implemented using statistical machine learning involving support vector
machine in conjunction with Markov random fields.

Part 2 begins with Chapter 8 by Honorio that studies the conditions for
the reasonably good performance of linear support vector machines (SVMs)
on brain functional magnetic resonance imaging (fMRI) data. To this end, a
synthetic method is proposed that is based on a number of Gaussian-distributed
regions with Gaussian spatially correlated noise. Such model introduces many
intuitions from neuroscience. Several synthetic experiments were performed
to analyze the different aspects of brain fMRI data. In comparison with
other feature extraction methods, original features and PCA features, the
generalization accuracy of linear SVMs using most discriminative feature is
significantly better. It is interesting to note that with 50 or more samples
per class, the classification accuracy is nearly 90% or slightly above. For other
pattern classification work on MRI data using SVMs, the readers are referred
to Chapter 16 of the CVMI book. Another approach to the analysis of the
fMRI data is presented in Chapter 9 by Oikonomou and Blekas. The basic
element of the fMRI data which is noisy is called voxel and represents a value
on a grid in 3D. By taking the values of voxels over time, we create a set of
time series. A regression mixture model is used as a probabilistic modeling
tool for data analysis. The model is trained by expectation-maximization (EM)
algorithm so that each voxel can be assigned to one of K-clusters. To take
into account the spatial dependence among 8 neighboring voxels, a Markov
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Random Field (MRF) analysis is performed by constructing a design matrix for
each cluster from a linear combination of S kernel matrices. The EM algorithm
is further applied to estimate the parameters. Finally, the activation-based and
resting state applications clearly demonstrated experimentally the superiority
of approach presented. Chapter 10 by Lee et al. presents a new framework for
automatic analysis of dermoscopic images. It is a novel approach inspired by the
analysis of the growth pattern of skin lesions. In this approach, a dermoscopic
image is decomposed using a simple growth model estimated using a single
image; then a tree-structure is constructed to represent the growth model.
Both segmentation and diagnosis programs return good and promising results.
The tree structure framework is also useful for other skin image analysis tasks.
Both Chapters 11 and 12 deal with eye images. Retinal imaging is nowadays a
mainstay of the clinical care and management of patients with retinal as well as
systemic diseases. Segmentation of retina structure is a fundamental component
of most automatic retinal disease screening systems. Chapter 11 by Morales
et al. is focused on detection methods of the vascular tree and the optic disc, by
using a combination of several morphological operators and by making use of
stochastic watershed transformation. For both the detection of the main retinal
structure and optic disc segmentation, the method proposed shows significant
improvement over the previously reported results. Chapter 12 is focused on
glaucoma screening by introducing the Automatic RetinA cup to disc Ratio
AssessmenT (ARARAT) derived from optic disc and cup segmentation using
fast superpixel based methods. The ROC plots show that ARARAT consistently
outperformed over other methods. For enhancement of retinal images, the
readers may consult the deconvolution method presented in Chapter 12 of
the CVMI Book. Chapter 13 by Mehrabian presents an algorithm using
adaptive complex independent component analysis as a blind source separation
method to identify and separate the intravascular signal from the dynamic
contrast enhanced (DCE)-MRI data at the tissue of interest. Pharmacokinetic
modeling of tumor tissues using their DCE-MRI requires information about
the contrast agent concentration in the intravascular space. The signal is
inseparable from the DCE-MRI data, but the algorithm presented is shown
to be effective to perform the desired separation. The work is useful for
prostate cancer assessment. Chapter 14 deals with an automated ultrasonic
breast screening system. Ultrasound can improve cancer detection compared
with using mammography alone and it is radiation-free. The algorithms of the
computer aided detection include speckle noise reduction, multi-scale blob
detection, tumor candidate extraction, feature extraction, region classification
and statistical evaluation. The analysis shows that breast tumors known as
ellipse-like shape and hypo-echogenic in the automated ultrasound images were
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successfully discovered with 100% sensitivity in the experiment. The author
noted that the system needs to be improved to detect tumor sizes smaller
than 1 cm.

Part 3 begins with a review (Chapter 15) by Veltri and Madabshi et al. that
demonstrates how prostate cancer quantitative histomorphometry can be used
to extract and employ computer-assisted image features and hence serve as a
potentially new and innovative predictive tool to improve the determination of
aggressive phenotypes of cancer. Additional development and validation of the
tools presented are expected to help the pathologist to predict severe outcomes
early so that appropriate interventions can be made by the urologist and patient.
Chapter 16 by Aquino provides a comprehensive overview of the automated
detection of diabetic retinopathy (DR), from medical point of view followed
by screening systems using automated segmentation. It is encouraging to state
that automated DR detection systems have achieved comparable performance
to a single DR human expert. Chapter 17 by Roujo et al. presents the different
techniques which have been developed to alleviate the problem of physiological
motion for magnetic resonance guided high intensity focused ultrasound
ablation of abdominal organs. Advanced motion correction strategies which
enable continuous monitoring of the thermal dose and continuous sonication
under free breathing conditions have been demonstrated in a few pre-clinical
studies. Additional pre-clinical studies are needed to fully demonstrate the
accuracy, safety and robustness of these techniques. Chapter 18 by Su et al.
reviews proton therapy physics, sources of proton-range uncertainties, and the
advanced imaging technologies used to minimize these uncertainties before,
during and after proton therapy. Chapter 19 by Prakash et al. presents a
continuation of research effort on intravascular ultrasound image processing
and analysis as reported in Chapter 20 of the CVMI Book. A robust and
fully automated IVUS segmentation using meta-algorithm is presented to
work on a large database which contains some manual segmentation results
for comparison with automated segmentation. The entire system consists of a
library of preprocessors, a library of segmentation algorithms some of which
employ neural networks, and an algorithm selector in an effort to reach
a 95% segmentation accuracy as compared with manual segmentation. The
preliminary results shown indicate that the method is very promising to achieve
an automated IVUS segmentation with desired accuracy objective. Chapter 20
by Mendizabal-Ruiz and Kakadiaris examines a broader scope of computation
methods and issues including such as segmentation, plaque characterization,
nonlinear IVUS and differential imaging for the IVUS data. Chapter 21 by
Savoia and Caliano shows that capacitive micromachined ultrasonic transducer
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(CMUTs) can be popular in medical ultrasound in the future because it enables
a realization of extremely low-cost and high-performance device. Characteri-
zation and imaging results are used to assess the performance of CMUTs with
respect to conventional piezoelectric transducers. The last chapter, Chapter 22
by Shen and Chen provides a descriptive discussion of picture archiving
communication system and medical imaging cloud. Good record keeping of
medical images and rapid retrieval of such image history are important issues
facing healthcare industry. The advances of cloud computing greatly enhance
the capability of working with enormous amount of medical image data. The
“Big Data” is an area that touches many fields and can be of much interest to
medical imaging researchers with strong computer science background.

Medical imaging is indeed a very broad and highly interdisciplinary area
that requires collaboration among medical, engineering, physics and computer
science professions as demonstrated in this book. Researchers in pattern
recognition and computer vision may find that Chapters 7, 8, 10, 14 and 19
to be particularly informative. All chapters provide good introduction of the
topic considered and extensive list of reference articles, which are helpful to a
broad range of readers.

In my nearly forty years of editing different technical books, I am indebted
greatly to many professional friends for their help. I like to mention in particular
of the help of Prof. Ching-Chung Li of University of Pittsburgh, a leading
expert in biomedical pattern recognition, who brought to my attention the
important work of Dr. Robert Veltri, whose chapter is in the book. Prof. Li was
also helpful to contribute to all four books, Handbook of Pattern Recognition
and Computer Vision (1993, 1999, 2005, 2010) which I edited for World
Scientific publication. With the rapid progress in technical fields, edited books
play an increasingly important role to deliver the most up-to-date technical
knowledge to a wide range of audience along with other publication methods.

I am most grateful to all authors for their outstanding contributions to the
book. With their valuable inputs, I am convinced that much has been achieved
with medical imaging, while much more have yet to be done in this challenging
area. It is useful to keep in mind that the problems considered can be very
complex and highly complicated and we can only make incremental progresses
rather than expect for major breakthroughs. The new and more powerful
medical devices and instrumentation only bring in additional challenges to
researchers. We look forward to the continued progress on medical imaging
for many years to come.

C.H. Chen
May 4, 2014
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Coronary Plaque Quantification by
Multi-slice Computed Tomography
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∗AGH University of Science and Technology, Krakow, Poland
†Thoraxcenter, Department of Cardiology, Erasmus MC,

Rotterdam, The Netherlands
‡E-mail: n.bruining@erasmusmc.nl

Coronary artery disease (CAD) is one of the main causes of human deaths in the
western world. Usually, patients are being diagnosed by ECG analysis first, after
which for asymptomatic patients additional tests are necessary. Ultimately an imaging
procedure might be necessary to image the coronary arteries. Until a decade ago
invasive coronary angiography was the standard imaging method for this. Since then,
minimal invasive coronary angiography by multi-slice computed tomography (MSCT-
CA) became available and has been a highly investigated imaging technique and may
become a standard imaging tool for the diagnosis of coronary artery disease (CAD).
The three-dimensional (3D) nature of MSCT-CA allows 3D image reconstruction
from which quantitative parameters of the coronary arteries and plaques can be
derived.

1. Introduction

Multi-slice computed tomography of coronary arteries (MSCT-CA) has gained
large interest as a diagnostic imaging tool for patients suspected of coronary
artery disease (CAD).1–3 The three-dimensional (3D) nature of MSCT-CA
allows 3D image reconstruction of the coronary artery tree4 with the advantage
over standard coronary angiography to show not only luminal obstructions
but also plaque formation.5 Quantitative MSCT-CA (QMSCT-CA) has been
developed6–9 and most manufacturers are currently implementing computer-
assisted analysis tools in their MSCT-CA analysis consoles.

Since plaque composition is one of the important predictors of future
events, quantification of its composition by a non-invasive imaging method
would have advantages.10,11 Early attempts by MSCT showed mixed results.5,12

3
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This could be explained by the lack of a robust dedicated MSCT-CA plaque
compositional analysis method.5,13–15 There are also technical difficulties
comparing in-vivo MSCT-CA data to reference methods, such as intravascular
ultrasound (IVUS) or histology. Despite the rapid technical developments of
MSCT-CA, the thickness of reconstructed cross-sectional images is currently
400 to 600 micron and is significantly below that of IVUS (approximately
200 micron) and histology (6 micron). Since plaque components are mostly
heterogeneously distributed, straightforward comparison of a single individual
cross-sectional MSCT-CA image against a single individual cross-section of one
of these two reference methods (e.g. a straightforward 2D comparison) may
also lead to divergent results.

This book chapter describes a possible computer-assisted volumetric
method for quantitative plaque compositional measurements by MSCT-CA
which was tested on ex-vivo human coronary specimen data.

2. MSCT Procedure

The developments in coronary MSCT imaging are advancing fast. Until a few
years ago 4 and 16-slice scanners were the standard, today 320 slice scanners
capable of acquiring multi-phases of the heart cycle are available. However,
concerning the detection of coronary plaques and the evaluation of their
composition, nothing much has changed as the image resolution, e.g. the voxel
resolution did not change. So, those principles are overall still similar compared
to the previous generations of MSCT scanners.

Patients who underwent MSCT scanning were in sinus rhythm with a
heart rate <70 beats/min (spontaneously or after oral β-blockade). A bolus
of 120 ml of iodinated contrast medium (Visipaque 320, Amersham Health,
Little Chalfont, United Kingdom) was administered through an arm vein
(4 ml/s). Scan parameters were a detector collimation of 16 × 0.75 mm, a
table feed of 3.0 mm/rotation, a gantry rotation time of 0.42 second, and
a tube voltage of 120 kV. Datasets of reconstructed coronary vessels were
created at different points of the cardiac phase, e.g. 350-, 400- and 450 ms
before the next R-wave, using a retrospectively ECG-gated reconstruction
algorithm (Siemens, Forchheim, Germany). This algorithm uses data of a
single heartbeat obtained in half gantry rotation time resulting in a temporal
resolution of 188 ms. Datasets reconstructed within the middle- and later
phase of diastole provided nearly motion-free image quality. All MSCT datasets
were uploaded to an MSCT-Picture Archiving and Communication System
(CT-PACS).
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Fig. 1. The CT Hounsfield scale, air is assigned a value of −1000, and bone +3000. The
grayscale color corresponding HU values, depending on the window setting selected.

3. Coronary Plaque Segmentation

3.1. MSCT-CA Image Processing

MSCT identifies different human tissues by their various ability to absorb X-ray.
Attenuation variability measured in Hounsfield Units (HU) is given by:

HU = µtissue − µwater

µwater
· 1000 (1)

Where µwater and µtissue are the linear attenuation coefficients of water and tissue
of interest. Next Hounsfield scale is converted to values of greyscale (Fig. 1).
Changes of these regions are larger than 256 values, which makes it impossible
to visualize all values of grayscale simultaneously on a computer display. Images
are generated by the defined window of HU values.

Parameters of window are described using the terms center (L) and a width
(W). In this way, referring to the brightness (center) and to contrast (width)
of the image. Frame image sets range: from L − 1/2 W to L + 1/2 W.

All pixels of the image smaller than L − 1/2 or larger L + 1/2 are either
white or black.

The figure below (Fig. 2) shows the same image, but displayed with
different parameters for L and W. There is a noticeable change in image
brightness and contrast.

Dense tissue attenuates X-rays much more compared to softer tissues and
is displayed as bright structures identifying the so-called high HU values.

Standard coronary plaque compositional measurements by MSCT-CA
is often performed by retrieving absolute HU values at a limited number
of positions within a coronary plaque at a typical individual cross-sectional
location, mostly with the largest visible amount of plaque, within the coronary
vessel. This makes it difficult to derive a comprehensive overview of the
coronary plaque in the complete affected region of interest. The proposed
method in this chapter derives the total plaque composition from the HU
distribution in an arbitrary coronary plaque segment.
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Fig. 2. These three images are of the same section, viewed at different windows settings.
(a) a window center of 140 and a window width of 900, (b) a window center is 140 and a
window width 700 and (c) a window center 240 and a window width 700 Hounsfield units.
This enables details of plaque in coronary vessel.

After the MSCT scan the image data were stored in the DICOM format
onto a DVD, today it is stored onto a picture archiving and communication
system (PACS). From the MSCT-CA scanned volume, the coronary arteries
can be semi-automatically extracted by dedicated vessel extraction software
(MSCT Extractor, CURAD BV, Amsterdam, Netherlands)8 (Fig. 3), which
allows one to present the data in a similar fashion as if performing a pullback of
a coronary catheter such as intravascular ultrasound (IVUS) or optical coher-
ence tomography (OCT). Using this approach, longitudinally reconstructed
coronary vessels (L-Views) originating from different imaging modalities can
be simultaneously displayed for accurate comparison and matching such as
IVUS and/or OCT.16,17

3.2. Quantitative MSCT-CA and Validation

The golden reference method to quantify coronary plaques has been up until
today IVUS. Therefore to validate the MSCT-CA quantitative analysis method,
there is a need to perform the analysis of the two different modalities as similar
as possible. Quantitative IVUS analyses are mostly performed on longitudinal
reconstructed L-views and the best match of the MSCT derived coronary
vessel data to compare to intracoronary imaging methods is to perform a
similar analysis. This can be achieved by preparing the MSCT data so that
a sort of “virtual” IVUS pullback can be performed extracting the vessels and
regions of interests (ROI) by dedicated software algorithms. Each ROI was
extracted from the 3D MSCT-CA dataset by semi-automated vessel extraction
software (CURAD) (Fig. 3 A–D). Matching was performed by identifying side-
branches visible in both datasets (e.g. MSCT-CA and IVUS). After extraction,
the ROI was visualized, similarly to the IVUS L-mode views. This allows
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Fig. 3. Panels A–D show the MSCT coronary vessel extractor interface. In panel A, after
loading the DICOM data from DVD or from the PACS a three-dimensional (3D) reconstruction
is created automatically. The line is the later extracted virtual IVUS catheter path. The individual
original MSCT-CA cross-sectional images can be viewed in panel B, which can be scrolled up
and down to view the other cross-sections. Panel C, shows a reconstructed cross-sectional view
of the vessel, in this case a right coronary artery RCA and its surrounding tissue, perpendicular to
the virtual IVUS path. After identification of one point in the center of the coronary lumen and
by giving a direction (by example from distal to proximal), the software automatically extracts
the centerline of the contrast-enhanced coronary lumen. The detected centerline is visualized in
the 3D reconstruction by the white line with its control points (presented as dots). Those can
be interactively corrected if necessary (by example in areas of heavy calcification). Finally, the
vessel is extracted from the dataset and visualized similar to IVUS, as presented in panel D.

direct comparison of the two imaging modalities onto one individual computer
display for accurate matching. Furthermore, errors introduced by artificially
straightening of the vessels in the L-views are now avoided as the same analytic
method is applied for both modalities. Previous research showed that this
method decreases volumetric measurement errors by ±5%.18 However, there
are still motion induced artifacts which are caused by possible breathing of the
patient during the MSCT scan. During the extraction procedure, the MSCT-
CA image quality was qualitatively scored as poor = multiple breathing artifacts,
moderate = 1 or 2 breathing artifacts, good = no artifact or a breathing artifact
in a region outside of the ROI.
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For further quantitative analyses, dedicated software was applied
(CURAD).17 At first, manual identification was applied for the lumen-intima
interface and the adventitia-fat boundary in the MSCT data. After the ROI’s
were matched between the two modalities, the MSCT-CA derived segments
were qualitatively scored for the amount of calcium presence as follows: none
= no calcification, little = some spots, moderate = < half of the ROI calcified,
high = half to > half calcified and very high = complete calcification.

An automated lumen detector algorithm semi-automatically detected the
lumen-intima interface, and this algorithm is described in detail elsewhere.17

Briefly, this automated-lumen-detector applies an edge-detection method,
using a digital Deriche filter. This filter calculates the gradient of the image
while applying a smoothing operator to the data in such a way that possible
presence of noise is reduced and that the true boundaries are enhanced. The
subsequent edge-thinning and edge-linking method exploits the continuity of
the longitudinal contours as well as knowledge of the gradient directions of
the structure boundaries of interest. In calcified areas, the lumen contour was
adjusted in L-views by interpolation of the contour between the last distal
non-calcified lumen border and the most proximal non-calcified lumen border.
This protocol was followed to minimize the blooming effect of calcium on
MSCT images with concern to luminal measurements. Unfortunately, this
automated edge-detection cannot be used to identify the adventitia-fat border
in MSCT-CA images. This was therefore only applied for lumen detection in
addition to manually performed measurements. The standard window- and
level-settings used during the MSCT-CA acquisition were also applied in the
manual analyses. However, the investigators were allowed to alter these settings
for the quantification process.

3.3. Results of QMSCT-CA Validation

Applying the above-described methodology, the results in a validation study
were good and showed that contrast enhanced QMSCT-CA allows repro-
ducible measurements of coronary artery dimensions.8 When compared to
IVUS, the current reference method for coronary plaque quantification, a
systematic underestimation was found for both lumen- and vessel dimensions.
However, for plaque measurements this underestimation was ruled out,
although the regions of agreement are somewhat wide. It was also found that
motion artifacts and amount of calcification did not affect the reproducibility.
Most respirations motion artifacts occurs mostly in parts of the scan near the
distal sections of the coronaries and will be diminished in the newer scanner
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types capable of acquiring dynamic MSCT-CA images. The fact that calcium
also did not significantly influence the results could have been caused by the
approach to minimize the effects of calcium on the quantitative measurements.

Therefore, other possible causes must be considered. A possible explanation
for the smaller absolute differences of the vessel dimensions and larger
differences of the lumen dimensions is that the accuracy of MSCT improves
when more voxels are included in a larger area. Since the voxels at (sharp)
interface borders have diminished intensity, the radius measurement is on
average underestimated by half a voxel size. For 16-slice CT scans, the voxel
size is approximately 0.6 ∗ 0.6 ∗ 0.6 mm. Consequently, a lumen diameter of
3 mm results in an area measurement underestimation of about 50%, compared
to 30% for a vessel of 5 mm. Another factor, which could have caused the larger
lumen diameters as measured by IVUS, is the injection of isosorbide dinitrate
before the IVUS examination to prevent possible coronary spasms. A 10%
increase in lumen surface area has been described after injection of vasodilators,
although in diseased vessels this could be considerably less.19,20 Furthermore,
in IVUS image data the vessel border is taken at the external elastic membrane
(EEM). In contrast within MSCT-CA the vessel border will be most likely the
adventitia-fat border, since this border has theoretically the largest HU-value
difference in the outer vessel region. This could possibly result in a systematic
deviation (e.g. an overestimation of plaque dimensions by QMSCT-CA). The
exact magnitude of this deviation is still unknown.

The fact that the intra- and the inter-investigator reproducibility results are
better in the matched ROI’s than in the total extracted coronary segments by
QMSCT-CA, is most likely caused by the fact that the matched ROI’s were
mostly found in the proximal part of the coronary vessels, including larger
lumen-, and vessel areas in which QMSCT-CA has a higher sensitivity and
accuracy as compared to more distal and thus smaller coronary dimensions.
There is also a remarkable difference in the outcome of the intra- and inter-
observer variability measurements in the lumen volume detection. This could
have been caused by a learning effect.

4. MSCT-CA Plaque Composition

4.1. MSCT Derived Tissue Component Information

Identification and quantification of plaque composition are important prog-
nostic indicators in patients with suspected CAD.

The HU scale is used to identify different human tissues. Softer tissue,
as by example lipids do have a low HU value (around zero) and calcium at
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the other end of the tissue spectrum shows values >200 up to 800. Calcium
is also often presented in coronary plaques and is a predictor of severity of
the atherosclerotic process, although there is still large scientific debate if it
is a predictor of vulnerability or stabilization of the plaques. Also IVUS is
capable of identifying human coronary plaque components, although limited
and is identified mostly qualitatively by “soft”, “fibrotic” and “calcified” and is
therefore the most used reference imaging methodology to compare/validate
MSCT derived coronary plaque composition measurements methods.16,21 Of
course, there are much more of these studies published of which some are
discussed in more detail in the next sub-chapter.

There are two major possible factors which potentially could affect plaque
compositional measurements by MSCT and these are: (1) the applied convo-
lution kernel when extracting the MSCT data from the scanner and translate
it into the DICOM image format, and thus to grey values, to store it on the
DVD’s or PACS and to prepare it for further processing and analysis,22 and
(2) even more importantly, the used contrast HU levels are influencing the
absolute HU levels of the coronary plaque as well as the identification of the
lumen border when segmenting the image to identify the plaques.16 These two
very influential parameters have been thoroughly evaluated and this validation
is described in Chapter 4.2.

4.1.1. Literature overview

Feasibility and validation studies of QMSCT-CA have been reported5,12,23–27

as well as those evaluating coronary plaque composition based on HU
Hounsfield unit distribution.5,9,28 However, most of these studies (Table 1)
were performed with limited software tools and/or validation was performed
not always using histology, the golden reference method to assess tissue
composition, but by cross-referencing their new methods to another limited
method with respect to assessment of tissue composition such as IVUS.9

If histology is used as reference method then one of most difficult tasks is
the localization of the acquired histology sections with respect to their location
before they were acquired within the MSCT-CA image data. A direct visual
1-to-1 comparison of the reconstructed cross-sectional images from the MSCT-
CA data to the histology sections is impossible due to the large differences
in image resolution. Therefore, OCT, with its excellent image resolution,
lateral approximately 7 µm (resembling the one from histology), and in-plane
approximately 5 µm, was applied to act as the link between the two modalities.21

In addition, the OCT imaging catheter is also very small, certainly with respect
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Table 1. Literature overview.

Authors Title Journal Year

Miszalski-
Jamka
et al.29

The composition and extent of coronary
artery plaque detected by multislice
computed tomographic angiography
provides incremental prognostic value in
patients with suspected coronary artery
disease.

Cardiovasc Imaging
28:621–631

2012

Pundzuite
et al.30

Assessment with multislice computed
tomography and gray-scale and virtual
histology intravascular ultrasound of
gender-specific differences in extent and
composition of coronary atherosclerotic
plaques in relation to age

Journal of the
American College
of Cardiology
105:480–486

2010

Bruining
et al.21

Compositional volumetry of non-calcified
coronary plaques by multislice computed
tomography: An ex vivo feasibility study.

Eurointervention
5:558–564

2009

Bruining et al.8 Reproducible coronary plaque quantification
by multislice computed tomography.

Catheter Cardiovasc
Interv.
69:857–865

2007

Cademartiri
et al.22

Influence of convolution filtering on coronary
plaque attenuation values: observations in
an ex vivo model of multislice computed
tomography coronary angiography

Eur Radiol
17:1842–1849

2007

De Weert
et al.28

In Vivo characetrisation and quantification
of atherosclerotic cartoid plaque
components with multidetector computed
tomography and histopathological
correlation

Arteriosclerosis,
Thrombosis, and
Vascular Biology.
26:2366–2372

2006

Leber et al.9 Quantification of obstructive and
nonobstructive coronary lesions by 64-slice
computed tomography

Journal of the
American College
of Cardiology
46:147–154

2005

Cademartiri
et al.16

Influence of intracoronary attenuation on
coronary plaque measurements using
multislice computed tomography:
observations in an ex vivo model of
multislice computed tomography coronary
angiography

Eur Radiol
15:1426–1431

2005

Leber et al.5 Accuracy of multidetector spiral computed
tomography in identyfing and
differentiating the composition of coronary
atherosclerotic plaques

Journal of the
American College
of Cardiology
43:1241–1247

2004

Schoeder
et al.27

Accuracy and reliability of quantitative
measurements in coronary arteries by
multi-slice computed tomography:
Experimental and initial clinical results.

Clinical Radiology
56:466–474

2001



August 8, 2014 9:28 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch01 page 12

12 E. Pociask, K. Proniewska and N. Bruining

to an IVUS catheter, avoiding the possible risk of altering the geometry of the
artery lumen, by dilating the lumen, in severe lesions with narrow lumens.

In many instances a rough qualitative scoring system was developed and the
image-based gated IVUS technology Intelligate� used in our institute allows a
comparison between MSCT-CA and IVUS images, with smooth L-mode views
of the coronaries without motion artifacts, hence providing more consistent
and reproducible results (an image can be found in the discussion section).
Furthermore, it has been reported that ECG-gated QCU yields significantly
different volumetric results than non-gated QCU.31 The matching of the
coronary ROI’s based on the identification of side-branches in both image
modalities on a single computer screen provides an optimal set-up. A ROI-
based analysis that uses side-branches, which are unambiguously identifiable
landmarks, must result in a more accurate plaque volume assessment than
measurements of a limited stack of non-ECG-gated single two-dimensional
cross-sections.

4.2. Quantitative MSCT-CA Plaque Composition
Measurements

As described above, most plaque compositional methods are using absolute
cut-off or threshold HU values to identify the three defined basic tissue types:
(1) soft, (2) hard and (3) calcium. However as shown by Cademartiri et al.16

this is not appropriate as the HU value of the contrast, which easily could
be around the same levels as expected from the tissue components in the
coronary plaques, influences the absolute HU values of the coronary plaque
adjacent to the coronary lumen. This could only be overcome by imaging the
coronary arteries without contrast, however, such a scan makes it impossible
to identify the coronary lumens in a 3D MSCT dataset. An ex-vivo explanted
coronary artery study, with histology as reference method, showed this very
well (Fig. 4).8

The authors of this study suggested to identify also three regions, as similar
to the other studies, but using the Hounsfield units distribution,8 which is
independent of the absolute HU value distribution. It showed that the influence
of the use of contrast agents must be evaluated. These are needed to visualize
the coronary arteries in-vivo and have an effect on the plaque HU distribution
(Fig. 5).

The HU value distributions of the voxels within the segmented coronary
plaque were calculated for each reconstructed cross-sectional image and the 3D
sub-segments. The resulting histograms typically show a Gaussian distribution,
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Fig. 4. Panel A shows a cross-section with low HU values displayed as light gray (between 0–
150) and higher values as darker grey (between 150–330) and calcium as white (>330) Panel C.
Panel B shows and longitudinal view of an explanted specimen were between the horizontal lines
the coronary plaque is segmented.

depends strongly on the administered contrast concentration which is shown by
elevation at right hand side (Fig. 5B). The peaked distribution was subdivided
into two parts comprising the same HU range. “Soft tissue” was determined
as belonging to the left area (relatively lower HU values) and “hard tissue” to
the right area (relatively higher HU values). The voxels containing HU values
in the high HU tail were identified as calcium.

This complies with the results of Cademartiri et al.16 who found a nearly
linear relation of the measured HU values in a plaque as a function of luminal
contrast. Consequently, the plaque HU distribution broadens with increasing
luminal contrast and shows more structure. Although absolute HU values
should therefore be used with caution, the discriminating power of the HU
distribution seems to improve by the luminal contrast. This is supported
by received result that the contrast-enhanced scan shows a closer match to
histology than the saline scan. The mechanistic details of this contrast influence,
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Fig. 5. Panels A and B show the Hounsfield unit (HU) distribution for the total plaque volume
of the coronary specimen with no contrast (a) and medium contrast levels (b). Panels C and D
are showing also the HU distribution with saline and medium contrast conditions but now for 5
sub-segments within the coronary plaque. These sub-segments are presented in the longitudinal
reconstructed view of Fig. 4B.

taking into account scanner resolution, applied CT reconstruction algorithms
and convolution kernels needs to be further explored.

5. Discussion

The different studies show the feasibility of volumetric plaque tissue composi-
tion analysis by MSCT-CA. However, it is easy to determine on hand calcium
at one side and non-calcified tissue components on the other side (Fig. 6). It
is however, much more challenging to identify the other tissue types which are
non-calcified such as lipids, necrotic core and more fibrotic tissues.

In contrast, other MSCT-CA plaque compositional studies reported mostly
disappointing results.5,6,13,15 The deviation in outcomes could have been
caused by application of different methods. MSCT-CA imaging of a rapidly
moving coronary artery in-vivo causes much more possible artifacts than
ex-vivo imaging of a coronary specimen. Furthermore, most other studies
are applying IVUS as reference method, which presents plaque compositional
results differently than histology, making comparison of the different studies
difficult. Also, and maybe even more importantly, most of these studies applied
a limited MSCT-CA plaque compositional measurement method, by measuring
manually HU values at a very limited number of positions within a coronary
plaque at a given individual cross-sectional location in the coronary vessel.
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Fig. 6. Panel A shows a reconstructed cross-sectional image of a calcified segment of the
coronary artery of which the longitudinal reconstructed view (L-view) is presented in panel B.
In panel C, a cross-sectional intravascular ultrasound image is presented at approximately the
same position as panel A. The calcium causes a so-called acoustic shadow which is visible from
12 to 3 o’clock in panel A in which the asterisk shows the shadow. The thick white lines in both
panels B and D identifies the same coronary segment of interest in both MSCT (panel A) as well
as in the IVUS reconstruction (panel D).

Furthermore, they did not take into account the influence of the administered
contrast medium.16

Another possible cause of error in the other studies could be an erroneous
identification (e.g. segmentation) of the plaque since correct delineation of the
boundaries in an in-vivo situation is difficult. The coronary plaque composition
can be determined from the HU distribution. The choice of the definition of
three sub-classes of tissue components (e.g. soft, hard and calcium) is perhaps
rather crude and has limitations, however, the commonly used IVUS derived
compositional techniques also show only a limited number of different tissue
components.32,33 In-vivo validation of these approaches most likely will be
performed by using IVUS as reference method and derived compositional
techniques such as virtual histology33 and/or echogenicity.34

6. Future Developments

This chapter focuses on the feasibility to derive quantitative tissue composition
measurements from the plaque HU distribution and shows the first steps
towards further development of the method for clinical use. An in-vivo plaque
segmentation method and consequently a plaque dimensional measurement
method is clinically necessary.8 Good correlations with quantitative IVUS was
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found. However, tracing both the luminal- and external vessel boundaries
in-vivo is far more difficult due to artifacts caused by the cardiac and respiratory
motion of the patient. The reproducibility of the proposed methods depends
on the accuracy of the delineation of the plaque within the original MSCT-
CA images. Previous work showed that the reproducibility for dimensional
MSCT-CA measurements was reasonable using previous generation scanners
and with the current rapid technological developments of the MSCT-CA
scanners, which are much faster in acquisition, reducing motion artifacts, and
with increasing imaging resolution, the reproducibility is expected to increase.8

This, although more research is necessary, could provide the opportunity to
study plaque compositional changes under influence of new treatment methods
non-invasively applying the proposed method.

Although MSCT-CA has a lower image resolution than IVUS, the results
of these studies indicate that when significant plaque burden exists, its com-
position can be measured from the HU distribution. Definition of more tissue
sub-classes will be the subject of further research when scanner technology
improves (e.g. higher spatial resolution).

7. Conclusions

Assessment of coronary plaques is currently performed mostly invasively.
Follow-up examinations thus require additional angiography with subsequent
risks and discomfort to the patients. A non-invasive imaging procedure such as
MSCT-CA could therefore be a major step forward in the research of CAD.
MSCT-CA also has the advantage over IVUS that the complete coronary artery
tree is visualized. However, there is still need for more in-depth evaluations and
computer assisted analyses methods. Furthermore, one great concern about the
use of MSCT-CA imaging still remains — the radiation exposure. This will be
significantly reduced by using new technologies in the future.35
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Iterative Positron Emission Tomography (PET) reconstruction computes projections
between the voxel space and the LOR space, which are mathematically equivalent
to the evaluation of multi-dimensional integrals. These integrals are elements of the
System Matrix (SM) and can be obtained either by deterministic quadrature or Monte
Carlo (MC) methods. Due to the enormous size of the SM, it cannot be stored but
integral estimation should be repeated whenever matrix elements are needed. In this
paper we show that it is worth using random SM estimates, because this way errors
caused by the projectors of different iteration steps can compensate each other, and
do not accumulate to unacceptable values, which can happen in case of deterministic
approximation. MC quadrature, however, introduces a random noise in the iteration
process, which will not be convergent but iterated values will fluctuate around the real
solution. We also propose methods to reduce the scale of this fluctuation and force the
iteration to concentrate on the real solution.

1. Introduction

In Positron Emission Tomography (PET) we need to find the spatial positron
emission density.9 At a positron–electron annihilation, two oppositely directed
511 keV photons are generated. As these photons fly in the medium, they might
collide with the particles of the material before they leave the tomograph or get
captured by the detectors. During such collisions the photon may get absorbed
or scattered either coherently or incoherently, but in [100, 700] keV energy
range typical in PET, only incoherent, i.e. Compton scattering is relevant.

A PET/CT collects the numbers y = (y1, y2, . . . , yNLOR ) of simultaneous
photon incidents in detector pairs, also called Lines Of Responses or LORs,
and obtains the material map of the examined object by a CT scan. The
output of the reconstruction method is the tracer density function x(�v), which

21
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is approximated in a finite function series form:

x(�v) =
Nvoxel∑
V =1

xV bV (�v) (1)

where x = (x1, x2, . . . , xNvoxel) are the unknown coefficients called voxel values
and bV (�v) (V = 1, . . . , Nvoxel) are pre-defined basis functions, which can be
piece-wise constant, tri-linear or even of higher order.3

The correspondence between the coefficients of the tracer density function
(voxel values) and the LOR hits is established by the system sensitivity T (�v → L)

defining the probability that a radioactive decay happened in �v is detected by
LOR L .

The Maximum Likelihood Expectation Maximization (ML-EM) scheme
searches tracer density coefficients x1, . . . , xNvoxel that maximize the probability
of measurement results y1, . . . , yNLOR by an iterative algorithm,10 which alter-
nates simulations, called forward projections, and corrective steps based on the
computed and measured values, which are called back projections.

Forward projection computes the expectation value of the number of hits
ỹ = (ỹ1, ỹ2, . . . , ỹNLOR ) in each LOR L :

ỹL =
∫

V
x(�v)T (�v → L)dv =

Nvoxel∑
V =1

ALV xV (2)

where V is the domain of the reconstruction, and ALV is the System Matrix
(SM):

ALV =
∫

V
bV (�v)T (�v → L)dv. (3)

Taking into account that the measured hits follow a Poisson distribution,
after the forward projection of iteration step n, the ML-EM scheme executes a
back projection correcting the voxel estimates based on the ratios of measured
yL and computed ỹ (n)

L LOR values:

x (n+1)

V = x (n)

V ·
∑

L ALV
yL

ỹ(n)
L∑

L ALV
, (4)

where

ỹ (n)

L =
Nvoxel∑
V ′=1

ALV ′x (n)

V ′

is the result of forward projecting the current estimate. With a more compact
matrix notation, we can also write

x(n+1) = 〈x (n)

V 〉 · ĀT · y
A · x(n)

(5)
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where 〈x (n)

V 〉 is a diagonal matrix of current voxel values,

ĀLV = ALV∑
L ′ AL ′V

is the normalized SM, and vector division is interpreted in an element-wise
manner.

If the iteration is convergent, then this iteration converges to a fixed point
x∗ where voxel values are not modified by this formula, i.e. the iteration solves
the following equation:

ĀT · y
A · x∗ = 1.

In order to study the convergence properties, let us express the activity
estimate in step n as x(n) = x∗ + �x(n), i.e. with the difference from the fixed
point. Substituting this into the iteration formula and replacing the terms by
first order Taylor’s approximations, we obtain6:

�x(n+1) ≈
(

1 − 〈x∗
V 〉 · ĀT ·

〈
yL

ỹ2
L

〉
· A

)
· �x(n)

where
〈

yL
ỹ2
L

〉
is a diagonal matrix of ratios yL

ỹ2
L
. The iteration is convergent if matrix

T = 1 − 〈x∗
V 〉 · ĀT ·

〈
yL

ỹ2
L

〉
· A

is a contraction.

2. Error Analysis

To compute forward and back projections, we should consider all points where
positrons can be generated and all possible particle paths that can lead to an
event in LOR L . A particle path can be described by a sequence of particle–
matter interaction points, thus potential contribution T (�v → L) of positron
emission point �v to LOR L is a high-dimensional integral, so are the expected
LOR hits in Eq. (2) and SM elements in Eq. (3).

In tomography the size of the SM is enormous since both Nvoxel and NLOR

may exceed 108, thus matrix elements cannot be pre-computed and stored,
but must be re-computed each time when a matrix element is needed. The
standard ML-EM reconstruction scheme is based on the assumption that SM
elements and expected number of hits ỹL can be precisely computed. However,
this is not the case since SM computation involves numerical quadrature.
Deterministic quadrature results in estimations of deterministic error while MC
methods result in random values involving random approximation error. To
show why MC methods offer a better solution, we first analyze the application
of deterministic approximations.
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2.1. Deterministic Approximation

Deterministic approximation makes a similar error in each iteration step, and
errors may accumulate during the iteration. To formally analyze this issue, let
us first consider that SM estimations may be different in forward projection
and back projection, and due to the numerical errors, both differ from exact
matrix A. Let us denote the forward projection SM by F = A +�F where �F
represents its calculation error. The back projector matrix B also differs from
the real SM, so is the normalized back projector

B̄LV = BLV∑
L ′ BL ′V

from the real normalized SM Ā. The approximate normalized back projector
is B̄ = Ā + �B̄ where �B̄ is the error.

The ML-EM iteration scheme using the approximate matrices is

x(n+1) = 〈x (n)

V 〉 · B̄T · y
F · x(n)

. (6)

The question is how the application of approximate matrices modifies the
fixed point x∗ of the iteration scheme using the exact SM. Let us express
the activity estimate in step n as x(n) = x∗ + �x(n). Substituting this into the
iteration formula and replacing the terms by first order Taylor’s approximations,
we obtain:

�x(n+1) ≈ T · �x(n) + 〈x∗
V 〉 · (�b − �f )

where

�f = ĀT ·
〈

yL

ỹ2
L

〉
· �F · x

is the error due to the forward projection estimation, and

�b = �B̄T · y
ỹ

is the error due to the back projection estimation.
The limiting value will be different from x∗ due to the errors of forward

and back projections:

�x(∞) =
(

AT ·
〈

yL

ỹ2
L

〉
· A

)−1

· (
�b − �f

)
. (7)

According to this formula, matrix
(
AT ·

〈
yL
ỹ2
L

〉
· A

)−1
expresses error accumula-

tion, i.e. how the error made in a single step is scaled up during the iteration.
If AT ·A is far from the identity matrix, or many LORs have small or even zero
measured value yL , then error accumulation can be prohibitively large even if
the error of a single step is acceptable.



August 8, 2014 9:28 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch02 page 25

On-The-Fly Monte Carlo Methods In Iterative Pet Reconstruction 25

2.2. Random Approximation

The error accumulation problem of deterministic approximations can be
attacked by applying Monte Carlo quadrature to re-compute projections,
because an unbiased Monte Carlo quadrature has a random error of zero
mean, so errors made in different iteration steps can hopefully compensate
each other. In this case, projector matrices F(n) and B̄(n) are realizations of
random variables and have a different value in each iteration step. Note that as
we have to re-compute the matrix elements anyway, the costs of repeating the
previous computation or obtaining a statistically independent new estimation
are the same.

If projections are computed with unbiased estimators, then the expectations
of the random projection matrices will be equal to the exact ones:

E[F] = A, E[B̄] = Ā.

Using a random approximation instead of a deterministic approximation of
expected LOR value ỹL , we obtain a random variable ŷL that only approximates
the expected value. This random variable depends on the pseudo-random
numbers used to compute the MC estimate, thus it can change in every iteration
step.12 This random and varying error makes the iteration not convergent but
the iterated value will fluctuate around the exact solution. To get an accurate
reconstruction, the center of the fluctuation should be identical or close to the
real solution and its amplitude should be small when actual estimate x is close
to fixed point x∗.

2.2.1. Center of the fluctuation

The center of the fluctuation is the real solution if iterating from the fixed
point, the expectation of executing a forward and a back projection for the real
solution is still the real solution, i.e.

E
[
B̄T · y

F · x∗
]

= ĀT · y
A · x∗ .

Unfortunately, this requirement is not met even by unbiased projectors.
If the forward projector and the back projector are statistically independent,

then the expectation of their product is the product of their expectations:

E
[
B̄T · y

F · x∗
]

= E[B̄T ] · E
[ y
F · x∗

]
= ĀT · E

[ y
F · x∗

]
. (8)

Note that the second factor is generally not equal to y
A·x even for unbiased

forward and back projectors since the forward projection result is in the denom-
inator, thus its non-linear, reciprocal function determines the expectation value:

E
[ y
F · x

]
	= y

E [F] · x
= y

A · x
.
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Fig. 1. Expected LOR hit number ỹL is approximated by random samples ŷL , which have
mean ỹL . These random samples are shown on the horizontal axis. Back projection computes
ratio yL/ŷL to obtain voxel updates, which is a non-linear, convex function, resulting in voxel
values that may be much higher than the correct value yL/ỹL . These overshooting samples are
responsible for a positive bias and occasionally cause a large random increase in the voxel value.

To examine this for a single element of the vector, let us consider the
expectation of the ratio of measured and computed hits, yL/ŷL . According to
the relation of harmonic and arithmetic means, or equivalently to the Jensen’s
inequality taking into account that 1/ŷL is a convex function, we obtain:

E
[

yL

ŷL

]
≥ yL

E
[
ŷL

] = yL

ỹL
. (9)

This inequality states that yL/ỹL has a random estimator of positive bias.14

An intuitive graphical interpretation of this result is shown by Fig. 1. Here
we assume that the iteration is already close to the fixed point, so different
estimates are around the expected detector hit corresponding to the maximum
likelihood. Note that the division in the back projection may amplify forward
projection error causing large fluctuations, especially when ỹL is close to zero.

This bias can be tolerated if the forward projector has low variance, thus the
generated values ŷL are in a small interval where the application of a non-linear
reciprocal function can be well approximated by a linear one. Another approach
is the modification of the ML-EM scheme in order to correct the distorted
sample distributions to restore unbiasedness even after the application of the
reciprocal function.14

If the forward projector and the back projector are not statistically
independent, even the factorization of Eq. (8) fails in addition to the problem
of non-linear operations. From the point of view of having the random process
oscillating around the real solution, we can conclude that the forward projector
and the back projector should preferably be independent and the forward
projector should have small variance.
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2.2.2. Amplitude of the fluctuation

The second requirement of accurate reconstruction is that the fluctuation
should have small amplitude, i.e. the variance of applying a complete iteration
step is small, especially when the process is close to the fixed point.

To meet this requirement and get small variance, the following factors need
to be taken into account. The forward projector should be of small variance
especially where the LOR value is small, because this LOR value will be the
denominator in the back projection formula. The slope of the 1/ŷL function is
−1/ŷ2

L , which scales up the variance of the forward projector especially when
ŷL is close to zero.

The variance of the back projector is included in the variance of the result
without any amplification. As the back projector matrix elements are in the
numerator and the forward projector matrix elements in the denominator of
Eq. (6), the variance can also be reduced if they are made correlated. When,
due to the random approximation of the forward projector a matrix element
is overestimated, and thus the corresponding LOR value in the denominator
gets greater than needed, the modified voxel value can be made more accurate
by simultaneously increasing the matrix element in the numerator, which
represents the back projector. So, from the point of view of the oscillation
amplitude, it seems advantageous to use the same projector for back projection
as used for forward projection of the same iteration step. Establishing such
a correlation is easy if the same algorithm is used to compute the forward
projection and the back projection, only the seed of the random number
generator should be set to the same value before back projection as was set
before forward projection of this iteration step.

2.2.3. Optimal randomization

Analyzing the mean and the variance of a single ML-EM step involving random
projectors, we noted that the accuracy of forward projection is more crucial than
that of the back projection. However, for the independence or correlation of
forward and back projectors, unbiasedness and low variance resulted in different
requirements. Unbiasedness prefers statistically independent forward and back
projectors, but low variance due to error compensation needs correlated
forward and back projectors.

Matrix elements are integrals of Eq. (2) where the integrand is a product
of source intensity x(�v) and scanner sensitivity T (�v → L), and the integration
domain is the path space where a “point” corresponds to a path of particles
from the emission to the absorption in the detectors. The variance of the MC
quadrature depends on the number and distribution of the samples and on the
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variation of the integrand.15 There are many possibilities to generate sample
paths, which differ in the direction of path building and also in whether roughly
the same number of samples is used for each LOR integral, or the sampling
process prefers some LORs to others and allocates most of the samples to the
preferred ones.

If natural phenomena are directly simulated, then annihilation points
are sampled proportionally to their emission density, and each sample path
is generated with its real probability and can cause a single hit. Thus, the
number of samples in LORs will be proportional to the expected values that
are computed. This method is called voxel driven.13 Voxel driven approaches
calculate different LORs with a similar absolute error. Voxel driven methods
are particularly efficient when the activity distribution has high variation, for
example, when the activity is concentrated in a few small point like features.
However, voxel driven methods can lose a lot of samples and can thus be
inefficient when the detector modules are seen just in a small solid angle from
the voxels, which is typically the case in human PETs.

LOR driven methods initiate computation at LORs and for each LOR, they
try to find contributing voxels. When roughly the same number of samples
are allocated for each LOR, their error depends just on the variation of their
corresponding integral. If the variation is proportional to the integrand, then
different LORs are computed with the same relative error. Note that LOR
driven methods build up paths indirectly and following directions that are
opposite to those of nature, starting at the detectors and finding the point
of emission just at the end of the exploration. Such indirect approach can
also be imagined as shooting virtual particles from detectors, that deliver
the contribution to their parents when they find active regions. LOR driven
methods are unable to concentrate on active regions but all samples will
contribute to some LOR, so these approaches are good at reconstructing
homogeneous regions and work well even if the detector modules subtend just
a small solid angle. Note that classical direct contribution calculation methods,
like Siddon’s11 or Joseph’s method,5 or Watson’s single scatter simulation16

fall into the category of LOR driven approaches. Another advantage of LOR
driven methods is that they are output driven in forward projection, which
means that output values can be computed independently of each other, which
improves the efficiency of parallel GPU implementations.8

Whether it is worth trading more bias for less variance, i.e. using correlated
projectors rather than independent ones, depends on the level of fluctuation.
This level can be very high when low contribution LORs are estimated with
similar absolute error as high contribution LORs. In the extreme case it can
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happen that a LOR value is approximated by zero in forward projection, which
results in an infinite fluctuation unless the matrix elements corresponding to
this LOR are also zero in back projection. Thus, voxel driven methods seem to
be better with correlated projectors, but LOR driven approaches prefer lower
bias provided by independent projectors.

3. Photon Tracing

Photon tracing is an MC approach that directly simulates physical phenomena.
In Photon Tracing, first annihilation point �v is sampled, then the paths of the
two annihilation photons are generated mimicking the free path length and
scattering in the real material. If annihilation points are sampled proportional
to the activity,2 then we have a voxel driven approach. A voxel driven approach
initiates

NV = xV NPT∑Nvoxel
V ′=1 xV ′

number of photons from voxel V where NPT is the total number of paths
initiated from all photons.

Although photon tracing builds up paths from the emission to the point of
absorption, we can consider it as a LOR-driven method if the same

NV = NPT

Nvoxel

annihilation sample points are allocated to each voxel, since this sampling does
not prefer some voxels to others and allocates roughly the same number of
samples to each LOR.

Sampling point �v in the voxel depends on the function series in Eq. (1).
If piece-wise constant basis functions are used, i.e. activity x(�v) is assumed to
be constant in each voxel and thus basis functions are box functions, then the
three Cartesian coordinates of �v are uniformly distributed independent random
numbers inside the voxel. In case of tri-linear interpolation or higher order
spline basis functions, we can take advantage of that these basis functions can
be obtained as the self convolution of box functions,2 i.e. a tent-like tri-linearly
interpolating basis function is the convolution of the box with itself, a quadratic
spline is the convolution of the tri-linear basis function and a box function, etc.
As the probability density of the sum of two independent random variables is the
convolution of the individual densities, samples can be generated with tri-linear
density by adding two random samples obtained with constant density, with
quadratic splines as adding three random samples of uniform distribution, etc.
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The paths of the two annihilation photons are obtained with scanner
sensitivity T (�v → L). To do this, an initial direction is drawn from uniform
distribution. Two photons are started from the annihilation point and their
free paths are sampled to find the photon–material interaction points. As these
photons fly in the medium, they might collide with the particles of the material.
The probability that collision happens in unit distance is the cross section σ. When
Compton scattering happens, there is a unique correspondence between the
relative scattered energy and the cosine of the scattering angle, as defined by
the Compton formula:

ε = 1
1 + ε0(1 − cos θ)

�⇒ cos θ = 1 − 1 − ε

ε0ε
,

where ε = E1/E0 expresses the ratio of the scattered energy E1 and the incident
energy E0, and ε0 = E0/(mec2) is the incident energy relative to the energy of
the electron.

The phase function, i.e. the probability density that the photon is scattered
from direction �ω to �ω′, is given by the Klein-Nishina formula18:

PKN(�ω · �ω′) ∝ ε + ε3 − ε2 sin2 θ.

The ratio of proportionality can be obtained from the requirement that this
is a probability density, thus integrating �ω′ for the directional sphere, we
should get 1.

When one of the photons leaves the detector or its energy drops below the
discrimination threshold, the photon pair is lost and no LOR is contributed.
If photons hit the detector surfaces of LOR L , the simulation of this path is
terminated and the affected SM element ALV is given a contribution equal
to 1/NV .

Photon tracing, as MC methods in general, results in random SM elements,
i.e. projections. The MC simulation is repeated in forward and back projections
in each iteration step. The correlation or independence between the forward
and back projections can be controlled by whether or not the seed of the pseudo
random number generator is reset between these projections. As stated, the
accuracy of forward projection is more important, therefore we propose two
techniques to increase the accuracy of forward projections without increasing
the number of samples, i.e. computation time.

4. Statistical Filtering

Recall that the classical ML-EM scheme works with two values in a LOR, the
measured value yL and its mean ỹL computed from the actual activity estimate.
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The expected value is a scalar determined by the activity, the measured value
is a realization of a random variable of Poisson distribution having mean ỹL .
Based on the concept of maximum likelihood estimation, the activity estimate
is found so that the joint probability of measured values given the expectations
obtained from the activity has a maximum.

This classical view should be altered and we should accept the fact that
expectation ỹL cannot be accurately computed, we can only get random samples
ŷL approximating the expectation. When a LOR is processed we have two
random samples: measured value yL and random estimate ŷL of its expectation.
Fluctuations of the iterated activity can be suppressed if we replace those
estimates ŷL that are unacceptable outliers by some robust estimate.

To detect whether the pair of measured value yL and expected value
approximation ŷL is acceptable or an outlier, we should check whether yL could
be a reasonable realization of a Poisson distributed random process of mean ŷL .

Given an observation yL , the confidence interval for mean ỹL with confi-
dence level 1 − α is given by the following fairly sharp approximation1,17:

F (yL) ≤ ỹL ≤ F (yL + 1)

where

F (yL) = yL

(
1 − 1

9yL
− zα/2

3√yL

)3

and zα/2 is the standard normal deviate with upper tail integral α/2. It means
that when our approximation of the expected value satisfies inequality

ŷL < yL

(
1 − 1

9yL
− zα/2

3√yL

)3

,

then we cannot be confident in this approximation and therefore we correct
it. We set zα/2 = 2.1 because it guarantees that ŷL = 0, which would lead to a
division by zero, is outside of the confidence interval if measured value yL ≥ 1.
This corresponds to 98% confidence.

When the current expected value approximation is out of the confidence
interval, we should replace it with an acceptable value or completely ignore this
LOR in this iteration step. We first try to substitute value ŷL by the average of
the approximations of this LOR in previous iteration cycles. Note that when the
algorithm is close to the converged state, the expected LOR hit does not change
too much, so averaging the previous estimates helps decrease the variance of
the estimator by trading variance to a small bias. We accept the average when
it is in the confidence interval. If even the average is out of the confidence
interval, then this LOR is skipped during back projection.
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5. LOR Space Blurring

The result of forward projection is the random estimation of LOR hits ŷL ,
which is usually an unbiased estimate having higher variance. As stated, low
variance LOR values are essential especially when the expectation is close to
zero. Thus, it is worth trading some bias for reduced variance. We can assume
that neighboring LORs get similar number of hits, thus variance can be reduced
by 4D spatial blurring, which means that each LOR value is replaced by the
average of neighboring LOR values.

6. Flat-land Results

We examine a simple flat-land problem describing a 2D PET where NLOR =
2115 and Nvoxel = 1024 (Fig. 2). The reason of the application of the flat-
land model is that the 2D planar case makes the SM of reasonable size, so the
proposed methods can be compared to ground truth solutions when the SM
is pre-computed and re-used in iteration steps (recall that this is not possible
in fully-3D PET because of the prohibiting size). In order to test scattering in
the flat-land model, the Compton law and the Klein-Nishina phase function
should be modified to be consistent with the planar case. This means that we

Fig. 2. 2D tomograph model: The detector ring contains 90 detector crystals and each of
them is of size 2.2 in voxel units and participates in 47 LORs connecting this crystal to crystals
being in the opposite half circle, thus the total number of LORs is 90 × 47/2 = 2115. The
voxel array to be reconstructed is in the middle of the ring and has 32 × 32 resolution, i.e.
1024 voxels. The ground truth voxel array has three hot squares of activity densities 1, 4, and
16 [Bq/voxel] and of sizes 82, 42, and 22. The voxel array is measured for 260 seconds tracing
5 · 104 photon pairs, resulting in the sinogram of the right image.
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use only the scattering angle θ and assume that photons remain in the flat-land
even after scattering. In 3D, a uniform random rotation around the original
direction is also involved, which is now replaced by a random mirroring of 0.5
probability, i.e. by a random decision whether or not θ is multiplied by −1.

The reference activity is a simple function defined by three hot rectangles
of Fig. 2. The voxel array is measured tracing 5 · 104 photon pairs by Monte
Carlo simulation, resulting in the sinogram of the right image.

The compared approaches are combinations of presented techniques. Path
samples can be allocated proportionally to the activity, when the method is
called voxel driven, and also uniformly, when the method is called LOR driven.
When the SM is computed only once without assuming anything about the
activity, and the same SM is applied in all forward and back projections, the
method is Deterministic. The Reference reconstruction is also obtained by a
Deterministic approach, but we took significantly higher number of samples
in this case. Note that not even the Reference reconstruction is perfect since
“measured values” have noise which prohibits ideal reconstruction.

In the Independent method the random number generator is not reset
during the iterative process and SMs of each forward and back projection are
built from scratch, so we can assume that they are statistically independent.
In the Correlated approach, a different random number generator seed is
taken in every iteration step, but in a single iteration the SM computations
of both forward projection and back projection are started from the same
seed, making the forward and back projections of an iteration correlated, but
different iterations independent. Filtered reconstruction means the application
of statistical filtering, and Blurred reconstruction involves LOR space blurring
after forward projection.

The L2 error curves are shown by Figs. 3 and 6 for voxel driven and LOR
driven methods, respectively, and Figs. 4, 5, 7, and 8 show the reconstructed
volumes. As the given tomograph model captures all events, here the voxel
driven method is more accurate. Thus, we used NPT = 104 and 5 · 104 MC
samples in the voxel driven method and NPT = 105 and 5 · 105 samples for the
LOR driven method, respectively. The SM of the Reference reconstruction is
obtained with 2 · 106 LOR driven samples.

Deterministic iteration, where the same matrix is used in all forward and
back projections, has unacceptably poor accuracy if the number of samples
is not particularly high. For voxel driven sampling, Correlated projectors
provide better solution than Independent projectors. Independent projectors
are significantly improved by either statistical filtering or blurring, but only
blurring helps Correlated projectors.
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Fig. 3. L2 errors of a voxel driven direct MC method.

Fig. 4. Reconstructions of the voxel driven method using 104 samples.
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Fig. 5. Reconstructions of the voxel driven method using 5 · 104 samples.
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Fig. 6. L2 errors of a LOR driven direct MC method.
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Fig. 7. Reconstructions of the LOR driven method using 105 samples.

Fig. 8. Reconstructions of the LOR driven method using 5 · 105 samples.

In case of LOR driven sampling, Correlated projectors are almost as bad
as Deterministic projectors due to the added bias. Here, blurring helps but
filtering does not. The Independent projector is unstable if fewer samples
are used. Interestingly, the initial convergence of the Independent projectors
is faster than that of the Reference solution but later they cause very large
fluctuations. The reason for faster initial convergence is that the convergence
speed is determined by the contraction of the approximated matrix T, which is
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increased by the replacement of many non-zero matrix elements by zero in
MC estimates. The high fluctuation caused by the Independent projector
is moderately reduced by blurring but is efficiently addressed by statistical
filtering. For higher sample numbers, Independent projectors are much better
than Correlated methods. We can also observe that Correlated projectors result
in noise free but blurred reconstructions while Independent projectors lead to
sharper but noisier reconstructed activities.

7. Application in Fully-3D Reconstruction

The proposed LOR space blurring and statistical filtering can be plugged in
any reconstruction algorithm that uses MC estimation during projections. As
LOR space is four dimensional, the size of the blurring filter quickly increases
with the number of considered neighbors. On the other hand, LOR space
blurring trades variance with bias, but cannot reduce both at the same time.
However, statistical filtering does not have these problems. It requires just a
small modification of the back projection before the ratio of the measured and
computed hit values are divided and has practically no added computational
cost.

We built the Filtered Independent scheme into a small animal PET
reconstruction application that is a part of the Tera-tomo package. We
modeled Mediso’s nanoScan PET/CT,7 which consists of twelve detector
modules of 81 × 39 crystals of surface size 1.12 × 1.12 mm2. To compare
the Filtered Independent iteration to the standard Independent iteration, we
took the Derenzo phantom with rod diameters 1.0, 1.1, . . . , 1.5 mm in different
segments. To obtain measured value yL , we assigned 5 MBq to the Derenzo,
and simulated a 100 sec long measurement with GATE,4 which mimics physical
phenomena and thus obtains the measured data with realistic Poisson noise.

The phantom is reconstructed on a grid of 1442 × 128 voxels of edge
length 0.23 mm. The projector involves both LOR driven and voxel driven
samples and combines them with multiple importance sampling.13 The LOR
driven method samples 9 discrete voxel points for each LOR. The voxel driven
method initiates 5000 paths altogether from the volume. The reason for using
so few sample paths is to emphasize the differences of not filtered and filtered
versions.

Figure 9 shows the L2 error curves of Independent iteration and the
application of statistical filtering, and also a slice of the reconstructed data
that is obtained with statistical filtering. Note that statistical filtering efficiently
removes higher fluctuation.
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Fig. 9. L2 error curves and reconstruction results obtained with statistical filtering.

8. Conclusions

This chapter examined why it is worth using MC estimates to compute
forward and back projections in iterative PET reconstruction. We also analyzed
the question whether forward and back projections should be statistically
independent or correlated and proposed two techniques to improve the
accuracy. These techniques are basically filtering, but statistical filtering operates
in the time domain while blurring in the spatial LOR domain.

We concluded that voxel driven methods are worth combining with cor-
related sampling while LOR driven methods are combined with independent
projections. In the future, we will examine how the benefits of both approaches
can be obtained. Additionally, we will also develop more sophisticated LOR
blurring methods and instead of applying the same kernel for all contributions,
we plan to increase the kernel size depending on the number of scattering
events occurred on the photon path.
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In dynamic MRI reconstruction, the problem is to recover the sequence given partially
sampled K-space of each frame. Traditionally, the reconstruction is offline. However
such offline reconstruction precludes application of these techniques where real-time
reconstruction is necessary, viz. image guided surgery, catheter tracking etc. To enable
such applications, there is an interest in online reconstruction of dynamic MRI. This
chapter reviews existing techniques in this area.

1. Introduction

Magnetic Resonance Imaging (MRI) is a versatile imaging modality. It is safe
and can produce very high quality, though not as good as far as image quality
goes. CT produces relatively good quality images but is not considered safe
owing to its ionizing radiation. On the other hand, USG is very safe but yields
very poor quality images. In spite of these advantages, the main shortcoming
of MRI is its relatively longer acquisition time. One of the major problems in
MRI, ever since its inception, has been to devise techniques to reduce data
acquisition times.

The problem of slow acquisition exists both for static and dynamic scans.
The issue is more pronounced for dynamic scans. Since the data acquisition
time is lengthy, the number of frames that can be acquired in a unit of time is
severely limited. If one wants to improve temporal resolution, there is a trade-
off in temporal resolution and vice versa. Given the current techniques, it is not
possible to produce high resolution scans that are able to capture fast transient
phenomena.

The only way to reduce scan time is by acquiring less data. But this poses
a challenge for reconstruction. Recovery from partially sampled K-space was
made possible by recent advances in Compressed Sensing (CS); CS based
methods can reduce the data acquisition times for both static1 and dynamic

41
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MRI.2,3 For dynamic MRI, CS exploits the spatio-temporal redundancies in
the sequence of frames in order to reconstruct it from partially sampled K-space.

Dynamic MRI sequences are mostly acquired for analysis, e.g. under-
standing brain excitation for functional MRI via BOLD signals. For such
applications, it does not matter if the reconstruction is offline. There is no need
to analyze MRI frames on-the-fly. Online MRI reconstruction is a challenging
area, and will have crucial applications in the future; mostly in image-guided
surgery. Even though the topic of discussion in this chapter is Online Dynamic
MRI Reconstruction, the large bulk of work in dynamic MRI is still offline.
Therefore, we will briefly discuss offline MRI reconstruction.

2. Offline Reconstruction

The dynamic MRI data acquisition model can be expressed succinctly. Let Xt ,
denote the MR image frame at the t th instant. We assume that the images are
of size N × N and T is the total number of frames collected. Let yt be the k-
space data for the t th frame. The problem is to recover all Xt ’s (t=1…T) from
the collected k-space data yt ’s. The MR imaging equation for each frame is as
follows,

yt = RFxt + η, define xt = vec(Xt ) (1)

Where R is the sub-sapling mask, F is the Fourier mapping from the spatial
domain to the frequency domain (K-space) and η is white Gaussian noise.

A typical CS approach2,3 employs wavelet transform for sparsifying the
spatial redundancies in the image and Fourier transform for sparsifying along
the temporal direction. This was a realistic assumption since both of them
worked on dynamic imaging of the heart where the change over time is smooth
and periodic, thereby leading to a compact (sparse) support in the frequency
space.

The data from (1) can be organized in the following manner,

Y = RFX + η (2)

where Y and X are formed by stacking yt ’s and xt ’s as columns respectively.
In both Refs. [2, 3], the standard CS optimization problem is employed to

reconstruct the dynamic MR image sequence from the k-space samples,

min
x

‖W ⊗ F1Dvec(X )‖1 subject to ‖Y − RFx‖2
2 ≤ ε (3)

where W ⊗ F1D is the Kronecker product of wavelet transform (for sparsifying
in space) and 1D Fourier transform (for sparsifying along temporal direction).
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In the original studies,2,3 the Kronecker product was not used; we
introduced it to make the notation more compact.

The 1D Fourier transform may not always be the ideal choice for sparsifying
along the temporal direction (if the signal is not smooth or periodic); in such a
case 1D wavelet transform can be used instead. Some other studies4–6 assumed
the image to be sparse in x − f space, i.e. the signal was assumed to be sparse
in I ⊗ F1D basis (where I is just the Dirac basis). In these studies, the emphasis
was on the solver for (3); they used the FOCUSS (FOCally Under-determined
System Solver)7 method for minimizing the l1-norm. However, in practice
any other state-of-the-art l1-norm minimization solver (e.g. Spectral Projected
Gradient L1 or Nesterov’s Algorithm) will work.

Some other studies8–11 either assumed the MR image frames to be spatially
sparse or were only interested in the ‘change’ between the successive frames.
These studies did not explicitly exploit the redundancy of the MR frames in the
spatial domain, rather they only applied a Total Variation (TV) regularization
in the temporal domain. The optimization problem is the following,

min
x

TVt (x) subject to ‖y − RFx‖2
2 ≤ ε (4)

where TVt = ∑N 2

i=1 ‖∇t xi‖ and ∇t denotes the temporal differentiation for the
ith pixel.

In essence the approach in Refs. [8–11] differs only slightly from
Refs. [4–6]. In Refs. [4–6] it is assumed that the signal is smoothly varying
over time, so that it is sparse in temporal Fourier transform. In Refs. [8–11],
temporal Fourier transform is not directly employed, but is assumed that the
signal is smoothly varying with time with only a finite number of discontinuities,
so that it will be sparse in temporal differencing domain.

There is yet another class of methods that reconstruct the dynamic MRI
sequence as a rank deficient matrix. In Refs. [12, 13], it is argued that the
matrix X is rank deficient, and can be modeled as a linear combination of very
few temporal basis functions. This is true because the columns of X, which
are formed by stacking the frames of the sequence are temporally correlation;
therefore X is a rank-deficient matrix. Based on this assumption, Refs. [12, 13]
proposed solving the inverse problem (2) as follows,

min
X

‖X ‖∗ subject to ‖Y − RFX ‖2
F ≤ ε (5)

where ‖.‖∗ denotes the nuclear norm of the matrix and ‖.‖F denotes the
Frobenius norm of the matrix.

For recovering a rank deficient solution, one ideally has to minimize the
rank of a matrix subject to data constraints. However, minimizing the rank
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is an NP hard problem. Thus, theoretical research in this area proposed
substituting the NP hard rank by its tightest convex surrogate the nuclear
norm. Following these studies, the inverse problem (2) is solved by nuclear
norm minimization (5).

We have discussed two approaches for offline dynamic MRI reconstruc-
tion — sparsity based techniques and rank-deficiency exploiting methods.
Later studies Refs. [14–17] improved upon these individual approaches by
combining the two. For example in Refs. [16, 17], the reconstruction was
carried out by solving:

min
X

‖X ‖∗ + λ‖I ⊗ F1Dvec(X )‖1 subject to ‖Y − RFX ‖2
F ≤ ε (6)

Here X denotes the signal in x − t space as arranged in (5) where as
x denotes the signal in x − t space as arranged in (2). It is assumed that the
dynamic MRI sequence is sparse in x −f space. The term λ balances the relative
importance of rank deficiency and sparsity.

There is a recent work that used the Blind Compressed Sensing (BCS)
framework for dynamic MRI reconstruction. BCS marries dictionary learning
with CS. In standard CS, it is assumed that the signal is sparse in a known
basis such as DCT, wavelet, etc. Dictionary learning techniques estimate
the sparsifying basis empirically; this dictionary learning is offline. In BCS,
the dictionary learning and signal reconstruction proceeds simultaneously. The
signal is modeled as Refs. [18, 19]:

X = DZ (7)

where both D and Z need to be estimated, D is the dictionary and Z is the
sparse transform coefficients.

The reconstruction is framed as follows:

min
D,Z

‖Y − RFDZ ‖2
F + λ1‖D‖2

F + λ2‖vec(Z )‖1 (8)

Recently an improvement over the BCS framework was suggested in
Ref. [20]. The BCS does not explicitly exploit the fact that the signal X is
low-rank.14–17 Therefore it is possible to improve upon (8) by incorporating
this information, leading to:

min
D,Z

‖Y − RFDZ ‖2
F + λ1‖D‖2

F + λ2‖vec(Z )‖1 + λ3‖Z ‖∗ (9)

Both D and Z are variables. But D is the dictionary and we are minimizing
its nuclear norm, therefore D cannot be low-rank, the only possibility is to
impose low-rank constraint on (9) and hence the formulation.
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3. Online Reconstruction

In the previous section, we discussed about offline reconstruction. The
discussion was brief since it does not form the topic of this chapter. The rest
of the chapter is dedicated to detailed discussion on online recovery. There are
two approaches for online reconstruction. The first approach is to modify CS
techniques in an online fashion. The second approach is to use well-known
statistical dynamical models for reconstruction.

3.1. Compressed Sensing Based Techniques

3.1.1. k-t FOCUSS

The k-t FOCUSS method4–6 was never designed to be an online technique; we
discussed it in the previous section. However as we will now see, it indeed was
the first online dynamic MRI reconstruction technique based on the principles
of CS. This method expresses every frame in the following manner,

xt = xref + ∇xt (10)

Here xref is the reference/prediction for the tth frame, and �xt is the
difference/residual between the reference and the actual frame. The general
idea is that, if the prediction is good, the residual will be sparse. Therefore, it
will be possible to estimate the residual using CS recovery methods such as,

∇x̂t = min∇xt
‖∇xt ‖p

p subject to ‖yt − RF (xref + ∇xt )‖2
2 ≤ ε (11)

This is a standard lp-minimization problem. In the aforesaid works, the
FOCUSS algorithm7 was used to solve it (hence the name k-t FOCUSS); any
other algorithm will work equally well.

Once the residual between the prediction and the actual frame is estimated,
it is added to the predicted/reference frame to obtain the final estimate of the
t th frame.

The prediction of the current frame (xref ) should (ideally) be only depen-
dent on prior frames. Thus to estimate the residual via (17) only the previous
frames (x1, x2, . . . , xt−1) are required; the reconstruction does not require
frames from the future (xt+1, xt+2, . . . , xT ). Thus, the final reconstruction (16)
is causal and online.

The idea of separating a frame from a dynamic sequence into reference and
residual follows from video processing. In video compression, all the frames are
not transmitted; only the reference frames are transmitted and for the remaining
frames, the residual/difference between the reference and those frames are
transmitted.
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It can be seen from (9) that computing the residual is straight forward.
The interesting aspect of k-t FOCUSS is in estimating the reference frame. In
Ref. [4], two techniques are proposed to estimate the reference frame. The
first one is based on RIGR18; this is basically a frequency domain interpolation
technique for estimating a frame.

The other technique proposed in Ref. [4] to estimate the reference frame
follows from the motion estimation–motion compensation framework used
in video processing. However, the basic challenge (and therefore the main
difference from video processing) is that video coding is an offline technique so
predicting the motion vectors by computing block difference between previous
and current frame is straight-forward. Unfortunately this is not possible
(ideally) for dynamic online MRI reconstruction; we want to reconstruct the
current frame, we do not have it, therefore we cannot compute the motion
vectors for this scenario. There is no logical way to overcome this problem, in
Ref. [4] it is assumed that a crude estimate of the current frame is somehow
available (may be from a low-resolution image, or from CS reconstruction of
the full frame). This crude estimate can be used to compute the motion vectors
between the previous and current frame. In the motion compensation stage,
the computed motion vectors are used to predict the current frame (given the
previous frame).

The experimental results shown here are from Ref. [5]. A cardiac cine
MRI dataset was used for the experiments. The ground-truth is formed from
fully sampled K-space data. For experiments, a six-fold acceleration factor is
simulated by radial sampling of the K-space. The following reconstruction
methods are used filtered back-projection (since the sampling is radial), Sliding
Window (SW), k-t BLAST, k-t FOCUSS (with RIGR) and k-t FOCUSS with
ME/MC. The reconstruction results are shown in Fig. 1. The figure is marked
to notice deviations from the ground-truth.

Filtered backprojection shows severe streaking artifacts; the streaking is
caused by radial sampling. SW shows some streaking artifacts; the heart wall and
muscles are very blurred from SW reconstruction. k-t BLAST also shows some
streaking artifacts and blurred vessels. However, k-t FOCUSS (with RIGR)
and k-t FOCUSS with ME/MC show very clear texture and structures of the
heart.

3.1.2. Least Squared CS for dynamic MRI reconstruction

In recent work called Least Squares Compressed Sensing (LS-CS),21 it is
assumed that the difference image is not sparse but is sparse in a transform
domain (say wavelets), i.e. ∇αt = W ∇xt is sparse. Thus in LS-CS, the sparse
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Fig. 1. Reconstructed images using various FOCUSS techniques and their comparison to
others.

transform coefficients of the difference frame is solved for. The following
optimization problem is employed for the purpose,

∇α̂t = min∇αt
‖∇αt‖p

p subject to ‖yt − RFxt−1 − RFW T ∇αt )‖2
2 ≤ ε (12)

where xt−1is the reconstructed previous frame and ∇αt is the wavelet transform
of the difference between the previous and the current frame.

Unlike k-t FOCUSS, the LS-CS does not stop here. It assumes that the
sparsity pattern varies slowly with time. For each time frame, the difference of
the wavelet transform coefficients ∇αt is computed, from which an intermediate
estimate of the wavelet coefficients of current frame is obtained as,

α̃t = αt−1 + ∇αt (13)

The intermediate estimate is thresholded (via hard thresholding) and all
the values below a certain threshold τ (depending on noise level) are discarded.
The value of the thresholded wavelet coefficients are not of importance, but
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their indices are. Assuming that the set of indices having non-zero values
after thresholding is �, the final value of the wavelet transform coefficient is
estimated as,

α̂t = (Rt F2DW2D)
†
�yt (14)

where (·)† denotes the Moore-Penrose pseudo-inverse and (·)� indicates that
only those columns of the matrix has been chosen that are indexed in �, α̂t is
the estimated wavelet coefficient from the t th frame. The image is reconstructed
from the wavelet coefficients via the synthesis equation.

We do not provide any results for LS-CS in this sub-section. This technique
was not particularly developed for solving dynamic MRI problems, it was rather
developed for solving more general problems where the purpose was to solve
for a sequence of observations which was varying slowly with time and had
a sparse representation in a transform domain. In Ref. [21], dynamic MRI
was one application area for this technique; the authors felt that dynamic MRI
reconstruction would benefit from their technique.

3.1.3. Real-time CS based dynamic MRI reconstruction

This work is similar to k-t FOCUSS. It assumes that the difference image
between two consecutive frames is sparse and one does not need to be in the
wavelet domain in order to sparsify it. This assumption is indeed true as can
be verified from Figs. 2 and 3. Figure 10 visually corroborates the fact that the

Fig. 2. Top: Three consecutive images from a larynx sequence; Bottom: Difference images
between the three consecutive frames.
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Fig. 3. Top: Sorted pixel values of the difference images; Bottom: Sorted wavelet coefficients
of the difference image.

difference image between two consecutive frames is sparse. This is quantitatively
supported in Fig. 3. It can be seen from this figure that both the pixel values
of the difference image and the wavelet transform coefficients of the difference
image have fast decays, i.e. most of the signal energy is confined in a relatively
small number of high valued coefficients. The energy confined in the top 10% of
the pixels in the difference image is 93% of the total energy and in the top 10%
of the wavelet coefficients, it is 98%. Thus, the difference image has a slightly
sparser representation in the wavelet domain than in pixel domain. However,
the slim relative advantage of wavelets in terms of energy compaction in fewer
coefficients will be offset by other factors as will be discussed now.

The fact that mutual coherence between the random Fourier ensembles
and Dirac basis is the minimum, is well-known in CS based MR image
reconstruction literature. Independent of the k-space (Fourier domain) under-
sampling ratio, the mutual coherence is always ‘unity’ between the aforesaid
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two basis (the normalized mutual coherence is N −2, N being the number
of pixels in the image). The mutual coherence between Fourier and wavelet
basis is always higher than unity.20,21 Higher mutual coherence leads to worse
signal reconstruction accuracy (when the number of measurement samples is
fixed). In order to alleviate this problem in static MRI, ‘spread spectrum CS’
techniques were proposed in Refs. [22, 23]. In Ref. [22] it was reported that
for an image of size 256 × 256, the mutual coherence between the Fourier
measurement basis (k-space) and the Dirac basis (pixel domain) is 3.906×10−3;
and the mutual coherence between the Fourier measurement basis and the
wavelet basis (sparsifying transform) is 2.272 × 10−2 for Daubechies wavelets
with 4 vanishing moments at 3 levels of decomposition. Thus, if one uses
wavelets for sparsifying the difference image, the mutual coherence increases
by a factor of 5. Even though mutual coherence based bounds are pessimistic,
it follows that the number of wavelet coefficients that can be recovered by
CS algorithms will be less than number of pixel values recovered. Therefore,
the modeling/reconstruction error for a CS recovery method using wavelet
coefficients (such as Ref. [21]) will be more than our proposed method.
The slim advantage wavelet transform coefficients have over pixel values in
terms of energy compaction in fewer coefficients (see Fig. 3) is offset by the
increased mutual coherence between the measurement basis and the sparsifying
transform.

Working in the transform domain (like Ref. [21]) buys nothing — this is the
reason, it was never successful in dynamic MRI reconstruction. It only increases
computational cost. In Ref. [24], the aim was to develop an algorithm for real-
time dynamic MRI reconstruction. Thus, computational complexity was at a
premium. They proposed the following simple optimization problem to solve
the difference frame,

∇x̂t = min∇xt
‖∇xt ‖p

p subject to ‖yt − RF (xt−1 + ∇xt )‖2
2 ≤ ε (15)

This is similar to FOCUSS except for the fact that here the reference
frame is just the previous frame — we have argued before why this is
a realistic assumption (Figs. 2 and 3). Such a simplifying model cuts on
unnecessary computational complexity. Furthermore, Ref. [24] does not use
the FOCUSS algorithm to solve (15). FOCUSS is a second order algorithm and
computationally expensive. A first order modified iterative soft thresholding
algorithm is developed in Ref. [24] to solve the optimization problem. The
parameters are tuned there to achieve super-linear convergence.

The experiments that were carried out on cardiac perfusion dataset. The
data was collected on a 3T Siemens scanner. In this work, we simulated a radial
sampling with 24 lines were acquired for each time frame; this corresponds
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Fig. 4. Left to Right: Ground-truth, CS reconstruction, LS-CS and Kalman Filter. Top —
reconstructed images; Bottom — difference images.

to an under-sampling ratio of 0.21. The full resolution of the dynamic MR
images is 128×128. About 6.7 samples were collected per second. The scanner
parameters for the radial acquisition were TR = 2.5−3.0 msec, TE = 1.1 msec,
flip angle = 12◦ and slice thickness = 6 mm. The reconstructed pixel size varied
between 1.8 mm2 and 2.5 mm2. Each image was acquired in a ∼62-msec read-
out, with radial field of view (FOV) ranging from 230 to 320 mm.

The results are shown in Fig. 4. The work was compared with LS-CS
and another real-time dynamic MRI reconstruction technique based on the
Kalman Filter model (will be discussed later). The LS-CS yields the worst
reconstruction as is evident even from the reconstructed image. It completely
misses to reconstruct a valve. One can see the valve in the difference image.
This is unacceptable for any MRI application. The Kalman filter reconstruction
shows a lot of streaking artifacts (difference image) but is slightly better than
LS-CS since it does not lose any important structure. The simple CS based
reconstruction technique24 yields the best results.

Since this is real-time technique, it is supposed to reconstruct the frames as
fast as they are acquired. The frames for cardiac perfusion are of size 128×128
and about 6 to 7 frames are acquired every second. The Kalman Filter yields
the fastest reconstruction as it only requires a fixed number of re-gridding and
Fourier transform operations to reconstruction each time frame. It is about 4
times faster than the CS based method; and the CS based method24 is nearly
a magnitude faster than LS-CS. The average reconstruction time per frame is
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0.2 seconds; although this is not exactly real-time, the performance is close
enough.

In a more recent work,25 a rudimentary attempt was taken to accelerate
reconstruction speeds by exploiting the massively multi-core architecture of
new Graphical Processing Units (GPU). It was shown that for images of
size 128 × 128, simple parallelization techniques are able to reduce the
reconstruction time by four-fold. However, the technique used in Ref. [25]
is not scalable and thus in future, new parallelized CS recovery algorithms will
be needed to recover larger sized datasets.

3.2. Kalman Filter Based Techniques

So far we have studied CS based reconstruction techniques. It is surprising that
there have only been a handful of studies that used conventional yet powerful
techniques to model dynamic MRI reconstruction problems. Dynamical
systems has been an interesting topic of research for both theoretical and applied
statistics and machine learning researchers for the last four decades. There are
powerful techniques in computational statistics that can be harnessed to solve
the dynamic MRI reconstruction problem; and yet these techniques have not
been widely explored.

Kalman Filtering is one of the simplest techniques in modeling dynamical
systems. In recent studies,26–28 Kalman Filtering has been proposed to solve

Fig. 5. Normalized absolute autocorrelation function estimate of the difference between two
cardiac images.
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the real-time dynamic MR reconstruction problem. The following model is
proposed:

xt = xt−1 + ut (16a)

yt = RF2Dxt + ηt (16b)

where the pixel values xt is the state variable, the K-space sample yt is the
observation, ηt is the observation noise and ut is the innovation in state
variables.

In general, the Kalman filter is computationally intensive since it requires
explicit matrix inversion for computing the covariance matrix; this requires a
computational complexity of the order of O(n3). For dynamic MRI frames of
size 128 × 128, the covariance matrix of size 16, 384 × 16, 384. The memory
requirement to invert such a huge matrix is beyond the capacity of a normal
personal computer, and hence is not feasible. In Refs. [26, 27], this problem
was alleviated by diagonalization of the covariance matrix; this reduces the
complexity to O(n). They argued that since the autocorrelation function is
peaked around the central value (Fig. 13), the diagonalization assumption
is realistic. However, this diagonalization assumption holds only for non-
Cartesian trajectories.

Instead of looking at such plots (as Fig. 13), let us probe one level deeper.
The diagonalization assumption means that pixel motion (ut ) is uncorrelated
and changes independently with time, i.e. there is no relationship between pixel
motion at one point and its adjacent point. This is an absurd assumption in any
rigid/semi-rigid body dynamic problem! Moreover, Kalman Filter assumes that
the innovation ut is Gaussian. This is unlikely to be true in the present scenario;
but this is a minor problem since we know even if motion is not Gaussian, the
Kalman Filter estimated will be optimal in the least squares sense.

We mentioned before that the diagonalization assumption only holds
for non-Cartesian trajectories. There are two problems with this — first,
Cartesian trajectories are more predominantly used than non-Cartesian ones,
thereby limiting the applicability of Refs. [26, 27]. The other problem is
that, Refs. [26, 27] requires an almost uniform (density) sampling of the
K-space. This requires re-gridding the K-space samples thereby adding extra
computational cost to the reconstruction process.

The main forte of the Kalman Filtering technique proposed in
Refs. [26, 27] is its superior reconstruction speed. They argue that the
reconstruction for each frame takes only two forward and backward Fourier
transform computations. But there is a catch. Computing and forward and
backward inverses from a non-Cartesian grid is not as efficient as the Cartesian
counterpart; to overcome the problem they re-grid the non-Cartesian samples
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on the Cartesian grid. However, they do not include the time required for
re-gridding into the reconstruction time.

To overcome these issues, a simple solution is proposed in Ref. [28]. This
work, proposed a technique to reconstruct images from Cartesian sampled K-
space data. Kalman Filtering is applied on each row of the K-space to reconstruct
the corresponding pixels in the image domain. The advantage of this method is
that it has a lower computational complexity — simply because the size of the
problem is now smaller. Also, the different rows can be processed in parallel.

Unfortunately, there is no major benefit from this study Ref. [28]. They just
proposed a technique to process the frames piecemeal – one row at a time. In
a fashion similar to Refs. [26, 27], the covariance matrix is approximated to be
diagonal. Unlike, Refs. [26, 27], there is no intuitive or empirical justification of
why such an assumption will hold for Cartesian sampling.28 The only advantage
in terms of the covariance matrix in Ref. [28] is that, since it is smaller, it is
easier to estimate from limited amount of data and therefore will yield better
reconstruction results.

The results from Ref. [28] are shown here. Free-breathing, untriggered
dynamic cardiac imaging experiments were performed on a 1.5-T GE Signa
system. Scans were taken for approximately 10 seconds. The reconstruction
result is shown in Fig. 6. Kalman Filter reconstruction28 is compared with the
sliding window technique. The results are shown in Fig. 6. The arrow points
to the location where sliding window fails but Kalman Filter succeeds. The
experiments were carried out on spiral trajectories with 6 times acceleration
factor. The K-space was sampled on a spiral trajectory and therefore does not
have a fully sampled ground-truth. However, the quality of reconstruction is
visible from the reconstructed images.

3.3. Hybrid Methods

The idea of using predicted frames was introduced in k-t FOCUSS.4–6 In
Ref. [6], motion estimation concepts developed in video coding was used for
predicting MRI frames. The k-t FOCUSS method was not intended for online
reconstruction, and hence was not focused on reducing complexity. But for
real-time reconstruction, we would like the reconstruction to be fast; thus we
require smarter motion estimation techniques than offered by video coding.

In general, any online reconstruction technique consists of two steps:

(1) Prediction — the current frame (the frame to be reconstructed) is estimated
based on information from previous frames.
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Fig. 6. Reconstruction of three consecutive frames.

(2) Correction — the difference between the predicted and the actual frame
is computed based on the collected K-space samples for the current frame;
the final reconstruction is obtained by adding the computed difference to
the predicted image.

The framework for the hybrid model is slightly different from (16); the
prediction model is expressed as follows,

xt = xt−1 + ∇xt (17)

where x̃t is the predicted frame and ∇x̃t is the estimated motion.
The problem is to estimate ∇x̃t . The estimation of ∇x̃t will be based on the

actual motions from two previous frames — ∇xt−1 and ∇xt−2. In Ref. [29], a
simple linear dynamical model is used for predicting motions for subsequent
frames, which is given by,

∇xt−1 = β · ∇xt−2 + δ (18)

Here ‘·’ denotes component wise product and δ is the estimation error assumed
to be distributed Normally. This (28) is actually an Auto-Regressive process of
order 1. In general an AR(1) process is expressed as,

∇xt−1 = B∇xt−2 + δ (19)

where B is a matrix.
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In Ref. [29] the assumptions are the same as in Refs. [26, 27], i.e. motion
at a particular point is independent of the motions at points surrounding it.
This allows for diagonal B, which we have expressed in (19) as a component
wise product.

Based on this simple model and if β is known, one can estimate the motion
for the current frame as,

∇x̃t = β · ∇xt−1 (20)

The assumption here is that motion in the subsequent frames is slow and
the value of β remains the same for motions of two consecutive frames. The
problem is to estimate β. In Ref. [29], it is estimated using the following
Tikhonov regularized least squares minimization problem,

min
β

‖∇xt−1 − β · ∇xt−2‖2
2 + λ‖β‖2

2 (21)

The aforesaid problem has an analytical solution which is,

β = ∇xt−1 · ∇xt−2/ · (∇xt−2 · ∇xt−2 + λ) (22)

Here ‘·’ denotes component wise multiplication and ‘/·’ denotes compo-
nent wise division. Computing β is fast, since it has a complexity of O(n).

Once β has been solved, the motion for the predicted frame can be
computed using (20). The predicted frame is estimated by adding the predicted
motion to the previous frame.

This is the prediction step; the next step is the correction step. Here, the
difference between the predicted frame and the actual frame is recovered from
the collected K-space samples of the current frame.

In Ref. [24], it was shown that the difference between the previous frame
and the current frame is approximately sparse; thereby allowing for a CS
based recovery. CS Theory says that other conditions remaining same (number
of measurements and measurement basis), sparser the signal, better will be
the reconstruction. In Ref. [30], the difference between the previous frame
(already reconstructed) and the current frame (to be reconstructed) was being
estimated using CS recovery. In the new hybrid model, the difference between
the predicted frame and the current frame is estimated. Assuming that the
prediction is good, the difference between the predicted and the current
frame will be sparser than the difference between the previous and the current
frame (as in Ref. [24]). Thus, one expects the hybrid method to yield better
reconstruction results than Ref. [24]. The claim regarding superior sparsity is
experimentally validated in Fig. 7 on a larynx sequence. It is shown that the
difference between the previous and current frame (Fig. 7a) is less sparser than
the difference between the predicted and current frame (Fig. 7b). The sorted
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Fig. 7. 7a — Difference between previous and current frame; 7b — Difference between
predicted and current frame; 7c — Sorted coefficients.

absolute values are shown in Fig. 7c; it can also be seen from Fig. 7c that
the difference between the predicted and the current frame is sparser than the
previous and current frame.

Once the prediction step is complete, the problem is to recover the
difference between the predicted and the corrected frame (θt ). This is the
correction step.

xt = x̃t + θt (23)

It is expected that the difference will be sparse (as in Fig. 16). Hence, one
can recover it by the solving the following problem,

min
θt

‖yt − RF x̃t − RF θt ‖2
2 + λ‖θt ‖1 (24)
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Fig. 8. Schematic Diagram for prediction and correction steps.

The prediction step of this hybrid method can be done while the K-space
data for the current frame is being acquired since it is not dependent on acquired
K-space data. However, the computational requirement for prediction step is
negligible compared to the correction step. The major computational load
arises from the solving (24). For real-time reconstruction, this step must be
completed before the K-space data for the next frame is acquired. A schematic
diagram explaining the sequence of prediction and correction steps is shown
in Fig. 8.

The experimental data has been used previously to generate Fig. 3. The
data consists of DCE MRI samples. Here the hybrid method is compared
with the well-known (but naïve) sliding window technique, the Kalman Filter
reconstruction method and the previous CS based reconstruction technique.24

The ground-truth and the reconstructed images along with their difference
images are shown in Fig. 9.

The quality of reconstruction is better assessed from the difference images
(difference between ground-truth and reconstructed). The difference images
corresponding to the SW and KF reconstruction are brighter, implying worse
reconstruction. The difference images for CS reconstruction and the hybrid
are darker meaning that the reconstruction is better compared to SW and KF.
However, when looked closely one can see that hybrid method actually yields
the best reconstruction.

For online reconstruction, one is also interested in the reconstruction times
(or play-out rates) since the ultimate goal for online reconstruction is to achieve
real-time speeds. By real-time, we mean that the reconstruction time for a frame
is less than the time required to reconstruct it. The average reconstruction times
for the different methods are shown in Table 1.

Both The SW method and the KF method has a constant reconstruction
time. The reconstruction times for our proposed method and DiffCS varies by
10% around the mean. The table shows that SW has the fastest reconstruction
times; it is about two times faster than KF. The reason is explained in Ref. [2].
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Fig. 9. Reconstructed (top) and Difference (bottom) Images. Left to Right: Ground-truth,
Sliding Window, KF, DiffCS reconstruction,24 Hybrid.

Table 1. Reconstruction Times (in seconds) for different
methods.

Dataset Sliding Window KF DiffCS Hybrid

2D DCE 1 0.056 0.013 0.032 0.017
2D DCE 2 0.055 0.013 0.032 0.017
3D DEC 0.068 0.137 0.574 0.279

The reconstruction speed from our proposed methods is slightly slower than
SW and KF and is about twice that of DiffCS.

4. Conclusion

In this chapter, we discuss about recent advances in online dynamic MRI recon-
struction. This is the first comprehensive review on this topic. Broadly there
are two classes of techniques to address this problem. First, the compressed
sensing based methods — these presume that the difference image between
consecutive frames are sparse and hence can be recovered. The second approach
is to employ dynamical models like Kalman filtering. The major bottleneck
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with this approach is the computational bottleneck associated with it. The
assumptions that reduce the computational overhead become too simplified
for quality recovery. There is a final hybrid approach that combines the two.
It predicts the frame based on a dynamical system; it then estimates the error
between the prediction and the actual one by Compressed Sensing techniques.

Online dynamic MRI reconstruction will be of paramount importance
in the future. It will enable image guided surgery and tracking applications
amongst others. So far researchers have applied classical mathematical tech-
niques to address this problem; the results have been modest. To push the
limits of success, one cannot solely rely on mathematics — the trade-off is too
predictable; we cannot improve results without increasing the computations.
Mathematical algorithms, used so far are sequential in nature — they do not
harness the power of recent advances in multi-core architectures. In the future,
we need to focus on parallelizing algorithms so that they can run on multi-
core systems; this would enable us to get speedy reconstruction even with
sophisticated mathematical modeling.
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Longitudinal brain image registration is a technique that is crucial to investigate
trajectories of brain change in normal aging and dementia. The goal of producing
statistically robust profiles of change is challenging, confounded by image artifacts and
algorithm bias. Tensor-based morphometry (TBM) computes deformation mappings
between pairs of images of the same subject at different scan times, using log-
determinants of the mapping jacobians to record localized change. These algorithms
typically generate forces derived from image mismatch at edges to drive change
computation, adding a penalty term to dampen spurious indications of change from
bias and image artifacts. Mismatch and penalty terms necessitate a tradeoff between
sensitivity and specificity.. Recent work has focused on techniques to minimize
algorithm bias and ensure longitudinal consistency. Little has been done to improve
the tradeoff using prior information, i.e. derived from the images themselves prior to
matching. In the present chapter, we survey the recent literature and then propose an
approach for enhancing specificity using prior information. Our experiments suggest
that the resulting method has enhanced statistical power for discriminating between
different trajectories of brain change over time.

1. Introduction

Computation of change in longitudinal MRI images is a crucial technique
in the study of biological brain change over time, in order to identify
differences between trajectories of normal aging and incipient dementia. It
is vital for testing hypotheses about the succession of events in the unfolding
of Alzheimer’s Disease,2–4 as well as determining patterns of individual change
that distinguish cognitively normal from impaired subjects.5 Such goals demand

63
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methods of longitudinal image registration that ideally should be free from bias
(i.e. systematic spurious indication of change) and robust against noise (the
interpretation of random image variability as change) while remaining sensitive
to even small real biological changes and statistically powerful (requiring small
samples to generate significant results). This goal is impossible to fulfill in
practice. The existence of confounding factors — geometric distortion from
MRI coils, intensity nonuniformities, random noise and head movement,
as well as algorithmic bias — insures that no method can be robust with
respect to artifacts and completely sensitive to real change at the same
time.

A long-standing and necessary compromise is to optimize a matching
functional consisting of an image intensity correspondence metric plus a penalty
term. This is often also performed using smoothed images in which the
contributions of random noise have been presumably dampened. In one line
of research, the penalty functional is the “kinetic energy” — the integral of
velocity magnitude squared — of the transformations from object to target
along a path in the space of images. This penalty is used to guarantee that
the deformation occurs via diffeomorphisms — smooth, one-to-one, invertible
mappings — that push the image along a geodesic or minimal energy curve from
object to target.6,7 Diffeomorphisms preserve image topology, and forcing
them to follow geodesic paths through image space guards against unwarranted
complexity.8

In this chapter we shall be focused on tensor-based morphometry (TBM),
which uses the log of the jacobian (i.e. 3 × 3 derivative matrix) determinants
of the deformation fields to generate local maps of image change.1,9,10 Recent
work has shown that a penalty of a different sort than kinetic energy is necessary
in TBM optimization because of inherent bias in the log-jacobian fields
themselves, leading to overstated indications of change9,11,12 even in image
pairs where biological change does not exist, such as same-day scans. To redress
this skewness of the log-jacobian field, a method has been proposed9,12,13 that
penalizes the Kullback-Liebler divergence14 of the log-jacobian field from the
identity distribution.

However, the Kullback-Liebler (KL) penalty term smoothes the log-
jacobian fields and thus reduces their ability to record real change. This
necessitates a tradeoff. We shall use the terminology of sensitivity and specificity
in the statistical sense of accurately recording real change (sensitivity) while
ignoring false indications of change due to artifacts or bias (specificity). Both
are related to the concept of localization, the accurate representation of change
only in regions where biological changes actually occur. Penalty functions such



August 8, 2014 9:28 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch04 page 65

Using Prior Information To Enhance Sensitivity 65

as KL are necessary to reduce false indications of change, thereby increasing
specificity. But they have the inevitable effect of reducing sensitivity.

In a recent article,15 we proposed to improve this tradeoff by combining
estimates of edge location with the force driving the change calculation and the
KL penalty. The rationale for introducing information about edge locations
is that TBM algorithms compute optimal image matching by solving Euler-
Lagrange equations, and these incorporate the intensity gradient of the target
image.16 The details will be elaborated in more detail in Section 2 below. Here, a
qualitative description will help to make the intuition clearer. Intensity gradients
are typically largest at tissue boundaries but they can also have non-trivial
magnitudes elsewhere, due to noise artifacts or intensity inhomogeneities.
When combined with apparent local intensity mismatches between the images,
such instances may yield computations of change that do not correspond
to biological difference. To counteract this, our recent proposal15 used the
distribution of gradient magnitudes to estimate the local probability of edge
presence, P(edge), which was inserted as a factor in the matching functional.
We showed how P(edge) could be an enhancing or attenuating factor for the
force driving the change computation, with 1 — P(edge) doing the same for
the penalty function.

In sum, we locally attenuated the penalty while preserving change com-
putation in places where observed change is more likely to be biological (at
tissue boundaries), and conversely preserved the penalty while attenuating
computation of change where it may more likely to be the result of artifacts
(away from boundaries). The algorithm thus used prior information — known
about the images prior to computing the deformation — in order to both
improve the sensitivity and retain the robustness to noise of the change
computations.

A survey of recent work suggests that a proposal to incorporate prior
information in this way is relatively new in the literature of longitudinal image
matching. Much of the recent effort to enhance robustness and accuracy
has been devoted to reducing bias and ensuring consistency. The FreeSurfer
approach has emphasized avoiding bias by complete symmetry of image
preprocessing.17 For two longitudinal images, this can be implemented by
initial linear alignment of each to a “halfway” image18 between them —
thereby subjecting each image to the same amount of resampling, reducing
bias resulting from the asymmetry in which one time point has sharper
edges than the other. A related concept is to ensure inverse-consistent image
matchings — at each iteration of the warping algorithm, the forward and
backward deformations are each computed and constrained to be inverses
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of each other.19–21 Several approaches have also proposed using a template
to enforce registration consistency. The HAMMER approach22,23 advocated
simultaneous estimation of both the longitudinal subject correspondence and
the relation of each subject with a template image. A refinement has sought to
avoid potential bias from template selection by use of an “implicit template”
combined with probabilistic spatio-temporal heuristics.24

Two recent techniques, however, have suggested adaptively changing the
parameters of the diffeomorphic matching to adjust to image conditions. In this
aspect, they are closer to our proposal. One method introduces prior knowledge
about the images to be registered, generating a weighted multi-scale sum of
smoothing kernels to capture features that have varying characteristic scales.25

A second method directly addresses questions about the level of weighting
given to the penalty term. Rather than use a fixed weight for all images, it
evaluates image characteristics to estimate the level of noise and adjust the level
of regularisation.7

Finally, recent work using generative and discriminative models in brain
tissue segmentation is also relevant to our proposal for enhanced longitudinal
image matching.26,27 These articles have described how segmentation (tissue
classification) can be improved by using discriminative models — local sam-
pling of neighborhood characteristics including intensity, curvature, gradients
and Haar measures — combined with generative models — adaptive estimates
of structures guided by global image characteristics — to insure smoothness and
structure coherence. The models consist of complex sums of various features,
and necessitate the use of training sets and machine learning algorithms to
estimate the optimal weights for combining them.

The relevance of these techniques for our approach to image matching is
that a similar method, sampling an array of features, could be used to refine our
original estimates of edge location likelihood. This might give greater certainty
of edge estimation at locations where the intensity gradient magnitudes can
typically be smaller than at the cortical boundaries. Examples of such locations
include the hippocampus, the subcortical nuclei and certain sulci that are poorly
defined in many MRI images because of small size or reduced tissue boundary
contrast. Conversely, a refined probability estimate might also be more robust
against false indications of “edges” resulting from artifacts, thereby leading to
fewer errors and greater statistical power in groupwise studies of longitudinal
change.

The rest of this chapter will describe one possible enhancement in detail
(Section 2). We will then present experiments and their results for testing this
model (Section 3) and conclude by a discussion (Section 4).
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2. Incorporating Prior Information into Longitudinal
Image Registration

In this section, we provide relevant details about the preprocessing sequence
involved in longitudinal image registration, followed by an outline of the
mathematical formalism of TBM and models of how prior information may
be included in it.

2.1. Image Preprocessing

We start with two brain images of the same person, taken at different scan times.
These images are processed to remove the skulls. Next, an affine alignment is
performed to remove rotational and translational differences. To compensate
for resampling asymmetry, which may generate spurious indications of change
in the subsequent TBM registration as described above, we align each image
to a point halfway between the two. Following Smith et al.18 we compute
halfway alignments. In order to treat both images as closely as possible alike,
we resample the earlier time point to a lattice of isotropic voxels, introducing
a slight interpolation blurring of edges. From the alignment of the later time
point onto the resampled earlier point, an approximate square root matrix is
created by halving each of the rotation and translation parameters, and the later
time point is transformed by this matrix. Then the original earlier time point
is aligned to this “halfway” point. This technique greatly reduces a systematic
source of bias at prominent brain structure edges. It was not performed for
the images used in our prevous article,15 thereby adding extra edge bias to
the results reported. Figure 1 illustrates the contrast between the “halfway”
technique and the previous method of aligning the second time point onto

Fig. 1. Averaged difference images of 11 no-change subjects (two scans on the same day).
Left: after aligning time 2 onto time 1. Right: after aligning each to halfway point.
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the first. Each panel shows an average of 11 subtraction images (time 2 minus
time 1) for individual subjects having two scans taken on the same day (therefore
no biological change exists). The images were further nonlinearly deformed to
a common template to enable voxelwise comparisons.

2.2. Mathematical Formulation of TBM with Incorporated
Prior Information

2.2.1. Formulation of the image matching problem

Let � be a rectangular box in 3D Cartesian space. T1 and T2 are real-
valued intensity functions on � representing our images at time 1 and time 2,
respectively: the outcomes from affine-aligning time 1 and time 2 scans to the
halfway point as described in the previous section. To compute a deformation
of T2 onto T1, we compute an inverse-consistent deformation g: � → �

such that for each location x in �, T1(g(x)) should equal T2(x). Let u be the
displacement from a position in the deformed image back to its source in T2.
Then g(x) = x − u(x). Matching T1 and T2 means finding an optimal g or
equivalently an optimal u for the deformation between the images.

2.2.2. Outline of the TBM algorithm

The usual TBM algorithm optimizes an energy functional E to generate a
matching u between the images. E has the format

E(T1, T2, u) = M (T1, T2, u) + λR(u), (1)

where M is an image dissimilarity metric and R is a regularizing penalty term,
both dependent on the deformation u. The parameter λ governs the strength
of the penalty term and is usually empirically tuned to give good results.

The algorithm solves the Euler-Lagrange equation ∂uE = 0, at least
approximately, obtaining a u to optimize E . The variational derivative of the
matching term M takes the form

∂uM = m(T1, T2, u)∇T1(g(x)), (2)

where m is a scalar function determined by the variational derivative and
∇T1(g(x)) is the intensity gradient of T1 at the location specified by g(x)16

(note that in our implementation T1 is the target image).
The variational derivative of E is a force field ∂uE = F1 +λF2, with F1 and

F2 being the variational derivatives of the matching term and penalty term,
respectively. F1 is a force generated by intensity mismatch of the two images at
each voxel, driving the solution toward image matching. F2 is a force driving
the solution to reduce the penalty term.
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2.2.3. The fluid-flow solution

Instead of solving the Euler-Lagrange equation by gradient descent, fluid
flow methods28,29 solve for the flow velocity field v, then use it to update
the deformation u iteratively over small time interval increments �t via Euler
integration:

u(x, t + �t ) = u(x, t ) + (v − Du ∗ v)�t (3)

where Du is the 3 × 3 matrix jacobian derivative of u, here acting on the
velocity v. This formula is based on a discrete approximation to the total time
derivative of u.28 The size of the time increment �t is often varied so that a
maximal u displacement is not exceeded at each iteration.

In our approach, the velocity v is derived by solving the Navier-Stokes
partial differential equation28

µ∇2v + (µ + ν)∇(∇ · v) = −F(x, u) (4)

where F = F1 + λF2 as described above.
Thus the fluid flow method consists of iterated steps, each step generating

v from the current force field via (4), updating u via (3) and checking to see
whether a termination condition — negligible improvement in E — is satisfied.

2.2.4. The Kullback-Liebler penalty

In our implementation, the penalty term will be the Kullback-Liebler penalty
RKL introduced by Yanovsky et al.,8 based on the Kullback-Liebler divergence
metric for log-jacobian distributions.14 The metric is defined as:

RKL =
∫

�

log |Dg(x)|dx (5)

where |Dg | is the jacobian determinant of the 3 × 3 matrix derivative of g .

2.2.5. Incorporating prior information into the energy functional

Let P (x) be an estimate of the likelihood that an intensity difference between
T1(g(x)) and T2(x) corresponds to an actual biological difference. Such an
estimate, if available, could be a useful guide for modulating the mismatch
force F1. Similarly, the complement of P — the likelihood that an intensity
difference corresponds to an artifact and should be ignored — could be used
to modulate the penalty force F2. A straightforward way of doing so would be
to minimize a modified variational derivative of the form

PF1 + λ(1 − P )F2. (6)

The intent of this formulation would be enhancement of both sensitivity
and specificity and it is intuitively clear how the two summands with their
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probabilistic estimates would work to this end. At locations where image
differences probably represent biological difference (with P close to 1), the
force F1 derived from intensity mismatch would be preserved while the penalty
force F2 would be attenuated. The opposite effect would occur at places where
intensity differences are likely due to noise (with P close to 0).

Unfortunately, it is not guaranteed a priori that this formula is the
variational derivative of any energy functional; thus it is not clear what sort
of optimization problem would be “solved” by minimizing it. Furthermore,
an ideal “likehood of real biological change” estimate is circular because it
assumes knowledge of what we are trying to compute in the first place.

However, by making some simplifying assumptions, our recent article15

proposed an approximation to the above formulation. We used for P a function
that depended on T2 alone (i.e. it was independent of the deformation mapping
g) and thus would be treated as a constant in the variational derivative of M. This
enabled us to generate a force of the form (6) which was indeed the variational
derivative of a valid matching functional, and we showed that minimizing this
variational derivative led to matchings with increased sensitivity and specificity.

The “likelihood of biological change” function P was approximated by
using likelihood of edges in T2 as a proxy for “likelihood of change.” We derived
the likelihood of edges in T2 from the cumulative distribution function (CDF)
of its gradient magnitudes. Locations with large gradient magnitudes — having
CDF value close to 1 — were considered as places where an edge occurrence
was likely.

The reason for using edges as proxies for change can be seen from (2),
where ∂uM is a scalar function of intensity difference times the gradient of
T1. Thus intensity difference can only contribute to F1 at locations where
∇T1 has appreciable magnitude. The gradient of T1 is most strongly associated
with tissue boundaries, and this leads to the association of edges with biological
change. But ∇T1 can also have nonzero magnitude at non-edge image artifacts,
and we would like to dampen instances of the latter type, while preserving the
former. This strengthens the rationale for associating edges with real change.

Basing P on edges in T2 instead of T1, however, may seem questionable.
We found nonetheless that this approach at least partially achieves the intended
consequences, because (1) in longitudinal registration the edges of T1 and T2

are usually not far apart, and their difference can be straddled by the smoothed
gradient likelihood estimate; and (2) in places where ∇T1 is large due to image
artifacts rather than edges, it is a random occurrence that the corresponding
location of T2 also has a large gradient due to artifact. Thus when a T2 edge is
not present, it is likely that either the value of P or the gradient magnitude



August 8, 2014 9:28 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch04 page 71

Using Prior Information To Enhance Sensitivity 71

of T1 will be low — and spurious computations of change force will be
dampened.

2.2.6. Refining the estimates of edge occurrence

In our previous article, we used a simple formula equating the likelihood of an
edge at a location with the proportion of all the gradients of the image having
magnitudes less than the gradient at the current location, in other words, the
CDF:

Pold(x) = P (edge|∇T2(x)) = CDF (‖∇T2(x)‖) (7)

However, this earlier choice of P has some drawbacks that might be
improved. A main problem is that certain discrete brain structures like the
hippocampi, small sulci and the subcortical nuclei have genuine edges but
smaller-magnitude gradients than at the ventricles or brain boundary, leading
to lower than desirable P values at the edges of these structures. The commonly
seen indistinctness of gray-white tissue boundaries can create a similar problem.
Secondly, T2 may itself have nontrivial gradients elsewhere than at edges, so that
the “random occurrence” of large T1 and T2 gradients, both due to artifacts,
is still a possibility.

In this chapter, accordingly, we propose a refinement of P using both
gradients and tissue segmentation in T2. Tissue segmentation30 is based on
the assumption that intensity distribution in each tissue compartment of a
noise-free image is close to homogeneous. Each brain voxel can be assigned an
unambiguous label of the tissue class to which it most likely belongs. We can use
the labels of the segmented image to further suppress spurious indications of
change while enhancing edge delineations where biological change can occur.

We sample the 3 × 3 × 3 voxel neighborhood of each location in the
segmented image to generate a factor called P (tissue). This depends on the
tissue composition of the neighborhood. If all voxels are labeled the same
tissue, we assign the value 0.1 (rather than 0, on the small possibility that the
segmentation is incorrect). Otherwise, the neighborhood may straddle a tissue
edge. If the proportion of one tissue is larger than 40%, we assume a strong edge
presence is likely and assign the value of 1.0. Otherwise we assign a graduated
scale of likelihoods, with 0.8 for a 30% proportion of one tissue, 0.4 for a 20%
proportion of one tissue, and 0.2 for a 10% proportion.

We also wish to enhance edge strength for locations where gradient
magnitudes are reduced but which are likely to be edges according to the
brain segmentation. We do this by CDF “boosting.” For voxels in which
the neighborhood structure is close to 50% of one tissue according to the
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segmentation, we “boost” the gradient magnitude by a factor of 3.5 for gray-
CSF boundaries and 2.0 for white-gray boundaries before inserting it into the
gradient magnitude histogram. This has the effect of increasing the CDF value
at this location, while causing little change in the CDF values of already strong
gradients.

Our new model is now multiplicative in both probabilities:
Pnew(x) = P (edge|∇T2(x), tissue) = CDF (‖ ∇T2(x) ‖) × P (tissue) (8)

2.2.7. Derivation of the variational derivatives incorporating prior
information

In this section, we will derive the formulas for the matching and penalty energy
functionals and their variational derivatives enhanced by probability factors
P (x) as described above.

For the modified penalty functional based on RKL define:

pRKL =
∫

�

(1 − P (x)) log |Dg(x)|dx (9)

Then because P (x) is independent of g, we have:

∂upRKL = (1 − P (x))∂u

∫
�

log |Dg(x)|dx

= (1 − P (x))∂uRKL (10)
For the modified image matching functional, we start with the cross-

correlation (CC) metric. The variational derivative of CC can be found in
Hermosillo et al.16 In our approach, we compute a modified CC using terms
weighted at each voxel by P (x). Define the following terms:

v1 =
∫

�

P (x)T 2
1 (g(x))dx (weighted variance of T1) (11)

v2 =
∫

�

T 2
2 (x)dx (variance of T2) (12)

and

v12 =
∫

�

P (x)T1(g(x))T2(x)dx (weighted covariance T1 and T2). (13)

Then our matching functional M is the modified cross-correlation:
M = v2

12/(v1v2)

Applying the rules of calculus to the variational derivative of M , and keeping
in mind that P (x) is independent of g, we have the following:

∂uM = (2v1v2v12∂uv12 − v2
12v2∂uv1)/(v1v2)

2

= 2P (x)(T2(x)v1v2v12 − T1(g(x))v2v2
12)/(v1v2)

2 × ∇T1(g(x))

(14)
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Examination of (14) shows that the variation of M is of the form P (x)×F1,
where the F1 is a scalar function times the gradient of T1. Similarly, (10) shows
that the variation of our modified penalty is of the form (1−P (x))×F2, where
F2 is simply the variation of RKL . Combining (10) and (14), we have obtained
a variational vector field of the form given in (6).

3. Experiments and Results

We present experiments and their outcomes comparing the longitudinal brain
change modeling computed by our earlier and new methods for incorporating
prior information.

Data for our experiments were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (www.loni.usc.edu). The ADNI was
launched in 2003 by the National Institute on Aging (NIA), the National
Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and
Drug Administration (FDA), private pharmaceutical companies and non-profit
organizations, as a $60 million, 5-year public-private partnership. The primary
goal of ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early Alzheimer’s disease
(AD). ADNI is the result of efforts of many co-investigators from a broad
range of academic institutions and private corporations, and subjects have been
recruited from over 50 sites across the U.S. and Canada. The initial goal of
ADNI was to recruit 800 adults, ages 55 to 90, to participate in the research —
approximately 200 cognitively normal older individuals to be followed for three
years, 400 people with MCI to be followed for three years, and 200 people with
early AD to be followed for two years.

3.1. Change vs. No-Change Images

In order to test the statistical significance of change indications in each model,
a first experiment computed change over two scans for a “no-change” (NC)
group of 11 subjects having two scans on the same day, in which no biological
change is expected, and 20 subjects with diagnosis of Alzheimer’s Disease (AD),
each subject’s scans being close to one year apart. All group analyses were based
upon log-Jacobian images of the longitudinal deformations. Group analyses
required a further deformation of all subjects onto a “minimal deformation
template” (MDT) constructed to be minimally distant from images in an
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Fig. 2. Averaged log-jacobian values for old and new methods over group of 20 AD subjects
with scan intervals of one year. Left: Old method. Right: New method. Color bars show values
of log-jacobians: cool for negative values (tissue loss), warm for positive (expansion of fluid
spaces). Color can be viewed in the e-book. In the present black and white version, the cool
palette is under the left image while the warm palette is under the right image.

age-matched group.31 We used an MDT made from 29 clinically normal
individuals 60 years of age or older. Each subject T2 image was warped to
the MDT using a cubic B-spline warp,32 and the deformation parameters were
used to transform each native space jacobian image to template space.

Figure 2 shows color-coded average change values by method. The change
values in each method are fairly similar, but with generally slightly larger
magnitudes for our new method (right panel). Enhanced change computation
of the new method is most visible in the medial temporal lobes.

To evaluate the indications of change for statistical significance, we com-
pared the changes for each method with computed changes in the no-change
group. We used groupwise t-tests to compare values at each voxel in the AD
group with the same location in the NC group, after jacobian images from both
groups were transformed to MDT space. A voxel t-value was the mean of the
AD group minus the mean of the NC group at that voxel, the difference divided
by the pooled standard deviation over both groups at the voxel. To assess
statistical significance we performed non-parametric permutation testing.33 In
this technique the null hypothesis of no difference between the AD and NC
groups is tested by randomly reconstituting the group memberships, swapping
members from one to the other, and computing the range of t-values over all
voxels with the new group composition. We performed 1000 iterations of this
swapping, compiling histograms of maximum and minimum t-values generated
at each iteration. At the end of the process, voxels with original t-values in the
two-tailed top 5% (i.e. lower than 2.5% for the min t-values or larger than 97.5%
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Fig. 3a. Statistically significant voxels for differences between AD and NC subjects, coronal
view. This corresponds to the same slice as in Fig. 2. Left: Old method. Right: New method.
Color bars show significances of t-values of log-jacobians: cool for negative values, warm for
positive. Corrected p-values are 1 − v for v shown in the color bar. Color bar also applies to
Figs. 3b and 3c.

Fig. 3b. Statistically significant voxels for differences between AD and NC subjects, axial view.
Color coding is the same as in Fig. 3a. Left: Old method. Right: New method.

for the max t-values) of all values in the histograms were considered to show
significant differences between the groups at these locations.

Figure 3a shows comparisons of significant differences between AD and
NC subjects in each method. Only statistically significant voxels are shown.
Color bars indicate the ranges of statistical significance. Figure 3b gives an axial
view also indicating more extensive temporal lobe change. Figure 3c shows
a sagittal view indicating areas of signifcant change in the mid and posterior
cingulate and the splenium.
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Fig. 3c. Statistically significant voxels for differences between AD and NC subjects, mid-
sagittal view. Left: Old method. Right: New method. Color coding is the same as in Fig. 3a.

Fig. 4. Color coding of average Pnew − Pold values at each voxel: the difference between
using CDF alone (old) and “boosted” CDF multiplied by neighborhood tissue information
(new). Cold colors show decreases. Warm show increases. Arrows indicate sample edges of
brain structures that were originally weak and are now enhanced: hippocampal boundaries and
insular cortex. Other, stronger edges were often also enhanced.

3.2. Examination of the Enhancements to Edge and Non-Edge
Probabilities

The gist of our approach is to associate likely brain change with the occurrence
of tissue edges, accordingly enhancing the gradient magnitudes at likely edges
via histogram “boosting” while suppressing them away from edges. Both of
these operations make use of additional information when compared with our
previous approach: the estimation of tissue class via segmentation.

Figure 4 illustrates changes to the P values of the new approach. It shows
the average increment (positive or negative) over our 20 AD subjects after
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deformation to template space, when compared to our old P function. The
image depicts Pnew − Pold , i.e. formula (8) minus formula (7). We see increases
in the P values at edges and decreases everywhere else. In homogeneous tissue
areas away from edges, there are fairly uniform if small decreases in the P values.
Yellow arrows in the figure point to the bilateral hippocampi (bottom arrows)
and one of the insular cortices (right) — examples of structures whose gradient
CDF values were formerly weak but are enhanced by the new method. The
totality of changes in P resulted in enhanced computation of volume changes
at or near edges and reduced intersubject variance of computed change at
locations away from edges.

3.3. Statistical Power of the Old and New Methods

Our final experiment is a power analysis comparing the minimum sample size
that each method would need to discern a 25% diminution of brain atrophy
above normal aging levels, based on change computations for normal subjects
(CN) and a second group of Alzheimer’s (AD). For each method, we used
statistically defined ROIs (statROIs)34,35 over which to measure statistical
power. The statROI for a TBM method is defined as a region in the template
space where that method picks out significant differences between our original
(in Section 3.1) AD and no-change (NC) groups. These ROIs were constructed
by doing cluster-size permutation testing33 to find significant (p < 0.05,
corrected) clusters of voxels having t-values greater than 5 for the AD minus
NC groups. To compute statistical power, we used a new set of AD subjects, not
overlapping with the AD group of Section 1. This new set consisted of 25 AD
subjects with scans close to 1 year apart. We also used a set of 24 CN subjects
with scans at one-year intervals. The old and new methods each computed
brain-change log-jacobians for each subject in each group. After warping to
template space, the mean and standard deviation of each method over its own
statROI was computed for each group. The statistical power of each method
was estimated by the following formula34:

n80 = 2σ2
AD(z0.975 + z0.8)

2

(0.25(µAD − µCN ))2 (15)

where µAD and µCN denote the log-jacobian means of a method over AD and
CN groups, σAD is the method standard deviation on the AD group and the
zb (for b = 0.975 or 0.8) are thresholds defined by P (Z < zb) < b in the
standard normal distribution. Thus n80 is the minimum sample size needed to
detect a 25% reduction in the atrophy rate beyond that of normal aging,35 i.e.
µAD −µCN , with 80% power at a significance level of 5%. Sample sizes with this
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approach will be larger than if they had been based on detecting 25% change
in total atrophy, i.e. using µAD alone, but as pointed out by Holland et al.35

this is a more realistic estimate for use in clinical trials where the concern is to
detect effects of slowed atrophy beyond normal aging.

The n80 value of the old method was 144 subjects. For the new method,
it was 130. Thus, our new method produced a gain in statistical power over
the old.

4. Discussion

In this chapter, we have outlined a method for refining the calculation
of longitudinal change. It has demonstrated increased ability to distinguish
between AD and no-change subjects. Figures 2 and 3a–3c suggest that the
new method outperforms the old one both in anatomical specificity and in
capturing areas of significant change. Furthermore the new method has shown
increased statistical power, reflected in decreased sample size needed to detect
change beyond normal aging.

Thus, we believe this method has the potential to be useful in longitudinal
image matching. Nonetheless we wish to discuss some of the limitations of the
method. The first is that even though weak edge probabilities were enhanced
(see Fig. 4), they did not appear to yield increased significance of change for
structures associated with these edges. For example, it is well-known that the
hippocampus is one of the first structures to undergo atrophy in AD, yet we
did not find significant tissue loss in the hippocampus of the AD group as
compared to the no-change images. One reason may stem from the difficulty
of accurately deforming the hippocampi to the template during the B-spline
transformation. The hippocampal topography varies greatly with amount of
atrophy, creating difficulties for the B-spline deformations which match varying
native subjects to the single hippocampal target in MDT. Inconsistency of cross-
sectional deformation to the template introduces noise and reduces statistical
power. Other brain structures (such as ventricles) show a more consistently
successful matching. This observation may point to a problem inherent in
cross-sectional analysis that cannot be addressed by metric enhancements of
the TBM deformation, no matter how sophisticated. Inter-subject variation is
always higher at tissue boundaries, and the issue is compounded in areas of
imperfect registration during deformation to template space.

This leads to a second observation. Even though our new method shows
slightly increased mean tissue losses at most edges, in fact almost no areas of
significant brain differences in Figs. 3a–3c occur at edges. This means that
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the observed expansions of significant t-values for our new method depend
crucially on the reduced variation caused by the multiplicative P (tissue) term
[see Eq. (8)], in regions away from edges, where segmentation estimates that
the tissue neighborhood is homogeneous.

This scenario reflects a design feature intrinsic to the TBM algorithm.
As explained in the introduction, TBM creates a model of brain change by
generating forces at boundaries [see Eq. (2)], which drive movement of the
deformation vectors. The movement is smoothed by coupling with a penalty
function, thus spreading out indications of change. Our approach has been
successful in improving TBM due to the adaptive P applied to F1 [Eq. (14)]
which generates higher edge forces and stronger edge movements, and 1 − P
applied to F2 [Eq. (10)] which allows them to propagate away from the edges,
with reduced variation from noisy intensity fluctuations. Thus, our refinement
takes advantage of and accentuates a characteristic already built into TBM.

It is important to note that “generating forces at edges and smoothing
them” — the TBM model — is not the only approach to longitudinal change.
Another model, the boundary shift integral (BSI),36 quantifies changes only
at tissue-CSF boundaries by counting the number of voxels that were brain
tissue at baseline and converted to CSF at a later scan. To do so, it needs
a “morphological operator” to estimate where the likely edges are, and an
“intensity window” positioned to straddle intensity differences associated with
boundary change, while excluding differences that lie outside the window.
This observation highlights, again, the realization that change computation
involves a tradeoff between localization and regularization. BSI implements
these components using the morphological operator and the intensity window.
By focusing on edges, we have incorporated an analog of the BSI morphological
operator into TBM. The difference between the models is that TBM makes
inferences about brain change in areas both near and far from edges, whereas
BSI says nothing about change away from edges.

The question of whether tissue loss deep in the white matter is a real
biological process might be answered by examining other MRI modalities such
as DTI for evidence of white matter integrity decline. That question is beyond
the scope of this chapter. In any case, the change computations enhanced by our
proposed method are statistically powerful as discriminators between cognitive
groups and as descriptors of differing brain trajectories in aging and disease.
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X-ray fluorescence computed tomography (XFCT) is a promising technique able to
identify and quantify features in small samples of high-atomic-number (Z) elements
such as iodine, gadolinium and gold. In this chapter, as a proof-of-concept, we
investigated the feasibility of simultaneously imaging multiple elements (multiplexing)
using XFCT. A polychromatic X-ray source was used to stimulate emission of X-ray
fluorescence photons from multiple high-Z elements with low concentrations [2%
(weight/volume) gold (Au), gadolinium (Gd) and barium (Ba)] embedded within
a water phantom. The water phantom was used to mimic biological tissue targeted
with high-Z nanoprobes. The emitted X-ray energy spectra from three elements were
collected and then used to isolate the K shell X-ray fluorescence peaks and to generate
sinograms for the three elements of interest. The tomographic distribution of the high
Z elements within the phantom was reconstructed. A linear relationship between the
X-ray fluorescence intensity of tested elements and their concentrations was observed,
suggesting that XFCT is capable of quantitative molecular imaging.

1. Introduction

X-ray computed tomography (CT) imaging plays a critical role in the diagnosis,
staging, treatment planning, and therapeutic assessment of cancer. CT is also
indispensable in pre-clinical small animal studies, providing valuable anatomical
information. However, while CT provides millimeter-resolved anatomical
imaging, it lacks the ability to image multiple processes at the molecular level. It
is difficult to use CT imaging to differentiate benign from cancerous nodules.
This drawback also exists in sophisticated approaches such as dynamic contrast-
enhanced CT (DCE-CT), which measures physiological properties.1

An intriguing alternative is X-ray fluorescence (XRF) CT (XFCT). XFCT
detects characteristic X-ray emissions from high-atomic-number (Z) elements
in patients exposed to an X-ray beam. Following photoelectric absorption, a

83



August 8, 2014 9:28 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch05 page 84

84 X. Li and Y. Kuang

vacancy in the K shell is subsequently filled by an electron from the L or M
shells, and the energy difference between these shells is released as either an
Auger electron or a characteristic K-shell X-ray (i.e., XRF).2–4 In elements with
an atomic number Z ≥ 47 — such as gold (Au), gadolinium (Gd), iodine
(I), and barium (Ba) — the L and M to K transitions are accompanied by
characteristic K-shell X-rays ≥ 80% of the time. Since the XRF energy spectrum
is unique to a single element, this provides a way to quantitatively detect
multiple elements, as well as exogenous molecular probes consisting of high-Z
elements that are conjugated with antibodies or peptides that recognize disease
specific biomarkers.

In this chapter, as a proof-of-concept, a XFCT system using polychromatic
X-rays was developed. A water phantom, containing different high-Z elements,
was used to mimic biological tissue targeted by nanoprobes. The results show
that XFCT is a promising modality for multiplexed imaging of high atomic
number probes.

2. Materials and Methods

2.1. Phantom Preparation

A water phantom containing Au, Gd and Ba insertions was shown in Fig. 1.5

The insertions consisted of 2% (weight/volume) saline solutions of gold (Au),
gadolinium (Gd) and barium (Ba) alone and a mixture of these three elements.
The concentrations of these elements in saline solution were selected based
on a previous animal study presenting achievable tumor-to-blood ratios with
nanoparticles (NP).6,7 After each solution was poured into an Eppendorf tube
(0.7 ml), the tubes were sealed and inserted into a cylindrical water phantom
measuring 3.5 cm (diameter) × 5 cm (height) as shown in Fig. 1. The centers
of the four Eppendorf tubes were located 1 cm away from the center of the
phantom.

2.2. Experimental Setup

2.2.1. X-ray source

A schematic example of experimental setup was shown in Fig. 2. The X-ray
beam was generated by a Philips RT250 orthovoltage unit (Philips Medical
System Inc., Shelton, CT) operating at 150 kV and a tube current of 20 mA.
The X-ray beam was collimated by two led bricks (10 × 5 × 5 cm3 for each)
separated by a 5 mm gap, and a lead block with a 5 mm-diameter cylindrical
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Fig. 1. (a) Schematic diagram of the cylindrical water phantom with four conical tube
insertions. (b) X-ray transmission images of the water phantom scanned with a cone-beam
CT system (40 kV, 0.64 mA): anterior to posterior projection (left) and left lateral projection
(right). The measured Hounsfield Unit (HU) for each component was water 7 HU, Au 1107
HU, Ba 1882 HU, Gd 1025 HU and mixture 2768 HU. (c) Photographs of the cylindrical
water phantom.

hole, to produce a pencil beam. To reduce the total dose deposited by X-ray
photons with energies below the K-absorption edge for Au (80.7 keV), which
is the highest K-edge among the three elements, a filter consisting of 1 mm Pb,
7.3 mm Al, and 1.4 mm Cu was placed at the exit of the collimator. The filter
can be made of Pb, Sn, Cu, Al, and any combination of these elements. There
were different kinds of polychromatic X-ray sources and filters for different
XFCT systems.8–10

2.2.2. XFCT acquisition scheme

As a proof-of-concept, the XFCT acquisition was performed in a first generation
CT geometry, acquiring a single line integral at a time. The water phantom
was set to rotate and translate in precise steps using a computer-controlled
motion stage (Velmex Inc., Bloomfield, NY), while the X-ray source and the
detector were stationary. A single measurement slice was acquired by translating
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Fig. 2. Schematic of the experimental setup including the filtered X-ray source, the water
phantom, and the CdTe detector. Multiplexing spectrum of Au, Gd, Ba and Iodine (I) is shown
in the inset. The area under the dot line was the background photons derived from the Compton
scatter.
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the phantom 30 times in 1.5 mm increments, and rotating it 31 times to
cover 360◦. XRF photons, emitted from the narrow volume illuminated by
the pencil beam, were collected using a thermoelectrically cooled cadmium
telluride (CdTe) detector (X-123 CdTe, Amptek Inc., Bedford, MA). The
detector and motion stage were controlled by motor-driving software. Data
acquisition was paused during the movement of the stages to the next rotational
or translational positions after the data collection for 18 s at each position.
During the experiment, the collimated X-ray beam irradiated the phantom
at a given view angle. After the completion of a scan at each position, the
phantom was rotated by a small angular increment (30◦) and the scanning
process resumed again. This process was repeated until a full 360◦ rotation was
completed. Subsequently, the scanning process continued while the phantom
was translated by a 1.5 mm step over 4.5 cm along the axis normal to the beam
direction, which covered the whole size of the phantom.

2.2.3. X-ray fluorescence detector system

The detector system was another important component in the experimental
setup. It was used to capture the X-ray fluorescence signals from the sample
containing elements at low concentration within the phantom. The X-ray
detector module included a preamplifier with pile-up rejection, a digital pulse
processor, and a multichannel analyzer (MCA) (PX4, Amptek Inc., Bedford,
MA). The digital pulse processor and MCA were employed as interfaces
between detector and personal computer for data acquisition, control and
X-ray spectral data analysis. For any X-ray fluorescence measurement, there
is a background count from Compton and elastically scattered X-rays and X-
ray fluorescence from other elements in the sample. To minimize the number
of unwanted scattered photons entering the detector, the detector system was
placed at a 90◦ angle to the incident X-ray beam. To shield the X-ray detector
from X-rays coming from outside the field of view, a conically shaped lead shield
with a 5 mm-diameter opening end covered the sensitive element. Meanwhile,
a second X-ray detector operating in the current mode could be placed behind
the phantom along the beam direction to provide transmission measurements.

2.3. Data Acquisition

The raw data measured in an XFCT scan consists of a series of spectra, each
spectrum corresponding to a beam position. The spectra included fluorescence
peaks from elements of interest as well as background from scattered photons.
Considering the low penetration of the L shell XRF, we only focused on
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Table 1. Critical absorption and emission energies for photoelectric absorption and X-ray
fluorescence emission.

Atomic Iodine (I) Gadolinium Platinum Barium Gold (Au)
number (Z) 53 (Gd) 64 (Pt) 78 (Ba) 56 79

Critical absorption Kab 33.164 50.229 78.379 37.410 80.713
energies (keV) LIab 5.190 8.393 13.873 5.995 14.353

LIIab 4.856 7.940 13.268 5.623 13.733
Emission energies LIIIab 4.559 7.252 11.559 5.247 11.919

from X-ray Kβ2 33.016 49.961 77.866 37.255 80.165
fluorescence Kβ1 32.292 48.718 75.736 36.376 77.968
(keV)a Kα2 28.610 42.983 66.820 32.191 68.794

Kα1 28.315 42.280 65.111 31.815 66.980
Lγ1 4.800 7.788 12.939 5.531 13.379
Lβ2 4.507 7.102 11.249 5.156 11.582
Lβ1 4.220 6.714 11.069 4.828 11.439
Lα2 3.937 6.059 9.441 4.467 9.711

Peaks used for Lα1 3.926 6.027 9.360 4.451 9.625
XRF imaging Kβ2 32.42 48.87 —b 36.34 —c

(keV) Kβ1
Kα2 29.00 43.13 66.89 32.42 68.46
Kα1 65.59 66.63

aThe emission energies are based on transition relations:

Kα2 = Kab − LIIab, Kα1 = Kab − LIab, Kβ1 = Kab − MIIIab, etc.

b,cThe Kβ peaks of Pt (77.87 and 75.74 keV) and Au (77.97 and 80.1 keV) are only detectable
in the high concentration of Pt and Au, and they are not clearly defined in the low concentration
of Pt and Au. Thus, they are not used for data processing to relate fluorescence output to Pt
and Au concentration within the phantom.

acquiring K shell XRF peaks (Table 1) to take advantage of the strong
fluorescence yields as well as the deep tissue penetration of the emitted X-rays.

The incident X-ray photons with energies below Au K-absorption edge
are not only useless, but also create unwanted scattering background counts
during measurement. As shown in Table 1, X-ray photons above the Au K-edge
energy (80.7 keV) can be used to excite the Au and other element XRF photons
simultaneously. The undesired scattering can be easily reduced by placing a
filter in the path of the incident beam. If the insertions of the phantom were
changed to 2% (w/v) saline solutions of Pt, Gd, and I, X-ray photons above
the Pt K-edge energy (78.4 keV) were applied to excite XRF photons.5

The number of fluorescence counts from the given element in tomography
was obtained by the line integral of the concentration along the line traversed
by the pencil beam. This integration process was accomplished by translating
the detector and repeating the measurements described in Section 2.2.2 along
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the axis (parallel to the pencil beam direction), which covered the whole size
of the phantom along the beam direction.

2.4. Data Processing

2.4.1. Background subtraction

The spectrum measured for each beam position includes the K-shell XRF peaks
from different elements superimposed on a broad background of scattered
photons. To estimate the concentrations of different elements from the spectral
measurements, the scatter background in each energy window must be removed
before XRF peaks can be isolated.

Energy windows are defined for the XRF peaks for the given elements as
follows: Au: 65.1–67.7 and 67.8–70.1 keV; Gd: 40.3–45.0 and 47.3–49.9 keV;
Ba: 30.1–33.7 and 34.8–38.2 keV. For insertions consisted of Pt, and I, the
energy windows were defined as follows: Pt: 64.0–66.1 and 66.1–68.5 keV;
I: 24.6–30.3 and 31.1–34.3 keV. A cubic spline function was used to fit the
background counts for these energy windows. The net number of counts in
the peaks was then calculated using

Nk = Mk − Bk (1)

where k is the element of interest (e.g., Au, Gd, Ba, Pt, or I), Mk is the
summation of the measured number of counts over the energy window for
element k, and Bk is the fitted number of counts from the third-degree
polynomial (fitted background counts) in energy window for element k.

The number of counts Nk corresponds to a line integral for a particular
element along the beam. By processing spectra corresponding to different beam
positions, a sinogram was generated for each of the elements present in the
phantom using 30 radial positions and 31 angles.

2.4.2. Image reconstruction

The image formation process is similar to that of single photon emission
computed tomography (SPECT) with parallel-hole collimators. The number of
XRF photons detected at a given beam position is related to the line integral of
the elemental distribution within the phantom. A rough attenuation correction
was applied to the phantom sinogram to compensate for the exponential
attenuations of the excitation X-ray beam and the emitted XRF signal. The
excitation beam attenuation was modeled by an exponential fluence falloff
using the total attenuation coefficient of water at 80 keV. Attenuation of
the fluorescent emission was modeled in a similar fashion, by computing
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the distance traveled in water by the fluorescent photon. For the purpose of
attenuation correction, it was assumed that measured fluorescent photons do
not elastically scatter in the phantom. The distributions and concentrations
of each individual element were reconstructed with 100 iterations of the
maximum-likelihood expectation maximization (ML-EM) algorithm, which
models the physical response of the imaging system.11–16

2.4.3. Linearity

The linearity between the XRF count value and concentration for each element
(w/v) was also investigated. Serial dilutions were performed for each element
and inserted into the water phantom. The phantom was placed in a 150 kV,
20 mA X-ray beam and imaged with a CdTe detector as described above. The
peaks for each element were plotted as a function of the known elemental
concentration.

2.5. X-ray Dose From XFCT Imaging

Micro LiF thermoluminescent dosimeters (TLDs) were used to measure the
radiation dose of an XFCT imaging scan. The dimension of the TLD dosimeter
is 1×1×1 mm3 (Harshaw TLD-100, Thermo Fisher Scientific Inc., Waltham,
MA). Two sets of 3 TLD microcubes were used for the reference and
the XFCT imaging dose measurements, respectively. For the reference dose
measurement, an open-field TLD measurement was used, i.e. the TLDs were
placed at the center of a water phantom and exposed to an unfiltered and
non-collimated X-ray beam (open field, 150 keV, 20 mA). A dose conversion
factor was determined by normalizing the open-field TLD reading to the
absolute dose measured under the same condition with a calibrated Farmer
ionization chamber (Model No. TN30006-0368, PTW, Freiburg, Germany).
To measure the XFCT imaging dose, the TLDs were placed at the center of the
water phantom (Fig. 2). The luminescent signals in TLDs were read out by an
automatic dosimetry reader (Harshaw 5500 TLD reader, Solon, OH) after a
5-segment preheating process using a TLDO annealing oven (PTW, Freiburg,
Germany). The imaging dose for the scan was computed by averaging three
TLD readings and using the dose conversion factor.

3. Results

Figure 3 shows the spectra of the incident pencil beam after collimation and
filtration measured by the CdTe detector along the X-ray beam direction.
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Fig. 3. A comparison of different filtered X-ray beams from the X-ray source operated at
150 keV, 20 mA. The Au K-edge energy is shown as a dotted line. Spectrum (D) was used for
XFCT data acquisition.

Fig. 4. A representative spectrum showing multiplexed detection in the water phantom
containing a mixture of 2% Au, Gd, and Ba solutions.

Incident X-ray photons with energies below the K-absorption energies of the
three elements (Table 1) not only create an unwanted scatter background, but
also increase the dose deposited inside the phantom. As shown in Table 1, X-ray
photons above the Au K-edge energy (80.7 keV) can be used to excite the Au,
Gd and Ba XRF photons simultaneously. A filter with 1 mm thick Pb, 7.3 mm
thick Al and 1.4 mm thick Cu was found to efficiently remove X-ray photons
below the K-edge of Au while sustaining a sufficient X-ray fluence.

Figure 4 shows a representative XRF spectrum acquired using the line-
by-line scan mode. The XRF spectrum showed sharp characteristic peaks for
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Fig. 5. Representative XRF spectra of three high-Z probes at two different concentrations:
(a) Au (1% and 0.25%); (c) Gd (0.025% and 0.00625%); (e) Ba (0.75% and 0.375%). A linear
relationship between the XRF intensity and the concentrations of the element solution was
found.

Au, Gd, and Ba. The full width at half maximum (FWHM) for each peak
was also measured in order to evaluate the capability of XFCT for multiplexed
imaging of multiple elements (Fig. 4). The FWHM values of all these peaks
were much smaller than the average peak-to-peak separation, suggesting that
multiple elements can be used to probe different molecular processes in vivo.
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Figure 5(a), (c), and (e) show the XRF spectra for different concentrations
of Au, Gd and Ba solutions, respectively. The amplitudes of the Au Kα2 and
Kα1 peaks [Fig. 5(a)], the Gd Kα and Kβ peaks [Fig. 5(c)], as well as the Ba
Kα and Kβ peaks [Fig. 5(e)] were proportional to the concentration of Au, Gd
and Ba saline solution, respectively. With the current experimental set-up, the
minimum detectable concentrations were 0.25%, 0.00078% and 0.04% for Au,
Gd and Ba respectively. The highly linear response of XFCT with respect to
elemental concentrations (R2

Pt = 0.944, R2
Gd = 0.986, R2

I = 0.999) suggests
that XFCT is capable of quantitative imaging.

To evaluate the suitability of this technique for multiplexed imaging, a
water phantom containing 2% (w/v) Au, Gd, and Ba insertions was imaged.
The distribution of each element can be clearly identified in the reconstructed
images (Fig. 6). Furthermore, all three elements were properly detected when
mixed together. A cone-beam CT scan of the phantom is shown in Fig. 7. The
X-ray dose from the entire XFCT imaging procedure was also measured with
TLDs and found to be 77 cGy at the center of the phantom.

4. Discussion

An XFCT system built for multiplexed imaging of high Z elements was
presented in this chapter. Nevertheless, the current technique was not yet
practical for routine in vivo applications and requires further development.
The ultimate feasibility of the current technique will depend on the successful
resolution of a few technical issues, such as scanning time, X-ray dose, detection
limit and image resolution. By filtering out most of the low-energy X-rays from
the pencil beam with combined filter materials, the imaging dose was effectively
reduced.

While the line-by-line acquisition used in this study was relatively slow, it
provided flexibility in choosing sampling patterns if an XRF detector panel was
used instead of a single pixel XRF detector.17–19 Riviere et al. have demonstrated
that the sampling pattern could be optimized to a full rotation half translation
(FRHT) fashion in the 2D mode, i.e., rotate the object through a full 360◦,
but only the half of the object closest to the XRF detector panel side is scanned
at each projection view. This scheme may result in both reduced imaging
times and improved image quality.20,21 Moreover, it was shown that there
are advantages to adopting an interlaced sampling strategy in the 2D case, in
which the sampling patterns at even and odd projection views are offset relative
to one another. This technique provides two-fold more efficient sampling as
compared to the conventional sampling pattern.20 In the 3D helical scanning
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Fig. 6. Reconstructed XFCT multiplexed images of 2% (w/v) Au, Gd, and Ba solution
embedded in a water phantom. (a) A photograph of the phantom, (b) Multicolor overlay of the
reconstructed XFCT image (red: Ba; blue: Au; green: Gd). (c) to (e): For the three elements of
interest [(c) Au; (d) Ba; (e) Gd], XRF peaks in the spectra were processed into a sinogram for
each element (left column) and reconstructed with ML-EM (right column).



August 8, 2014 9:28 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch05 page 95

X-Ray Fluorescence Computed Tomography for Molecular Imaging 95

Fig. 7. Overlay of XFCT and X-ray transmission CT images of the phantom. Pseudo colors
are used for different components in the XRF image: red for Ba; blue for Au; green for Gd.

mode (volumetric XFCT), FRHT sampling pattern coupled with a Fourier-
based interpolation scheme could effectively improve longitudinal resolution.20

A ROI strategy could be employed to reduce dose and improve scan
efficiency. This hybrid imaging scheme would provide high quality images of the
ROIs with a faster imaging time and a limited radiation dose. Moreover, novel
image reconstruction algorithms that can process incompletely sampled data
could be helpful.22 These algorithms allow for improved quantitative accuracy
as well as for ROI imaging, which might lead to further reduction in data
acquisition time and radiation dose.

In this study, we chose a single pixel photon counting detector and then
pencil beam X-ray to excite the XRF signal. Alternatively, for faster acquisition,
it is possible to use a wider excitation to stimulate XRF. For instance, a fan-
beam can be used to illuminate a slide of the phantom with X-rays. Similarly,
a cone beam can be applied to illuminate the entire phantom. However, these
approaches require localization of the fluorescent emission at the detector
side, because these fluorescent emissions may occur anywhere in the volume
illuminated with X-ray (With a pencil beam, it is known that any fluorescent
photon recorded was emitted within the narrow line formed by the beam).
An array of photon-counting detectors coupled to a pinhole or parallel-hole
collimator may be used in combination with a fan-beam or cone-beam to
provide 2D or 3D localization of each fluorescent emission.

While fan-beam and cone-beam approaches offer the potential for shorter
XFCT acquisitions, it should be noted that these approaches might dramat-
ically increase the hardware complexity and cost due to the need for arrays
of photon-counting detectors. Existing photon-counting arrays have worse
energy resolution than off-the-shelf single-pixel detectors used in this study and
require complex electronics to readout each detector pixel. An additional issue
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with cone-beam and fan-beam geometries is that those approaches may require
higher imaging dose. With modern source technology, faster scanning with a
pencil beam can also be achieved very quickly using a special scanning-beam
X-ray source.23,24 Collimation is not required in a pencil-beam geometry on the
detector side because the fluorescent emissions are constrained to the narrow
volume defined by the beam line. The trade-off between various geometries
should be further investigated.

The interference between XRF photons and scatter photons poses a
challenging issue with our current design. This is especially true for imaging of
Au, because the Compton peak overlaps with the XRF signal thus affecting the
lower detection limit. Scattering inside the sample and surrounding materials
leads to a broad background (noise) in the XRF energy spectrum. This
background reduces the signal to noise ratio of Au. To alleviate this problem,
a plane-polarized X-ray beam could be used.17–19 The plane-polarized X-rays
can be produced by scattering an X-ray beam through 90 degree by a bi-
layer polarizer (copper and silicon). The generated plane-polarized X-rays are
not scattered isotropically. The differential scattering in one cross section of
polarized X-rays is much lower than its orthogonal plane. If the XRF detectors
are placed parallel to the plane of incident direction of lower scattering polarized
X-rays, it will ensure minimum scattering of radiation into the detector,19 thus
improving the detection limit of Au.

In practice, quasi-monochromatic X-ray beams could be also used
via a proper conversion from polychromatic X-ray beams.25,26 The quasi-
monochromatic X-ray beams would shift the X-ray energy with maximum
intensity towards higher energy above the K-absorption energy of Au and
reduce the background scattering X-rays beneath the Au peak, thus the
detection limit of Au would be also improved.

It is noted that state-of-the-art clinical scanners have multiple detector rows
(i.e. 64–320).27 In this study, we only used a single pixel photon counting
detector, resulting in longer scanning times. The use of an energy resolving
XRF detector ring would also reduce the image time greatly, improve imaging
performance and decrease the imaging radiation dose.

5. Conclusions

In this chapter, we have shown that the distributions of Au, Gd and Ba
in the water phantom were clearly identifiable in the reconstructed XFCT
images using a single scan. Our results also suggest that XFCT is capable
of quantitative imaging. Additionally, with the proposed system, anatomical
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transmission CT and XFCT images can be acquired simultaneously. Further
increase in imaging performance is expected when plane-polarized X-ray beams
and quasi-monochromatic X-ray beams as well as an XRF detector ring are used
for excitations.

Acknowledgements

This work was supported in part by an NIH/NIGMS grant (#1U54GM
104944-01A1) and a Lincy Endowed Assistant Professorship.

References

1. K.A. Miles, “Diagnostic imaging in undergraduate medical education: an expanding role,”
Clin Radiol 60, 742–745 (2005).

2. S.K. Cheong, B.L. Jones, A.K. Siddiqi, F. Liu, N. Manohar, S.H. Cho, “X-ray fluorescence
computed tomography (XFCT) imaging of gold nanoparticle-loaded objects using 110
kVp x-rays,” Phys Med Biol 55, 647–662 (2010).

3. B.L. Jones, S.H. Cho, “The feasibility of polychromatic cone-beam x-ray fluorescence
computed tomography (XFCT) imaging of gold nanoparticle-loaded objects: a Monte
Carlo study,” Phys Med Biol 56, 3719–3730 (2011).

4. M. Bazalova, Y. Kuang, G. Pratx, L. Xing, “Investigation of X-ray fluorescence computed
tomography (XFCT) and K-edge imaging,” IEEE Trans Med Imaging 31, 1620–1627
(2012).

5. Y. Kuang, G. Pratx, M. Bazalova, B. Meng, J. Qian, L. Xing, “First demonstration of
multiplexed X-ray fluorescence computed tomography (XFCT) imaging,” IEEE Trans Med
Imaging 32, 262–267 (2013).

6. M. Almalki, S.A. Majid, P.H. Butler, L. Reinisch, “Gadolinium concentration analysis in
brain phantom by X-ray fluorescence,” Australas Phys Eng Sci Med 33, 185–191 (2010).

7. C.M. Carpenter, C. Sun, G. Pratx, R. Rao, L. Xing, “Hybrid x-ray/optical luminescence
imaging: characterization of experimental conditions,” Med Phys 37, 4011–4018 (2010).

8. S.H. Cho, B.L. Jones, S. Krishnan, “The dosimetric feasibility of gold nanoparticle-aided
radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources,”
Phys Med Biol 54, 4889–4905 (2009).

9. L. Ren, D. Wu, Y. Li, G. Wang, X. Wu, H. Liu, “Three-dimensional x-ray fluorescence
mapping of a gold nanoparticle-loaded phantom,” Med Phys 41, 031902 (2014).

10. N.H. Manohar, “Effect of source X-ray energy spectra on the detection of fluorescence
photons from gold nanoparticles,” MS Thesis, Georgia Institute of Technology, 2011.

11. L.A. Shepp, Y. Vardi, “Maximum likelihood reconstruction for emission tomography,”
IEEE Trans Med Imaging 1, 113–122 (1982).

12. P.P. Bruyant, “Analytic and iterative reconstruction algorithms in SPECT,” J Nucl Med 43,
1343–1358 (2002).

13. G. Pratx, C.M. Carpenter, C. Sun, L. Xing, “X-ray luminescence computed tomography via
selective excitation: a feasibility study,” IEEE Trans Med Imaging 29, 1992–1999 (2010).



August 8, 2014 9:28 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch05 page 98

98 X. Li and Y. Kuang

14. G. Pratx, C.M. Carpenter, C. Sun, R.P. Rao, L. Xing, “Tomographic molecular imaging of
x-ray-excitable nanoparticles,” Opt Lett 35, 3345–3347 (2010).

15. K. Lange, R. Carson, “EM reconstruction algorithms for emission and transmission
tomography,” J Comput Assist Tomogr 8, 306–316 (1984).

16. W. Cong, H. Shen, G. Wang, “Spectrally resolving and scattering-compensated x-ray
luminescence/fluorescence computed tomography,” J Biomed Opt 16, 066014 (2011).

17. P.A. Ali, A.F. Al-Hussany, C.A. Bennett, D.A. Hancock, A.M. El-Sharkawi, “Plane polarized
x-ray fluorescence system for the in vivo measurement of platinum in head and neck
tumours,” Phys Med Biol 43, 2337–2345 (1998).

18. J. Borjesson, M. Alpsten, S. Huang, R. Jonson, S. Mattsson, C. Thornberg, “In vivo X-ray
fluorescence analysis with applications to platinum, gold and mercury in man–experiments,
improvements, and patient measurements,” Basic Life Sci 60, 275–280 (1993).

19. D.G. Lewis, “Optimization of a polarized source for in vivo x-ray fluorescence analysis of
platinum and other heavy metals,” Phys Med Biol 39, 197–206 (1994).

20. P.V. P.J.L. Riviere, 2008 (unpublished).
21. P.V. P.J. La Riviere, M. Newville, S.R. Sutton, presented at the Nuclear Science Symposium

Conference Record2007 (unpublished).
22. P.J. La Riviere, P.A. Vargas, “Monotonic penalized-likelihood image reconstruction for

X-ray fluorescence computed tomography,” IEEE Trans Med Imaging 25, 1117–1129
(2006).

23. M.S.V.L. E.G. Solomon, R.E. Melen, J.W. Moorman, B. Skillicorn, “Low-exposure
scanning-beam x-ray fluoroscopy system,” Proc. SPIE 2708, Medical Imaging 1996: Physics
of Medical Imaging (1996).

24. J. Zhang, G. Yang, Y. Cheng, B. Gao, Q. Qiu, Y.Z. Lee, J.P. Lu, O. Zhou, “Stationary
scanning x-ray source based on carbon nanotube field emitters,” Appl Phys Lett 86, 184104
(2005).

25. G. Jost, T. Mensing, S. Golfier, R. Lawaczeck, H. Pietsch, J. Hutter, L. Cibik, M. Gerlach,
M. Krumrey, D. Fratzscher, V. Arkadiev, R. Wedell, M. Haschke, N. Langhoff, P. Wust,
L. Ludemann, “Photoelectric-enhanced radiation therapy with quasi-monochromatic
computed tomography,” Med Phys 36, 2107–2117 (2009).

26. G.H. H.v. Busch, G. Martens, J.-P. Schlomka, B. Schweizer, 2005 (unpublished).
27. K.H. Schuleri, R.T. George, A.C. Lardo, “Applications of cardiac multidetector CT beyond

coronary angiography,” Nat Rev Cardiol 6, 699–710 (2009).



August 8, 2014 9:28 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch06 page 99

Chapter 6

Dictionary Learning Based Low-Dose
X-Ray CT Reconstruction

Qiong Xu∗,†, Hengyong Yu‡, Ge Wang§

and Xuanqin Mou∗,†,¶

∗The Institute of Image Processing and Pattern Recognition,
Xi’an Jiaotong University, Xi’an, Shaanxi, 710049 China

†Beijing Center for Mathematics and Information
Interdisciplinary Sciences, Beijing, 10048 China

‡Biomedical Imaging Division, VT-WFU
School of Biomedical Engineering and Sciences,

Wake Forest University Health Sciences,
Winston-Salem, NC 27157 USA

§Department of Biomedical Engineering,
Rensselaer Polytechnic Institute,

Troy, NY 12180 USA
¶E-mail: xqmou@mail.xjtu.edu.cn

How to reduce radiation dose while maintaining the diagnostic performance is a major
challenge in the computed tomography (CT) field. Inspired by the compressive sensing
theory, the sparse constraint in terms of total variation (TV) minimization has already
led to promising results for low-dose CT reconstruction. Compared to the discrete
gradient transform used in the TV minimization method, dictionary learning is proven
to be an effective way for sparse representation. On the other hand, it is important
to consider the statistical property of projection data in low-dose CT cases. In this
chapter, we present a dictionary learning based approach for low dose X-ray CT. In our
method, the sparse constraint in terms of a redundant dictionary is incorporated into
an objective function in a statistical iterative reconstruction framework. The dictionary
can be either predetermined before an image reconstruction task or adaptively defined
during the reconstruction process. An alternating minimization scheme is developed
to minimize the objective function. Our approach is evaluated with low dose X-ray
projections collected in an animal study. The results show that the proposed approach
has potential to produce better images with lower noise and more detailed structural
features.

99
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1. Introduction

X-ray radiation is a kind of ionizing radiation, which may induce genetic,
cancerous and other diseases to human health. The radiation risk has received
more and more attention in X-ray based medical imaging field,1 especially
in X-ray CT which needs much more dosage compared to other imaging
modalities such as radiography and so on. Therefore, the well-known ALARA
(As Low As Reasonably Achievable) principle is applied to avoid excessive
radiation dose in the CT field. In principle, there are two strategies for radiation
dose reduction. The first one is to reduce the X-ray flux towards each detector
element, which is usually implemented by adjusting the operating current, the
operating potential and exposure time of an X-ray tube. Since X-ray imaging is a
quantum accumulation process, the SNR (signal-to-noise ratio) depends on the
X-ray dose quadratically. Given other conditions being identical, reducing the
X-ray dose will lead to noisy projections, accordingly degrading image quality.
The second one is to decrease the number of X-ray attenuation measurements
across a whole object to be reconstructed. It necessarily produces insufficient
projection data, suffering from few-view, limited-angle, interior scan, or other
problems. This kind of insufficient data makes conventional reconstruction
methods, such as FBP (Filtered Back-Projection), fail to reconstruct good
images. These results are usually companied with some kinds of artifacts. How
to reconstruct adequate images at a minimum dose level proposes a huge
challenge to algorithm developments.

As the aforementioned, the low-dose CT data is usually noisy and
incomplete. In order to reconstruct good images from this kind of data,
the most natural idea is to preprocess the low-dose projection data before
applying the conventional reconstruction methods. This kind of method is
usually used in noisy situation. Therein, some kinds of filtering methods are
proposed to denoise the projection data. Hsieh2 proposed an adaptive filtering
approach where the filter parameterization was adjusted according to the noise
property. La Riviere3 developed a penalized likelihood technique to smooth
sinogram. Wang et al.4 presented a penalized weighted least-squares approach
to reduce sinogram noise. Different from these preprocessing methods, another
class is to incorporate the available prior information and constraints into
a reconstruction process. This kind of method is usually based on iterative
reconstruction framework, especially on the SIR (statistical iterative reconstruc-
tion) framework. Since SIR optimizes the maximum-likelihood or penalized-
likelihood function formulated according to the statistical characteristics of
projection data, it intrinsically promises an optimal reconstruction quality from
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noisy projection data. Besides, due to the iterative reconstruction, it is more
flexible for various incomplete data. Sidky and Pan5 proposed an ADS-POCS
method to solve the few-view and limited angle problem. Xu et al.6 proposed
an interior tomography method in SIR framework to address the few-view
truncated noisy data reconstruction. As more prior information and constraints
are incorporated appropriately, better reconstruction can be expected.

Now, we have a general impression about low-dose CT problem and its
solution from the above background introduction. In the rest of this chapter, we
will introduce a novel solution for low-dose CT based on SIR framework with
dictionary learning and sparse representation constraints. We will concentrate
on elaborating this method from the idea’s origin to the specific formulations,
experimental results and problem discussions.

2. Origin of Idea — From Total-Variation to Dictionary

In recent years, the compressive sensing (CS) theory has become more and
more popular.7,8 The CS theory allows a sparse signal to be accurately recon-
structed from samples/measurements far less than what is usually required
by the Shannon/Nyquist sampling theorem. The key for the success of CS
is the sparsity property of signals under study. In general, a natural signal,
such as natural image or vocality, has a sparse representation when it is applied
for a sparsifying transform. One common sparsifying transform is the discrete
gradient transform (DGT) whose coefficients can be summed up to form
the so-called total variation (TV). Let µ be a 2D image, Dj µ = Dm,nµ =√

(µm,n − µm+1,n)2 + (µm,n − µm,n+1)2, where the 1D index j has a one-one
map to the 2D index (m, n). In mathematics, the TV can be simply expressed
as TV (µ) = ‖Dµ‖1 with Dµ = (D1µ, · · · , DNJ µ)T .

In the CT field, the CS theory has been known to be instrumental for
image reconstruction from incomplete and noisy datasets. Most of these
methods employed the TV minimization based algorithms to solve the few-
view, limited angle, interior tomography, etc.5,6 Although TV-based algorithms
are successful in a number of cases, the power of the TV minimization constraint
is still limited. The main reasons are two-folds. First, the TV constraint is
a global requirement, which cannot directly reflect structures of an object.
Second, the DGT operation cannot distinguish true structures and image noise.
Consequently, images reconstructed with the TV constraint may lose some fine
features and generate a blocky appearance in incomplete and noisy cases. Hence,
it is necessary to investigate superior sparsifying methods for CS-inspired image
reconstruction.
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Very recently, the sparse representation in terms of a redundant dictionary
has attracted increasing attention in image processing, imaging analysis and
magnetic resonance imaging (MRI) fields.9–13 Such a dictionary is an over-
complete basis. The elements in this basis are called atoms, which are learned
from application-specific training images. Then, an object image can be sparsely
represented as a linear combination of these atoms. Usually, an object image is
decomposed into small overlapped patches. The dictionary learning approach
acts on these patches, and an average of the corresponding values in the
overlapped patches is computed at a given location. Because the dictionary is
learned from training images, it is expected to have a better sparsifying capability
than any generic sparse transform. Also, the redundancy of the atoms facilitates
a sparser representation. More importantly, the dictionary tends to capture
local image features effectively because of the patch-based analysis and most
importantly the structural self-similarity in many cases.

Therefore, our idea is to utilize the sparse constraint based on dic-
tionary learning to achieve better performance with lower-dose in CT
reconstruction.14,15

3. Background — Dictionary Learning based
Sparse Representation

In this section, we will give some basic knowledge about dictionary learning and
sparse representation for better understanding about our method presented in
next section.

Let N and K be integers, and R be the real space. A dictionary is a matrix
D ∈ RN ×K whose column dk ∈ RN ×1 (k = 1, . . . , K ) is a N dimensional
vector, which is called an atom. Usually, the dictionary is redundant or over-
complete; that is, N � K . An image patch of

√
N × √

N pixels can be re-
expressed as a N dimensional vector x ∈ RN ×1. Suppose that a patch x can
be exactly or approximately represented as a sparse linear combination of the
atoms in the dictionary D; that is,

‖x − Dα‖2
2 ≤ ε, (1)

where ε ≥ 0 is a small error bound, and the representation vector α ∈ RK×1

has few nonzero entries, ‖α‖0 � N � K with ‖ · ‖0 being the l0-norm. The
dictionary redundancy implies that the number of atoms is greater than the
length of an atom.

Finding a sparse representation α ∈ RK×1 of an image patch x ∈ RN ×1 with
respect to a given dictionary D ∈ RN ×K is equivalent to solve the following
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optimization problem:

min
α

‖α‖0 s .t . ‖x − Dα‖2
2 ≤ ε. (2)

By the Lagrange method, Eq. (2) can be rewritten in an unconstraint form

min
α

‖x − Dα‖2
2 + ν‖α‖0, (3)

where ν is the Lagrange multiplier. It is pointed out that the above two problems
are equivalent when a suitable ν is chosen. Since solving Eqs. (2) or (3) directly
is NP-hard, an approximate alternative strategy is desirable. In this regard,
there are several greedy algorithms available, such as matching pursuit (MP)
and orthogonal matching pursuit (OMP) algorithms.16,17 Also, the l0-norm
can be replaced by the l1-norm to make the problem convex and manageable
using a basis pursuit (BP) algorithm.18

Given a training set of S patches, the so-called dictionary learning is to seek
a dictionary that makes each patch in the training set be sparsely represented by
the atoms in this dictionary. Denote the given patch set as a matrix X ∈ RN ×S

with a patch xs ∈ RN ×1 (s = 1, . . . , S) being a column vector of X, and the
corresponding sparse representation vector as a matrix α ∈ RK×S with the
representation αs ∈ RK×1 of a patch being a column vector of α ∈ RK×S .
Then, the dictionary learning is to solve

min
D,α

S∑
s=1

(‖xs − Dαs‖2
2 + νs‖αs‖0), (4)

Equation (4) is basically equivalent to either of the following problems

min
D,α

‖X − Dα‖2
2 s .t . ∀ s , ‖αs‖0 ≤ L0, (5)

min
D,α

S∑
s=1

‖αs‖0 s .t . ‖X − Dα‖2
2 ≤ ε, (6)

where L0 and ε are the sparsity and precision of the sparse representation,
respectively. The l0-norm in Eqs. (4)–(6) can be replaced by the l1-norm to
make them easier to solve. There are many algorithms available for dictionary
learning, including the classical K-SVD method and the fast online learning
technique.19,20

A successful application of the dictionary learning technique is image
denoising.9 Let a vector z ∈ RM ×1 represent a noise image of H ×W pixels and
a vector x ∈ RM ×1 denote its corresponding filtered version, M = H × W . A
set of small overlapping patches can be extracted from the image. With a sliding
distance of one pixel, we will have (H − √

N + 1) × (W − √
N + 1) patches.
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It is assumed that the patches extracted from the filtered image can be sparely
represented in terms of a dictionary, and the filtered image should be close to
the original noisy image. Hence, the denoising procedure is to minimize the
following objective function:

min
x,α,(D)

‖x − z‖2
2 + λ

S∑
s=1

(‖Es x − Dαs‖2
2 + νs‖αs‖0), (7)

where Es ∈ RN ×M is an operator to extract a patch from the filtered image
x, S = (H − √

N + 1) × (W − √
N + 1), and λ is a regularization parameter

related to the noise level of z. The dictionary D in Eq. (7) can be determined in
two ways. One is to predetermine it from a training set, which should contain
representative structures in the image to be filtered. The other is to construct
the dictionary during the denoising procedure.

4. Dictionary Learning based CT Reconstruction

In this section, we will describe the proposed method in details from the follow-
ing three aspects: algorithm framework, parameter selection and representative
results and analysis.

4.1. Reconstruction Framework

4.1.1. MAP based objective function

Without loss of generality, we only assume a monochromatic source. Approxi-
mately, the measured data follows a Poisson distribution:

yi ∼ Poisson{bie−li + ri}, i = 1, . . . , I , (8)
where yi is the measurement along the ith X-ray path, and bi is the blank scan
factor, li = ∑J

j=1 aij µj = [Aµ]i is the integral of the X-ray linear attenuation
coefficients, A = {aij } is the system matrix, µ = (µ1, . . . , µJ )

T is a linear
attenuation coefficient distribution, ri accounts for read-out noise, I and J are
the number of projections and pixels, respectively.

Assuming that the noise distributions along different paths are statistically
independent, the Poisson log-likelihood function of the joint probability
distribution can be written as

L(y|µ) = ln P (y|µ) = ln

(
I∏

i=1

(e−ȳi ȳ yi
i /yi !)

)
, (9)

where P (·) is the probability function, and ȳi = bie−li + ri is the expected value
of yi . Ignoring the constant terms, we obtain L(y|µ) = − ∑I

i=1 (ȳi − yi ln ȳi).
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From the statistical perspective, an image can be reconstructed by maxi-
mizing a posteriori (MAP) of the function P (µ|y). According to the Bayesian
rule P (µ|y) = P (y|µ)P (µ)/P (y) and the monotonic increment property of the
natural logarithm, the reconstruction is equivalent to maximize the following
objective function

�̃(µ) = L(y|µ) + ln P (µ), (10)

where ln P (µ) is a regularization term based on the prior knowledge. Let
R(µ) = − ln P (µ), the task can be converted into minimizing the following
objective function

�(µ) =
I∑

i=1

((bie−li + ri) − yi ln(bie−li + ri)) + R(µ), (11)

Performing a second-order Taylor expansion of gi(l) = (bie−l + ri) − yi ln
(bie−l + ri) with respect to an estimated line integral21 l̂i = ln(bi/(yi − ri)),
Eq. (11) becomes

�(µ) =
I∑

i=1

wi

2
([Aµ]i − l̂i)2 + R(µ), (12)

where wi = (yi − ri)
2/yi is the statistical weight for each x-ray path.

While the simultaneous algebraic iterative technique (SART) also mini-
mizes a least square function, statistical iterative reconstruction (SIR) deals with
a statistically weighted least square function defined by Eq. (11). The statistical
weight represents the confidence of the projection measurement along each
path. The projection data through denser paths would have lower signal-to-
noise-ratios (SNR). Although the measured realistic data may not fully satisfy
the Poisson model22 in practical applications, it is well-accepted in the CT
field.23

4.1.2. GDSIR and ADSIR

The regularization term R(µ) in Eq. (12) represents prior information on
reconstructed images. Various assumptions about the prior information lead to
different reconstruction algorithms. For example, the assumption of smooth
variation over adjacent pixels suggests a regularization in terms of quadratic
differences between adjacent pixels.21 The piecewise constant assumption
supports a TV regularization.5 A more general form of regularization is
the q-generalized Gaussian Markov field (q-GGMRF) prior, which has two
adjustable parameters.24 The quadratic and TV regularization functions are
special cases of q-GGMRF. Because all these regularization means are based on
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the relationship of adjacent pixels, it is difficult for them to distinguish weak
structures and strong noise.

On the other hand, the dictionary learning and sparse representation
techniques perform well in sensing structures and suppressing noise. So we
propose to use the sparsity constraint in terms of a redundant dictionary as the
regularization term of Eq. (12). In reference to Eq. (7), we have the following
minimization problem:

min
µ,α,(D)

I∑
i=1

wi

2
([Aµ]i − l̂i)2 + λ

(∑
s

‖Esµ − Dαs‖2
2 +

∑
s

νs‖αs‖0

)
, (13)

where Es = {es
nj } ∈ RN ×J is an operator to extract patches from an image.

Similar to the comments we made on Eq. (7), the dictionary D in Eq. (13)
can be either predetermined or dynamically defined. According to these two
options, we can perform either global dictionary based statistical iterative
reconstruction (GDSIR) or adaptive dictionary based statistical iterative recon-
struction (ADSIR). Because structures in various subjects are quite similar
in a given application, a training set of patches for construction of a global
dictionary can be extracted from images of similar objects. On the other hand,
the training set of patches for construction of an adaptive dictionary can be
extracted from an intermediate image and dynamically updated during the
reconstruction process.

4.1.3. Optimization via alternating minimization

For GDSIR, the image reconstruction process is equivalent to solving the
following optimization problem

min
µ,α

I∑
i=1

wi

2
([Aµ]i − l̂i)2 + λ

(∑
s

‖Esµ − Dαs‖2
2 +

∑
s

νs‖αs‖0

)
, (14)

where there are two variables µ and α. An alternating minimization scheme
can be used to optimize the two variables. First, an intermediate reconstructed
image µ with a fixed sparse representation α̃ is updated to reduce the data
discrepancy. Thus, the objective function Eq. (14) becomes

min
µ

I∑
i=1

wi

2
([Aµ]i − l̂i)2 + λ

∑
s

‖Esµ − Dα̃s‖2
2. (15)
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By the separable paraboloid surrogate method, Eq. (15) can be iteratively
solved as

µt
j = µt−1

j

−
∑I

i=1 (aij wi([Aµt−1]i − l̂ i)) + 2λ
∑

s
∑N

n=1 es
nj ([Esµ

t−1]n − [Dα̃s ]n)∑I
i=1

(
aij wi

∑J
k=1 aik

)
+ 2λ

∑
s
∑N

n=1 es
nj

∑J
k=1 es

nk

,

j = 1, . . . , J , (16)

where the superscript t = 1, 2, . . . , T is the iteration index. Second, the
intermediate image µt is re-expressed in terms of the dictionary for a better
sparse representation. Thus, the objective function Eq. (13) becomes

min
α

∑
s

‖Esµ
t − Dαs‖2

2 +
∑

s

νs‖αs‖0, (17)

which is a sparse representation problem. As an example, the OMP algorithm
can be used to find the sparse representation of each patch. The above two
steps are alternatingly performed until the stopping criteria are satisfied.

For ADSIR, the image reconstruction process is equivalent to solve the
following optimization problem,

min
µ,D,α

I∑
i=1

wi

2
([Aµ]i − l̂ i)

2 + λ

(∑
s

‖Esµ − Dαs‖2
2 +

∑
s

νs‖αs‖0

)
, (18)

where there are three variables µ, D and α. Similar to the GDSIR, an
alternating minimization scheme is used to optimize the three variables.
First, an intermediate reconstructed image µ is updated to reduce the data
discrepancy with a fixed sparse representation α̃ and a current dictionary D̃. This
step is exactly the same as that for the GDSIR expressed by Eq. (16). Second,
keeping the intermediate image µt unchanged, D and α are estimated by

min
D,α

∑
s

‖Esµ
t − Dαs‖2

2 +
∑

s

νs‖αs‖0, (19)

Equation (19) is the generic dictionary learning and sparse representation
problem, which can be solved with respect to α and D alternatingly using
the classic K-SVD algorithm. For fast convergence, we can first use the fast
online algorithm25 to train a dictionary from the patches extracted from an
intermediate image µt . Then, we fix the dictionary to update the sparse
representation as in Eq. (17) using the OMP algorithm. The above procedures
are alternatingly performed until the stopping criteria are satisfied.
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4.2. Parameter Selection

Similar to other regularized iterative reconstruction algorithms, the regulariza-
tion parameter λ is to balance the data fidelity and prior information terms. The
final reconstruction depends on the parameter λ. It is an interesting problem
on how to choose an optimal parameter. Usually, it is empirically selected in
practice. For the GDSIR and ADSIR, we can also empirically select λ. Because
the data fidelity term is proportional to the noise standard deviation in the
projection domain, λ should be increased with the noise increment. Specifically,
our parameter selection problem can be re-formulated as follows. After some
variable exchanges and constant additions, we can rewrite Eq. (15) as

min
µ

‖Bµ − L‖2
2 + λN ‖µ − µ̃‖2

2, (20)

where B = wA, L = wl̂, w = diag(
√

wi/2), l̂ = (l̂1, . . . , l̂I )T , µ̃ = { 1
N

∑
s∈�j

Fsj Dα̃s }, N is the number of pixels in a patch, �j denotes the set of patches
covering a pixel j , and Fsj ∈ R

1×N extracts a pixel j from a patch s . Note that
in Eq. (19) we can discard the pixels in margins and only consider the pixels
in the intersection between the rows from

√
N to (H − √

N + 1) and the
columns from

√
N to (W − √

N + 1) for an H × W image. Let ξ = µ − µ̃

and L̃ = L − Bµ̃. Then, Eq. (20) becomes

min
µ

‖Bξ − L̃‖2
2 + λN ‖ξ‖2

2. (21)

Equation (21) is a classical regularization problem, which can be solved
using existing methods, such as the Miller method and the generalized cross-
validation method.26–28 Nevertheless, λ is empirically selected in this feasibility
study.

The dictionary redundancy improves the sparsity of representation. To
ensure the redundancy, the number of atoms in a dictionary should be much
greater than that of pixels in a patch, that means K 
 N . In the image
processing field, K = 4N is a conventional choice. Therefore, a larger patch
size corresponds to a larger number of atoms in a dictionary, which would
increase the computational cost. On the other hand, if the patch size is too
small, it could not effectively catch features in an image. In Ref. [11], it was
pointed out that there was no significant difference between the results with
N = 8 × 8, K = 256 and N = 16 × 16, K = 1024, and a larger patch size
may lead to an over-smoothed image. Hence, N = 8 × 8, K = 256 are used
in this chapter. In the dictionary learning process, we solve the optimization
problem Eq. (5) by minimizing the representation error with a fixed sparse
level LD

0 . The sparsity level is selected as 5 ∼ 10 atoms. The aforementioned
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parameter selection for N, K and LD
0 has been applied in many applications,

and also worked well in our experiments to be described below.
Besides, there are two parameters in the sparse representation step of image

reconstruction, which are the sparse level LS
0 and the precision level ε. The OMP

process will stop when either ‖αs‖0 ≥ LS
0 or ‖Esµ − Dαs‖2

2 ≤ ε. The sparse level
LS

0 is the number of atoms involved in representing a patch, which is empirically
determined according to the complexity of an image to be reconstructed and
the property of the dictionary. Usually, LS

0 is greater than or equal to the LD
0

in dictionary learning, and smaller than N /2 for sparsity. The precision level
ε represents the tolerance of the difference between the reconstructed and
original images, which is determined by the image noise level and the property
of the dictionary. The stronger the noise is, the greater ε is. We can estimate
the image noise level over a flat region in a reconstructed image.

Based on the above discussions, the parameter selection guidelines are
summarized as in Table 1.

4.3. Representative Results — Sheep Lung Study

4.3.1. Data acquisition

In a sheep lung perfusion study, an anesthetized sheep was scanned at normal
and low doses respectively on a SIEMENS Somatom Sensation 64-slice CT
scanner in a circular cone-beam scanning mode. A scan protocol was developed
for low-dose studies with ECG gating: time point 1 for a normal X-ray dose

Table 1. Summary of the parameter selection guidelines.

No. Variable Meaning Criterion/Range

1 λ Parameter to balance the data
fidelity and prior information
terms

It should be increased with the noise
level. It is usually empirically selected
in practice.

2 K , N Number of atoms and number
of pixels in a patch

They are selected as N = 64 and
K = 256 in the image processing
field, and work well in our study.

3 LD
0 Sparsity level L0 for dictionary

learning
It is usually set to 5∼10 atoms.

4 LS
0 Sparsity level L0 for image

reconstruction
It is determined by the complexity of an

image and the power of a dictionary;
N /2 > LS

0 ≥ LD
0 .

5 ε Tolerance of the difference
between the reconstructed
and original images

It is determined by the image noise and
the dictionary capability, and normally
comparable to the image noise level.
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scan (100 kV/150 mAs) before a contrast agent injection, and time points 2–21
for low-dose scans (80 kV/17 mAs) after the contrast agent injection. All the
sinograms of the central slice were extracted, which were in fan-beam geometry.
The radius of the trajectory was 57 cm. Over a 360◦ range, 1160 projections
were uniformly collected. For each projection, 672 detector elements were
equi-angularly distributed defining a field of view (FOV) of 25.05 cm in radius.
In this experiment, the reconstructed images were matrixes of 768×768 pixels
covering a 43.63 × 43.63 cm2 region. The sparsity constraint was enforced on
the entire lung region of 500 × 370 pixels.

4.3.2. Global dictionary learning

In this study, a baseline image was reconstructed from the normal-dose
sinogram using the FBP algorithm to construct a global dictionary, and the
performance of the proposed techniques were evaluated with other low-dose
sinograms. Because of the discrepancy in the normal and low-dose X-ray kVp
settings and injection of the contrast agent, the attenuation maps of the low-
dose images were quite different from that of the baseline image. Also, the
physiological motion of the sheep most likely introduced structural differences.
As such, this group of sinograms actually offers a challenging case to evaluate
the robustness of the GDSIR.

First, a set of overlapping patches were extracted from the lung region in
the baseline image. The patch size was of 8 × 8 pixels. The patches with very
small variance were removed from the extracted patch set. The direct current
(DC) component was removed from each patch. Then, a global dictionary of
256 atoms was constructed using the online dictionary learning method with
a fixed sparse level LD

0 = 5. The lung region and the final trained dictionary
are shown in Fig. 1. Finally, a DC atom was added to the dictionary.

4.3.3. Low-dose results

For comparison, five reconstruction techniques were applied to the afore-
mentioned low-dose sinograms. As the benchmark, low dose images were
reconstructed using the FBP method. The corresponding reconstructions using
the other four reconstruction techniques were described as follows.

First, the GDSIR algorithm with a pre-learned global dictionary (learned
in Subsection 4.3.2) was employed to reconstruct low-dose images with the
following empirical parameters: λ = 0.04, ε = 2.5 × 10−5, and LS

0 = 25.
The initial image was from the FBP method. An ordered-subset strategy was
used for acceleration. The number of subsets was 40. The iterative process was
stopped after 50 iterations.
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(a) (b)

Fig. 1. Construction of a global dictionary. (a) is a sheep lung image with a display window
[−700, 800] HU reconstructed from the normal-dose sinogram by the FBP method, which is
used to extract the training patches. (b) is the learned dictionary consisting of 256 atoms. The
attenuation coefficient of water was assumed as 0.018 to convert the reconstructed image (a)
into HU and other images throughout this chapter.

Then, the ADSIR algorithm was tested with the same low-dose sinograms.
In each iteration step, the dictionary was learned in real-time from the set of
patches extracted from an intermediate image. The parameters for dictionary
learning were the same as those in Subsection 4.3.2. Because there was strong
noise in an intermediate image, the atoms in this dictionary are noisy. Therefore,
the error control item ε for the ADSIR was made smaller than that for GDSIR
in which the dictionary was learned from the normal-dose image. On the other
hand, since the dictionary was learned from the reconstructed image itself,
there was no need to use many atoms to capture the structures. The sparsity
level parameter LS

0 was made much smaller than that for the GDSIR. Taking all
these factors into account, the parameter were empirically chosen as λ = 0.04,
ε = 1 × 10−5, and LS

0 = 5. The number of subsets was again 40. The iterative
process was also stopped after 50 iterations.

Third, the popular TV regularization algorithm was included to demon-
strate the merits of the proposed methods. For that purpose, the TV minimiza-
tion constraint was used as the regularization term in Eq. (12), and enforced
using the soft-threshold filtering based alternating minimization algorithm. We
denote this method as TVSIR.

Fourth, to evaluate the effect of the statistical reconstruction technique in
this dictionary learning based reconstruction framework, we replaced the log-
likelihood term

∑I
i=1

ωi
2 ([Aµ]i − l̂ i)

2 in Eq. (13) with an un-weighted l2-norm
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data fidelity term 1
2‖Aµ − Î‖2

2. The global dictionary based algorithm was
modified with this constant weighting scheme, which we denote as GDNSIR.
The adaptive dictionary based algorithm can be modified in a similar way. The
regularization parameter was empirically set to λ = 0.35 given the weight
change of the data fidelity term in the objective function.

The results from a representative low-dose sinogram are in Fig. 2. It can be
seen that there is strong noise in the FBP reconstruction, and streak artifacts
along high attenuation structures, such as around bones. This kind of streak
artifacts can be easily identified from the difference between the FBP image and
the results with the SIR methods. The dictionary learning based algorithms
generally performed well with low-dose data. While the GDSIR did better
in preserving structures and suppressing noise, the ADSIR kept slightly more
structures than the GDSIR (see the region indicated by the arrow “A”). The
ADSIR generated a little less uniformity than the GDSIR in the whole image
(see the region indicated by the arrow “B”), and some edges were obscurer
than those with the GDSIR. The performance of the GDNSIR was not much
different from that of the GDSIR. However, there were some streak artifacts
with the GDNSIR as in the FBP reconstruction (see the difference from the
FBP image), especially around the bone (see the region indicated by the arrow
“C”). The image reconstructed by the TVSIR had much less noise than the
FBP result, but it was a little blocky and had an inferior visibility compared to
the dictionary learning based methods (see the regions indicated by the arrows
“D” and “E”). Some bony structures in the TVSIR result were obscure or
invisible (see the region indicated by the arrow “F”).

4.3.4. Few-view test

Reducing the number of projection views is an important strategy to reduce
image time and radiation dose, giving the few-view problem. To evaluate the
proposed dictionary learning based algorithms for few-view tomography, the
number of low-dose views was down-sampled from 1160 to 580, 290 and
116, respectively. The GDSIR and ADSIR methods were then applied. Also,
the FBP and TVSIR methods were performed for comparison. The results are
in Fig. 3.

It is seen that the FBP reconstruction results became worse and worse when
the number of views was gradually decreased from 1160 to 116. The GDSIR,
ADSIR and TVSIR results were much better than the FBP reconstruction. In
the case of 580 views, the GDSIR and ADSIR results were almost as good as
that reconstructed from 1160 views in Fig. 2. However, in the cases of 290 and
116 views, some details were lost. The TVSIR results always had more noise
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Fig. 2. Reconstructed images from a representative low-dose sinogram collected in the sheep
lung CT perfusion study. The upper left image is reconstructed by the conventional FBP
method. The middle column are the images reconstructed using the GDSIR, ADSIR, TVSIR
and GDNSIR methods (from top to bottom), respectively. The magnified local regions of them
are shown below the FBP results (upper left, upper right, lower left and lower right correspond
to GDSIR, ADSIR, TVSIR and GDNSIR, respectively). The display window is [−700, 800]
HU. The right column are the difference images between the FBP image and the results by the
GDSIR, ADSIR, TVSIR and GDNSIR with a display window [−556, 556] HU.
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(a)

FBP 

GDSIR 

ADSIR 

TVSIR 

580 Views 290 Views 116 Views 

Fig. 3. Reconstructed images from the few-view low-dose sinograms. From top to bottom of
(a), the images are reconstructed by the FBP, GDSIR, ADSIR and TVSIR methods, respectively.
The display window is [−700, 800] HU. From top to bottom of (b), the images are the
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and fewer structures than the dictionary learning based reconstructions (see
the regions indicated by the arrows).

4.3.5. Plots of the terms in the objective function

To monitor the convergence of the proposed dictionary learning based
algorithms, we took the GDSIR as an example. Figure 4 plots the convergence

(b)

FBP-GDSIR 

FBP-ADSIR 

FBP-TVSIR 

290 Views 116 Views 580 Views 

Fig. 3. (Continued)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
differences between the FBP results and the corresponding results by the GDSIR, ADSIR and
TVSIR methods, respectively. The display window is [−556, 556] HU. From left to right, the
images are reconstructed from 580, 290, and 116 views, respectively.



August 8, 2014 9:28 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch06 page 116

116 Q. Xu et al.

(a) (b)

Fig. 4. Plots of objective functional terms associated with the GDSIR method applied to a
representative low-dose sinogram. (a) and (b) are the curves for the log-likelihood and sparse
representation errors, respectively.

curves of the log-likelihood term
∑I

i=1
wi
2 ([Aµ]i − l̂ i)

2 and the sparse repre-
sentation error term

∑
s ‖Esµ − Dαs‖2

2 with respect to the iteration number.
These curves show that both the log-likelihood term and the sparse rep-
resentation error term would decrease monotonically. After ∼40 iterations,
both the two terms changed little with further iterations. Practically, the
reconstruction process can be stopped after a fixed number of iterations when
the log-likelihood term and sparse representation error term do not decrease
significantly.

5. Discussion — TV or Dictionary?

Based on the CS theory, the TV regularization method was widely used
for CT reconstruction, and produced good results from incomplete and
noisy data. However, TV regularization method may produce blocky results
in practical applications when there is too much noise. Moreover, the TV
constraint uniformly penalizes the image gradient, and is not capable of
distinguishing structural details from noise and artifacts. These problems
dampen the enthusiasm for the clinical application of the TV regularization
method.

Different from the TV regularization method, the dictionary learning
approach aims at capturing localized structural information and suppressing
image noise. The sparse representation in terms of a redundant dictionary is
able to keep the atoms reflecting structural features and avoid the other atoms
that may introduce artifacts. Use of the dictionary-based sparse representation
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as the regularization term for SIR is a new mechanism to improve image
quality. Moreover, any missed structural information due to the enforcement
of the sparsity constraint will be compensated for in the subsequent updating
steps. The SIR is very effective to eliminate streak artifacts, and works well
with a dictionary. In principle, the dictionary learning process should lead to
a sparser representation of an underlying image in a specific application. The
basic idea of the dictionary learning based approach is to find a best match to a
true image from the dictionary-spanned image space. When the true image is
outside the dictionary image space, the reconstructed image can be viewed as its
projection on the dictionary image space with an unavoidable error. Therefore,
some structures may be lost while artifacts may be introduced although the
reconstructed results often have less noise and more structural information. A
proper dictionary should represent the structural information of an object as
much as possible. In this way, the reconstruction with a sparse representation in
terms of the dictionary can perform well. With a global dictionary, the structural
differences between its training images and a true image would affect the final
reconstruction quality. Usually, it is not difficult to prepare an excellent training
set with sufficiently many structural features and less noise for construction of
a global dictionary. Since the GDSIR does not need to update the dictionary
in each iteration step, it is much faster than the ADSIR. On the other hand,
it is necessary to use an adaptive dictionary when a global dictionary does not
match a specific application closely.

In fact, the CS theory is a general principle for image reconstruction and
the key is to explore a sparsity constraint. In our opinion, practical sparsifying
transforms have been developed in three generations. The first generation is
the pixel-wise sparsity in the image domain, which includes the most popular
DGT assuming a piecewise constant image model. The second generation is the
pixel-wise sparsity in the transform domain, which includes Fourier transform,
wavelet transform and other linear sparsifying transforms. The third generation
is the structural sparsity, which includes the dictionary learning based sparse
representation in this chapter as well as some low rank models for matrix
completion. Due to the limitation of space, we only present some representative
results from low-dose and/or few-view datasets. It can be expected that the
dictionary learning based reconstruction methods will perform well for other
CT applications, such as limited-angle, interior tomography, and so on.15,29

Besides, more clinical applications are possible, such as ultra-low-dose lung
cancer screening. Moreover, not only in the context of X-ray CT, our results
could be extended to other tomographic modalities such as phase-contrast CT,
PET and SPECT, etc.
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Digital images combined with computer aided diagnosis techniques offer dermatol-
ogists a simple, robust, objective and portable means for assessing many kinds of
dermatological conditions. Some of the conditions that are amenable to computer
aided diagnosis include acne, psoriasis and rosacea. Computer aided diagnosis can
act as an external reference point to verify clinicians’ diagnoses or can act as another
input to the diagnosis making process. In this chapter we examine machine-learning
methods for the computer aided diagnosis of psoriasis severity by developing an
algorithm for the analysis of psoriasis severity. Psoriatic lesions are analysed by first
segmenting erythema, the inflamed red skin in lesions, and scaling, the flaky white skin
in lesions. Erythema segmentation is achieved by decomposing the skin colour into its
melanin and haemoglobin colour components, and a Support Vector Machine (SVM)
is designed to identify erythema pixels. Scaling segmentation is done by first applying
a contrast map to heighten the contrast between scaling and non-scaling pixels, and
then using textures and neighbourhoods to identify the scaling pixels. Markov random
fields (MRFs) are used in conjunction with SVMs to first identify candidate scaling
pixels and then use the neighbourhood in which a pixel is located to determine its
final classification. We demonstrate the effectiveness of the proposed segmentation
and classification methods by testing them on a database of psoriasis images.

1. Introduction

Computer aided diagnosis using digital skin images is fast becoming an
important tool in dermatology. Images can be acquired for analysis using a
variety of different imaging modalities where each modality reveals different

121
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facets of a condition. Computer aided diagnosis in dermatology is often used
to complement diagnoses by clinicians or is used to help achieve a correct
diagnosis especially when the diagnosis is hard to make.1

The aim of this chapter is to describe algorithms for diagnosis of psoriasis
severity using only 2D digital skin images. Two dimensional digital skin images
are commonplace in dermatology practice and have been for a some time. A
computer aided diagnosis system using just 2D digital skin images can not only
analyse new images, but can also be used to analyse existing images.

The algorithm implements a processing pipeline that samples the image,
applies filters to the image and transforms the image. In particular, machine
learning and classification techniques are used to segment the key symptoms
of psoriasis and then make a diagnosis of the psoriasis severity. The process
for segmenting and diagnosing psoriasis severity is illustrated in Fig. 1. This
type of processing pipeline is actually quite common and used in a number
computer aided diagnosis systems.2–4 The two key stages in the process are:
(1) the segmentation of the symptoms in the image; and (2) the use of the
symptoms to form a diagnosis or make a clinical decision. In the case of
psoriasis the two steps become: (1) segmentation erythema and scaling; and
(2) determining the severity of the erythema and scaling that, when combined
with the area of lesion, allows the system to diagnose psoriasis severity. Note
that this process of segmenting and diagnosing can be used with digital images
of various modalities.

Segmenting the symptoms in a digital image and using the segmented
image to make a diagnosis can both be implemented using statistical machine
learning. Considering the digital image as a matrix of pixels allows us to treat
both segmentation and diagnosis as classification problems. In the case of
segmenting symptoms, the classification problem is to separate pixels that

Fig. 1. A schematic for the design of our psoriasis diagnosis algorithm. In effect, the path
through the dashed lines implements the path through the undashed lines.
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are associated with a disease from those that are normal. In the diagnosis
phase, where symptoms are associated with a region in the image, the
classification problem is to differentiate between benign or malign symptoms,
or to determine the severity of a symptom together with a description of the
diagnosis.

There are three modules in a typical statistical machine learning system
(see Fig. 1): feature extraction, feature selection and classification. In the case
of digital images, features are typically numerical properties, or variables, that
can be observed in the image. In most concrete problems, there are a number of
different features that are observed and these features are grouped into feature
sets. The feature set determined by the extraction module typically consists of
the raw features extracted directly from images. The feature selection module
determines a subset of the raw features that are better suited to the classification
problem. Each pixel in the image will have a set of feature values associated with
it and their feature values forms a feature space. The classifier then attempts to
find boundaries between the classes of pixels based on pixels’ feature values,
for example, the pixels with feature vectors indicating erythema should all be
in the same class.

This chapter will focus on developing machine learning methods for the
segmentation of psoriasis. This is the preliminary step to diagnose psoriasis
severity reliably and quantitatively.

2. Application of Machine Learning Methods for Psoriasis
Segmentation

2.1. Psoriasis

Psoriasis is a chronic inflammatory skin disease and not much is known about
the causes. There are around 125 million people worldwide suffering from
this disease, and at present there is no known cure. The economic impact of
psoriasis is also high. The overall annual cost of caring for individuals with
clinically significant psoriasis has been estimated to as high as $2 billion in the
United States.5 In Australia, individual expenditure on psoriasis treatment is
estimated at around AUD $2000 over a 2-year period.6 The chronic nature of
the disease often incurs a significant cost for patients over their lifetime.

The most common type of psoriasis is characterised by sharply demarcated
scaly and erythematous plaques on the skin and can occur anywhere on the
human body,7 and individual psoriatic lesions vary greatly in appearance.
Figure 2 shows some examples of psoriatic lesions.
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(a) (b)

(e)(d)(c)

Fig. 2. Sample images of different types of psoriasis. (a) Plaque psoriasis; (b) Pustular psoriasis;
(c) Guttate psoriasis; (d) Flexural psoriasis; (e) Erythrodermic psoriasis.

The problem for clinicians is to determine the efficacy of psoriasis treatment
and to compare the efficacy of different psoriasis treatments. The current
method for comparing treatments is to estimate a severity index from an
individual’s psoriasis lesions. A severity index is a single number derived from
a variety of disease symptoms. One of the most common such indices is the
PASI score.8 PASI scores are derived by selecting a particular lesion and then
visually estimating the area of selected lesions, the intensity of the erythema in
the lesion, the degree of scaling in the region, and the thickness of the lesion.
The four properties of a lesion are expressed as a numeric severity index. Despite
training, intra- and inter- observer variances unavoidably occur in practice. An
objective method of assessing psoriasis severity is in demand.

2.2. Psoriasis Segmentation

The first phase (see Fig. 1) in the computer aided diagnosis scheme is to segment
the symptoms of the disease. In the case of psoriasis, this means segmenting
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erythema and scaling from normal skin. A body of work in segmenting psoriasis
lesions exists but is focussed mostly on erythema and plaque psoriasis.

The methods for segmenting plaque psoriasis can be roughly divided
into two types: pixel-based methods, and region-based methods. Pixel-based
methods investigate color spaces and use only the color values of single
pixels for segmentation. Region-based methods use color information and the
information from neighbouring pixels to perform the segmentation and include
methods like texture-based classification, watershed and region-based active
contours.

A popular class of pixel-based methods for segmenting psoriasis are
thresholding methods, for example, by thresholding G values in the normalised
RGB color space9 or by changing the thresholds based on assumptions about
the distribution of normal skin and psoriasis lesions in the image.10 In Refs. [11]
and [12], the color space is changed to the CIE L∗a∗b∗ color space, where the
hue and chroma color components are used to cluster pixels into psoriasis and
normal skin classes. Delgado et al.13 use a quadratic discriminant analysis that
assumes that the difference between the G and B values in the RGB color space
follows a Gaussian distribution. Nevertheless, problems with illumination and
shadows remain unresolved with these thresholding methods.

Region-based segmentation of psoriasis have combined fuzzy texture
spectrums with normalised RGB colors as features for a neuro-fuzzy classifier14

and a multiresolution-decomposed signature subspace classifier.15 The region-
based segmentation offers better results in uneven illumination but has the
drawback of missing small spot shaped psoriatic lesions. Another region-based
approach to psoriasis segmentation is to use fractal features as in Refs. [16] and
[17] that use the more complex textures in psoriasis to differentiate psoriasis
from normal skin. Active contours work by initialising a seed region that grows
outwards until a boundary between the psoriatic lesion and normal skin can be
identified. This is done in Ref. [18] using color to seed the region and color
change to detect the boundary. Region growing works well when the lesion
exhibits erythema that almost completely surrounds the creamy white scaling.
In the presence of scaling with no erythema, the technique can mis-classify
scaling pixels as skin pixels.

Although plaque psoriasis is quite common, the segmentation methods
listed above are not so successful with other types of psoriasis. The reason is that
most algorithms rely on successfully segmenting erythema first, but the diversity
of skin colors, psoriasis types and lighting conditions do not always make this
possible. In this chapter we take a different strategy for segmentation which
is to develop a pixel-based method to segment erythema, and a region-based
method to segment scaling separately and then combine the results.
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3. Segmenting Psoriasis Symptoms: Erythema

Erythema is the red inflamed skin that often, but not always, surrounds the
creamy white scaling skin at the centre of psoriasis lesions. Erythema appears
predominantly at the initial stages of psoriasis and some psoriatic lesions
consist of erythema alone without any scaling. The redness of erythema when
compared to normal skin makes it suitable to segment by developing a skin
color model. Any segmentation algorithm for erythema based on skin color
also needs to reject moles and other discolorations.

Our algorithm uses a skin color model and is composed of the following
three steps:

(1) Separating skin from background: The skin is separated from the back-
ground using a histogram-based Bayesian classifier. Typical clinical images
contain background objects such as clothes or wallpaper, that can confuse
color based segmentation methods. Once the background is removed the
algorithm can focus on segmenting psoriasis from normal skin without the
need to deal further with background.

(2) Determining the feature set by skin color decomposition: The aim of this
step is to extract features for classification by decomposing a skin color
using a common model in which skin color is composed of melanin and
hemoglobin color components. Melanin and hemoglobin are the features
used by the classifier to segment erythema pixels from normal skin, moles
and other skin discolorations. Independent Component Analysis (ICA) is
used for the skin color decomposition.19

(3) Segmenting erythema by using an SVM as the classifier: The SVM classifies
pixels in a feature space where the features are melanin and hemoglobin
color components.20

3.1. Separating Skin from Background

The problem of separating skin from background has a long history,21 for
example, in human tracking,22,23 gesture analysis,24 and face recognition.25,26

Skin segmentation is usually performed by using skin colors, because skin
colors are robust information that is not affected by positions of the human
body. Thresholding in a color-space, Bayesian classifiers and Gaussian classifiers
are three of the most popular methods of skin segmentation.27,28 Of these
methods, color histogram based Bayesian classifiers perform the best on
benchmark datasets,27 because the color histogram is a stable representation
of the skin colors unaffected by occlusion, while the explicit skin-color space
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thresholding is easily biased by illumination and the threshold values are
hard to identify.27 Additionally, the histogram-based Bayesian classifier is
computationally faster than the Gaussian models.27,29

In this chapter we use the YCbCr color space combined with a Bayesian
classifier and a color based histogram. The reason for choosing the YCbCr color
space is that skin color is known to be compactly clustered in the YCbCr color
space.20,26

Bayesian modelling separates skin pixels from non-skin pixels by using a
Bayesian maximum likelihood estimation.30 Given a color value x in the YCbCr
color space, the likelihood of being skin P (skin|x) and non-skin P (−skin|x) is
defined as:

P (skin|x) = P (x |skin)P (skin)

P (x |skin)P (skin) + P (x |−skin)P (−skin)

P (−skin|x) = P (x |−skin)P (−skin)

P (x |skin)P (skin) + P (x |−skin)P (−skin)
(1)

where P (x |skin) and P (x |−skin) are the conditional probabilities of a pixel color
x given that we are dealing with a skin class and a non-skin class respectively,
which are obtained through histograms of skin pixels and non-skin pixels,
and P (−skin) and P (skin) are prior probabilities of being skin and non-skin
respectively, which are case dependent.

A comparison of likelihoods P (skin|x) and P (−skin|x) can be performed
through the ratio of P (skin|x) to P (−skin|x):

P (skin|x)

P (−skin|x)
= P (x |skin)P(skin)

P (x |−skin)P (−skin)
(2)

If a pixel color x is such that

Pskin(x |skin)

P−skin(x |−skin)
≥ tskin (3)

exceeding the threshold tskin, then x is labeled as a potential skin pixel. The
threshold tskin is a function of P (skin) and P (−skin) as follows:

tskin = cpP (−skin)

cnP (skin)
(4)

where cp is the introduced cost of a false positive, and cn is the introduced cost
of a false negative. In this way, a comparison of the likelihoods is converted to
a comparison of the conditional probabilities.

The Cb and Cr components of the YCbCr color space are used to build
the histograms, and the luminance component Y is discarded to reduce the
disturbance from uneven illumination, for example, highlights and shadows.
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Trading off between correct detection of skin and false positives, we set tskin to
be 0.2 and 0.1 for the Bayesian classifiers built with Cb and Cr components
respectively. This gives the sets of pixels

X Cb
skin =

{
xCb| Pskin(xCb|skin)

Pskin(xCb|−skin)
≥ 0.2

}

X Cr
skin =

{
xCr| Pskin(xCr|skin)

Pskin(xCr|−skin)
≥ 0.1

}
(5)

with the result that the skin pixels are given by the set Askin = X Cb
skin

⋂
X Cr

skin.

3.2. Feature Extraction: Decomposing Skin Color into Melanin
and Hemoglobin Components

Once the skin has been separated from background we can look for features
that can be used to distinguish erythema from normal skin. Figure 3 shows
a dichromatic reflection model of skin. Human skin is a turbid media with a
multi-layered structure. Melanin occurs in the epidermal layer and causes the
skin to present as brown or black in color. Hemoglobin occurs in the dermal
layer and causes the reddish color in the skin.

After identification of the skin region, the skin color is decomposed
into melanin and hemoglobin components. These two components correlate
directly with skin coloring and can be used to distinguish between erythema and
other non-inflamed skin such as normal skin and moles. The quantities of these
two pigments vary between individuals which in turn causes the variation in skin
color that we see. In the case of erythema and its accompanying inflammation,
there is an increase in hemoglobin causing the abnormal redness on the surface

Fig. 3. Dichromatic reflection model of skin.
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of the skin. In contrast, normal skin maintains a more balanced mixture of the
hemoglobin and melanin pigments.

If we assume that skin color is a direct result of the melanin and hemoglobin
pigments in the skin then we can attribute a melanin component and a
hemoglobin component to skin color. Further if we assume that these two
components of skin color are orthogonal then we can use ICA to decompose a
skin color into melanin and hemoglobin components which then become our
features for the classification step. This is an extension of the method proposed
in19 that synthesises skin color based on the ICA decomposition.

There are four steps in the skin color decomposition algorithm:

(1) A skin color model can be defined in a three dimensional optical density
domain,19 such that the skin color density can be linearly represented by
melanin and hemoglobin components. We have:

lx ,y = cmqm
x ,y + chqh

x ,y + �

= Cqx ,y + � (6)

where lx ,y is the color intensity in the optical density domain, cm and ch

are the melanin and hemoglobin components, qm
x ,y and qh

x ,y are relative
quantities of the melanin and hemoglobin components respectively, and
� is a spatially stationary vector modelling the other pigments and skin
structure.

lx ,y = [−log(rx ,y), −log(gx ,y), −log(bx ,y)]t (7)

In Eq. (7) rx ,y , gx ,y and bx ,y are the normalised color densities of a pixel at
coordinate (x , y) with RGB values r , g and b respectively. Equation (6) can
be rewritten using a pure density matrix C = [cm, ch] and quantity vector
qx ,y = [qm

x ,y , qh
x ,y ].

(2) Principle Component Analysis (PCA)31 is a technique for reducing dimen-
sionality while preserving information. PCA is used here to reduce the
three dimensional optical densities to two dimensions while preserving the
major skin color information and discarding any redundant information
from other pigments in the process. The resulting two dimensional color
intensity vector wx ,y is given below:

wx ,y = P̃ t lx ,y

= P̃ t (Cqx ,y + �)

= P̃ t Cq′
x ,y (8)

where q′
x ,y = qx ,y + (P̃ t C)−1P̃ t �, and P̃ = [p(1), p(2)] is composed of

two principle components p(1) and p(2) corresponding to the first two
largest eigenvalues, λ(1) and λ(2) in the PCA analysis.31
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(3) Starting now with the two dimensional space, ICA is used to estimate the
melanin and hemoglobin components from the two dimensional density
vectors. To simplify the ICA computation the vectors wx ,y are whitened to
have zero mean and unit variance.32 The whitened value ex ,y is given by:

ex ,y = �̃− 1
2 [wx ,y − w̄]

= �̃− 1
2 P̃ t C [q′

x ,y − (P̃ t C)−1w̄]
= H sx ,y (9)

where �̃ = diag[λ(1), λ(2)] and w̄ is the mean vector of wx ,y taken over
all the coordinates in the image. H = �̃− 1

2 P̃ t C is a separation matrix, and
sx ,y = [sx ,y(1), sx ,y(2)]t = q′

x ,y − (P̃ t C)−1w̄, where sx ,y(1) and sx ,y(2) are
independent of each other and represent the source signal wx ,y .
What we want now is an estimate of the synthesised skin color Ĩx ,y from
the independent melanin and hemoglobin components C̃ = [cm, ch]. We
use the separation matrix H and the source signals sx ,y to estimate C̃ and
consequently Ĩx ,y : The pure density matrix C̃ can be estimated from the
separation matrix H = �̃− 1

2 P̃ t C as C̃ = (�̃− 1
2 P̃ t )−1H . The quantities of

pigments from Eq. (6) can now be estimated as q̃x ,y = C̃−1lx ,y − d where
d is given by C̃−1�. Our problem however, is that � is unknown but
assuming that the smallest value of q̃x ,y is zero, which we can do because
of the whitening process performed earlier, we have d = minx ,y(C̃−1lx ,y).

(4) The melanin and hemoglobin quantities of a skin color can now be derived
by using the skin color model below:

l̃x ,y = C̃(K q̃t
x ,y + jd) + j� (10)

where l̃x ,y is the synthesised skin color based on the melanin and hemoglobin
components. K and j are introduced synthesis parameters. The spatial
effect can be removed by setting j = 0 and setting K = diag[1, 0] the
color intensity l̃m

x ,y of the melanin component is obtained and setting K =
diag[0, 1] the color intensity l̃h

x ,y of the hemoglobin component is obtained.
Transforming l̃m

x ,y and l̃h
x ,y from the optical density domain back into the

RGB color space, we have:

Ĩ m
x ,y = exp(−l̃m

x ,y) Ĩ h
x ,y = exp(−l̃h

x ,y) (11)

where Ĩ m
x ,y and Ĩ h

x ,y are the estimated color intensities of the melanin
component and the hemoglobin component in the RGB color space
respectively.
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3.3. Erythema Pixel Extraction

After decomposing skin color into independent components, erythema pixels
can be separated from non-erythema pixels by using the hemoglobin and
melanin component color intensities. Thus, we have a binary classification
problem for which we use an SVM.

In this section, an SVM is used to perform the classification. The reason
for using an SVM classifier is that its performance is shown to be quite
promising.33–35 SVMs are attractive because they are able to linearise non-
linear classification problems through the use of the kernel trick36 where data
points are embedded into a high dimensional space where the decision rule
can be linearised. SVMs classify by deriving a hyperplane in feature space that
separates the data points into separate classes. An optimum hyperplane is the
one with the largest distance between the hyperplane and the closet data points
on each side of the hyperplane in feature space.

Suppose that we have a training set T :

T = {(v1, α1), . . . (vi , αi), . . . (vn, αn)}, vi ∈ R
6, αi ∈ {−1, 1} (12)

where if αi = −1, vi is the feature vector for an erythema pixel, and if αi = 1,
vi is the feature vector of a non-erythema pixel. Let n is the number of training
samples.

The objective function of the SVM determines a hyperplane with the
equation h(v) = ωt v + b = 0, intercept b and normal vector ω such that b
and ω can be determined from the training samples by solving a minimisation
problem:

minimise
1
2

ωtω + c
n∑

i=1

ξi

subject to αi(ω
t φ(vi) + b) ≥ 1 − ξi , i = 1, 2, . . . , n

ξi ≥ 0, i = 1, 2, . . . , n (13)

The variables ξi are slack variables that allow some data points to be misclassified
by the hyperplane, c is an error tolerance constant that controls the tolerance
of the slack variables, and φ(·) is a mapping function that maps training samples
to a higher dimensional space. A Gaussian radial basis function30 is used in our
algorithm because of its simplicity and its computational efficiency:

K (Fx ′,y ′ , Fx ,y) = exp{−γ‖Fx ′,y ′ − Fx ,y‖2} (14)

where γ>0, σ is the variance and γ = 1
2σ2 .
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4. Segmenting Psoriasis Symptoms: Scaling

The appearance of scaling varies with different psoriatic lesions. It typically
appears as white or creamy colored scales on regions of red and inflamed
skin (erythema), but can also appear in isolation without the accompanying
erythema. When psoriasis appears without the accompanying erythema, it
appears as discernibly white or creamy flakes on normal skin. Scaling can present
as small spots or as patches scattered within erythema. Moreover, the color of
scaling may be very similar to that of normal skin, especially if the skin is fair,
making it difficult to differentiate between scaling and normal skin using color
alone. However, the rough textured surface of scaling is markedly different
from normal skin.

The algorithm presented in this chapter uses a feature space derived from
both color and texture to identify scaling pixels. There are two stages in
the algorithm: (1) the algorithm first analyses skin color and skin texture using
the L∗a∗b∗ color space and a bank of Gabor filters to create a feature space for the
image; (2) the algorithm next removes erythema pixels from consideration and
resamples the image to collect training samples for the classification process.
The segmentation is achieved by using a combination of an MRF and the
hyperplane derived from an SVM.37

4.1. Developing the Feature Space for the Detection of Scaling

4.1.1. Scaling contrast map for enhancing the contrast between scaling
and surrounding erythema

A scaling contrast map is developed to enhance the contrast between scaling
and erythema, especially in situations where scaling is scattered in erythema and
is hard to discern visually. The L∗a∗b∗ color space is used to develop a pair of
multi-scale centre-surround filters that increases the contrast between scaling
and normal skin.

In the L∗a∗b∗ color space, the color distance is linearised for the perception
of color difference. The L∗ dimension specifies lightness where an L∗ value of
0 is black and an L∗ value of 100 is a diffuse white. The a∗ dimension is the
red-green dimension, where a positive value of a∗ is red and a negative value
is green, and the b∗ dimension is the blue-yellow dimension, where a positive
value of b∗ is blue and a negative value is yellow.

The color of scaling correlates well with higher values of L∗ and erythema
with positive values of a∗. With this in mind a scaling contrast map S is
defined as the result of multi-scale centre-surround filtering in the L∗ and a∗



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch07 page 133

Machine Learning Methods for Segmenting Psoriatic Lesions from 2D Images 133

components:

Sx ,y = J (L∗
x ,y) + J (inv(a∗

x ,y)) (15)

where Sx ,y is the value of scaling contrast map S at the image coordinate
(x , y), J (·) is a multi-scale centre-surround filter that detects contrast in the
specific color component, and inv(a∗

x ,y) inverts the image in the a∗ dimension,
which is defined by inv(a∗

x ,y) = maxi,j (a∗
i,j ) − a∗

x ,y , where (i, j ) runs through
all the coordinates in the image. By inverting the color intensity values of the
erythema, the a∗ values become lower and the contrast between scaling and
any surrounding erythema is enhanced.

The multi-scale centre-surround filter J (·) is now defined by:

J (Xx ,y) =
3∑

s=1


Xx ,y − 1

N

∑
x−w(s)≤m≤x+w(s)
y−w(s)≤n≤y+w(s)

Xm,n


 (16)

where Xx ,y is the color intensity of the current pixel with coordinate (x , y) and s
is the scale. The subtracted term is the average intensity value of the surrounding
area with pixel number N . The size of the surrounding area is determined by
scale s , w(s) = d

2s , where d is the larger value between the image width and the
image height, and the scale s is set to be s ∈ {1, 2, 3}.38

4.1.2. Texture analysis with Gabor filters for differentiating rough
scaling from normal skin

The scaling contrast map S behaves well when segmenting scaling from
erythema but is not sufficient for segmenting scaling from normal skin,
especially when the color difference between the two is small. However,
scaling presents as a rough textured surface that distinguishes it from the more
smoothly textured normal skin. The rough texture of scaling combined with the
scaling contrast map can provide a good combination of features for segmenting
scaling.

Gabor filters are used to differentiate rough scaling from smooth normal
skin. A 2D Gabor filter is defined as:

g(x , y; γ, σ, λ, ψ) = exp

(
−x ′2 + γ2y ′2

2σ2

)
exp

(
i
(

2π
x ′

λ
+ ψ

))

x ′ = x cos θ + y sin θ

y ′ = −x sin θ + y cos θ (17)

where the Gaussian distribution function exp(−(x ′2+γ2y ′2)/2σ2) with standard
deviation σ and spatial aspect ratio γ is called the envelop, the complex
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Table 1. Parameters defining the bank of Gabor filters used
for scaling texture analysis.

Spatial frequencies 1/λ 23, 31, 47 cycles per image
Rotation angles θ 0, π

8 , π
4 , 3π

8 , π
2 , 5π

8 , 3π
4 , 7π

8 , π

Phase shift ψ 0
Spatial aspect ratio γ 0.5

sinusoidal exp(i(2πx ′/λ + ψ)) with spatial frequency 1/λ and phase shift ψ

is called the carrier, and θ is the rotation angle.
We have the Gabor energy Ex ,y :

E2
x ,y = Re(rx ,y)

2 + Img(rx ,y)
2 (18)

Where rx ,y is the response of a Gabor filter. We use the square of the Gabor
energy, because it is better in accentuating the differences between scaling and
normal skin than the more commonly used Gabor energy. Since the variations
in the textures of scaling and normal skin in different lesions and people make
the choice of one single Gabor filter unlikely, the algorithm uses a bank of 24
Gabor filters designed to respond well in a variety of skin and scaling texture
conditions. Parameters for the Gabor filters are shown in Table 1.

A Gabor texture image is constructed with the purpose of covering the
responses of the Gabor filters whose spatial frequencies and rotation angles
are between the selected ones in Table 1. The technique given in Ref. [39] is
applied, that filters the square of Gabor energy image using hyperbolic tangent
and mean filters subsequently, and sums the flittering outputs over all of the
rotation angles and frequencies of the Gabor filters.

4.2. Semi-supervised Scaling Segmentation

The second stage of the algorithm segments scaling from 2D skin images
through a semi-supervised algorithm to ensure the invariance of segmentation
to scaling and skin changes from different patients. This part of the algorithm
implements a three step process: (1) the scaling contrast map is applied to
threshold out all dark pixels representing darker pigments in the skin and
including erythema, hair, moles and other blemishes; (2) a training set for
the scaling classifier is extracted from the image, and is composed of pixels that
are highly likely to be scaling and pixels that are highly likely to be normal skin;
(3) the pixels are classified using an SVM defined by the training set and the
resulting image smoothed using an MRF.
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4.2.1. Removing erythema and other dark pixels

The first step is to threshold out the dark pixels representing erythema, hair,
moles and other blemishes in the scaling contrast map S . Scaling and normal
skin pixels remain in consideration after the application of the contrast map
because they result in a significantly high value of S . We define a binary image
M by:

Mx ,y =
{

1 if Sx ,y ≥ ts

0 otherwise
(19)

where ts is the threshold value. Pixels labelled with 1 including scaling and
normal skin are retained for further analysis. Pixels labelled with 0 denote darker
pigments. Besides erythema, hair, moles and other blemishes are removed
from further consideration by the thresholding. This step changed the scaling
segmentation problem into a binary classification problem. In the following
steps, a classifier is designed to differentiate scaling from normal skin.

4.2.2. Collecting training samples for segmenting scaling from normal
skin

Since there is a great deal of variation in skin colors and psoriasis lesions, a
generic set of training data is unlikely to yield good classification results. Our
algorithm gathers the training data needed from the image being analysed.
Training data is collected by identifying the regions of scaling and normal
skin using the position of erythema, which is often found between scaling and
normal skin. Collecting training data proceeds with three steps:

(1) First, the erythema location is approximately localised based on the scaling
contrast map. A rough segmentation of erythema, but one that serves our
purposes, can be obtained through a threshold method:

Xx ,y =
{

1 if Sx ,y ≤ 0.2 mini,j Si,j

0 otherwise
(20)

where X is a binary image, which indicates location of erythema with value
‘1’ and other objects with value ‘0’. The threshold value is determined
empirically, based on the fact that erythema would show negative values
in the scaling contrast map, and the values would still be lower than
darkened normal skin. It is noted that not all the erythema can be identified,
but normal skin and scaling are not included in the identified erythema
locations.
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Algorithm 1 An algorithm to extract a sample of scaling pixels and a sample
of normal skin pixels from an image.

Input: The initial location of the erythema X and image M .

Output: Regions of candidate scaling Lscaling pixels and regions of candidate
skin Lskin pixels.

1: n ← 0
2: repeat
3: X ← X ⊕ U
4: n ← n + 1
5: if an enclosed region is formed in X then
6: X ← FloodFill( X )

7: end if
8: until no more enclosed regions are formed
9: LScaling ← Mx ,y ∩ Xx ,y 
 nU

10: LSkin ← Mx ,y ∩ X C
x ,y

11: return: LScaling, LSkin

(2) Second, using the location of erythema, areas of potential scaling and
normal skin pixel samples are identified with a series of morphological
operations. The algorithm given in Algorithm 1 describes the process. The
input is a binary image X , that is given by Eq. (20). The algorithm returns
two sets of pixels, the set of possible scaling pixels Lscaling and the set of
possible skin pixels Lskin.

(3) Third, a soft-constrained k-means clustering is used to identify candidate
training regions of scaling and normal skin from the potential samples
Lscaling and Lskin. The soft-constrained k-means adapted the traditional
k-means by putting weights in the clustering process, that are related with
the probabilities of a pixel belonging to scaling and normal skin classes.
It is assumed that pixels in the potential scaling location have a higher
probability of being scaling than normal skin. A similar assumption holds
for pixels in the potential skin locations. A cluster of scaling pixels C1 and a
cluster of skin pixels C2 are formed by using the soft-constrained k-means
clustering, and then within each of these clusters the pixels with the greater
likelihood of being scaling and normal skin are chosen.
Let Fx ,y be an element of the scaling feature set Fscaling, that is composed of
a scaling contrast map and Gabor texture, at location (x , y). The objective
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function for the soft-constrained k-means is defined as the sum of the
weighted distances of a sample to each of the cluster centroids:

h(C, O) =
2∑

i=1

∑
(x ,y)∈Ci

W (Lx ,y , Ci)‖Fx ,y − Oi‖2 (21)

where O = (O1, O2) is the pair of centroids for the clusters C = (C1, C2),
and ‖·‖ is the Euclidean norm. The weight W (Lx ,y , Ci) = P (Lx ,y , Ci)

−1,
where P (Lx ,y , Ci) is the probability that a pixel with location Lx ,y is in
the class Ci . If Lx ,y is in a region that indicates the same class as Ci , the
probability is assigned a higher value, and otherwise is assigned a lower
value. Note that the equality P (Lx ,y , C1) + P (Lx ,y , C2) = 1 must hold.
The objective function h(C, O) is minimised. The centroid for each of the
two clusters can be obtained by setting the first-order partial derivative
with respect to the centroid to be zero. The centroid is given by:

Oi =
∑

(x ,y)∈Ci
W (Lx ,y , Ci)Fx ,y∑

(x ,y)∈Ci
W (Lx ,y , Ci)

(22)

A partitioning of the feature set into those that are closer to O1 and those
that are closer to O2 with respect to the weighted distance now occurs.
The minimum of the objective function h(C, O) is achieved by iteration of
Eq. (22) and the partitioning of the feature set until the clusters converge.
The training set Ti for the class Ci is taken to be those samples Fx ,y in the
image such that:

W (Lx ,y , Ci)‖Fx ,y − Oi‖2

W (Lx ,y , Cj )‖Fx ,y − Oj ‖2 ≤ th (23)

where j = 2 if i = 1 and j = 1 if i = 2. The threshold th = 0.1 ensures
that training samples have a high likelihood of being within their respective
classes.

4.2.3. Identifying scaling pixels

After the training sets for scaling and normal skin are identified, we again
have a classification problem for which an SVM is well-suited. The problem
however, is that a purely pixel-based classification method does not perform
well when scaling is directly adjacent to normal skin. In such cases, the
classification of a pixel more often depends on the neighbourhood of the
pixel than on clear distinctions in feature space. MRFs are formulated with
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precisely this kind of problem in mind.40 Our strategy for identifying scaling
is to define an MRF where the probability of a pixel being scaling or normal
skin depends on the distance from the hyperplane of an SVM of the pixels in its
neighbourhood.

An MRF40 is an undirected graph (S, E) that models joint probability
distributions. Each site (x , y) ∈ S is associated with a random variable and
each edge models conditional dependencies. The neighbourhood Nx ,y of a site
(x , y) ∈ S is the set of nodes adjacent to (x , y) in the graph.

Now let A = {Ax ,y |Mx ,y = 1} be the set of scaling features for all pixels
classified as non-erythema pixels using Eq. (19). Each Ax ,y ∈ A is a vector
consisting the values of the scaling contrast map and Gabor textures at the
coordinate (x , y). Further, let ω = {ωx ,y |(x , y) ∈ S} be a labelling of the pixels
in S using the features in A where each ωx ,y ∈ {scaling, skin}. The labelling ω

is a segmentation and can also be considered as an MRF.
In the context of an MRF, we would like to know the probability of a

labelling ω given the features in A, that is, P (ω|A). According to the Bayesian
interpretation

P (ω|A) = P (A|ω)P (ω)

P (A)
(24)

Maximum a posteriori (MAP) estimation theory30 is the mathematical tool
most commonly used to estimate ω with maximum likelihood. To this end, we
wish to maximise the objective function:

ω = argmaxP (A|ω)P (ω) (25)

where we assume that the feature variables are conditionally independent of the
class labels. Now, P (A|ω) can be expressed in terms of the individual pixels:

P (A|ω) =
∏
x ,y

P (Ax ,y |ωx ,y) (26)

The usual assumption in image processing is that the individual terms of the
likelihood P (Ax ,y |ωx ,y) have a Gaussian distribution. However, in our case this
is a strong assumption. Instead, we first classify the pixels using an SVM and
then use the distance between a pixel and the separating hyperplane to derive
a likelihood function for the MRF. Thus, pixels that are a long way from the
hyperplane are assigned a high probability of being either skin pixels or scaling
pixels. Pixels that are close to the SVM hyperplane, such as those where scaling
and normal skin are directly adjacent are assigned a much lower probability
[see Eq. (27)]. Pixels that are close to the hyperplane are classified according
to the neighbourhood in which they are located using a MRF.
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We define the probability of a single pixel P (Ax ,y |ωx ,y) to be:

P (Ax ,y |ωx ,y) =




1
1 + exp(−d(Ax ,y))

if ax ,y = ωx ,y

exp(−d(Ax ,y))

1 + exp(−d(Ax ,y))
otherwise

(27)

where ax ,y is the classification result from the SVM (either skin or scaling),
and d(Ax ,y) measures the distance of the feature Ax ,y to the hyperplane of the
classifying SVM. The distance d(Ax ,y) is given by:

d(Ax ,y) = |w · φ(Ax ,y) + b|

=
∣∣∣∣∣∣
∑
x ′,y ′

ax ′,y ′λx ′,y ′K (Fx ′,y ′ , Ax ,y) + b

∣∣∣∣∣∣ (28)

where λx ′,y ′ is a Lagrange multiplier,30 and K (·, ·) is the kernel function. The
SVM used in the initial scaling segmentation is similar to that used in Section 3
with the same radial basis function.

We also need to calculate the prior P (ω). The prior is assumed to be an
MRF where the underlying graph of the field is a regular grid. The probability
of a labelling ω can be expressed in terms of an energy function over cliques
in the underlying graph.41 We wish to capture homogeneous regions in the
image which is achieved here by using pairs of connected vertices. The prior is
then given:

P (ω) = 1
Z

exp


−

∑
x ,y

∑
x ′,y ′∈Nx ,y

V (ωx ,y , ωx ′,y ′)


 (29)

where Nx ,y is an 8-connected neighbourhood, and (x ′, y ′) is the coordinate
of a pixel in the neighbourhood Nx ,y . In particular, the energy function
V (ωx ,y , ωx ′,y ′) is defined between pairs of pixels that are adjacent in Nx ,y . The
energy function V (ωx ,y , ωx ′,y ′) is here given by:

V (ωx ,y , ωx ′,y ′) =
{

k · exp(‖Ax ,y − Ax ′,y ′‖) if ωx ,y �= ωx ′,y ′

0 otherwise
(30)

where k is a penalty constant and is experimentally chosen to be 4. V (ωx ,y , ωx ′,y ′)

gives the probability of observing the features of the pixel Ax ,y given the features
at a neighbouring pixel Ax ′,y ′ . The probability is higher for homogeneous
regions and lower for heterogenous regions. Furthermore, higher penalty
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values are assigned if neighbouring pixels with different labels show a larger
difference of the feature values.

5. Experimental Results

5.1. Erythema Segmentation

The performance of the SVM-based classifier is tested on 100 images. The set
included images with a variety of skin colors, different severities of erythema
and scaling and various lighting conditions. The image set was divided into
a 40-image training set, where 150000 erythema pixels and 170000 non-
erythema pixels are extracted, and a testing set consisting of the remaining 60
images. The LIBSVM library is used to build the SVM classifier.42 The error
tolerance is set to c = 1000 and the parameter of the Radial Basis Function
kernel σ2 = 5 in this research. The parameters σ and c is determined through
a “grid-search" with cross-validation.42

The performance of the SVM-based method is compared with a nearest
neighbour classification method. In Ref. [43], the nearest neighbour clas-
sification is used to segment vitiligo, a skin depigmented disorder due to
a lack of melanin, from normal skin by building on the decomposition of
skin into the melanin and hemoglobin components. The method used in
Ref. [43] is amended by calculating the Euclidean distance of color vectors in
hemoglobin skin images to separate erythema from healthy skin, since erythema
is accompanied by an increase of hemoglobin pigment.

Figure 4 shows the experimental results of a subset of images. Observe that
the SVM-based method is able to segment more erythema pixels with minor
severity degree than the nearest neighbour classification method.

Table 2 shows the sensitivity and specificity of our proposed algorithm
together with the nearest neighbour classification method used in Ref. [43].
Even though the nearest neighbour classification method has a higher specificity
value, the SVM-based method shows a higher sensitivity value. In dermatology,
the requirement is to have a higher sensitivity than other metrics, so that the
progress of a treatment an be presented clearly. The lower specificity of our
algorithm is mainly due to shade on the skin or gradually darkening skin. Some
moles are misclassified as erythema with both our algorithm and the method
in Ref. [43]. This misclassification is because red pigments sometimes appear
around moles as shown in the second column of Fig. 4.
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Fig. 4. Examples of the erythema segmentation result. From top to bottom: original
image, skin segmentation result, melanin component image, hemoglobin component image,
segmentation result with method in Ref. [43] and our segmentation result.
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Table 2. Performance of algorithms.

Methods Sensitivity Specificity

Methods in43 89.41% 85.34%
Our methods with the SVM 95.32% 75.01%

Table 3. Parameters in the soft-
constrained k-means procedure.

Parameter Value

P {Lx ,y ∈ Lscaling, C1} 0.67
P {Lx ,y ∈ Lscaling, C2} 0.33
P {Lx ,y ∈ Lskin, C1} 0.20
P {Lx ,y ∈ Lskin, C2} 0.80

5.2. Scaling Segmentation

The scaling segmentation algorithm has been tested on a set of 103 images,
which are collected from a dataset containing 722 psoriasis scaling images. The
images were chosen so that there was a good distribution of images taken under
different lighting conditions and at different angles, images with shadows,
images with wrinkles, and images with hair. The images in each category were
randomly selected.

We set the threshold ts = 0.004 for the scaling contrast map in the
definition of Mx ,y [see Eq. (19)] as a balance between removing erythema and
retaining scaling. Note that even potential regions of scaling are highly likely to
contain areas of normal skin and so the parameter values are chosen to reflect
this fact. The parameters used in the soft-constrained k-means procedure are
given in Table 3.

We compare the performance of the proposed scaling classifier with
a stand alone SVM classifier and a standard MRF as in Ref. [40]. In
Ref. [40], the MRF is constructed with the likelihood term of a Gaussian
Distribution and with the smoothing term V (ωx ,y , ωx ′,y ′) defined by a Gibbs
distribution.

Some examples of the segmentation of scaling are shown in Fig. 5. Observe
that our segmentation results are better than the SVM and the MRF for
differentiating normal skin from scaling when normal skin is adjacent to
psoriatic lesions.
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Fig. 5. From top to bottom: original image, SVM segmentation result, MRF segmentation
result, our segmentation result, and Ground truth.
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Table 4. A comparison of scaling segmentation results
with training sets from the soft-constrained k-means.

Sensitivity Specificity Dice

SVM 0.7303 0.8764 0.3817
MRF 0.7638 0.8677 0.3642
Proposed method 0.7229 0.8946 0.4249

Table 4 shows the sensitivity, specificity, and Dice’s coefficient of the
proposed segmentation method compared with the SVM and a standard MRF.
The sensitivity of our proposed method is less clear cut in Table 4 and the
sensitivity of our method is very similar to that given by the SVM. The
oversegmentation of the MRF method with the Gaussian likelihood function,
where some normal skin is also classified as scaling, causes the sensitivity to
be the highest in both cases. The differences are in the specificity results.
The specificity is higher for our classifier than either SVM or MRF alone,
indicating fewer false non-scaling pixels classified as scaling pixels. Moreover,
Dice’s coefficient is much higher for the combined classifier than either the
SVM or the MRF indicating higher similarity between the sets of scaling pixels
and non-scaling pixels as found by the combined classifier and the “ground
truth.”

The robustness of our algorithm is tested against 16 images with wrinkled
skin, 29 images with hair, 19 images with shadows, 11 images where the
imaging direction has been changed, and 11 image where the illumination
is changed. Some examples of the results are shown in Fig. 6.

The evaluation of the 16 images is summarised in Table 5. Dice’s
coefficient for our method is always higher than the other two classifiers
where manually selected training sets are used. In all cases, either sensitivity
or specificity for our method is highest as well. The use of the contrast
map enables our algorithm to differentiate scaling from shadows, images
captured in high illumination and images captured in low illumination. The
changes of imaging direction do not affect the segmentation results, even
though the lighting condition changes in this situation. In addition, our
algorithm shows robustness to wrinkles and skin with short hair. This is the
contribution of the Gabor features. The bank of Gabor filters is good at
characterising the difference between scaling and wrinkles as well as short
hair, due to the use of multiple scales and orientations. However, when the
hair is long and clear in the image, our Gabor features fail to suppress the
disturbance.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Segmentation results for a variety of scaling images. The first row in each group is the
original image; the second row in each group is our segmentation result; the third row in each
group is the ground truth. (a) Image with shadow; (b) Image with short hair; (c) Image with
long hair; (d) Image with wrinkled skin; (e) Image captured from a certain angle; (f) Image
captured with a different angle from the image in (e); (g) Image with a low illumination; (h)
Image with a high illuminance.
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Table 5. A comparison of scaling segmentation results
for images under a variety of different conditions.

Sensitivity Specificity Dice

Images with shadows
SVM 0.8048 0.8734 0.4265
MRF 0.8334 0.8502 0.3995
Proposed method 0.8179 0.8707 0.4505

Images with wrinkles

SVM 0.7303 0.8347 0.5180
MRF 0.7653 0.8019 0.5010
Proposed method 0.7278 0.8849 0.5503

Images with hair

SVM 0.7334 0.9009 0.4427
MRF 0.7273 0.8426 0.3954
Proposed method 0.7591 0.8769 0.4737

Images about changes of imaging direction

SVM 0.8264 0.8255 0.3747
MRF 0.7176 0.6444 0.2351
Proposed method 0.8035 0.8855 0.4398

Images about changes of illuminance

SVM 0.7948 0.8225 0.3291
MRF 0.7370 0.8271 0.2739
Proposed method 0.7830 0.9112 0.4001

6. Discussions and Conclusion

This chapter works on different color spaces to perform the segmentation of
psoriasis. This is because of the different properties of segmentation objects.
We use the YCbCr color space to separate skin from the background, since the
YCbCr color space reduces color redundancy in a RGB color space, and the
skin color is compactly clustered in the YCbCr color space. The L∗a∗b∗ color
space is used in the scaling segmentation. The reason is that the color distance
in the L∗a∗b∗ color space is linearised for the perception of color difference. The
L∗a∗b∗ color space is thus good at the description of color difference between
scaling and erythema.

In this chapter, we proposed methods for the segmentation of a general
psoriatic lesion by separately segmenting erythema and scaling from a psoriasis
skin image. We researched on SVM and MRF building on feature analysis of
erythema and scaling. The advantage of our proposed method for erythema
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segmentation is shown by comparing with a nearest neighbour classification
method. Our erythema segmentation method is more sensitive to mild
erythema. The proposed scaling segmentation method is superior to the SVM
alone and the MRF alone, and is good at the segmentation of scaling under
different imaging conditions and with different skin types. In the future, more
psoriasis images will be collected to validate the performance of the algorithm,
and other feature analysis and classification methods will be investigated to
improve the segmentation results.
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Our aim in this chapter is to study the conditions for the reasonably good performance
of classifiers on brain functional magnetic resonance imaging. We propose a synthetic
model for the systematic study of aspects such as dimensionality, sample size, subject
variability and noise. Our simulations highlight the key factors that affect generalization
accuracy.

1. Introduction

Functional magnetic resonance imaging (fMRI) has become one of the
methods of choice for looking at human brain activity. Neural activity is
followed by an increase in blood flow and oxygenation in the local vasculature.
This phenomenon is called hemodynamic response and it is used by fMRI in
order to indirectly measure neural activity.

Classification on brain fMRI faces various challenges. fMRI data is three-
dimensional and thus, datasets are very highly dimensional. Typical datasets
contain tens of thousands of voxels. Due to the cost and time needed in order
to capture fMRI along with other imaging modalities and clinical data, the
number of available subjects is small. Usually, datasets have only a few tens
of subjects. Many datasets also show high subject variability, depending on the
nature of the neuropsychological process and task. Additionally, it is well-known
that fMRI signal is noisy.

Classification has been used on brain fMRI for two goals: the prediction of
cognitive states and group classification. In the prediction of cognitive states ,1–15

the goal is to infer the experimental condition (e.g. calculation vs. reading) that
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a given subject was undergoing at a given time. In group classification,16–23 the
goal is to infer the group membership (e.g. cocaine addicted vs. control) of a
given subject.

Besides using all voxels as features,5,8,10,14 classifiers are also trained
with features extracted from the original data. Feature extraction methods
can be categorized into two groups. Some of the methods extract features
that are a weighted combination from all the available voxels by using
different schemes, such as principal component analysis,6,13,20,21 independent
component analysis16,17,19 and a coarse resolution of the original image.3 The
remaining methods select a subset of voxels by following different criteria, such
as most discriminative voxels,12 most active voxels,1,2,9,12,15,17,18 searchlight
accuracy,24 mutual information,11 threshold-split region22,23 and recursive
feature elimination.4,7

Several classifiers commonly encountered in the machine learning literature
have been proposed for brain fMRI data, such as Gaussian naïve Bayes,12

k-nearest neighbors,15 Fisher linear discriminant,18–20 logistic regression,14

linear support vector machines,1,2,4,5,7,8,11–13,15,21 Gaussian support vector
machines,3,6,9 Adaboost,10 random forests,16 neural networks17 and majority
voting.22,23

Some of the proposed classification frameworks use a predefined set of
regions of interest (ROIs).2,5,10,15,17,19 As noted Ref. [23], a possible drawback
in these frameworks is that the practitioner needs either prior knowledge of the
underlying neuropsychological process or an additional independent dataset
in order to find the set of ROIs. If one selects the set of ROIs from the
same dataset (double dipping), the significance of the cross-validation results is
compromised.25

Our goal in this chapter is to study the conditions for the reasonably good
performance of linear support vector machines (SVMs) on brain fMRI data.
To this end, we propose a synthetic model for the systematic study of aspects
such as dimensionality, sample size, subject variability and noise. We believe this
study is a first step in understanding the key factors that affect generalization
accuracy in brain fMRI data.

We chose to focus on linear SVMs since it has been largely used for group
classification as well as the prediction of cognitive states.1,2,4,5,7,8,11–13,15,21

Other linear classifiers such as the Fisher linear discriminant and logistic
regression have also been proposed in the literature.14,18–20 Besides using
all voxels as features,5,8,10,14 we chose a method that extracts features that
are a weighted combination from all the available voxels, namely principal
component analysis.6,13,20,21 We also chose to evaluate a feature extraction
method that selects a subset of voxels, namely the most discriminative voxels.12
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2. Materials and Methods

In this section, we present our synthetic model, its parameters and the
procedure for data generation. We also describe the feature extraction methods
used in our experiments, as well as the techniques used for estimating the
generalization accuracy of the classifiers.

Our synthetic model is based on a number of Gaussian-distributed regions
with Gaussian spatially-correlated noise. Despite our simplifying assumptions,
we believe our model introduces many intuitions from neuroscience. First, we
assume that a number of brain regions are involved in a specific activity, such that
their activation level differs between two classes. (Class refers to a group in group
classification or a experimental condition in the prediction of cognitive states.)
Second, it is well-known that brain fMRI data contains spatially-correlated noise
and that there is high subject variability, and thus we introduce these elements
to our model. Finally, our experimental setting assumes high dimensionality of
the feature vector and a small number of samples.

For simplicity of presentation, we consider a one-dimensional brain. Note
that most classification algorithms (including linear SVMs) do not take into
account the three-dimensional structure of the data. In fact, voxels are treated
as one-dimensional. Our synthetic model has the following parameters:

• the number of original features: F ,
• the number of samples per class: S ,
• the number of involved brain regions: R,
• the distance between the means of the classes: µsignal,
• the variance per class: σ2

signal (both parameters µsignal and σ2
signal allow for

modeling subject variability),
• the radius of the involved brain regions: rsignal,
• the noise variance: σ2

noise and
• the radius of the spatially-correlated noise: rnoise.

We generate a complete synthetic dataset with F features and 2S samples
(each class contains S samples) by using the following procedure:

(1) We select R features from {1, . . . , F } uniformly at random.
(2) For each of the S samples in class ∈ {−1, +1}:

(a) We create an F -dimensional “signal vector” as follows: Each of
the R selected features is independently sampled from a Gaussian
distribution with mean +µsignal/2 for class +1 (−µsignal/2 for class
−1) and variance σ2

signal. The remaining F − R unselected features
are set to zero. After this vector has been created, we smooth it
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with a Gaussian filter of radius rsignal and standard deviation rsignal/2.
(We normalize the Gaussian filter so that its center has weight 1 and
thus, each of the R selected features in the signal vector retains its
variance.)

(b) We create an F -dimensional “noise vector” as follows: Each of the F
features is independently sampled from a Gaussian distribution with
mean zero and variance σ2

noise. After this vector has been created,
we smooth it with a Gaussian filter of radius rnoise and standard
deviation rnoise/2. (We normalize the Gaussian filter so that it has unit
�2-norm and thus, each of the F features in the noise vector retains its
variance.)

(c) The generated sample is the summation of the “signal vector” from
step (2a) the “noise vector” from step (2b).

We used LIBLINEAR26 in order to train linear SVMs with �2
2-

regularization, hinge loss and soft-margin parameter C = 1. Additionally, we
use the following feature extraction methods:

• Original features. We use the F generated features from the above-described
procedure.

• Principal component analysis (PCA) features.6,13,20,21 We perform singular
value decomposition of the F original features and use all available compo-
nents.

• Most discriminative features.12 We first rank each of the F original features
independently with a Gaussian classifier and then select the top 100
performing features.

In order to estimate the generalization accuracy of the classifiers, we rely
on three different methods:

• k-fold cross-validation. We hold out S/k samples in turn while training on
the other S(k − 1)/k samples. The held out samples are used for measuring
the classification accuracy. (We chose k = 5.)

• .632 Bootstrapping. For each of B independent repetitions, we perform
the following procedure. From the S samples in the dataset, we pick S
random samples with replacement as training set. (The training set has
approximately 0.632 S unique samples.) After training, we measure the
classification accuracy for the samples not in the training set. The final
estimator is an average between the above quantity and the classification
accuracy by using the whole dataset of S samples for training and testing. We
refer the interested reader to Ref. [27]. (We chose B = 5.)
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• Independent set. After training in the whole dataset of S samples, we measure
the classification accuracy in an independent set of 1000 samples per class.

The latter method is an unbiased estimator which we use only for assessing
the quality of the former two biased methods, which are used in practice.
Indeed, the independent-set-of-samples method is impractical for most brain
fMRI problems.

3. Results

We perform several synthetic experiments in order to analyze the different
aspects of brain fMRI data. For each experiment, we change one parameter
while keeping the rest of the parameters fixed to a default value. In order to
obtain a measure of confidence of the results, we perform 20 repetitions and
report error bars at 90% significance level. Next, we show the set of values for
each parameter (the default values are in parentheses): F ∈ {500, 1000, 2000,
5000, 10000, 20000, (50000)}, S ∈ {10, (20), 50, 100, 200, 500, 1000}, R ∈
{1, 2, 3, (4), 5, 6, 7}, µsignal ∈ {0.5, 1, 1.5, (2), 2.5, 3, 3.5}, σ2

signal ∈ {0.05, 0.1,
0.2, 0.5, (1), 2, 5}, rsignal ∈ {1, 2, 3, 4, 5, (6), 7}, σ2

noise ∈ {0.05, 0.1, 0.2, 0.5,
(1), 2, 5} and rnoise ∈ {1, (2), 3, 4, 5, 6, 7}. We believe that some of these
default values are typically encountered in brain fMRI problems, specifically
the number of original features (F ), the number of samples per class (S) and
the signal-to-noise ratio σ2

signal/σ
2
noise.

We report the generalization accuracy of linear SVMs with the original
features in Fig. 1, with PCA features in Fig. 2 and with the most discriminative
features in Fig. 3. Note that k-fold cross-validation is a better estimator than
.632 bootstrapping, since it is always closer to the unbiased independent-set-
of-samples method. For the three feature extraction methods, generalization
accuracy is increasing with respect to the number of samples per class (S), the
number of involved brain regions (R), the distance between means of the classes
(µsignal) and the radius of the involved brain regions (rsignal). Generalization
accuracy is also decreasing with respect to the number of original features (F ),
the variance per class (σ2

signal), the noise variance (σ2
noise) and the radius of the

spatially correlated noise (rnoise). Although, for the original features as well as
PCA features, generalization accuracy does not significantly change with respect
to the variance per class (σ2

signal). The behavior with the most discriminative
voxels is more pronounced than with the other two feature extraction methods.

Figure 4 shows a comparison of the three feature extraction methods: the
original features, PCA features and the most discriminative features. The results
with the original features and PCA features are almost equal. In general, the
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Fig. 1. Generalization accuracy for linear SVMs with the original features, for a different:
number of original features (F ), number of samples per class (S), number of involved brain
regions (R), distance between means of the classes (µsignal), variance per class (σ2

signal), radius

of the involved brain regions (rsignal), noise variance (σ2
noise) and radius of the spatially correlated

noise (rnoise). Default values were set to F = 50000, S = 20, R = 4, µsignal = 2, σ2
signal = 1,

rsignal = 6, σ2
noise = 1 and rnoise = 2. We also include error bars at 90% significance level. Note

that k-fold cross-validation (KS) is a better estimator than .632 bootstrapping (BS), since it is
always closer to the unbiased independent-set-of-samples method (IS). Note that generalization
accuracy is increasing with respect to S , R, µsignal and rsignal. It is also decreasing with respect to
F , σ2

noise and rnoise. Generalization accuracy does not significantly change with respect to σ2
signal.



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch08 page 159

Classification on Brain fMRI: Dimensionality, Sample Size, Subject Variability and Noise 159

500 1000 2000 5000 10000 20000 50000
0.5

0.6

0.7

0.8

0.9

1

Te
st

 a
cc

ur
ac

y

IS
BS
KF

10 20 50 100 200 500 1000
0.5

0.6

0.7

0.8

0.9

1

Te
st

 a
cc

ur
ac

y

IS
BS
KF

1 2 3 4 5 6 7
0.5

0.6

0.7

0.8

0.9

1

Te
st

 a
cc

ur
ac

y

IS
BS
KF

0.5 1 1.5 2 2.5 3 3.5
0.5

0.6

0.7

0.8

0.9

1

Te
st

 a
cc

ur
ac

y

IS
BS
KF

0.05 0.1 0.2 0.5 1 2 5
0.5

0.6

0.7

0.8

0.9

1

Te
st

 a
cc

ur
ac

y

IS
BS
KF

1 2 3 4 5 6 7
0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

IS
BS
KF

0.05 0.1 0.2 0.5 1 2 5
0.5

0.6

0.7

0.8

0.9

1

Te
st

 a
cc

ur
ac

y

IS
BS
KF

1 2 3 4 5 6 7
0.5

0.6

0.7

0.8

0.9

1

Te
st

 a
cc

ur
ac

y

IS
BS
KF

Fig. 2. Generalization accuracy for linear SVMs with PCA features, for a different: number of
original features (F ), number of samples per class (S), number of involved brain regions (R),
distance between means of the classes (µsignal), variance per class (σ2

signal), radius of the involved

brain regions (rsignal), noise variance (σ2
noise) and radius of the spatially correlated noise (rnoise).

Default values were set to F = 50000, S = 20, R = 4, µsignal = 2, σ2
signal = 1, rsignal = 6,

σ2
noise = 1 and rnoise = 2. We also include error bars at 90% significance level. Note that k-fold

cross-validation (KS) is a better estimator than .632 bootstrapping (BS), since it is always closer
to the unbiased independent-set-of-samples method (IS). Note that generalization accuracy is
increasing with respect to S , R, µsignal and rsignal. It is also decreasing with respect to F , σ2

noise
and rnoise. Generalization accuracy does not significantly change with respect to σ2

signal.
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Fig. 3. Generalization accuracy for linear SVMs with the most discriminative features, for a
different: number of original features (F ), number of samples per class (S), number of involved
brain regions (R), distance between means of the classes (µsignal), variance per class (σ2

signal),

radius of the involved brain regions (rsignal), noise variance (σ2
noise) and radius of the spatially

correlated noise (rnoise). Default values were set to F = 50000, S = 20, R = 4, µsignal = 2,
σ2

signal = 1, rsignal = 6, σ2
noise = 1 and rnoise = 2. We also include error bars at 90% significance

level. Note that k-fold cross-validation (KS) is a better estimator than .632 bootstrapping (BS),
since it is always closer to the unbiased independent-set-of-samples method (IS). Note that
generalization accuracy is increasing with respect to S , R, µsignal and rsignal. It is also decreasing
with respect to F , σ2

signal, σ2
noise and rnoise.
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Fig. 4. Generalization accuracy for linear SVMs with the most discriminative features, for a
different: number of original features (F ), number of samples per class (S), number of involved
brain regions (R), distance between means of the classes (µsignal), variance per class (σ2

signal),

radius of the involved brain regions (rsignal), noise variance (σ2
noise) and radius of the spatially

correlated noise (rnoise). Default values were set to F = 50000, S = 20, R = 4, µsignal = 2,
σ2

signal = 1, rsignal = 6, σ2
noise = 1 and rnoise = 2. We report the unbiased independent-set-

of-samples method. We also include error bars at 90% significance level. The results with the
original features (Orig) and PCA features (PCA) are almost equal. In general, the results with
the most discriminative features (Disc) are significantly better than Orig and PCA.
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results with the most discriminative features are significantly better than the
other two methods.

4. Discussion

As in many classification tasks, having a small number of discriminative features
allows for obtaining good generalization accuracy. Thus, the goal of a practi-
tioner is to decrease the number of features while retaining discriminability. In
brain fMRI, we recommend to use methods such as the most discriminative
voxels,12 which obtained significantly better results than using all voxels as
features5,8,10,14 or PCA features.6,13,20,21 Note that the latter fact is not
surprising since the objective of PCA is not to find discriminative features but
to best explain the variance in the whole dataset.

In what follows, our observations are mainly with respect to the best
performing feature extraction method, i.e. the most discriminative features.

Our experiments suggest that it is recommendable to collect data from at
least S = 50 samples per class, which allows for obtaining good classification
accuracy (∼ 90%). Having more than S = 50 samples per class seems to
increase generalization accuracy only marginally.

Some aspects of brain fMRI data cannot be controlled since they depend on
the nature of the neuropsychological process and task. Among these aspects, we
have the number and radius of the involved brain regions (R and rsignal) and the
subject variability parameters (µsignal and σ2

signal). When there are few involved
brain regions or when the brain regions are small, we obtain poor classification
accuracies (60–65%). When there are several involved brain regions or when
the brain regions are large, we obtain good classification accuracies (80–90%).
Additionally, in a regime of low subject variability, when the distance between
means of the classes (µsignal) is large or when the variance per class (σ2

signal) is
small, we obtain almost perfect classification (96–100%). In a regime of high
subject variability, when the distance between means of the classes (µsignal)
is small or when the variance per class (σ2

signal) is high, we obtain very poor
classification accuracies (50–56%).

Other aspects of brain fMRI data can be controlled up to some extent.
Controlling for the noise variance (σ2

noise) seems far more important than
controlling for the amount of spatial-correlatedness of the noise (rnoise).
Indeed, when the noise variance is small, all the feature extraction methods
obtained remarkably good generalization accuracy (∼96%). In this sense,
we recommend to take into account the reduction of noise variance when
designing neuropsychological tasks as well as when devising proper signal
processing methods for the captured data.
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5. Concluding Remarks

We chose a reasonable model based on a number of Gaussian-distributed
regions with Gaussian spatially-correlated noise, although other more complex
synthetic models could have been chosen. Note that it is not possible to know
the true probabilistic model that generated real-world data, unless we work
under the unsatisfiable assumption of having access to infinite data. In practice,
only a finite number of samples is available and objectively assessing the level of
realism of a model is not possible. Despite the simplifying assumptions made in
our model, we believe it introduces many intuitions from neuroscience. Having
said that, we believe that more complex synthetic models that better introduce
other neuropsychological aspects will be very beneficial.

We did not include the leave-one-out method, where we hold out each
of the samples in turn while training on the other S − 1 samples. The main
reason for excluding this method is that our experimental setting includes
training sets of up to S = 1000 samples, where leave-one-out is computationally
demanding. We preferred to include k-fold cross-validation, since this includes
leave-one-out as a specific instance (k = S). Moreover, in our experiments,
k-fold cross-validation was a good estimator of the generalization accuracy,
since it was always close to the unbiased (but impractical) independent-set-of-
samples method. Experiments with leave-one-out cross-validation will be of
importance, given its use in many studies.

Note that in most experimental settings, the parameters (e.g. number
of PCA components, number of most discriminative features, soft-margin
parameter C) are selected for each training set by using either a validation set
or a nested cross-validation procedure. We chose to keep the parameters fixed
for computational reasons. The experimental study of parameter selection will
be also beneficial.

While we focused exclusively on generalization accuracy, it is also important
to analyze other aspects of feature selection and classification. For instance,
it would be interesting to analyze whether the most discriminative features
include the R ground-truth involved brain regions, or whether linear SVMs
with the original features produce higher weights for the R ground-truth
involved brain regions.
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Functional magnetic resonance imaging (fMRI) has become a novel technique for
studying the human brain and obtaining maps of neuronal activity. An important goal
in fMRI studies is to decompose the observed series of brain images in order either
to detect activation when a stimulus is presented to the subject, or to identify and
characterize underlying brain functional networks when the subject is at rest. In this
chapter, a model class is presented for addressing this issue that consists of finite mixture
of generalized linear regression models. The main building block of the method
is the general linear model which constitutes a standard statistical framework for
investigating relationships between variables of fMRI data. We extend this into a finite
mixture framework that exploits enhanced modeling capabilities by incorporating some
innovative sparse and spatial properties. In addition, a weighted multi-kernel scheme is
employed dealing with the selection problem of kernel parameters where the weights
are estimated during training. The proposed regression mixture model is trained
using the maximum a posteriori approach, where the Expectation-Maximization (EM)
algorithm is applied for constructing update equations for the model parameters. We
provide comparative experimental results in both activation-based and resting state
applications that illustrate the ability of the proposed method to produce improved
performance and discrimination capabilities.

1. Introduction

Human brain represents the most complex system in the nature. It is the
center of the nervous system. This organ of 1.5 kg and a volume around of
1200 cm3 is responsible for almost every complex task of a human being.

167
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Millions of elementary components, called neurons, are interconnected to
each other creating a complex information processing network. The activity
of this network is associated with the mind and gives rise to consciousness.
Despite the rapid scientific progress of the last few decades, how the brain
works remains a mystery. While the brain is protected by the bones of the
skull, it is still vulnerable to damage and disease. Also it is susceptible to
degenerative disorders, such as Parkinson’s disease, multiple sclerosis, and
Alzheimer’s disease. Understanding the human brain is one of the greatest
scientific challenges of the years to come.1,2

Brain imaging uses various techniques to produce images of the brain.
Electroencephalography (EEG) is the oldest technique for brain imaging and
it produces images of the brain by recording the electrical activity along
the scalp. Another neuroimaging technique is the Magnetoencephalography
(MEG) which records the magnetic fields produced by the electric currents
of the brain. While both techniques present excellent temporal resolution,
their spatial resolution is a major drawback since they cannot describe the
anatomical structures of the brain. Hence, the use of them has decreased after
the introduction of anatomical imaging techniques with high spatial resolution
such as Magnetic Resonance Imaging (MRI). Positron Emission Tomography
(PET) is a functional neuroimaging technique used to examine various tissues
of human body. This technique presents very good spatial resolution. However,
the time resolution is very bad and this affects the experimental design since only
blocked design experiments can be performed. PET is an invasive technique
since a radiotracer is injected into the human body.

Today, the most popular technique for functional neuroimaging is the
fMRI. It is a noninvasive technique which presents very good spatial resolution
while its time resolution is better compared to other similar techniques such as
PET, that offers the opportunity to perform more complicated experimental
designs. The fMRI analysis is based mostly on the Blood Oxygenation Level
Dependent (BOLD) effect, firstly reported in Ref. [3]. When a stimulus is
applied to a subject, regions of the brain involved in the process are becoming
active. As a result the rate of blood flow is increased and more oxygenated blood
arrives. Furthermore, the blood contains iron which is a paramagnetic material.
In the above metabolic procedure, oxygenated and deoxygenated blood are
taking part. However, the deoxygenated blood is more paramagnetic than
oxygenated. This difference on the magnetic properties between oxygenated
and deoxygenated blood is exploited by MRI technology to produce brain
images. The increase in blood flow is known as the hemodynamic response. For
the statistical analysis of the fMRI data, two properties of the hemodynamic
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response are important. First, the hemodynamic response is slow compared to
the neuronal activity. Second, it can be treated (or approximated) as a linear
time invariant system. The linearity property together with the mathematical
operation of convolution constitute the basic tools to construct statistical
models and environments such as the SPM4 and the FSL,5 for studying fMRI
applications.

Image acquisition of fMRI constructs a 4D dataset consisting of 3D brain
volumes that evolve in time. The basic element is called voxel and represents a
value on a grid in 3D. By taking the values of voxels over time we create a set of
time-series, i.e. sequential type of data measured in successive time instances
at uniform intervals. The fMRI data contains various important properties
and a careful analysis of them is needed for the subsequent analysis. Temporal
correlations between the samples are found due to physiological properties and
experimental conditions. This phenomenon depends mostly on how frequently
we acquire the images in conjunction with the duration of BOLD effect.
Also, spatial correlation can be observed in the data. This is derived from
physiological properties, such as the activated brain areas and the connectivity
between brain areas, as well as technical considerations, such as the smallest
size of brain location in space that we can obtain. In addition, what affects the
quality of fMRI data is the presence of noise that is observed in the data. There
are two main sources of noise: noise due to the imaging process and noise due
to the human subject.

The types of fMRI experiments can be divided into two large groups
according to the desired target. In the activation-based fMRI experiments
the human subject is exposed to a series of stimulated events according to
the experimental design, which provides a binary vector (stimulus is either
present, or not). This vector is combined with the hemodynamic response
function, through the convolution operator, to give the BOLD regressor which
is very important for the statistical analysis of our data. The second group is
the resting state type of fMRI experiments where we try to find connections
between various brain areas when the human subject is at rest, i.e. no stimulus
is present. Figure 1 illustrates briefly the overall procedure of the fMRI data
analysis process in a flow diagram design.

2. An Overview of fMRI Data Analysis

The objective of fMRI data analysis is to detect the weak BOLD signal from
the noisy data and determine the activated areas of the brain. It usually
consists of two stages: preprocessing and statistical analysis. The first stage
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Fig. 1. Overall scheme in fMRI analysis.

contains various techniques that could be made in order to remove artifacts,
validate the assumptions of the model and standardize the brain regions across
subjects.6,7 Among them, the most common preprocessing schemes are: slice
timing correction, realignment, coregistration of images, normalization, spatial
smoothing and temporal filtering.

In literature, there are many methodologies that have been proposed for the
analysis of fMRI data. They can be divided into two major categories: the model-
based and the data driven (or model-free). The term "model" is referred to the
process of modeling the hemodynamic response. The model-based approaches
are used only for activation-based fMRI studies, and are mainly based on the
general linear regression model (GLM)8 and its extensions.9,10 At the end
of the learning process the statistical activation map is drawn based on t- or
F-statistics displaying the activation areas and the importance of each voxel.8 On
the other hand, the data driven methods are applied on both resting state and
activation-based studies and include the principal component analysis (PCA),11

independent component analysis (ICA)12,13 and clustering algorithms.11,13–15

A significant drawback of the GLM is that spatial and temporal properties
of fMRI data are not taken into account in its basic scheme. More specifically,
autoregressive modeling of noise have been proposed in Refs. [9, 10] so as
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to incorporate temporal correlations, while non-stationary models of noise
have been presented in Refs. [16, 17] for the analysis of fMRI time series.
Moreover, spatial properties of data are included by usually performing a
smoothing with a fixed Gaussian kernel as a preprocessing step.9,18 Other
approaches have also been proposed with elaborate denoising techniques, see
Refs. [9, 19] for example. Under the Bayesian framework, spatial dependencies
have been modeled through Markov Random Field (MRF) priors applied either
to temporal and spatial components of the signal, or to the noise process.20

Also, Gaussian spatial priors have been placed over the regression coefficients,
as well as on autoregressive coefficients of the noise process.9

An important feature of the GLM is the type of the design matrix used
which may affect significantly the subsequent statistical analysis. Some typical
examples are the Vandermonde or B-splines matrix (dealing with polynomial
or spline regression models), while others use some predefined dictionaries
(basis functions) derived from transformations, such as Fourier, Wavelets, or
Discrete Cosine Transform.10 Other more advanced techniques apply kernel
design matrix constructing from an appropriate parametric kernel function.21,22

Alternatively, for the activation-based fMRI studies, the design matrix could
contain information about the experimental paradigm.8 Also, regressors related
to head motion can be included since remnants from head motion noise could
be present in the time series.10 Finally, following the Bayesian framework,
sparse priors over regression coefficients could be introduced so as to determine
automatically the design matrix.21–23

Another family of methods for the fMRI data analysis with special
advantages is through clustering techniques. Clustering is the procedure of
dividing a set of unlabeled data into a number of groups (clusters), in such a
way that similar in nature samples belong to the same cluster, while dissimilar
samples become members of different clusters.24 Cluster analysis of fMRI data
constitutes a very interesting application that has been successfully applied
during last years. The target is to create a partition into distinct regions, where
each region consists of voxels with similar temporal behavior. Most popular
clustering methods use partitioning methodologies such as k-means, fuzzy
clustering and hierarchical clustering. They are applied to either entire raw
data, or feature sets which are extracted from the fMRI signals.14,15,25–31

Recently, more advanced approaches have been introduced in order to meet
spatial correlation properties of data. In Ref. [32] a spatially constrained mixture
model has been adopted for capturing the Hemodynamic Response Function
(HRF), while in Ref. [33] the fuzzy c-means algorithm in cooperation with a
spatial MRF was proposed to cluster the fMRI data. Furthermore, a mixture
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model framework with spatial MRFs applied on statistical maps was described
in Refs. [19, 34]. However, in the above works the clustering procedure was
performed indirectly, either through careful construction of the regression
model, or using features extracted from the fMRI time series. Also, temporal
patterns of clusters have not been taken into account. A solution to this is to
perform the clustering directly to fMRI time series, as for example in Ref. [35],
where a mixture of GLMs was presented using a spatial prior based on the
Euclidean distances between the positions of time series and cluster centers in
a 3D space head model. An alternative solution was given in Ref. [36], where
spatial correlations among the time series is achieved through Potts models
over the hidden variables of the mixture model.

In this chapter, we present an advanced regression mixture modeling
approach for clustering fMRI time series22 that incorporates very attractive
features to facilitate the analysis of fMRI data. The main contribution of the
method lies on three aspects:

• Firstly, it achieves a sparse representation of every regression model (cluster)
through the use of an appropriate sparse prior over the regression coeffi-
cients.37 Enforcing sparsity is a fundamental machine learning regularization
principle24,37 and has been used in fMRI data analysis.9,17,23

• Secondly, spatial constraints of fMRI data have been incorporated directly to
the body of mixture model using a Markov random field (MRF) prior over
the voxel’s labels,21 so as to create smoother activation regions.

• Finally, a kernel estimation procedure is established through a multi-kernel
scheme over the design matrix of the regression models. In this way, we can
manage to improve the quality of data fitting and to design more compact
clusters.

Training of the proposed regression mixture model is performed by setting
a Maximum A Posteriori (MAP) estimation framework and employing the
Expectation-Maximization (EM) algorithm.38,39 Numerous experiments have
been conducted using both artificial and real fMRI datasets where we have
considered applications on activation-based, as well as on resting state fMRI
data. Comparison has been made using a regression mixture model with only
spatial properties and the known k-means clustering algorithm. As experiments
have shown, the proposed method offers very promising results with an
excellent behavior in difficult and noisy environments.

This chapter is structured as follows. At first we present the basic regression
mixture model and then we show how it can be adapted in order to fit the
fMRI data and their properties. This is split into descriptions of the priors, the
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general construction and the MAP likelihood, where we show how the EM
algorithm can be used for estimating the model parameters. The experiments
section presents several results from functional activation studies of auditory
and event-related (foot movement) experiments, as well as from resting state
fMRI studies. Comparison has been also made with standard approaches. The
chapter finishes with some concluding remarks.

3. Finite Mixture of Regression Models

3.1. Mixture Models

Mixture models provides a powerful probabilistic modeling tool for data
analysis. It has been used in many scientific areas including machine learning,
pattern recognition, signal and image analysis and computer vision.24,39 That
makes mixture models so popular and suitable as they are parametric models
of an elegant way, yet they are very flexible and easily extensible in estimating
any general and complex density and finally, they are capable of accounting for
unobserved heterogeneity.

A mixture model of order K is a linear combination of K probability density
parametric functions p(y |θ j ) of different sources and it is formulated as:

p(y |�) =
K∑

j=1

πj p(y |θ j ). (1)

The parameters πj are the mixing weights satisfying the constraints:

0 ≤ πj ≤ 1 and
K∑

j=1

πj = 1, (2)

while � = {πj , θj }K
j=1 is the set of model parameters which are unknown and

must be estimated. According to this model, each observation is generated by
first selecting a source j based on the probabilities {πj } and then by performing
sampling based on the corresponding distribution with parameters θj . Having
found the parameters �, the posterior probabilities that an observation y
belongs to the j -th component can be calculated:

P (j |y) = πj p(y |θj )∑K
k=1 πkp(y |θk)

(3)

Then, an observation belongs to the component j ∗ with the largest posterior
value, i.e. P (j ∗|y) > P (j |y) ∀ j �= j ∗.
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Let us assume that we have a data set of N samples Y = {y1, . . . , yN } which
are independent. The estimation of the mixture model parameters � can be
made by maximizing the log-likelihood function:

l(�) = log p(Y |�) =
N∑

n=1

log p(yn|�) =
N∑

n=1

log




K∑
j=1

πj p(yn|θ j )


 . (4)

The Expectation-Maximization (EM)38 algorithm provides a useful framework
for solving likelihood estimation problems. It uses a data augmentation scheme
and is a general estimation method in the presence of missing data. In the case
of finite mixture models, the component memberships play the role of missing
data. EM iteratively performs two main steps. During the E-step, the expectation
of hidden variables are calculated based on the current estimation of the model
parameters:

znj = P (j |yn) = πj p(yn|θj )∑K
k=1 πkp(yn|θk)

. (5)

At the M-step, the maximization of the complete data log-likelihood function
(Q -function) is performed:

Q (�|�(t )) =
N∑

n=1

K∑
j=1

znj {log πj + log p(yn|θj )} (6)

This leads to obtaining new estimates of the mixture weights:

πj =
∑N

n=1 znj

N
, (7)

as well as of the model components parameters θ
(t+1)

j . The received update rules
depend on the type of component density functions. In the case of multivariate
Gaussian mixture models for example, i.e. p(y |θj ) = N (y; µj , �j ), these rules
become24,39:

µj =
∑N

n=1 znj yn∑N
n=1 znj

(8)

�j =
∑N

n=1 znj (yn − µj )(yn − µj )
T

∑N
n=1 znj

(9)

The E- and M-steps are alternated repeatedly until some specified convergence
criterion is achieved.
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3.2. Regression Mixture Modeling

In the case of fMRI data analysis, we are dealing with time-series type of data
which are sequences of values measured at T successive time instances xl , i.e.
yn = {ynl }T

l=1. Linear regression modeling constitutes an elegant functional
description framework for analyzing sequential data. It is described with the
following form:

y = X w + en, (10)

where w is the vector of M (unknown) linear regression coefficients. The en

is an additive error term (T dimensional vector) that is assumed to be zero
mean Gaussian with a spherical covariance en ∼ N (0, σ2I ), i.e. errors are not
correlated.

For constructing the design matrix X several approaches can be employed.
A common choice is to use Vandermonde or B-splines matrix in cases where we
assume polynomial or splines regression models, respectively. Another option is
to assume a kernel design matrix using an appropriate kernel basis function over
time instances {xl }T

l=1, with the RBF kernel function to be the most commonly
used:

[X ]lk = K (xl , xk; λ) = exp

(
−(xl − xk)

2

2λ

)
,

where λ is a scalar parameter. Specifying the proper value for this parameter is an
important issue that may affect drastically the quality of the fitting procedure. In
general, its choice depends on the amount of local variations of data which must
be taken into account. In addition, the design matrix may contain information
about the experimental paradigm of fMRI experiment.

Following Eq. (10) it is obvious that, given the set of regression model
parameters θ = {w, σ2}, the conditional probability density of time-series yn is
also Gaussian, i.e.

p(yn|θ) = N (X w, σ2I ).

Regression mixture models39 provides a natural framework for fitting a
given set of sequential data Y = {y1, . . . , yn}. They allow for simultaneously
modeling heterogeneous regression functions by training a mixture of distinct
distributions where each one corresponds to a latent class. Obviously, this is
equivalent to the task of time-series clustering, i.e. the division of the set Y into
K clusters, in such a way that each cluster contains similar in nature elements.
Therefore each cluster has its own regression generative mechanism, as given
by a conditional density with parameters θj = {w j , σ2

j }, j = 1, . . . , K .
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The EM algorithm can be then applied in order to train regression mixture
models. That differs from the basic scheme described previously — the expected
complete log-likelihood Q -function which takes the following form:

Q (�|�(t )) =
N∑

n=1

K∑
j=1

znj

{
log πj − T

2
log 2π − T log σj − ‖yn − X w j ‖2

2σ2
j

}
,

(11)

as well as the update rules of the regression component parameters θj which are

w j =
(

N∑
n=1

znj X T X

)−1

X T
N∑

n=1

(znj yn), (12)

σ2
j =

∑N
n=1 znj ‖yn − X w j ‖2

T
∑N

n=1 znj
. (13)

After the convergence of the EM algorithm, each sequence yn is assigned to the
cluster with the maximum posterior probability P (j |yn) [similar to Eq. (3)].

4. Regression Mixture Analysis of fMRI Time-Series

The application of the basic ML-based scheme of regression mixture models
to the task of fMRI data analysis has some limitations due to its weakness to
capture some important features arisen from the nature of these observations.
In particular, the fMRI data are structures that involve spatial properties, where
adjacent voxels tend to have similar activity behavior.40 Furthermore, there
are temporal correlations which are derived from neural, physiological and
physical sources.10 These are physical constraints that must be incorporated
to the model.

4.1. General Construction

A significant advantage of Bayesian estimation is its flexibility of incorporating
appropriate priors and its full characterization of the posterior. Bayesian
modeling also enable us to model the uncertainty of the hyperparameters so
that the final performance is more robust. In such a way, we can eliminate
the phenomenon of data overfitting found in the ML case. These are
the main building blocks for constructing a maximum a-posteriori (MAP)
approach which offers a more advanced solution: sparseness, spatial, and
multi-kernel.
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4.1.1. Sparse modeling

An important issue when using a regression model is how to estimate its order
M , i.e. the size of linear regression coefficients w j . Estimating the proper
value of M depends on the shape of data to be fitted, where models of
small order may lead to underfitting, while large values of M may become
responsible for data overfitting. This may deteriorate significantly the clustering
performance. Bayesian regularization framework provides an elegant solution
to this problem.24,37 It initially assumes a large value of order M . Then, a heavy
tailed prior distribution p(w j ) is imposed upon the regression coefficients that
will enforce most of the coefficients to be zero out after training. This has been
successfully employed in the Relevance Vector Machine model.37

More specifically, the prior is defined in an hierarchical way by considering
first a zero-mean Gaussian distribution over the regression coefficients:

p(w j |αj ) = N (w j |0, A−1
j ) =

M∏
l=1

N (wjl |0, α−1
jl ), (14)

where Aj is a diagonal matrix containing the M components of the precision
(inverse variance) vector αj = (aj1, . . . , ajM ). At a second level, precision can
be seen as hyperparameters that follow a Gamma prior distribution:

p(αj ) =
M∏

l=1

�(αjl |b, c) ∝
M∏

l=1

αb−1
jl exp−cαjl . (15)

Note that both Gamma parameters b and c are a priori set to zero so as to
achieve uninformative priors. The above two-stage hierarchical sparse prior
is actually the student’s t-distribution enforcing most of the values αjl to be
large and thus eliminating the effect of the corresponding coefficients wjl by
setting to zero. In such a way, the regression model order for every cluster is
automatically selected and overfitting is avoided.

4.1.2. Spatial regularization

A common approach to achieve spatial correlations between voxels is to apply
a spatial Gaussian filter to smooth the signal prior to statistical analysis. This
is used for instance in Statistical Parametric Mapping (SPM).4 However, this
can lead to overlay blurred results, where effects with small spatial extend can
be lost and detected regions may extend beyond their actual boundaries. A
more advanced approach to spatial regularization is through the use of Markov
Random Field (MRF) prior41 which models the conditional dependence of the
signals in neighboring voxels.
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MRFs have been successfully applied to computer vision applications.41,42

Conventional use of MRFs requires the set of sites of the random field as
the image voxels, with the neighborhood structure given by a regular lattice.
More specifically, we can treat the probabilities (voxel labels) πnj of each
fMRI sequence yn belongs to the j -th cluster (mixture component) as random
variables, which also satisfy the constraints πnj ≥ 0 and

∑K
j=1 πnj = 1. We

assume that the set of voxel labels 	 = {πn}N
n=1 follows the Gibbs prior

distribution with density41

p(	) = 1
Z

exp

{
−

N∑
n=1

VNn (	)

}
. (16)

The function VNn (	) denotes the clique potential function around the
neighborhood Nn of the n-th voxel taking the following form:

VNn (	) =
∑

m∈Nn

K∑
j=1

βj (πnj − πmj )
2. (17)

In our case we consider neighbourhood consisted of eight (8) voxels which
are horizontally, diagonally and vertically adjacent. We also assume that every
cluster has its own regularization parameter βj . This has the ability to increase
the flexibility of model, since it allows different degree of smoothness at each
cluster. It is interesting to note here that in this framework, the regularization
parameters βj belong to the set of the unknown parameters and thus can be
estimated during the learning process. Finally, the term Z of Eq. (16) is the
normalizing factor that is analogous to Z ∝ ∏K

j=1 β−N
j .

An alternative methodology on using a capable MRF prior to leverage
spatial correlations in brain maps is through a recent non-parametric scheme
shown in Ref. [43]. In particular, an appropriate class-specific Gibbs potential
function has been proposed of the following form:

ϑnj =
∑

m∈Nn

znj zmj , (18)

that gives the influence of the neighborhood to the decision process. This
function acts as a smooth filter to the estimated posteriors and it works like
a voting system, where the majority cluster-label among its closest neighbors
is assigned to every sequence. Then, probabilities of voxels’ labels are given
according to a softmax function:

πnj ∝ eϑnj∑K
k=1 eϑnk

. (19)
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4.1.3. Multi-kernel scheme

As mentioned before, the construction of the design matrix X is a crucial part
of the regression model and may be significantly affected by the parameter
value of the desired kernel function. This problem can be solved by adopting a
multi-kernel scheme.44,45 In particular, we assume a pool of S kernel matrices
{�s }S

s=1, each one having its own scalar parameter value λs . Thus, the composite
kernel matrix X j for the j−th cluster can be written as a linear combination of
S kernel matrices �s :

X j =
S∑

s=1

ujs�s , (20)

where ujs are the coefficients of the multi-kernel scheme which are unknown
and satisfy the constraints ujs ≥ 0 and

∑S
s=1 ujs = 1. These parameters should

be estimated during learning in order to construct the kernel design matrix that
better suits to every cluster. As experiments have shown, the use of the proposed
multi-kernel scheme has the ability to significantly improve the performance
and the quality of the data fitting procedure.

4.2. Estimation of Model Parameters

After defining the sparse and sparse priors together with the multi-kernel
scheme, we are now ready to describe the estimation process of the model
parameters. The incorporation of the above properties leads to a modification
of the regression mixture model which is written as:

f (yn|�) =
K∑

j=1

πnj p(yn|θj ), (21)

where � = {{πnj }N
n=1, θj = (w j , αj , σ2

j , u j , βj )}K
j=1 is the set of mixture model

parameters. The clustering procedure becomes now a Maximum-A-Posteriori
(MAP) estimation problem, where the MAP log-likelihood function is given by

lMAP (�) = log p(Y |�) + log p(�)

=
N∑

n=1

log f (yn|�) + log p(	) +
K∑

j=1

{log p(w j |αj ) + log p(αj )}.

(22)

The EM algorithm can then be applied for MAP-estimating the model
parameters. Likewise, it requires at each iteration the conditional expectation



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch09 page 180

180 V. P. Oikonomou and K. Blekas

values znj of the hidden variables to be computed first (E-step):

znj = P (j |yn, �) = πnj p(yn|θj )

f (yn|�)
. (23)

During the M-step the maximization of the complete data MAP log-likelihood
expectation is performed:

Q (�|�(t )) =
N∑

n=1

K∑
j=1

znj

{
log πnj − T

2
log 2π − T log σj − ‖yn − X j w j ‖2

2σ2
j

}

−
K∑

j=1

{
−N log βj + βj

N∑
n=1

∑
m∈Nn

(πnj − πmj )
2 + 1

2
wT

j Aj w j

−
M∑

l=1

[(b − 1) log αjl − cαjl ]
}

. (24)

By setting the partial derivatives of the above Q function with respect to all
model parameters, we can obtain the update rules. For the regression model
parameters {w j , σ2

j , αj , βj } we can easily obtain the next equations:

w j =
[(

N∑
n=1

znj

)
1
σ2

j
X T

j X j + Aj

]−1

· 1
σ2

j
X T

j

(
N∑

n=1

znj yn

)
, (25)

σ2
j =

∑N
n=1 znj ‖yn − X j w j ‖2

T
∑N

n=1 znj
, (26)

αjl = 1 + 2c
w2

jl + 2b
, (27)

βj = N∑N
n=1

∑
m∈Nn

(πnj − πmj )2
. (28)

In the case of the label parameters πnj we obtain the following quadratic
equation:

π2
nj − < πnj > πnj − 1

2βj |Nn|znj = 0 , (29)

where |Nn| is the cardinality of the neighborhood Nn and 〈πnj 〉 is the mean value
of the j -th cluster’s probabilities of the spatial neighbors of the n-th voxel, i.e.
〈πnj 〉 = 1

|Nn |
∑

m∈Nn
πmj . The above quadratic expression has two roots, where
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we select only the one with the positive sign since it yields πnj ≥ 0:

πnj =
〈πnj 〉 +

√
〈πnj 〉2 + 2

βj |Nn |znj

2
. (30)

Note that in the above update rule the neighborhood Nn may contain label
parameters πmj that have been either already updated or not. However, these
values do not satisfy the constraints 0 ≤ πnj ≤ 1 and

∑K
j=1 πnj = 1, and there

is a need to project them on their constraint convex hull. For this purpose,
we apply an efficient convex quadratic programming approach presented in
Ref. [42], that is based on the active-set theory.46

Finally, the weights ujs of the multi-kernel scheme are adjusted by solving
the following minimization problem, where we have considered only the part
of likelihood function that involves uj :

min
uj

N∑
n=1

znj ‖ yn −
S∑

s=1

ujs�s w j ‖2 = min
uj

N∑
n=1

znj ‖ yn − Xj u j ‖2

= min
uj

{
uT

j X T
j Xj u j − 2uT

j X T
j

∑N
n=1znj yn∑N

n=1znj

}
,

s.t.
S∑

s=1

ujs = 1 and ujs ≥ 0. (31)

In the above formulation, the matrix Xj has S columns calculated by �s w j , i.e.
Xj = [�1w j �2w j · · · �S w j ]. The minimization problem described in Eq. (31)
is a typical constrained linear least-squared problem that can be solved again
with the active-set theory.46

At the end of the learning process, the activation map of the brain is
constructed with the following manner: Initially, we select the cluster h that
best match with the BOLD signal ξ (which is known before the data analysis)
among the K mixture components. This is done according to the Pearson
correlation measurement (cosine similarity) between the estimated mean curve
µj = X j w j of each cluster with the BOLD signal ξ , i.e.

h = arg
K

max
j=1

µT
j ξ

|µj ||ξ | . (32)

Then, the voxels that belong to cluster h determine the brain activation region,
while the rest voxels (that belong to all other K − 1 clusters) correspond to
the non-activation region. In this way, we create a binary image with activated
and non-activated pixels.
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A drawback of the EM algorithm is its sensitivity to the initialization of
the model parameters due to its local nature. Improper initialization may lead
to poor local maxima of the log-likelihood that sequentially affects the quality
of the clustering solution. A common practice is to initialize mixture model
parameters by randomly selecting K input time-series and to perform only
a few EM steps. Several trials of such procedure can be made and finally
the solution with the maximum log-likelihood value can be selected for the
initialization.

A more advanced approach has been proposed in Ref. [22] that follows an
incremental strategy for building the regression mixture model. Starting with
a mixture model with one regression component, the learning methodology
adds a new component to the mixture based on a component splitting procedure.
In activation-based fMRI data analysis, this is done by selecting a cluster for
splitting based on their similarity with the BOLD signal. A detailed description
can be found in Ref. [22]. It must be noted that an obvious advantage of
the incremental learning scheme is that of simultaneously offering solutions
for the intermediate models with k = {1, . . . , K } components. This can be
seen as very convenient for introducing model order selection criteria and
terminating the evolution of learning: stop training when the insertion of a
new component does not offer any significant improvement of the (penalized)
likelihood function.

5. Experiments

The proposed regression mixture model (called as SSRM) has been evaluated
using a variety of artificial datasets and real fMRI data. In all experiments for
constructing the multi-kernel scheme, we calculated first the total variance of
samples, λ. Next, we used a set of S = 10 RBF kernel functions, where each
one had a scalar parameter λs = ksλ, where ks = [0.1, 0.2, . . . , 1.0] (level
of percentage). It must be noted that during the activation-based experiments
another column has been added to the design matrix which describes the BOLD
signal. Note that the time instances xl were normalized before to [0, 1]. Finally,
the linear weights of the multi-kernel scheme were in all cases initialized equally
to ujs = 1/S . Comparison has been made using the SRM method which is
a regression mixture model with only spatial properties (and without sparse
properties), and the k-means which is a well-known vector-based clustering
approach. An extended experimental study can be found in Refs. [22, 43],
that present additional comparative results with the standard GLM model8

and various types of noise.



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch09 page 183

Regression Mixture Modeling for fMRI Data Analysis 183

5.1. Activation-based fMRI Experiments

The goal of this series of experiments is to discover the brain activation areas
when the human subject is exposed to a stimulus. At first we have studied the
performance of the proposed method using synthetic data, where the ground
truth of activation is known. Additional experiments were made using real fMRI
datasets taken from block design auditory and event-related foot movement
studies.

5.1.1. Experiments with artificial datasets

During the experiments with simulated fMRI data, we have created 3D set
of time series using linear regression models with known design matrix and
regression coefficients. We have also added white Gaussian noise of various SNR
levels according to the formula: SNR = 10 log10(

sT s
N σ2 ), where σ2 is the noise

variance and s is the BOLD signal. The spatial correlation among time series is
achieved through the regression coefficients. Figure 2(a) represents the spatial
patterns used, while the BOLD signal used to model the neural activity is shown
in Fig. 2(b). Also, in these time series we have added a slow varying component
to model the drift in the fMRI time series. This is done by using a linear
regression model where the regressors are the first ten basis vector of DCT basis
and the regression coefficients are sampled by the standard normal distribution
N (0, 1). The size of the obtained dataset was 80 × 80 × 84. Finally, for each
SNR level we studied the performance of the comparative methods by executing
50 Monte Carlo simulations, where we took the statistics of the depicted results
(mean and variance). To measure the quality of each clustering approach, we
have used two evaluation criteria: the accuracy performance (percentage of
correct classifying data) and the Normalized Mutual Information (NMI).22

(b)(a)

Fig. 2. (a) Spatial patterns and (b) the BOLD signal used in experiments with simulated data.
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Fig. 3. Comparative results for our dataset of Fig. 2. Error bars for the two evaluation criteria
are shown in terms of several SNR values.

(a) SSRM (b) SRM (c) k-means

Fig. 4. Spatial patterns as estimated by all methods in the case of −8 dB.

Figure 3 shows the comparative results for our simulated dataset of Fig. 2.
The superiority of the SSRM is obvious based on two evaluation criteria,
especially in small SNR values (noisy data). Comparison with the SRM method
that holds only the spatial properties, has shown a significant improvement in
terms of both evaluation criteria. This proves the usefulness of the sparse term
to modeling procedure. An example of the activation maps as estimated by each
method is shown in Figs. 4 in the case of SNR = −8 dB. Clearly, our method
had better discrimination ability and achieved to discover more accurately the
original spatial pattern, while at the same time reduced significantly the false
negative activation cases. A more comprehensive experimental analysis can be
found on Ref. [22].

5.1.2. Experiments using real fMRI data

We have made additional experiments using real fMRI data. In our study,
we have selected a dataset with a block-designed auditory paradigm. In this
experiment, we have followed the standard preprocessing steps of the SPM
package. The BOLD signals for the experiment is shown in Fig. 2(b). This
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Fig. 5. The binary activation map as estimated by each method in the case of the auditory
experiment.

dataset was downloaded from the SPM webpagea and it was based on an
auditory processing task as executed by a healthy volunteer. Its functional
images consisted of M = 68 slices (79 × 95 × 68, 2 mm × 2 mm × 2 mm
voxels). Experiments were made with the slice 29 of this dataset, which contains
a number of N = 5118 time series. In this series of experiments, we have
employed the incremental learning strategy of the proposed method SSRM22

which provided us with the proper number of clusters. We have found a number
of K = 5 cluster and then we have used this value in order to run the other
two approaches, SRM and k-means. Figure 5 represents the comparative results
of all clustering methods giving the resulting position of the activation area
inside the brain. Note that the activated areas are overlaid on grayscale T1
weighted anatomical images. All methods have detected the auditory cortex as
the brain activation area. However, the SSRM methods have clearly detected
only three distinct areas of activation, while the remaining two approaches have
additionally detected other small activated islands that may bring difficulties in
the decision making process.

Furthermore, we have studied the capability of our method to construct the
3D activation model. In particular we have applied our method independently
to all available slices (68) of the auditory experiment. The resulting activation
maps are fed to the 3D Slicer toolkit47 that sequentially produces the 3D head
model with the activation areas. Figure 6 illustrates the resulting 3D models of
our method and the standard GLM approach.8 Obviously, both methods have
detected a significant activation on the temporal lobe. However, our method
has detected an extra activated region into the frontal lobe which is expected
in auditory experiments.

ahttp://www.fil.ion.ucl.ac.uk/spm/
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Fig. 6. The 3D head activation maps as estimated by (a) the proposed method SSRM and
(b) the standard GLM.

Fig. 7. Estimated motor activated areas of comparative methods in white overlaid on greyscale
T1 weighted anatomical images.

In the event-related foot-movement experiment, we analyzed fMRI data
consisted of images acquired from the University Hospital of Ioannina,
Greece.48 Details about the protocol that was followed for constructing the
fMRI data can be found in Ref. [22]. Experiments were made with the
slice 54 of this dataset, which contains a number of N = 2644 time series.
Figure 7 presents the comparative results in this dataset overlaid on greyscale
T1 weighted anatomical images. As expected, all methods have detected the
primary and the supplementary motor areas of the brain as the activation cluster.
Although there is no ground truth for the fMRI data on individual cases,
the motor system in general is well-studied and described in literature. The
proposed regression mixture model gives more activated areas closer to the
established motor circuitry and therefore the results are more reasonable (at
least in this case).
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5.2. Resting State fMRI Experiments

We have also made experiments with resting state fMRI data obtained from
the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC)b

under the project name: NYU CSC TestRetest. A detailed description of the
dataset can be found in Ref. [49]. In our experiments we have selected a
subject from this dataset, where we have used the slice 34 (of 52). Two versions
of the proposed SSRM method were studied that differ on the spatial prior:
(a) SSRM with the exponential potential function of Eqs. (16), (17) and (b)
SSRM with the softmax MRF prior of Eqs. (18), (19). The task in these series
of experiments was to estimate the Default Mode Network (DMN), which
is a resting state network that consists of precuneus, medial frontal, inferior
parietal cortical regions and medial temporal lobe. The DMN is expected to
be presented in almost every fMRI experiment.

The depicted brain images are shown in Fig. 8 that illustrate the DMN
cluster as estimated by each clustering approach. What is interesting to observe
is that, although all methods are able to properly identify the DMN, the
other two methods, SRM and k-means, tend to overestimate it and construct
small islands (almost uniformly the brain) not belonging to DMN. Clearly,
the proposed SSRM method seems to have better discrimination ability to
discover more accurately the network. Both versions do not show any significant
difference, with the second version (b) to appear to be more consistent
producing slightly smoother regions. However, a more systematic comparative
study is required to evaluate their effectiveness.

(a) (b) (c) (d)

Fig. 8. Default Mode Network estimation from resting state fMRI data using two versions of
SSMR (a) and (b) that differ in the type of MRF-based spatial prior, (c) the SRM and (d) the
k-means approaches.

bhttp://www.nitrc.org
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6. Conclusions

In this chapter, we have presented a regression mixture modeling framework for
the analysis of fMRI data. This model class is very flexible and can embody prior
knowledge of the nature of data. The key aspect of the proposed technique lies
on the superior sparse regression performance to model data of latent classes,
as well as the ability to evoke responses which are spatially homogeneous and
locally contiguous. It also includes a multi-kernel scheme for composing the
kernel matrix of each component that offers better fitting capabilities. There-
fore, the proposed method manages to incorporate significant physiological
properties of human brain and to tackle important issues that they are possible
to deteriorate the performance of fMRI data analysis. As compared to standard
approaches, the sparse and spatial regularization procedures of the method have
been shown to increase the robustness of detection and to result in inferences
with higher sensitivity.

Further extensions of the finite mixtures are possible for the regression case.
Instead of using GLMs as component specific models, generalized additive
models can be used which allow to relax some assumptions we have made.
Another future research direction is to examine the possibility of applying
alternative sparse priors, as well as to assume Student’s-t type of distribution for
modeling the noise (instead of Gaussian) so as to achieve more robust inference
and handle outlying observations.24 Finally, another possibility is to extend our
model to 3D cases and to group analysis applications.
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Cutaneous malignant melanoma is one of the most frequent types of cancer in the
world; but if the malignancy is detected and treated early, it can be cured. Many
dermatologists promote dermoscopy as an early detection tool; however, dermoscopy
requires formal training with a steep learning curve. In this chapter, we introduce a
novel tree-based framework to automate the melanoma detection from dermoscopic
images. Inspired by the radial and vertical growth pattern of skin lesions, we designed
a flexible and powerful framework by decomposing dermoscopic images recursively.
Pixels are repeatedly clustered into sub-images according to the color information and
spatial constraints. This framework allows us to extract features by examining the tree
from a graphical aspect, or from a textural/geometrical aspect on the nodes. In order
to demonstrate the effectiveness of the proposed framework, we applied the technique,
in completely different manners, to two common tasks of a computer-aided diagnostic
system: segmentation and classification. The former task achieved a per-pixel sensitivity
and specificity of 0.89 and 0.90 respectively on a challenging data set of 116 pigmented
skin lesions. The latter task was tested on a public data set of 112 malignant and 298
benign lesions. We obtained 0.86 and 0.85 for precision and recall, respectively, along
with an F-measure of 0.83 using a 3-layer perceptron. These experiments testified the
versatility and the power of the tree-structure framework for dermoscopic analyses.

191
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1. Introduction

Malignant melanoma of the skin, a life-threatening disease, has been increasing
rapidly and steadily among fair-skinned populations over last few decades. In
British Columbia, Canada, a low sun country of the world, the incidence rate
has been tripled since 1970’s.1 South of Canada, the USA recorded a 3.1%
average annual increase.2 In Australia, melanoma has surpassed lung cancer as
the third most common cancer for both men and women and the most common
cancer for men between the age of 15 and 44.3 Overall, the disease has become
a major health problem for the countries with a large white population.

Malignant melanoma is very treatable if it is detected early. The five-year
survival rate is greater than 90%. However, the prognosis is poor for many
patients with advanced or late staged disease. For these patients, the 5-year
survival rate can reduce dramatically to only 15% after their initial diagnosis.4

Thus, early detection is essential for a successful treatment of the disease.
Early melanoma detection is, however, challenging because the malignancy

often resembles benign lesions such as melanocytic nevi and seborrheic
keratoses.5,6 Diagnosis with naked eyes often results in false negatives or false
positives.5,7,8 In order to improve the diagnostic accuracy, many experts have
been advocating the use of a non-invasive hand-held device, dermoscopy, which
provides a magnified view of the skin internal structure.9 Applying either polar-
ized light or oil immersion to render the outermost layer of the skin, epidermis
to be translucent, physicians who have specially trained for the technique can
examine the morphology of the skin lesion at the dermal-epidermal junction
and render a diagnosis. (Figure 1 shows two examples of dermoscopic images.)
Studies showed that this non-invasive technique improved the diagnostic accu-
racy only for the trained physicians. Untrained doctors, even dermatologists,
are often confused by the complex and unfamiliar visual patterns, thereby
reducing their diagnostic capability.9 Recently, many research groups have been
developing automated computer algorithms to assist physicians in analyzing the
complex dermoscopic patterns in the hope to neutralize the steep learning
curve of the technique. The common approach is to detect and analyze
various dermoscopic structures such as pigment networks, streaks and blood
vessels.10–14 This approach achieves various degrees of success.

In this chapter, we introduce a new framework for automatic analysis of
dermoscopic images. It is a novel approach inspired by the analysis of the
growth pattern of skin lesions. In this approach, a dermoscopic image is
decomposed using a simple growth model estimated using a single image; then
a tree-structure is constructed to represent the growth model.
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Fig. 1. Samples of dermoscopic images. The top lesion has an irregular shape, while the bottom
figure has a regular oval shape.

The remaining of the paper is organized as follows: the next section
reviews the lesion growing model and previous works on decomposition.
Section 3 describes the construction of the tree-based framework, a very flexible
structure allowing it to adopt for various scenarios and needs. Sections 4 and 5
demonstrate the flexibility of the technique by applying it to two common tasks
of a computer-aided diagnostic system: lesion segmentation and classification.
Finally, a short conclusion is presented in Section 6.

2. Background and Previous Work

2.1. Lesion Growth Model

Cuteneous malignant melanomas are often identified with two growth phases:
radial and vertical.15 Both malignant and benign pigmented skin lesions usually



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch10 page 194

194 T. K. Lee et al.

Fig. 2. Schematic of the epidermis and dermis strcutures.

begin with a radial growth. In this phase, a pigmented lesion is formed by nests
of melanocytes, which synthesize a brown pigmentation called melanin. This
phase commences at the dermal-epidermal junction and the entire horizontal
growth phase is confined in epidermis, the outer layer of the skin. The vertical
growth phase is marked by the penetration of the basement membrane of the
outer skin into the dermis. (Figure 2 depicts the structure of the epidermis
and dermis.) During the growth of a lesion, the width and depth of the lesion
extend out from the initial melanocytic nest of the lesion. Due to the natural
history of normal and abnormal cells, benign skin lesions tend to grow evenly,
often in a regular oval shape, while abnormal lesions often result in an irregular
shape. (Figure 1 illustrates two lesions, one with an irregular shape and another
one with a regular oval shape.)

Using a single dermoscopic image, the growth pattern of a pigmented
lesion can be postulated because the center the lesion is often the initial
melanocytic nest. Zhou et al. utilized this hypothesis16 and observed that most
dermatologists placed the center of the lesion in the middle of a dermoscopic
image frame, and constrained a segmentation algorithm spatially by assuming
the middle of the image frame as the initial growing point of the lesion. We
further observed that the periphery of a skin lesion often has a lighter brown
color than the interior of the lesion. This phenomenon could be explained
by the fact that the center of the lesion is usually thicker with more layers of
melanocytes than the newly grown areas near the periphery. Because melanin
absorbs light, the central area tends to have less reflected light and, hence,
darker than the periphery. Thus, we modified Zhou et al.’s growth model in
the following way: the center of a skin lesion is determined by the dark-color



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch10 page 195

Tree Structure for Modeling Skin Lesion Growth 195

portion of the skin lesion. Based on this extended growth model, we decompose
the skin image into a tree structure.

2.2. Decomposition

Shape and image decomposition can be categorized into boundary-based
or area-based approaches. The former method has been successfully used
to analyze border irregularity of a lesion by decomposing a lesion border
into a series of indentation and protrusion segments.17 However, in order
to analyze the growth pattern of a lesion, an area-based method is required
to analyze the image texture. There are many successful ways to perform
area-based decomposition, such as morphological shape decomposition and
skeleton decomposition.18 Unfortunately, a pigmented skin lesion may manifest
one or more of the following patterns: reticular, globular, cobblestone,
starburst, parallel and homogeneous. In addition, the spatial relationship
between any texture patterns is unknown. Hence, it is a nontrivial task to
design an optimal structural element for the morphological operations. On the
other hand, skeleton decomposition is the complement problem of boundary
decomposition; both depend strongly on the border shape and may not reflect
the internal texture patterns. In this chapter, a new decomposition method by
clustering is proposed. The method represents the growth pattern of the lesion.

3. Decomposing Skin Images into Tree Structures

Unlike Zhou et al.’s approach,16 our goal is to represent the growth pattern of
a skin lesion by creating a tree structure. this chapter assumes that the center of
the lesion (or part of a lesion in the middle of the recursion) is defined by the
center of the dark pixels of the lesion. The central point is used to constraint
the clustering the image pixels into dark and light regions. The identification of
the central point and clustering are performed recursively in order to decom-
pose a skin region into two sub-regions, which are also marked as the node of
a tree. Thus the tree-building process can be divided into three subtasks: iden-
tifying the central point, clustering the image pixels and constructing the tree.

3.1. Extraction of the Central Point

Let us denote a pixel p of a color skin lesion image by its image coordinate
(x , y). A set of connected pixels CP can be divided into dark and light pixels
according to their luminance intensities I (x , y), normalized by the maximum
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luminance intensity Im. Thus, the coordinates of the dark pixels, denoted by
the set {(DX, DY)}, is defined as:

{(DX , DY )} =
{
(x , y)

∣∣∣∣I (x , y)
Im

≤ Id

}
, (1)

for all p ∈ CP . Id is the pre-defined cut-off threshold for the dark pixels.
The central point (xc , yc) of CP is defined by the centroid of the dark pixels

only. For n connected dark pixels as determined by Eq. (1), the centroid of CP
is defined as:

(xc , yc) =
(

1/n
n∑

i=1

xi , 1/n
n∑

i=1

yi

)
, xi ∈ DX , yi ∈ DY . (2)

Note that the detection of dark pixels in Eq. (1) is only for the determi-
nation of the central point. We hypothesize that a lesion expands from the
central point (xc , yc), the centroid of the dark pixels, as it grows. Thus, an
ideal normal skin lesion will have concentric circles or ellipses for the dark and
light pixels as shown in Fig. 3. However, real lesions often show a complex
shape, especially, for melanomas which consist of unstable malignant cells and
produces irregular growth rate in different directions. Sometimes, the dark or
light pixels may not form a connected component. Nevertheless, the scheme in
the following section decomposes a skin lesion into a tree structure according
to the distance from the central point (xc , yc), along with the color information
of the lesion.

Fig. 3. The growth pattern of an ideal skin lesion, as shown in dark and light pixels. For this
paper, the center point of the lesion is defined by the centroid of the dark pixels only.
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3.2. Clustering Decomposition

A set of connected pixels CP is decomposed into two regions using the well-
known k-means clustering algorithm, which minimizes the sum of squares of
the distance between the feature (variable) associated with the pixels of the
region and the region centroids.19,20 For the dark and light regions, i.e. k = 2,
the k-means clustering is formulated as:

arg min
S

2∑
i=1

∑
fj ∈Si

1
wi

‖fj − µi‖2, (3)

where fj is the j feature (variable) of the region, and µi is the centroid of
the region Si . For our task, one spatial feature and two chromatic features are
applied in the clustering algorithm: the radial distance D and the blue and green
intensity channels of the RGB color image. The red channel is eliminated in
order to reduce the effect of the blood vessels. The radial distance D of a pixel
(x , y) is defined as the Euclidean distance between the pixel and the central
point of the original connected pixels CP, which is computed by Eq. (2). The
features are weighted by wi . Such a weight is especially important for the radial
distance D because too strong a weight on D places the emphasis on the spatial
feature over the chromatic features and results artificially rounded regions. After
clustering, the parent region formed by CP is divided into two disjoint sibling
regions CP 1 and CP 2.

3.3. Tree Construction

The root node of the tree structure is initialized to the cluster of all pixels
of the skin lesion image. Then the nodes for the subsequent depth is built
recursively by clustering the pixels of the parent’s node into the two disjoint
sibling regions (CP 1 and CP 2), using 2-means clustering, according to the
distances to the centroid of the parent nodes and the red and blue intensity
values. The termination condition varies according to the analysis need. As
demonstrated in the following sections, a tree with a fixed depth is used in the
segmentation task, while a tree with variable length is constructed for lesion
diagnosis.

The resultant tree structure has two important properties:

(1) Summation of the pixel counts at every level of the tree is equal to the
number of pixels in the original image, and

(2) Every pixel belongs to exactly one cluster at every level of the tree.
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End

Determine the 
central point (Eqs. 
(1) and (2 )) 

Gather D, and 
blue and red 
intensity values 

2-means cluster – 
forming 2 sibling 
regions (Eq. (3)) 

Terminate? 

Fig. 4. Flowchart of the image decomposition process.

These two properties along with the flexibility of the termination condition
during the tree construction provide a rich representation over which many
salient features of the color skin lesion can be extracted.

The flowchart of the decomposition process and tree construction is shown
in Fig. 4, outlining the entire process from an input image to the final tree
structure.

4. Skin Lesion Segmentation

The usefulness of the tree representation is first demonstrated in a skin
lesion segmentation application. The tree is constructed with the following
parameters. The cut-off intensity Id in Eq. (1) was set to 0.25, and the weights
wj in Eq. (2) were set to 2 for the radial distance D, and to 1 for both blue
and green channels. In addition, the depth of the tree was set to 4. In other
words, after decomposing a color skin image, the root level places all image
pixels into one cluster, and other level decomposes the pixels into different
clusters according to the procedure described in Section 3. Because a RGB
color image consists of 3 intensity channels, the tree decomposition method
generates 12 intensity images (3 color channels and 4 depth levels) as shown
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Fig. 5. Decompose the top figure of Fig. 1 for segmentation. The tree has 4 levels and 3
channels in each level.

in Fig. 5. The intensity value in each cluster is first assigned to the mean cluster
intensity value. Then each intensity image was smoothed by a 15×15 Gaussian
filters with σ = 5.

A feature vector of 13 elements was extracted for each pixel using the
above data representation. The feature elements were the 12 intensity values in
all levels and color channels, along with a spatial feature, the Euclidean distance
between the pixel and the center of the lesion (xc , yc) of the root level. The
feature vector was applied to a MAP estimation based on supervised learning
model for automated skin lesion analysis.21 The label set for the segmentation
task in this model was L = {‘lesion’ ; ‘background’}.

The first stage in the supervised learning model was the training stage in
which parameters for the multivariate Gaussian distribution were estimated for
the labeling phase. The posterior probabilities P (pj |li) (i.e. probability of a pixel
p given the label li in the label set L) were modeled as multivariate Gaussian
distribution. In the second stage which was the labeling stage, labels l ∗ were
assigned to the pixels of previously unseen images using maximum likelihood
estimation in the following way:

l ∗ = arg max
li∈L

(log P (p|li) + log P (li)). (4)

As in this case there were two classes l1 = lesion and l2 = background, the
following constraint was considered:

P (l1) + P (l2) = 1. (5)

The ROC curve was obtained by varying the values of P (l1) and P (l2)
according to constraint in equation above. Equivalently, the ROC curve could
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be generated using a simple threshold method over the pixel probability map
obtained using the following equation:

li(p) = P (p|li)
P (p|l2) + P (p|l2) , (6)

where li(p) is the likelihood of each label.21

The segmentation method was tested in a dataset, which has been used in
several segmentation algorithms. The dataset contained 116 images of which
100 were considered challenging from a dermoscopic atlas.22 An image is
considered challenging if at least one of the following conditions are true21:

(1) the contrast between skin and lesion is low,
(2) there is significant occlusion by oil or hair,
(3) the entire lesion is not visible (partial lesion),
(4) the lesion contains variegated colors, or
(5) the lesion border is not clearly defined.

In addition, each image was segmented by a dermatologist to provide the
ground truth, and pixels were labeled from the set L = {‘lesion’; ‘background’}.
Ten-fold cross-validation was used to validate the method.

Examples of five segmentation results from our method are provided in
Fig. 6, where the first row is an easy image to segment and the remaining rows
are the challenging cases containing lesions occluded with hair, partial lesions
and low contrast borders of the lesions. No pre-processing of removing hairs
or noise is applied to this segmentation test of the data representation.

The segmentation results are tabulated in Table 1 along with six other
state-of-the-art skin lesion segmentation techniques: G-LoG/LDA,21 KPP,16

JSEG,23 DTEA,24 SRM,25 and FSN.26 The dataset was tested using the authors’
implementation of their methods. Similar to G-LoG/LDA,21 the output of the
current method is a probability map of the pixels. Consequently, by changing
the threshold of the segmentation over this probability map, the ROC curves
were obtained (see Fig. 7). The output of the five other methods is binary
segmentation of lesions; therefore, the nearest point on the ROC curve was
compared with the sensitivity/specificity pairs. Table 1 lists �Sens and �Spec,
which show the difference between the sensitivity/specificity of methods with
the closest pair on ROC curve of the current method. The area under the curve
is only used to compare the current method with G-LoG/LDA in the column
AUC. The sensitivity/specicity reported in the table for the current method
and for G-LoG/LDA is the closest point to (0; 1), the optimal performance,
on the ROC curve.
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Fig. 6. Examples for the segmentation model. Examples of easy (first row) and challenging
(second to the fifth rows) images are shown. The first column shows the original dermoscopic
images. The second column demonstrates resulting probability maps obtained using the learning
model. Our segmentation results and the ground-truth are depicted as blue and red dashed line,
respectively, in the third column. Note: hair or noise removal pre-processing was not applied in
this experiment.

The current method with tree decomposition achieved excellent AUC,
sensitivity and specificity of 0.96, 0.89 and 0.90, respectively. These indicators
showed that the technique outperformed G-LoG/LDA. The tree-based
approach also outperformed KPP, DTEA, SRM, and FSN, and was comparable
to JSEG’s performance according to �Sens and �Spec.
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Table 1. Comparison of results of our segmentation method with six
other methods.

Method AUC Sens. Spec. �AUC �Sens. �Spec.

Our method 0.954 0.881 0.903 N/A N/A N/A
G-LoG/LDA 0.948 0.880 0.887 0.006 0.001 0.016
KPP N/A 0.717 0.790 N/A 0.164 0.025
DTEA N/A 0.641 0.987 N/A 0.035 −0.001
SRM N/A 0.770 0.946 N/A 0.002 0.024
JSEG N/A 0.678 0.986 N/A −0.002 −0.001
FSN N/A 0.812 0.935 N/A 0.012 0.017

Fig. 7. Comparing the ROC curves for our method and six other methods, G-LoG/LDA,21

KPP,16 JSEG,23 DTEA,24 SRM,25 and FSN.26

5. Skin Lesion Diagnosis

In the second experiment, we demonstrated the flexibility of the framework
by modifying the decomposition process for a lesion diagnosis problem. The
cut-off intensity Id in Eq. (1) and the weights wj for spatial parameter D and
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chromatic channels in Eq. (2) were kept to 0.25, 1, and 2, respectively, similar
to the skin lesion segmentation experiment. However, instead of using the RGB
color channels, hue, saturation, and intensity of HSI color space were used in
the k-means clustering procedure described in Section 3.2. There were two
other major modifications for building the data structure: a tree structure with
a variable depth is constructed and a cluster and shrink procedure is deployed
for pruning one of the regions. During the tree construction, the lighter regions
obtained from the k-means were pruned. Only the darker regions were kept
and decomposed again. In additional, the following four conditions were set
for the termination of the tree construction:

(1) A dark region was too small in size;
(2) A dark region consisted of similar colors;
(3) The decomposed dark region had not significantly changed in comparison

to its parent; and
(4) The depth of the constructed tree reached a predefined limit.

When one of the above conditions was met, the decomposition terminated.
Figure 8 depicts the resultant tree structure for a benign and an abnormal
lesion.

Features used for analysing lesion condition were also changed. Observing
the new tree structures in Fig. 8 for a typical benign and a malignant lesion, we
realized that the tree itself (graphical aspect) could be used to differentiate the
disease condition. Thus the following feature vector was selected: the number of
nodes and leaves of the tree, the depth of the tree and the average compactness
index for each level of the tree. Compactness index CI was defined as

CI = PE
4πA

, (7)

where PE and A denoted the perimeter and the corresponding area, respec-
tively, of the darker region. The CI was calculated for all the nodes in the tree;
then, the mean value of the all CI s over each depth of the tree was calculated
and stored in the feature vector. Because the root region was rectangular, the
CI for this node was ignored. Thus, the number of CIs was one less than
the maximum possible depth of the tree which was defined in the termination
condition.

The tree representation and the feature vector were tested in a two-class
classification (malignant vs. benign) experiment, using a data set of 410 pig-
mented skin images randomly selected from Interactive Atlas of Dermoscopy.27

In this dataset, there were 112 malignant lesion images (containing melanoma
and pigmented basal cell carcinomas), and 298 benign lesion images (consisting
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Fig. 8. The variable tree structures with the lighter region pruned for (a) a melanoma and (b)
a benign lesion.

Table 2. Classification results for the two-class classification, benign and malignant, using a
data set of 410 lesion images.

Feature set Classifier Precision Recall F-Measure AUC of ROC

All features 3-layer perceptron 0.855 0.849 0.834 0.786
Graphical features 3-layer perceptron 0.848 0.841 0.824 0.787
CI1 to CI3 3-layer perceptron 0.639 0.712 0.641 0.617
CI4 to CI9 3-layer perceptron 0.713 0.729 0.622 0.494
All features AdaBoost 0.829 0.832 0.817 0.745
Graphical Features AdaBoost 0.835 0.837 0.823 0.776
CI1 to CI3 AdaBoost 0.692 0.732 0.685 0.637
CI4 to CI9 AdaBoost 0.596 0.722 0.614 0.490
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of atypical, congenital, compound, dermal, Spitz, and blue nevi; seborrheic
keratosis; and dermatofibroma). The ground truth was provided by the atlas.

Publicly available machine learning tools, a 3-layer perceptron and
AdaBoost of WEKA28 were used to classify the 410 images into malignant
and benign. The parameters for the perceptron were set as follows: learning
rate was set to 0.3, momentum was set to 0.2, training time was set to 500
and validation threshold was set to 20. The parameters of AdaBoost were set as
follows: the number of iterations was set to 10, the seed was randomly generated
and the weight threshold was set to 100.

The data set was tested in four different ways. In the first approach, all
twelve features were gathered in a 12-dimensional feature set [number of nodes,
number of leaves, depth, and 9 compactness index (CI ) components] and the
resulting set was fed into the two classifiers separately. The second evaluation
was done by just using the graphical feature set (number of nodes, number of
leaves, depth). In the third and fourth approaches, CI1 to CI3 and CI4 to CI9
were evaluated respectively to validate the discriminative power of different lay-
ers in the tree in our method. In all these approaches, the validation method was
set to a ten-fold cross validation. The malignant and benign images were ran-
domly chosen from separate classes and uniformly merged and distributed over
the folds. Table 2 provides the classification results between the malignant and
benign classes for our dataset using two classifiers and four approaches. Figure 9
shows the ROC curves from the 3-layer perceptron and AdaBoost classifiers.

Table 2 shows that using all features, both classifiers returned very good
results in precision, recall and F-Measure. The 3-layer perceptron achieved
0.86, 0.85 and 0.83 for precision, recall and F-measure, respectively. The
results for AdaBoost were slightly lower, but were above 0.8 for precision and
recall. Interestingly, the graphical features alone were performing so well. They
achieved similar performance as all features under the perceptron classifier,
and they surpassed the all features results under the AdaBoost classifier. This
illustrated the strength of the tree structure over the other methods that were
only based on textural/geometrical features. These results also explained that
the CI1 to CI3 feature set, the top three layers, had more discriminative power
than the CI4 to CI9 feature set, the lower layer set.

The ROC curves in this study are obtained using WEKA machine learning
software.28 The reason behind the more jagged ROC curve for AdaBoost was
likely due to the low density of the grid search over the parameters of the
classifier. The denser grid for the 3-layer perceptron classifier results in the
smoother curves.
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Fig. 9. ROC curves for (top) 3-layer perceptron and (bottom) AdaBoost classifiers for lesion
diagnosis.
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6. Conclusions

In this chapter, we introduce a novel tree structure-based framework for
dermoscopic image analysis. Inspired by skin lesion growth patterns, we
designed a flexible and powerful framework, which decomposes a skin image
into a mutli-level tree structure. All pixels are represented uniquely in each level;
hence, task-specific salient features can be extracted. In order to demonstrate
the flexibility and the power of the framework, it was tested in two common
skin image analysis tasks of segmentation and diagnosis. Both segmentation
and diagnosis programs returns good and promising results. However, the
configurations and the parameters for these two programs are not the emphasis
of this chapter because we believe one can extract new features to future improve
the results. The main focus is the tree structure framework itself, which can be
applied to other skin image analysis tasks.
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The retinal vascular network and optic disc are two of the most important anatomical
structures of the fundus. Two methods to detect them have been included in this
chapter. Their goal is to form part of some disease screening system since the
segmentation of these structures can be a key process to assist clinicians in different
pathology diagnosis. For example, both of them can be used as reference to detect
several retinal lesions or other ocular structures in addition to identifying some fundus
features. This chapter presents an in-depth study about the use of mathematical
morphology to locate these main retinal structures. In particular, the proposed
methods are characterized by combining several morphological operators and by
making use of a variant of the watershed transformation, the stochastic watershed. This
transformation avoids sub-segmentation problems related to the classical watershed.
The methods have been validated in several public databases by improving the
results of other state-of-the-art algorithms. Therefore, it has been demonstrated
that the performance of the stochastic watershed allows us to apply it for clinical
purposes.

1. Introduction

Retinal vasculature is able to indicate the status of other vessels of the human
body. Indeed, the retina is the only location where blood vessels can be
directly visualised non-invasively in vivo.1 That is the reason why its study is
usually included in the standard screening of any patient with diseases in which
the vessels may be altered. In many instances preclinical signs are not easily
recognized and often appear as signs or symptoms that are not specific for a
particular disease, but the retina and its blood vessel characteristics have been
shown to be a window into several disease processes.2

211
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Retinal imaging is, nowadays, a mainstay of the clinical care and man-
agement of patients with retinal as well as systemic diseases. Many important
diseases manifest themselves in the retina and originate either in the eye, the
brain or the cardiovascular system. In particular, the most prevalent diseases
that can be studied via eye imaging and image analysis are: diabetes, diabetic
retinopathy, age-related macular degeneration, glaucoma and cardiovascular
disease.3 Screening campaigns are usually considered effective if the disease in
question is identified at an early, preferably preclinical, stage and if it is amenable
to treatment.2 In the main, the best approach for risk population assessment
seems to be a direct, regular and complete ophthalmologic examination.4

However, population growth, ageing, physical inactivity and rising levels of
obesity are contributing factors to increase retinopathies, so that the number
of ophthalmologists for the assessment by direct examination of the population
risk is high.5 Moreover, it must be stressed that this type of retinal disease
identification, that is based on manual observation, is highly subjective.6 So,
for those reasons, automatic screening systems are increasingly important. They
are able to relieve physicians of repetitive work, increase efficiency and provide
remarkable cost-savings in addition to be accessible in rural and remote areas
where there is a lack of eye specialists.7

Retinal segmentation is a fundamental component of most automatic
retinal disease screening systems.8 It is usually a prerequisite before systems
achieve more complex tasks as identifying different pathologies. In general,
several anatomical structures are segmented through fundus image processing
and then some features are extracted from them to characterize each pathology.
The most important anatomical structures of the fundus are the vascular
network, that is the retinal blood vessels, and the optic disc (OD). Both of
them can be used as reference to detect other anatomical ocular structures or
several retinal lesions and to identify some fundus features. For example, among
their multiples uses, the following can be stressed. Morphological attributes of
retinal blood vessels, such as length, width, tortuosity and/or branching pattern
and angles are utilized for diagnosis, screening, treatment, and evaluation of
various cardiovascular and ophthalmologic diseases.9 The relation between the
size of the optic disc and the cup (cup-disc-ratio) is widely used for glaucoma
diagnosis.10 The relatively constant distance between the optic disc and the
fovea is useful for estimating the location of the macula, area of the retina
related to fine vision.11

This chapter presents an in-depth study about the use of mathematical
morphology in order to detect the main retinal structures. The methods
that will be presented are characterized by combining several morphological
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operators, basic ones and other more complex, and by making use of a variant
of the watershed transformation, the stochastic watershed, which avoids sub-
segmentation problems related to the classical watershed.

Numerous segmentation methods of retinal structures have been reported
in literature. Nevertheless, this chapter is only focused on detection methods
of the vascular tree and the optic disc. Moreover, it must be emphasized that
the method proposed for vascular tree detection obtains directly the retinal
network skeleton avoiding a complete vessel segmentation stage. This approach
is different than most of literature about this topic where a skeletonization is
usually performed on the vessels previously detected. However, it should be
taken into account that the major drawback of this strategy is the dependence
of the different stages on the previous ones in addition to computational cost.
So, presenting a method which obtains the retinal tree centerline without the
necessity of vessel segmenting can reduce the number of necessary steps in
fundus image processing and at the same time the dependency of previous
stages can also be reduced.

Referring to vessel extraction techniques, they can be mainly divided into
four categories: edge detectors, matched filters, pattern recognition techniques
and morphological approaches. A more extensive classification can be found in
Ref. [8]. Most edge detection algorithms assess changes between pixels values
by calculating image gradient magnitude and then it is thresholded to create a
binary edge image.12,13 Matched filters are filters rotated in different directions
in order to identify the cross section of blood vessels.14,15 Pattern recognition
techniques can be divided into supervised and unsupervised approaches.
Supervised methods, such as artificial neural networks16 or support vector
machines,17,18 exploit some prior labelling information to decide whether a
pixel belongs to a vessel or not, while unsupervised algorithms19 perform the
vessel segmentation without any prior labelling knowledge. Morphological
processing is based on vessels characteristics known a priori (line connected
segments) and combines morphological operators to achieve the segmenta-
tion.20,21 Although most state-of-the-art methods look for detecting all vessel
pixels of the vascular tree, there are also some attempts based on finding the
vessel skeleton, or in other words, the vessel centerline. The work of Chen
et al. is based on shortest path connection,22 Sofka and Stewart on the use of
matched filters,23 Wu and Derwent on ridge descriptors24 and Walter and Klein
and Bessaid et al. on the application of watershed transformation25,26 but none
of them is based on the use of stochastic watershed.

Regarding the OD-boundary detectors, the presented techniques can
mainly be grouped into template-based methods, deformable models, and
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morphological algorithms. Different approaches have been proposed according
to template-based methods: edge detection techniques followed by the Cir-
cular Hough Transform;27,28 pyramidal decomposition and Hausdorff-based
template matching;29 colour decorralated templates;30 or a kNN-regressor
along with a circular template.11 Concerning deformable models, GVF-
snake,31 ASM,32 and modified active contours, which exploit specific features
of the optic disc anatomy33 or incorpore knowledge-based clustering and
updating,34 have also been used to this purpose. As for algorithms based on
mathematical morphology, most of them detect the OD by means of watershed
transformation, generally through marker-controlled watershed,35–37 although
each author chooses different markers. The centroid of the largest and brightest
object of the image is considered as an approximation for the locus of the OD
and it is used as internal marker.35 The extended minima transformation38 is
applied to select the internal markers and external markers are calculated as
an effectively partition of the image into regions, so that each region contains
single internal marker and part of the background.36 A list of pixels belonging
to the main vessels arcade in the vicinity of an internal OD point previously
detected are also used.37 On the other hand, some authors propose combining
various algorithms to get a better approximation of the OD-boundary.39,40

The rest of the chapter is organized as follows: in Section 2 a basic
theoretical background about morphological operators and the stochastic
watershed transformation is included. Sections 3 and 4 describe two methods
based on mathematical morphology to detect the main retinal structures.
Section 5 shows the experimental results of the methods explained above and
they are compared with other state-of-the-art algorithms. Finally, Section 6
provides conclusions.

2. Theoretical Background

2.1. Morphological Operators

Mathematical morphology is a non-linear image processing methodology
based on minimum and maximum operations whose aim is to extract relevant
structures of an image.41

Let f be a grey-scale image which is defined as f (x) : E → T where x
is the pixel position. In the case of discrete valued images, T = {tmin, tmin +
1, . . . , tmax} is an ordered set of gray-levels. Typically, in digital 8-bit images
tmin = 0 and tmax = 255. Furthermore, let B(x) be a sub-set of Z 2

called structuring element (shape probe) centred at point x, whose shape is
usually chosen according to some a priori knowledge about the geometry



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch11 page 215

Automatic Detection of Retinal Structures Based on Mathematical Morphology 215

of the relevant and irrelevant image structures. The two basic morphological
operators are:

Dilation: [δB(f )](x) = max
b∈B(x)

f (x + b)

Erosion: [εB(f )](x) = min
b∈B(x)

f (x + b). (1)

Their purpose is to expand light or dark regions, respectively, according to the
size and shape of the structuring element. Those elementary operations can be
combined to obtain a new set of operators or basic filters given by:

Opening : γB(f ) = δB(εB(f ))

Closing : ϕB(f ) = εB(δB(f )). (2)

Light or dark structures are respectively filtered out from the image by these
operators regarding the structuring element chosen.

Other morphological operators that complement the previous ones are
geodesic transformations. The geodesic dilation is the iterative unitary dilation
of an image f (marker) which is contained within an image g (reference),

δ(n)
g (f ) = δ(1)

g δ(n−1)
g (f ), being δ(1)

g (f ) = δB(f ) ∧ g . (3)

The reconstruction by dilation is the successive geodesic dilation of f regarding
g up to idempotence,

γrec(g , f ) = δ(i)
g (f ), so that δ(i)

g (f ) = δ(i+1)
g (f ). (4)

Using the geodesic reconstruction, a close-hole operator can also be defined. For a
grey-scale image, it is considered a hole any set of connected points surrounded
by connected components of value strictly greater than the hole values. This
operator fills all holes in an image f that do not touch the image boundary f∂
(used as marker):

ψch(f ) = [γrec(f c , f∂)]c , (5)

where f c is the complement image (i.e., the negative).

2.2. Stochastic Watershed Transformation

Watershed transformation is a segmentation technique for gray-scale images.42

This algorithm is a powerful segmentation tool whenever the minima of the
image represent the objects of interest and the maxima are the separation
boundaries between objects. Due to this fact, the input image of this method
is usually a gradient image. In mathematical morphology, the gradient �(f )(x)
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of an image f (x) can be obtained as the pointwise difference between a unitary
dilation and a unitary erosion, i.e.,

�(f )(x) = δB(f )(x) − εB(f )(x). (6)

In the case of a gradient image is considered as input image, the watershed
transformation produces a segmentation which can be viewed as: a set of closed
contours of segmented regions which will be noted by WS(�(f )), or a partition
of the space E in a set of classes named �(WS(�(f ))).

However, one problem of this technique is the over-segmentation, which is
caused by the existence of numerous local minima in the image normally due to
the presence of noise. One solution to this problem is using marker-controlled
watershed, WS(�)fmrk

, in which the markers fmrk artificially indicate the minima
of the image. Nevertheless the controversial issue consists in determining fmrk

for each region of interest,

fmrk(x) =
{

0 if x ∈ marker
255 Otherwise.

(7)

Note that the use of few markers along with the existence of borders within
the structure to be segmented can also cause some parts of it to not be
detected (sub-segmentation). So, the choice of correct markers is crucial for
the effectiveness and robustness of the algorithm.

A watershed transformation variant is used to solve this conflict, the
stochastic watershed.43 In this transformation, a given number M of marker-
controlled-watershed realizations are performed selecting N random markers
in order to estimate a probability density function (pdf ) of image contours and
filter out non significant fluctuations. Let {fmrki}M

i=1 be M sets of N uniform
random markers and WSi = WS(�)fmrk i

the ith output image of the marker-
controlled watershed imposed by fmrki . The pdf of image contours is computed
by Parzen window method44 as follows

pdf (x) = 1
M

M∑
i=1

(WSi(x) ∗ G(x; s)), (8)

where G(x; s) represents a Gaussian kernel of variance σ2 and mean µ (µ = 0)

G(x; s) = 1
2πσ2 e

−
(

‖x‖2

2σ2

)
. (9)

Afterwards, it is necessary to perform a last marker-controlled watershed on
the pdf obtained.

This type of watershed works better than other marker-based watershed
transformations used previously in literature. In the next section, two different
applications of the stochastic watershed will be explained in detail.
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2.3. Image Enhancement

Non-uniform illumination and low contrast are typical and inherent problems
to the image capture technique. Moreover, in the case of retinal images, both
problems are especially pronounced due to the fact that the retina is a spherical
structure and it is necessary for the use of a spotlight to capture the image. So,
they should be corrected prior to the image processing. For instance, in this
chapter, next local transformation for shade correction is proposed

�(f )(t ) =




1
2(umax − umin)

(µf − tmin)r (t − tmin)r + umin if t ≤ µf

−1
2(umax − umin)

(µf − tmax)r (t − tmax)
r + umax if t > µf .

(10)

where tmin and tmax are the minimum and maximum grey level of the
image respectively, umin and umax are the target levels (typically 0 and 255
respectively), µf is the mean value of the image for all pixels within a window
centred at the current pixel x of the fixed size, and the parameter r is used to
control the contrast increasing (experimentally r = 2).

3. Retinal Vessel Centerline Extraction

This section is focused on obtaining directly the skeleton of the retinal vascular
tree by means of mathematical morphology and curvature evaluation. Its goal
is to reduce the number of necessary steps in fundus image processing at the
same time that the dependency of previous stages is reduced in comparison with
methods that perform a complete segmentation of retinal vessels. Specifically,
it involves two main steps: in the first step, the principal curvature is calculated
on the retinal image. In the second step, the stochastic watershed is applied to
extract the vascular skeleton.

Although fundus images are RGB format [Fig. 2(a)], the present work is
drawn on monochrome images obtained from the green component extraction
because this band provides improved visibility of the blood vessels [Fig. 2(b)].
Moreover, this grey image is enhanced with the algorithm of Section 2.3.
Then, a small opening, using a disc of radius 1 as SE (B1), is performed on
the enhanced green component image to fill in any gaps in vessels that could
provoke subsequent errors, for example due to brighter zone within arteries.
Next, a dual top-hat, with a SE larger than the widest vessel (B2), is applied with
the goal of extracting all of them and eliminating structures with high gradient
that are not vessels, as occurs with the optic disc border [Fig. 2(c)]. Afterwards,
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with the aim of highlighting the vessels on the background, principal curvature,
fκ, is calculated as the maximum eigenvalue of the Hessian matrix12 resulting
the image shown in Fig. 2(d). Finally, stochastic watershed is applied to the
curvature image.

This transformation uses random markers to build a probability density
function (pdf ) of contours [Fig. 2(e)], which is then segmented by a last
marker-controlled watershed. Thereby, the vascular skeleton is part of the
frontiers of the resultant regions [Fig. 2(f)]. In addition to the random markers
some controlled markers are also included. It is forced that there is at least
one marker in the area delimited by the crossing of two vessels. These areas
are determined by means of the residue of the close-hole operator on fκ. This
methodology avoids the fact that some vessels are not detected by the watershed
transformation (see Fig. 1).

In order to discriminate which frontiers are significant and which ones are
not and should be filtered out, the frontiers are multiplied by fκ and then
are thresholded [Fig. 2(g)] using a fixed threshold, experimentally t = 0.05.
Once the skeleton is obtained, a pruning process is applied to remove possible
spurs giving rise to the final result of the method [Fig. 2(h) and 2(i)]. The
implemented pruning process is characterized by removing spur branches but
without altering the main branches. Only the branches whose size is less than
an threshold are removed while the others are remained intact.

Next, the algorithm and figure summarizes the steps of the vessel centerline
extraction method which has been explained.

(a) (b) (c)

(d) (e) (f)

Fig. 1. Stochastic watershed on the crossing of two vessels: (a) Enhanced green component, (b)
Principal curvature (fκ), (c) Residue of close-hole operator, (d) Random (blue �) and controlled
(green �) markers, (e) Result of the stochastic watershed using only the random markers shown
in blue and (f) Result of the stochastic watershed combining random and controlled markers
(blue and green).
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Algorithm 1: Vessel centerline extraction
Data: Original RGB fundus image f = (fR, fG , fB)

Result: Vessel centerline, fout

initialization: B1, B2 ;
fin ← fG Green component selection ;
fenh ← �(fin) Image Enhancement ;
fop ← γB1(fenh) Opening ;
fdth ← ρB2(fop) Dual top-hat ;
fκ ← max[eig(H (fdth))] Principal curvature ;
fws ← WS(fκ)fmrk Stochastic Watershed ;
fth ← (fκ × fws ) < t Thresholding ;
fout ← ϒ(fth) Pruning ;

4. Optic Disc Segmentation

The automatic OD-segmentation method proposed in this section is focused
on using different operations based on mathematical morphology on a fundus
image to obtain the OD-contour. Previously, a pre-processing of the original
RGB image is required. The first step of the pre-processing consists in applying
PCA to transform the input image to grey scale. This technique combines
the most significant information of the three components RGB in a single
image so that it is a more appropriate input to the segmentation method. After
segmentation, a post-processing is also performed to fit the final region contour
by a circumference. In Fig. 3, the main steps of the segmentation process are
depicted. Note that the whole image is processed although only a region of
interest is shown for better visualisation. A detailed explanation of the method
can be found in Ref. [45].

4.1. Pre-processing

Generally, an initial gray-scale image is necessary to carry out most of the
segmentation algorithms of the literature. However, in the case of OD
segmentation, each author considers appropriate a different intensity image,
such as a band of the original RGB image11,35 or a component of other
color spaces.31,33 In this work, the use of a new grey-scale image is proposed.
Specifically, it is calculated by means of principal component analysis (PCA)46

because this type of analysis maximizes the separation of the different objects
that compose a image so that the structures of the retina are better appreciated.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Skeleton extraction process: (a) Original fundus image, (b) Green component, (c)
Dual top-hat filtering, (d) Principal curvature, (e) Probability density function (pdf) of contours
obtained with 10 simulations and 300 random markers, (f) Watershed frontiers, (g) Product
between the principal curvature and the watershed frontiers thresholded, (h) Pruning and (i)
Final result. Color can be viewed in the e-book.

Moreover, it is much less sensitive to the existing variability in a fundus image
regarding color, intensity, etc. The first principal component retains most of the
variations present in all of the original components, so that it is chosen as
the input image of the method. Afterwards, this image is enhanced through
the algorithm explained in Section 2.3.

Retinal vessels are originated from the OD, therefore there are numerous
vessels crossing its border which makes its discrimination difficult. Vessel
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. OD segmentation process: (a) Original image, (b) Enhancement of first principal
component, (c) Inpainted image, (d) Uniform random markers, (e) Probability density function
of contours using 15 simulations and 100 internal markers, (f) Average intensity of the watershed
regions, (g) Residue of close-hole operator, (h) Contour of final OD segmentation and (i)
Circular approximation of the OD contour.

removal helps to extract the OD-boundary more precisely and to reduce the
existing borders within the OD which increase the risk of sub-segmentation.
To perform the vessel removal, an inpainting technique is applied.47

4.2. Processing

As mentioned above, the segmentation method makes use of the stochastic
watershed. This transformation uses random markers to build a probability
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density function (pdf ) of contours, according to Eq. (8), which is then
segmented by volumic watershed for defining the most significant regions.
However, in the marker definition not only internal markers (that specify what
is the object of interest) are needed, but also an external marker which limits
the area to be segmented.

On one hand, the chosen external marker, fext , will be a circle of constant
diameter centred on the centroid of the image. The centroid of a grey-level
image can be calculated through the generalized distance function (GDF).48

This way for calculating the grey-image centroid combines the centrality of the
image with respect to edge distance (i.e. purely geometric) but penalizing this
distance in relation to the intensities. Thus, note that it cannot be defined as
the center of mass of the intensities or as the center of the brighter and larger
zone, since the two effects are combined.

On the other hand, the internal markers, fint , will be uniform random
markers generated within the area limited by fext . Hence, the final set of markers
(external and internal), fm is the logical OR of both of them, fm = fint ∨ fext .

In particular, the pdf is built from 15 marker-controlled-watershed real-
izations, as shown in Section 2.2, using as input the gradient of the inpainted
image [Fig. 3(c)]. fint is generated for each simulation while fext is the same in
all of them. The number of internal markers used is N = 100. An example of
fm can be observed in Fig. 3(d).

Obtaining a pdf of the contours of the watershed regions [Fig. 3(e)]
facilitates the final segmentation, providing robustness and reliability since the
arbitrariness in choosing the markers is avoided. Afterwards, the pdf can be
combined with the initial gradient in order to reinforce the gradient contours
which have a high probability resulting a probabilistic gradient.43

Finally, a last marker-controlled watershed is applied on the pdf using a
new set of markers fm′ . In this case, stratified markers are employed instead of
random markers. Specifically, stratified markers are uniform markers generated
within an area. The reason for using this type of markers is to make sure that
every pixel within the area in question belongs to a watershed region. Due to
the fact that there are markers located outside the OD, not all regions obtained
by the watershed transformation are wanted. The next stage is to discriminate
which resulting regions are significant and which ones are not and should be
filtered out. The discrimination between the significant and non-significant
regions is based on the average intensity of the region. In Fig. 3(f), the average
intensity of the watershed region is depicted. The regions belonging to the
optic disc are light regions around darker regions therefore the residue of a
close-hole operator is calculated to obtain the regions that accomplish this
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condition [Fig. 3(g)]. Afterwards, a threshold is applied on the resulting image
to select the valid regions. This operation leads to the final OD segmentation.
The value of the threshold is u = m − 2s , being m and s the mean and the
standard deviation of the residue of the close-hole operator.

4.3. Post-processing

Once OD region has been obtained, the result must be fitted to eliminate
false contours, which are detected due generally to the blood vessels that pass
through the OD. The inpainting technique was performed to remove most
of them, as previously mentioned, however some irregularities can still be
appreciated in the final region contour [Fig. 3(i)].

In this case, the OD-contour has been estimated as a circle [Fig. 3(h)] in
the same way that in Refs. [11, 28, 29] although a elliptical shape could also
have been chosen. The fit is performed by means of Kasa’s method49 which
lets us calculate the center and the radius of the circle that better is adapted to
a binary region through least squares.

5. Results

5.1. Retinal Vessel Centerline

The validation of the vessel centerline extraction method has been carried out
on two public databases widely used: DRIVE50 and STARE.14 Although, in
both databases, manual segmentations are included, the complete vasculature
has been detected, not only the vessel centerline which is the goal of our
work. For that reason, the homotopic skeleton51 associated to the manual
segmentations was obtained for future comparisons. In Fig. 4, the results of

(a) (b)

Fig. 4. Skeleton results of the proposed method: (a) DRIVE image (‘19_test’) and (b) STARE
image (‘im0255’).
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the proposed method on two images of DRIVE and STARE databases can be
observed.

The validation has been performed in two ways. One of them is based on
comparing the results of this work with methods that first segment the vessels
and after performing a skeletization process and the other compares it with
algorithms that obtain the skeleton directly.

On one hand, regarding methods that require a previous segmentation,
the presented algorithm has been compared with two methods published
previously. The local maxima over scales of the magnitude of the gradient and
the maximum principal curvature of the Hessian tensor are used in a multiple
pass region growing procedure in the first work.12 The other method,52 as
the presented work, is based on mathematical morphology and curvature
evaluation although the morphological operations used are different as well
as the obtained result. In the same way as explained above, the homotopic
skeleton was performed after the segmentation process in both cases. On the
other hand, as for the methods that obtain directly the retinal vessel centreline,
the analysis has been focused on other two approaches based also on watershed
transformation.25,26 In Figs. 5 and 6, the strengths and weaknesses of the
proposed method can be observed in two examples of both databases.

Avoiding complete vessel segmentation supposes an improvement in the
automatic fundus processing since the skeleton is not dependent of a previous
stage and the computational cost is reduced by decreasing the number of
required steps. Apart from this fact, it must be stressed that an important
advantage of the proposed method is its performance in pathological images or
with large changes in illumination, as was observed in Figs. 4, 5 and 6. In those
cases, the algorithm presented in this paper works properly and reduces over-
segmentation problems which can be found in methods based on a previous
segmentation.12,52 With regard to other methods that obtain the skeleton in a
direct way and use the watershed transformation25,26 instead of the stochastic
watershed, the proposed work achieves a more robust detection and decreases
the number of spurs. Despite good results, it must be mentioned that the main
disadvantage of the method is that some vessels can lose their continuity if some
part of them are not detected and it should be corrected in a post-processing
stage.

5.2. Optic Disc

The validation of the method has been carried out on five public databases:
DRIONS,53 DIARETDB1,54 DRIVE,50 MESSIDOR,55 and ONHSD.33,56
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Comparison between different methods on DRIVE image (‘23_training’): (a) Original
image, (b) Proposed method, (c) Martinez et al. method,12 (d) Morales et al. method,52

(e) Bessaid et al. method26 and (f) Walter and Klein method.25

The performance of the method has been evaluated based on different concepts.
Jaccard’s (JC) and Dice’s (S) coefficients describe similarity degree between two
compared elements being equal to 1 when segmentation is perfect. Accuracy
(Ac) is determined by the sum of correctly classified pixels as OD and non-
OD divided by the total number of pixels in the image. True positive fraction
(TPF) is established by dividing the correctly classified pixels as OD by the
total number of OD pixels in the gold standard. False positive fraction (FPF) is
calculated by dividing the misclassified pixels as OD by the total number of non-
OD pixels in the gold standard. Finally, in order to be able to compare more
with other authors’ works, another measure was calculated: the mean absolute
distance (MAD),57 whose aim is to measure the accuracy of the OD-boundary.

In Table 1, the results achieved on the 5 databases can be observed. On one
hand, in order to analyse the results on DRIONS database, the first observer
images of this database have been taken as reference (gold standard) to calculate
similarity degree between them and our segmentation. Regarding MESSIDOR
database, the OD rim of these 1200 images has been hand segmented and
it is currently available online to facilitate performance comparison between



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch11 page 226

226 S. Morales, V. Naranjo and M. Alcañiz

(a) (b) (c)

(d) (e) (f)

Fig. 6. Comparison between different methods on STARE image (‘im0001’): (a) Original
image, (b) Proposed method, (c) Martinez et al. method,12 (d) Morales et al. method,52

(e) Bessaid et al. method26 and (f) Walter and Klein method.25

Table 1. Results (average values and standard deviations) obtained by the proposed method
using the DRIONS, DIARETDB1, DRIVE, MESSIDOR, and ONHSD databases. Jaccard’s
(JC) and Dice’s (S) coefficients, accuracy (Ac), true positive (TPF) and true negative fractions
(FPF), and mean absolute distance (MAD).

DRIONS DIARETDB1 DRIVE MESSIDOR ONHSD

JC 0.8424 (0.1174) 0.8173 (0.1308) 0.7163 (0.1880) 0.8228 (0.1384) 0.8045 (0.1175)
S 0.9084 (0.0982) 0.8930 (0.0913) 0.8169 (0.1712) 0.8950 (0.1056) 0.8867 (0.0776)
Ac 0.9934 (0.0051) 0.9957 (0.0039) 0.9903 (0.0134) 0.9949 (0.0050) 0.9941 (0.0042)
TPF 0.9281 (0.1177) 0.9224 (0.1058) 0.8544 (0.1938) 0.9300 (0.1239) 0.9310 (0.1046)
FPF 0.0040 (0.0041) 0.0028 (0.0029) 0.0061 (0.0085) 0.0035 (0.0041) 0.0043 (0.0042)
MAD 4.1098 (3.4684) 9.6759 (8.4836) 7.9981 (9.9957) 5.8387 (6.5215) 4.4826 (3.0962)

different methods.58 Concerning ONHSD dataset, the average of the edges
marked by the four experts has been used to generate the reference images.
On the other hand, neither DIARETDB1 nor DRIVE database have the OD
segmented publicly available. In those cases, we have compared our results with
the same ground truth used in Ref. [37], where the contour of each image was
labelled by four ophthalmologists, and then, only the mean of those contours
is considered as ground truth.

The OD-segmentation method presented in this chapter has been
compared with other morphological algorithms of the state of the art. On one
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Table 2. Comparison of the parameters of Table 1 achieved
by the proposed method, by the 2nd observer and by other
marker-controlled-watershed algorithm on DRIONS database.

Proposed method 2nd observer Walter et al.35

JC 0.8424 (0.1174) 0.9202 (0.0455) 0.6227 (0.3695)
S 0.9084 (0.0982) 0.9578 (0.0265) 0.6813 (0.3854)
Ac 0.9934 (0.0051) 0.9970 (0.0017) 0.9689 (0.0492)
TPF 0.9281 (0.1177) 0.9498 (0.0537) 0.6715 (0.3980)
FPF 0.0040 (0.0041) 0.0012 (0.0009) 0.0210 (0.0417)
MAD 4.1098 (3.4684) 1.8887 (1.1455) 29.0645 (48.0576)

Table 3. Comparison of the method presented for OD-segmentation with the other
state-of-the-art works in based on Jaccard’s coefficient (JC) and mean absolute distance (MAD)
on DIARETDB1 and DRIVE databases.

DIARETDB1 DRIVE

JC MAD JC MAD

Sopharak et al.59 0.2979 (0.0981) 16.31 (5.35) 0.1798 (0.0623) 20.94 (15.57)
Walter et al.35 0.3725 (0.1186) 15.52 (5.32) 0.3003 (0.1322) 12.39 (8.27)
Seo et al.60 0.3533 (0.0765) 9.74 (4.65) 0.3160 (0.0971) 11.19 (4.06)
Kande et al.61 0.3318 (0.0529) 8.35 (3.20) 0.2868 (0.0788) 17.42 (8.06)
Sta̧por et al.62 0.3410 (0.0998) 6.02 (5.64) 0.3247 (0.1517) 9.85 (6.00)
Lupaşcu et al.63 0.3095 (0.1348) 13.81 (9.11) 0.4035 (0.0843) 8.05 (7.61)
Welfer et al.37 0.4365 (0.1091) 8.31 (4.05) 0.4147 (0.0833) 5.74
Morales et al.45 0.8173 (0.1308) 9.6759 (8.4836) 0.7163 (0.1880) 7.9981 (9.9957)

hand, Table 2 is focused on analysing further DRIONS database at the same
time that the performance of our work is contrasted. Therefore, first, the
segmented images by the second observer have also been compared with the
gold standard to obtain inter-expert differences, and secondly, other existing
technique based on marker-controlled-watershed transformation35 has been
implemented and compared with ours. On the other hand, the concepts of
Jaccard’s coefficient (also known as area overlap) and the MAD included in
Table 1 allow us to compare with the method proposed in Ref. [37] as well
as with other state-of-the-art algorithms that were analysed in it (see Table 3).
According to these data, our method obtains a mean overlap greater than 70%
for the five databases which signifcantly improves the results of the compared
methods inasmuch as the best results were around 40%. As for MAD values,
it can be observed that the method proposed in Ref. [45] gets the second
best results on DRIVE database although its results on DIARETDB1 are
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not so good. However, it must be taken into account that in Ref. [37],
the DIARETDB1 images along with their ground truth were resized from
1500 × 1152 pixels to 640 × 480. As MAD is a measure in pixels, it is logical
that the results of Morales et al. were higher since they were calculated on
the original size of DIARETDB1 images. Moreover, due to the fact that the
DIATRETDB1 images are the largest images of the five analysed databases,
it makes sense that the MAD of this database was higher than in the rest of
databases. A deeper validation of the method can be found in Ref. [45], where
it was also compared with template-based methods and deformable models.

6. Conclusions

Although watershed transformation is a known segmentation technique, the
use of the stochastic watershed is not widely extended in spite of avoiding
sub-segmentation problems related to classical watershed. In this chapter,
two different applications of the stochastic watershed have been presented
with clinical purposes. In particular, the main retinal structures have been
segmented: the retinal vascular network and the optic disc. The detection of
these structures is nowadays a key process in a lot of retinal and systemic disease
screening systems.

Regarding the detection of vascular network centerline, experimental
results show qualitative improvements if the proposed method is compared with
other state-of-the-art algorithms, particularly with pathological images or with
large changes in illumination. As for the optic disc segmentation, the obtained
results (a Jaccards and Dices coefficients of 0.8200 and 0.8932, respectively, an
accuracy of 0.9947, and a true positive and false positive fractions of 0.9275 and
0.0036) demonstrate that the presented algorithm is a robust tool that works
properly in images with different casuistry. Therefore, it can be concluded that
the stochastic watershed is an efficient and effective segmentation technique
that can be applied with clinical purposes and could be useful for other further
applications.
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Glaucoma is a chronic eye disease in which the optic nerve is progressively damaged.
As the disease often progresses silently without symptoms, early detection of glaucoma
via screening is important. Cup to disc ratio (CDR) computed from monocular retinal
fundus images may provide an option for low cost large-scale glaucoma screening
programme. In the chapter, we introduce the Automatic RetinA cup to disc Ratio
AssessmenT (ARARAT) system for glaucoma screening. ARARAT uses superpixel
classification to segment the optic disc and optic cup from monocular retinal fundus
images and computes the CDR values for the screening. The method is validated using
two data sets from different races. The areas under curve of the receiver operating
characteristic curves are 0.827 and 0.822 from the two data sets. From the discussion
with clinicians, the results are promising for large-scale glaucoma screening.

1. Introduction

Glaucoma is a chronic eye disease. It is the second leading cause of blindness,
and is predicted to affect around 80 million people by 2020.1 However, many
patients with glaucoma are unaware of the disease until it has reached its
advanced stage. Therefore, screening of people at high risk for the disease
is vital. Clinically, the intraocular pressure (IOP), visual field and optic nerve
head are often used in glaucoma assessment. However, the IOP measurement
provides low accuracy and a visual field examination requires special equipment
only present in specialized hospitals. The optic nerve head or the optic disc (in
short, disc) is the location where ganglion cell axons exit the eye to form the
optic nerve. A low cost way for glaucoma screening is to compute the cup
to disc ratio (CDR) from a monocular 2D fundus images because: (1) CDR is
well-accepted and commonly used as a good indicator for glaucoma assessment;

233
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Fig. 1. Structure of an optic disc: optic disc boundary (dark); optic cup (white); neuroretinal
rim (gray). CDR is computed as VCD/VDD.

(2) Fundus camera is widely available in hospitals, polyclinics, optical shops,
etc. In 2D images, the disc can be divided into a central bright zone called the
optic cup (in short, cup) and a peripheral region called the neuroretinal rim.
Figure 1 shows the major structures of the disc. The CDR is clinically described
as the ratio of the vertical cup diameter (VCD) to vertical disc diameter (VDD)
clinically.

The chapter introduces Automatic RetinA cup to disc Ratio AssessmenT
(ARARAT) for confidence based glaucoma screening. It includes a disc
segmentation followed by a cup segmentation using superpixel classification.
Centre surround statistics are computed from superpixels and combined with
histograms for disc and cup segmentation. Prior knowledge of the cup is
incorporated by including location information for cup segmentation. CDR
is computed from the segmented disc and cup for glaucoma screening.
A confidence score is computed for self-assessment of the computed CDR.
Self-assessment is an important issue that has seldom been discussed previously.
In practice, an automated segmentation method might work well for most
images while working poorly for the rest. Therefore, it is important to have
self-assessment where users are warned of cases with potentially large errors.

2. Optic Disc Segmentation

2.1. Background

Disc segmentation estimates the disc boundary, which is a challenging task due
to many reasons such as blood vessel occlusions, pathological changes around
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the disc and variable imaging conditions. Many methods have been proposed
for disc segmentation and they are generally classified into three types. The first
type is based on template matching.2–4 In these methods, template matching
is applied to find the disc. Clinical studies show that a disc has a slightly oval
shape with the vertical diameter being about 7%–10% larger than the horizontal
one.5 As a result, ellipse fitting is shown to be better than circular fitting.4 The
second type is based on deformable models.6–10 Various deformable models are
proposed and applied to find the disc boundary such as active contour model,6

modified active snake model,7 level set,8 modified Chan-Vese model,9 active
shape model.10 These methods find the disc boundary by contour deformation.
The third type is based on pixel classification.11,12 Classification-based methods
use various features such as intensity and texture from each pixel and its
surroundings to classify each pixel as disc or non-disc. Muramatsu et al.13

showed that the pixel classification-based methods and the deformable model-
based methods perform similarly. Recent studies4 show that one challenge in
disc segmentation is the differentiation of edges of the disc from edges of other
surrounding structures, such as peripapillary atrophy (PPA). An example of PPA
is shown as the area between the dark and light lines in Fig. 2(a). The PPA region
is often confused as part of disc due to the similar color and shape that make
it form another ellipse (often stronger) together with the disc. Deformable
models are sensitive to poor initialization. Very often, the deformation cannot
exclude PPA from the segmented disc if it has been included in the initialization.
For example, the dark contour in Fig. 2(b) is the boundary detected by the
active shape model-based method10 due to poor initialization. To overcome
this problem, we previously proposed a template-based approach with PPA
elimination.4 By using a PPA detection module based on texture, the chance
of mistaking PPA as part of the disc is reduced. However, it does not work

Fig. 2. An example of PPA. (a) gray: PPA boundary, light: Manual Disc (b) dark: Disc by a
deformable model based method.
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Fig. 3. Superpixel based optic disc segmentation in ARARAT.

well when the PPA area is small, or when the texture is not significantly
predominant.

ARARAT uses a superpixel classification-based method for disc segmen-
tation. Superpixels are local, coherent and provide a convenient primitive to
compute local image features. They capture redundancy in the image and
reduce the complexity of subsequent processing. In the method, superpixel
classification is used for an initialization of disc boundary and then a deformable
model using active shape model10 is used to fine tune the disc boundary,
i.e., a superpixel classification-based disc initialization for deformable models.
The flow chart of the proposed disc segmentation method is summarized
in Fig. 3.

2.2. Superpixel Generation

Many superpixel algorithms14–18 have been proposed for the segmentation of
scenes, animals, and human. The simple linear iterative clustering18 algorithm
(SLIC) is used here to aggregate nearby pixels into superpixels in retinal
fundus images. SLIC is used because it is fast, memory efficient and excellent
in boundary adherence. It is simple to use with only one parameter, i.e.,
the number of desired superpixels k. In SLIC, k initial cluster centres Ck

are sampled on a regular grid spaced by S = √
N /k pixels apart from the

image with N pixels. The centres are first moved towards the lowest gradient
position in a 3×3 neighborhood. Then clustering is applied from these centres.
For each Ck, SLIC iteratively searches for its best matching pixel from the
2S × 2S neighborhood around Ck based on color and spatial proximity and
then computes the new cluster centre based on the pixel found. The iteration
continues until the distance between the new centres and previous ones is
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small enough. Finally, a post-processing is applied to enforce connectivity. More
details of the SLIC algorithm can be found in the SLIC paper.18

2.3. Feature Extraction

2.3.1. Contrast enhanced histogram

Many features can be used for superpixel classification including color,
appearance, gist, location and texture.19 Color histogram of superpixels is an
intuitive choice as the disc is often the brightest in the retina. Histogram
equalization is first applied to red r , green g , and blue b channels from
RGB color space respectively to enhance the contrast. The hue h and
saturation s from HSV color space are also included to keep the image’s
color balance. The histogram of each superpixel is computed from all five
channels: the histogram equalized r , g , b as well as the original h, s . The
histogram computation uses 256 bins and 256×5 = 1280 dimensional feature
HISTj = [h̄j (HE(r)) h̄j (HE(g)) h̄j (HE(b)) h̄j (h) h̄j (s)] is computed for the
j th superpixel SPj , where HE(·) denotes the function of histogram equalization
and h̄j (·) the function to compute histogram from SPj .

2.3.2. Centre surround statistics

As the PPA region looks similar to the disc, it is necessary to include features that
reflect the difference between the PPA region and the disc region. One main
difference between the two regions is texture: the PPA region contains blob-
like structures while the disc region is relatively more homogeneous. Centre
surround statistics (CSS)20,21 are proposed as important features to distinguish
PPA from disc.

To compute CSS, nine spatial scale dyadic Gaussian pyramids22 are gener-
ated with a ratio from 1:1 (level 0) to 1:256 (level 8). Then centre surround
operation between centre (finer) levels c = 2, 3, 4 and surround (coarser) levels
s = c + d, with d = 3, 4 is applied to obtain six maps empirically computed at
levels of 2–5, 2–6, 3–6, 3–7, 4–7, and 4–8 from an image channel.23–25 Denot-
ing the feature map in centre level c as I (c) and the feature map in surround level
s as I (s), the centre surround difference is computed as |I (c)−fs−c(I (s))|, where
fs−c(·) denotes the interpolation from level s to level c. All the difference maps
are resized to be the same size as the original. The above operation is applied
on r , g and b channels to get 6 × 3 = 18 maps. The CSS features are then
computed as the first and second moments of these maps within superpixels.
Denoting Mi , i = 1, 2, . . . , 18, as the ith map, the feature CSSj consists of the
mean µj and variance vj of maps within the superpixels, i.e., CSSj = [µj vj ],
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where µj and vj from superpixel SPj with nj pixels are computed by:

µj (i) = 1
nj

∑
(x ,y)∈SPj

Mi(x , y) (1)

vj (i) = 1
nj

∑
(x ,y)∈SPj

(Mi(x , y) − µj (i))2 (2)

2.3.3. Context feature

Since the texture feature from the PPA region is often included in a large
region, the features from neighboring superpixels are also considered in the
classification of the current superpixel. Four neighboring superpixels SPj1, SPj2 ,
SPj3 and SPj4 are empirically determined for SPj , where SPj1 is determined as the
first superpixel by moving out of the current superpixel horizontally to the left
from its centre. Similarly, SPj2, SPj3 and SPj4 are determined by moving right,
up and down. The CSS feature for SPj would then be expanded to: ĈSSj =
[CSSj CSSj1 CSSj2 CSSj3 CSSj4], which has a dimension of 18×2×5 = 180.
We combine HISTj and ĈSSj to form the proposed feature [HISTj ĈSSj ].

2.4. Initialization and Deformation

A support vector machine is used as the classifier. The LIBSVM26 toolbox with
linear kernel is used in our experiments. The linear kernel is used instead of
non-linear radial basis function (RBF) kernel as the feature dimensionality is
already high. It is found that nonlinear mapping using the RBF kernel does not
improve the performance. In the training step, the same number of superpixels
from the disc and non-disc region are randomly obtained from a set of training
images with manual disc boundary. One challenge to find a good classifier
is that samples from the non-disc region are often from different clusters
with unbalanced numbers. A typical example is PPA. There are often fewer
superpixels from the PPA region compared with the other non-disc regions,
and the trained classifier is often dominated by superpixels from the latter.
Therefore, a bootstrapping strategy27 is adopted: an active training data set
is first restricted to be a sub-set of the available training data set (pool) and
extended iteratively. In every iteration, the training is performed on the active
set and returns a preliminary classifier. The classifier is then used to evaluate
the pool. In every round of training, the active training set is extended by
examples misclassified in the previous round, thus emphasizing samples close
to the decision boundary. The iteration is repeated until there is no improve-
ment in the classification accuracy or the maximum number of iterations
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has been reached. After that, the trained classifier is used for subsequent
testing.

Instead of directly using the binary classification results from LIBSVM, the
output values from the SVM decision function are used. The output value for
each superpixel is used as the decision values for all pixels in the superpixel
as shown in Fig. 3. Smoothing using a mean filter is then applied on the
decision values to achieve smoothed decision values, which are then binarized
using a threshold to get a matrix with 1 as object and 0 as background. The
largest connected object, i.e., the connected component with largest number
of pixels, is obtained through morphological operation and its boundary is
used as the raw estimation of the disc boundary. The best fitted ellipse using
elliptical Hough transform4 is computed as the fitted estimation. Finally, the
active shape model10 is used to fine tune the disc boundary.

3. Optic Cup Segmentation

Detecting the cup boundary from 2D fundus images without depth informa-
tion is a challenging task as depth is the primary indicator for the cup boundary.
In 2D fundus images, one landmark to determine the cup region is the pallor,
defined as the area of maximum colour contrast inside the disc.7 Another
landmark is the vessel bends at the boundary of the cup.5 Compared with
disc segmentation, fewer methods have been proposed for cup segmentation
from 2D fundus images. Thresholding is used to determine the cup by Joshi
et al.,29 relying on intensity difference between cup and neuroretinal rim. A level
set-based approach8 is also proposed. It relies on the edges between cup and
neuroretinal rim. This method and thresholding-based methods are essentially
based on pallor information. However, in many subjects from screening data,
there is no obvious pallor or edge within the disc to mark the cup boundary.
Figure 4 shows an example of such a disc. The contrast between the cup and the
neuroretinal rim in the example is much weaker than that in Fig. 1. Wong et al.28

Fig. 4. An example disc without obvious pallor: the line is the manual cup boundary.
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detect small vessel bends (“kinks") from the vicinity of the initial estimated
cup to aid the cup segmentation. The challenge is to exclude vessel bends
from a non-cup boundary, especially when the initial estimation is inaccurate.
A similar concept is used to locate relevant-vessel bends (“r-bend") at the
vicinity of a pallor region determined by bright pixels.9 This method, again,
requires pallor information to find a good initial estimation of the cup boundary.
Moreover, it requires at least a few bends in nasal, inferior and superior angular
of the disc for the cup boundary fitting, which is not necessarily true for
many images from our experience. Xu et al. proposed a sliding window and
regression-based method.30 Although it performs better than earlier methods,
the sliding window strategy requires heavy computational cost. Recently, Yin
et al.31 developed a deformable model-based method for cup segmentation,
where the initialization of the cup boundary is based on pallor combined with
prior knowledge of the cup.

The main challenge in cup segmentation is to determine the cup boundary
when the pallor is non-obvious or weak. In such scenarios, even marking the
cup boundary manually is challenging. Although vessel bends are potential
landmarks, they can occur at many places within the disc region and only one
sub-set of these points defines the cup boundary. In addition, combining the
vessel bends with pallor information is a challenging task that often requires
a set of heuristic parameters, which raises the concern of the robustness of
the method. The chapter introduces the superpixel classification-based method
for cup segmentation. It incorporates prior knowledge into the training of
superpixel classification instead of relying on vessel bends. The procedure is
similar to the superpixel classification-based disc segmentation.

3.1. Feature Extraction

After obtaining the disc, the minimum bounding box of the disc is used for cup
segmentation. The feature extraction is similar to that for disc segmentation,
except that the red channel is no longer used. This is because there is little
information about the cup in the red channel. Because of the additional
challenge in cup segmentation where the pallor is non-obvious, a new feature,
the distance Dj between the centre of superpixel SPj and the centre of the disc
as location information is also included. To adapt the variation of disc size, Dj is
the normalized distance using the height and width of the disc. Mathematically,
Dj is computed as:

Dj =
√(

xc − xj

h

)2

+
(

yc − yj

w

)2

(3)
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where (xc , yc) denotes the coordinate of the disc centre, (xj , yj ) denotes the
coordinate of the centre of SPj , and h and w denote the height and width of
the disc, respectively. The use of Dj is inspired by the prior knowledge that the
cup usually lies at the centre section of the disc. Thus, the feature vector for
cup segmentation is computed as [HIST c

j ĈSSc
j Dj ].

3.2. Superpixel Classification for Optic Cup Estimation

The classification is similar to that for the disc. The difference is highlighted
below. First, the boostrapping strategy is not necessary here. Contour defor-
mation or fine tuning using a deformable model is also avoided. This is because
many cases do not have an obvious/strong contrast between the cup and the
rim for deformable models. A deformation in these cases often leads to an over-
estimated cup. However, an ellipse fitting using direct least squares fitting32 is
applied to get the cup boundary. Ellipse fitting is beneficial for overcoming
noise introduced by vessels, especially from the inferior and superior sector of
the cup which are important for CDR computation.

3.3. Cup to Disc Ratio

After obtaining the disc and cup, various clinical/diagnostic features can
be computed. We follow the clinical convention to compute the CDR. As
mentioned in the introduction, CDR is an important indicator for glaucoma
computed as

CDR = VCD

VDD
. (4)

The computed CDR is used for glaucoma screening, in which CDR greater
than a threshold indicates a higher risk of glaucoma.

3.4. Confidence Score

An automated algorithm fails or works poorly in some images inevitably. How-
ever, most algorithms fail without warning. ARARAT presents a confidence
score calculation method for this particular application, which represents the
reliability of the automated output. Since disc segmentation is a critical step
affecting the disc and cup diameters, the accuracy of disc segmentation affects
the performance of the system. Therefore, the confidence score is computed
from the evaluation of disc segmentation. As the disc shape is often close to an
ellipse, the raw disc boundary before ellipse fitting should be approximately an
ellipse if the superpixel classification works well. Inspired by this, the confidence
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score is computed as follows. Defining the set of points from the raw estimation
as X and the set of points from the fitted estimation as Y = f (X ), for each
point x in X , we find its nearest point in Y and their distance is computed as

df (x) = inf{d(x , y)|y ∈ Y } (5)

where inf represents the infimum and d(x , y) the Euclidean distance between
x and y . Then, the self-assessment confidence score is computed as the ratio of
the number of x with df (x) < T to the total number of x , i.e,

r(X ) = Card({x |df (x) < T , x ∈ X })
Card(X )

, (6)

where Card(Z ) is the cardinality of the set Z , and T is a threshold empirically
determined.

4. Experimental Results

4.1. Data Sets

The experiments used images from two population-based studies: the Singa-
pore Malay Eye Study (SiMES) with 3280 subjects and the Singapore Chinese
Eye Study (SCES) with 1677 subjects, aged 40 to 80 years. A sub-set of
650 images with a resolution of 3072 × 2048 pixels from SiMES had been
selected for manual marking of the disc and cup boundaries previously.33 In
the chapter, these images were randomly divided into 325 training images and
325 validation images based on subjects. The training images were used to
train the classifiers for superpixel classification in disc and cup segmentation.
The validation images were used to compute the agreement between automated
and manual disc, cup, and CDR. After excluding subjects used in the training
and subjects without a visible optic disc in their fundus images, the remaining
2801 SiMES subjects and 1676 SCES subjects were used in the glaucoma
screening test. Following clinical practice, only the right eyes of these subjects
were used. The SiMES images were acquired using a digital retinal camera with
45 degree field of view (Canon CR-DGi with a 10D SLR digital camera backing;
Canon, Tokyo, Japan). The SCES images were acquired using the Canon CR-1
Mark-II Nonmydriatic Digital Retinal Camera, Canon, Japan. The images were
stored in TIFF format originally and were converted to JPEG format for less
storage. The SiMES images have a resolution of 3072×2048 pixels and the
SCES images have resolutions of either 3504 × 2336 or 3888 × 2592 pixels.
Glaucoma was diagnosed according to International Society of Geographical
and Epidemiological Ophthalmology criteria.



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch12 page 243

Automatic Segmentation of Retinal Images for Glaucoma Screening 243

To train the disc and cup segmentation, we use the 325 training images
with manual disc and cup boundaries. The validation of ARARAT is done in
two major approaches. The first approach is through the agreement between
the automated and manual disc, cup, and CDR in the validation images. The
agreements between the automated and manual disc and cup are evaluated
separately using the overlapping error:

E = 1 − Area(S ∩ M )

Area(S ∪ M )
, (7)

where S and M denote the segmented and manual disc and cup respectively.
The agreement between the automated and manual CDR is evaluated by the
Pearson’s correlation coefficient, Spearman’s correlation coefficient and the
CDR error

δ = |CDRA − CDRM |, (8)

where CDRA and CDRM denotes the automated and manual CDR from
trained professionals.

The second approach is through the performance of the proposed method
in population-based glaucoma screening. Sensitivity and specificity are often
used as measures of accuracy in diagnosis tests. There is a tradeoff between the
specificity and sensitivity of a test. This is usually expressed on a receiver operat-
ing characteristic (ROC) curve, which plots sensitivity against 1-specificity for
all possible values. Often, the area under the curve (AUC) is calculated as the
overall measure of diagnostic strength of a test. In our analysis, we evaluate the
methods through their AUCs.

4.2. Agreement Between Automated and Manual Disc,
Cup and CDR

The agreement between the automated and manual disc, cup and CDR in
ARARAT is computed using the 325 vaidation images from the SiMES data set.
Table 1 shows ARARAT’s average overlapping error between the automated
and manual discs in the 325 validation SiMES images. The agreement for
images with PPA and images without PPA is calculated separately as the disc

Table 1. Automated Disc vs. Manual Disc.

w/o PPA With PPA All

HIST 9.2% 11.5% 10.0%
HIST + CSS 9.1% 10.3% 9.5%
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segmentation in these two types of images are different. To illustrate the
effectiveness of different features, we show the performance when different fea-
tures are used. It is observed that the combination of CSS with the histograms
(HIST) improves the disc segmentation especially for the cases with PPA with a
relative reduction of overlapping error by (11.5 − 10.3)/11.5 = 10.4%. There
is little improvement for images without PPA as the disc segmentation in these
images is much easier and HIST is sufficient. Figure 5 shows results of the
segmented disc from four samples with PPA absent in the first sample and
present in the rest of three samples to visualize the effects of different features
used in the superpixel classification. In general, ARARAT achieves excellent
agreement compared with manual ones. However, since ARARAT is obtained
by training, it may not be able to work well for cases with irregular shapes
compared with those used in the training data set. For example, the last row
in Fig. 5 shows a failed disc segmentation result due to the irregular disc shape
and the presence of PPA. Table 2 shows the accuracy of cup segmentation
using the overlapping error between the automated and manual cup, the mean
CDR error, the Pearson’s correlation coefficient and the Spearman’s correlation
coefficient between the automated CDR and manual CDR in the 325 validation
SiMES images. It is observed that both CSS and location information D are
beneficial for cup segmentation and CDR computation. Figure 6 shows five
samples with first three samples from normal subjects and last two samples
from glaucomatous subjects. From top to bottom, the manual CDRs for the
five examples are 0.54, 0.55, 0.35, 0.68 and 0.83 respectively. The automated
CDR by ARARAT are 0.53, 0.58, 0.52, 0.61 and 0.66 respectively. ARARAT
performs well for examples with medium CDRs. However, it over-estimated
the very small cup in the third example and under-estimated the very large cup
in the last example. There are two reasons for this bias. The first reason is the
contrast between cup and rim is very weak especially for the last example with
poor image quality. The second reason is a limitation inherited from the high
proportion medium cups in the training. Since most cups are medium sized,
the ARARAT system learns from the training samples and gives a result biased
toward the medium sizes.

4.3. Population-Based Glaucoma Screening Using ARARAT

The population-based glaucoma screening is conducted using the 2801 SiMES
images and 1676 SCES images. The ROC curves are obtained and the AUCs
are computed. Figure 7 shows the ROC curves of ARARAT, as well as those
when only a sub-set of features are used in the SiMES and SCES data sets.
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Fig. 5. Sample results of optic disc segmentation in ARARAT. From left to right, the original
image, the manual disc, the automated disc using HIST only, and the disc using both HIST and
CSS in the superpixel classification. From top to bottom, PPA is absent in the first sample and
present in the rest of samples.

Table 2. Automated Cup/CDR vs. Manual Cup/CDR.

Overlapping CDR Error Pearson’s Spearman’s
Error Error Correlation Correlation

HIST 53.6% 0.122 0.12(p < 0.005) 0.12(p < 0.005)
HIST + CSS 27.0% 0.091 0.36(p < 0.001) 0.40(p < 0.001)
HIST + CSS + D 24.1% 0.080 0.59(p < 0.001) 0.59(p < 0.001)
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Fig. 6. Sample results of optic cup segmentation in ARARAT. From left to right, the original
image, the manual cup boundary, the results by superpixel classification using HIST only, both
HIST and CSS, and all features in the classification. Gray: raw contour; Dark: best fitted ellipse.

Table 3 shows the AUCs of the ROC curves for glaucoma screening in the
two population-based studies. The results clearly show the degree of positive
influence of the CSS and location feature D. Speed of ARARAT is also
evaluated. It takes about 14s per image in a dual core 3.0 GHz PC with 3.25
GB RAM.

4.4. Comparison With Other Methods

Next, we also compare the ARARAT CDR-based screening method with
previous methods including the threshold method, the active shape model
(ASM) method and the IOP measurement. Figure 8 shows the respective
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Fig. 7. ROC plots in SiMES and SCES data set by using various features in superpixel
classification.

Table 3. AUC of the ROC curves in glaucoma
screening by ARARAT using various features.

Data Set HIST HIST + CSS HIST + CSS + D

SiMES 0.611 0.768 0.827
SCES 0.597 0.710 0.822

Fig. 8. The ROC plots in SiMES and SCES data set by various methods.
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Fig. 9. ROC curves by GT1, GT2 and ARARAT in validation images.

Table 4. AUCs of the ROC curves in glaucoma
screening by various methods.

Data Set IOP Threshold ASM ARARAT

SiMES 0.547 0.646 0.702 0.827
SCES 0.660 0.574 0.756 0.822

ROC curves. Table 4 shows AUCs of the corresponding ROC curves. Clearly,
ARARAT outperformed the other methods.

It is particularly important to point out that the proposed method achieves
AUC of 0.827 and 0.822 on SiMES and SCES image sets respectively, which
are better than the current clinical practice of using IOP. From the discussions
with clinicians, the obtained results show that ARARAT has potential for large-
scale glaucoma screening.

4.5. Confidence-based Screening

Finally, we evaluate how the confidence score affects the screening accuracy in
ARARAT. Table 5 shows the percentages of the images at different confidence
levels from 0.8 to 0.95. It is observed that there are more results with high
confidence in SiMES than SCES. This is likely due to the fact that the 325
images used in the training are from SiMES data set. Therefore, the trained
classifiers are slightly biased towards the rest of SiMES images captured using
the same camera with the same setting. Table 6 shows the corresponding AUCs
of the ROC curves in glaucoma screening. Generally, ARARAT performs better
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Table 5. The percentages of the images above differ-
ent confidence levels.

r ≥ 0.95 r ≥ 0.90 r ≥ 0.85 r ≥ 0.80

SiMES 47% 68% 81% 89%
SCES 29% 49% 66% 79%

Table 6. AUC of the ROC in glaucoma screening at different
confidence levels.

r ≥ 0.95 r ≥ 0.90 r ≥ 0.85 r ≥ 0.80 All

SiMES 0.877 0.843 0.836 0.832 0.827
SCES 0.950 0.903 0.874 0.853 0.822

in images with higher confidence. For example, it achieves an AUC of 0.877 for
47% of SiMES images and 0.950 for 29% of SCES images. The consideration of
this confidence score may be an important factor when designing an automated
glaucoma screening program based on ARARAT. It can be very useful in
practice. For example, one may set a confidence level to achieve a higher
accuracy for the subjects with high confidence scores and request confirmation
for results with low confidence scores.

4.6. Inter-observer Errors

To evaluate how the ARARAT system compares with the manual demarcations
by a different person, an independent ophthalmologist marked the disc and
cup boundary for the 325 validation images. Therefore, the overlapping error
between the two manual disc and cup boundaries, the CDR errors, the
diagnosis ROC curves and their AUCs are also obtained. Table 7 shows the
results where M1 and M2 denote the first and second sets of manual boundaries.
Results show that the disc overlapping error between ARARAT and M1 is
slightly larger than that between M1 and M2, i.e., the inter-observer error.
The cup overlapping error between ARARAT and M1 is smaller than the inter-
observer error. ARARAT is more biased to M1 as it is trained according to M1.
In terms of CDR, the CDR errors among M1, M2 and ARARAT are close.
The Pearson’s correlation coefficient between M1 and M2 is higher than that
between ARARAT and M1 or M2 while the Spearman’s correlation coefficients
among the three are close.

Figure 8 shows the ROC curves using the CDRs from M1, M2 and
ARARAT using the 325 validation images. The AUCs by M1, M2 and
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Table 7. Inter-Observer Error.

Disc Cup CDR Pearson’s Spearman’s
Error Error Error Correlation Correlation

M1 vs. M2 8.7% 25.6% 0.078 0.62(p < 0.001) 0.61(p < 0.001)
ARARAT vs M1 9.5% 24.1% 0.080 0.59(p < 0.001) 0.59(p < 0.001)
ARARAT vs M2 11.9% 28.1% 0.077 0.59(p < 0.001) 0.58(p < 0.001)

ARARAT are 0.839, 0.819 and 0.820 respectively. The ROC curves show that
the manual marking works slightly better than ARARAT when specificity is close
to 0 or 1. However, their performances are quite close in the middle range of the
specificities. This is intuitively correct as ARARAT has a bias of underestimating
the very high CDRs while overestimating the very small CDRs.

5. Discussions and Conclusions

We have presented ARARAT, which uses fast superpixel classification-based
methods for disc and cup segmentation to automatically compute CDR for
glaucoma screening. Results show that ARARAT achieves good agreement
between automated and manual disc and cup. In addition, the Spearman’s
correlation coefficients between the automated and two manual CDRs and
the ROC curves by the three CDRs are comparable. This suggests that the
CDR from ARARAT is comparable with that by manual grading in glaucoma
detection. The results also show that CSS is effective for both disc and
cup segmentation. In disc segmentation, CSS provides better differentiation
between PPA and disc compared with histograms only. In cup segmentation,
the benefit of CSS is even greater than that in disc segmentation. This is because
the color change from the cup to the neuroretinal rim is small and as such the
uneven illumination across disc has a large effect. The CSS is less sensitive to
it and thereby improves the result. Confidence score is an important indicator
of the automated results. From our experience, results with r > 0.85 is likely
to be very reliable. Further, the relatively higher accuracy of ARARAT against
airpuff IOP and other previous CDR-based methods show good potential for
the system to be used for screening in polyclinics and eye centres.

There is still room for improvement for ARARAT. Although we have
utilized CSS features to improve the disc segmentation in cases with PPA,
ARARAT may fail if the shape of disc and PPA is irregular. The second limitation
is that the trained cup classifier is slightly dominated by cups with medium
sizes. Therefore, ARARAT under-estimates the very large cups (CDR > 0.8)
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and over-estimates the very small cups (CDR < 0.4) for discs with non-
obvious contrast between the cup and the neuroretinal rim (see third and fifth
example in Fig. 6). This is partly due to the use of the location feature D.
However, the advantage of using D is to help avoid very poor results. Both
the cup segmentation and glaucoma screening accuracies show improvement
by including D as a feature. One possible solution to overcome this trade-off
is to collect more samples with very small and very large cups to train a better
classifier. Another possibility is to use a different classifier such as k-nearest
neighbors (kNN). However, the limitation is that kNN is less robust to noise.
The third solution is to use vessel bends to correct the bias. For example, we can
obtain the vessel bends from the vicinity of the cup boundary from ARARAT to
fine-tune the cup boundary. As it requires some heuristics in vessel tracking and
bending detection, a robust algorithm is important for future development.

In summary, ARARAT achieves constant and fast performance on two large
databases and better accuracy than airpuff. It is able to achieve good classifica-
tion accuracy between glaucoma cases and healthy subjects. Its limitations are
that it under-estimates the very large cups, while over-estimating the very small
cups when pallor is not obvious. Despite that, the obtained CDRs for very large
cups are still relatively high and the CDRs for very small cups are relatively small.
In addition, the confidence score provides a possibility to build a confidence-
based glaucoma screening programme. As mentioned, one may set a confidence
level to achieve a higher accuracy for the subjects with high confidence scores
and request confirmation for results with low confidence scores. There are
still many features that can be improved in the proposed method. ARARAT is
trained using one set of disc and cup boundaries and therefore is potentially
biased to this set of manual demarcations. It can be helpful if multiple sets of disc
and cup boundaries are obtained to further improve the accuracy. Screening
based on CDR only also has some limitations. Therefore, combining CDR with
other factors is expected to further improve the performance. There is potential
for ARARAT to be deployed in widely available 2D retinal cameras for fast
and automatic glaucoma screening. Future work will explore the integration
of other factors to improve diagnostic outcomes towards a more reliable and
efficient glaucoma screening system.
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Dynamic contrast enhanced (DCE)-MRI combined with pharmacokinetic (PK)
modeling of a tumor tissue provides information about its perfusion and vascular
permeability. Most PK models require the intravascular contrast agent concentration
as an input, which is inseparable from DCE-MRI data. Thus, it is approximated with
an arterial input function (AIF), measured outside of the tissue of interest. Variations
and error in calculation of AIF is a major source of discrepancy between PK parameters
reported in different studies. An algorithm is developed, using blind source separation,
to identify and separate the intravascular signal from the DCE-MRI data at the tissue
of interest. The performance of the algorithm is assessed using numerical and physical
tissue-mimicking phantom as well as clinical DCE-MRI of prostate cancer. The results
show the algorithm is capable of accurately separating the intravascular signal, and
its PK parameters provide better separation of normal and tumor tissues. Thus, the
proposed algorithm could replace AIF-based methods, and more importantly could
be used in cases an AIF cannot be measured.

1. Introduction

Personalized therapy is becoming more viable as our understanding of cancer
biology is increasing. Given the complexity and high cost of these therapies, it
is of upmost importance to identify responding and non-responding patients
as early as possible in the course of the treatment.1 However, there is large
heterogeneity in tumors and although they present apparently similar clinical
characteristics, tumor response to therapy is a fundamental but not well-
understood concept in clinical oncology. The two main approaches that are used
in clinical practice to assess tumor response to therapy are measuring markers
secreted by cancer cells, and measuring tumor size using medical imaging.

255
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Some malignant tumors produce serum molecules at a level sufficient for
monitoring,2,3 however; the secretion of these biomarkers is not controlled by
the tumor alone and several other factors affect their level, which limits their
application for therapy monitoring. Thus, tumor size measurement, using the
response evaluation criteria in solid tumors (RECIST),4 has become the main
response assessment approach in clinical practice.5 RECIST assumes reduction
in tumor size after therapy shows better prognosis than no change or increase in
tumor size. Despite its broad adoption, this assumption is not necessarily cor-
rect6 and has some limitations, as some molecular targeting agents may result in
improved clinical response while making no significant change in tumor size.7

Thus, there has been significant interest in functional and molecular
imaging techniques. Molecular imaging with PET, when combined with
compartmental modeling enables studying biological changes in the tumor.8

Contrast enhanced ultrasound provides quantitative information about tumor
vasculature.9 Dynamic contrast enhanced (DCE)-computed tomography (CT)
is used to quantify vascular permeability and blood flow.10 Non-contrast T1-
weighted or T2-weighted MRI provides information about morphological
changes in the tumor or changes in its fluid content. Diffusion- and perfusion-
weighted MRI provide promising tools for response assessment.11 DCE-MRI,
similar to DCE-CT, provides information about the vascular permeability and
tumor perfusion,12 and is used in the chapter to obtain quantitative information
about the tumor.

Pharmacokinetic (PK) modeling DCE-MRI of a tissue models the passage
of a bolus of contrast agent (CA) through its vasculature and provides
quantitative information about its physiology, such as the exchange rate of
substances through the vasculature into the extravascular extracellular space.
This quantitative information can be used in detecting and diagnosing tumors
as well as assessing their response to therapy.

DCE-MRI involves intravenous injection of a low molecular weight CA
followed by repeated imaging of the tissue of interest over time. The CA
can diffuse through the vessel walls into the extravascular space. However, its
molecules are too large to cross the cell membrane and can only diffuse into the
extravascular extracellular space (EES). The rate by which the CA diffuses from
blood plasma to the EES is determined by blood flow, vascular permeability, and
surface area of the vessel. PK modeling of DCE-MRI data provides quantitative
information about these characteristics of the tumor vasculature, which have
been shown to correlate with prognostic factors.

PK analysis of a tumor tissue requires information about the CA concentra-
tion in the intravascular space, while in DCE-MRI studies this signal is mixed
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with the EES signal and cannot be measured directly. Thus, it is approximated
using an arterial input function (AIF)13–16 which is calculated outside of the
tissue of interest. AIF is measured using a major feeding artery adjacent to the
tissue,13 a theoretical AIF which usually takes the form of a bi-exponential
curve,14 a population-average AIF measured experimentally through blood
sampling or high temporal resolution imaging at a major artery,15 a reference-
tissue AIF using the known PK parameters in a normal tissue,16 or a dual bolus
AIF which first injects a low dose bolus for AIF measurement.17 These methods
introduce error to the system as they do not measure the intravascular signal at
the tissue of interest and also in many cases there are difficulties in measuring
an appropriate AIF due to the several limitations of these methods. Thus, more
sophisticated techniques are required to identify the intravascular signal at the
tissue of interest and separate it from the EES signal.

There exist several blind source separation (BSS) techniques, such as princi-
pal component analysis (PCA),18 non-negative matrix factorization (NMF),19

factor analysis of dynamic structures (FADS),20 and independent component
analysis (ICA),21 that could be used to perform the separation and have
been previously applied to dynamic contrast enhanced series to separate their
underlying structures. These methods, which make no prior assumption about
the physiology of the underlying structure and treat the time-series data as
random variables, have been shown to segment them efficiently.21 The CA
concentration in each MR voxel is the sum of the amount of CA that is
intravascular and the amount that is in EES (linear mixture of the signal
in the two spaces). In addition, these two spaces (intravascular space and
EES) are anatomically separate and independent (spatially independent). These
characteristics of DCE-MRI data satisfy the assumptions for spatial independent
component analysis (ICA). Thus, ICA is used in the chapter to separate the
intravascular and EES signals in DCE-MRI to be used in PK analysis.

2. Pharmacokinetic Modeling

The extended Tofts-Kety (ETK) model is the most commonly used PK model
in tumor characterization.22 The governing equations ETK are:

ct(t) = vpcp(t) + vece(t) & ve
dce

dt
(t) = Ktrans(ca(t) − ce(t)) (1)

where ct is the concentration of the CA in the tissue, ce is the concentration
in the EES, cp is the CA concentration in the plasma space, ca is the CA
concentration in the plasma space at the arterial input of the tissue which in
ETK model is equal to cp (cp = ca), Ktrans is the volume transfer constant
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describing the rate by which the CA diffuses from plasma into the EES, ve

is the EES per unit volume of tissue, and vp is the blood plasma space per
unit volume of tissue. Solving the ETK model equations requires tissue CA
concentration (derived from MRI data), and intravascular CA concentration in
the tumor (vascular input function or VIF) which cannot be measured and is
approximated using an AIF.

An ICA-based algorithm is developed to measure this VIF and separate it
from the EES signal of the tumor.23,24 Such separation does not require an
artery, accounts for variability between subjects and simplifies the analysis as
some of the parameters are eliminated. An introduction to ICA and the ICA-
based algorithm, called adaptive complex ICA (AC-ICA),24 is presented here.
The chapter uses capital bold letters for 2D matrices, lowercase bold letters for
column vectors, non-bold letters for scalars, and bold italic letters for functions.

3. Spatial Independent Component Analysis (ICA)

ICA is a statistical signal processing algorithm that attempts to split a dataset
into its underlying features, assuming these features are statistically spatially
independent, and without having any knowledge of their mixing processes.25

Having a linear mixture of the features, the spatial ICA model is expressed as:

Z = AS (2)

where A ∈ R
N×M is the mixing matrix, Z = [z0, z1, . . . , zN−1]T represents the

complex-valued time-series dataset (DCE-MRI data in our case) such that xi

represents the MRI image acquired at time point i, N is the number of time
points in the DCE-MRI sequence, S = [s0,s1, . . . ,sM−1]T is a matrix containing
the M structures known as independent components or ICs (usually M ≤ N ),
which in this study are the images representing intravascular space and EES of
the tissue. Having the observed mixed signal Z, the ICA algorithm attempts
to estimate the ICs, S, and the mixing matrix A. This is achieved by estimating
the unmixing matrix W, and the IC matrix Y such that:

Y = WZ (3)

where W ∈ R
M×N, the rows of Y = [y0, y1, . . . , yM−1]T are statistically inde-

pendent with zero mean and unit variance (i.e. E{YYH } = I where H is
the Hermitian transform) and, E{.} is the expectation operator. The IC’s can
be recovered up to a scaling and permutation.25 Although we assume there
are only 2 spaces in our model (intravascular and EES), since ICA makes no
assumption about the spatial distribution of these spaces, it might split each
space into several components. In practice, more than 2 ICs are required to



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch13 page 259

Blind Source Separation in Assessing Tumor Pharmacokinetics 259

achieve accurate separation, i.e. each space (intravascular space or EES) might
be represented with more than one IC.

3.1. Adaptive Complex Independent Component
Analysis (AC-ICA)

According to the central limit theorem, the distribution of a sum of independent
random variables with finite support probability density functions (pdf) tends
towards a Gaussian distribution.26 Thus, by maximizing the non-Gaussianity
of the estimated components, the independent components can be identified.
One way of measuring non-Gaussianity of a random variable (y) is to measure
its Negentropy,25 which is approximated using the following equation:

Jnegentropy(w) = [E{G(y)} − E{G(ygauss)}]2 (4)

where y = wH Z is a complex-valued random variable (w is a column of
unmixing matrix W), G(y) = −log(p(yR, yI )) is the contrast function and
p(yR, yI ) is the joint pdf of real (yR) and imaginary (yI ) parts of y,27 and
ygauss is a Gaussian random variable with the same variance as y. Assuming
that G(y) = |C (y)|2 in which C (.) is the non-linearity function, the ICA cost
function27 is expressed as Jnegentropy(w) = E{|C (wT Z)|2}. Maximizing Jnegentropy

with respect to w (subject to constraint ‖w‖ = 1), using a quasi-Newton
algorithm, results in the following update rule:

wk+1 = −E{C ∗(wH
k Z)C ′(wH

k Z)Z} + E{C ′(wH
k Z)C ′∗(wH

k Z)}wk

+ E{ZZT }E{C ∗(wH
k Z)C ′′(wH

k Z)}w∗
k (5)

where C ∗, C ′ and C ′′ are complex conjugate, first and second derivatives of C
respectively. Each column of W is estimated iteratively using this update rule.

3.2. Selecting Non-linearity Function for AC-ICA

In order to solve the AC-ICA problem the non-linearity function is required,
which is not known in ICA and has to be estimated. We have observed that the
distributions of real and imaginary parts of MR images of each component fit
well into the generalized Gaussian distribution (GGD) formulation given as:

g (y; α, β) = β

2αΓ (1/β)
exp

(
−|y|β

αβ

)
(6)

where Γ (.) is the gamma function defined as Γ (x) = ∫ ∞
0 e−t t x−1dt , and β and

α are the model parameters. We modeled the intravascular signal with a sum
of a number of GGDs, and the parameters (α, β) were calculated at each ICA
iteration using an expectation maximization (EM) framework.
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3.3. Expectation Maximization (EM)

The AC-ICA algorithm first models the pdf of independent component y,
estimated in the last iteration, as a sum of a number (usually 3 to 5) of GGDs:

f (y, �) =
K∑

i=1

pi g (y; αi, βi) (7)

Where � = [θθθ1,θθθ2, . . . ,θθθi] = [(p1, α1, β1), . . . , (pi, αi, βi)] is the parameter
space of the GGDs, and pi is the membership probability of the ith GGD. The
algorithm calculates � through maximum log-likelihood estimation, given as:

�̂ = argmax
�

{Λ(y, �)} (8)

where Λ(y, �) = log
∏Ny

n=1 f (y, �) and Ny represents the number of samples
in y. Solving this system using EM leads to calculating the (pi, αi, βi) using
Eqs. (9), (10) and (11) at each iteration. The membership probabilities, p(k)

i ,
are calculated at iteration k using (9):

p(k)(i|n) = p(k)

i g (yn; α
(k)

i , β(k)

i )∑K
m=1 p(k)

m g (yn; α
(k)
m , β(k)

m )
&

K∑
i=1

p(k)(i|n) = 1 (9)

The parameters α
(k)

i of the GGDs are calculated at iteration k using (10):

α
(k)

i =
[

β
(k)

i
∑Ny

n=1(p
(k)(i|n)|yn|β(k)

i )

Ny

]1/β
(k)
i

(10)

and the parameters β
(k)

i of the GGDs are calculated by solving (11) using an
optimization algorithm. We used the fzero function of MATLAB software (The
MathWorks Inc., Natick, USA) to find the value of βi at iteration k:

1

β
(k)

i

[
1 + 1

β
(k)

i

ψ

(
1

β
(k)

i

)] Ny∑
n=1

p(k)(i|n)

−
Ny∑

n=1

p(k)(i|n)

(∣∣yn
∣∣

α
(k)

i

)β
(k)
i

log

(∣∣yn
∣∣

α
(k)

i

)
= 0 (11)

where ψ(x) = d(log(�(x)))/dx is the polygamma function. The GGD with
the highest membership probability is selected as the probability distribution
of the intravascular signal at that iteration. This GGD was then used to derive
the ICA non-linearity which is given as:

C (y) = (y/α)β/2 (12)
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3.4. AC-ICA Implementation and VIF Identification

Dimensionality reduction and Whitening were performed as pre-processing
steps in order to reduce noise and make the DCE-MRI signal zero mean and
unit variance. Singular value decomposition was performed on the dataset and
the significant eigenvalues (the eigenvalues that were bigger than 0.1% of the
largest eigenvalue) were kept. AC-ICA was then applied and all of the ICs,
which were equal to the number of eigenvalues kept at the dimensionality
reduction step, were estimated. The intravascular components were selected
heuristically such that the curves with a uniform pre-contrast uptake phase, an
uptake phase in which the intensity increased rapidly, and a washout phase in
which the intensity dropped to less than 60% of the peak value were considered
intravascular.

The intravascular image and its corresponding time-intensity curve that
were calculated using AC-ICA algorithm have to be converted into CA
concentration before being used in PK analysis. In order to convert the signal
intensity of a voxel at time t = t0 into its CA concentration, both the pre-
contrast signal intensity and the MR signal intensity at t = t0 are required. As
ICA is a data-driven algorithm which does not make any assumption about the
physiology of the data it is processing, some structures, e.g. intravascular space,
might split into several ICs. These ICs have to be first combined to represent
the entire intravascular signal. We can rewrite (2) in expanded form as:



z0
...

zN−1


 = [a0, . . . , a(1)

IV . . . , a(K)

IV , . . . , aM−1][s0, . . . , s(1)

IV , . . . , s(K)

IV , . . . , sM−1]T

(13)

where ai is a column of mixing matrix A, and K is the number of ICs
that are identified as intravascular. The time series data corresponding to the
intravascular signal, ZIV, can be written as:

ZIV = [zIV,0, zIV,2, . . . , zIV,N−1]T = a(1)

IV s(1)

IV + · · · + a(K)

IV s(K)

IV (14)

where zIV,t0 is intravascular portion of the DCE-MRI data at t = t0. The change
in the intravascular signal due to the passage of CA between t = 0 and t = t0 is:

�zIV,t0 = zIV,t0 − zIV,0 (15)

adding �zIV,t0 to the DCE-MRI frame corresponding to t = 0 (which is z0),
a DCE-MRI time-series data in which the only enhancement is due to the CA
arrival and passage through the intravascular space can be generated. The signal
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intensity is the magnitude of the complex-valued MRI signal and thus we have:

SIIV(0) = |z0|, & SIIV(t0) = |z0+�zIV,t0 | (16)

having SIIV(0) and SIIV(t0), intravascular CA concentration is calculated
using standard conversion method for spoiled gradient recalled (SPGR) pulse
sequence.

4. Numerical Phantom

A numerical study was conducted to simulate DCE-MRI of a leaky phantom
using finite element analysis (FEA) and the classical description of MRI physics
(Bloch equations), and was used to evaluate performance of AC-ICA algorithm.

4.1. Contrast Agent (CA) Concentration Modeling

Comsol Multiphysics (Comsol Inc., Burlington, USA) FEA software was used
to construct the numerical phantom (Fig. 1). This phantom was comprised
of a grid of 10 × 10 leaky tubes (through which water was flowing) that ran
in parallel through a chamber of agar gel (0.5% agar gel). The tubes had an
internal diameter of 200 µm, wall thickness of 30 µm, and center-to-center
spacing of 300 µm. To model our physical phantom (explained in Section 5),
some of the tubes were removed to simulate the blocked or damaged tubes.
The study simulated passage of a bolus of CA (injected into the tubes) through
the tubes and its leakage from the tubes into the agar gel over time.

The 2D CA distribution of the phantom was simulated for an imaging
plane at the middle of the phantom in x-direction [Fig. 1(a)] for 6.48 min
with a temporal resolution of 3.3 s. As the CA arrived in the imaging plane,
it diffused into the surrounding gel. The imaging plane was split into 2555
subdomains [Fig. 1(b)], and proper diffusion coefficients were assigned to the
subdomains of the tubes (1×10−3 mm2.s−1) which model water flow, the tube
walls (2×10−5±10−6 mm2.s−1 with uniform distribution), and the gel (2.08×
10−4 ± 10−5 mm2.s−1 with uniform distribution), to account for variability of
diffusion in the gel and generate a heterogeneous leakage space.

4.2. Generating DCE-MRI Data (Bloch Equations)

The geometry and CA concentrations, calculated in the FEA, were fed to
the MRI simulation software that solved Bloch equations for each voxel at
every time point (120 frames) to generate the DCE-MRI data. The simulator
assumed each voxel was comprised of 2 isochromates28 corresponding to the
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Fig. 1. (a) 3D view of the numerical phantom showing the imaging plane located in
yz-plane halfway through the phantom in x-direction. (b) The MR imaging plane showing the
arrangement of the tubes as well as the blocked tubes, and 2555 subdomains of the phantom used
in FEA. As shown in the enlarged region, the tubes, their walls, and their surrounding gel areas
are separated and proper diffusion coefficients are assigned to them. (c) The CA distribution in
the imaging plane (resulted from FEA), at t = 2.5 min after CA injection, and the corresponding
simulated MR image for in-plane resolutions of (d) 150 µm, (e) 300 µm (f) 600 µm, and (g)
800 µm.

tubes and gel compartments and assigned proton density ρ (derived from
FEA step), pre-contrast longitudinal relaxation T1 (3000 ms for water and
2100 ms for gel) and transverse relaxation T2 (250 ms for water and 65 ms
for gel), to each isochromate of every voxel.29,30 The post-contrast T1 and T2

values were calculated using their pre-contrast values, the CA concentration
of the voxel at each time point, and the relaxivities of the CA (Omniscan).31

The imaging parameters used in the simulator for 2D SPGR sequence were:
B0 = 1.5 T (1 ppm inhomogeneity), single coil RF pulse, Field-of-View
(FOV) = 19.2 mm, TR/TE = 12.5/2.9 ms, FA = 20◦, Nx/Ny = 128/128,
Slice Thickness = 5 mm.

Gaussian noise was added to the k-space data such that an SNR of 20 was
achieved in the image space.Thedatawas reconstructedat fourdifferent in-plane
resolutions (150 µm, 300 µm, 600 µm and 800 µm), as shown in Fig. 1(d)–(g),



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch13 page 264

264 H. Mehrabian

which were used to assess robustness of the algorithm. Data of each resolution
was generated 10 times, which differed in the distribution of noise and B0

inhomogeneity, to assess the reproducibility of the separation results.

4.3. AC-ICA Separation Results (Numerical Phantom)

The AC-ICA algorithm for intravascular time-intensity curve calculation was
applied to all simulated datasets (four different resolutions) and the signal from
inside the tubes (intravascular signal) was extracted. Dimensionality reduction
was performed on each dataset where 8 to 15 eigenvalues were kept. The data
was then Whitened to make it zero mean and unit variance. In all cases, all IC’s
were estimated and the IC (or ICs) that corresponded to the tubes’ signal was
selected using the heuristic criterion.

Figure 2(a)–(d) show the IC images of the tubes for the four in-plane
resolutions. The corresponding time-intensity curves of the tubes are shown

Fig. 2. The separated tubes’ image and the time-intensity curves of the tubes calculated using
AC-ICA for the four simulated DCE-MRI datasets. Tubes images for datasets with in-plane
resolutions of (a) 150 µm, (b) 300 µm, (c) 600 µm, (d) 800 µm. (e) Calculated time-intensity
curves of the tubes corresponding to the four simulated datasets, the actual time-intensity curve
of the tubes (Actual Curve), and the curve corresponding to the mean across the entire raw (not
analyzed) DCE-MR images over time (Raw Data).
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Table 1. RMSE and correlation coefficients between estimated (AC-ICA) tubes’
and actual time intensity curve, for all four resolutions of the numerical phantom,
using 10 different implementations of the phantom (calculated after setting baseline
value of the curves to zero and normalizing them).

In-plane Resolution 150 µm 300 µm 600 µm 800 µm

Root Mean Square Error (RMSE)
AC-ICA 0.04 ± 0.01 0.04 ± 0.01 0.07 ± 0.01 0.08 ± 0.01

Correlation Coefficient
AC-ICA 0.99 ± 0.001 0.99 ± 0.001 0.97 ± 0.01 0.96 ± 0.01

in Fig. 2(e). These curves represent the average signal intensity over time of
all the voxels that were separated by ICA as the intravascular space (tubes).
Figure 2(e) also shows the actual intravascular time-intensity curve as well as
the raw data curve calculated by averaging the signal across the raw DCE-MR
images. All time-intensity curves are normalized with respect to their maximum
and their pre-contrast signal intensities are set to zero to enable comparison.

For each in-plane resolution, 10 DCE-MRI data sets of the phantom were
simulated with SNR = 20 and the AC-ICA algorithm was applied to all datasets.
Table 1 reports the root mean square error (RMSE) between the estimated
time-intensity curves of the tubes obtained using AC-ICA and the actual curve
for all four in-plane resolutions. Table 1 also reports the correlation coefficient
between the estimated and actual time-intensity curves of the tubes.

The results presented in Fig. 2 and Table 1 demonstrate that AC-ICA
algorithm is capable of separating time-intensity curve of the tubes with high
accuracy, for DCE-MRI data with different resolutions, in both spatial and
temporal domains. Note that in lower resolutions although the tubes could not
be visualized in the spatial domain, their time-intensity curves were calculated
with high accuracy. There were small differences between the time-intensity
curves of the tubes calculated using AC-ICA for different resolutions and even
in the lowest resolution the error in the enhancement curve was small.

5. Physical Phantom

A physical phantom was built to mimic CA dynamics in tumor microvascula-
ture32 (Fig. 3), which was similar to our numerical phantom. It was comprised
of a grid of 10 × 10 dialysis tubing (Diapes PES-150, Baxter) embedded in
a chamber of agar gel (0.5 wt%, Sigma-Aldrich Canada Ltd., Canada).32 The
dialysis tubing had inner diameter of 200 µm, wall thickness of 30 µm, and were
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Fig. 3. (a) Photograph of the physical phantom in which the DCE-MR imaging was performed
across the dashed line, in a plane perpendicular to view shown in the photo. (b) Schematic of
the tissue-mimicking phantom set up. Water was flowing from the holding tank to the emptying
tank and the contrast agent bolus was injected into the inflow line. The phantom was imaged at
the imaging plane which included the phantom, as well as the inflow and outflow lines as shown
in this figure. (c) An MR image of the full imaging FOV at time = 1.8 min after CA injection
showing the inflow and outflow lines, the phantom, and the FOV that was used in ICA analysis.
The corresponding MR image of the ICA FOV (time = 1.8 min), reconstructed with in-plane
resolutions of (d) 170 µm, (e) 225 µm, (f) 340 µm, (g) 450 µm, and (h) 680 µm.

aligned parallel to each other in a square grid with center-to-center spacing of
300 µm over a 5 cm distance.32

The pore sizes of the dialysis tubing were such that low-molecular weight
CA could diffuse from the tubes into the surrounding gel. Water was flowing
through the tubes at a constant rate of 0.047 ml/s (achieving a flow velocity
within physiological range of arterioles33). A bolus of Gd-DTPA contrast agent
was injected into the flow line, which was capable of leaking from the tubes
as it reached the gel chamber. DCE-MR images were obtained at an imaging
plane transverse to the tubes (Fig. 3), and the inflow and outflow lines of the
flow through the chamber were oriented such that they passed through the
imaging plane [Fig. 3(b)–(c)]. The enhancement curves of these two flow lines
were used to evaluate the separation algorithm.
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DCE-MR imaging was performed using a 2D fast SPGR sequence with
the following imaging parameters: TR/TE = 12.5/2.9 ms, BW = 15.63 kHz,
FA = 20◦, Nx/Ny/NEX = 256/256/1, FOV = 45 mm, Slice Thick-
ness = 5 mm. A total of 120 images were acquired over about 6.48 min with
a temporal resolution of 3.3 s. The DCE-MR images was reconstructed at
five different in-plane resolutions (170 µm, 225 µm, 340 µm, 450 µm and
680 µm), to assess the performance and robustness of the AC-ICA algorithm
in dealing with different imaging resolutions, particularly in low resolution
data that are commonly in clinical studies. Moreover, two identical phantoms
were built, imaged, and analyzed to assess the reproducibility of the AC-ICA
algorithm. A sample frame of each dataset (for five in-plane resolutions) is
shown in [Fig. 3(d)–(h)].

5.1. AC-ICA Separation Results for Physical Phantom

The AC-ICA algorithm was applied to DCE-MRI of the physical tissue-
mimicking phantom and the signal of the tubes was separated. The phantom
data was reconstructed at five different in-plane resolutions and the AC-ICA
algorithm was applied to all five datasets. Similar to the numerical study,
dimensionality reduction and Whitening were first performed, and then AC-
ICA was applied to the DCE-MRI data. The IC images corresponding to the
tubes’ signal of the five datasets are shown in Fig. 4(a)–(e).

The separated time-intensity curves of the tubes for the five datasets, as well
as the actual time-intensity curve of the tubes that was measured at the inflow
line of the phantom, the time-intensity curve at the outflow line of the phantom,
and the raw data curve calculated by averaging the signal across the raw MRI
images (not analyzed) over time are shown in Fig. 4(f). The baseline values of
these enhancement curves are set to zero and they are normalized with respect
to their maximum values.

Two physical phantoms were built and DCE-MRI imaging was performed
on both phantoms to assess the reproducibility of the results for the intravascu-
lar time-intensity curve calculation algorithms. Table 2 reports the root mean
square error (RMSE) between the estimated and the actual time-intensity
curves of the tubes (inflow line) for all five datasets of both phantoms. This
table also reports the correlation coefficient between the estimated and actual
time-intensity curves of the tubes for AC-ICA algorithm in all five in-plane.

Similar to the numerical study, the separation results obtained for the DCE-
MRI data of the physical phantoms, as shown in Fig. 4 and also reported in
Table 2, show that the tubes were separated accurately in both spatial and
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Fig. 4. The separated tubes’ image and their time-intensity curves calculated using AC-ICA
for the five DCE-MRI datasets of the physical tissue-mimicking phantom. Tubes’ images for
datasets with in-plane resolutions of (a) 170 µm, (b) 225 µm, (c) 340 µm, (d) 450 µm, and (e)
680 µm. (f) Calculated time-intensity curves of the tubes corresponding to the five datasets, the
actual time-intensity curve of the tubes (inflow line), the curve of the tubes at the outflow line,
and the curve corresponding to mean across the raw (not analyzed) DCE-MR images over time
(Raw Data).

Table 2. RMSE and correlation coefficients between the estimated (AC-ICA) and the actual
(inflow) time-intensity curves of the tubes for all 5 resolutions (using both physical phantoms).
The values are calculated after setting the baseline values of the curves to zero and normalizing
them).

In-plane Resolution 170 µm 225 µm 340 µm 450 µm 680 µm

Root Mean Square Error (RMSE)
AC-ICA 0.07 ± 0.01 0.09 ± 0.02 0.08 ± 0.03 0.08 ± 0.01 0.11 ± 0.03

Correlation Coefficient
AC-ICA 0.97 ± 0.004 0.96 ± 0.02 0.97 ± 0.01 0.97 ± 0.02 0.95 ± 0.03
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Fig. 5. (a) Full FOV of the prostate DCE-MR images showing femoral artery (red arrow)
and the prostate region used in ICA analysis (blue box). (b) T2-weighted MRI of the prostate
showing the tumor (arrow) and a region of normal peripheral zone tissue (green circle). (c) The
ADC map of the prostate showing the tumor (arrow).

temporal domains. As the pixel size increased, it became more difficult to
visualize the tubes in the IC images such that in the two lowest resolutions
it was impossible to see them separately from the leakage. However, the time-
intensity curves of the tubes were estimated with high accuracy, and similar
to the numerical study the AC-ICA algorithm demonstrated high accuracy in
dealing with lower resolution data and there were small differences between
time-intensity curves of the tubes at varying resolutions.

Having developed and evaluated the AC-ICA algorithm that is capable of
separating the intravascular signal, the next step is to assess its performance in
clinical data and also compare the PK parameters calculated using its VIF to
the commonly used AIF-based methods.

6. Prostate Cancer Assessment

DCE-MRI of a cohort of 27 prostate cancer patients (28 MRI dataset where
one patient was imaged twice) were acquired and used to assess the performance
of the VIF calculated using the AC-ICA algorithm in PK analysis of prostate
DCE-MRI. The calculated PK parameters were compared to PK parameters
calculated using an AIF, measured at the femoral artery. In addition to
DCE-MRI, T2-weighted and diffusion weighted MRI of the prostate were
acquired which are used for tumor detection (Fig. 5).
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MR imaging was performed on a 3T Achieva Philips scanner (Philips Med-
ical Systems). DCE-MR imaging was performed using a 3D SPGR sequence
with TE/TR = 3.91/1.81 ms, FA = 8, FOV = 20 cm, slice thickness = 3.5 mm,
spacing between slices = 3.5 mm, and temporal resolution = 4.8 s, where con-
trast agent, Magnevist (Gd-DTPA), was injected intravenously with a dose of
0.1 mM/Kg. T2-weighted MRI was performed using a spin echo sequence, fol-
lowed by axial diffusion weighted MRI with b-values = 0, 1000 s.mm−2, which
were used to generate apparent diffusion coefficient (ADC) maps. Multiple
flip angle (FA = 5, 15) T1-weighted MRI were also acquired to generate pre-
contrast T1-map that is required to convert MRI signal into CA concentration.

6.1. Vascular Input Function (VIF) Calculation in Prostate

Each prostate DCE-MRI dataset contained 20 slices. The slices in which the
prostate was visible were first identified and a rectangular region of interest
[blue box in Fig. 5(a)] was selected around the prostate gland. The AC-ICA
algorithm was applied to each individual slice and the intravascular component
was separated. The separated intravascular component, for the prostate slice
which was shown in Fig. 5, in spatial and temporal domains is shown in
Fig. 6(a)–(b).

The signal intensity in each voxel of the separated intravascular signal
was converted into contrast agent concentration, using the method explained
in Section 3.4, and then averaged over the entire image for each time
point to generate the VIF curve. The conversion results in temporal domain
(representing the VIF curve), and in spatial domain (representing prostate
vasculature) are shown in Fig. 6(c)–(d).

The scaling of the VIF curve depends on the size of the ROI that was initially
selected for ICA analysis, which in turn depends on the size of the prostate
cross section in that slice, and thus is operator-dependent. These issues make
the calculated PK parameters highly dependent on the manually selected ROI.
However, it can be proved that if two VIFs satisfy the governing equations of
the two-compartment ETK model, their AUC have to be equal. Thus, in order
to remove the operator dependence and also enable comparison of VIF-based
and AIF-based analyses, we normalized the VIF and the AIF with respect to
their area under the curve (AUC) as shown in Fig. 7(a).

6.2. Pharmacokinetic (PK) Analysis Results

PK modeling was performed using the ETK model for each voxel of the prostate
gland in all patients, using the VIF (AC-ICA), and the AIF (artery).VIF-based
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Fig. 6. The IC corresponding to prostate vasculature separated by AC-ICA in (a) spatial
and, (b) temporal domains. Conversion of AC-ICA results into CA concentration in (c) spatial
domain (showing the intravascular CA concentration at each voxel) and, (d) temporal domain
(representing the VIF curve generated by averaging CA concentration in the intravascular space
of each frame).

Fig. 7. (a) The VIF and the AIF after normalization, and (b) the vascular map corresponding
to the VIF (calculated using AC-ICA).
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analysis was performed using the prostate vasculature map which was estimated
by AC-ICA, as the vp parameter and subtracting the vpcp(t) term from the DCE-
MRI data, and then calculating the remaining two model parameter (Ktrans

and ve) through curve fitting. For the AIF-based PK analysis, curve fitting was
performed to calculate all three model parameters.

The Ktrans value is a characteristic of the tissue as it represents the vascular
permeability and perfusion of the tissue, and thus, for a specific tissue type
Ktrans should be the same regardless of the VIF (or AIF) calculation method.
Thus, both AIF-based and VIF-based methods should result in similar Ktrans

values for the normal peripheral zone (PZ) tissue in prostate [Fig. 5(b)], and
the method that results in smaller variation in its Ktrans has better performance.

The calculated PK parameters for the patient (which was shown in Fig. 5),
are shown in Fig. 8 as parametric maps. As can be seen in this figure, the VIF-
based and AIF-based Ktrans maps have small values in the normal PZ tissue, and
large values in the tumor. Thus, the performances of the methods in detecting
the tumor are similar. Moreover, the similarity between the vp map calculated
directly from ICA and the vp map that resulted from AIF-based PK analysis
proves that the component that was separated by ICA as the intravascular
component is actually the intravascular component, and more importantly the
vp map, which could be used in assessing anti-vascular therapies, can be directly
obtained using AC-ICA algorithm without any PK modeling.

Fig. 8. The Ktrans maps (a, b), vp maps (c, d), and ve maps (e, f) calculated using the normalized
VIF and normalized AIF for ETK model.



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch13 page 273

Blind Source Separation in Assessing Tumor Pharmacokinetics 273

Table 3. The mean and standard deviation of the Ktrans in normal PZ tissue,
calculated from the distribution of the mean values for each patients (the mean
value for each patient was calculated by averaging Ktrans values of all normal PZ
tissue voxels in that patient). These values were calculated using all the patients
in which normal PZ tissue was identified (20 patients).

Method TissueType VIF [min−1] AIF [min−1]

With Normalization Normal PZ 0.21 ± 0.05 0.26 ± 0.11
Without Normalization Normal PZ 1.09 ± 0.53 0.29 ± 0.34

Table 4. The median and inter-quartile ranges of the Ktrans value calculated
using pooled distribution (for all patients) of all voxels in normal PZ and tumor
regions (both distributions were positively skewed). The Ktrans values were
calculated using VIF and AIF (normalized and not normalized) for the normal
PZ tissue (for 20 patients) and for tumor tissue (for 27 patients). The table also
reports several prostate Ktrans values from literature.

Method Tissue Type VIF [min−1] AIF [min−1]

With Normalization Normal PZ 0.13 [0.07 0.22] 0.15 [0.07 0.28]
Tumor 0.59 [0.40 0.88] 0.97 [0.61 1.47]

Without Normalization Normal PZ 0.51 [0.22 1.29] 0.07 [0.02 0.20]
Tumor 2.29 [1.01 4.28] 0.31 [0.15 0.78]

Moradi34 Normal PZ — 0.07 ± 0.047
Tumor — 0.148 ± 0.071

Langer35 Normal PZ — 0.29 [0.09 0.87]
Tumor — 0.36 [0.16 1.28]

Ocak36 Normal PZ — 0.23 ± 0.25
Tumor — 0.47 ± 0.57

Korporral37 Normal PZ — 0.10 [0.04 0.21]
Tumor — 0.44 [0.25 0.75]

Li38 Normal PZ — 0.09 ± 0.07
Tumor — 0.32 ± 0.23

The mean and standard deviation of the Ktrans values for normal PZ tissue
(distribution of the mean values), using the ETK model, are reported in Table 3
for AIF-based and VIF-based PK analyses. These values were calculated for
the entire patient population in which normal PZ tissue was identifiable (20
datasets). This table also reports the Ktrans value for normal PZ tissue using
the VIF and AIF without normalization which shows normalization results
in smaller variation in the Ktrans value. This table shows after normalization
the mean Ktrans value of the AIF-based and VIF-based methods are close to
each other, indicating that both methods are calculating the same value for the
normal PZ tissue (these mean values correspond to two samples of the same
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population as assessed by ANOVA). However, the VIF-based method provides
smaller variation compared to the AIF-based method and thus, is working
better.

Table 4 reports the median and inter-quartile ranges of the Ktrans obtained
for the tumor and normal PZ tissues (these distributions were positively skewed
and thus inter-quartile ranges are used) for the VIF-based and AIF-based PK
analyses as well as the Ktrans values of five studies reported in the literature.
Comparing the results obtained using AIF and VIF with normalization, to
those obtained using AIF and VIF without normalization and the values that
were reported in the literature, shows that using the VIF with normalization
provides clear separation of the normal PZ and tumor tissues.

7. Conclusions

Pharmacokinetic modeling of tumor tissues using their DCE-MRI requires
information about the CA concentration in the intravascular space. This signal is
inseparable from the DCE-MRI data, and thus it is approximated using an AIF.
An ICA-based algorithm (AC-ICA) was developed to separate this intravascular
signal locally at the tissue of interest and calculate the vascular input function
(VIF), and also to assess the effects of using this VIF in PK analysis.

The performance of the AC-ICA algorithm in separating the intravascular
signal was first evaluated using numerical and physical tissue-mimicking
phantoms, which showed the algorithm was capable of separating this signal
with high accuracy and could efficiently handle low resolution DCE-MR
images that are commonly encountered in clinics. The VIF calculated using the
AC-ICA algorithm was then used in PK analysis of prostate cancer and its results
were compared to the commonly used AIF-based method. The results showed
that the PK parameters calculated using the VIF were comparable to those
calculated using the AIF, and also there was smaller variation in the calculated
PK parameters in VIF-based analysis which shows its better performance. Thus,
the proposed VIF could replace the currently used AIFs in PK analyses, and
more importantly it could be used in cases where it is impossible or very difficult
to measure an AIF, e.g. in small animal studies or in studying tissues like breast
tumors.
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Automated breast ultrasound (ABUS) is developed to automatically scan the whole
breast for breast imaging on clinical examination. Hundreds of slices compose
an image volume in a scanning to establish the volumetric structure of breasts.
Reviewing the image volumes is a time-consuming task for radiologists. In this chapter,
a computer-aided detection (CADe) system is proposed to automatically detect
suspicious abnormalities in ABUS images. The database used included 122 abnormal
and 37 normal cases. In abnormal cases, 58 are benign and 78 are malignant lesions.
A Hessian-based multi-scale blob detection was used to segment blob-like structures
into tumor candidates. The blobness, echogenicity, and morphology features were
then extracted and combined in a logistic regression model to classify tumors and
nontumors. The CADe system achieved the sensitivity of 100%, 90%, and 70% with
false positives per case of 17.4, 8.8, and 2.7, respectively. The performance provides a
promising use in tumor detection of ABUS images.

1. Introduction

Ultrasound (US) has been used in evaluating suspicious abnormalities in breast
tissues. For women with dense breasts, US can improve cancer detection
compared with using mammography alone.1 The advantages of US exami-
nation compared to mammography are that it is radiation-free and makes the
patients experience less pain. Automated breast US (ABUS) systems have been
developed to be more suitable in screening than conventional hand-held US.2,3

With less operator dependence, breast volumes can be completely scanned in a
shorter time and can be reproduced easily. The automatic scanning procedure
reduces possible oversight errors caused by operators. The standardized
construction of whole breast provides more detailed three-dimensional (3D)

279
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information for reviewing. Substantial interobserver agreement is obtained
on lesion detection and characterization in the review of ABUS images by
radiologists.4 Other studies such as breast tumor diagnosis5,6 and breast density
analysis7,8 are accomplished based on ABUS systems. Although the use of
ABUS for clinical breast examination is demonstrated to be practical and
reliable, reviewing thousands of patients in a screening database is a time-
consuming task. An ABUS scanning generates an image volume composed
of two to three hundred slices. For each patient with two breasts, thousands of
slices are generated. To deal with the enormous image data, efficient computer-
aided analysis is expected to be helpful.

Computer-aided detection (CADe) is one of the emerging tools to
automatically discover suspicious abnormalities in breast tissues.9−11 Advanced
CADe systems construct a sequence of quantitative procedures including image
analysis, pattern recognition, and artificial intelligence. After image processing,
various quantitative features are extracted from tissues and combined together
to estimate the likelihood of being tumors. With the assistance of CADe,
additional potential carcinomas may be detected to reduce oversight errors.
The following section introduces a novel CADe system12 based on multi-scale
blob detection for breast tumor detection in ABUS images.

The detection algorithm in the system used Hessian analysis which has
been widely used in detecting objects with certain geometric structures such
as vessels and plates.13−17 Frangi used Hessian analysis to calculate the second
order derivatives in an image for vessel measurement.14 The prostate tumors
in magnetic resonance imaging can be detected by Hessian analysis with high
sensitivity.16 In the observation of ABUS images, breast tumors presenting
blob-like shape and hypo-echogenicity can be characterized using Hessian.
Moreover, the detection of tumors with low contrast boundaries or nearby
shadows may be improved.

2. Computer-Aided Tumor Detection Algorithm

The algorithm in the CADe system includes a series of steps as shown in Fig. 1.
The first step was speckle noise reduction to remove the inherent speckle noises
in ABUS images. The enhanced quality would lead to a better segmentation
result. Multi-scale blob detection was then used to extract blob-like objects
in an ABUS image. More than one scale was used to detect various sizes of
tumors. To save computation time, a preliminary tumor candidate extraction
was used to remove too small or big regions. Quantitative features including
blobness, echogenicity, and morphology features were extracted from the
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Speckle Noise Reduction

ABUS Images

Multi-Scale Blob Detection

Quantitative Features

Statistical Evaluation

Tumor Candidate Extraction

Region Classification
estimation

Fig. 1. The flowchart of the CADe system.

tumor candidates for region classification. The performance of the classification
result was evaluated using statistical analysis in the end.

2.1. Patients and ABUS Acquisition

The tumor detection algorithm introduced in this chapter used the ABUS
images acquired by a SomoVu ScanStation (U-system, San Jose, CA). A total
of 136 biopsy-proven lesions from 122 patients included 58 benign and 78
malignant lesions. Size ranged from 0.5 to 6.5 cm with mean = 2.00 cm and
standard deviation (SD) = 1.28 cm. Benign lesions included 27 fibroadenomas
and 31 fibrocystic lesions while malignant lesions included 71 infiltrating carci-
nomas and 7 ductal carcinoma in situ. Patients underwent ABUS examination
in the supine position with 10-MHz, 15.4 cm transducer. Two or three passes
were performed to completely scan each breast. A total of 159 passes including
122 abnormal passes with lesions and 37 normal passes were included to
evaluate the tumor detection algorithm. The approval of this study was obtained
from our institutional review board and informed consent was waived.

2.2. Speckle Noise Reduction

Diagnostic US uses high frequency sound waves propagating through human
tissues for imaging. The return echo composed of the reflection, absorption,
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and scattering from various acoustic interfaces is measured to construct US
images. Speckle patterns as the constructive and destructive interference
in the return echo from microstructure scatterers are inherent noises in
US images. For image preprocessing, edge-preserving noise reduction filters
were commonly used in reducing speckle noise and enhancing the image quality
simultaneously.18,19 Here, sigma filter19 was used as the image preprocessing
before tumor detection. In the sigma filter, image distribution in a symmetric
mask can be presented as a Gaussian distribution with mean µ and SD σ. In the
range [µ − 2σ, µ + 2σ], the two-sigma average value is defined as the sum of
pixel values divided by the pixel number M adjacent to the mask center. While
M is larger than a predefined threshold K , the center pixel value is replaced
by the two-sigma average value. Otherwise, it is replaced by the neighbor’s
average value. A mask of 3 × 3 × 3 and K = 3 was used in the experiment to
remove speckle noises.

2.3. Multi-Scale Blob Detection

Breast tumors are ellipse-like masses in ABUS images. To detect this kind of
object, Hessian analysis which can evaluate geometric shapes such as blob, tube,
and plate was used.14−16 Convoluting the images with derivatives of a Gaussian
kernel generates the second derivatives in the 3D dimensions. The Hessian
matrix can be shown as follows:

Hσ(x , y , z) =

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz


 (1)

In the matrix, each element Iij means the second deviation in the dimension
i and j . The standard deviation of Gaussian distribution is σ, which is
used as a parameter of blob radius. By solving the Hessian matrix on each
pixel the eigenvectors and eigenvalues are obtained. Eigenvectors are three
orthogonal directions of a detected blob and eigenvalues are the corresponding
curvature degrees along the directions. The likelihood of being a blob, RB ,
using eigenvalues (|λ1| ≤ |λ2| ≤ |λ3|) and the eigenvalue magnitude, M , are
formulated as follows:

RB = |λ1|√|λ2||λ3| , (2)

M =
√√√√ 3∑

n=1

λ2
n (3)



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch14 page 283

Computer-Aided Tumor Detection in Automated Breast Ultrasound Images 283

While the detected object is more like a blob, the curvatures are expected to
be higher and close to each other. RB should be the maximum in this situation.
Similarly, M as the eigenvalue magnitude should be larger in blob-like objects
than background. Consequently, a blob-like object can be determined using
the formula as follows:

Bσ(λp) =




(
1 − e− RB

2α2
)(

1 − e
− M

2β2
)

if λ1 > 0, λ2 > 0, and λ3 > 0

0 otherwise
(4)

For a pixel p = (x , y , z), λp is the eigenvalues, α and β are sensitivity parameters
of RB and M to adjust the weights of terms. In the experiment, α = 0.5
and β = 0.5. The criteria of λ1 > 0, λ2 > 0, and λ3 > 0 were used to
detect hypo-echogenic objects. Lesions are different sizes. To detect various
sizes of lesions, multi-scale blob detection was used. The defined range is as
follows:

Blobness(λp) = max
σmin≤σ≤σmax

Bσ(λp) (5)

where σmax and σmin are the maximum and minimum scales to be detected.
The scale parameters used in the experiment were from 1.2 to 3.2 mm

with an increasing scale of 0.1 mm. Another advantage of multi-scale over
single-scale blob detection is for lesions with substantial sizes. Large-scale blob
detection encompassed most area of a lesion with coarse contour. Small-scale
blob detection benefited from the detailed information on the boundary and
resulted in finer region contour while a lesion may be separated into several
parts. Consequently, multi-scale blob detection can combine the detection
areas from large-scale and small-scale blob detection to provide better lesion
interpretation. 3D connected component20 was used to integrate the detected
areas into a more complete object.

2.4. Tumor Candidate Extraction

Suspicious abnormalities close to the blob-like structures were detected after
the multi-scale blob detection. Among these detected regions, some of them
can be eliminated before further processing to reduce computation time and
potential FPs. In tumor candidate extraction, blobness value was used to filter
out nontumor regions. Higher blobness value representing darker blob-like
structure is expected to appear more frequently in tumors than nontumors.
The maximum and mean blobness values were calculated from a region as the
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criteria for tumor candidate extraction. The formulas were defined as below:

Blobnessmean(R) =
∑

p∈R Blobness(λp)

NR
(6)

Blobnessmax(R) = max
p∈R

Blobness(λp) (7)

For each region, R, p is a voxel within R and the number of all voxels is
NR. Size was another criterion for tumor candidate extraction. Many regions
detected by Hessian-based blob detection were little intensity variations and
were much smaller than true lesions. Combining the three criteria in a linear
regression model21 is the classification method in tumor candidate extraction.
The likelihood being a tumor of a region can be estimated using the following
expression:

Z (R) = β0 +
Nf∑
i=1

βixi (8)

LS(R) = 1
1 + e−Z (R)

(9)

where the number of features is Nf . For each feature value, xi , there is a
coefficient βi . The constant coefficient is β0. LS(R) is the linear regression
model for likelihood estimation. A probability threshold is then defined as:

LS(R) ≥ TH (10)

With the threshold, TH, the regions detected by the multi-scale blob detection
were classified into two groups according to their features. Only regions with
equal to or higher probabilities than the threshold were extracted to be tumor
candidates. Probabilities less than the threshold were regarded as nontumors
and removed. The threshold used in the experiment was 0.5.

2.5. Quantitative Features

Tumor candidate extraction is a preliminary step to filter out regions with low
likelihoods of being tumors. The remaining candidates are basically the regions
needed to be recognized. As an efficient way, various quantitative features
were extracted and integrated together for region characterization. Logistic
regression model was used again in distinguishing tumors from nontumors.
The proposed features included three groups: blobness, echogenicity, and
morphology features.
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2.5.1. Blobness features

As mentioned before, breast tumors are blob-like structures with more hypo-
echogenicity than surrounding normal tissues. Different echogenicities belong
to different tissues makes the basic discrimination in breast tumor detection.
By Hessian matrix analysis, the statistical blobness features including the
maximum, the mean, and the standard deviation of the blobness values were
calculated to describe the echogenicity level. Higher blobness value indicates
more hypo-echogenicity. In a real tumor, a voxel closer to the tumor center may
have higher blobness value. If a tumor candidate is a real tumor, the distance
between the center and the blobness centroid should be smaller than normal
tissues. Following equation defines the distance measurement:

Dis =
√

(xc − xbc)2 + (yc − ybc)2 + (zc − zbc)2. (11)

where (xc , yc , zc) indicates the center of a tumor candidate as follows:

xc = 1
NT

NT∑
i=1

xi , yc = 1
NT

NT∑
i=1

yi , and zc = 1
NT

NT∑
i=1

zi (12)

(xi , yi , zi) is a voxel position and NT is the total number of voxels in a tumor
candidate.

(xbc , ybc , zbc) is the blobness centroid as defined below:

xbc = 1
SumBlob

NT∑
i=1

xi × Blobness(λp)

ybc = 1
SumBlob

NT∑
i=1

yi × Blobness(λp) (13)

zbc = 1
SumBlob

NT∑
i=1

zi × Blobness(λp)

In a tumor candidate, each voxel p has λp as the eigenvalues and the summation
of all blobness values is SumBlob .

2.5.2. Echogenicity features

Transmission of ultrasound waves through the tissue results in return echoes
composed of the reflection, absorption, and scattering from various acoustic
interfaces. The magnitude of return echo was measured to be echogenicity for
tissue interpretation. In ABUS images, the echogenic intensity of each voxel was
expressed using gray-scale values. The statistical echogenicity features extracted
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from the gray-scale intensity distribution including mean, SD, skewness, and
kurtosis22 were used as the echogenicity features in distinguishing tumors from
nontumors as defined below:

Imean = 1
NT

∑
p∈T

Ip (14)

Istd =
√√√√ 1

NT

∑
p∈T

(Ip − Imean)2 (15)

Iskewness = 1
NT

∑
p∈T

(
Ip − Imean

Istd

)3

(16)

Ikurtosis = 1
NT

∑
p∈T

(
Ip − Imean

Istd

)4

(17)

where Ip is the voxel intensity in the position p in a tumor candidate with a
total of NT voxels. Additionally, more echogenicity features such as the mean
and SD of intensity gradient, and intensity gradient around lesion boundary
were also quantified to be echogenicity features.

2.5.3. Morphology features

Similar tissues were gathered together to become a mass structure. Rather
than echogenicity patterns used in showing the internal distribution of a
mass, morphology features were used to describe the external boundary. The
analysis of region contour is useful in tissue characterization. As defined in
the standard BI-RADS lexicon,23 various shape-correlated descriptors such
as microlobulation and spiculation have been suggested to be sonographic
findings. Further quantification of morphology features has been used in
computer-aided diagnosis systems.24,25

After Hessian-based blob detection, various mass-like structures were
segmented to be tumor candidates. The morphology features extracted from
the regions to distinguish tumors from nontumors included two groups:
shape and ellipse-fitting features.25 Shape features were volume, compactness,26

radius, and speculation.27 Region volume can be used to filter out extremely
small noises or large shadows. Compactness was used to calculate the ratio of
region volume and surface for roundness estimation. Radius and spiculation
were detailed margin properties on the boundary to show if a region is



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch14 page 287

Computer-Aided Tumor Detection in Automated Breast Ultrasound Images 287

aggressive. The two used compactness formulas included conventional Cc and
novel Cn are expressed as follows:

Cc = Surface1.5

Volume2 (18)

Cn = Volume − Surface
6

Volume − Volume1.5 (19)

where Volume and Surface are the volume and surface extracted from a tumor
candidate.

Instead of using original tumor properties, the ellipse-fitting features were
extracted from a best-fit ellipse. Because tumors have ellipse-like shapes, a best-
fit ellipse can be used to estimate tumor characters using the length ratio
between the axes of the best-fit ellipse and surface comparison between the
best-fit ellipse and the tumor. The degree of regularity on the boundary can also
be obtained from the difference. More details were described in the previous
study.25

2.6. Region Classification

Quantitative features were extracted from the tumor candidates and combined
in a logistic regression model21 to generate the likelihood being a tumor
for each region. Backward elimination was used in relevant feature selection
in the classifier. The step-wise backward elimination28 evenly separated all
regions into the training set and testing set in each step. Regions from one
case only belonged to one set to make sure the independence between the
training and testing sets. That is, one case was not in both training set and
testing set simultaneously in the same evaluation. An equalized sampling
method was then used to achieve the size balance between the tumors
and nontumors. Because the number of tumors was much less than that
of nontumors, total tumors were used in the training set. Equal size of
nontumors was then sampled in the training set. After constructing the training
model of logistic regression, regions in the testing set were used to test the
model. In each step of the backward elimination, one feature with the least
contribution was determined and removed from the features until the removal
does not achieve significant residual sum of squares of the performance by
a partial-F test. After feature selection, the likelihood of being a tumor was
estimated using the trained model. Regions in the tumor candidates with
probabilities equal to or higher than a probability threshold were regarded as
tumors.
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2.7. Statistical Evaluation

The performance of the quantitative features used in the logistic regression
classifier was evaluated using a 10-fold cross-validation (10-fold CV) and a
leave-one-out cross validation (LOOCV).29 Under cross validation, the cases
used in the experiment were divided into K disjoint partitions that were
approximately equal in size. K iterations of case training were used in the
validation. For 10-fold CV, the value of K is 10. LOOCV uses the number
of cases to be K to provide a more generalized result with more iterations.
In each iteration, one partition was picked from the K partitions to test
the model trained by the remaining K -1 partitions. The performance of K
iterations was averaged to be the final evaluated result. Although LOOCV
provides more generalization validation, it is time-consuming to train and
test thousands of tumor candidates. The performances of 10-fold CV and
LOOCV were compared later to show the difference. Additionally, a blind
test was used to evaluate the performance using independent data sets. The
cases were divided into two disjoint sets i.e. training and testing sets. After the
training of the classification model by only the training set, the testing was
accomplished by only the testing set. The evaluation simulated the procedure
in future clinical use for unknown tumors. As mentioned before, blobness and
size features were combined in the classifier for tumor candidate extraction.
According to the features, each region was given a probability of being a tumor.
A probability threshold was then determined to filter out nontumor regions
and keep all true tumors for further classification. More quantitative features
including blobness, echogenicity, and morphology features were extracted
from the tumor candidates obtained after the preliminary classification. The
most relevant features selected from the two classifications were based on the
training set. In the testing, the trained model and determined probability
threshold were applied to the testing set for performance evaluation. After
exchanging the training and testing sets, the procedure was executed again for
cross validation. Such validation was performed three times to accomplish the
blind test. Each time, the training and test sets were randomly composed from
the total cases.

The classification result was obtained using various feature sets. To investi-
gate the contribution of each feature set, free-response operating characteristics
(FROC) curve and jackknife alterative of FROC-1 (JAFROC-1) figure of
merit (FOM) were used.30 FOM is a probability to show if the estimated
likelihood of a true tumor higher than that of all nontumors. High FOM
indicates the estimation for a region being a tumor is reliable. The definition is as
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follows:

FOM =
∑NC

i=1
∑NC

j=1
∑NL (i)

l=1 ψ(maxk∈NK (j )(P (k)), P (l))

NC × NT _total
(20)

ψ(X , Y ) =



1, Y > X
0.5, Y = X
0, Y < X

(21)

NC is the number of used cases, NL (i) is the number of true lesions in i-th
case, NK (j ) is the number of non-tumors in j -th case, NT _total is the number of
true lesions in all cases. The function P means the estimated probability being
a tumor for a non-tumor k or a tumor l . In the function ψ, X and Y are the
tumor likelihood of a non-tumor and a tumor, respectively.

The FOM comparisons between feature sets were evaluated using
JAFROC-1 FOM. The area under FROC curve was calculated for a comprehen-
sive evaluation with the trade-offs between sensitivities and FPs. The area
value is between 0 and 1. The value closer to 1 means better classification in
higher sensitivity with less FPs simultaneously. p-value less than 0.05 indicates a
statistically significant comparison result. Formultiple comparisons, Bonferroni-
Holm correction31 was used to adjust p-values under increased type I error.

3. Results

The proposed CADe algorithm was applied to 159 cases including 122
abnormal cases and 37 normal cases without lesions. Using an Intel Core 2
Q6600 2.4 GHz processor and 3 GB RAM in Windows 7 operating system
(Microsoft, Seattle, WA, USA), the average execution time for each case was
13.02 minutes. The detection sensitivity achieved 100%, that is, 58 benign
and 78 malignant tumors in the 122 abnormal cases were all detected. The
average FPs/case corresponding to different features are listed in Table 1.

Table 1. The average FPs/case corresponds to different features.

Validation Features FPs/case

10 fold-CV None 1044.89
Size 777.71

Blobnessmax 214.21
Blobnessmean 133.71

Blobnessmean & Size 116.92
LOOCV Blobnessmean & Size 117.11
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Table 2. Different sensitivities and the corresponding FPs/case using 10-fold CV
and LOOCV.

10-fold CV LOOCV

FPs/case FPs/case
Sensitivity Sensitivity

(%) Abnormal Normal All (%) Abnormal Normal All

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
56.62 1.43 1.35 1.42 60.29 1.43 1.35 1.41
69.85 2.82 2.16 2.67 72.06 2.80 2.24 2.67
77.21 4.10 3.14 3.87 77.94 4.02 3.00 3.79
85.29 5.30 4.24 5.05 82.35 5.30 4.35 5.08
85.29 6.64 5.27 6.32 87.50 6.60 5.35 6.32
87.50 7.89 6.35 7.53 88.24 7.77 6.51 7.48
91.18 9.11 7.76 8.80 88.24 9.30 7.57 8.91
92.65 10.46 9.24 10.18 89.71 10.52 9.08 10.23
93.38 12.11 10.68 11.77 93.38 12.19 10.70 11.87
96.32 13.80 12.54 13.50 95.59 13.89 12.51 13.57
99.26 15.76 14.22 15.40 99.26 15.73 14.27 15.42

100.00 17.66 16.24 17.33 100.00 17.82 16.22 17.45

Originally, the detected regions in the ABUS images had mean = 1044.89,
maximum = 1699, and minimum = 494, respectively. Figure 2 shows an
example of ABUS image before and after speckle noise reduction and Fig. 3
illustrates the corresponding initial result of multi-scale blob detection. Tumor
candidate extraction reduced the FPs/case to 116.92 with 10-fold CV, and
117.11 with LOOCV. In this step, about 90% nontumors were filter out with all
true tumors kept. The further region classification using blobness, echogenicity,
and morphology features reduced the rest FPs. The FPs/case for different
sensitivities under 10-fold CV or LOOCV are listed in Table 2. The sensitivity
of 100%, 90%, and 70% achieved 17.33, 8.80, and 2.67 FPs/case in 10-fold
CV which is slightly better than 17.45, 10.23, and 2.67 FPs/case in LOOCV.
Normal cases had slightly less FPs/case than abnormal cases in the result.

Table 3 lists the JAFROC-1 FOM comparisons of different combinations
of feature sets. All single feature set performed worse than multiple feature set.
The lowest FOM is 0.16 achieved by the morphology feature set. Combining
all feature sets including blobness, echogenicity, and morphology features
achieved the best FOM = 0.47. For both 10-fold CV and LOOCV, the
performance was evaluated to be consistent. The p-values showed the same
result. Combining more feature sets together obtained significantly better
FOMs i.e. p-value < 0.05. Also, the difference between 10-fold CV and
LOOCV was not significant, p-value = 0.73. Figure 4 shows the FROC curves
and FOMs of all features with different cross validations.
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(a)

(b) (c)

(d)

(f)(e)

Fig. 2. An example of speckle noise reduction with a tumor circled (a) Axial view (b) Sagittal
view (c) Coronal view (d), (e), and (f). The views after speckle noise reduction.
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(a)

(b) (c)

Fig. 3. The multi-scale blob detection of Fig. 2 with a true positive circled (a) Axial view (b)
Sagittal view (c) Coronal view.

Table 3. The JAFROC-1 FOM comparisons of different combinations of feature sets with
cross validations.

Adjusted
Feature sets (FOM) p-value

Blobness (0.28) vs. Echogenicity (0.23) 0.39
Blobness (0.28) vs. Morphology (0.16) <0.05
Echogenicity (0.23) vs. Morphology (0.16) 0.08
Echogenicity (0.23) vs. Blobness & Echogenicity (0.33) <0.05
Morphology (0.16) vs. Blobness & Morphology (0.36) <0.05
All features with 10-fold CV (0.47) vs. Blobness & Echogenicity (0.33) <0.05
All features with 10-fold CV (0.47) vs. Blobness & Morphology (0.36) <0.05
All features with 10-fold CV (0.47) vs. Echogenicity & Morphology (0.43) 0.39
All features with 10-fold CV (0.47) vs. All features with LOOCV (0.47) 0.73

With respect to the size issue, the number and likelihoods of benign and
malignant tumors for five size categories are listed in Table 4. Most malignant
tumor (38/78) sizes were 1 to 2 cm with the average likelihoods of 0.94. Most
benign tumor (32/58) sizes were less than 1 cm with the average likelihoods
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Fig. 4. FROC curves and FOMs of all features with different cross validations.

Table 4. The number and likelihoods of benign and malignant tumors for five size categories.

Category Size <1 cm 1–2 cm 2–3 cm 3–4 cm �4 cm

Likelihood Benign 0.88 ± 0.15 0.86 ± 0.20 0.86 ± 0.16 0.92 ± 0.13 0.99 ± 0.01
(Number) (32) (17) (6) (1) (2)

Malignant N/A 0.94 ± 0.10 0.90 ± 0.17 0.94 ± 0.09 0.83 ± 0.17
(38) (16) (8) (8)

Table 5. The results of FOMs and adjusted p-values
of the corresponding three tests in the blind test.

Test Number (FOM) Adjusted p-value

Test 1 (0.37) vs. Test 2 (0.37) 0.97
Test 1 (0.37) vs. Test 3 (0.38) 1.21
Test 2 (0.37) vs. Test 3 (0.38) 1.21

of 0.88. Table 5 shows the result of the blind test. The three tests obtained
FOMs of 0.37, 0.37, and 0.38, respectively. The difference of any two tests was
not significant (p-value > 0.05). Among the tests, the best sensitivity without
missing malignant tumors was 97.80% with 12.28 FPs/case and the worst one
was 97.80% with 16.92 FPs/case.
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4. Discussions and Conclusion

ABUS systems are becoming more and more popular for screening breast
cancers. Various CADe systems were developed to provide quantitative and
efficient assistance to reduce oversight errors.9−11 This chapter introduces a
novel tumor detection algorithm for breast tumors using multi-scale blob
detection. The algorithm combined different parameters of Hessian analysis
to include blob-like structures. Small-scale blob detection detected the details
on the tumor boundary which resulted in better morphology description.
On the other side, large-scale blob detection enclosed the major area of
tumor to become a region for internal echogenicity analysis. However, using
only small-scale detection would obtain too many fragments while large-scale
detection cannot delineate the accurate tumor contour. The proposed multi-
scale blob detection detected potential abnormalities using both small-scale
and large-scale. 3D connected component was then used to integrate the
detected regions into a complete object with the advantages of both small-
scale and large-scale. The scale range used in the experiment was from 1.2 mm
to 3.2 mm. After blob detection, many blob-like nontumor regions such as
fats and ribs were also detected. Take the cases used in the experiment as an
example, one case had at most 3 tumors in hundreds of slices but the average
number of detected regions was 1044.89. Size and blobness features were used
in tumor candidate extraction to remove about 90% noise. Then, multiple
feature sets were extracted from the tumor candidates to distinguish tumors
from nontumors.

The Hessian-based blob detection separated the blob-like regions with low
contrast boundaries or nearby shadows from ABUS images. In Hessian analysis,
intensity variation around tumor boundaries was detected as second-order local
derivatives. According to the analysis, breast tumors known as ellipse-like shape
and hypo-echogenic in ABUS images were successfully discovered with 100%
sensitivity in the experiment. The CADe system spent the average time of
13 minutes for each case to do region segmentation and feature calculation.
The time-consuming task can be done via parallel processing methods to reduce
the execution time in future studies. Another limitation in the CADe system is
that the likelihood estimation for malignant tumors over 4 cm is not as good
as those of other sizes. One possible reason is that the scale range used in
the multi-scale blob detection did not include the 4 cm scale. In the result
observation, enlarging the scale range may cause over-segmentation. A better
way for various tumor sizes is executing the multi-scale blob detection several
times with different scale ranges. Besides, no tumor in the collected database is
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smaller than 1 cm. Breast tumors in the early-stage are usually small in size.
Whether the proposed CADe system can detect tumors smaller than 1 cm
should be tested in further studies.

More and more women are diagnosed with breast cancer. To reduce the
mortality, early detection and treatment are helpful. Especially for women with
dense breasts, US is a necessary imaging tool to observe abnormalities. Using
ABUS systems on screening would be more reliable than conventional hand-
held US for breast cancer detection. The CADe system proposed in this chapter
quantifies the examination procedure in ABUS to become automatic. The high
sensitivity would assist radiologists in tumor detection. Whether radiologists
can improve their sensitivities with the CADe system will need to be explored.
Moreover, a computer-aided diagnosis system can be combined with the CADe
system to estimate the malignancy of the detected tumors. The computer-aided
technologies would be promising in clinical use to reduce oversight errors and
time-consuming tasks in ABUS reviewing.
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This review utilizes prostate cancer (CaP) as a case study to assess the application
of quantitative histomorphometry to characterize the aggressive phenotype and also
to make predictions of outcome like recurrence, metastasis and survival. Dr. Robert
Veltri describes the use of a microspectrophotometry microscope and novel software
to capture nuclear morphometry of Feulgen (DNA) stained features and successfully
identify indolent and aggressive CaP as well as predict outcomes such as biochemical
recurrence, metastasis and survival. His research also indicates that quantitative nuclear
morphometry by this method indicates a field effect nearby the can that also has
predictive value. However, the original technology was bottle-necked by the fact
that it could not be extended to whole slide images. Subsequently, the initiation
of a collaboration with Dr. Anant Madabhushi who has developed high throughput
quantitative image and histomorphometric tools that are amenable to work on whole
slide digitized images, has allowed for confirmation of Dr. Veltri’s prior and published
observations that nuclear size, shape and texture as well as the glandular structure
or architecture of prostate cancer are critical in predicting disease aggressiveness.
Dr. Madabhushi’s algorithms take advantage of advanced machine vision imaging
images for diagnosis and prognosis. Additionally Dr. Madabhushi’s group has also
been developing machine learning tools to combine image based and molecular
measurements for creating unified predictors of disease aggressiveness and patient
outcome. It is hoped that the additional development and validation of these tools
will set the stage for creation of decision tools to aid the pathologist to predict severe
outcomes early so that appropriate interventions can be made by the urologist and
patient.

301
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1. Introduction

Prostate Cancer (CaP) is the second most common cause of cancer-specific
mortality among men in the United States, with an anticipated 238,590 newly
diagnosed cases and 29,720 CaP deaths in 2012.1 The use of Prostate Specific
Antigen (PSA) as a screening tool has been in place in the United States for more
than 25 years. PSA testing (screening) remains quite controversial even though
it has been shown to have changed the natural history for the pathology and
pathogenesis of CaP.2 The current American Urological Association (AUA)
guidelines are quite specific and recommend an age-specific, patient-physician
shared decision making process.3,4 Prior to the widespread use of PSA for
screening, more than half of the men presenting with CaP had aggressive,
incurable (locally advanced or distant metastatic) disease. PSA testing has
resulted in lower grade and stage at diagnosis of CaP.3,5–7 Today, a substantial
proportion of newly diagnosed cases represent CaP that would never have been
detected during a lifetime had a PSA test not been used and has resulted in over-
diagnosis and over-treatment of CaP.3,8 Consequently, there remains a need
for “early identification” of men with high risk (more aggressive) CaP who
will benefit from early definitive personalized treatment. There is evidence that
high risk CaP clinicopathological features can predict aggressive disease that
is in danger of early progression and may require early aggressive treatment.9

However, further improvement in accuracy of this prediction should include
the discovery and development of additional automated and quantitative
morphological and molecular biomarkers for early detection of high risk
CaP will therefore have a major impact on the personalized management
of CaP.

2. Hallmarks of Prostate Cancer

Several early initiation events seem to be required for CaP that includes
chronic infections, inflammation and genomic instability.10–12 Published results
indicate that several such hallmark biological events occur in the multiple
step process; they include sustaining proliferative signaling, evading growth
suppressors, resisting cell death, enabling replicative immortality, induc-
ing angiogenesis, and activating invasion and metastasis.10 In conjunction
with these oncogenic molecular hallmarks, there are additional pathways
that drive the etiopathogenesis of cancer progression. These additional
events include the bioenergetics of metabolism,13–15 evasion of the immune
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surveillance system16–18 and establishment of a unique ecological niche or
“tumor microenvironment” required to sustain the invasive and metastatic
phenotype19–22 and these latter physiological factors (metabolism, immunity
and tumor microenvironment) may also serve as new targets for treatment.
Furthermore, the National Comprehensive Cancer Network (NCCN) has
provided a description for low to high risk CaP based upon clinicopathologic
features.23 Early prediction of high risk CaP may involve several unique
prognostic tissue morphologic,24–26 molecular27–35 as well as clinicopathologic
features,36–41 that may be implicated in high risk CaP and hence useful to stratify
such patients for treatment. In order to understand the basic pathology of CaP,
we must comprehend the fundamental biology and histology of the disease.

3. The Staging of Prostate Cancer

3.1. The Gleason System

The Gleason system for CaP histopathologic grading is based on how much
the cancer looks like healthy (benign) tissue when viewed under a low power
microscope (10–20 ×) by an expert pathologist. Less dangerous prostate
tumors have an appearance of normal glandular tissue, and more aggressive
tumors that are more likely to invade and spread to other parts of the body
look much less like normal tissue with respect to their loss of normal glandular
architecture (size, shape, and organization) as well as other histologic features
including changes in the cell’s nuclear structure.42,43 To assign a Gleason score
(GS), the pathologist first looks for a dominant (primary) pattern of cell growth
or grade (area where the cancer is most prominent) and then looks for a
less widespread pattern or grade (secondary) of growth, and gives each one
a grade number. GS is the sum of the dominant or primary tissue pattern grade
(representing the majority of tumor) and the less dominant or secondary tissue
pattern grade (assigned to the minority of the tumor). Today, pathologists
tend to describe a GS of 5, 6 as a low-grade cancer, 7 (3 + 4 or 4 + 3)
as a medium-grade, and 8, 9, or 10 as a high-grade cancer. Occasionally, a
pathologist may note a small area of a higher grade pattern in a biopsy or
radical prostatectomy (RP) specimens known as a “tertiary pattern” and may
record this result.44 A lower-grade cancer tends to grow more slowly and is
less likely to spread than a cancer with a higher grade. Some limitations for
the GS system involve interpretation when comparing biopsy to RP specimens,
pathologist to pathologist reproducibility, and difficulty in diagnosing small
acinar atypical lesions.



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch15 page 304

304 R. W. Veltri et al.

3.2. The Clinical Stage

The clinical stage is based on the urologist’s clinical examination of the patient’s
prostate (via palpation or digital rectal exam, DRE) and this is combined with
other results of clinical tests (i.e. PSA) done prior to definitive treatment (i.e.
surgery or irradiation). The DRE involves digital palpation of the gland for
size and any abnormalities. Based on these results, the urologist may suggest
performance of a systematic biopsy of the gland to determine a diagnosis.
Additionally, the urologist may suggest possibly X-rays, CT scans, and bone
scans, but these tests may not always be needed. They are usually recommended
based on high levels of serum PSA as well as the biopsy Gleason score and/or
volume (size) of the cancer. The clinical stage of the CaP is generally described
below:

(1) T1: The tumor cannot be felt during the DRE and is not seen during
imaging (any test that produces pictures of the inside of the body, such
as a CT scan). It may be found when surgery is done for another reason,
usually for benign prostate hypertrophy (BPH), or abnormal growth of
benign prostate cells.

(a) T1c: The tumor is found during a needle biopsy, usually because the
patient has an elevated PSA level.

(2) T2: The tumor is found only within the prostate, not other areas of the
body. It is large enough to be felt during the DRE.

(a) T2a: The tumor has invaded one-half of one lobe (part or side) of the
prostate and may be palpated during the DRE.

(b) T2b: The tumor has spread to more than one-half of one lobe of the
prostate, but not to both lobes and may be palpated during the DRE.

(c) T2c: The tumor has invaded both lobes of the prostate and may be
palpated during the DRE.

3.3. Pathological Stage

Following surgery to remove the prostate gland, an expert uropathologist
will assign the Gleason score and stage (extent of the size and spread of the
cancer). They utilize the standardized T, N, and M classification to define
TNM combinations to describe each stage of prostate cancer. The TNM is
an abbreviation for tumor (T), lymph node (N), and metastasis (M) to lymph
nodes and/or bone or other organs. Urologists look at these three parameters
to determine the stage (extent) of cancer (Table 1):
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Table 1. Prostate cancer pathologic stage grouping
chart (current system).

Stage Tumor Nodes Metastasis

I T1a, T1b, or T1c N0 M0
T2a N0 M0

Any T1 or T2a N0 M0
IIA T1a, T1b, or T1c N0 M0

T1a, T1b, or T1c N0 M0
T2a N0 M0
T2b N0 M0
T2b N0 M0

IIB T2c N0 M0
Any T1 or T2 N0 M0
Any T1 or T2 N0 M0

III T3a or T3b N0 M0
IV T4 N0 M0

Any T (lymph nodes +) N1 M0
Any T Any N M1

4. Quantitative Image Analysis of Nuclear Morphometry

4.1. Manual Digital Image (Planimetry) Analysis Technology

In 1982, David Diamond et al.45 was the first to utilize Graphpad and a Zeiss
Planapochromatic 100× oil immersion objective with a 12.5× ocular (total
magnification 1, 250×) to trace 300 malignant and benign nuclei from each
CaP case. Based upon this approach he easily separated the benign (normal)
nuclei from the malignant nuclei. Next, he compared nuclear size and shape
in all Stage B CaP cases that had long-term follow-up and determined that he
could with high accuracy separate those with a good prognosis from those with
a poor prognosis (metastasis) (p < 0.005). Using a circle = 1.0, he calculated
nuclear roundness factor (NRF) using the formula described in Eq. (1) and (2).

NRF =
( C

2π

)
√

A
π

(1)

Whereas the circularity form factor

C = 4πA
e2 (2)

Subsequently, the authors at the Brady Urological Institute of Johns Hopkins
University School of Medicine (JHUSOM) used Nuclear Roundness Variance
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(NRV) seen in Eq. (3) to predict CaP heterogeneity and tumor aggressive-
ness.46,47

Nuclear roundness = Radius (circumference)
radius (area)

= R
r

=
( P

2π

)
√

A
π

(3)

Eventually a commercially available hardware and software program became
available and the clinical value of NRV measurements were validated using a
Zeiss inverted IM microscope (Carl Zeiss, Inc., Thornwood, NY) equipped
with a Zeiss planapachromatic 100× oil immersion objective at a total magni-
fication of 2440×. The images were analyzed with the DynaCELL Motility
Morphometry Measurement workstation (JAW Associates, Inc., Annapolis,
MD). By this method, measurements differed by less than 5% among examiners
and the authors could confirm that this variable readily predicts progressive
disease and mortality of CaP.48–50 As further improvement, Alan Partin et al.51

was able to combine NRV with Gleason score, clinical stage and age to create the
“Prognostic Factor Score (PFS)” to predict three risk groups based on Kaplan-
Meier plots. Also, using a multivariate model, the PFS predicted disease-free
survival with statistical accuracy (p < 0.0001) for 100 CaP patients treated
surgically without adjuvant therapy, regardless of pathologic stage. Finally,
Veltri et al.52 confirmed that accuracy of NRV is significantly higher than
Gleason score to predict metastasis and CaP-specific death in men with long
term follow-up (median follow-up: 19 years). Hence, NRV alone and in
combinations with other clinical and pathologic features acts as a quantitative
measure of not only pleomorphisms which reflects CaP heterogeneity — but
when combined with other parameters predict CaP progression. Hence, NRV
is better able to identify aggressive phenotypes of CaP than Gleason score and
is associated with an increase in irregularity of the nuclear border; however,
currently there is no commercially viable tool to automatically measure this
NRV feature available.

4.2. Tissue Digital Imaging using Feulgen Stained Nuclei

The Feulgen staining reagent specifically and quantitatively binds to DNA
in cellular material. The reagent binds to DNA by uncovering the free
aldehyde groups in the DNA during the acid hydrolysis process, which then
reacts with the Feulgen reagent via a Shiff-Base interaction to form a stable,
colored compound (blue) that absorbs light at 560 nm.53,54 Figure 1 illustrates
examples of matched H&E and Feulgen histochemical stains of histology and
cytology tissue preparations.
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Fig. 1. Feulgen (upper row) and H&E (lower row) staining of prostate cancer with different
Gleason grades (GG) or adjacent benign prostate tissue in a tissue microarray.

4.3. The AutoCyte™ Pathology Workstation (AWP)

The AutoCyte™ Pathology Workstation (AWP) (TriPath Inc, Burlington, NC)
process starts with a calibrator slide made with normal rat liver tetraploid
nuclei that has been stained at the same time as the study tissue sections;
the APW imaging system (Fig. 2) is calibrated for the integrated optical
density (IOD). This is done by analyzing an external rat hepatocyte standard
from which a minimum of 500 tetraploid nuclei are captured, resulting in
a peak with a CV <2.0% and an IOD somewhere between 6500–8500,
depending on the intensity of the Feulgen stain lot. Next using the QUIC-
DNA v1.201software, we capture nuclear images of malignant Feulgen stained
Active Surveillance (AS) biopsy nuclei from a pathologist-marked biopsy
slide (∼150–200 per area). The QUIC-DNA v1.201software employs nuclear
morphometric descriptors (NMDs) and ∼40 selected nuclear features including
size, shape, and/or DNA content (pg DNA, IOD, intensity, and mean Gray
level) will be used for data analysis. Additional software employs QUIC-
Immuno to quantify immunohistochemical (qIHC) chromagen-based staining
for molecular biomarkers in cancer tissues.

4.4. Quantitative Nuclear Grade using AutoCyte™

A digital imaging approach described by Veltri et al. uses the AutoCyte™
Pathology Workstation (TriPath Inc., Burlington, NC, USA) and Feulgen
stained prostate nuclei to study the CaP in biopsy and RP specimens. By
capturing 150–200 nuclei (benign or cancer) and calculating variance of the
NMDs above using the AutoCyte™ DNA QUIC DNA v1.201 software. We
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Fig. 2. AutoCyte™ Pathology Workstation equipment (left), software and important features
(right).

devised methods to calculate a “Quantitative Nuclear Grade” (QNG) to make
predictions of grade, stage, metastasis and survival (Fig. 3). The method of
calculation we have applied is Multivariate Logistic Regression (MLR).26 Alter-
native statistical analysis identifying critical NMDs from among the 40 NMDs
that reliably distinguish higher risk from persistently very low risk patients
involves two stages: (1) high dimension reduction to reduce the number of
NMDs to a smaller subset, and (2) comparison of correlated receiver operating
characteristic (ROC) curves.55 Dimension reduction borrows from filtering
techniques developed for the analysis of very high-dimensional microarray data,
and will apply the correlation analysis of microarrays approach developed by
Dr. Kowalski to obtain a subset of markers selected as commonly,56 between
high and low groups, reproducible within each group.55,56 When QNG is
calculated, the best NMD features are selected that are most predictive and
least redundant NMDs that assist in differentiating the two classes of patients
(i.e. progressors and non-progressors). Figure 3 shows an example of how
QNG solutions are derived from the NMDs. Included are a Feulgen stain and
3D artificially color pixel maps of three individual nuclei.
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HOW IS QNG DONE? The computer calculates size, shape, DNA content, and chromatinHOW IS QNG DONE? The computer calculates size, shape, DNA content, and chromatin
texture based upon pixel maps of each nucleus.texture based upon pixel maps of each nucleus.

PCaPCa HGPINHGPIN NEMNEM
Feulgen DNA stainFeulgen DNA stain

3D pixel maps of single nuclei3D pixel maps of single nuclei Calculate 40 NuclearCalculate 40 Nuclear
Morphometric FeaturesMorphometric Features
from Pixel Mapsrom Pixel Maps

RESULT = Patient-Specific QNGRESULT = Patient-Specific QNG
“Dimension ReductionDimension Reduction”

“Logistic Model with NMD subsetLogistic Model with NMD subset” andand
“ROC Selection of Best ModelROC Selection of Best Model”

Capture Nuclear ImagesCapture Nuclear Images

Determine Variance Determine Variance 
of N=40 featuresof N=40 featuresN= 200 or more
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0.9465720.008949107.80499114.4505023.0000003-28561
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Fig. 3. Example of QNG solutions based on AutoCyte™ Pathology Workstation.

4.4.1. QNG to study Gleason grade differences

Veltri et al.57 used the AutoCyte™ Pathology Workstation (TriPath, Inc.,
Burlington, NC) digital imaging system and Feulgen stained prostatic nuclei
to study Gleason grade (GG) in RP specimens. A Gleason grade TMA-471
prepared by an expert uropathologist at JHUSOM, contained sets of four
cores (0.6 mm) per case of GG3, GG4 and GG5 CaP patterns. The concept
was to use the AutoCyte™ nuclear features on pools of 1100 nuclei from
these three GGs to determine the optimal variables to discriminate the three
GGs (3, 4, and 5) and is based on the MLR analysis in order to make
comparisons. Nine NMD features (perimeter, area, Feret X, Feret Y, Maximum
Feret, Intensity, Median OD, StdDev OD, and DNA ploidy) were selected
for all GG comparisons. The results yielded areas of ROC curve (ROC-
AUC) that distinguished differences among benign cancer-adjacent nuclei
and GG3 (ROC-AUC = 0.78); GG4 (ROC-AUC = 0.86) and GG5 (ROC-
AUC = 0.88) cancer areas with accuracies of 73%, 78% and 80% respectively.57

By calculating the predictive probability (PP) values, we noted significant
variations (i.e. marked heterogeneity) among the three GG patterns. Also,
using the CAS-200 system, Venkataraman et al.58 separated GG3 and GG4
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by evaluating prostate biopsies and the method yielded a 85% classification
accuracy using a three nuclear feature set (minimum diameter, angularity and
sum optical density) determined by decision tree analysis. The latter provides
one approach to determine GG based on quantitative nuclear morphometry.
Furthermore, our approach provides data to improve our understanding of
morphological variability in nuclear structure and its role in CaP during the
establishment of heterogeneity among Gleason grades. Hence, the importance
of automated computer-assisted quantitative nuclear morphometry to estimate
CaP Gleason grade is clearly illustrated by these methods.

4.4.2. QNG to predict CaP outcomes: biochemical recurrence

In 1996, Veltri et al.59 used the CAS-200 imaging system and only 38 NMDs to
predict CaP biochemical recurrence (BCR). The patient cohort included 115
patients with clinically localized CaP and the mean follow-up period in 70/115
patients without disease progression was 10.4 ± 1.7 years. Using backward
stepwise multivariate logistic regression (MLR) at a variable feature selection
stringency of p < 0.05, the variances of 11/38 of the NMDs were found
to be multivariately significant for predicting BCR (p < 0.00001; ROC-AUC
86%; sensitivity of 78%; specificity of 83%). Further, QNG and the postoperative
Gleason score when combined, yielded a MLR model for the prediction of BCR
yielding an ROC-AUC = 92% and having a sensitivity of 89% and specificity
of 84%. These two parameters (QNG and Gleason score) separated the 115
patients into three statistically significant “risk groups” (low to high) based
upon Kaplan-Meier analysis. Subsequently, employing an NCI Cooperative
Prostate Cancer Tissue Resource (CPCTR) tissue microarray (TMA) of 92
cases with long term follow-up (56 non-recurrences and 36 recurrences),
we showed that by combining nuclear features i.e. circular form factor (rho
−0.26; p = 0.012) and minimum Feret (rho −0.21; p = 0.048) with the
p300 (acetyltransferase) protein biomarker expression, we were able to predict
BCR both as a continuous or dichotomous variable and can be combined
with Gleason score for BCR risk stratification.60 Hence, by combining QNG
produced with Feulgen stained tissue preparations and a computer-assisted
image analysis system, we can enhance predictive accuracy for CaP outcomes.

4.4.3. QNG to predict CaP metastasis and CaP-specific survival

The prediction of high risk CaP requires having long-term patient follow-up
data to predict serious CaP outcomes like BCR, metastasis and survival.
Khan et al.61 working in our laboratory developed QNG signatures that
predicted progression to metastasis and/or CaP-mortality in 227 men that have
undergone RP. He also employed the AutoCyte™ Pathology Workstation and
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QUIC-DNA v1.201 morphology software to calculate QNG solutions. Khan
showed that a multivariate MLR model including routine pathology variables
and prostatectomy Gleason score yielded a ROC-AUC of 75% with an accuracy
of 59% at 90% sensitivity. The best QNG solution yielded an ROC-AUC of
84% and an accuracy of 70% at 90% sensitivity. The combined pathology-
QNG model retained LN status, prostatectomy Gleason score, and QNG and
yielded an ROC-AUC of 86% with an accuracy of 76% at 90% sensitivity.
Also, his data was also assessed via a Cox proportional hazards model and
produced the following univariately and multivariately significant hazard ratios
(HR): QNG = 3.5 and 2.9, respectively; LN = 2.7 and 1.8, respectively; and
prostatectomy Gleason score, 2.8 and 2.1, respectively. The QNG variable
proved to be a strong predictor of CaP progression to metastasis and/or
mortality in this study of advanced high risk CaP. Later, Veltri et al.62 confirmed
these results using a TMA consisting of 186 CaP cases with matched cancer
and adjacent benign normal-appearing areas (“field effects”) and employed the
same AutoCyte™ imaging technology to re-evaluate the use of QNG alone and
with pathological and clinical variables to predict metastasis and CaP death. The
routine pathology model yielded an ROC-AUC of 72.5%. Alternatively, the
QNG-benign and QNG-cancer area solutions yielded an ROC-AUC of 81.6%
and 79.9%, respectively. Kaplan-Meier plots for the routine clinicopathologic
variables; the QNG-benign and QNG-cancer area solutions were combined
with pathology to define three statistically significantly distinct risk groups
(low to high) to predict distant metastasis and/or death (p < 0.0001). Hence,
in both the cancer epithelial and the benign cancer-adjacent (“field effects”)
nuclear area, QNG solutions could predict metastasis and/or CaP death and
the Kaplan-Meier plots partitioned the patients into three groups and with
very significant log ranks to separate the risk groups. Therefore, QNG can
be combined with molecular biomarkers and clinicopathological features to
create a “combination signature” to predict recurrence, metastasis and survival
of high risk CaP patients.60–62 The future is to automate a commercially
viable operating system and apply these imaging tools by combining the
best QNG and protein biomarker solution to generate to predict those high
risk cancers that will progress so that appropriate early intervention can be
instituted.

5. Engineering Approaches to Quantitative
Histomorphometry

Today, the emergence of the rapid and high resolution scanning microscopy
and the development of novel machine vision imaging techniques (virtual
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pathology) are aiding pathologists to improve the analysis of histologic tissue
images for diagnosis and prognosis.63,64 Automated computer-assisted image
applications have been the recent focus for CaP and other cancers. The develop-
ment of machine vision techniques have been applied to routine H&E stained
tissue sections, aiding pathologists to analyze CaP tissue images and accurately
and reproducibly evaluate tissue histomorphometry of CaP pathology. Rapid
and steady progress during the past decade has seen novel applications of
automated quantitative image analysis including improved cancer cell nuclear
segmentation and tissue texture analysis to assess different Gleason grading
patterns based on H&E and Feulgen histochemical stained tissue images have
been reported.24–26,57,63–66 Numerous approaches to quantify nuclear size,
shape and texture analysis of these CaP images have been successfully employed
as shown in Table 2. The biomedical and electrical engineers have used Wavelet
and multiwavelet transforms, fractal analysis, Voronoi and Delaunay graph
tessellations, and other novel image computational tools for tissue feature
extraction and classification in studies of the automated quantitative histologic
tumor grading. Below we have summarized collaborative efforts to demonstrate
the potential value of this newer approach to automated computer-assisted
pathology.

5.1. Wavelet Transforms

Previous work by Jafari-Khouzani et al.77 has used wavelet transforms for
the grading of histopathology images of prostate cancer. These transforms
are overlaid onto the image to identify textures. Wavelet transforms have
been popular for characterizing image texture and have been used to extract
energy and entropy features for identifying prostate cancer malignancy.68,77

Furthermore, multi-wavelet transforms have been used to extend upon single
wavelet transforms via simultaneous representation of orthogonally, symmetry,
and moments.77 For multi-wavelet features, energy can describe the amount
of signal in a given resolution, while entropy describes differences in the
submatrices.

Fractal analysis of wavelets has been also been investigated by Almuntashri
et al.68 for classifying Gleason grade from prostate histology images. Wavelet
coefficients are obtained from each decomposition level measure spatial archi-
tecture. The corresponding submatrices from the decomposition each contain
a fractal dimension which can be aggregated to obtain an averaged wavelet-
based fractal dimension for the image. This type of fractal dimension analysis
has been shown to correctly classify grade 3 cancers at a 90% classification
rate.68
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Table 2. Image derived histologic features to model disease patterns on histology.

Feature Class Derived attributes Relevance to histology

Voronoi
Tessellation

Number of nodes, number of edges,
cyclomatic number, number of
triangles, number of k-walks, spectral
radius, eigenexponent, Randic index,
area, roundness factor, area disorder,
roundness factor homogeneity.67

Tissue architecture and
arrangement of nuclei.

Delaunay Tri-
angulation

Number of nodes, edge length, degree,
number of edges, cyclomatic number,
number of triangles, number of
k-walks, spectral radius, Eigen
exponent, Wiener index, eccentricity,
Randic index, fractal dimension.67

Minimum
Spanning
Tree

Number of nodes, edge length, degree,
number of neighbors, Wiener index,
eccentricity, Randic index, Balaban
index, fractal dimension.68

Cell-Graph
(local)

Giant Connected Component,
eccentricity, number of edges,
Connected Component C,D,
E.24,69–72

Nuclear,
Glandular
Morphology

Margin spicularity, fractal dimension,
height to width ratio, roundness
factor, area overlap ratio, area disorder,
perimeter, diameter, explicit shape
descriptors (medial axis based shape
modeling of individual glands).73,74

Nuclear and glandular size
boundary, appearance

Cell
Orientation
Entropy/
Co-occurring
Gland
Tensors

Contrast energy, Contrast inverse
moment, Contrast average, Contrast
variance, Contrast entropy, Intensity
average, Intensity variance, Intensity
entropy, Entropy, Energy, Correlation,
2 measures of information.75,76,81

Second-order descriptors of
nuclear orientation in local
neighborhoods

5.2. Intensity Co-occurrence Texture

Another method of describing texture in images is via intensity co-occurrence
matrices. Second order co-occurrence features78 are calculated from a symmet-
ric co-occurrence matrix which aggregates the frequency in which two pixel
intensities co-occur within a pre-determined window distance around each
pixel. The size of the co-occurrence matrix is determined by the maximum
possible intensity value in the image, which for 8-bit images is 28 = 256.
Subsequent features such as Haralick texture features79 can be computed from
each window.
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Co-occurrence matrix based features have been used to describe textures
for prostate histopathology. Diamond et al.74 showed that Haralick features
could be used to discriminate stroma from prostate cancer in 100 × 100 pixel
regions. However, they also noted that improvement to discrimination could be
achieved via the use of nuclear morphology. Results using a combination of both
morphological and co-occurrence texture features showed 89% classification
accuracy on a three class case (stroma, normal, and cancerous regions).

5.3. Nuclear Shape, Orientation, and Architectural Features
for Grading and Assessing Aggressive Prostate Cancers

5.3.1. Adaptive active contour model (AdACM) for nuclei
segmentation

Useful nuclear features to be extracted for the purpose of identifying CaP
progression include that of nuclear morphology, texture, orientation, and
arrangement. Extraction of these features rely heavily on the ability to accurately
detect and segment nuclei on digitized prostate histology samples. However,
in prostate histology, overlapping nuclei is a common occurrence. These
overlapping objects (nuclei, lymphocytes, etc.) often appear clumped together
as one single object. There is a need to resolve multiple overlapping nuclei
and accurately segment them for the subsequent feature extraction. Ali et al.
used an Adaptive Active Contour Model (AdACM),25 which uses a shape
prior to aid in the identification of individual nuclei. The ability of the
model to selectively invoke energy terms in the variational functional allows
for resolving (a) overlaps between nuclei and (b) significant computational
savings.25 Segmentation schemes such as AdACM (see Fig. 4) allow for

(a) (b) (c) (d) 

Fig. 4. (a) Original Gleason grade 4 CaP TMA, (b) automated nuclear segmentation by the
AdACM scheme, (c) Magnification of a ROI on the TMA reveals that the scheme is able to
accurately resolve overlaps between nuclei, and (d) Delaunay triangulation graph obtained by
connecting nuclear centers [segmented in (b)].
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Fig. 5. Low dimensional representation of histomorphometric features shows separation of
(a) grades 3, 4 and (b) Gleason scores 6, 7, 8, 9.

extraction of sophisticated histomorphometric features (e.g. characterizing the
precise spatial distribution of nuclei [see Fig. 4(d)]) to distinguish different
Gleason patterns of CaP (Fig. 4).

In previous work25 a predictor based on nuclear features derived from
prostate TMAs was able to discriminate intermediate Gleason grades [See
Fig. 5(a)] as well as Gleason scores [See Fig. 5(b)]. Figures 5(a), (b) reveal low
dimensional projections of morphologic features derived from TMAs from 40
different patient studies. The clustering clearly shows very good discrimination
between Gleason grades 3, 4 [Fig. 5(a)] with a classification accuracy >85%
and Gleason scores. Figure 5(b) shows the low dimensional representation of
40 patients with different Gleason scores (3+3, 3+4, 4+3, 4+4, 4+5). Note
in Fig. 5(b), the separation between 3 + 4 and 4 + 3 Gleason scores; clinically
the most challenging problem.

5.3.2. Nuclear orientation

Recent work by Lee et al.75 has suggested that the information in nuclear
orientations can be used to predict prostate cancer progression. Cell orientation
entropy (COrE) aggregates co-occurrences of similarly orientated nuclei within
local neighborhoods defined by local cell graphs and calculates second order
statistics to determine characteristics of the tissue (Fig. 6). Statistics such as
entropy are used to quantify the disorder of nuclear orientation within the
tissue. Mean and standard deviations of these statistics across neighborhoods
provide features for identifying CaP progressors. These methods were shown
to accurately predict biochemical recurrence in 74% of CaP patients following
radical prostatectomy, and found to be complementary to architectural and
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Fig. 6. (a) Automated cell segmentation by AdACM on CaP TMA core, (b) capturing cell
orientation, (c) subgraph localization of nuclear neighborhoods, (d) second order co-occurrence
features by COrE methodology.

Fig. 7. Different graph tessellations can be used to extract architectural information across
objects such as glands or nuclei. Common tesselations used are based on (a) Voronoi,
(b) Delaunay, and (c) Minimum spanning trees.

morphological features for predicting CaP progression, correctly identifying
biochemical recurrence (82% accuracy) in the CaP patients following radical
prostatectomy.

5.3.3. Nuclear architecture

Formally, a simple graph is an undirected and un-weighted graph without self-
loops, with V and E being the node and edge set of graph G, respectively.
Graphs are effective techniques to represent structural information by defining
a large set of topological features. These features are quantified by definition of
computable metrics. Features will be calculated that describe the spatial location
of nuclei within the histological image. Nuclear centers will be used to calculate
a set of features such as the number and density of the nuclei in the image.
Graph-based algorithms (e.g. Delaunay Triangulation, Voronoi, Minimum
spanning tree)67,68 can then be directly computed from the original image,
using the nuclear, glandular centroids as vertices of the graphs. Figure 7(d)
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shows a minimum spanning tree graph-based representation of intermediate
Gleason grade prostate histology image.

While these methods focus on global architecture, researchers have
developed methods for extracting features which describe local architecture
which can differentiate between stroma and epithelial regions of the prostate.
Gunduz et al.70 noted a natural clustering of cells and utilized cell graphs
to model gliomas and differentiate cancerous, healthy, and non-neoplastic
inflamed tissue. These graphs are created via edges between nearest neighbors
between nuclei as nodes. Demir et al.71 and others24,69–72 have developed
a set of graph features using features such as connected component size
and eccentricity to quantify the local cell-graphs. Features were extracted
from simple, probabilistic, and hierarchical cell-graphs, as well as a hybrid
combination of simple and hierarchical approaches. Similarly, Ali et al.24,72

utilized attributes of probabilistic cell-cluster graphs for extracting features
from prostate cancer tissue microarrays. Modeling prostate cancer via subgraphs
offers the advantage of being able to explicitly and independently model
spatial architecture of nuclei within the epithelial and stromal regions and 83%
classification accuracy was found by combining features extracted from these
regions independently.72

5.4. Gland Based Features Grading and Assessing
Aggressiveness in Prostate Cancers

5.4.1. Markov random fields for automated gland segmentation

Monaco et al. previously developed a novel Markov Random field (MRF)
segmentation algorithm80 for identifying CaP regions from whole mount
histologic section. Glands are first automatically segmented and then clas-
sified as benign or cancerous based on features extracted from the gland
(area, morphology). The MRF then identifies cancerous glands based on the
assumption that CaP glands tend to be closer to other CaP glands. We showed
that this automated segmentation scheme was able to more precisely segment
CaP regions compared to the rough annotation provided by the pathologist.
Furthermore, this methodology was shown to identify cancerous regions on
whole mount prostate histology with 93% accuracy.80

5.4.2. Gland morphology

Additionally, others have used gland lumen segmentation to characterize
prostate cancer for the purpose of differentiating different tissue types and
identifying aggressive CaP.74,76 From the segmented boundaries of each
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Fig. 8. Medial axis shape (MAS) model (cyan) and surface vectors (dark blue) for a set of
glands (green). MAS allows for extraction of glandular morphological features, then used to
train the image based classifier then used to discriminate good/bad outcome CaP.

gland, morphological features such as Area Ratio, Distance Ratio, Standard
Deviation of Distance, Variance of Distance, Distance Ratio, Perimeter Ratio,
Smoothness, Invariant Moment 1–7, Fractal Dimension, Fourier Descriptor
1–10 (Mean, Std. Dev, Median, Min/Max of each) can be extracted to
identify cancer progressors.64 These methods have been shown to be able to
differentiate between different Gleason grades64 as well as CaP progressors.76

Sparks et al. has developed Explicit Shape Descriptors (ESDs)73 to deter-
mine subtle differences between object morphology. ESDs describe gland
morphology via fitting a medial axis shape model (MASM) to each gland (see
Fig. 8). ESDs were shown to distinguishing glands from grades 3 and 4 with
an accuracy of over 80%.

5.4.3. Gland orientation

Normal benign glands align themselves with respect to the fibromusclar
stroma, and thus display a coherent directionality.81 Malignant prostate glands,
however, lose their capability to orient themselves and display no preferred
directionality. Additionally with increasing degree of malignancy and disease
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Fig. 9. (a) Gland orientations are quantified via a 1st order tensor. Local gland neighborhoods
are identified via subgraph construction. (c) Subgraphs create local clusters of neighboring
glands from which to extract neighborhood tensor co-occurrence information. (d) Tensor co-
occurrence matrix is descriptive of the gland tensor entropy as brighter co-occurrence values in
the off-diagonal cells, suggest higher co-occurrence of differing orientations.

aggressiveness, the coherence of gland orientations within localized regions
is completely disrupted. In such cases, the entropy (which captures disorder)
in gland orientations is shown to increase as a function of malignancy. Co-
occurring gland tensors (CGTs) provide a means to quantify this disorder.76

Figure 9 illustrates the use of gland orientation in local subgraphs to construct
tensor co-occurrence matrices. These co-occurrence matrices capture the
disorder in the gland orientations, and second order statistics of these matrices
allow for the differentiation of aggressive and non-aggressive CaP.

For a cohort of 40 intermediate-risk (mostly Gleason sum 7) surgically
cured CaP patients where half suffered biochemical recurrence, the CGT
features were able to predict biochemical recurrence with 73% accuracy.
Additionally, for 80 regions of interest chosen from the 40 studies, corre-
sponding to both normal and cancerous cases, CGT features yielded a 99%
accuracy. CGTs were shown to be statistically significantly (p < 0.05) better
at predicting biochemical recurrence compared to state-of-the-art quantitative
histomorphometric methods such as gland morphology, and intensity texture
and postoperative Kattan prostate cancer nomogram.

6. Summary

In summary, this chapter demonstrates how prostate cancer quantitative
histomorphometry can be used to extract and employ computer-assisted image
features and hence serve as a potential new and innovative predictive tool to
improve determination of aggressive phenotypes of cancer. The prior semi-
automated approach of Dr. Veltri using a spectrophotometer microscope,
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though accurate and capable of predicting stage, recurrence and progression of
prostate cancer, it has deficiencies that limit its extension to whole slide image.
The AutoCyte Pathology Workstation is no longer commercially available and
new approaches had to be sought to prove the value of computer-assisted
histomorphometry. Dr. Veltri is currently employing commercially available
image analysis software to evaluate Feulgen (DNA) and H&E histochemical
stains. However, the collaboration started a few years ago with Dr. Madabhushi
and his team at Case Western Reserve University has afforded the opportunity
to develop and validate new methods that can be applied for high throughput
quantification and feature analysis from whole slide images. These novel tools
could form the basis of future software tools to conduct, in cooperation
with the pathologist, automated, rapid and reproducible identification and
quantification of tissue histology morphologic and molecular events, enabling
machine based predictions of tumor aggressiveness and outcomes such as
recurrence, metastasis and survival.

References

1. R. Siegel, D. Naishadham, & A. Jemal, “Cancer statistics,” 2013. CA 63, 11–30 (2013).
2. B. E. Sirovich, L. M. Schwartz, & S. Woloshin, “Screening men for prostate and colorectal

cancer in the United States: Does practice reflect the evidence?” JAMA 289, 1414–1420
(2003).

3. H. B. Carter et al., “Early detection of prostate cancer: AUA Guideline,” J Urology 190,
419–426 (2013).

4. A. W. Partin, “Early detection of prostate cancer continues to support rational, limited
screening,” J Urology 190, 427–428 (2013).

5. R. Etzioni et al., “Overdiagnosis due to prostate-specific antigen screening: lessons from
U.S. prostate cancer incidence trends,” J Nat Cancer Institute 94, 981–990 (2002).

6. R. Etzioni et al., “Quantifying the role of PSA screening in the US prostate cancer mortality
decline,” Cancer Causes Control 19, 175–181 (2008).

7. S. A. Strope & G. L. Andriole, “Prostate cancer screening: Current status and future
perspectives,” Nat Rev Urology 7, 487–493 (2010).

8. G. Draisma et al., “Lead times and overdetection due to prostate-specific antigen screening:
estimates from the European Randomized Study of Screening for Prostate Cancer,” J Nat
Cancer Institute 95, 868–878 (2003).

9. D. Sundi et al., “Very-high-risk localized prostate cancer: Definition and outcomes,”
Prostate Cancer Prostatic Dis 17, 57–63 (2014).

10. T. Atsumi et al., “Inflammation amplifier, a new paradigm in cancer biology,” Cancer
Research 74, 8–14 (2014).

11. E. A. Platz & A. M. De Marzo, “Epidemiology of inflammation and prostate cancer,” J
Urology 171, S36–40 (2004).



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch15 page 321

Histomorphometry of Digital Pathology: Case Study in Prostate Cancer 321

12. A. J. Schetter, N. H. Heegaard & C. C. Harris, “Inflammation and cancer: Interweaving
microRNA, free radical, cytokine and p53 pathways,” Carcinogenesis 31, 37–49 (2010).

13. C. V. Dang, “Rethinking the Warburg effect with Myc micromanaging glutamine
metabolism,” Cancer Res 70, 859–862 (2010).

14. C. V. Dang, A. Le & P. Gao, “MYC-induced cancer cell energy metabolism and therapeutic
opportunities,” Clinical Cancer Res 15, 6479–6483 (2009).

15. J. L. Spratlin, N. J. Serkova & S. G. Eckhardt, “Clinical applications of metabolomics in
oncology: a review,” Clinical Cancer Res 15, 431–440 (2009).

16. S. I. Grivennikov, F. R. Greten & M. Karin, “Immunity, inflammation, and cancer,” Cell
140, 883–899 (2010).

17. N. Rajarubendra, N. Lawrentschuk, D. M. Bolton, L. Klotz & I. D. Davis, “Prostate cancer
immunology — an update for Urologists,” BJU Int 107, 1046–1051 (2011).

18. M. J. Rutkowski, M. E. Sughrue, A. J. Kane, S. A. Mills & A. T. Parsa, “Cancer and the
complement cascade,” Mol Cancer Res 8, 1453–1465 (2010).

19. C. C. Sprenger, S. R. Plymate & M. J. Reed, “Aging-related alterations in the extracellular
matrix modulate the microenvironment and influence tumor progression,” In J Cancer.
J Int du Cancer 127, 2739–2748 (2010).

20. O. E. Franco & S. W. Hayward, “Targeting the tumor stroma as a novel therapeutic
approach for prostate cancer,” Adv Pharmacology 65, 267–313 (2012).

21. D. Gao, L. T. Vahdat, S. Wong, J. C. Chang & V. Mittal, “Microenvironmental
regulation of epithelial-mesenchymal transitions in cancer,” Cancer Res 72, 4883–4889
(2012).

22. M. A. Swartz et al., “Tumor microenvironment complexity: Emerging roles in cancer
therapy,” Cancer Res 72, 2473–2480 (2012).

23. J. Mohler et al., “NCCN clinical practice guidelines in oncology: prostate cancer,” J Nat
Comprehensive Cancer Network 8, 162–200 (2010).

24. S. Ali, R. Veltri, J. A. Epstein, C. Christudass & A. Madabhushi, “Cell cluster graph for
prediction of biochemical recurrence in prostate cancer patients from tissue microarrays,”
Proc Spie 8676 (2013).

25. S. Ali, R. Veltri, J. I. Epstein, C. Christudass & A. Madabhushi, “Adaptive energy selective
active contour with shape priors for nuclear segmentation and gleason grading of prostate
cancer,” Medical Image Computing and Computer-assisted Intervention International
Conference on Medical Image Computing and Computer-Assisted Intervention 14, 661–
669 (2011).

26. R. W. Veltri, C. S. Christudass & S. Isharwal, “Nuclear morphometry, nucleomics and
prostate cancer progression,” Asian J Andrology 14, 375–384 (2012).

27. M. J. Carmichael et al., “Deoxyribonucleic acid ploidy analysis as a predictor of recurrence
following radical prostatectomy for stage T2 disease,” J Urology 153, 1015–1019
(1995).

28. S. M. Falzarano & C. Magi-Galluzzi, “Prostate cancer staging and grading at radical
prostatectomy over time,” Adv Anatomic Pathology 18, 159–164 (2011).

29. M. Fiorentino, E. Capizzi & M. Loda, “Blood and tissue biomarkers in prostate
cancer: State of the art,” Urologic Clinics North Am 37, 131–141, Table of Contents
(2010).

30. Y. Fradet, “Biomarkers in prostate cancer diagnosis and prognosis: beyond prostate-specific
antigen,” Curr Opin Urology 19, 243–246 (2009).



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch15 page 322

322 R. W. Veltri et al.

31. S. Isharwal et al., “Prognostic value of Her-2/neu and DNA index for progression,
metastasis and prostate cancer-specific death in men with long-term follow-up after radical
prostatectomy,” Int J Cancer J Int du Cancer 123, 2636–2643 (2008).

32. S. Isharwal et al., “DNA Ploidy as surrogate for biopsy gleason score for preoperative
organ versus nonorgan-confined prostate cancer prediction,” Urology 73, 1092–1097
(2009).

33. D. V. Makarov, S. Loeb, R. H. Getzenberg & A. W. Partin, “Biomarkers for prostate
cancer,” Annual Rev Med 60, 139–151 (2009).

34. G. Ploussard & A. de la Taille, “Urine biomarkers in prostate cancer,” Nat Rev Urology 7,
101–109 (2010).

35. G. Sardana, B. Dowell & E. P. Diamandis, “Emerging biomarkers for the diagnosis and
prognosis of prostate cancer,” Clin Chem 54, 1951–1960 (2008).

36. D. Sundi et al., “Identification of men with the highest risk of early disease recurrence after
radical prostatectomy,” Prostate 74, 628–636 (2014).

37. H. B. Carter et al., “Prostate-specific antigen and all-cause mortality: Results from the
Baltimore longitudinal study On aging,” J Nat Cancer Institute 96, 557–558 (2004).

38. S. E. Eggener et al., “Predicting 15-year prostate cancer specific mortality after radical
prostatectomy,” J Urology 185, 869–875 (2011).

39. J. Fang et al., “Low levels of prostate-specific antigen predict long-term risk of prostate
cancer: Results from the Baltimore Longitudinal Study of Aging,” Urology 58, 411–416
(2001).

40. C. G. Rogers, M. A. Khan, M. Craig Miller, R. W. Veltri & A. W. Partin, “Natural history of
disease progression in patients who fail to achieve an undetectable prostate-specific antigen
level after undergoing radical prostatectomy,” Cancer 101 (2004).

41. E. J. Wright et al., “Prostate specific antigen predicts the long-term risk of prostate
enlargement: Results from the Baltimore Longitudinal Study of Aging,” J Urology 167,
2484–2487; discussion 2487–2488 (2002).

42. D. F. Gleason, “Classification of prostatic carcinomas,” Cancer Chemotherapy Reports 50,
125–128 (1966).

43. D. F. Gleason, “Histologic grading of prostate cancer: A perspective,” Hum Pathology 23,
273–279 (1992).

44. J. I. Epstein, “An update of the Gleason grading system,” J Urology 183, 433–440 (2010).
45. D. A. Diamond, S. J. Berry, C. Umbricht, H. J. Jewett & D. S. Coffey, “Computerized

image analysis of nuclear shape as a prognostic factor for prostatic cancer,” Prostate 3,
321–332 (1982).

46. M. C. Benson, D. C. McDougal & D. S. Coffey, “The application of perpendicular and
forward light scatter to assess nuclear and cellular morphology,” Cytometry 5, 515–522
(1984).

47. M. C. Benson, D. C. McDougal & D. S. Coffey, “The use of multiparameter flow
cytometry to assess tumor cell heterogeneity and grade prostate cancer,” Prostate 5, 27–45
(1984).

48. J. I. Epstein, S. J. Berry & J. C. Eggleston, “Nuclear roundness factor. A predic-
tor of progression in untreated Stage A2 prostate cancer,” Cancer 54, 1666–1671
(1984).



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch15 page 323

Histomorphometry of Digital Pathology: Case Study in Prostate Cancer 323

49. J. L. Mohler, A. W. Partin, J. I. Epstein, W. D. Lohr & D. S. Coffey, “Nuclear roundness
factor measurement for assessment of prognosis of patients with prostatic carcinoma.
II. Standardization of methodology for histologic sections,” J Urology 139, 1085–1090
(1988).

50. J. L. Mohler, A. W. Partin, W. D. Lohr & D. S. Coffey, “Nuclear roundness factor
measurement for assessment of prognosis of patients with prostatic carcinoma. I. Testing
of a digitization system,” J Urology 139, 1080–1084 (1988).

51. A. W. Partin et al., “Use of nuclear morphometry, gleason histologic scoring, clinical stage,
and age to predict disease-free survival among patients with prostate cancer,” Cancer 70,
161–168 (1992).

52. R. W. Veltri, S. Isharwal, M. C. Miller, J. I. Epstein & A. W. Partin, “Nuclear roundness
variance predicts prostate cancer progression, metastasis, and death: A prospective evalua-
tion with up to 25 years of follow-up after radical prostatectomy,” Prostate 70, 1333–1339
(2010).

53. J. E. Gill & M. M. Jotz, “Further observations on the chemistry of pararosaniline-Feulgen
staining,” Histochemistry 46, 147–160 (1976).

54. E. Schulte & D. Wittekind, “Standardization of the Feulgen-Schiff technique. Staining
characteristics of pure fuchsin dyes; a cytophotometric investigation,” Histochemistry 91,
321–331 (1989).

55. E. R. Delong, D. M. Delong & D. I. Clarkepearson, “Comparing the areas under 2 or
more correlated receiver operating characteristic curves — a nonparametric approach,”
Biometrics 44, 837–845 (1988).

56. J. Kowalski, A. Blackford, C. Feng, A. J. Mamelak & D. N. Sauder, “Nested, non-
parametric, correlative analysis of microarrays for heterogenous phenotype characteriza-
tion,” Stat Med 26, 1090–1101 (2007).

57. R. W. Veltri et al., “Significant variations in nuclear structure occur between and within
Gleason grading patterns 3, 4, and 5 determined by digital image analysis,” Prostate 67,
1202–1210 (2007).

58. G. Venkataraman et al., “Morphometric signature differences in nuclei of Gleason pattern 4
areas in Gleason 7 prostate cancer with differing primary grades on needle biopsy,” J Urology
181, 88–93; discussion 93–84 (2009).

59. R. W. Veltri, M. C. Miller, A. W. Partin, D. S. Coffey & J. I. Epstein, “Ability
to predict biochemical progression using Gleason score and a computer-generated
quantitative nuclear grade derived from cancer cell nuclei,” Urology 48, 685–691
(1996).

60. S. Isharwal et al., “p300 (histone acetyltransferase) biomarker predicts prostate cancer
biochemical recurrence and correlates with changes in epithelia nuclear size and shape,”
Prostate 68, 1097–1104 (2008).

61. M. A. Khan et al., “Quantitative alterations in nuclear structure predict prostate carcinoma
distant metastasis and death in men with biochemical recurrence after radical prostatec-
tomy,” Cancer 98, 2583–2591 (2003).

62. R. W. Veltri et al., “Ability to predict metastasis based on pathology findings and alterations
in nuclear structure of normal-appearing and cancer peripheral zone epithelium in the
prostate,” Clin Cancer Res 10, 3465–3473 (2004).



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch15 page 324

324 R. W. Veltri et al.

63. S. Doyle, M. Feldman, J. Tomaszewski & A. Madabhushi, “A boosted Bayesian multires-
olution classifier for prostate cancer detection from digitized needle biopsies,” IEEE Trans
Bio-medical Eng 59, 1205–1218 (2012).

64. A. Madabhushi, S. Agner, A. Basavanhally, S. Doyle & G. Lee, “Computer-aided prognosis:
Predicting patient and disease outcome via quantitative fusion of multi-scale, multi-modal
data,” Computerized Medical Imaging Graphics 35, 506–514 (2011).

65. M. Gao, P. Bridgman & S. Kumar, “Computer aided prostate cancer diagnosis using image
enhancement and JPEG2000,” P Soc Photo-Opt Ins 5203, 323–334 (2003).

66. P. Tiwari, S. Viswanath, G. Lee & A. Madabhushi, “Multi-modal data fusion schemes for
integrated classification of imaging and non-imaging biomedical data,” I S Biomed Imaging
165–168 (2011).

67. W. A. ChristensBarry & A. W. Partin, “Quantitative grading of tissue and nuclei in prostate
cancer for prognosis prediction,” J Hopkins Apl Tech D 18, 226–233 (1997).

68. A. Almuntashri et al., “Gleason grade-based automatic classification of prostate cancer
pathological images,” IEEE Sys Man Cybern 2696–2701 (2011).

69. C. Demir, S. H. Gultekin & B. Yener, “Augmented cell-graphs for automated cancer
diagnosis,” Bioinformatics 21, 7–12 (2005).

70. C. Gunduz, B. Yener & S. H. Gultekin, “The cell graphs of cancer,” Bioinformatics 20,
145–151 (2004).

71. C. Gunduz-Demir, “Mathematical modeling of the malignancy of cancer using graph
evolution,” Math Biosci 209, 514–527 (2007).

72. S. Ali, J. Lewis & A. Madabhushi, “Spatially aware cell cluster(SpACCl) graphs: predicting
outcome in oropharyngeal p16+ tumors,” Medical Image Computing Computer-Assisted
Intervention 2013 Lecture Notes in Computer Science 8149, 412–419 (2013).

73. R. Sparks & A. Madabhushi, “Explicit shape descriptors: Novel morphologic features for
histopathology classification,” Med Image Anal 17, 997–1009 (2013).

74. J. Diamond, N. H. Anderson, P. H. Bartels, R. Montironi & P. W. Hamilton, “The use of
morphological characteristics and texture analysis in the identification of tissue composition
in prostatic neoplasia,” Hum Pathology 35, 1121–1131 (2004).

75. G. Lee et al., “Cell orientation entropy (COrE): Predicting biochemical recurrence
from prostate cancer tissue microarrays,” Medical Image Computing Computer-assisted
Intervention Int Conf Medical Image Computing Computer-Assisted Intervention 16,
396–403 (2013).

76. G. Lee et al., “Co-occurring gland tensors in localized cluster graphs: Quantitative
histomorphometry for predicting biochemical recurrence for intermediate grade prostate
cancer,” 2013 IEEE 10th International Symp Biomedical Imaging (Isbi), 113–116
(2013).

77. K. Jafari-Khouzani & H. Soltanian-Zadeh, “Multiwavelet grading of pathological images
of prostate,” IEEE Trans Bio-medical Eng 50, 697–704 (2003).

78. S. Doyle, M. D. Feldman, N. Shih, J. Tomaszewski & A. Madabhushi, “Cascaded
discrimination of normal, abnormal, and confounder classes in histopathology: Gleason
grading of prostate cancer,” BMC Bioinformat 13, 282 (2012).

79. R. M. Haralick, K. Shanmuga & I. Dinstein, “Textural features for image classification,”
IEEE T Syst Man Cyb Smc3, 610–621 (1973).



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch15 page 325

Histomorphometry of Digital Pathology: Case Study in Prostate Cancer 325

80. J. P. Monaco et al., “High-throughput detection of prostate cancer in histological sections
using probabilistic pairwise Markov models,” Med Image Anal 14, 617–629 (2010).

81. G. Lee, R. Sparks, S. Ali, N. N. Shih, M. D. Feldman, E. Spangler, T. Rebbeck, J.
E. Tomaszewski, A. Madabhushi, “Co-occuring gland angularity in localized subgraphs:
predicting biochemical recurrence in intermediate-risk prostate cancer patients,” PLOS
ONE 9, e97954 (2014).



July 25, 2013 17:28 WSPC - Proceedings Trim Size: 9.75in x 6.5in icmp12-master

This page intentionally left blankThis page intentionally left blank



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch16 page 327

Chapter 16

Automated Diagnosis of
Diabetic Retinopathy: Fundamentals,
Current State of Art and Perspectives

Arturo Aquino

Control and Robotics Research Group,
High Technical School of Engineering,

University of Huelva, La Rábida (Palos de la Frontera),
Huelva, Andalusia, Spain

E-mail: arturo.aquino@diesia.uhu.es

Diabetic retinopathy (DR) is the first cause of blindness in people of working age in
the developed countries. In spite of DR not being a curable illness, it can be treated
if it is detected in its early stages. However, this early detection is not always possible
since DR patients do not perceive symptoms until the illness is in advance stages, when
treatment is less effective. This is why diabetic patients are periodically examined in the
frame of preventive screening programs. Nevertheless, effectiveness of these preventive
protocols is compromised due to the human and material resources needed to manage
a huge number of patients needing revisions. This is why, especially over the last two
decades, a great effort has been carried out by the scientific community to develop
reliable and accurate systems for the automated detection of DR.

On the one hand, this chapter describes the medical and technical fundamentals
of the automated detection of DR. On the other hand, outstanding comprehensive
systems tested within the frame of screening programs as clinical trials are reviewed in
order to assess the current state of art of the topic and its perspectives.

1. Introduction

Diabetic retinopathy (DR) is a chronic retinal disease which nowadays consti-
tutes one of the most common causes of vision loss and blindness.1,2 Actually,
statistics of incidence indicates that DR is the first cause of blindness in
people of working age in the industrialized world.3 DR is a consequence
of diabetes-mellitus, illness which produces glucose concentration elevation
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in blood. This abnormal high glucose concentration damages the eye vessel
endothelium provoking the set of damages associated to the illness. Although
diabetes affection does not necessarily involve vision impairment, about 2%
of the patients affected by this disorder are blind and 10% undergo vision
degradation after 15 years of diabetes4,5 as a consequence of DR complications.
The estimated prevalence of diabetes for all age groups worldwide was 2.8% in
2000 and 4.4% in 2030.6

Despite DR being not a curable disease, visual impairment can be avoidable
in 98% of cases if the illness is detected and treated in its early stages.7

In this respect, laser photocoagulation has demonstrated to be an effective
treatment for preventing major vision loss produced by DR.8,9 In spite of it,
the early illness detection is a difficult task since affected people do not perceive
symptoms until visual loss develops, and this usually happens in the later disease
stages, when treatment is less effective. This is why population potentially at
risk of being affected by DR, i.e. diabetic population, has to be periodically
examined by their public health systems in search of early DR signs. However,
this preventive action involves a huge challenge for health systems due to the
high number of ophthalmologists and material resources needed to attend so
many patients needing ophthalmologic revision. Furthermore, this fact ends
up being a limiting factor.10

DR is diagnosed by means of digital retinal image inspection, and the use
of digital images provides the chance of increasing effectiveness of preventive
protocols by means of the use of a computerized approach. Concretely, the
successful development of a system to automatically filtrate cases of patients not
affected by the disease or, even, to automatically grade the illness stage, would
reduce the specialists’ workload and increase the effectiveness of preventive
protocols and early therapeutic treatments. That is why an intensive research
has been carried out over the last two decades towards the development of
such a system sufficiently accurate and reliable to be included in the mentioned
preventive protocols.

This chapter has the aim of being a comprehensive overview of the
automated detection of DR. Firstly, the topic is widely described and motivated
from a medical point of view. Secondly, the goal of the automated detection of
DR is formulated in terms of engineering as it has been faced by the scientific
community over the years. Then, once the topic is introduced and formulated,
comprehensive systems for the automated detection of DR tested within the
frame of screening programs recently presented in the literature are reviewed.
Finally, the chapter ends by discussing about short term perspectives of the
topic under study.
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2. The Retina

The retina is the main eye’s membrane involved in the process of vision. It is
approximately 0.5 mm thick, lines the internal back of the eye and is composed
of a set of layers. The retina is smooth and semi-transparent; it modifies its
opacity when is exposed to direct sunlight.

Studying the retinal surface, its frontal view shows three main anatomical
features: the optic disc [number (4) in Fig. 1], macula [the macula center, called
the fovea, is number (3) in Fig. 1] and vascular tree [numbers (1), (2), (5) and
(6) in Fig. 1]. The description of these retinal components is the following:

• Optic disc: the optic disc [see diagram in Fig. 2(a) to follow the description],
also called the optic nerve head or papilla, is located on the nasal side of the
macula and represents the location where the nerve fibers come together,
form the optic nerve, and exit the eye. It is slightly elliptical in shape,
with a diameter varying between 1.5 and 2 mm. The optic disc is also the
entrance and exit site of the blood vessels that feed the retina. There are no
photoreceptors in the optic disc, so it represents the blind spot in the retina.
The optic nerve fibers do not occupy the whole area of the optic nerve head as
they are located at the optic nerve head border, which leads to an excavation
in the center; this excavation resembles a small “cup.” When it is visible, the
cup appears in white color as a result from exposure of the hyper reflective
tissue, the lamina cribrosa. The lamina cribrosa is a continuation of the sclera
and provides support to nerve fibers and blood vessels.

• Macula: a round area in the central region of the retina that measures between
3 to 4 mm in diameter. The macula contains mainly cones, so this area is the
one providing the most distinct vision and is responsible of central vision.

Fig. 1. Diagram of the retinal surface: (4) optic disc, (3) macula center (fovea) and (1), (2),
(5), (6) retinal vascular tree: (1) upper temporal blood vessels, (2) upper nasal blood vessels, (5)
lower temporal blood vessels and (6) lower nasal blood vessels.
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Fig. 2. (a) Cross-sectional optic nerve diagram, (b) cross-sectional macula diagram.

There is a small depression in the center of the macula measuring about 1 mm
in diameter and visible as a round dark area called the fovea [see diagram in
Fig. 2(b)]. The fovea contains the largest concentration of cone cells and do
not contain rods, so it is in charge of our sharp central vision and it is also
the main portion of the retina used for color discrimination.

• Vascular tree: is a vascular tree-like connected structure, which nourishes the
inner parts of the retina. This vascular structure originates in the optic disc
with the central retinal artery and vein [see Fig. 2(a)], which progressively
split into many other smaller vessels for covering the retina. Structurally, the
retinal vascular tree can be divided into four types of vessels: upper temporal
blood vessels [number (1) in Fig. 1], upper nasal blood vessels [number (2)
in Fig. 1], lower temporal blood vessels [number (5) in Fig. 1] and lower
nasal blood vessels [number (6) in Fig. 1].

A digital image of the retinal surface showing the optic disc, macula and
vascular tree is presented in Fig. 3.

3. Diabetic Retinopathy

Metabolism is the process of converting the food we eat into energy. It begins
when food is broken down during digestion to create glucose, which is the
main source of fuel for the body. Glucose metabolism in the body is controlled
by insulin, a hormone produced by the pancreas. When glucose passes into the
bloodstream, insulin allows it to get into the cells.
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Fig. 3. Digital retinal image showing the optic disc, macula and vascular tree.

Diabetes mellitus, commonly known as diabetes, is a metabolic disorder
that interferes with the body’s ability to use and store glucose. The deter-
mining factor in diabetes is insulin, and people with diabetes present glucose
concentration elevation in blood as a consequence of low insulin production,
abnormal cell response to insulin or both reasons.

The excess of glucose in blood produced by diabetes damages the macro-
and microvascular system, and usually the eye is one of the first places where
this becomes apparent. DR is the retinal disease derived from complications
caused by the abnormally high level of glucose in blood produced by diabetes
and is the most frequent microvascular complication of this disease. When
the microvascular system in the eye is progressively damaged, vision loss and,
ultimately, blindness can occur. In fact, DR is nowadays the leading ophthalmic
pathological cause of blindness among people of working age in the developed
countries.3

All people affected by diabetes are at risk for the development of DR and
most of them will eventually develop the illness. Indeed, although the presence
of diabetes does not necessarily involve vision impairment, about 2% of patients
affected by this disorder are blind and 10% undergo vision degradation after
15 years of diabetes4,5 as a consequence of DR complications. The estimated
prevalence of diabetes for all age groups worldwide was 2.8% in 2000 and 4.4%
in 2030, meaning that the total number of diabetic patients is forecasted to rise
from 171 million in 2000 to 366 million in 2030.6 These figures of incidence
make DR, besides a great public health problem, a great economic problem for
Administrations since, for instance, costs of ophthalmic chronic complications
caused by diabetes exceeded 1 billion dollars in 2007 only in the U.S.11
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As previously mentioned, DR damages the eye’s vascular system due to the
abnormally high level of glucose in blood. This vascular damage consists in the
deterioration of the vessel endothelium, which results in vessel permeability and
fragility increasing. As a consequence, with the progression of the illness and
this damage, a set of characteristic and univocal clinical signs of the illness may
appear on the retinal surface. Accurate assessment of DR requires the ability
to detect and identify the clinical features described as follows (see Fig. 4 for
recognizing each feature described below):

• Microaneurysms: these lesions are the first manifestation of DR. Microa-
neurysms are capillary dilations produced by local weakening of capillary
walls that make them to emerge in a balloon-like fashion. They are visible on
the retinal surface as tiny round dark red dots and their size varies from 10
to 100 microns in diameter.

• Hemorrhages: the disease and damage progression can produce the burst
of microaneurysms, which leaks blood and therefore causes hemorrhages.
Retinal hemorrhages can be discernible either as small red dots or blots indis-
tinguishable from microaneurysms, or as larger red flame-shaped patches.

• Exudates: besides the leaking of blood, vessels also leak lipids and proteins
causing the appearance of bright spots called exudates. These are typically
manifested as yellowish/whitish patches of varying sizes, shapes and loca-
tions. The leaking of fluid from vessels can progress producing large exudative
areas in the macula, which can provoke its swelling. This complication is
called diabetic macular edema (ME) and can seriously affect central vision.

Fig. 4. Examples of the most common lesions produced by DR in the retina: (a) photography
of the retinal surface, (b) close ups of zones of image (a) showing examples of microaneurysms,
hemorrhages, exudates and cotton wool spots.
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• Cotton wool spots: with the progression of DR and its associated lesions,
parts of the retina can be deprived of blood and consequently can suffer
ischemia. These ischemic areas are called cotton wool spots and are visible
on the retina as fluffy whitish blobs.

• Neovascularization: the appearance of ischemic areas in the retina provokes
as response the growing of new vessels to supply the retina with more oxygen.
These new vessels are called neovascularizations and have a greater risk of
rupturing and causing larger hemorrhages than normal vessels.

In the later stages of DR, as a consequence of the great produced damage,
the retina can detach from its supporting tissues, phenomenon known as retinal
detachment. This is a serious situation what can lead to permanent vision loss
if it is not shortly repaired.

DR is not a curable disease, but it can be treated and controlled if it is
detected in its early stages.3,9 Currently, treatment of DR is still predominantly
based on laser photocoagulation. It consists in the application of a strong light
beam to certain areas of the retina. For instance, the laser can be directly applied
to leaking microaneurysms to prevent further hemorrhaging. Another example
is that it can also be applied in a grid pattern over a larger part of the retina
with the purpose of reducing the overall need for oxygen and diminishing the
load on the damaged microvasculature.

Laser photocoagulation can prevent major vision loss although it cannot
restore visual acuity already lost. Therefore, the detection of the illness in its
early stages is of vital importance to apply the treatment in the most effective
possible way. The main problem of this early illness detection is that DR
patients do not perceive symptoms until visual loss develops, and this usually
occurs in the later disease stages. This fact has motivated a widely accepted
preventive protocol based on the periodical retinal examination of diabetic
patients (typically yearly examination),12–15 which is the population potentially
at risk. Concretely, this plan consists in screening sessions where the retinas
of both eyes are examined by physicians looking for early signs of DR. If any
sign of the illness is found, the patient is referred to an ophthalmologist who
decides the necessary treatment. Otherwise, the patient continues attending to
the periodical examinations.

The retina is the only part of the human body where the blood vessels
can be directly inspected in a non-invasive manner.16 In the context of DR
detection, it is carried out by means of mainly two types of screening methods:
ophthalmoscopy and retinal photography. Ophthalmoscopy consists in the
direct examination of the retina through the pupil by means of a portable
instrument called ophthalmoscope, composed of a light source and a set of
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Fig. 5. Main instruments used for retinal inspection: (a) non-mydriatic retinograph man-
ufactured by Topcon Corporation, (b) indirect ophthalmoscope manufactured by Keeler
Instruments Inc.

lenses [Fig. 5(b)]. On the other hand, retinal photography is the procedure
of taking digital photos of the retinal surface (retinographies) by using special
CCD based digital cameras, called retinographs, with special optics that allow
to make color photographs of the eye fundus through the pupil [Fig. 5(a)].
Since the pupil is narrow and does not allow much light to enter the eye, a
good strategy to facilitate the retinal visualization is to lower the ambient light
intensity. Besides this, ophthalmoscopy and retinal photography can also be
performed with mydriasis (dilation of the pupil with eye drops). However, it is
important to point out that mydriasis is not needed with modern retinographs
in the majority of cases.

Retinal photography offers outstanding advantages for large scale retinal
screening. This modality allows instantaneous examination of the retina and
quick storage and access of the images. Furthermore, since digital retinographs
offer interfaces for connecting them to PCs, acquisition and interpretation
stages of the screening can be decoupled. The images can be acquired anywhere
and sent instantaneously to a specialized institution for their interpretation. An
example of such a screening program is the Andalusian Comprehensive Plan for
the Prevention of Diabetes.17 This plan includes periodical retinal examinations
of the diabetic population. Thus, this large population is screened in primary
health care centers of the Andalusian Health Service by physicians. Images
are acquired on site and sent over the internet to a central server. Then, a
trained reader specialized in DR logs into this server for grading the images.
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Patients needing to be attended by an ophthalmologist for further investigation
or needing to attend the screening sessions more frequently are notified.

Regarding classification of DR, two different approaches have emerged
during the last years. They may be called: full disease classifications and
population screening classifications. The main differences between both types
of classifications are their aim and complexity. A brief description of both types
of classifications is the following:

• Full disease classifications: classifications in this category are aimed to be
used by ophthalmologists. They are complex classifications considering a
great number of levels of DR condition to cover the full range of the
illness exhaustively. The main classification in this group is the extended
Airlie House classification developed by the “Early Treatment Diabetic
Retinopathy Study Research Group.”18 Other full disease classifications are
mainly modifications of this one. The cited classification distinguishes a great
number of DR stages grouped into two global stages of severity. The first
stage, called Non-proliferative Diabetic Retinopathy (NPDR), refers to the
earliest retinal changes caused by DR. In this stage, a person affected by
DR can present microaneurysms, retinal hemorrhages, exudates and cotton
wool spots. Vision loss can develop in this stage as a consequence of ME or
macular isquemia. On the other hand, the appearance of neovascularization
marks the beginning of the second and severe stage of DR called Proliferative
Diabetic Retinopathy (PDR). In this stage, hemorrhages in the vitreous and,
ultimately, retinal detachment can occur.

• Population screening classifications: these classifications are designed to be
used in large screening programs. They are simplified gradings based on the
previous ones that allow to be more efficient in the context of such programs.
The main goal of these classifications is not to grade DR accurately, but to
assess when a patient presents the illness in a stage sufficiently severe to
merit referral for expert ophthalmological opinion and possible treatment.
Typically, these classifications are designed by countries depending on their
needs to make their screening programs viable.

An example of this type of classification is the one designed within
the framework of the MESSIDOR-Techno-Vision Project. This classification
grades DR into four stages and, additionally, proposes a classification to evaluate
the risk of ME. The two simplified gradings were elaborated by experts
from the recommendations provided by: Alfediam (French association for
the study of diabetes and metabolic diseases),19,20 ETDRS (Early Treatment
Diabetic Retinopathy Study)18 and Diabetic Retinopathy Screening Services in
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Scotland.21 The descriptions of the proposed gradings are:

◦ DR grade:

∗ 0 (Normal): (µA = 0) and (H = 0).
∗ 1: (0 < µA <= 5) and (H = 0).
∗ 2: ((5 < µA < 15) or (0 < H < 5)) and (NV = 0).
∗ 3: (µA >= 15) or (H >= 5) OR (NV = 1).

where µA is the number of microaneurysms, H is the number of hemorrhages,
and NV = {0; 1} denotes the absence or presence of neovascularization,
respectively.

◦ Risk of ME:

∗ 0 (No risk): no visible hard exudates.
∗ 1: shortest distance between macula and hard exudates > one optic disc

diameter.
∗ 2: shortest distance between macula and hard exudates <= one optic disc

diameter.

4. Automated Detection of Diabetic Retinopathy

The benefits and cost-effectiveness of screening programs for early detection
of DR are well-recognized.22 However, their effective development is a great
challenge for health systems as a consequence of the great amount of human and
material resources needed to put them into place.10 These difficulties, and the
generalized use of retinal photography in screening programs, has motivated
during the last 20 or 25 years an outstanding effort in the investigation
of algorithms for the diagnosis of DR sufficiently accurate to be able to
implement them into these programs. If an automated system could be able
to exclude a large number of those patients not affected by DR, it would
reduce the workload of the specialists and thus would enhance preventive
protocols. Actually, this reduction could reach about 70%, since normal fundi
predominates in DR-screened populations approximately in this magnitude.
Furthermore, it would also result in economic benefits for public health
systems, since cost-effective treatments associated to early illness detection lead
to remarkable cost savings.23,24

The construction of a generic comprehensive system for the diagnosis of
DR may be structurally and logically divided into four general phases. Each
of these phases produces as a result a logical module of the system which
gives support to its underlying modules. Figure 6 shows a flow diagram of
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Fig. 6. Flow diagram of a generic system for the automated diagnosis of DR.

a generic comprehensive system for the automated diagnosis of DR based
on the four phases, which are detailed below. This structure results in a
strong unidirectional coupling between modules, what argues for a bottom-up
development of the system. In this diagram, the modules resulting from the
phases can be identified and it can be checked how these modules interact in
an unidirectional way from the bottom to the top.

The four phases for the construction of a system for DR diagnosis are
described as follows:

4.1. Image Quality Assessment

Since retinal images are taken using retinographs, the image acquisition is
completely decoupled from the system. Many factors can affect negatively
the acquisition process and can give as result images without enough quality
to be processed (see Fig. 7). For example, eye movement at the moment of
retinography capture may lead to blurred images, or insufficient pupil dilation
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Fig. 7. Examples of different image quality as consequence of the acquisition process: (a)
blurred image, (b) image suitable to be processed.

as a consequence of inappropriate illumination or inefficient mydriasis (if it
is needed) may produce too dark and low contrasted images. With all these
considerations, this phase defines the preconditions of the system and its entry
point. The way the system receives an image, and the decision rules to assess
if this one has enough quality to be successfully processed, are designed and
implemented in this phase.

In spite of the availability of general purpose algorithms for image quality
assessment which can be used for the goal of this phase, specific algorithms for
assessing quality of retinal images have been developed and can be found in the
literature.25–33

4.2. Segmentation of the Main Anatomical Components
of the Retina

The success key for the construction of an automated system for DR diagnosis
is the accurate detection and identification of lesions produced by the illness
(this is faced in the following phase). These lesions must be detected on
a highly variable retinal image that includes: the optic disc, vascular tree,
macula, and distractors such as choroidal vessels, laser scars or light artifacts,
among other. Furthermore, other features inherent to the retina, such as
differences of pigmentation in different ethnic races, increase this variability.34

This fact has motivated a widely used structured approach in which the main
anatomical components in the retina are segmented and used as landmarks.
Thus, their a priori -known anatomical features and relationships between them
are exploited to increase confidence in the classification of each object.
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4.2.1. Optic disc segmentation

Segmentation of the optic disc plays an important role in many algorithms
designed to identify other retinal features. For example, its segmentation and
identification is valuable to locate the macula by making use of the known
relatively constant distance between them.35–37 Since the vascular tree emerges
from the optic disc, knowledge about its location can also help identify the
vasculature origin.37,38 Another example of the use of the optic disc in the
mentioned structured approach is that, since color features of the optic disc
can be similar to those of retinal exudates, optic disc segmentation can be
exploited to decrease false positives in the detection of these lesions.39

For the reasons explained above, many optic disc segmentation algorithms
have been developed and published, increasing progressively the robustness and
accuracy of the task (Fig. 8 shows an example of OD segmentation).35,38,40–49

4.2.2. Vascular tree segmentation

Regarding retinal vessels segmentation, it is also a key preprocessing in the
development of automated DR diagnosis systems. For instance, the vasculature
origin can be used to locate the optic disc.50–52 Another outstanding application
of the vascular tree segmentation is that it provides valuable information about
the approximated location of the fovea. It is a known anatomical feature that
the fovea is approximately located at a known distance from the optic disc
following an imaginary line separating the upper and lower regions of the retina,
being this line determined by the upper and lower vessels of the vascular tree.
Therefore, the segmentation of the vascular tree provides that line and can be

Fig. 8. Optic disc segmentation: (a) original retinal image, (b) image (a) with the optic disc
segmented.
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used to locate the fovea.36,53 On the other hand, vascular tree segmentation
also provides knowledge about blood vessels location. This information can be
used to reduce the number of false positives in microaneurysm and hemorrhage
detection due to color similarity.54–57 Besides these applications, vascular tree
segmentation can also be valuable to detect advanced signs of the illness such
as the presence of neovascularization or vessels tortuosity increasing.58

Retinal vessels segmentation may be the topic within the frame of auto-
mated DR detection that has generated more publications in the literature
(a recent and detailed review of the state of art can be found in Ref. [59]).
Some of the most relevant works are those in Refs. [35], [60]–[73]. A vascular
tree segmentation example can be checked in Fig. 9.

4.2.3. Macula segmentation

As was previously commented, the macula is responsible for central vision
and, concretely, the fovea is in charge of sharp central vision. Because of
this important function of the macula in vision, the distance at which lesions
produced by DR are located from this area influences their clinical relevance.
This is why the macula segmentation is not a preprocessing, but an unavoidable
requirement in the development of DR diagnosis systems. Some outstanding
works related to macula segmentation are those presented in Refs. [35]–[37],
[53], [74]–[77].

It should be highlighted that, at this point, a tool for assisting ophthal-
mologists to grade DR more comfortably and can quickly be obtained. These
specialists place a grading grid in the image centered on the fovea (this grid

Fig. 9. Vascular tree segmentation: (a) original retinal image, (b) image resulting from the
segmentation of the vascular tree.
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Fig. 10. Automated macular grading grid placing: (a) macular grading grid, (b) macular
grading grid automatically placed thanks to the information obtained from the segmentation of
the main retinal anatomical components.

was defined by the ETDRS research group18). This grading grid divides the
retinal image into ten subfields as presented in Fig. 10(a). The radii of the
three fovea-centered circles from the innermost to the outermost correspond
to (1/3) optic disc diameter, 1 optic disc diameter, and 2 optic disc diameter,
respectively. Once the grading grid is placed, illness condition is assessed by
counting lesions, taking into account that their relevance varies according to
where they are located. This relevance decreases from the central subfield to the
far temporal subfield. Since at the end of the phase is being described, the optic
disc, vascular tree and macula are segmented, a tool for automatically placing
the macular grading grid can be easily obtained. By this way, ophthalmologists
could automatically get the image in Fig. 10(b) for its manual diagnosis.

4.3. Detection of Lesions Produced by DR

Taking advantage of the information previously obtained, the aim of this phase
is the identification of DR signs by means of the analysis of the image. As was
discussed, automated detection of DR is especially interesting in its early stages,
when lesions are not still too severe and evident to non-expert eyes. Thus, the
system could help physicians in the preventive protocols to decrease the number
of patients unnecessarily referred to ophthalmologists, producing, by this way,
the benefits already discussed here. Taking this into account, the main goal in
this phase is the detection of microaneurysms, hemorrhages and exudates.
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There are two main challenges to overcome in the present task. The first one
is the development of algorithms capable of identifying the mentioned lesions.
The second challenge derives from the fact that the image to be analyzed may
come from a healthy patient or from a patient affected by the illness. Therefore,
the system can produce false positives, if it detects non-existing lesions, and
false negatives in the contrary case. Therefore, the second challenge is the
minimization of both types of errors.

4.3.1. Detection of microaneurysms

Microaneurysms are the earliest signs of DR, hence, their accurate detection and
segmentation are of vital importance for automated early DR detection. They
look like very small red dots on the retinal surface. On one hand, their invariable
shape and color are very clear — usable features to discover them and have been
widely used in the literature. Nonetheless, their tiny size makes their accurate
detection a very challenging task (see Fig. 11). Some outstanding published
works on microaneurysms detection are in Refs. [54], [55], [78]–[82].

4.3.2. Detection of hemorrhages

Hemorrhages occur due to microaneurysms explosion or vessels breaking. This
is why they are very unspecific in shape and size, being their only a priori-known
feature their red color. Moreover, tiny hemorrhages may be very difficult to

Fig. 11. Detection of microaneurysms: (a) retinography of a patient affected by DR in early
stages, (b) the upper image on the right is a fragment of (a), and the bottom image on the right
is the same subimage with two microaneurysms segmented.
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Fig. 12. Detection of hemorrhages: (a) original image of a patient affected by DR, (b) the
upper image on the right shows a hemorrhage-containing subimage, and the bottom image on
the right shows segmentation of the lesions.

distinguish from microaneurysms. Probably for these reasons, the literature
is sparse in specific works for detecting and segmenting only hemorrhages,
and existing works use to face the problem along with the segmentation of
microaneurysms; it is usually known as detection of red lesions.56,57,83 An
example of hemorrhage detection is shown in Fig. 12.

4.3.3. Detection of exudates

These lesions appear on the retinal surface as yellowish or whitish patches well
contrasted from the retinal tissue with variable size. As was commented, their
color may be similar to that of the optic disc, but in this phase, this anatomical
component is segmented and therefore can be discarded. Therefore, attending
to exudate features, this is probably the lesion produced by DR less challenging
to be segmented. However, this aspect does not underestimate the importance
of exudates detection since, besides being important for DR detection, it also
plays a key role in assessing risk of ME. Some works focused on exudates
detection can be found in Refs. [39], [44], [53], [83]–[90], and an example
is presented in Fig. 13.

4.4. Implementation of an Expert System

This is the last development phase of the system. At this point, the image was
accepted to be processed, the retinal anatomical components were segmented
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Fig. 13. Detection of exudates: (a) original image, (b) image with the exudates segmented.

and results of the image analysis for the identification of lesions are available.
Therefore, in this phase, an expert system for the identification of DR is
designed and implemented. Taking all the information resulting from the
previous phases, this expert system has to provide a diagnosis of the illness. The
complexity of this system is the main design decision. It can be implemented
simply as a “disease/no disease” decision system, as a system based on any
population screening classification or, even, as a system based on any complex
full disease classification.

5. Current State of Art of Comprehensive Automated
Systems for DR Detection

The aim of this section is to assess the current maturity level achieved by
the scientific community in automated segmentation of DR. To this effect,
complete systems (those implementing the generic system described in Fig. 6)
that have been checked on large populations within the frame of screening
programs as clinical trials are reviewed here. It is important to point out that,
the no inclusion here of all other commendable works that have contributed
along the years to obtain advances in the field, should only be understood only
as a consequence of the goal of this study.

A “disease/no disease” decision system was presented by Philip et al.91

in 2007. The system implemented a neural network for patient classification
attending to the presence or absence of red lesions (microaneurysms and
hemorrhages) to produce a “disease/no disease” response. This system was
tested on images acquired in the Grampian Diabetes Retinal Screening Program
in North-East Scotland. Two sets of images were collected from screening
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sessions between the years 2003 and 2004. A first set of 1067 retinographies
was used to train the neural network, and another set of 14406 separate images
from 6722 patients was employed to test the system; 29.3% of those patients
were DR-affected. The system obtained 0.97 sensitivity and 0.875 specificity
detecting image technical failures. With respect to disease detection excluding
technical failures, results were 0.802 sensitivity, this is, 19.8% of images from
DR-affected eyes wrongly classified, and 0.879 specificity, implies that 12.1%
of images from healthy eyes were erroneously classified. The area under ROC
curve of the system was not reported. Authors calculated that these results
would allow a grading workload reduction of 60%. Fleming et al.92 presented
in 2010 a larger evaluation of this system with the goal of evaluating its
performance when used in other Scottish screening centers. 78601 images from
33535 patients attended in screening centers in Glasgow and Fife between 1st

January 2007 and 31st January 2008 were used for this purpose. The system
detected 99.8% of ungradable images and obtained 0.978 sensitivity and 0.411
specificity (figures calculated from results in the paper but not reported directly
therein), statistics given in terms of patients; the area under ROC curve was
not reported. Authors calculated from this study that 36.3% of patients could
be removed from manual grading workload.

In 2008, Abràmoff et al.93 presented a system for the automated detection
of DR built from algorithms previously developed and published by them. The
proposal was also a “disease/no disease” system based on the detection of
microaneurysms, hemorrhages, exudates and cotton wool spots. This system
extracted several features from the image under evaluation and, using them,
created two probabilities: the probability that an exam had sufficient quality
for evaluation, and the probability that an exam showed referable DR. These
probabilities were ultimately thresholded at an optimum threshold value,
calculated to obtain the maximum sensitivity and specificity in the system,
deciding an illness presence/absence response. The system performance was
evaluated within the frame of the EyeCheck project for online DR detection
in the Netherlands. It was tested on 10000 images from a group of 5692
patients. 2311 of those 10000 images were detected by the system as not
having sufficient quality to be processed. The resting 7689 were analyzed
by the system obtaining 0.84 sensitivity, 0.64 specificity and an area under
ROC curve of 0.84. These figures indicate that 16% of images affected by DR
were erroneously classified as normal, and that 36% of healthy images were
erroneously recommended for ophthalmic revision as affected by DR. Authors
concluded from these results that automated grading software could not yet
be recommended for clinical practice, as 27% of their false negatives involved
severe forms of DR or neovascularisation.
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Table 1. Summarized details of complete systems for DR detection checked on large populations within the frame of screening programs
as clinical trials.

Screening
program/

Authors project Country Images (patients) System description Se Sp

Philip et al.91 Grampian
Diabetes
Retinal
Screening
Program

United
Kingdom

14406 (6722) “disease/no disease” 0.802 0.879

Fleming et al.93 Grampian
Diabetes
Retinal
Screening
Program

United
Kingdom

78601 (33535) “disease/no disease” 0.978* 0.411*

Abràmoff et al.92 EyeCheck
project for
online DR
detection

Netherlands 7689 (5692) “disease/no disease” 0.84 0.64

Dupas et al.94 MESSIDOR
project

France 749 (-) for DR
grading/581 (-) for
assessing risk of ME

System based on a
screening
population
classification. Four
levels for DR and
three for risk of ME

DR: 0.839/
Risk of
ME:
0.728

DR: 0.727/
Risk of
ME:
0.708

∗Figures calculated from results in the paper but not reported directly therein.
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Dupas et al. (2010)94 developed a system for DR and risk of ME detection
based on the population screening classification described in Section III.
The system detected red lesions and exudates mainly using mathematical
morphology and, according to the illness classification, graded images. This
work was a result of the French MESSIDOR project, which collected a database
of 1200 retinographies with the aim of developing and evaluating a computer-
assisted diagnostic system for the detection and grading of DR as well as
estimation of the risk of ME. The images were taken in three hospitals in Brest,
Paris and Saint-Étienne. Once the system was developed, for its evaluation and
improving, the 962 images acquired with pupil dilation were selected from
the total 1200 in the database, since algorithms for exudates and red lesions
detection were designed for this kind of images. From these 962 retinographies,
201 were selected for system improving and the resting 761 were used to
evaluate the system performance for DR grading and risk of ME evaluation.
With respect to DR grading evaluation, 316 images were manually classified
as “normal” (DR grade >0) and the resting 445 images were classified as
“abnormal” (DR grade >0). The system was able to classify 749 of the 761
images (98.4%), and obtained a sensitivity of 0.839 (16.1% of DR-affected
images wrongly classified) and a specificity of 0.727 (27.3% of healthy images
wrongly classified). Regarding risk of ME evaluation, 581 images were manually
diagnosed as “normal” and the resting 180 images were considered to be under
risk of ME. The system was able to grade all images and obtained a sensitivity
and specificity of 0.728 (27.2% of images with risk of ME wrongly classified) and
0.708, respectively (29.2% of images without risk of ME wrongly classified).
The area under ROC curve of the system was not reported. Authors of this
work informed in their publication that the presented system was going to be
integrated into the multicentre OPHDIAT telemedical network developed for
DR screening in France to reduce physicians workload in manual grading.

Table 1 summarizes features and results of all systems described above.

6. Conclusion

The first work describing an automated methodology for segmenting microa-
neurysms in retinal images with the goal of DR detection was published
in 1984 by Baudoin et al.95 This early work used digitalized angiographic
images. The popularization of the use of color digital retinal images and the
development of digital image analysis, along with the increasing incidence of
DR and the consolidation of screening programs, produced in the 90’s an
explosion in the automated DR detection research field. Since then, many
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researchers around the world have made an enormous effort for continuously
increasing accuracy of algorithms for the segmentation of the retinal anatomical
components and lesions associated to DR. It is clear that in the recent years,
the field seems to have achieved an important maturity. Complete systems for
the automated detection of the illness have been checked in “real” conditions,
this is, within the frame of DR screening programs as clinical trials. Results of
these experiences show that automated DR detection systems have achieved
comparable performance to a single DR human expert. This fact indicates that
their successful integration in screening programs will quite probably take place
sooner rather than later. An evidence of this is that some groups have moved
toward software commercialization.
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Magnetic resonance guided high intensity focused ultrasound (MRgHIFU) ablation
is a promising technique for the treatment of hepatic and renal cancers. In this
approach, the HIFU system is used for ablating the tumor using local heating while
the MRI scanner provides online temperature measurements which enable continuous
monitoring of the delivered thermal dose. The application of MRgHIFU ablation
for abdominal organs is challenging. Many technical developments have addressed
the major issues associated with this procedure such as the physiological motion of
abdominal organs. In this chapter, we present the different techniques which have been
developed to alleviate the problem of physiological motion for MRgHIFU ablation of
abdominal organs.

1. Introduction

Hepatic and renal cancers are major public health issues and account worldwide
for 700 000 and 115 000 deaths/year, respectively.1 Although surgery is
generally considered as first line therapy, many patients are not eligible for
this therapeutic option. Furthermore, these cancers do not respond well to
chemotherapy and radiotherapy. Percutaneous ablation is one of the best
alternative options, and can be achieved by inducing strong temperature
increases.
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To overcome the limitations associated with such minimally invasive
procedures, non-invasive techniques such as high intensity focused ultrasound
(HIFU) ablation2–4 are under active investigation. The latter generally uses
an extra-corporal HIFU transducer with multiple ultrasound elements and
enables localized energy delivery deep into tissue. To further improve the
procedure safety, magnetic resonance guided HIFU (MRgHIFU) ablation
has been suggested.5–7 MRI is a promising candidate for monitoring HIFU
therapy since it provides excellent tissue contrast and enables real time
in-vivo temperature mapping (hereafter referred to as MR-thermometry).5,8–11

Furthermore, the delivered thermal dose can be estimated from the temporal
evolution of the temperature (hereafter referred to as MR-dosimetry) and
is a promising marker for the determination of the therapy endpoint.12 The
feasibility of MRgHIFU ablation has been shown in patients for the treatment
of uterine fibroids13–15 or bone metastases.16 However, despite the progress
achieved for the treatment of static tumors in patients, the application in
clinics of MRgHIFU ablation to abdominal organs remains challenging.17

A comprehensive description of these hurdles has been reviewed elsewhere.18,19

One of the most significant limitations is the problems associated with the
motion of abdominal organs.

Abdominal organs are subjected to continuous displacements and defor-
mations induced by both the breathing and cardiac activities of the patient.
Although the respiratory-induced motion is the most prominent motion
component, the cardiac activity induces more complex deformation, especially
in the upper part of the liver or in the vicinity of blood vessels. One possible
solution is to perform the procedure with the patient undergoing a general
anesthesia and passive breath-holds controlled by a ventilator.20 Although
it removes the effect of organ motion, it is less efficient and leads to risks
associated with a general anesthesia. Therefore, the development of techniques
compatible with free breathing conditions is desirable. In these conditions,
organ motion raises significant barriers for MR-thermometry/dosimetry and
accurate/precise targeted energy delivery.

MR thermometry can be performed using the proton resonance frequency
(PRF) shift technique.21,22 This method exploits the linear dependence
between local temperature variations and water proton resonance frequency,
and is considered as a method of choice in abdominal organs. However,
the respiratory activity induces temporal variations of the local magnetic
susceptibility which bias the PRF-based temperature estimates.23 Furthermore,
estimation of thermal dose maps requires voxel-wise analysis of the temperature
evolution. Due to organ motion, the position of the tumor will be different
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Fig. 1. In vivo HIFU steered and breath-hold ablations. These two images show representative
images of a steered (left) and breath-hold (right) ablation in vivo at the time point when
the maximum temperature reached 10◦C above baseline. The steered ablation took 31.2 s to
reach this point, whereas the breath-hold ablation took 26.7 s. The steered ablation required
16.7% more energy than the breath-hold case. Reproduced with permission of (Holbrook et al.,
2014).56

in successive MR images acquired continuously during the ablation process.
Several techniques have been developed to achieve efficient and robust MR-
thermometry/dosimetry in abdominal organs and are presented in the first
part of this chapter.

In addition, an accurate energy deposition in the tumor is challenging in
the presence of motion. Respiratory gated approaches have been proposed,
and consist of intermittent sonications applied during each end-tidal phase of
the respiratory cycle.24 However, this strategy may be unfavorable to highly
perfused organs such as the liver and the kidney, due to significant heat
evacuation between each sonication and insufficient temperature elevation.
Therefore, continuous ablation strategies are of particular interest for these
organs since it would also improve the duty cycle of the sonication process, as
illustrated in Fig. 1. In these conditions, more sophisticated approaches need
to be employed to enable real time adjustment of the HIFU focal point based
on the displacement of the targeted ablation area. Several strategies, proposed
for this purpose, are presented in the second part of this chapter.

2. Motion Correction for Real Time MR-thermometry
and MR-dosimetry

MR thermometry is a cornerstone for the monitoring of HIFU ablation proce-
dures. Although many techniques have been developed for MR thermometry,10

the PRF shift technique has been the most commonly used approach. In this
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technique, the phase information of gradient echo sequences is directly used
to estimate pixel-wise temperature variation. Estimates of the temperature
variation (�T ) are obtained by comparing a baseline phase signal (ϕref ) to
the phase signal obtained during the ablation procedure (ϕt ) as follows:

�T (�x , t ) = k × (ϕref (�x) − ϕt (�x))

where k is a constant parameter (more details on the determination of k can
be found in Ref. [10]) and �x denotes the voxel coordinates. Due to the
inhomogeneity of the signal in phase images, the reference phase signal needs
to be measured on a pixel-per-pixel basis. The application of this technique to
moving target is challenging since additional variations of the phase signal are
induced by the patient physiological activity and the resulting organ motion,25

as shown in Fig. 2. Therefore, if left uncorrected, these additional phase signal
would lead to severe bias in temperature estimates.

MR-dosimetry is commonly based on the thermal dose model proposed by
Sapareto and Dewey.12 This model establishes an empirical relation between
temperature, duration of exposure, and cell death. The accumulative effect
of sustained elevated temperatures on biological tissue is computed on a

Fig. 2. Complex MR images acquired in the abdomen of a human volunteer at two different
phases of the breathing cycle. MR magnitude images provide excellent tissue contrast and enable
the visualization of organ motion (see yellow arrows). The overall motion is also visible in MR
phase images. However, additional signal variations have been induced by the breathing activity
(see red arrows).
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voxel-by-voxel basis using the temporal history of past temperature measure-
ments T (�x , t ) in each voxel (�x) as follows:

teq =




∫ t

0
2(T (�x ,t )−43)dt if (T > 43◦C)

∫ t

0
4(T (�x ,t )−43)dt if (T < 43◦C)

(2)

Tissue destruction is achieved when the equivalent thermal dose teq exceeds
the lethal dose (which is taken as 43◦C during 240 min). The measurement
of the thermal dose in abdominal organs requires additional considerations
since the position of the target in temperature maps will be influenced by the
breathing and cardiac activities. Therefore, the position of the targeted organ
in temperature maps must be aligned to a common position to enable thermal
dose estimation.

Gated and non-gated strategies have been proposed for the management of
abdominal organ motion during MR thermometry and MR dosimetry under
free breathing conditions. These two approaches are described in the following
sections.

2.1. Gated Acquisition Strategies

Respiratory gated strategies consist of synchronizing the MR acquisition to a
stable period of the breathing activity.24,26–28 For this purpose, an acquisition
window of ∼1–2s can be exploited during the exhalation phase of the
respiratory cycle. The breathing period can in principle be assessed using various
types of qualitative sensors such as breathing belt,29 or quantitative surrogates
such as MR navigators27 or ultrasound (US) echoes.30

These strategies substantially reduce the impact of motion-induced varia-
tions in phase images in Eq. (1), as well as the temporal misalignments between
temperature maps in Eq. (2). Direct estimation of temperature maps can thus
be obtained based on a static reference phase image (ϕref ) acquired prior
heating. Excellent precision of the temperature information can be obtained
when the gating strategy is employed in conjunction with state-of-the-art
MR-thermometry sequences.24,28 However, the main drawback is the limited
temporal resolution of the image acquisition. While the theoretical calculation
of the equivalent dose using Eq. (2) is numerically efficient for high frame-
rate imaging in the range of 10 Hz, it becomes more unstable when a gating
strategy is employed, since the image acquisition time is in this case generally
in the range of 3–6 s. These instabilities can be further increased by remaining
miss-registration errors arising from irregular breathing patterns and/or when
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the signal to noise ratio (SNR) of the temperature maps is reduced. In addition
the obtained thermal dose information is irregular and less predictable, which
prevents the use of volumetric control strategies.31,32

2.2. Non-gated Acquisition Strategies

Non-gated strategies have been recently proposed to provide continuous
regular high sampling of temperature estimates during the entire respiratory
cycle, which allows in turns calculating accurate and precise thermal dose maps.

2.2.1. Non-gated MR thermometry

Using non-gating strategies, unwanted phase shifts, generated by modified local
magnetic susceptibility perturbations with motion, may induce an apparent
temperature modification in Eq. (1), which can bias and even mask the
true temperature estimate. Precise modeling of the inhomogeneous magnetic
field in-vivo and under real-time conditions is however difficult to achieve.
Two main approaches have been proposed obviating the need for this
modeling, generally referred to as “Referenceless” and “Referenced” PRF
thermometry.

In referenceless PRF thermometry, the baseline phase signal used to
compute the current temperature map is directly estimated from the current
MR phase image.33 To this end, the phase signal of non-heated surrounding
tissues is used to extrapolate a baseline phase signal in the targeted area.

In referenced PRF thermometry, a reference model, which establishes a
relation between the variations of the baseline phase signal and the patient
physiological motion, is built before heating.27,34 To this end, both descriptors
of motion patterns and MR images are continuously and simultaneously
acquired during a period covering several respiratory cycles. A look-up table can
then be used to store each pair of motion descriptor/MR phase image. During
heating, phase artifacts due to the periodical motion of the respiration cycle are
addressed by applying a phase correction based on the model of the phase varia-
tion in dependence of the current motion descriptor. Although any type of res-
piratory motion descriptor may be employed in principle, MR navigator echoes
and MR magnitude images have been widely used for this purpose and provide
reliable performance,27,34 as shown in Fig. 3. The main limitation of referenced
PRF thermometry is its inability to compensate for motion which has not been
observed during the training period, as encountered with spontaneous motion.

Referenceless and referenced PRF thermometry can also be combined using
hybrid techniques in order to further improve the robustness of the baseline



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch17 page 361

Motion Correction Techniques for MR-Guided HIFU Ablation of Abdominal Organs 361

Fig. 3. Temperature (top row, with color scale on the right indicating the temperature change)
and thermal dose [bottom row, with pixels colored red corresponding to a thermal dose of
240CEM43 (CEM43, equivalent minutes at 43◦C) and above] images during high-intensity
focused ultrasound (HIFU) ablation of the kidney. Left to right: three sagittal slices centered in
the kidney, one coronal slice centered in the kidney and one sagittal slice located near the skin.
The broken contours in the temperature images show the selected regions of interest (ROIs) for
displaying the temperature data. The horizontal yellow bar in the top left image represents 5cm.
The temperature images display the temperature distribution measured at the end of the HIFU
sonication and the thermal dose images are the final images in the time series. Reproduced with
permission of (Quesson et al., 2011).44

phase image estimates.35,36 A discussion about the inherent advantages and
drawback of these methods can be found in Ref. [35].

2.2.2. Non-gated MR dosimetry

Spatial mismatches between the temporally acquired temperature maps,
induced by organ displacement, must then be corrected to enable accurate
estimation of the thermal dose with Eq. (2). The objective is now to relate
the coordinates of each part of tissue in each new incoming temperature map
to the corresponding one in a fixed reference position (typically the first
temperature map of the temporal series).

Spatial adaption of a region of interest (ROI) position has been proposed
based on the successful detection of the focal point position on the temperature
maps.37 However, since the registration accuracy depends on the choice of the
ROI position, the presence of temperature artifacts during the experiment can
destabilize all successive measurements. Furthermore, motion correction can
only be applied after a significant temperature rise has been achieved, i.e. after
the beginning of the ablation. Alternatively, the signal magnitude of gradient
recalled sequences provides anatomical information such as the position and the
composition of the tissue with good contrast and SNR (see Fig. 2). Therefore,
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these images can be used to estimate organ displacement using image-based
motion estimation algorithms.38–40 This approach enables co-registering on
the fly all incoming temperature maps to a common reference position. Both
rigid and non-rigid motion estimation methods have been investigated.41–43

Recently, an optimized pipeline has been proposed to obtain registered thermal
maps with a frame-rate of 10 Hz while maintaining a spatial resolution of
2.5 × 2.5 × 5 mm3 and a thermometric precision of ±2◦C.43 In this study,
MR thermometry was performed in 2D to enable a high acquisition frame-
rate. To reduce the impact of through plane motion, the imaging plane
was aligned along the main direction of the respiratory-induced motion of
the organ (i.e. the superior-inferior orientation).27,43 This, however, imposes
severe constraints on the imaging geometry which might be unfavorable for
anatomical or diagnostic reasons. Furthermore, although the motion trajectory
of the kidney and the lower part of the liver can be approximated in first order
by a linear shift, the true trajectory is a curve in 3D space. In particular, the
upper part of the liver, which is subjected to an elastic deformation, is hard
to contain in a static 2D imaging slice during the entire respiratory cycle. It is
often not possible to ensure that the target area remains observable by a single
static image slice during the entire motion cycle.

In principle, the acquisition of 3D images would offer a better framework
for a full characterization of the true organ motion. However, this type
of acquisition is difficult in practice because of technical limitations, spatial
and temporal resolution trade-offs, and associated low SNR. Imaging is
thus generally limited to the acquisition of 1–5 slices with modest spatial
resolution in the slice direction.44 Alternative approaches which dynamically
adjust the image plane location based on real time assessment of the targeted
organ position have been proposed as possible solution. The use of fast MR
navigators45 or ultrasound echoes46 have been reported to assess the organ
position. That way, it was demonstrated that it is feasible to obtain 2D thermal
dose maps oriented orthogonally to the principal axis of the target motion.45,47

3. Motion Correction for Real-time Beam Steering

During continuous sonication in mobile organs, real time adjustment of the
focal position of the HIFU-beam (hereafter referred to as beam steering) is
required to “follow” the target motion. This is particularly important to avoid
energy deposition in tissues surrounding the targeted area and to ensure heating
within the targeted area, as illustrated in the phantom study reported in Fig. 4.
To this end, imaging data acquired during sonication can be used to characterize
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Fig. 4. Temperature variation maps (a–c) and thermal dose maps (d–f) obtained ex vivo during
heating of a pig muscle undergoing a periodical translational motion. a and d: Uncorrected
MR thermometry/dosimetry without real time beam steering. b and e: Motion corrected
MR thermometry/dosimetry without real time beam steering. c and f: Motion corrected MR
thermometry/dosimetry with real time beam steering. Reproduced with permission of (Denis
de Senneville et al., 2007).34

the target motion and to generate a new focal point location of the HIFU beam.
The performance of a beam steering system is associated to (1) the accuracy,
precision and temporal frequency of the target motion estimates, and (2) the
overall latency of the system.

While the ideal accuracy and precision of the target motion estimates should
be in the range of the size of the HIFU focal point (∼few mm), the temporal
frequency of the beam steering system needs to be sufficient to resolve the
observed physiological motion. Recently, it has been shown that real time beam
steering with a 10Hz frequency enables to remove the effect of physiological
motion during HIFU sonication in abdominal organs.45

To ensure the real time feasibility of a beam steering system, the overall
processing time required to compute the new location of the HIFU beam
focus needs to be inferior to the time interval between two successive motion
estimates. The latency of the beam steering system is defined as the time interval
between the acquisition of the signal used to estimate the target motion and
the actual update time of the HIFU beam. During this time interval, the
target may move which would result in incorrect motion compensation of
the HIFU beam focus. Therefore, the latency of the system needs also to
be minimized as much as possible to reduce this consequent bias. Temporal
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motion prediction strategies have also been proposed to further compensate
for the system latency.34,48,49

At this point, it is important to note that the requirements of the beam
steering system and the MR thermometry/dosimetry system are different. As
previously mentioned, high temporal resolution is mandatory to characterize
the physiological motion of the target in the beam steering system. On the other
hand, high spatial resolution and coverage are desirable for MR thermometry in
order to improve the monitoring and safety of the procedure. Since both high
spatial and temporal resolution together with large spatial coverage is hard to
achieve using state-of-art MR scanner, several strategies have been developed
to compromise between these requirements. Two paths of investigation have
been proposed for target motion estimation during real time beam steering:
“Direct” and “Indirect” target tracking.

3.1. Beam Steering using Indirect Motion Estimation

The general framework of an indirect (or model-based) motion estimation
method is shown in Fig. 5. In this approach, a motion model of the target is
built before heating. The model establishes a relationship between the target
motion and a surrogate of the target motion. Subsequently, during heating,
the surrogate of the target motion is used in conjunction to the motion model
to estimate the current target position. The motion model can thus be created
using imaging strategies which do not need to comply with the real time and
latency constraints imposed by the beam steering system. A large variety of
approaches has been proposed for model-based respiratory motion estimation
and has been reviewed elsewhere.50 In this section, we focus on the different
strategies that have been proposed for motion surrogate, training data, and
motion model in the scope of MRgHIFU of abdominal organs.

3.1.1. Surrogate of the target motion

The surrogate of the target motion is first employed before sonication to build
the target motion model and then during sonication to estimate the current
target motion. The surrogate signal must therefore be consistent between these
two steps of the interventional process, and have sufficient temporal resolution
during sonication to resolve the physiological motion.

The use of external sensors such as respiratory bellows,24,51,52 nasal airflow
prong or spirometer51 have been suggested as potential surrogate of the
respiratory motion. Optical imaging has also been proposed53 using a shielded
MR-compatible optical camera. The advantages of these techniques are their
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Fig. 5. Illustration of a model-based motion estimation scheme. Motion surrogate and training
data are acquired simultaneously before the ablation procedure. Complex characterization of the
target motion is obtained from the training data. Subsequently, the resulting motion estimates
and the motion surrogate are combined to establish a model of the target motion. During the
MRgHIFU ablation procedure, the incoming motion surrogate information is used together
with the pre-built target motion model to generate in real time a complex description of the
current target motion.

ability to provide surrogate motion information with high temporal resolution
and their independency from both the MR system and the HIFU system.
Therefore, the MR-thermometry sequence and the HIFU sonication protocol
can be defined independently from the acquisition of the target motion
surrogate. However, since these methods do not directly observe the organ
of interest, the qualitative relation between the motion surrogate and the
target position may become inaccurate in the presence of breathing pattern
changes (abdominal breathing vs. thoracic breathing). To the best of our
knowledge, none of these surrogates have yet been used in indirect beam
steering MRgHIFU experiments.

The use of alternative motion surrogates which provide quantitative
measurements of the target displacement (or at least tissue/organ surrounding
the target) has also been investigated. Most of these quantitative motion
surrogate have been extracted from MR signal34,54–57 or US signal acquired
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with an external US probe.58–63 Initial MR-based approaches used MR
navigators34,54,55 which do not require additional hardware and are easy to
set up. However, the imaging pulses of MR navigators can create artifacts
in subsequently acquired MR images if the fields of view of MR navigators
and MR images intersect. To prevent such artifacts, MR navigators must be
positioned outside the imaging field of view which limits the displacement
knowledge in the targeted area. Alternatively, fat-selective navigators can be
used since it does not lead to artifacts in fat-suppressed MR images47 and allows
the positioning of the navigator directly on the organ of interest. Ultrasonic
echoes have also been suggested for this purpose63 in order to obtain a 1D
measure of the organ displacement.

Motion surrogate with higher dimensionality have also been proposed to
increase the degrees of freedom of the motion model and to improve the
characterization of more complex organ deformations. Both MR images56,57

and US images58–62 have been employed for this purpose. In these studies,
the surrogate of the target motion was defined using either (1) a finite
number of characteristic points in the images (such as a vein or the diaphragm
location)56,59,60,62 or (2) the entire or a sub-sample of the image.57,61 MR
images can be acquired with the same sequence as the one used subse-
quently for MR thermometry.56,57 In this case, the MR images acquired
during sonication are used for both MR thermometry/dosimetry and motion
surrogate, and these two tasks are consequently performed with the same
temporal resolution. Alternatively, the acquisition of US images, which requires
additional hardware and careful manual positioning of the US probe, can be
performed asynchronously from the MR acquisition.58–62 In this case, the
MR thermometry/dosimetry system and beam steering system can operate
at different temporal resolution.

3.1.2. Training data

Training data must be acquired before sonication to characterize the target
motion and build the motion model. This acquisition can be performed
(1) immediately before sonication during the MRgHIFU procedure (hereafter
referred to as intra-procedural acquisition) or (2) before the MRgHIFU
procedure using a patient-specific or cross population-based approach (here-
after referred to as pre-procedural acquisition). Finally, these data should
have a sufficient dimensionality (both 2D+t and 3D+t techniques have been
reported) to enable accurate and precise estimates of the target motion.
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Intra-procedural 2D+t training data34,51,52,54,56–58,61,62 has been
employed for the majority of studies using model-based beam steering for
MRgHIFU ablation of abdominal organs.34,56,57,61 In these studies, 2D+t
training data were acquired using an imaging plane aligned along the main
motion component to reduce the impact of through plane motion. This
approach provides patient-specific motion patterns using data acquired imme-
diately before sonication.

More recently, the use of 3D+t training data has been suggested to fully
characterize the 3D target motion.51,52,54,58–60,62 However, intra-procedural
acquisition of 3D+t training data is challenging, time consuming and requires
computationally intensive post-processing which would substantially extend the
duration of the intervention. Therefore, pre-procedural acquisition of training
data (i.e. before the overall MRgHIFU procedure) has been suggested to
remove these constraints and to offer more flexibility for both data acquisition
and post processing.59,60 In particular, this approach should enable in principle:
(1) to use different imaging modality such as MRI, US or CT, (2) to reach
higher spatial/temporal resolution and higher spatial coverage, and (3) to
employ most sophisticated non-real-time algorithms for the characterization
of the targeted organ deformation. For this purpose, either patient specific or
cross-population-based approaches can be investigated. Using patient-specific
approaches, the motion model is created using data acquired from the same
patient undergoing the MRgHIFU ablation. Therefore, any variations in
physiological conditions such as breathing pattern and heart rate between the
training period and ablation may negatively impact the value of the motion
model. Using cross population-based approaches, the motion model of an
organ is created as the average motion across the patient population.59,60 The
accuracy of the motion model will therefore be decreased by the significant
variability of both anatomies and motion patterns across a patient population.
It must be noted that the feasibility and the benefit of using 3D+t training data
still remains to be shown during MRgHIFU ablation experiments.

3.1.3. Motion model

The motion model establishes a correspondence between surrogate data and
motion estimates obtained from the training data. The correspondence can be
either direct or indirect.50

Direct correspondence models define a function which directly relates the
target motion in function of the motion surrogate. This approach has been
suggested to relate motion estimates using either the phase of the respiratory
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cycle obtained from a respiratory sensor52 or the 1D displacement of the
diaphragm or target obtained from US images62 or ultrasonic echoes.63

Indirect correspondence models parameterize during the training period
the target motion with the motion surrogate. During sonication, the target
motion is estimated by optimizing the model input parameters which best
fit the current motion surrogate. The first reported techniques used a look-
up table to store both target motion and motion surrogate obtained during
the training period.34,54,56,61 During sonication, the best match between the
current motion surrogate and his counterpart in the look-up table is identified.
The corresponding target motion in the look-up table is then selected and used
as current estimate of the target motion. This approach has been demonstrated
using 2D+t MR images for both training data and motion surrogate.34,54,56

The technique has also been described using 2D+t MR images for the training
data and 2D+t US images for motion surrogate.61 Although these approaches
have been popular in the scope of MRgHIFU ablation, it imposes several
limitations including the reduced temporal sampling of the look-up table as
well as the sensitivity to possible errors in motion estimates occurred during
the training period. To overcome these limitations, more sophisticated indirect
models have been proposed using random forest51 or principal component
analysis (PCA)-based approach.57 In the PCA-based approach, 2D+t MR
images were employed for both surrogate and training data. The PCA is
employed to detect spatio-temporal coherence in the physiological organ
motion, and to discard incoherent motion patterns. The organ deformation is
then expressed using a small set of parameters (also called motion descriptor).
During sonication, the PCA motion descriptor provides a motion field that is
consistent with the learned model and robust to possible local artifacts.

3.2. Beam Steering Using Direct Motion Estimation

Direct motion estimation approaches estimate the target motion directly
from data continuously acquired during the ablation process without the
use of motion model. This approach thus allows detecting spontaneous
motion events without the requirement of a calibration prior or during the
intervention. Several approaches have been demonstrated during MRgHIFU
ablation experiments using either real time acquisition of MRI or US.

3.2.1. Direct motion estimation using MRI

The use of MR navigators has been suggested to estimate and correct in
real time the organ motion.55 This type of approach is attractive due to the
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low acquisition time of MR-navigators and the low processing time required
for motion estimation. Although the use of one or two navigators has been
suggested, this technique cannot characterize complex spatial deformations,
as observed in the liver. Therefore, more sophisticated approaches have been
developed.

Alternatively, it has been proposed to estimate the target motion using
the magnitude component of the MR images (acquired for MR thermome-
try) together with image-based motion estimation algorithms.34,41,64–66 This
strategy has been successfully validated for real time beam steering MRgHIFU
experiment.34 In this scenario, the acquisition, reconstruction and processing
of incoming MR-images need to satisfy the real time constraint of the beam
steering system and must therefore be performed with minimal overall latency.
For this purpose, accelerated MR-acquisition schemes combined with efficient
graphic processing unit (GPU) based reconstruction67,68 have been shown
to enable online reconstruction of 2D MR images with a high framerate
and low latency.67 Image-based motion estimation of the target can then be
performed immediately after the image reconstruction using either feature-
based approaches64,69 or intensity-based approaches.34,41,65,66 In feature-
based approaches, specific vessels that were initially selected manually were
automatically tracked during the procedure.64,69 Although it does not require
intensive computation, it may be limited to fully characterize complex motion.
Furthermore, the additional vessel deformation induced by the cardiac activity
may also bias the overall organ motion estimates. Intensity-based approaches
using optical flow have also been demonstrated to offer robust motion estimates
in MR-thermometry images.34,41,65,66 Since these algorithms are generally time
consuming, GPU-based acceleration has been proposed to enable their real
time feasibility.43,70 Despite the advantages of generating dense motion fields
in real time which enable accurate characterization of complex motion, these
techniques are still limited to 2D motion estimation since it is hard to acquire
3D MR volumes with a high frame-rate. Alignment of the imaging plane along
the main direction of the motion must here again be used to minimize the
effect of through plane motion.

Recently, 2D MR-images and MR-navigators have been combined to
compute 3D target motion estimates in real time.45,47 While the MR-navigator
provides a measure of the target motion along one direction, MR images are
used to track the target motion in the two remaining spatial dimensions using
image-based motion estimation algorithms. The position of the imaging plane
was also adjusted based on the MR-navigator to reduce through plane motion
artifacts in the MR images. This approach has been successfully demonstrated
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during real time 3D beam steering MRgHIFU experiments.45,47 Further
improvements were made by using a fat-selective MR-navigator which removes
potential artifacts in fat suppressed MR images caused by the imaging pulses
of conventional MR navigators.47

Although such technique provides a robust framework for real time 3D
beam steering, a high MR imaging frame-rate is mandatory (∼10 Hz), which
may be unfavorable for the MR thermometry/dosimetry system which would
rather privilege the spatial resolution and coverage. Two alternatives strategies
have been recently suggested, although not yet demonstrated for real time
3D beam steering: (1) to use lower MR imaging frame-rate required for vol-
umetric MR thermometry/dosimetry in combination with motion prediction
algorithms to improve the temporal characterization of the target motion,71,72

or (2) to use an interleaved acquisition of one slice sweeping continuously
within the desired observation area and one invariant slice.73 While the first
moving slice can be used to compute volumetric thermometry/dosimetry over
the observation area, the second invariant slice may be used for high temporal
estimation of the target motion.

3.2.2. Direct motion estimation using US signal

The simultaneous use of US imaging and HIFU is hampered by their potential
mutual interference. However, although the acquisition of US signal and HIFU
sonication should be interleaved, it represents a promising approach to operate
the MR thermometry/dosimetry and the beam steering systems independently
and with different temporal resolutions. In the settings of an MRgHIFU
procedure, US signal can be acquired from two different devices: the HIFU
transducer or external US probes.

US-based motion estimation of the target has been initially proposed using
US echoes generated from selected elements of the HIFU transducer.30,74,75

One dimensional displacements of the target were estimated for three different
spatial directions, which enable the reconstruction of the target displacement
in 3D. This technique has been validated during real time 3D beam steering
HIFU experiments (without MR guidance). However, the estimation of three
1D motion can be limited to characterize the targeted organ motion when US
are obstructed by ribs and air in the beam path.

The use of external US probes has also been proposed to enable the
acquisition of US signal during the interventional procedure and to improve the
characterization of the target motion. The feasibility of such approach has been
initially demonstrated during real time beam steering MRgHIFU experiment
using ultrasonic echoes obtained from a single transducer element.63 In this



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch17 page 371

Motion Correction Techniques for MR-Guided HIFU Ablation of Abdominal Organs 371

study, the target motion could only be evaluated in 1D which is insufficient in
practice for clinical scenario. Recent advances have demonstrated the feasibility
of simultaneous acquisition of US images and MR images.76 The potential of
hybrid US-MR system to estimate the respiratory-induced motion in human
heart has been shown using real time contour tracking algorithms applied to
US images.46 This strategy has also been recently evaluated during MRgHIFU
experiment using optical flow algorithms to track the target motion in US
images.77

4. Conclusions

Advanced motion correction strategies which enable continuous monitoring
of the thermal dose and continuous sonication under free breathing conditions
have been demonstrated in few pre-clinical studies. However, despite these
progresses, additional pre-clinical studies are warranted to fully demonstrate the
accuracy, safety and robustness of these techniques. In the current state, gated
strategies, which are technically less challenging, may represent a reasonable
compromise for initial translation to clinics.
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Proton therapy is a key radiation therapy modality used in the treatment of cancer.
With a low entrance dose and no exit dose, proton therapy has the desired physics
properties to spare healthy tissues. However, uncertainties attributable to calibration
of the computed tomography (CT) number-to-proton-relative stopping power, daily
patient setup, and anatomical changes during a treatment course lead to proton-range
uncertainties, which can be detrimental to patients. The intrinsic range uncertainty
in CT-relative stopping power calibration can be minimized using proton CT; the
random and systematic range variations from patient setup and anatomical changes
can be monitored using positron emission tomography (PET) and prompted gamma
ray imaging, which detect the byproducts from proton nuclear interactions with
human tissues. This chapter reviews proton therapy physics, sources of proton-range
uncertainties, and the advanced imaging technologies used to minimize or monitor
these uncertainties before, during, and after proton therapy.

1. Radiation Therapy

Radiation therapy uses high-energy particles or waves, such as X-rays and
gamma rays, electron beams, proton beams, and heavy ions (i.e., carbon) as
part of cancer treatment to control or kill malignant cells.1 As one of the
most effective treatments for cancer, radiation therapy is intended to achieve
a high probability of local tumor control (tumor control probability, TCP)
with a low risk of normal tissue complications (normal tissue complication
probability, NTCP).2 The main aim of radiation therapy is to deliver a dose
that is high enough to eradicate tumors while sparing surrounding normal
tissues and organs at risk (OAR). Medical imaging technologies are involved
in the key steps of radiation therapy to lower NTCP yet maintain high TCP.3,4

The introduction of CT in radiation treatment planning and cone-beam CT
(CBCT) for image guidance in pre-treatment target alignment are two of the
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major imaging technology application milestones in radiation therapy. Since
1990, when the first hospital-based proton treatment facility was built at
the Loma Linda University Medical Center (LLUMC) in California,5 proton
therapy has been used to reduce normal tissue toxicity and improve tumor
control due to its desirable physics properties. These properties also provide
a foundation for state-of-the-art imaging technologies to be developed and
applied to proton therapy treatment planning, delivery monitoring, and post-
treatment evaluation.

In this chapter, we will (1) review the current state of radiation therapy
using high-energy photons and protons; (2) highlight the physics of proton
interactions with matter; (3) discuss factors that can affect the range of proton
beams; and (4) review state-of-the-art imaging technologies that can minimize
proton-range uncertainties in treatment planning and range monitoring before,
during, and after proton therapy.

1.1. High-Energy Photon Radiation Therapy

The high-energy photons used in radiation therapy are X-rays ranging from
1 to 25 MV that deliver doses to treat deep-seated tumors located in the
prostate, lung, or brain, among other organs. These high-energy photons
interact with human tissues through photoelectric effect, Compton scatter, and
pair production. Compton scatter, the dominant interaction within the energy
range of photon radiation therapy,6 generates a highly energetic Compton
electron as well as a Compton scattered photon, which has less energy than
the incident photon. The energetic electrons from Compton scatter can
transfer their energy to other bonded electrons to generate more energetic
free electrons. This process of ionization leads DNA chemical bonds to break;
free radicals that can permanently fix the radiation breaks of DNA are also
generated.7 DNA double-strand breaks lead to cell death without regeneration.
If the cell is malignant, the cancer cell is killed; if the cell is a part of healthy
tissue, it is collateral damage (the normal tissue toxicity in radiation therapy).

The dose deposited in a medium by high-energy photons decreases with
the increasing depth of the medium (Fig. 1). For deep tumors, a single high-
energy photon beam can cause more damage to healthy tissues upstream of
the tumor. Therefore, the majority of high-energy photon treatments involve
targeting the tumor with multiple beams from various beam angles, thereby
creating a cross-fire effect that intensifies the radiation dose to the tumor and
reduces radiation toxicity to the normal tissue. This treatment technique is
being used with 3-dimensional conformal therapy and intensity-modulated
radiation therapy (IMRT).
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Fig. 1. Percentage depth dose curves for photon, electron, and proton beams.

In modern high-energy photon radiation therapy, X-ray radiographs/
CBCT are employed before treatment to minimize uncertainties in patient
setup and organ motion. After setup verification, external high energy X-rays
are used to deliver the prescribed dose to the tumor.8,9 Tumors located in the
thoracic region can exhibit extensive tumor motion. The impact of this motion
can be mitigated by daily pre-treatment X-ray radiographs or CBCT images.
Margin expansion from the clinical target volume (CTV) to the planning
target volume (PTV)10 can account for residual setup and organ motion
uncertainties. According to International Commission on Radiation Units and
Measurements (ICRU) Report 62, the CTV contains malignant growth tissue
and subclinical microscopic malignant disease. The PTV includes the CTV
and internal variations in size, shape, and position as well as uncertainties in
patient positioning and alignment. Using a population-based statistical study,
Van Herk et al. provided a “margin recipe” that accounts for systematic and
random components of target delineation, setup uncertainty, and organ motion
uncertainty.11 In the early years of radiation therapy, large PTV margins were
used to account for greater setup and organ motion uncertainties without image
guidance. Image-guided radiation therapy (IGRT) can reduce setup and organ
motion uncertainties and improve the target alignment accuracy of the radiation
field. Thus, it ensures adequate tumor coverage and minimum exposure of
healthy tissue during radiation treatments.12 Each radiation therapy institute
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should determine the exact margin for treatment planning while considering
tumor location, image guidance, treatment modality, and planning technique.
However, the PTV is not entirely applicable in proton therapy.

1.2. Proton Radiation Therapy

Energy deposited by high-energy photons in tissue exhibits a dose buildup
followed by an exponential decay (Fig. 1). The exit dose beyond the tumor
damages normal tissues. For charged particles (e.g., electrons and protons),
energy deposition is a function of particle energy fluence and tissue proton
stopping power. The pristine peak of a mono-energy proton beam has a sharp
distal falloff. A large portion of the delivered dose within the Bragg peak is due
to significantly increased proton stopping power at low energies; no dose is
beyond the maximum range of the proton beam. The spread-out Bragg peak
(SOBP), which is a linear combination of different mono-energy proton beams
with different weights, can deliver a uniform dose into a specific area (size of
tumor) located at a certain depth. The range of the proton beam is defined as
90% or 95% of distal dose falloff for the proton beam. The modulation width
of the proton beam, the uniform dose region that covers tumor width in the
beam direction, is defined as the plateau between 90%/95% of the distal and
proximal ends.13

The passive-scattering mode is a proton beam delivery technique in which
scattering materials spread the beam to the required field size, and range-
shifting materials conform the beam to the distal portion of the treated tumor.14

In the passive-scattering technique, 2 scatterers work together to provide a
uniform lateral field profile, and the rotation of the range modulator wheel is
synchronized with the current modulation of the proton beam to achieve an
adjustable SOBP modulation width. An aperture is used in double-scattering
proton therapy to shape the proton dose to the target laterally in the beam-
eye-view, and the range compensator conforms the proton dose to the distal
end of the target [Fig. 2(a)].13 Pencil-beam scanning (PBS)15 places pristine
peaks of different proton energies throughout the target volume [Fig. 2(b)].
This 2-dimensional “layer” scanning of a proton beam in the dimension
perpendicular to the beam direction can be achieved with 2 orthogonal
scanning magnets. The proton dose is “painted” inside these layers located
at different depths with different proton energies.

The dose delivered by a proton beam could drop from 100% down to less
than 1% within 1 cm due to the sharp dose falloff at distal end of the SOBP. This
property is often used by clinicians to spare OARs abutting the tumor at the
distal end of the SOBP. If the proton stopping power of the tissues in the beam
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Fig. 2. Illustration of proton treatment techniques: (a) double-scattering mode; (b) pencil-
beam scanning mode.

path is not accurate, the prescription dose to the tumor can be potentially
deposited to the OARs. Therefore, obtaining the accurate proton stopping
power for the tissues and knowing its uncertainty is essential. Moreover, the
treatment beam range in patients should be actively monitored.

2. Proton Interactions with Matter

Human tissues are composed of many naturally occurring elements (Table 1);
however, oxygen, carbon, hydrogen, and nitrogen account for more than
96% of human body weight. During proton therapy, high-energy protons
enter the patient’s body and deposit energy through either ionization or
nuclear interactions with the nuclei in tissues. When protons interact with
tissue electrons through electromagnetic Coulomb interactions, part of the
kinetic energy of the protons is transferred to these orbital electrons of the
tissue elements. The energy loss of protons through Coulomb interactions is
characterized by the stopping power of protons with energy E6:

S(E) = 0.307
Z
A

1
β2

(
1
2

ln
2mec2β2Tmax

I 2(1 − β2)
− β2

)
, (1)

where Z and A are atomic number and atomic mass of the media, respectively;
β = v

c is relative proton velocity; I is the mean excitation energy of the medium
electron.
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Table 1. Naturally occurring elements in the human body.

Atomic Percentage of human
Symbol Element number body weight (%)

O Oxygen 8 65.0
C Carbon 6 18.5
H Hydrogen 1 9.5
N Nitrogen 7 3.3
Ca Calcium 20 1.5
P Phosphorus 15 1.0
K Potassium 19 0.4
S Sulfur 16 0.3
Na Sodium 11 0.2
Cl Chlorine 17 0.2
Mg Magnesium 12 0.1

∗Trace elements (less than 0.01%): Boron (B), Chromium
(Cr), Cobalt (Co), Copper (Cu), Fluorine (F), Iodine (I),
Iron (Fe), Manganese (Mn), Molybdenum (Mo), Selenium
(Se), Silicon (Si), Tin (Sn), Vanadium (V), and Zinc (Zn).

With an increase in incident proton energy, there is an energy threshold
beyond which exists the probability of inelastic nuclear collisions of protons
with tissue nuclei. During nuclear interactions, the primary protons are
absorbed into tissue nuclei, creating daughter elements and emitting secondary
particles (i.e., protons, neutrons, and gamma rays). We will focus on positron-
emitting daughter nuclei and prompt gamma emissions in the following
sections.

2.1. Positron Emissions

The probabilities of proton inelastic nuclear interactions are determined by the
proton-induced nuclear interaction cross sections of 16O, 12C, and 14N. Some
of these interactions produce daughter elements that are radioactive; thus, they
are in an unstable nuclear state. Through positron emissions, these elements
are converted to stable elements. The emitted positron annihilates with an
electron to create a pair of 0.511-MeV gamma rays going in opposite directions.
Opposing gamma-ray detector arrays can be set up around the patient treatment
section to detect these coincident photons. Positron-activity images can be
reconstructed for treatment setup and range verifications. Table 2 lists some
examples of positron-emitter production in proton therapy.16
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Table 2. Positron-emitter production in the proton therapy.

Reaction Threshold [MeV] Half-life [min] Positron Max. energy [MeV]

16O(p,pn)15O 16.79 2.037 1.72
16O(p,2p2n)13N∗ 5.66∗∗∗ 9.965 1.19
14N(p,pn)13N 11.44 9.965 1.19
12C(p,pn)11C 20.61 20.39 0.96
14N(p,2p2n)11C∗ 3.22∗∗∗ 20.39 0.96
16O(p,3p3n)11C∗∗ 27.50∗∗∗ 20.39 0.96

∗(p,2p2n) is inclusive of (p, α)
∗∗(p,3p3n) is inclusive of (p, αpn)
∗∗∗the listed thresholds refer to (p, α) and (p, αpn)

2.2. Prompt Gamma Ray Emissions

For some inelastic nuclear interactions, the produced elements are in a state of
nuclear excitation. Deexcitation to the ground state of these nuclei produces
gamma rays with a range of energies. These nuclear deexcitations occur within
nanoseconds of original nuclear interactions, and the resulting gamma rays
are named prompt gammas. The cross sections of these nuclear interactions
producing prompt gamma rays have peak intensities near the nuclear interaction
threshold energies and decrease dramatically with increase energy of incident
protons. In contrast to positron-activity imaging, detector arrays from one side
of the patient with proper collimation and shielding can detect these prompt
gamma rays. Moreover, the detected signal intensity peaks are close to the distal
falloff of the Bragg peak of a monoenergetic proton beam. Thus, detections of
prompt gamma can be detected and used for proton beam-range verification.
Since the prompted gamma rays are released within 10−19 to 10−9 seconds
of the nuclear interactions, real-time range verification can be achieved using
prompt gamma detection and analysis. Table 3 lists the prompt gamma rays
energies by proton interaction with major elements in human tissues.17

3. Range Uncertainty in Proton Therapy

3.1. Uncertainty in CT Number-to-Proton-Relative-Stopping-
Power Calibration

In modern radiation therapy, cancer patients usually receive CT scans (using kV
X-rays) that include the section of the body enclosing tumors or targets. These
3-dimensional (3D) CT images are sent to a computerized treatment planning
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Table 3. Gamma rays energies by proton interaction with major elements in
human tissues.

E (Mev) Transition Reaction Mean Life (s)

0.718 10B0.718 →g.s. 12C(p,x)10B∗ 1.0 × 10−9

12C(p,x)10C(ε)10B∗ 27.8
16O(p,x)10B∗ 1.0 × 10−9

0.937 18F0.937 →g.s. 16O(3He,p)18F∗ 6.8 × 10−11

1.022 10B1.740 →10B0.718 12C(p,x)10B∗ 7.5 × 10−15

16O(p,x)10B∗ 7.5 × 10−15

1.042 18F1.042 →g.s. 16O(3He,p)18F∗ 2.6 × 10−15

1.635 14N3.948 →14N2.313 14N(p,p∗)14N∗ 6.9 × 10−15

2.000 11C2.000 →g.s. 12C(p,x)11C∗ 1.0 × 10−14

2.124 11B2.125 →g.s. 12C(p,x)11B∗ 5.5 × 10−15

2.313 14N2.313 →g.s. 14N(p,p∗)14N∗ 9.8 × 10−14

16O(p,x)14N∗ 9.8 × 10−14

2.742 16O8.872 →16O6.130 16O(p,p∗)16O∗ 1.8 × 10−13

3.736 40Ca3.736 →g.s. 40Ca(p,p∗)40Ca∗ 2.9 × 10−11

4.438 12C4.439 →g.s. 12C(p,p∗)12C∗ 6.1 × 10−14

14N(p,x)12C∗ 6.1 × 10−14

16O(p,x)12C∗ 6.1 × 10−14

4.444 11B4.445 →g.s. 12C(p,2p)11B 5.6 × 10−19

14N(p,x)11B 5.6 × 10−19

5.105 14N5.105 →g.s. 14N(p,p∗)14N∗ 6.3 × 10−12

16O(p,x)14N∗ 6.3 × 10−12

5.180 15O5.180 →g.s. 16O(p,x)15O∗ <4.9 × 10−14

6.129 16O6.130 →g.s. 16O(p,p∗)16O∗ 2.7 × 10−11

6.916 16O6.917 →g.s. 16O(p,p∗)16O∗ 6.8 × 10−15

7.115 16O7.117 →g.s. 16O(p,p∗)16O∗ 1.2 × 10−14

15.10 12C15.11 →g.s. 12C(p,p∗)12C∗ 1.5 × 10−17

system (TPS)18 for target and OAR delineation and treatment planning. This
approach allows clinicians to visualize the tumor and its geometric relationship
to the surrounding OARs and can potentially minimize the radiation dose to
these OARs in the optimized treatment plan. During the treatment planning
process, the planner can place a digital treatment machine (with the same
properties as an actual treatment machine, Fig. 3) at different angles and
directions to create a treatment plan that delivers the prescribed dose to the
target while irradiating the minimum amount of health tissue. To calculate dose
to the target and to the irradiated healthy tissues, the TPS has to be able to
calculate the energy deposited from the radiation beams to the patient 3D CT
dataset.
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Fig. 3. Proton therapy gantry room.

The CT dataset is comprised of many voxels with different Hounsfield
Unit (HU) numbers. The HU number of each voxel is proportional to the kV
X-ray attenuation coefficients of the materials of that voxel. Proton stopping
powers are needed to calculate the radiation dose to each voxel. The relationship
between the CT HU numbers and proton relative stopping power to water of
various materials has to be defined. This relationship is called CT number-to-
relative-stopping-power calibration. It is an important step toward accurate
proton dose and range calculation inside the patient CT dataset.19 Schneider
et al. proposed using a stoichiometric method for the CT number-to-proton-
relative-stopping-power calibration. There are two main steps in this approach:

(1) Parameterize the HU number calculations equation using tissue substitute
materials with known chemical compositions (Fig. 4).

(2) Using the obtained parameters to calculate the HU number and the
relative stopping power of various human tissues with known chemical
compositions (published by the ICRU), obtain the calibration curve.

Nevertheless, there are some intrinsic uncertainties existed in this calibration
method. The tissue chemical compositions published by ICRU are from several
specific individuals. The elemental compositions of the same type of tissues from
different patients may vary. Furthermore, for the same tissue substitutes with
fixed X-ray kVp of CT scanner, the obtained CT HU number also changes with
phantom size and relative location of the tissue substitute inside the phantom.
This variation leads to an uncertainty in the relative stopping power, thus leads
to uncertainty of proton beam range inside the patient. This range uncertainty
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Fig. 4. CT calibration phantom with tissue substitute inserts.

can potentially lead to overdose to OARs, i.e., spinal cord or brainstem, at
the distal end of the proton beams. Therefore, there are needs to either
accurately monitor the beam range for each patient during treatment (prompt
gamma detection) or after treatment (proton positron activation detection).
The alternative is to find a more accurate relationship between patient tissues
and their relative stopping power to water using proton CT.

3.2. Anatomical Changes and Daily Setup Uncertainty

Patient weight loss, tumor progression, and tumor shrinkage can lead to
anatomical changes during a course of treatment. An individual tumor can
shift in a small region relative to the bony anatomy due to various reasons,
including respiratory motion that causes tumor motion inside the lungs or
upper abdomen; empty/full bladder and rectal filling, which changes the
prostate location in the pelvis; and voluntary motion of the head with respect to
an immobilization mask in conventional head and neck radiotherapy.20 These
anatomical changes and organ motions affect the range of proton beams and
can lead to tumor underdose or severe damage of OARs, the spinal cord,
and heart (see Fig. 5), which can be located just beyond the distal falloff
of the beam. Medial lung tumors can be close to heart, and some posterior
lung tumors can be in the vicinity of the spinal cord. Thus, daily setup and
tumor motion within the lungs are of great interest to clinicians. Shimizu et al.
investigated lung tumor motion during treatment using a gold marker inserted
in the tumor. During normal breathing, the marker motion was 5.5∼10.9 mm
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Original Treatment Plan Verification Plan after 4 weeks 

Fig. 5. Tumor volume change within a treatment course and its impact on proton beam range.

along the right-left, 6.8∼15.9 mm along the superior-inferior, and 8.1∼14.6
along the anterior-posterior directions. Lung tumor motion was reduced to
within 5.3 mm in all three directions with gating.21 The largest movement in
the lung could be up to 2.0 cm in the longitudinal direction.22 These tumor
motion and anatomical changes during a treatment course result in significant
proton-range variations and have a negative dosimetric impact; consequently,
they must be monitored to ensure proper treatment.

4. Advanced Imaging Technologies Addressing
the Range Uncertainty

4.1. Range Uncertainty and its Impacts

Range uncertainty can be categorized into systematic and random types. The
intrinsic uncertainty of the CT HU number-to-proton-relative-stopping-power
calibration causes systematic proton range changes. Patient daily setup cannot
be perfectly matched to the CT-scanned patient geometry; this is usually a small
difference that follows Gaussian distribution of the setup errors and leads to
random range uncertainty. When patients experience either significant body
mass changes (weight loss) or tumor shrinkage during treatment, proton beam
ranges inside the patient are significantly affected. This results in a gradually
increased systematic range uncertainty.

Figure 5 shows the dose distributions of the original proton beam on
an initial CT scan and on a verification CT scan acquired 4 weeks later. It
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clearly shows the proton beam overshooting the target due to tumor shrinkage.
Although this significant range uncertainty can be mitigated through weekly
CT scans to verify mass changes of tumors and tissues along the proton beam
path, it cannot be completely eliminated. Obtaining range information for the
proton beam under treatment conditions will ensure delivery of the appropriate
dose to the target and minimize dose to the OARs. There are several methods
to verify this range before, during, and after proton therapy. We will focus
on positron emission tomography (PET), real-time prompt gamma detection,
and proton CT development in addition to proton radiography and implanted
proton-range detector methods.

4.2. Positron Emission Tomography

When a therapeutic proton beam interacts with the human body, inelastic
nuclear collisions between protons and tissue nuclei (16O, 12C, and 14N)
create positron-emitting nuclei (i.e., 15O, 11C and 13N) if the proton energies
are above their nuclear interaction thresholds.23 As the primary proton beam
traverses tissue toward the distal surface of the tumor, positron-emitting nuclei
are created along the beam path until the proton energy decreases below the
threshold for inelastic nuclear interaction. At approximately this energy level,
the proton-stopping power increases significantly and creates a Bragg peak in
dose deposition. Therefore, the activity distribution of the positron emitters
at the conclusion of proton treatment is highly correlated with the proton
range inside the patient. Positron-activity imaging of a patient during or after
treatment can provide vital information concerning the actual range of the
proton beam, and proton therapy facilities use in-beam, in-room, and offline
PET methods to determine this information.

However, the measured activities cannot be used to directly verify the
range of the proton beam inside a patient because: (1) there are intrinsic
location differences between 50% of activity level and 50% of proton distal dose
falloff due to the PET activation threshold energies and their variations among
different elements24; and (2) depending on which approach is used for PET
image acquisitions (i.e., in-beam, in-room, or off-line), different parts of the
exponential decay curves of 15O, 11C, and 13N are integrated during data acqui-
sition. Combining different physical half lives with biological washout process,
the 50% activity levels can vary dramatically between PET imaging approaches.

There are two practical ways to use the acquired positron-activation images
for proton-range verifications.25,26 The first approach is to acquire the positron-
activation images at the exact same time during or after proton treatment.
This approach can detect range variations due to anatomical changes or
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significant setup errors. The second approach is to calculate the positron-activity
distributions using the Monte Carlo simulation approach; the calculated
activity distributions are compared to the measured activity distributions. The
activity distribution differences are used to evaluate the potential proton-range
discrepancies between treatment planning and actual proton beam delivery.
This approach works well in low-perfusion tissues, (i.e., head and neck area),
which exhibit less washout of positron activities. For high-perfusion tissues,
the biological washout effect has to be modeled and incorporated into the
Monte Carlo simulation process. One of the approaches to model the washout
processes is to simulate three different biological half-live processes in addition
to the positron decay process. The three processes have fast, intermediate,
and slow components. Parodi et al. explains this approach in detail.26 Zhu
et al. propose an alternative approach using a kinetic model for the biological
washout of radioactivity.27

4.2.1. In-beam PET

The in-beam PET imaging system is composed of two opposing detector
matrices with pixelated scintillators and position-sensitive photomultipier/
photodiode arrays (Fig. 6).28 The system starts data acquisition during proton
irradiation. However, current clinical functioning systems for in-beam PET are
only associated with a synchrotron proton beam accelerator. For synchrotron-
based proton/particle therapy facilities, particle beam delivery has a time
structure. Protons accelerated to the desired energy are extracted from the syn-
chrotron for patient irradiation. Between extractions, there are pauses (several
seconds) during which the in-beam PET system acquires signals from patients.

The main advantages of in-beam PET approach are that the patient remains
in the treatment position during the imaging process and that activities from
the short-lived radionuclei (15O) and other relatively longer half-life radionuclei
(11C and 13N) are acquired. The relatively high radioactivities from these nuclei
enable short image acquisition time, which has minimum impact on patient
treatment throughput. On the other hand, because of the limited size of the
radiation detector size, planar geometry, and the limited angle detection of the
photon pairs, imaging artifacts occur. The cost of developing and integrating
the in-beam detectors into the existing proton gantries or treatment portals is
also significant.

4.2.2. In-room PET

There are two types of geometric arrangements for the in-room positron-
imaging approach: (1) similar to the geometry of in-beam PET, the two
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Fig. 6. In-beam PET system at GSI. (Adapted from Enghardt et al. Nuclear Instruments and
Methods in Physics Research A 525 (2004), 284–288, with permission)

opposing detector matrices are mounted onto the treatment port or gantry
(Fig. 7)25; and (2) a full-ring PET scanner that is set up inside the treatment
room and adjacent to the treatment gantry.29 For the first type of arrangement,
immediately following irradiation, the detector pair registers the positron
annihilation events while the patient remains in the treatment position and
the treatment table does not move. Images with good statistics are acquired in
approximately 3–5 minutes. For the second type of arrangement, the patient
remains in the treatment pose while the treatment table moves toward the small,
mobile full-ring PET scanner inside the treatment room. Data acquisition starts
as soon as the irradiated section of patient body is within the PET field of view.
The entire data-acquisition process is completed in approximately 5 minutes.

4.2.3. Off-line PET

The off-line PET approach removes the patient from the treatment room
after proton treatment. Patients are transported to a PET/CT scanner in close
vicinity to the treatment room either by walking or on a transportation vehicle.
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Fig. 7. In-room PET system at JNCC. (Adapted from Nishio et al. Int J Radiat Oncol Biol
Phys, 76(1), 277–286, with permission)

At the Heidelberg Ion-Beam Therapy Center (HIT, Heidelberg, Germany) a
table-docking and transportation system is in use to transfer patients between
the particle treatment and PET/CT rooms with minimum interference with
treatment poses.30

This off-line PET approach for range verification has several advantages.
From a financial point of view, there is no extra cost involved in the development
of a positron-activation detection system for in-room installation. Most proton
therapy clinics have PET/CT scanners available onsite; thus, this option does
not require new development costs. Moreover, the full-ring PET scanner does
not have the limited angle effect that is usually associated with two opposing
detector matrices. However, the off-line approach also has some disadvantages.
First, since patients are removed from the treatment room, CT scanning is
usually required for image co-registration with the treatment planning CT. This
extra imaging dose can be avoided with the in-beam or in-room approaches.
Second, because of the time delay between the end of treatment and the onset
of the PET acquisition, radioactivity from the positron-emitting nuclei due to
natural radioactive decay and biological washout from blood flow and fluid
exchange is significantly reduced. To obtain a signal level with good statistics,
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the PET acquisition time is much longer than those of in-beam and in-room
approaches; it usually takes approximately 25–30 minutes of scan time to
acquire satisfactory off-line PET images.

4.2.4. Method comparisons and potential improvements

Proton positron-activation imaging is used to verify range of proton beam
in vivo. Depending on each institution’s needs and available resources, these
three techniques for positron-activation imaging provide different advantages
(Table 4).

Currently, PET approaches are clinically feasible for particle treatment of
the head and neck region, which has limited organ motion and tissue perfusion.
When the treatment area has organ motion or significant biological washout
of the positron activities, the Monte Carlo PET calculations have to include
models of washout and evaluate the organ motion impact on the obtained PET
images. Parodi et al. are working to improve washout modeling using carbon-
irradiated mice (personal communication). Stutzer et al. experimentally studied
the potential and limitations of time-resolved 4D PET for monitoring motion-
compensated delivery of particle therapy.31

When comparing measured and Monte Carlo-calculated PET images,
verifying proton beam-range variations is a labor intensive process for trained
clinicians and medical physicists. It is very difficult for clinical particle therapy
centers without extensive staff with expertise in PET image evaluation for
proton range verification to adopt the PET approach as a routine practice.
In an attempt to automate the proton range verification process using PET
images, Helmbrecht et al. studied the automated range assessment from PET
distributions based on profile shift analysis and/or percentage changes in fall-
off in the beam eye view.32

There are also efforts invested in improving PET image quality to assist
in PET-based proton range verification. Studies have also been performed to

Table 4. Comparisons between in-beam, in-room and off-line PET systems.

In-beam PET In-room PET Off-line PET

Accelerator Synchrotron Synchrotron/Cyclotron Synchrotron/Cyclotron
Patient Position Treatment Pose Treatment Pose Re-setup
Image Artifact Limited-angle Limited-angle/None None
Washout Effect Very limited Moderate Severe
Integration Cost High Moderate Low
Patient Throughput Limited Impact Moderate Impact No Impact
Scan Time Short (<1 minute) Moderate (<5 minutes) Long (20–30 minutes)
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improve detector design and acquisition timing to increase acquired PET image
quality. Current in-beam PET and some in-room PETs use two opposing
planar detector matrices. The obtained images have limited-angle artifacts.
Crespo et al. performed a simulation study for an oblique full-ring detector
in-beam PET that could accommodate the treatment nozzle.33 By doing so,
the limited angle artifacts will be eliminated while patient table is still in the
treatment position. They also simulated time-of-flight (TOF) image acquisition
and reconstruction with various timing resolutions. The simulated positron
distributions demonstrated improved image quality with finer timing resolution
of TOF. Tashima et al. are building a small prototype full-ring scanner for
in-beam PET.34

4.3. Prompt Gamma Ray Imaging

Instantaneous discrete-energy gamma ray emissions after particle nuclear
interactions have been studied by particle physicists and astronomy physicists
for the past few decades. The obtained knowledge and instrumentation are
often used in solar missions and solar flare studies. Prompt gamma rays were
first proposed for proton-range verification in a medical setting by Jongen
and Stichelbaut at the annual Particle Therapy Cooperative Group Meeting
(PTCOG) in 2003. Their Monte Carlo simulations demonstrated a correlation
between prompt gamma-ray emissions and proton range; consequently, they
proposed a general methodology for preserving this correlation. Since then,
many groups and institutions have studied and prototyped prompt gamma-
ray detection instruments to perform range verification in proton therapy.
Since the prompt gamma ray constitutes a single photon emission from the
nuclear interaction between protons and tissue nuclei and has energies ranging
from 0.718 MeV to 15.1 MeV, prompt gamma-ray detection instruments are
similar to those used in astronomy. Currently, there are four promising prompt
gamma-ray detection instruments in development for real-time proton-range
verification: the pinhole camera, electron tracking Compton camera, 3-stage
Compton camera, and knife-edge-slit camera. Each instrument design has
different levels of detection efficiency, and all must be improved for use in
a proton therapy clinic.

4.3.1. Pinhole camera

Min et al. performed Monte Carlo simulations and developed a pinhole
gamma camera for prompt gamma-based proton-range verification (Fig. 8).35

The pinhole camera system has a CsI(Tl) scintillator detector coupled with a
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Fig. 8. Pinhole camera system setup. (Adapted from Min et al., Applied Physic Letters 89,
183517, 2006, with permission)

Fig. 9. Intensity profiles of prompt gamma rays with different energies. (Adapted from Min
et al., Applied Physic Letters 89, 183517, 2006, with permission)

photomultiplier tube, corresponding electronics, and a multichannel analyzer.
The scintillator is shielded by a lead enclosure with a pinhole opening. Between
the lead shielding and the proton-irradiated phantom, there are paraffin plates
and B4C to moderate and capture the high-energy neutrons, respectively. Min
et al. also studied the intensity falloff of prompt gamma rays with different
energies. They concluded that higher energy prompt gamma rays led to a more
distinctive correlation with distal dose falloff of proton beams (Fig. 9).

Although this experiment achieved proof of principle, many practical issues
still need to be resolved before the prompt gamma-ray detection system can
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be used in a proton therapy clinic. First, this system can only detect the
prompt gamma ray at a single location without linear motion of the entire
system. Precise placement of the system relative to the patient and small
range of linear motion is required to find prompt gamma-intensity falloff.
Second, the most up-to-date proton therapy clinics utilize double-scattering
and pencil-beam scanning techniques. Kurosawa et al. performed range-
verification measurements using the pinhole camera system for the double-
scattering and pencil-beam scanning techniques.36 The pinhole camera system
can only identify the range through sharp falloff of the prompt gamma signal
for the proton pencil beam.

4.3.2. Compton camera

Prompt gamma rays are emitted isotropically from the proton nuclear inter-
actions along the beam path. Determining the energy and direction of the
incident prompt gamma rays is essential for the formation of 2D images of the
prompt gamma intensity and for energy thresholds to improve discernability
of the signal peak. Within the range of energies (∼1 to 15 MeV) of prompt
gamma rays in proton therapy, the Compton interaction is the dominant
radiation interaction that can be used for gamma detection. Because scattered
Compton photons and electrons have intrinsically related energies and emission
angles relative to those of incident photons, with the proper design Compton
interactions can be used to determine incident photon energies and directions.
In fact, the prompt gamma-ray Compton camera is often used in astronomy
to detect the energy and direction of gamma rays coming from outer space.
With a design similar to that of the Compton telescope, the electron-tracking
Compton and three-stage Compton cameras have been studied for prompt
gamma-based range verification in proton therapy.

4.3.2.1. Electron-tracking compton camera

An electron-tracking camera (Fig. 10) (aka. a two-stage Compton camera) has
two interaction stages: (1) detecting energies and scatter angles of Compton-
scattered electrons ; and (2) detecting those of the Compton-scattered photons.
These stages are accomplished with an electron-tracking chamber and a
pixelated scintillator array.36 The electron-tracking chamber is filled with
atmosphere-pressured Argon gas and space charge-sensing pixels or electrodes.
When Compton interactions occur within the chamber, the scattered electron
drifts through the chamber; the chamber electrodes can detect the electron
direction and energy if it is fully stopped within the chamber. The pixelated
scintillator array interacts with and absorbs the Compton-scattered photons
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Fig. 10. Illustration of electron-tracking Compton camera. (Adapted from Kurosawa et al.
Current Applied Physics, 12, 2012, 364–368, with permission)

with several Compton interactions and a final photoelectric effect, thereby
providing the energy and direction of the Compton-scattered photons. If the
energies and directions of the Compton-scattered photons and electrons are
known, then the incident gamma-ray energies and directions within a conical
area can be determined. Thus, a 2D distribution of prompt gamma rays can
be reconstructed in the patient plane. Equations (2), (3), and (4) show the
energy and angular relationship between the incident gamma ray and the
Compton-scattered photon and electron. With the proper energy threshold
in the obtained prompt gamma-ray data, the sharpest intensity falloff peak of
detected prompt gamma ray can be used to perform proton-range verification.

There are several factors that can influence the reconstructed energy and
direction of prompt gamma rays using the electron-tracking Compton camera
system. (1) The size of the electron-tracking chamber. To accurately detect the
energy of Compton-scattered electrons, they must be fully stopped within the
chamber. However, for some high-energy prompt gamma rays, the Compton-
scattered electrons can be very energetic; this requires the significant size of the
electron-tracking chamber to prevent the electron’s escape. (2) The thickness
of the scintillator detector. Similar to the case of Compton-scattered electrons,
accurate determination of the Compton-scattered photon energy requires that
the photon is fully absorbed inside the scintillator; this necessitates a fairly thick
scintillator, which is usually associated with a significant cost. (3) The spatial
resolution of the electron-tracking chamber electrodes and the scintillator.
Finer resolution of both detectors can reduce uncertainty of the reconstructed
emission location of the prompt gamma ray. (4) The energy resolution for the
electron-tracking chambers and the scintillator. Similar to the effect of spatial
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resolution, a finer energy resolution detector reduces location uncertainty for
the reconstructed location of the prompt gamma rays.

The overall gamma-detection efficiency of the electron-tracking Compton
camera is crucial for the clinical application of this proton range-verification
approach. Kang et al. simulated an electron-tracking Compton camera system
and reported approximately 10−7 per proton detection efficiency. For a
typical 2 Gy fraction dose delivered using the double-scattering technique, this
gamma-detection efficiency posed a statistical challenge for data analysis. With
pencil-beam scanning, each beam spot carries 2–3 orders of magnitude fewer
protons than those of double scattering; there are simply not enough recorded
prompt gamma rays to verify the proton range.

4.3.2.2. Three-stage Compton camera

The electron-tracking Compton camera system requires that the Compton-
scattered electrons and photons are fully stopped within their corresponding
detectors to accurately calculate the incident energy and angle of the initial
prompt gamma ray. This limitation can be overcome using a 3-stage Comp-
ton camera.37–39 This camera was originally implemented in the astronomy
community for the Compton telescope. In the 3-stage Compton camera
design, three positions and energy-sensitive solid-state detectors are arranged in
certain distances among each other (Fig. 11). The first two detectors generate
single Compton-scattered photons and record the position and deposited
energies of the Compton interactions. The third detector only provides

Fig. 11. Illustration of the 3-stage Compton camera system. (Adapted from Mackin et al.,
Medical Physics, 40(1), 2013, 012401-1–012402-12, with permission)
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the Compton interaction positions. With this information and the intrinsic
relationship between the energy and scattering angle of the Compton-scattered
photons, one can obtain the initial incident prompt gamma-ray energy and its
incident conical cone. The intersection between the proton beam direction
and this conical cone determines the prompt gamma-emission location inside
patients. Equations (5) and (6) show the mathematical relationship between
the scattering angles and deposited energies in the first two detectors. The third
scatter provides interaction position information to decide the scattering angle
(θ2) inside the second scatter.

Peterson et al. performed a Monte Carlo study to optimize the detector
thickness and inter-detector distances for optimal system detection efficiency
of prompt gamma rays. Similar to the electron-tracking Compton camera, fine
energy resolution of the detectors can reduce uncertainty in the calculation of
the energy and location of the incident prompt gamma rays. Peterson’s study
utilized a high-purity Germanium detector for the simulation; it indicated that
a trade-off exists between the thickness of the second detector and the stage-
two interaction and transport efficiencies. Wider detector increases interaction
efficiency in all three stages, whereas larger inter-detector distance decreases
overall detection efficiency. The study determined that a realistic-sized high-
purity germanium detector system should have approximately 10−6 to 10−5

per proton detection efficiency; this should provide great potential for proton-
range verification. Nevertheless, practical challenges still exist for the size,
cooling, cost, and compacted assembly of the high-purity germanium detector.

4.3.3. Knife-edge-slit gamma camera

Bom et al. proposed a knife-edge-slit gamma camera design and performed a
Monte Carlo simulation study to determine its detection efficiency and feasi-
bility for proton-range verification.40 This design utilizes a position-sensitive
bismuth germanium oxide (BGO) scintillator detector with a dimension of
30 cm by 50 cm. A slit made by two tungsten plates is placed near the irradiation
phantom and at a relatively large distance from the BGO detector. This
design utilizes the pinhole imaging principle to capture a prompt gamma-
intensity profile at a spatial resolution better than that of the BGO detector
due to the magnification factor. Figure 12 illustrates the clinical setup of
such a system and Fig. 13 is an illustration of resolution magnification of
the system. The detection system efficiency was calculated at approximately
10−4 per proton with a detector energy threshold at 1.5 MeV of the prompt
gamma ray. This is significantly higher than the Compton camera approaches.
Currently, Ion Beam Application (IBA) is prototyping this device for real-time
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Fig. 12. Illustration of clinical setup of knife-edge-slit camera system for prompt gamma
detection during pencil-beam scanning proton treatment. (Courtesy of IBA)

Fig. 13. Illustration of spatial resolution magnification design of knife-edge-slit camera system.

proton-range verification in proton pencil-beam scanning treatment (personal
communication). Thus, the knife-edge-slit gamma camera system is potentially
the most promising real-time proton-range verification system that will be
introduced into clinics in the near future.
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4.4. Proton Computed Tomography

In Section 3, we discussed the intrinsic uncertainty in proton-range determina-
tion with the current kV X-ray CT-based HU-relative stopping power calibra-
tion approach, even though the stoichiometric calibration methodology can
help reduce this uncertainty. Many researchers investigated other approaches
that could potentially further reduce this uncertainty (i.e., dual-energy kV CT
and kV-MV CT-based calibrations).41–43 However, the very nature of utilizing
X-ray attenuation information in the proton stopping power calibration process
is the limitation of all these approaches.

Nobel laureate, Alan Cormack, stated that the linear integral method used
in X-ray CT can also be used for relative stopping power determination with
proton particles.44 Proton stopping power is a function of proton energy; it is
a slow varying function except at the end of the proton range. However, pro-
ton mass-stopping-power-to-reference-medium (i.e., water) ratios are nearly
independent of proton energy. Therefore, when a penetrating proton beam
transverses a patient’s anatomy, the recorded energy and direction of the exit
proton combined with the energy and direction of the incident proton can help
determine the linear integral of the relative stopping power of the proton. Thus,
these linear integrals can be used to perform CT reconstruction. Furthermore,
the proton CT reportedly has dose advantages compared to the traditional
X-ray CT.

Hanson et al. performed preliminary research and experiments on proton
CT for human tissue imaging.45,46 In this study, the incident and exit proton
beam energies and exit angles were recorded. The impact of the multiple
Coulomb scattering of the proton was minimized by only using exit protons
from a 2-mm area within the projected direction of the incident protons. The
obtained CT images resembled the X-ray CT images, but the image resolution
and accuracy of the reconstructed relative stopping power was limited by the
protons’ deviation from a straight path due to the multiple Coulomb scattering.
The energy and spatial resolution of the proton detectors also affected the
quality of the proton CT. Nevertheless, this study provided proof of feasibility
for proton CT instrumentation, imaging, and reconstruction.

With improved technologies in both particle detectors and their corre-
sponding electronics, proton CT was again a focus of some researchers. Schulte
et al. are investigating proton CT based on single proton detection and
most likely proton path concept.47–49 Using entrance and exit pairs of silicon
strip detectors, the position and direction of each individual proton can be
obtained. Exit proton energy is recorded by the pixellated scintillator detectors.
The most probable path of the proton transverse patient is estimated using
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Fig. 14. Illustration of the experimental setup for proton CT data acquisition. (Adapted from
Schulte et al. Medical Physics 32(4), 2005, 1035–1046, with permission)

Fig. 15. Proton’s path in medium due to multiple Coulomb scattering. (Adapted from Li
et al., Medical Physics 33(3), 2006, 699–706, with permission)

most likely path methodology that approximates effect of multiple Coulomb
scattering.50,51 Iterative reconstruction algorithm is then used to reconstruct
the proton CT images of the relative stopping power. Figure 14 illustrates the
experimental setup for proton CT data acquisitions. Figure 15 shows proton
path deviation from straight lines between entrance and exit points due to
multiple Coulomb scattering.

Currently, the proton CT is still at a research and prototyping stage. The
second generation prototype of proton CT is in development by Schulte et al.
There are still many improvements need to be made in proton detectors
and their arrangement, the proton most likely path approximation as well
as proton CT iterative reconstruction algorithm. Furthermore, many clinical
proton centers right now have maximum proton beam energies that are
not high enough to fully penetrating regular size adult patients. Thus, it is
imperative to the future development of proton centers to design systems
which can provide high enough proton energy to perform proton CT image
acquisition.
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4.5. Other Proton-Range Verification Techniques

Several other techniques, including proton radiography and intracavity or
implanted proton detectors, have been investigated as proton beam-range
verification tools for pre-treatment setup to detect either patient setup errors
or anatomical changes.

Proton radiography utilizes proton detectors similar to that of proton CT
to register the direction, position, and energy of the incident and exit protons.52

Instead of acquiring multiple projected images at different angles around the
patient, a single image is acquired at the proton treatment beam angle, provided
that the proton detectors can be placed at both the entrance and exit beams. The
proton radiograph formation requires the use of either straight-line trajectories
or the most probable trajectories. Schneider et al. developed such a system
and applied proton radiography to both phantoms and animals.53,54 The range
sensitivity of the acquired image was approximately 0.6 mm, which is applicable
in pre-treatment proton beam-range verification. Moreover, the imaging dose
was 1–2 orders of magnitude lower than that of the X-ray-based radiographs
routinely used in pre-treatment patient setup.

Lu et al. developed two techniques that can be used to verify the
proton beam range in vivo.55–57 These techniques were developed for double-
scattering proton treatment delivery modes. The first technique utilizes diodes
placed on a rectal balloon inserted into patient rectum. The proposed anterior-
to-posterior proton treatment beam for a prostate patient has its distal falloff in
close proximity of the diodes. Double scattering delivers a SOBP proton beam
using a constantly rotating range modulator. Therefore, the timing structure of
the detected signal from the diode is dependent on the diode position relative
to the SOBP inside the patient. This position information can be acquired
using a very low dose as a testing beam at the beginning of the treatment. This
technique is limited by its small number of data points and is only usable for
tumor sites that have cavities at the distal falloff of the proton beam. Lu et al.
also developed a technique that utilizes implanted wireless radiation dosimeters
and a modified double-scattering proton treatment delivery method. Before
the patient receives CT scans for treatment planning, a wireless radiation
dosimeter is implanted into the tumor volume. The traditional SOBP has
to be delivered with a pair of complimentary fields with different slope-dose
profiles. Depending on the location of the dosimeter relative to the delivered
SOBP, the ratios of signals acquired from the two complimentary field pair are
different. Similar to the first technique, the in vivo range verification can be
performed with a low dose as a testing beam. This technique is also limited by
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its point-based detection and involves more invasive procedures of implanting
dosimeters into patient tumor volume.

5. Summary

Proton therapy is a form of radiation therapy that has the distinct advantage of
reduced dose to healthy tissues due to the finite range of protons. Accurately
determining range through either verification or treatment plan calculation
is crucial to realize this advantage. Range uncertainties come from current
X-ray-based CT number-to-relative-stopping-power calibration and from
anatomical changes and setup errors. Successful development of proton CT
would significantly reduce the intrinsic range uncertainty in proton treatment
planning. Proton radiography and point-based range detection approaches are
useful tools to verify patient daily treatment setup and anatomical changes
before treatment. Prompt gamma detection is the most promising method
of real-time monitoring the proton beam range during treatment delivery,
especially for the pencil-beam scanning delivery mode. In-beam, in-room,
and off-line PET are useful tools to verify the range of the delivered proton
treatment beam and have already been adopted by some proton therapy clinics.
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It is widely known that the state of a patient’s coronary heart disease can be better
assessed using intravascular ultrasound (IVUS) than with more conventional angiog-
raphy. Recent work has shown that segmentation and 3D reconstruction of IVUS pull-
back sequence images can be used for computational fluid dynamic simulation of blood
flow through the coronary arteries. This map of shear stress in the blood vessel walls can
be used to predict susceptibility of a region of the arteries to future arteriosclerosis and
disease. Manual segmentation of images is time consuming as well as cost prohibitive
for routine diagnostic use. Current segmentation algorithms do not achieve a high
enough accuracy because of the presence of speckle due to blood flow, relatively low
resolution of images and presence of various artifacts including guide-wires, stents,
vessel branches, and some other growth or inflammations. On the other hand, the
image may be induced with additional blur due to movement distortions, as well as
resolution-related mixing of closely resembling pixels thus forming a type of out-of-
focus blur. Robust automated segmentation achieving high accuracy of 95% or above
has been elusive despite work by a large community of researchers in the machine vision
field. In this chapter, we present a comprehensive method, based on computer vision
and pattern recognition, where a multitude of algorithms are applied simultaneously
to the segmentation problem. The method presented is to combine algorithms using
a meta-algorithmic approach. Each segmentation algorithm computes along with the
segmentation a measure of confidence in the segmentation which can be biased on prior
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information about the presence of artifacts. A meta-algorithm then runs a library of
algorithms on a sub-sequence of images to be segmented and chooses the segmentation
based on computed confidence measures. Machine learning and testing is performed
on a large database, that includes 2293 gated image frames that have been manually
segmented for training and performance comparison, and a total of 57,098 image
frames for testing the meta-algorithm to obtain reliable segmentation performance
assessment.

1. Background/Literature Survey

Intravascular ultrasound (IVUS) is a vascular imaging technique that is used to
study atherosclerosis since it has the ability to show the lumen and the vessel
wall. As cardiovascular diseases continue to take the lives of millions each year,
IVUS technology provides effective imaging methods to properly diagnose
and intervene on patients who suffer from the disease. Such methods include
quantitative and qualitative tools for acquiring accurate measurements of cross-
sectional dimensions of the arterial lumen,1,2 visualization and assessment
of atherosclerotic plaque,1,3 delineation of arterial wall morphology,1 and
evaluation of the outcome of an intravascular intervention.1,2

Overall, IVUS provides a tomographic perspective of lumen geometry and
vessel wall structure that other diagnostic imaging techniques cannot. The basic
task of computer analysis is the image segmentation to extract lumen and media-
adventitia boundaries. Due to the ultrasound speckle, catheter artifacts, or
calcification shadows, the automated analysis of large IVUS data sets represents
an important challenge. The challenge is far greater, in our view, than the
computer analysis of mammograms while much less research effort has been
made on automated IVUS image segmentation. Manual segmentation is very
time consuming and is impossible for a large IVUS data set. For any automated
analysis, a very high segmentation accuracy (say within 10 pixels between
manual and automated segmentation) is much needed. Such goal is far from
being realized though there has been a significant number of publications in
IVUS image segmentation.

Considering computer analysis of X-ray and mammograms as a first
successful mile stone in medical image analysis, automated IVUS image
segmentation can be considered as a second milestone yet to be achieved. It is
noted that in spite of the advances of sensors such as several versions of IVUS
imaging hardware available are being developed, the proposed work is useful for
all IVUS systems. Also much segmentation work reported so far still relies on
initialization information provided by human operator, the proposed method
is a completely automated segmentation. This is treated as a basic research
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problem in computer vision and pattern recognition that involves fundamental
studies to maximize the segmentation accuracy.

IVUS is an invasive catheter-based technique that is widely used to assess
atherosclerotic plaque.4 At the tip of an IVUS catheter, a transducer emits an
ultrasound pulse and receives the reflected backscatter signal from the tissue
where this backscattered signal is then processed real-time into a 2D image.
The image permits accurate delineation of the vessel and lumen, dimensions,
distribution and severity of coronary plaque.4,5 The literature is rich in IVUS
imaging as the technique has gained increasing acceptance in the last twenty
years (see. e.g. Ref. [6]–[26]). An imaging catheter is typically inserted into
the femoral artery and directed by a guide-wire into the chambers and vessels
of the heart. The imaging catheter differs in length and diameter based on
the vessel being imaged. At the proximal end of the catheter (end closest to
physician), the catheter is connected to a motor-driven unit that is used to spin
the drive cable within the catheter sheath. This drive cable is what spins the
ultrasound transducer 360◦ and as the transducer is rotated by the drive cable
at approximately 1800 rpm, the transducer generates and receives ultrasound
pulses to and from the coronary tissue. The echoes, or received ultrasound
pulses reflected by the tissue, are captured by the transceiver and converted from
a mechanical signal (or vibration) to an electrical signal down the drive-cable.
The electrical signal is then digitized and rendered onto a display, providing
the physician with a 360◦ cross-sectional view inside the coronary vessel.

In a typical IVUS image (Fig. 1), the lumen is normally a dark echo-free
area adjacent to the imaging catheter and the coronary artery vessel wall mainly
appears as three layers: Intima, Media, and Adventitia. As the two inner layers
are of principal concern in clinical research, segmentation of IVUS images
must be able to isolate the intima-media and lumen which provides important
information about the degree of vessel obstruction as well as the shape and size
of plaques.

Traditionally, coronary angiography has been used to provide a two-
dimensional silhouette of the lumen in coronary vessels to detect the degree and
severity of stenosis. Angiography heavily relies on the positioning of the system
during imaging, since it only provides a silhouette of the lumen, a physician may
be incapable of properly diagnosing the severity of atherosclerosis. Coronary
IVUS is most often performed in conjunction with coronary angiography.
During an IVUS intervention, arteries as small in diameter as 1.5 mm can
typically be visualized and typically the patient is given intravenous heparin
and intracoronary nitroglycerin which prevents blood coagulation within these
small coronary arteries. The procedure is typically performed by a cardiologist
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Fig. 1. IVUS images: Representation of a standard IVUS gray-scale images providing a 360◦
view of a coronary vessel.

or interventional cardiologist in a cardiac catheterization laboratory. IVUS
imaging can complement and enhance angiographic information. When a
mechanical pullback of the IVUS catheter is performed at a fixed rate, a three-
dimensional (3D) reconstruction of the artery can be obtained.17,18

As stated earlier segmentation of IVUS images must be performed to isolate
the intima-media and lumen which provides important information about the
degree of vessel obstruction as well as the shape and size of plaques. Such
segmentation can be performed manually by a human expert but it is very
time consuming and costly also. Computer-based analysis and in fact a fully
automatic image segmentation are much needed. There are several factors
(artifacts) that significantly reduce the accuracy of segmentation and ultimately
cause difficulty in interpretation:

1. The ever present speckle noises in the ultrasonic images of human tissues
2. Guide wire with reverberation
3. Reflection from sheath surrounding transducer
4. Barely identifiable lumen intima boundary
5. Bright echo from vessel wall being close to transducer

Other factors must be considered also, such as (a) the difference in tissues within
the artery may require us to use different segmentation techniques for lumen
boundary and intima-media boundary, (b) the use of stent and the bending of
artery may require different consideration in segmentation. As a result a single
algorithm is simply not enough to do the segmentation. Accurate automated
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segmentation is clearly much needed for IVUS images. There have been a
large amount of efforts (e.g. Refs. [27]–[42]) including the use of automated
contour model methods27–31 and other approaches in 2D and 3D IVUS
segmentations32–51 in recent years. There are also many Ph.D. theses in the
last five years that are related to computer analysis of intravascular ultrasound
images (see. e.g. Refs. [52]–[56]). Our method is to employ several proven
algorithms to achieve the automated segmentation results that meet the desired
requirement. This is a basic research effort that involves image deconvolution
to reduce the speckle noise inherent in the ultrasound images, removal of guide-
wire effect, dynamic modeling of spatial temporal image sequence, feature
extraction, and machine learning algorithms using neural networks and other
computational intelligence methods, combining or selecting algorithms and
classification problems involving identifying stent, branch and normal IVUS
regions.

The speckle noise is often present in medical ultrasound images (see e.g.
Ref. [57]). Blind deconvolution of IVUS images is one of the best strategies to
deal with speckle noise without prior knowledge of noise. This topic will not be
treated in this chapter however. A dynamic procedure for guide-wire tracking
will be employed.

The contextual information in the image sequence holds key information
which is often overlooked. We propose the use of statistical information from
neighboring image frames, based on which textural and intensity features are
extracted. As the number of features are large, several classification algorithms,
each employing a feature subset, or a different training set will be used. Each
segmentation algorithm carries a confidence level and the meta-algorithm
makes use the weights assigned to different confidence levels or simply selects
the algorithm with highest confidence level. We will work with large data sets
involving a number of patients. We believe that only through testing on large
data sets can our approach be fully verified for its effectiveness.

2. Preliminary Data and Studies

2.1. Preliminary Data and Information

There are 15 pull-out sequences from 9 patients. There are a total of 2293
gated image frames which have been manually segmented and are useful for
training and validation purposes. A total of 57098 image frames provides us a
large data set for algorithm testing (Table 1). Although many studies on IVUS
image segmentation have been conducted with different but limited amount
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Table 1. Description of our IVUS database.

Number of gated frames Approx. number
Name of pullback sequence with manual segmentation of total frames

101-001_LAD 205 5369
101-011_RCA 92 2613
102-006_RCA 151 3464
103-007_LAD 247 4662
103-007_LCX 256 5229
106-001_LAD 62 3665
106-001_LCX 131 3848
110-001_RCA 167 3961
111-003_LAD 143 3477
111-003_LCX 131 3362
11-003_RCA 166 4611
114-001_LCX 143 3098
116-001_LAD 191 4606
116-001_LCX 108 2664
116-001_RCA 100 2469

Total 2293 57098

of success, none has employed such a large database and none has embarked
on such as a comprehensive approach as presented in this proposal. We believe
IVUS image segmentation is a problem in pattern recognition and computer
vision. Considering the successes of many pattern recognition and computer
vision problems in the last 50 years and their great impact on modern society, we
are confident that the milestone of completely automated robust segmentation
of IVUS images can be achieved in the near future.

2.2. Preliminary Study Results

The preliminary results presented here are based on our study in the last six
years. It should be noted that we work with the images in polar coordinates.
Our earlier effort (2007–2010) was focused on implementation of removing
artifacts of IVUS images for active contour modeling (ACM) of the lumen
and media-adventitia boundaries. ACM has desired characteristics of finding
closed contour provided the image is free of artifacts. However, a plain ACM
will distort the contours in areas where the guide-wire artefact confuses the
algorithm. Additionally, when the catheter is touching or near to the vessel wall,
the algorithm gets confused with the extra reverberations and distortions in the
ultrasound image. Observation of the human segmentation process hinted that
these artefacts are carefully avoided/ignored to create a good segmentation.
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Fig. 2. Data flow block diagram of the automated segmentation process.

Additionally, the positions of the artefacts are strongly correlated between
adjacent frames which provide further hints for manual segmentation process.

The guide-wire feature was carefully investigated from all frames of two
different pull-back sequences consisting of about 10,000 frames in total.58–60

Near the catheter, the guide wire produces a distinct echo-dense region with
reverberations followed by a long narrow shadow region. Kalman filtering
with position model and particle filtering with tunneling algorithms were
developed for guide-wire tracking with very low tracking error.60 The circular
Hough transform (CHT) was employed for catheter position and vessel
diameter estimates. Once the guide-wire position is estimated, the image
regions distorted by the guide-wire can be ignored while performing the
Hough transform. A deformable template model is then developed to refine
the contour estimated by CHI so that a more accurate contour for the lumen
and adventitia are produced. The block diagram showing the data flow of
the automated IVUS segmentation process is given by Fig. 2. A selection
of segmentation results from a pull-back sequence is shown in Fig. 3. The
segmentation is mostly correct but can miss parts of the intima or EEM pointing
to room for improvement.

In the last three years (2010–2013), we have made significant effort
to obtain quantitative information of segmentation and to improve the
segmentation process based on expanded data base. One effort adapted from
Ref. [29] is to use texture and intensity information derived from Discrete
Wavelet Frames Decomposition (DWFD), tested on Volcano data set.61 The
catheter induced artifacts are removed by thresholding in pre-processing of the
original polar coordinate image. Four successive passes of DWFD results using
both low and high pass filtering in 12 images. The average of the original and
sum of DWFD images corresponding to fine texture image is used to initialize
the lumen border. Significant edges are obtained by thresholding operator on
such averaged image. Actual approximation of contour is obtained later by
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Fig. 3. A selection of segmented images.

applying radial basis functions. Once the lumen contour is initialized, we look
to initialize media-adventitia border on outer side of the lumen. This saves us
unnecessary computing time looking for the wall inside the lumen area. Now
the average of the sum of original images after going through a series of low
pass filtering contains mostly the coarse textures. In this sum image we will then
look for maxima outside the lumen border. The selected pixels correspond to
those on the boundary between the adventitia and media regions. Once both
contours are initialized, there are multiple ways in which we can obtain the final
smooth contour. The radial basis function (RBF) is selected to extract smooth
and continuous contours. RBF involves a series of steps which are run on 500
continuous set of IVUS images. With combined use of texture and intensity
based operations, the error area between the automatically traced contour and
manually constructed contours is 1.141 ± 0.027 mm for lumen border and
1.260 ± 0.024 mm for media-adventitia border.
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More recently, we employed the above method on a large data base from
Brigham and Women Hospital described earlier and also take into account the
temporal variation information. The images are selected by gating according
to the ECG data at the same time. The image frames selected correspond
to Q marker in ECG data. This will minimize the data variation. We then
take the Laplacian of each pixel of the current image frame along with two
previous frames and next two image frames. The resulting image frames are
then processed by the composite operator that depends both on texture and
temporal variation of intensity. Lumen contour can be traced based on finest
texture and intensity specifics. Once we have the contour of lumen border,
we can obtain the media-adventitia border by finding the coarse-most texture
located outside the lumen border. Lumen could be predicted with a error
of 6.9566 ± 2.2144 pixels corresponding to 0.1254 ± 0.04121 mm. EEM
could be predicted with a error of 4.1915 ± 2.3017 pixels corresponding to
0.0762 ± 0.04514 mm. This is a remarkable improvement over the use of single
images only, though we are dealing with two different data bases. The BWH
data using Boston Scientific catheter are less noiser than the Volcano data.

We also studied the image data with stent and the prediction error is
0.048 ± 0.024 mm. We further employed the point cloud from initializations
as input to the Poisson surface reconstruction algorithm to obtain a 3D
visualization of coronary artery.

3. The Meta-algorithm

For this study, we have converted all available image data into polar form making
it easier for research study though a rectangular display is easier for human
visualization. As described above, there are a total of 2293 gated frames which
have all been manually segmented and a total of 57,098 image frames from
15 pull-out image sequences coming from nine patients. The gated frames are
useful for training and validation purposes in neural network classification. The
entire data set is used in neural network classifications to provide us a large
database for more accurate performance measurement. It is noted that some
image frames have stents which must be detected, and some image frames come
from branching of arteries.

A first step in pre-processing is the median filtering for each pixel and
its corresponding pixels in five successive image frames. It is also possible
to take the Laplacian of the five pixels, to make use of temporal image
sequence information. To exploit spatial temporal information, we will consider
the neighborhood of a pixel by using Gaussian Markov random field and
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incorporate the time sequence information to obtain a maximum a posterior
estimate of the pixel. It is simplest to take median filtering though it does not
remove speckle noise. The median filtered image is then deconvoled by the
H-infinity method developed by Qidwai57 which has proven to be effective to
remove speckle noise in ultrasonic images.

Like many other problems in automated image segmentation, completely
automated methods in segmentation of intravascular ultrasound (IVUS) images
are lagging much behind segmentation by humans in terms of accuracy. It has
been recognized that a particular published algorithm works well for a subset of
the images in a data-set. However, the total accuracy is lowered by the presence
of a large number of images where the automated algorithm fails. In the domain
of brain image segmentation,62,63 it has been recognized that the overall
accuracy can be increased by using a meta-algorithm to choose a segmentation
from among the outputs of multiple algorithms. A block diagram is shown in
Fig. 4 which is a high level architecture for robust segmentation using a meta-
algorithm with shared pre-processors. The word, “meta-algorithms” is used in
different contexts with other names such as algorithm selection in the literature
[see e.g. Ref. [64]–[66]]. One thing that is clear is that a single algorithm is
often not sufficient to deal with a complex medical imaging problem.

An intravascular ultrasound exam produces a pull-back sequence of images.
The number, K, of images in a sequence can be as large as several thousand. We

Fig. 4. Architecture of the meta-algorithm.
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number the images from 0 to K −1 indexed by k. Each image is of size M×N,
indexed by x and y. M and N can be of different sizes in different imaging
systems and at different stages of processing. For example, M × N could be
1024 × 256 at one stage of processing which is condensed to a 256 × 256
image.

For the current purpose we assume a M × N image for each index k. We
will call this a frame of data. In many cases, not all the pullback sequences are
used. When imaging the heart, the blood vessel is moving in a rhythmic fashion
and it is easy to identify a relatively stationary period during each heart beat in
the data using electrocardiogram (ECG) data. The frames in this subset of the
total frames are known as the gated frames. In a given pullback sequence, there
are G < K gated frames. The gated frames are indexed by g and the gating
function maps this index to the index in the pullback sequence:

g = ngate(k)

The gates in a sequence need not be uniformly spaced as the heart rate
increases and decreases during the procedure. Often only the gated frames in a
pullback sequence are manually segmented in data-sets to reduce the workload.
Thus, evaluation of an automated algorithm is based only on the gated frames.
However, it is certainly possible to have manual segmentation for the whole
data-set too. The whole data for a pullback sequence is represented by f(x; y; k):

f (x; y; k): xε[0; M − 1]; yε[0; N − 1]; kε[0; K − 1]
A frame classifier algorithm takes each frame f(-; -; k) and gives a classification
(see Fig. 4):

c(k) = (c1(k), c2(k), c3(k)))

c1(k) ε (small lumen|medium lumen|large lumen)

c2(k) ε (stented|not stented)

c3(k) ε (branch|no branch)

For example, if the classification is c(k) = (medium lumen; stented; no branch),
the classifier believes that the frame indexed by k is most likely a medium sized
blood vessel that is stented but without a branch. The classifier is a neural
network that takes f(-; -; k) and outputs three-tuple of binary classifications.
Based on c(k), the algorithm selector commands a subset of algorithms from
a library of segmentation algorithms, indexed by m. These algorithms can
draw on pre-calculated or on-demand calculated pre-processing results that are
based on f(-; -; k) as well as neighboring frames. Each segmentation algorithm
produces along with the segmentation Sm(k) a confidence metric Pm(k). The
algorithm selector combines c(k) and Pm (k) to choose the best segmentation.
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If none of the initial batch of algorithms produce high confidence results, the
algorithm selector can put to work a second tier of algorithms or flag the frame
as a candidate for closer human analysis. A strategy for creating confidence
metrics is described as follows.

Many algorithms in the literature only output the segmentation and do
not produce an estimate of the algorithm’s confidence on the segmentation.
We have found that it is not difficult to form a confidence measure from
existing algorithms. The processing of gated frames can involve neighboring
frames. A method that we have found success with is the use of median of a
number of frames around the gated frame. In a number of these methods, the
segmentation accuracy is correlated to how fast the segmentation boundaries
are changing around the gated frame. The specular reflection of sound waves
from the blood is different in each IVUS image frame. When humans segment
IVUS images, in areas where the segmentation is not clear, they browse the
sequence of images and visually note where the pattern is changing randomly
(blood) and where the patterns are changing in concert (vessel wall and other
formations). The gated frames are chosen such that the movement of the vessel
walls are minimal. Taking the median of the frames dramatically increases the
accuracy of texture based segmentation methods. However, the segmentation
can get confused when the frames are changing too fast. A simple metric to
detect this has been devised:

m(-; -g) = Medianlf (-; -; g − l)

C(g) = sum of square errors of[m(x, y, g) − f (x, y, g)]
over x, y, divided by MN.

where C(g), the change metric, correlates well with the mean square error.67

Other confidence metrics we tested include: degree of smoothing of curves,
closeness to threshold in thresholding steps, and neural network output.

As shown in Fig. 4, the library of preprocessors consists of all functions
of pre-processing and enhancement including the use of spatial temporal
information. The classification part makes use of neural networks. By going
through the original gated frames, we construct the 8 × 8 subimages for
training samples with four classes for border identification: the lumen region,
the artifacts, the far field, and along the border. 10% of subimages is used for
training, the next 10% is used for validation. Each subimage of 64 pixels is
input to the neural network using multilayer perceptron network which now
has available procedures to speed up the learning. The testing is done on all
5098 images to obtain reliable error estimate. Associated with each classification
is a confidence level. Several neural networks each using different training and
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Fig. 5. A display of IVUS image in polar coordinates.

validation sets are employed for classification. Another classifier is to test the
Rayleigh probability density fit of lumen area. A good fit means the subimage
belongs to lumen, otherwise it may belong to lumen boundary. Sequentially
the classifier with largest confidence level is selected and the lumen boundary
is constructed by connecting lumen wall subimages with a local polynomial
regression fitting after ignoring guide-wire artifact. Once the lumen wall is
determined, we can proceed to seek for adventia-adventitia border (EEM). It
is noted that for normal patient, the lumen and EEM walls can be very close.
The polymer sheath may show up in some images (Fig. 5) and can be detected
and largely removed by examining the first few scan lines. Figure 6 shows the
lumen segmentation results. The left image shows the segmentation is accurate,
and confidence is high, the middle image that has stents shows accurate
segmentation but low confidence, and right image shows the segmentation
is poor and confidence is low. The size of small rectangular box at lower left
corner in each image denotes the confidence level.

4. Quantitative Performance Evaluation

When we looked at the computer (machine) segmented images and found that
some images were with very good fidelity with respect to manual segmentation,
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Fig. 6. A few Lumen segmentation results.

while others were medium quality and some were completely off the mark.
To make this more quantitative, we decided to set a Mean Square Error of
around MSE = 12 ∗ 12 = 144 pixel ∗ pixel to be a threshold above which a
segmentation is classified as bad. We chose 12 pixels for the error bound based
on a calculation that the wavelength of the sound used is around 12 pixels. An
interesting question would be how much of an error does a MSE of 12 ∗ 12
produce in the computational fluid dynamic simulation.

Each algorithm also computes a Confidence Metric (CM) besides the
segmentation vector. Depending on the choice of the CM and a level CM0, a
segmentation can be classified as good or bad. The quantitative performance
measures are defined as follows.

True Positive: MSE based classification = good, CM based classification =
good
False Negative: MSE based classification = good, CM based classification =
bad
True Negative: MSE based classification = bad, CM based classification = bad
False Positive: MSE based classification = bad, CM based classification = good

As shown in Fig. 7 for each gated image there is a neural network segmentation
error and a curve fit error with the threshold for each shown. The plot of curve
fit metric versus the mean square error is shown in Fig. 8. Though the false
positive is 0, the true positive is quite small. Much improvement is needed in
further study.
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Fig. 7. A plot of segmentation error versus gate number.

Fig. 8. A plot of curve fit error versus mean square error.

5. Concluding Remarks and Areas for Further Work

While the meta-algorithm method presented in this chapter has enormous
potential to achieve a reliable fully automated IVUS image segmentation, much
further work is needed to achieve the desired performance goal of say 95%
correct segmentation. The combined effort67 of image enhancement, feature
extraction, meta-algorithm and the use of a priori knowledge about the arteries
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are expected to bring us much closer to the goal. For example by using
properly selected features can provide effective classification with minimum
neural network training time. Both texture and intensity information must be
included in the features extracted. Directly inputting 8×8 = 64 pixel intensities
to the neural network is clearly not effective. It is possible to use data from all
five subimages in a sequence to determine the first three eigenvlaues from
the 64 five dimensional vectors as input to the neural network. Other problem
areas such as use of support vector machine, learning sample selection, boosting
method and other machine learning methods can be explored as we proceed
to make sure the desired goal can be achieved.

IVUS image segmentation results in a set of contours for all images in
a long sequence. For 3D visualization, those contours need to be stacked
on top of each other at regular intervals, i.e. with equal spacing between
two contour sets with the assumption that the IVUS images are generated at
regular intervals. Even if this is not the case, we need to perform interpolation
between adjacent two contours. The interpolation procedure will be developed
to reconstruct as many intermediate contours as needed to come up with a 3D
tubular structure to represent the short coronary artery under consideration.
The tabular structure must be rotatable to provide a 360 degree view of the
structure.
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Atherosclerosis is a condition in which the wall of the arteries hardens and thickens
due to the accumulation of plaque. The primary cause of acute coronary events is
related to the inflammation and disruption of coronary plaques. Characterization and
detection of plaques vulnerable to complications (i.e., vulnerable plaque, VP) is one of
the most active areas of research in cardiology. Intravascular ultrasound (IVUS) is an
invasive technique that is capable of providing a real-time, high-resolution tomographic
visualization of the coronary arteries which allows the accurate estimation of the
morphological characteristics of the vessel. The extraction of valuable information
from the IVUS data through the use of medical image analysis methods has played
an important role in the detection and characterization of VP. In this chapter, we will
present different computational methods developed for the analysis of IVUS data and
the detection of VP.

1. Introduction

Atherosclerosis is a condition in which the wall of the arteries hardens and
thickens due to the accumulation of plaque (i.e., calcium and fatty deposits
such as cholesterol and triglycerides).34,53 Coronary artery disease (CAD) is
caused by atherosclerosis in the coronary arteries and is the most common type
of heart disease and the cause of acute myocardial infractions. Unfortunately,
the first symptoms of CAD (e.g., chest pain) may not appear until the advanced
phases of the disease. Therefore, even in the severe cases, many patients remain
unaware of their risk (it has been reported that for 30%–50% of individuals
who suffer CAD, the first symptom of the disease is a heart attack, which
commonly leads to a sudden death41). The primary cause of acute coronary
events is related to the inflammation and disruption of coronary plaques with
superimposed thrombosis. It has been shown that for up to 75% of the acute
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ischemic coronary syndromes (ACS), the rupture of an atherosclerotic plaque
is the underlying pathological mechanism.3,10 Pathology studies indicate that
certain plaques are more prone to develop ACS than others. In this context,
the field of cardiology has introduced the term “vulnerable plaque” (VP),
which refers to those plaques with a high likelihood of rupture, thrombotic
complications, and the consequent rapid progression to stenosis.38,41

Characterization and detection of VP is one of the most active areas of
research in cardiology. Some of the most consistent identified histopathologic
characteristics of ruptured plaques relate mainly to their morphology (e.g.,
outward positive remodeling, inflammatory cell infiltration, intraplaque hem-
orrhage, etc.) and its composition (e.g., necrotic core, fibrous cap, cholesterol
crystals, etc.). Another factor that has been linked with vulnerable plaques is
the presence and proliferation of microvessels at the arterial wall adventitia, and
within the atherosclerotic plaque63 (i.e., vasa vasorum, VV).

The use of medical images plays an important role towards the charac-
terization and opportune detection of VP. Several invasive and non-invasive
techniques such as angiography, thermography, magnetic resonance, optical
coherence tomography, elastography, and intravascular ultrasound (IVUS) have
been used for the assessment of atherosclerotic plaques.61 In particular, IVUS
is the gold-standard technique for assessing the blood vessels in vivo.54

1.1. Intravascular Ultrasound

IVUS is an invasive technique that is capable of providing a real-time, high-
resolution tomographic visualization of the coronary arteries which allows the
accurate estimation of the morphological characteristics of the vessel (e.g.,
lumen diameter and wall thickness), and the plaques (e.g., location, presence
of intra-luminal thrombus and plaque rupture). An IVUS system consists of
(1) a catheter with a miniaturized ultrasound sensor attached to its distal end,
(2) a motorized pullback device, and (3) a processing unit which processes the
signals received by the ultrasound transducer.

The IVUS intervention consists of steering a guidewire with a small
diameter (about 0.84 mm) into the blood vessel branch to be imaged. The
IVUS catheter is then percutaneously slid-in over the guidewire and positioned
within a target segment of interest. For coronary imaging in humans, the entry
point is typically the femoral artery in the leg.

The ultrasound probe can either be a solid-state multi array or a
mechanically-rotated transducer which transmits ultrasound pulses and receives
an acoustic radio frequency (RF) echo signal (i.e., A-line) at a discrete set of
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( c )( b )

( a )

Fig. 1. Depiction of (a) an A-line signal and its envelope, and the B-Mode IVUS representa-
tions: (b) IVUS image in polar representation; (c) IVUS image in Cartesian representation.

angles. Commonly, 240 to 360 A-line RF signals are obtained per rotation.
A B-mode IVUS image is obtained by the processing unit by computing the
positive envelopes of each A-line. These B-mode signals are then compressed,
stacked along the angular direction, and mapped into an 8-bit gray scale to
form an image known as the polar B-mode image. To provide a more familiar
representation of the data (to resemble the interior of a vessel), the polar
B-mode image is geometrically transformed to obtain a disc-shaped image
known as the Cartesian B-mode image (Fig. 1). Examples of typical normal
and diseased (atherosclerotic) gray scale Cartesian IVUS images are illustrated
in Fig. 2.
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(a) (b)

Fig. 2. Examples of a typical IVUS B-mode image of (a) normal and (b) atherosclerotic vessel.

The IVUS system acquires and displays images usually at 30 frames/second.
For some applications, the ultrasound catheter may be pulled back to identify
and analyze the different vessel regions. The pullback can be performed either
manually or using the pullback device which moves the transducer at a constant
determined speed (usually 0.5 mm/s). In human coronary arteries, the target
segments generally include at least 10 mm of distal vessel, the lesion site(s), and
the entire proximal vessel back to the aorta.37 If additional information about
a lesion is needed, an acquisition may be performed by maintaining the IVUS
catheter stationary over the region of interest. The analysis of the acquired
data may be performed in real-time during the intervention or off-line after
the acquisition.

The ability of the IVUS technique to provide details of the structures
being imaged depends on the spatial resolution and the contrast resolution
of the employed system. Spatial resolution refers to the ability of the system
to discriminate small objects within the generated image and has three
principal directions. The axial resolution (i.e., parallel to the beam) depends
on the frequency and duration of the impulse wave employed, the size of
the transducer, and the radial sampling rate. The lateral resolution (i.e.,
perpendicular to the beam and the catheter) depends on the wavelength of
the signal, the size of the transducer employed. The out-of-plane direction
(i.e., perpendicular to the axial and lateral resolution) primarily decides the slice
thickness of the IVUS image and depends on the beam width. Lateral resolution
degrades linearly with distance from the catheter, while axial resolution remains
constant. Out-of-plane resolution improves as the distance of the beam from
the catheter increases. Spatial resolution increases with transducer frequency;
however, attenuation also increases with frequency. Due to the rotational
tomographic nature of IVUS images, their spatial resolution is highly variable
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within a single image. For a 20 MHz to 40 MHz IVUS transducer, the typical
resolution is considered to be 80 µm axially and 200 µm to 250 µm laterally.37

Contrast resolution refers to the dynamic range of the generated images. An
image with low dynamic range appears as black and white regions with a few
intermediate gray-level values (i.e., granular), while images at high dynamic
range are often softer. Contrast resolution depends directly on the hardware
characteristics of the IVUS system.

1.2. IVUS Data Analysis

IVUS systems are very useful in situations in which angiographic imaging
does not provide enough information about the morphology of the lumen
or ostial lesions for a specific segment of interest, or to assess the effects of
medical therapy or treatments such as angioplasty expansion with and without
stents. Usually, the analysis and interpretation of the IVUS data is made by
the expert physicians performing the intervention with the help of different
tools implemented in the IVUS system (e.g., image correction, annotation,
measurement, zoom).

However, thanks to recent advances in medical image analysis, now it is
possible to process the IVUS data to automatically obtain the morphological
characteristics of the vessel and plaque (i.e., IVUS segmentation), to estimate
the composition of the plaque (i.e., plaque characterization), and the detection
of VV within the plaque and adventitia (i.e., extra-luminal blood perfusion
detection).

1.2.1. IVUS segmentation

Segmentation of IVUS images refers to the delineation of the lumen/intima
and media/adventitia borders (Fig. 3). This process is necessary for assessing
morphological characteristics of the vessel and plaque such as lumen diameter,
minimum lumen cross section area, and total atheroma volume. This informa-
tion is crucial for making decisions such as whether a stent is needed to restore
blood flow in an artery and to determine the characteristics of the stent. Other
applications of IVUS include the study of mechanical properties of the vessel
wall, characteristics of the plaque, and 3D reconstruction of the vessel.

Early IVUS systems operated at frequencies in the range of 10 MHz to
20 MHz. At these frequencies, the blood presents a low acoustic impedance
and speckle noise and therefore these systems produce IVUS images on which
the lumen has low intensity, no texture, and a high contrast with respect to the
vessel wall tissues. For this reason, many approaches for IVUS segmentation



August 8, 2014 9:29 Frontiers of Medical Imaging 9.75in x 6.5in b1807-ch20 page 432

432 E. G. Mendizabal-Ruiz and I. A. Kakadiaris

(a) (b)

Fig. 3. Example of (a) an typical IVUS image with (b) its corresponding segmentation
(lumen/intima and media/adventitia interface are depicted using a solid and dotted lines,
respectively).

were based on the use of local properties of the image (e.g., pixel intensity
and gradient information) combined with computational methods including
graph search,56,64 active surfaces,30 active contours,31,35 and neural networks.50

Modern IVUS systems operate in higher frequencies (i.e., 30 MHz to 40 MHz)
and produce images with better resolution. However, the lumen on these
images depicts more texture due to speckle, and lower contrast of the lumen
with respect to the vessel wall tissues. For these images, edge information may
not be sufficient, and therefore segmentation approaches incorporated prior
knowledge using region and global information such as texture,39 gray level
variances,20,33 statistical properties of the image,2 temporal information,5 (3D
segmentation) and mathematical morphology techniques.12

Current approaches for the segmentation of IVUS images include the use of
shape-driven methods,58 3D graph search,13 multilevel discrete wavelet frames
decomposition,49 discrete wavelet packet transform,25 error correcting output
codes,9 directional gradient velocity and level sets,65 fast-marching,6 balloon
snakes,66 morphological object reconstruction methods,40 a method based on
frequency-based harmonic information extracted by brushlet expansion,24 a
graph-based approach with an assisted manual refinement of the segmentation
result,57 an interactive segmentation method employing edge based boundary
constraints,23 and a fast-marching based method.11

A common characteristic of IVUS segmentation methods is that the
computations are performed using the reconstructed B-mode reconstruction
images either in polar, Cartesian or L-mode representations. This poses a
limitation considering that, apart from the frequency of operation of the
transducer, the gray level distributions of the different regions of the vessel
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(a) (b)

Fig. 4. Example depicting a 40 MHz IVUS frame in Cartesian B-mode representation using
logarithmic dynamic range compression; (b) the same frame using linear dynamic range
compression with a compression factor of 0.4.

in the B-mode images depends on the reconstruction settings of the IVUS
systems such as time-gain compensation (TGC), dynamic range compression
and rejection, persistence, and gamma curves which are subjectively selected
by the interventionist21,37 (Fig. 4) and may change from one intervention to
the next, or even during the same acquisition.37

To overcome this limitation our group presented a segmentation method
based on the minimization of a probabilistic cost function that deforms a
parametric curve which defines a probability field that is regularized with respect
to the given likelihoods of the pixels belonging to blood and non-blood.36

These likelihoods are obtained by using the prediction of a support vector
machine classifier trained using texture features extracted from samples of the
lumen and non-lumen regions provided by the user in the first frame of the
sequence to be segmented. This enables the segmentation of IVUS images
from different frequencies (i.e., 20 MHz and 40 MHz) without the need to
adjust parameters, and it makes the proposed method robust to the problem of
variability on the gray level distribution of the IVUS images due the B-mode
image-generation parameters. Additionally, the proposed method includes a
step in which possible changes in the gray level distributions of the regions of
interest within a sequence are automatically detected, so that the likelihood
computations are progressively adapted. This step makes the method robust
with respect to a possible change of gray level distributions within an IVUS
sequence caused by the blood flow and a possible sudden change in the B-mode
reconstruction parameters. The results indicate that the segmentation results
obtained with our method are comparable to the segmentation performed by
human observers.
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Due to the relevance of the IVUS segmentation problem and the variety of
methods that have been presented, an evaluation framework that allows a stan-
dardized and quantitative comparison of IVUS lumen and media segmentation
algorithms was introduced at the MICCAI 2011 Computing and Visualization
for (Intra)Vascular Imaging (CVII) workshop1 which compared the results of
eight segmentation methods including our segmentation method.36

1.2.2. Plaque characterization

Plaque characterization from IVUS data consists of identifying the composition
of the atherosclerotic plaque (e.g., fibrous, calcified, or lipid) based on the
changes that occur to the sound waves as they interact with the different types
of tissue.

A common approach for plaque characterization consists of computing
different features from many samples of IVUS data regions identified as plaque
for which the composition is known (generally by histological analysis) which
are then used with supervised or unsupervised machine learning methods.

In the unsupervised methods, the features corresponding to the samples are
grouped or clustered according to a given similarity criteria. In the supervised
methods, a training set is built and then used to train a classifier which generates
a model capable of determining the composition of a new plaque sample based
on its features.

The features which allows the characterization of the plaque may be
extracted from the gray-level IVUS B-mode representation (e.g., co-occurrence
matrix, laws features, Gabor filters, Rayleigh mixture models).4,26,52,55,62

However, most successful approaches compute the features directly from raw
IVUS RF signal. Nair et al. proposed a method known as “virtual histology”
(IVUS-VH)42,43 that is based on the power spectral analysis (intercept, slope,
mid-band fit, and minimum and maximum powers and their corresponding
frequencies) of the IVUS RF signals combined with classification trees. Many
authors have presented studies of this method reporting high correlation
with the corresponding histology.22,44,51 Other authors have proposed similar
methods employing different features including the use of the integrated
backscatter,28,29 and wavelet decomposition analysis.26,52 An extensive review
in supervised and unsupervised plaque characterization methods has been
presented recently.27

1.2.3. Extra-luminal blood perfusion detection

Although IVUS provides reliable cross sectional images of the coronary arteries,
the in vivo imaging of the coronary VV microvascularization remains a great
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challenge due to its small size (reported diameters of human artery VV ranged
from32 11.6 µm to 36.6 µm), echo transparency, and the presence of different
IVUS artifacts.

IVUS may be used in combination with contrast agents (CE-IVUS) in
the form of microbubbles of a size similar to red blood cells (diameter:
1–10 µm) that resonate in response to the pressure changes induced by the
ultrasound wave making them several times more echogenic than normal
body tissue. These contrast agents are injected into the bloodstream during
IVUS interventions as blood tracers. Since the detection of VV can be
posed as the detection of microcirculation in the plaque or vessel (i.e., extra-
luminal perfusion), the detection of contrast-agent in the plaque or vessel
wall (i.e., extra-luminal perfusion) may be an indication of the presence of
microvasculature. The use of CE-IVUS has proven useful in imaging plaque
perfusion in coronary arteries7 and for assessing the amount and distribution
of neovessels within atherosclerotic lesions.19

Currently, there exist two main approaches for the assessment of VV
microvascularization based on the use of CE-IVUS data: (1) non-linear or
harmonic response IVUS imaging and (2) differential imaging.

1.3. Non-linear IVUS

Depending on the energy and frequency of the ultrasound beam, the contrast
agent microbubbles may present linear and nonlinear oscillations. Linear
oscillations occur when equal-amplitude contraction and relaxation of the
microbubbles are induced by the ultrasound signal. Nonlinear oscillations occur
when the microbubbles expand above their baseline diameter at a greater scale
when compared to their ability to compress below it. In the case of linear
oscillations (fundamental mode), the microbubbles produce echo signals with
the same frequency as the ultrasound transducer (i.e., fundamental frequency).
In the case of nonlinear oscillations, the microbubbles will produce the
fundamental frequency and multiples of this frequency, known as harmonics,
sub-harmonics and ultra-harmonics.

The feasibility of using of harmonic and sub-harmonic IVUS for the
detection of microbubbles using a prototype nonlinear IVUS system and
commercially available contrast agents has been investigated.16–18 This method
is capable of providing microbubble-specific imaging by detecting non-linear
signals. The prototype nonlinear IVUS system consists of a custom-built,
single-element transducer that is mechanically rotated, sophisticated pulse
sequences generated using pulse inversion, methods for tissue and catheter
motion compensation, and specially designed signal filters for processing the
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received signal. A tissue harmonic imaging (THI) system which consists of a
dual-frequency transducer element mounted on an IVUS catheter was also
proposed.14,15 As a result, this prototype IVUS system can operate both,
in the fundamental frequency and in the second harmonic imaging modes.
This system uses a conventional, continuously rotating, single-element IVUS
catheter that is operated in fundamental 20 MHz, fundamental 40 MHz,
and harmonic 40 MHz modes (transmit 20 MHz, receive 40 MHz). The use
of a focused broadband miniature polyvinylidene fluoride-trifluoroethylene
(PVDF-TrFE) ultrasonic transducer for IVUS second-harmonic imaging was
also investigated.8 This study demonstrated that focused transducers are capa-
ble of producing second harmonics faster and stronger at specific depths. The
experimental results were in agreement with the modeled results, and ex vivo
experiments in human aorta images showed the feasibility of high resolution
second-harmonic imaging. Unfortunately, these methods for contrast imaging
remain experimental and require non-commercially available IVUS hardware
(e.g., harmonic imaging systems and catheters), non-standard contrast agents,
or both.

1.4. Differential Imaging

The detection of extra-luminal perfusion may be performed by the comparison
of the echogenicity of localized regions of a vessel wall and plaque before
and after the injection of the contrast agents (Fig. 5). However, manually
performing temporal analysis of variations in the echogenicity is not feasible
for more than a handful of IVUS frames due to the amount of labor and

(a) (b)

Fig. 5. Example of a 20 MHz human case with enhancement. (a) Frame corresponding to the
pre-contrast period and (b) frame corresponding to the post-contrast period. The annotations
indicate the places where the enhancement occurred.
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concentration involved in assessing changes that may be subtle to the human
eye.

Computer-aided techniques may be a natural solution to this problem.
However, the detection of change in echogenicity has many challenges
related with a variety of motion artifacts that are consequences of cardiac
and respiratory motions during acquisition within coronary arteries of living
patients. Therefore, to detect enhancement in the IVUS image due to perfusion
of contrast agent, it is necessary to alleviate the effect of these motion artifacts.
For this goal, our group proposed a protocol and an automatic algorithm
(i.e., Analysis of Contrast Enhanced Sequences, ACES) for quantification
and visualization of VV in contrast-enhanced IVUS image sequences.45 This
method relies on the detection of local echogenicity changes (due to extra-
luminal microbubble perfusion into the vessel wall) in stationary IVUS
sequences. According to the proposed protocol, the IVUS catheter is placed
in the maximally-stenotic point of a suspect plaque. The catheter is held steady
and images are acquired for a time period of 10 s to 30 s. Then, a bolus injection
of contrast agent is applied through the guiding catheter and proximal to the
imaging catheter. After the contrast agent disappears, more images are acquired
for a time period of 10 to 20 s, with the catheter kept at a steady position. The
enhancement detection is performed off-line and consists of three steps:

(1) First, motion artifacts caused by the beating of the heart are eliminated
from the IVUS sequence using a sequence-gating algorithm which is
driven entirely by the imaging data and based on the analysis of the inter-
frame correlations with a standard registration metric.46–48 This image-
based gating is accomplished by transforming the image sequence to a
Euclidean multidimensional similarity space (MDS) in which each frame is
represented by a particular, though not necessarily unique, point. This
space is clustered using k-means to provide an ensemble of stabilized
frames. Typically, a human operator selects the number of clusters to use
from a visualization of the clusters associated with several k as there is
a trade-off between a high value, which imposes greater restrictions on
what frames are considered to be similar, and a low value, which forces
some events which could be considered distinct to coalesce. The frames
corresponding to the selected cluster are then used to build a new sequence
for which it is assumed that the axial catheter motion has essentially been
eliminated.

(2) Next, the region of interest (ROI) is defined manually by a human
operator by tracing the luminal and media/adventitia contours in the
first frame of the gated set of images. The ROI corresponding to each
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frame in the gated sequence is located and “unwrapped” into a rectangular
domain. To eliminate residual motion artifacts, the images are aligned
and superimposed to obtain a pixel-wise correspondence using a two-
step approach that consists of a rough, rigid alignment step followed by
an elastic refinement step. A pre-contrast baseline image is computed by
averaging the subset of gated frames corresponding to the period before
the microbubbles’ injection. The pre-contrast baseline image is subtracted
from all frames in the gated sequence to form the differential images. As a
result, any change that occurs due to contrast enhancement will be detected
as a positive difference in the intensities in the corresponding regions of
the differential images.

(3) To quantify the enhancement of a particular frame, the average of the
gray intensity levels in the differential images is obtained within the ROI
to produce a mean enhancement in ROI statistic (MEIR). This statistic is
obtained for all the frames in the gated sequence. If perfusion occurs during
the injection, the MEIR level will increase in the frames corresponding to
the post-contrast injection period. If no perfusion occurs, the MEIR will
return to its pre-contrast value almost immediately after the contrast agent
passes through the lumen.

The feasibility of using this method for detecting perivascular blood flow,
has been demonstrated in an animal study60 and the feasibility and safety of
using this technique with human patients was assessed.59

Currently, our group is working on alternative methods for image stabiliza-
tion based on the analysis of the morphology of the lumen contour through
the use of automatic segmentation methods, and novel methods to detect the
changes of echogenecity in the CE-IVUS data from the B-mode reconstruction
and the RF signal.

2. Conclusions

IVUS has been demonstrated to be an important tool for the understanding
and treatment of CAD. Other techniques similar to IVUS, such as optical
coherence tomography, have started to attract more attention mostly due to
the type of data provided, which may overcome some of the limitations related
to IVUS such as the presence of speckle noise which makes it challenging for
physicians and computational methods to identify the different characteristics
of the vessel. However, IVUS still remains the gold standard for assessing
the coronary arteries. There have been important advances towards the
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extraction of valuable information from IVUS data by the medical image
analysis scientific community. However, there are still many challenges to be
overcome to develop a complete framework that will be able to provide an
index for plaque vulnerability. The constant development and improvement of
ultrasound transducers, contrast agents, and computational methods for the
analysis of ultrasound data will contribute to achieving this goal.
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Capacitive micromachined ultrasonic transducers (CMUTs) are micro-electromechan-
ical devices (MEMS) fabricated using silicon micromachining techniques. In the past
decade, their use has proved to be attractive mainly in the field of medical ultrasound
imaging as active elements in ultrasound probes. The interest of this novel technology
relies on its full compatibility with standard integrated circuit technology that makes
it possible to integrate, on the same chip, the transducers and the electronics, thus
enabling the realization of extremely low-cost and high-performance devices. From an
operational point of view, CMUTs have been widely recognized as a valuable alternative
to piezoelectric transducer technology in a variety of medical imaging applications,
thanks to a higher sensitivity, a wider bandwidth, and an improved thermal efficiency.

In this chapter, the design and fabrication of a 192-element linear array CMUT
probe operating in the range 6–18 MHz, designed for vascular, small parts, rheuma-
tology and anesthesiology imaging applications, is reported. The CMUT array is
microfabricated and packed using a novel fabrication concept specifically conceived for
imaging transducer arrays. The performance optimization of the probe is performed
by connecting the CMUT array with multichannel analog front-end electronic circuits
housed into the probe body. Characterization and imaging results are used to assess
the performance of CMUTs with respect to conventional piezoelectric transducers.

1. Introduction

Capacitive micromachined ultrasonic transducers (CMUTs) were first
researched upon at Stanford University in 1994.1 Unlike piezoelectric trans-
ducers, which use thickness-mode vibration of piezoceramic materials, CMUTs
are based on flexural vibration of electrostatically-actuated micromachined
plates. Due to their intrinsically low mechanical impedance, CMUTs seemed
initially to be particularly suitable for air-coupled applications.2–5 The enhanced
compatibility between micro-electro-mechanical system and standard inte-
grated circuit technologies, with respect to piezoelectric technology, led, in
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a very short time, to the first CMUT on CMOS implementation.4 Different
microfabrication processes based on sacrificial release surface micromachin-
ing,6,7 and wafer bonding8 technologies, each having its strength and weak-
nesses, were experimented for CMUT fabrication. The first water-coupled
operation results9 indicated that broadband behavior and wide temperature
tolerance could have made CMUTs a valid alternative to piezoelectric trans-
ducers for medical imaging applications. Since 2002, the first experimental
implementations of CMUTs for conventional 2D imaging,10,11 high frequency
2D imaging,12 and 3D imaging13 applications were presented, the latter being
enforced by the limitations imposed by the current piezoelectric technology.
The interest of some medical ultrasound imaging companies (in particular GE
trough the General Electric Global Research Center, Niskayuna, NY and Esaote
S.p.A., Genoa, Italy) led, in 2003, to the achievement of the first real time
in-vivo ultrasound images14,15 which was reached by connecting a CMUT
array provided by the sole CMUT technology industrial supplier at that time
(Sensant Corp., San Leandro, CA) to conventional ultrasound imaging systems.
One year later, at the Acousto-Electronics Laboratory of Roma Tre University
(Aculab, Università degli Studi Roma Tre, Rome, Italy) where the work here
presented was carried out, the second real time in-vivo ultrasound images were
generated16 and successively improved17,18 thanks to the increased sensitivity
of the developed probe achieved by enhancing the CMUT microfabrication
process, and by introducing previously developed electronics19 inside the probe
itself.

At the same laboratory, significant advances on the different aspects of
the CMUT-related research were carried out. In particular, a new CMUT
fabrication technology called “Reverse Fabrication Process” was developed,
patented20 and published.21 Such technology led to improved ultrasound
imaging22 and permitted to realize flexible CMUTs,23 thus enabling the
adoption of CMUT technology in those imaging applications requiring
curved transducer arrays. Moreover, Finite Element Modeling (FEM) was
extensively used to understand non-ideal phenomena in CMUTs24 and to
design application specific devices.25 FEM was also used to study new CMUT
structures with improved sensitivity and bandwidth performance.26,27 The
use of CMUT technology was also investigated in other ultrasound imaging
applications, such as volumetric imaging28 and biometry.29–31

The fact that CMUT technology has been accepted by the industry as a
valid alternative to the state-of-the-art piezoelectric technology is proven by
the several patents filed by many companies to date. In 2008, the ultrasound
probe manufacturing company Vermon (Vermon, Tours, France) compared the
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performance of an internally developed CMUT probe with its proprietary state-
of-the-art piezoelectric technology,32 obtaining promising results. In 2009,
Hitachi (Hitachi Medical Corporation, Tokyo, Japan) announced,33,34 the first
commercial product, a linear array probe for breast imaging, based on CMUT
technology. Further details on CMUT operating principle and technology
can be found in Ref. [35] while a detailed review on medical applications is
reported in Ref. [36]. The aim of this chapter is to present the development
of a high frequency ultrasound probe for medical ultrasonography enabled by
the availability of a well-established CMUT microfabrication and packaging
technology. The 192-element CMUT linear array design and fabrication as
well as the probe engineering and the integration in an ultrasound medical
imaging system are shown. A first performance assessment of the CMUT probe
is operated by electrical and acoustic measurements and benchmarking with
a commercially available piezoelectric probe from Esaote. In-vivo ultrasound
images are also generated with the two probes and compared. The work
reported in this chapter was previously presented37 and published.38

This chapter is organized as follows. Section 2 describes the design of the
CMUT array, the microfabrication technology and the device packaging. In
Section 3, the development of the ultrasound probe and the methods used to
interface it to a conventional imaging system are discussed. Section 4 reports
the characterization and imaging results. The discussions and conclusions are
given in Section 5.

2. CMUT Array Design, Microfabrication and Packaging

2.1. Array Design

The linear array design parameters, such as the element number and dimen-
sions, were chosen identical to those of the 192-element Esaote LA435
piezoelectric probe in order to easily integrate the resulting CMUT probe into
the Esaote “Technos” ultrasound imaging system available at Aculab, and to
fairly compare the characterization and imaging results achieved with the two
probes. The main array design parameters are reported in Table 1.

The CMUT microstructure design parameters, such as the lateral dimen-
sions of the cells and the thickness of the layers, were defined by taking into
account the desired pulse-echo frequency band of operation (center frequency
of 12 MHz with a −6 dB fractional bandwidth greater than 100%) as well
as the dimensional constraints imposed by the element geometry. The gap
height of the CMUT cells, on which the collapse voltage and consequently the
maximum pulse-echo amplitude are dependant, was determined by considering
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Table 1. CMUT array design parameters.

Parameter Value

Array:
Number of elements 192
Element pitch 200 µm
Element width (azimut) 200 µm
Element length (elevation) 3 mm
Fixed elevation focus 15 mm

CMUT Structure:
Cell diameter 29.6 µm
Electrode diameter 20 µm
Cell-to-cell lateral distance 3.4 µm
Plate thickness 1.5 µm
Gap height 0.25 µm

the maximum excitation signal amplitude level available on the “Technos”
imaging system (±80 V). With the aid of a Finite Element Modeling (FEM)
CMUT design tool previously developed at Aculab,25 it was found that the
maximum pulse-echo amplitude could be obtained by driving the CMUT with
the maximum signal amplitude level available and by biasing it around 70%
of its collapse voltage. In order to prevent the collapse of the CMUT during
operation, the sum of the bias voltage and the excitation signal positive peak
voltage had to not exceed the collapse voltage. Such condition, together with
the optimal biasing condition found (70%) and the maximum value of the
excitation signal positive peak voltage available (80 V), led to a collapse voltage
specification of 266 V. As a result of a parametric set of FEM simulations, the
optimal design parameters shown in Table 1 were determined.

2.2. Microfabrication

The array described was fabricated using the Reverse Fabrication Process (RFP)
previously developed.21 RFP is a sacrificial release microfabrication technology
for the fabrication of CMUTs on silicon wafers. In this process, CMUTs are
fabricated using a top-down approach, meaning that the microfabrication is
operated starting from the top layers of the structure i.e., the transducer
vibrating surface, and ending with the device sealing and the definition of
the electrical interconnection pads. After microfabrication, the resulting device
is electrically interconnected and packed and, finally, the silicon substrate
is completely removed in order to release the CMUT vibrating surface. In
Fig. 1(a)–(i), the main RFP flow steps are outlined. The microfabrication starts
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Fig. 1. (a)–(i) RFP technology flow. For clarity, only one cell is shown. (j) Picture of the cell
layout of an actual microfabricated CMUT device. One array element is displayed to its full
width (200 µm).

on top of a low stress and ultra precise thickness controlled LPCVD silicon
nitride film grown over a silicon wafer [Fig. 1(a)]. The top electrode, made of
an Al-Ti-W multilayer, is deposited and patterned [Fig. 1(b)].

The use of a thin layer of Ti-W over the Al film prevents the degradation
of the metallization during the subsequent PECVD silicon nitride deposition
[Fig. 1(c)], which serves as a passivation layer of the top electrode. Successively,
a sacrificial Cr film is deposited and patterned [Fig. 1(d)]. A PECVD silicon
nitride layer [Fig. 1(e)] is used to passivate the bottom electrode that is defined
by the deposition and patterning of a second Al-Ti-W film [Fig. 1(f)]. After a
further PECVD silicon nitride passivation layer is deposited, the etching holes
for the evacuation of the cell cavities are created [Fig. 1(g)]. The successive step
is the sacrificial release, operated by means of Cr wet etch [Fig. 1(h)]. Finally,
the device is completely sealed by depositing a consistent 4-µm-thick PECVD
silicon nitride film that is successively etched in order to define interconnection
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pads [Fig. 1(i)]. A picture of an actual CMUT device, fabricated using the RFP,
is reported in Fig. 1(j) where a detail of the cell layout of one array element is
shown.

Significant benefits result from the described fabrication method. Among
those, the fact that the CMUT vibrating structure is almost entirely made of
LPCVD silicon nitride leads to the high accuracy of its thickness over the silicon
wafer resulting in a highly uniform mechanical behavior of the CMUT cells.
Another important aspect is that the use of PECVD silicon nitride, which can be
deposited at relatively low temperatures as compared to LPCVD silicon nitride,
makes it possible to utilize Al whose electrical properties ensure low resistivity
of the electrodes. Finally, thanks to the top-down nature of the fabrication
method, the interconnection pads are located on the rear part of the final device.
In other microfabrication approaches, this task is achievable exclusively by using
through-silicon via (TSV) processes that are expensive and often unreliable.

2.3. Packaging

In order to provide the CMUT array with a custom backing, enable the
electrical access to the elements, release the vibrating structure, and apply
an acoustic lens for protection and elevation focusing, a special packaging
procedure was developed and implemented. The main steps are schematically
summarized in Fig. 2. The CMUT array chip is placed and held on a vacuum
fixture in a way that the interconnection pads are facing upwards [Fig. 2(a)].
A rigid-flex (FR4-polyimide) PCB is placed close and aligned to the chip at
a different vertical position, 0.2 mm above, and wire bonding is performed
using Al wire by means of a manual Wedge Bonder 4123 (Kulicke & Soffa,
Fort Washington, USA) [Fig. 2(b)]. A pre-shaped custom backing, obtained
by a previously cured part of composite material made of Epotek 301 (Epoxy
Technology, Bellerica, USA) epoxy filled with W and Al2O3 powders, is then
glued on the bonded assembly [Fig. 2(c)] using the same compound that serves
also as a glob top for the wire bonds. The resulting assembly is then dismounted
from the vacuum fixture and placed in a PTFE case in order to perform the
chemical etching of the silicon substrate [Fig. 2(d)] and release the CMUT
active surface. The silicon etching is operated using a mixture of acetic, nitric
and hydrofluoric acid (HNA). Finally, an acoustic lens, made of RTV silicone
filled with metal oxide nano-powders, is applied to the CMUT using a stainless
steel mold [Fig. 2(e)].

The described packaging process was used for the fabrication of ultrasound
probe-heads. A picture of a completed probe-head prototype is shown in
Fig. 2(f). In this particular prototype, pure (unfilled) transparent RTV silicone
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Fig. 2. RFP packaging flow. For clarity, only the flexible part of the rigid-flex PCB is shown.

has been used for the lens fabrication in order to optically evaluate the
positioning accuracy achieved with the mechanical tools used to implement
the packaging process. As a matter of fact, the probe-heads actually used in this
work were provided with a cylindrical acoustic lens made of doped RTV silicon
having a specific acoustic impedance of 1.42 MRayl, a 1100 m/s sound speed,
and shaped in order to achieve elevation focusing at a 15 mm depth, resulting
in a maximum thickness of 0.4 mm.

Several advantages arise from the use of the proposed packaging procedure.
From a fabrication point of view, the availability of electrical interconnection
pads on the rear part of the device significantly simplifies the packaging of
the chip with no need to perform the wire bonding glob top protection in a
dedicated step, since the same task is fulfilled during the backing application
step. From an operational point of view, the use of a custom backing instead
of the silicon substrate, that is normally present in CMUTs and that exhibits
very poor performance as an acoustic backing,39 improves the absorption of the
acoustic energy propagated into the backing. As a matter of fact, the composite
material used for the backing can be engineered in order to obtain the desired
mechanical characteristics, including ultrasound attenuation. The ultrasound
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attenuation in the backing material applied to the probe-heads used in this
work is 8 dB/mm measured at a frequency of 10 MHz and the specific acoustic
impedance is 8 MRayl.

3. Probe Engineering and System Integration

In this work, a 196-channel cable provided by Esaote was used. Since each
element of the CMUT array has a capacitance in the order of 20 pF whilst the
capacitance of each micro-coaxial cable is 150 pF, a significant attenuation of the
signal can occur if the array elements are directly connected to the cables. There-
fore, the use of buffering circuits placed as close as possible to the transducer
array elements is needed to preserve signal integrity during reception operation.
In general, the introduction of multichannel electronics in the probe housing is
challenging due to the strict requirements in terms of noise performance, power
consumption, and dimensions. Recently, Maxim (Maxim Integrated Products,
Sunnyvale, CA) has developed, in collaboration with Aculab, a new component,
called MAX4805, designed for in-probe voltage buffering of the echo signals
generated by high impedance ultrasonic transducers. A special version of this
component, the MAX4805A, is optimized for the use with CMUTs (that
typically have higher impedance as compared to piezoelectric transducers of the
same emitting surface) through the minimization of the current noise density.

By using the MAX4805A component, a 96-channel board was developed.
The circuit topology of a single channel is reported in Fig. 3. The circuit
operates, in reception, the voltage buffering of the received echoes by means
of a high input impedance low noise amplifier (LNA) which has a +9 dB
voltage gain and an output current capability sufficient to drive the cable. The
driving signals are transferred from the cable to the transducer by means of a
pair of antiparallel diodes. During transmission operation, the LNA output

Fig. 3. Picture of the two sides of the 96-channel in-probe electronic board.
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is protected by an automatically activated high voltage switch, whilst the
input is protected by the external 47 pF capacitance (Cc) and by the pair of
antiparallel diodes connected to ground. The board contains, in addition to the
MAX4805A integrated circuits and the required external passive components,
96 bias tee networks, realized with a 10 M� (Rb) resistor and a 10 nF capacitor
(Cb), for the voltage biasing of the CMUT array elements. The component
layout and signal routing was performed on eight layers and the board
prototypes were fabricated using standard FR4 PCB and SMT technology. A
picture of the two sides of the board is reported in Fig. 3. Each board contains
a cable connector and a probe-head connector, respectively visible on the left
and on the right part of Fig. 3.

Two identical boards were fixed and thermally coupled to an aluminum
frame using a conformable thermally conductive pad. The aluminum frame
was coupled to the multi-coaxial cable metallic shield in order to dissipate in
the same cable the heat generated by the electronics. In this way, the unwanted
temperature rise of the probe-head and the probe case during operation was
minimized. The whole assembly was electromagnetically shielded and housed
into a plastic case. A picture of the assembled prototype is shown in Fig. 4.

The power supply voltages required by the boards, which include the five
MAX4805A supplies as well as the CMUT bias voltage, were not available at
the probe interface of the Esaote “Technos” imaging system. Therefore, it was
necessary to provide the probe with an electronic circuit capable of generating
the required six supply voltages starting from a single +5 V power supply
available at the system interface. In a first step, several integrated switching
regulation solutions available on the market were experimented but, in all
cases, the voltage regulation performance was not good enough in relation

Fig. 4. Picture of the assembled CMUT probe.
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to the requirements imposed by the limited power supply rejection ratio of
both the MAX4805A component and the CMUT bias tee networks. A custom
design of the power supply unit was then carried out. The circuit is based on
the amplification, rectification and notch filtering of a pure tone generated
by a 200 kHz sinusoidal oscillator. Using this approach, the five fixed supply
voltages (±2 V, ±5 V and −100 V) required by the electronics as well as the
adjustable CMUT bias voltage (0–300 V) were generated with inappreciable
voltage ripple. The board containing the described circuit was designed to be
housed into the system connector of the probe (Fig. 4). The power supply
voltages were delivered to the in-probe electronic boards through six spare
coaxial cables available in the multi-coaxial cable. The total power consumption
of the probe was estimated to be less than 1.5 W.

4. Probe Characterization and Ultrasound Imaging

4.1. Electrical Impedance

All the electrical impedance measurements of the CMUT array elements were
performed, using an HP4194A (Agilent Technologies, Inc., Santa Clara, CA)
impedance analyzer, on a probe-head prototype without the silicone lens. At
first, electrical impedance measurements were performed on a single element
at different bias voltages in order to estimate the variation of the resonance
frequency and extrapolate the collapse voltage. The extrapolation was obtained
by fitting experimental with numerical data using the FEM model mentioned
in Section 2.1. The fitted FEM model was used to compute the collapse voltage
that turned out to be 280 V.

Further, electrical impedance measurements at a fixed bias voltage of 200
V were performed on all the array elements with the aim of estimating the
capacitance and resonance frequency variation across the array. All the measure-
ment data were compensated taking into account the parasitic capacitance and
inductance of the cables and the fixture used for the electrical interconnection
of the probe-head to the impedance analyzer. Figure 5 shows the electrical
impedance measurement of the central element (96) of the CMUT array.
The resonance frequency and the capacitance were computed for each array
element. A smooth variation of the resonance frequency of the elements across
the array was observed, indicating that the variation is mostly caused by the
non-uniformity of the CMUT plate thickness. As a matter of fact, the frontal
layer of the CMUT, which is made of an LPCVD silicon nitride layer, was
slightly etched while being temporarily exposed to the HNA mixture during
the chemical etching of the silicon substrate (see Section 2.3). Proof of this was
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Fig. 5. Electrical impedance measurement of the central (96) CMUT array element biased at
200 V. (a) magnitude (logarithmic vertical scale) and (b) phase.

Table 2. Electrical impedance characterization.

Parameter Value

Resonance frequencya 17.9 MHz
(% RSDb) (1.1%)
Element capacitancea 22.8 pF
(% RSDb) (2.0%)
Collapse voltagec 280 V

aMean value
bRelative Standard Deviation (RSD)
cOne element (extrapolated)

that the color of the array surface appeared slightly faded after silicon substrate
removal. Furthermore, the observed capacitance variation is likely due to the
parasitic capacitance of the signal traces on the rigid-flex PCB.

Table 2 summarizes the electrical impedance characterization results. The
mean value and relative standard deviation of the resonance frequency and the
capacitance distributions across the array elements were computed and, despite
the phenomena discussed above, the uniformity assessment was considered very
satisfactory.
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4.2. Pulse-echo

All the pulse-echo measurements were performed on the same CMUT probe-
head provided with the silicone lens mentioned in Section 2.3 and mounted
in the probe assembly described in Section 3. In all the measurements, the
probe was electrically accessed through the connector on the system side of the
cable. In order to make a first performance assessment of the CMUT probe,
all the pulse-echo measurements were performed also on the Esaote LA435
piezoelectric probe using exactly the same procedures.

Pulse-echo characterization was carried out by placing the probes in front
of a water immersed planar reflector at a distance of 15 mm, equal to depth
of the elevation focus. In all measurements, the CMUT probe was biased
at 200 V. The first pulse-echo measurement was carried out with the aim
to determine the center frequency and bandwidth of the two-ways transfer
function as well as the pulse length. All the probe elements were excited using
a −100 V negative broadband pulse generated by a Pulser/Receiver 5800
(Panametrics Inc., Waltham, MA). The echo signals received by the central
element (96) of the CMUT and the piezoelectric arrays normalized to their
maximum absolute value are depicted respectively in Fig. 6(a) and (b). The

Fig. 6. Pulse-echo time-domain normalized response from the central (96) array element
of the (a) CMUT probe biased at 200 V and (b) piezoelectric probe. Normalized (c) FFT
magnitude and (d) time-domain envelope of the pulse-echo responses.
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FFT magnitudes and the envelopes of the two echo signals are reported in
Fig. 6(c) and (d). The CMUT probe shows broader bandwidth, and shorter
pulse length. Among the presented results, the ones related to the envelope
of the echo-signals demonstrates that, unlike the piezoelectric probe element
that shows residual oscillations in its time-domain response, the CMUT probe
element exhibits a nearly ideal behavior, resulting in a potentially better detail
and contrast resolution during b-mode operation. The entire set of pulse-echo
data was processed in order to extract, for each array element, the FFT center
frequency, fractional bandwidth and amplitude variation across the array.

The second pulse-echo measurement was performed to estimate the two-
ways sensitivity of the probe during the actual operative condition i.e., while
being excited by a bipolar pulse by the imaging system. The elements were
driven using 4-cycle, ±60 V bursts generated, at various frequencies, by a
custom pulser/receiver containing the same electronic transmission modules
used in the Technos imaging system front-end. The two ways sensitivity has
been computed by dividing the amplitude of the received echo signal by the
amplitude of the excitation signal measured at the probe connector. Since the
MAX4805A introduces a voltage gain of 9 dB, the sensitivity datum obtained
with the CMUT has been reduced in order to fairly compare the actual
sensitivity of the CMUT and the piezoelectric transducer array elements.

Table 3 summarizes the pulse-echo characterization quantitative results
for the CMUT and the piezoelectric probes. The mean value and the relative
standard deviation of the center frequency, the −6 dB fractional bandwidth and
the amplitude variation distributions across the array elements are reported for
the two probes, together with their sensitivity estimation at various frequencies.

Table 3. Pulse-echo characterization.

Parameter CMUT Piezo

Center frequencya (−6 dB) 10.8 MHz 10.9 MHz
(% RSDb) (1.5%) (1.8%)
Fractional bandwidtha (−6 dB) 103.9% 70.1%
(% RSDb) (2.1%) (3.2%)
FFT Amplitude % RSDb

(@ mean center frequency) 7.1% 11.0%
Sensitivityc @ 8.5 MHz −38.4 dB −41.7 dB
Sensitivityc @ 10 MHz −37.4 dB −41.1 dB
Sensitivityc @ 12 MHz −37.0 dB −41.2 dB

aMean value
bRelative Standard Deviation (RSD)
cOne element (extrapolated)
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Fig. 7. Transmission time-domain normalized response from the central (96) array element
of the (a) CMUT probe biased at 200 V and (b) piezoelectric probe. Normalized (c) FFT
magnitude and (d) time-domain envelope of the transmission responses.

The reported results show that the CMUT probe performs better than the
piezoelectric probe in terms of two-way response.

4.3. Transmission

Transmission measurements were carried out on a single element of the
CMUT and the LA435 piezoelectric probes using the same experimental set-up
described in the previous Section 4.2. A needle type MHA9-150 hydrophone
(Force Technology, Brøndby, Denmark) was placed in front of the water
immersed probes at a distance of 15 mm, in order to perform acoustic pressure
measurements at the elevation focus depth. In all measurements, the CMUT
probe was biased at 200 V.

The center frequency and bandwidth of the transmission transfer function
as well as the pulse length were estimated by exciting the central element (96)
of the CMUT and the piezoelectric arrays using a −100 V negative broadband
pulse generated by the Panametrics Pulser/Receiver 5800. The hydrophone
signals normalized to their maximum absolute value are depicted respectively
in Fig. 7(a) and (b). The FFT magnitudes and the envelopes of the two
hydrophone signals are reported in Fig. 7(c) and (d).
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Table 4. Transmission characterization.

Parameter CMUT Piezo

Center frequency (−3 dB) 13.6 MHz 13.5 MHz
Fractional bandwidth (−3 dB) 67.5% 65.4%
Center frequency (−20 dB) 16.8 MHz 13.5 MHz
Fractional bandwidth (−20 dB) 163.3% 136.2%
Sensitivity @ 8.5 MHz 17.1 dBa 22.9 dBa

Sensitivity @ 10 MHz 20.9 dBa 25.1 dBa

Sensitivity @ 12 MHz 22.0 dBa 26.3 dBa

Peak-to-peak pressure @ 12 MHz 160.8 kPa 254.9 kPa

aMean value
bRelative Standard Deviation (RSD)
cOne element (extrapolated)

The transmission sensitivity and the acoustic pressure generated by the
probe during the actual operative conditions were determined by driving the
array elements using 4-cycle, ±60 V bursts generated, at different frequencies,
by the custom pulser/receiver, as described in the previous section.

Table 4 summarizes the transmission characterization results for a single
element of the CMUT and the piezoelectric probes. The center frequency
and the fractional bandwidth at −3 dB and −20 dB are reported proving that
the CMUT probe performs better than the piezoelectric probe in terms of
transmission response bandwidth and pulse length. The transmission sensitivity
data estimated at various frequencies as well as the peak-to-peak pressure
measured at the probe nominal center frequency (12 Mhz) are also reported
showing, in this case, that better results are obtained with the piezoelectric
probe.

4.4. Ultrasound Imaging

Real time in-vivo ultrasound images were generated on the “Technos” imaging
system, using the highest frequency linear array preset (LA424). The LA424
probe is the previous version of the LA435 probe used in this work. At first,
b-mode images were generated by connecting alternately the CMUT and
the piezoelectric probes to the Technos imaging system. The driving signal
frequency was set at 13 MHz and the burst count at 1. Due to the maximum
voltage limitation of the LA435 probe, the driving signal amplitude was set in
both cases at ±60 V whilst the CMUT probe was biased at 200 V. Moreover,
having the CMUT probe higher sensitivity, the b-mode gain was adjusted in
order to achieve equivalent brightness of the images generated with the two
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Fig. 8. In-vivo ultrasound images obtained with an Esaote Technos imaging system using a
13 MHz preset. B-mode images of a (a) carotid artery and (b) a forearm tendon. In (a) and
(b), the images are generated using the CMUT probe (left) and the Esaote LA435 piezoelectric
probe (right). (c) PW Doppler and (d)–(e) Color Doppler modes of the same carotid artery. All
the images are rendered with a dynamic range of 55 dB. The image depth is 31 mm in (b) and
41 mm in (a), (c), (d) and (e). Color can be viewed in the e-book.

probes. A big effort was carried out to place the two probes in the same position
in order to scan the same portion of tissue. Figure 8 reports the b-mode
images of a human carotid artery [Fig. 8(a)] and a human forearm tendon
[Fig. 8(b)]. In each of the two figures, the represented images were obtained
with the CMUT probe (on the left) and the piezoelectric probe (on the right).
A slightly improved axial resolution and penetration depth is observable in the
images generated using the CMUT probe. Such improvement however, which
is imputable to the CMUT larger bandwidth, was limited by the bandwidth
of the reception filters implemented in the “Technos” imaging system probe
preset. PW Doppler and Color Doppler modes were also experimented with the
CMUT probe. In fact, being such modes more sensitive to noise as compared
to b-mode, they provide an empiric but effective “testing ground” for signal-
to-noise ratio and electromagnetic immunity assessment. Figure 8 reports the
results achieved by successfully scanning the same carotid artery with the
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CMUT probe in PW Doppler mode [Fig. 8(c)] and Color Doppler mode
[Fig. 8(d) and (e)].

5. Discussion and Conclusion

This chapter presented the design, fabrication and characterization of a CMUT
probe for medical ultrasound imaging. The heart of the probe i.e., the
CMUT array, was microfabricated using the Reverse Fabrication Process, and
successfully assembled in the form of a silicon-free ultrasound probe-head using
an efficient and reliable packaging procedure. The CMUT array was provided
with acoustically and thermo-mechanically engineered materials used for the
fabrication of the backing and the acoustic lens designed to optimize the
performance of the probe-head. The integration of the CMUT probe-head
in a commercial ultrasound imaging system was supported by the introduction
of electronics inside the probe that made it possible to use a standard cable
and system connector, resulting in a full compatibility with the system itself.
Electric and acoustic characterizations were performed to assess the probe-
head fabrication process reliability and the probe performance. The results were
compared with those obtained, in equivalent conditions, with a commercially
available piezoelectric probe designed for the same imaging application. In-vivo
ultrasound images using various ultrasound modes were finally generated and
discussed.

The results obtained in the described framework showed the superiority of
CMUT technology with respect to piezoelectric technology as regards both
transmission and two-ways time and frequency response shape. The CMUT
probe showed lower transmission sensitivity (−4.2 dB at the nominal center
frequency) and higher two-ways sensitivity (+5 dB at the nominal center
frequency) resulting from its higher reception sensitivity.

The authors would like to emphasize that the operating conditions during
all tests i.e., the maximum driving voltage and the limited receiver bandwidth,
were defined taking into account the limitations of the piezoelectric probe and
of the imaging system. Therefore they expect to obtain even better absolute
performance of the CMUT probe by overcoming such limitations.

Future work will focus on the complete characterization of the CMUT
probe, that will include the measurement of the element directivity pattern, the
crosstalk and the high order harmonic generation. Further, imaging capability
assessment will be carried out through in-vitro tests on tissue-mimicking
phantoms using an up-to-date imaging system capable of fully exploiting the
performance provided by CMUT technology. Although Doppler mode results
did not show weakness in terms of noise performance, imaging capability
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assessment will be fully accomplished by carrying out a deeper noise analysis
of the CMUT and the in-probe electronics. Thermal efficiency will also be
investigated in order to achieve a complete performance assessment of reverse
microfabricated CMUTs.

In this work, the task to implement a device designed for an application that
is already fulfilled by the current piezoelectric technology was addressed with
the purpose of demonstrating that CMUT technology is mature enough and
can provide added value to be used in medical ultrasound imaging applications.
What is being affirmed is validated by the estimation of the industrial cost of
the CMUT probe presented in this chapter, which resulted to be comparable
to the industrial cost of the LA435 piezoelectric probe for a production volume
of 1000 units per year.
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Rapidly growing volumes of medical data and studies, more imaging modalities,
standardization of digital imaging and communications in medicine (DICOM) and
healthcare level 7 (HL7), increasingly complicated workflow and structured reports,
geographically distributed storage and access, data management, and security access
have driven the evolution of Picture Archiving Communication System (PACS),
adoption of web-based imaging cloud for healthcare information systems. Integrated
enterprise PACS and imaging cloud services facilitate archiving, sharing and exchanging
of imaging studies, ubiquitous and reliable network access anytime anywhere for clinical
practice and healthcare provider, and achieve smooth workflow, balanced workloads,
and optimized performance.

1. Introduction

During the past decade, healthcare services are quickly evolving and becoming
much more diversified due to significant advances in imaging, internet and
web technologies. Widespread LANs and WANs and intranets are bridging
previously separate and detached institutions and domains into inter-connected
premises. Advances of PACS and cloud technologies are transforming the
healthcare and clinic practice in fundamental ways, and deliver faster and
better patient care. Healthcare is evolving towards more service-oriented,
patient-centered, and data-driven services and models. This trend has resulted
in adoption of service-based PACS model and imaging cloud with service-
oriented architecture (SOA).

465
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Medical imaging has seen rapid migration from grayscale, low resolution,
single modality to support full spectrum of color, high resolution, and multi-
modality. More and more imaging modalities of 1D, 2D or 3D to collect,
process, analyze, archive, transmit and visualize clinical data are generating large
volume data every year. For example, imaging modalities of one-dimensional
signals include the electrocardiogram, invasive and noninvasive blood pressure
measurement, pulse oximetry, intracardiac electrograms, and stethoscope.
And two (or three)-dimensional modalities include ultrasound, coronary
angiograms, and positron emission tomography (PET), magnetic resonance
imaging (MRI), nuclear imaging, and computed tomography (CT).1 Accord-
ing to a recent survey, in the U.S. today, about 400 million procedures a year2

involve at least one medical image in various modalities and formats. This would
create huge amount of data if we consider an average medical study with still
or multi-frame DICOM images ranging from several to hundreds of Mbytes.

This trend has changed teleradiology, telemedicine, and the ecosystems
of RIS/HIS/IHE drastically. Medical practice and clinical workflow call for
more scalable and interoperable solutions. Physicians such as cardiologists,
neurologists, oncologists, gastroenterologists, dentists, and surgeons are more
and more relying on these advanced and more accurate techniques and elec-
tronic medical records (EMR) to help facilitate less or non-invasive diagnosis,
consultation, prescription and treatment. They want to rapidly access images
and data anytime and anywhere ubiquitously to provide better patient care.
The regulation compliance of Health Insurance Portability and Accountability
Act (HIPAA) on EMR retention and archive, privacy and security add to
the exponential growth of massive data storage and management. Cloud
computing and services facilitate archiving, sharing and exchanging of imaging
studies for clinical practices. Thin client PACS and imaging cloud could offer
uninterrupted across healthcare providers, departments, hospitals, institutions,
and network domains without boundaries. Patient studies can be better shared
by reducing unnecessary and redundant studies and data integrity can be better
preserved by centralized data centers. It provides high availability, improved
scalability, interoperability, portability, reliability and flexibility.

2. PACS System

2.1. DICOM Model

Over the past decade, telemedicine and telehealth have proliferated and evolved
to an unprecedented application level. They are well-supported by DICOM as
an open standard to efficiently and effectively transfer data and information
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between variant system components, such as imaging modalities, gateways,
PACS, database management system, storage. DICOM also facilitates the
healthcare workflow within and between medical departments.

Since its debut in 1993, DICOM is the widely adopted medical image
standard and communication protocol introduced jointly by American College
of Radiology (ACR) and the National Electrical Manufacturers Association
(NEMA). DICOM format is used to collect, capture, archive, transport,
process, and retrieve medical images and patient information. It is the format
that most medical imaging modalities, PACS servers and clients, gateways,
processing workstations, image archive and storage host, review and display
stations support.

DICOM standard is quite extensive with large hierarchically predefined
datasets. DICOM information model: DICOM datasets are tags-grouped.
For example, the content and information objects are grouped into patient
and study information, exams, reports, slices and segments, image frame and
pixel data, modality and equipment manufacturer, waveforms, and annotations.
These are roots respectively and more child data can be defined in the leaves
of these roots. They are called as DICOM Information Object Definitions
(IODs).3–5 Each DICOM attribute is tagged by a pair of 2-byte numbers
(group, element) to store the information. These include both standard and
optional private attributes, which are denoted as value representation (VR)
types.

DICOM format is fully compatible with variant imaging modalities through
its modality tags. DICOM worklist is a scheduled sequence of procedures which
can be retrieved by modality through PACS gateway. In addition, DICOM
can be interfaced to PACS, and further mapped to HL7 standard messages.
This facilitates transparent information workflow between modality, gateway,
PACS, radiology information system (RIS), hospital information system (HIS)
and Integrated Healthcare Enterprise (IHE). DICOM utilizes its C-FIND,
C-GET, and C-MOVE, C-STORE protocols to realize query/retrieval of
PACS and RIS.

Image tagging is a great feature for DICOM to store patient and study
information, which may include anatomic structures, volumes, regions and
labels, measurements, scoring and calculations. This enhances the interpre-
tation capabilities of imaging content and data and allows physicians to add
more clinical descriptions. For example, image annotations can be stored and
exported by DICOM to compatible PACS and RIS.

The way how DICOM data are encoded and communicated is called
transfer syntax, which is defined in the DICOM file header. In order to
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preserve high-fidelity of medical and diagnostic data, DICOM images use
compressed standards such as lossless RLE and JPEG and lossy JPEG 2000.
They use the well-known block DCT for JPEG and wavelet transform
for JPEG 2000, followed by RLE and entropy coding. To increase the
compression ratios further, the multi-frame DICOM files can be further
compressed into AVI and other formats by using MJPEG, VC1, XVID
MPEG4, and other codec including H.264 and newly emerged HEVC
standards. Most advanced compression standards use hybrid encoding meth-
ods, including motion estimation and compensation, and adaptive deblock
filtering.

2.2. Medical Imaging and PACS

Medical imaging is very important to healthcare and has been widely used
in radiology, cardiology, pathology, pediatrics, obstetrics, and gynecology
etc. There are many available imaging tools such as CT, MRI, PET, and
ultrasonography. Visual data is collected by imaging modality, based on respec-
tive sensing physics principles and target interactive material characteristics.
Accurate imaging data of patient’s organs, specimens, fetus, and full body
anatomy help physicians diagnose and evaluate patient’s condition, prescribe
suitable medication, and recommend procedures, or operations. No matter
which sensing methods were used, all imaging systems consist of image
capture or acquisition, high speed data transfer, processing, post-processing,
converting, storage, archiving, retrieving, rendering.

In order to achieve smooth health information sharing, medical imaging
workflow has been closely integrated into radiology information system (RIS)
and hospital information system (HIS). As mentioned above, DICOM standard
and format contain patient study information and medical imaging data, by
which imaging modalities can be interfaced into PACS through gateways.

DICOM modality worklist (MWL) tags are used to schedule imaging
procedures on which imaging modality patient data is sensed, captured, and
acquired.

Visualizing and displaying electronic imaging records is the core function-
ality of rendering, for example, X-ray dental records, ultrasound fetus records.
It is very critical to medical imaging not only because of the importance
of presenting the massive data, but also its close relation to overall system
performance. In thin or zero-footprint client model, remote rendering from
PACS and cloud servers to distributed light-weighted consuming devices
connected by network could greatly simplify design and maintenance of clients,
and maximize system usage and minimize cost.
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Besides two-dimensional data, 3D6 or 4D volume medical data require both
advanced processing and rendering algorithms, high performance optimized
software, and graphics hardware. Super vectorized, parallel, and pipeline
architectures and rendering engines such as GPU, multi-core CPU are quickly
evolving and have been adopted widely in many clinical facilities and hospitals.
By using texture and shader technologies, and employing DirectShow, DirectX,
DXVA, and OpenGL, high volume and fidelity study images can be efficiently
accelerated and rendered.

Usability is one of the major considerations of PACS and medical imaging
system. The complexity of underlying imaging modalities, hardware, device,
software stacks and protocols need to be transparent to physician users at the
top application layer. Many important image manipulation functions facilitate
PACS and imaging system usability. They include brightness and contrast,
window level adjustment, zoom in zoom out, orientation rotation and pan
translation, flip and inversion. Physicians and radiologists can mark image
editing and record annotation in PACS database. Image special effects and
video overlay are also desired.

In addition, advanced image processing functions can be integrated into
PACS, to better understand, analyze and present medical images or volume
data. Automatic extraction of key geometric features, boundary and contour
detection, image segmentation have been employed in PACS. These func-
tions allow quantitative analysis and measurement of regions and anatomic
structures, volumes and mass, and facilitate clinical decision and treatment.
For example, segmentation of brain images, mammograms can better reveal
organs, tissues, and allows to calculate volumes in CT images. There are
many segmentation and classification techniques, for instance, watershed
algorithm, region grouping and growing, active contours etc. The purpose
of segmentation in medical imaging is to separate and extract different regions
of interest, in which the same regions contain homogeneous textures, geo-
metrics, or features. Segmentation algorithms can be mainly divided into three
groups: that is, automatic or un-supervised, semi-supervised, and supervised
categories.

As PACS is archiving and warehousing of massive medical data, the
capabilities to search, index, query and retrieve patient and study information
are essential to PACS functionality. Query and retrieval can be performed both
locally on a thick-client PACS and remotely on a thin-client PACS or web-
based PACS servers. DICOM protocols provide this support through C-FIND,
C-GET, and transfer and storage of data through C-MOVE, C-STORE.
More than this, clinical data mining is also desirable to help physicians and
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radiologists extract and analyze critical data, correlate disease symptoms, clinical
observations and diagnosis, and treatment and medications.

2.3. Multimodality Imaging and PACS

To meet growing needs of more accurate diagnosis and better patient care,
more modalities are introduced to interface an integrated PACS. Different
imaging characteristics, resolutions, and in vivo scan capabilities of noninvasive
ultrasound, CT, PET, and MRI can complement each other in clinical practice.
For example, whole body PET and CT to reveal more and higher level details
of organs and body parts than 2D ultrasound. These 3D imaging signals and
volumes can be reconstructed from well aligned sequential 2D multi-frame
images. In addition, 3D volume data can be augmented to 4D volume to
account for the time factor.

These joint combinations of alternate modalities generate massive medical
imaging data. Therefore, higher system performance and software scalability
are required. DICOM based enterprise PACS and cloud services are ideal for
multimodality support.

2.4. Cardiovascular Imaging PACS

Cardiovascular disease is one of the most serious health problems in both
developed and developing countries, threatening quite a certain portion of
middle and senior aged people. This leads to significant impacts on individuals,
families and communities in medication, cure, treatment, and aftermath
care. Governments, societies, industries are engaged in and collaborating on
research, funding, and education.

The most effective approach to control and prevent it is early diagnosis and
accurate examination. For this purpose, advanced cardiac imaging modalities
have evolved and been introduced to clinic practice. Cardiac imaging can
be categorized into invasive and non-invasive imaging. For example, invasive
modality includes cardiovascular angiography, intravascular ultrasonic imaging.
Non-invasive techniques include cardiac nuclear imaging, computed tomogra-
phy, and ultrasonic echocardiography.

PACS plays a significant role in cardiovascular imaging systems. Cardio-
vascular PACS is required to efficiently manage massive studies of coronary
ultrasound, stress echocardiography (Stress Echo), coronary angiography,
coronary computed tomography, and cardiac nuclear images. Support of
heterogeneous imaging modalities, transfer and interpretation of massive data,
switching of multiple cardiac studies, and vendor neutral archive of variant
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imaging data present a real challenge for enterprise cardiac PACS, and database
management system.

2.5. PACS and Models

The models of PACS can be categorized into mainly three architectures,
that is, thick-client or stand-alone model, client-server model, and web-
based model.7 In thick client model, PACS clients are designed to have large
computing resources, processing capabilities, and local data center and storage
to run medical applications locally, without solely depending upon the PACS
server and network connection and bandwidth. Thus network disconnection,
limited bandwidth, and latency do not affect the performance of thick client
significantly, which is the advantage. But in this model, medical data and
databases may have redundancy and resides on geographically different physical
locations, so data integrity is not guaranteed and both hardware and software
resources and systems are not portable and scalable.

In contrary to thick client’s scenario, thin clients (also called small-footprint
client) rely more on services provided through PACS servers through network
connection such as VPN on LAN or WAN. In this model, clients have very
limited software, storage and computing powers, and even not have a full-
fledged OS, except a very small and portable browser or viewer to consume
the services and data provided by the server. For example, smartphone, tablet,
and any other smart portable devices can access securely to centralized PACS
or cloud servers to remotely display images or review structured reports. They
facilitate non-stop 24/7 medical workflow from admission and scheduling,
medication, immunization, and testing, transfer and discharge, to billing
and insurance. Thus, this greatly increases the availability of patient care.
In addition, using the standardized interface could make it vendor neutral
solution. Of course, the response time, latency and performance of these
VM-based solutions are sensitive to and dependent on network connection
and bandwidth. More and more thin clients are deployed in healthcare due to
its light-weight characteristics, scalability and portability.

3. Medical Imaging Cloud

3.1. Cloud Model

Scalability is very critical not only to the service availability, software portability,
system performance, and platform independency, but also has big impact
to the infrastructure and architecture of hospital information system (HIS)
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and healthcare information exchange (HIE). In a cloud-based model, the
combination of centralized data center and thin clients make it more flexible
to providing more services and adding virtual machines (VM) and resources,
and release them after on-demand usage. Therefore, it can leverage existing
resources and power to support upgrades.

Cloud service model is also called web-based model. National Institute
of Standards and Technology defines its five essential characteristics as: on
demand self-service, broad network access, resource sharing, rapid elasticity,
measured service.8 In this model, available services are published by cloud
servers in centralized data center and cloud repository to archive and store
medical images and studies, import and export patient studies. Clients could
remote access and share the healthcare services and medical contents through
reliable and secure network connections. The universal viewing and displaying
tools can be available to most web browsers. Light-weighted or zero-footprint
medical viewers can access the provisioned services and consume the medical
data on demand and on the fly. It instantiate the virtualization of software and
computing resources provided in the cloud data centers and remote clients
do not involve in rendering. This improves content and data interoperability,
software and device portability, enhances medical workflow, ensures data
security and integrity, reduces cost and improves efficiency per medical image
study. Variant zero-footprint viewers including fore-mentioned AT&T medical
mobile viewer fall into this category.

Cloud model make the virtualization of services and computing resources
such as CPUs, processors, memory, and storage disks, data center possible
and viable. When connected to advanced imaging modalities of high cost,
its cost sharing of each user per usage is thus greatly reduced. Cloud
model offers healthcare quick provisioning of flexible computing resources,
centralized PACS server, data center and cloud storage on a pay by demand
basis. It provides benefits of platform independence, and cross-department
transparency.

Depending on what portions of computing resources are required locally
and the other portions are provisioned from cloud, there are mainly three cloud
deployment models, Software as a Service (SaaS), Platform as a Service (PaaS),
and Infrastructure as a Service (IaaS).

Software as a Service (SaaS) sits at the top application layer of cloud abstract
model. In SaaS, only software applications are provisioned and shared across
users but not platforms and infrastructures. This simplifies management and
maintenance of clients and allow for feature enhancements and updates instantly
from servers. Services in this model are usually provided through web browser,
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and very suitable for remote diagnosis and real-time patient monitoring, in
telemedicine and teleradiology. In contrast to SaaS, PaaS and IaaS models
provides more computing power and resources than SaaS, including virtual
platforms and infrastructures to clients respectively.

For example, modern EMR, RIS could be deployed in SaaS cloud. In this
model, services and resources are provisioned on-demand per use. It helps
healthcare service providers achieve scalability, flexibility, efficiency and optimal
performance through virtually provisioned resources and services, at much
reduced management and maintenance costs.

Cloud can be deployed in three delivery models, that is, private, public,
and hybrid model. Public cloud is the most cost-effective and flexible delivery
model which is open to general public through internet. Typical examples are
Microsoft Azure, Google AppEngine, Apple, and Amazon Elastic Compute
Cloud (EC2).9 In this model, any user can upload certain data to the centered
server. Or they can download any published applications, updates, and client
data from it. This model enable maximized sharing of services and data with
other authorized users across the whole cloud.

However, due to strict security and privacy policies, public cloud model
cannot guarantee the total confidentiality of uploaded clinical data and content.
Therefore, it is not well suitable for clinical practice. In contrast, private cloud
is the most adopted model in healthcare. It is owned and operated by only one
single organization. It is more proprietary and not open to public access. It can
assure the privacy and confidentiality while achieving workflow integrity and
performance. Hybrid cloud combines two or more of different clouds together.

In the context of imaging cloud, clients initiate request for services and
medical records to the server, and server respond with either acceptance of
this request or service or access deny. This is called service negotiation, and
done through service requestor on the client side, and request monitor on the
server side.10 The kinds of service requests can be bundled with service level
and quality specifications, or as default. Once request monitor detect such a
request, it will be forwarded to service processor to process this request and
request allocator will decide resource allocation and send the decision back
to the requestor. Clients could always request to add, reduce, or terminate
on-the-fly services and resources during the runtime of service provision.

3.2. Case Study of Citrix Based Cloud

Among many virtual and cloud-based computing solutions, Citrix provides
a bridge connecting the presentation server and remote clients consuming
the published services. This allow physicians to dynamically provision and
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securely access the services anytime and anywhere, deliver medical imaging
and healthcare textual data transparently across networks, visualize and display
the DICOM and non-DICOM images remotely. This preserve integrity for
centralized and aggregated imaging data, simplify design and maintenance of
thin client PACS, and optimize system runtime performance.

For example, thin client or zero-footprint client can be provided on a Citrix
XenApp and MetaFrame platforms. In this solution, presentation virtualization
is realized through Citrix ICA (Independent Computing Architecture) chan-
nel. This is an error-free virtual communication channel over TCP/IP and
RTP/RTCP. It is also a session-based protocol in which packet is the basic data
unit of transmission including both data and control packets.

To achieve and optimize high performance of services and data transfer
provisioned on demand from cloud servers, Citrix servers send encoding of the
display updates to clients with high compression ratio, rather than raw display
data whose amount is usually very prohibitive. This model is called server
push model. In this model, the protocol is responsible to allocate adaptive
transmitting buffers on the service side. Besides Citrix solution, Microsoft
Terminal Services fall into this category. This is different from client pull model-
based solutions like AT&T VNC, in which client will initiate the request of
display updates and the server will send the response instead.

By sending compressed graphics updates, web-based cloud greatly reduce
its network bandwidth requirement for on demand provisioning during
runtime.

In addition, most thin client protocols support memory and disk caching
to further improve system performance. In this approach, small bitmaps will
be cached in RAM, and large bitmaps will be on disk.

This service model is PaaS. In this model, a limited APIs and SDKs are
available for development on the client, but remote desktops do not need to
install full-scaled software, and can still enjoy a rich featured remote desktop.
Other examples include Microsoft Remote Desktop Services, Microsoft Ter-
minal Services, and VMware View.

3.3. Zero-footprint Client

Both PACS and pure web-based cloud software as a service gradually adapt
to utilize universal web browser technologies, interfacing into DICOM, use
advanced video compression standards, to provide cross-enterprise, scalable
web services. On any HTML5 compatible mobile and handheld devices, zero-
footprint client could connect and communicate with web servers, without
installing a full-fledged OS and application. Zero-footprint clients based on
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Citrix solution and Microsoft RDP/RFX are examples. This solution only
require minimum hardware requirements such as low-end CPU/GPU, pro-
cessing power, and small local storage, as compared to high-end CPU/GPU,
large storage and power consumption used by thick clients. As long as
compatible web browsers such as Apple Safari and Google Chrome are installed,
it will be able to connect to web servers. In this model, security and management
are supported by the cloud servers. It greatly reduces computing complexity
and simplifies the workload of client, is cost effective and easier to maintain.

HTML5 is compatible with web browsers such as Google Chrome and
Safari. It supports open video codec standards such as H.264 and MPEG-411.
There are many video compression and encoding standards, but not all of them
are supported in HTML5 compatible web browsers. Major native players on the
web browsers support playback of video files, without installing any third-party
plug-ins or software components. With advanced compression techniques, thin
client PACS and web-based cloud could improve performance for network
bandwidth bottleneck in LAN and WAN. It could also save storage as well.

3.4. Vendor Neutral Archive

The trend of Medical imaging and PACS evolution has reached to a key point
where scalable architecture, support of open DICOM and non-proprietary
standards, and vendor neutral archive12 are desired. The complexity of RIS/
HIS/IHE systems lies not only in the large scale of heterogeneous modalities,
hardware and devices, but also in different operating systems, software and
applications. In addition, integration, interface, and collaboration between
disparate PACSs require support of variant medical images and textual data
and structured diagnostic reports, for smooth workflow and efficiency.

In an imaging cloud especially, scalable cloud provides and provisions
virtualized services to multitude of remote desktops, laptops, work stations,
and mobile devices including smartphone and tablet, by centralized data center
and database management system. Vendor neutral imaging archive allows for
scaling aggregated imaging records and data with improved performance, while
preserving data integrity, and reducing system cost. Vendor neutral archive can
also utilize video compression to save system requirement of data storage.

Vendor neutral PACS and archive consist of open architecture, protocols,
and standards such as DICOM and HL7 to support the core functionalities
of PACS and image cloud in abstract layers, separate from disparate imaging
hardware and modalities, operating systems from variant vendors. It interfaces
RIS/HIS/EHR systems, clinical databases, gateways, web browsers, provides
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beyond software dependency and limitation, proprietary formats and con-
straints.

4. Considerations

4.1. Security and Performance

As confidentiality and privacy are crucial to healthcare organizations, providers,
and consumers, how to assure security in access control,13 identity manage-
ment, session confidentiality and data privacy is key to clinical services, EMR,
information systems, and associated data and workflows. This is especially
true as enterprise PACS and healthcare cloud provide higher availability and
ubiquitous remote access. In observance of the trend in healthcare, HIPAA
compliance requires strict authentication, authorization, and security to access
protected health information (PHI).14 Typical security mechanisms include
security rules, digital certification, virtualization, and firewall. Data transmission
utilizes encryption and decryption.15

High performance computing is important to healthcare and clinical
practices and it means faster delivery of patient care, ubiquitous and reliable
network access, and high availability of medication, treatment and services.
PACS upgrades and migrations usually come with higher volume of data storage
and access, larger medical image sizes. Optimization of archive storage and
fault-tolerant backup, access control, compression engines, remote displaying
and reviewing, and network bandwidth are very critical.

4.2. Structured Report

PACS, imaging cloud, and many clinical information systems typically deal
with massive data in various formats, much more than just image or DICOM.
Among these, some may be textual data in text or tabular form, while some
are multimedia content including video and graphics, and waveforms. Some
are calculation numbers and measurements, and some are electronic patient
records.

In the same context of PACS and cloud, variant data and formats need
to be populated together. Abstraction and summarization of large amount of
data are not only an appealing feature to physicians and clinical staff, but also
a critical requirement to interface to wide ranges of IHE systems and archives.
By utilizing DICOM hierarchical information model and service object pairs
(SOP), structured reports are capable of representing well information of
patient studies and medical examinations, and bridging with the rest of HIS
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and RIS, which primarily employ HL7 standard for other non-image health
data. The syntax of HL7 message contains multiple segments and is rather
simple, by beginning with a message header (MSH) and ending with new line.
In structured report, XML is widely used to convert messages and data from
DICOM format to HL7 syntax. This is because XML is a flexible, extensible,
and portable system-independent language with similar tag-based information
model as DICOM.

4.3. Compression

Variant imaging modalities including two-dimensional ultrasound imaging, CT
and computed radiography (CR), nuclear medicine imaging of cardiology,
angiography, endoscopy, and microscopy could generate large DICOM images
and files. For example, a typical Doppler study of continuous scan could consist
of several to over one hundred Mbytes.

Huge volumes of high resolution imaging data require large amount of
storage. They cause maintenance and scalability issues for PACS and imaging
cloud. Data integrity can be potentially compromised if they are distributed on
geographically disparate locations.

Traditionally, lossless and lossy JPEG and JPEG 2000 are the major native
DICOM compression and transfer standards in order to achieve high fidelity
and quality of medical data, but the compression ratios are usually below 5 for
reversible compression, or never go beyond 10 for lossy methods. Historically
in a clinical workflow and hospital contexts, this is not only acceptable and but
also the very first priority. This is because that once information is lost, it will
be very hard to revert back, if not impossible.

The goals of medical imaging compression depend on not only the
characteristics of medical images, but also the contexts and applications.
Introduction of enterprise PACS and cloud are migrating quickly to support
diverse modalities, interfacing to heterogeneous components, hosts, and end
devices, thus this requirement could be relaxed. For example, for remote
rendering and display, a high-compression ratio encoding is desirable to tradeoff
the quality loss while accommodate low transmission bandwidth and storage
saving.

By using highly efficient video compression technologies, these issues can
be well-controlled and they can be effectively and efficiently transported,
archived, stored, and reviewed. Advanced video encoding standards such as
H.263, H.263+, H.264 and MPEG-4 can be used, without losing critical
information and still obtain acceptable quality of data. Originally target-
ing efficient and effective video transmission and streaming over lossy and
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error-prone channels and possible low network bandwidths, these methods
employ hybrid block-based motion estimation and compensation, adaptive
quantization, flexible mode optimization and selection, addressing robust
error-resilient transmission.

A lot of research and development efforts have been devoted to extend
DICOM’s transfer syntax. For instance, MPEG-4 and H.264 encoding
have been applied onto encoding medical images such as ultrasound and
echocardiography data. Scalable video coding can be combined with interactive
segmentation assisted with experienced physicians or automatically grouping
of homogeneous regions. Multiple studies have demonstrated the effectiveness
and efficiency of MPEG-4 compression for both telemedicine ultrasound and
echocardiography archive and transmission, without degrading the diagnostic
quality at an acceptable level. More and more compression technologies have
begun to flourish across 3G, 4G LTE, WiFi, and satellite networks for mobile
medical imaging applications.

5. Conclusion

The steady increase of aging population, explosive growth of clinical data,
and advances in healthcare information technologies have accelerated the rapid
transition of PACS and evolution of imaging cloud into a more centralized data
center and more connection-based distributed architecture and deployment
model. Migrated from mini-PACS and disparate image archives, large-scaled
enterprise PACS and web-based imaging cloud deliver healthcare services
with high scalability, availability, and flexibility, with multimodality support of
ultrasound, catheterization, nuclear, MRI, and CT imaging, and compatibility
with DICOM and HL7 standards. As a result, they have fostered the growth
of teleradiology and telemedicine across the Globe.

Cloud computing and services facilitate archiving, sharing and exchanging
of imaging studies, ubiquitous and reliable network access. It has fundamentally
transformed the delivery of healthcare workflow, business models, practice and
procedures, and deliver better patient care. By adopting thin client PACS and
imaging cloud platform, healthcare practitioners and clinical physicians can
reliably and securely access medical data and content anytime and anywhere.
They can better access, switch, and share patient studies, analyze, measure,
and interpret regions of interest, display and review DICOMs and images, and
automate generation of structured reports. The advent of zero-foot print PACS
and cloud clients provide instantaneous access to patient studies and imaging
data based on universal web browsers, without installing any applications and
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third-party plug-ins or libraries. These solution models can largely decouple the
application processes on the clients from the virtual resources and machines on
the servers, reduce development efforts and costs, deployment complexity and
maintenance and updates.

To achieve the full potentials of imaging cloud model and PACS, we need
to understand overall workflow and workloads of different sectors within and
across healthcare institutions, and information dynamics. In addition, adopt
suitable deployment PACS and cloud architectures, employ open standards,
establish software update and maintenance strategy, and manage business
models to optimize computing resources, achieve smooth and balanced
workflow, and optimized performance.
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