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Preface

Standard advice for writing a preface tells the author to begin by answering the 
question, “Why did you write this book?” The published answers almost always 

include an explanation of how something is still missing in the already vast body of 
existing literature, and how the book in question represents a valiant attempt to fill the 
void at least partially.

This book is no exception. There still is a dearth of good collections of step-by-
step procedures, or recipes, for design and implementation of anything beyond just 
the most elementary DSP procedures. This book is an attempt to fill this void—at least 
partially. However, the tagline for this book is most definitely not meant to be, “Get 
a result without really gaining much understanding along the way.” Here, the focus is 
clearly on the recipes, but supporting explanations and mathematical material are also 
provided. This supporting material is set off in such a way so that it is easily bypassed 
if the reader so desires.

This book provides an opportunity to delve deeper into the nuances of certain in-
teresting topics within DSP. A good alternative title might be Exploring the Nooks and 
Crannies of Digital Signal Processing. As with all books, every reader will not resonate 
with every topic, but I’m confident that each reader will share an interest in a large sub-
set of the topics presented.

Note 1, Navigating the DSP Landscape, provides diagrams that map the relationships 
among all the book’s various topics. One diagram is dedicated to processing techniques 
that operate on real-valued digital signals to modify in some way the properties of those 
signals while leaving their fundamental real-valued and digital natures intact. A sec-
ond diagram is dedicated to processing techniques that are concerned primarily with 
conversion between real-valued digital signals and other entities such as analog signals, 
complex-valued signals, and estimated spectra.

Many of the Notes include examples that demonstrate an actual application of the 
technique being presented. Most sections use Matlab tools for routine tasks such as 
designing the digital filters that are used in the reference designs. When appropriate, the 

xi

   



xii Preface

use of these tools is discussed in the text. The results provided in Note 66, Generating I and Q 
Channels Digitally: Generalization of Rader’s Approach, were generated by a modified version of 
the PracSim simulation package that is described in Simulating Wireless Communication Sys-
tems (Prentice Hall, 2004). However, the filter coefficients used in the simulation were generated 
using Matlab. The examples make heavy use of Matlab as a convenience. However, it is not my 
intent to make this a Matlab “workbook” with projects and exercises that require the reader to 
use Matlab, because I want the book to remain useful and attractive to readers who do not have 
access to Matlab. The m-files for the Matlab programs discussed in the book, as well as for 
programs used to generate some of the illustrations, can be found at the website www.informit.
com/ph.

This book is not the best choice for a first book from which to learn DSP if you’re start-
ing from scratch. For this task, I recommend Understanding Digital Signal Processing by Rich-
ard Lyons (Prentice Hall, 2004). This book is, however, a good N+1st book for anyone—from 
novice to expert—with an interest in DSP. Its contents comprise an assortment of interesting 
tidbits, unique insights, alternative viewpoints, and rarely published techniques. The following 
are some examples.

The set of five techniques for generating analytic signals presented in Notes 60 through 64 do 
not appear together in any single text. 

The visualization techniques used in Note 22 probably are not discussed anywhere else, be-
cause I came up with them while writing this book. These techniques follow directly from 
first principles, but I’ve never seen them explicitly presented elsewhere. 

Natural sampling, as discussed in Note 6, usually can be found only in older texts that cover 
traditional (that is, analog) communication theory.

My overarching goal was to write an easy-to-read book loaded with easy-to-access informa-
tion and easy-to-use recipes. I hope I have succeeded.

   

www.informit.com/ph
www.informit.com/ph
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1-1

Note 1

Digital signal processing (DSP) is based on the 
notions that an analog signal can be digi-

tized and that mathematical operations can effec-
tively take the place of (or even surpass) electronic 
manipulations performed on the original analog 
signal. In the earliest days of DSP, its applications 
were limited to sonar and seismology because these 
fields utilized low-bandwidth signals that could be 
sampled at adequate rates using the available tech-
nology. As digital processing circuits and analog-
to-digital converters have become faster and faster, 
the number of applications for DSP has exploded.

Navigating the DSP Landscape

Hundreds of techniques (and variations thereof) 
are used in DSP, and it can be difficult to see the big 
picture—how all these various techniques relate to 
each other and to a particular application at hand. 
Rather than a comprehensive treatment of all the 
possible topics within DSP, this book is an attempt 
to document in-depth explorations of some of the 
“nooks and crannies” in DSP that often are glossed 
over in traditional texts. Figures 1.1 and 1.2 show 
diagramatically the realtionships among the vari-
ous processing techniques explored in this book. 
The topic areas are arbitrarily split into two groups 

Real-
Valued
Digital
Signals

Interpolation
to increase
sample rate

N55 - N57 Analog Filter
Designs

N38 - N43

FIR Filters
designs based
on windows

N35, N36

FIR Filters
optimal designs

N32-N34, N37

Window
Functions

N21 - N25

IIR Filters
derived from

analog designs

N49 - N51

z Transform
used in IIR
design &
 analysis

N44 - N48

Decimation
to decrease
sample rate

N52 - N54

Figure 1.1 Processing techniques that modify the properties of real-valued digital signals. The 
numbers “Nnn” indicate the Notes in which each technique is discussed. Solid paths indicate “run-
time” data connections. Dashed paths indicate “design-time” connections.

   



1-2 Notes on Digital Signal Processing

for organizational purposes. Figure 1.1 shows those 
techniques that are concerned primarily with op-
erating on real-valued digital signals to modify in 
some way the properties of those signals while leav-
ing their fundamental real-valued and digital na-
tures intact. Given that complex-valued signals are 
really just quadrature pairs of real-valued signals, 

most of these techniques are easily extended to cor-
responding complex cases. Figure 1.2 shows those 
techniques that are concerned primarily with con-
version between real-valued digital signals and 
other entities such as analog signals, complex-
valued signals, and spectrum estimates.

Real-
Valued
Digital
Signals

Improved
Estimate

of Signal’s
Spectrum

Analog
Signals

Sample
Spectrum

Complex-
Valued
Digital
Signals

Instantaneous
Sampling
model for

D/A conversion

DFT

Natural Sampling
model for analog

signal commutation

Parametric Modeling of
Discrete-Time Signals

Parametric Modeling of
Discrete-Time Signals

N6

Sampling
models for

A/D conversion

N2 - N5, N58 N67 - N73

N67 - N73

Periodogram
Techniques

N26 - N31
N13 - N19

Generating
Complex &

Analytic Signals

N60 - N66

N7, N8

Window
Functions

N21 - N25

Figure 1.2 Processing techniques that convert real-valued digital signals to or from other things such as analog signals, 
complex-valued digital signals, or spectral estimates. The numbers “Nnn” indicate the Notes in which each technique is 
discussed. Solid paths indicate “run-time” data connections. Dashed paths indicate “design-time” connections.
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Note 2

This note discusses the difference between implicit and explicit sam-
pling. It introduces three different mathematical models of explicit 
sampling techniques—ideal sampling, natural sampling, and in-
stantaneous sampling.

Digitization of an analog signal is the one pro-
cess above all others that makes DSP such 

a useful technology. If it were limited to work-
ing with only those signals that orginate in digital 
form, DSP would be just an academic curiosity. 
Digitization actually comprises two distinct opera-
tions: sampling and quantization, which are usually 
analyzed separately.

2.1 Implicit Sampling Techniques

In implicit sampling, a sample measurement is trig-
gered by the signal attaining some specified value 
or crossing some specified threshold. Recording 
the times at which zero-crossings occur in a bipolar 
signal is an example of implict sampling.

Overview of Sampling Techniques

2.2 Explicit Sampling Techniques

Unlike implict sampling, in which samples are trig-
gered by some aspect of signal behavior, in explicit 
sampling, signal values are measured at specified 
times without regard to the signal’s behavior. Con-
sider the continuous-time sinusoidal signal and its 
two-sided magnitude spectrum depicted in Figure 
2.1. There are three explicit sampling techniques—
natural sampling, instantaneous sampling, and ideal 
sampling—that can be used to sample such a signal. 
The results produced by these techniques, and the 
corresponding impacts on the signal’s spectrum are 
compared in Key Concept 2.1.

Ideal Sampling

As depicted in Key Concept 2.1, zero-width sam-
ples take on instantaneous values of the analog 
signal. Neglecting quantization and timing errors, 
the sequence of values produced by an analog-to-
digital converter can be modeled as the output of 

x(t)

t f

X(f )

Figure 2.1 Continuous-time sinusoid and its two-sided magnitude spectrum
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Key Concept 2.1

Explicit Sampling Techniques

t

t

t

f

f

f

Ideal Sampling

Instantaneous Sampling

Natural Sampling

Models the output of an A/D converter

Models the output of a sample and hold amplifier,
zero order data hold, or D/A converter

Models the output of an analog demultiplexer

Zero width samples take on
instantaneous values of
the analog signal.

Spectral images all scaled equally

Non zero width samples, each with
amplitude held constant over the
width of the pulse

Spectral images, including baseband,
are distorted by (sin x)/x envelope.

Non zero width samples with
time varying amplitudes that
follow the contours of the 
analog signal

Spectral images, with each image
scaled by a factor that is constant
over the image but varies image 
to image

an ideal sampling process. Ideal sampling 
is discussed further in Note 3.

Natural Sampling

Nonzero-width samples have time-vary-
ing amplitudes that follow the contours of 
the analog signal, as shown in Key Con-
cept  2.1. Commutator systems for time-
division multiplexing of telegraph signals, 
first proposed in 1848, used an approxima-
tion to natural sampling. The sample pulses 
were created by gating a signal with rotat-
ing mechanical contacts. This multiplex-
ing technique was subsequently applied to 
telephone signals in 1891. It was the ap-
plication of natural sampling to telephony 
that first led to consideration of just how 
rapidly a continuous-time signal needed to 
be sampled in order to preserve fidelity and 
ensure the ability to reconstruct exactly the 
original, unsampled signal. Natural sam-
pling is explored further in Note 6.

Instantaneous Sampling

In instantaneous sampling, nonzero-width 
samples each have a constant amplitude 
that corresponds to the instantaneous 
value of the analog signal at the beginning 
of the sample. The sample values are held 
constant long enough to create flat-topped 
sample pulses. The output of a digital-to-
analog converter (DAC) can be modeled 
as the output of an instantaneous sampling 
process, often as the limiting case in which 
the sample width equals the sampling in-
terval. As discussed in Note 7, the results 
of the instantaneous sampling model play 
a key role in the specification of the analog 
filter used to smooth the DAC output.

Reference

1. H. D. Lüke, “The Origins of the Sampling 
Theorem,” IEEE Communications, April 1999, 
pp. 106–108.
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Note 3

The concept of ideal sampling can be viewed as 
the foundation upon which the rest of DSP is 

built. The simplest way to view ideal sampling is 
as a mapping process, such as the one depicted in 
Figure 3.1, that “grabs” uniformly spaced instanta-
neous values of the continuous-time function, x(t),
and uses these values to construct the discrete-time 
sequence, x[n]:

(3.1)

where n is the is the integer-valued sample index 
and T is the real-valued sampling interval. In or-
der to depict ideal sampling in a block diagram, 
some authors adopt the concept of an ideal sampler,
which is usually depicted as a time-driven switch, 
as in Figure 3.2(a). Oppenheim and Schafer [1] in-
troduce a more elegant depiction in the form of an 

ideal continuous-to-discrete (C/D) converter, as 
shown in Figure 3.2(b).

Without some augmentation, the ideal sampler 
and C/D converter concepts are both just notational 
conveniences to indicate that “sampling happens 
here.” They don’t provide any mathematical basis for 
the spectral images that are known to arise due to 
sampling. It is possible to successfully practice DSP 
at the journeyman level without this mathematical 
basis, and many introductory texts simply present 
the facts concerning spectral images and aliasing 
without delving into the mathematics needed to 
derive these facts. However, the mathematical back-
ground is useful for exploring advanced topics like 
sampling jitter and nonuniform sampling.

The formal mathematical model for ideal sam-
pling is presented in Note 5. The important result 

x n x nT[ ] ( )←

Ideal Sampling

T

[2]x(2 )x T

(13 )x T [13]x

( )x t [ ]x n

t n
1 2

2T

13T 13

Figure 3.1 Ideal sampling viewed as a simple mapping from a continuous-time 
function to a discrete-time sequence

C/D
( )ax t

[ ] ( )ax n x nT

T( )p t

( )x t [ ]x n

a b

Figure 3.2 Block diagram representation of an ideal sampling 
process: (a) ideal sampler, (b) ideal continuous-to-discrete 
converter
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thereby causing Eq. (3.2) to become

The creation of the images is the important idea—
the presence or absence of the 1/T scaling factor is 
usually lost in the overall scaling strategy of most 
real-world sampling implementations.

3.1 Aliasing

Figure 3.4 shows the case in which fs > 2fH . The 
original baseband spectrum and the images are all 
distinct, and theoretically the original signal could 
be recovered exactly via ideal lowpass filtering to 
completely remove all of the images and leave the 
undistorted baseband spectrum. The sampling the-
orem, presented in the next section, provides a for-
mal statement of this property, as well as a formula 
for reconstructing the original signal from the ideal 
samples.

In the case where fs < 2fH , the spectral images 
overlap, as shown in Figure 3.5. This overlap cre-
ates the condition known as aliasing. Components 
in the original signal at frequencies greater than 
fs/2 will appear at frequencies below fs/2 after the 
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Figure 3.4 Frequency relationships for sampling-induced 
images when fs > 2fH
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Figure 3.3 Bandlimited spectrum of an 
arbitrary analog signal

produced by this model shows that sampling in the 
time domain can be expected to create periodic 
images of the original signal’s spectrum in the fre-
quency domain. Physical measurements confirm 
that creation of images predicted by the mathemat-
ical model does in fact occur in the real world. 

Consider an arbitrary continuous-time signal, 
x(t), having a spectrum that is bandlimited to the 
frequency range, ±fH, as shown in Figure 3.3. The 
spectrum for the ideally sampled version of the sig-
nal will consist of copies or images of the spectrum 
for x(t) periodically repeated along the frequency 
axis with a center-to-center spacing that is equal to 
the sampling rate, as shown in Figure 3.4. The im-
age corresponding to the original signal’s spectrum 
is often called the baseband.

The sample signal’s spectrum can be expressed 
in terms of the original signal’s spectrum, X( f ), as

(3.2)

A few texts (such as [2]) redefine the sampling rela-
tion of Eq. (3.1) to be
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images when fs < 2fH
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sampling is performed. As depicted in Figure 3.6, 
the result is as though the portion of the spectrum 
above fs/2 folds over the line at f = fs/2 and adds 
into the spectrum immediately below fs/2. Based 
on this viewpoint, fs/2 is sometimes called the fold-
ing frequency.

Note 4 shows how the concept of ideal sampling is 
applied to real-world signals in practical applications.
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Note 4

This note shows how theoretical results from Note 3 are used 
to develop a practical sampling strategy that minimizes the 
effects of aliasing.

n the discussions of aliasing in Note 3, 
the frequency fH is portrayed as an abso-

lute upper frequency. Prior to sampling, the 
signal of interest has zero spectral content 
at frequencies greater than fH . Under these 
conditions, sampling at rates greater than 
2fH would result in no aliasing. However, 
this ideal situation is impossible to achieve 
in practical applications, where there will al-
ways be some aliasing. In many cases, even 
to achieve extremely low levels of aliasing, 
fH would have to be set so high that, in most 
cases, sampling at a rate of 2fH would be pro-
hibitively difficult and expensive. In practi-
cal situations, rather than trying to avoid all 
aliasing, the design goal is to minimize the 
effects of aliasing while recognizing that they 
can not be completely eliminated.

Practical sampling is performed at a rate 
greater than 2fH, where the signal of inter-
est is known to have negligible (rather than 
zero) spectral content above some upper 
frequency, fH . The definition of “negligible” 
varies based on the particular application. 
In some cases, fH might be set so restrictively 
that less than 0.01 percent of the signal’s en-
ergy is at frequencies greater than fH .  In less 
demanding applications in which the analog-
to-digital converter (ADC) cost may need to 
be kept low, fH  may be set lower to allow up 
to 5 percent of the signal’s energy to be at fre-
quencies greater than fH .

In most applications, the signal is passed 
through an anti-aliasing filter prior to being 
digitized. The purpose of that filter is to ensure 

Practical Application of Ideal Sampling

Key Concept 4.1

Aliasing

The sampling process creates periodic images of the origi-
nal signal’s spectrum in the frequency domain. Overlap 
between these images creates a condition called aliasing,
in which components in the original signal at frequencies 
greater than half the sampling rate will appear, or alias, at 
frequencies below half the sampling rate in the spectrum of 
the sampled signal.

In practical systems, a lowpass anti-aliasing filter is typically 
used prior to the sampling operation in order to attenuate 
components at frequencies greater than half the sampling 
rate and thereby minimize the effects of aliasing.
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that aliasing is held to tolerably low levels. A 
value for fH  can be chosen based on the prop-
erties of the signal of interest and the require-
ments of the application, but in real-world 
situations, it is generally not possible to guar-
antee that the chosen value for fH  bounds the 
frequency extent of the actual signal that is 
presented to the ADC. There are several rea-
sons why this is so:

The signal of interest may be contaminat-
ed with wideband additive noise.

The signal of interest may be contami-
nated with an unanticipated interfering 
signal having a bandwidth that extends 
beyond fH .

The signal of interest may contain spuri-
ous self-interference caused by nonlinear 
processing in a mixer or a saturated am-
plifier prior to sampling. Because nonlin-
ear processing creates components at new 
frequencies, some of this self-interference 
may occur at frequencies above fH .

The selection of the sampling rate, fs, and 
the design of the anti-aliasing filter are co-
ordinated, observing the guidelines called 
out in Design Strategy 4.1, so that the filter 
produces minimal attenuation or distortion 
for frequencies below fH , but provides severe 
attenuation for all frequencies above fs/2.
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Note 5

W -

spectral images is simply 
stated as a fact and accepted without mathe-
matical justification. To generate mathemati-
cal support for the existence of these images, 
a more complicated mathematical model of 
the sampling process must be adopted. In ad-
dition to correctly predicting the appearance 
of spectral images, such a model can also 
be used to derive the discrete-time Fourier 
transform (DTFT) and the discrete Fourier 
transform (DFT) from the “usual” contin-
uous-time Fourier transform (CTFT). (See 
Math Boxes 12.1 and 13.2.)

If the result of ideal sampling is considered 
in the continuous-time domain, each sample 
exists for a single instant on the continuous-
time axis, and the value of the sampled wave-
form is zero between sample instants. This 
differs from the approach corresponding to 
Eq. (3.1) in Note 3 in which the result of ideal 
sampling is viewed in the discrete-time do-
main where the result is defined only at the 
sample instants—between samples the result 
is not zero, it is simply not defined at all.

An ideal sampling process that produces 
a continuous-time result can be constructed 
using a generalized function: The impulse is 
sometimes called the delta function (due to 
its usual notation) or the Dirac delta func-
tion, in honor of the English physicist Paul 
Dirac (1902–1984), who made extensive use 
of impulse functions in his work on quantum 
mechanics.

Delta Functions and the  
Sampling Theorem

Math Box 5.1

Sampling Theorem

If the spectrum, X( f ), of a function, x(t ), van-
ishes beyond an upper frequency of fH Hz, 
then x(t ) can be completely determined by its 
values at uniform intervals of less than 1/(2 fH).

Reconstruction Formula

If a function is sampled at a rate, fs= T -1, that 
satisfies the sampling theorem, the original 
function, x(t ), can be reconstructed from the 
samples as

(MB 5.1)
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5.1 Dirac Delta Function

As far as mathematicians are concerned, 
the Dirac delta function is not a function in 
the usual sense, and its use in engineering is 
sometimes controversial. Nevertheless, the 
delta function provides a convenient way to 
relate the spectra of ideal sampling, natural 
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sampling, and instantaneous sampling that 
are discussed in Notes 3, 6, and 7. 

A number of nonrigorous approaches for 
defining the impulse function can be found 
throughout the literature. A unit impulse can 
be described loosely as having zero width 
and an infinite amplitude at the origin such 
that the total area under the impulse is equal 
to unity. 

The impulse function is usually denoted 
as δ(t) and is depicted as a vertical arrow at 
the origin. The rigorous definition of δ(t), 
introduced in 1950 by Laurent Schwartz 
[1], rejects the notion that the impulse is 
an ordinary function and instead defines 
it as a distribution. The rigorous definition 
notwithstanding, most engineers are more 
comfortable defining the impulse in an op-
erational sense. Specifically, δ(t) is taken as 
that function which exhibits the so-called 
sifting property:

(5.1)

It has been shown [2] that the impulse func-
tion exhibits the properties listed in Math 
Box 5.2.

5.2 Comb

In DSP, the delta function is most often en-
countered in the form of an infinite periodic 
sequence of impulses:

(5.2)

The DSP literature is about evenly split be-
tween two different names and notations for 
the function represented by Eq. (5.2). Many 
texts refer to this function as a Dirac comb
and use the notation δT (t)—or sometimes 
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ΔT (t)—to indicate an impulse sequence 
having a period of T seconds:

(5.3)

Other texts refer to this function as the shah 
function and denote it using the Cyrillic letter 
shah, which somewhat resembles the graph 
of the function

(5.4)
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5.3 Sampling Model

A sequence of samples can be modeled as 
the result of multiplying the original signal 
and a comb of Dirac impulses:

where

Figure 5.1 shows a C/D converter that has 
been modified to include a representation of 
this multiplication.

As indicated by Eqs. (MB 5.10) and 
(MB 5.11), the Fourier transform of a Dirac 
comb with a spacing of T in time is a second 
Dirac comb with a spacing in frequency of 
T -1 Hz, or 2π/T radians per second:

(5.5)

where

Multiplication in time corresponds to 
convolution in frequency, so the spectrum of 
the sampled signal can be obtained by con-
volving the original signal’s spectrum with 
the right-hand sides of Eq. (5.5):

Finally, exploiting the shifting property of 
the delta function yields
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Note 6

In natural sampling, an analog signal is gated in 
such a way that the resulting signal consists of 

pulses with time-varying amplitudes that follow 
the contours of the original waveform as shown in 
Figure 6.1. In this example, the original signal is a 
sinusoid with a period of Tx, and the sampled sig-
nal has a sampling interval of T, and a sample width 
of τ. Natural sampling is mathematically equivalent 
to multiplying the original signal with a train of 
unit-amplitude rectangular sampling pulses. There-
fore, the spectrum of a naturally sampled signal can 
be determined by convolving the original signal’s 
spectrum with the spectrum of the train of sam-
pling pulses.

Figure 6.2 summarizes the relationships be-
tween the original signal (labeled T4), the naturally 
sampled signal (labeled T5), and the corresponding 
spectra (labeled F4 and F5, respectively). The train 
of sampling pulses (labeled T3) can be generated by 
convolving a single pulse of width τ (labeled T1) with 
a Dirac comb having impulses spaced at intervals of 
T (labeled T2). The resulting pulse train has a magni-
tude spectrum like the one shown in Figure 6.3.

At a Glance

Natural sampling is a mathematical model that 
can be used to analyze the impacts of analog mul-
tiplexing and signal commutation and decommu-
tation.

In natural sampling, the samples have nonzero 
width and the amplitude of the sample varies 
across the width of the sample to match the am-
plitude of the analog signal.

In the magnitude spectrum of a naturally sam-
pled signal, each image is scaled by a factor that 
is constant over the image but that varies from 
image to image according to the magnitude of a 
sinc envelope.

t

f

Natural Sampling

T

Figure 6.1 In natural samping, the amplitudes of the sample 
pulses follow the varying amplitudes of the original function.
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is not mathematically rigorous, but it is consistent with typical engineering use of Dirac delta functions as discussed in 
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Figure 6.3 Magnitude spectrum of rectangular pulse train (corresponds to block F3
in Figure 6.2)
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in Figure 6.2)
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The magnitude spectrum for a naturally sam-
pled sinusoid is shown in Figure 6.4. The spacing 
of the images is equal to the reciprocal of the sam-
pling interval, and each image is amplitude scaled 
by the value of τT -1|sincπ( fτ)| at the frequency 

corresponding to the center of the image. In other 
words, the image centered at f = nfs is scaled by 
τT -1|sincπ(nfsτ)|. This factor changes from image to 
image, but remains constant across the width of each 
image.
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Note 7

In instantaneous sampling, the value of the ana-
log signal is captured at the sampling instant and 

held constant for the duration of the sample pulse, 
as shown in Figure 7.1. Instantaneous sampling is 
sometimes called “flat-topped” sampling or zero-
order-data-hold sampling.

Instantaneous sampling is mathematically 
equivalent to convolving a single rectangular sam-
pling pulse with an ideally sampled version of the 
original signal. Therefore, the spectrum of an in-
stantaneously sampled signal can be determined by 
multiplying the ideally sampled signal’s spectrum 
with the spectrum of a single sample pulse.

Figure 7.2 summarizes the relationships between 
the original signal (labeled T2), the instantaneously 
sampled signal (labeled T5) and the corresponding 
spectra (labeled F2 and F5 respectively). A single 
pulse, p(t ), (labeled T4 in the figure) defined by

P(f

p t t( ) ,
,

= <⎧
⎨
⎪

⎩⎪
1
0

2

τ

otherwise

P f f( ) sinc ( )τ τπ

At a Glance

Instantaneous sampling (also known as zero-
order-data-hold (ZODH) sampling) is a math-
ematical model that can be used to analyze the 
impact on signal quality of digital-to-analog con-
version, as shown in Note 8.

In instantaneous sampling, the samples have 
nonzero width and the amplitude of the sample 
remains constant across the width but varies 
from sample to sample to match the amplitude of 
the analog signal at each sample’s starting instant.

In the magnitude spectrum of an instantaneous-
ly sampled signal, all spectral components are 
scaled by the magnitude of a sinc envelope. Be-
cause the scaling varies across the width of each 
spectral image, the signal is distorted.

t

f

Instantaneous Sampling

T

τ

Figure 7.1 In instantaneous sampling, the amplitude 
of each sample remains constant over its width.
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The magnitude spectrum of an ideally sampled 
sinusoid is shown in Figure 7.3. Multiplying this 
spectrum (F3 in Figure 7.2) by P( f ) yields the re-
sult shown in Figure 7.4. The scaling factor does 
not remain constant across each image, as it does in 
the spectrum for natural sampling. If the spectrum 
of the original spectrum is represented as X( f ),
then the spectrum of the corresponding instanta-
neously sampled signal is given by
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Note 8

The Basic Idea

An analog signal is typically reconstructed from a discrete-time signal using a 
digital-to-analog converter (DAC) followed by a reconstruction filter.

The spectrum of the DAC output signal is distorted by a sinc envelope, with the nulls 
of the sinc envelope falling in the center of each image other than the baseband.

The reconstruction filter must remove the images and correct for the sinc distor-
tion in the baseband. The close spacing between the baseband and the adjacent 
images can make the design of this filter relatively difficult.
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analog

converter

Reconstruction
filter

Digital
samples

Analog
output

Spectrum of
DAC output
signal

Higher frequencies
in baseband image
are attenuated by 
sinc envelope.

Images are 
severely distorted 
by sinc envelope.

sinc envelope

12T −− 1T −− 0 1T − 12T −
f

Spectrum of
digital signal

1T −− 1T − 0 
f

Images Images
Baseband

Reconstruction

Reconstructing Physical Signals

   



8-2

The mathematical signal reconstruction tech-
niques presented in Note 5 do have practical 

uses, but these techniques are not really suited for 
converting a sequence of digital signal values back 
into a continuously time-varying voltage that can 
be used to drive a speaker or a pair of headphones. 
Reconstruction of a physical analog signal is usually 
accomplished using a digital-to-analog converter 
(DAC). The input to the DAC is a sequence of digi-
tal words, and the output is a time-varying voltage 
that is proportional to the sequence of values rep-
resented by the input words. Each output voltage is 
held constant until the input value changes.

The output of the DAC can be viewed as a special 
case of the instantaneously sampled signal described 
in Note 7. In Note 7, each voltage pulse is depicted 
as being significantly narrower than the sampling 

interval. The DAC output is a special case in that the 
DAC typically holds each output value for an entire 
sampling interval, thereby generating a “stair-step” 
signal, such as the one shown in Figure 8.2, in which 
the sample width equals the sampling interval. 

The spectrum of the DAC output contains im-
ages and is multiplied by a (sin x) /x envelope, as dis-
cussed in Note 7. However, the illustrations in Note 
7 depict the case in which the sampling interval, T, is 
several times larger than the sample width, τ. When 
the sample width is equal or nearly equal to the sam-
pling interval, the distortion effects caused by the 
(sin x) /x envelope are much more severe.

Assume that the ideally sampled signal inside 
the processing computer has a simple trapezoi-
dal baseband spectrum, as depicted in Figure 8.3. 
The corresponding DAC output has a spectrum, 

t

T 

Figure 8.2 Output of DAC modeled as the limiting case of 
instantaneous sampling

1T −1T −− 0 12T −12T −−

ab b b bbb

f

Figure 8.3 Idealized trapezoidal spectrum for a sampled signal, showing (a) the baseband 
spectrum of the original signal, and (b) spectral images created by the sampling process

digital -to-
analog

converter
(DAC)

digital
signal
values analog

reconstruction
filter

stepped
analog

waveform 
analog
smooth

signal

Figure 8.1 Block diagram of the signal reconstruction process
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as shown in Figure 8.4, with the main lobe of the 
(sin x) /x envelope having a null-to-null width of 
just twice the sampling rate. All of the images are 
severely distorted by the side lobes. Because it oc-
cupies such a large portion of the main lobe, the 
baseband component of the spectrum also experi-
ences distortion from the (sin x) /x envelope.

The reconstruction filter that follows the DAC 
needs to have both a stopband response that se-
verely attenuates the spectral images and a pass-
band response that is designed to correct the 
(sin x) /x distortion present on the baseband spec-
trum. When the sample rate equals exactly twice 
the highest frequency component in the signal’s 
original spectrum, the signal is said to be critically 
sampled. When the signal is critically sampled, as 
in the case depicted in Figure 8.4, the images are 
close together, thus making it almost impossible to 
design a filter that can both remove the images and 
compensate for (sin x) /x distortion. Most filter de-
signs that can remove the images under these con-
ditions are likely to introduce phase distortion into 
the baseband signal.

Design and implementation of the reconstruc-
tion filter can be made easier by modifying the DAC 

output signal in a way that separates the spectral im-
ages, as shown in Figure 8.5. In many practical sys-
tems, the sample rate is already significantly higher 
than twice the signal bandwidth, which causes the 
images to be spread farther apart and simplifies the 
filter design task. In other applications, such as au-
dio CD players, it is necessary to take explicit steps 
to make the reconstruction problem easier to man-
age by increasing the Nyquist bandwidth (which is 
equal to one-half the sample rate) without increas-
ing the utilized bandwidth, as shown in Figure 8.5.

Audio CD players use a sample rate of 44.1 kHz 
to support a utilized bandwidth of about 20 kHz, 
so there would be a gap of about 4 kHz between 
images in the DAC output. Design of an acceptable 
reconstruction filter is not impossible, and there 
were many early CD players built that used direct 
reconstruction of the 44.1 kHz sample stream. 
However, CD players are consumer products, and 
there is constant pressure to make them smaller, 
lighter, cheaper, and better-sounding. Increasing 
the CD sample rate would make it easier to build 
cheaper reconstruction filters with good perfor-
mance, but an increased sample rate for the re-
corded signal would require more samples for each 

1T1T 0 12T

f
12T

Figure 8.4 Spectrum at output of DAC (solid trace). Shown for comparison are the 
undistorted images of the trapezoidal spectrum (dashed trace) and sinc envelope 
(dotted trace).
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2
Sf

2
Sf

Utilized bandwidth

Nyquist bandwidth

01T 1T

f

Figure 8.5 Spectrum at output of DAC with 2× oversampling

second of audio, thus resulting in reduced playing 
time for a disc having a given total bit capacity.

Most newer CD players advertise 4�, 8�, or 
even 16� oversampling, but the increased sample 
rate is not used for the recorded signal. Instead, the 
digital signal is interpolated to create new sample 
values in between the sample values that are actu-
ally read from the disc. This type of oversampling 
does not increase the utilized bandwidth; that 
is, it does not increase the bandwidth of the re-
corded signal or the reconstructed signal. What it 
does do is increase the Nyquist bandwidth, which 
moves the spectral images farther apart so that it 
becomes relatively easy to design a reconstruction 
filter that will reject all of the non-baseband im-
ages while simultaneously compensating for the 
(sin x) /x distortion in the baseband spectral com-
ponent. As shown in Figure 8.5, this oversampling 
will also have the effect of widening the main lobe 
of the sinc function so that the utilized bandwidth 

coincides with a more central, flatter portion of the 
main lobe, thus lessening the severity of the distor-
tion that the reconstruction filter must correct.

If oversampling is carried throughout the digi-
tal processing and if the utilized bandwidth has 
not already been limited by this processing, then 
it may be prudent to perform digital filtering to 
limit the utilized bandwidth just prior to sending 
the signal to the DAC. Because of the increased 
Nyquist bandwidth (due to the higher sampling 
rate), earlier processing may have inadvertantly in-
troduced components outside of the intended sig-
nal bandwidth and thereby increased the utilized 
bandwidth, reducing the effectiveness of the over-
sampling strategy. On the other hand, if the over-
sampling is introduced by an interpolation process 
just prior to sending the signal to the DAC, there 
is no opportunity to inadvertently increase the uti-
lized bandwidth, and additional filtering would not 
be necessary.
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Note 9

Fourier analysis is based on the notion 
that signals can be represented and 

analyzed as weighted sums of sinusoidal 
components over a range of different fre-
quencies. The collection of amplitudes 
and phases for the sinusoids needed to 
completely represent the signal is usually 
called the spectrum of the signal. Depend-
ing upon the nature of the signal being 
analyzed, the spectrum can span either 
a continuum of frequencies or a count-
able (but possibly infinite) set of discrete 
frequencies.

9.1 Fourier Series 

Periodic continuous-time signals have fi-
nite power (but infinite energy), and can 
be analyzed using the Fourier series (FS) 
defined by

for n = 0, ±1, ±2, ±3, . . . , ±∞

where ω0 is the fundamental radian fre-
quency of x(t), T is the period of x(t), and 
the single limit of T on the integral indi-
cates that the integration is performed over 
one period of x(t).

The spectrum produced by the Fourier 
series is a function of discrete frequency—
or in other words, the spectrum has non-
zero values only at discrete frequencies 
that correspond to integer multiples (in-
cluding zero) of the periodic time signal’s 
fundamental frequency. The Fourier series 
is discussed in more detail in Note 10.

X n x t jn t dt[ ] ( )exp= −( )∫1 0T
T

ω

Overview of Fourier Analysis

Major Categories of Fourier Analysis

Fourier Series

Signal: periodic function of continuous 
time

Spectrum:  nonperiodic function of 
discrete frequency

Detailed in Note 10

Fourier Transform

Signal: nonperiodic function of continu-
ous time

Spectrum: nonperiodic function of con-
tinuous frequency

Detailed in Note 11

Discrete-Time Fourier Transform

Signal: nonperiodic function of discrete 
time

Spectrum: represented as a periodic func-
tion of continuous frequency

Detailed in Note 12

Discrete Fourier Transform

Signal: periodic function of discrete time

Spectrum: periodic function of discrete 
frequency

Detailed in Notes 13 through 16

Fast Fourier Transform

Collection of techniques for efficient 
implementation of the discrete Fourier 
transform

Detailed in Notes 17 through 19
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9.2 Fourier Transform 

Mathematically defined continuous time 
signals having finite energy can be analyzed 
using the Fourier transform (FT, or some-
times CTFT to emphasize the continuous-
time nature of the input) defined by

where ω represents continuous radian fre-
quency. There are also some “special” signals 
that have a Fourier transform even though 
the signals do not have finite energy. The 
spectrum produced by the Fourier trans-
form is a function of continuous frequency. 
Details of the Fourier transform are dis-
cussed in Note 11.

9.3 Discrete-Time Fourier 

Transform 

Discrete-time signals that have finite en-
ergy can be analyzed using the discrete-time 
Fourier transform (DTFT), defined by

The spectrum produced by the DTFT is a 
function of continuous frequency and is peri-
odic, with a period equal to the reciprocal of 
the time-domain sampling interval. If the dis-
crete-time signal is viewed as having been cre-
ated via sampling of a properly bandlimited 
continuous-time signal, then one period of 
the DTFT’s periodic spectrum can be inter-
preted as the spectrum of the original analog 
signal. The DTFT is discussed in Note 12.

X x t j t dt( ) ( )exp( )ω ω= −
∞

∞

∫

X x n j nT( ) [ ]exp( )ω ω= −
=−∞

∞

∑
n

9.4 Discrete Fourier Transform 

Periodic discrete-time signals have finite 
power and are analyzed using the discrete 
Fourier transform (DFT), defined by

The spectrum produced by the DFT is dis-
crete in frequency and periodic, with a 
period equal to the reciprocal of the time-
domain sampling interval. Many practical 
applications do not involve periodic discrete-
time signals—in such applications, a finite-
duration segment of the sampled signal is 
assumed to represent exactly one period of 
a periodic (and infinite duration) signal and 
analyzed using the DFT. If the segment of the 
discrete-time signal is obtained by sampling 
a properly bandlimited analog signal, then 
one period of the DFT’s periodic spectrum 
can be interpreted as a frequency-sampled 
estimate of the original analog signal’s spec-
trum. The DFT and its properties are dis-
cussed in Notes 13 through 16.

9.5 Fast Fourier Transforms 

Direct computation of an N-sample DFT in-
volves a number of arithmetic operations that 
is proportional to N2 . There are a number of 
different algorithms that exploit periodicities 
in the sine and cosine functions to compute 
the DFT using significantly fewer arithmetic 
operations. These algorithms are collectively 
referred to as the fast Fourier transform (FFT). 
The most commonly used FFT algorithms 
require a number of arithmetic operations 
that is proportional to N log2 N. Fast Fourier 
transform algorithms are presented in Notes 
17 through 19. Using FFT algorithms to per-
form fast convolution is discussed in Note 20.

X m x n j mFnT[ ] [ ]exp( )= −
=

−

∑ 2π
n 0

1N
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Note 10

The Fourier series forms a mathematical 
link between periodic continuous-time 

signals and their discrete-frequency spectra. 
In many books and engineering courses, the 
Fourier series is often introduced merely as 
a stepping stone on the way to the Fourier 
transform. However, within DSP, the Fourier 
series plays an important role in the design 
of finite-impulse-response (FIR) digital fil-
ters, which are discussed in Note 32.

10.1 Classical Form 

The “classical” presentation of the Fourier 
series (FS) is given in a form that emphasizes 
that the time signal is being represented by a 
weighted sum of discrete sinusoids:

(10.1)

where

x t a a n t b n tn n
n

( ) [ cos( ) sin( )]= + +
=

∞

∑0
0 0

12
ω ω

a 
T 

x t dt
T

T

0
2

22=
−
∫ ( )

/

/

a
T

x t n t dtn
T

T

=
−
∫

2
0

2

2

( )cos( )
/

/

ω

b
T

x t n t dtn
T

T

=
−
∫

2
0

2

2

( )sin( )
/

/

ω

T x t= period of ( )

β = ⎡
⎣⎢

cosh cos1
N

Fourier Series

Using a few trigonometric identities, the 
FS can be put in the magnitude-and-phase 
form given by

(10.2)

where the cn and θn can be obtained from an
and bn as

10.2 Modern Form

Mathematical manipulations are often made 
more convenient if the FS is put into the ex-
ponential form given by

(10.3)

where

(10.4)

In general, the values of X[n] are complex, 
and they are often displayed in the form of 
a magnitude spectrum, |X[n]|, and a phase 
spectrum, arg{X[n]} given by

x t c c n tn n
n

( ) cos( )= + −
=

∞

∑0 0
1

ω θ

c a

c a b
b
a

n n n

n
n

n

0
0

2 2

1

=
2

= +

= ⎛
⎝
⎜

⎞
⎠
⎟

−θ tan

x t X n j nft
n

( ) [ ]exp( )=
=−∞

∞

∑ 2 0π

X n
T

x t j nft dt
T

[ ] ( )exp( )= −∫
1 2 0π

X n X n X n

X n X n
X n

[ ] Re{ [ ]} Im{ [ ]}

arg [ ] tan Im{ [ ]}
Re{ [ ]

= ( ) + ( )

( ) = −

2 2

1

}}
⎛
⎝⎜

⎞
⎠⎟
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Notice that the spectra represented by Eqs. (10.1) 
and (10.2) are each “one-sided” in that their co-
efficients are only defined for values of n ≥ 0. The 
spectrum represented by Eq. (10.4) is “two-sided” 
in that X[n] is defined for all integer values of n.
The two-sided spectrum of X[n] can be related to 
the one-sided spectrum of (an, bn) using

10.3 Dirichlet Conditions

The Fourier series can be applied to most periodic 
signals of practical interest. However, there are a 

few mathematical functions for which the series 
will not converge. The FS coefficients exist, and the 
series will converge uniformly if x(t) satisfies the 
following:

1. x(t) is a single-valued function.

2. x(t) has, at most, a finite number of discontinui-

ties within each period.

3. x(t) has, at most, a finite number of extrema 

within each period.

4. x(t) is absolutely integrable over a period:

(10 5)

These conditions are known as the Dirichlet con-
ditions in honor of Peter Gustav Lejeune Dirichlet 
(1805–1859), who first published them in 1828.

X n

a jb n

a n
a jb n

n n

n n

[ ]=

+ <

=
− >

⎧

⎨

⎪
⎪

⎩

⎪
⎪

− −

2 
0

0

2 
0

0

x t dt
T

( )∫ < 0

Property Time Function Frequency Function

Homogeneity ax t( ) aX n[ ]

Additivity x t y t( ) ( )+ X n Y n[ ] [ ]+

Linearity ax t by t( ) ( )+ aX n bY n[ ] [ ]+

Multiplication x t y t( ) ( ) X n m Y m
m

[ ] [ ]−
=−∞

∞

∑

Convolution 
1

0T
x t

T

( ) ( )−∫ τ τ τ X n Y n[ ] [ ]

Time shifting x t −τ exp [ ]−⎛
⎝⎜

⎞
⎠⎟

j
T
n2 X nπ τ

Frequency shifting ex )−⎛
⎝⎜

⎞
⎠⎟

j
T
mt2 x tπ X n m[ ]−

Table 10.1 Properties of the Fourier Series

   



11-1

Note 11

Mathematically defined continuous-
time signals having finite energy can 

be analyzed using the Fourier transform 
(FT), defined in Math Box 11.1. The FT can 
be expressed as a function of either cyclic 
frequency, f, or radian frequency, ω = 2πf.
In some contexts, the Fourier transform is 
referred to as the continuous-time Fourier 
transform (CTFT) to emphasize the distinc-
tion between it and the discrete-time Fourier 
transform that is presented in Note 12.

A number of frequently encountered Fou-
rier transform pairs are listed in Table 11.1, 
and a number of useful FT properties are 
listed in Table 11.2.

Math Box 11.1

Fourier Transform

(MB 11.1)

(MB 11.2)

Inverse Transform

(MB 11.3)

X f x t j ft dt( ) ( )exp( )= −
−∞

∞

∫ 2π

X x t j t dt( ) ( )exp( )ω ω= −
−∞

∞

∫

Fourier Transform
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# x(t) X( f ) X(ω)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

1 δ ( )f 2πδ ω( )

u t1( ) 
1

2
1
2π
δ

f
f+ ( ) 1

jω πδ ω+ ( )

δ ( )t 1 1

tn j n
n f

2π
δ( ) ( )( ) 2π δ ωjn n( )( )

sinω0t
j f f f f
2

( )+ − −⎡⎣ ⎤⎦ jπ δ ω ω δ ω ω( ) ( )+ − −⎡⎣ ⎤⎦0 0

cosω0t
1
2 0 0δ δ( ) ( )f f f f+ + −⎡⎣ ⎤⎦ π δ ω ω δ ω ω( ) ( )+ + −⎡⎣ ⎤⎦0 0

e u tat−
1( ) 1

2j f aπ +
1

j aω +

u t e tat
1 0( ) sin− ω 2

2 2
0

2
0

2

π
π π

f
a j f f( ) ( )+ +

ω
ω ω

0
2

0
2( )a j+ +

u t e tat
1 0( ) cos− ω

a j f
a j

+
+ +

2
2

0
2

π
( )

a j
a j

+
+ +

ω
ω ω( )2 0

2

1
0

1
2t ≤⎧

⎨
⎪

⎩⎪ otherwise
sinc f sinc ω

π2( )

sinc sint t
t
π

π
1
0

1
2f ≤⎧

⎨
⎪

⎩⎪ otherwise
1
0

ω π≤⎧
⎨
⎪

⎩⎪ otherwise

at at texp( )− >⎧
⎨
⎪

⎩⎪

0
0 otherwise

a
a j( )+ ω 2

exp( | | )−a t 
2
42 2 2
a

+ π
2

2 2
a

a +ω

signumt
t
t
t

1 0
0 0
1 0

>
=

− <

⎧

⎨
⎪

⎩
⎪

1
j fπ

2
jω

Table 11.1 Fourier transform pairs
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# Property Time function Transform

1. Homogeneity

2. Additivity

3. Linearity

4. Time shifting

5. Frequency shifting

6. Multiplication

7. Convolution

8. Sine modulation

9. Cosine modulation

10. Time and frequency 
scaling

11. Duality

12. Conjugation

13. Real part

14. Imaginary part

15. Differentiation

16. Integration

ax t( ) aX f( )

x t y t( ) ( )+ X f Y f( ) ( )+

ax t by t( ) ( )+ aX f bY f( ) ( )+

e X fj ft− 2π ( )

exp( ) ( )− j f t x t2 0π X f f( )+ 0

x t y t( ) ( ) X Y( ) λ−
−∞

∞

∫
h t( ) ( )−

−∞

∞

∫ τ H f X f( ) ( )

x t f t( )sin( )2 0π
1
2 0 0j X f f X f f( ) ( )− + +⎡⎣ ⎤⎦

x t f t( )cos( )2 0π 1
2 0 0X f f X f f( ) ( )− − +⎡⎣ ⎤⎦

x at⎛
a⎝⎜
⎞
⎠⎟

> 0 aX af( )

X t( ) x f( )−

x t*( ) X f*( )−

x tRe ( )⎡⎣ ⎤⎦
1
2 X f X f( ) *( )+ −⎡⎣ ⎤⎦

x tIm ( )⎡⎣ ⎤⎦
1
2 j X f X f( ) *( )− −⎡⎣ ⎤⎦

d
dt 

x t
n

n ( ) ( ) ( )j f X fn2π

x
t

d( )τ τ
−∞∫

X f
j f

X f( ) ( ) ( )
2

1
2

0
π

δ+

Table 11.2 Fourier transform properties
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Note 12

he discrete-time Fourier transform
(DTFT) is the appropriate Fourier tech-

nique to use in order to obtain a continu-
ous-frequency spectrum for a signal that 
is a function of discrete time. The continu-
ous-frequency spectrum obtained from the 
DTFT is periodic, with a period equal to T -1,
where T is the discrete-time sampling inter-
val. The DTFT finds widespread use within 
DSP, primarily because a digital filter’s unit 
sample response and frequency response 
comprise a DTFT pair.

The DTFT is defined by

(12.1)

and the corresponding inverse is given by 

(12.2)

where ω is the continuous radian frequency 
and T is the discrete-time sampling interval. 
The z transform is defined in Note 44 as

(12.3)

If e jωT is substituted for z in this definition, 
the result is identical to Eq. (12.1). This re-
sult indicates that the DTFT is equal to the 
z transform of x[n] evaluated on the unit 
circle in the z-plane.

X e x n ej T j nT

n
( ) [ ]ω ω= −

=−∞

∞

∑

x n X e e dj j nT[ ] ( )=
−
∫

1
2π

ωω ω

π

π

X z x n z n

n
( ) [ ]= −

=−∞

∞

∑

Discrete-Time Fourier Transform

Math Box 12.1

Deriving the Discrete-Time 

Fourier Transform

The delta function model of ideal sampling 
can be used to derive the discrete-time Fou-
rier transform (DTFT) from the continuous-
time Fourier transform (CTFT). Begin with 
the delta function model of ideal sampling 
applied to the continuous-time function, x(t ):

The CTFT for the sum in the equation above 
can be computed term by term. For any par-
ticular value of n, x(nT  ) is a constant, so the 
CTFT can be written as

Replacing x(nT  ) with the discrete-time se-
quence notation x[n] yields

which agrees with Eq. (12.1).

x t x t t nT

x nT t nT

s
n

n

( ) ( ) ( )

( ) ( )

= −

= −

=−∞

∞

=−∞

∞

∑

∑

δ

δ

F F{ } { }x t x t t nT

x nT t nT

s
n

n

( ) ( ) ( )

( ) ( )

= −( )

= −

=−∞

∞

=−∞

∞

∑

∑

δ

δ

X x n j nTs
n

( ) [ ]exp( )ω ω= −
=−∞

∞

∑
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x[n] DTFT

1

δ[n] 1

u[n]

exp( jω0n)

anu[n],   |a| < 1

2 2πδ ω π( )+
=−∞

∞

∑ k
k

1
1 

2
−

+ +−
=−∞

∞

∑e
kj

k
ω πδ ω π( )

2 20πδ ω ω π( )− +
=−∞

∞

∑ k
k

1
1− −a jexp( )ω

sinω
π

cn
n

1 0
0
,
,

≤ ≤
< ≤

⎧
⎨
⎪

⎩⎪

ω ω
ω ω π

c

c

w n 
M n M

rect otherwise
[ ] 

,
,

=
− ≤ ≤⎧

⎨
⎪

⎩⎪

1
0

sin
sin
π

π
f M

f
2 1+( )⎡⎣ ⎤⎦
( )

Table 12.1 Discrete-time Fourier transform pairs

Property
Time 
Sequence DTFT
x[n] X(e jω)
y[n] Y(e jω)

Linearity ax[n] + by[n] aX(e jω) + bY(e jω)

Time shift x[n − m] e− jωmX(e jω)

Time reversal x[−n] X(e −jω)

Frequency shift e jω0nx[n] X(e j(ω-ω0))

Convolution x[n] ⊗ y[n] X(e jω)Y(e jω)
Differentiation 
of transform nx[n] j d

d
X e j

ω
ω( )

Table 12.2 Properties of the DTFT
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Note 13

he discrete Fourier transform (DFT) 
is perhaps the single most important 

mathematical tool in all of DSP. Unlike many 
other Fourier analysis techniques that can 
be applied only to signals that are expressed 
in the form of mathematical functions, the 
DFT can be implemented in practical sys-
tems to analyze sampled real-world signals 
numerically. The DFT also plays a role in 
certain types of filter design as well as in 
the efficient implementation of filter banks, 
transmultiplexers, and demodulators for 
multi-frequency communication signals 
such as orthogonal frequency division multi-
plexing (OFDM).

Direct computation of an N-point DFT 
involves a number of arithmetic operations 
that is proportional to N 2. There are many 
different algorithms that exploit periodic-
ity, symmetry, and phase relationships in 
the sine and cosine functions to compute 
the DFT using significantly fewer arithmetic 
operations. These algorithms are collectively 
referred to as the fast Fourier transform

Essential Facts

The DFT operates on an input record of 
N samples. The spectral interpretation of 
the DFT output assumes that the input 
samples are uniformly spaced in the in-
put domain (usually time). If the input 
samples are not uniformly spaced, the 
conventional interpretation of the output 
will be incorrect.
The mathematical derivation of the DFT is 
based on an assumption that the N-sample 
input record comprises exactly one period 
taken from a periodic input signal.
The DFT produces an output record of 
N samples that are uniformly spaced in 
the output domain (usually frequency). 
The sampled nature of the output can be 
viewed mathematically as either a cause 
or a consequence of the assumed period-
icity of the input.
The DFT’s output record represents exactly 
one period of an infinite periodic spec-
trum. The periodicity in frequency can be 
viewed mathematically as either a cause or 
a consequence of sampling in time.

-N -N/2 0 N/2 N 3N/2 2N

Frequency index

Figure 13.1 Implicit periodicity in the DFT spectrum. Solid drop lines indicate the 
“main” spectrum for 0 ≤ m ≤ (N —1). Dashed drop lines indicate periodic replications 
of the “main” spectrum.

Discrete Fourier Transform
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(FFT). The most commonly used FFT algo-
rithms require a number of arithmetic op-
erations that is proportional to N log 2 N. The
existence of these computationally efficient 
FFT algorithms makes real-time DFT analy-
sis a viable choice for many DSP applications. 
This note deals with exploiting fundamental 
DFT behaviors and properties that are inde-
pendent of the specific FFT mechanization 
that is ultimately selected.

The inverse DFT, or IDFT, is sometimes 
called the synthesis DFT because it can be used 
to synthesize a time-domain signal from a 
frequency-domain specification. Similarly, the 
forward DFT is sometimes called the analysis
DFT because it can be used to analyze the fre-
quency content of a time-domain signal.

13.1 DFT Periodicity in the 

Frequency Domain

As discussed in Note 3, sampling in the time 
domain creates periodic spectral images in 
the frequency domain. How is this physical 
reality reflected in the mathematics of the 
DFT? In the equations that define the DFT, 
the frequency sequence, X[m], is defined only 

Math Box 13.1

Discrete Fourier Transform

For a signal represented by an N-point sequence of samples, 
x[n], for n = 0, 1, . . . , N — 1, having a sample interval of T,
the discrete Fourier transform (DFT) can be used to compute 
an estimate of the signal’s spectral content at the N discrete 
frequencies of 0, F, 2F, . . . , (N — 1)F, where F = (NT)-1. The 
DFT is defined by

(MB 13.1)

Inverse DFT

Given all N samples of the frequency sequence, X[m], it is 
possible to recover the original sequence, x[n], using the in-
verse DFT (IDFT) defined by

(MB 13.2)

Alternate DFT Definition

Because FT = N -1, the DFT from Eq. (MB 13.1) can be re-
cast in terms of the sequence length N without any explicit 
appearance of the sampling interval T, or the frequency in-
crement F:

(MB 13.3)

This formulation allows construction of generic DFT soft-
ware routines that depend only upon the sequence length. 
In general, the frequency sequence, X[m], is complex-valued 
even in cases where the time sequence, x[n], is real-valued. 
However, when x[n] is an even-symmetric function in time, 
the corresponding DFT, X [m], is even-symmetric and real-
valued. The roles of complex-valued time sequences are dis-
cussed in Note 60.
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Figure 13.2 Two-sided presentation of DFT spectrum
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Math Box 13.2

Deriving the DFT from the DTFT

It is possible to create a DFT by applying the discrete-time 
Fourier transform (DTFT) to a finite-duration, discrete-
time sequence, and evaluating the DTFT for only a finite 
set of specific discrete frequencies. The DTFT is defined in 
Note 12 as

(MB 13.4)

If we assume that x[n] is nonzero for only the N samples 
corresponding to n = 0, 1, . . . , N —1, then the summation 
limits in (MB 13.4) can be changed to yield

(MB 13 5)

However, X(ω) is still a function of continuous frequency, 
ω. If we attempt to define a DFT by evaluating Eq. (MB 
13.5) at an arbitrary set of discrete frequencies, the result 
is generally not inverse-transformable back into the origi-
nal sequence, x[n]. However, if we relax the constraints on 
x[n] somewhat, it becomes possible to obtain an invertible
spectral representation that involves nonzero values at only 
N discrete frequencies. Specifically, we define xP[n] to be the 
periodic extension of x[n], such that the original N samples 
of x[n] comprise one period of the new periodic signal:

As discussed previously, sampling in the time domain leads 
to periodicity in the frequency domain, and periodicity in 
the time domain leads to sampling in the frequency domain. 
The DTFT of xP[n] is periodic, with a period equal to the 
original sampling frequency. Furthermore, due to the time-
domain periodicity of xP[n], the DTFT is nonzero at only N
discrete frequencies per period. Specifically, the discrete fre-
quencies for the period occupying the interval 0 ≤ ω < T -1 is

Substituting ωm for ω in Eq. (MB 13.5) and converting to 
discrete sequence notation yields

which is the DFT defined by (MB 13.1).
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for 0 ≤ m < N. What happens if we try to gen-
erate X[m] for m ≥ N or for m < 0? Applying 
a few trigonometric identities and some al-
gebraic manipulation to the DFT equations 
reveals that X[m + kN] = X[m]  for k, an inte-
ger. In other words, if the index m is not con-
strained to the interval 0 ≤ m < N, the DFT 
produces a discrete frequency sequence that 
is periodic with a period of N samples, as il-
lustrated in Figure 13.1. This periodicity is 
consistent with the physical results observed 
in real-world sampling experiments. The DFT 
in Eqs. (MB 13.1) and (MB 13.3) could be re-
stated as being valid for all integer values of 
m. However, all of the useful spectral infor-
mation is contained in a single period—the 
choice of the particular period corresponding 
to 0 ≤ m < N is somewhat arbitrary.

Despite an arbitrary choice of the period 
over which the DFT results are typically de-
fined, periodicity in the results allows for 
some flexibility in how they are displayed. 
Consistent with the definitions (MB 13.1) 
and (MB 13.3), DFT results are often dis-
played for frequency indices from zero 
through N − 1. This format requires that 
the usual mathematical definitions of even 
and odd symmetry be recast to accommo-
date the fact that, in this format, the “nega-
tive” frequencies correspond to the indices, 
m, for (N/2) ≤ m < N. It is also fairly com-
mon to display results for frequency indices 
in the range ±N/2 using a “two-sided” for-
mat, as illustrated in Figure 13.2. This two-
sided format is sometimes a more intuitive 
way to look at the frequency-domain sym-
metries. It should be noted that a two-sided 
plot involves N +1 points because the point at 
m = N/2 is duplicated for m = −N/2.
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13.2 Periodicity in the Time Domain

In the DSP literature, the DFT is described as oper-
ating on a time signal that is both discrete in time 
and also periodic, with a period of N samples. How-
ever, in the equations that define the DFT, values of 
the time sequence x[n] are needed only for values of 
n from 0 through N − 1; so why does it matter how 
x[n] behaves outside the interval 0 ≤ n < N ? Fur-
thermore, as given in Eq. (MB 13.2), the definition 
of the inverse DFT seems to imply that x[n] is de-
fined only for values of n inside this interval. What 
does it really mean to say that the time signal that 
serves as input to the DFT is periodic?

The results produced by the DFT are as though 
the original N samples of x[n] have been duplicated 
along the time axis, as shown in Figure 13.3. In this 
periodic version of the signal, the sample at n = 0

is immediately preceded by a copy of the sample 
from n = N − 1, and the sample at n = N − 1 is im-
mediately followed by a copy of the sample from 
n = 0. If there are discontinuities at these juxta-
posed samples, the spectrum computed by the DFT 
may exhibit significant high-frequency content not 
present in the original signal. This spurious high-
frequency content is sometimes called leakage. The 
usual technique for dealing with leakage is to mul-
tiply the time sequence by a window function that 
tapers the input sequence to values of zero or near 
zero at each end. This windowing technique effec-
tively removes the discontinuities that cause leak-
age. Techniques for analyzing leakage are presented 
in Note 14, and leakage-reducing windows are dis-
cussed in Note 24.

-N -N/2 0 N/2 N 3N/2 2N

Time index

Figure 13.3 Periodically extended presentation of DFT input record
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Note 14

An N-point DFT is often used to analyze a sam-
pled signal that is much longer in duration than 

N samples. Truncating the DFT input sequence usu-
ally introduces spurious frequency content, called 
leakage, that is not present in the original signal. In 
order to analyze the effects of truncation, we need to 
start with a mathematical model of the truncation 
process. The relationships among the various signals 
and spectra discussed in this note are summarized 
in Figure 14.1, below. These relationships are used in 
Note 15 to explore DFT leakage for sinusoidal input 
signals.

14.1 Truncation

Truncating the original signal sequence (block 1 
in Figure 14.1) to a length of just N samples can be 
viewed as multiplying the longer sequence with an 
N-point rectangular window sequence (block 2 in 

Analyzing Signal Truncation 

Key Points

Truncating the DFT input sequence to a 
length of N samples can be mathematical-
ly modeled as multiplying the sequence by 
a rectangular window sequence that has 
non-zero values only for sample indices 0 
through N − 1.

The spectrum changes due to truncation 
in the time domain can be assessed by 
convolving the spectrum of the untrun-
cated input signal with the spectrum of 
the rectangular window sequence.

The spectrum of the rectangular window 
sequence can be defined in terms of the 
Dirichlet kernel, DN, as

where DN(x) can be obtained via the Mat-
lab call diric(x,N).

W f N j f N D fN( ) exp ( ) ( )= − −⎡⎣ ⎤⎦π π1 2

Figure 14.1 Relationships among the various signals and spectra involved in the 
analysis of leakage in the DFT

Original signal

x[n]

Rectangular
window sequence

w[n]

Truncated signal

x[n]

X(f )

X[m]

Multiply

Convolve W(f )

DTFT

DTFT

DTFT

DFT

Sample
at frequency

interval of (NT)
1

Continuous-
frequency

spectrum of
window

X(f )

Continuous-
frequency

spectrum of
original signal

1 2

34 5

6

7

   



14-2 Notes on Digital Signal Processing

Figure 14.1), defined by

(14.1)

The multiplication indicated in the diagram is 
not actually performed—it is just a mathemati-
cal model of truncation that can be used to pre-
dict how the truncated signal’s spectrum will differ 
from the original signal’s spectrum.

Both the DTFT and DFT exhibit the property 
that multiplication of two functions in the time do-
main is equivalent to convolving the two functions’ 
DTFTs, or DFTs in the frequency domain. There-
fore, one way to assess the frequency-domain im-
pact of truncating a time sequence is to convolve 
the DTFT (block 3 in Figure 14.1) of an N-point 
rectangular window with the spectrum (block 4) of 
the untruncated time sequence. The result of this 
convolution will be the DTFT spectrum (block 5) 
of the truncated signal (block 6) that was provided 
as input to the DFT. The DFT output (block 7) can 
also be obtained by sampling the DTFT spectrum 
(block 5) at a frequency interval of F = (NT )−1.

Using the relationships depicted in Figure 14.1 
to analyze the spectral impact of truncation in the 
time domain depends on being able to compute the 
DTFT of a discrete-time rectangular window.

14.2 DTFT of a Rectangular Window

The DTFT of the rectangular window defined by 
Eq. (14.1) is given by

(14.2)

(Note: All of the equations in this note follow the 
common convention of using a normalized sam-
pling interval, T = 1.)

The exponential factor in Eq. (14.2) has unity 
magnitude for all values of f, and represents a sim-
ple linear phase shift. This phase shift is a conse-
quence of defining the window over the interval 0 
≤ n < N. If the rectangular window is defined to be 

symmetric about the origin, then the DTFT of the 
window will be

(14.3)

The ratio of sine terms in Eqs. (14.2) and (14.3) is 
called the Dirichlet kernel 1 and can be computed 
using the diric function in Matlab. A call to 
diric(x,N) returns DN(x) as given by

(14.4)

The DTFT of the rectangular window can be ex-
pressed in terms of DN as

(14.5)

When N is odd, a rectangular window symmetric 
about n = 0 can be defined as

(14.6)

and DN is periodic with a period of 2π, as shown in 
Figure 14.2. When N is even, DN is periodic with a 
period of 4π, as shown in Figure 14.3. 

A period of 4π appears to violate the rule that 
a DTFT spectrum is always periodic with a period 
of T −1 Hz, or 2π /T radians per second. In try-
ing to resolve this apparent violation, we discover 
that defining an even-length window that is sym-
metric about n = 0 is problematic. For even N, the 
closest we can get to symmetry would be to have 

1. The Matlab help files refer to DN as the “Dirichlet function,” but in 
nearly all of the mathematical literature, DN (or minor variants thereof) 
is called the “Dirichlet kernel.” The term “Dirichlet function” is usually 
reserved for the function defined as
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Figure 14.2 Dirichlet kernel for N = 15
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Figure 14.3 Dirichlet kernel for N = 16
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Figure 14.4 Comparison between raw Dirichlet kernel for N = 
16 (dotted trace) and the same kernel after phase shifting via the 
exponential factor from Eq. (14.2) (solid trace)
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one sample at n = 0, with N/2 samples to one side 
of zero, and (N/2) − 1 samples to the other side of 
zero. Rather than attempting to define a symmetric 
window with samples at odd multiples of T/2 in-
stead of at integer multiples of T, we simply note 
that any practical use of a an even-length rectangu-
lar window involves the window defined over the 
interval 0 ≤ n < N, as in Eq. (14.1), and having the 
DTFT given by Eq. (14.5). For even N, the expo-
nential factor in Eq. (14.5) corresponds to delaying 
a symmetric window (with samples at odd multi-
ples of T/2) by (N − 1)/2 sample times. The samples 
of the delayed result occur at integer multiples of 

T, thereby “rectifying” the spectrum and making it 
periodic in 2π, as shown in Figure 14.4.

The Fourier transform of a rectangular pulse in 
continuous-time is a sinc function, and one period 
of the Dirichlet kernel is similar in appearance to a 
sinc function. Some DSP texts incorrectly claim that 
the DTFT for a discrete-time rectangular window 
is a “sinc function in frequency.” However, the sinc 
function and the Dirichlet kernel really are different 
beasts. Some sources accentuate the difference but 
acknowledge the similarities between the discrete-
time and continuous-time cases by referring to the 
Dirichlet kernel as the aliased sinc function.
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Note 15

This note uses the model of signal truncation developed 
in Note 14 and applies this model to sinusoidal signals to 
demonstrate how leakage can corrupt a DFT result—of-
ten to the point where the DFT results can be misleading 
when used to estimate signal frequency. The insights pro-
vided by this demonstration are the foundation for the in-
troduction and analysis of windowing techniques in Notes 
23 through 27.

he effects of truncation are absent in 
cases where the input signal is a sinusoid 

having a frequency that exactly matches one 
of the DFT bin frequencies. For example:

Consider a DFT with N = 32 and T = 1.

The signal of interest is x(t) = cos(2πfct),
where fc = 4F.

Figure 15.1 shows the DFT magnitude 
spectrum for this signal; all of the re-
sponse is concentrated in the bins corre-
sponding to ±4F, as expected.

However, in general, the effects of trunca-
tion are very noticeable. Again, consider a 
DFT with N = 32 and T = 1:

The signal of interest is changed to 
x(t) = cos(2πfct), where fc = 4.5F.

Intuition suggests that the postive-
frequency response would be split equally 
between bins 4 and 5, and that the neg-
ative-frequency response would be split 
equally between bins 27 and 28.

Figure 15.2 shows the DFT magnitude 
spectrum for this signal. The responses in 
bins 4 and 5 are not equal. Furthermore, 
there is a non-zero response in each of the 
32 bins.

How can a small change in input frequency 
result in Figures 15.1 and 15.2 being so 

Exploring DFT Leakage

Figure 15.1 DFT magnitude spectrum of a rectangularly 
windowed, 32-sample segment of a sinusoid having a 
frequency of fc = 4F.
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Figure 15.2 DFT magnitude spectrum of a rectangularly 
windowed, 32-point segment of a sinusoid having a 
frequency of fc = 4.5F
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different? To explore leakage in a quantita-
tive fashion, we need to draw upon the re-
sults of Note 14, as described in Recipe 15.1 
and demonstrated in Example 15.1.
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Figure 15.3 Fourier spectra of a rectangularly win-
dowed segment of a sinusoid having a frequency of 
fc = 4F. The solid trace represents the magnitude of the 
DTFT, and the small circles indicate the magnitudes 
produced by a 32-point DFT.
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Figure 15.4 Fourier spectra of a rectangularly win-
dowed segment of a sinusoid having a frequency of 
fc = 4.5F. The solid trace represents the magnitude of 
the DTFT, and the small circles indicate the magni-
tudes produced by a 32-point DFT.
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Math Box 15.1

Plotting DFT and DTFT Results 

Together in the Same Graph

Figures 15.3 and 15.4 are unusual in that they 
each contain both a DFT result and a DTFT 
result. These two types of transform results 
are usually plotted on diffrently scaled axes.

The result of a DTFT is typically plotted 
against a real-valued frequency axis. Be-
cause the DTFT result is periodic with 
a period of T −1, only a single period of 
the result is usually plotted. For a two-
sided plot format, the period plotted is ei-
ther for cyclic frequencies in the interval 
[−½T −1, ½T −1] or for radian frequen-
cies in the interval [−πT −1, πT −1]. For a 
single-sided plot format, the period plot-
ted is either for cyclic frequencies in the 
interval [0, T −1] or for radian frequen-
cies in the interval [0, 2πT −1]. When the 
conventional normalization of T = 1 is 
followed, the plotted frequency interval 
becomes either −½ ≤ f ≤ ½ or −π ≤ ω ≤ π, 
for two-sided plots, and either 0 ≤ f ≤ 1 or 
0 ≤ ω ≤ 2π, for one-sided plots.

On the other hand, DFT results are usu-
ally plotted against a sequence of integer-
valued frequency indices or “bin numbers” 
m = 0, 1, 2, . . . , N −1. The cyclic frequency 
corresponding to DFT bin m is given by

To cover the same [0, T −1] frequency in-
terval as the DTFT, the DFT frequency in-
dices would need to run for N + 1 values 
from m = 0 through m = N.

Because this particular note is concerned 
with leakage in the DFT, and the DTFT 
is playing only a supporting role, it seems 
logical to keep the plotting format con-
sistent with typical DFT plots. Therefore, 
for Figures 15.3 and 15.4, the values of 
this normalized frequency are numeri-
cally equal to the corresponding DFT bin 
numbers.

f mF m
NTn = =
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Note 16

This note provides demonstrations of a technique called zero 
padding, which is often used to obtain a finer frequency-domain 
increment when using a discrete Fourier transform (DFT). These 
demonstrations show that although zero padding improves the 
observability of some frequency domain features, it does not 
improve the frequency resolution of a DFT.

Sometimes important features of a signal’s spec-
trum fall at frequencies between the DFT bin 

frequencies, making potentially important fea-
tures of a signal’s spectrum difficult to detect or 
observe. This inability to see critical details that fall 
at frequencies that are not integer multiples of F = 
NT – 1 is sometimes called the picket fence effect 
because it is similar to trying to view the details of a 
scene while looking through a picket fence—some 
details are clearly visible, while others are hidden 
by the slats of the fence. The picket fence effect can 
be mitigated to some extent by reducing the size of 
the frequency increment, F, but the effect can never 
be completely eliminated as long as we continue to 
operate in the discrete frequency domain.

In a DFT, the relationship FNT = 1 always holds. 
Therefore, the only way that F can be reduced is by 
increasing T or N. In the design of most signal pro-
cessing strategies, there is usually not much “wiggle 
room” when it comes to increasing the value of T.
Any viable approach for reducing F must therefore 
involve increasing N.

16.1 Zero Padding

A classic approach used for decreasing F is called 
zero padding. This technique involves padding the 
original N-point input sequence with p zero-valued 
samples to create an input sequence of length L =
N + p. The straightforward approach is to simply 
extend the DFT to some longer length, L, and col-
lect this new larger number of input samples before 
computing the L-length DFT.

Key Points

Sometimes important features of a signal’s spec-
trum fall at frequencies between DFT bin fre-
quencies, making these features difficult to detect 
or observe. This phenomenon is sometimes called 
the picket fence effect.

One approach for mitigating the picket fence ef-
fect involves padding the DFT input sequence 
with a number of zero-valued samples so that a 
longer DFT with more finely spaced frequency 
bins can be used. This approach is called zero-
padding.

When a DFT input sequence is zero-padded, the 
DFT results no longer represent samples of the 
unpadded signal’s DTFT. Thus, zero padding may 
make it easier to observe the approximate fre-
quency of a spectral peak, but the observed am-
plitude of the peak generally is incorrect.

With regard to the DFT, resolution is the ability to 
distinguish two closely spaced features in a sig-
nal’s spectrum. Despite some claims to the con-
trary, zero padding does not improve the DFT’s 
resolution. In applications where resolution is 
important, the only viable choice is to use a larger 
DFT that processes a longer sequence of the origi-
nal signal.

Exploring DFT Resolution
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Figure 16.1 Fourier spectra from Example 16.1. The spectra are 
for a rectangularly windowed segment of a sinusoid having a 
frequency of  fc = 4.5F. The solid trace represents the magnitude 
of the 32-point DTFT, and the dots indicate the magnitude 
produced by a 32-point DFT.

Zero padding does improve observability of some 
spectrum features, but contrary to claims often made 
in the DSP literature, zero padding does not improve 
frequency resolution in the frequency domain.

As already stated, the zero padding technique 
involves extending the original N-point input se-
quence by appending p zero-valued samples to 
create an input sequence of length L = N + p. An L-
point DFT is then computed instead of an N-point 
DFT. The frequency domain values then fall at inte-
ger multiples of F '= (LT )-1 rather than at multiples 
of F = (NT )-1. Because L > N, the new frequency 
increment of F ' is finer than the original increment 
of F, thereby improving observability, as demon-
strated in Example 16.1.

Because zero padding is able to provide improved 
observability in the discrete-frequency domain, 
some texts incorrectly claim that zero padding in-
creases the resolution of the DFT. Resolution is the 
ability to distinguish two closely spaced features in 
a signal’s spectrum. As shown in Example 16.2, zero 
padding does not improve the DFT’s resolution.
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Math Box 16.1

Frequency Scaling in Figures 16.1 

through 16.6

The DTFT results in Note 9 are plotted against a 
normalized frequency f /F, for which integer val-
ues correspond to DFT numbers.

In this note, results for DFTs having different 
values of F are plotted along with DTFT results. 
Therefore, to avoid confusion regarding the val-
ue of F used for normalization, the DTFT results 
are plotted against a normalized frequency axis, 
which for T = 1 has a value of 0.5 at the frequency 
bin corresponding to DFT bin number N/2.

Because frequencies scaled in this way are not nu-
merically equal to DFT bin numbers (as they are 
in Note 9), each plot has two frequency axes. The 
solid trace, representing the DTFT result, is plot-
ted against the top axis, and the dots, represent-
ing the DFT result, are plotted against the bottom 
axis in each figure.
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Figure 16.2 Fourier spectra from Example 16.1. The spectra 
are for a rectangularly windowed segment of a sinusoid having 
a frequency of fc = 4.5F. The dots indicate the magnitudes 
produced by a 64-point DFT of a 32-sample signal segment that 
has been padded with 32 zero-valued samples. The solid trace 
represents the magnitude of the DTFT for a 64-point segment of 
the original sinusoid.
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Figure 16.3 Fourier spectra from Example 16.1. The spectra 
are for a rectangularly windowed segment of a sinusoid having 
a frequency of fc = 4.5F. The dots indicate the magnitudes 
produced by a 64-point DFT of a 32-sample signal segment that 
has been padded with 32 zero-valued samples. The solid trace 
represents the magnitude of the DTFT for a 32-point segment of 
the original sinusoid.
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Figure 16.5 Fourier spectra from Example 16.2. The spectra are 
for a rectangularly windowed segment of a signal consisting of 
two sinusoids having frequencies of f1 = 0.146875 = 4.7F and f2 = 
0.165625 = 5.3F. The solid trace represents the magnitude of the 
DTFT for a 32-sample segment of the signal. The dots indicate 
the magnitudes produced by a 64-point DFT of a 32-point 
segment of the signal padded with 32 zero-valued samples.
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Figure 16.4 Fourier spectra from Examples 16.2 and 16.3. The 
spectra are for a rectangularly windowed segment of a signal 
consisting of two sinusoids having frequencies of f1 = 0.146875 
= 4.7F and f2 = 0.165625 = 5.3F. The solid trace represents the 
magnitude of the 32-point DTFT, and the dots indicate the 
magnitudes produced by a 32-point DFT.

16.2 Lengthening the DFT

The straightforward approach to improving both 
observability and resolution in the DFT result is 
simply to extend the DFT to some longer length, 
L, and collect this new, larger number of input 
samples before computing the DFT. Example 16.3 
applies this approach to the two-tone signal from 
Example 16.2 .
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Figure 16.6 Fourier spectra from Example 16.3. Spectra are for 
a rectangularly windowed segment of a signal consisting of two 
sinusoids having frequencies of f1 = 0.146875 = 4.7F and f2 = 
0.165625 = 5.3F. The solid trace represents the magnitude of the 
DTFT for a 64-sample segment of the SOI, and the dots indicate 
the magnitudes produced by a 64-point DFT.
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Note 17

Consider the discrete Fourier transform 
for an N-point sequence

(17.1)

where

For even N, the DFT summation can be split 
into two separate summations—one for the 
even-indexed samples of x[n] and one for 
the odd-indexed samples.

(17.2)

Each of the summations in the final line of 
Eq. (17.2) is in the form of an (N/2)-point 
DFT. The signal flow graph (SFG) corre-
sponding to the final line of Eq. (17.2) is 
shown in Figure 17.1 for the specific case of 
N = 8. In a circuit analysis context, SFGs of-
ten include curved lines, and the direction of 
signal flow is almost always indicated by an 
arrow. In a DSP context, it is conventional to 
use only straight edges, with signals flowing 
from left to right through the edges, unless 
indicated otherwise by the presence of an 
arrowhead. Each node represents a signal 
formed by the sum of all the inbound edges 
incident to the node. 
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FFT: Decimation-in-Time Algorithms
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Figure 17.1 Signal flow graph depicting operations defined by the final 
line of Eq. (17.2)

The node for X[0] in the upper right-hand corner of 
the figure has two incident edges. The lower edge, com-
ing from node X4,1[0], has a weight of W 0, as indicated 
by the annotation near the arrowhead. The upper edge, 
coming from node X4,0[0], has no weight indicated. This 
configuration of the node and the two incident edges in-
dicates that

X[0] =X4,0[0] + W0 X4,1[0]
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The complete set of equations represented by 
Figure 17.1 is

X[0] =X4,0[0] + W0 X4,1[0]

X[1] =X4,0[1] + W1 X4,1[1]

X[2] =X4,0[2] + W2 X4,1[2]

X[3] =X4,0[3] + W3 X4,1[3]

X[4] =X4,0[0] + W X4,1[4]

X[5] =X4,0[1] + W5 X4,1[5]

X[6] =X4,0[2] + W6 X4,1[6]

X[7] =X4,0[3] + W7 X4,1[7]

where the X4,0[m] are the output of the up-
per, or “even,” 4-point DFT, and the X4,1[m]
are the outputs of the lower, or “odd,” 4-point 
DFT.

The weighting factors, W k, have been 
called twiddle factors since the earliest days 
of digital signal processing. If N/2 is even, 
then the summations in Eq. (17.2) can each 
be split again. If N = 2L, the summations 
at each stage can be split until the original 
transform is expressed as a combination of N
1-point DFTs. A 1-point transform is trivial:
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After L = log2 N stages of splitting, all of the 
computational burden has been moved out 
of the summations and into the operations 
needed to combine 1-point transforms into 
2-point transforms, 2-point transforms into 
4-point transforms, and so on. The SFG for 
N = 8 and L = 3 is shown in Figure 17.2. Pairs 
of input points from x[n] are combined to 
form the eight values X2,k[m] for k = 0, 1, 2, 3
and m = 0, 1. One complex multiply-add op-
eration is required for each of the eight values. 

Figure 17.2 Signal flow graph for 8-point decimation-in-time FFT with 
permuted inputs and naturally ordered outputs
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At the second stage, pairs of X2,k[m] values are com-
bined to form the eight values X4,k[m] for k = 0, 1 and 
m = 0, 1, 2, 3. One complex multiply-add operation is re-
quired for computing each of the eight combinations. 

Finally, pairs of X4,k[m] values are combined to form 
the eight values X[m] for m = 0, 1, . . . , 7. In general, com-
puting an N-point transform using this approach entails 
log2 N stages of combining with N complex multiply-add 
operations per stage for a total computational burden of 
only N log2 N complex multiply-add operations.

The output values, X[m], as shown in Figure 17.2, ap-
pear in “natural’’ order from X[0] through X[7]. The input 
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Figure 17.3 Signal flow graph for 8-point decimation-in-time FFT with 
naturally ordered inputs and permuted outputs

values, x[n], appear in the permuted order x[0],
x[4], x[2], x[6], x[1], x[5], x[3], x[7]. This order is 
called bit-reversed order because the index for the 
kth input value can be obtained by representing k
with log2 N bits and reversing the order of these 
bits. For example, when k = 3 = (011)2, the corre-
sponding bit-reversed index is (110)2 = 6. Thus, 
the input x[6] appears in position 3 of the input 
sequence. The values x[0] and x[7] remain in their 
original positions because (000) and (111) are the 
same backward or forward. FFT algorithms of the 
type represented by Figure 17.2 are called decima-
tion-in-time, permuted input-natural output (DIT-
PINO) FFTs. It is possible to rearrange the nodes 

in Figure 17.2 without disturbing the connections 
between the nodes to obtain the SFG shown in Fig-
ure 17.3, where now the inputs are in natural order 
and the outputs are in bit-reversed order. This SFG 
represents a decimation-in-time, natural input-per-
muted output (DIT-NIPO) FFT.

17.1 Implementation  

Consideratons

For SFGs of FFTs that are drawn in “standard” 
form, the the edges connecting adjacent columns 
of nodes in can be grouped into patterns that are 
called butterflies because of their shape. Figure 17.4 
shows the SFG of Figure 17.2, with one butterfly in 
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Figure 17.4 Bold edges depict the butterfly structures embedded in the SFG 
for an FFT.
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Figure 17.5 Butterfly terminology

each stage highlighted in bold. Figure 17.5 defines 
some convenient terminology we can use in this 
series of notes whenever butterflies and the opera-
tions that they represent are discussed.

Let’s take a closer look at the butterflies in Fig-
ure 17.4 to uncover the patterns that are essential 
to software mechanization of the underlying math-
ematical operations. The first butterfly in stage 2 of 
the SFG of Figure 17.2 has X2,0[0] and X2,1[0] as 
its input nodes and X4,0[0] and X4,0[2] as its output 
nodes. The rising diagonal is multiplied by W 0 and 
the bottom edge is multiplied by W . The top edge 
and falling diagonal each have unity gain. Notice 
that for every butterfly in the SFG, when the rising 
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diagonal is multiplied by W k, the bottom edge is 
multiplied by W k+N/2. Invoking the definition of 
W k, it is easy to show that W k+N/2= −W k:

Thus, each butterfly can be implemented using a 
single complex multiplication and two complex 
additions. The bottom input node is multiplied by 
W k to produce an interim result that is added to 
the top input node to obtain the top output node. 
The interim result is subtracted from the top input 
node to obtain the bottom output node. In an ef-
ficient implementation, all of the input nodes for 
a given stage are stored in a single array. Once 
the array location holding the bottom input node 
is used for computing the interim result, it is no 
longer needed and can be overwritten with the 
value computed for the butterfly’s bottom output 
node. The interim result can then be added to the 

array location holding the top input node to pro-
duce the top output node. The following fragment 
of C code summarizes this approach for butterfly 
implementation.

temp = array[bot_node_idx] * twiddle;
array[bot_node_idx]

= aray[top_node_idx] - temp;
array[top_node] += temp;

The four butterflies in stage 1 of Figure 17.2 can 
all be computed in sequence using the single mul-
tiplier W 0. There are two viable approaches for do-
ing the stage-2 computations. The first approach 
computes the butterflies in order from top to bot-
tom, generating (or perhaps recalling from storage) 
the multipliers W 0, W 2, W 0, and W 2 in sequence 
as they are needed. The second approach generates 
W 0 only once, using it for each butterfly where it 
is needed before moving on to generate W 2. The 
first approach involves either extra trigonometry 
or storage for the multipliers. The second approach 
requires only slight additional complexity in the 
addressing scheme used to access locations in the 
node array.
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Note 18

Decimation-in-time FFTs are based on 
repeatedly splitting the DFT sum-

mation into two summations—one for 
the decimated time sequence from which 
even-indexed samples have been removed 
and one for the decimated time sequence 
from which odd-indexed samples have 
been removed. As the name implies, 
decimation-in-frequency FFTs split the 
DFT summation in a way that produces 
decimated frequency sequences. The DFT 
summation can be specialized for com-
puting only the even-indexed frequency 
samples:

(18.1)

After some algebraic manipulations, Eq. 
(18.1) can be put in the form

(18.2)

where a[n] is the sequence formed by 
adding together corresponding samples 
from the first and second halves of the 
original time sequence:

Thus, the even samples of the frequency 
sequence can be generated by performing 
an (N/2)-point DFT on combinations of 
samples from the original time sequence.
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FFT: Decimation-in-Frequency Algorithms
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Figure 18.1 Signal flow graph depicting operations defined by Eqs. (18.2) 
and (18.3)
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The DFT summation can also be specialized for 
computing only the odd-indexed frequency samples:

(18.3)

where b[n] is the sequence formed by subtracting 
samples in the second half of the original time se-
quence from the corresponding samples in the first 
half of the original time sequence:
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Figure 18.2 Signal flow graph for 8-point decimation-in-
frequency FFT with naturally ordered inputs and permuted 
outputs
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Figure 18.3 Signal flow graph for 8-point decimation-in-
frequency FFT with permuted inputs and naturally ordered 
outputs

Thus, the odd samples of the frequency sequence 
can be generated by performing an (N/2)-point 
DFT on weighted combinations of samples from 
the original time sequence. The SFG correspond-
ing to Eqs. (18.2) and (18.3) for the specific case of 
N = 8 is shown in Figure 18.1. If N = 2 L, the summa-
tions at each stage can be split. The SFG for N = 8
and L = 3 is shown in Figure 18.2. The input values 
appear in natural order from x[0] through x[7].
The output values appear in the bit-reversed order 
X[0], X[4], X[2], X[6], X[1], X[5], X[3], X[7]. It is 
possible to rearrange the nodes in Figure 18.2 with-
out disturbing the connections between the nodes 
to obtain the SFG shown in Figure 18.3, where the 
inputs are in bit-reversed order and the outputs are 
in natural order.
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Note 19

The radix-2 algorithms described in 
Notes 17 and 18 are very useful, but in 

certain situations, a DFT block size of 2k is 
just not acceptable. The prime factor algo-
rithm (PFA) is a technique for constructing 
fast transforms of length N, where N can be 
expressed as a product of mutually prime 
factors. A DFT of length N = N1N2 can be re-
structured as an N1 by N2 two-dimensional 
DFT:

(19.1)

where

In order to make use of the restructured 
transform, the one-dimensional input se-
quence, x[n], must be mapped into a two-
dimensional sequence, x2[n1, n2], using the 
index transformation

where

After transformation, the two-dimen-
sional result, X2[k1, k2], is mapped into the 
one-dimensional result using the index 
transformation

where t1 and t2 are chosen such that
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FFT: Prime Factor Algorithm

19.1 Small-N Transforms

There are a number of very efficient spe-
cialized implementations for N-point DFTs 
when N is very small (see Math Boxes 19.1 
through 19.3). These implememetations are 
ideally suited for use as component DFTs in 
the prime factor algorithm.

Math Box 19.1

3-point DFT Algorithm

u = 2π/3
t1 = x[1] + x[2]
m0 = x[0] + t1
m1 = t1(cos u − 1)
m2 = j(sin u)(x[2] −x[1])
s1 = m0 + m1
X[0] = m0
X[1] = s1 + m2
X[2] = s1 − m2
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Math Box 19.2

5-point DFT Algorithm

u = 2π/5
t1 = x[1] + x[4]
t3 = x[1] − x[4]
t5 = t1 + t2

m0 = t5 + x[0]
m2 = (t1 −t2)[(cos u −cos 2u)/2]
m4 = −jt4(sin u + sin 2u)

s1 = m0 + m1
s3 = m3 −m4
s5 = m3 + m5

X[0] = m0
X[2] = s4 + s5
X[4] = s2 −s3

t2 = x[2] + x[3]
t4 = x[3] − x[2]

m1 = t5[(cos u + cos 2u)/2 −1]
m3 = −j(t3 + t4)sin u
m5 = jt3(sin u − sin 2u)

s2 = s1 + m2
s4 = s1 − m2

X[1] = s2 + s3
X[3] = s4 − s5
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Math Box 19.3

7-point DFT Algorithm

u = 2π/7
t1 = x[1] + x[6]
t3 = x[3] +x[4]
t5 = x[1] − x[6]
t7 = x[4] − x[3]
t9 = t3 −t2
t11 = t7 − t5
t13 = −t6 − t9

m0 = t4 + x[0]
m2 = t8[(2 cos u − cos 2u −cos 3u)/3]
m4 = t13[(cos u + cos 2u − 2 cos 3u)/3]
m6 = jt11[(2 sin u − sin 2u − sin 3u)/3]
m8 = jt14[(sin u + sin 2u + 2 sin 2u)/3]

s0 = −m2 − m3
s2 = −m6 − m7
s4 = m0 + m1
s6 = s4 + s1
s8 = m5 − s1
s10 = m5 + s2 + s3

X[0] = m0
X[2] = s6 + s9
X[4] = s7 + s10
X[6] = s5 − s8

t2 = x[2] + x[5]
t4 = t1 + t2 + t3
t6 = x[2] − x[5]
t8 = t1 − t3
t10 = t5 + t6 + t7
t12 = t6 − t7
t14 = −t11 − t12

m1 = t4[(cos u + cos 2u + cos 3u)/3 −1]
m3 = t9[(cos u − 2 cos 2u +cos 3u)/3]
m5 = −jt10[(sin u + sin 2u − sin 3u)/3]
m7 = jt12[(sin u − 2 sin 2u + sin 3u)/3]

s1 = −m2 − m4
s3 = m6 + m8
s5 = s4 − s0
s7 = s4 + s0 − s1
s9 = m5 − s3

X[1] = s5 + s8
X[3] = s7 − s10
X[5] = s6 − s9
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Note 20

Consider an FIR filter having a unit-sample 
response, h[n], that extends for NR samples. 

Such a filter’s output, y[k], at time k is given by the 
discrete convolution

(20.1)

where x[k] is the input sequence. In order to pro-
duce a block of NB output samples, y[0] through 
y[NB − 1], Eq. (20.1) must process a block of 
NB + NR − 1 input samples from x[ − NR + 1]
through x[NB − 1]. Assuming that x[k] is valid only 
for k ≥ 0, the first NR − 1 samples of the output will 
not be valid because computation of these values 
depends on samples of x[k] before k = 0. To pro-
duce a second block of NB output samples, y[NB]
through y[2NB − 1], Eq. (20.1) must process a block 
of NB + NR − 1 input samples from x[NB − NR + 1]
through x[2NB − 1]. The final NR − 1 input samples 
processed in the first block will be the first NR − 1
input samples processed in the second block. This 
can be extended to say that the final NR − 1 input 
samples processed in block b will be the first NR − 1
input samples processed in block b + 1. Therefore, 
to produce each block of NB output samples, only 
NB new input samples are needed, along with NR − 1
old input samples used in the previous block.

When the filtering is performed in the frequency 
domain using fast convolution, a technique called 
overlap and save can be used for managing the old 
and new input samples. The first step in imple-
menting this technique is selecting appropriate 
values for the memory length, NM ; FFT length, N;
and input and output block length, NB , subject to 
the following constraints:

The memory length, NM , must be selected such 
that NM + 1 is equal to or greater than the filter’s 
unit sample response.

The FFT length, N, must be a highly composite 
number to facilitate the use of a “fast” algorithm 
for computing the DFT.

The input/output block length, NB , is equal to 
N − NM .

The processing sequence for the overlap and save 
technique is listed in Recipe 20.1. 

1

0
[ ] [ ] [ ]

RN

n
y k h n x k n

−

=

= −∑

Fast Convolution Using the FFT
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Figure 20.1 The overlap-and-save technique for filtering a long signal sequence 
via fast convolution: (a) the NM samples from the previous pass, (b) the NB new 
input samples for the current pass, (c) the periodic extension of the NM saved 
samples, (d) the span of the filter’s impulse response corresponding to the first 
output of sample of the current pass, (e) the span of the filter’s impulse response 
response corresponding to the first invalid sample in the IFFT’s output block, 
(f) discarded IFFT output samples, and (g) filter output samples.

Figure 20.1 depicts the relationships between 
the input samples and output samples when Rec-
ipe 20.1 is used. For the specific case depicted in 
the figure, the FFT length is N = 64, the memory 
length is NM = 18, and the input/output block 
length is NB = 46. For pass k, the NM input samples 
saved from the end of pass k − 1 are placed at the 
end of the FFT input block, as shown at (a) in Fig-
ure 20.1. A block of NB = 46 new input samples is 
read into locations zero through NB − 1 of the FFT 
input block, as shown at (b) in the figure. 

As discussed in Note 13, the N-point time se-
quence and N-point frequency sequence related 
by an N-point DFT are both implicitly periodic, 
with a period of N samples. Owing to this periodic 
extension, the NM saved input samples at the end 
of the FFT block are effectively prepended to the 

beginning of the FFT block, as shown at (c) in the 
figure. Thus, as depicted at (d) in the figure, the 
filter is able to produce the first output sample of 
block k by effectively operating on a continuous 
block of NM +1 samples, comprising the NM saved 
samples and the first new sample that is placed in 
location zero of the FFT input block. 

The span of the filter’s impulse response is suc-
cessively moved one sample to the right, producing 
one output sample after each such move until the 
span reaches the position depicted at (e) in Figure 
20.1. In this position, the filter is operating on the 
final NM new input samples plus the oldest one of 
the saved input samples, and the output produced 
is not valid. Therefore, the final NM samples (f) in 
the IFFT output block are discarded. The first NB
samples (g) in the IFFT output block are issued as 
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the filter’s output for pass k. In preparation for pass 
k+1, the first NM input samples for pass k are then 
copied into the end of the FFT input block in ac-
cordance with step 6 of Recipe 20.1. 

Figure 20.2 shows how a number of IFFT output 
blocks are reassembled to produce a continuous se-
quence of filter output samples that exactly match 

the sequence of samples that would be produced 
by a direct convolution performed using Eq. (20.1). 
Notice that in either approach, output samples y[0]
through y[NM − 1] are not valid because there is 
insufficient input history for the filter until output 
sample y[NM].

Pass 1

Pass 2

Pass 3

Pass 4

Reassembled output

Figure 20.2 Continuous output sequence reassembled from IFFT output 
blocks using the overlap-and-save technique
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Note 21

Within DSP, window usage can be di-
vided into two broad categories: (1) 

windowing of signal segments to reduce 
leakage in the DFT, and (2) designing FIR 
filters that are based on using windows to 
reduce the Gibb’s phenomenon in finite ap-
proximations to ideal filters. Additional de-
tails concerning the use of windows for FIR 
filter design are discussed in Notes 23 and 24.

21.1 Elementary Windows

As discussed in Note 14, truncating a DFT 
input sequence to a length of N samples can 
be mathematically modeled as multiply-
ing the sequence by a rectangular window
sequence that has non-zero values only for 
sample indices 0 through N − 1

(21.1)

Rectangular windows are not particularly 
well suited for illustrating some of the time- 
and frequency-domain characteristics that 
make using windows so attractive. There-
fore, we will begin by introducing a simple 
tapering window, called the triangular win-
dow, or sometimes, the Bartlett window.

Often, the mathematical descriptions of 
windows and their frequency responses are 
simplified if the window is defined centered 
around the zero index, as shown in Figure 
21.1. A window in this position is sometimes 
called a lag window. It is natural to have an 
odd number of samples in a lag window so 

w n 
n N

[ ]=
≤ <⎧

⎨
⎩

1 0
0 otherwise

Using Window Functions: 
Some Fundamental Concepts

Figure 21.1 Triangular lag window with 33 points

that one sample lies on the vertical axis and 
there are an equal number of samples to the 
left and to the right of the vertical axis. In 
this position, a triangular window can be de-
fined as

(21 2)

As defined, this window has a value of 
zero at each end and a peak value of 1 in the 
center. It could be argued that this window 
really has a length of only N − 2 because of 
the two zero-valued end-points. However, 
it is convenient for some analyses of win-
dow properties to include the zero-valued 
endpoints as part of the window. There are 
a number of different window families with 
similar concerns. Hann and Blackman win-
dows are other commonly used windows 
that have zero-valued endpoints.

Different authors adopt different conven-
tions with regard to how zero-valued end-
points are treated. For the case of triangular 

w n 
n N

N
N n N

[ ]

( )

= −
− +
−

− − ≤ ≤ −

1 
2 1

1
1

2
1

2
for
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windows, Matlab supports both ap-
proaches—the function triang(N) gener-
ates a triangular window having N nonzero 
values, and the function bartlett(N)
generates a triangular window with zero-
valued endpoints and N−2 non-zero 
values. This support must be used with 
caution. For odd window lengths, as illus-
trated in Figure 21.2, for the case of N=63,
triang(N) produces a window that ex-
actly equals the center N points of the win-
dow produced by bartlett(N+2). In 
other words, the result from triang(N)
can be obtained just by removing the two 
zero-valued endpoints from the result 
produced by bartlett(N+2). In each 
case, the slope for the left side of the tri-
angle is 1/32. However, this relationship 
between the results from triang(N) and 
bartlett(N+2) is not maintained for 
the case when N is even. As shown in Fig-
ure 21.3(a), in the window produced by 
bartlett(62), the peak of the triangle 
falls midway between sample indices 31 
and 32. The left edge rises from a value of 0 
at sample index 1, to a value of 1 at a point 
equivalent to sample index 31.5; thus the 
left-side slope is obtained as

As shown in Figure 21.3(b), in the win-
dow produced by triang(60), the peak 
of the triangle falls midway between sam-
ple indices 30 and 31. Rather than having 
the first sample be equal to the first non-
zero sample from bartlett(62) (which 
would locate the missing zero-valued 
samples at abscissae corresponding to 
sample indices 0 and 61), the implement-
ers of Matlab chose to construct the tri-
angle in a way that places the zero values 
at abscissae corresponding to sample 

slope = −
−

= =1 0
31 5 1

2
61

0 0327869
.

.

Figure 21.2 Comparison of windows produced by Matlab functions 
bartlett and triang for odd N
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(a)  Result from bartlett(65)

0.03125 0.03125
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(b)  Result from triang(63)
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(a)  Result from bartlett(62)
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(b)  Result from triang(60)

1
30

Slope = 130 5.

Figure 21.3 Comparison of windows produced by Matlab functions 
bartlett and triang for even N
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indices 0.5 and 60.5. This choice causes the 
left edge to rise from a value of 0 at a point 
equivalent to sample index 0.5, to a value 
of 1 at a point equivalent to sample index 
30.5; thus the left-side slope is obtained as

21.2 Even-Length Windows for 

DFT Applications

Even-length windows are most often used 
for reducing DFT leakage—the windows 
used in FIR filter design are usually odd 
in length. However, due to the implicit pe-
riodic extension inherent in the DFT, the 
correct way to generate the even-length 
windows used with even-length DFTs in-
volves truncating the final point of an odd-
length window. Figure 21.4(a) shows a 
symmetric 8-point triangular window and 
several of its images due to periodic exten-
sion. Figure 21.4(b) shows an asymmetric 
8-point window that began as a symmetric 
9-point window before the final point was 
truncated. As shown in the figure, the first 
point in each window image also fills the 
place of the missing final point for the pre-
ceding image. 

Looking at Figure 21.4, the difference be-
tween the two approaches might not seem 
important, but proper generation of the 
DFT window is crucial if the DFT results 
are to represent samples of the DTFT result. 
Figure 21.5 shows the positive-frequency 
DTFT spectrum for a 33-point triangu-
lar window with zero-valued endpoints 
(i.e., the results from bartlett(33) in 
Matlab). Superimposed on the continu-
ous trace of the DTFT spectrum are circles 
marking values from the DFT of the asym-
metric 32-point window that results from 

slope = −
−

= =1 0
30 5 0 5

1
30 

0 033333
. . 

.

(a)

(b)

Figure 21.4 Two different configurations for an even-length window: (a) 
naive approach, and (b) approach that exploits the periodic extension 
implicit in the DFT

Figure 21.5 Magnitude of DTFT for 33-point triangular window (solid 
trace) with magnitude of DFT for coresponding 32-point truncated 
windows (circles)

20 4 6 8 10 12 14 16

0

20

R
e

at
ve

 m
ag

n
tu

d
e 

(d
B
)

DFT frequency index (bin number)

Normalized frequency
FS 

4
FS 

8
3

8
FS FS 

2

   



21-4 Notes on Digital Signal Processing

40 2 6 8 10 12 14 16

0

20

DFT frequency index (bin number)

R
e

at
ve

 m
ag

n
tu

d
e 

(d
B
)

FS 
2

3
8

FSFS 
8

FS 
4

Normalized frequency

Figure 21.6 Magnitude of DTFT for 33-point triangular window (solid 
trace) with magnitude of DFT for symmetric 32-point window (circles)

truncating the final point of the original 
33-point window. Figure 21.6 shows the 
DFT locations that result from the incorrect 
use of a 32-point symmetric window. The 
DFT locations are displaced from their cor-
rect locations, but they are close enough to 
explain why many practitioners are able to 
use even-length symmetric windows incor-
rectly and still obtain usable results.

21.3 Lobe Structure in the 

Frequency Response

There are four fundamental characteristics 
tied directly to the lobe structure of a win-
dow’s DTFT response.

1. Width of the main lobe. The width can 
be specified as the null-to-null width or 
as the 3-dB or 6-dB bandwidth of the 
main lobe.

2. Peak level of the first side lobe.

3. “Ultimate” attenuation of side lobes far 
removed from the main lobe. In the case 
of discrete-time windows, the ultimate 
attenuation is the attenuation at the side 
lobe peak closest to ω = π.

4. Spacing of the nulls in the DTFT re-
sponse.
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Note 22

W
known (or approximately known) sinusoidal 
components in the input signal.

The bin-centric approach, detailed in 
Recipe 22.1, determines the response of a 
single DFT bin to signals over the entire 
range of frequencies supported by the cho-
sen sampling rate (i.e., the frequency range 
−(2T )-1 to (2T )-1).

The signal-centric approach, detailed in 
Recipe 22.2, determines the response of 
every DFT bin to a signal component con-
sisting of a single sinusoid at frequency fc.

Assessing Window Functions: 
Sinusoidal Analysis Techniques
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Figure 22.1 DTFT response for a triangular window after response has been 
shifted to align the center of the main lobe with the frequency corresponding to 
DFT bin 6: (a) real part, (b) imaginary part
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Figure 22.2 Analysis strategy for signal-centric approach. One copy of the DTFT 
spectrum (solid trace) is centered at frequency fc, and a second copy (dotted trace) 
is centered at frequency NF – fc
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Figure 22.3 DTFT response for a triangular-windowed input signal x[n]=cos(2π fcnT ): (a) real part, (b) imaginary part
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Figure 22.4 DTFT magnitude response (solid trace) and DFT magnitude response 
(circles) for a triangular windowed, 32-sample segment of input signal x[n]=cos(2π fcnT )
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Note 23

-
 can be a daunting task. However 

there are a number of metrics that can be used to 
weed out the unsuitable windows and zero in on 
the several “best” window choices for particular 
requirements.

23.1 Main Lobe Width

Any window having a finite duration in time has a 
frequency-domain magnitude response that exhib-
its a lobed structure similar to the example shown 
in Figure 23.1. Perhaps the most obvious quan-
tifiable characteristic for a window concerns the 
width of the main lobe in the magnitude response. 
The null-to-null measurement is a conceptually 
straightforward way to characterize the width of the 
main lobe, but it is not the most useful way. 

The 6-dB bandwidth of the main lobe is a useful 
metric because for two equal-strength tones to be 
resolvable in the output of a windowed DTFT, their 

frequencies must differ by more than the 6-dB band-
width of the window.

The 3-dB bandwidth of the main lobe is also use-
ful because it can be combined with the equivalent 
noise bandwidth, discussed later, in section 23.3, to 
form an indicator of window performance. Specifi-
cally, in [1], harris  compared more than 40 differ-
ent windows, and based on DFT results for these 
windows, he concluded that the ratio of equiva-
lent noise bandwidth to 3-dB bandwidth is a sen-
sitive indicator of overall window performance. Of 
the windows he tested, good windows always had 
bandwidth ratios that satisfied

(23.1)

Windows with this ratio less than 1.04 had wide 
main lobes that resulted in high processing loss. 
Windows with this ratio greater than 1.055 tended 
to have high side lobe structure that resulted in 
poor two-tone detection capability.
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Figure 23.1 DTFT response of a rectangular window showing the 
features of the response’s lobed structure
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positive-frequency component create bias in the 
negative-frequency component.

23.3 Equivalent Noise Bandwidth

The magnitude-squared response for a typical win-
dow function is shown in Figure 23.2. If the win-
dow function is applied to a signal consisting of 
zero-mean white noise, the total noise power in the 
result can be computed in the frequency domain as

(23.2)

Figure 23.2 also shows a dashed-line rectangle that 
can be thought of as the magnitude response of 
an ideal lowpass filter. This rectangle has a height 
equal to the peak in the window’s response and a 
width equal to 2Bneq. The output noise power from 
the ideal filter is

(23.3)

The value of B for which the window and the ideal 
filter produce the same output noise power is called 

P N W f dfW
T

T

=
− −

−

∫0 2

2

2

2 1

1

( )
( )

( )

P N B WF = ⎡⎣ ⎤⎦0
20( )

Noise
equivalent
bandwidth

0 f

W f( ) 
2

Figure 23.2 Equivalent noise bandwidth. The total area under the 
curve equals the area of the dashed rectangle.

23.2 Side Lobe Attenuation

There are two useful measures of side lobe 
attenuation.

1. Peak level of the first side lobe.

2. Ultimate attenuation of side lobes far removed 
from the main lobe. In the case of discrete-time 
windows, the ultimate attenuation is the attenua-
tion at the side lobe peak closest to ω = π.

Poor side lobe attenuation degrades the two-tone 
detection capability of a window, especially in cases 
where one tone is much stronger than the other. 
Even when the tones’ frequencies are separated by 
more than the 6-dB bandwidth of the window’s 
main lobe, the weaker signal often is lost in the side 
lobes of the stronger signal’s response.

Poor side lobe attenuation also causes bias in 
the amplitude and frequency estimates formed by 
the DFT. The side lobes of the negative-frequency 
component for a tone create bias in the positive-
frequency component, and the side lobes of the 
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the equivalent noise bandwidth1, and is found by 
equating Eqs. (23.2) and (23.3) and solving for B to 
yield

(23.4)

We can invoke Parseval’s theorem to obtain time-
domain expressions for the numerator and de-
nominator of Eq. (23.4) to yield a more convenient 
equation for Bneq that is based directly on the time-
domain window function

(23.5)

The index limits for the summations are not stated 
explicitly, because in some applications n will range 
from−N/2 through N/2 and in other applications n
will range from 0 through N −1.

23.4 Processing Gain

The processing gain of a windowed transform can 
be analyzed by considering the DFT to be a bank 
of matched filters, with each filter matched to a si-
nusoid at one of the bin frequencies, ωk . The win-
dowed transform’s processing gain, GP , is defined 
as the ratio of output signal-to-noise ratio (SNR) 
to input SNR, when the input to the transform 
is a noisy sinusoid at one of the transform’s bin 
frequencies:

(23.6)

when the input signal is defined by

(23.7)

1. Equivalent noise bandwidth is also called noise equivalent bandwidth
or simply noise bandwidth. The subscript “neq” is used here because 
“eqn” is so often used as an abbreviation for “equation.”
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(23.8)

and ρ(nT) is a white noise sequence with variance 
σρ
2. The input signal power is simply Sin = A2, and 

the input noise power is Nin = σρ
2. That portion of 

the windowed transform’s output that is due to sig-
nal is given by

(23 9)

and the corresponding signal power is given by

(23.10)

The coherent gain is defined as the magnitude of the 
output signal divided by the magnitude of the input 
signal:

(23.11)

The portion of the windowed transform’s output 
due to noise is given by

(23.12)

and the output noise power is the mean-square 
value of XN(ωk):

(23.13)
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Thus, the processing gain can be determined as

(23.14)

where Bneq is the equivalent noise bandwidth dis-
cussed in Section 23.3. The processing loss, LP, is 
the reciprocal of the processing gain

(23.15)

23.5 Scalloping Loss

The processing loss computed in the previous sec-
tion is based on an input signal that is a sinusoid at 
a frequency corresponding to one of the DFT bin 
frequencies. There will be additional loss for an in-
put sinusoid at any frequency that is not one of the 
bin frequencies. The maximum loss will occur for 
an input frequency that is exactly midway between 
two consecutive bin frequencies. The input signal 
becomes 
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The portion of the windowed transform’s output in 
bin k that is due to a noise-free sinusoidal signal of 
frequency ω(k+1/2) is then given by

After some trigonometric manipulation, this out-
put component can be expressed as

The scalloping loss is defined as the ratio of the co-
herent gain for a signal midway between two bin 
frequencies to the coherent gain for a signal at a bin 
frequency:

(23.16)

23.6 Worst Case Processing Loss

The worst case processing loss is defined as the 
product of the processing loss from Eq. (23.15) and 
the scalloping loss from Eq. (23.16).
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Note 24

In this note, some of the more useful windows and some of the more 
commonly encountered windows are compared in terms of the char-
acteristics discussed in Note 23. The characteristics of all windows dis-
cussed in this note are listed together in Table 24.1 for easy reference.

24.1 Rectangular Window

The rectangular window is somewhat different 
from all of the other window functions in that 
rather than being explicitly applied to a data se-
quence, it instead represents the situation when 
a long or infinite sequence is truncated to form a 
shorter-duration segment. Modeling the truncation 
process as a windowing operation does provide a 
convenient mechanism for analyzing DFT leakage, 
as demonstrated in Note 15. The rectangular win-
dow is included in this note because it serves as a 
baseline from which the improvements offered by 
other windows can be gauged.

Window Choices

Truncating a DFT input sequence to a 
length of N samples can be mathemati-
cally modeled as multiplying the sequence 
by a rectangular window sequence that has 
non-zero values only for sample indices 0 
through N − 1:

(24.1)

For a normalized sampling interval of T = 1,
the DTFT of the rectangular window de-
fined by Eq.(24.1) is given by

(24 2)

The exponential factor in (24.2) has a 
magnitude of 1 for all values of f , and rep-
resents a simple linear phase shift. This 
phase shift is a consequence of defining the 
window over the interval 0 ≤ n < N. If the 
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Figure 24.1 DTFT magnitude response for a 16-point 
rectangular window

   



24-2 Notes on Digital Signal Processing

rectangular window is defined to be sym-
metric about the origin, then the DTFT 
of the window is

(24.3)

The DTFT magnitude response for a 
16-point rectangular window is shown 
in Figure 24.1. The null-to-null width of 
the main lobe for the rectangular win-
dow is 2F, where F is the DFT bin spac-
ing. The peaks of the first side lobes are 
about 13 dB below the peak of the main 
lobe. The ultimate side lobe attenuation is 
about 30 dB. As shown in Figure 24.1, the 
rectangular window’s response has nulls 
at all integer multiples of the frequency 
increment F = (NT) -1. This spacing of the 
nulls means that for a sinusoidal signal 
with a frequency of f = kF, the DFT has 
a non-zero response only in bins k and 
N − k. However, for a sinusoidal signal 
with a frequency that is not an integer 
multiple of F, the DFT exhibits some re-
sponse in every bin. As shown in Figure 
24.2, when the main lobe of the rectan-
gular window’s response is centered on a 
frequency component that falls between 
two adjacent DFT bin frequencies, the 
main lobe straddles the two adjacent bins. 
When the signal is near the midpoint 
between two bins, the response in each 
of the two straddled bins is significant. 
However, as the signal is moved closer to 
one of the bins, the response in the other 
straddled bin becomes less significant. 

24.2 Triangular Window

The triangular window’s response has 
nulls at even-valued integer multiples of 
the DFT frequency increment. As shown 
in Figure 24.3, the side lobe peaks occur 
at frequencies very close to odd-valued 
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Figure 24.2 DTFT magnitude response for 16-point rectangular window, 
after shifting the center of the main lobe on a normalized frequency of 6.5
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Figure 24.3 DTFT magnitude response for a 16-point triangular window
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Figure 24.4 DTFT magnitude response for a 16-point triangular window 
after shifting to center the main lobe on a normalized frequency of 6.5

integer multiples of the frequency in-
crement. Furthermore, the null-to-null 
width of the main lobe in the response 
spans an interval of 4F. Therefore, when 
the triangular window’s response is cen-
tered on bin k, the responses at bins k − 1
and k + 1 are down only 7.8  dB from 
the peak. The responses at bins k ± 3 are 
down by about 26.7 dB from the peak at 
bin k. When the signal frequency is not 
an integer multiple of F, the main lobe 
straddles four consecutive DFT bins, as 
shown in Figure 24.4. The ultimate side 
lobe attenuation is about 48 dB.

Window α

Side 
lobe
peak
(dB)

Side lobe
fall-off 
rate 
(dB per 
octave)

3dB
band- 
width, 
B3dB
(bins)

6 dB
band- 
width, 
B6dB
(bins)

Equiv.
noise 
band-
width, 
Bneq (bins)

Scalloping
loss (dB)

Worst-case 
processing 
loss (dB)

Rectangular — −13 −6 0.89 1.21 1.00 1.1236 3.92 3.92
Triangular — −27 −12 1.28 1.78 1.33 1.0391 1.82 3.07
Dolph-Chebyshev 2.5 −50   0 1.33 1.85 1.39 1.0451 1.70 3.12

3.0 −60   0 1.44 2.01 1.51 1.0486 1.44 3.23
3.5 −70   0 1.55 2.17 1.62 1.0452 1.25 3.35
4.0 −80   0 1.65 2.31 1.73 1.0485 1.10 3.48

Kaiser 2.0 −46 −6 1.43 1.99 1.50 1.049 1.46 3.20
2.5 −57 −6 1.57 2.20 1.65 1.051 1.20 3.38
3.0 −69 −6 1.71 2.39 1.80 1.0526 1.02 3.56
3.5 −82 −6 1.83 2.57 1.93 1.0546 0.89 3.74

Hann — −32 −18 1.44 2.00 1.50 1.0417 1.42 3.18
Hamming — −43 −6 1.30 1.81 1.36 1.0462 1.78 3.10

B
B

neq

3dB

Table 24.1 Window Characteristics
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24.3 Dolph-Chebyshev Window

The Dolph-Chebyshev window has its 
origins in antenna design [2] and its 
response has the minimum main-lobe 
width for a given side lobe level. As de-
picted in Figure  24.5, all the side lobes 
peak at the same level. For a side lobe 
level of −20α, the window’s discrete-fre-
quency response is given by

(24.4)

where

Often, β > 1 and, consequently, evalua-
tion of Eq. (24.4) may entail computing 
the inverse cosine of values with magni-
tudes greater than unity. In such cases, 
the following formula can be used:

The time-domain window coefficients 
are obtained by taking the inverse DFT 
of Eq. (24.4).

24.4 Kaiser Window

The discrete-time Kaiser window is de-
fined by
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Figure 24.5 DTFT magnitude response for a 32-point Dolph-Chebyshev 
window
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where I0 is the zero-order modified Bessel function 
of the first kind, given by

The Kaiser window is discussed further in Note 25, 
and its use in designing FIR filters is discussed in 
Note 36.

24.5 Hann Window

The discrete-time, odd-length Hann lag window is 
defined as

and the discrete-time (usually even-length) Hann 
data window is defined as
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24.6 Hamming Window

The discrete-time, odd-length Hamming lag win-
dow is defined as

and the discrete-time (usually even-length) 
Hamming data window is defined as
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Note 25

One way to structure the window opti-
mization problem is to find the par-

ticular time-limited function having the 
minimum energy outside the main lobe 
of its frequency response. The solution to 
this problem, found by Slepian and Pol-
lak [1], involves prolate spheroidal wave 
functions. Kaiser [2, 3] found an approxi-
mate solution that is simpler to compute 
than the exact solution of Slepian and 
Pollak. The continuous-time form of the 
Kaiser window and its frequency response 
are listed in Math Box 25.1. The specifi-
cation of the continuous-time window is 
such that it spans a time interval of (N –1)
T. This span is equivalent to saying that 
the continuous-time window begins at the 
time corresponding to sample ‒(N –1)/2 
and ends at the time corresponding to 
sample (N –1)/2, where N is odd. 

The definition and properties for the 
discrete-time window are summarized in 
Math Box 25.2. A closed-form expression 
has not been found for the frequency re-
sponse of the discrete-time window. The 
response given in Eq. (MB 25.4) is simply 
the window function’s DTFT after simpli-
fication, based on the window’s even sym-
metry around its central sample. Equation 
(MB 25.5) is a closed-form approximation 
of the spectrum derived by Antoniou in [4], 
and Eq. (MB 25.6) is a closed-form approxi-
mation given by f. j. harris in the famous pa-
per [5], in which he catalogs the properties 
of many different window functions. In this 
same paper, harris refers to the window de-
fined by Eq. (MB 25.2) as the Kaiser-Bessel 
window.

Essential Facts

A time-limited window optimized to have 
minimum energy outside the main lobe 
of its frequency response takes the form of 
a prolate spheroidal wave function.

The Kaiser windows are an easier-to-
compute family of approximations to the 
prolate spheroidal wave functions.

The definition of the Kaiser window in-
cludes a parameter, β, that can be used 
to adjust the trade-off between peak side 
lobe ripple and the width of the main lobe 
in the window’s frequency response.

Because of the extra degree of design 
freedom provided by the parameter β, the 
Kaiser window is the one most often used 
in the windowing technique for designing 
linear phase FIR filters that is described 
in Note 35.

Kaiser Windows
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Figure 25.1 Kaiser window with β = 5.4414 (solid 
trace) compared to Hamming window (dotted trace)
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Math Box 25.1

Continuous-Time Kaiser Window

The continuous-time Kaiser window is defined as

(MB 25.1)

In [3], Kaiser gives the spectrum of (MB 25.1) as

where
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The Kaiser window performs well in com-
parison to other windows. Figure 25.1 shows 
a Hamming window and a Kaiser window 
with = 3. As shown in Figure 25.2, the 
main lobe width for the Kaiser window’s re-
sponse matches the main lobe width for the 
Hamming response, but the side lobes roll 
off more quickly.

As shown in Figure 25.3, for β = 8.5, the 
main lobe of the Kaiser window’s response 
is slightly narrower than the Blackman main 
lobe. The close-in side lobes are almost 10 
dB lower for the Kaiser window; however, 
the Blackman side lobes continue to drop 
until they fall below the Kaiser side lobes at 
approximately f = FS/4. The difference in the 
time domain is not so dramatic. As shown 
in Figure 25.4, the difference between the 
Blackman window and the Kaiser window 
with β = 8.5 is barely discernible. The area of 
greatest difference is in the tails, as shown in 
the zoomed area.
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Figure 25.2 Comparison of magnitude spectra for a Hamming window (dashed 
trace) and for a Kaiser window with β = 5.4414 (solid trace)
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Math Box 25.2

Discrete-Time Kaiser Window

The Kaiser data window is defined as

(MB 25.2)

where I0 is the zero-order modified Bessel 
function of the first kind given by

(MB 25.3)

In most practical applications, an adequate 
approximation for I0(x) can be obtained 
from the first 20 terms in the summation of

Eq. (MB 25.3). The spectrum of the Kaiser 
window is given by

(MB 25.4)

The spectrum can be approximated as

(MB 25.5)
or

(MB 25.6)

1–
221–

–1
n

NI₀ β

I₀(β)
[ ]=w n 0 –1n N

I x x
k

k

k
0

0

2
2( ) ( / )
!

=
⎡

⎣
⎢

⎤

⎦
⎥

=

∞

∑
W

N

I
( )

( )sin ( / )

( ) ( / )
ω

β ωτ β

β β ωτ β
≈

⎡
⎣

⎤
⎦1 1

1

2

0
2

– –

–

W
N N

I N
( )

sinh

( )
ω

β ω

β β ω
≈

⎡
⎣

⎤
⎦

2 2

0
2 2

/2)

/2)

– (

– (

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

140

120

100

80

60

40

20

0

Normalized frequency ( / )

M
ag

n
tu

d
e 

(d
B
)

Figure 25.3 Comparison of magnitude spectra for a Blackman window (dashed 
trace) and for a Kaiser window with β = 8.5 (solid trace)
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Note 26

This note presents the definition and basic properties of the 
unmodified periodogram. The unmodified periodogram 
is the simplest of the classical, nonparametric, DFT-based 
methods that are used to estimate the power spectrum of 
a discrete-time signal. Examples of its performance against 
various signal combinations and noise conditions are also 
presented.

or a discrete-time signal, x[n], the un-
modified periodogram, SU[m], is com-

puted as the normalized, squared magnitude 
of the N-point DFT for an L-sample segment 
of the signal that has been padded with N − L
zeros (see  Note 16: Exploring DFT Resolu-
tion for a discussion of zero-padding in the 
DFT):

(26.1)

where X [m] is the slightly modified DFT 
given by

(26.2)

In order to generate a periodogram plot 
that appears to be a function of continuous 
frequency, it is a common practice to use 
a DFT length, N, that is many times larger 
than the number of signal samples, L. In 
fact, the periodogram is formally defined 
as a function of continuous frequency that 
involves the DTFT of x[n]. However, in 
practice, the periodogram is evaluated at a 
number of discrete frequencies using the 
DFT as in Eq. (26.2). It is not necessary to 
include the N−L zero-valued padding sam-
ples explicitly in Eq. (26.2). The denomina-
tor in the exponential factor is based on an 
N-point DFT, but the zero-valued samples 
are implicitly included by having the upper 
summation limit of L−1 rather than N−1.
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Essential Facts

Historically, periodograms have been defined as 
functions of continuous frequency that are re-
lated to the corresponding discrete-time signal 
via the discrete-time Fourier transform (DTFT). 
However, in practice, the DFT or FFT is used to 
evaluate the DTFT at only a finite number of dis-
crete frequencies, leading to a result that is a func-
tion of discrete frequency.

The unmodified periodogram is the simplest of 
the classical Fourier-transform-based spectrum 
estimation techniques.

The unmodified periodogram’s response to a dis-
tinct sinusoidal component has the narrowest 
main lobe response available from any periodo-
gram technique.

The main disadvantages of the unmodified peri-
odogram include

º High side lobe leakage

º No reduction in additive noise that may be 
present in the signal

º High variability in the result when the input 
signal is inherently random (such as a com-
munications signal that has been modulated 
by a random data sequence)

Unmodified Periodogram
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The unmodified periodogram is also 
referred to as the sample spectrum or sim-
ply periodogram. The use of the descriptor 
“unmodified” is primarily to emphasize 
the distinction between Eq. (26.1) and the 
modified periodogram that is discussed in 
Note 29.

The unmodified periodogram’s advantage 
over other spectrum estimation techniques 
is its simplicity and relatively low computa-
tional burden (particularly if the periodo-
gram is evaluated using a DFT that is sized 
to allow implementation via an efficient FFT 
algorithm). These advantages can be decisive 
in an application such as a front-panel spec-
trum display in a consumer audio device. 
In such an application, the performance 
requirements might be quite lax—the high 
and low frequency content of the displayed 
spectrum needs only to appear correlated 
to the audio that is playing. In addition, be-
cause the input signal is truncated with a 
simple rectangular window, the unmodified 
periodogram’s response to a distinct sinusoi-
dal component has the narrowest main-lobe 
response available from any periodogram 
technique.
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Math Box 26.1

Properties of the Unmodified 

Periodogram

Definition

(MB 26.1)

Bias

(MB 26 2)

where E indicates expected value, Sx(e jω) is 
the true power spectrum of x, and WB(e jω) is 
the Fourier transform of the Bartlett window. 
The presence of WB(e jω) in Eq. (MB 26.2) in-
dicates that the unmodified periodogram is a 
biased estimate of Sx(e jω). However, as N be-
comes very large, WB(e jω) approaches an im-
pulse function, so

(MB 26 3)

Therefore, the unmodified periodogram is said 
to be an asymptotically unbiased estimate of 
Sx(e jω). The appearance of a Bartlett window 
in Eq. (MB 26.2) might seem odd given that 
the unmodified periodogram does not involve 
the explicit use of a window function. How-
ever, like all “unwindowed” DFTs, the peri-
odogram does implicitly involve a rectangular 
window to accomplish the truncation of the 
input sequence to just N nonzero samples. By 
Parseval’s theorem, the power spectrum is the 
Fourier transform of the autocorrelation func-
tion, and the autocorrelation of two rectangu-
lar windows is a triangular window—hence 
the convolution by WB(e jω) in Eq. (MB 26.2).

6-dB Bandwidth of Bin Response

(MB 26.4)

Variance

(MB 26 5)
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Note 27

This note demonstrates how the unmodified periodogram’s 
ability to resolve sinusoidal components with distinct fre-
quencies varies with both the  signal-to-noise ratio and the 
frequency separation of the components. In subsequent 
notes, similar techniques are used to assess the perfor-
mance of other types of periodograms—most of which 
outperform the unmodified periodogram.

27.1 SNR Variations

The Matlab code in Computer Listing 27.1 
generates two cosine waves embedded in ad-
ditive white Gaussian noise (AWGN) and 
then computes the unmodified periodogram 
for the composite signal. This code was run 
for the combinations of frequency and SNR 
listed in  Table 27.1, with the results plot-
ted in the figures as indicated by the table 
entries.

When the SNR is set to 200 dB, the noise 
in the signal can be considered nonexistent. 
For Case 1, the frequencies of the two sinu-
soids are symmetric about the normalized 
frequency 0.125, which corresponds to FFT 
bin 32. The frequencies selected provide a 
separation equal to the 6-dB bandwidth of 

Case freq1 freq2 Δ f snr Figure
1 31.555/N = 0.123262 32.445/N = 0.126738 0.89/N = 0.003477 200 27.1
2 31.555/N = 0.123262 32.445/N = 0.126738 0.89/N = 0.003477 0 27.2
3 31.555/N = 0.123262 32.445/N = 0.126738 0.89/N = 0.003477 −10 27.3
4 31.95/N = 0.124805 33.05/N = 0.129102 1.1/N = 0.004297 200 27.4
5 31.55/N = 0.123242 33.45/N = 0.130664 1.9/N = 0.007422 200 27.5

Table 27.1 Cases Demonstrated in Section 27.1

Exploring Periodogram Performance:  
Sinusoids in Additive White Gaussian Noise
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the bin response as listed in Math Box 26.1 
of Note 26. As shown in Figure 27.1, there 
are two distinct peaks in the periodogram. 
Because a DFT is used to generate the peri-
odogram, peaks in the result can occur only 
at frequencies that correspond to the bin 
frequencies of the DFT. The peaks in Figure 
27.1 fall at f̂1 = (31/N ) = 0.121094 and at 
f̂2 = (33/N  ) = 0.128906, so the normalized 
errors in estimating f1 and f2 are 0.002168 
and -0.002168, respectively.

Cases 2 and 3 demonstrate how the re-
solvability of closely spaced frequency com-
ponents degrades as the SNR is decreased. 
Figure 27.2 shows the periodogram for the 
case where SNR = 0 dB; the peaks are still 
distinct and larger than any other frequency 
components. Figure 27.3 shows the periodo-
gram for the case where SNR = −10 dB; the 
peaks are no longer discernible.

Increasing Δf from 0.89/N to 1.1/N, as in 
Case 4, demonstrates that increasing the fre-
quency separation of the sinusoids does not 
always improve or even maintain the resolv-
ability exhibited in cases having smaller fre-
quency separations. Figure 27.4 shows only 
a single peak in the periodogram.

Increasing  Δf  further, to 1.9/N, as in 
Case 5, restores two distinct peaks, as shown 
in Figure 27.5, but the notch between the 
peaks is not as deep as the notch in Case 1. 
The shallower notch fills in quickly as the 
SNR is reduced.

27.2 Frequency Spacing

The periodogram sometimes exhibits coun-
terintuitive results wherein increasing fre-
quency separation in the input signal’s 
frequency components leads to degraded 
resolvability of peaks in the periodogram. 
This note demonstrates this phenomenon 
and reveals the mechansim that causes the 

Figure 27.1 Periodogram result for Case 1, with 
f1 = 31.555/N = 0.123262, f2 = 32.445/N = 0.126738, 
and SNR = 200 dB
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Figure 27.2 Periodogram result for Case 2, with 
f1 = 31.555/N = 0.123262, f2 = 32.445/N = 0.126738, 
and SNR = 0 dB
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Figure 27.3 Periodogram result for Case 3, with 
f1 = 31.555/N = 0.123262, f2 = 32.445/N = 0.126738, 
and SNR = -10 dB
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Figure 27.5 Periodogram result for Case 5, with 
f1 = 31.55/N = 0.123242, f2 = 33.45/N = 0.130664, and 
SNR = 200 dB
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Figure 27.4 Periodogram result for Case 4, with 
f1 = 31.95/N = 0.124805, f2 = 33.05/N = 0.129102, and 
SNR = 200 dB

counterintuitive result. The plots generated 
in this demonstration have been designed to 
provide a zoomed-in view of the area around 
the peaks in the periodogram.

The plots have been modified to include 
the continuous-frequency result corre-
sponding to the discrete-frequency peri-
odogram. The periodogram represents 
a sampled version of this continuous-
frequency result, and the resolution be-
havior of the periodogram is governed by 
the location of the sampling instants rela-
tive to the peaks and valleys of the con-
tinuous result.

In this demonstration, the DTFT of the 
two-sinusoid signal is generated using the 
Dirichlet kernel, as described in Note 14. 
The square of the Dirichlet kernel is the 
Fejer kernel, but the continuous-frequency 
power spectrum for a sum of sinusoids is 
not a sum of Fejer kernels. The Dirichlet 
kernels corresponding to the individual 
components must be summed before
computing the squared magnitude.

Matlab code that generates a periodo-
gram, along with the corresponding 
continuous-frequency result, is provided 
in Computer Listing 27.2. When this code 
is run for the cases listed in Table 27.2, 
it produces results that are plotted in the 
specific figures indicated in the right-most 
column of the table.

Case 1 corresponds to Case 1 from Section 
27.1. As shown in Figure 27.6, the notch 
between the two peaks falls directly on a 
bin frequency, and the two adjacent bin 
frequencies fall close enough to the peaks 
in the continuous-frequency result to pro-
vide good resolvability. The frequencies 
of the sinusoids are indicated in the plot, 

Figure 27.6 Periodogram result for Case 1. The 
dashed trace indicates the corresponding continuous-
frequency power spectrum.
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and these frequencies are offset some-
what from the peaks in the composite 
continuous-frequency result. The peaks in 
this composite result are shifted outward 
from the notch due to destructive inter-
ference between the individual Dirichlet 
kernels comprising the overall result.

Case 2 has Δf identical to Case 1, but the 
two frequencies are shifted so that the 
notch in the continuous-frequency spec-
trum does not fall on a DFT bin frequen-
cy. As a result, the periodogram exhibits a 
single wide peak, as shown in Figure 27.7. 

Figure 27.7 Periodogram result for Case 2. 
The dashed trace indicates the corresponding 
continuous-frequency power spectrum.
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In Case 3, the frequency  f1 is the same as 
in Case 1, but Δf is increased to 1.495/N
= 0.00584. The periodogram for this case 
exhibits a single wide peak, as shown in 
Figure 27.8. 

In Case 4, Δf  has been increased to 1.8/N
= 0.007031, which is more than twice the 
6-dB bandwidth of the bin response given 
in Note 26. As shown in Figure 27.9, the 
periodogram exhibits a single peak with a 
plateau that extends over four DFT bins.

Based on the results of this demonstration 
and the one in Section 27.1, it appears that 
the periodogram may not be the best analy-
sis tool for signals involving closely spaced 
frequency components. Improved two-tone 
resolution performance can usually be ob-
tained from one of the spectrum estimation 
techniques based on an autoregressive sig-
nal model. These techniques are introduced 
in Note 68. When one of the two tones has 
a much greater amplitude than the other, it 
can be difficult to resolve the weaker tone 
even when it is well separated in frequency 
from the stronger tone. In these cases, re-
solvability of the weaker tone often can be 
improved by the increased side lobe sup-
pression offered by the modified periodo-
gram technique described in Note 29.
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Figure 27.8 Periodogram result for Case 3. The 
dashed trace indicates the corresponding continuous-
frequency power spectrum.
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Figure 27.9 Periodogram result for Case 4. The 
dashed trace indicates the corresponding continuous-
frequency power spectrum.

Case freq1 freq2 Δ f snr Figure
1 31.555/N = 0.123262 32.445/N = 0.126738 0.89/N = 0.003477 200 27.6
2 31.86/N = 0.124453 32.75/N = 0.127930 0.89/N = 0.003477 200 27.7
3 31.555/N = 0.123262 30.5/N = 0.129102 1.495/N = 0.00584 200 27.8
4 31.6/N = 0.123438 33.4/N = 0.130419 1.8/N = 0.007031 200 27.9

Table 27.2 Cases Demonstrated in Section 27.2
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Note 28

This note demonstrates the performance of the unmodified 
periodogram when it is used to estimate the spectrum of a 
continuous-phase frequency shift keyed (CPFSK) signal. This 
signal has nulls in its spectrum, but these nulls are not evi-
dent in the periodogram.

he utility of a spectrum estimation 
technique should not be judged solely 

on the technique’s ability to resolve closely 
spaced sinsoidal components. This note ap-
plies the unmodified periodogram tech-
nique to a binary CPFSK signal. The random 
nature of the data signal used to modulate 
the CPFSK signal helps to highlight how the 
unmodified periodogram’s high variance has 
a weakness in dealing with signals that are 
inherently random, even when there is no 
noise added to the signal. 

The properties of CPFSK signals are sum-
marized in Math Box 28.1. A PracSim simu-
lation [1] was used to generate a 256-sample 
segment of a binary CPFSK signal with a 
symbol duration of Tsymb= 8, a sampling in-
terval of Tsamp = 1, and a peak frequency de-
viation of fd = 0.04375.

The segment of Matlab code in Comput-
er Listing 28.1 computes the unmodified 
periodogram for the CPFSK signal that 
was generated by PracSim and written 
to the file cpfsk_sig.txt. The Matlab 
code also plots the theoretical power spec-
tral density (PSD) from Eq. (MB 28.1) 
that has been pre-computed and stored in 
the file samspcdb.txt. The resulting plot 
is shown in Figure 28.1.

Math Box 28.1

Power Spectral Density for Continuous 

Phase Frequency Shift Keying (CPFSK)

For a peak frequency deviation of fd and a modulat-
ing signal consisting of rectangular pulses of width 
T, a CPFSK signal has a power spectral density given 
by [1] as

(MB 28.1)

where M is the number of different symbols in the 
signaling alphabet, and
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Exploring Periodogram Performance: 
Modulated Communications Signals

The noise-like variations in the periodogram 
plotted in Figure 28.1 are a consequence of using 
a single sample function to estimate the statis-
tics across the ensemble of all possible data se-
quences that could drive the CPFSK modulator. 
These variations can be reduced by using a modi-
fied periodogram technique, such as the Bartlett 
periodogram discussed in Note 30, that averages 
over multiple sample functions.

   



28-2 Notes on Digital Signal Processing

Figure 28.1 Periodogram result for CPFSK signal. The 
dashed trace is the theoretical PSD, and the solid trace is the 
corresponding unmodified periodogram.
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1. C. B. Rorabaugh, Simulating Wireless 

Communication Systems: Practical Models in 
C++, Prentice Hall, 2004.
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Note 29

Essential Facts

The modified periodogram is only slight-
ly more costly to implement than the 
unmodified periodogram discussed in 
Note 26. The additional cost is associated 
with applying a window function to the 
data prior to performing the DFT.

The response to a distinct sinusoidal com-
ponent has a wider main lobe response 
than for the case of the unmodified tech-
nique.

Side lobe leakage is reduced relative to the 
unmodified periodogram. The amount of 
reduction depends upon the particular 
window function that is used.

The absence of any averaging still leaves 
two major disadvantages:

º No mitigation of additive noise that 
may be present in the signal

º High variability in the result when 
the input signal is inherently random 
(such as a communications signal that 
has been modulated by a random data 
sequence)

he modified periodogram is an other-
wise unmodified periodogram in which 

a window function is applied to the signal 
before the DFT is performed:

(29.1)

where Y [m] is the DFT of y[n] = w[n]xN[n],
with w[n] being a window function and 
xN[n] being an N-point sample extracted 
from x[n] according to

(29.2)

The window function w[n] can be any one 
of the windows listed in Table 24.1. The factor 
U that appears in Eq. (29.1) is obtained as

(29.3)

This factor is needed in order for SM[m]
to be an asymptotically unbiased estimate of 
Px(e jω).
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Modified Periodogram

Figure 29.1 Periodogram result for Example 29.1 using a 
rectangular window
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Figure 29.4 Periodogram results for Example 29.2. The 
dotted trace is the theoretical PSD, and the solid trace is the 
corresponding unmodified periodogram.
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Figure 29.2 Periodogram result for Example 29.1 using a  
Hann window

0 0.1 0.2 0.3 0.4 0.5

0

Normalized frequency

R
e

at
ve

 P
S
D

 (
d
B
)

Figure 29.3 Periodogram result for Example 29.1 using the 
Hamming window
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Figure 29.5 Periodogram results for Example 29.2. The 
dotted trace is the theoretical PSD, and the solid trace is the 
corresponding modified periodogram using a Hann window.
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Figure 29.6 Periodogram results for Example 29.2. The dotted 
trace is the theoretical PSD, and the solid trace is the corresponding 
modified periodogram using a Hamming window.
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Note 30

Bartlett’s Periodogram

Case freq1 freq2 snr D P Figure
1 31.555/D 32.445/D 200 256 1 30.1
2 31.555/D 32.445/D -10 256 1 30.2
3 31.555/D 32.445/D -10 256 8 30.3

Table 30.1 Cases for Example 30.1

-
of sample 

sequences by dividing a long sequence of samples 
into P non-overlapping segments of D samples each. 
The individual sample spectra for these segments are 
then averaged to form the periodogram. There is an 
implicit assumption that the random process un-
der consideration is ergodic and that therefore this 
pseudoensemble is an adequate substitute for the un-
observable “true” ensemble. The steps for computing 
a Bartlett periodogram are listed in Recipe 30.1.
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Figure 30.1 Periodogram result for Example 30.1, Case 1
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Figure 30.2 Periodogram result for Example 30.1, Case 2
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Figure 30.3 Periodogram result for Example 30.1, Case 3
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Figure 30.4 Periodogram result for Example 30.2, with P = 1
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Figure 30.5 Periodogram result for Example 30.2, with P = 8
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Note 31

he Welch periodogram can be viewed 
as a generalization of the Bartlett 

periodogram. As with the Bartlett, the 
Welch periodogram is based on the no-
tion of creating a pseudoensemble of sam-
ple sequences by dividing a long sequence 
of samples into a set of shorter segments. 
However, these shorter segments can be 
allowed to overlap with their neighbors 
for some portion of their length. Further-
more, a data window, w[n], is applied to 
each segment before the segment’s sample 
spectrum is computed. The specific steps 
for computing a Welch periodogram are 
listed in Recipe 31.1.

Welch’s Periodogram

Case P
Overlap
(Samples) Window Figure

1 1 —  Rectangular 31.1
2 128 111 Rectangular 31.2
3 128 111 Hann 31.3
4 128 111 Hamming 31.4
5 128 0 Hamming 31.5

Table 31.1 Cases for Example 31.1

   



31-2 Notes on Digital Signal Processing

0 0.1 0.2 0.3 0.4 0.5

0

5

10

15

Normalized frequency

R
e

at
ve

 P
S
D

 (
d
B
)

Figure 31.1 Periodogram for Example 31.1, Case 1
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Figure 31.2 Periodogram for Example 31.1, Case 2
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Figure 31.3 Periodogram for Example 31.1, Case 3
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Case P Window Figure
1 1 Rectangular 31.6

2 1 Hamming 31.7
3 32 Rectangular 31.8
4 32 Hamming 31.9

Table 31.2 Cases for Example 31.2
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Figure 31.5 Periodogram for Example 31.1, Case 5
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Figure 31.4 Periodogram for Example 31.1, Case 4
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Figure 31.9 Periodogram for Example 31.2, Case 4
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Figure 31.8 Periodogram for Example 31.2, Case 3
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Figure 31.7 Periodogram for Example 31.2, Case 2
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Figure 31.6 Periodogram for Example 31.2, Case 1
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Note 32

he block diagram in Figure 32.1 represents the 
canonical form for an Mth order finite-impulse 

response (FIR) digital filter in that the diagram is a 
direct implementation of the filter’s defining differ-
ence equation:

(32.1)

Examination of the equation reveals that the fil-
ter’s output at time n is simply a weighted sum of 
the inputs at times n – M through n. The notation 
used in Eq. (32.1) is consistent with the notation 
used in the difference equation for an IIR filter, as 
presented in Note 49. Comparison of Eqs. (32.1) 
and (49.1) reveals that FIR filters can be viewed as a 
special case of IIR filters.

Equation (32.1) has the form of an (M+1)-point 
discrete convolution, with the coefficients bk taking 
the place of the unit-sample-response sequence, 
h[k]. Therefore, for an FIR filter, the unit sample re-
sponse, h[k], is defined by the coefficients bk , and 
Eq. (32.1) can be immediately rewritten as the con-
volution equation:

The filter’s system function, H(z), is obtained by 
taking the z transform of h[k]:

(32.2)

This system function has zeros but no finite 
poles, so in some contexts, FIR filters are referred 
to as all-zero filters. (See Note 44 for a discussion of 
the z transform.)
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Essential Facts

It is possible to design FIR filters that have exactly 
linear-phase response and which therefore do not 
introduce delay distortion into signals passing 
through the filter.

In order to achieve narrow transition bands, FIR 
filters often require many more coefficients than 
an IIR design of comparable performance.

Linear-phase FIR designs exhibit coefficient sym-
metry that can be exploited to reduce the compu-
tational burden for implementing the filter.

FIR filters are also referred to as all-zero filters or 
moving-average filters.
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Figure 32.1 Block diagram for FIR filter

Designing FIR Filters:  
Background and Options
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32.1 Implementation Structures

The block diagram in Figure 32.1 can be converted 
into the corresponding signal flow graph shown in 
Figure 32.2(a). The transposition theorem can be 
applied to this direct form structure to obtain the 
transposed direct form structure in Figure 32.2(b).

The system function from Eq. (32.2) can be ex-
pressed as a product of first- and second-order 
polynomials in the form

(32.3)

where

and
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Figure 32.2 Structures for an FIR filter: (a) direct form, (b) transposed direct form

Each real root of H(z) is the root of one of the 
first-order polynomials.

Each second-order polynomial has as its roots a 
complex-conjugate pair of complex roots from 
H(z).

Typical FIR filters usually have a single real root, 
and for real-input-real-output FIR filters, the com-
plex roots of H(z) always occur in conjugate pairs. 
Under these constraints, Eq. (32.3) can be rewritten 
for even M as

(32.4)

and for odd M as

(32.5)
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Figure 32.4 Cascade structure for an even-length FIR filter
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Figure 32.3 A second-order filter section

Type N h[n] symmetry

1 odd even
2 even even
3 odd odd
4 even odd

Table 32.1 Linear-phase FIR Filter Types

FIR filters can be implemented in a form that 
mimics the structure of Eq. (32.4) or (32.5). Each 
second-order polynomial has a complex-conjugate 
pair of roots and can be implemented as a second-
order filter section having real-valued coefficients. 
The second-order section, shown in Figure 32.3 
implements the polynomial

An even-order filter can be implemented as a 
cascade of these second-order sections, as shown 

b b z b zk k k0 1
1

2
2

, , ,+ +− −

in Figure 32.4. An odd-order filter can be imple-
mented as a cascade of second-order sections plus 
one first-order section, as shown in Figure 32.5.

The linear-phase FIR filters discussed in Note 33 
all exhibit symmetries in their unit-sample re-
sponses. These symmetries, which are listed in 
Table 32.1, can be exploited to design the efficient 
implementation structures shown in Figures 32.6 
through 32.9.
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This multiplication implements 
the center coefficient of the 

odd-length filter.

Figure 32.6 Direct-waveform structure for type 1 (odd length, even symmetry) linear-phase FIR filter
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Figure 32.5 Cascade structure for an odd-length FIR filter
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Figure 32.7 Direct-form structure for type 2 (even length, even symmetry) linear-phase FIR filter
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Figure 32.8 Direct-form structure for type 3 (odd length, odd symmetry) linear-phase FIR filter
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Figure 32.9 Direct-form structure for type 4 (even length, odd symmetry) linear-phase FIR filter
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Note 33

One of the advantages that FIR filters have over IIR filters is that it is 
relatively easy to design FIR filters that have constant group delay 
across all frequencies. Constant group delay is a desireable property 
for a filter to have because it means that a signal passing through 
the filter does not experience any delay distortion due to different 
frequency components being delayed by different amounts. Linear-
phase FIR filters are conventionally separated into four types de-
pending upon the four combinations of odd-even filter length and 
odd-even symmetry in the filter’s impulse response. This note exam-
ines these four types of linear-phase FIR filters and their properties.

When a filter has constant group delay (see 
Note 39, section 39.2), the filter’s phase 

response is a straight line in the phase-versus-
frequency plane—hence, such filters are usually 
called linear-phase filters. However, in mathemati-
cal terms, the phase is a linear function of frequency
only if the straight-line phase response passes 
through the origin of phase-versus-frequency plane 
and can therefore be expressed as

(33.1)

where the constant α is equal to both the filter’s 
group delay and phase delay. A straight-line phase 
response that does not pass through the origin can 
be expressed as

(33.2)

Even though Eq. (33.2) defines a straight line, 
the phase response is not a linear function of fre-
quency because the mathematical definition of lin-
earity is not satisfied, specifically

Filters that satisfy Eq. (33.2) have constant group 
delay, but for non-zero β, they do not have con-
stant phase delay. Such filters are properly called 
constant group delay filters, but historically they 

θ ω αω( ) = −

θ ω β αω( ) = −

θ ω θ ω β α ω ω
θ ω ω

( ) ( ) ( )
( )

1 2 1 2

1 2

2+ = − +
≠ +

Strategic Considerations

A linear-phase FIR filter has constant group delay, 
and therefore, delay distortion is not introduced 
into signals passing through the filter.

Most of the popular FIR design techniques yield 
constant-group-delay (CGD) designs.

A signal is delayed by (N – 1)/2 sample times in 
passing through a CGD filter of length N. To 
achieve narrow transition bands, N often needs 
to be rather large, leading to large signal delays. In 
applications where such delays are unacceptable, 
designs other than linear-phase FIRs should be 
considered. The best alternative in these cases is 
usually a minimum-phase FIR design.

A CGD filter can be classified as one of four types 
based on whether the filter’s impulse-response 
length is odd or even and whether the symmetry 
of this impulse response is odd or even. Type 1 
has odd length and even symmetry. Type 2 has 
even length and even symmetry. Type 3 has odd 
length and odd symmetry. Type 4 has even length 
and odd symmetry.

Because of the symmetry conditions that must 
be satisfied, Types 2 and 3 are not suitable for 
highpass or bandstop filters, while Types 3 and 
4 are not suitable for lowpass or bandstop filters. 
Because of a constant 90-degree phase shift in 
their phase responses, Types 3 and 4 are useful 
for implementing FIR differentiators and Hilbert 
transformers.

Linear-Phase FIR Filters

have been lumped together with filters that satisfy 
Eq. (33.1) and are informally referred to as linear-
phase filters. True linear-phase filters that have a 
phase response of the form given by Eq. (33.1) are 
categorized as either Type 1, if the length of their 
impulse response is odd, or as Type 2, if the length 
of their impulse response is even. The properties of 
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Type H(ω) A(ω)
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Table 33.1 Frequency Responses for Linear-Phase and Constant-Group-Delay FIR Filters

Type 1 and Type 2 filters are summarized in List 
33.1. Constant-group-delay filters that have a phase 
response of the form given by Eq. (33.2) are catego-
rized as either Type 3, if the length of their impulse 
response is odd, or as Type 4, if the length of their 
impulse response is even. The properties of Type 3 
and Type 4 filters are summarized in List 33.2.

Table 33.1 summarizes the frequency response 
properties for the four different types of linear-
phase FIR filters. Each filter’s frequency response, 
H(ω), is expressed as a product of a complex ex-
ponential phase term and a purely real-valued 
amplitude response, A(ω). The symmetries that 
the various A(ω) exhibit with respect to ω = 0 and 
ω = π limit the applications for which each filter 
type can be used. Because Types 3 and 4 must have 

A(0) = 0, they are not suitable for use as lowpass 
or bandstop filters where a nonzero response is 
needed at ω = 0. Similarly, because they must have 
A(π) = 0, Types 2 and 3 are not suitable for use as 
highpass or bandstop filters.

The period of 4π that Table 33.1 gives for the 
normalized-frequency amplitude response of fil-
ter types 2 and 4 is often the source of some con-
sternation. The very definition of “normalized 
frequency” was set up so that the baseband image 
of a digital filter’s response spans a normalized fre-
quency interval of ±0.5 cyc/samp or ±π rad/samp. 
The filter’s response is completely specified by its 
behavior in a frequency interval of 2π rad/sec, so 
how can it not be periodic in 2π radians? This issue 
is discussed at length in Note 34.
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Figure 33.2 Impulse responses for constant-group-delay 
FIR filters: (a) Type 3 filter has odd symmetry about 
n = (N – 1)/2; (b) Type 4 has odd symmetry about the 
abscissa, midway between n = (N – 2)/2 and n = N/2.
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Figure 33.1 Impulse responses for linear-phase FIR filters: (a) the coefficients for a Type 1 filter exhibit 
even symmetry about n = (N – 1)/2, and (b) the coefficients for a Type 2 filter exhibit even symmetry 
about the abscissa, midway between n = (N – 2)/2 and n = N/2.
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Note 34

Most filter design tools generate a filter’s frequency response in 
magnitude-phase form. When working with linear-phase filters, it 
is sometimes convenient to view the filters’ responses in amplitude-
phase form. This note explores some of the issues that arise in con-
verting a magnitude-phase form into an amplitude-phase form.

he magnitude-phase response can be con-
verted into the amplitude-phase response us-

ing Recipe 34.1. However, when this is done for 
Type 2 or Type 4 linear-phase FIR filters, the re-
sulting normalized-frequency amplitude response 
is periodic in 4π. This result appears to contradict 
the fact that the normalized-frequency response for 
any digital filter should be periodic in 2π. This note 
explores this apparent contradiction.
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Note 35

he window method of FIR design is based on 
the fact that the frequency response of a digital 

filter is periodic, and therefore can be represented 
as a Fourier series. A template for the desired fre-
quency response is selected and expanded as a 
Fourier series. This expansion is then truncated to 
finite-number terms by multiplying the sequence 
of Fourier series coefficients with a sequence of 

samples obtained from a time-limited window 
function. The resulting finite sequence of terms is 
then used as the coefficients for an FIR filter. This 
filter has a frequency response that approximates 
the original desired response. When a rectangu-
lar window is used to truncate the coefficient se-
quence, the window method is called the Fourier 
series method.

Designing FIR Filters:  
Basic Window Method
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Figure 35.1 Frequency response for ideal digital filters: (a) lowpass, (b) highpass, (c) bandpass, 
and (d) bandstop
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Note 36

-

 In order to exploit the adjustability of 
the Kaiser window most effectively, the filter design 
techniques presented in Note 35 must be modified, 

as shown for the lowpass case in Recipe 36.1. Com-
paring Recipe 35.1 and Recipe 36.1 reveals that 
Recipe 36.1 can be made generic with respect to 
band configuration if changes are made to steps 2, 
8, and 9 to obtain the result shown in Recipe 36.2.

Designing FIR Filters:  
Kaiser Window Method

   



36-2 Notes on Digital Signal Processing

   



36-3Designing FIR Filters: Kaiser Window Method 

References

1. D. Slepian and H. Pollak, “Prolate-Spheroidal 
Wave Functions, Fourier Analysis and 
Uncertainty—I,” Bell Syst. Tech. J., vol. 40, 
January 1961, pp. 43–64.

2. J. F. Kaiser, “Digital Filters,” Chapter 7 in System 
Analysis by Digital Computer, F. F. Kuo and 
J. F. Kaiser eds., John Wiley & Sons, 1966.

3. J. F. Kaiser, “Nonrecursive Digital Filter Design 
Using the I0‒ sinh Window Function,” Proc. 
1974 IEEE Int. Symp. on Circuits and Syst.,
April 22–25, 1974, pp. 20–23.

4. A. Antoniou, Digital Filters: Analysis and 
Design, McGraw-Hill, 1979.

5. f. j. harris, “On the Use of Windows for 
Harmonic Analysis with the Discrete Fourier 
Transform,” Proc. IEEE, vol. 66, no. 1, January 
1978, pp. 51–83.

   



37-1

Note 37

Parks-McClellan algorithm

Remez algorithm
Remez exchange  However, the recent 

trend has been to name the approach in 
honor of Thomas Parks and John McClellan, 
the two individuals who first publicized the 
utility of using the Remez exchange for de-
signing FIR filters.

An FIR approximation to some ideal de-
sired response typically exhibits error rip-
ples around the ideal response, as shown in 
Figure 37.1(a). The Parks-McClellan (PM) 
algorithm is based on the fact that, for a 
given filter length, the worst-case error is 
minimized when all of the error extrema 

are equal in magnitude, as shown in Figure 
37.1(b). Hence, a filter resulting from the 
PM algorithm is often referred to as an equi-
ripple filter.

The filter produced by the PM algorithm 
exhibits the following characteristics.

The passband has ripples that deviate 
from unity by ±δP .

The stopband has ripples that deviate from 
zero by ±δS .

The passband edge frequency, ωP, and 
stopband edge frequency, ωS, match the 
specified values.

The maximum approximation error is 
minimized.

Designing FIR Filters:  
Parks-McClellan Algorithm
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Note 38

he Laplace transform is a mathematical 
tool that is used primarily for analyz-

ing linear analog systems such as filters. This 
transform is of interest in digital signal pro-
cessing because analog filters having transfer 
functions defined in terms of Laplace trans-
forms are often used as the starting point in 
the design of digital IIR filters. The character-
ization of analog filters is discussed in Note 
39, and commonly used analog filter families 
are discussed in Notes 40 through 43.

The Laplace transform for a continuous-
time function, x(t), is usually denoted as 
X(s) or L[x(t)], and is defined by Eq. (MB 
38.1). The complex variable, s, is usually re-
ferred to as complex frequency, and can be 
put into the form σ +jω, where σ and ω are 
real variables, sometimes referred to as neper 
frequency and radian frequency, respectively.

Early interest in the Laplace transform 
was driven by the fact that if we take the La-
place transform of both sides of a differential 
equation in continuous time, t, we obtain an 
algebraic equation in complex frequency, s,
that can be more easily solved for the desired 
quantity. The behavior of a linear analog fil-
ter is described by a differential equation in 
t, and consequently, the Laplace transform 
plays a big role in the analysis and character-
ization of analog filters.

The inverse Laplace transform is defined 
by Eq. (MB 38.2). Evaluating the integrals in 
Eq. (MB 38.1) and, especially, Eq. (MB 38.2)
can be a major chore. However, in practice, 
direct evaluation of these integrals usually 
can be avoided by using some well-known 
transform pairs selected from Table 38.1, 
along with a number of transform properties 
selected from Table 38.2.

Math Box 38.1

Laplace Transform

(MB 38.1)

Inverse Transform

(MB 38.2)

where  C is a closed contour of integration 
chosen to include all singularities of X(s)

X s x t x t e dtst( ) ( ) ( )= { }= −

−∞

∞

∫L

x t X s
j

X s e dsst

C

( ) ( ) ( )= { }=− ∫L
1 1

2π

Laplace Transform
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# x(t) X(s)

1 1 
1
s

2 u1(t)
1
s

3 δ(t) 1

4 t 
1
s2

5 tn n
s

!
n+1

6 sin ωt
ω
ωs2 2+

7 cos ωt
s

s2 2+ω

8 e−at 1
s a+

9 e−at sin ωt
ω

ω( )s a+ +2 2

10 e−at cos ωt
s a

s a
+

+ +( )2 2ω

Table 38.1 Laplace Transform Pairs

# Property Time Function Transform
1 Homogeneity af t( ) aF s( )

2 Additivity f t g t( ) ( )+ F s G s( ) ( )+

3 Linearity af t bg t( ) ( )+ aF s bG s( ) ( )+

4 First derivative
d
dt

f t( ) sF s f( ) ( )− 0

5 Second derivative
d
dt

f t
2

2 ( ) s F s sf d
dt 

f2 ( ) ( ) ( )− −0 0

6 k th derivative
d
dt

f t
( )k

k ( ) s F s s fk n( ) ( )− − −

=

−

∑ k n

n

k
1 ( )

0

1

0

7 Integration f d( )τ τ
−∞∫
t F s

s s f d( ) ( )+ ( )−∞ =
∫

1 τ τ
t

t 0

f d( )τ τ
0

t

∫ F s
s
( )

8 Frequency shift e f t−at ( ) X s a( )+

9 Time shift right u t f t1( ) ( )− −τ τ e F s a− >τ s ( ) 0

10 Time shift left f t f t t( ), ( )+ = < <τ τ0 0for e F sτ s ( )

11 Convolution y t h t x d( ) ( ) ( )= −∫ τ τ τ
0

t
Y s H s X s( ) ( ) ( )=

Table 38.2 Laplace Transform Properties
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Note 39

Several of the most popular techniques for de-
signing IIR filters are based on transformations 

or mappings of analog prototype filters into digital 
filters. Often these prototype filters are classic filter 
designs such as Butterworth, Chebyshev, or elliptic. 
These classical filters are usually presented in the 
literature as normalized lowpass filters that must be 
denormalized and possibly transformed into other 
band configurations before they can be used as pro-
toypes for IIR filters. This note covers techniques 
that are used to characterize and frequency-scale 
classical analog filters.

Neglecting imperfections in the components 
used to implement them, classical analog filters are 
considered to be time-invariant, lumped-parameter 
linear systems. The fundamental properties of lin-
ear systems are defined in Math Box 39.1.

A linear system can be characterized by a differ-
ential equation, step response, impulse response, 
complex-frequency-domain system function, or 
transfer function: There are a number of useful and 
well known relationships between these various 
characterizations.

The time-domain input signal, x(t), and output 
signal, y(t), are related by a time-domain differ-
ential equation.

The complex-frequency-domain system function 
is obtained by performing the Laplace transform 
on the time-domain differential equation.

The impulse response, h(t ), can be obtained by 
solving the differential equation for x(t ) set equal 
to the unit impulse, δ(t ).

Characterizing Analog Filters

Key Concept 39.3

Using Analog Prototypes for IIR Filters

1z 1z

∑

b0 b1 bM
bM 1

y n[ ]

1z1z

∑

∑

aN a2 a1

x n[ ]

Select prototype
lowpass response.

Frequency scale
and band transform
as needed.

Map from s domain into 
z domain using impulse 
invariance or bilinear 
transformation.

1
0

1

( )

( )

( )

M

k
k
N

k
k

s z

H s H

s p

=

=

−
=

−

∏

∏

0

1

( )
1

M 
k

k
k

N 
k

k
k

b z

H z
a z

−

=

−

=

=
+

∑

∑

Numerator 
coefficients
are tap 
weights for
all zero section.

Denominator
coefficients
are tap
weights for
all pole section.
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Math Box 39.1

Properties of Linear Systems
A system, H, operating on an input signal, x(t ), to 
produce an output signal, y(t ), can be represented in 
mathematical notation as

A system is homogenous if multiplying the input by a 
constant gain, a, is equivalent to multiplying the out-
put by the same constant gain:

A system is additive if the output produced for the 
sum of two input signals is equal to the sum of the 
outputs produced for each input individually:

A system that is both homogenous and additive is 
called a linear system.

A system is said to be relaxed if it is not still respond-
ing to any previously applied input.

The characteristics of a time-invariant system do not 
change over time. A time-invariant system is also 
called a fixed system or a stationary system.

In a causal system, the output at time t can depend 
upon the input only at times t and prior.

y t H x t( ) ( )= ⎡⎣ ⎤⎦

H H ax t aH x t is homogeneous  ⇔ ⎡⎣ ⎤⎦ = ⎡⎣ ⎤⎦( ) ( )

H H x t x t H x t H x t is additive ⇔ +⎡⎣ ⎤⎦ = ⎡⎣ ⎤⎦ + ⎡⎣ ⎤⎦1 2 1 2( ) ( ) ( ) ( )

The step response, a(t ), can be obtained by solv-
ing the differential equation for x(t ) set equal to 
the unit step, u(t ).

The impulse response, h(t ), can be obtained by 
differentiating the step response, a(t ), with re-
spect to time.

The step response, a(t ), can be obtained by inte-
grating the impulse response, h(t ), with respect 
to time.

The transfer function can be obtained by solving 
the complex-frequency-domain system func-
tion for H(s ) = Y(s )/X(s ), where Y(s ) and X(s )
are, respectively, the Laplace transforms of y(t )
and x(t ).

The transfer function, H(s ), can be obtained 
as the Laplace transform of the impulse re-
sponse, h(t ).

39.1 Transfer Functions

The transfer function, H(s ), of a system is equal to 
the Laplace transform of the output signal divided 
by the Laplace transform of the corresponding in-
put signal:

The transfer function can be put into the form 

where P(s) and Q(s) are polynomials in s, and H0
is the gain of the filter at zero frequency. These 
polynomials can be expressed in sum-of-powers 
form to yield

Alternatively, the polynomials P(s) and Q(s) can 
be expressed in factored form to yield

H s
y t
x t

( )
( )
( )

=
{ }
{ }
L

L

H s H P s
Q s

( ) ( )
( )

= 0

H s H 
c s

d s
( ) = =

=

∑
∑

0
0

0

k
k

k

M

k
k

k

N

H s H 
s z

s p
( ) 

( )

( )
=

−

−
=

=

∏
∏

0
1

1

k
M

k

k
N

k
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1( )

( )
1

d
Slope ( )

d 
−=

Figure 39.1 Group delay response

1( )

( )

1

( )
Slope 

−=

Figure 39.2 Phase delay response

The roots z1, z2, . . . , zM of P(s ) are called 
zeros of the transfer function, and the roots 
p1, p2,  .  .  .  , pN of Q(s) are called poles of the 
transfer function. For the system represented 
by H(s ) to be stable and realizable in the 
form of a lumped parameter network, the 
conditions listed in Math Box 39.2 must be 
satisfied.

39.2 Magnitude, Phase, and  

Delay Responses

The steady-state frequency response of a lin-
ear system can be determined by evaluating 
the transfer function, H(s ), at s = jω:

where θ(ω) is the phase response given by

and |H(jω)| is the magnitude response given by

The group delay, τg(ω), is defined as

H j H s H j e( ) ( ) ( )ω ω θ ω= =
=s j

j
ω

( )

θ ω
ω
ω

( ) tan
Im ( )
Re ( )

=
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
−1 H j

H j

= ⎡⎣ ⎤⎦{ } + ⎡⎣ ⎤⎦{ }( )Re ( ) Im ( )
/

H j H j
2 2 1 2

H j H s H s
s j

( ) ( ) ( )ω
ω

= −⎡⎣ ⎤⎦ =

ω
θ ωg ( )= −d

d

Math Box 39.2

Conditions for H (s ) to be Stable and 

Realizable as a Lumped-Parameter 

Network

1. The coefficients, ck, in P(s) must be real.

2. The coefficients, dk, in Q(s) must be real 
and positive.

3. The polynomial, Q(s), must have a non-
zero term for each degree of s from highest 
to lowest unless all even-degree terms or all 
odd-degree terms are missing.

4. If H(s) is the voltage ratio or current ratio, 
the maximum degree of s in P(s) cannot 
exceed the maximum degree of s in Q(s).

5. If H(s) is a transfer impedance or a transfer 
admittance, then the maximum degree of s
in P(s) can exceed the maximum degree of 
s in Q(s) by no more than 1.
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where θ(ω) is the phase response. As shown in Fig-
ure 39.1, the group delay at a frequency ω1 is equal 
to the negative slope of a tangent to the phase re-
sponse curve at the point corresponding to ω1.
Group delay is also called envelope delay because 
when a modulated carrier is passed through the 
system, the modulated envelope is delayed by τg .
If the group delay is not consistent over the entire 
bandwidth of the signal, the envelope is distorted.

The phase delay, τp(ω), of a linear system is de-
fined as

As depicted in Figure 39.2, the phase delay at a fre-
quency ω1 is equal to the negative slope of a secant 
drawn from the origin to the phase response curve 
at the point corresponding to ω1. Phase delay is also 
called carrier delay because an unmodulated carrier 
at a frequency ω1 experiences a delay of τp(ω) when 
passing through the system.

39.3 Features of the Lowpass Response

The magnitude response for an analog lowpass fil-
ter will have one of the four general shapes shown in 
Figures 39.3 through 39.6. In each case, the filter re-
sponse can be divided into three segments—the pass-
band, the transition band, and the stopband. In some 
cases, the boundaries between these segments are de-
fined by distinct features in the filter’s magnitude re-
sponse, and sometimes the boundaries are based on 
an arbitrary line drawn on the magnitude response.

The monotonic magnitude response shown in 
Figure 39.3 is an example of where the inter-band 
boundaries are defined by the frequencies at which 
the response crosses arbitrary levels. In most cases, 
the passband is defined to end when the magni-
tude response is 3 dB below the response level at 
zero frequency. Sometimes a different attenuation 
level such as 1 dB or 6 dB is used to define the end 
of the passband. In monotonic responses, there is 
almost no agreement regarding the level that sets 
the boundary between the transition band and the 

θ ω
ωp
( )= −

0 
1

A0

A2

c

A0 2

2

Passband

Transition band

Stopband

Figure 39.3 Monotonic magnitude response of a lowpass filter
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0
c

1

A0 2

2

A0

A2

Passband

Transition band

Stopband

Figure 39.5 Magnitude response of a lowpass filter with 
ripples in the stopband

stopband. A Butterworth filter has a monotonic 
magnitude response.

The response shown in Figure 39.4 has ripples 
in the passband, and the troughs of the ripples 
define the level that defines the passband. The 
transition band begins when the response drops 
below the bottoms of the ripple troughs. If there 
is less than 3 dB of ripple in the passband, the 
3 dB attenuation point is occasionally used to de-
fine the end of the passband. As with the mono-
tonic response, there is no general agreement as 
to the level that should be used to define the be-
ginning of the stopband. A Chebyshev filter has a 
response with ripples in the passband.

The response shown in Figure 39.5 has ripples in 
the stopband, and the crests of the ripple define 
the level that defines the stopband. The transition 
band ends and the stopband begins when the re-
sponse first drops below the level corresponding 
to the ripple crests. The passband edge is defined 
as it is for the monotonic response. A Chebyshev 
Type 2 filter has a response with ripples in the 
stopband.

The response shown in Figure 39.6 has ripples 
in both the passband and the stopband. The 
troughs in the passband ripple set the level that 
defines the end of the passband, and the crests in 
the stopband ripple set the level that defines the 
beginning of the stopband. An elliptic filter has a 
response with ripples in both the passband and 
the stopband.

39.4 Passband Transformations

When working with the classical filter families pre-
sented in Notes 40 through 43, it is common prac-
tice to first select a lowpass prototype filter having 
the appropriate characteristics and then transform 
this prototype into a bandpass or bandstop con-
figuration as required. This note describes trans-
formations that can be used to convert lowpass 
into bandpass or lowpass into bandstop. Similar 
transformations exist for converting lowpass into 

0
c 1

A0

A1

A2

Passband

Transition band

Stopband

Figure 39.4 Magnitude response of a lowpass filter with ripples 
in the passband
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0 
1c

A0

A1

A2

Passband Stopband

Transition band

Figure 39.6 Magnitude response of a lowpass filter with ripples 
in both the passband and the stopband.

highpass, but highpass filters are rarely used in DSP 
applications.

Bandpass Transformation

Consider a lowpass filter normalized for 3-dB at-
tenuation at frequency ω0 and having a transfer 
function, H(S). There are a number of different 
transformations that can be used to map this proto-
type into a corresponding bandpass filter. The “con-
ventional” transformation is based on evaluating 
H(S) at

(39.1)

to obtain a filter with center frequency ω0, lower 
3-dB frequency ω1, and upper 3-dB frequency ω2.
The properties of this transformation are examined 
in detail in [1]. If the lowpass prototype has zeros 
on the imaginary axis at Si = ±jβ, each such pair 
transforms to two conjugate pairs of bandpass ze-
ros on the imaginary axis:

(39.2)

where γ is the relative bandwidth given by

γ ω ω
ω

= −2 1

0

In order to use a lowpass protoype filter having a 
real-valued pole at Si = −α, where α > 0, the frequen-
cies of the bandpass filter must satisfy

(39 3)

If Eq. (39.3) is satisfied, the real lowpass pole 
transforms to the complex-conjugate pair of 
bandpass poles:

(39.4)

Each complex-conjugate pair of lowpass poles, 
−α ± jβ, transforms to two complex-conjugate pairs 
of bandpass poles given by

(39 5)

where

Bandstop Transformation

Consider a lowpass filter normalized for 3-dB atten-
uation at frequency ω0 and having a transfer func-
tion, H(S). For mapping such a prototype into the 
corresponding bandstop filter, we can use a trans-
formation that is based upon evaluating H(S) at

α ω ω
ω< −
2 0

2 1

s b j a

s b j a

1 0

2 0

= − + ± −⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

= − − ± +⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

ω

ω

2 2

2 2 ⎦
⎥

B = −αβγ 2

2A = −
−( )

1 
4

2β

b A A B= − + +2 2

2

a A A B= + +2 2

2
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to obtain a bandstop filter with center frequency 
ω0, lower 3-dB frequency ω1, and upper 3-dB fre-
quency ω2. If the lowpass prototype has zeros on 
the imaginary axis at Si = ±jβ, each such pair trans-
forms to two conjugate pairs of bandstop zeros on 
the imaginary axis:

(39.6)

In order to use a lowpass prototype filter having a 
real-valued pole at Si = −α, where α > 0, the frequen-
cies of the bandpass filter must satisfy

(39.7)

If Eq.(39.7) is satisfied, this pole transforms to the 
complex-conjugate pair of bandstop poles:

(39.8)

Each complex-conjugate pair of lowpass poles 
−α ± jβ transforms to two complex-conjugate pairs 
of bandstop poles given by

where

1
2 2

s j ω ω γω
β β

⎡ ⎤⎛ ⎞−⎢ ⎥= ± ± + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

2
2 1

0

1
2 2

s jω ω γω
α α
− ⎛ ⎞= ± − ⎜ ⎟⎝ ⎠

2

0

b A A B= − + +2 2

2
a A A B= + +2 2

2
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Note 40

owpass Butterworth filters are designed 
to have a magnitude response that is as 

flat as possible at low frequencies, and that 
decreases monotonically with increasing 
frequency, as shown in Figure 40.1. A low-
pass Butterworth filter has a transfer func-
tion of the form shown in Math Box 40.1. 
Examination of this transfer function re-
veals that a Butterworth lowpass filter is 
an all-pole design that is completely speci-
fied by just two parameters—the number of 
poles, n, and the 3-dB cutoff frequency, ω3dB.
The number of poles is usually set to acheive 
a desired amount of attenuation, ASB, at and 
above some specified stopband-edge fre-
quency, ωSB. This frequency and the amount 
of stopband attenuation are not direct speci-
fications on the filter—they are only indirect 
specifications that are used to determine the 
minimum required number of poles using 
Eq. (MB 40.2).

Butterworth Filters

Math Box 40.1

Characteristics of 

Lowpass Butterworth Filters

Transfer Function

(MB 40.1)

where

Minimum Order

(MB 40 2)

where

ASB = minimum stopband attenuation
ω3dB = frequency at which passband response is 

3 dB below peak
ωSB = frequency that defines the start of the stop-

band

H s
s pk

( )
( )

=
−∏

ω
ω

3dB

3db

n

k=

n
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p j k n
n
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+ −⎛
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= + −⎛
⎝⎜

⎞
⎠⎟
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Figure 40.1 Magnitude response showing critical features and 
parameters used to specify a Butterworth filter: (a) passband, (b) 
stopband, (c) transition band
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The poles for a Butterworth LPF always 
lie at equally spaced points on the left half 
of the unit circle in the s plane, as shown in 
Figure 40.2. Odd-order filters have one real 
pole at s = −1, and all remaining poles occur 
in complex-conjugate pairs. The poles for 
an even-order filter all occur in complex-
conjugate pairs. If the denominator factors 
corresponding to complex-conjugate pairs 
in Eq. (MB 40.1) are multiplied together, the 
transfer function’s denominator can be ex-
pressed as a product of quadratic terms hav-
ing all real coefficients:

(40.1)

where

40.1 Frequency Response

Figure 40.3 shows the magnitude, phase, and 
group delay responses for lowpass Butter-
worth filters of orders 1 through 6.

40.2 Prototype Considerations

Bilinear transformation (see Note 51) dis-
torts, or “warps,” the frequency axis in map-
ping an analog filter into the corrresponding 
IIR digital filter. Typically, critical frequen-
cies used to specify the filter’s performance 
are “pre-warped” to compensate for the 
warping that occurs in the bilinear transfor-
mation. As indicated in Design Procedure 
40.1, if a Butterworth filter is to be used as 
a prototype for the bilinear transformation, 
it is important to do the prewarping of ω3dB
and ωSB before these frequencies are used to 
determine the necessary filter order.

3dB
- 2 2

3db 3db( 1) ( )ks s b s
ω

ω ω
=

+ + +∏
n

n /
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( 1) 2

1
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Figure 40.2 Pole locations for lowpass Butterworth filters: (a) fourth-order and (b) fifth-order
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Figure 40.3 Frequency response plots for lowpass Butterworth filters of orders 1 through 6
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Note 41

Chebyshev filters comprise one of the analog filter fami-
lies that are commonly used as prototypes for IIR digital 
filters designed using either the impulse invariance method
(Note 50) or the bilinear transformation (Note 51). 

Alowpass Chebyshev filter is obtained 
as an equiripple approximation to the 

response of an ideal lowpass filter. This ap-
proximation yields a filter having a squared 
magnitude response given by

where
є 2 = 10r/20 −1

r = passband ripple
Tn(ω) = Chebyshev polynomial of 

order n
The first eleven Chebyshev polynomials are 
listed in Table 41.1. The table can be ex-
tended using the recurrence relation:

Tn+1(ω) = 2ωTn(w)−Tn−1(ω)

2

2 2
1( )

1 ( )n

H j
T

=
+

ω
ωє

Chebyshev Filters

Math Box 41.1

Chebyshev Transfer Function

The transfer function for an nth order Cheby-
shev LPF normalized for a ripple bandwidth 
equal to 1 is given by

(MB 41.1)

where
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n Tn(ω)
0 1
1 ω
2 2ω2 − 1
3 4ω3 − 3ω
4 8ω4 − 8ω2 + 1
5 16ω5 − 20ω3 + 5ω
6 32ω6 − 48ω4 + 18ω2 − 1
7 64ω7 − 112ω5 + 56ω3 − 7ω
8 128ω8 − 256ω6 + 160ω4 − 32ω2 + 1
9 256ω9 − 576ω7 + 432ω5 − 120ω3 + 9ω

10 512ω10 − 128ω8 + 1120ω6 − 400ω4 + 50ω2 − 1

Table 41.1 Chebyshev Polynomials
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Figure 41.1 Magnitude response of a fifth-order Chebyshev 
filter. Features are: (a) ripple limits, (b) ripple bandwidth, (c) 
3-dB bandwidth, (d) transition band, (e) stopband, and (f) 
stopband attenuation.

Figure 41.1 shows the important features 
in the magnitude response for a Chebyshev 
lowpass filter. The response is most often 
presented in a form where the response is 
normalized to have a ripple bandwidth, ωr ,
equal to 1, because this form involves sim-
pler calculations. However, comparison with 
other filter families is often easier when the 
magnitude response is normalized to have 
the 3-dB frequency ω3dB equal to 1. Design 
Procedure 41.1 can be used to renormalize 
a filter design from ωr = 1 to ω3dB = 1. The 
transfer function for an nth order Cheby-
shev LPF normalized for ωr = 1 is given in 
Math Box 41.1.

There are several different equations that 
can be used to estimate the minimum num-
ber of poles that are required for a Chebyshev 
lowpass filter to achieve a desired set of spec-
ifications. Two of the most commonly cited 
equations are from Rabiner and Gold [1]:

(41.1)n
g g

=
+ −( )
+ −( )

l og

log

2 1

1SB SB
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Figure 41.2 Frequency response plots for lowpass Chebyshev filters of orders 1 through 6

where

and from Van Valkenberg [2]:

(41.2)

These two equations provide similar, but not identi-
cal, results. It’s worth noting that the Matlab help 
file for the function cheb1ord() cites Rabiner and 
Gold, but Eq. (41.2) is used for the actual imple-
mentation contained in cheb1ord.m.

Figure 41.2 shows the magnitude and phase re-
sponses for lowpass Chebyshev filters of orders 1 
through 6.
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Note 42

Elliptic filters have ripples in both the pass-
band and the stopband, and generally 

have better selectivity than Chebyshev filters 
of comparable orders. Determining the trans-
fer function is somewhat more complicated 
for an elliptical filter than it is for Butterworth 
or Chebyshev filters. The process begins with 
the specification of four parameters, which 
are depicted in Figure 42.1.

Ap = maximum passband loss, dB
As = minimum stopband loss, dB
ωp = passband cutoff frequency
ωs = stopband cutoff frequency

The minimum filter order needed to achieve 
the performance specified by these param-
eters is determined using Design Procedure 
42.1. Once the order, n, is determined, the 
actual minimum stopband loss can be com-
puted as

(42.1)A 
qs = + −⎛

⎝
⎜

⎞

⎠
⎟10 1 10 1

16
log

A /

n

p 10

Elliptic Filters

0 
P

AP

S

AS

Figure 42.1 Magnitude response showing parameters used to 
specify an elliptical filter.

where q is the modular constant computed 
in step 4 of Design Procedure 42.1.

As with other filter types, the design of 
an elliptical filter starts with a frequency-
normalized prototype. However, because 
the passband edge frequency and stopband 
edge frequency can be specified indepen-
dently, the normalization for an elliptical fil-
ter must be based on something other than 
3-dB bandwidth. Specifically, the prototype 
is normalized such that

(42.2)

where Ωp and Ωs are the normalized pass-
band edge frequency and the normalized 
stopband edge frequency, respectively. These 
frequencies are related to the correspond-
ing desired frequencies, ωp and ωs, by a 
frequency-scaling factor, α, such that

(42.3)

Ω Ωp s =1

Ω Ωp
p

s
s= =

ω
α

ω
α
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We can solve for the required value of α by 
substituting Eq. (42.3) into Eq. (42.2) to 
obtain

After the parameters k, q, and u are deter-
mined using Design Procedure 42.1, the corre-
sponding transfer function can be determined 

using Design Procedure 42.2. If a specification 
in terms of pole and zero locations is desired, 
the poles can be obtained by solving for the 
roots of

(42.4)

and the zeros can be obtained by solving for 
the roots of

ω ω
α

ω

p s

p s

2 =

=

1
s b s c2 0+ + =i i

s a2 0+ =i
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Note 43

essel filters are designed to have maxi-
mally flat group-delay characteristics. 

Consequently, there are no oscillations in 
the step response, thus making Bessel filters 
attractive for applications that call for low 
levels of pulse distortion. The transfer func-
tion of an nth-order lowpass Bessel filter is 
given by

(43.1)

where qn(s) is the polynomial of degree n
given by

The polynomial qn(s) can be obtained from 
qn-1(s) and qn-2(s) using the recursion

Table 43.1 lists qn(s) for n = 2 through n = 8.
Equation (43.1) does not provide an ex-

plicit expression for the poles of a Bessel 
filter. The pole locations are found by using 

H s b
q sn

( ) 
( )

= 0

q s b s

b n k
k n k

n k
k

k

n

k n k

( )

( )!
!( )!

=

= −
−

=

−

∑
1

2
2

q s n q s qn n n( ) ( )= − +− −2 1 1
2

2

Bessel Filters

n qn(s)

2 s2 + 3s + 3
3 s3 + 6s2 + 15s + 15
4 s4 + 10s3 + 45s2 + 105s + 105
5 s5 + 15s4 + 105s3 + 420s2 + 945s + 945
6 s6 + 21s5 + 210s4 + 1260s3 + 4725s2 + 10,395s + 10,395
7 s7 + 28s6 + 378s5 + 3150s4 + 17,325s3 + 62,370s2 + 135,135s + 135,135
8 s8 + 36s7 + 630s6 + 6930s5 + 9450s4 + 270,270s3 + 945,945s2 + 2,027,025s + 2,027,025

Table 43.1 Denominator Polynomials for Transfer Functions of 
Bessel Filters Normalized to Have Unit Delay at ω = 0

numerical methods to solve for the roots of 
qn(s) = 0.

The filters defined by Eq. (43.1) are nor-
malized to have unit delay at ω = 1. The 
poles, pk , and denominator coefficients, bk ,
can be renormalized for a 3-dB frequency of 
ω = 1 using

where the value of A is obtained from Table 
43.2. Odd-order filters have one real pole, 
and all remaining poles occur in complex-
conjugate pairs. The poles for an even-order 
filter all occur in complex-conjugate pairs. If 
the denominator factors corresponding to 
complex-conjugate pairs are multiplied to-
gether, the denominator can be expressed as 
a product of quadratic terms having all real 
coefficients.

43.1 Frequency Response

Figure 43.1 shows the magnitude, phase, and 
group-delay responses for lowpass Bessel fil-
ters of orders 2 through 6.

′ = ′ = −p Ap b A bk k k
n k

k
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Figure 43.1 Frequency response plots for lowpass Bessel filters of orders 2 through 6

n A
2 1.35994
3 1.74993
4 2.13011
5 2.42003
6 2.69996
7 2.95000
8 3.17002

Table 43.2 Factors for Renormalizing 
Bessel Filter Poles from Unit Delay at 
ω = 0 to 3-dB Attenuation at ω = 1

   



44-1

Note 44

The z transform is a mathematical tool that plays 
a role in the analysis of discrete-time systems 

similar to the role played by the Laplace transform 
in the analysis of lumped-parameter continuous-
time systems. It has a place in the theoretical ex-
ploration of all linear shift-invariant discrete-time
systems, but in practice, the z transform (and its 
relationship to the Laplace transform) is most com-
monly used in the design of IIR filters. In fact, some 
authors, such as Lyons [1], discuss the z transform
only in conjunction with IIR filter design.

Sometimes, pole and zero locations (which are 
features obtained from the z transform) are used 
as visualization aids to provide insight into the be-
havior of adaptive filters as their coefficients evolve 
over time or converge to different values as a func-
tion of SNR. An example of such use is provided by 
Kay in [2].

The z transform can be defined in either a one-
sided (unilateral) or two-sided (bilateral) form:

(44.1)

(44.2)

where z is a continuous complex-valued variable. 
Different authors follow different conventions with 
respect to which form they consider to be the de-
fault when “one-sided” or “two-sided” is not specifi-
cally called out. The two-sided transform is the form 
most often used in DSP applications. When x[n] is a 
causal sequence, the two forms are equivalent.

44.1 Region of Convergence

The series represented by Eq. (44.2) does not always 
converge for every possible value of z. The portion 
of the z plane for which the series does converge 

X z x n z n

n
( ) [ ]= −

=

∞

∑
0

(one-sided)

X z x n z n

n
( ) [ ]= −

=−∞

∞

∑ (two-sided)

Key Concept 44.4

Role of the z Transform in 

Digital Filter Analysis

The z transform of a digital filter’s unit 
sample response is called the system func-
tion and is denoted H(z). In general, a lin-
ear shift-invariant digital filter has a system 
function that is a ratio of polynomials in z:

H(z) = P(z)/Q(z)

Roots of these polynomials are often plot-
ted in the complex z plane to help visual-
ize various aspects of the filter’s behavior. 
Roots of the numerator are called ze-
ros, and are typically plotted using small 
circles (°). Roots of the denominator are 
called poles, and are typically plotted using 
small multiplication signs (×).

Im

Re

1

1

The z Transform
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is called the region of convergence (ROC). 
Whether or not the series converges depends 
upon the magnitude of z rather than on the 
specific complex value of z. Therefore, ROC 
boundaries are always defined by circles cen-
tered at the origin of the z plane. There are four 
major configurations for the ROC, as depicted 
in Figure 44.1. Depending upon whether z=0
and |z| = ∞ are included in the ROC, there are 
a total of nine specific variations on the four 
basic configurations:

entire z plane
entire z plane except for z = 0
entire z plane except for |z| = ∞
entire z plane except for z = 0 and |z| = ∞
interior of circle
interior of circle except for z = 0
exterior of circle
exterior of circle except for |z| = ∞
annulus

As summarized in Table 44.1, the ROC for 
any particular z transform depends upon the 
characteristics of the sequence x[n].

x[n] ROC for X(z)
Single sample at n = 0 Entire z plane
Finite-duration, causal, 
x[n] = 0 for all n < 0,
x[n] ≠ 0 for some n > 0

z plane except for z = 0

Finite-duration,   
x[n] ≠ 0 for some n < 0,
x[n] = 0 for all n > 0

z plane except for |z| = ∞

Finite-duration,  
x[n] ≠ 0 for some n < 0,
x[n] ≠ 0 for some n > 0

z plane except for z = 0 and 
|z| = ∞

Right-sided,  
x[n] = 0 for all n < 0 Outward from outermost pole

Right-sided,  
x[n] ≠ 0 for some n < 0

Outward from outermost pole, 
|z| = ∞ is excluded

Left-sided,  
x[n] = 0 for all n > 0 Inward from innermost pole

Left-sided,  
x[n] ≠ 0 for some n > 0

Inward from innermost pole,  
z = 0 is excluded

Two-sided Annulus

Table 44.1 ROC configurations corresponding to various con-
straints placed on the sequence x[n]

Figure 44.1 Possible configurations for region of covergence: (a) the entire z-plane, (b) exterior of a circle, (c) interior of a circle, and 
(d) an annulus

Im

Re

(a)

Im

Re

(b)

Im

Re

(c)

Im

Re

(d)
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x[n] X(z) ROC

1 |z| > 1

u[n] |z| > 1

δ[n] 1 Entire z plane

an |z| > |a|

nan |z| > |a|

n2an |z| > |a|

n3an |z| > |a|

(n+1)an |z| > |a|

|z| > |a|

|z| > |a|

|z| > |a|

nT |z| > 1

(nT )2 |z| > 1

(nT )3 |z| > 1

e a/z 0
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Table 44.3 Unilateral z-Transform Pairs

x[n] X(z) ROC
δ[n] 1 All z
δ[n − m], m > 0 z−m z ≠ 0
δ[n − m], m < 0 z−m |z| ≠ ∞

u[n] |z| > 1

−u[−n −1] |z| < 1

−anu[−n −1] |z| > |a|

−nanu[−n −1] |z| < |a|

z
z −1

z
z −1

z
z a−

az
z a( )− 2

Table 44.2 Bilateral z-Transform Pairs
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Property Time Sequence Transform ROC

x[n] X(z) Rx

y[n] Y(z) Ry

Homogeneity ax[n] aX(z) Rx

Additivity x[n] + y[n] X(z) + Y(z) Contains rx ∩ ry, but may be larger

Linearity ax[n] + by[n] aX(z) + bY(z) Contains rx ∩ ry, but may be larger

Time shift x[n − m] z− mX(z) Rx

Time reversal x[−n] X(z −1) 1/Rx

Frequency shift anx[n] |a| Rx

Convolution x[n] ⊗ y[n] X(z)Y(z) Contains Rx ∩ Ry, but may be larger

Conjugation x∗[n] X∗(z∗) Rx

Differentiation 
of transform nx[n] Rx

X z
a

⎛
⎝⎜

⎞
⎠⎟

−z d
dz 

X z( )

Table 44.4 Properties of the z Transform
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Note 45

Key Concept 45.1

Using the Inverse z Transform to Compute the IIR Sample Response 

Many IIR filters are designed directly in the z domain, and the inverse z transform must be used to obtain the system’s 
unit sample response.

Im

Re

1
1 

( )
1

nk
k k

k

p
p z

Each binomial factor in H(z) denominator
becomes a separate denominator in 
the sum of fractions

Each
denominator
root is a pole

After finding each
take inverse transform
of each fraction 

k

1 2
0 1 1 1

1 21 1 1
N

N

c 
p z p z p z

Unit-sample response includes
sum of inverse transforms for
all N fractions

1

N 
( )n

k k
k

p0[ ] [ ]h n c n

1 
0 c 0 ( )c n

0

1 1 1
1 2

( )
1 1 1

M 
k

k
k

N

b z
H z

p z p z p z

Constant term in H(z)
becomes an impulse 
in h[n]

Poles & zeros 
in the z plane

Unit
sample

response

h[n]

n

The sum-of-fractions expansion shown above for H(z) assumes that the numerator’s degree, M, equals the 
denominator’s degree, N. When M < N, the c0 term vanishes, and when M > N, there are additional non-
fractional terms of the form ckz−k for k = 1 through k = M − N.

Often IIR filters are designed in the z domain, and in order 
to obtain the filter’s unit sample response, it is necessary to 
compute the inverse z transform of the filter’s system func-
tion. This note provides an overview of the partial fraction 
expansion (PFE) technique that can be used to compute the 
inverse z transform. Notes 46 through 48 cover the specifics of 
how the PFE is applied to system functions exhibiting various 
properties, as detailed in the “Related Notes” sidebar on the 
next page.

Computing the Inverse z Transform 
Using the Partial Fraction Expansion

here are a handful of fundamentally 
different approaches for inverting the 

z transform, and each of these approaches 
can have several different minor variations. 
Most of the popular approaches are based on 
the idea that a function of interest in the z
domain can be broken down into a sum of 
simpler constituent functions that can be 
easily inverted by using a table of common z
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transform pairs. Because the transform and 
its inverse are linear, the inverses of the con-
stituent functions can be summed to obtain 
the inverse transform for the original func-
tion of interest. 

For a linear shift-invariant discrete-time 
system, the system’s z domain system func-
tion is the z transform of the system’s unit 
sample response. Many IIR filters are de-
signed in the z domain, and in order to ob-
tain the system’s unit sample response, it is 
necessary to compute the inverse z trans-
form of the filter’s system function. Consider 
the system function given by

(45.1)

where A(z) and B(z) are polynomials in 
powers of z-1

(45.2)

(45.3)

In discussing IIR filters, many texts show the 
IIR system function as

(45.4)

As shown in Note 61, this is the natural form 
of the system function when it is derived 
from the filter’s difference equation. How-
ever, in discussions about computing the 
inverse z transform, it is notationally conve-
nient to use the denominator form defined 
by Eqs. (45.1) and (45.3). Despite the change, 
the constant term, a0, should always equal 
unity for an IIR filter. As shown in Note 61, 

H z B z
A z

( ) ( )
( )

=

B z b zk
k

k

M

( ) = −

=
∑

0

A z a zk
k

k

N

( ) = −

=
∑

0

H z
b z

a z

k
k

k

M

k
k

k

N( ) =
−

−

=

−

=

∑

∑
0

1
1

the constant term corresponds to the filter’s 
“current” output in the difference equation 
where a value other than unity makes no 
sense. However, be aware that some texts 
confuse matters by offering the advice that if 
the constant term is some value, a0 ≠ 1, then
all of the coefficients in the denominator 
should be divided by a0 so that the constant 
term becomes a0 ∕a0 = 1.

The denominator polynomial from Eq. 
(45.1) can be recast as a product of binomials:

(45.5)

where the values pk are known as poles of the 
system function. If none of the N pole values 
are repeated, then the system function is said 

A z p zk
k

N

( ) = −( )−

=
∏ 1 1

1
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to have simple poles, and H(z) can be ex-
pressed as a sum of less complicated ratios as

(45.6)

Equation (45.6) is known as the partial 
fraction expansion (PFE) for H(z). The in-
verse z transforms for each term on the 

right-hand side of this PFE can be computed 
using

(45 7)

Because of a relationship between the 
PFE and Cauchy’s residue theorem, the co-
efficients βk are sometimes referred to as 
residues.

1 1 1p z p z p z
1 2

1 1 1
1 2

( ) N

N
H z β β β 1

1 ( )
1

nk 
k k

k
      pZ

p z
β β
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Note 46

This note covers the form of the partial fraction expansion 
that can be used to compute the inverse z transform of sys-
tem functions that have no repeated poles and in which the 
degree of the denominator polynomial exceeds the degree of 
the numerator polynomial. The method is based on the basic 
strategy discussed in Note 45. Alternative approaches for use 
on system functions that do not meet these constraints are 
covered in Notes 47 through 49. 

he form of the partial fraction expansion 
discussed in this note is suitable for use 

on system functions of the form

(46.1)

where M < N, thus making H(z) a proper ra-
tional function.

The expansion can be formed directly by 
using each binomial factor from the denomi-
nator of Eq. (46.1) as a denominator for one 
of the fractional terms in the expansion:

(46.2)

When a common denominator is gener-
ated to perform the additions indicated in 
Eq. (46.2), the resulting denominator al-
ways equals the denominator in Eq. (46.1). 
Therefore, we can simplify the notation by 
just retaining the numerator that results 
after the common denominator has been 

p p pN1 2≠ ≠ ≠

H z b b z b z b z
p z p z p z

M
M

N

( ) = + + + +
−( ) −( ) −( )

− − −

− − −
0 1

1
2

2

1
1

2
1 11 1 1

H z 
p z p z p z

N

N

( ) =
−

+
−

+ +
−− − −

β β β1

1
1

2

2
1 11 1 1

Inverse z Transform via 
Partial Fraction Expansion:  
Case 1: All Poles Distinct with M < N in System Function
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implemented to accomplish the additions. This 
“numerators-only” equation has the form

(46.3)

Typically, the values for all the poles, pk, are 
known, so straightforward algebraic manipulations 
can be used to put the right-hand side of Eq. (46.3) 
into a form in which the coefficient for each power 
of z-1 is obtained as a function of the unknown co-
efficients, βnk:

(46.4)

Coefficients for like powers of z must have the 
same value in the LHS of Eq. (46.3) and in the 
RHS of Eq.(46.4) so we can construct the system of 
equations

(46.5)

From the form of the RHS of Eq. (46.3), we know 
that each function, fm(β0, β1, . . . , βN), is a linear 
function of the coefficients, βn , so it is a straightfor-
ward process to solve this system of equations for 
the unknown values of βn .

Once the values for the βn are found, the filter’s 
unit sample response can be written as

(46.6)
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This approach for computing the inverse z trans-
form is summarized in Design Procedure 46.1, and 
is demonstrated in Example 46.1.

continues
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Note 47

This note presents a procedure for computing the inverse z
transform for system functions in which all poles are distinct 
and the degree, M, of the numerator equals or exceeds the 
degree, N, of the denominator. The procedure uses polyno-
mial division to convert the improper rational function, H(z),
into the sum of a polynomial, C(z), and a proper rational 
function, H

R
(z).

n order for a rational function to be ex-
panded as a sum of partial-fraction terms, 

the degree of the numerator must be less 
than the degree of the denominator. In cases 
where M ≥ N, the system function must be 
restructured as the sum of a polynomial, 
C(z), and a proper rational function, HR(z):

(47.1)

where

This restructuring can be implemented 
by solving directly for the values of the coef-
ficients in C(z) and R(z) using polynomial 
division, and then forming a partial fraction 
expansion for just HR(z) instead of for H(z). 
This approach is detailed in Design Procedure 
47.1 and is demonstrated in Example 47.1. 
Polynomial division is detailed in Math Box 
47.1 on the next page.

H z C z H zR( ) ( ) ( )= +

C z c zk
k

k

M N

( ) = −

=

−

∑
0

H z R z
A zR ( ) ( )

( )
=

Inverse z Transform via 
Partial Fraction Expansion 
Case 2: All Poles Distinct with M ≥ N in System Function (Explicit Approach)
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Math Box 47.1

Polynomial Division

Consider the system function given by

For purposes of computing the inverse z transform, the 
goal of polynomial division is to eliminate from the nu-
merator terms involving z-k for k ≥ N, where N is the most 
negative degree of z in the denominator. This goal is best 
accomplished by reversing the order of the polynomials 
before beginning the division:

Begin by dividing the dividend’s first term, —12z-4, by the di-
visior’s first term, —8z¯3. The result is 3

2
1z− , so we multiply 

the divisor by 3
2

1z− and subtract the result from the dividend:

We can call the result of this subtraction the working remain-
der. The terms appearing above the division symbol com-
prise the quotient. Next, divide the first term (—12z-3) of the 
working remainder by the first term (—8z-3) of the divisor. 
The result is ³⁄2. Therefore, we multiply the divisor by ³⁄2 and 
subtract the result from the working remainder to obtain a 
new working remainder:

The process stops when the highest power of z-1 in the di-
visor is greater than the highest power of z-1 in the work-
ing remainder. The working remainder when the process 
stops becomes the new numerator in the fractional part of 
the system function. The quotient becomes the new non-
fractional C(z), and we can rewrite the system function as
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z z z z
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Note 48

This note presents a procedure for computing the inverse 
z transform for system functions in which all poles are 
distinct, and the degree, M, of the numerator equals or 
exceeds the degree, N, of the denominator. The approach 
presented herein is an alternative to the approach pre-
sented in Note 47.

n order for a rational function to be 
expanded as a sum of partial-fraction 

terms, the degree of the numerator must 
be less than the degree of the denomi-
nator. In cases where M ≥ N, the system 
function must be restructured as the sum 
of a polynomial, C(z), and a proper ratio-
nal function, HR(z):

(48.1)

where

This restructuring can be exploited by 
writing an expression for H(z) using sym-
bolic coefficients for ck and βk and then 
using a coefficient-matching technique 
to solve for ck and βk values without ever 
explicitly determining the coefficients for 
R(z). This approach is detailed in Design 
Procedure 48.1 and is demonstrated in 
Example 48.1.

H z C z H zR( ) ( ) ( )= +

C z c zk
k

k

M N

( ) = −

=

−

∑
0

H z R z
A zR ( ) ( )

( )
=

Inverse z Transform via 
Partial Fraction Expansion 
Case 3: All Poles Distinct with M ≥ N in System Function (Implicit Approach)
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Note 49

he block diagram in Figure 49.1 repre-
sents the direct form implementation 

for an infinite impulse response (IIR) digital 
filter. The filter consists of an all-zero sec-
tion followed by an all-pole section. At time 
n, the all-zero section computes a weighted 
sum of the inputs from times n − M through 
n  To this result, the all-pole section adds a 
weighted sum of the previous outputs from 
times n − N through n − 1  The usual mathe-
matical characterizations for an IIR filter are 
summarized in Math Boxes 49.1 and 49.2.

The difference equation for the filter’s out-
put, y[n], can be written by inspecting the 
block diagram:

(49.1)

The system function, H(z), can be obtained 
by taking the z transform of each term in 
the difference equation, factoring out X(z)
and Y(z), and then forming H(z) as the ratio 
Y(z)/X(z):

(49.2)

(49.3)

(49.4)

The unit sample response, h[n], can then be 
obtained as the inverse z transform of H(z).
The partial fraction expansion described in 
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Designing IIR Filters:  
Background and Options
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Figure 49.1 Block diagram for IIR filter
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Note 46 is the usual choice for computing 
this inverse transform.

The difference equation for an IIR filter 
often appears in the alternate form

(49.5)

which often proves to be more convenient for 
subsequent mathematical manipulation. Be-
cause Eq. (49.1) is explicitly solved for y[n],
it would be tempting to refer to Eq.  (49.1) 
as the explicit form and to Eq. (49.5) as the 
implicit form for the IIR difference equation. 
Explicit versus implicit distinctions are wide-
spread in the study of differential equations, 
but as used there, it is always possible to con-
vert between explicit form and implicit form 
through the use of differentiation, integra-
tion, and algebraic manipulation. While Eqs. 
(49.1) and (49.5) are equivalent in their abil-
ity to represent an IIR filter adequately, it is 
not possible to convert from one to the other 
without redefining the sense of ak. Solving 
Eq. (49.5) for y[n] yields

To make y[n] from this equation equal to 
the y[n] from Eq. (49.1), we would need to 
set a0= 1 and reverse the sign of ak for k = 1,
2,  .  .  .  , N. Therefore, the use of explicit and 
implicit to distinguish between Eqs. (49.1) 
and (49.5) is not appropriate. In this book, 
the form of Eq. (49.1) is described as fol-
lowing the systems convention, and the form 
of Eq. (49.5) is described as following the 
mathematical convention.
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49.1 Implementation Structures

The block diagram of Figure 49.1 can be 
converted into the corresponding signal flow 
graph shown in Figure 49.2. As already men-
tioned, the filter consists of an all-zero sec-
tion followed by an all-pole section. Because 
the sections are linear and time-invariant, 
we can commute the order of the sections 
to produce the structure shown in Figure 
49.3. This structure can then be simplified 
by noticing that the two delay chains run-
ning down the center of the figure are delay-
ing the exact same signal. These two delay 
chains can be merged to yield the direct form 
II structure shown in Figure 49.4.

Math Box 49.2

IIR Characterizations under the 

“Mathematical Convention”
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Figure 49.2 Direct form I structure for implementing an IIR filter
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Note 50

he impulse invariance technique is 
based on the simple idea of obtaining 

an impulse response for a digital filter by 
sampling an analog filter’s impulse response. 
Recipe 50.1 provides the details for a direct 
implementation of this idea. However, the 
actual design is often carried out in the fre-
quency domain without ever explicitly deter-
mining the impulse response of the analog 
prototype. The frequency-domain approach 
is detailed in Recipe 50.2. The mathematical 
justification for the frequency-domain ap-
proach can be found in [1–2].

The details of how the impulse invariance 
technique maps s-plane features of the ana-
log prototype filter into z-plane features of 
the targeted IIR filter are provided in Section 
50.2.

50.1 Aliasing

Just as sampling an analog signal causes 
the signal’s spectrum to be replicated along 
the frequency axis at intervals equal to the 
sampling rate, sampling a system’s impulse 
response causes the system’s frequency re-
sponse to be replicated along the frequency 
axis at intervals equal to the sampling rate. 
The digital filter’s response, H(e jω), can be 
expressed in terms of the analog signal’s re-
sponse, Ha(e jω) as

(50.1)H e 
T 

H j 
T T 

kj
a

k
( )ω ω π= +⎛

⎝⎜
⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

=−∞

∞

∑1 2

Strategic Considerations

The impulse invariance method is based on 
sampling an analog filter’s impulse response 
to obtain the impulse response for an IIR digi-
tal filter.

Advantages

º If the analog filter is stable, the digital 
filter designed from it via impulse in-
variance will also be stable.

º Impulse invariance preserves the mag-
nitude characteristics of the analog 
filter.

Disadvantages

º Impulse invariance does not preserve 
the step response characteristics of the 
analog filter.

º Due to aliasing of the magnitude re-
sponse, impulse invariance is limited 
to use on lowpass or bandpass filters.

º Sampling rate, fs , must be high enough 
to ensure that fs/2 falls in the stopband 
(upper stopband for bandpass filter).

Designing IIR Filters:  
Impulse Invariance Method
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If the analog signal’s response is bandlimited 
such that

(50.2)

then there is no overlap between the 
shifted copies of Ha(·) in the summation of 
Eq. (50.2). In this case, the baseband im-
age of the digital filter’s response equals an 
amplitude-scaled version of the analog sig-
nal’s response:

If the constraint in Eq. (50.3) is not satisfied, 
then there will be aliasing among the images 
of the response. Practical filter responses are 
never perfectly bandlimited, but the impulse 
invariance technique can be used success-
fully only if the analog filters’ response for 
|ω| > π is negligible. This constraint effec-
tively restricts the use of impulse invariance 
to lowpass and bandpass filters.

50.2 Feature Mapping

The sampled impulse response can be 
viewed as the impulse response for an ana-
log filter that has an s-domain transfer func-
tion, H~(s). In theory, this transfer function 
could be obtained directly as the Laplace 
transform of the sampled impulse response:

and it would be different from the original 
prototype filter’s transfer function, H(s),
which is the Laplace transform of the un-
sampled impulse response:

It can be shown (see [2]) that an alternative 
way to obtain the transfer function, H~(s),

H 
Ta 
ω ω π⎛
⎝⎜

⎞
⎠⎟
= >0 for
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T

j
a

ω ω ω π( ) = ⎛
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≤1 for

H s h nTa( ) ( )= { }L
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involves evaluating the digital filter’s system 
function for z = esT:

It then follows that s-plane to z-plane map-
ping produced by the impulse invariance 
method can be evaluated simply by substi-
tuting the appropriate values of s into the 
equation z = esT. Some of the more useful 
mappings are listed below.

1. The s-plane origin maps to z = 1.

2. The point s = jπ/T maps to z = −1.

3. The segment of the jω axis extending 
from 0 to π/T in the s-plane maps into 
the upper half of the unit circle in the z-
plane.

4. The segment of the jω axis extending 
from 0 to −π/T in the s-plane maps into 
the lower half of the unit circle in the z-
plane.

5. Any two s-plane points, s1 and s2, relat-
ed by s2 = s1 + j2πk/T (for any integer k)
maps into a single point in the z-plane.

6. As a consequence of mappings 3 and 5, 
the segments of the jω axis extending 
from 2kπ/T to (2k + 1)π/T for integer k,
all map into the upper half of the unit 
circle in the z-plane. 

7. As a consequence of mappings 4 and 5, 
the segments of the jω axis extending 
from 2kπ/T to (2k − 1)π/T for integer k,
all map into the lower half of the unit 
circle in the z-plane.

8. The left half of the s-plane maps into the 
interior of the unit circle in the z-plane.

9. The right half of the s-plane maps to the 
exterior of the unit circle in the z-plane.

10. The origin in the z-plane corresponds to 
s =−∞ in the z-plane.

H s H z 
z esT( ) ( )=
=
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11. A vertical line in the s-plane located at 
s = σ1 maps into a circle of radius exp(σ1)
centered at the origin in the z-plane.

The feature mapping described in this sec-
tion is sometimes presented as the “stan-
dard” s-plane to z-plane mapping, but it 
really is a consequence of the impulse in-
variance method for mapping filters from 
the s domain into the z domain. Other filter 
mapping techniques (such as the bilinear 
transformation covered in Note 51) result in 
different mappings of s-plane transfer func-
tion features into z-plane system function 
features.
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Note 51

Designing IIR Filters:  
Bilinear Transformation

he bilinear transformation is the most 
commonly used approach for design-

ing IIR filters. As discussed in Note 50, the 
impulse invariance technique uses a many-
to-one frequency mapping that maps mul-
tiple intervals from the jω axis in the s-plane 
repeatedly onto the same points on the unit 
circle in the z-plane. This mapping can intro-
duce aliasing of the filter response, making 
the impulse invariance technique unsuit-
able for use in designing highpass or band-
stop filters. The bilinear transformation uses 
a non-linear frequency mapping such that 
the entire jω axis of the s-plane maps one-
to-one onto points of the unit circle of the 
z-plane. The mapping avoids aliasing, but it 
does “warp” critical frequencies of the analog 
prototype into different frequencies for the 
corresponding features in the digital filter’s 
response.

51.1 Prewarping

The s-plane to z-plane mapping that results 
from the bilinear transformation is depicted 
in Key Concept 51.2. This “warped” fre-
quency relationship becomes increasingly 
compressed at higher frequencies, resulting 
in a need to prewarp the critical frequencies 
in such a way that these frequencies warp into 
the desired locations in the final IIR design. 
The usual strategy for mitigating the effect of 
frequency warping involves prewarping the 
critical frequencies using the relationship

(51.1)ω ω
a

d

T
T= 2 

2
tan

Major Points

The bilinear transformation is the most 
commonly used technique for designing 
IIR filters that are based on analog proto-
type filter designs.

The frequency mapping that is used in 
the bilinear transformation avoids the 
aliasing that can occur when the impulse 
invariance method is used. (See Key Con-
cept 51.1.)

The frequency mapping used in the bi-
linear transformation tends to compress 
well-separated higher-frequency features 
from the analog filter’s response into a 
narrow frequency range in the digital fil-
ter’s response. (See Key Concept 51.2.)

where T is the sampling interval, ωd is the 
desired frequency in the final IIR design, 
and ωa is the prewarped frequency to be 
used in the design of the analog prototype. 

The details of the bilinear transformation 
(with prewarping included) are provided in 
Recipe 51.1. 

Example 51.1 demonstrates a manual 
application of this procedure. Several Matlab-
based approaches for the bilinear transforma-
tion are demonstrated in Example 51.2.
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Key Concept 51.2

Bilinear Frequency Mapping Warps Critical Frequencies

The mapping from the s-plane to the z-plane creates the relationship between s-plane frequencies and 
z-plane frequencies that is depicted below. This “warped” frequency relationship becomes increas-
ingly compressed at higher frequencies, resulting in a need to prewarp the critical frequencies in the 
analog prototype so that these frequencies warp into the desired locations in the final IIR design.

6
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a

d

d
a= −2 

2
1tan

a

d
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=
=

 -plane frequency

 -plane frequency

Key Concept 51.1

Bilinear Transformation’s Frequency Mapping Avoids 

Aliasing

In the frequency conversion used by the bilinear transformation, the 
analog frequency’s domian of ±∞ maps one-to-one into a digital fre-
quency range of ±π. This mapping avoids aliasing that often occurs in 
the impulse invariant maping that was presented in Note 50.

Right half of the s-plane maps to the 
outside of the unit circle in the z-plane.

Left half of the s-plane maps to the 
inside of the unit circle in the z-plane.

Imaginary axis maps
onto the unit circle.

Im(s) Im(z)

Re(z)Re(s)
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Figure 51.1 Frequency response for IIR filter from Example 51.1
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Note 52

This note introduces the fundamental concepts involved in 
decimation, which is the name given to the process of de-
creasing a discrete-time signal’s sampling rate while leav-
ing all other characteristics of the signal unchanged to the 
maximum extent possible.

Decimation is based on the notion that 
some discrete-time signal of interest 

exists in a form that is significantly over-
sampled. There may be some noise and in-
terference throughout the entire bandwidth 
of ± FS /2 that is supported by the sample 
rate, FS , but the signal of interest has a spec-
trum that is confined to a bandwidth much 
smaller than ± FS /2.

Consider a discrete-time signal hav-
ing the periodic spectrum shown in Figure 
52.1(a). The spectral images are centered on 
integer multiples of the sampling rate, FS ,
and there may be significant amounts of in-
terference between the passband images as 
shown. The goal of the decimation process is 
to decrease the signal’s sample rate by some 
factor, say, M, in such a way that the new sig-
nal’s spectrum is similar to the one depicted 
in Figure 52.1(c). 

The spectral images in the new spec-
trum correspond to the portions of inter-
est contained in the images in the original 
spectrum, but they are centered on integer 
multiples of the new sampling rate, FS /M.
The interference bands from the original 
spectrum must be attenuated, as shown in 
Figure 52.1(b), so that they alias in to the 
new passband images at acceptably low lev-
els. The basic process for decimation is pro-
vided in Recipe 52.1.

Designing the anti-aliasing filter for a 
decimator can sometimes be a difficult task, 

Decimation: The Fundamentals

   



52-2 Notes on Digital Signal Processing

FS−FS −FS

2
0 FS

2Frequency

M
ag

n
it
u
d
e

FS−FS −FS

2
0 FS

2Frequency

M
ag

n
it
u
d
e

(b)

FS−FS −FS

2
0 FS

2Frequency

M
ag

n
it
u
d
e

(c)

(a)

Figure 52.1 Spectrum of a discrete-time signal at key points in the decimation process: (a) 
original spectrum, (b) spectrum after lowpass filtering, and (c) spectrum after downsampling 
by a factor of 3.
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especially when the value of M is large. The 
filter’s passband edge must be high enough 
to pass the complete portion of interest from 
the baseband image, while the stopband edge 
must be low enough to severely attenuate all 
noise and interference at frequencies beyond 
the new (that is, post-downsampling), folding 
frequencies of FS/(2M ).

52.1 Efficient FIR Decimators

The direct form for implementing a decima-
tor is shown in Figure 52.2. Part (a) of the 
figure shows the usual block diagram repre-
sentation for a decimator, while part (b) uses 
a signal flow graph to show the direct-form-1 
implementation for the anti-aliasing filter. 
The filter must perform N multiplications 
each time a new input sample is clocked in. 
If the input sample rate is FS , the multiplica-
tion burden imposed by the filter is NFS mul-
tiplications per second.

Any form—FIR or IIR, direct or trans-
posed—of lowpass filter can be used to 
implement a decimator, but the FIR direct-
form-1 lends itself to further simplification 
by allowing the downsampler to be moved 
inside of the filter. The downsampler can 
be replaced by N downsamplers, with one 
placed at the output of each multiplier, 
as shown in Figure 52.3(a). Whether the 
downsampler discards a sample before or af-
ter it is multiplied by hn makes no difference 
in the result, so the order of multiplication 
and downsampling can be commuted to ob-
tain the structure shown in Figure 52.3(b). 
To generate each output sample, this struc-
ture must perform N multiplications. The 
output sample rate is FS /M, so the multi-
plication burden imposed by the filtering is 
only NFS /M multiplications per second. The 
concept of moving the downsampling to oc-
cur prior to the coefficient multiplication 

1z−

1z−

1z−

x n[ ]− 2

x n[ ]−1
h1

h2

hN −2

hN −1

x n[ ]

h0

M↓

M↓LPF

y[n]

x[n] y[m]

(a)

(b)

Figure 52.2 Direct form decimator structures: 
(a) block diagram and (b) with signal flow 
graph showing detail for direct form filter 
implementation

can be extended to the structures that are 
presented in Note 32 for the special case of 
symmetric responses for linear-phase FIR 
filters. Figure 52.4 shows the locations of the 
downsamplers that must be added to con-
truct a decimator built upon the FIR struc-
ture given in Figure 32.7 of Note 32.
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Figure 52.3 Decimator structures: (a) direct-form-1 FIR filter with downsampling moved 
into each multiplier branch; (b) efficient structure with downsampling and multiplication 
transposed in each branch
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Figure 52.4 Efficient decimator structure that incorporates a Type 2 (even length, even symmetry) 
linear-phase FIR filter
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Note 53

When large reductions in sampling 
rates are required, the design of ad-

equate decimation filters becomes more 
difficult, usually resulting in filters with a 
prohibitively large number of taps. This note 
introduces multistage decimators that ac-
complish large reductions in sampling rate as 
a sequence of several smaller reductions. In 
a properly designed multistage approach, the 
filters for all the stages have a total tap count 
that is significantly lower than the filter tap 
count needed to obtain similar performance 
from a single-stage implementation.

When the desired decimation factor, M,
can be expressed as a product of I positive 
integer factors 

M = M1M2 ∙ ∙ ∙ MI

the desired decimation can be realized as a 
cascade of I decimators, each decimating by 
one of the factors, Mi . Compared to a single-
stage decimator design, a design that adopts 
a multistage approach usually results in a re-
duced total computational burden, reduced 
memory usage, simpler filter designs, and 
reduced sensitivity to finite word-length ef-
fects in the implementation of the filters.

In lowpass FIR filter designs, the num-
ber of required taps, N, is approximately 
inversely proportional to the normalized 
transition bandwidth

(53.1)

where fp is the passband edge fequency in 
Hz, fs is the stopband edge frequency in 
Hz, and FS is the sampling rate in samples 

N f f
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N F
f f
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( )

s p

s p
or

Multistage Decimators

per second. To reduce N, we need either to 
decrease FS or to increase the difference be-
tween fs and fp. In a single-stage decimator 
we don’t have the freedom to make either 
change. However, in a two-stage decimator, 
there is some flexibility in the choice of the 
first-stage stopband edge frequency, fs1.

 Figure 53.1 illustrates the important fre-
quency relationships in a two-stage decima-
tor design. The folding frequency of the first 
stage of the decimator is equal to half the 
sample rate, F1, at the first-stage output.

As shown in the figure, all frequency con-
tent above F1/2 remaining in the signal after 
the first-stage filter is aliased into frequen-
cies below F1/2 once downsampling by M1 is 
performed. Frequencies from 0 to fS2 (which 
comprise the ultimate output spectrum) 
must be protected from aliasing. However, 
we do not care about aliasing in frequencies 
from fS2 up to F1/2, because all these frequen-
cies will be removed by the second-stage fil-
ter. Therefore, to avoid aliasing of first-stage 
transition-band frequencies into the output 
of the second-stage decimator, the stopband 
edge for the first-stage filter, fS1, must be set 
to a value that does not exceed F1− fS2 . Fig-
ure 53.2 shows the limiting case in which 
fP1= fP2 and fS1= F1− fS2.

The width of the transition band for 
the first-stage filter can be as wide as 
ΔF1 = F1− fS2 − fP2 , which, in most cases, is 
significantly larger than the transition width 
of ΔF = fS− fP for a single-stage implementa-
tion. From Eq. (53.1), it is clear that a larger 
transition width results in a lower number of 
required taps.

For the second stage of a two-stage in-
plementation, the edges of the transition 
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band are the same as they would be for a 
single-stage design:

fP2 = fP and fS2 = fS
Because the sample rate going into 

the second-stage filter has already 
been reduced by a factor of M1, that 
is, F2 = F1/M1, we can conclude from 
Eq. (53.1) that, except for changes to rip-
ple specifications that may be needed due 
to multiple stages, the number of taps 
needed for the second stage can be ap-
proximated by

In most practical cases, N1 + N2 is sig-
nificantly smaller than N.

Because a total of N multiplications 
would be needed in the single-stage de-
sign to generate each decimator output 
sample, the average required multiplica-
tion rate can be approximated as

(53.2)

In comparison, the average required 
multiplication rate for the two-stage de-
sign would be

(53.3)

A specific case of two-stage decimator 
design is provided in Example 53.1.
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Figure 53.1 Crtical frequency relationships for a two-stage decimator

fs2 
F1

2

F1 fs22 
–

F1 fs22 
–

fp2fp1=

fs1 fs2
F1

2
F1

2 
–+( )

F1– fs1= 

=

Figure 53.2 Limiting case for critical frequency relationships for a two-stage 
decimator

   



53-3Multistage Decimators

   



54-1

Note 54

An M-to-1 decimator can be imple-
mented using the polyphase structure 

shown in Figure 54.1. If h[n] is the response 
for the decimation filter when implemented 
in one of the conventional single-stage 
structures presented in Note 32, then each 
individual pρ[n] in Figure 54.1 is a different 
downsampled version of h[n] obtained as 

(54.1)

for

54.1 Why It Works

Consider a conventional decimator struc-
ture consisting of a lowpass filter followed 
by a downsampler. Out of every N output 
samples generated by the filter, N(M−1)/M
samples are discarded by the downsampler. 

p n h nMρ ρ[ ] [ ]= +

0,1,2, ,( / 1)
0,1,2, ,( 1)

n N M
Mr

= −
= −

…
…

Polyphase Decimators

x n[ ]

p1 n[ ]

p2 n[ ]

p0 n[ ]

pM 2 n[ ]

pM 1 n[ ]

y[m]

Figure 54.1 An M-to-1 decimator implemented as a polyphase structure with a 
commutator
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The polyphase approach is motivated by a 
desire to avoid generating those filter-output 
samples that are destined to be discarded by 
the downsampler.

For a signal that will be downsampled by 
a factor of M, there are M different possible 
“phasing” alignments between the filter output 
samples and the filter coefficients. As depicted 
in Figure 54.2, for the specific case of M = 3 and 
N = 7, the possible alignments consist of:

“Keeper” outputs align with filter’s coeffi-
cients, h[n], for which n � 0 (modulo M).

“Keeper” outputs align with filter’s coeffi-
cients, h[n], for which n � 1 (modulo M).

“Keeper” outputs align with filter’s co-
efficients, h[n], for which n � M−1 
(modulo M).

One way to eliminate the generation of “non-
keeper” samples involves splitting the deci-
mator into M parallel branches, as shown in 
Figure 54.3. Each branch corresponds to one 
of the possible alignments between the filter 
output sequence and the filter coefficients. 
The filter for branch ρ is defined by the se-
quence of coefficients from h[n] for which 
n � ρ (modulo M). Each branch only com-
putes results that will contribute to “keeper” 
outputs. The non-keeper samples have been 
eliminated from filter processing by mov-
ing the downsampling operation from after 
the filtering to before the filtering. The de-
lays along the left-hand side of the structure 
cause the M subsequences to be extracted in 
the right order needed to create the ultimate 
output y[m]. For any given value of m, only 
one of the branches contributes a non-zero 
sample to the summation that creates y[m].

The delays and downsamplers on the left 
side of the diagram are performing a branch 
demultiplexing operation that corresponds 
to the commutator shown in Figure 54.1.

h1h2h3h4h5h6 h0

h1h2h3h4h5h6 h0

h1h2h3h4h5h6 h0

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9

Figure 54.2 Possible phasing relationships 
between the decimation filter’s output samples 
and coefficients for the case of M = 3 and N = 7
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x n[ ]
p0 n[ ]

p1 n[ ]

p2 n[ ]

pM 2 n[ ]

pM 1 n[ ]

y[m]
M

M

M

M

M

Figure 54.3 An M-to-1 decimator implemented as a 
polyphase structure
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Note 55

nterpolation is the name given to the pro-
cess of increasing a discrete-time signal’s 

sampling rate, while leaving all other charac-
teristics of the signal unchanged to the maxi-
mum extent possible. Normally, the goal in 
designing a DSP system is to reduce the com-
putational burden in the system by using the 
lowest possible sampling rate that provides 
a signal quality adequate for the targeted 
application. Given this goal, why concern 
ourselves with techniques that are used to in-
crease the sampling rate of a signal that has 
already been sampled at an adequate rate? 
There are several situations in which interpo-
lation of a signal may be required:

1. The signal will be subjected to some non-
linear processing that will increase its 
bandwidth. Before the bandwidth is in-
creased, interpolation typically is used to 
increase the sampling rate to a level that 
is appropriate for the new, higher-signal 
bandwidth.

2. The signal will be added to another 
discrete-time signal that has a higher sam-
pling rate.

3. There will be occasions when a signal’s 
sample rate must be changed by a non-
integer factor. The sample rate can be 
changed by a rational factor, L/M, by first 
interpolating by a factor of L and then 
decimating by a factor of M.

The basic process for interpolation is pro-
vided in Processing Sequence 55.1. The 
upsampling step is straightforward, but 
proper specification of the filter depends 
upon understanding how the upsampling 
changes the signal’s spectrum. 

Interpolation Fundamentals
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55.1 Spectral Impacts of 

Upsampling

Some texts incorrectly claim that the 
upsampling process compresses the signal 
spectrum. This idea likely spawned from 
the common practice of presenting spec-
tra that are normalized for T = 1. Here are 
the facts:

Interpolation decreases the actual value 
for T, but this fact can be easily masked 
by the usual normalization. If the signal’s 
normalized spectrum before upsam-
pling is compared to the signal’s spec-
trum after upsampling, with this “after” 
spectrum being normalized for Tnew = 1, 
then it does indeed appear that the sig-
nal’s spectrum has been compressed.

If upsampling really did compress the 
original signal’s spectrum, it would not 
be possible to recover the original sig-
nal via lowpass filtering. A lowpass filter 
only attenuates signal components out-
side of the passband; it would not be able 
to decompress a compressed spectrum.

What really happens in interpolation is 
that the fundamental frequency range 
of the signal is increased from ±Fs/2 to 
±LFs/2.

In the original signal’s spectrum, only 
the baseband image fits within the fun-
damental frequency range, as depicted 
in Figure 55.4.

In the upsampled signal’s spectrum, the 
fundamental frequency range has been 
widened to the point that it contains a 
total of L images, including the baseband 
image as shown in Figure 55.5. The spec-
trum has not been compressed; it just ap-
pears compressed because the “window 
of visibility” has been made wider.

3FS 2FS FS 0 FS 2FS 3FS

(a)

(b)

Figure 55.1 Discrete-time signal (a) and its spectrum (b)

3FS 2FS FS 0 FS 2FS 3FS

(b)

(a)

Figure 55.2 Interpolated signal (a) and its spectrum (b)

Figure 55.3 Discrete-time signal after upsampling
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3FS 2FS FS 0 FS 2FS 3FS

(a)

(b)

FS

2
FS

2

Figure 55.4 Spectrum of a discrete-time signal showing (a) spacing of its periodic images, 
and (b) relationship between the images and the fundamental frequency range ±Fs /2

- FS FS

- 3
2
FS 3

2
FS

Figure 55.5 Spectrum of a discrete-time signal after upsampling by a factor of L = 3, showing 
the relationship between the spectral images and the new, fundamental frequency range 
±3Fs /2
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55.2 Designing the  

Anti-Imaging Filter

The key challenge in designing an interpola-
tor is orchestrating the combination of sam-
pling rates and signal bandwidths so that a 
reasonably efficient filter can be designed 
that will pass the baseband image without 
distortion while severely attenuating the un-
wanted spectral images. 

Designing the anti-imaging filter for an 
interpolator can sometimes be a difficult 
task, especially when the value of L is large. 
The filter’s passband edge must be high 
enough to pass the complete baseband im-
age, while the stopband edge must be low 
enough to severely attenuate the image im-
mediately adjacent to the baseband image. 

In terms of absolute frequencies, the band 
edges for the anti-imaging filter would be 
similar to the band edges for an analog anti-
alaising filter that might have been used to 
obtain the baseband image by sampling an 
analog signal at a rate of FS. However, the 
implementation of the anti-imaging filter is 
more costly than we might otherwise expect 
because the anti-imaging filter must operate 
at the new sample rate of LFs.

55.3 Efficient Interpolator 

Structures

The direct form for implementing an inter-
polator is shown in Figure 55.6. Part (a) of 
the figure shows the usual block diagram 
representation for an interpolator, while 
part (b) uses a signal flow graph to show the 
transposed direct form implementation for 
the anti-imaging filter. The filter must per-
form N multiplications to produce each out-
put sample. If the input sample rate is FS, the 
output sample rate is LFS , and the multipli-
cation burden imposed by the filter is NLFS
multiplications per second.

The structure shown in Figure 55.6(b) 
lends itself to further simplification by al-
lowing the upsampler to be moved inside the 
filter. The upsampler can be replaced by N
upsamplers, with one placed at the input of 
each multiplier, as shown in Figure 55.7(a). 
The zero-valued samples inserted by the 
upsampler will still be zero-valued at the 
output of the multiplier, so the order of 
upsampling and multiplication can be com-
muted to obtain the structure shown in Fig-
ure 55.7(b). The filter in this structure must 
perform N multiplications each time a new 
input sample is clocked in, thus, the multi-
plication burden imposed by the filter is NFS
multiplications per second.
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Figure 55.6 Diagrams of interpolator structure: (a) basic block diagram 
(b) filter represented as transposed direct-form structure
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Figure 55.7 FIR interpolator structures: (a) direct structure with upsampling 
moved inside the filter, (b) efficient structure with order of upsampling and 
multiplication commuted
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Note 56

When the desired interpolation factor, 
L, can be expressed as a product of I

positive integer factors, as

L = L1L1 ∙ ∙ ∙ LI

the desired interpolation can be realized as 
a cascade of I interpolators, each interpolat-
ing by one of the factors, Li . Compared to 
a single-stage interpolator design, a design 
that adopts a multistage approach usually 
results in a reduced total computational 
burden, reduced memory usage, simpler fil-
ter designs, and reduced sensitivity to finite 
word-length effects in the implementation 
of the filters.

In lowpass FIR filter designs, the num-
ber of required taps, N, is approximately 
inversely proportional to the normalized 
transition bandwidth:

(56.1)

where fp is the passband edge fequency in 
Hz, fs is the stopband edge frequency in Hz, 
and FS is the sampling rate (after upsam-
pling) in samples per second. To reduce N,
we need either to decrease FS or increase the 
difference (fs−fp). In a single-stage interpo-
lator, we don’t have the freedom to make 
either change. However, in a two-stage inter-
polator, there is some flexibility.
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Multistage Interpolation

56.1 Designing the  

Anti-Imaging Filters

Figure 56.1 illustrates the important frequency 
relationships in the first stage of a multi-
stage interpolator design. The figure depicts 
the signal spectrum after the signal has been 
upsampled by a factor of 2. The signal’s fun-
damental frequency range has been widened 
to the point where it includes two half-images 
in addition to the baseband. As shown in the 
figure, the stopband edge frequency is placed 
at the lower edge of the first image. 

The frequencies for passband edge and 
stopband edge are the same as they would be 
for a single-stage interpolator. However, be-
cause the filter must operate at a rate that is 
only twice the original sample rate, the num-
ber of required taps is much lower than for a 
similar filter operating at the ultimate inter-
polated rate. As depicted in Figure 56.1(b), 
after filtering, only the baseband remains in 
the frequency interval that is supported by 
the new sampling rate.

Figure 56.2 depicts the critical frequen-
cies for the design of the second-stage fil-
ter. The figure shows the spectrum after the 
second stage of upsampling has been com-
pleted. The upsampling rate is not specified, 
but the figure shows a supported bandwidth 
of at least ±(3Fs1/2), so Fs2 must be greater 
than 3Fs1 = 6 Fs.

Example 56.1 on the next page uses the 
requirements for a CD-to-DAT converter 
to illustrate the savings that can be realized 
with multistage interpolator designs.
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Figure 56.1 Frequency relationships involved in designing the first-stage filter for a multistage interpolator: (a) After 
upsampling by a factor of 2, the new sampling rate supports a wider frequency range (unshaded interval) that now 
includes two half-images in addition to the baseband spectrum. (b) After the first anti-imaging filter, only the baseband 
spectrum remains within the frequency range supported by the sampling rate.
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Figure 56.3 Spectrum of first-stage output from Example 56.1. Transition width shown is for 
second-stage anti-imaging filter.
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Note 57

A1-to-L interpolator can be implemented 
using the polyphase structure shown in 

Figure 57.1. If h[n] is the response for the in-
terpolation filter when implemented in one 
of the conventional single-stage structures 
presented in Note 32, then each individual 
pρ[n] in Figure 57.1 is a different down-
sampled version of h[n] obtained as 

(57.1)

for

57.1 Why It Works

Consider a conventional interpolator struc-
ture consisting of an upsampler followed by 
a filter. As a result of the upsampler, the input 

signal to the filter consists of a sequence of 
single, non-zero samples separated by L−1
interspersed zero-valued samples. Of the 
N multiplications needed to generate each 
filter output sample, N(L−1)/L are multipli-
cations by zero. The polyphase approach is 
motivated by the goal of eliminating these 
multiplications by zero.

For a signal that has been upsampled by 
a factor of L, there are L different possible 
“phasing” alignments between the input 
samples and the filter coefficients. As de-
picted in Figure 57.2 for the specific case 
of L = 3 and N = 7, the possible alignments 
consist of the following.

Non-zero inputs align with the filter’s coef-
ficients, h[n,] for which n � 0 (modulo L).

Non-zero inputs align with the filter’s coef-
ficients, h[n], for which n � 1 (modulo L).

p n h nLρ ρ[ ] [ ]= +

n N L
L

= −
= −

0 1 2 1
0 1 2 1
, , , ,( / )
, , , ,( )
…
…ρ

Polyphase Interpolators

x n[ ]

p1 n[ ]

p2 n[ ]

p0 n[ ]

pL−2 n[ ]

pL−1 n[ ]

y[m]

Figure 57.1 A 1-to-L interpolator implemented using a polyphase structure with a 
commutator
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Non-zero inputs align with the filter’s co-
efficients, h[n], for which n � L−1 (mod-
ulo L).

One way to eliminate the multiplications 
by zero involves splitting the interpolator 
into L parallel branches, as shown in Figure 
57.3. Each branch corresponds to one of the 
possible alignments between the input se-
quence and the filter coefficients. The filter 
for branch ρ is defined by the sequence of co-
efficients from h[n] for which n � ρ (mod-
ulo L). The zero-valued samples have been 
eliminated from the filter inputs by moving 
the upsampling operation from before the 
filtering to after the filtering. The individual 
upsamplers in each branch effectively insert 
the zero-valued results that would have been 
created had the multiplications by zero not 
been eliminated. The delays along the right-
hand side of the signal flow graph cause the 
L subsequences to dovetail in the right order 
needed to create the output y[m]. For any 
given value of m, only one of the branches 
contributes a non-zero sample to the sum-
mation that creates y[m]; the other L−1
branches contribute zero-valued samples 
that were injected by their upsamplers. 

The interpolator structure of Figure 57.3 
eliminates multiplication by zero, but a 
number of additions involving zero-valued 
terms still remain. These additions can be 
eliminated by recognizing that because only 
one branch output is non-zero for each out-
put time, the additions and delays along 
the right side of the SFG are performing a 
branch-selection operation that corresponds 
to the commutator shown in Figure 57.1.

h1h2h3h4h5h6 h0

h1h2h3h4h5h6 h0

h1h2h3h4h5h6 h0

0 0 0 0 0 0x0 x1 x2 x3

Figure 57.2 Possible phasing realtionships be-
tween the interpolation filter’s input samples 
and coefficients for the case of M = 3 with N = 7
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Figure 57.3 A 1-to-L interpolator implemented as a polyphase 
structure
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Note 58

This note develops a set of rules for sampling bandpass 
signals at rates that are substantially lower than the rates 
developed of lowpass signals in Note 3.

Consider the bandpass signal depicted 
in Figure 58.1(a). The baseband sam-

pling criteria developed in Note 3 would 
lead us to sample such a signal at some 
rate, fs , selected such that fs > fH . The spec-
trum of the sampled signal would then be 
as shown in Figure 58.1(b), with the orig-
nal x = π spectrum replicated at intervals of 
fs along the frequency axis. This approach 
works, but it uses an unnecessarily high 

Key Concept 58.1

Uniform Bandpass Sampling

Sampling a signal in the time domain cre-
ates periodic images of the original signal’s 
spectrum in the frequency domain. These 
images are spaced along the frequency 
axis at intervals equal to the sampling rate. 
Therefore, as discussed in Note 3, a base-
band signal must be sampled at a rate that 
is at least twice the highest frequency con-
tained in the signal’s spectrum to keep the 
images from overlaping.

Uniform bandpass sampling avoids un-
necessarily high sampling rates by exploit-
ing the “empty space” between the two 
non-contiguous passbands that comprise 
a bandpass signal’s spectrum. By samplng 
at a carefully selected rate, some of the 
sampling-created images of the passbands 
will be located in this empty space, thereby 
allowing alias-free sampling at rates signifi-
cantly lower than what would be required 
using baseband sampling criteria.

Lf−Hf− HfLf0

Bandpass sampling

Spectrum of analog
bandpass signal

Spectrum of
bandpass-sampled signal

Image 1 Image 1 Image 2Image 2 

Original
spectrum

Sampling Bandpass Signals
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Hf− Lf− HfLf0

Hf− Lf− HfLf0

Hf− Lf− HfLf0

(a)

(b)

(c)
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SfSf

Sf−
2

Sf−
2

Sf

Figure 58.1 Comparison of spectra produced by baseband and bandpass sampling: (a) spectrum of 
original bandpass signal, (b) spectrum resulting from conventional baseband sampling, (c) spectrum 
produced by bandpass sampling

sampling rate that can impose high costs 
for A/D conversion and downstream pro-
cessing—especially if the ratio between fH
and B is high. In most real-world bandpass 
signals, the ratio between the highest fre-
quency, fH , and the bandwidth, B, is much 
larger than depicted in the figure. In fact, 
it is usually impractical to draw a scale dia-
gram that shows zero frequency, the upper 
frequency, and the passband of the signal 
in a single figure. A typical HF radio signal 
might have a bandwidth of 3 kHz and an 
upper frequency of 15 MHz; the span from 
zero frequency to 15 MHz would be 5000 
times larger than the width of the pass-
band. With all of the signal’s useful infor-
mation concentrated in a mere 3-kHz band, 
it seems unreasonable to sample such a sig-
nal at a rate that exceeds 3×107 samples per 
second. Alternative approaches have been 
developed for more efficient sampling of a 
bandpass signal.

Bandpass sampling schemes are based 
on the idea of sampling at a rate signifi-
cantly lower than 2fH , with the rate care-
fully selected so that the passbands of the 

sampling-induced spectral images “inter-
leave” with each other without overlapping, 
as shown in Figure 58.1(c). 

58.1 Constraining the 

Sampling Rate

The empty space available for accommodat-
ing images of the original passbands extends 
from − fL to − fH . After sampling, this space 
contains images of the original negative-
frequency band and images of the original 
positive-frequency band. The number of 
negative- and positive-frequency images in-
side the interval (− fL, fL) is always equal, and 
this number is obviously an integer.

Consider the negative-frequency band la-
beled A in Figure 58.2. The empty space be-
gins at the right-hand edge of this band, and 
the mth image (labeled B in Figure 58.2) of 
this band will have its right-hand edge at a 
frequency of − fL+mfs. If m images are to fit 
within the available empty space, the right-
hand edge of the mth image must not extend 
beyond the left-hand edge of the original 
positive-frequency band (labeled C in Figure 
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58.2). Expressed mathematically, this con-
straint becomes

(58.1)

We must also ensure that the left-hand 
edge of the (m + 1)-th image (labeled D 
in Figure 58.2) of the original negative-
frequency band does not overlap with the 
right-hand edge of the original positive-
frequency band (labeled C in Figure 58.2). 
The left-hand edge of the original negative-
frequency band falls at − fL and the left-hand 
edge of the (m+1)-th image falls at − fH + 
(m + 1)/fs. Thus, we can write

(58.2)

The constraints in Eqs. (58.1) and (58.2) 
were developed using only the orignial 
signal’s two passbands and two images of 

− +f mf f f f
mL s L s
Lor 2

− + + ≥

≥
+

f m f f

f f
m

s

s

H H

H

( )1
2

1
or

the original negative-frequency passband. 
Nevertheless, because the sampled signal’s 
spectrum is periodic and symmetric, these 
contraints assure that none of the negative-
frequency passband’s images overlap with any 
of the positive-frequency passband’s images.

We can determine acceptable values for 
m by recognizing that 2m distinct passband 
images—m of these images corresponding 
to the negative-frequency passband and m
corresponding to the positive-frequency 
passband—must fit within a frequency in-
terval of 2fL. Because each of these images 
has a width of B = fH − fL, we can write

(58 3)

In cases where fL < B, the value of m is 
zero, and uniform bandpass sampling re-
duces to the conventional baseband sam-
pling process described in Note 3.

2 2mB f m f
B

≤ ≤L
Lor

Image 1 Image m Image
1m +

Hf− Lf− Hf

( 1)H Sf m f− + +L Sf mf− +
Lf

Sf

Smf

( 1) Sm f+

2 Lf

2 Hf

0
Frequency

A B DC

Figure 58.2 Frequency relationships between the passbands of an original bandpass signal (shaded) and the 
images (unshaded) created by uniform bandpass sampling
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Note 59

rom Note 58, we know that in bandpass 
sampling, the sampling rate, fs, must 

satisfy

(59.1)

where m is an integer that satisfies

(59.2)

Many of the older discussions of bandpass 
sampling (such as [1]) include a diagram 
similar to Figure 59.1, which depicts only 
the lower bound imposed by Eq. (59.1). 
This diagram can be misleading to practi-
tioners whose experience is limited to base-
band sampling, where oversampling is often 
viewed as a good thing. It would be easy to 
select a sampling rate that satisfies the lower 
bound depicted in Figure 59.1, but that vio-
lates the upper bound imposed by Eq. (59.1). 
Vaughan, Scott, and White [2] appear to be 
the first authors to include a diagram similar 
to Figure 59.2, which depicts both the lower 
and upper bounds on the sampling rate 
given by Eq. (59.1).

In theory, we are free to choose any sam-
pling rate that meets the constraints imposed 
by Eqs. (59.1) and (59.2). The largest choice 
of m allowed by Eq. (59.2) leads to the lowest 
sampling rates from Eq.(59.1), but choosing 
the largest m often can lead to a fragile sam-
pling design. Section 59.2 explores how the 
choice of m can be best exploited for sampling 
designs that remain robust despite sample-
clock inaccuracies and low-performance 
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Figure 59.2 Plot of normalized sampling rate for bandpass 
signals versus normalized band position. The white areas indicate 
allowable combinations of sampling rate and band position. The 
shaded areas indicate combinations that exhibit aliasing.
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Figure 59.3 Plot of normalized sampling rate for bandpass signals 
versus normalized band position. The white areas indicate allowable 
combinations of sampling rate and band position. The shaded areas 
indicate combinations that exhibit aliasing. The vertical line at fH /B = 6
passes through white areas for fs /B in the intervals (2.4, 2.5), (3, 3.33), 
(4, 5), and (6, 10).

anti-aliasing filters often encountered in cost-
conscious hardware designs.

59.1 Interpreting the  

Wedge Diagram

Figure 59.3 is a vertically extended copy of 
the wedge diagram from Figure 59.2 that has 
been annotated to illustrate the points raised 
in the following discussion regarding inter-
pretation of the wedge diagram.

Determine the band location, fH , and band-
width, B, for the signal that is to be sam-
pled, and then draw a vertical line at the 
value corresponding to the ratio fH/B. The 
portions of this line that pass through the 
various wedges define the range of sam-
pling rates that can be used for sampling 
the signal. For example, if we draw a verti-
cal line at fH/B = 6, as shown in Figure 59.3, 
the line passes through the tip of the wedge 
for m = 5, and the corresponding ordinate 
is fs = 2B. The line also passes through the 
interior of the wedges corresponding to all 
values of m < 5.

Draw horizontal lines from the points 
where the vertical line intersects with the 
sloped lines that form the wedge boundar-
ies. These horizontal lines intersect with 
the vertical axis at the values of fs /B that 
bound each interval of legal sampling rates.

As shown in the figure, a signal with 
fH /B = 6 can be sampled at normalized 
rates, fs /B, that fall within any of the inter-
vals (2.4, 2.5), (3, 3.33), (4, 5), or (6, 10). 
The case for m = 0 corresponds to the base-
band sample rate of fS = 2fH, or fS /B = 12.

If the actual value for the ratio fH /B differs 
from the nominal value of 6, the resulting 
impact on the sampled signal would be as 
though the vertical line were shifted either 
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left (if actual ratio is lower than 6) or right 
(if the actual ratio is higher than 6). This 
shifting might cause our selected operat-
ing point to move into the shaded area 
where aliasing occurs. The effects of errors 
in fH /B are quantified in Section 59.2.

Similarly, if the actual value for the nor-
malized sampling rate, fs /B, differs from 
the value corresponding to our selected 
operating point, the actual operating 
point can move up or down along the ver-
tical line and possibly move into a shaded 
area where aliasing occurs.

59.2 Sensitivity to Timing Errors

The top of Figure 59.4 shows an enlarged 
portion of a single wedge taken from a dia-
gram like the one shown in Figure 59.2. As 
discussed in the previous section, for given 
values of fH and B, the operating point is 

placed inside one of the unshaded wedges 
somewhere on the vertical line that passes 
through the appropriate value of fH /B.

As shown in Figure 59.4, the operating 
point’s location within the wedge defines 
four quantities: fSL, fSH , BGL, and BGH. The op-
erating point corresponds to some nominal 
sampling rate, fs . The value of fSL indicates 
how much the sample clock can fall be-
low this nominal rate before the operating 
point moves into the lower shaded region 
and aliasing occurs. Similarly, the value of 
fSH indicates how much the sample clock 
can increase above the nominal rate before 
the operating point moves into the upper 
shaded region and aliasing occurs.

The bottom of Figure 59.4 shows the 
positive-frequency portion of the spectrum 
from Figure 58.2 in Note 58. The spacing be-
tween the various images in this spectrum 
is related to the quantities, BGL and BGH, that 
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Figure 59.4 Frequency relationships between the passbands of an original bandpass signal 
(shaded) and the images (unshaded) created by uniform bandpass sampling
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are defined by the operating point’s horizon-
tal distance from the wedge boundaries. The 
shaded band at the bottom of Figure 59.4 is 
the original signal’s positive-frequency band. 
The gap between this band and the mth im-
age of the original negative-frequency band 
is 2BGL, where BGL is the horizontal distance 
from the operating point to the upper-left 
boundary of the wedge.

(59.3)

The gap between the shaded band 
and the (m + 1)-th image of the original 

B 
f mfs

GL
L=
−2
2

negative-frequency band is 2BGH, where BGH
is the horizontal distance from the operat-
ing point to the lower-right boundary of the 
wedge.

(59.4)

The empty intervals of length BGL and BGH
surrounding each image band are some-
times referred to as guard bands.

B 
m f f

GH
H=

+ −( )1 2
2
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Note 60

cf− cf
f

(a)

cf
f

(b)

f

(c)

Figure 60.1 Spectra at different points in a digital receiver architecture: (a) spectrum for 
real-valued bandpass intermediate-frequency (IF) signal, (b) spectrum for the IF signal’s 
analytic associate, (c) spectrum for complex-valued baseband signal

An understanding of complex and ana-
lytic signals is an essential foundation 

for the development of many advanced sig-
nal processing techniques.

A real-valued signal always has a magni-
tude spectrum that is symmetric about f = 0,
as depicted in Figure 60.1(a). Many differ-
ent digital receiver architectures depend 
upon the abilities to (1) eliminate either all 
of the positive-frequency content or all of 
the negative-frequency content in such a sig-
nal’s spectrum, and then (2) shift the surviv-
ing spectral band so that it is concentrated 
around zero frequency, as shown in Figure 
60.1(c). A continuous-time signal having a 
spectrum that is zero-valued for all negative 
frequencies, as in Figure 60.1(b), is called an 
analytic signal because it can be represented 
mathematically as an analytic function [1].

This note first explores how the con-
cepts of analytic signals can be extended to 
discrete-time signals and then it provides 

Key Terminology

An analytic signal has a spectrum that is 
zero-valued for all negative frequencies.

The complex conjugate of an analytic 
signal has a spectrum that is zero-valued 
for all positive frequencies. Such a sig-
nal is sometimes described as conjugate-
analytic.

Continually describing some function, 
xa(t), as “the analytic signal correspond-
ing to the real-valued signal x(t)” can be-
come awkward. Boashash [2] coined the 
term analytic associate, which enables the 
simpler description “xa(t) is the analytic 
associate of x(t).”

A discrete-time signal always exhibits pe-
riodicity in its spectrum and can therefore 
never be made truly analytic. Sometimes 
the term analytic-like is used to describe 
a discrete-time signal that is analytic over 
a single period of the spectrum from 
f = —(2T )-1 to f = (2T )-1, where T is the 
sample interval.

Complex and Analytic Signals
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an overview of the various techniques for 
generating discrete-time analytic-like1 sig-
nals. Each of these techniques is explored in 
depth in subsequent notes.

For any real-valued signal, x(t), the cor-
responding analytic signal, xa(t), can be 
formed as

(60.1)

where H{·} denotes the Hilbert transform2.
Multiplication by j is equivalent to a phase 
shift of 90 degrees, so the net combined ef-
fect of jH{·} in Eq. (60.1) is to create a phase 
shift of zero for positive frequencies in the 
spectrum of x(t), and a phase shift of 180 
degrees for negative frequencies in the spec-
trum of x(t). When jH{x(t)} is added to x(t),
the negative-frequency components can-
cel and the positive-frequency components 
are doubled. If an analytic signal, xa(t), is 
formed using Eq. (60.1), it is possible to re-
cover the original signal, x(t), by simply tak-
ing the real part of xa(t)

A real-valued signal exhibits conjugate 
symmetry in its Fourier spectrum. There-
fore, any signal not exhibiting conjugate 
symmetry in its spectrum must be complex-
valued in time. This means that analytic 
signals and conjugate-analytic signals are 
always complex-valued in time. However, 
there can be signals that are complex-valued 

1. Because the concept of analyticity is different for continuous-
time and discrete-time signals, some authors distinguish the 
discrete-time case by using special notation or terminology. In 
[1], Marple initially uses the term analytic-like, and then transi-
tions to using quotation marks around “analytic.”
2. The usual convention for denoting the Hilbert transform is 
a script uppercase H, despite the fact that this notation can 
be easily confused with the italic uppercase H typically used to 
denote the transfer function of a filter.

x t x t j x ta( ) ( ) { ( )}= ⎡⎣ ⎤⎦+1 
2

H

x t x t( ) Re ( )= { }a

in time but that are neither analytic nor 
conjugate-analytic. A handy example is the 
complex-valued baseband signal having the 
spectrum depicted in Figure 60.1(c). The 
spectrum is not zero for either positive or 
negative frequencies, so the signal is neither 
analytic nor conjugate-analytic. However, 
the magnitude spectrum is not symmetric 
about f = 0, so the signal is complex-valued.

60.1 Discrete-Time 

Analytic Signals

The concept of an analytic signal cannot be 
extended directly from the continuous-time 
domain to the discrete-time domain. The 
DTFT spectrum of a discrete-time signal is 
always periodic, so it is not possible for the 
spectrum to be non-zero for positive fre-
quencies and zero for all negative frequencies 
simultaneously. For discrete-time signals, the 
concept of analyticity is based on a DTFT 
spectrum like the one shown in Figure 60.2, 
where the spectrum is non-zero in all odd-
numbered positive Nyquist zones3 as well 
as in all even-numbered negative Nyquist 
zones. A discrete-time signal with such a 
spectrum is conventionally called an analytic 
signal, even though it cannot be represented 
as an analytic function. As noted previously, 
we follow Marple’s practice and distinguish 
the discrete-time case as being analytic-
like. Furthermore, we use positive-like to 
indicate frequencies in odd-numbered posi-
tive Nyquist zones and in even-numbered 
negative Nyquist zones. Similarly, we use 
negative-like to indicate frequencies in 

3. In discussing the figure, it is convenient to borrow some ter-
minology from the A/D converter community. In discussions 
of A/D converters, the frequency band from 0 to fs /2 is called 
the first Nyquist zone. The band from fs /2 to fs is called the sec-
ond Nyquist zone, and so on. However, negative frequencies are 
not considered. We can extend the terminology by calling the 
band from 0 to fs /2 the first positive Nyquist zone and calling 
the band from 0 to − fs /2 the first negative Nyquist zone.
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odd-numbered negative Nyquist zones and 
in even-numbered positive Nyquist zones.

60.2 Generating Analytic  

Signals

There are a number of different techniques 
that can be used to generate an analytic sig-
nal. The following sections introduce five of 
the most useful approaches.

Spectrum Tailoring Approach

The spectrum tailoring approach can be 
used to generate the analytic-like associate 
by forcing the spectrum to zero for negative-
like frequencies. Recipe 60.1 lists the strat-
egy for spectrum tailoring. However, this is 
just a conceptual strategy; it should not be 
implemented directly. A practical algorithm 
is a bit more complicated. 

Any frequency-domain operation that 
is performed on a signal’s DFT spectrum 
corresponds to some sort of time-domain 
filtering operation that could, in theory, be 
applied directly to the time-domain signal. 
In most cases, this filtering operation has a 

f

cf− cf

(a)

(b)

f

2sf s cf f−
sf s cf f+ 3 2sf2sf−s cf f− +

sf−3 2sf− s cf f− −

Positive
Nyquist
zone 1

Positive
Nyquist
zone 3

Positive
Nyquist
zone 2

Negative
Nyquist
zone 1

Negative
Nyquist
zone 2

Negative
Nyquist
zone 3

Figure 60.2 DTFT spectra for: (a) the original discrete-time, real-valued bandpass signal, and (b) the complex-valued 
analytic associate of the original signal
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unit sample response that is longer than one 
sample in duration. Even in cases where the 
filter is defined directly in the frequency do-
main, and we do not know or need the cor-
responding unit sample response, we must 
make allowances for the length of this re-
sponse by using the fast convolution tech-
nique described in Note 20. If we were to 
apply the three-step strategy listed above 
directly, the resulting analytic-like signal 
would, in most cases, exhibit time-domain 
aliasing.

Recipe 60.2 is the result of modifying 
Recipe 20.1 to implement spectrum tailor-
ing. There are a few nuances in step 3 that 
might need further explanation. The point at 
m = N/2 sits on the transition from positive-
like frequency to negative-like frequency and 
it is not immediately obvious why Xa[N/2] is 
not set to either 0 or 2X[N/2] rather than to 
X[N/2]. However, in [1], Marple shows that 
setting Xa[N/2] = X[N/2] is necessary to sat-
isfy properties 1 and 2 from Math Box 60.1.

Math Box 60.1

Desired Properties for Discrete-Time 

“Analytic” Signals

1. Ideally, the real part of the “analytic” asso-
ciate should equal the original real-valued 
signal:

where z[n] = zR[n] + jzI[n] is the analytic 
associate of x[n].

2. The real and imaginary components of 
z[n] should be orthogonal over the finite 
duration of the signal

z n x nR[ ] [ ]=

z n z nR I[ ] [ ]=
=

−

∑ 0
0

1

n

N
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The Matlab function hilbert uses an 
approach described in [3] that is equivalent 
to the approach detailed in Recipe 60.1, but 
that does not include the anti-aliasing mea-
sures embodied in Recipe 60.2. When using 
Matlab, these measures must be imple-
mented via vector manipulations external to 
the hilbert function. This function might 
have been more aptly named analytic, be-
cause y=hilbert(x) returns a complex vec-
tor that contains the analytic-like associate 
of x; the Hilbert transform of x must be ob-
tained by taking the imaginary part of y.

Hilbert Transform Approach

It is possible to generate an analytic se-
quence using a “discretized” version of Eq. 
(60.1). For any real-valued signal sequence, 
x[n], the corresponding “analytic” sequence, 
xa[n], can be formed as

(60.2)

where H[·] denotes the discrete Hilbert 
transform. An ideal discrete Hilbert trans-
former is a discrete-time filter having an im-
pulse response, h[n], and transfer function, 
H(e jω), given by

(60.3)

(60.4)

An ideal Hilbert transformer is not realizable, 
so practical implementations for generating 

analytic-like discrete-time signals must be 
built around approximations to the ideal Hil-
bert transformer. These approximations in-
sert delay in Im{xa[n]}, so Re{xa[n]} must be 
delayed by a corresponding amount. Design 
of FIR Hilbert transformers is covered in 
Note 61.

Frequency-Shifted Lowpass Filters

A useful technique for designing FIR ana-
lytic signal generating filters is presented by 
Reilly et. al. in [4]. The basic idea is to de-
sign a “standard” lowpass filter having real-
valued coefficients, and then phase-shifts the 
impulse response coefficients such that the 
filter’s passband is shifted to cover only posi-
tive frequencies and the stopband is shifted 
to cover only negative frequencies. This ap-
proach is explored further in Note 62.

Paired-Filter Approach

The key that makes Eq. (60.1) work is that 
x[n] and jH[x[n]] have spectra that are in-
phase for positive-like frequencies and 180 
degrees out of phase for negative-like fre-
quencies. A similar phasing relationship can 
be exploited to generate an analytic-like sig-
nal using an alternative approach that does 
not require a Hilbert transformer. Specifi-
cally, the analytic-like signal is formed as

(60.5)

where, ideally, P and Q are all-pass filters 
that are designed to have phase responses 
such that the phase of Q lags the phase of P
by 90 degrees for all positive-like frequencies, 
and the phase of Q leads the phase of P by 
90 degrees for all negative-like frequencies. 
Then when multiplication by j advances the 
phase of Q{x[n]} by 90 degrees, the phases 
of P{x[n]} and jQ{x[n]} are inphase for 
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positive-like frequencies and 180 degrees out 
of phase for negative-like frequencies. Some-
times, the network comprising the two filters 
P and Q is referred to as an analytic-signal 
generating filter, or ASG filter. Design of IIR 
filter pairs for P and Q, as used in Eq. (60.4), 
is discussed and demonstrated in Note 63.

Complex Filter Approach

It is possible to design a single complex-
valued filter that generates the analytic asso-
ciate of the signal applied to the filter’s input. 
One way to design such a filter involves the 
complex extension of the Parks-McClellan 
algorithm. Design of complex-valued ASG 
filters using this extended algorithm is dis-
cussed in Note 64.
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Note 61

As discussed in Note 60, many DSP ap-
plications require the creation of the 

analytic-like signal that corresponds to some 
real-valued signal of interest. This note de-
scribes just one of several approaches that 
can be used to generate an analytic-like sig-
nal. For an overview of other possible ap-
proaches, refer to Note 60.

For a real-valued sequence, x[n], the cor-
responding analytic-like sequence, xa[n],
can be formed as

(61.1)

where
x̂[n] =H{ x[n]}

and H{·} denotes the discrete Hilbert trans-
form. An ideal lowpass filter is unrealizable, 
and so is an ideal Hilbert transformer. The 
challenge a DSP engineer faces is to design 
an approximation to the desired response 
that provides performance that is adequate 
for the particular application of interest. FIR 
approximations to the ideal Hilbert trans-
former are subject to the constraints given in 
List 61.1. However, since most applications 
that require Hilbert transformers involve 
signals that are already bandpass in nature, 
meeting these constraints is usually not dif-
ficult. Equation (61.1) can be implemented 
using an analytic signal generating (ASG) fil-
ter like the one depicted in Figure 61.1. The 
delay element is matched to the delay of the 
Hilbert transformer.

Example 61.1 attempts to implement a 
broadband, or “almost-all-pass,” ASG filter 

x n x n jx na[ ] [ ] ˘[ ]= +

Generating Analytic Signals  
with FIR Hilbert Transformers
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Figure 61.2 Frequency response for Hilbert transformer from 
Example 61.1

that incorporates a Hilbert transformer designed 
using the Parks-McClellan algorithm. 

Example 61.2 implements a more pronouncedly 
bandpass design that is only concerned with can-
celling negtive frequencies in the band from —3fs/8
to —fs/8. The more generous transition bands in 
this second case result in an ASG filter with much 
higher stopband attenuation.

Notice that in both examples, the bandpass na-
ture of the Hilbert transformer results in a bandstop 
ASG filter. The ASG filter “defaults” to passband, 
having its stopband at only those frequencies cor-
responding to the Hilbert transformer’s passband. 
For some applications, it might be desirable for the 
ASG filter to have a narrowly defined passband 
with a “default” stopband everywhere else. 
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transformer

Delay
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[ ]Rz n

[ ]Iz n

j

Figure 61.1 Analytic signal generating filter
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Figure 61.3 Frequency response for ASG filter from Example 61.1
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Figure 61.4 Spectra for Example 61.3: (a) spectrum for typical 
bandpass signal, (b) spectrum for corresponding analytic signal
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Note 62

Auseful technique for designing FIR 
analytic signal generation (ASG) filters 

is presented by Reilly et al. in [1]. The basic 
idea is to design a “standard” lowpass filter 
having real-valued coefficients, and then 
phase-shift the impulse response coefficients 
such that the filter’s passband is shifted to 
cover only positive frequencies and the stop-
band is shifted to cover only negative fre-
quencies. The phase-shifted coefficients are 
complex-valued. The details are provided in 
Design Procedure 62.1. 

Example 62.1 attempts to implement a 
broadband, or “almost-all-positive pass” 
ASG filter using the approach of Design 
Procedure 62.1. Example 62.2 implements a 
more pronouncedly bandpass design that is 

4
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2
sf−

Hf− Hf

2
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4
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Figure 62.1 Desired frequency responses for Design 
Procedure 62.1: (a) analytic signal generating filter 
response, (b) corresponding prototype lowpass response

Generating Analytic Signals with 
Frequency-Shifted FIR Lowpass Filters

only concerned with cancelling negative fre-
quencies in the band from —3fs/8 to —fs/8.
The more generous transition bands in this 
second case result in an ASG filter with 
much higher stopband attenuation.
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Example 62.1
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bandpass signal, (b) spectrum for corresponding analytic 
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Figure 62.6 Frequency response for analytic signal filter from 
Example 62.2
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Note 63

IIR Phase-Splitting Networks 
for Generating Analytic Signals

This note describes the design of IIR phase-splitting networks that 
can be used to generate complex-valued analytic output signals from 
real-valued bandpass input signals. Refer to Note 60 for a discussion 
of analytic signals and their properties.

he analytic associate, xa[n], of a real bandpass 
signal, x[n], can be formed as

where P and Q are all-pass filters that together 
comprise a phase-splitting network such that the 
phase of Q lags the phase of P by 90 degrees for 
all positive frequencies, and the phase of Q leads 
the phase of P by 90 degrees for all negative fre-
quencies. Then when multiplication by j advances 
the phase of Q{x[n]} by 90 degrees, the phases of 
P{x[n]} and jQ{x[n]} are inphase for positive fre-
quencies and 180 degrees out of phase for negative 
frequencies. The difficulty in this approach lies in 
the design of suitable phase-shifting filters for P
and Q.

A technique, based on Jacobian elliptic func-
tions and the bilinear transform, that can be used 
to design suitable filter pairs for P and Q was first 
described by Storer [1], and later extended by Gold 
and Rader [2]. Rader [3] subsequently showed that 
a fifth-order phase splitter can be efficiently imple-
mented as a pair of efficient IIR filters, provided 
that the desired response is of the form shown in 
Figure 63.1, where the passband is symmetric about 
π/2 and the stopband is at the corresponding nega-
tive frequencies and symmetric about –π/2. This 
symmetry causes poles of each branch to occur in 
pairs with poles in each pair having equal mag-
nitudes and opposite signs, thus allowing a single 
multiplier to implement a pair of poles, as shown 
in Figure 63.2. The multiplication by a2 implements 

x n x n j x na[ ] [ ] [ ]= { }+ {⎡⎣
1
2 P Q

Essential Facts
A phase-splitting network consists of a 
pair of IIR filters designed to generate a 
complex-valued analytic output signal 
from a real-valued bandpass input signal.

Wide transition bands of low-order IIR 
filters make this approach ill suited for use 
on lowpass input signals.

The IIR structures used in this approach 
present lower computational burdens 
than do FIR approaches for generating 
analytic signals.

The architecture of the implementa-
tion provides an opportunity to perform 
downsampling as a natural part of the fil-
ter’s operation.

The phase response is only approximately 
linear across the passband and has jump 
discontinuities of π radians at nulls in the 
stopband.

The most efficient realizations depend 
upon the specified passband being sym-
metric about a normalized radian fre-
quency of π/2.

Design procedures require evaluation of 
complete elliptic integrals and Jacobian el-
liptic functions. (Matlab can handle both 
of these evaluations.)

2
−

2
− b− a− a b

Figure 63.1 Spectrum symmetries required for Rader’s efficient 
IIR implementation. The passband and stopband must be 
symmetric about π/2 and −π/2 respectively.
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Figure 63.2 Efficient IIR realization for fifth-order phase-
splitting network

one pole pair, and the multiplication by b2 imple-
ments a second pole pair. The fifth pole occurs at 
z = 0, and it is implemented by the extra single de-
lay element in the upper branch. The upper branch, 
which generates the real part of x̂[n], implements 
the transfer function

(63.1)

The lower branch, which generates the imaginary 
part of x̂[n], implements the transfer function

(63.2)

Combining Eqs. (63.1) and (63.2) yields the overall 
complex response H(z) as

(63.3)

In [4], Rader repeats the fifth-order example from 
[3] and also provides an efficient IIR implemen-
tation for a ninth-order phase splitter, which is 
shown in Figure 63.3.
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Figure 63.3 Efficient IIR realization for ninth-order phase-splitting network
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63.1 The Approach

Before the coefficients for the phase splitter can be 
computed, Design Procedure 63.1 must be used to 
determine the minimum network order that will 
provide a desired level of stopband attenuation for 
a set of critical frequencies, θa and θb , specified as 
shown in Figure 63.1. Once the minimum order is 
determined, this value should be rounded up to ei-
ther 5 or 9 before Design Procedure 63.2 is used to 
compute values for the filter coefficients.

The filter in Example 63.1 has a symmetric pass-
band, and can therefore be implemented using the 
efficient IIR structure shown in Figure 63.2. Exam-
ple 63.2 features a case in which the passband is not 
symmetric.
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Figure 63.5 Magnitude and phase response for Example 63.1
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Figure 63.4 Spectra for Example 63.1: (a) spectrum for typical 
bandpass signal, (b) spectrum for corresponding analytic signal

k sn(x,1–m) cn(x,1–m) pk

0 0.306491992 0.95187323 − 0.1333719
1 0.9238795 0.382683428 − 0.99999998
2 0.998477509 0.055160338 − 7.497831
3 0.9824588703 − 0.186479404 2.18226667
4 0.7418447897 − 0.6705716277 0.45823915

Table 63.1 Values of Jacobian Elliptic Functions Used to 
Calculate the Filter Coefficients for Example 63.1

   



IIR Phase-Splitting Networksfor Generating Analytic Signals 63-6

   



63-7 Notes on Digital Signal Processing

References

1. J. E. Storer, Passive Network Synthesis, McGraw-Hill, 1957.
2. B. Gold and C. M. Rader, Digital Processing of Signals, 

McGraw-Hill, 1969. (Note: There are several errors in 
the section on phase-splitter design in this reference. The 
corrections for these errors are given by Rader in [3].)

3. C. M. Rader, “A Simple Method for Sampling In-Phase 
and Quadrature Components,” IEEE Trans. Aerospace and 
Electronic Syst., vol. 20, no. 6, November 1984, pp. 821–824.

4. C. M. Rader, “Method and Apparatus for Sampling 
In-Phase and Quadrature Components,” U. S. Patent 
4,794,556, dated Dec. 27, 1988.

0 0.5 1 1.5 2

0

200

Normalized frequency  

Ph
as

e 
(d

eg
re

es
)

0 0.5 1 1.5 2
100

50

0

50

Normalized frequency  

M
ag

n
tu

d
e 

(d
B
)

Figure 63.6 Magnitude and phase responses for Example 63.2

Table 63.2 Values of Jacobian Elliptic Functions Used in 
Calculating the Filter Coefficients for Example 63.2

k sn(x,1–m) cn(x,1–m) pk

0 0.309639142 0.95085414 –0.10580788
1 0.926261563 0.3768813 –0.79855547
2 0.998549919 0.05383362 –6.0268756
3 0.98319156 –0.182576978 1.7497184
4 0.746431003 –0.665462814 0.36445332
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Note 64

This note describes the design and use of complex equiripple 
FIR filters to generate discrete-time analytic signals of the 
sort discussed in Note 60. 

Such filters are designed using a complex-
valued extension of the Parks-McClellan 

algorithm and offer more flexibility than 
other analytic signal generation (ASG) tech-
niques when it comes to specifying the pass-
band, stopband, and transition bands of the 
filter. However, this flexibility has a price—
extra constraints placed on the filter’s config-
uration usually demand an increased number 
of taps to meet the specified performance.

The complex filter coefficients for an 
FIR analytic signal generator can be deter-
mined using the Matlab cfirpm (formerly 
cremez) function. This function requires 
that the user provide a piecewise specifica-
tion of the desired response. For generating 
analytic signals, the ideal desired response 
has the characteristics listed in List 64.1.

Example 64.1 deals with the bandpass 
ASG case that is featured in the digital I/Q 
scheme discussed in Note 65.

Generating Analytic Signals with  
Complex Equiripple FIR Filters
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Note 65

This note presents an approach for generating inphase 
and and quadrature channels from a digitized, real-valued 
bandpass signal.

Radar and communications systems often 
involve quadrature receivers, which typ-

ically exhibit mismatch or imbalances be-
tween the amplitude and phase responses of 
their inphase and quadrature output chan-
nels. These imbalances introduce distortion 
into the signals of interest that are derived 
from the I and Q outputs of the receiver. 
Rader’s approach is one of several digital I/Q 
techniques that have been devised to form 
the I and Q signals directly from a single real 
bandpass signal and thereby avoid the I/Q 
matching limitations of analog quadrature 
receivers. 

65.1 The Approach

Recipe 65.1 implements a digital I/Q ap-
proach depicted in Figure 65.1 and originally 
described by Rader in [1, 2]. The analytic 
signal generation (ASG) filter shown in the 
diagram can be implemented using any of 
the methods described in Notes 60 through 
64. However, in [1], Rader initially imple-
ments this filter as a phase-splitting network 
consisting of a pair of low-order IIR filters, 
as shown in Figure 65.3. The top branch, 
which generates the real part of x̂ s[n], imple-
ments the transfer function

(65.1)H z z z a
a z

a

1
1

2 2

2 2

2 
1

0 5846832

( )

.

= −
−

=

−
−

−

Essential Facts

Analog quadrature receivers exhibit im-
balance between their inphase (I) and 
quadrature (Q) components.

It is difficult and expensive to control the 
imbalances well enough to avoid severe 
distortion in the signals of interest (SOI).

Rader’s approach

º avoids I/Q imbalance by digitizing a 
real-valued bandpass signal and creat-
ing the I and Q channels digitally

º requires an analog mixing operation 
that moves the I/F down to a center 
frequency that is equal to the SOI’s 
bandwidth of B Hz

º requires A/D conversion at a rate of 4B
samples per second

º provides a convenient opportunity to 
remove any dc bias that may be intro-
duced by the analog mixing operation

Generating I and Q Channels  
Digitally: Rader’s Approach

( )x t [ ]sx n
BPF

x IF( )t
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ASG
filter

4ˆ [ ]sx n
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Imag

[ ]I n

[ ]Q n

( )cos 2 cf B t⎡ ⎤−⎣ ⎦

.

Figure 65.1 Block diagram of processing steps in 
Rader’s digital I/Q approach
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Figure 65.2 Spectra of signals at various points in Rader’s digital 
I/Q approach: (a) spectrum of bandpass RF input signal, x(t),
with a bandwidth of B and a carrier frequency of fc, (b) spectrum 
of IF signal, xIF(t), produced by the mixer, (c) baseband image 
of spectrum for xs[n] created from xIF(t) by sampling at a rate 
of fs samples per second, (d) spectrum of the analytic signal, 
xˆs[n], formed by complex filtering of xs[n], (e) spectrum of final 
quadrature baseband signal after down sampling by a factor of 
4. The hashed areas indicate frequencies outside the bandwidth 
supported by the sampling rate.
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Figure 65.3 IIR realization for the complex filter

The bottom branch, which generates the 
imaginary part of x̂ s[n], implements the 
transfer function

(65.2)

The coefficients a2 and b2 can be obtained 
using the design procedure presented in 
Note 63. Rader points out that because the 
filter output, x̂ s[n], is destined to be down-
sampled by a factor of 4, it is possible to 
build a more efficient filter that absorbs the 
downsampling operation and generates only 
every fourth output. This improved real-
ization is shown in Figure 65.4. The down-
sampling is accomplished by the switches on 
the output lines. 

Careful examination of Figure 65.3 re-
veals that even-indexed samples of Re{x̂ s[n]}
depend only upon odd-indexed samples 
of x̂ s[n], and even-indexed samples of 
Im{x̂ s[n]} depend only upon even-indexed 
samples of x̂ s[n]. The input switch shown in 
Figure 65.4 routes odd-indexed samples to 
the top branch and even-indexed samples 
to the bottom branch, thereby enabling each 
branch to run at half the original sample 
rate. Because of the reduced rate, the z-2 de-
lays become z-1 delays. The z-1 delay in the 
top branch of Figure 65.3 is accomplished by 
the relative phasing of the output switch clo-
sures in Figure 65.4. To establish the proper 
phasing, the sample of Q[n′] that is gener-
ated when n = 0 is discarded so that I[0] is 
generated when n =1, and Q[0] is generated 
when n = 2.

Normally, shifting a bandpass spectrum 
such as Figure 65.2(d) to create a baseband 
spectrum such as Figure 65.2(e) would 
require some sort of mixing operation. 
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Figure 65.4 Improved IIR realization for the complex filter
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However, the particular combination of 
center frequency and sampling rate used 
in Rader’s approach completely eliminates 
the need for a final mixing step. If the sig-
nal corresponding to the spectrum in Figure 
65.5(a) is downsampled by a factor of 4, two 
things happen:

1. Images of the spectrum are created at in-
tervals of the new sampling rate, f �S = fS/4,
as shown in Figure 65.5(b).

2. The supported passband of the system 
changes from ± fS/2 to ± f �S/2 = ± fS/8, with 
exactly one image of the signal’s spectrum 
falling in this new passband, as shown in 
Figure 65.5(c).
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Figure 65.5 When the signal having the spectrum in (a) is 
downsampled by a factor of 4, images are created at intervals of 
fs /4, as in (b), and the supported passband shrinks, as depicted 
in (c), from ±fs /2 to ±f´s /2 where f´s = fs /4.
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Note 66

Rader’s digital I and Q approach presented in Note 65 re-
quires that the real bandpass IF signal be sampled at a rate 
equal to four times the signal’s bandwidth. This note shows 
how Rader’s scheme can be generalized to support sam-
pling rates that are not four times the signal bandwidth.

Rader’s efficient IIR design for the com-
plex filter depends upon downsampling 

by a factor of four, which in turn drives the 
requirement that the sampled I/F bandpass 
signal be centered at a frequency equal to 
one-fourth the sampling rate. This con-
straint is required so that downsampling by 
a factor of four shifts the surviving sideband 
to a center frequency of zero. If an FIR fil-
ter, or even a “standard” IIR filter, is used in 
place of Rader’s IIR phase-splitting design, 
this constraint on the I/F can be relaxed.

If Rader’s efficient IIR structure is not 
used, the important constraint is that the 
sample rate, fs, be an integer multiple of the 
intermediate frequency, and that after filter-
ing, the signal is downsampled by the same 
integer factor so that the new sample rate, fsʹ ,
equals the intermediate frequency:

(66.1)

The relationship between fs, fIF, and M is 
constrained this way to ensure that the 
downsampling operation always creates a 
spectral image at zero frequency. However, 
Eq. (66.1) says nothing about the relation-
ship between fIF and the bandwidth B. To 
avoid aliasing, the final sample rate, fsʹ , must 
exceed the bandwidth:

For convenience, let’s say that fs = QB, where 
Q ≥ D. For Rader’s original frequency plan, 
Q = D = 4, but there are many other possible 
combinations if downsampling by four is not 
needed to support the special IIR filter struc-
ture. The design case presented in the next 
section considers one of these alternatives.

66.1 Design Case

Figure 66.1 shows a sequence of models ex-
tracted from a simulation of pulse Doppler 
processing for a radar receiver. This simu-
lation was constructed using some of the 
PracSim models discussed in [1]. Assume a 
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transmit frequency of 5250.0 MHz. One of 
the inputs to the mixer is a received signal 
consisting of a tone at 5250.0 MHz, rep-
resenting a return from stationary clutter, 
plus a tone at 5250.0128 MHz, represent-
ing a moving-target return that exhibits an 
inbound Doppler shift of 12.8 kHz. The ref-
erence tone is assumed to come from a fre-
quency and timing source that is common to 
both the transmitter and receiver portions of 
the actual radar.

The bandwidth of the analog received 
signal varies depending upon the amount 
of Doppler shift created by moving targets 
in the radar’s field of view. Let’s assume that 
the bandwidth of the signal is guaranteed 
to be less than 2 MHz. Following Rader’s 
original frequency plan, we would specify a 
sampling rate of 8 MHz. However, let’s as-
sume that this particular radar has several 
different operating modes, and one of these 
modes needs a sampling rate higher than 91 
MHz. To avoid changing the ADC rate for 
different operating modes, we can design the 
pulse Doppler operation using an ADC rate 
of fs = 100 MHz and a final sample rate of 
fsʹ  =10 MHz:
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For a received center frequency of 5250 MHz 
and a reference tone at 5240 MHz, the band-
pass mixer produces signals centered at 10 
MHz and at 10,490 MHz. The bandpass filter 
removes the high-frequency signal, leaving 
only the signal at 10 MHz. The mixer inputs, 
mixer output, and bandpass filter output 
are all analog signals that are simulated in 
this reference design using a sampling rate 
that corresponds to 1.28 ×1011 samples per 
second.

The multistage decimator performs filter-
ing and downsampling to reduce the sample 
rate to 108 samples per second. The decima-
tor output in the simulation corresponds to 
the ADC output in Figure 65.1 in Note 65.
(Quantization performed by the ADC is not 
included in this simulation.)

The power spectral densities of the mixer 
output and decimator output are shown in 
Figures 66.2 and 66.3, respectively. The com-
plex FIR filter model implements the 90-tap 
design having the response shown in Figures 
66.4 and 66.5 that was developed in Exam-
ple 63.1 of Note 63. The PSD for the com-
plex filter’s output is shown in Figure 66.6. 
The attenuated negative-frequency sideband 
is clearly visible. A zoomed view of the PSD 
in the vicinity of 10 MHz is shown in Figure 
66.7. All of the fine structure shown in this 
view is due to the pulse gating of the radar 
signal. Figure 66.8 shows the corresponding 
view of the PSD when the gating is disabled 
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and a continuous tone is transmitted. The 
center-to-center spacing of the fingers in 
Figure 66.7 is 60.6 kHz, which corresponds 
to the pulse repetition frequency (PRF) of the 
gating pulses. The amplitudes of these fin-
gers follow an envelope that corresponds to 
the spectrum of a single rectangular gating 
pulse.

The downsampler implements our choice 
of D = 10 to yield a final sample rate of 107.
Figure 66.9 shows the low-frequency details 
for the PSD of the downsampler output. The 
components at zero and 12.8 kHz are the 
ones we’re expecting to find based on the 
makeup of the original received signal. The 
other components are images due to the 
pulse gating.

0
2
sf

2
sf−

4
sf

4
sf−

0

30−

60−

90−

120−

150−

Frequency

M
ag

n
it
u
d
e 

re
sp

o
n
se

 (
d
B
)

Figure 66.4 Magnitude response of 90-tap complex filter 
designed in Example 63.1 of Note 63

0

2
sf

2
sf−

4
sf

4
sf−

Frequency

0

1000−

2000−

3000−

4000−

5000−

6000−Ph
as

e 
re

sp
o
n
se

 (
d
eg

re
es

)

Figure 66.5 Phase response of 90-tap complex filter designed in 
Example 63.1 of Note 63

50− 040− 30− 20− 10− 10 20 30 40 50

0

50−

100−

150−

200−

R
e

at
iv

e 
PS

D
 (

d
B
)

Frequency (MHz)

Figure 66.6 Power spectral density at output of the complex 
filter

   



66-5 Notes on Digital Signal Processing

Reference

1. C. B. Rorabaugh, Simulating Wireless 
Communication Systems, Prentice Hall, 2004.

9 9.5 10

0

10−

10.5 11

20−

30−R
e

at
iv

e 
PS

D
 (

d
B
)

Frequency (MHz)

Figure 66.7 Enlarged view of the detail near 10 MHz for the 
PSD shown in Figure 66.6

9 9.5 10

0

10.5 11

20−

40−

R
e

at
iv

e 
PS

D
 (

d
B
)

Frequency (MHz)

Figure 66.8 Enlarged view of the detail near 10 MHz for the 
PSD of the complex filter output when pulse gating of the 
transmitter signal is disabled

0100− 50− 50 100

0

10−

40−

30−

20−

R
e

at
iv

e 
PS

D
 (

d
B
)

Frequency (kHz)

Figure 66.9 Power spectral density at output of the final 
downsampler

   



67-1

Note 67

any sampled real-world signals can be mod-
eled as the output of a discrete-time filter 

that is driven by a simple input sequence. Many 
techniques for the analysis and characterization 
of signals are based upon such signal models. This 
note serves as an introduction to the basic model 
classes that are explored in subsequent notes.

Parametric modeling is the name given to the 
concept of modeling a discrete-time signal as the 
output of a discrete-time filter that is driven by a 
specified input sequence—usually either white 
noise or the unit-sample function. Many tech-
niques used in the areas of statistical signal process-
ing, spectral estimation, and adaptive filtering are 
built upon the theoretical foundations provided by 
parametric modeling. The discussions in this note 
focus on the various signal models that can be built 
around a filter that exhbits the following properties.

The filter is linear.

The filter is causal.

The filter is time-invariant.

Implementation of the filter requires a finite 
number of memory elements.

Computation of each of the filter’s output sam-
ples can be accomplished using a finite number 
of arithmetic operations.

Any filter that exhbits all of these properties can 
be represented by a constant-coefficient, linear differ-
ence equation of the form

(67.1)y n a k y n k b k x n kp
k

p

q
k

q
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67-2 Notes on Digital Signal Processing

where x[n] is the input to the filter, and y[n] is the 
output. The corresponding system function is a ra-
tio of polynomials in z −1:

(67.2)

The system function can be expressed in terms 
of its poles, pk , and its zeros, zk , by factoring the 
numerator and denominator polynomials to obtain

(67.3)

There are several items in Eq. (67.3) that require 
special mention to avoid possible confusion.

The index for the numerator product in Eq. (67.3) 
begins at k =1, even though the corresponding 
summation index in Eq. (67.2) begins at k = 0. If 
bq[0] ≠ 0, it can be factored out so that the numer-
ator in Eq. (67.2) becomes

(67.4)
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The factor, bq[0], is absorbed into G, and the ze-
ros of the system function are the q roots of the 
polynomial:

(67.5)

The subscripted variable, zk, represents the kth zero 
of the system function, while the unsubscripted 
variable z represents the discrete-frequency vari-
able used in the z-transform. This dual use of z
may be confusing, but it is fairly standard through-
out the DSP literature.

The subscripted variable, pk, represents the kth 
pole of the system function, while the unsubsript-
ed variable p represents the order of the denomi-
nator polynomial in both Eqs. (67.2) and (67.3). 
This second usage follows the convention (that 
is almost universal in the statistical literature) 
of using p to represent the autoregressive order 
of autoregressive and autoregressive-moving-
average random processes (both of which will be 
discussed later in this note).

Typically three different specializations of 
Eq. (67.1) are considered, along with two different 
types of input signals, resulting in the six different 
types of parametric models given in List 67.1. Some 
texts, such as [1] and [2], carefully distinguish 
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between models for determinstic signals (all-pole, 
all-zero, and pole-zero) and models for stochastic 
signals (autoregressive, moving-average, and auto-
regressive-moving-average), as we have done in 
List 67.1. Other texts, especially some of the older 
works like [3] or [4], categorize models as AR, MA, 
or ARMA regardless of the signals that are meant 
to be modeled or the nature of the input signals 
used to drive the filters.

Although there is considerable overlap, different 
mathematical tools and analysis techniques are as-
sociated with each of these six models. Parametric 
modeling is best known for its role in modeling 
stochastic signals, where it allows complicated sig-
nals to be characterized by the statistics of the input 
noise and the coefficients of the filter.

In some cases, the parametric model’s ouput sig-
nal is the true goal of the effort, and the coefficients 
are merely a means to an end. Such cases can be 
said to comprise the synthesis role of parametric 
modeling, because the primary goal is to synthe-
size the output signal. An example of the synthe-
sis role would be a signal generator that produces a 
signal with particular characteristics that might be 
needed for testing some new DSP algorithm that is 
separate and distinct from the parametric model it-
self. In the synthesis role, the filter coefficients often 
are obtained from a mathematical specification of 
either the desired output signal or the output sig-
nal’s autocorrelation sequence.

However, in many cases, the model’s filter coef-
ficients are themselves the true goal of the effort, 
and the filter itself is never actually implemented. 
Such cases can be said to comprise the analysis role
of parametric modeling. Many modern spectrum 
estimation algorithms are based on taking the z-
transform of the coefficients from a parametric 
model that has been fitted to a sequence of cap-
tured signal samples.

In parametric modeling, the filter coefficients are 
obtained using specialized methods that are differ-
ent from the usual FIR and IIR design techniques. 

The methods discussed in this note are appropri-
ate for fitting models to signals for which either the 
signal of interest or its autocorrelation sequence can 
be specified mathematically over all time. This con-
dition typically exists for applications that use para-
metric modeling in its synthesis role. In cases where 
knowledge about the signal is limited to a finite se-
quence of measured values, as it usually is in the the 
analysis role, other techniques, such as those pre-
sented in Notes 69 through 71, must be used.

67.1 Pole-Zero and Autoregressive-

Moving-Average Models

The pole-zero filter is the most general of three fil-
ters with rational system functions that are com-
monly used for signal modeling. As shown in 
Figure 67.2, a pole-zero filter has a portion that is 
structured like a conventional FIR filter and a por-
tion that is structured like a conventional IIR filter.

The autoregressive-moving-average (ARMA) 
model results from using a white noise source to 
drive a pole-zero filter that has been designed to 
produce an output signal having particular autocor-
relation properties. The ARMA model for the time 
series x[n] is given by

(67.6)

where w[n] is the input driving sequence. The first 
summation in Eq. (67.6) is in the form of an IIR fil-
ter and constitutes the autoregressive portion of the 
model. The second summation is in the form of an 
FIR filter and constitutes the moving-average portion 
of the model. When the input, w[n], is the unit sam-
ple, the corresponding system function has the form

(67 7)
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The ap in Eqs. (67.6) and (67.7) are the auto-
regressive parameters, and the bq are the moving-
average parameters. The subscripts on a and b may 
seem unnecessary in this context, but they are used 
here for consistency with the notation used in the 
generalized Levinson recursion in which each itera-
tion of the recursion increments the order of the 
filter being estimated. The notation ap[n] represents 
the nth AR coefficient for a filter having an auto-
regressive order of p. Similarly, bq[m] represents the 
mth MA coefficient for a filter having a moving-
average order of q.

An ARMA model having p autoregressive pa-
rameters and q +1 moving-average parameters is 
denoted as ARMA( p, q). The moving-average or-
der of an ARMA model equals the highest power 
of z−1 appearing in the denominator of the system 
function. Likewise, the autoregressive order of an 

ARMA model equals the highest power of z−1 ap-
pearing in the numerator of the system function. 
Thus an ARMA( p, q) model has q +1 moving-
average coefficients, but only p autoregressive coef-
ficients because there is no coefficient ap[0].

If the input is a white noise process, the output is a 
wide-sense stationary random process known as an 
autoregressive-moving-average process of order ( p, q). 
The power spectral density of the ARMA process is 
given by

(67.8)

where σw
2 is the variance of w[n] and T is the 

sampling interval. If a particular signal can be 
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67.3 All-Zero and Moving- 

Average Models

The moving-average (MA) model for the time series, 
x[n], is given by

(67.12)

When the input, w[n], is the unit sample, the 
corresponding system function has the form

(67.13)

If the input driving sequence, w[n], is a white 
noise process, the output is a wide-sense stationary 
random process known as a moving-average process
of order q. The power spectral density of the MA(q)
process, x[n], is given by

(67.14)
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adequately represented by an ARMA model that 
is fitted to the signal, then the coefficients of the 
model can be used in Eq. (67.8) to estimate the 
PSD of the signal.

67.2 All-Pole and  

Autoregressive Models

In its most common form, which is depicted in 
Figure 67.1, autoregressive (AR) modeling involves 
using an all-pole IIR filter driven by a white noise 
source to produce an output signal having specified 
autocorrelation properties. The AR model for the 
time series, x[n], is given by

(67.9)

When the input, w[n], is the unit sample, the 
corresponding system function has the form

(67.10)

If the input driving sequence, w[n], is a white 
noise process, the output is a wide-sense stationary 
random process known as an autoregressive pro-
cess of order p. The power spectral density of the 
AR( p) process, x[n], is given by

(67.11)

where σw
2 is the variance of w[n] and T is the sam-

pling interval.
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Note 68

Many real-world signals can be modeled as autoregressive (AR) pro-
cesses. The properties of AR processes have led to the development 
of numerous techniques for analyzing and characterizing of such sig-
nals. This note serves as an introduction to these techniques, which 
are explored in subsequent notes.

An autoregressive process of order p (often de-
noted as an “AR( p) process”) can be gener-

ated using a p-stage all-pole filter driven by a white 
noise source, as shown in Figure 68.1. The configu-
ration shown in the figure implements the differ-
ence equation (68.1) given in Math Box 68.1, and 
is sometimes referred to as an autoregressive signal 
model.

The AR model can be used in either a synthesis
role or an analysis role. In the synthesis role, the 
model order p, the coefficients, b0 and ap[k], and 
the white noise variance, σw

2, are all assumed to be 
known, and the filter is used to generate the signal 
sequence, x[n], recursively. An example of the syn-
thesis role is the implementation of a signal genera-
tor that produces a signal with particular statistical 

Essential Facts

The autoregressive signal model consists of an all-
pole filter driven by a white noise source.

The Yule-Walker normal equations provide a crit-
ical link between the AR model parameters and 
the autocorrelation sequence (ACS) that is used 
to characterize the desired output of the model.

The matrix of autocorrelation values that appears 
in the Yule-Walker equation is Toeplitz, and 
therefore a computationally efficient technique 
called the Levinson-Durbin recursion can be used 
to solve for the coefficients ap[k].

When the AR signal model is used in a synthesis
role, the ACS values needed for the Yule-Walker 
equations usually are specified directly by the de-
signer based on the theoretical ACS of the desired 
model output. 

When the AR signal model is used in an analysis
role, the ACS values needed for the Yule-Walker 
equations usually are estimated from a sampled 
segment of the signal being analyzed. Use of the 
AR model in an analysis role is discussed further 
in Notes 69 through 73.

Autoregressive Signal Models

Figure 68.1 All-pole filter configured for generating an AR( p) process
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68-2Autoregressive Signal Models

characteristics that might be needed for testing or 
simulation purposes.

In the analysis role, a signal, x[n], is known for 
some values of n, and is assumed to be an auto-
regressive signal. The problem is to find values for 
ap[k] and σw

2 that yield the estimated signal

that is in some sense the “best” estimate for x[n].
In most cases where an AR signal model is used in 
an analysis role, the model’s filter coefficients are 
themselves the true goal of the effort, and the filter 
itself is never actually implemented. For example, 
Eq. (MB 68.3), given in Math Box 68.1, uses the fil-
ter coefficients to estimate the power spectral den-
sity of an autoregressive signal.
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Note 69

This note describes the Yule-Walker method for finding the 
parameters needed to fit an autoregressive model to a finite 
sequence of samples obtained from a stochastic signal. This 
method is conceptually straightforward; it is based on the 
simple idea of substituting an estimated autocorrelation se-
quence (ACS) for the true ACS in the Yule-Walker equations 
that are presented in Note 68. Other methods for fitting an 
AR model to a finite sequence of signal samples are present-
ed in Notes 72 and 73.

he Yule-Walker method is a technique 
for fitting an autoregressive model to a 

stochastic signal that is assumed to be auto-
regressive, but where knowledge about the 
signal is limited to a sequence of N samples, 
x[0] through x[N —1]. The Yule-Walker 
equations for an AR process are given as

(69.1)

where

The Yule-Walker method is based on us-
ing estimated values for the autocorrelation 
sequence (ACS) to populate the R matrix 
in Eq. (69.1). Assuming that x[n] is known 
only for N values x[0] through x[N —1], the 
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Essential Facts

The Yule-Walker method is based on 
simply using estimated values of the ACS 
to form the R matrix that appears in the 
Yule-Walker equations.

The R matrix that appears in the Yule-
Walker equation is Toeplitz, and there-
fore a computationally efficient technique 
called the Levinson recursion can be used 
to solve for the coefficients ap.

The Yule-Walker method does not perform 
as well as the Burg method or other lattice-
based methods in situations where N, the 
number of available samples, is small.

The Yule-Walker method for auto-
regressive modeling of random processes 
as described in the current topic is com-
putationally identical to the autocorrela-
tion method for all-pole modeling of de-
terministic signals described in Note 70. 
Because of this equivalence, some authors 
use the names autocorrelation and Yule-
Walker interchangeably, even though the 
genesis of each approach is different.

Fitting AR Models to Stochastic Signals:  
The Yule-Walker Method

estimated ACS values, rx[—p+1] through 
rx[ p], can be obtained as

(69.2)

Because the matrix R is Toeplitz, the 
Levinson recursion can be used, as shown in 
Recipe 69.1, to solve for the coefficients ap[1]
through ap[ p].
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69.1 About Recipe 69.1

Equation (69.3) is the biased estimate of the 
ACS for finite N. The unbiased estimate is 
the same, except for a normalizing factor of 
1/(N — k) that replaces the factor of 1/N in 
Eq. (69.3). Normally, it is preferable to use 
unbiased rather than biased estimators, but 
for values of k that approach the value of N,
the unbiased ACS estimator can produce 
results where the autocorelation estimate at 
lag zero is smaller than the estimate at one 
or more non-zero lags. This result can some-
times lead to matrix equations that cannot 
be solved [4]. Therefore, the biased ACS es-
timate is almost always the one used in the 
Yule-Walker method.

Along the way to producing the coeffi-
cients, ap[i ], for an AR( p) model, the Levin-
son recursion generates coefficients for all 
of the lesser-order models, AR(1) through 
AR( p —1).
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Note 70

This note describes the autocorrelation method for finding the 
parameters needed to fit an all-pole model to a finite sequence of 
samples obtained from a deterministic signal. Although the genesis 
of each method is different, the autocorrelation method is compua-
tationally identical to the Yule-Walker method described in Note 69.

he autocorrelation method is a technique for 
fitting an all-pole model to a deterministic 

signal that is assumed to be autoregressive, but 
where knowledge about the signal is limited to a 
sequence of N samples, x[0] through x[N —1]. This 
technique is based on normal equations that result 
from perfroming an error minimization over the 
semi-infinite interval, 0 ≤ n, while assuming that 
the data sequence equals zero for n < 0 and for 
n ≥ N. Recipe 70.1 implements the autocorrelation 
method by using the Levinson-Durbin recursion 
to solve the normal equations that result from this 
particular error-minimization strategy.

70.1 Background

The all-pole model has the form

(70.1)

where the coefficients, ap[k], are selected to mini-
mize the error

(70.2)

with

(70.3)

Evaluation of Eq. (70.2) calls for some values of 
x[n] that fall outside of the known sequence, x[0]
through x[N −1]. In the autocorrelation method, 
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Essential Facts

The autocorrelation method is derived by per-
forming an error minimization over the semi-in-
finite interval, 0 ≤ n, but the data sequence, x[n],
is assumed to equal zero for n < 0 and for n ≥ N.

Most authors claim that the autocorrelation 
method is less accurate and exhibits poorer reso-
lution than the covariance method desribed in 
Note 69. However, such claims are based on ob-
served performance and do not have strong theo-
retical support.

The R matrix that appears in the Yule-Walker 
equation is Toeplitz, and therefore a computa-
tionally efficient technique called the Levinson 
recursion can be used to solve for the coefficients, 
ap[ k ].

Using the unbiased ACS estimate to form the R
matrix can result in matrix equations that can-
not be solved. Therefore, the biased ACS estimate 
[Eq. (70.7)] is usually used in the autocorrelation 
method.

The autocorrelation method for all-pole model-
ing of deterministic signals as described in this 
note is computationally identical to the Yule-
Walker method for autoregressive modeling 
of random signals that is described in Note 69. 
Because of this equivalence, some authors use 
the names autocorrelation and Yule-Walker inter-
changeably, even though the genesis of each ap-
proach is different.

Fitting All-Pole Models to Deterministic  
Signals: Autocorrelation Method

this difficulty is addressed by assuming that x[n]
equals zero for n < 0 and for n ≥ N. Under this as-
sumption, the normal equations become

(70.4)[ [a k x n r n n pp
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where

(70.5)

In matrix form, the normal equations are
(70.6)

where

70.2 About Recipe 70.1

Equation (70.7) is the biased estimate of the ACS 
for finite N. The unbiased estimate is the same, ex-
cept for a normalizing factor of 1/(N — k) that re-
places the factor of 1/N . Normally, it is preferable 
to use unbiased rather than biased estimators, but 
for values of k that approach the value of N, the un-
biased ACS estimator can produce results where 
the autocorelation estimate at lag zero is smaller 
than the estimate at one or more non-zero lags. 
This result can sometimes lead to matrix equations 
that cannot be solved [4]. Therefore, the biased 
ACS estimate is almost always the one used in the 
autocorrelation method.

Along the way to producing the coefficients, 
ap[i ], for an AR( p) model, the Levinson recur-
sion generates coefficients for all of the lesser-order 
models, AR(1) through AR( p —1).
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Note 71

This note describes the covariance method for finding the 
parameters needed to fit an all-pole model to a finite se-
quence of samples obtained from a deterministic signal.

he covariance method is a technique 
for fitting an all-pole model to a deter-

ministic signal that is assumed to be auto-
regressive, but where knowledge about the 
signal is limited to a sequence of N samples, 
x[0] through x[N —1]. This method is an 
alternative to the autocorrelation method 
described in Note 70. Rather than optimiz-
ing the total error over all non-negative n
and assuming that x[n] = 0 for n outside 
the interval [0,  n −1], as the autocorrela-
tion method does, the covariance method 
is based on minimizing the error over only 
those values of n for which the error can be 
evaluated from the known data sequence 
x[0], x[1], . . . , x[N −1]. Under these con-
straints, the matrix appearing in the normal 
equations is not Toeplitz, and consequently 
the Levinson-Durbin recursion cannot be 
used to solve for the coefficients, ap[k].

71.1 Background

In the autocorrelation method discussed in 
Note 70, the error to be minimized is

(71.1)

where

(71.2)

Ouitside of the range, 0 ≤ n ≤ N −1, the 
value for x[n] is assumed to be zero. The 
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Essential Facts
The covariance method is derived by per-
forming an error minimization over the 
finite interval, [0, N −1], for which the 
data sequence is known.

Most authors claim that the covariance 
method is more accurate and offers bet-
ter resolution than the autocorrelation 
method described in Note 70. However, 
such claims are based on observed perfor-
mance and do not have strong theoretical 
support.

The inferior performance of the auto-
correlation method is usually explained as 
being due to “end effects” resulting from 
setting all unknown values of x[n] equal 
to zero.

Because the R matrix is not Toeplitz, solv-
ing for the coefficients, ap[ k ], using the 
covariance method is more computation-
ally expensive than for the autocorrelation 
method.

In theory, the filter defined by the coef-
ficients, ap, obtained from the covariance 
method may be unstable, but this is rarely 
encountered in practice.

The covariance method is very similar to 
the (modern) Prony method.

Fitting All-Pole Models to Deterministic  
Signals: Covariance Method

covariance method minimizes the error only 
over the range of indices for which the nec-
essary values of x[n] are available. Comput-
ing e[n] for values of n less than p requires 
values of x[n] for n less than zero; there-
fore the lower limit on the summation in 
Eq. (71.1) must be changed to p. Similarly, 
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computing e[n] for n > N −1 requires values 
of x[n] for n > N −1, so the upper limit on 
the summation must be changed to N −1.
Under these constraints, the error to be min-
imized becomes

(71.3)

Using this criterion results in the normal 
equations 

(71.4)

where

and

(71.5)

The matrix in Eq. (71.4) has the proper-
ties of a covariance matrix, but it is not re-
ally a covariance matrix according to the 
usual definition. Nevertheless, in most of the 
literature concerning linear prediction and 
speech processing, this matrix is referred 
to as a covariance matrix, and hence the 
method using this matrix is called the covari-
ance method. The matrix is not Toeplitz, and 
therefore the Levinson-Durbin recursion 
cannot be used to solve for the coefficients 
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ap[k]. However, the matrix is Hermitian 
(conjugate symmetric), so Eq.  (71.4) can 
be solved using Cholesky decomposition, 
which imposes a computational burden that 
is about half that of Gaussian elimination.

71.2 Notes Regarding Recipe 71.1

Morf, et al. [2] have shown that the form of 
the R matrix in Eq. (71.4) is the product of 
two non-square Toeplitz matrices, and that 
this fact can be exploited to devise an inver-
sion algorithm that is not as efficient as the 

Levinson-Durbin recursion, but is more ef-
ficient than Cholesky decomposition.

Alternative derivations of similar algo-
rithms are provided by McClellan in [3] and 
by Marple in [4] and [5]. The phrase “FIR 
System Identification” might make the title 
of Marple’s paper [4] seem unrelated to the 
problem of estimating coefficients for an IIR 
filter in an AR model. However, as discussed 
in Note 70, there is an equivalence between 
an FIR filter used for linear prediction and an 
IIR filter used for autoregressive modeling.
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Note 72

prediction is a topic that is closely related 
to the generation of an autoregressive (AR) 

process. Techniques developed for linear predic-
tion yield results that can be used in autoregressive 
modeling. Forward linear prediction estimates the 
value of the sample, x[n], as a weighted combina-
tion of the m previously observed samples, x[n −1]
through x[n −m]

(72.1)

where the “hat” notation is used to distiguish es-
timated values, and the superscript f is used to 
indicate forward prediction. An FIR filter corre-
sponding to Eq. (72.1) is shown in Figure 72.1. Of 
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Autoregressive Processes and  
Linear Prediction Analysis

course, when the estimated sequence, [ ]x nm
fˆ ,

is compared to the observed sequence, x[n],
there are, in general, some nonzero errors,
e nm

f [ ], given by

(72 2)

Combining Eqs. (72.1) and (72.2) yields

(72 3)

which corresponds to the FIR prediction er-
ror filter shown in Figure 72.2. Rearranging 
terms in (72.3) yields 

(72.4)
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The algebraic structure of Eq. (72.4) 
is identical to the algebraic structure 
of the difference equation

(72.5)

which is used in Note 68 to define an 
AR process. Equation (72.5) corre-
sponds to the all-pole IIR filter shown 
in Figure 72.3. It might seem odd that 
of two equations having identical alge-
braic structures, one represents an FIR 
filter and one represents an IIR filter. 
The critical difference is the reversed 
role of inputs and outputs between the 
two filters. In Eq. (72.3), x[n] repre-
sents the input, and the noise-like pro-
cess, e nm

f [ ], represents the output. In 
Eq. (72.5), x[n] represents the output, 
and the noise process, b0 w[n], repre-
sents the input. In a sense, the two fil-
ters can be viewed as inverses of each 
other. If the filter defined by Eq. (72.5)
is used to generate an AR( p) process, 
and this process is used as input to Eq. 
(72.3), with m set equal to p, and a km

f [ ]
set equal to ap[k] for each value of k
from 1 through p, the resulting error 
sequence e nm

f [ ] exactly equals the driv-
ing sequence, b0 w[n]. The prediction 
filter “undoes” the work done by the 
AR process generator, thereby obtain-
ing the original driving sequence as 
the end result. However, if the input 
to Eq. (72.3) is not an AR( p) process, 
then the error, e nm

f [ ], is not, in general, 
a white process.

Backward linear prediction esti-
mates the value of the sample, x[n],
as a weighted combination of the m
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subsequently observed samples, x[n +1]
through x[n + m]:

(72.6)

For any given sequence, x[n], and estima-
tion order, m, the set of forward coefficients, 
a km

f [ ], that minimizes the variance of e nm
f [ ] ,

and the set of backward coefficients, a km
b [ ] ,

that minimizes the variance of e nm
b [ ] are re-

lated via complex conjugation:

(72 7)

Furthermore, the minimized variance of 
e nm

f [ ] equals the minimized variance of e nm
b [ ].

Figure 72.4 shows a dual-output FIR filter 
that generates both the forward and back-
ward prediction errors. It can be shown [5] 
that such a prediction error filter also can be 
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implemented as a lattice of the form shown in 
Figure 72.5. The lattice implementation tends 
to be more tolerant of quantization and 
roundoff.

A prediction error filter of order M is 
completely specified by either the set of tap 
weights, aM[k] for k = 1, 2, . . . , M, or by the 
set of reflection coefficients, κk, for k = 1, 
2, . . . , M, plus input variance, rxx[0]. Based 
on the relationships between these alterna-
tive specifications, there are four possible 
analysis scenarios.

1. The ACS of the input process is either 
known or able to be estimated for lags 
0 through M, and the requirement is to 
compute the set of tap weights, aM[1],
aM[2], . . . , aM[M], for a prediction filter of 
order M.

2. The ACS of the input process is either 
known or able to be estimated for lags 
0 through M, and the requirement is to 
compute the set of reflection coefficients, 
κ1, κ2, . . . , κM .

3. The reflection coefficients κ1, κ2, . . . , κM,
are known, and the ACS of the input 

process is known for lag zero. The require-
ment is to compute the set of tap weights, 
aM[1], aM[2], . . . , aM[M] for a prediction 
filter of order M.

4. The set of tap weights, aM[1], aM[2], . . . ,
aM[M], for a prediction filter of order M
is known, and the requirement is to com-
pute the corresponding set of reflection 
coefficients, κ1, κ2, . . . , κM .

The first two scenarios are handled by 
Recipe 72.1. For the third scenario, where 
the coefficients are known, Recipe 72.1 can 
be simplified to obtain Recipe 72.2.

For the fourth scenario, in which the tap 
weights of the Mth order prediction error 
filter are known, it is necessary to use the 
inverse form of the Levinson recursion to 
compute the tap weights  for the prediction 
error filters of orders M − 1, M − 2, . . . 1. The 
reflection coefficients are then obtained as

This approach for handling the fourth 
scenario is implemented in Recipe 72.3.

κm ma m m M= =[ ] , , ,1 2 …
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Note 73

he Burg algorithm [1, 2] is a tech-
nique for fitting an AR model to a sig-

nal that is represented by a sequence of N
measured samples, x[0] through x[N −1].
What sets the Burg method apart from 
other techniques for estimating AR model 
parameters are the assumptions made 
about signal values x[n] for n > 0 and for 
n ≥ N. The autocorrelation method de-
scribed in Note 70 assumes that unknown 
values of x[n] are zero. The covariance 
method described in Note 71 makes no 
assumptions about unknown values for 
x[n], but uses an optimization strategy 
that is structured to use only the N mea-
sured values. FFT-based methods assume 
the same periodic extension of values that 
is implicit in the DFT . The Burg method 
does not make any upfront assumptions 
about the unknown values for x[n], but 
instead adopts values that do not add any 
information or entropy to the signal. For 
this reason, Burg’s method is sometimes 
called the maximum entropy method
(MEM), and spectrum analysis using 
Burg’s method is sometimes called maxi-
mum entropy spectrum analysis (MESA).

The strategy of the algorithm is to char-
acterize the AR model in terms of reflec-
tion coefficients for the equivalent lattice 
filter implementation. The Burg method is 
distinguished from other methods using 
a similar strategy by the optimization cri-
teria used in estimating the coefficients. In 
Burg’s method, the reflection coefficients 
are computed sequentially using a variant of 

Estimating Coefficients for Autoregressive 
Models: Burg Algorithm

Essential Facts

Like other lattice-based algorithms for fit-
ting all-pole models, the Burg algorithm 
works directly with the signal’s sample 
values. For short signal segments, algo-
rithms using this direct approach tend 
to perform better than non-lattice algo-
rithms that must explicitly estimate values 
in the signal’s autocorrelation sequence.

The Burg algorithm can be implemented 
efficiently using a modified form of the 
Levinson recursion.

AR spectral estimates produced using co-
efficients obtained via the Burg algorithm 
have been known to exhibit some anoma-
lous behaviors such as spurious spectral 
lines, line-splitting, and phase-dependent 
frequency shifting of some spectral lines.

There are several techniques for mitigat-
ing the anomalous behaviors, but these 
techniques can significantly reduce the 
implementation efficiency.

the Levinson recursion to minimize, at each 
stage, the sum of the forward and backward 
prediction error powers.

Specifically, the Burg algorithm computes 
the reflection coefficient, κk , as

(73.1)
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where the forward estimation error and 
backward estimation error at each stage are 
obtained from results of the prior stage as

Assuming that values for κ1, κ2 , . . . , κk−1
have been selected and remain fixed, the 
value for κk computed by Eq. (73.1) mini-
mizes the stage k error, which is given by

Derivations showing that coefficients 
computed by Eq. (73.1) do in fact minimize 
Ek can be found in [3] and [4].

Using the reflection coefficients obtained 
from Eq. (73.1), the coefficients for an AR 
filter implementation can be obtained recur-
sively (in model order) as

(73.2)

where k denotes the model order, and i is the 
delay index of the particular coefficient. A 
filter constructed using these coeffcients will 
be both stable and minimum-phase. 

The complete Burg algorithm is provided 
in Recipe 73.1.
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73.1 Line Splitting

It has been observed [5] that AR spectra 
produced using the Burg algorithm some-
times exhibit line splitting, a phenomenon 
in which a signal component at a single fre-
quency gives rise to spectral lines at several 
closely-spaced but distinct frequencies. Line 
splitting is most likely to occur under the 
following conditions:

1. The signal-to-noise ratio (SNR) is high.

2. The initial phase of sinusoidal signal 
component(s) is an odd multiple of π/4.

3. The signal segment used for estimating 
the AR coefficients contains an odd num-
ber of quarter cycles for sinusoidal signal 
components.

4. The number of AR coefficients being esti-
mated is a large fraction of the number of 
samples in the signal segment being used 
for estimating the AR coefficients.
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3-point DFT algorithm, 19-1
6-dB bandwidth of bin response in periodograms, 26-2
7-point DFT algorithm, 19-3

A
ACS (autocorrelation sequence), 68-1
ADC (analog-to-digital) converters, 4-1
Additive systems, 39-2
Additive white Gaussian noise (AWGN), 27-1 to 27-5
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Fourier series, 10-2
Fourier transform, 11-3
Laplace transform, 38-2
z transform, 44-4
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ideal sampling, 3-2 to 3-3, 4-1 to 4-2
impulse invariance method, 50-1 to 50-2
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deterministic signals, 70-1 to 70-2, 71-1 to 71-3
discrete-time signals, 67-1 to 67-2, 67-5
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All-zero filters, 32-1
Almost-all-pass ASG filters, 61-1 to 61-2
Almost-all-positive pass ASG filters, 62-1 to 62-2
Amplitude-phase form in linear-phase FIR filters, 34-1 

to 34-4
Analog filters

bandpass transformations, 39-6
lowpass response, 39-4 to 39-5
magnitude, phase, and delay responses, 39-3 to 39-4
overview, 39-1 to 39-2
passband transformations, 39-5 to 39-7
transfer functions, 39-2 to 39-3

Analog-to-digital (ADC) converters, 4-1
Analysis DFT, 13-2
Analytic associates, 60-1
Analytic-like signals, 60-2
Analytic signal generation (ASG) filters

bandpass, 21-1
designing, 62-1 to 62-3
Hilbert transformers, 61-1
ideal response characteristics, 64-1

Analytic signals, 60-1 to 60-2
complex equiripple FIR filters for, 64-1 to 64-3
discrete-time, 60-2 to 60-3

frequency-shifted FIR lowpass filters for, 62-1 to 62-3
generating, 60-3 to 60-6
Hilbert transformers for, 61-1 to 61-3
IIR phase-splitting networks, 63-1 to 63-7
via spectrum tailoring, 60-4

Anti-aliasing filters
decimators, 52-1 to 52-3
ideal sampling, 4-1 to 4-2

Anti-imaging filters, 55-1, 55-4, 56-1 to 56-4
Antoniou, A., 25-1
AP (all-pole) models

deterministic signals, 70-1 to 70-2, 71-1 to 71-3
discrete-time signals, 67-1 to 67-2, 67-5

AR (autoregressive) models. See Autoregressive (AR) 
modeling.

ARMA (autoregressive-moving-average) models, 67-1 
to 67-5

ASG (analytic signal generators)
bandpass, 21-1
designing, 62-1 to 62-3
Hilbert transformers, 61-1
ideal response characteristics, 64-1

Attenuation of side lobes, 23-2
Audio CD player sample rates, 8-3 to 8-4
Autocorrelation method

all-poles models, 70-1 to 70-2
Yule-Walker method, 69-1

Autocorrelation sequence (ACS), 68-1
Autoregressive (AR) modeling

coefficient estimates, 73-1 to 73-3
and linear prediction analysis, 72-1 to 72-5
overview, 68-1 to 68-2
parametric modeling, 67-1 to 67-3, 67-5
stochastic signals, 69-1 to 69-2

Autoregressive-moving-average (ARMA) models, 67-1 
to 67-5

AWGN (additive white Gaussian noise), 27-1 to 27-5
AZ (all-zero) models, 67-3, 67-5

B
Backward linear prediction, 72-2 to 72-3
Bandpass filters

equiripple, 64-2
FIR filter approximation, 35-2 to 35-3
Hilbert transformers for, 61-3
transformations, 39-6
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Bandpass sampling, use of wedge diagrams, 59-1 to 59-4
Bandpass signals, sampling of, 58-1 to 58-3
Bandstop filters

FIR filter approximation, 35-2 to 35-3
transformations, 39-6 to 39-7

bartlett function, 21-2
Bartlett windows, 21-1 to 21-2
Bartlett’s periodogram, 30-1 to 30-3
Basic window method for FIR filters, 35-1
Bennett, W. R., 5-4
Bessel filters, 43-1 to 43-2
Bias in periodograms, 26-2
Biased estimates

autocorrelation method, 70-2
Yule-Walker method, 69-2

Bilateral z-transform pairs, 44-2
bilinear function, 51-5
Bilinear transformations, 51-1

Butterworth filters, 40-2
Matlab for, 51-5
prewarping, 51-1 to 51-3

Bin-centric approach for window analysis, 22-1 to 22-2
Bin numbers in DFT, 15-3
Bin response for periodograms, 26-2
Bit-reversed order, 17-3
Blackman windows, 21-1, 25-2 to 25-4
Boxcar FIR averaging filters, 34-1, 34-3
Burg algorithm, 73-1 to 73-3
butter function, 51-5
Butterflies, 17-3 to 17-5
Butterworth filters, 39-1, 40-1 to 40-2

frequency response, 40-2 to 40-3
lowpass response, 39-5
prototypes, 40-2, 40-4 to 40-5

C
C/D (continuous-to-discrete) converters, 3-1, 5-3
Carrier delay in analog filters, 39-4
Cascade structure for even-length FIR filters, 32-3 to 

32-4
Cauchy’s residue theorem, 45-3
Causal systems, 39-2
CDs (compact discs)

DAT conversions, 56-3
sample rates, 8-3 to 8-4

Ceiling function, 35-1
cfirpm function, 64-1 to 64-2
CGD (constant group delay) filters, 33-1 to 33-4
cheblord function, 41-3
Chebyshev filters, 39-1

lowpass response, 39-5
overview, 41-1 to 41-3
prototypes, 41-4
renormalizing, 41-2

Chebyshev polynomials, 41-1
Cholesky decomposition, 71-2 to 71-3
Classical form of Fourier series, 10-1
Coefficient estimates in autoregressive models, 73-1 to 

73-3
Coefficient matching approach in inverse z transform, 

46-1 to 46-3
Coherent gain, 23-3
Comb function, 5-2
Commutator systems, 2-2
Compact discs (CDs)

DAT conversions, 56-3
sample rates, 8-3 to 8-4

Complete elliptic integrals, 63-1, 63-3
Complex conjugates of analytic signals, 60-1
Complex equiripple FIR filters, 64-1 to 64-3
Complex filter approach for generating analytic signals, 

60-6
Computational burden of multistage interpolation, 

56-3
Conjugate-analytic signals, 60-1
Conjugation property

Fourier transform, 11-3
z transform, 44-4

Constant group delay (CGD) filters, 33-1 to 33-4
Continuous-phase frequency shift keyed (CPFSK) 

signals
periodogram performance, 28-1 to 28-2, 29-2, 30-3, 

31-3
power spectral density for, 28-1

Continuous-time Fourier transform (CTFT), 5-1, 11-1
Continuous-time Kaiser windows, 25-2
Continuous-to-discrete (C/D) converters, 3-1, 5-3
Convolution, fast, 20-1 to 20-3
Convolution property

discrete-time Fourier transform, 12-2
Fourier series, 10-2
Fourier transform, 11-3
Laplace transform, 38-2
z transform, 44-4

Cosine modulation property, 11-3
Covariance method, 71-1 to 71-3
CPFSK. See continuous-phase frequency shift keyed 

signals.
cremez function, 64-1
Critically sampled signals, 8-3
CTFT (continuous-time Fourier transform), 5-1, 11-1
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D
DACs (digital-to-analog converters)

modeled as instantaneous sampling, 2-2
signal reconstruction, 8-1 to 8-4

DAT (digital audio tape) signals, 56-3
Data windows

Hann, 24-5
Kaiser, 25-3
Welch’s periodograms, 31-1

Decimation and decimators
efficient FIR decimators, 52-3 to 52-4
multistage, 53-1 to 53-3
overview, 52-1 to 52-3
polyphase, 54-1 to 54-2

Decimation-in-frequency algorithms, 18-1 to 18-2
Decimation-in-time, natural input-permuted output 

(DIT-NIPO) FFT, 17-3
Decimation-in-time, permuted input-natural output 

(DIT-PINO) FFT, 17-3
Decimation-in-time algorithms, 17-1 to 17-5
Delay

analog filters, 39-3 to 39-4
Bessel filters, 43-1
linear-phase filters, 33-1

Delta functions
comb, 5-2
Dirac, 5-1 to 5-2
overview, 5-1
sampling model, 5-3

Deterministic signals, fitting all-pole models to
autocorrelation method, 70-1 to 70-2
covariance method, 71-1 to 71-3

DFT. See Discrete Fourier transform (DFT).
Difference equation

autoregressive signal models, 68-2
IIR filters, 49-2 to 49-3

Differentiation property
discrete-time Fourier transform, 12-2
Fourier transform, 11-3
z transform, 44-4

Digital audio tape (DAT) signals, 56-3
Digital signal processing (DSP) overview, 1-1 to 1-2
Digital-to-analog converters (DACs)

instantaneous sampling, 2-2
signal reconstruction, 8-1 to 8-4

Dirac, Paul, 5-1
Dirac combs, 5-2
Dirac delta function

overview, 5-1 to 5-2
sampling model, 5-3

Direct form
decimators, 52-3 to 52-4
FIR structure, 32-2, 32-4 to 32-5
IIR filters, 49-1, 49-3 to 49-4
interpolators, 55-4 to 55-5

diric function, 14-1 to 14-2
Dirichlet, Peter Gustav Lejeune, 10-2
Dirichlet conditions in Fourier series, 10-2
Dirichlet kernel, 14-2 to 14-3, 27-3 to 27-4
Discrete Fourier transform (DFT), 9-2

deriving from DTFT, 13-3
even-length windows for, 21-3 to 21-4
leakage, 13-4, 15-1 to 15-3
lengthening, 16-4
overview, 13-1 to 13-2
periodicity in frequency domain, 13-2 to 13-3
periodicity in time domain, 13-4
plotting with DTFT on same graph, 15-3
prime factor algorithms, 19-1 to 19-3
resolution, 16-1 to 16-4
sampling theorem, 5-1
synthesis, 13-2
truncation, 14-2

Discrete-time Fourier transform (DTFT), 11-1
deriving, 12-1
description, 9-2
DFT derived from, 13-3
pairs, 12-2
plotting with DFT on same graph, 15-3
properties, 12-2
rectangular windows, 14-2 to 14-3
sampling theorem, 5-1
sinusoidal pulses, 15-2 to 15-3
truncation, 14-2

Discrete-time Kaiser windows, 25-3
Discrete-time signals

analytic, 60-2 to 60-3
parametric modeling, 67-1 to 67-5
properties, 60-4

DIT-NIPO (decimation-in-time, natural input-
permuted output) FFT, 17-3

DIT-PINO (decimation-in-time, permuted input-
natural output) FFT, 17-3

Dolph-Chebyshev windows, 24-3 to 24-4
Downsamplers

efficient FIT decimators, 52-3 to 52-4
IIR phase-splitting networks, 63-1
multistage decimators, 53-1
polyphase decimators, 54-1 to 54-2

DTFT. See Discrete-time Fourier transform (DTFT).
Duality property in Fourier transform, 11-3

   



I-4 Index

E
Elementary windows, 21-1 to 21-3
ellipj function, 63-3, 63-6
ellipke function, 63-3 to 63-4, 63-6
Elliptic filters, 39-1, 42-1 to 42-2

lowpass response, 39-5
minimum required order, 42-2
prototypes, 42-3

Elliptic phase-splitting networks, 63-3
Envelope delay in analog filters, 39-4
Equiripple filters

analytic signals, 64-1 to 64-3
Parks-McClellan algorithm, 37-1

Equivalent noise bandwidth, 23-1 to 23-3
Error filters in linear prediction, 72-2 to 72-3
Even-length windows for DFT applications, 21-3 to 

21-4
Explicit IIR filters, 49-2
Explicit sampling techniques, 2-1

ideal sampling, 2-1 to 2-2
instantaneous sampling, 2-2
natural sampling, 2-2

F
Fast convolution, 20-1 to 20-3
Fast Fourier transform (FFT), 9-2, 13-1 to 13-2

decimation-in-frequency algorithms, 18-1 to 18-2
decimation-in-time algorithms, 17-1 to 17-5
fast convolution using, 20-1 to 20-3
prime factor algorithm, 19-1 to 19-3

Feature mapping in impulse invariance method, 50-2 
to 50-4

Fejer kernel, 27-3
FFT. See Fast Fourier transform (FFT).
Filters

analog. See Analog filters.
anti-aliasing, 4-1 to 4-2, 52-1 to 52-3
anti-imaging, 55-1, 55-4, 56-1 to 56-4
bandpass. See Bandpass filters.
bandstop, 35-2 to 35-3, 39-6 to 39-7
Bessel, 43-1 to 43-2
Butterworth. See Butterworth filters.
Chebyshev. See Chebyshev filters.
elliptic, 42-1 to 42-3
equiripple filters, 37-1, 64-1 to 64-3
FIR. See Finite-impulse-response (FIR) filters.
IIR. See Infinite impulse response (IIR) filters.

Finite-impulse-response (FIR) filters
background and options, 32-1
basic window method, 35-1

decimation, 52-3 to 52-4, 53-1
Fourier series for, 10-1
implementation structures, 32-2 to 32-5
Kaiser window method, 36-1 to 36-3
linear-phase, 32-1, 32-3, 33-1 to 33-4, 34-1 to 34-4
Parks-McClellan algorithm, 37-1 to 37-2
prediction error filters, 72-1

FIR Hilbert transformers, 61-1 to 61-3
firpmord function, 53-3, 56-3
First derivative property for Laplace transform, 38-2
First negative Nyquist zones, 60-2
First positive Nyquist zones, 60-2
5-point DFT algorithm, 19-2
Fixed systems, 39-2
Flat-topped sampling, 7-1
Folding frequency

decimators, 53-1
ideal sampling, 3-3

Forward linear prediction, 72-1
Fourier analysis overview, 9-1

categories, 9-1
DFT, 9-2
DTFT, 9-2
FFT, 9-2
Fourier series, 9-1
Fourier transform, 9-2

Fourier series (FS), 9-1, 10-1
classical form, 10-1
Dirichlet conditions, 10-2
FIR filters, 35-1
modern form, 10-1 to 10-2

Fourier transform (FT), 9-2, 11-1
pairs, 11-2
properties, 11-3

Frequency mapping for bilinear transformation, 51-1 
to 51-2

Frequency response
analog filters, 39-3
bandpass filters, 64-3
Bessel filters, 43-1 to 43-2
bilinear transformation, 51-3 to 51-4
Butterworth filters, 40-2 to 40-3
Chebyshev filters, 41-3
elementary windows, 21-1
Hilbert transformers, 61-2 to 61-3
ideal digital filters, 35-1, 35-3
IIR filters, 49-2 to 49-3, 50-1, 51-4
Kaiser windows, 25-1
linear-phase FIR filters, 33-2, 34-1
lobe structure in, 21-4
lowpass filters, 62-1 to 62-3
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Frequency shift property
DTFT, 12-2
Fourier series, 10-2
Fourier transform, 11-3
Laplace transform, 38-2
z transform, 44-4

freqz function, 51-3, 63-4, 63-6

G
Gain, processing, 23-3 to 23-4
Gaussian noise, 27-1 to 27-5
Gibb’s phenomenon, 21-1
Gold, B., 41-2 to 41-3, 63-1
Group delay

analog filters, 39-3
Bessel filters, 43-1
linear-phase FIR filters, 33-1

Guard bands in wedge diagrams, 59-4

H
Hamming windows, 24-3, 24-5
Hann windows, 21-1, 24-3, 24-5
Hat notation, 72-1
Hermitian matrix, 71-2 to 71-3
Highpass filters approximation, 35-2 to 35-3
hilbert function, 60-5
Hilbert transformers, 60-2

analytic signals, 60-5, 61-1 to 61-3
linear-phase FIR filters, 33-1

Homogeneity property
Fourier series, 10-2
Fourier transform, 11-3
Laplace transform, 38-2
z transform, 44-4

Homogeneous systems, 39-2

I
I (inphase) channel digital generation

Rader approach generalization, 66-1 to 66-5
Rader approach overview, 65-1 to 65-4

Ideal samplers, 3-1
Ideal sampling

aliasing, 3-2 to 3-3
description, 2-1 to 2-2
overview, 3-1 to 3-2
practical application, 4-1 to 4-2

IF (intermediate-frequency) signals, 60-1
IIR. See Infinite impulse response (IIR) filters.
IIR phase-splitting networks, 63-1 to 63-7

IIR sample response in inverse z transform, 45-1
Images in ideal sampling, 3-2
Imaginary part property for Fourier transform, 11-3
Implicit sampling techniques, 2-1
Impulse invariance method, 50-1

aliasing, 50-1 to 50-2
direct, 50-2
feature mapping, 50-2 to 50-4

Impulse response
analog filters, 39-1 to 39-2
linear-phase FIR filters, 33-1 to 33-4

Infinite impulse response (IIR) filters
background and options, 49-1 to 49-4
bilinear transformation, 51-1 to 51-5
implementation structures, 49-3 to 49-4
impulse invariance method, 50-1 to 50-4
inverse z transform, 45-2

Inphase (I) channel digital generation
Rader approach generalization, 66-1 to 66-5
Rader approach overview, 65-1 to 65-4

Instantaneous sampling, 2-2, 7-1 to 7-3
Integration property

Fourier transform, 11-3
Laplace transform, 38-2

Interpolation, 55-1
anti-imaging filters, 55-4
efficient structures, 55-4 to 55-5
multistage, 56-1 to 56-4
polyphase, 57-1 to 57-2
upsampling, 55-1 to 55-3

Inverse DFT, 13-2
Inverse Laplace transform, 38-1
Inverse Levinson recursion, 72-3
Inverse transform, 11-1
Inverse z transform using partial fraction expansion, 

45-1 to 45-3
all poles distinct with M < N in system function, 

46-1 to 46-3
all poles distinct with M ≥ N in system function, 

47-1 to 47-2, 48-1 to 48-3

J–K
Jacobian elliptic function, 63-1, 63-3 to 63-7
Kaiser windows

characteristics, 24-3 to 24-5
FIR filters, 36-1 to 36-3
working with, 25-1 to 25-4

Kaiser-Bessel windows, 25-1 to 25-2
Kay, M., 44-1
Kotelnikov, A., 5-4
kth derivative property for Laplace transform, 38-2
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L
Lag windows

description, 21-1
Hann, 24-5

Laplace transform, 38-1
impulse invariance method, 50-2
pairs and properties, 38-2
transfer functions, 39-2

Lattice implementation in linear prediction, 72-2 to 72-4
Leakage

DFT, 13-4, 15-1 to 15-3
even-length windows for, 21-3 to 21-4
from truncation, 14-1

Lengthening DFTs, 16-4
Levinson recursion

ARMA model, 67-4
autocorrelation method, 70-1 to 70-2
coefficient estimates, 73-1
Yule-Walker method, 69-1 to 69-2

Levinson-Durbin recursion
autocorrelation method, 70-1
covariance method, 71-2 to 71-3

Line splitting, 73-3
Linear-phase FIR filters, 32-1, 32-3, 33-1 to 33-2

impulse response, 33-4
periodicities in, 34-1 to 34-4
properties, 33-3

Linear prediction analysis, 72-1 to 72-5
Linear property for DTFT, 12-2
Linear systems in analog filters, 39-2
Linearity property

Fourier series, 10-2
Fourier transform, 11-3
Laplace transform, 38-2
z transform, 44-4

Lobes
attenuation, 23-2
in frequency response, 21-4
Kaiser windows, 25-2
modified periodograms, 29-1 to 29-2
Welch’s periodograms, 31-1
width, 23-1

Loss, scalloping, 23-4
Lowpass filters

Bessel, 43-1 to 43-2
Butterworth, 40-1 to 40-5
Chebyshev, 41-1 to 41-3
FIR filters approximation, 35-1, 35-3
FIR filters using Kaiser window, 36-1

Lowpass response of analog filters, 39-4 to 39-5
Lüke, H. D., 5-4

M
MA (moving-average) models, 67-1, 67-5
Magnitude-phase form for linear-phase FIR filters, 34-1
Magnitude response

analog filters, 39-3 to 39-6
Bessel filters, 43-2
bilinear transformation, 51-3 to 51-4
Butterworth filters, 40-1, 40-3
Chebyshev filters, 41-1 to 41-3
Dolph-Chebyshev windows, 24-4
elliptic filters, 140
FIR filters, 37-2
rectangular windows, 23-1, 24-2
triangular windows, 24-3

Magnitude spectrum
instantaneous sampling, 7-2 to 7-3
natural sampling, 6-2 to 6-3

Main lobe width, 23-1
Marple, S. L., 60-2, 71-3
Mathematical convention for IIR filters, 49-2
Maximum entropy method (MEM), 73-1
Maximum entropy spectrum analysis (MESA), 73-1
McClellan, John H., 37-1, 71-3
MEM (maximum entropy method), 73-1
MESA (maximum entropy spectrum analysis), 73-1
Minimum-phase FIR design, 33-1
Modified periodograms, 27-5, 29-1 to 29-3
Morf, M., 71-3
Moving-average filters, 32-1
Moving-average (MA) models, 67-1, 67-5
Moving-average process, 67-5
Multiplexing, 2-2, 5-4
Multiplication property

Fourier series, 10-2
Fourier transform, 11-3

Multistage decimators, 53-1 to 53-3
Multistage interpolation, 56-1 to 56-4

N
Natural sampling, 2-2, 6-1 to 6-3
Negative-like discrete-time analytic signals, 60-2
Neper frequency, 38-1
Noise

AWGN, 27-1 to 27-5
Bartlett’s periodogram, 30-1
equivalent noise bandwidth, 23-1 to 23-3
ideal sampling, 4-2

Nonuniform sampling, 3-1
Normalized frequency in linear-phase FIR filters, 33-2
Nyquist, H., 5-4
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Nyquist bandwidth in signal reconstruction, 8-3 to 8-4
Nyquist zones in discrete-time analytic signals, 60-2 to 

60-3

O
Observability, zero-padding for, 16-2
One-sided z transform, 44-1
Oppenheim, A. V., 3-1
Overlap-and-save fast convolution, 21-1 to 21-2
Oversampling CD players, 8-4

P
Paired-filter approach for analytic signals, 60-5 to 60-6
Parametric modeling, 67-1 to 67-5
Parks, Thomas, 37-1
Parks-McClellan (PM) algorithm

ASG filters, 62-1
FIR filters, 37-1 to 37-2
Hilbert transformers, 61-2

Parseval’s theorem, 23-3, 26-2
Partial fraction expansion (PFE) for inverse z transform, 

45-1 to 45-3
all poles distinct with M < N in system function, 

46-1 to 46-3
all poles distinct with M ≥ N in system function, 

47-1 to 47-2, 48-1 to 48-3Passband
ASG filters, 64-1
lowpass analog filters, 39-4 to 39-5
with phase-splitters, 63-4, 63-6

Passband transformations, 39-5 to 39-7
Periodicities

in frequency domain, 13-2 to 13-3
linear-phase FIR filters, 34-1 to 34-4
in time domain, 13-4

Periodograms
Bartlett’s, 30-1 to 30-3
modified, 27-5, 29-1 to 29-3
modulated communications signals, 28-1 to 28-2
sinusoids in AWGN, 27-1 to 27-5
unmodified, 26-1 to 26-2
Welch’s, 31-1 to 31-4

PFA (prime factor algorithm), 19-1 to 19-3
Phase delay in analog filters, 39-4
Phase response

analog filters, 39-3 to 39-4
Bessel filters, 43-2
bilinear transformation, 51-3 to 51-4
Butterworth filters, 40-3
Chebyshev filters, 41-3
FIR filters, 32-1

linear-phase FIR filters, 33-1 to 33-3, 34-1 to 34-4
paired-filter approach, 60-5 to 60-6
Rader’s approach, 66-4

Phase-splitting networks, 63-1 to 63-7
Physical signal reconstruction, 8-1 to 8-4
Picket fence effect, 16-1
Plotting DFT and DTFT on same graph, 15-3
PM (Parks-McClellan) algorithm

ASG filters, 62-1
FIR filters, 37-1 to 37-2
Hilbert transformers, 61-2

Pole-zero (PZ) models, 67-1, 67-3 to 67-5
Poles

Butterworth filters, 40-1 to 40-2
elliptic filters, 42-2
IIR filters, 49-3 to 49-4
inverse z transform, 45-3
transfer functions, 39-3
z transform, 44-1

Pollak, H., 25-1
poly function, 51-5
Polynomial division for inverse z transform, 47-2
Polynomials, Chebyshev, 41-1
Polyphase decimators, 54-1 to 54-2
Polyphase interpolators, 57-1 to 57-2
Positive-like discrete-time analytic signals, 60-2
PracSim simulation, 28-1, 66-1
Prediction analysis, 72-1 to 72-5
Prediction error filters, 72-1
Prewarped frequencies

bilinear transformation, 51-1 to 51-3
Butterworth filters, 40-2, 40-4
elliptic filters, 42-2

Prime factor algorithm (PFA), 19-1 to 19-3
Processing gain of windows, 23-3 to 23-4
Prolate spheroidal wave functions, 25-1
Prony method, 71-1
Proper rational function in inverse z transform, 46-1
Prototypes

Butterworth filters, 40-2, 40-4 to 40-5
Chebyshev filters, 41-4
elliptic filters, 42-3

PSD (power spectral density)
autoregressive signal models, 68-2
CPFSK, 28-1
I and Q channels digital generation, 66-3

PZ (pole-zero) models, 67-1, 67-3 to 67-5

Q
Q (quadrature) channels digital generation

Rader approach generalization, 66-1 to 66-5
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Q (quadrature) channels digital generation, (continued)
Rader approach overview, 65-1 to 65-4

Quotients in inverse z transform, 47-2

R
Raabe, H., 5-4
Rabiner, L. R., 41-2 to 41-3
Rader, C. M.

I and Q channels digital generation generalization, 
66-1 to 66-5

Rader, C. M., (continued)
I and Q channels digital generation overview, 65-1 

to 65-4
phase-splitting networks, 63-1 to 63-2, 63-4

Radian frequency in Laplace transforms, 38-1
Real part property for Fourier transform, 11-3
Realizable systems in analog filters, 39-3
Reconstruction filters, 8-1 to 8-4
Rectangular windows

characteristics, 24-1 to 24-3
description, 21-1
DTFT, 14-2 to 14-3

Region of convergence (ROC) in z transform, 44-1 to 
44-2

Reilly, A., 60-5, 62-1
Relaxed systems, 39-2
Remez algorithm, 37-1
Remez exchange, 37-1
Renormalizing

Bessel filters, 43-1 to 43-2
Chebyshev filter transfer functions, 41-2

Residues in inverse z transform, 45-3
Resolution

DFT, 16-1 to 16-4
lengthening for, 16-4
sinusoids in AWGN, 27-4
zero-padding for, 16-3

ROC (region of convergence) in z transform, 44-1 to 44-2

S
Sample spectrum, 26-2
Sampling, 2-1

bandpass signals, 58-1 to 58-3
decimators, 52-1, 53-2
delta functions, 5-1 to 5-3
explicit, 2-1 to 2-2
ideal, 3-1 to 3-3, 4-1 to 4-2
implicit, 2-1
instantaneous, 7-1 to 7-3
interpolation, 55-1
natural, 6-1 to 6-3

wedge diagrams, 59-1 to 59-4
Sampling jitter, 3-1
Sampling theorem, 5-4
Scaling, frequency, 16-3
Scalloping loss, 23-4
Schafer, R. W., 3-1
Schwartz, Laurent, 5-2
Scott, N. L., 59-1
Second derivative property for Laplace transform, 38-2
Second Nyquist zones, 60-2
Second-order sections in FIR filters, 32-3
Selectivity factor in elliptic filters, 42-2
SFGs (signal flow graphs), 17-1 to 17-2
Shah function, 5-2
Shannon’s sampling theorem, 5-4
Side lobes

attenuation, 23-2
Kaiser windows, 25-2
modified periodograms, 29-1 to 29-2
Welch’s periodograms, 31-1

Sifting property for Dirac delta function, 5-2
Signal-centric approach for window analysis, 22-1 to 

22-4
Signal flow graphs (SFGs), 17-1 to 17-2
Signal-to-noise ratio (SNR)

Bartlett’s periodogram, 30-1
in processing gain, 23-3
sinusoids in AWGN, 27-1 to 27-2

Sinc envelopes in DAC converters, 8-1
Sine modulation property for Fourier transform, 11-3
Sinusoidal analysis techniques, 22-1 to 22-4
Sinusoidal pulses for DTFT, 15-2 to 15-3
Slepian, D., 25-1
Small-N transforms with prime factor algorithm, 19-1
SNR (signal-to-noise ratio)

Bartlett’s periodogram, 30-1
in processing gain, 23-3
sinusoids in AWGN, 27-1 to 27-2

SOI (signals of interest), 16-2 to 16-3
Spectral impacts in upsampling, 55-2 to 55-3
Spectral nulls in Welch’s periodograms, 31-3
Spectrum tailoring approach for analytic signal 

generation, 60-3 to 60-4
Stability of analog filters, 39-3
Stationary systems, 39-2
Steady-state response in analog filters, 39-3
Step response in analog filters, 39-2
Stochastic signals, fitting AR models to, 69-1 to 69-2
Stopband

ASG filters, 64-1
lowpass analog filters, 39-4 to 39-5

Stoppass frequency in elliptic filters, 42-1 to 42-2
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Storer, J. E., 63-1
Synthesis DFT, 13-2
System functions

autoregressive signal models, 68-2
IIR filters, 49-2 to 49-3
inverse z transform, 45-2 to 45-3

Systems convention for IIR filters, 49-2

T
Telegraph signals, 2-2
Telephone signals, 2-2, 5-4
Time and frequency scaling property for Fourier 

transform, 11-3
Time-division multiplexing, 2-2
Time-invariant systems, 39-2
Time reversal property

discrete-time Fourier transform, 12-2
z transform, 44-4

Time shift property
discrete-time Fourier transform, 12-2
Fourier series, 10-2
Fourier transform, 11-3
Laplace transform, 38-2
z transform, 44-4

Timing errors in wedge diagrams, 59-3 to 59-4 
Toeplitz matrix

autocorrelation method, 70-1
covariance method, 71-3
Yule-Walker method, 69-1

Transfer functions
analog filters, 39-2 to 39-3
Chebyshev filters, 41-1 to 41-2
lowpass Butterworth filters, 40-1

Transformations
bandstop, 39-6 to 39-7
bilinear, 40-2, 51-1 to 51-5
Butterworth filters, 40-2
passband, 39-5 to 39-7

Transformers, Hilbert, 61-1 to 61-3
Transition bands

ASG filters, 64-1
decimators, 53-1 to 53-2
lowpass analog filters, 39-4 to 39-5

Transposed direct form of FIR structure, 32-2
triang function, 21-2
Triangular windows

bin-centric analysis approach, 22-2
characteristics, 24-2 to 24-3
description, 21-1 to 21-2
signal-centric analysis approach, 22-3 to 22-4

Truncation of signals, 14-1 to 14-3

Twiddle factors, 17-2
Two-sided z transform, 44-1
Two-stage decimators, 53-1 to 53-3
Type 1 linear-phase FIR filters, 33-1 to 33-3
Type 2 linear-phase FIR filters, 33-1 to 33-3
Type 3 linear-phase FIR filters, 33-2 to 33-3
Type 4 linear-phase FIR filters, 33-2 to 33-3

U
Unbiased estimates

autocorrelation method, 70-2
Yule-Walker method, 69-2

Uniform bandpass sampling, 58-1
Uniform sampling theorem, 5-4
Unilateral z-transform pairs, 44-2
Unit impulse in Dirac delta function, 5-2
Unit sample function, 49-2 to 49-3
Unmodified periodograms, 26-1 to 26-2
Upsampling

interpolation, 55-1 to 55-3
spectral impacts, 55-2 to 55-3

V
Van Valkenberg, M. E., 41-3
Variance

Bartlett’s periodogram, 30-3
unmodified periodograms, 26-2

Vaughan, R. G, 59-1

W
Wedge diagrams, 59-1 to 59-2

interpreting, 59-2 to 59-3
timing errors, 59-3 to 59-4

Welch’s periodograms, 31-1 to 31-4
White, D. L., 59-1
Windows

Bartlett, 21-1 to 21-2
Blackman, 21-1, 25-2 to 25-4
DFT, 13-4
Dolph-Chebyshev, 24-4
DTFT, 14-2 to 14-3
elementary, 21-1 to 21-3
equivalent noise bandwidth, 23-2 to 23-3
even-length, 21-3 to 21-4
FIR filters, 35-1 to 35-3, 36-1 to 36-3
Hamming, 24-3, 24-5
Hann, 21-1, 24-3, 24-5
Kaiser. See Kaiser windows.
lag, 21-1, 24-5
lobe structure in frequency response, 21-4
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main lobe width, 23-1
processing gain, 23-3 to 23-4
rectangular. See Rectangular windows.
scalloping loss, 23-4
side lobe attenuation, 23-2
sinusoidal analysis techniques for, 22-1 to 22-4
triangular. See Triangular windows.

Worst case processing loss, 23-4

Y
Yule-Walker method

and autocorrelation method, 70-1
autoregressive signal models, 68-1
stochastic signals, 69-1 to 69-2

Z
Z transform, 44-1 to 44-4
Zero-order-data-hold (ZODH) sampling, 7-1
Zero-padding, 16-1 to 16-3
Zeros

elliptic filters, 42-2
IIR filters, 49-3 to 49-4
z transforms, 44-1

Zeros of transfer function, 39-3
ZODH (zero-order-data-hold) sampling, 7-1
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