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CHAPTER 0

Alea jacta est

The first stage of writing a non-fiction book is usually 

to sketch out a summary of each chapter that will go in 

the finished work. At that time, the possibility of writ-

ing this chapter had not occurred to me – hence it being 

chapter zero. The very existence of this chapter is a great 

example of random influences at work.

Shortly after I began my background research for Dice 

World, I read a book called The Black Swan by Nassim 

Nicholas Taleb. This was not part of my research – it was 

intended as bedtime reading, light relief from work. I was 

taking a look at a cult classic that I’d never got around to 

– I didn’t even realise at the time that the book featured 

chance and probability. It was something of a shock, 

given that I had already chosen the title Dice World for 

my own book, to find Taleb railing against the image of 

dice as a cultural reference for randomness. Taleb refers 

to this as the ‘ludic fallacy’, his idea being that dice rep-

resent the fake, controlled, predictable randomness of 

games, not the real, wild randomness of life.

To rub this in, Taleb tells his readers a story of two 

fictional characters faced with a classic game-based chal-

lenge that is often used to demonstrate the difficulty 

many people have with understanding probability. Let’s 

imagine we have a fair coin, which when flipped has a 

50:50 chance of coming up heads or tails. On average, 
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we expect the coin to come up heads half of the time and 

tails half of the time. We flip that coin 99 times in a row 

and get a head every single time. What’s the chance that 

we will also get a head on the next throw?

In Taleb’s story, the first character, an accountant, 

comes up with the standard ‘correct’ response you 

would get from anyone who has a good understanding of 

the basics of probability. On the hundredth throw, there 

is still a 50 per cent chance of getting a head. The coin 

has no memory. To think that somehow you are more 

likely to get tails this time because heads have come up 

so many times before is what’s known as the gambler’s 

fallacy. There is no connection between the 100th toss 

and the ones that came before it. You are starting from 

scratch with a single toss of the coin. The outcome is still 

50:50 heads or tails.

The other character in The Black Swan, a city trader, 

thinks that this statistical view on life is rubbish. It’s not 

that he agrees with the gambler’s fallacy that the coin is 

‘due’ to come up tails. He has no intention of falling into 

that trap. In fact, the trader will tell you, there’s a high 

chance instead of getting another head. And he is prob-

ably right. Why? Because in the real world, it is much 

more likely that the person who told us it was a fair coin 

was lying than it is that you will get 99 heads in a row 

from tosses of an unbiased coin. The real world is not 

like a game with nice, easily calculated probabilities and 

no outside influences. The real world cheats.

That is fair enough as a realistic observation of what 

the world is like, but I think that Taleb misses the point 

when it comes to using the image of dice as a device to 
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suggest randomness. The dice are symbolic, they are not 

a computer model of real-world experience. The way 

that dice provide an illustration of nature’s indifference 

to our human affairs and desires is an ancient conception 

that Albert Einstein used as a parable for 20th-century 

science. Einstein’s various statements along the lines of 

‘God does not play dice’ were used to illustrate his frus-

tration with the way that quantum theory suggested the 

apparently predictable real world was in fact based on 

unpredictable chance. It was never intended to provide a 

detailed analysis of the different kinds of probability and 

randomness out there – just a nice picture to illustrate 

something out of our control. And it works.

The quote that provides the title of this mini-chapter, 

‘alea jacta est’, attributed to Julius Caesar as he crossed 

the Rubicon and meaning ‘the die is cast’, illustrates 

exactly how the throw of the dice provides powerful 

imagery, in this case identifying a point of no return. To 

deny dice their figurative role seems unreasonable.

Symbols aren’t intended to be reality, and the reso-

nant role of dice and other gaming mechanisms helps 

us grasp some aspects of probability, even if we have to 

then extend far beyond this to get a true picture of the 

real world. Denying their symbolism is a bit like com-

plaining that the road sign showing a landslip only fea-

tures a handful of rocks where a real landslip may well 

have millions of bits of debris in it. Symbols are not sup-

posed to be the real thing. So this book proudly remains 

Dice World.

If you are a certain age (which I am), Dice World 

may also bring to mind another book, which was very 
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popular when I was at university – The Dice Man by 

Luke Rhinehart. That novel featured a disaffected psy-

chologist who decides to let dice rule his life, handing 

every decision he makes over to the throw of the dice to 

make the choice. For me it was a very sad and depress-

ing novel: it is one thing to be aware of the significance 

of randomness in our lives – an important thing indeed. 

But it is something quite different to simply give away all 

rational choice to a random number generator.

Dice World is not the natural home of the Dice Man. 

Most of us don’t make our decisions by throwing dice. 

But like it or not, randomness can be effectively sym-

bolised by a throw of the dice. And as we will discover, 

randomness is the underlying heartbeat of our universe.

Welcome to Dice World.
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CHAPTER 1

Improbable world

The world is a complicated and messy place, especially 

when you consider the complexities we add to it with 

our carefully constructed environment. Take a really 

simple act that most of us perform every day without 

giving it a thought – switching on an electric light. This 

is clearly not something we are genetically programmed 

to deal with from birth. Human beings are pretty well 

identical to the creatures that evolved to survive on the 

savannah after their ancestors stopped living in trees 

over 100,000 years ago. Once you get beyond basic bodily 

functions and activities, the vast majority of our time in 

the modern world is spent doing things that the human 

body did not evolve to do. All the rest of our activities 

and experiences are relatively newly learned. We live 

unnatural lives.

It’s certainly true that there weren’t many light 

switches 100,000 years ago. So we all have to learn how 

to turn the light on – and for most of us (until we venture 

across the Atlantic and find that they incomprehensibly 

mount their switches the wrong way up on the wall) it is 

a natural-seeming, easy act. We flick the switch and the 

light comes on. No real thought involved. It’s trivial.

But imagine that you had to program a robot from 

scratch to switch on the light in your living room. You 

would need to specify exactly where the switch was 

located. This would involve providing detail of where 
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each wall was, which wall the switch was on, at what 

height it was located and at what distance it was from the 

wall’s edge. Alternatively you would need to show your 

robot exactly what the switch looked like from every pos-

sible angle, so the robot could search for it visually. You 

would also need to specify where and in which direction 

to apply pressure to the switch, how much pressure to 

use (it would be embarrassing if the robot snapped the 

thing off) and when to stop pressing.

What seemed trivial turns out to be anything but a 

simple task. But more to the point, if you now moved 

that robot into the hallway and asked it to carry out the 

same job there, you would have to start all over again. 

There might be a totally different design of switch with 

dissimilar physical characteristics. It’s highly unlikely 

this new switch would be in the same place on the wall 

in the hall as the switch is in the lounge. Set the robot in 

action without reprogramming it and you would prob-

ably end up with a hole punched in the plaster.

As human beings, we simply can’t afford the time and 

effort to do the equivalent of re-programming our brains 

each time we encounter a different light switch. And so 

we deal with patterns. We don’t learn exactly what each 

light switch that we encounter is like. Instead we have a 

broad pattern in mind which specifies ‘This is how you 

switch on a light using a wall switch’. It enables us to 

recognise the switch in a broad range of styles and then 

just to do it – press the switch, get the light. Until some 

clever designer comes up with a switch that works when 

you speak to it or touch the lamp itself – and then you 

have to start the discovery process all over again.
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Finding patterns
Of course, we didn’t evolve an ability to recognise pat-

terns to cope with light switches. But exactly the same 

flexibility of pattern-matching enables us to spot a preda-

tor – or a familiar friendly face – even if we have never 

been in a particular exact circumstance before, and so to 

take appropriate action. We work with patterns that give 

us the ability to reduce the almost infinite set of possible 

deductions from our sensory inputs to a manageable set 

we can work with, using the mental shorthand that ena-

bles us to just ‘flick the switch’, ‘run from the tiger’ or 

‘see and say “Hi” to Nic.’

We are so good at this pattern-matching that we can 

achieve it even when we have a surprisingly low amount 

of information on which to make a judgement – in this 

we are usually a lot better at filling in the gaps than com-

puters are. This is why the ‘CAPTCHA’ system, used by 

websites to ensure that people are taking part rather than 

software programs, makes use of distorted text with char-

acters that are twisted or run into each other. This is a 

visual input that a human can usually interpret, but a 

piece of software struggles with turning into useful data.

Take the three partial pieces of text below:

BANK
BANK

BANK
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No one would be challenged to see that the top word 

reads ‘BANK’, even though a sizable percentage of the 

text is missing. We find it trivial to fill in the gaps. In the 

second example, a whole 50 per cent of the text has been 

chopped off, but there is still enough there to be sure 

what the word is. It is only the positioning of the final 

chop, introducing ambiguity with two possible interpret-

ations of ‘BANK’ or ‘RANK’, that finally beats our superb 

ability to take a partial pattern and reconstruct the whole.

Much of the time this human ability to detect patterns 

is a real plus. It means that we can work with limited 

data – and in the real world the set of data that we have 

available is almost always incomplete. But the danger 

we face is that the pattern-constructing and -matching 

systems of our brains are so powerful that we imagine 

patterns when there is nothing there.

This is a good survival principle. It’s better to be suf-

ficiently sensitive that you occasionally see a predator 

where there isn’t one, rather than risk missing a killer 

that is lurking in the bushes. So we create bogeymen out 

of shadows and misinterpret all kinds of evidence. We 

see faces in the shadows, in the clouds, or even in the 

burn marks on a slice of toast. Pure randomness with no 

pattern is something we find difficult to relate to – our 

brains expect to see patterns and they do.

The patterns of science
This pattern-matching isn’t just about our low-level, 

immediate, day-to-day interaction with the environment 

around us (important though that is). It is also the basis 

of science. It’s strange, in a way, that many of us struggle 
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with science because all the scientific method does is to 

take the basic mechanism we all use to understand the 

world without even thinking about it, and formalise that 

mechanism into a process.

In science we are looking for patterns and rules to 

explain what the universe and its components do and 

how they do it. It’s as simple as that. The mechanisms 

modern scientists use may get heavy-duty and scar-

ily mathematical, but the basic principle is still one of 

looking for patterns. What scientists do is arguably just a 

simple and rather beautiful formalisation of our natural 

approach to exploring the unknown.

We start off in a state of ignorance. We gather enough 

data to be able to formulate a hypothesis about what’s 

going on. Then we test that hypothesis – a kind of pre-

dictive pattern – against subsequent observations; if 

it continues  to work, we can build on it. If it fails us, 

we have to start all over again. That’s the scientific 

method. It should be how we naturally interact with the 

world too, but all too often, once we get a hypothesis, 

we get fond of it. We can’t let it go despite plenty of evi-

dence to the contrary. And that’s when science slips into 

superstition.

To have any hope of making a scientific approach 

work, we have to expect some degree of consistency of 

behaviour from the universe. Take something we think 

of as a constant, a fixed point of certainty – the speed 

of light. If this varied from day to day or second to sec-

ond with no logical reason for that variation, and no 

way of ever anticipating what the speed will be today, 

then we could never make use of the speed of light, as 
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astronomers do all the time, to help us understand the 

universe. Given how much of our exploration of the uni-

verse is dependent on light and its speed, this would 

be totally devastating for cosmology. In fact, without 

a degree of consistency, the whole concept of science 

would collapse. We would live in a universe that might 

as well be magical. It is impossible to draw any hypoth-

eses if every time you do an experiment you get totally 

different results.

This doesn’t mean that there won’t be circumstances 

when the speed of light does vary. We know that it is 

different in a vacuum from when it is passing through a 

substance – it is slower in air, still slower in water and so 

on. There are even substances called Bose Einstein con-

densates that can effectively bring light to a standstill. 

This is because photons of light don’t pass through mat-

ter unaffected but interact with electrons, being absorbed 

and re-emitted, slowing down their progress. But this 

isn’t a problem for science, because these variations are 

predictable. I know that the speed of light is different 

when it’s going through space than from when it’s going 

through glass. But for the same medium under the same 

conditions, I expect to get the same result.

I chose the speed of light intentionally because there is 

even a theory (a perfectly reasonable theory, though not 

one with a lot of support at the moment) that the speed of 

light has not stayed the same over time. According to this 

theory, over the billions of years of existence of the uni-

verse, the speed of light has changed very slightly. If this 

is true, while it would modify some of our conclusions 

about exactly what was happening long ago in galaxies 
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far, far away (as they say), it too wouldn’t be a huge prob-

lem for science, because it is something we could predict 

and consider the influence of over time.

The randomness confusion
There is, however, one aspect of dealing with reality 

where our superb pattern-forming skills totally let 

us down. This is where there genuinely is no pattern; 

where there is no logic that lets us work out what will 

happen next; where randomness rules and chaos ensues. 

The good news is that for many of our basic interactions 

with the world, repeatability is the name of the game and 

randomness is under control. But whenever we are deal-

ing with the odds in a game of chance, or the discov-

ery that every aspect of the universe at a fundamental 

level relies on randomness, we have a serious problem of 

understanding because our pattern-forming brains start 

floundering.

Just listen to the victims after a disaster has occurred. 

They will almost inevitably ask ‘Why?’ – Why us? Why 

here? Why now? We all want to find a pattern. We want a 

reason. But usually with this kind of event there isn’t one. 

The event itself will have a cause, but there is no reason 

for the ‘Why us?’ type questions. Just imagine, as some-

times happens, that a child has been struck by lightning, 

or swept away by a flash flood. I have no doubt that his 

or her family would be asking ‘Why us, when there are so 

many families who don’t have to suffer this?’ We struggle 

so much to accept that any event can be the result of true 

randomness. Many in the past have invoked wrathful 

deities to explain an outbreak of sickness in their village, 
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blaming it on the bad behaviour of the inhabitants. Such 

reasoning doesn’t make any sense, but it establishes a 

pattern.

Even now, in the 21st century, this can happen. 

In 2010 an Iranian cleric announced to the world that 

women who wear unsuitable clothing or behave promis-

cuously are to blame for the incidence of earthquakes. 

‘Many women who do not dress modestly … lead young 

men astray, corrupt their chastity and spread adultery in 

society, which increases earthquakes,’ said Hojatoleslam 

Kazem Sedighi, according to the Iranian media. Sedighi, 

who was responding to an announcement from Iran’s 

president Ahmadinejad that Tehran was at risk of being 

hit by an earthquake, told his followers, ‘What can we do 

to avoid being buried under the rubble? There is no other 

solution but to take refuge in religion and to adapt our 

lives to Islam’s moral codes.’ The pattern is coming to 

the fore again: the earthquake and the suffering it brings 

has to have a cause, and obviously it is the behaviour of 

women that is causing it.

We want a pattern, but so often, everything from dra-

matic real world events to the weird world of atoms and 

subatomic particles is governed by a randomness that 

makes our brains hurt. There may be causes, as there cer-

tainly are with earthquakes, but the patterns they form 

may be impossible to detect with any accuracy because 

the system involved is too complex and chaotic. Or there 

may be no cause to an event at all, as is the case with 

the point in time that a specific radioactive atom decays. 

Either way, if we decide there is a pattern, we are delud-

ing ourselves.
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Weighing up risk
Our inability to deal with chance is illustrated beauti-

fully by the way that, time and again, all of us fail when 

trying to weigh up risk. Take the following example. Let’s 

say that you hear on the news that a taxi driver has been 

arrested for attacking a young female passenger. (This 

happened in my town a couple of years ago.) For the 

next few weeks, if you have a daughter or know someone 

who seems a potential victim, you will be reluctant to let 

them take a taxi. It’s human nature, you might say. And 

it is. But in terms of risk, human nature is getting the 

response profoundly wrong.

Generally speaking, the risk of being attacked by a taxi 

driver is very low in the UK. Many thousands of journeys 

are taken every day without a problem. It is only aware-

ness of the news that has made the risk suddenly seem 

higher. In fact, the risk has actually just gone down sub-

stantially. Because the only taxi driver in the area known 

to attack female passengers is now in custody. It is safer 

to take a cab than it has been for months – and yet human 

nature, a commonsense reaction to a scary potential pat-

tern, is to feel that it is more dangerous and to offer to 

drive your daughter everywhere. This is a good example 

that makes it clear just how much this problem influences 

all of us. A statistician will understand perfectly well that 

there is no extra danger and that the risk is very low. But 

they are still likely to warn their daughters to be careful 

in such circumstances. It’s not rational, but it is human.

For a second example, let’s think of the more large-

scale risks that human beings face. When we attempt 

to estimate risk, we tend to give excessive weight to 
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possibilities with a clear and familiar cause rather than 

an open, generic risk. Children are far more likely, for 

instance, to be killed by traffic than by predatory human 

beings, but we can often focus more on the dangers of 

paedophiles than on those of traffic because these indi-

viduals present a threat that features more in the stories 

we are told by the media than the less dramatic but much 

more deadly traffic statistics. Unfortunately for our chil-

dren’s safety, paedophiles make better news stories than 

traffic accidents.

Randomness confuses the hell out of human beings. 

Given our dependence on patterns as outlined above, 

and given that randomness is, in effect, the absence of 

pattern, we are led inexorably to a difficulty of dealing 

with randomness. That’s a problem, because, as we will 

discover in this book, different aspects of randomness, 

chance and probability lie behind most of the world we 

experience. Patterns are, if anything, an oddity in the 

universe. Randomness is the norm.

From classical to chaos
There are broadly two types of randomness – the clas-

sically random and what I will describe as chaotic ran-

domness. ‘Chaos’ is a term that is bandied around a lot. I 

am employing this term – or more specifically the phrase 

‘chaotically random’ – in a more particular sense than 

the English language term that simply means disordered, 

but in a broader sense than the kind of chaos theory that 

was encountered in the movie Jurassic Park and that lies 

behind our inability to predict the weather beyond a few 

days out.
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These two categories, classical and chaotic random-

ness, are rich in paradox. Individual events in classical 

randomness are impossible to predict, but the overall 

behaviour of a collection of classically random objects 

(like a gas of atoms), obeys rules – a so-called distri-

bution – that makes it relatively easy to decide what 

will happen to the collection in the future. An obvious 

example of classical randomness is a typical gambling 

game (assuming that the game isn’t rigged). The outcome 

should be truly random, but the odds of winning are clear 

and will predict statistically, over time, what is going to 

happen. The rules of classical randomness can’t tell you 

the result of a specific game, but they can tell you how 

the different outcomes should be distributed.

So, for example, taking the totally skill-free game of 

roulette, there are eighteen black and eighteen red slots 

on the roulette wheel into which the ball can drop, so if 

we ignore for the time being the green 0 or 00 slots where 

the house wins, there should be an 18⁄36 (or 1 in 2) chance 

of winning if you bet on either black or red.

I’ll just take a moment to look at the different ways of 

representing probability, as there are surprisingly many 

different ways of saying the same thing. If something has 

a 1 in 4 chance of occurring, then on average, one time out 

of four tries will produce this result. Think of drawing a 

playing card from a well-shuffled pack with no jokers. 

There is a 1 in 4 chance of getting any particular suit. We 

can also represent this as a fraction. So we could say that 

there was a 1⁄4 or 0.25 probability of getting, say, a heart. 

The probability varies between 0: no chance at all (the 

chance, say of drawing a card from a nonexistent fifth 
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suit) to 1: will definitely happen (the chance of draw-

ing a card with anything printed on it from the standard 

52 cards).

We can also use a percentage, which is just the same 

as the fraction, but multiplied by 100. So our 0.25 chance 

becomes a 25 per cent probability. In 25 per cent of cases, 

for instance, we expect to draw a heart. Gamblers use 

odds, which are, if anything, more confusing than prob-

abilities. So we might say the odds of drawing a heart are 

3 to 1 (often written as 3⁄1) because you are three times as 

likely to get one of the other suits as you are to get a heart. 

A final way of representing a chance is to use a ratio of 

percentages. You might say the chances of drawing a 

heart are 25:75 in that you would get it right 25 times to 

75 times you got it wrong, though this representation is 

almost always used when there are equal chances of get-

ting one thing or another, making it a 50:50 chance. This 

is the same as a 1 in 2 chance, or a probability of 1⁄2, 0.5 or 

50 per cent. In betting terms it is an evens chance.

Back with our roulette wheel and its 1 in 2, or 50:50 

chance of winning or losing. This isn’t a safe enough bet 

for casinos, which as businesses want to make sure that 

they will get a profit. So they add a zero slot (often there 

are two of them on wheels in the US). If the ball ends 

up in this slot, no one wins but the casino. It should be 

crystal clear for players what this means – long term, 

the casino will win. But of course this doesn’t mean that 

lucky players can’t clean up – as long as they stop while 

they are ahead.

A roulette wheel is a physical device, and as such is 

not a perfect mechanism for producing a random number 
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between 1 and 37 (or 38 in the more money-grabbing 

US casinos). Although wheels are routinely tested, it is 

entirely possible for one to have a slight bias – and just 

occasionally this can result in a chance for players to make 

a bundle . It certainly did so for 19th-century British engi-

neer Joseph Jagger, who has, probably incorrectly, been 

associated with the song ‘The Man Who Broke the Bank 

at Monte Carlo’, which came out around the same time as 

Jagger had a remarkable win in Monaco. The song prob-

ably referred instead to the conman Charles Wells, who 

won over a million francs at Monte Carlo and did indeed 

‘break the bank’. (This doesn’t mean that he cleaned out 

the casino, simply that he used up all the chips available 

on a particular table.) There were many attempts to find 

how Wells was cheating, but he later admitted that it was 

purely a run of luck, combined with a large amount of 

cash enabling him to take the often effective but danger-

ous strategy of doubling the stake on every play until he 

won.

However, Jagger probably deserves the accolade more 

than Wells, as his win was down to the application of 

wits rather than luck – and was even more dramatic.* 

* I have always found it bizarre that casinos consider it to be 
cheating if players use skill to win. Unless there is a fault with the 
wheel, there is no skill in roulette, but there certainly can be in 
games like blackjack, where there are a limited number of cards 
available to play, and so by counting the cards that have already 
been dealt, a player with a superb memory (or a concealed com-
puter) can increase their chances of winning. Apparently you 
get thrown out of casinos if you are caught doing this and barred 
from re-entering. Imagine if athletes were banned from their 
sport if they showed any sign of skill. It just demonstrates what 
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Jagger finally amassed over 2 million francs – the equiva-

lent of over £3 million (or US$5 million) today. He hired 

a number of men to frequent the casino and record the 

winning numbers on the six wheels. After studying the 

results he discovered that one wheel favoured nine of the 

numbers significantly over the rest. By sticking to these 

numbers he managed to beat the system until the casino 

realised it was just this wheel that was suffering large 

losses and rearranged the wheels overnight. Although 

Jagger soon tracked down the wheel, which had a dis-

tinctive scratch, the casino struck back by rearranging 

the numbers on the wheel each night, making his know-

ledge worthless.

In a casino, with the odd exception like Jagger, chance 

is under tight control, but when the second type of 

randomness, chaotic randomness, is in action, control 

rarely lasts long. Where classical randomness involves 

truly unpredictable individual events, chaotic random-

ness isn’t actually random at all. Think, for example, of 

attempts to predict when an earthquake will occur or 

what the weather will be weeks ahead. The individual 

events in such chaotic systems are predictable, but in 

practice the interactions of the elements in the system 

are so complex that it only takes very small changes 

when chaotic randomness is in play to make massive dif-

ferences in outcomes.

Where the random events of classical randomness 

come together to form a predictable distribution, chaos 

should be obvious: casinos aren’t a way of playing fair games, 
they are businesses designed to take money off people.
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refuses to be so easily predicted. In chaos, individ-

ual items don’t fit into neat distributions, meaning that 

chaos can bring with it huge surprises – what Nassim 

Nicholas Taleb refers to as ‘Black Swans’. In a sense, cha-

otic randomness is far more random than true, classical 

randomness.
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CHAPTER 2

More random than random

Both types of randomness – classical and chaotic – can 

catch us out, but there is nothing more dangerous than 

when we try to apply the rules of one kind of random-

ness to the other. The distributions of classical random-

ness work well in physics, or to describe how the heights 

of human beings vary. They describe perfectly the out-

come of a fair casino game. But if we try to use these dis-

tributions to predict the behaviour of the kind of chaos 

that lies behind an earthquake, we will eventually come 

a cropper – and because of our pattern-seeking natures, 

we can easily rationalise a chaos moment away, pretend-

ing that it is just a blip we can ignore in an otherwise 

classical distribution, rather than the definitive action of 

a chaotic system.

Take an example derived from Bertrand Russell, used 

by Taleb in The Black Swan. Consider the life of a turkey. 

This is a particularly thoughtful turkey, which makes 

predictions about its future happiness and well-being. It 

looks back over its life so far and sees a normal distribu-

tion (of which more later) of good and bad days. On the 

whole, by assuming it is dealing with classical random-

ness, it can predict the range of its positive and negative 

experiences, and how the good and bad days will be dis-

tributed. And then Christmas comes. Chaos intervenes. 

There comes a point that is way off the scale as far as all 

its experience to date goes.
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We are good at being like this turkey. Every busi-

ness puts a huge amount of effort into putting together a 

budget and forecasting what its performance will be like 

over the next year. There are even painful post-mortems, 

examining why reality differed from the prediction. 

These businesses (and you can apply the same picture 

to economists and politicians) are turkeys, merrily pre-

dicting the future from the past and getting upset when 

chaos steps in. It’s not your forecast that’s wrong, guys 

– no need to have a post-mortem – it’s the assumption 

that you can make effective predictions in most real-life 

circumstances.

To take on a more life-and-death example, think of 

a plane crash. This is another case of a chaotic inter-

vention in the generally classical distribution of 

experiences  of flight. Here we can see a particular danger  

that emerges from our inability to handle this kind 

of randomness. We think plane crashes are much more 

likely to happen than they really are. This is because we 

are presented with them much more often in the media 

than their impact deserves. As a result we are much more 

scared of travelling by plane than we are of going on a 

road.

Typically there are one or two thousand deaths in 

plane crashes worldwide each year (many of them in 

smaller airliners that most of us don’t use). By compari-

son, around 1.25 million people are killed on the roads 

each year around the world. Yet a combination of media 

exposure and our difficulty handling randomness means 

we get particularly scared of flying. I put my hands up. I 

hate flying. It just is scary if you think about what could 
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happen in a plane crash. Yet experiencing this is a very 

unlikely occurrence.

What’s more, if a plane crash is reported on the news, 

your awareness of the dangers of flying goes up, just like 

the dangerous taxi driver effect in the previous chapter. 

There is no reason whatsoever for the risk to go up – but 

because we are more aware of the possibility, taking your 

next trip by plane feels more scary. A similar thing hap-

pened on a much larger scale after the 2001 attack on the 

World Trade Center in New York. In reality, because of 

the security clampdown, terrorist incidents were much 

less likely immediately after this event, yet everyone felt 

that they were at greater risk, thanks to the human inabil-

ity to deal with randomness and chaos.

The success factor
One major implication of our difficulty with chaotic ran-

domness is that we ascribe much to talent that, in activ-

ities where chaos has the upper hand, really should be 

allocated to luck. Success as an author, or investing in 

stocks and shares, or in running a large company is pri-

marily down to how well the books, investments or com-

panies fare in terms of what chaos can throw at them. The 

big spikes (the equivalent of the turkey’s Christmas) far 

outweigh the subtle influence that having extra-special 

talent on board can bring to the party.

This doesn’t mean the inverse – that it’s easy to suc-

ceed with no talent – is true (despite the evidence of some 

TV celebrities). There is usually a competence threshold 

below which bad performance makes failure inevitable, 

but as long as you have a reasonable level of competence 
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it is chaos that determines who will be labelled the 

super-talented and the big successes in businesses where 

chaotic randomness reigns. This isn’t true of all business 

activities at all times of course. It’s interesting to look at 

chain restaurants as an example that is, for the moment, 

relatively free from chaos.

If you run a McDonalds franchise you will probably 

exist in a comfortable existence of relatively small vari-

ations from prediction. Your budgets will be meaning-

ful. While the exact numbers of customers will vary 

randomly, it will be within easily maintained limits, 

predicted by a handy distribution. In ordinary circum-

stances, demand for hamburgers has no good reason to 

be chaotic. Hamburger restaurants can fail, but it can 

usually be put down to clear causes, like having the 

wrong location. With an appropriate footfall and the right 

product at the right price, people will buy hamburgers. 

However, you shouldn’t feel too safe. The life of turkeys 

is inevitably chaotic, but for the hamburger restaurant a 

major change in the environment can introduce chaos. If 

you have a major outbreak of salmonella, your business 

could disappear. Or the council could close the road you 

are based on, taking away your trade.

Longer term, even with such a solid business, the 

world could change, producing a dramatic move away 

from your products. Could anyone have imagined in the 

1980s that Kodak would go into bankruptcy? Yet changes 

outside of the company’s ability to predict took away 

its trade. Kodak was guilty of thinking that the chaotic 

intervention of digital photography was a blip that could 

be ignored. It thought it knew the photography business 
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like no one else. Instead, the introduction of digital pro-

duced a transformation of the industry. Kodak moved too 

slowly and too late and suffered as a result.

The way that chaos creates apparent experts that in 

fact have no expertise can be demonstrated in the form 

of a classic scam. Let’s say you were an unscrupulous 

person and wanted to make a lot of money from punters 

who like to gamble on the horses. You can offer them 

a prediction technique that seems to guarantee sure-fire 

success. You can sell people a scheme that genuinely 

enables you to predict the winners of a whole string of 

races correctly.

First, select a series of races in each of which there is 

only a small number of runners. For simplicity of doing 

the sums, I’m going to imagine each race has just four 

horses in it. Now advertise your amazing betting system. 

And wait for the punters to pay you a large amount of 

money for the output of randomness. It works like this. 

You will provide people with a prediction of winners – 

they pay you for the advance knowledge. To prove your 

system works, you will give them the first four winners 

for free. After that, they have to pay you £1,000 a time.

Let’s say 4,096 people sign up for the first free predic-

tion (you may well get many more to do this – it’s free, 

after all – but it’s a convenient number for the example). 

You simply split your punters into four groups, giving 

1,028 customers the prediction that the first horse will 

win, the next 1,028 that the second horse is the winner and 

so on. At the end of this stage, you will have 1,028 punt-

ers who received a successful prediction. Discard the 

rest. Now repeat with your successful punters in the next 
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race, dividing the 1,028 into four groups of 256 and pre-

dicting a different winning horse to each group.

Of the punters in the second race, 256 will be win-

ners. Repeat this process again, tipping each of the four 

horses in the next race to 64 of your remaining punt-

ers. Then repeat again in the fourth race, dividing your 

remaining 64 punters into four groups of sixteen. Sixteen 

people will once again be correctly told the winner. 

These sixteen people will now have been given the win-

ners to four races in a row. A fair number of them will 

have enough faith in your system to pay up for your next 

random prediction.

There are a number of ways to run the scam. You 

could, for instance, charge an increasing amount for 

each prediction, refunding the failures. But however the 

finances are organised, with a large enough set of punters 

at the end of the process, you will have a group of people 

who are convinced that you are an absolute genius. 

Because you will genuinely have perfectly predicted the 

winner in race after race. In reality, you had no skill, no 

talent whatsoever (except a talent for deception). The 

only reason  you appeared to predict the answer is that 

the sixteen remaining punters were lucky enough (in this 

case, just a 1 in 256 chance) to be in the winning group 

each time.

The same type of random allocation to success applies 

to pretty well every stand-out phenomenon in publish-

ing or investment. It’s not that those involved have any 

special talent, far above the common herd, just that there 

are thousands of others who pass the basic competence 

test but who are the equivalent of one of the punters with 
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a failed sequence of predictions. The lucky ones suc-

ceed dramatically – the majority are unlucky and don’t 

achieve that outstanding success. The only difference 

between the real world and the scam is that in the real 

world there is no scammer. These processes with chaos 

at their heart don’t need the help of a conman: they are a 

natural consequence of having large numbers of parallel 

activities in a social setting.

Random success
Because of our need for patterns and to have clear cau-

sality, we find it very difficult to accept that there isn’t 

something special about J.K. Rowling or Bill Gates or 

Richard Branson or George Soros, so we attribute some 

kind of wonderful skill to them. But they don’t need such 

a skill any more than the winning punters do to rake in 

the money. Of course, it’s very unlikely that any particu-

lar individual happens to be the one that receives the 

boost from chaos. The vast majority of their peers will be 

like the punters in the scam sequences that don’t deliver. 

But some will inevitably succeed this way.

In some ways it’s like a lottery. The chances of any 

individual winning are millions to one against – but the 

individual with the right ticket will be the winner. There 

is no skill involved. No expertise. Just luck. You have to 

have the basic level of competence to remember to buy 

the ticket before the draw takes place, but after that, how 

well you do provides no reflection on the quality of your 

performance.

The big difference between the lottery and pub-

lishing or stock trading is that while we can’t predict  
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what the winning number will be, we can predict that 

there will be a winning number drawn in any lottery 

draw. The actual drawing mechanism is a process of 

classical randomness rather than chaos. By comparison, 

we can’t predict that a book by the next J.K. Rowling  

will be published next Saturday, or even this year. All 

we can do is say that there is likely to be another at  

some time. But the comparison with the lottery is still 

useful in emphasising how chaos fools us into thinking 

that there is expertise at work where in truth there is 

randomness.

It has been suggested that a lottery isn’t a good par-

allel for bestselling authors and wildly successful busi-

ness people and investors because there is a fundamental 

difference. The lottery obeys known probabilities – we 

know what the chance of winning with a particular ticket 

is – and the amount of payout on a lottery is known and 

limited, where a chaotic random event is so far outside 

expectations that it is almost limitless. This is a futile 

argument. The importance is not the mathematical val-

ues but the impact on human beings. A major lottery win 

is so unexpected and so transformative that the impact 

on the individual is indistinguishable from a chaotic ran-

dom event.

You may feel that my apparent attack on J.K. Rowling, 

suggesting that her success is down to luck rather than 

being a great writer, reflects the bitterness of an author 

who hasn’t achieved that same level of success, but it 

really isn’t. Let’s look at three relatively recent huge suc-

cesses in the literary world – Harry Potter, Twilight and 

50 Shades of Grey. Why did they succeed in such a vast, 
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till-shattering way, when so many other books didn’t? 

What can we say about these books?

We certainly can’t put their success down to being 

great literature. The Harry Potter series was competently 

written, though arguably was not better than average, and 

there were certainly plenty of competitors with the same 

potential to appeal to adults and children that were tech-

nically better pieces of writing. It would be hard to find 

a literary expert who wouldn’t argue that the Twilight 

series is markedly worse in quality of writing than Harry 

Potter, while few would call 50 Shades anything other 

than a literary disaster. This isn’t about quality of writing.

Nor can we say that these books were great successes 

because they were wonderfully original. Each had clear 

precursors. And though fans might point to characters 

we can support, or clever plot twists, or the power of 

word of mouth, the reality is that in every case there will 

be many better examples that have not achieved block-

busting success.

The overwhelming success of these books is quite sim-

ply the work of chaos – randomness that we could never 

predict nor seek out. It is utterly pointless for a publisher 

to look for the ‘next Harry Potter’ or ‘next Twilight’. The 

very action of doing so implies that someone can see a 

pattern where none exists. Anyone who does so is hunt-

ing a chimera. All publishers can really do is to ensure 

that the competency threshold is passed and get the 

books out in front of an audience to give chaos full and 

magnificent rein.

I need to reiterate that I’m not saying there is no bene-

fit in writers (or investors or entrepreneurs) putting in 
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lots of nose-to-the-grindstone hard work, or in honing 

their skills, or researching their topic well. The process 

is not all down to luck by any means. This groundwork 

will help make success possible. It buys you the ticket for 

the lottery. However, being skilled at the job only ensures 

an entry to the middle ground. To shoot into the strato-

sphere takes that push that can only come from chaos. 

Similarly, this doesn’t mean there is no point in promot-

ing a book. Good visibility can easily push a book into 

a bestseller list and give it some temporary momentum. 

This is clear from the W.H. Smith experiment.

A contact who had been a senior manager at newsa-

gent and booksellers W.H. Smith once told me that, as an 

experiment, they took a book that was hardly selling at 

all and gave it the full, front of store, big display expo-

sure. It shot into the top ten of books in the UK for that 

week, and did well for weeks afterwards. But all such 

action does is to add a few thousand extra sales and make 

the author and the publisher a comfortable little profit. 

If I mentioned the book’s title it would mean nothing to 

you now. Promoting a title doesn’t produce the chaos-

fuelled blockbusting bestseller. That’s about millions of 

sales, not an extra few thousand.

How we hate this. It’s not fair. It really isn’t. Getting 

a chaos success is not a reward for hard work or excel-

lence. It’s luck. Fairness doesn’t enter into it. Because we 

hate it so much, and because we are so desperate to see 

patterns we will always be able to dream up a reason to 

explain what happened. It was the right time for a book 

like this. The author had incredible hidden talents. She 

tapped into the zeitgeist. She had the right platform. But 
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it is so much justification after the fact. Just listen to the 

news to see this in action on a much wider scale. Every 

time the stock market moves up or down, the analysts 

will tell you it’s because of this and that. They may come 

up with some plausible reason – an announcement from 

the central bank or a company’s latest results. But it’s a 

convenient fiction. They cannot truly know what is hap-

pening. The chances are that it was chaos at work.

Scarily, the same goes for politics. Whenever an elec-

tion comes around there will be much focus on the 

current administration’s record in office. Perhaps, for 

instance, on their watch the country suffered a financial 

disaster. Do the voters really want more of the same? Yet 

it’s a political fiction that a government or a president 

has any control over the economy. It’s far too compli-

cated and chaotic a system. Politicians will always claim 

that it was their policies that caused good things to hap-

pen, and circumstances beyond their control that caused 

the bad things. In reality, hardly anything on the scale 

of developments in the world’s economy can be given a 

clear causal link to the policies of politicians.

Superstition conjures causation
This urge to find causes at any cost, to satisfy our pattern-

driven brains with made-up explanations, has a name. 

It’s called superstition. Whenever we assign a cause to 

an occurrence that isn’t really connected to it, we are act-

ing superstitiously. And it’s a very natural thing to do. 

In experiments with pigeons it was accidentally discov-

ered that if the pigeons happened to perform a partic-

ular movement a few times before they were fed, they 
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would start performing that movement whenever they 

were hungry. They had become superstitious. They had 

seen a pattern that linked the movement to being fed and 

thought that the movement caused the food to arrive.

My dog seems to have developed the same kind of 

ritual superstition. Every morning, before she is fed, she 

expects to be stroked first on her stomach, then on her 

ears. Once that has been done she will go to her bowl, 

ready for her food. But she actually puts off getting her 

breakfast to go through the ritual – that’s the strength of 

superstition.

We are used to superstition as a silly belief that sup-

posedly provides a causal link between, say, walking 

under a ladder and something bad happening. Or a link 

between the discovery of a ‘witch’ in the village and cat-

tle falling ill or crops failing. Most of us would laugh 

at this kind of superstition, finding it hard to believe 

anyone could fall for it. Yet many people today believe 

that taking homeopathic pills makes them better, or that 

being in the proximity of phone masts make them feel 

ill. These are very much the modern equivalent of the 

village witch story. What we’ve got is correlation with-

out causality. Just because two things happen in a simi-

lar location or at a similar time doesn’t mean that one 

causes the other. Superstition turns a correlation (events 

that happen at a similar time or place) into a false cause.

We may spot superstition at work in the above exam-

ples, but it is much more common than we think. It hap-

pens whenever someone says ‘X happens because of Y’ 

but there is no evidence that one causes the other. This 

can happen by coincidence, or where Y actually happens 
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because of X – or where there is a third cause for both X 

and Y. So, for example, for several years after the Second 

World War in the UK, the rate of pregnancies was cor-

related with the import of bananas. In years when there 

were more bananas imported, there were more pregnan-

cies. Fewer bananas, fewer pregnancies. But the bananas 

did not cause the pregnancies – both were probably the 

result of a third cause, such as changes in economic 

circumstances.

The typical ‘X happens because of Y’ claims we hear 

all the time are less outrageous than bananas causing 

pregnancies, but they still need the same examination to 

see if there really is a causal link. For many years in the 

UK there has been evidence that girls who attend single-

sex schools perform better academically. There have 

been all manner of mechanisms put forward to explain 

why attending one of these schools would improve an 

individual’s performance, often including the fairly 

obvious lack of distraction by boys. However, there is a 

big assumption being made here.

We don’t know that being at a single-sex school is the 

reason these female students do better than their con-

temporaries elsewhere. There are other ways that these 

schools differ from a typical school. Many single-sex 

establishments are private. Many private schools have 

smaller class sizes than state schools – and smaller class 

sizes may well contribute to better results. Students at 

private schools will tend to have richer parents, which 

contributes a number of factors that could improve exam 

results, from the ability to bring in tutors to a different 

social attitude to exams and the expectation of going on 



Dice WorlD

34

to higher education. For that matter, proportionally far 

more single-sex schools than schools overall are selec-

tive. Such schools only take students with a minimum 

level of academic ability, producing a self-fulfilling 

prophecy. It is flawed thinking indeed to make the imme-

diate leap into assuming that the single-sex nature of a 

school is the cause of students getting better results.

The need to be sure of a true causal link is particularly 

important when we are trying to explain something that 

varies from day to day in a natural way. To attribute any 

cause, we need to be able to find a significant change on 

top of this background noise. Imagine for a moment that 

the stock market went up or down totally randomly. Let’s 

say each share value was allocated that morning by a ran-

dom number generator. The fact is that today, as a result 

of those random changes, the market would either have 

risen or fallen from yesterday. That is inevitable, even 

despite there being no underlying cause whatsoever. 

And immediately analysts would find a reason for it.

Whenever a commentator says ‘The stock markets 

are down because of the announcement by the German 

Chancellor’ or ‘This country’s GDP went up because of 

our party’s policies’ or ‘The value of houses in our neigh-

bourhood have gone down because these types of people 

are buying them’ or ‘My football team is doing better than 

last year because of our new manager’, take a moment to 

ask ‘How do you know this?’; ‘What evidence is there to 

show that one thing causes the other?’ Correlation is not 

enough.

It isn’t just the person in the street who can confuse 

correlation with causality. In 2004 a Swedish scientist 
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called Jarl Flensmark published an academic paper 

titled Is There an Association Between the Use of Heeled 

Footwear and Schizophrenia? What is disturbing is that 

despite apparently asking a question in the title of the 

paper, he presents the hypothesis in the text as if it were 

a statement of fact: ‘Heeled footwear began to be used 

more than 1,000 years ago and led to the occurrence of 

the first cases of schizophrenia.’ Flensmark then shows 

a parallel between the growth of heeled shoe production 

and an increase in the prevalence of the disease.

We are told that the first known examples of heeled 

shoes were in Mesopotamia, as were the first institutions 

for mental disorders. A whole string of European royals 

are listed as possible victims of schizophrenia and who 

were also known – or at the very least thought – to have 

worn heeled shoes. Flensmark notes that it is the upper 

classes around the world that typically wore heeled shoes 

first – and it is the upper classes who were more likely to 

report symptoms that would now make doctors suspect 

the existence of schizophrenia. The pattern, Flensmark 

suggests, is simple. After heeled shoes are introduced, 

the first cases of schizophrenia appear, and as wearing 

of the shoes grows more popular, so do the frequency of 

attacks of the disorder. Simple cause and effect.

Flensmark comes up with an ingenious, if rather intri-

cate explanation for why walking in such shoes could 

have an influence on the brain. But there are so many 

opportunities here to confuse correlation and causality. 

Heeled shoes have, as he suggests, typically first been 

taken up by the upper classes, because they are imprac-

tical, and the appeal of impracticality usually only 



Dice WorlD

36

develops once you don’t have to worry about where your 

next mouthful is coming from. Wearing such shoes also 

will tend to increase as society as a whole gets wealth-

ier and more sophisticated. Yet the trappings of class, 

wealth and sophistication are also more likely to result 

in more reporting of illness, mental or otherwise. If life 

is a constant struggle, you either die or you get on with 

existence despite any illness. In a primitive society like 

medieval Europe, there is no medical safety net. Being 

seriously ill and staying alive is a luxury only available 

to those who can afford it.

What seems to be recorded here are two separate 

causal links, which when combined result in an unre-

lated correlation. It seems entirely reasonable that wealth 

and being of a higher class cause the increased wearing 

of heeled shoes. And it also seems likely that wealth and 

being of a higher class produced increased reporting of 

the symptoms we associate with schizophrenia. But there 

is no reason to deduce that the shoes caused the mental 

illness. In fact if there were a causal link, the more obvi-

ous one might be that schizophrenia caused sufferers to 

be more likely to wear heeled shoes, which are hardly 

a rational piece of footwear. There are, no doubt, many 

other potential causal structures as well, but the point 

is that an academic has made an assertion of causality 

despite there being absolutely no real grounds for mak-

ing it. Humans – even academics – need their patterns.

A natural cycle
Not only can we get a cause wrong, we can easily attrib-

ute cause to what is simply the random nature of a 
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sequence of events that naturally go through peaks and 

troughs without there being any great cause for any par-

ticular value. Just think of sitting by a beach, watching 

the waves. Sometimes they are big, sometimes they are 

small. Sometimes they crash to the shore, sometimes 

they ripple in with hardly any strength. We don’t say, 

‘Oh, that wave was big because a seagull flew past,’ we 

just accept that this is the nature of waves. When we 

look at the daily variations up and down in the stock 

market, or the behaviour of a football team from match 

to match, the chances are that we are observing similar 

waves of natural ‘up and down’ nature in action. There 

really doesn’t have to be a cause – but we are desperate 

to find one.

What is happening with the waves – and with many 

of the upward and downward twitches of the stock mar-

ket – is time-based clustering. Clustering is one of the 

most misleading aspects of randomness. When things 

are distributed randomly – in time or space – you get 

periods or points when the occurrences cluster together 

and you get gaps. This is just what randomness is like. 

A good picture is to imagine dropping the contents of a 

box of ball bearings on the floor. You would be very sus-

picious if they ended up in an identically spaced grid, 

each separated the same distance from the others. There 

would have to be magnets under the floor or some other 

cause to make this happen. What you expect is that some 

will be clumped together and some will be spread out 

with gaps.

We can accept this view of randomness for ball bear-

ings, just as we can with waves. But as soon as we move 
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to something that has an effect on people, we forget that 

randomness is like this and start looking for patterns. The 

spatial equivalent of looking for reasons for movement 

of the stock market is looking for causes of clusters of 

events that occur physically near together. When some-

thing goes wrong in a cluster we want to find a scapegoat. 

Traditionally we would have looked for a witch – these 

days we look for a phone mast or a nuclear power plant 

or some other local cause. Of course some clusters do 

have causes, but the great majority, including the vast 

majority of cancer clusters that are investigated, turn out 

to be down to the simple nature of randomness.

Clusters of events are one thing, but perhaps the hard-

est type of randomness to accept of all is that involved 

in being a huge success. As we have seen, we rebel at the 

thought that a superstar only achieved great things as a 

result of luck. To get a better handle on this, it can help 

to have some simple tools for the job.
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CHAPTER 3

A measure for luck

I love reading books about successful people. It is very 

entertaining to discover how Bill Gates or Steve Jobs 

or Richard Branson or Jeff Bezos achieved their amaz-

ing success. And I’m not alone. These are superb sto-

ries. But be wary if the business biography doesn’t stress 

the importance of luck. (Gates, for example, had his big 

break because his main rival decided to take his plane for 

a flight, rather than attend a meeting with IBM.) If that 

business book tries to tell you how following the pattern 

of these hugely successful people can make you hugely 

successful too, the author is indulging in superstition, or 

trying to rip you off. You can’t learn how to be lucky. You 

can learn how to make the best of what luck throws at 

you, but that is a way to reach the middle ground, not to 

become fantastically wealthy. Enjoy the stories in super-

star business biographies, but don’t be taken in by cor-

relation mistaken for causality.

One interesting way to get a feel for how much a par-

ticular type of success is driven by chance is to use a 

technique devised by the great Richard Feynman to 

help understand quantum physics. Feynman was a huge 

character and is still a hero to many physicists. Seeing 

one of his filmed physics lectures can be surprisingly 

entertaining, helped by the fact that his strong New York 

accent means that it is a little like being taught science 

by Tony Curtis.
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Feynman sprang to fame outside his field when he was 

on the commission investigating the Challenger shuttle 

disaster. He discovered a possible reason for the acci-

dent, and rather than attempt to describe what happened 

in the fusty wording of an official report, in front of the 

cameras he dunked an O-ring* into his glass of iced water 

and demonstrated how it lost some of its flexibility. But 

in physics, his greatest contribution, for which he won 

the Nobel Prize, was in quantum electrodynamics.

This is the science of how matter and light interact, 

something that is happening all the time, whether it’s 

photons of light hitting your retina and enabling you 

to see, or light hitting the Earth from the Sun and giv-

ing it the heat that made life possible. Feynman took an 

approach called the ‘sum over paths’. The idea was sim-

ple but startling. Imagine you have a beam of light com-

ing from a light source, like the beam from a laser pointer 

that reflects off a mirror. High school science tells you 

that the light travels towards the mirror in a straight line, 

bounces off at the same angle at which it had arrived, 

and travels off, once more in a straight line.

Feynman’s technique, based on the strange behav-

iour of quantum particles, says that instead, let’s look at 

what happens if the photon of light travelled along every 

single one of the infinite possible routes that it could 

take between its source and its destination. All routes 

would not have the same probability of being used, but 

all would have the potential to be travelled.

* An O-ring is a circular rubber seal of the kind that failed in the 
Challenger disaster.
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Now add in one final aspect. A photon of light has 

a property called its ‘phase’ that varies with time as it 

moves along. It’s a bit like it carries a little clock, and 

the phase shows the direction of the second hand of that 

clock (except the clock hand rotates a whole lot faster 

than a typical timepiece). When we add together all the 

possible paths, those that end up with the phase (clock 

hand) pointing in the same direction add together and 

reinforce each other, while those with phase in opposite 

directions cancel each other out.

If you add up all the infinite possible paths with  

their varying probabilities, using the phases, what comes 

out is what we actually observe – the photon appears  

to come in on a straight line, reflect at the same angle as 

it came in and go off in a straight line. If that was all that 

the method did, it would be a waste of time and effort 

– but in practice it allows us to predict why all kinds of 

strange optical phenomena happen. For example, when 

a CD reflects light and we see little rainbows, what’s hap-

pening is that different energies of photon are travelling 

along different summed paths – and the reflection takes 

place at an angle that is totally different to the angle of 

the incoming light. In this case, unlike a traditional mir-

ror reflection, the sum over the paths predicts something 

other than a straightforward reflection – and that’s what 

happens.

We can apply a similar approach of using the sum 

over all paths in a loose fashion to explore the way dif-

ferent successes or disasters are related to randomness. 

Take the example of a lottery winner. There is no skill 

involved: all tickets have the same ‘ability’. When there’s 
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a fuss on the news, we see a specific path that the win-

ner took, which led to success and riches. But if we take 

a look at the sum over all paths of people who bought 

tickets for the same lottery, we get a different picture. 

Overwhelmingly the action led to them losing their 

money. The composite lottery player summed over all 

the paths is a loser.

Let’s try a similar approach with someone who writes 

a novel. Talk to the general public about being an author 

and they immediately think of the J.K. Rowlings of this 

world, selling millions of books and making vast quanti-

ties of money. But consider the sum over the career paths 

of all novelists with the basic competence and the out-

come is pretty miserable. The average published novelist 

sells around 1,000 copies of his or her book. They will be 

lucky to earn £1 per copy. Such small numbers dominate 

the sum over paths. Contrast this, for example, with the 

sum over career paths of plumbers with a decent com-

petence. As individuals they don’t get hugely rich like 

the lottery winner or the super-successful novelist. But 

the sum over all paths for plumbers will be much higher 

than it is for novelists.

The inhuman economist
One group of people who ought to appreciate the 

whole sum over paths model is economists, yet econo-

mists rarely understand randomness and its impact. 

Economists appear to make predictions that defy all 

the chaos that is out there – but their success is an illu-

sion. The illusory nature is clear from the frequency 

with which economists contradict each other. It is the 
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only discipline that calls itself a science where year after 

year theoreticians with diametrically opposed ideas win 

Nobel prizes. That’s almost a definition of an art rather 

than a science.

One cause of their errors is that in order to predict 

human behaviour, economists assume that individuals 

will behave ‘rationally’, which to economists means 

acting in such a way as to maximise financial benefit. 

The problem with this straw man picture, often called 

‘homo economicus’ is that it takes a very narrow-minded 

approach to how human beings really behave. Not only 

do we humans often fail to act rationally, but even when 

we are apparently rational, the human assessment of 

maximising benefit is rarely purely about optimising 

financial gain.

Honest economists, who haven’t fooled themselves 

into believing their own hype, will admit that their 

actions are like the example sometimes used compar-

ing the scientific approach to finding lost keys on a  

dark street at night. The story goes that you meet a 

scientist  who has lost her keys and join her in search-

ing for them. She is looking under the only streetlight in 

this road. After searching for about fifteen minutes, you 

ask, ‘Are you sure this is where you lost your keys?’ The 

scientist stops for a moment. ‘No,’ she says, ‘I think I lost 

them in the next street. But there are no streetlights there 

at all.’

The argument is that while at first glance the scientist 

seems to be stupid, there really is no point looking where 

there is no light. However poor the match to what’s likely 

to be true, light is necessary to see something.
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I personally think this is a poor example of science, as 

a good scientist would use other means, like feeling with 

their foot in the correct street, but that’s a different story. 

Economists, in assuming ‘rational’ behaviour, are often 

simply doing the best they can with no other information 

– but we need to be aware that they are almost certainly 

not achieving a worthwhile picture of reality.

A very useful demonstration of just how far ‘rational’ 

economics takes us from reality is the ultimatum game. 

It’s a very simple, and extremely informative test. In it, 

you and a second person are asked to make a decision 

about some money. The two of you mustn’t discuss your 

decision in any way. You are given £1 (say) to share. 

There are no strings attached, it is a genuine gift, the pair 

of you simply have a decision to make before the money 

is given to you.

First, the other person decides how the money is to be 

split between you. They can split it however they like. 

The money can be split 50:50, they can keep all the money 

to themselves, they can give you a penny and keep the 

rest … or split it any other way they like between the two 

of you. You then say either ‘Yes’ and the two of you will 

get the money, split the way the other person decided, or 

‘No’ in which case neither of you gets any money. There 

can be no discussion between the two of you.

This game has been undertaken many times over 

the years in many circumstances. (Who says econo-

mists and psychologists don’t know how to have fun?) 

The economically rational thing for the person in your 

place to do is to say ‘Yes’ as long as the first person gives 

you something. Anything. Even if you’re only offered a 
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penny, it’s money for nothing. Why would you logically 

say no? (The traditional economist’s picture of a human 

being wears a wristband inscribed ‘WWMSD?’, standing 

for What Would Mister Spock Do?) In practice, though, a 

real person in your place tends to say ‘No’ unless they get 

what they regard as a fair proportion of the money.

What counts as a fair proportion will vary signifi-

cantly from culture to culture. Some will accept as low 

as a 15 per cent cut, others expect a full 50 per cent – but 

in Europe and the US we tend to expect around 30 per 

cent or more before we will say ‘Yes’. Anything less and 

we feel hard done by, and are prepared to take revenge, 

even if it has a financial cost.

What the experiment shows is that we consider trust 

and fairness worth paying for. We are willing to lose 

money in exchange for putting things right. If human 

logic were based purely on economics, then this just 

doesn’t make sense. You always should take the money if 

any is offered. But your brain makes decisions based on 

a much more complex mix of factors than finance alone.

This is not to say that finance doesn’t have a signifi-

cant input into decision-making – and any psychologist 

who expects a Western player always to demand 30 per 

cent or more really hasn’t thought through the real-world 

version of this game. If, for example, a billionaire decided 

to play this game, and offered a total stake of £10 million, 

the chances are that you would accept being offered just 

1 per cent: £100,000. Unless you are extremely rich your-

self, that is just too life-changing an amount of cash to 

turn down in order to teach someone a lesson and pun-

ish their lack of fairness. In reality, you would swallow 
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your pride, ignore the psychologists and take the 1 per 

cent cut.

It’s an interesting exercise to think to yourself just how 

little you would accept in such circumstances. Where 

between £100,000 and £1 (which most people would 

reject) would you draw the line on an ultimatum game 

with £10 million on offer? I think I might cave in for as 

little as £100, which would be just 0.001 per cent of the 

total amount – but then I’m cheap. That rough 30 per 

cent break point very much depends on the amount of 

money at stake.

Gambling with chance
It’s almost inevitable that one of the ways we get a better 

understanding of our attitude to economics is through 

a game. The urge to place money on the outcome of an 

event, whether classically random or apparently based 

on skill, is one that goes back as far as most other mark-

ers of civilisation. Even the kind of people who don’t 

regularly buy lottery tickets or gamble on the horses or 

ever walk into a casino may occasionally rise to a bet – a 

financial stake in what is hopefully, but in truth is rarely, 

a calculated risk.

As we have seen, not all randomness behaves accord-

ing to a neat distribution, but many of the standard tools 

of gambling, from the throw of the dice to the chances of 

getting a particular poker hand, do. The oldest known 

evidence for gambling comes from knucklebones or 

astragali which have turned up in archaeological digs 

dating back thousands of years. These playing pieces are 

chopped from the end of an animal bone, shaped to be 
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four-sided and so making a form of die that can be bet on. 

Sophistication was later added by combining six-sided 

dice with a board and counters in tables (the ancestor of 

backgammon) and by the introduction of playing cards – 

both these developments allowed a combination of skill 

and chance to make the betting process more interesting.

However, the development of such games did not 

take away from the simple attraction of betting on the 

outcome of classical randomness, whether it is a simple 

coin toss, dice throw or card draw, or the more sophis-

ticated mechanisms employed by the casino. All life 

involves taking risks: there is something appealing about 

this controlled form of risk that limits chaos and allows 

us to dream of easy money.

Something that gambling uncovers neatly for us is 

the relationship between chance and time. The risk that 

randomness holds over our heads dissolves with time. 

Before the throw of the die we have a one in six chance 

of winning. After the throw we either have a 100 per cent 

chance of having won or a 100 per cent chance of having 

lost. The risk has disappeared with the outcome. This is 

one of the reasons that the concept of a time machine is 

so alluring. With a time machine that allows travel back 

from the future we can pop ahead, check the winning 

ticket in a lottery and return to make a purchase without 

any risk.

The idea of making mathematical predictions about 

the future, of using numerical analyses of probability to 

quantify chance, seems not to have made a lot of impact 

until surprisingly late in the development of math-

ematics. The Ancient Greeks lacked the mathematical 
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symbology to make a good attempt, though their lack of 

interest may also have been down to a kind of fatalism, 

an idea that the universe was in the grip of a chaotic ran-

domness that was beyond human comprehension.

Even the innovative medieval Arab mathematicians 

don’t appear to have got far with probability. It might 

simply have been that, up to the Renaissance, the lives 

of human beings seemed so much in the hands of fate, 

with practically everyone lacking control over their envi-

ronment, that probability didn’t even arise as a concept. 

Some have also argued that an unthinking following of 

religion tended to suppress any thought of probability. If 

every aspect of your future life is down to the whims of a 

god or gods, then there is little point in trying to predict 

what will happen.

The first real exploration of probability came in a  

book called Liber de Ludo Aleae (‘Book of Games of 

Chance’) written by the Milanese physician and obses-

sive gambler  Girolamo Cardano. Cardano was born 

around 1500 and first wrote the book in his twenties, 

but did not produce the final version until 1565, just six 

years before his death. Even after he was in his grave it 

took another 92 years before his masterpiece made it into 

print.

It was Cardano who introduced the idea of represent-

ing the chance of something happening as a fraction. If 

I toss a (fair) coin, then the chance of getting a head or 

a tail is pretty well equal. It isn’t actually equal on any 

particular coin toss as there is a small dependence on 

the way up you hold the coin before flipping it. If, for 

example, you start with the coin heads up, it will come 
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down on heads around 51 cases out of 100. But let’s 

assume that there is a straight 50:50 chance – an expect-

ation of around 50 heads and 50 tails in 100 tosses – to 

understand Cardano’s innovation.

He said that, because we could expect, on average, 

one toss in every two to result in a head, we can say the 

chance of getting a head (Cardano didn’t use the term 

probability) would be 1⁄2. Another way of looking at it 

is that you get heads half of the time and tails half of 

the time. If you extend that to the chance of getting a 

particular value of card drawing at random from a nor-

mal card pack, then you would say the chance of get-

ting (for instance) a Jack is 1⁄13 – because one in every 

thirteen cards is a Jack and you would expect to get a 

Jack one-thirteenth of the time. This is very straightfor-

ward stuff to us now, but it was a remarkable insight in 

Cardano’s day.

What was particularly powerful about Cardano’s 

assessment was that he didn’t just work out the prob-

ability of, say, getting a six with a throw of the die (1⁄6), 

but also of getting a five or a six which is twice as likely, 

as two options out of the six match our criteria (2⁄6 or, 

more simply, 1⁄3). For that matter, Cardano also explored 

the chance of getting a six with either of two dice. This 

is a considerably more subtle problem. A simplistic 

approach might be to say that if the chance of getting a 

six with one die was 1⁄6, then with two dice it should be 
2⁄6 or 1⁄3. The trouble with this is that if you had six dice, 

according to this reasoning you would have a 6⁄6 chance 

– absolute certainty – of getting a six, where in reality it’s 

perfectly possible to throw as many dice as you like and 
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have none of them a six. Even more bizarre, if this were 

true, then if you threw seven dice, the chance of getting a 

six should be 7⁄6 – it would be more than certain. Yet get-

ting more than 100 per cent of something isn’t possible 

outside of a reality TV show like The X Factor, where we 

are regularly told that contestants give 110 per cent.

What Cardano realised is that you have to go about 

the combination of probabilities rather sneakily. If the 

chance of getting a six with your first throw is 1⁄6, then 

the chance of not getting a six is 5⁄6. Similarly, the chance 

of not getting a six with the second throw is also 5⁄6. The 

chance of not getting a six in either case is 5⁄6 × 5⁄6 – 25⁄36. 

So the chance of getting a six with either is 11⁄36 – slightly 

less than the simple result of doubling the probability for 

one die.

Other mathematicians, notably the French polymath 

Blaise Pascal, extended Cardano’s thinking to produce 

a theory of probability that made it much easier to 

make predictions of classical randomness. Cardano, for 

example, had failed to solve a significantly older problem 

that dates back at least to the 15th century. Imagine you 

are playing a game where the winner is the first person to 

reach ten points. Because of circumstances beyond your 

control, the game has to be stopped when one player has 

eight points and the other five. How should you divide 

the winnings, assuming that there was some kind of 

financial stake in the game? After all, either player could 

have won, but the player with eight points seems more 

likely to win, so should get some financial advantage.

Pascal came up with an appropriate mathemati-

cal solution. Note, by the way, that there is no way he 
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could forecast what the actual outcome could be. He 

had to make the assumption – and it’s a huge assump-

tion – that the better player would win eight games out 

of thirteen where the other player would only win five 

out of thirteen. In reality all kinds of things could hap-

pen. The person who was ahead could tire more quickly 

and lose many more of their later games, for example. 

Pascal’s calculation of probability could not predict the 

future (something we should always remember) and it is 

very likely that it would not match the actual outcome 

had the players continued to the end of the game. But 

dividing the winnings 8:5 was still the best guess given 

the information available, and so better than nothing.

With the work of Cardano and Pascal, it was becom-

ing increasingly possible to use probability to make pre-

dictions about some controlled kinds of randomness. If 

probability is one face of the way we can try to use num-

bers to tell us more about what is going to happen in the 

future, the other face is statistics.
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CHAPTER 4

It’s all in the stats

The term ‘statistics’ comes from the same origin as the 

word ‘state’ – statistics were originally pieces of infor-

mation about a nation or state. In the modern sense, the 

aim of statistics is to take information about a sample of 

individuals and to make deductions about their future  

or about a larger whole. Where individual components  

of a system operate in certain predictable ways (some-

thing that is often not true of people), then the techniques 

of statistics enable us to get a feel for the behaviour of  

the overall mass even though we can’t say anything 

much about individuals. As we will see later, this is  

particularly useful when trying to understand the behav-

iour of something like a gas containing vast quantities 

of molecules. We can’t predict how each individual 

molecule will go about its business, but we can make 

very good predictions as to how the gas as a whole will 

behave.

The man who started us in the direction of using 

statistics beyond simply collecting data was not a high-

flying mathematician or scientist, but a seller of but-

tons, John Graunt, who despite considerable prejudice 

against his trade became one of the early members of the  

Royal Society. (In the early days, the Society had a 

much more interesting mix of characters than it does 

today.) Graunt published a groundbreaking book called, 
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in the wordy manner of the time, Natural and Political 

Observations Made Upon the Bills of Mortality, making 

use of information on births and deaths in London from 

1604 to 1661.

What is particularly impressive about Graunt’s work 

is not just that he assembled figures in a way that had 

never been done before, attempting for instance to show 

how deaths from plague varied from year to year; he also 

went beyond the numbers he had, making a first use of 

statistics to attempt to infer other values that weren’t 

actually present in the data. For example, he tried to 

make estimates of the population of London, then a sig-

nificant unknown, by making assumptions about how 

the number of births related to the number of potentially 

childbearing mothers. He even tried to estimate what 

percentages of a cohort of people (a group of people all 

born at the same time) would reach various ages before 

dying.

This analysis by Graunt, and work a few years later 

by the astronomer Edmund Halley, who took similar 

tables (this time for a German town) and calculated life 

expectancy at different ages, provided the groundwork 

for the insurance industry, a business that grew up in 

the coffee houses of London and spread to the world. In 

effect, insurance is a form of betting on risk to reduce its 

impact – attempting to tame randomness by spreading 

the risk. Most of the time, insurance is a business that 

benefits from the predictable distributions of classical 

randomness, but occasionally – when, for instance, there 

are major natural disasters – it is swamped by the reality 

of chaotic randomness.
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What’s it worth?
You might think that the realisation that we can’t rely on 

the simple mechanics of economics when dealing with 

statistics about real people is quite a recent phenomenon 

– and it seems to be, as far as economists and stock trad-

ers are concerned. But some mathematicians have been 

aware of this for a long time. Back in the 18th century the 

brilliant German mathematician Daniel Bernoulli wrote 

a paper that showed how it was necessary to go beyond 

the apparently basic mathematics of chance to what he 

called utility: an attempt to quantify what something is 

really worth to you. And Bernoulli’s big insight was that 

this ‘utility’ was not a constant across all human beings. 

It varied depending on your current position and your 

values, just as the decision of when to say ‘No’ in my 

£10 million ultimatum game will be hugely different for 

someone with no savings or income and a millionaire.

Another very valuable observation in Bernoulli’s 

paper was suggested to Daniel by his equally gifted 

cousin Nicolaus. It shows that we have to be very care-

ful about how we apply another probabilistic tool of the 

economist: the idea of expected value. This can be a very 

useful guide in some kinds of chance – but not, as the 

Bernoullis showed, in others.

The concept of expected value says that when we 

have different possible future gains, each with its own 

probability, we can compare the benefits by multiplying 

the gain by the probability. This sounds more compli-

cated than it is! Imagine I have a choice between two 

investments. One has a 1 in 2 chance of gaining me £100 

– if I lose out, I get nothing. The other has a 1 in 4 chance 
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of my getting £200 – again, if I lose out, I get nothing. 

To find out which to choose, we multiply the expected 

gain by the chance of getting it. So in the first case the 

expected gain is £100 × 1⁄2 (because it’s a 50:50 chance 

– I would win half the time), or £50. In the second case 

it’s £200 × 1⁄4 – again £50. Both options have the same 

‘expected value’ of £50, so they should both be equally 

attractive.

If the second case had been a one in four chance of 

getting £160 – still a larger figure than the £100 in the 

first case – then the expected value is £160 × 1⁄4 – just 

£40. So it is less attractive to go for the £160 than it is to 

stick with the £100. So far, so good. You can also com-

bine different possible outcomes. If, for example, you 

have a 1 in 2 chance of getting £100 and a 1 in 4 chance 

of getting £200 from the same investment, the expected 

value is (£100 × 1⁄2) + (£200 × 1⁄4) – your expected value is 

£100. But this reasoning breaks down in all too many real 

circumstances. The Bernoullis’ example was an extreme 

one, but it highlights the point.

They imagined a simple mechanism for calculat-

ing the rewards from an investment. We toss a coin 

repeatedly until we get a head. If we get a head on the  

first throw, then the return is £1. If we get a tail we  

carry on. If there’s a head on the second throw, the return 

is £2. If we have to wait until the third throw for a head 

we get £4. And so on. Now the question is, how much 

would you invest to get this return? The mechanically 

thinking, unimaginative economist would haul out  

his expected value calculator and would get quite  

a shock.
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The chance of getting £1 is 1⁄2 – half of the time you 

would get a head on the first throw. The chance of get-

ting £2 is 1⁄4 – because you multiply the chance of getting 

to the second round (1⁄2) by the chance of getting a head 

on the second throw (1⁄2) to get 1⁄4. Similarly, the chance 

of getting £4 is 1⁄8, the chance of getting £8 is 1⁄16 and so 

on. To calculate the expected value of the game overall, 

we multiply the different outcomes by their probabilities 

and add them together.

So we get (1 × 1⁄2) + (2 × 1⁄4) + (4 × 1⁄8) + (8 × 1⁄16) …

There’s a pretty obvious pattern. Every item in that 

series works out as 1⁄2. So the total expected value is 1⁄2 

+ 1⁄2 + 1⁄2 + 1⁄2 … all the way to infinity. And the sum of 

an infinite set of halves is itself infinity. The expected 

value of taking on this investment (or wager) is infinite. 

What that seems to imply is that you should be prepared 

to invest anything, as much as is asked, in such a wager, 

because the expected return is by definition bigger than 

your investment. But thinking realistically, would you 

risk £1 million, say, with a 50 per cent chance of losing 

all but £1? Expected value is not an effective guide when 

the impact of losing the wager is catastrophic.

This paradox demonstrates, in many ways, the lure of 

the stock market. If you had stocks that you imagined, in 

the long term, would continue to grow and grow in value 

at a fast enough overall rate, then it really doesn’t mat-

ter what you pay for them. You will benefit in the end. 

Unfortunately, this approach forgets two aspects of the 

chaotic nature of the randomness of the stock market – 

that markets crash and that businesses lose their reason 

for existence, leaving their shareholders high and dry.
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I have personal experience of one of these happen-

ing. I don’t often dabble in the stock market, but just 

before the banking crisis of 2008 I noticed that several 

of the bank share prices took a major fall, then recovered 

within a day. If you had invested in those stocks at the 

bottom of the fall you would have made 200 to 300 per 

cent profit on the day. That’s quite a rate of interest. A 

couple of days later another bank’s shares did exactly the 

same thing. It looked like easy money. So when the shares 

were about 1⁄10th of their previous value, I bought £200 

worth. But this bank was called Bradford and Bingley. 

The shares continued going down and down – until they 

were suspended. The bank went bust. Its customers were 

protected by the government, but shareholders, includ-

ing opportunists like me, lost everything. You may say 

I deserved everything I got, but it shows the danger of 

forgetting that chaos is always ready to take a hand.

This was an example of the impact of a financial 

crash, but no crash is needed for chaos to disrupt the 

expected value of shares, even shares in the ‘solid’ 

growth stock companies that have been so popular with 

investment managers over the years. These are compa-

nies like Coca-Cola and McDonalds, which seemed, like 

the Bernoullis’ game, to promise pretty well infinite 

expected value. Investors have often flocked to them, 

yet in practice these shares have done less well than a 

broader portfolio like the FTSE 100 or S&P 500. More 

worrying still, though we can’t predict which will suf-

fer, we can say with some confidence that some of those 

‘solid as a rock’ companies will end up in bankruptcy 

with valueless stocks.
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Just take three examples. Pan Am was one of the abso-

lutely solid airlines. It was a big name, big visibility com-

pany, the US flag carrier. Stanley Kubrick even envisaged 

Pan Am shuttles carrying passengers to his space station 

in 2001: A Space Odyssey. Pan Am has gone. Less well 

known, Wang was a massive technology company in 

office computing systems in the 1970s. By comparison 

with Wang’s integrated office functionality, IBM’s new 

PCs seemed feeble. But within six years of the PC becom-

ing widely available, Wang, which never really under-

stood this technology, was bankrupt. And if you really 

want to see a giant fall, how about the one I’ve already 

mentioned, Kodak? A massive company that was safe as 

houses. A company that had already thrived for over 100 

years. Until digital photography took most of its market 

away and it ended up in 2012 scrabbling for survival.

When we look at the Bernoullis’ paradox – why we 

don’t offer practically anything to buy into that invest-

ment with an infinite expected value – what we see is 

that we value certainty over risk at the hands of random-

ness. Say you invested £100. Fifty per cent of the time 

you would only get £1 back. The first return that would 

end up with you in profit is getting £128 on the eighth 

throw. But the chances of getting less than that are better 

than 99 to one. You would have a 99.23 per cent chance 

of losing out. Unless the money you invest is meaning-

less to you, it is unlikely that you would ever sensibly 

take that kind of gamble.

The reverse applies to something like entering a major 

lottery. The risk of losing is very high – but the stake at £1 

or £2 is a relatively small amount to most players, so they 
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are prepared to take that high risk for a small chance of 

a huge reward, even though in simple economic terms it 

doesn’t make sense to play. What the player is buying is 

not just the expected value but also the thrill of a possi-

bility, the anticipation of what it would be like if a poten-

tial win occurred. Lottery players are, in effect, paying in 

part for entertainment, not just for the expected value.

Bernoulli’s theory (which was itself much too simple 

to model real people) was that the utility was directly 

proportional to the amount of money and the value of 

the property you owned. To take a simple example – say 

your total assets were £10,000. Should you invest £5,000 

of that with a 50:50 chance of doubling your money or 

losing it? The simple expected value gives no guidance. 

But the utility is a different matter. The point is that if 

you lose £5,000 you have lost half your assets. But if you 

gain £5,000 you have only added a third of your new net 

worth. At any particular level, a loss has more impact 

than a gain of the same size – but the more money you 

have, the smaller that impact becomes and the more 

likely you are to take the risk.

The law of large numbers
It was Daniel Bernoulli’s uncle Jacob (they were quite 

a family) who came up with an idea that gives us the 

appearance of taming randomness – something that is 

often called the law of large numbers. It is beguiling 

because it works remarkably well with classical ran-

domness, but is dangerous in the real world because it 

is no use at all with chaotic randomness. What the law of 

large numbers tells us is that as we get increasingly large 
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numbers of a repeated classically random event, then the 

value observed will get closer and closer to the expected 

value.

Take the simplest example of tossing a coin. Assuming 

it’s fair, we know that we should get heads 50 per cent 

of the time and tails 50 per cent of the time. This tells us 

nothing about the outcome of a single coin toss, but as 

we accumulate larger and larger numbers of tosses, we 

are more and more likely to come close to 50:50.

As a simple experiment, I tossed a coin ten times. The 

results were:

H T H H H T H H T T

Notice that out of the first five tosses, four of my results 

were heads. Nowhere near a 50:50 outcome. But over 

time, the result homed in on the expected value. Ten 

tosses are not enough to make it very likely that I would 

get 50:50 – it still isn’t a large number. But the outcome, 

60:40 is heading in that direction. One interesting obser-

vation in doing this exercise is that if I had decided to do 

an odd number of tosses I could never exactly hit 50:50 

heads and tails – one of them has to be ahead, so some 

care needs to be taken with the size of the sample used.

Bernoulli used a slightly more sophisticated example 

of prediction. He imagined a large jar full of black and 

white stones, a jar that happened to have 3,000 white and 

2,000 black stones in total. But we don’t know this. We 

start to pull stones out of the jar and count up the differ-

ent totals. In Bernoulli’s example, the stone is returned 

to the jar after making the selection and the jar shaken 
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up until the stones are randomly distributed. He worked 

out that after 25,500 stones had been checked, you could 

say with 99.9 per cent accuracy that the ratio of white to 

black was three to two, give or take 2 per cent.

The example Bernoulli gives may not be very prac-

tical, but it is the model on which many of our probabil-

istic predictions of the future and of chance are based. 

We assume that large numbers give us a safe ability to 

pin down randomness. The problem is, though, that 

in the real world chaotic randomness always has the 

potential of giving things a twist. For some reason, all 

the white pebbles could suddenly turn black, thanks to 

some unexpected chemical or nuclear reaction. Or, more 

plausibly, when we give the jar a vigorous shake to mix 

up the pebbles, they could smash through the bottom, 

leaving no pebbles in the jar at all. Chaotic randomness 

might not be numerically predictable, but we can predict 

that it will sometimes happen, whether it is for bad (as in 

a banking crisis) or for good (as in Harry Potter).

Distributing the outcomes
I’ve referred several times to the importance of distribu-

tions in classical randomness without really explaining 

what I meant. In classical randomness we can’t pre-

dict what an individual event or outcome will be. So, 

for instance, drawing a pebble from Jacob’s jar there is 

no way for us to say beforehand if it will be black or  

white. But we can say that the different possibilities are 

distributed in a particular way that will remain true. We 

could show the stones as a simple bar chart with two 

bars – one (white) of height 3,000 and the other (black) of 
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height 2,000. Similarly the tossed coin has a distribution 

that is two equally sized bars, one for heads and one for 

tails. But that doesn’t really tell us a lot about what will 

happen when we draw out a few stones, or toss a few 

coins. But we can get more information if we draw out a 

few stones repeatedly and plot the ratio of white to black.

Many examples of classical randomness obey a normal 

distribution, also known as a bell curve or a Gaussian dis-

tribution (though the great German mathematician Carl 

Friedrich Gauss did not discover the significance of the 

distribution, merely picking up on the work of French 

mathematician Abraham de Moivre). A plot of the val-

ues looks like a slice through the middle of a bell. In the 

centre of the curve is a peak. Either side it drops away, 

first slowly, then more quickly, until you are left with 

very low probabilities heading off to each side. When a 

normal distribution applies – which isn’t the case with 

all classical random occurrence – then we expect to find 

most of the events or measurements to be in that middle  

section with increasingly few either much smaller or 

much larger.

The bell curve doesn’t apply to Jacob’s jar or coin 

tosses directly. But if I drew a fixed number of stones 

– 50 say – a repeated number of times, then the ratio of 

white to black in those sets of stones would follow a nor-

mal distribution, clustered around the average of 3⁄2. If we 

want to know how likely a particular hypothesis is, then 

a measure of the spread of that curve called the stand-

ard deviation gives us a prediction (always providing we 

are dealing with classical randomness). So, for instance, 

when in 2012 CERN announced the discovery of a Higgs 
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boson-like particle with ‘5 sigma’, what was meant by 

this is that for the results to have happened randomly 

without a Higgs boson, they would be five standard devi-

ations from the mean (average). This equates to saying it 

would happen three times out 10 million attempts.

A simple example of a normal distribution would 

be the weights of mobile phones. Most would be clus-

tered around the 100–120 grams mark. The average will 

be the centre of the curve, with tails heading off in both 

directions. A few will be ultra-light or seriously clunky, 

but the two ‘tails’ of the curve get to low probabilities 

very quickly. The chances of finding a phone weighing 

10 grams or 200 grams is relatively low. There are lots 

of occasions in physics and nature where this kind of 

distribution does the job. It will help us, for instance, 

understand how we can predict the amount of pres-

sure that comes from many billions of air molecules. 

But we always have to be sure that such a distribution 

really does apply, and that we aren’t dealing with chaotic 

randomness.

If such a distribution does apply, then we can also 

expect regression to the mean. This was a phenomenon 

A normal distribution

0
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first observed by the Victorian scientist Francis Galton, 

and in a way it’s just common sense. A simple way  

of looking at regression to the mean says that if we 

observe one item in a distribution and it has an  

extreme value, then observe another item, the second 

result will tend to be closer to the mean (the average 

value) than the first. So, for example, extremely tall par-

ents will tend to have children who are closer to aver-

age height than their parents are. This isn’t particularly 

surprising – if a particular value is extreme, which is a 

rarity in a normal distribution, it’s most likely the next 

value will be closer to the centre of the distribution. This 

can be used to give some feeling of what will happen 

next when observing values over time that fit a normal 

distribution.

Regression to the mean is potentially dangerous, 

though, because it can make apparent causes appear out 

of nowhere. For example, in the UK it’s not uncommon 

to put up signs at ‘accident black spots’ – stretches of 

road where there are frequent motoring accidents. The 

signs will say something like ‘27 accidents here in the 

last five years’. It is generally assumed that these signs 

reduce accidents because after the signs have been put 

up, the number of accidents at the location falls. But let’s 

just see what would happen if the signs did nothing at 

all – in fact if no sign was put up.

Assume the accidents are actually randomly distrib-

uted around the road system. We wouldn’t expect them 

to be nice and evenly spread out – in fact they wouldn’t 

be random if they were nice and even, just like my 

dropped box of ball bearings. So in some place there will 
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be clusters of accidents and in other places relatively few. 

There is no cause for these clusters other than the nature 

of randomness. Regression to the mean tells us that over 

the next time period, the chances are that a stretch of 

road with a cluster will come up with a number of acci-

dents that is closer to the average. There will be fewer 

accidents than before. So by doing nothing whatsoever 

you will reduce the number of accidents. You could put 

up a sign, but you would be wasting your money. Of 

course there may be stretches of road where there is a 

cause for higher than average rates of accident. But we 

can’t assume that there is such a cause just because there 

were a lot of accidents in one period.

In the last couple of chapters we have come across 

the foundations for our exploration of the improb-

able world. For classical randomness, probability tells 

how likely something is to happen and statistics let us  

combine many randomly behaving things to produce 

a predictable whole. But all the while the monster of  

chaos is lurking. Classical randomness only applies if the 

distinct random events brought together are independ-

ent of each other – like individual coin tosses. In the 

real world very few events are truly independent. This  

is one of the reasons the weather is so difficult to fore-

cast – everything influences everything else, and the  

result is chaos. One surprising implication of our increas-

ingly connected, social media-linked world is that it’s 

harder and harder to find truly independent events and 

actions. Facebook and Twitter enable chaos to have a 

field day.
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Before we see this real, chaotic random world in 

action, though, we have to take a step back into the 

Renaissance world, where the newly liberated scien-

tists thought that they were in the business of removing 

randomness entirely to reveal a universe of clockwork 

regularity.
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CHAPTER 5

The clockwork universe

As long as civilisations have existed we have attempted 

to perform a kind of science, imposing our mental pat-

terns on the natural world. Initially these were primarily 

religious patterns. So, for instance, the rising and set-

ting of the sun or the sudden impact of a bolt of light-

ning would be fitted into an explanatory scheme of gods 

riding chariots across the sky or getting irritated with 

humans and stirring things up with a good thunderbolt. 

But the Ancient Greeks, beginning with Thales who lived 

roughly between 624 and 546bc, gave us another model 

for thinking about the world.

When the later Greek philosopher Aristotle looked 

back at Thales he considered him to be ‘the first founder 

of this kind of philosophy’, where ‘this kind’ was a phil-

osophy that tried to find a ‘material cause’ for things. 

Aristotle called Thales and his successors ‘physikoi’ or 

physicists to distinguish them from the alternative of 

‘theologoi’ or theologians. What the early Greek philoso-

phers did was not truly science in a modern sense, as 

they didn’t care much about experiment and observa-

tion, but at least they were looking for patterns in the 

physical world that didn’t depend on the intervention 

of the gods.

A good example would be the two Ancient Greek 

theories of the constituents of matter. Before the Greeks, 

stuff was just, well, stuff. Water was watery stuff, flesh 
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was fleshy stuff and so on, pretty well indefinitely. There 

was no pattern for explaining stuff. But the Greeks came 

up with two potential patterns. One, mainly the work 

of the fifth century bc philosopher Empedocles, was that 

there were certain key substances – elements – from 

which everything else was constructed: earth, air, fire 

and water. The earlier physikoi had thought everything 

was based on a single fundamental substance, ‘arche’ 

(as in an archetype), but Empedocles was building his 

idea more on practical experience. When, for example, 

a piece of wood was burned, then fire and hot air (and 

sometimes oozy, sappy liquid) was given off, leaving 

earth-like ashes.

A different kind of observation produced the second 

theory. Two contemporaries of Empedocles, Leucippus 

and particularly his pupil Democritus, thought about 

cutting something up into smaller and smaller pieces. 

Eventually you could cut no more. What was left was 

uncuttable, a-tomos or atoms. These, they thought, were 

bouncing around in the void until they combined to take 

on the different forms of things that were found in the 

natural world.

Strangely, of the two, the one that was wrong was prob-

ably more like a true scientific theory. Admittedly both 

Empedocles and Democritus came up with a hypothe-

sis, though in the Ancient Greek style, argument rather 

than experiment was used to decide between them. But 

the atomic theory didn’t really tell you as much about 

stuff. In the original version, all atoms were made of the 

same substance, the arche, but had different shapes that 

meant they could only interlock with similar shapes. So 
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depending on their shapes, there would be cheese atoms 

and water atoms and people atoms – this wasn’t a pat-

tern that gave much simplification to the various kinds 

of stuff.

By comparison, the theory of four elements, far from 

the truth though it may be, did simplify the picture, 

producing a clear pattern of four components that were 

mixed and matched to produce any substance. It might 

not have been true – in effect it got things back to front 

– but the four elements theory was a good example of 

applying a pattern to simplify and understand reality.

Come the Renaissance, the kind of thinking that the 

Greeks had pioneered was taking on a whole new dimen-

sion. The classical approach was still taught in universi-

ties, ossified from science to a belief system. But a new 

breed of thinker, typified by Galileo, was prepared to 

question the wisdom of the ancient authorities and to 

make new hypotheses based on observation and experi-

ment. Galileo didn’t just theorise from an armchair, he 

actually did experiments. Admittedly he probably never 

dropped his famous balls off the leaning tower of Pisa – 

this story seems to have been concocted by an assistant 

in Galileo’s old age – but he made plenty of observations. 

And soon after him came the epitome of the new scien-

tist (not called this though, as the name wasn’t coined 

until the 1830s), that remarkable thinker, Isaac Newton.

The universe according to Newton
Newton’s physics did more than provide us with laws 

of motion that were easy to use to predict what would 

happen, or a better understanding of how white light 
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was made up of the colours of the rainbow. It provided 

a whole new level of pattern to bring the universe into a 

more understandable, more controlled system. By devel-

oping the mathematics to explain everything from the 

orbits of the planets to the way the tiniest speck of dust 

moved, Newton had done away with the need for heav-

enly powers to be present in the workings of the universe. 

Instead of worlds that were pushed around their orbits 

by angels and kept in place by the will of God, Newton 

gave us a kind of clockwork universe, where everything 

proceeded mechanically, predictably and with nothing 

truly random ever happening.

It’s ironic, given the way that Newton’s mathemat-

ics moved us away from the need for supernatural 

intervention in the day-to-day working of the universe, 

that at least one of his theories was itself attacked for  

being occult. In a superb burst of mathematical genius, 

Newton had produced his Philosophiae Naturalis 

Principia Mathematica – the chunky tome that includes 

his laws of motion and of gravitation. This book is  

often near unreadable to the modern eye, making 

heavy use of geometry where we would use far simpler  

algebra, but it certainly delivers the goods in predict-

ing the way that objects move. One thing Newton failed 

to do, though, was explain how gravity did its stuff at 

a distance. The problem his opponents seized on was 

that Newton used the term ‘attraction’ to refer to the 

force that, for example, keeps the Earth orbiting around  

the Sun.

This seems perfectly normal now – the attractive 

force of gravity is part of our everyday thinking. But at 
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the time, that word ‘attraction’ didn’t have the scientific 

meaning we assume. It just meant the kind of attraction 

you get between man and woman, an animal reaction 

rather than a physical force. It seemed to his critics that 

Newton thought the Earth and the Sun (and for that mat-

ter, the Moon and the Earth) fancied each other. Just take 

the response to Newton’s work of two of his great rivals, 

the Dutch scientist Christiaan Huygens and the German 

mathematician Gottfried Wilhelm Leibniz.

Huygens, who was in the habit of criticising Newton’s 

ideas as a matter of course, something that did not endear 

him to the great man, was baffled by this use of ‘attrac-

tion’. He threw up his hands at the ‘theories [Newton] 

builds upon his Principle of Attraction, which to me 

seems to be absurd.’ As for Leibniz, a superb mathema-

tician with whom Newton had a massive plagiarism 

battle over who first devised calculus, the concept was 

retrograde. Leibniz dismissed the possibilities that two 

heavenly bodies could be attracted towards each other, 

calling it a ‘return to occult quantities and, even worse, 

to inexplicable ones.’

They did not think the theory was occult in the mod-

ern sense of using black magic, but rather that it was 

something that was hidden with no obvious cause. 

As Leibniz was well aware, for an event to be caused 

remotely, something has to pass from A to B. To hear 

someone speaking across a room, a compression wave 

has to pass through the air from the speaker’s vocal 

chords to stimulate the listener’s eardrum. To knock a tin 

can off a fence, something has to cross the intervening 

space and dislodge it. You can’t just look at it and make 
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it happen. Yet Newton was saying that somehow planets 

and stars could influence each other remotely without 

anything passing between them.

Even Newton himself was not comfortable with this. 

Despite claiming in Principia that he ‘framed no hypoth-

esis’ for how gravity worked, he actually had ideas that 

there was some sort of invisible stream of particles con-

stantly flowing between the massive bodies to make 

gravitation happen. Until Einstein came along, the best-

supported theory for the cause of gravitation would be 

something mechanical of this kind. The idea was typi-

cally that there were streams of special gravity particles 

flowing throughout the universe. As a heavy body would 

reduce the number of particles reaching a nearby body 

by screening it, the result would be that the body was 

hit by fewer particles and would feel pressure to move 

towards the heavy body. It was attracted. There were 

details to work out – why gravitation depended on mass, 

not size, for instance – but at least it was a theory that did 

away with that damnable occult force.

In the end, though, Newton’s numbers worked. They 

accurately predicted the behaviour of moving objects 

and orbiting bodies. They described a mechanical pic-

ture of the universe that was hugely successful in its 

match to reality. Clearly there was a cause, a reason for 

the attraction to take place, and at some point that would 

be understood, but in the meanwhile it would be churl-

ish to ignore Newton’s mathematics, which gave such an 

elegant and accurate prediction of what really happened. 

For many pragmatists it was a case of ‘Don’t worry about 

why it works – it does, so let’s use it.’
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Probably the greatest of such pragmatists was 

Pierre-Simon, the Marquis de Laplace. This French math-

ematician and scientist was unusual at the time in his 

enthusiasm for Newton’s work. Both because of Newton’s 

arguments with Leibniz over calculus and his idea that 

light was made up of particles rather than the waves sug-

gested by Huygens and Descartes, the Englishman was 

treated with some caution by many philosophers from 

mainland Europe. They accepted the brilliance of his 

work on motion, but were a little more wary about plung-

ing wholehearted into the detail of his science. Laplace, 

though, a brilliant mathematician in his own right, took 

Newton’s inspiring insight into the workings of the uni-

verse to a whole new plane.

No need for that hypothesis
Although Newton was aware that his explanation of 

motion and gravity should be sufficient for the universe 

to function without intervention, he was also a very reli-

gious man and expected a role for God in keeping the 

mechanics of reality on track. He found one in the sta-

bility of the universe. The problem was that by simply 

applying Newton’s maths, you might expect the universe 

to collapse. Newton first imagined what the universe 

would be like if it were finite. If you looked at a planet 

or star near the edge of that finite universe, it would feel 

a strong attraction towards the centre of the universe, 

because there were many more bodies in that direction. 

So the universe should collapse from the edge inwards.

Newton got around this apparently inevitable break-

down of everything by assuming that the universe  
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was infinite (a controversial concept in his day). That  

way it would have no edge, and wherever a heavenly  

body was located within the universe it would have 

plenty of other bodies attracting it in all directions. 

However there was still a problem. Such a universe 

could only be stable if everything was in exactly the right 

position, as originally positioned by God in the creation. 

Inevitably, some bodies would get just a little out of pos-

ition – at which point they would start to drift, and the 

collapse would come again. It would just take a lot longer 

this way.

The only way Newton could see to get around this 

was to have God ever-present, gently prodding things 

all the time, ensuring that everything stayed in the right 

place and that collapse would not occur. For Laplace, 

though, God was an unnecessary universal component, 

because there was no room for drift. The mechanical per-

fection of the universe should extend to each and every 

body and motion. According to legend, when Napoleon 

asked Laplace why there was no mention of God in his 

philosophy, Laplace is supposed to have replied ‘I had 

no need of that hypothesis.’

Laplace believed that there was no such thing as a 

random influence and so there should be no need for 

constant corrections from a caretaker God. He truly 

envisaged the universe as one vast clockwork mechan-

ism. If someone could understand every single universal 

cog and link, if that person had perfect data on every par-

ticle in existence, then they should be able to foresee the 

behaviour of everything in existence into eternity. There 

was no room in Laplace’s universe for uncertainty.
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Laplace was very clear that with sufficient data, 

unlimited understanding and the ability to analyse a vast 

quantity of information, it was possible to predict the 

way the entire universe would run. He wrote, ‘Given for 

one instant an intelligence which could comprehend all 

the forces by which nature is animated and the respect-

ive situation of the beings who compose it – an intel-

ligence sufficiently vast to submit these data to analysis 

– it would embrace in the same formula the movements 

of the greatest bodies of the universe and those of the 

lightest atom; for it, nothing would be uncertain and the 

future, as the past, would be present to its eyes.’

At first glance there is something inevitable and grand 

about Laplace’s vision. We know that everything, even the 

human body and brain, is made of individual, inanimate 

atoms. At the level of these atoms, there is no such thing 

as ‘life’ or ‘consciousness’ or ‘decisions’. In Laplace’s 

world, these atoms obey physical laws that determine 

how they will change from moment to moment. Capture 

every bit of data for every single atom in existence and 

you have written down the computer program that runs 

the universe.

With enough resources, you should then be able to 

run that program forward indefinitely and you would 

then predict exactly what would happen for all time to 

come. It is indeed a grand vision – but also a depressing 

one. In Laplace’s universe there is no room for free will. 

What will happen now or in 100 years’ time was set at 

the beginning of the universe when everything was given 

its initial conditions. From then on each atom trudges its 

way through its inevitable path, que sera sera, with no 
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hope of intervention or change, no random influence or 

disturbance from the grand design. Forever.

The only apparent escape clause from an existence 

where human beings had no true choice about what 

they did was if you believed a concept that dated back 

to the Ancient Greeks. It was given the form that Laplace 

would have recognised by 17th-century French philoso-

pher René Descartes. The idea, known as dualism, sees a 

human being composed of two independent components 

– a body that is mechanical and material, and a mind 

(which for religious purposes could equally be regarded 

as a soul) that is supernatural and immaterial. This mind 

part is ‘supernatural’ in the sense of being outside of 

nature, with no horror film implications.

If there were such a separation between mind and 

body, then it’s possible that the physical aspects of the 

universe would follow Newton’s mechanical necessity, 

but the thinking part of human minds, existing sepa-

rately and outside of nature, would not be straitjacketed 

and could steer the physical world, breaking the bonds 

of the clockwork universe. To take control, the mind and 

body would have to be somehow tied together. This is 

the weakest point of the theory because it requires an 

interaction between the natural and the supernatural, 

the physical and the immaterial. Descartes suspected the 

pineal gland in the centre of the brain provided the link-

ing point between the two parts of a human being, some-

thing we can now be sure isn’t the case.

Most people throughout history – including the 

majority of people alive today – have held a dualist view, 

because it is the natural, commonsense one. (This doesn’t 
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make it right. The natural, commonsense view also says 

the Sun travels around the Earth.) Even the most sophis-

ticated modern philosopher can’t avoid thinking of his 

or her ‘self’ as something separate from the body that 

it controls. If you take a moment to think about it, the 

same is true for you. All of us inevitably imagine a sort 

of mental being, probably located between our eyes, that 

is somehow pulling the levers to make the physical body 

work, via the intermediary of the brain. However, the 

majority of present-day scientists believe that there is no 

such duality, and that the mind is simply a function of 

the chemical and electrical functions of the brain.

It ought to be stressed that this idea of human beings 

as ‘meat machines’ cannot be proved scientifically, and 

as yet we have no good answer to the nature of conscious-

ness. It is also true that to dismiss duality runs contrary 

to pretty well all the world religions – certainly any that 

consider us to have a soul or to be capable of an existence 

after death. However, if there is no duality – and support-

ers of the mind-as-function-of-brain view would point 

out that there is equally no evidence for a separate mind, 

other than our subjective feelings – then with Laplace’s 

world view, there is no escape from the iron grip of the 

predictions of physical laws. (The approach proffered by 

Laplace is often described as ‘deterministic’ as the initial 

conditions and the rules of the system determine entirely 

how things will play out.)

Without doubt, the precision of Newtonian mathe-

matics seemed to provide a new level of insight into the 

workings of the universe. Of course, we humans were 

not Laplace’s ‘intelligence which could comprehend all 
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the forces by which nature is animated and the respect-

ive situation of the beings who compose it.’ We have 

neither the data nor the computational skill to predict 

the moment-by-moment progress of the whole universe. 

But Newton seemed to promise that in principle this was 

possible . For the moment, though, it was best to start 

simple.

If you look at a very simple gravitational system with 

just two bodies interacting – the Earth orbiting the Sun, 

or the Moon orbiting the Earth, say – and take away all 

other influences, Newton’s maths does indeed (within 

the limitations that would later be revealed by Einstein 

in general relativity) give us the means to predict exactly 

what will happen. For all time. And no doubt the enthu-

siasts for determinism thought that it was just a matter 

of adding in body after body, detail after detail, until we 

had our master plan for the whole universe assembled. 

But this magnificent progress of the imagination through 

the workings of a clockwork universe was brought up 

short by reality.

Just add one more object into your two-body system 

and everything goes horribly wrong.



81

CHAPTER 6

Just three bodies

The natural starting point when trying to make calcula-

tions of the movements of a ‘clockwork’ universe is to 

consider the Earth and the Sun. After that? Why not add 

in the next most obvious body in the sky, the Moon. So 

now we have three bodies. The Earth orbiting the Sun, 

the Moon orbiting the Earth. A simplification of the real 

solar system, it’s true, but clearly more complex than 

predicting the behaviour of two bodies. More number 

crunching would be required. And yet it was hardly a 

major challenge. At least, so it seemed until scientists 

and mathematicians tried to make it work.

Newton was the first to give the problem serious con-

sideration. He made some initial progress, but was aware 

that it wasn’t such a trivial problem as it might first seem. 

Clearly both the Earth and the Sun influence the move-

ment of the Moon. However, to simply calculate that 

impact assumes that the bigger bodies are not themselves 

influenced by the Moon. But they are. It has a gravita-

tional pull on them. This will displace the Earth and Sun 

from where we thought they were in terms potentially of 

both position and the way that they are moving. But that 

will mean a different impact on the Moon – and so on.

When you only have two bodies to deal with, it’s easy 

enough to account for their effects on each other, but with 

the three, the perturbations each makes on the orbits of 

the others leads to a sort of chaotic randomness that is 
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difficult to predict exactly. In his Principia, Newton split 

off and worked on elements of the problem, but didn’t 

take it on in its entirety. So, for instance, he made a 

stab at calculating ‘the forces of the sun that perturb the 

motions of the moon’, picking out that particular influ-

ence, without bringing the whole together.

In practice it was discovered pretty early on that deal-

ing with the three-body problem resulted not just in an 

outcome that was difficult to predict, but an impossi-

bility. Because there are soon many different states that 

could originate from the same starting point, it isn’t pos-

sible to exactly predict what is going to happen. Instead, 

mathematicians dealing with the three-body problem 

(and even more with our real solar system featuring 

A chaotic pendulum, with multiple jointed segments that 
influence each other, provides a similar demonstration to 

the chaotic interaction of three bodies.
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significantly more than three bodies) have to resort to 

approximation.

With enough computing power, these approxima-

tions are very good. When the Apollo missions were 

dispatched to the Moon they were making use of basic 

Newtonian physics with good enough approximations 

to handle the flight of the Apollo vehicle, including the 

influences of Sun, Earth, Moon and outer planets, par-

ticularly the massive Jupiter. This was fine to deliver the 

lunar landers to the required part of the Moon’s surface 

and to get them back to Earth. But it wasn’t Laplace’s 

perfect prediction of the behaviour of a mechanical uni-

verse. Extrapolate it further and further into the future 

and the predictions given by the maths would get further 

and further from reality. It was only workable as a rela-

tively short-term approximation.

Things got even worse when relativity came on the 

scene. Relativity itself dates back to Galileo and sim-

ply states that for movement to exist we have to know 

what our ‘frame of reference’ is – with respect to what, 

exactly, are we moving? It might seem obvious what is 

moving and what isn’t, but that’s only because we typi-

cally assume the frame of reference of the Earth. As you 

sit in a chair or wherever you are reading this, you prob-

ably aren’t moving with respect to that seat. But the seat 

could be moving with respect to the Earth if you are on 

a train or a plane, for example. And for that matter, the 

Earth itself is moving with respect to the Sun or other 

points in the universe. So, Galileo told us, the whole 

concept of movement has to be relative to something. 

That’s relativity.
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Relativity becomes special
Einstein took this one step further in his development of 

the concept of special relativity in 1905. Thanks to the 

work of Scottish physicist James Clerk Maxwell it had 

been discovered that light was an interplay of electricity 

and magnetism. Moving electricity created magnetism; 

moving magnetism created electricity. But this could 

only haul itself along by its own bootstraps if it moved 

at one particular speed, the speed of light – in a vacuum 

around 300,000 kilometres per second.

This presented Einstein with an interesting challenge. 

He imagined floating alongside a sunbeam. As far as 

the imaginary floating Einstein was concerned, relativ-

ity said the sunbeam wasn’t moving. And that meant it 

didn’t exist – because it wasn’t going at the right speed 

for electricity to create magnetism to create electricity 

and so on. In fact whenever anyone moved, all the light 

around them should disappear – which seemed bizarre.

This paradox forced Einstein to make a leap of imagi-

nation. What if, he thought, light was unlike everything 

else in the universe? What if light always moved at the 

same speed, however you moved towards it or away from 

it? Light, effectively, would ignore relativity and just do 

its own thing. That way, however you move, whatever 

your frame of reference, light would cruise on regardless.

This move had the desired effect of making it pos-

sible for light to exist in our relativistic universe. But 

there was a cost – a big one. If you plug the behaviour 

of light into the basic equations of motion and energy 

derived from Newton’s work, it transforms the moving 

object. Whenever anything moves, three things happen 
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to it. Firstly, the moving object increases in mass. This 

happens at any speed, but it is hardly noticeable until 

you are travelling a good-sized fraction of the speed of 

light. However, once you do get to very high speeds the 

mass absolutely shoots up, so that as you approach light 

speed, mass tends to infinity.

The way that mass increases is one of the reasons it 

is impossible to simply fly faster and faster until you 

exceed the speed of light. As you get close to light speed 

it takes more and more energy to make you accelerate, 

because the energy required is proportional to your 

mass. It would require an infinite amount of energy to 

work through the light speed barrier (though there may 

be ways to get around it).

As well as an increase in mass we also see a moving 

object getting shorter/thinner in the direction it is mov-

ing, squashing up more and more until it becomes infi-

nitely thin at light speed. And, most strangely of all, the 

time on the moving object gets slower and slower until it 

stops at light speed. These are all relativistic effects. This 

is what happens on the moving object as seen from the 

place with respect to which it is moving. If you were that 

object you wouldn’t notice any of these effects happen-

ing to yourself. In fact, because all movement is relative, 

you don’t see yourself moving at all, it’s the world that 

moves around you, and it’s everything else that you will 

see experiencing these effects.

The eternal triangle
So let’s go back to our three-body problem. The bodies 

in question are moving – that’s the whole point of the 
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problem. So because of that movement, each will see 

the others as having increased mass. This effect is pretty  

well negligible at the relative speeds of the Sun, Moon 

and Earth – but it is there as far as Laplace’s perfect 

observer is concerned, and it means there is an added 

shift in the already impossibly slippery calculation. It’s 

even worse for bodies that are moving at near light speed, 

where the impact of movement on mass becomes really 

significant and throws the whole set of equations used to 

describe what’s going on into extra depths of complexity. 

Even more so with special relativity in play, the only fea-

sible approach is one of approximation, though it is pos-

sible to make the approximated values more and more 

accurate.

It might seem strange that it is possible to make an 

approximation to pretty well any level of accuracy but 

not to be able to take the final step and come up with 

the ultimate, exact value. To see what is happening it is 

worth contrasting two very different infinite numerical 

series – the result of combining a list of numerical values 

that has an infinite set of entries.

A very simple infinite series is the sum 1 + 1⁄2 + 1⁄4 + 1⁄8 

+ 1⁄16 + 1⁄32 …

We can say that the sum of this series, the result of 

adding all the values together, tends to a value of 2. 

If we had the whole infinite set of fractions (which in 

practice we can never have in the real world), we would 

get an exact value of 2. So even though we can’t do the 

actual sum, we can come up with an exact prediction 

of where the series is heading. We can provide a perfect 

forecast for the outcome of the sum even though we can’t 
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complete it in reality. Consider another relatively simple 

infinite equation, though:

2⁄1 × 2⁄3 × 4⁄3 × 4⁄5 × 6⁄5 …

The sequence is very easy to predict, for as far as you 

like. At one step the bottom part of the fraction increases 

by two and on the next the top part increases by two. 

And in a sense I can tell you exactly what the outcome 

will be, just not as a number. The result of including the 

whole infinite set of entries is p/2 (where p, or pi, is the 

familiar ratio of a circle’s circumference to its diameter). 

The more values you include in the sequence, the closer 

you come to getting an exact value for pi (or more accu-

rately half of pi). But we can’t say what numerical value 

the sequence is heading for. It isn’t ever exactly predicta-

ble. We can approximate it to any level of accuracy – and 

pi has been calculated to millions of decimal places – but 

with this kind of calculation we can never forecast the 

eventual destination of the finished sequence. It’s what’s 

called a transcendental number.

The same kind of inability to get to the final value 

goes for the three-body problem (or the ‘n body problem’, 

as it is known when there are more than three objects 

involved). With enough computing power, we can cal-

culate the values to pretty well any desired degree of 

accuracy, but we can never forecast what the exact final 

results will be.

As we will see later (see page 147), relativity wasn’t 

the only bit of modern physics that would throw a spanner 

in the works of Laplace’s predictable universe. Quantum 
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theory added its own random baggage to the ability to 

make predictions. Even at the basic level, the three-body 

problem becomes more complicated when dealing with 

the interaction of three quantum particles. The problem 

here is that it is perfectly possible for new particles in 

pairs – matter and antimatter – to briefly pop into exist-

ence, then soon after collide and annihilate, returning 

to pure energy. This is all very well, but it means that at 

certain points in time there are more than three particles 

present, subtly shifting the positions of the original three. 

There are added perturbations that make any attempt to 

predict behaviour ever more an approximation.

There were some partial solutions to the traditional 

three-body problem. The French mathematician Joseph 

Louis Lagrange worked on a problem where two of the 

bodies were much larger than the third. In such circum-

stances, it is possible to identify points where the gravi-

tational pull of the two large bodies is exactly the same 

as the amount of force needed to keep a third object in 

orbit. For these specific points, known as the Lagrangian 

points, there is an exact solution to the equations. There 

are five such points in total – two in positions forming an 

equilateral triangle with the heavy bodies, one between 

the two bodies and one either side of the two bodies on 

the extension of the straight line between them.

The Lagrangian points in the Earth/Sun system are of 

particular interest. In a near-circular orbit like the Earth’s 

around the Sun these are pretty well true points (they 

spread out to be fuzzy patches in a more elliptical orbit) 

and they provide a stable place to park a satellite, orbit-

ing around the Lagrange point. In practice, the Earth/Sun 
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system is more complex because there are influences 

from the other planets, but to a good approximation the 

Lagrangian points, particularly the ‘L4’ and ‘L5’ points on 

the extremes of the two equilateral tri angles, are islands 

of stability in a chaotic gravitational environment.

In the general three-body problem, once we add in an 

extra body to the initial two we arrive at a state where 

subtle differences in starting conditions can result in 

major changes further down the line. It becomes harder 

and harder to make predictions over time.

Exactly the right conditions for an attack of chaos.

The Lagrangian points for the Earth/Sun system

Sun
Earth
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CHAPTER 7

Chaos!

Imagine standing above a mountain range on a specially 

constructed platform, with a huge boulder clasped in 

the grapple of a crane. Ahead of you is a sharply crested 

ridge. Either side of the ridge, as you look down, is a vil-

lage. The drop from here is precipitous. If your boulder 

fell on either village it would cause death and destruc-

tion. Release the boulder with its centre of gravity one 

centimetre to the left of the ridge, towards the northern 

village and the destruction there will be terrible. The 

other village will be untouched. But just move the boul-

der two centimetres to the right and it is the southern 

village that will be devastated. Such a vast difference 

in outcome from such a tiny change in starting point. A 

move of just two centimetres deciding who will live and 

who will die.

It is (thankfully) an unlikely image in practice, but 

it illustrates well the essential nature of chaos. A very 

small variation in initial conditions – in this case the 

exact position of the boulder over the ridge – a change 

that it would be difficult indeed to see if simply lining 

up the boulder over the ridge by eye, makes a huge differ-

ence to the outcome. Predicting what is going to happen 

with any certainty becomes impossible.

This concept of chaos emerged from early computer 

work on weather forecasting. The American meteorolo-

gist Edward Lorenz had produced a simple model (simple 
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by modern standards, at least) of the way that weather 

patterns develop over time. As is often the case with 

computers, the printout of the results worked at slightly 

less accuracy than the numbers used in the actual model. 

So, for instance, if a value that was being worked with 

was 0.349456, the computer might, to keep paper usage 

down, print out 0.349.

Lorenz wanted to recreate a run of his model from 

part way through, so he carefully input the values he had 

on paper as starting positions for the model. By using 

those rounded values on the printout he was entering 

something ever so slightly different from the figures  

the computer had previously been working with. But 

Lorenz assumed the impact would be trivial. It’s as  

if you were setting up your sat nav, and instead of  

locating the exact position of the car in the drive, you  

put in the coordinates of the street outside the drive. A 

trivial difference that should not influence the outcome. 

Yet as Lorenz’s model ran forward in time, it rapidly 

diverged from the original forecast in a massive amount 

of detail.

A very small change in the initial values – in this case, 

the difference of a few extra decimal places, at most vary-

ing by one thousandth – made a huge difference in the 

outcome. Lorenz would never have seen that coming. 

The kind of information he was typing in – air pressure 

or temperature, for example, would certainly not have 

been measured to anywhere near this level of accuracy, 

so it seemed irrelevant that he should use truncated val-

ues from those the computer had been working with. In 

reality it made all the difference.
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Lorenz was personally responsible for our most dra-

matic image to portray the impact on outcome of a small 

change in starting point when he published an academic 

paper entitled Does the flap of a butterfly’s wings in Brazil 

set off a tornado in Texas? This so-called ‘butterfly effect’ 

captured the public’s imagination. As it happens, the real 

answer to Lorenz’s question was ‘No.’ The effect of a but-

terfly’s wings is so small that it would tend to be damped 

out by the system rather than amplified – and tornadoes 

are typically relatively localised weather systems – but 

the basic idea was valid, and was one that would have a 

huge impact on the science of weather forecasting, argu-

ably our best attempt to tame chaotic randomness.

Oddly, the initial response to the discovery that the 

weather developed in such a knife-edge fashion was one 

of elation. Weather forecasting is really only a second-

best activity. Ideally what we want to be able to do is 

to control the weather and have it behave the way we 

want, not simply to forecast it. The eminent mathema-

tician and computer scientist John von Neumann was 

delighted at the discovery of the delicately balanced 

nature of the weather because he initially had in mind 

the sort of behaviour described at the start of this chapter 

with a boulder hanging over a sharp ridge. He imagined 

that if the weather was so finely balanced, it should be 

easy to give a weather system a little nudge one way or 

the other to get the outcome he wanted.

What von Neumann didn’t grasp initially was that the 

weather was not so much a single mountain ridge as a 

whole matrix of mountain ridges. Yes, it would be pos-

sible to influence a first finely balanced outcome – but 
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that would trigger a whole new set of finely balanced 

outcomes, each with its own narrow ridges. This wasn’t 

like pushing the boulder to one side or the other, it was 

more like giving a ball a slight sideways nudge in an 

immensely complex pinball machine.

The unpredictables
The broad mathematical theory that would describe this 

kind of behaviour was given the label ‘chaos theory’. 

Many large systems that have a number of factors influ-

encing outcomes have this kind of chaotic behaviour, 

whether we’re thinking of the weather, the sales of books 

or the behaviour of the stock market. In principle this is 

the sort of randomness that could be tamed by Laplace’s 

all-seeing, all-knowing entity. It is not truly random, 

because if you really did have total knowledge to the 

very last decimal place and enough processing power, 

you could predict exactly what was going to happen. But 

because in reality we always work with simplified mod-

els – often highly simplified – we don’t see the dramatic 

outcomes of chaotic randomness coming, and as a result 

they can and do take us by surprise time and time again.

We should really have expected to discover this 

chaos in nature. It is what we experience as everyday 

life. Think of the old verse about losing a horseshoe nail 

that is sometimes linked to the death of Richard III at 

Bosworth Field:

For want of a nail the shoe was lost.

For want of a shoe the horse was lost.

For want of a horse the rider was lost.
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For want of a rider the message was lost.

For want of a message the battle was lost.

For want of a battle the kingdom was lost.

And all for the want of a horseshoe nail.

Everyone is aware of the unfolding consequences of a 

small action on our future. From fairy tales, where a 

small kindness to a poor person who turns out to be a 

prince or a magician results in great rewards, to modern 

stories like the film Sliding Doors where two possible 

outcomes are followed depending on whether or not the 

central character played by Gwyneth Paltrow catches a 

tube train, we are familiar with the idea that even small 

decisions have consequences and we can rarely be aware 

just what will ensue. The consequential implications of 

our everyday actions are just as much a chaos effect as 

anything studied in weather, book sales or the stock mar-

ket, but somehow we seem more comfortable with the 

fact that we can’t predict our own futures.

The fact is, if we are uncomfortable with randomness, 

we are doubly uncomfortable with chaos. At least clas-

sical randomness is predictable across a large enough 

sample . Chaos runs away with itself, leaving predict-

ability behind. The increasing complexity of the input 

of chaotic randomness to a weather forecast builds over 

time. Typically a forecast for one or two days can be 

surprisingly accurate. Up to five days out there is a fair 

chance of getting things right, although in practice the 

forecasts are often modified as time progresses. But get 

any further and things go downhill. In fact, bizarrely, at 

nine days or greater, forecasts are typically worse than 
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simply basing your prediction on the kind of weather 

expected in a particular location at that time of year.

This seems to be quite an indictment of our meteorol-

ogists. The forecast at, say, ten days is not even as good as 

what you can do by understanding the basics of the local 

climate, it is actually worse. The problem is that the fore-

casting systems attempt to model the way that feedback in 

the weather causes dramatic change. Unfortunately these 

feedback loops don’t just pick up on the accurate data 

that is fed into a forecast, they also amplify the errors, so 

that the models run away from reality in a drastic fashion 

after a sufficiently long period of time. It is particularly 

strange that some weather sources provide ten- to fifteen-

day predictions despite being aware of this, though it’s 

not clear if they do still use true forecasting models or 

simply fall back on an expectation for that location at 

that time of year.

If ten-day forecasts are frequently poor, it’s not sur-

prising that trying to forecast a month ahead leads to 

dire results. American operations research and econom-

ics expert Kenneth Arrow became aware of this when 

involved in weather forecasting for the US Air Force dur-

ing the Second World War. A team of forecasters were 

attempting to predict the weather a month ahead, some-

thing we now know that chaos makes impossible.

Because Arrow had a mathematical background, he 

analysed the forecasts and found that they were no more 

accurate than picking a forecast at random and some-

what worse than guessing using the local climate as a 

guide. Based on his observations, the forecasting team 

attempted to get out of providing the useless forecasts. 
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The response was, ‘The Commanding General is well 

aware that the forecasts are no good. However he needs 

them for planning purposes.’

Strangely, some commercial weather forecasts are 

intentionally less accurate than those provided by gov-

ernmental meteorology departments. This is not because 

the commercial forecasters have worse data – they can 

usually access the same sources – but by shading the pre-

dictions in a particular way, the forecasts can be made to 

look more appealing. There seem to be two main factors 

in play. Firstly, there is a tendency to avoid a balanced 

outcome. If, say, there is a 50 per cent probability of rain-

fall, commercial forecasters will tend to shift it away 

from that 50:50 judgement, to avoid seeming indecisive.

The second commercial weather forecasting trick 

is a tendency to increase the chances of rainfall above 

the value predicted by the models. The reason for this 

deception is simple. It is worse to get your forecast 

wrong by saying it won’t rain, leaving your customers 

with an unexpected soaking, than it is to get it wrong by 

saying it will rain and subsequently have them find they 

are enjoying unexpected sunshine. If you over-predict 

rain, you are less likely to get irritated customers, who 

blame you for the drenching. Who is going to complain 

if it’s sunny unexpectedly? No one but a few rain-starved 

farmers. Psychology triumphs over meteorological accu-

racy, at least for forecasters who expect to be paid by the 

consumer, when it comes to the impact of this particular 

kind of random influence on our lives.

You might think that, with chaotic randomness at 

its heart, we might as well give up any attempt to make 



Dice WorlD

98

weather forecasts at all – but in reality, short-range fore-

casts have improved vastly in quality over the last 20 

to 30 years. At the time of writing it is 25 years since 

the UK was hit by one of the biggest storms on record, a 

hurricane that was not predicted by the Met Office. This 

would be very unlikely to happen now. This is because 

the forecasters have embraced the chaos, rather than pre-

tending that it doesn’t exist. Traditional forecasting never 

took chaos into account, making predictions on the same 

kind of statistical basis as we might use for forecasting 

the outcome of a roulette wheel. A modern weather fore-

cast is quite different.

Aware of the variability resulting from small vari-

ants in starting conditions, weather forecasters run an 

‘ensemble’ of models, each with slightly different initial 

conditions. They then group the predictions together 

and use them to make those probabilistic forecasts. If, for 

example, there were 50 runs of the model with slightly 

different starting conditions, each as likely as the next, 

and 30 of them predicted rain, but 20 said that it would 

remain dry, you could say there was 60 per cent chance of 

rainfall. The actual translation of the ensemble of model 

runs into a specific forecast is rather more complex, but 

this gives a feel for what is happening.

The next bestseller
The weather is a relatively well-understood system. It 

has been studied in detail for many years and we have 

vast amounts of data collected on both the kinds of obser-

vation that are made and the resulting weather. And by 

comparison to many human-influenced systems, it is 
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relatively simple. If we look at another chaotic system, 

the sales of different books, we are faced with a much 

more difficult scenario to forecast. We have the figures on 

the outcomes – how many copies of each particular book 

sold at what time – but we have very little data on many 

of the variables that go into making the system work. It is 

hard even to specify what those variables might be.

Influences on book sales will clearly include the 

amount of marketing that is done, visibility of books in 

stores, how much prominence key online retailers like 

Amazon give, the media coverage, word of mouth obser-

vations, social media, available disposable income and 

more. But we are dealing with such a complex system, 

involving all the book buyers, bookstores and publishers 

as different variables, that making any attempt at fore-

casting is indistinguishable from guesswork.

As an example of the complexity of predicting what 

might happen to even a single book, imagine an ebook 

that is reduced from its usual price to 99p for a lim-

ited period, as part of a special promotion by an online 

retailer. It might seem that there should be a simple rela-

tionship between price and sales, but it doesn’t work like 

that. With this sort of promotion, sales can increase far 

more than the shift in price would suggest. A big factor 

in this is improved visibility. Not only will the book be 

more obvious because it is in a special deals section, it 

may also rise up the ranking to be one of the bestselling 

ebooks, getting further exposure this way. The feedback 

loops in place make it hard to predict what is going to 

happen. Now add in all the complexity of dealing with 

not one book but all of them, not one retailer but all 
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of them, and a much wider buying public than a par-

ticular ebook store. Once more, like the weather, small 

variants of the initial variables can result in huge differ-

ences in outcome, but we don’t even know what those 

initial variables are in detail for book sales. And there 

are vastly more of them. An ensemble forecast would be 

inconceivable.

As the mathematics of chaos was developed it was 

realised that it applied to more and more situations, 

spanning a wide range of scientific disciplines. Take the 

population of a new species in a particular ecosystem. 

Once biologists got over their initial fear of mathematics, 

the assumption was that a population would typically 

experience initial rapid growth followed by a series of 

oscillations up and down as the population headed for a 

state of equilibrium. Admittedly, when they tried to plot 

the models of this kind of behaviour they didn’t always 

reach that nice steady state, but the assumption was that 

they would get there eventually.

However, once serious computing power and decent 

maths were available, it was discovered that after initially 

going through a phase of relatively stable oscillations, 

rather than settle to a steady state, with a high enough 

level of fertility you would get a chaotic dive up and 

down of population as the ability to reproduce vied with 

ability to find enough to eat. Effectively what is happen-

ing is that the possibilities for change split into two, these 

themselves split into two other options each, the whole 

happening faster and faster until the end result is chaos.

A similar phenomenon in a very different area drew 

the literal poster boy of fractals and chaos, the late Benoit 
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Mandelbrot, into the fray. Mandelbrot was a young math-

ematician working at IBM’s research centre in Yorktown 

Heights, New York. He had spotted an oddity in the way 

income distribution did not fit a conventional mathemat-

ical distribution, and was shocked to discover exactly 

the same kind of unruly behaviour in the distribution of 

cotton prices. These prices were ideal to study as they 

were well documented, going back many years.

What mathematicians and economists had assumed 

until then was that the behaviour of something like cot-

ton price over time would be a combination of long-term 

responses to the big picture – the economy, new trends in 

use of fabrics and so on – and a short-term, random fluc-

tuation up and down. These fluctuations were expected 

to fit a normal distribution – but they didn’t. There were 

far too many extreme jumps. The traditional approach 

had been to ignore the ‘noise’ of the random fluctuations 

and concentrate on the trends. But Mandelbrot realised 

that this analysis got things back to front. In what would 

later be identified as chaotic data like this, it was often 

the dramatic spikes that dominated. A normal distribu-

tion simply misrepresented what was going on.

As Mandelbrot examined the data he made a discov-

ery that would lead to most of his work on fractals – an 

area that is primarily out of the scope of this book – but 

which also explains what lies beneath chaotic random-

ness. What Mandelbrot found was that the changes in 

cotton price were independent of scale. Any particular 

change occurred randomly, without any way to predict it. 

But if he looked at the changes over a week, or a month, 

or years at a time, there was the same broad shape to the 
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way changes went up and down. This didn’t make it any 

easier to make a prediction for a specific change in price, 

but did make it possible to assess what should be seen in 

the broad distribution of the price changes over a period.

The Mandelbrot set

In the early days of the boom in understanding of chaos 

theory it was thought that this new mathematics, with 

its icon of the Mandelbrot set graphic (a plot of a cha-

otic system that exhibits a scale independence like cot-

ton prices), would transform the way we understood the 

world around us. Chaos was seen in everything from 

a dripping tap to the movement of the stock market. 

Writing about the development of chaos theory in 1987, 

James Gleick commented, ‘The most passionate advo-

cates of the new science go so far as to say that twentieth 

century science will be remembered for just three things: 

relativity, quantum mechanics and chaos.’
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While these enthusiasts were right about the span of 

chaos, they were wildly over-optimistic about the impact 

of chaos theory to do anything useful. The trouble is, the 

theory is great at telling us what we can’t ever effectively 

predict. But it doesn’t give us any greater understanding 

of, say, how the stock market will change tomorrow. It 

just gives us the insight that it’s pointless to try and pre-

dict it. A useful insight indeed, but not one that is going 

to carry forward our understanding of the universe in the 

way relativity or quantum theory has.

When we are dealing with chaotic randomness it is 

very difficult to get an overview. Classical randomness 

is different. Although each random occurrence is totally 

unpredictable in its own right, at an overview level we 

can often make very good predictions about what’s going 

to happen. This is where statistics has come into its own 

as it has got more and more sophisticated.
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CHAPTER 8

Statistical substance

Statistics – ah, blessed statistics. You have probably 

come across the quotation ‘There are three kinds of lies: 

lies, damned lies and statistics.’ It is often attributed to 

British Prime Minister Benjamin Disraeli, but he was just 

quoting Mark Twain. (At least, he said that he was quot-

ing Mark Twain, though no one can find evidence that 

Twain ever made the remark in the first place.) We are 

naturally suspicious of statistics. Yet used properly, they 

give us a firm handle on classical randomness.

When a scientist is trying to understand what is 

going on in a gas at the level of individual molecules, 

for instance, she faces the three-body problem writ large. 

There aren’t just three bodies to deal with, but many bil-

lions, all interacting at some level. It simply wouldn’t 

be possible to assess what is happening across the board 

by working out the path of each molecule. But instead, 

a statistical approach enables her to take an overview, to 

tame the randomness of the behaviour and pull every-

thing together. Provided you have classical randomness 

to deal with, statistics is an immensely powerful tool to 

understand what is going on.

The reason Disraeli and the rest of us remain suspi-

cious of statistics is twofold. As we have seen, the term 

comes from the same source as ‘state’. Statistics origi-

nally derived from the first attempts at censuses and 

surveys of what was happening in a country. They had 
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an inevitabe tie-in to politics, with all the distrust that 

engenders. There is an unavoidable feeling of having 

Big Brother looking over your shoulder whenever you 

become a statistic. The other issue is that statistics are so 

easy to misuse – as will become clear in this chapter – 

either intentionally or accidentally.

One common problem is knowing where a statistic 

has come from. Sometimes statistics, like those from a 

census, are produced by looking at the whole popula-

tion, but frequently this is too difficult and too expen-

sive a task to perform. The last UK census, taken in 2011, 

is thought to have cost around £500 million to compile 

– this isn’t something that even a state can run to very 

often. So instead statistics are deduced from a sample, a 

subset of the population. Those compiling the numbers  

find out about a segment of the population they can 

get their hands on (traditionally this is a population of 

people, but it could just as easily be a population of mol-

ecules in a gas), then multiply up the results to provide 

the big picture. Such sampling is an imperfect science at 

best.

Even if it’s done properly, sampling inevitably makes 

the result less certain than it sounds. You might hear on 

the news (a frequent purveyor of dodgy statistics) that 

460,000 migrants entered the UK in a particular year. It 

would be reasonable to think that these numbers are the 

result of adding up all the individuals who turn up at 

passport control, but it isn’t done that way. The num-

bers originate from something called the International 

Passenger Survey. A handful of individuals go out and 

interview the passengers at airports, ferries and the 
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Channel Tunnel. The figures are typical based on around 

2,000 individuals a year.

When they say 460,000, they really mean it’s probably 

between 433,000 and 487,000 – when you look at the 

detailed statistics you are told that in just 5 per cent of 

cases would the actual number be outside those bounds. 

But most people won’t look at the actual figures; they 

will take the 460,000 as fact. All the statistical analysis 

can do is to provide us with the best guess, given the tiny 

fraction of the many thousands of travellers that are actu-

ally interviewed. This isn’t a bad thing – but it can be 

dangerous if we don’t know where that 460,000 number 

came from.

Sample selection
Whether by accident or intent, the way that a sample is 

selected can make all the difference as to how the sta-

tistics turn out. Let’s say, for instance, you wanted to 

gather information on what make of car members of the 

public were likely to buy next time they went to a car 

showroom. If you deliberately wanted to bias a sample 

towards your own brand, you could just send the survey 

to people who had already bought your car in the past. 

They are more likely to go for your cars (unless your cars 

are terrible) than another manufacturer.

That is a deliberate attempt to mislead, but you could 

also bias the sample accidentally. For example, if you 

take a survey online, which many polling companies do, 

you immediately have a sample that is not representative 

of a population as a whole. In the UK in 2011, 77 per cent 

of households had internet access – but that left 23 per 
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cent who didn’t and who could never get access to your 

survey*. The chances are that internet access is related to 

factors like age and income. That means that those who 

are online will have different buying characteristics to 

the general population. So your survey will be biased. 

Similarly, if you only surveyed people working in the 

banking sector of a capital city you would get a very dif-

ferent picture of car preferences to people at a job centre 

in a provincial town.

Some such misuses could well be deliberate, but it 

is also possible to misinterpret statistics through care-

lessness. A good example was a British newspaper that 

announced a few years ago that the effect of raising the 

retirement age for men from 65 to 67 would be that one 

in five men who would previously have had a pension 

would now miss out. These men would die before they 

received their pension. This was, in fact, rubbish. One 

of the reasons that the stupidity of the statistic doesn’t 

stand out is that the actual values are hidden behind 

that ‘one in five’. Whenever statistics are presented as 

* If you are paying attention you will realise that the statement 
‘77 per cent of households had internet access’ is also a survey 
based on a sample, so may have limited accuracy. Dive into the 
detail and you will discover that this headline figure is derived 
from the National Statistics Opinions Survey, a multi-purpose 
survey run by the UK Office for National Statistics. According 
to the background notes, ‘The Opinions Survey is carried out 
each month on a random sample of about 1,800 adults, aged 16 
and over, living in private households throughout Great Britain. 
After accounting for refusals and where no contact can be made, 
approximately 1,200 interviews are conducted each month.’ It 
doesn’t say if this survey is conducted online, but presumably 
it isn’t …
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proportions or percentages it’s worth asking what the 

underlying numbers are.

In this case we don’t need actual values, because the 

proportion is so obviously grotesque. It is saying that 

20 per cent of men who live to be 65 – and the major-

ity of men do live to be 65 – will die within two years 

of making their 65th birthday. That would be a terrible 

mortality rate. What the statistics actually said was that 

around 1 in 5 men will die some time before their 67th 

birthday. But most of these won’t die in that two-year 

window between the ages of 65 and 67.

There are, certainly, plenty of statistics about dying 

– it’s a topic that inevitably interests us. As we’ve 

seen (page 54) some of the earliest work in statistics 

involved life expectancy, and there is a rather bizarre 

unit of the risk of dying called the micromort. This is a 

way of looking at risk – a micromort says that you have a 

one in a million chance of dying. If you look at the aver-

age rate of death across the population and divide by the 

number of days in the average life, you can expect about 

40 micromorts a day overall as the chance of randomly 

dying – but of course this ignores anything that takes you 

away from the average, say by being very old or indulg-

ing in risky activity.

Micromorts are sometimes used to compare the risk 

of different activities. It is possible to say, for instance, 

that you increase your risk of dying by one micromort 

by smoking 1.4 cigarettes, travelling around 250 miles by 

car, flying 1,000 miles by plane or having a chest X-ray. 

(If you want a really risky means of travel, a micromort 

takes just 6 miles on a motorbike). This is an amusing 
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exercise, but it has to be borne in mind that all you are 

doing is getting a rough statistical impact, not a detailed 

assessment of your personal risk. Apart from anything 

else, not every risk is linear – you can’t assume that 

smoking 40 cigarettes a day is exactly 40 times as risky 

as smoking one cigarette a day. But micromorts, if used 

properly, can give us some insights into the comparative 

risk of activities.

Blinded by science
Sometimes statistics can be so confusing that a profes-

sional making use of them can be just as easily misled as 

can the layperson. This is very easy with the statistics of 

a medical test. Let’s imagine you take a test for danger-

ous disease, a more and more frequently used part of the 

clinician’s diagnostic toolkit. Say the test is 95 per cent 

accurate, by which we mean that 95 per cent of the times 

the test is given, if it says that you have the disease, that 

test is correct. You really are ill. But in 5 per cent of tests, 

it will say you have the disease when you don’t. You take 

the test and the results come back positive. It says you 

have the disease. What are the chances you are ill?

It seems ridiculously simple. Surely there’s a 95 per 

cent chance you have the disease? And this is a conclu-

sion doctors have been known to come up with. But it’s 

horribly wrong. In fact, given the information above I 

can’t say how likely it is that you are ill. That’s because 

I don’t have enough data. Let’s say the test is given to a 

million people a year, of whom 1 in 2,000 have the dis-

ease. That means 500 of the people who were tested will 

have the illness.



stAtIstICAl substAnCe

111

So 500 of the positive test results will be genuine*. 

How many positive test results will be wrong? That will 

be 5 per cent of the total taken – 5 per cent of one million, 

which is 50,000. So there will be a total of 50,500 people 

with a positive result, of whom 50,000 aren’t ill. If you 

have a positive result then there’s only a 500 in 50,500 

chance that it’s genuine – just under a 1 per cent chance 

that you are actually ill.

An even simpler problem of comprehension is get-

ting your head around numbers that you just don’t 

come across in everyday life. Governments are always 

bandying around numbers in the millions and billions 

of pounds or dollars. (When it comes to national debt 

they can even throw trillions around.) This is outside our 

everyday experience, so such numbers really don’t mean 

a lot to us. C. Northcote Parkinson was the historian who 

came up with Parkinson’s Law, which states that work 

expands to fill the time available for its completion. As 

he comments, ‘General recognition of this fact is shown 

in the proverbial phrase “it is the busiest man who has 

time to spare.” ’ But he also had a useful observation 

about the way we deal with large numbers.

Parkinson imagined a meeting among non-experts 

(politicians, say) discussing the construction of a new 

nuclear power station. They would, he suggested, spend 

very little time on the big thing, the nuclear plant itself, as 

none of them understood it. It involved numbers, science 

* I’m simplifying here by ignoring the fact that most real tests 
will fail to spot people who really do have the disease in some 
cases, so in practice you would have slightly fewer than 500 
positive test results for genuine cases.
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and engineering on a scale that was totally outside their 

comprehension. But they would spend an inordinate 

amount of time on discussing the siting of the bike sheds, 

as this was more on the scale they understood. It’s the 

same when we think of large numbers in statistics.

Imagine a US President announcing, ‘Next year we 

will need to raise a total of $1.1 billion for a new ini-

tiative that will transform lives.’ Let’s not worry what 

the initiative is, but imagine it is clearly beneficial. It 

sounds like a huge amount of money. Now let’s imagine 

you wanted something and it cost one cent per person 

per day. Comparing that with, say, the cost of a coffee, 

that sounds a very reasonable investment. But both are, 

in fact, the same number. There are around 312 million 

people in the United States at the time of writing. That 

means a cent per person per day is around $1.1 billion, 

while a dollar per person per day adds up to $113 bil-

lion. Large numbers only make sense to us when taken to 

the personal level.

All in the context
We need to be particularly suspicious of statistics that 

are based purely on percentages, because without con-

text the percentage is practically meaningless. Imagine 

a headline screaming ‘Murder rate in city increased by 

100 per cent!’ It would probably encourage you to stay 

in at night if you were visiting that city and not risk 

going out onto the mean streets where, in all probabil-

ity, you would be butchered. But what if the previous 

year’s murder rate had been one victim? Then a 100 per 

cent increase is one extra killing. Of course any murder 
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is terrible – but there will occasionally be some, and the 

fact there is one more in a particular year is neither here 

nor there – and is certainly not a good reason for hiding 

in your hotel room.

Here’s another example you will often see in those 

interminable media stories of how eating and drinking 

different things can have negative or positive impacts 

on your health. Let’s imagine (and this is purely imagi-

nary) that eating oranges was shown to increase your risk 

of getting a particular serious disease by 50 per cent. It 

sounds scary. Consumption of oranges would probably 

collapse overnight when the news broke. But with only 

a percentage to go on, we know practically nothing. If 

the original risk was 0.01 per cent – so around one in 

10,000 people would get the disease – then we are now 

saying that 1.5 in 10,000 (or one in 6,666) are at risk. It is 

still a very unlikely occurrence. That extra information is 

essential in judging the significance of the statistic, and 

whether or not it should influence your consumption of 

oranges.

One more example of using a single figure in a way 

that is downright confusing. A while ago, a spokesperson 

for the Soil Association, the main British organic accred-

itation body, made a dramatic claim in a newspaper. 

‘You can switch to organic,’ she said. ‘Or you could just 

accept that every third mouthful of food you eat contains 

poison. Are you up for that?’ Scary stuff. But the statistic 

was problematic.

Firstly, that ‘every third’ figure was far too low. In 

reality pretty well every mouthful of food you eat contains 

poisons. Some are the pesticides and other manmade 
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chemicals she was referring to, but many types of food 

also contain natural poisons, aimed at protecting plants 

from damage. Some of the most deadly poisons – ricin 

and the botulinus toxin, for example – are natural. And 

there are also many natural substances in food that have 

been shown to produce a cancer risk for anyone consum-

ing them. So the fact that the Soil Association was basing 

its statistic on – that around 40 per cent of fresh fruit and 

vegetables retain traces of agro-chemicals – was beside 

the point.

However, even if you don’t worry too much about 

this distinction, the percentage did not provide enough 

information to be useful. Because toxicity is all about 

dosage. Practically everything is poisonous if you con-

sume enough of it. Water, for instance, can kill you, if 

you drink too much. I’m not talking about drowning – 

athletes have died after drinking several litres at a time 

because the water reduces the effectiveness of signalling 

in the nervous system, resulting in the electrochemical 

messages that control the body failing.

In that famous book that almost single-handedly 

started the environmental movement, Silent Spring, 

Rachel Carson made a strong point. ‘For the first time in 

the history of the world,’ she wrote, ‘every human being 

is now subject to contact with dangerous chemicals, from 

the moment of conception to death.’ This too was wrong. 

Throughout all of history human beings have been sub-

ject to natural poisons. We typically consume around 

10,000 times as much of deadly natural pesticides as we 

do of artificial ones. But even this is a very small quantity 

that will do no harm.
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The fact is, if you look at the risk from the quanti-

ties of poisons we consume, the last thing we need to 

worry about is pesticide residues. Looking, for instance, 

at the cancer risk from the average diet, 93 per cent of the 

risk comes from alcohol, and 2.6 per cent from coffee. 

Once we get the relatively dangerous natural sources of 

risk like lettuce, pepper, carrots, cinnamon and orange 

juice out of the way, the first chemical contaminant is a 

chemical called ETU at 0.05 per cent. If you add up all 

the major chemical contaminants and pesticides at legal 

levels, they have a similar risk to eating celery.*

Statistics aren’t fair
Another issue we have with the whole business of ran-

domness and statistics is a rather more fuzzy one of the 

impact on feelings. Statistics can be horribly cruel. Think 

of the poor average person. On average, a person has 

fewer than two legs, fewer than two functional eyes – in 

fact the average person doesn’t have a full set of anything 

that you can lose and still survive. The vast majority of 

drivers are of the opinion that they are above average 

ability. Yet the majority must be average or worse.

The distribution of driving ability is probably roughly 

symmetrical, and in the case of both driving skill and, 

for example, human height, there is only so far you can 

* I must stress again that the risk from consuming the likes of 
lettuce, pepper, carrots, cinnamon, orange and celery is very 
low. They all have a tiny risk of giving us cancer, but it is so 
small that it can comfortably be ignored. Practically everything 
you eat has some risk attached to it. The point here, though, is 
that the risk from pesticide residues is even lower.
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go to either extreme. We don’t have 10ft-high people, for 

example. But we have to bear in mind that not every dis-

tribution is like this. Let’s imagine that we have a distri-

bution of earnings or wealth in a room full of people that 

is roughly a normal distribution and relatively limited 

in spread, then we throw in a billionaire. Suddenly the 

average will shoot up, meaning the vast majority of the 

population will be far below the average level of earnings 

and wealth. When Bill Gates enters the room, everyone 

else has a below average net worth. That’s not great for 

your self-esteem.

One average that has led to a widespread misunder-

standing is historical life expectancy. We all know that 

before the 20th century people lived short, unpleasant 

lives. This is a quote from a recent book about the brain: 

‘My grandmother, passing her 88th birthday was unu-

sual. Life expectancy for girls born at the beginning of 

the twentieth century was just 49 years, for boys 45.’* 

Unfortunately the author of that comment, like many 

others, fell into a statistical trap.

It is true that her grandmother making it to 88 was 

relatively unusual. But the life expectancy figures are 

totally misleading. Back then, some middle-aged people 

would have died due to poor sanitation and an inabil-

ity to prevent some diseases that are now treatable. But 

the fact remains that, if you made it into your forties in 

the 19th century, you would probably live to your six-

ties or seventies. The reason the life expectancy figures 

* From The Brain Supremacy, Kathleen Turner (Oxford 
University Press, 2012)
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were so low was because so many people died in infancy 

and childhood. This pulled the average down very sig-

nificantly. It wasn’t that most people died in their forties 

– just that the average, with all those very low numbers, 

was dragged down to that level.

This distortion of the average is something that polit-

icians wishing to attack another party and not being too 

scrupulous about their statistics can use to their advan-

tage. If a tax is aimed at those on high earnings and it 

turns out to hit people on the average wage, then there 

is an outcry, because that seems to imply that it hits the 

majority of ordinary people – but the majority earn less 

than the average wage. The politician can play the num-

bers even more effectively by putting two people on an 

average wage into a household. Now we are not only 

using individuals that earn more than most as individ-

uals, but a household where both partners do so. This 

pushes their collective income up so high that it puts the 

household in the top 25 per cent of all households, even 

though we are talking about two people who each earn 

the average wage.

It’s pretty obvious that if Bill Gates came into a room 

of people on middling ordinary wages, then the outcome 

would be to heavily skew the average upwards. What’s 

less obvious is why the population as a whole is skewed 

so that most people earn less than average. Taken across 

those in employment as a whole, 80 per cent of the world 

earns less than the average. Given that there are more 

poor people than there are rich people, why don’t those 

poor people pull the average back down? The reason this 

doesn’t happen is that the measure we use (earnings, say, 
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or net worth – the total value of all your property, money, 

shares etc.) has a bottom limit but not an upper limit.

Generally speaking we can’t earn a negative amount 

or have a negative net worth. (In the short term you can if 

you have less income than your debts, but you will rap-

idly go bankrupt, resetting the value to zero). At the time 

of writing, the average annual income in the UK for those 

in work was around £26,000 and the equivalent in the 

US $46,000.* Someone on no income can therefore only 

be £26,000 or $46,000 below average. But a very wealthy 

person could easily earn £1 million more than the aver-

age, and so would have a much bigger impact than any 

single poor individual.

Taking an average can be very useful but it has to be 

handled with care. In the example of the room with Bill 

Gates in (if you want to spot him, he’ll be the one every-

one else is trying to put business proposals to), it would 

be more useful to ask what the median earnings or net 

worth is. Median is a heavy sounding word for a very 

simple concept. If you get a list of all the values in order, 

the median is the middle one. In a nice symmetrical dis-

tribution like a normal distribution, the median and the 

average value (the mean) will be pretty similar, but with 

Bill Gates skewing a distribution wildly towards the top 

* Dealing with income statistics can be particularly tricky, 
because there are so many variables. Are we dealing with net 
income, after tax, or gross income before tax? The average 
income I gave above would be higher if we only included those 
in full-time work. It would be less, however, if we included the 
population who could work, but aren’t necessarily working right 
now, and even less as a whole by including children and the 
retired. You pays for your statistic and you takes your choice.
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end, the median will be well below the average, and will 

give a better idea of the typical value.

Official statistics often do make use of the median 

where it is more meaningful than the average, but news-

papers and TV (and devious politicians) for some rea-

son prefer to use averages. Where the average income 

for the UK in 2011 was £26,871, the median income was 

£21,326 – emphasising the difference between the aver-

age and a ‘typical’ earning. Because the media shy away 

from using the term ‘median’ (presumably because they 

feel it’s too complicated for the ordinary reader), you 

will often see them reporting the median but calling it 

the average. The figures above are for all workers. The 

median income for full-time workers was £26,200, yet 

many of the newspapers reported that the average for 

full-time workers was around £26,000.

The rare event
The basis of statistics and sampling is the assumption 

that underlying the numbers is true classical random-

ness, and as we have seen, such random values typi-

cally fall into some kind of distribution, whether it is the 

familiar bell-shaped normal distribution or something 

more complex. This means we have to be very careful 

when handling a statistic that can include sudden wild 

values – as in the effect when Bill Gates enters a room 

and totally distorts the earnings or net worth of the 

group. It is fairly obvious what is happening with Gates, 

but it’s harder to imagine immediately what the problem 

is if you hear that the safest type of airliner in the world 

has suddenly become the most dangerous. Have planes 
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been plummeting from the sky all over the place? No, it 

took just one crash in 2000.

On 24 July 2000, Concorde was, statistically speaking, 

the safest plane in operation. The Concorde fleets had 

never had a single crash during their entire operational 

lives. But the next day, Air France flight AF4590 crashed 

as it took off from Charles de Gaul airport in Paris. One 

disaster. But there were few Concordes operating – Air 

France and British Airways had a handful each, the sum 

total of operational aircraft – and each plane made rela-

tively few journeys a year. And so the risk immediately 

shot up after a single accident to around one crash in 

every 80,000 flights, compared with around one in 3 mil-

lion for some of the other airliners.

Concorde hadn’t changed. The risk hadn’t changed. 

But when we’re talking about such a rare event, the 

statistics can be highly misleading and we do need to 

know the frequency of the activity and how it compares 

with rivals if we are to make any sensible comparison. 

There is a distribution called the Poisson distribution, 

which looks a bit like a normal distribution that has been 

squashed up to one side, that is quite effective at giving 

us an understanding if the actual frequency of the event 

is reasonable given the expected average, or if the rate is 

such that there is likely to be a new factor involved.

As the frequency increases, the Poisson distribution 

becomes more symmetrical*. The Poisson distribution 

* Note, by the way, that the Poisson distribution is always a dis-
tribution of individual (‘discrete’) events. It hasn’t got a continu-
ous value, so any graphic representation should show a series of 
dots rather than an uninterrupted curve.
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can be useful, for example, in understanding if a rare 

event that appears to be part of a cluster with a cause 

actually does have a cause, or whether taken across the 

population you would expect clusters of that size to occur 

randomly. But it won’t distinguish usefully between a 

Concorde and a conventional airliner.

If we are comparing like with like, on a sensible scale, 

for values that occur at random on a known distribution, 

and those occurrences are independent of each other, we 

have real prediction power in our statistics. But there 

is an assumption underlying all this. We merrily speak 

of values picked at random, but what does ‘at random’ 

mean?

A Poisson distribution
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CHAPTER 9

What does random mean?

Let’s imagine we had a special machine for generating 

random numbers. It doesn’t really matter how it works – 

we can come on to that later. What would a true random 

number generator actually deliver? We’ll limit ourselves 

for the moment to random whole numbers between 1 and 

10 inclusive. Then our generator should give us a string 

of numbers, each between 1 and 10 in value. Every time a 

number is selected there should be a 1 in 10 (10 per cent) 

chance of any one of those numbers being chosen. And 

each choice would be entirely independent from the rest. 

The random number generator would have no ‘memory’, 

no link between the choice of a number and the choice of 

subsequent or past numbers.

That’s clear. The output of such a generator is a true 

random number sequence. However we might find the 

results difficult to accept. Say I gave you the following 

sequences to check:

1 1 1 …

1 2 3 …

5 1 4 …

6 9 2 …

Let’s imagine that these are the first three numbers that 

came out of our random number generator. Which of 

these sequences really are random? Which seem more 
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likely to occur? Our natural inclination is to say that the 

third and fourth sequences are the sort of thing that we 

would expect from the random number generator, while 

the first two aren’t. This is a rather strange assertion, as 

it manages to be both true and untrue at the same time.

The first thing to realise is that it is perfectly possible 

for a true, working random number generator to come 

up with a sequence like 1 1 1 or 1 2 3. Remember, one of 

the essential rules of our generator is that it has no mem-

ory. Whatever came before a number will not influence 

the future. The chance of getting a 1 as the first value is 

1 in 10 – just like the chance of getting any other num-

ber. We certainly can’t deduce anything from getting a 1. 

Then we get to the next number. Because the generator 

doesn’t know that the first number was a 1, once again, 

the chance of getting a 1 is 1 in 10.

Combining these chances, the chance of getting the 

sequence 1 1 is 1 in 100. The same logic applies to the 

third value. Here again there’s a 1 in 10 chance of getting 

a 1. So the overall probability of getting the run of 1 1 1 

is 1 in 1,000. It’s a low probability, but perfectly feasible 

if you have enough attempts. Think about it – the chance 

of any particular set of numbers being drawn in the main 

UK National Lottery (Lotto) is 1 in 13,983,815 – but a set 

of values does get drawn every week. Exactly the same 

reasoning goes for 1 2 3 as 1 1 1 – your chances of getting 

this too is 1 in 1,000, so if you run the generator thou-

sands of times you would expect this to come up.

The interesting thing, though, is that the same prob-

ability also applies to any sequence of three numbers, 

including apparently more random values like 5 1 4. 
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This sequence too has a 1 in 1,000 chance of turning up. 

So none of these sequences is more likely to be produced 

than any other. Each of them has exactly the same chance 

of being selected. There is a book, sometimes labelled 

‘the most boring book ever’, produced in the 1950s, that 

lists 1 million random digits. In that sequence you are 

likely to find around 100 examples of five sequential dig-

its in a row, around 50 examples of the same number 

repeated five times and even one example of the same 

digit repeated seven times.

Why is it, then, that we consider a sequence like 

1 1 1 to be surprising and challenging to our idea of ran-

domness? Of course it’s the brain’s pattern-recognition 

software at work again. And it is understandable, even 

though our suspicion isn’t based on pure probability. 

While 1 1 1 is just as likely to come up as any other set of 

numbers, the kind of sequence – one with a clear visible 

pattern – is much less likely. If you think of the different 

ways to arrange a sequence of three numbers between 

1 and 10, only a few of them are likely to stand out as 

special.

There are 1,000 possible arrangements in total. We are 

likely to think that a sequence has a pattern if all the 

numbers are the same – so that gives us ten sequences 

from 1 1 1 to 10 10 10. We will also spot it if the num-

bers make a nice, evenly varying sequence like 1 2 3 or 

4 5 6, or for that matter, 10 9 8. There are 16 of those. But 

most other sequences wouldn’t seem strange to us. (You 

could argue for sequences with some kind of regularity 

like 1 2 4 or 1 5 9, but many people wouldn’t label those 

as special.) So we have 26 special sequences that stand 
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out to us and 974 not special sequences that don’t have 

features that catch our attention.

It’s not surprising, then, that we consider the clear 

and obvious patterns as being special cases. They aren’t, 

but we can see why they look strange. We have to be on 

our guard not to treat them any differently unless there is 

other evidence. Simply getting the sequence 1 1 1 does 

not mean that we have a faulty random number generator. 

Any specific section of a sequence of random numbers can 

contain a clear pattern and with a long enough sequence 

some of them will. The danger is, though, that because we 

are so focused on patterns as human beings, we will single 

out a pattern within a longer sequence, even though it is 

the very process of singling out that prevents us from hav-

ing true random numbers, not the pattern itself.

If you ask a person to imagine a list of random num-

bers, you can be sure that their list will not contain 

enough repeated values. This has been observed time and 

time again. Because we tend to think of random as being 

another way of saying ‘without a pattern’ it feels wrong to 

include repeated values – and it looks wrong when they 

occur. But without some repeating numbers a sequence 

cannot be truly random. This is the same effect as cluster-

ing. If all the numbers in a sequence are well separated 

from each other it is just as unnatural as a can of ball bear-

ings dropped on the floor producing a set of ball bearings 

that are all carefully spaced away from each other.

This has proved a problem in the past when attempt-

ing to test for telepathy experimentally. In some trials, 

a random number generator selected a number when a 

human operator (a research student) pressed a button. 



whAt does rAndom meAn?

127

Then the operator would attempt to communicate that 

number (or a playing card corresponding to it) by telepa-

thy. If the generator produced the same number twice in 

a row, the operator had a tendency to assume that they 

hadn’t pressed the button properly and pressed it again. 

This simple error corrupted the experiment and made it 

seem as if people were telepathic even though there was 

no such evidence from this experiment.

How could this happen? There were ten possible num-

bers. So if the person being tested for telepathy guessed 

at random, with no telepathic effect, they should have a 

1 in 10 chance of getting the right answer. If they scored 

better than 1 in 10 over a long series of trials then there 

must be something happening, perhaps telepathy. But 

with the operator rejecting a repeated number, there was 

a 1 in 9 chance of the number that was used being cho-

sen. And because the people making guesses also tend to 

avoid repeated numbers, they will have a 1 in 9 success 

rate. And that’s enough better than 1 in 10 that over a 

large number of trials it could be assumed that telepathy 

really exists.

Experiments that try to prove or disprove the exist-

ence of telepathy and other psi phenomena are bedev-

illed with errors arising from probability and statistics 

that can produce an apparently significant result from 

either failing to use truly random numbers or misinter-

preting the results.

Generating randomness
It’s easy to understand how there might have been diffi-

culties getting truly random numbers before the computer 
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age. Anything physical like coin-tossing has the poten-

tial for bias either in the way the action is undertaken 

or in subtle influences. As we have seen, because of the 

way we flip coins, a coin is slightly more likely to end 

up showing the same face when it comes to rest as was 

facing upwards initially. So really, to keep a sequence 

of coin tosses fair, you should alternate between starting 

heads up and starting tails up.

One approach that was taken in the early days was 

to turn tables of logarithms into crude random number 

generators. These mathematical tables, which were used 

for multiplication and division before calculators, con-

tain a large number of decimal place values, and were 

widely available. By using a fixed set of instructions, for 

example, ‘Take the seventh digit of the 93rd number’, it 

was possible to generate quite a good set of near-random 

values. But log tables were usurped by calculators and 

then by computers. And the obvious question is why 

the random number problem didn’t go away when com-

puters were introduced. After all, if I fire up Excel or 

any other spreadsheet I can generate a random number  

with ease.

In Excel I have two random number functions, RAND, 

which gives me a random value between 0 and 1 (I just 

got 0.61012053) and RANDBETWEEN to choose a ran-

dom number in a range. (My value for between 1 and 10 

came out as 4.) Job done. Unfortunately, what Excel gives 

us is not random numbers, but pseudo-random numbers. 

Numbers that are random enough for, say, making a prize 

draw, but that aren’t good enough if you want a good 

long sequence of numbers that are truly random.
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That is because the pseudo-random number genera-

tor is not genuinely picking between the options with 

equal probabilities, nor is any value in a sequence of 

numbers it generates totally independent of what came 

before. That has to be the case or we can’t calculate the 

random number using some sort of computer algorithm. 

A spreadsheet’s pseudo-random generator usually starts 

with a ‘seed’, an initial value which is often taken from 

the computer’s clock, and then repeatedly carries out a 

mathematical operation, typically multiplying the pre-

vious value by a constant, adding another constant and 

then finding the remainder when dividing by a third con-

stant. So, for instance, a crude pseudo-random number 

generator would be something like:

New value = (1,366 × Previous Value + 150,899) 

modulo 714,025

where ‘modulo’ is the fancy term for ‘take the remain-

der when you divide it by …’ The output of the pseudo-

random number generator wanders off away from the 

seed value and can be reasonably convincing in appear-

ance, but it will always produce the same values given 

the same seed, and can’t match a true random number 

generator for effectiveness of results. Although my Excel 

RANDBETWEEN function can produce two repeated val-

ues, because it is rounding a wide range of real number 

values to get to the same figure, the pseudo-random gen-

erator will still always be limited because it can never 

produce the same exact value twice in a row or it would 

get locked into repeating that value over and over.
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Those who want to be more careful about their ran-

domness look for a better way of producing their out-

puts. Most large lotteries rely on machines with a series 

of balls in them, which are randomised by stirring them 

up before balls are drawn. This is not the best way of get-

ting a random number by any means. It’s still a pseudo-

random number generator. The chances of the balls being 

drawn in a perfectly random fashion are very low. But in 

this particular example, visibility is more important than 

perfection. It is considered more important for players to 

see the draw happening than it is to approach the perfec-

tion of true randomness.

This isn’t the case for all lotteries, though. In the UK, 

for instance, we have a kind of lottery known as pre-

mium bonds. These are government bonds that allow the 

buyer to have a little flutter, instead of providing a pre-

dictable return for all purchasers, as is traditional with 

bonds. Most premium bonds will return no ‘interest’ 

(though unlike a lottery ticket they can be cashed in to 

get the initial stake back). Only 1 in 24,000 of the £1 units 

wins a prize in each draw. But some bonds will produce 

this cash return, which can vary from a few pounds to 

£1 million.

To make the draw fair, the people behind premium 

bonds were among the first in using electronic random 

number generation with a device known as ERNIE, a 

contraction of Electronic Random Number Indicator 

Equipment. This device was introduced in 1957, 

designed by Tommy Flowers, the man behind the world’s 

first electronic programmable computer, the Colossus, at 

the World War II code-cracking centre, Bletchley Park.
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ERNIE worked by using the noise in the signal pro-

duced by a series of valves (vacuum tubes). All elec-

tronic devices produce a degree of noise due to thermal 

variations in the materials, interference and other effects. 

Although not truly random, because the outcome could 

in principle be predicted if you had all the available 

data, no one has access to that data and the effect is suf-

ficiently chaotic that it is impossible to have any idea 

what will come next. Because of this, it is a safer way to 

generate pseudo-random numbers than a software-based 

approach. More recent variants of ERNIE (they are on to 

Mark IV) make use of thermal noise in transistors.

True random values, as we will see in the next chap-

ter, can be produced using quantum effects, and true ran-

dom generators are now available to plug into electronic 

devices if required. For example, if you have a radio-

active source, where atoms occasionally spontaneously 

emit part of their nucleus, you can predict how often an 

atom will undergo such a decay on average, but the decay 

of a specific atom is truly random: it is not just impracti-

cal to predict but is impossible because there literally 

is no cause. The modern-day ERNIE could be based on 

such a system, but the approach taken is equally good in 

terms of being unpredictable and is easier to produce.

Cherry picking
No matter how good your random number generation, it 

is still possible to influence the outcome of a trial based 

on probability. One way to do this, either intentionally 

or accidentally, ruining the value of the experiment, 

is to be selective about your results. A crude approach 
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(but one many researchers are suspected of) is simply 

to ignore any trial where the results don’t match what 

you want them to be. But selectivity can be much more 

subtle. Let’s imagine I’m doing a trial of something that 

is randomly distributed, but that I assume is due to some 

special ability – say I am testing people for the ability to 

toss better than the average number of heads with ten 

tosses of a coin.

I get a large group of people and ask each to toss a coin 

ten times. Most will get around five heads. But we would 

expect a few to only achieve 1 or 2 heads, and a few to 

get 8 or 9 heads. All I do then to bias the outcome is split 

off my ‘experts’ and only use their scores. Here I have a 

group of people who are most likely to be able to men-

tally influence the tosses of coins because they got the 

best results. I can even ask them to do some more tosses. 

The chances are they will only achieve around a 50 per 

cent success rate with these new attempts, but as long as 

I still count the original scores, overall their performance 

will remain well above average. The act of selection from 

a group distorts the significance of their scores.

There is no problem with doing a test run of an exper-

iment like this to pick out those who could have the 

appropriate ability (should it exist) – but it is essential to 

then discard the values used for selection and start test-

ing again from scratch. However, because of limited time 

and money it is always extremely tempting to include 

the data from the selection run, and immediately bias 

has been introduced.

Another way to misuse data is to pick out signifi-

cant sections of runs and ignore the rest of the data, 
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so-called cherry picking. Let’s imagine I am doing a coin-

flipping experiment with 1,000 flips. Part way through 

my sequence I get seven heads in a row. Over the whole 

experiment, everything pans out nicely – let’s say I get 

495 heads and 505 tails. Nothing special. But if I just 

home in on those seven heads, I can say the chances of 

this happening is 1⁄2 × 1⁄2 × 1⁄2 × 1⁄2 × 1⁄2 × 1⁄2 × 1⁄2 – just one 

in 128. Pretty unlikely. In truth there was nothing special 

about that sequence given the number of tosses overall, 

but if I search for it and pull it out of the data, I give it an 

unreal significance by making that selection.

That one in 128 chance I just came up with doesn’t 

give the impression of just how seductive this kind of 

reasoning can be. A better example comes from the work 

of J.B. Rhine on telepathy in the 1930s. Rhine did many 

thousands of experiments using packs of cards, each 

card having one of five possible designs, to test for telep-

athy. In one run out of those many thousands, the person 

guessing values got fifteen correct answers in a row. As 

it happens, Rhine’s experiments have since been criti-

cised for having insufficient controls to prevent cheating, 

so we don’t know if this run was genuine. But the way 

Rhine reacted to it certainly lacks scientific credibility.

He comments on this ‘brilliant run of 15 unbroken 

hits’ using some exquisite cherry-picking of the statistics. 

He says ‘The probability of getting 15 straight successes 

on these cards is (1⁄5)15, which is one over 30 billion.’ 

It sounds impossible that this could happen by chance 

alone. Clearly there has to be a cause. But Rhine has 

picked out the sequence from those many thousands of 

guesses because it is outstanding. Put it into context of 
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the full set of data and it has very little significance. It is 

only by cherry-picking it that it looks so amazing.

An even more subtle cherry-picking error that is par-

ticularly common is to give the researcher the chance 

to discard the results if things go wrong. Imagine, for 

example, you were measuring how well someone scored 

at an activity that required a lot of concentration. Part 

way through the trial there is a loud bang and everyone 

is distracted. Someone has crashed a car outside. After 

the trial, the scores are low. So you discard the results 

because an outside factor influenced the outcome. That 

is fair enough. But if the scores had not been low, you 

would have probably kept them on the assumption that 

the distraction did not cause a problem.

What seems harmless and sensible has distorted the 

outcome. What you have just done, probably unwittingly, 

is to discard ‘bad’ results and keep ‘good’ results, where 

bad and good are defined by the kind of outcome you want 

from the experiment. This introduced bias does not mean 

you can never discard results – but you need to decide in 

advance in what circumstances you will do so, and should 

make the discard without knowing what the results are. 

So it would be perfectly legitimate to say ‘if there is a loud 

noise, we will discard the results and not look at them’. 

But not ‘if there is a loud noise and the results are poor 

we will discard them.’ That second type of rule is often 

applied without us realising it is being used.

The unbalanced target
Anyone designing experiments that depend on probabil-

ity has to take a huge amount of care, and would do well 
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to bring in a probability expert to check that there are 

no pitfalls. Even the way that the data is collected can 

influence the outcome. This seems counterintuitive, like 

so much of probability, and you have to be unlucky to 

hit on one of the perils, but it can happen, particularly 

if the phenomenon you are studying depends on how a 

random sequence arises.

Here’s a simplified model of data-collection in action 

that demonstrates how randomness can trip you up. 

We’ll do a mock experiment where the data being col-

lected is simply the value of a tossed coin – heads (H) or 

tails (T). We are looking out for a particular pattern in the 

data, and will stop the experiment as soon as that pattern 

appears. We will run this in two ways: firstly where the 

sequence H T T is the trigger for stopping the experiment, 

and secondly where the sequence H T H is the target. The 

crucial piece of data is then how many coin tosses are 

necessary before we get to our target.

As is usual with this kind of experiment, we repeat 

the process over and over again to get a statistical pic-

ture. The important question is, would you expect, on 

average, that it would take more coin flips to reach the 

H T T target, more to reach the H T H target, or the same 

number of flips in either case?

It is pretty obvious that each target is equally likely 

to come up – the chances of getting each sequence is 1 

in 8. So if you ran the experiment, or a more complex 

one using the same kind of reasoning, and it turned out 

that, say, it is taking fewer flips to get to H T T than it is 

to get to H T H, you would suspect there was something 

wrong with the experimental design. Or worse still, that 
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someone involved in the experiment is cheating. They 

must have something to gain from making the outcome 

different from expectation.

The only thing is that this result will happen with no 

one cheating. In such an experiment, H T T will, on aver-

age, take fewer flips to reach than will H T H.

To see why, think through the process of getting to 

the desired result. In both cases, you will first need to 

have tossed H then T. Then imagine what happens next 

in each case, starting with having a target of H T T. There 

is a 50 per cent chance I will flip a tail, and I’ve reached 

my goal. And there is a 50 per cent – 1 in 2 – chance of 

getting a head, in which case I have to carry on. In this 

case I have just got ‘H’, so now to succeed I have to toss 

T T. Each has a 1 in 2 chance. So if I do fail on my orig-

inal attempt, I then have a 1 in 4 chance of succeeding 

with two more throws.

Now think of what happens with a target of H T H 

after already tossing H T. Again there’s a 50:50 chance 

of getting H or T on the next toss. If it’s H, the target is 

reached. If not I have a T. Now here’s the interesting bit. 

Remember in the previous case at this point I had a 1 in 4 

chance of succeeding with two more throws. But in this 

case I have a 0 in 4 chance of doing so. Why? Because 

the first toss of my sequence is T. I can’t produce H T H 

whatever the next two tosses are. It is only once I have 

cleared that leading T that I can carry on with any hope.

How significant is significant?
The situation described above shows how it is possible 

to trip over the maths. The other danger when using a 
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probabilistic assessment is tripping over the logic. This 

is more likely to happen in casual use, but even scien-

tists who are making use of a statistical approach have 

been known to do this. This pitfall occurs when we are 

making an observation and use statistics to show that (for 

instance) there is only a ‘5 per cent probability of this 

result happening by chance alone.’ Let’s see first where 

that ‘5 per cent probability’ came from, and then look at 

the reasons why it is very easy to get the implications in 

a twist.

What we are dealing with here is a ‘significance level’, 

often abbreviated by scientists as sigma (σ). The start-

ing point is having a distribution. Let’s imagine we are 

dealing with the kind of random event that fits a nor-

mal distribution, producing a bell-shaped curve. The 

most likely results are in the middle of the curve. As we 

move towards the edges we get two thin ‘tails’ heading 

off to infinity in either direction. These are the less likely 

events.

As we have seen, quite a lot of simple real-world 

random events, ones obeying classical randomness, fit 

a normal distribution, though many more will follow a 

different distribution or be chaotically random. A com-

monly used example of a natural-world normal distri-

bution is the spread of human heights – this is a great 

example for understanding what we’re dealing with, 

especially because in reality human heights don’t fit a 

normal distribution at all.

To start with we need to be a little careful about just 

what we are measuring. It’s probably best to stick to a 

single sex, as clearly we would otherwise be combining 
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two distributions, as average male height is significantly 

greater than average female height. Let’s say we just look 

at males. Then you would need to be careful to take your 

sample (because you are unlikely to have measurements 

for everyone in the world) across a good cross-section of 

the population, rather than just in a shop selling clothes 

for tall people (say). But even then, if you look at a dis-

tribution of heights, you might get a surprise. Even with 

these restrictions, it won’t be normal.

120100 140 160 180

Male height distribution (in centimetres)

Using data for US men, you might be surprised to learn 

that the average height is just 5ft 6in (167cm). This is 

because, rather than being a symmetrical distribution, 

the range of heights has a much greater spread at the 

short end than at the tall end. Around 99 per cent of all 

men are no more than 11in (28cm) taller than the average 

height. But to get to that 99 per cent figure you have to 

include men as short as 2ft 7in (79cm) shorter than the 

average height. If you look at a graph of the distribution, 

the tail-off to the left – the short men – is much longer 

than that to the right. This also shows in the way that 
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the median height, the middle value, is 5ft 8in (172cm), 

significantly taller than the average. Most men are above 

average height.

As we have seen, we also have to be careful with apply-

ing these distributions where there is a chaotic element 

to the randomness. If we look at net worth or book sales, 

a few individuals can hugely distort the whole picture, 

making a traditional distribution almost worthless. This 

isn’t the case with the height distribution. There are clear 

limits. You will never find a man with twice the average 

height, whereas someone with twice the average earnings 

is fairly commonplace. And even though height does not 

fit a normal distribution, the distribution of heights can 

be dealt with well in determining a significance level.

For the purposes of understanding significance levels, 

let’s assume that we are looking at something that does 

have a normal distribution – a nice, symmetrical bell-

shaped curve. If we just take the tall middle section and 

cut off the two shallow tails we will capture most of the 

values. The 95 per cent confidence level is the central 

chunk of the distribution where 95 per cent of the values 

are expected to fall. So should we get a result that falls in 

one of the two tails that are left behind when we take out 

that middle chunk, it will only happen by chance 5 per 

cent of the time.

The measures of confidence in a result are often 

expressed in terms of ‘sigma’ levels. Sigma is the sym-

bol for ‘standard deviation’, which is a measure of how 

quickly a distribution spreads out into its tails. The 

higher the number of sigmas, the less likely it is that the 

result would be obtained purely randomly. Our 95 per 
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cent confidence level is a 2 sigma level. As we have seen, 

when there were indications that fitted with the Higgs 

boson from the Large Hadron Collider at CERN in 2012, 

this was reported to be to a ‘5 sigma level’. This was the 

equivalent of saying there is just a 1 in 3.5 million prob-

ability of these results happening anyway without some-

thing that looked like a Higgs boson.

So given an appropriate distribution of observations 

of something that is classically random we can put a  

figure to how likely it is that the results observed would 

occur at random with no cause. Here comes the pit-

fall. Let’s say we are trying to test a hypothesis like  

‘the Higgs boson exists’ or ‘these results were produced 

by tele pathy’ or ‘this cluster of cancer cases was caused 

by that phone mast’. What it is very easy to do is to say 

that as there is a very low probability of the observed 

result occurring by chance, there is a high probability 

that the hypothesis is true. This is not what the statistics 

imply.

By showing there is a low probability that this obser-

vation was down to chance alone, all we prove is that 

there is a high probability that it has a cause. Any 

A normal distribution showing sigmas

0–1 σ

34.13% 34.13% 13.59%13.59%2.14%0.13% 0.13%2.14%

+1 σ +2 σ +3 σ–2 σ–3 σ
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cause. Certainly not necessarily your hypothesis. So, 

for example, when we say that the Higgs results showed 

a 1 in 3.5 million probability of occurring if the Higgs 

boson did not exist, this did not mean that the cause was 

a Higgs boson, but rather a particle that behaved the way 

we expect (one type of) Higgs boson to behave. Some 

media sources complicated things further by saying 

there was only a 1 in 3.5 million chance that there was 

no Higgs boson. This is subtly different from the truth, 

which is that there is a 1 in 3.5 million chance that these 

data would be observed with no Higgs boson to cause 

them. The incorrect version focuses on the Higgs (or its 

absence), but really the probability is about the data.

A similar trap of assuming that the unlikeliness of 

one possibility proves the likeliness of an alternative is 

a favourite pitfall for supporters of the concept of intelli-

gent design (ID) in biology. Though many think that intel-

ligent design is just creationism with a scientific gloss, ID 

supporters argue that they have no axe to grind on who 

or what the designer is, they merely want to show that 

there has to be active design at play, rather than the ran-

dom influence of evolution.

A typical approach they take to support intelligent 

design is to look for structures in nature which they 

believe could not have evolved because there was no 

benefit to the organism from an intermediate step. So, 

for example, they point to the biological ‘motor’ used to 

propel some single-celled organisms’ propeller-like fla-

gellum. The individual components of this motor, they 

suggest, have no value, so the usual evolutionary argu-

ment of gradually changing in a beneficial way could not 



Dice WorlD

142

apply. So, they argue, ID is correct. They have shown 

that gradual evolution through incremental beneficial 

changes has a low probability of producing the result – 

and so decide their hypothesis is correct.

However, even if it is true that there is no benefit 

from the intermediate stages (there often proves to be in 

practice), all the ID fans have actually shown is that this 

feature is unlikely to have developed as a result of that 

particular mechanism of evolution. They have not shown 

it isn’t because of a different evolutionary mechanism, or 

for that matter for a totally different reason. ID is just 

one of the possible options that are still feasible – by dis-

proving one hypothesis you don’t automatically prove a 

second.

Probability on trial
If those arguing for a particular scientific theory get it 

wrong, then the only real risk is that false conclusions 

are drawn in an academic paper. But other misunder-

standings of the nature of randomness can have much 

more dire consequences, particularly when probability is 

wielded in the law courts by those who aren’t equipped 

to handle the numbers. The most infamous case was 

that of the trial of Sally Clark and the ‘expert’ witness 

evidence of paediatrician Professor Sir Roy Meadow. 

Meadow made use (or, rather, misuse) of statistics to con-

demn Clark from the witness box.

Two of Clark’s children had died, both when under 

three months. This could have happened as a result 

of natural causes, described as ‘Sudden Infant Death 

Syndrome’ or SIDS, but the second child’s death had 
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made the authorities suspicious. A government study 

that was recent at the time of the trial in 1999 claimed 

that the chances of a child dying of SIDS with no con-

tributory factors like smoking in the household was 1 

in 8,543. Meadow claimed in the trial that the fact that 

two of Clark’s children had died meant it was necessary 

to multiply the probabilities together, making an over-

all probability of 1 in 73 million. He claimed this would 

only happen by chance once in every 100 years.

In an attempt to put this difficult-to-handle number 

into terms he felt the jury would understand, Meadow 

said it was the equivalent of backing an 80 to 1 outsider 

at the Grand National four years in a row and winning 

each time. It’s hard to know where to start in pulling 

apart just what went wrong with the use of probability 

here. Meadow certainly clouded the issue by comparing 

it to a bookmaker’s betting odds, which are not actual 

probabilities but forecasts. But there are two huge prob-

lems with that 1 in 73 million figure.

The first issue is that you could only say that the 

chance of two SIDS deaths in the same family was so low 

if the two events were not connected, and so each could 

be treated independently. If, like throwing dice or a coin 

flip, there was no ‘memory’ in the event. However it is 

much more likely medically – something it seems very 

strange that Meadow appeared not to know – that once 

a parent has given birth to one child with SIDS they will 

also have another. If, for instance, there was a heredi-

tary or environmental cause, you aren’t starting with a 

clean sheet each time. A British Medical Journal report 

published after the trial suggested such events would 
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occur not once every 100 years, but once every eighteen 

months in England alone.

The second problem is that there was a huge logical 

failure in progressing from the information that some-

thing had a low probability to the implication that 

somebody had acted in a nefarious way to cause that 

low-probability event. (Like the Higgs, this is a probabil-

ity of the event happening, not of the hypothesis being 

true.) As we saw earlier, there is a 1 in 13,983,815 chance 

of a ticket winning the UK National Lottery’s main draw, 

while the chance of winning the Euromillions draw is 1 

in 116,531,799 – either side of that 1 in 73 million num-

ber. Yet week after week people scoop the jackpot.

It is very unlikely that someone will win – but when 

they do, we don’t deduce that they have cheated in some 

way just because the outcome is extremely unlikely. The 

same should apply in the use of probability in court. 

Even if the chance had been just 1 in 73 million of both 

deaths occurring (which it wasn’t), this doesn’t mean 

there’s a 72,999,999 in 73 million chance that it was 

a murder. You would have to compare the probability 

of this happening randomly with the probability that a 

mother would commit a child murder twice, which argu-

ably would be less than 1 in 73 million. There was just 

no sensible comparison to be made with the data that 

were available.

The sources of randomness
As we have already seen, there are broadly two types of 

randomness. In classical randomness – perhaps repre-

senting the outcome of a series of coin tosses – we don’t 
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know ahead of time what an individual component’s out-

come can be, but we can put together a distribution that 

enables us to predict probabilities of different outcomes. 

In chaotic randomness, we could in theory predict an 

outcome exactly, but in practice we get caught out time 

and again because the complexity of the system means 

that shockingly large variations from anything that has 

happened previously can occur.

In the examples we have met so far, though, the inabil-

ity to make predictions is always a result of not having 

good enough data and sophisticated enough models. 

The coin may have a 50:50 chance of coming up heads 

and tails in all throws, but on one particular throw, if I 

had every single bit of data about the environment, the 

coin and the way it was thrown, I should in theory, with 

Newton’s help, be able to predict the outcome exactly.

Similarly, even though it is practically impossible to 

model the kind of system involved in deciding which 

book will be a bestseller and which won’t, I can imagine 

a theoretical model that was as complex as the real world, 

modelling every person, every book and every decision, 

that would give me a good forecast. I could never do this 

practically because I could neither gather the right data 

nor have a complex enough model. (And because this is 

chaotic, a very small change in initial conditions could 

make a big change in outcome.) But in principle, with a 

computer that was as complicated as the world, I could 

crunch the numbers and tell you what the next bestseller 

will be.

However the real world continues to surprise us in 

the depth of its randomness. Because once we start to 
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examine what is happening at the level of the individual 

particles that make up all matter, provide light and carry 

the forces that hold the universe together, we discover 

that there lies true randomness. Even perfect information 

and infinite computing power would not enable you to 

predict the outcome of a single quantum event. This is 

where true randomness rules.
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CHAPTER 10

Really random

The apparent randomness driving the weather shows us 

the paradoxical nature of chaotic randomness – techni-

cally the process is still deterministic, but it is practi-

cally impossible to calculate exactly and, taken across 

many observations, less predictable than a distribution 

driven by classical randomness. Yet, in a sense, chaotic 

randomness is at least something with which we can feel 

comfortable.

It may be that we can’t predict what is going to hap-

pen, yet we can rest happy on the understanding that 

underlying all the wildness is the familiar mechan-

ics of Newton’s clockwork universe. The interactions 

of all the components of the system may be far too 

complex to follow , but we can be reassured that any 

particular component  will behave sanely and predict-

ably. But 20th-century physics slipped a joker into the 

pack. It turned out that there was such a thing as true 

randomness . There is a monster that lurks at the heart 

of reality.

It all began with an attempt to patch up a theory that 

predicted the impossible. When you heat something up 

it begins to glow. Think of a piece of iron in a forge, being 

made hotter and hotter. To begin with there would be an 

infra-red ‘glow’ that we can feel with our skin, but not 

see. Hotter still, the iron will start to glow red, then yel-

low, then white. As it gets hotter and hotter it gives off 
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higher and higher frequencies of light. But calculations 

made at the end of the 19th century predicted that some-

thing much more dramatic should happen – so dramatic, 

it was given the name ‘the ultraviolet catastrophe’.

According to the best theories of the day, a blackbody 

(which is an imaginary object that emits or absorbs any 

frequency of light) should blast out radiation on all fre-

quencies. The higher the frequency of light, the more 

energy should be emitted, adding up to an infinite burst 

of energy pouring from all blackbodies. Though a black-

body is a theoretical object, there are plenty of real-world 

things that come close to a blackbody – close enough to 

expect them to be pouring out a near-infinite torrent of 

light. Yet they don’t. If it were true, we wouldn’t exactly 

live in a stable universe. We wouldn’t be here at all. 

There was clearly something wrong with the theory.

The solution to this catastrophe came from an attempt 

to fudge things. Max Planck, a young German scientist, 

found a way to contain the extravagances of blackbod-

ies. Planck realised that the tendency to produce infinite 

quantities of energy only arose because it was possible to 

add up increasingly small increments of light waves at 

higher and higher energies. It’s a bit like adding up the 

total of the series

1 + 1⁄2 + 1⁄3 + 1⁄4 + 1⁄5 …

Even though each term in the series is smaller than the 

previous one, the numbers don’t shrink fast enough to 

disappear away and the sum of all those fractions is infi-

nite. What Planck realised was that you could bring the 
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whole thing to a halt by insisting that an object could 

only radiate light in finite chunks. Imagine, for instance, 

that series of fractions was limited to chunks of 1⁄12 in 

size. Then the series would become

1+ 1⁄2 + 1⁄3 + 1⁄4 + 1⁄6 + 1⁄12 = 21⁄3

The only fractions allowed in the series are now ones 

that are multiples of 1⁄12, like 1⁄2 (6 × 1⁄12) or 1⁄3 (4 × 1⁄12). We 

have tamed the infinite series and given it a finite sum. 

Similarly, by insisting that light energy should come in 

packets, rather than with continuously varying amounts, 

Planck was able to do away with the problem and restrict 

the light output to a finite total of energy. These packets, 

to which Einstein would give the name ‘quanta’, were 

not intended to be real. Planck didn’t think that light 

came in chunks. That was silly – everyone knew that 

light was a wave, which should have continuously vari-

able energy. What he thought he was doing was finding 

a patch that fixed the problem mathematically without 

necessarily reflecting the nature of reality.

As Planck later said, ‘The whole procedure was an act 

of despair because a theoretical interpretation had to be 

found at any price, no matter how high that may be.’ It’s 

possible Planck should have thought a little more about 

history. The last time a major theory had used a model 

that was ‘convenient for undertaking the calculations’ 

but was thought to bear no resemblance to reality was 

when Copernicus suggested that the Earth travels around 

the Sun, rather than the other way around. And look how 

that turned out.
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Planck was 42 in 1900, when he first proposed this 

theory. Not an old man, but already rather set in his ways. 

He would never be comfortable with the idea of light 

coming in chunks. But five years later, the then 26-year-

old Albert Einstein was less worried about the preserva-

tion of old ideas. In a paper for which he later won a 

Nobel Prize, written in the same year as his famous paper 

on special relativity, Einstein took quanta of light at face 

value. He used them to explain the photoelectric effect.

When you shine light on to some substances, the light 

knocks electrons off the atoms, making an electrical cur-

rent flow. If light were continuous, you would expect 

that the brighter the light, the more electrons you could 

knock out, whatever the light’s frequency. Instead it was 

discovered that light below a certain cut-off frequency 

didn’t knock out any electrons, however high you turned 

the brightness. This could be explained if light really did 

come in chunks. Unless you had a chunk with enough 

energy, it wouldn’t matter how much light there was, 

there would be no dislodging an electron.

To make things even more uncomfortable for the likes 

of Max Planck, Einstein also showed that light could be 

accorded the same statistical approach as particles in a 

gas – something that fitted more comfortably with a col-

lection of quanta (which would eventually in 1926 be 

called ‘photons’ by chemist Gilbert Lewis) than with a set 

of waves. That Planck was uncomfortable with Einstein’s 

thinking was all too obvious when he recommended 

his younger colleague for membership of the Prussian 

Academy of Sciences in 1913. Planck requested that the 

academy wouldn’t dismiss Einstein’s application out of 
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hand despite the fact that Einstein sometimes ‘missed 

the target in his speculations, as for example, in his the-

ory of light quanta.’

Into the quantum atom
Planck and Einstein’s work was the beginning of some-

thing big – in fact arguably one of the two most funda-

mental parts of physics – and something that would show 

that the universe has randomness at its core: quantum 

theory. The next step down the road to randomness was 

taken by a man who, in some ways, was to Einstein what 

Einstein was to Planck – the Danish physicist Niels Bohr. 

Bohr turned Einstein’s idea on its head and used it to 

explain the structure of the atom. Why, Bohr wondered, 

would an atom only absorb or give off light in chunks?

The idea that Bohr had was that the electrons buzzing 

around the outside of the atom travelled in orbits. This 

appealed strongly to a human tendency to build models 

based on observation. Bohr already knew that the planets 

orbited around the Sun – it would be very neat to have 

electrons orbiting around an atom in the same way. And 

it made for a simple, easily recognisable atomic symbol 

that is still widely used today, representing the atom 

as a miniature solar system. Such a pity, then, that this 

description of an atom was horribly wrong, something 

that Bohr realised almost straight away.

The trouble is that anything that changes direction 

is accelerating – and in an orbit, an electron would 

be constantly changing direction. Combine this with 

the fact that an accelerating electron is known to lose 

energy by pumping out light and you have an even bigger 
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catastrophe than the ultraviolet one. If electrons really 

were like planets, orbiting atoms, the electrons of every 

atom would almost instantly lose their energy, causing 

them to spiral into the nucleus and that would be end of 

all matter.

Bohr fixed this by suggesting that the electrons around 

the outside of the atom could only travel in fixed orbits. 

It would probably have been better had he named his 

orbits ‘tracks’. A satellite can travel in any orbit around 

the Earth, but Bohr’s electron orbits were fixed at set dis-

tances from the nucleus. Rather than drifting in or out 

gradually, an electron had to jump instantly from one 

orbit to the next without passing through the space in 

between, making a quantum leap. If it jumped down it 

would give off a photon of light. To make it jump up, it 

would have to absorb a photon. This was a very satisfying 

model because it even explained why particular atoms 

only absorbed and gave off certain colours – because the 

energy of the photons corresponded to the size of the 

leap involved.

Bohr’s ideas set off a revolution in physics with the 

likes of Prince Louis de Broglie, Werner Heisenberg, 

Erwin Schrödinger and Paul Dirac taking what was a rel-

atively simple concept to help understand the structure 

of the atom and turning it into a whole new science of 

how tiny particles on the scale of photons, electrons and 

atoms operated. It was found that not only could light 

act like particles, but the components of matter could 

behave as if they were waves. There needed to be some 

way to pin down how these strange new particle/waves 

behaved and Schrödinger thought he had done this with 
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an equation that was supposed to describe how some-

thing like an electron behaved over time. But once again, 

the theory produced an absurd result.

Schrödinger’s wave equations predicted that since 

a particle like an electron also behaved like a wave, it 

should spread out over time. (Think of the kind of wave 

that is produced when you drop a stone into a pool of 

still water, rather than a wave on the sea. The wave is a 

circle, heading off in all directions. Schrödinger’s equa-

tions reckoned particles should do this, but in all three 

dimensions at once.) Clearly photons and electrons and 

atoms didn’t disperse like this – and yet the wave equa-

tions seemed to be such a good fit otherwise.

It was a friend of Einstein’s, the physicist Max 

Born, who sorted out Schrödinger’s problem. Where 

Schrödinger had assumed that his equations described 

where a particle was and what it did, Born thought that 

instead the equations told us the probability that a par-

ticle would be in a particular place. So instead of put-

ting down an electron and having it embarrassingly 

ripple away in all directions, it meant that over time the 

electron could be in various different places, with the 

probability of the locations described by Schrödinger’s 

equations.

It was a masterstroke on Born’s part. It worked won-

derfully, fitting observations with striking precision in 

all the experimental data that has since been gathered. 

But there was a massive price to pay. Born’s quantum 

particle is not a distinct, specifically placed entity, but 

rather a fuzzy web of probability that gets more and more 

incoherent with time until a measurement is made.
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The light revolution
This understanding of the nature of quantum particles 

was the key to cracking one of the biggest problems fac-

ing anyone trying to describe light as a collection of 

particles – Young’s slits. This simple experiment had 

proved the death blow for Newton’s idea that light was 

made up of particles and had confirmed the opposing 

theory of it being a wave. In 1801, Thomas Young had let 

a beam of light fall on two narrow, parallel slits. When 

the light continued through the back of the slits onto a 

screen, instead of forming two bright patches, as you 

might expect if light were made of particles, it formed a 

series of light and dark fringes.

Young’s slits

Young’s explanation for this effect was that light was 

a wave, oscillating side to side as it travelled. When the 

beams from the two slits met, depending on the position 
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they arrive at the screen, you could get both waves wig-

gling in the same direction – in which case they would 

reinforce each other and produce a bright fringe – or in 

opposite directions, in which case they would cancel 

each other out and leave the screen dark. There seemed 

no way to explain this effect if light was made up of par-

ticles. A beam of particles should produce two bright 

blobs on the screen, one behind each slit.

However, with Born’s re-interpretation of Schrödinger’s 

equation we can understand what is happening. Imagine 

sending single photons of light, one at a time, through 

Young’s apparatus. This experiment has been performed 

many times since the idea first came up. Over time, as 

more and more photons pass through the slits, the famil-

iar bright and dark fringes build up. This doesn’t make 

sense if a photon is a little solid bullet of a thing. But if its 

position is described by a probability wave, it does not 

have a specific location. It is in a whole range of places 

at once, each with a different probability described by 

Schrödinger’s equation. This means that it can pass 

through both slits, interact with itself (in a probabilistic 

fashion) and produce the required result.

If an experimenter decides to try to catch light out and 

puts a detector in one of the slits, the photons refuse to 

play ball. Even though the detector can be made to allow 

the light to continue through, the fringes disappear and 

we get the two bright patches you would expect from a 

series of conventional particles. The measurement made 

by the detector collapses the photon from being in a 

range of locations with varying probabilities, forcing it to 

go through a single slit and destroying the fringes.
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A case of uncertainty
It is the same fuzziness of quantum particles that lies 

behind one of the most famous developments of quan-

tum theory, Heisenberg’s uncertainty principle. Like 

much of quantum physics, this has been painfully mis-

used by those who like the words but can’t be bothered to 

understand the underlying science, taking it to mean that 

nothing is certain, or anything can happen in the world. 

In fact, the uncertainty principle is firmly specific in its 

meaning. It says that quantum particles have pairs of 

properties that are linked. The more accurately you know 

one property, the less accurately you know the other.

There are several such pairs, but the best known is 

momentum and position. Momentum is the mass of the 

particle times its velocity. If we know a particle’s momen-

tum exactly, it could be located anywhere. If we know its 

position exactly, it could have any momentum. Usually, 

though, our knowledge sits somewhere in between, with 

a degree of knowledge and uncertainty for each property.

Although the uncertainty principle emerges from the 

maths, we can get a kind of sense of it by using the anal-

ogy of taking a photograph of a moving object. In taking 

the photograph I am, in a way, quantising reality, divid-

ing it up into a series of ‘snaps’. When I create one of 

these snaps I have a choice. I can take a very fast expo-

sure. If I do so, the moving object will be frozen in time 

at an exact position. But I can deduce nothing about the 

way that the object is moving from the picture. It could 

be completely motionless for all I know.

Alternatively I can take a long exposure, say over 

10 seconds. If the object is moving at any speed, then 
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I would expect it to appear as a long blur. If I measure 

the distance the object has travelled in that time on the 

photograph then I can work out how fast it is going. But 

in that snap I can’t say exactly where it is – it is in all 

the places along the blur. This is only an analogy. In my 

blurred photo I could work out where the object was at 

a particular time, but I can’t do this with a real quantum 

particle, where there is genuine uncertainty.

As more and more detail was added to quantum 

theory it was repeatedly backed up by experiment. 

Eventually the predictions of quantum electrodynam-

ics (QED) would prove to be the most accurate match to 

experiment of any known theory. Richard Feynman lik-

ened the accuracy to knowing the distance between two 

cities on opposite sides of the United States to the width 

of a human hair. And yet quantum physics still confused 

and worried people. How could our solid, apparently 

dependable world be based on fuzzy probabilities? Was 

it really possible for everything we know to be based on 

particles that behaved in such a random fashion?

This dichotomy would be solidified in feline form by 

Erwin Schrödinger.
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CHAPTER 11

No quantum cats

Even those most intimately connected with the nuts and 

bolts of quantum theory accept that it is nothing short 

of mind-boggling. Richard Feynman made this comment 

about his own specialist area of quantum theory, QED, 

in a lecture for the general public, emphasising that his 

audience should not worry that it’s a struggle to under-

stand quantum theory:

What I am going to tell you about is what we teach 

our physics students in the third or fourth year of 

graduate school – and you think I’m going to explain 

it to you so you can understand it? No, you’re not 

going to be able to understand it. Why, then, am 

I going to bother you with all this? Why are you 

going to sit here all this time, when you won’t be 

able to understand what I am going to say? It is my 

task to convince you not to turn away because you 

don’t understand it. You see, my physics students 

don’t understand it either. This is because I don’t 

understand it. Nobody does.

Scientists, Feynman suggested, sometimes just have to 

accept that as long as a theory successfully predicts what 

nature is going to do, it doesn’t really matter whether  

that theory fits with our usual view of the world. He  

went on:
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The theory of quantum electrodynamics describes 

Nature as absurd from the point of view of com-

mon sense. And it agrees fully with experiment. So 

I hope you can accept Nature as She is – absurd.

I’m going to have fun telling you about this 

absurdity, because I find it delightful. Please don’t 

turn yourself off because you can’t believe Nature 

is so strange. Just hear me out, and I hope you’ll be 

as delighted as I am when we’re through.

Not everyone, though, could go along with Feynman’s 

easygoing approach. Some physicists agonised over 

quantum theory and what it meant. The sticking point 

seemed to be particularly the sharp distinction between 

the quantum world and the ‘macro’ world of everyday 

life. At the level of quantum particles, things could be 

in more than one place at once, could ‘tunnel’ through a 

gap without ever travelling across the space in between 

and could only be predicted in their behaviour by the 

random selections of probability – nothing was certain 

until it happened.

By contrast, in the macro world objects seemed not to 

be aware of this new understanding. Things still behaved 

the way they had before the new-fangled quantum the-

ory came along. A ball, for instance, tends not to be in 

two places at the same time. It certainly can’t tunnel 

through a solid object and its behaviour is predictable 

using Newton’s laws of motion. And yet that ball is made 

up of quantum particles, all supposedly behaving in this 

weird fashion. How do we get a well-behaved ball from 

the probabilistic fuzz of the atoms that make it up?
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In the quantum tunnel
We have already met the way that quantum particles can 

be in more than one place at a time, but let’s examine the 

idea of tunnelling in a bit more detail too because it is a 

great example of how an apparently bizarre product of 

quantum theory is actually necessary to make the solid, 

predictable world work.

Newton was aware of one example of quantum 

mechanical tunnelling, though he didn’t realise this was 

what was happening. If you shine light into a prism at 

the correct angle it will hit the back of the glass block and 

reflect back off, returning out of the front. This process 

is known as total internal reflection. It’s straightforward, 

the sort of thing you do in school experiments, and usu-

ally no light comes out of the back. What Newton dis-

covered (but they don’t show you at school) is that if you 

put a second prism very close to the first but with a gap 

between them, then a weak beam of light emerges from 

the second prism.

Frustrated total internal reflection
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There was no possible explanation for this ‘frustrated 

total internal reflection’ in Newton’s physics, but what is 

happening is that some of the photons of light are tunnel-

ling across the barrier that is the gap between the prisms 

and carrying straight on in the second prism. Other 

examples of tunnelling have been discovered in a wide 

range of barriers. What has only been known relatively 

recently and shown experimentally is that this process 

involves zero tunnelling time – that the photon spends 

no time at all in the gap that it tunnels through.

The photon is, in fact, not travelling across the gap 

at all: it disappears from one side of the gap and reap-

pears at the other. No time elapses in this process. (This 

means, incidentally, that a photon undergoing tunnel-

ling makes its overall journey at faster than the speed 

of light, theoretically travelling backwards in time, but 

because tunnelling only works over very short distances, 

the resultant shift in time is far too small to be used in 

any way.)

If tunnelling only occurred in specialist equipment we 

might put this down as a minor weird aspect of quantum 

theory and ignore it. But without tunnelling we wouldn’t 

be alive. The Sun is powered by nuclear fusion. For this 

to happen, hydrogen ions* have to be squeezed very close 

to each other. But the repulsion between their positive 

charges is so strong that even the heat and pressure of the 

Sun is not enough to get them to cosy up to each other 

enough. The only reason those hydrogen ions manage to 

fuse is because they tunnel across the barrier formed by 

* A hydrogen ion is a hydrogen atom that has lost its single 
electron, which makes it simply a proton.
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the electromagnetic repulsion. It is very unlikely to hap-

pen – but there are so many hydrogen ions that millions 

of tons undergo the reaction every second.

So this is a really strange aspect of quantum theory 

– particles that get through a barrier by disappearing on 

one side and appearing on the other without passing 

through the space in between – without which the Sun 

would not work and we would not be alive. It’s hard to 

think of quantum theory as something abstract and irrel-

evant to the ‘real’ world when you realise this.

Dead or alive?
One of the founding fathers of quantum theory, Erwin 

Schrödinger, was so irritated by the difficulty of bring-

ing together the probabilistic confusion presented by 

quantum theory and the solidity of the real world that 

he dreamed up what must be the most famous thought 

experiment in all of science – Schrödinger’s cat. The con-

cept has been described many times, but even if you are 

familiar with it, it is worth revisiting, just to emphasise 

what it is that has worried so many people.

We start with the observation that was made in the 

quantum version of Young’s slits (see page 155). If you 

send photons through Young’s slits one at a time you get 

the usual pattern of light and dark fringes. But if you put 

a detector in one slit, the photon is forced to go through 

one slit or the other and the pattern disappears. Generally 

speaking, a particle could be practically anywhere with 

the probability of it being in any particular place being 

given by Schrödinger’s equation. But once you make a 

measurement and pin it down, the particle has to end 
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up somewhere specific. The process was described as 

one of waveform collapse. The waveform, the outcome 

of Schrödinger’s equation, collapses, to give a specific 

location.

The question that this idea provokes is just what mak-

ing a measurement or ‘looking at’ the particle entails. 

One physicist, Eugene Wigner, suggested that it took a 

conscious mind to collapse the waveform, the conscious-

ness somehow interacting with the particle’s waveform. 

Although some still support this idea, many were doubt-

ful from the start, and it prompted Schrödinger into 

action with his hypothetical cat.

Schrödinger’s cat

In the experiment (never carried out, it should be empha-

sised) a cat is placed in a box with a vial of deadly poi-

sonous gas. There is also a radioactive particle in the 

box, which is due to decay at some point in time. When, 
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we can’t say. All it’s possible to do with radioactivity is 

say that a particle has a certain probability of decaying, 

and with any particular population of particles, that half 

of them will decay within a known period (called the 

half-life). But we have no idea which particles will go in 

that period or when any particular particle will decay. 

We just know the probability.

Finally we have an ingenious little device, rather 

like a Geiger counter, that keeps an eye on the particle 

and notices when it decays, picking up the radiation 

produced. It then triggers a Heath Robinson device that 

smashes the vial, releasing the deadly gas and killing the 

poor cat.

Here’s the thing. We close the box and wait a bit. The 

particle is now in two states at once. Just as Schrödinger’s 

equation tells us that over time the probability of a 

particle being at a distance away from its original pos-

ition increases, similarly it tells us that over time, the 

probability of the radioactive particle having decayed 

increases. With some time elapsed, the particle is both 

in the undecayed  state with one probability and the 

decayed state with another. Because it’s a quantum parti-

cle, there is no hidden value – it isn’t in one state or the 

other. The actual state doesn’t come into existence until 

the particle is observed. If the particle is both decayed 

and not decayed, this seems to suggest that the detector 

is both triggered and not triggered. And so the cat is both 

dead and alive. This is worrying.

If quantum theory were left to its own devices, the 

moment the box is opened to take a look at the cat, 

the waveform collapses and either one or the other 
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state is revealed. But until that point in time we had a 

dead-and-alive cat. Many would argue that the presence 

of the detector is enough to collapse the waveform and 

decide the fate of the cat. But those following Wigner’s 

lead would genuinely believe that the cat was in both 

states.

More recently, cats around the scientific world have 

been able to heave a collective sigh of relief thanks to 

a concept called decoherence. This essentially says that 

when a quantum particle comes into contact with the 

environment around it – typically by interacting with 

another quantum particle – the result is the appearance 

of the collapse of the waveform. There are plenty of 

quantum particles in the detector and the box, and their 

mere presence is enough to result in decoherence and a 

shift from pure probabilities to reality.

There is a subtle technical difference between deco-

herence and a true waveform collapse – what happens 

in decoherence is that the particle’s waveform becomes 

effectively tangled up with those of the particles in the 

environment around it. But the result is that the particle 

behaves in a more predictable macro manner as if the 

waveform has been collapsed. It loses much of its quan-

tum weirdness. Because of this, decoherence is some-

thing that those trying to build quantum computers (see 

page 185) are always fighting, as they need to keep their 

quantum particles in a pure probabilistic state.

Interpreting the quantum
In some way or other, the split between the weird quan-

tum world and the boring, predictable macro world has 
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to be artificial. Otherwise, where would you draw the 

line? We know one atom acts in a quantum fashion, as 

do two. Physicists have managed to perform the Young’s 

slits-style ‘in two places at once’ experiments with 

buckyballs. More properly known as buckminsterfuller-

ene molecules, these are near-spherical carbon mol-

ecules with 60 atoms arranged in a structure that looks 

unnervingly like a football. It has been suggested that it 

would be possible to achieve the same effect with a small 

virus. Where does the break come between this and nor-

mal ‘macro’ things?

This is rather different from the difficulty facing earl-

ier scientists trying to explain the nature of gases. They 

could get away with using a statistical approach, sim-

ply reflecting the unmanageable scale of the calculations 

and data required otherwise. There was no way that you 

could measure and follow every atom in a classical, pre-

quantum gas. Not only would it take an impossibly long 

time to work out, it wasn’t practical to do. But the sta-

tistical approach let you take the overview, getting a feel 

for what was happening on the macro scale, aware that 

your numbers were based on a solid foundation of reality 

below at the level of atoms. With the advent of quantum 

theory, that foundation was swept away and you were 

left with a castle in the air.

The original approach to dealing with this, still 

accepted by many physicists, is simply to shrug the 

shoulders and say, ‘Oh, well, that’s the way it is. The 

numbers work – as long as they do, we can ignore 

what’s underneath and accept that we don’t (and never 

can) understand it.’ This attitude is at the heart of the 
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Copenhagen interpretation, developed in 1927 by Niels 

Bohr and Werner Heisenberg to try to paste over the 

cracks of quantum theory. The Copenhagen interpret-

ation simply says that there is nothing meaningful until 

the measurement is taken. There is no point worrying 

about where a particle is or what it is doing, it’s just a 

probabilistic mess. Nothing really exists until the meas-

urement is made.

There are a whole collection of other possible expla-

nations and interpretations, many of which are variants 

of Copenhagen. Personally I am entirely comfortable 

with the implications of Copenhagen, even if you have 

to allow for added concepts like decoherence. I quite like 

the idea of just letting go of what is ‘actually’ happening 

beneath the surface at the quantum level as irrelevant 

and something we don’t have to worry about. I even quite 

like the idea of that randomness bubbling away under 

the surface. But not everyone is comfortable with this. As 

we will see in the next chapter, Einstein was horrified by 

it. And some physicists think it is more likely that a very 

different interpretation of quantum theory explains what 

is happening better: the only problem is, for it to work, 

you have to accept there is not just one reality but many, 

many parallel versions of existence. This interpretation 

is usually called ‘Many Worlds’.

Many Worlds dates back to 1957 when a young scien-

tist called Hugh Everett decided that he couldn’t accept 

the Copenhagen view and wrote a controversial PhD 

thesis  to show how it could be evaded. In Many Worlds, 

each time there is a quantum ‘decision’ the universe 

splits into two. Both versions of the universe then exist 
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in parallel. As this happens as a result of every inter-

action of every quantum particle in the universe, there 

are indeed many worlds in this picture.

In some ways, Many Worlds is attractive. We no longer 

have to worry about how a photon can be in two places 

at once and go through both slits in Young’s experiment. 

Instead it is reality that splits. In one universe the photon 

goes through the left-hand slit and in the other it goes 

through the right-hand slit. Although we can only ever 

experience one universe – which is why a detector pins 

the photon down to a single slit – we see the result of 

these different universes interacting in the interference 

pattern of light and dark fringes that is produced.

For the Many Worlds enthusiast, Schrödinger’s cat 

holds no mystery. In one world the cat is alive, in the 

other it is dead. We are in one branch of the universe 

and so experience one state for the cat. It is never alive 

and dead at the same time in a single universe. In the 

Many Worlds version of reality, waveforms don’t col-

lapse because all possible outcomes exist, each in its 

own branch of reality.

For some observers, Many Worlds adds a ridiculous 

level of complexity simply to deal with the discomfort 

raised by an interpretation. Common sense suggests that 

a universe that multiplies with such rabbit-like fecundity 

is unlikely (though common sense rarely gets things right 

in quantum physics). Each interpretation has advantages, 

some mathematical, some in spirit. Many Worlds would 

be useful, for instance, if backward time travel were pos-

sible to get around the paradoxes that arise. But as yet 

there is no evidence from experiment to favour Many 
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Worlds – in fact no way to determine which interpret-

ation is closer to reality, other than simple  preference.

You will read in some accounts that Copenhagen has 

fallen out of favour and that the majority of physicists 

prefer Many Worlds. I just don’t believe this. There is a 

core of Many Worlds enthusiasts who are very vocal, but 

my suspicion is that outside that cadre, the vast majority 

think that Many Worlds is interesting but can’t say they 

wholeheartedly support the interpretation. I am with 

them.

Whatever the interpretation, the scary thing about 

quantum theory is that it makes randomness a reality 

and bases existence on the action of probability. With our 

obsession with patterns and expectation of solid every-

day behaviour, this sits uncomfortably with many people. 

And none more so than one of the people who laid the 

very foundation of quantum theory, Albert Einstein.
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CHAPTER 12

Improbable world redux

Think of the most revolutionary scientist of the 20th cen-

tury. You don’t have to stretch your imagination too far. 

The chances are that you settled on Albert Einstein. Why 

wouldn’t you? Einstein didn’t just sort out the photoe-

lectric effect by assuming that quanta of light were real. 

He also explained Brownian motion, producing the first 

proper understanding of the reality of atoms.* He came 

up with special relativity, showing how Newtonian phys-

ics has to be modified when things are moving quickly. 

And he developed general relativity, finally explaining 

why gravity works – a far cry from Newton’s basic math-

ematics to predict how strong the pull of gravity will be.

We even have those familiar images of Einstein – the 

wild-haired old guy with his tongue sticking out – that 

make it clear he was in every sense an iconoclast. So 

it’s remarkable to have to admit that this revolutionary, 

highly original thinker simply couldn’t accept that quan-

tum theory – and hence reality – had probability at its 

heart. Just as Max Planck was uncomfortable with the 

consequences of his theoretical quantum of light turning 

* Brownian motion is the jerking around of small particles such 
as pollen grains suspended in a fluid. It is caused by the jiggling 
atoms or molecules in the fluid bashing into the pollen grains. 
It’s hard to believe now, but when Einstein wrote his paper on 
Brownian motion in 1905, many scientists did not believe that 
atoms really existed, thinking of them as useful models rather 
than a true facet of nature.
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out to be real, Einstein was horrified that his real quanta 

dragged probability into the natural world. For many 

years, even while he was busy overthrowing many exist-

ing ideas about gravity with general relativity, Einstein 

would spend his spare moments searching for the error 

that would bring quantum theory crashing down.

You only have to take a look at some of his letters 

to his friend and fellow physicist Max Born. In 1924 he 

wrote:

I find the idea quite intolerable that an electron 

exposed to radiation should choose of its own free 

will, not only its moment to jump off, but also its 

direction. In that case, I would rather be a cobbler, 

or even an employee in a gaming house, than a 

physicist.

A couple of years later he added:

Quantum mechanics is certainly imposing. But an 

inner voice tells me that it is not yet the real thing. 

The theory says a lot, but does not really bring us 

any closer to the secret of the ‘old one’. I, at any 

rate, am convinced that He is not playing at dice.

This is one of the originals of the quote that’s usually 

given in the condensed form ‘God doesn’t play dice.’ 

What upset Einstein was that it seemed as if there was no 

underlying cause behind the decay of an atom or other 

probability-driven quantum events. There was nothing 

to instruct a radioactive atom when to decay, or a photon 
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which of Young’s slits to go through. For Einstein this 

was intolerable. He was convinced that there had to be 

something hidden in nature that we just couldn’t access, 

information that would enable us to know when and 

how a quantum event would happen. It was hidden, per-

haps irretrievably so, but still there.

Take a classic problem that has puzzled physicists 

since Newton’s time. It’s a fantastical quantum mechani-

cal event that you can test out for yourself and that illus-

trates very clearly why the whole business got Einstein 

so irritated. All you need for your experiment is a room 

with an electric light, a window and night-time.

The quantum mechanical window
Stand in a room with the lights on at night and look at 

the window. You will see a reflection of yourself and the 

room. The darkness is making the window glass act like 

a mirror. Now go outside and look at that same window 

again. You can clearly see into the room. Let’s get a feel-

ing for what’s happening here. Some of the light from the 

room is passing through the window. It must be, or you 

wouldn’t be able to see in from outside. Some (a much 

smaller part) is reflecting back into the room, so you can 

see yourself reflected inside. This happens all the time – 

the darkness doesn’t make it happen, it just means that 

the reflections aren’t drowned out by light that pours in 

from outside during the day. It’s the same as seeing stars. 

The stars are ‘out’ in the sky all day, we just can’t see 

them because they are drowned out by sunlight.

Now let’s imagine what’s happening at the level of 

individual photons of light. A photon hits the surface of 
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the glass. It might pass straight through, or it might be 

absorbed and re-emitted back the way it came (what we 

usually think of as reflected). Some of the photons hitting 

the surface – let’s say 10 per cent of them – will go back 

into the room, some – in this case the remaining 90 per 

cent – will pass through. Which is fair enough. But how 

does a particular photon know what to do, whether to 

reflect or to carry on? We can say with confidence that 

10 per cent (or whatever the number really is) of the pho-

tons will reflect. But any particular photon must do one 

thing or the other. There is nothing about a photon that 

tells you how it will behave. The decision to reflect or 

not to reflect is purely probabilistic.

Newton had a problem with this, as he correctly 

believed that light was made up of particles, which he 

called corpuscles. He tried hard to come up with a rea-

son why any particular particle would decide to reflect 

or pass through the glass. The only thing he could think 

of was that there were imperfections in the surface of 

the glass – that effectively it was the minute scratches, 

bumps and dirty bits that caused the reflections. In 

Newton’s model, a perfectly smooth, untarnished piece 

of glass would not reflect any photons back into the room. 

Unfortunately for Newton, this has proved not to be the 

case. It doesn’t matter how perfect your glass surface is, 

you will still get reflections.

However, this isn’t the weirdest aspect of the whole 

business of a beam splitter, which is the technical term 

for what a sheet of glass does in these circumstances. If 

you use different thicknesses of glass you will find that 

a higher or lower percentage of the photons will reflect 
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from the inner surface of the glass, the one inside the 

room. (There are also reflections from the back surface, 

where the glass meets the outside air, but we’ll ignore 

these.) So somehow, not only does a photon hitting the 

inner surface have to decide whether or not to reflect, it 

also has to know in advance how thick the glass is, to get 

the probabilities correct. Weird indeed.

To understand just what is going on in that piece of 

glass (who’d have thought a simple window could be 

such a sophisticated piece of technology?) we have to 

return to the masterpiece of one of the greatest physicists 

who ever lived, Richard Feynman. We have already seen 

(page 40) his idea of using the sum of all possible paths 

a particle could take. This was part of his approach to 

Quantum Electrodynamics (QED for short), the science 

of the interaction of light and matter.

Generally speaking, a photon of light is created when 

an electron in an atom drops in energy (a downward 

quantum leap). The photon carries away the energy that 

the electron has lost at the speed of light until it interacts 

with another electron. This could be in an adjacent atom 

or after the photon has crossed millions of light years of 

space. The electron absorbs the photon, jumping up a 

to a higher energy level. This is the basis for most inter-

actions between light and matter.

When a photon is absorbed by an electron in the win-

dow glass it could then be re-emitted in any direction – 

in fact taking Feynman’s approach to QED it actually is 

emitted in every possible direction, each with a different 

phase and a different probability. When we then add up 

all the different paths many of them cancel out and we 
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will typically end up with a simple reflection just as if 

light had bounced off a mirror – though in reality, pho-

tons aren’t doing any bouncing at all.

What happens in our window glass is that we have to 

add together the possible interactions and possible paths 

from a photon interacting with electrons all the way 

through the glass. This is why the thickness has an effect 

on the reflection from the inner surface. Differing thick-

nesses will provide differing phases of re-emitted pho-

tons to cancel out other possibilities. So it is the potential 

interaction of photons and electrons all the way through 

the glass that decides on the final outcome of ‘reflection’ 

from the inner surface. And always we have to remember 

that we have no way of predicting what any specific pho-

ton will do in each potential interaction. Each is just a 

probability, adding together to produce the final outcome.

Einstein’s hidden truths
Einstein was sure there had to be a more reasonable 

explanation for what was going on in nature than the 

assertion ‘Randomness is in charge’. It’s not that Einstein 

had any problem with probability and statistics per se. 

He had made plenty of use of statistics in his work on 

atoms and on light treated as a gas. But for him, the prob-

abilities that emerged should reflect underlying truths, 

rather than being a fundamental part of nature.

Take a very simple example. Imagine we’ve a room 

containing 100 men and 100 women, all milling about. 

You give them a chance to get well and truly mixed up, 

then open a door and pick the nearest person out. There 

is a 50 per cent probability that the person you pick will 
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be a woman. But that probability doesn’t suggest any-

thing inherent about the person. She wasn’t 50 per cent 

male and 50 per cent female until you made the observa-

tion. There was always an underlying fact that the person 

was a woman, though it was hidden from you until you 

opened the door. This is how Einstein believed quantum 

particles must be.

For a number of years, Einstein threw a whole range 

of thought experiments in front of the great prophet of 

the quantum, Niels Bohr. Each was intended to bring 

the nature of quantum theory into question. Initially 

Bohr was baffled by the whole business, but over time 

it seems to have developed into a pleasantly anticipated 

game between the two of them. They would meet at some 

conference – quite possibly nothing to do with quantum 

theory. Over breakfast, or in some other casual meeting 

spot, Einstein would present Bohr with a challenge that 

he thought demonstrated the flawed nature of quantum 

physics. Bohr would ponder the thought experiment for a 

few hours, then show Einstein where he had gone wrong.

Einstein’s final casual challenge in this series came 

in 1930. But for the following five years, a spare time 

activity for the great man was putting together his ulti-

mate challenge to quantum theory’s apparent foundation 

on randomness. Like most of Einstein’s challenges it was 

in the form of a thought experiment, a test that did not 

need to be carried out, but that could be used to probe 

the theory. And this time Einstein thought he was onto 

a winner. Rather than pose his experiment over break-

fast, he published it formally as a scientific paper. It was 

titled Can Quantum-Mechanical Description of Physical 
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Reality Be Considered Complete?, but thankfully is usu-

ally referred to by the initials of its authors, Einstein, 

Podolsky and Rosen – EPR.

The premise is relatively simple. We produce two 

quantum particles in a way that intimately ties them 

together. There are a number of ways of producing this 

state, known as entanglement – the simplest is if an elec-

tron dropping down an energy level in an atom produces 

not one but two photons, which will be entangled. A 

more controlled approach is to make use of beam split-

ters in a rather more sophisticated arrangement than a 

piece of window glass, which can then be used to create 

entanglement.

These two entangled particles shoot off in opposite 

directions. We allow them a good amount of time to get 

well separated, then make a measurement on one of the 

particles. The original paper used the momentum and 

position as properties to be measured, which confused 

many into thinking this was a challenge to Heisenberg’s 

uncertainty principle. This was never the intention. In 

fact Einstein, commenting on the choice of momentum 

and position, said ‘Ist mir Wurst’ (literally, ‘It’s sausage 

to me’, roughly equivalent in colloquial German to ‘I 

don’t give a damn’). The idea was just to measure a single 

property that entanglement meant was intimately linked 

between the particles. By demonstrating the effect with 

two properties rather than one, the original paper caused 

a lot of confusion.

More modern developments of the EPR experiment 

usually choose instead the property known as quan-

tum spin. Quantum particles have this property, which 
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isn’t really about spinning around – the name just 

stuck because it was initially thought this was the case. 

Quantum spin is a property that can only have one of 

two values in any particular direction. If you measure 

the spin in the vertical direction, say, it can only either 

be ‘up’ or ‘down’. This spin is a bit like the photon’s 

chances of reflecting off window glass. Before measuring 

it, we don’t have any idea what the spin will be, we can 

only know probabilities. It might be that we know that 

there is a 50 per cent chance of the spin being up and a 

50 per cent chance of it being down. It is only when the 

measurement is made that the particle gets the particular 

value – up, say. Before that there was nothing hidden 

away to say what the outcome would be.

Now here’s the interesting bit. Instantly, as soon as the 

first particle is measured to be spin up, then the other 

particle that is entangled with it will become spin down. 

It too was in both states until that point – now it takes 

on a specific value. And this happens instantly at any 

distance. The second particle has to become spin down 

to conserve spin, which can’t be created from nowhere 

any more than energy can – but no one knows how the 

information gets from one particle to the other.

This seemed to contradict Einstein’s special relativity, 

which made it clear that information shouldn’t be able to 

travel faster than the speed of light. So, Einstein declared 

in the paper, there were two possibilities. Either quantum 

theory was wrong and there was hidden information that 

determined the state particles would be in ahead of the 

measurement, or you had to do away with locality, the 

idea that a particle was in a particular location and could 
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not communicate with another, distant location faster 

than the speed of light. The paper’s response to the pos-

sibility that locality could be got around was ‘No reasona-

ble definition of reality could be expected to permit this.’

It took Bohr weeks to respond to this paper, and when 

he did he seems to have been confused by the paper’s 

muddled wording. In a way, he couldn’t challenge the 

conclusion that either quantum theory was wrong or it 

was possible to breach the local nature of reality – but 

Einstein’s dismissal of the challenge to locality was arbi-

trary and not based on any science.

There is only so far you can go with a thought experi-

ment when it comes to testing such an ‘either/or’ con-

clusion. By the 1960s, though, the British physicist John 

Bell had come up with a measurement that would make 

it possible to test between the two possibilities, and 

two decades later, French scientist Alain Aspect had 

put together an experiment to carry out that test. Bell’s 

approach depended on a subtle difference that would be 

observed in photons depending on whether there was 

hidden information or an instant communication, but the 

outcome was clear. Aspect demonstrated that entangle-

ment really did break the local reality barrier and could 

communicate instantly across a distance. Any distance.

Since then there have been many experiments making 

use of entanglement and they have consistently demon-

strated that Einstein was wrong on this matter. He didn’t 

live to see it happen, but the experiments confirmed that 

there were no hidden values tucked away out of sight to 

steer reality. Quantum particles really do exist in a proba-

bilistic state, only deciding which way to go when they 
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interact with something else, whether it’s measurement of 

a property or a simple reflection off window glass. At the 

level of quantum particles, randomness truly does rule.

Quantum secrecy
Entanglement would be fascinating even if it only allowed 

us to demonstrate the role of randomness and probability 

in quantum reality, but it has much more to offer. I won’t 

go into too much detail (there’s a lot more in my book 

The God Effect), but just to take three remarkable pos-

sibilities it offers, entanglement gives the opportunity to 

provide unbreakable encryption, provides an essential 

mechanism for building quantum computers, and forms 

the basis for miniature Star Trek-style transporters.

Encryption is the business of creating codes and 

ciphers to keep information secret. It may seem like the 

stuff of spies and the military – and it’s true that secrecy 

is an essential in those fields – but they are relatively 

small-scale users of the modern technology of secrecy. 

These days it’s much more likely to be a feature of bank-

ing and commerce. When you log into your bank via the 

web, or purchase something from an online store, some-

where tucked away at the top or bottom of the browser 

there should be a little padlock symbol, indicating that 

this is a secure transaction.

What security means in this context is that the 

data that travels between you and the bank or shop is 

encrypted, is sent in a coded format. It’s very easy to 

make an unbreakable code*. They have been around for 

* Technically what I’m talking about here is a cipher, not a code. 
A code substitutes a special word for another word or phrase. So 
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about 100 years. All you need is what is called a one time 

pad. This provides you with a series of random values 

(yes, it’s another application of randomness), which are 

added to your actual message.

Imagine, for example that I wanted to send the message

DICE WORLD

Then my one time pad gives me a series of random num-

bers to add to the letters. (If letter arithmetic seems a little 

strange, all I do is move further along the alphabet by the 

number specified. When I get to the end of the alphabet, 

I carry on at the start, so A is the next letter after Z.) Let’s 

give that a try. I am using my trusty Excel pseudo-random 

number generator (see page 128) to come up with a string 

of numbers, one for each character. My numbers are:

8, 13, 16, 22, 12, 13, 26, 2, 3, 17

To be particularly sneaky, I am treating a space as a 27th 

character, so I will lose the word distribution in the orig-

inal to make the message more cryptic. Add those num-

bers to the text and I get:

LVS LINTOU

I might have a code book that tells me that the word ‘antioxi-
dant’ in a coded message meant ‘Send reinforcements, we’re 
going to advance.’ A cipher is a character-by-character substitu-
tion of different values in a message like the one described here. 
But in general English, ‘code’ is often used for any encryption, 
while a cipher tends to be a mystery that turns out to be of no 
importance. 
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The clever thing about this is that these are now random 

characters (at least, as random as my random number 

generator allows them to be). So there is no way to break 

the cipher by looking for any kind of structure – there 

isn’t any. But there is also a huge drawback with one time 

pads. The only way to decrypt the cipher is if the person 

reading the message also has a copy of the one time pad 

values to subtract from the letters and get back to the 

original. And as soon as I send that key from one place to 

another, whether as a literal paper pad or electronically, 

I risk it being intercepted and my message being read.

This was the reason that the famous Enigma machines 

used by the German military in the Second World War 

didn’t use an unbreakable cipher, just one that was very 

hard to break. Relying on a mechanism rather than a one 

time pad meant the machines could be used at two loca-

tions without a key being sent from place to place. The 

same goes for your internet banking. It would be very 

inconvenient if you had to have a special set of infor-

mation provided to you in a secure way every time you 

wanted to login, so instead, the software makes use of a 

means of encryption that is very difficult to break, but 

that can be used remotely without passing a known key 

from place to place*.

* The security mechanism often used on computers does 
involve passing a key around, but this is a rather special form 
of encryption where you use one key, the so-called ‘public key’ 
to encrypt the information and another key, the ‘private key’ to 
decrypt it. This asymmetric approach is clever because you can 
give your public key out freely, but no one except you can read 
a message that is being sent to you, as that requires the private 
key, which you keep to yourself.
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Entanglement, though, offers the possibility of getting 

all the unbreakable security of a one time pad approach 

without the possibility of the key being copied. Say our 

sender used particles that had a 50:50 chance of having a 

spin up or a spin down. She produces a set of such entan-

gled particles, keeping one of each pair at the sending 

end of the communication chain and one at the receiving 

end. The sender now starts to examine the particles. She 

uses spin up as 0 and spin down as 1 to provide a ran-

dom key which is added to the message. (The message 

itself would be in binary, so the key only needs to have 

two possible values). The message is then transmitted by 

conventional means – radio, say – as a totally random set 

of characters.

The receiver then simply uses the values of his own 

particles, but in reverse. For him, spin up is 1 and spin 

down is 0. He subtracts the values and the message is 

decoded. The great benefit here is that the one time pad 

does not exist until the message is sent. It is generated by 

the sender at the moment of encoding – and only comes 

into existence for the receiver the moment that the mes-

sage is being prepared. No one could sneak a look at the 

pad in advance and then use it to decode the message, 

because it doesn’t exist ahead of time.

The one possibility to get around this mechanism is 

that someone could intercept the entangled particles that 

are sent to the receiver before the message, triggering the 

establishment of the key ahead of time. That way it might 

seem that someone could get hold of the key. But there 

is a mechanism to check if particles are still entangled. It 

requires extra information to be passed between sender 
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and receiver, but it is entirely possible. If someone  

intercepted the key, they would break the entanglement 

– and so by checking every few particles to see if the 

entanglement is still intact, the link could be taken down 

as soon as there was any chance of the message being 

intercepted.

Computing with quanta
Ironically, the second application of entanglement is a 

kind of mirror image of this quantum encryption, as it is 

potentially a way to break our current means of keeping 

data secure. This would be possible if we had a working 

quantum computer. In the kind of computer we use every 

day, information is stored as bits. These can have one of 

two values, usually represented as 0 or 1. Every action 

the computer takes involves finding bits, moving them 

around or flipping them. A quantum computer replaces 

bits with qubits – quantum bits – each qubit of informa-

tion being the state of a quantum particle.

We have already seen how a quantum particle can be 

in two states at once – a superposition. Think of a parti-

cle’s spin before we measure it. When the measurement 

is taken in a particular direction, there will be a probabil-

ity of it coming out up and a probability of it coming out 

down. Before making the measurement, we can only say 

that it is, say, 43.5 per cent up and 56.5 per cent down. 

This is effectively the value of the qubit corresponding to 

spin. And because the qubit can take any value between 

0 per cent up and 100 per cent up, in effect this is a ‘bit’ 

that can hold a real number. Not just 0 or 1 but any value 

between 0 and 1. With the values I picked, that would 
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make the number 0.435 (or its complement 0.565 – either 

could be chosen).

By using these values in calculations you can per-

form much quicker processing than with a conventional 

computer, because you aren’t handling individual bits 

at a time. What’s more, it can be much more accurate. 

As we saw on page 92, chaotic behaviour was discov-

ered when a real number was rounded from the six digits 

that were used by the computer to the three digits on the 

printout. But in a quantum computer, in theory a number 

can be held to an infinite set of decimal places. However, 

quantum states are fragile. To keep a qubit in a particular 

state means isolating it as much as possible with contact 

with other particles to avoid decoherence. This is pos-

sible, but not necessarily for very long. One way to han-

dle this is to treat qubits like hot potatoes, passing the 

value from qubit to qubit before it collapses.

Even if you can keep the values stable, it’s extremely 

fiddly getting information in, out and around such a 

computer. Any attempt to examine the value of a qubit 

will change it. And this is where entanglement comes in. 

It seems pretty well impossible to construct a quantum 

computer without making use of entanglement to pass 

information around. Entanglement provides a means to 

make use of a qubit’s properties without ever actually 

finding out what those values are and corrupting them.

Many teams around the world are working on differ-

ent designs of quantum computer. Progress is slow, but 

there have been models put together with a handful of 

qubits which can perform basic arithmetic. However, if a 

reasonable scale quantum computer can be put together 
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it would be capable of remarkable things. We know this 

because the basic structure of at least two powerful algo-

rithms that would only run on quantum computers – 

effectively mathematical recipes – have already been put 

together.

One makes it possible to find out which two prime 

numbers* have been multiplied together to produce a 

third, very large number. If the resultant number is big 

enough it is actually very difficult, even for the fastest 

current computers, to work out from the result which 

prime numbers were multiplied together to produce that 

value. This might seem like the kind of thing that could 

only excite a mathematician (they are easily excited) – but 

it is of huge significance because of the RSA algorithm.

RSA is the mechanism used to keep information like 

your credit card details secure when transmitted over 

the internet. It is RSA that makes use of the public key/

private key approach described above. The RSA mechan-

ism relies on distributing the result of multiplying two 

very large prime numbers together – the public key – 

but keeping the knowledge of those two primes secret. 

In principle RSA is breakable – but if you make those 

primes big enough, the calculation to work them out 

would take years to run with the fastest supercomputer. 

By comparison, a quantum computer could make that 

calculation in seconds. If we ever get fully functional, 

commercially available quantum computers there will 

* Prime numbers, as you no doubt remember from school, are 
numbers which can only be divided by themselves or 1. The 
first few are 2, 3, 5, 7, 11, 13, 17 … (It is arbitrarily decided that 
1 itself isn’t a prime number.)
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have to be a serious rethink of the way information is 

kept secure on the internet.

A more positive application of quantum computers, 

which would have Google and other search engine sup-

pliers rubbing their hands with glee if it became avail-

able, is the Grover Search Algorithm, which has been 

described as the ‘needle in a haystack’ program. This par-

ticular computational recipe cuts through what can be a 

painful search problem when you are dealing with vast 

quantities of information. A typical application would 

be a directory. It’s easy to look someone up by name in 

an old-fashioned paper phone book. But it’s a real pain to 

use that directory to find a person, given a number.

At the moment, computers have two approaches to 

this. One is the index. This is a bit like looking up some-

one by name – you have a list of names, and for each you 

have a pointer to the full information. You could also set 

up a second index organised by phone number, and that 

way you could quickly find a person given the number. 

But this only works if you have already set up an index, a 

time-consuming process. If you have lots of messy infor-

mation – websites, say, or documents – it’s a vast amount 

of work to index every single word. Often a computer 

will have to rely on brute force. In the example of the 

phone book, it would have to look at every entry until it 

finds the right one.

In practice, with the relatively small amount of data 

in a phone book (by computing standards) a computer 

could do the job quickly – but if you were trying to access 

world-wide-web-sized quantities of data, it would be a 

different matter. Keeping the example of the phone book 
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for simplicity, let’s imagine it has a million names and 

numbers in it. If there is no index, using the brute force 

method, the computer will have check up to 999,999 val-

ues before it finds the correct one. On average, it would 

take 500,000 checks before hitting the number that was 

required. But the Grover Search Algorithm means that a 

quantum computer could find the right entry with just 

1,000 searches – the square root of the number of entries. 

When you take such capabilities up to the many billions 

of chunks of data on the net it becomes a very attractive 

algorithm indeed.

Beam me up
The final application of entanglement worth a men-

tion here is quantum teleportation, which provides a 

small-scale version of the Star Trek transporter. Think 

for a moment of what’s involved there. On Star Trek, 

the transporter appears to scan an object or person, then 

transfers them to a different location. This was done on 

the TV show to avoid the cost of the expensive model 

work that was required at the time, before the existence 

of CGI, to show a shuttle landing on a planet’s surface. 

But it bears a striking resemblance to something that is 

possible using entanglement.

To make a transporter work, we would have to scan 

every particle in a person, then to recreate those parti-

cles at a different location. There are two levels of prob-

lem with this. One is an engineering problem. There are 

huge numbers of atoms in a human body – around 7 × 

1027 (where 1027 is 1 with 27 zeros following it). Imagine 

you could process a trillion atoms a second. That’s pretty 
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nippy. But it would still take you 7 × 1015 seconds to 

scan a whole person. Or to put it another way, around 

2 × 108 years. 200 million years to scan a single person. 

Enough to try the patience even of Mr Spock.

Assuming, though, we could get over that hurdle – 

or only wanted to transport something very small like 

a virus – there is a more fundamental barrier. What you 

need to do to make a perfect copy of something is to dis-

cover the exact state of each particle in it. But when you 

examine a quantum particle, the very act of making a 

measurement changes it. It isn’t possible to simply meas-

ure up the properties of a particle and make a copy. But 

quantum teleportation gives us a get-out clause.

There is a slightly fiddly process using entanglement 

that means we can take the quantum state of one particle 

and apply it to another particle at a different location. 

The second particle becomes exactly what the first parti-

cle had been in terms of its quantum properties. But we 

never discover what the values are. The entanglement 

transfers them without us ever making a measurement. 

Entanglement makes the impossible possible. This has 

been demonstrated many times in experiments that range 

from simple measurements in a laboratory to a demon-

stration that used entanglement to carry encrypted data 

across the city of Vienna.

Even if we were able to get around the scanning scale 

problem, though, it’s hard to imagine many people would 

decide to abandon cars or planes and use a quantum tele-

porter for commuting. Bear in mind exactly what is hap-

pening here. The scanner will transfer the exact quantum 

state of each particle in your body to other particles at the 
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receiving station. The result will be an absolutely perfect 

copy of your body. It will be physically indistinguish-

able, down to the chemical and electrical states of every 

atom inside it. It will have your memories and will be 

thinking the same thoughts. But in the process of strip-

ping those quantum properties, every atom of your body 

will have been scrambled. You will be entirely destroyed 

in the process. As far as the world is concerned you will 

still exist at the remote location – but the original ‘you’ 

will be disintegrated.

This is not ideal if you are looking for a worry-free 

way to travel, but quantum teleportation does offer all 

sorts of possibilities for communicating information in 

different ways and also provides valuable assistance in 

getting information around a quantum computer.

All these applications are real and have been widely 

tested. They blow apart Einstein’s concern that there is 

no dice world. If there were truly the hidden reality that 

Einstein was sure had to lie beneath quantum random-

ness and probability, then entanglement could not per-

form the remarkable feats it does.

When Einstein and his colleagues came up with the 

EPR paper, predicting that quantum theory implied the 

possibility of entanglement, they intended it as a death 

blow for quantum physics. The ‘spooky’ link of entangle-

ment, as Einstein referred to it, would be thrown away 

and with it the idea that reality, solid everyday reality, 

was based only on probabilities. But Einstein, Podolsky 

and Rosen failed in a resounding fashion. Einstein may 

never have liked it, never accepted it, but the randomness 

that lies beneath everyday existence was here to stay.
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If we contrast the modern physics that emerged in the 

20th century as a result of relativity and quantum theory 

with what came before, it’s like the difference between 

spaceships and steam engines. And yet the fundamental 

theory behind the way steam engines worked was itself 

a demonstration of the lack of certainty in the physical 

world. If Einstein was worried by the behaviour of the 

quantum, his predecessors were challenged by issues 

that emerged with the hissing exhaust of the steam 

engine. The laws of thermodynamics.
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CHAPTER 13

Follow the heat

While quantum theory was changing our view of mat-

ter and light, another apparently staid physical theory 

from the Victorian era was beginning to boggle the 

minds of observers – and once again it was the pres-

ence of probability and statistics at the heart of reality  

that caused the confusion. The culprit was thermo-

dynamics. Thermodynamics began as a basic under-

standing of the working of steam engines, but one 

apparently simple rule – that when you put a hot thing 

and a cold thing in contact, the hot thing will get colder 

and the cold thing hotter – proved to be a statistical can 

of worms.

Before we dig deep into that pulsating container we 

need to understand a little about what thermodynam-

ics is, and along the way it is important to shrug off a 

Victorian hangover in language. Because everyone else 

does, I’m going to refer to the ‘laws of thermodynamics’, 

but that ‘laws’ word makes me cringe. That’s because the 

concept of a ‘law of nature’ is painfully unscientific and 

out of date.

Science is a mechanism for understanding how the 

universe around us works, and on the whole, science 

works superbly well. But it is easy for science, and those 

talking about it, to get an overinflated sense of its own 

importance. In very broad terms, science works by put-

ting up a theory, testing that theory against the available 



Dice WorlD

194

data and if necessary disposing of the theory or modify-

ing it if it doesn’t match reality.

Our scientific theories provide our current best guess 

at what’s going on. But they are only as good as the next 

bit of data. So, for, instance, Newton’s ‘laws’ worked fine 

with the basic data available at the time, but had some 

problems with special cases – when, for example, some-

thing is moving very quickly or is in a powerful gravita-

tional field. So Newton was modified to come up with 

special and general relativity – Einstein’s improvement 

on Newton. And at the moment, relativity provides our 

best guess. But that too could well need modifying, or 

even scrapping entirely, in the future, to deal with new 

data.

For me that term ‘law’ smacks far too much of 

Victorian certainty. Science can never tell us definitively 

the facts of how things are; it can just provide our cur-

rent best theories given the data. That’s a whole lot better 

than anything else can do. It’s not a licence for saying 

that anything goes. Because science does give us the best 

guess. But science has this limitation, which even scien-

tists often forget about. So, for instance, you will hear a 

cosmologist speaking as if the big bang is fact. It isn’t. It’s 

our current best theory. And that’s all you are ever going 

to get.

In reality, then, the ‘laws of thermodynamics’ should 

be the ‘theories of thermodynamics.’ But we are stuck 

with the term and might as well get on with it. There are 

four laws of thermodynamics in all. We will be particu-

larly interested in the second law – but it’s worth getting 

them all in place to put the whole set into context.
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Laying down the law
We start with the zeroth law, so called because it was 

tacked on after the first and second law were already 

established, somewhat like my zeroth chapter. The 

zeroth law says that two objects will be in equilibrium 

(balanced) as far as heat is concerned, if heat can flow 

from one to the other, but it doesn’t. If two objects, each at 

the same temperature, are in contact with each other, one 

won’t influence the temperature of the other. In practice 

there will be a constant flow of energy backwards and 

forwards between the two objects, but what the zeroth 

law really means is that the net flow is zero. Another 

way of putting it is that if A is in equilibrium with B 

and C is in equilibrium with B, then A and C are also in 

equilibrium.

The first law stems from the conservation of energy. 

It just says that the energy in a system changes to match 

the work it does on the outside (or that’s done on it), and 

the heat given out or absorbed. These are all forms of 

energy, so basically it tells us that the total energy in a 

closed system will stay constant*. You can’t make energy 

or lose it. In the real world, we don’t make energy with 

power stations and generators and the like, we harvest 

energy that is already there.

The second law of thermodynamics is also about heat 

going from place to place. It says that, when left to its 

own devices, heat moves from a hotter part of a system 

to a cooler part. That sounds simple and commonsense, 

but it has profound consequences, all the way up to the 

* With Einstein in mind, we really mean that the total mass and 
energy combined in a system will stay constant.
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future of the universe. As we will discover, another way 

of stating the second law is that, in a closed system, 

entropy (see below) will stay the same or rise. The third 

law has little impact on our everyday lives. It says you 

can’t get a body down to absolute zero (0K, –273.15°C or 

–459.67°F) in a finite number of steps. You can always 

get a fraction closer, whatever temperature you are at, 

but you can never quite make it. Getting to absolute zero 

is like adding 1⁄2 + 1⁄4 + 1⁄8 … and so on. In the real world, 

that series will never quite make a total of 1.

The word ‘system’ has cropped up a lot in these quick 

summaries, and it is an absolutely fundamental concept 

for understanding thermodynamics. The system is the 

bit of the universe we are looking at for thermodynamic 

purposes. For early thinkers about thermodynamics, 

who were interested in making their technology more 

efficient, the system would typically be a steam engine 

– but it can be absolutely anything. A cup of tea. You. 

Your house. The Earth. The entire universe. Systems in 

the real world (as opposed to the imaginations of theo-

retical physicists) are mostly open – which means they 

can interact with other bits of the universe outside the 

system. A closed system is one that is isolated from the 

rest of the universe – no matter or energy can flow in 

or out of the system. The universe itself could well be 

a closed system, though it is also possible that it is part 

of a larger multiverse and there could be energy flowing 

into or out of it.

Because of their origins, the laws of thermodynamics 

talk of things like temperature, heat and energy – which 

is fine, but is only half the picture, and not the bit where 
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dice world comes into play. When these ideas were first 

put together, no one had a clear idea of what matter was 

made of. Atoms were nothing more than theoretical con-

structs. As we’ve seen, it wasn’t until Einstein’s work on 

Brownian motion in 1905 that atoms were taken at all 

seriously, and even for a number of years after that many 

scientists considered them useful concepts with no basis 

in reality.

Now, though, we know differently. All matter is made 

up of vast numbers of atoms. (In practice they will often 

be arranged in molecules, but we’ll just talk about atoms 

for simplicity as exactly the same goes for either in terms 

of thermodynamics.) The concept of temperature estab-

lished in the zeroth law is not some arbitrary property, 

but a measure of the kinetic energy of the atoms of a sub-

stance – in effect, a measure of how fast they are jiggling 

about. We can’t realistically find out how much energy 

each individual atom has, but luckily this problem 

proved ideal for statistics. Rather than worry about each 

individual atom with its own energy, we think of the 

whole, varying from atom to atom according to a known 

distribution and so open to the siren song of statistics. 

Although the early practitioners weren’t aware of it, ther-

modynamics is fundamentally a statistical concept. You 

can’t get away from it.

Quantum mechanics tells us that atoms can only be 

in certain energy states, jumping between them in quan-

tum leaps. When we look at a vast collection of atoms 

through the eyes of statistical thermodynamics, we see 

a distribution of different energy states. For a seriously 

cool object near to absolute zero there will be relatively 
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few different states, with most near the ‘ground state’ – 

the lowest possible state. With hotter objects, the distri-

bution will be more spread out across higher states as 

well as the ground state. This is not a normal distribu-

tion, but an exponential one. Statistically, temperature is 

a measure of the way those states are spread out.

The coldest possible temperature, absolute zero, rep-

resents a situation where all the atoms occupy the ground 

state. In any normal system, any particular atom (or mol-

ecule) may change state at any time, but the distribution 

corresponding to the temperature is the most likely one 

for the system as a whole to occupy.

When we look at the zeroth law from the point of view 

of a distribution of kinetic energies (and hence speeds) 

of atoms, it makes good sense. If two bodies are in con-

tact and they both have the same distribution of energies, 

there is no reason why one should influence the other. 

Sometimes a high-speed atom in one body will bash into 

a lower-speed atom in the other body and a little energy 

will be transferred. But averaged out across the whole 

distribution, equivalent amounts will flow each way. It’s 

an equilibrium.

It’s worth also looking at the first law through a simi-

lar atomic lens. If we do work on a system by applying 

force to it, or we heat it, in both cases we are transferring 

energy, but in importantly different ways. To do work on 

atoms we effectively give them a shove in the same direc-

tion. This takes energy: to do work usually means mov-

ing something against a force that is trying to prevent the 

movement. If we heat up a collection of atoms we speed 

them up as they zoom along on their chaotically random 
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collection of paths. Work is a collective shove in a single 

direction, heat is a set of shoves on each atom indepen-

dently in the directions they happen to be travelling in.

The law of change
And so we come to the big one – the second law of ther-

modynamics. The one that tells us how the universe 

works, and how it’s likely to end. This is because the sec-

ond law tells how – and effectively why – things change. 

Everything from the evolution of the universe to the 

smallest aspect of a human life is essentially about how 

things change from moment to moment, and the second 

law is always there, silently steering the course.

The concept that tends to trip people up when they 

are trying to understand the second law is entropy, the 

property of a closed system that the law says will stay the 

same or rise. Entropy is often described as the amount of 

disorder in the system. The bigger the entropy, the more 

the disorder. Left to its own devices (which is another 

way of saying in a closed system) the entropy will only 

typically rise, or at best stay the same. If entropy was only 

that fuzzy concept of amount of disorder it would be very 

qualitative and not particularly useful in physics – but it 

can, as we will see, be quantified thanks to statistics.

To get a very simple picture of entropy, take a look 

at the letters on this page. As they stand they are in a 

low state of entropy – they are in a particular order that 

gives specific meaning to the page. If the letters weren’t 

attached to the paper and you gave it a shake and jum-

bled them up, then the entropy would have increased as 

the letters went into a disordered state.
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One way to compare the level of order or disorder is 

to compare the number of ways you could have the let-

ters in the two states. There is only one combination of 

positions of those letters that would spell out the exact 

contents of this page. (In practice you could move quite a 

lot of the letters around and still transfer the same infor-

mation, but that reflects how clever you are and your 

brain’s ability to find patterns in what it is seeing. If an 

idiot computer was asked if it was the same information 

it would say ‘No’ if I just moved the full stop at the end 

of this sentence outside the bracket.) There are, however, 

many different ways to scramble up all the letters on this 

page – an enormous number. So a jumbled-up version of 

the letters has significantly higher entropy.

The ‘closed system’ bit of the second law is of intense 

importance here. The second law does not say that 

entropy will always increase in a system. Think about 

the Earth as a system. When you look at all the complex 

organisation not just of human technology but every-

thing that goes into making living animals and plants, 

the Earth as a system clearly has much lower entropy 

than it had in the past when all the atoms and molecules 

were pretty randomly scattered about. Entropy on the 

Earth has decreased over time as more and more struc-

tures and patterns have been added.

I have seen books trying to counter the idea of evo-

lution using this observation. They make use of this 

decrease in entropy as a sign that there has to be an 

active creator to ‘break’ the second law. But the second 

law only applies in a closed system. It’s fine to con-

sider the Earth a system, but it is anything but a closed 
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system. Vast amounts of energy flow into it from the Sun 

all the time. Shove energy into a system and of course 

you can decrease entropy. Think of a fridge, for example. 

Remember the temperature-based version of the second 

law is that heat doesn’t flow from a colder to a hotter 

body. Yet that’s exactly what happens in a fridge. Heat 

flows from the inside of the fridge to the (hotter) out-

side. It can do that because, once more, the fridge is not a 

closed system. It’s plugged into the mains. Energy flows 

into the fridge, and it takes that energy to be able to trans-

fer heat the ‘wrong’ way.

Even the most obscure ways of producing order fit 

in with the second law of thermodynamics. Take, for 

example, self-patterning systems. A simple example of a 

self-patterning system would be a tray covered in a thick 

layer of wax. You put the tray at an angle and pour hot 

water on to the top edge. To begin with the hot water 

would run down the face of the wax in a highly disor-

dered fashion. Soon, though, indentations would begin 

to melt into the wax. Once there is a set of pathways to 

run down, a fair amount of the hot water will follow the 

indentations, rather than skitter across the surface.

As more hot water runs down a particular route, the 

indentations will become bigger, carrying more of the 

water. Once the pattern is established, using it reinforces 

that pattern. The particular pattern you end up with has 

lower entropy than the ability to run all over the sur-

face of the wax. You have, apparently without doing any 

work, reduced the entropy of the water/wax system. In 

reality, though, once more it took energy to make this 

happen. The water would be slowed down by contact 
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with wax, using up some kinetic energy, and the water 

would cool, losing heat energy. As this and many other 

examples demonstrate, one way of looking at the second 

law of thermodynamics is TANSTAAFL. There ain’t no 

such thing as a free lunch.

The particular example of running hot water down 

wax on a tray may seem a pretty obscure example. It’s not 

something you do every day. (Well, it’s not something I 

do every day.) However it is a very crude model of a nat-

ural self-patterning system that is very important to us 

all: a brain. As far as we can tell, the brain stores infor-

mation in a kind of self-patterning system. The more par-

ticular links are used, the fatter they get, and the easier 

to use they become. This is good because it makes it easy 

to respond quickly to a familiar challenge – though it 

does mean that under significant stress we tend to lose 

creativity. And the brain, like the wax tray, also experi-

ences TANSTAAFL. Using our brain takes a lot of power 

– around 20 per cent of the around 100 watts that the 

body uses at rest.

If we look at the version of the second law that says 

heat doesn’t go from a colder to a hotter body, it seems 

common sense when we consider what is happening at 

the level of atoms or molecules. Heat, remember, pro-

duces the increase of the random kinetic energy of the 

atoms in an object jiggling about. If two bodies are in 

touch, so the jiggling atoms of one can bump into the jig-

gling atoms of the other, then the hotter body – the one 

where the atoms are moving faster – will pass on more 

of its jiggling to the atoms of the cooler body. There will 

also be a transfer of energy from cool to hot – because 
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even the cool atoms are moving – but at a much lower 

rate, so the net effect is that heat flows from hotter to 

cooler.

Quantifying disorder
We’ve said that entropy is a measure of disorder, but also 

that as used in physics it is a quantitative measure. It’s 

not just touchy-feely ‘this seems more messy than that’ 

– you can apply numbers to it. For this, too, we need to 

take an atomic or molecular view and have to introduce 

a quick equation, which is more painless than it looks. 

The equation is:

S = k log W

S is the entropy (E was already used up for energy 

when this equation came along), k is a constant called 

Boltzmann’s constant and W is the number of ways a sys-

tem can be arranged to achieve the particular result (we’ll 

worry about that ‘log’ in a minute). Think of the example 

of the letters on a page of this book. If you imagined there 

are a series of slots on the paper that you can put letters 

in (think of the old moveable type printing press), then 

it’s easy to see that there is one way to arrange the letters 

to get a specific page, but by trying each letter in each 

slot you could (very slowly) work out W for randomly 

distributing all the letters and would get a much higher 

value.

Mostly entropy isn’t about letters on a page but about 

stuff, and particularly the atoms or molecules that make 

that matter up. There again, in principle we can imagine 
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different values for entropy for, say, a crystal where all 

the atoms have to slot into specific positions and a gas 

where they’re bouncing all over the place. We couldn’t 

do the sums exactly – and would have to resort to statis-

tics to get anywhere – but it’s entirely possible to see how 

entropy applies this way in theory.

A quick explanation of that ‘log’ bit. Fifty years ago I 

probably wouldn’t need to do so, as most people would 

be familiar with logarithms from school, but as they 

have become less necessary for everyday calculations 

they have disappeared into obscurity as far as most of 

the world is concerned. A logarithm (abbreviated to ‘log’) 

started life as a way of making multiplication and div-

ision easier to do. It is based on an interesting observa-

tion about mathematical powers.

In science we often write a number like 106 – which is 

a compact way of saying 1 million: 1 with six zeros after 

it. It is 10 multiplied with itself six times, or 10 × 10 × 

10 × 10 × 10 × 10. If I multiply a million by a thousand, I 

get a thousand million (a billion), which is 1 with 9 zeros 

after it. Now here’s the interesting thing. If I multiply 106 

(a million) by 103 (a thousand) I get 109 (a billion). Notice 

what has happened to the powers of the values I multi-

plied. They just added together. The logarithm of a num-

ber is just the power bit. So the logarithm of a million 

is 6. And to multiply two numbers I just add their logs. 

Adding is a lot easier than multiplying if you are dealing 

with more messy numbers – so logs are useful.

Logarithms crop up in the natural world too. When 

something like entropy varies with the log of a value, it 

means that a small change in the entropy can result in a 
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big change in the value. When I just add 1 to the log of a 

million, taking it from 6 to 7, the value jumps from 1 mil-

lion to 10 million. The bigger the value is to start with, 

the bigger the change an increment in the log will have.

There’s one other distinction to be made. To keep my 

explanation of logs simple I used logs to the base 10. So if 

the logarithm is 1, the value is 10, a logarithm of 2 gives 

a value of 100 and so on. But I didn’t have to. I could 

use base 3, for instance. So a logarithm of 1 would give 

a value of 3 and a log of 2 would give 9. A lot of loga-

rithms in nature have a rather fiddly base called e, which 

is around 2.71828 – it’s not nice and convenient, but like 

that other messy natural number pi, it’s what we have to 

use to match the natural world. The ‘log’ in the entropy 

formula is such a ‘natural log’, based on e.

This formula S = k log W was first written down by 

the physicist Max Planck, but it very much owes its 

existence to the mathematician Ludwig Boltzmann after 

whom that constant is named and who produced most of 

the basic maths of statistical thermodynamics. In fact, the 

formula is carved into Boltzmann’s tombstone. It’s a fit-

ting epitaph, as Boltzmann committed suicide suffering 

from depression. He may well have suffered from bipolar 

disorder, but if there was any reason for his depression it 

is often said that it was because of the lack of support for 

the concept of atoms, something that was fundamental to 

his statistical approach to thermodynamics.

Entropy plays dice
To the original creators of thermodynamics, with steam 

engines in mind, there was no doubt about the nature 
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of the second law. It was a statement of fact: whenever 

there was a change in a closed system, entropy would 

rise. It was only if there was action from the outside that 

entropy could fall. However, in the dice world that is the 

true reality, certainty is removed.

All we can say in the real, statistical version of ther-

modynamics is that the vast majority of the time we 

expect that entropy will rise – but it doesn’t have to be 

that way because randomness is at play. Think of a really 

simple system that is a closed rectangular box we can fill 

with a gas*. (It could be any gas – air, for example. But 

to keep it simple it might be easier to think of a single 

substance, like oxygen.) Our box is constructed so we 

can slide a divider down the middle to separate the box 

into two parts. Let’s do that. We then fill the left-hand 

half with hot gas and the right-hand side with cooler gas. 

Then we take out the divider.

Over time the gas from the two halves will mix. 

Bearing in mind that temperature is just a measure of the 

average kinetic energy (and hence speed) of the gas mol-

ecules, the mixture will end up at an intermediate tem-

perature between the two. Now what has happened here 

is that the entropy of the box as a system has increased. 

We had more order to begin with – hot on the left, cold 

on the right. Now the molecules are all over the place. 

We could work out the entropy value numerically with 

the Boltzmann equation, but it’s obvious from the simple 

description that it’s true.

* Pedants will point out this box is actually a rectangular paral-
lelepiped, as a rectangle is two dimensional, but you know what 
I mean. A box the shape of a brick. With no dimples.
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According to basic thermodynamics, that’s it. End 

of story. Entropy will always increase. But because the 

reality is statistical, there is a small chance that sponta-

neously, if we wait long enough, the random motion of 

the molecules will result in the hotter molecules being 

on one side and the colder molecules being on the other 

side again. It’s very, very unlikely. But it could happen 

with a predictable probability (this is classical random-

ness). For the moment this is just an interesting twist to 

the second law – but it will be significant when we start 

to think of one of the facts that emerges from the second 

law as applied to the universe as a whole. So significant, 

in fact, that it calls into question our understanding of 

time.

First, though, we need to see how a variant on that 

simple box of gas could baffle physicists for decades, 

thanks to the evil-sounding Maxwell’s demon.
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CHAPTER 14

Maxwell’s demon

Before we meet the demon, I ought to take a moment 

to consider the dangers of simple models. This isn’t an 

insult to those who work on catwalks, but a concern 

about the way physicists view the world. There’s an old 

joke I’ve told in print before, but it bears repeating. A 

dietician, a geneticist and a physicist were arguing about 

how to produce the perfect racehorse. ‘It’s obvious,’ said 

the dietician. ‘Make sure you have a perfect diet for the 

animal and you will succeed.’ The geneticist shook her 

head. ‘It’s all in the breeding,’ she said. ‘You’ve got to 

breed selectively for the right traits.’ The physicist has 

been quiet so far. He slowly shakes his head. ‘Look,’ he 

says, ‘let’s imagine the horse is a sphere.’

That may not sound side-splitting but I can assure 

you it will reduce a room full of scientists to tears of 

hilarity . Physicists are infamous for working with very 

simple models of reality. We’re back to the person search-

ing for their keys and looking under a streetlamp, even 

though they don’t think they lost them there. It’s the only 

place they can see. Similarly, the real world is much too 

complex to produce detailed mathematics to describe it, 

so in physics we tend to work with simplified versions 

of reality. (Hands up who did physics problems at school 

saying ‘… ignoring friction’? In the real world you can 

hardly ever ignore friction.)
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In some circumstances, such simplification to make 

a problem tractable is dangerous because you can draw 

conclusions about the model that don’t have any signifi-

cance for reality. Take a ridiculous example. I could build 

a robotic car that drives itself and the model I could use 

would be that the traffic on the road will be the same as it 

was yesterday. Exactly the same. I just record a journey, 

showing the car when to stop at red lights, when to avoid 

other cars and so on. And then I set it going in today’s 

traffic. Carnage would ensue. But there are plenty of cir-

cumstances where we can use a simple model to under-

stand something fundamental, as long as we are aware of 

the limitations of the model, and that’s what we are going 

to do here.

Unmixing the mixture
So to the demon. We’re going to stay with the box of 

gas introduced in the previous chapter, as there is more 

fun to be had with it*. A small extension to our simple 

model produces a paradox that had physicists baffled for 

years. We are going to start with a box that has had a good 

* Until you discovered thermodynamics, you probably didn’t 
realise that you could have fun with a box of gas. It used to be 
possible in the real world. When I was at school, a favourite 
demonstration of science teachers was to fill a metal container 
(a large coffee tin was the usual box used) with gas from the gas 
tap. The tin had holes punched in the top and bottom. The gas 
was lit at the top hole. As it burned, air flowed into the bottom 
of the tin until the mix of gas and air in the tin was just right, at 
which point it exploded, blowing the top off the tin. It’s not gen-
erally done in schools any more because of the health and safety 
risk – so don’t try it at home.
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chance for the molecules to mix and balance out. There 

is a uniform mix of fast and slow molecules on both sides 

of the box.

Imagine we have a very small person, so small that he 

can see the individual molecules of gas passing back and 

forth in the box. And he has such a high metabolism that 

he can respond to the different molecules one by one as 

they pass by. He is in charge of a trap door in the divider 

that splits the box in half, a special trap door that it takes 

no energy to open and close. As a molecule approaches 

the (closed) door our little man takes a look at it. We’ll 

call him a demon. If the molecule is moving left to right 

and it’s fast, he opens the trap door and lets it through. If 

it’s going slow he leaves the trap door shut. Similarly, if 

a molecule is moving right to left and it’s slow, he opens 

the trap door. Fast molecules from right to left don’t get 

through.

After a while, our demon will have many more fast 

molecules in the right-hand half of the box than in the 

left-hand half. He will have started with a mixed gas 

with a middling temperature throughout the box and 

will have ended up with cold gas in the left section and 

hot gas in the right. He has reduced the entropy, because 

the gas molecules are now more ordered than they were 

before, the reverse of the original action of opening the 

partition and letting them mix. But assuming he really 

can open and close the trap door with no energy used, 

then he really is a demon. He has defeated the second 

law of thermodynamics.

I’ve called the little creature a demon because that’s 

what he’s traditionally called – specifically Maxwell’s 
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demon*, named after the great Scottish physicist  

James Clerk Maxwell. Physics students rate Maxwell  

with the greats like Newton and Einstein, primarily 

because of his work on light, explaining how it was an 

interaction of magnetism and electricity – in fact it was 

Maxwell’s work on this that inspired Einstein to come 

up with special relativity. But Maxwell was a versatile 

thinker who also took the first colour photograph and  

did important work on statistical thermodynamics. 

Maxwell didn’t call the creature a demon – that was 

down to Lord Kelvin – but it was Maxwell who dreamed 

him up.

Maxwell’s demon teeters on the edge of whether or 

not the model has started to become dangerous. We can’t 

imagine a real creature capable of this act, or even a 

physical device (though they can be made if you provide 

some external energy). But the model is still useful in 

thinking about the nature of entropy and the second law. 

Although there is not total agreement on why Maxwell’s 

demon doesn’t break the second law, there are a number 

of arguments that make it unlikely he ever could. All of 

these rely on the fact that the demon has to be part of the 

system. If he’s outside the system it’s not a closed system, 

so the second law is irrelevant.

* There’s no evidence that Maxwell’s demon inspired Paul 
McCartney’s ‘Maxwell’s Silver Hammer’, but interestingly 
McCartney said the silver hammer was ‘my analogy for when 
something goes wrong out of the blue, as it so often does …’ 
– in effect the silver hammer in the Beatles song is chaotic 
randomness.
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The simplest argument is that in the real world the 

demon can’t have a trap door he can open and close with-

out exerting energy. This is true, but the energy intro-

duced into the system would not be sufficient to counter 

the decrease in entropy. What we then have to throw in 

is that the demon isn’t allowed to use magic. He may be a 

demon, but he is working in the field of physics. Because 

of that, he can’t just psychically ‘know’ how fast a mol-

ecule is travelling. He has to make a measurement, and 

that should involve exerting some energy – enough to 

make up for the decrease in entropy in the gas.

However, by the 1960s, it was realised that there are 

some means of measurement that can be undertaken 

without an increase in entropy in the demon to counter 

the decrease in the gas. The demon had a get-out clause. 

Or so it seemed. Because the demon’s renewed ability 

to conquer the second law was dashed by a very strange 

effect. It couldn’t get away with its trick because it would 

need to forget information, and to do that means exert-

ing energy and an increase in entropy. What’s more, this 

discovery depends on the relationship between entropy 

and information, a link that ties entropy into random-

ness and chance more firmly than ever.

Uniqueness is disorder
We’ve got the idea of entropy when applied to atoms or 

molecules as being the amount of disorder – but you can 

also think of entropy in terms of information. The more 

predictable the information, the lower the entropy. This 

will eventually lead us back to Maxwell’s demon and 

his memory, but let’s take a moment to explore further. 
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Think of a very basic form of information – a number 

with lots of decimal places. If you think of a number like 
1⁄3, it’s very predictable. As a decimal it is 0.3333 … All I 

have to do to specify it is either say ‘0.3, then repeat the 

three’ or ‘divide 1 by 3’. Low entropy. But some numbers 

aren’t so amenable.

Think of the square root of 2. It starts 1.41421356 … 

and goes on without repeating itself. But it’s fairly easy 

to calculate, and that calculation is, effectively, the short-

est way to produce the number – it has a form of pre-

dictability. Longer than 0.3333 …, but still predictable. 

Even worse is something like pi – 3.14159 … Although 

visibly similar to the square root of two, the difference 

is that pi is transcendental. This means that while you 

can write down a formula to calculate it, you can’t do 

it with a finite formula – it has to be in the form of an 

equation that goes on forever. For example p/2 = 2⁄1 × 2⁄3 × 
4⁄3 × 4⁄5 × 6⁄5 … (see page 87) does calculate pi, but you 

will never complete the calculation. That might seem the 

extreme of entropy for a single number, but it’s possible 

to go even further.

The ultimate for a high-entropy number, referred to 

as Omega, was dreamed up by American mathematician 

Greg Chaitin. Omega has no structure at all. You literally 

can’t write down a way to calculate it. The only method 

to reproduce Omega is to copy it out digit by digit – it 

can’t be compressed in any way. That makes it the defini-

tive number as far as extreme entropy goes.

When we think of entropy in information terms, 

the early example of a page of this book makes sense 

too. There are various ways that the text in the book 
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is predictable. There are the rules of English – so, for 

example, if you see a ‘q’ you know it will be immediately 

followed by a ‘u’. There are lots of ways to compress the 

text in a piece of English, due to predictability. And if the 

page is to have its specific meaning, there is no real ran-

domness to it. But the scrambled set of letters is a whole 

different ball game. Like Omega, there is no way to pre-

dict what will come next – the only way to reproduce the 

page is to copy it out letter by letter. It is truly random. So 

it has a lot higher entropy.

Back with Maxwell’s demon, the demon has to store 

information to do the task that it has set itself. To decide 

whether a particular molecule is fast or slow needs an 

understanding of what the speed it measures means, and 

as it makes a measurement of each molecule it is col-

lecting information. If the demon then erases the infor-

mation, it’s a feature of the entropy of information that 

performing that deletion takes energy – it increases the 

entropy of the system. Storing information doesn’t need 

to take energy – but it has been proved that however 

much storage the demon has, it must eventually start to 

delete information to keep functioning and at that point 

entropy begins to go up.

Even now, the whole business of Maxwell’s demon 

isn’t entirely sorted out. There are some loopholes in  

the arguments at the detailed level. But it seems likely 

that were such a creature to exist, he could still only  

have a minor impact on the second law. Which is per-

haps just as well, as this strange law of statistics and 

predictability also seems to be tightly linked with our 

concept of time.
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The mystery of time
There is an awful lot we don’t know about time. What 

time is provides an excellent example. You can read 

Stephen Hawking’s A Brief History of Time from end 

to end and not get the slightest clue of what it is*. But 

one thing we can pragmatically agree on is that time has 

a clear direction, sometimes called the arrow of time. 

In space there is no special direction. The Earth might  

seem to give us one – towards the centre of the planet, 

which gives us the idea of up and down. But take away 

that local distortion and there is no special direction in 

any of the dimensions of space that stands out from any 

other.

Time is different, though. Whether or not it’s possible 

to travel in time – and there is nothing in physics that 

makes this impossible – time has that inevitable pointer 

saying ‘this way to the future.’ As far as common sense is 

concerned, this is no surprise. That’s how time is divided 

up – past, present and future. It’s just how things are. Yet 

as far as the majority of physics is concerned, there is no 

good reason for this distinction between forwards and 

backwards in time.

Most physical activities are reversible. If I show you a 

movie of an object moving through space, there is no way 

of telling if I am running the video forwards or backwards. 

However, the second law of thermodynamics runs coun-

ter to this. The second law provides a distinct direction 

* This is despite the introduction of Stephen Hawking’s book 
claiming that recent breakthroughs in physics suggest answers 
to the question ‘What is the nature of time?’ The question is 
never addressed in the subsequent text.
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in time. It tells us that entropy increases – but that is 

really shorthand for ‘entropy increases with the pas-

sage of time’. In a sense it could be said that entropy sets 

up time’s arrow, pointing the way to the future. Which  

way does time flow? What is the direction of the future? 

The direction in which entropy increases for a closed 

system.

This becomes clear when we return to the video cam-

era. Take a video of a cup floating through space and it 

is impossible to tell how time is flowing. There is no 

change of entropy. Run the video backwards and it is not 

at all clear which version is running forwards in time. 

But have that cup smash into a handy asteroid and you 

will get a totally different picture. The cup shatters into 

many fragments as it collides. There’s nothing strange 

about that. But run the movie backwards and all the 

bits of cup reassemble. That does look weird. Because 

entropy seems to be decreasing with time. The cup is 

going from disorder to order with nothing directing it. 

It’s not natural.

I put my imaginary cup in space rather than just drop-

ping it to break it, because dropping something on the 

Earth has another reason not to be reversible. Objects 

that have more mass than the air don’t float upwards. If 

you watch a dropping cup carefully, it starts off slowly 

and accelerates under the pull of gravity, giving a clear 

indication of the direction of time. A falling cup isn’t an 

effective testbed for the way entropy gives time a direc-

tion because the gravitational pull of the Earth makes 

things happen in a particular time sequence, which is a 

giveaway that is not present in open space.
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The clockwork runs down
The other, rather dismal apparent implication of the sec-

ond law of thermodynamics is that it is horribly true that 

‘This is the way the world ends / Not with a bang but a 

whimper.’ The reality is on a much greater scale than 

T.S. Eliot’s original intentions, which were probably to 

refer to Guy Fawkes and the plot to blow up the Houses 

of Parliament. If we look at the universe as a whole, we 

would expect its entropy to continue rising with time 

until it consists of total disorder.

The timescales for this to happen are immense – so 

it’s not exactly something to lose any sleep over – but in 

case you find the idea of the universal onset of chaos dis-

tressing, there are a number of get-out clauses. Bearing 

in mind the statistical nature of the second law, it is pos-

sible that entropy will not triumph forever. And just as 

evolution depends on the long lifetime of the Earth to 

date, the universe could be expected to be around long 

enough for something really unlikely to happen.

When we think of very unlikely events, it’s not uncom-

mon to put their probability into context using the life-

time of the universe to date. So, for example, quantum 

theory tells us that it’s entirely possible for every atom 

in a car to move five metres sideways, leaving the car 

standing outside the garage it was once parked in. But 

the chances of this happening are so low that it’s trad-

itional to say ‘You would have to wait longer than the 

[current] lifetime of the universe for it to happen.’

We don’t really know how the future of the universe 

will pan out. How can we? All we have to base our ideas 

on is the past – and it is entirely possible there will be 
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events that can’t be forecast from the past. We could well 

be like the Christmas turkey, basing it’s future on classi-

cal randomness, where the reality is more a case of cha-

otic randomness.

However, in the scenario where the universe simply 

drones on forever getting more and more disordered 

until it is just a set of uninteresting random molecules, 

there is an interesting possibility to contemplate. Given 

that the second law is statistical, if we wait long enough, 

unlikely though it may seem, the hot and cold molecules 

in our box of gas will at some point spontaneously sep-

arate into the two sides of the box. With a vastly longer 

waiting time, in principle, similarly, all the molecules 

in the universe could revert to a more ordered state with 

planets and stars, rather than a disordered diffusion.

There is at least one problem with this picture. The 

nuclear fusion reaction that powers stars has a natural 

low point. In fusion, first hydrogen fuses to helium, then 

heavier elements are formed all the way up to iron. But 

there simply isn’t enough energy to go beyond iron – it 

takes the explosive power of a supernova (and not every 

star will ever become a supernova) to produce the heavier 

elements. Although the process of producing heavier and 

heavier elements is partially reversible – so, for example, 

very heavy elements will decay radioactively, producing 

lighter elements – and there’s plenty of hydrogen and 

helium in the universe that is not in stars at the moment, 

the second law doesn’t give us a way to jump back to 

the early years of the universe, undoing all the nuclear 

fusion that has taken place. However, in principle, given 

the eternity of future of a gradually decaying universe, in 
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principle enough order could spontaneously emerge and 

re-emerge to sustain many cycles of existence.

A perhaps more likely get-around of a universe that 

gradually becomes more and more disordered is to con-

sider what has happened to the Earth since it formed. The 

Earth has become more and more ordered over time. This 

has been a side effect mostly of life on the planet, pow-

ered by the Sun. As we’ve seen, the key to defeating the 

inevitable onset of disorder is an external energy source. 

The Earth isn’t a closed system. But can we assume that 

the universe is closed either? We don’t know that there 

isn’t an external source of energy that could re-impose 

order on the universe.

It is certainly true that some cosmologies allow for our 

universe, the universe we experience, not to be every-

thing, but rather a small part of a larger whole. Whether 

you support the idea of a bubble multiverse, where 

our universe is just one of many, possibly infinitely 

many, inflating bubbles in a much bigger system, or the 

ekpyrotic  model of the universe, where our universe is a 

three-dimensional ‘brane’ floating in a multidimensional 

space that occasionally collides with another brane, 

producing  a new big bang and a fresh start, it is entirely 

possible that there could be an external source of energy 

that would enable the second law to be thwarted – at 

least in the locality of our universe.

When the Victorians came up with the laws of ther-

modynamics they had everyday, practical goals in mind. 

It was all a matter of getting a better understanding of 

steam engines. But with a statistical interpretation of the 

second law and the wider implications that our modern 
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understanding of entropy bring, the actions of Maxwell’s 

demon and his probabilistic world continue to impact 

us all.

They certainly give us room for thought when it comes 

to the age-old activity of predicting the future.
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CHAPTER 15

Crystal balls and winning goats

The future may be an uncertain destination, but we have 

always had a burning desire to know what it is going to 

bring. In a sense all the statistical forecasting we do, even 

all of science that has a practical application, is about 

predicting the future. Science that looks to the past, that 

merely tabulates what has happened and what exists, is 

what physicist Ernest Rutherford was referring to when 

he commented archly that ‘all science is either physics 

or stamp collecting’. For science to be more than a matter 

of cataloguing, it needs to make predictions.

People have been telling us about the future as far 

back as we have history, and no doubt seers and proph-

ets did so well before there were any records. This  

wasn’t just because it feels good to know what is com-

ing, true though that may be. It was a reliable means 

of gaining power. If you can predict what is going to  

happen with any accuracy at all, you can claim to be  

able to influence the future – and that makes you power-

ful indeed, because no one is going to risk making you 

angry.

Some who claimed to see the future were indubita-

bly making the whole thing up, using it as a mechan-

ism to gain power – others no doubt genuinely believed 

they had the gift of prophecy, whether as a gift of a god 

or as a result of what they would have considered sci-

entific means. By far the longest-surviving mechanism 
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for predicting the future is astrology. Anyone with even 

a vague idea of science these days would not think of 

astrology as science – and astronomers get very huffy if 

you call what they do astrology – but it was indubita-

bly an attempt to make the prediction of the future sci-

entific. It doesn’t class as scientific now because it isn’t 

anywhere near our best guess – but in earlier times there 

was less data available to counter it.

It’s in the stars
The broad concepts of astrology date back at least 3,500 

years and have been found in most ancient cultures. It 

seems to have been a very reasonable thing to these early 

civilisations that the stars and planets could influence 

what happened on the Earth. There were two versions of 

astrology. One was divination – an attempt to predict the 

future. This was the predecessor of the modern horoscope 

that supposedly tells avid readers what will happen to 

them in times to come. Even in medieval times this type 

of astrology was frowned on as either religiously dubious 

or scientifically ridiculous.

The second version was more like an attempt to take 

a scientific view, to provide an explanation of natural 

physical events by observation. It happens to be wrong, 

just as the ancient Greek theory of the four elements was 

wrong, but that doesn’t make it totally unscientific. By 

medieval times, this style of astrology was treated as 

one of the arms of astronomy. It made no attempt to pre-

dict the future, it merely suggested that the influence of 

the planets at the time of birth could have an effect on  

the child, just as we now might consider that some  
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of the mother’s actions while carrying the baby, like  

smoking, could have an effect on the child’s development.

We now know just how little influence the planets 

have at the range they are and using the pathetically 

weak force of gravity*. The mass of the midwife and 

anyone else in the room would have more influence 

than the planets can. However, the divination version 

of astrology, the one we mostly see active today, does 

indeed claim to provide a kind of vision of the future for 

the individual. Even most astrologers would dismiss the 

inclusive bucket of a forecast given in a newspaper for 

all people with the same star sign as bunk, but they do 

believe that their detailed charts, taking into account just 

what was where in the heavens at the time of birth, are 

genuine predictors of the future. They do so in the face 

of weighty evidence that there is no basis for believing 

astrology to be true.

Leaving aside the inability to explain the mechan-

ism – why the position of a planet when you are born 

should have an influence on your future – it has long 

been pointed out how many problems there are with 

the concept. The Roman senator Cicero who lived over 

2,000 years ago commented, ‘Did all the Romans who 

fell at Cannae† have the same horoscope? Yet all had one 

* Gravity is 1039 times weaker than that other familiar force, 
electromagnetism. If you doubt that gravity is weak, think of the 
way a little magnetic toy sticks to your fridge. All that’s holding 
it up is the electromagnetic force of that tiny magnet. Pulling it 
down is the gravitational force of the whole massive Earth. The 
magnet wins.
† Cannae was a battle in 216bc, when Hannibal’s Carthaginians 
killed around 60,000 Roman soldiers.



Dice WorlD

226

and the same end.’ In more recent days, a 1985 study 

published in Nature pitted 28 highly rated professional 

astrologers against statistics. They were asked to produce 

detailed natal charts for over 100 volunteers, and then 

to match these to personality profiles of the individuals. 

In each case the chart was compared with the correct 

individual’s profile and two others. If the astrologers had 

guessed randomly, they might have been expected to get 

around 1⁄3 correct. The astrologers felt they should be 

able to match chart to profile in at least half of the cases. 

In practice the outcome was almost exactly 1⁄3.

If we discount astrology, probably the most famous 

attempt to predict the future since the Delphic oracle of 

ancient times was the work of Nostradamus. Writing in 

16th-century Paris, Michel de Nostredame was an almost 

immediate hit with his collection of four-line segments 

of text, or quatrains, making enigmatic predictions of 

what was to come. In the years since, the Prophecies of 

Nostradamus has rarely been out of print and a whole 

industry has sprung up linking the European seer’s pre-

dictions to everything from the rise of Hitler to the assas-

sination of John F. Kennedy.

The problem with this kind of prediction – an issue 

that also comes up trying to match many a fortune teller’s 

forecast to the real world – is that the prophecy is so 

vague that it would be strange indeed if it couldn’t be 

linked after the event to something. If you have enough 

text, you can find a link to almost anything, provided 

you try hard enough. Others have analysed the Bible (and 

others Winnie the Pooh) and claim it predicts all kinds 

of events. It really isn’t hard to see how Nostradamus’s 
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apparent overcoming of the dice world is nothing more 

than justification after the event. No one has ever used 

Nostradamus to successfully predict a major event before 

it has happened – only to match the prophecies to events 

with hindsight.

Future vision
For more than 100 years now, attempts have been made 

to make scientific studies of ‘precognition’ – the sup-

posed ability to predict what is to come through pure 

mental activity, which is arguably one of the least easy 

to explain of the so-called psi abilities. Probably the best 

work on this has been done by psychologist Darryl Bem, 

who published a paper in 2011 claiming to have detected 

precognition in action. However this was a very different 

feat from a Nostradamus-style prophecy. Bem performed 

a number of tests where the participants had to anticipate 

what was going to happen and detected a small statisti-

cal variation in the results from the expected outcome.

So, for example, in one of the experiments, the stu-

dents acting as guinea pigs sat in front of a computer 

screen and were shown two pairs of curtains on an other-

wise blank background. Behind one curtain was going to 

be a blank wall, and behind the other would be a picture. 

The students had to anticipate what would happen in the 

future by guessing which curtain would have the picture 

behind it. To ensure this was precognition at work, the 

picture’s position was not selected until after the choice 

had been made*.

* As with all such tests, it is not 100 per cent clear what it 
was that was being tested. If the results had been positive, the 
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If the students got significantly better than 50 per cent 

of their guesses right, they would seem to be predict-

ing the future. Interestingly the results were pretty well 

50:50 when random pictures were chosen, but when 

erotic images were used, the students did do better than 

chance levels. But only just. They got the answer right 

53.1 per cent of the time – over the number of experi-

ments performed, Bem estimates there to be a 1 in 100 

chance of this happening without a cause. Not a truly 

significant figure, but interesting. Bem did perform other 

experiments, which collected together did have a gen-

uinely significant outcome in the mathematical sense, 

though they still relied on such incremental differences 

from chance. It is hard not to think that these results were 

caused by statistical or operational errors rather than an 

ability to see into the future.

Precognition may not deliver a useful picture of the 

future, but of course weather forecasters do give us a very 

limited view into one aspect of the future. As we have 

seen, modern forecasts are impressively accurate over 

a couple of days, become so-so over five days and are 

frankly useless over about ten days. These forecasts are 

put together by running complex models of the weather 

systems, charting changes from hour to hour in a series 

of three-dimensional cells that cover the relevant area 

of the atmosphere. Complex though these models are, 

experiment could just as easily have been testing for the stu-
dents’ ability to influence the outcome, to change where the 
image was going to appear on the screen, as it was to predict the 
future.
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making use of the world’s best supercomputers to crunch 

the numbers, they did a pretty poor job, thanks to the 

chaotic nature of weather systems, until the approach of 

taking an ensemble of different forecasts (see page 98) 

was brought in.

A simulated world
As we have seen throughout the book, other kinds of 

forecasting rely on having the right kind of random-

ness driving what is happening. It is all too easy for the 

actual systems we are attempting to predict to be far too 

complex in reality for us to be able to produce any kind 

of confident forecast. Sometimes we can use a basic, 

distribution-based approach to predict the future. That’s 

what I’m doing if I say how likely it is, say, to toss five 

heads in a row (1⁄2 × 1⁄2 × 1⁄2 × 1⁄2 × 1⁄2 which is a 1 in 32 

chance). However even if the aspect of reality we are try-

ing to predict is based on such classical randomness, it 

can be difficult to make predictions as soon as the sys-

tem gains any complexity. This is where simulation can 

prove the best tool.

Simulation involves building a model, often on a 

computer, of a simplified version of reality. At each point 

in the model where there is a random occurrence, we put 

a random number generator, then run the whole thing 

rather like playing a game of The Sims on a computer, 

but repeating the same scenario many times to get an 

average picture of how things will develop.

A simple kind of simulation that I used to build when I 

worked at an airline is a queuing simulator. What I would 

do on a computer is set up a series of virtual check-in 
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desks. Each check-in agent would be programmed to take 

a random time to handle a customer, with that random 

value being picked from a distribution that matched typ-

ical check-in times in the real world. Then I would have 

another random number generator introducing passen-

gers into the system. Again, those passengers would be 

picked randomly from a distribution that was similar to 

the typical arrival time of passengers – this could vary 

according to the time of day.

Where it got interesting was what happened between 

the passenger arriving and getting through the queue. 

You could allow each passenger to choose a particular 

desk to queue at, like queues that are usually found in 

supermarkets, or you could have a single queue and 

allocate the person at the front of the queue to the next 

available check-in, as often happens in banks. I also had 

other random number generators handling whether or 

not individuals would tend to swap queues if they saw a 

queue moving much faster than their own.

If I had attempted to work out average waiting times 

for passengers in a system like the check-in environment 

of an airport using a single probability based on a single 

distribution I wouldn’t have got anywhere – but by run-

ning a simulation like this (and running it many times) I 

was able to get a much better picture of what was really 

likely to happen.

This approach dates back to just after the Second 

World War when scientists at the Los Alamos Laboratory 

in New Mexico were trying to work out how neu-

trons would pass through various materials and what 

was necessary to provide shielding from such nuclear 
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radiation. They found straightforward statistics didn’t 

get them anywhere and thought instead of running a 

repeated simulation and accumulating the results. As 

this was top-secret work it had to be given a code name, 

so it was called Monte Carlo after the casino. The term 

stuck, so this approach is often referred to as the Monte 

Carlo method or a Monte Carlo simulation.

In the early days, such simulations had to be car-

ried out by hand, aided by mechanical calculators, so 

the process was very slow, but with the development of 

computers they have become powerful tools for analys-

ing situations that are too complex to be dealt with by 

a single-probability distribution but are still driven by 

classical randomness. They are used in all branches of 

science and business, and even in maths where they can 

be used to solve some mathematical problems, though 

most mathematicians wince at their use because they 

don’t like the idea of getting to information by repeated 

computer runs, preferring an abstract mathematical 

proof.

Cars and goats
Whatever tool we are using for forecasting, we need to 

be aware of some of the traps that our probability blind-

ness sets for us. The best known of these traps is usu-

ally described in a form that is somewhat reminiscent 

of the curtains in Bem’s precognition test. Although the 

Monty Hall problem has been widely described, it is 

worth revisiting because it demonstrates the immense 

gap between our natural response to probability and the 

forecasts that emerge from it.
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The name of the problem dates back to a 1960s 

American TV game show hosted by the Canadian pre-

senter Monty Hall. In the final segment of the show, a 

contestant was given the choice of opening one of three 

doors. Behind two of the doors were lesser prizes (often 

goats in variants of the game) and behind the third was 

a car. The contestant was asked to pick one of the doors. 

He or she would win whatever was behind the door. So 

far, so simple. With three doors and one winning choice 

(unless you like goats) there is a one in three chance of 

being a winner.

Now the mentally taxing bit. Once the contestant had 

chosen a door (without opening it), Monty Hall would 

open one of the other two doors and show the contest-

ant a ‘goat’. So that leaves two unopened doors, one of 

which will have a goat behind it, one a car. The contest-

ant would then be asked to make a final choice between 

the two remaining unopened doors. The question is to 

predict what the best tactic should be. Would it be best if 

the contestant stayed with their initial choice? Would it 

be best to swap to the other unopened door? Or was it a 

50:50 chance, so it didn’t matter what the contestant did?

When writer Marilyn vos Savant presented this prob-

lem in her answers column in the magazine Parade in 

1990, saying the best strategy was to switch to the other 

door, she was swamped with letters, some from maths 

professors, telling her that her answer was wrong. 

Almost everyone writing in was sure that the contestant 

had a 50 per cent chance of winning with either door. 

Two doors to choose between, one with a car, one with a 

goat. What else could it be but a 50:50 chance?
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One correspondent wrote:

I’ll come straight to the point. In the … question and 

answer, you blew it! … Let me explain: if one door 

is shown to be a loser, that information changes the 

probability to 1⁄2. As a professional mathematician, 

I’m very concerned with the general public’s lack 

of mathematical skills. Please help by confessing 

your error and, in the future, being more careful.

There was even one correspondent from the US Army 

Research Institute who wrote, ‘You’re wrong, but look at 

the positive side. If all those Ph.D.s [who wrote in to con-

tradict you] were wrong, the country would be in very 

serious trouble.’

Perhaps the country was. Because despite getting let-

ters to the contrary from the deputy director of the Center 

for Defense Information and from a research mathematical 

statistician at the National Institutes of Health, vos Savant 

was right. If the contestant sticks with the door he or she 

chose, there is a 1 in 3 chance of winning. If a switch is 

made to the other door, there is a 2 in 3 chance of winning.

It’s important to understand that this really is correct. 

It is easy enough to write a computer simulation of what 

is happening, and many of us did when first faced with 

the problem. It’s harder to get your head around why the 

chance isn’t 50:50. I find it best to think of it like this. 

Everyone can agree that to begin with, the contestant had 

a 1 in 3 chance of being right and a 2 in 3 chance of being 

wrong, because two doors have goats behind them and 

one a car.
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Let’s say the doors are red, blue and green, and our 

contestant chooses the red door. Then we know there’s a 

2 in 3 chance the car is behind either the blue door or the 

green door. Monty Hall now opens one of those doors. 

He knows where the car is and would only ever open a 

door with a goat behind it. Let’s say he opens the green 

door. So now we know that there’s a 2 in 3 chance the car 

is behind the blue or green doors, and we know it’s not 

behind the green door. So the contestant’s best bet is to 

switch to the blue door. Two thirds of the time he or she 

will win the car. It will have been behind the red door 

just one third of the time.

Born on a Tuesday
Another prediction problem based on probability proved 

to be the second most controversial entry ever in vos 

Savant’s column in Parade, and once again her readers 

were convinced that she had got things wrong. This one is 

so counter-intuitive that even those who find the Monty 

Hall problem quite straightforward struggle with it. The 

problem sounds trivial enough, and comes in the form  

of a statement for which we have to predict the prob-

ability. It reads ‘I have two children. One is a boy born  

on a Tuesday. What is the probability that I have two 

boys?’

It sounds trivial. The Tuesday bit is just window 

dressing, so we are looking at ‘I have two children, one 

a boy. What is the probability I have two boys?’ So with 

one child a boy, surely there is 50 per cent chance that 

the other child is a boy and a 50 per cent chance it’s a 

girl. Which makes the probability of having two boys 0.5, 
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or 50 per cent. There’s a one in two chance. But unfortu-

nately that is not correct.

The reason we get confused is that when trying to 

imagine the situation we think of the ‘first’ child we 

come to being a boy, then look at the options for the 

second  child being a boy. However the description of  

the situation would also work if the first child is a 

girl and the second child is a boy. The only way to be  

absolutely certain is to work through every possible  

combination. It’s a trifle tedious, but it delivers the  

result:

Child A Child B
1. Boy Girl
2. Boy Boy
3. Girl Boy
4. Girl Girl

These are the four possible combinations, each equally 

possible. Of these, three are situations that match my ini-

tial statement ‘I have two children, one is a boy’. In all 

but case 4, one of the children is a boy. But only one of 

those three combinations with a boy also makes the sec-

ond child a boy. So the answer to ‘I have two children, 

one a boy. What is the probability I have two boys?’ is 

not 50 per cent, or one in two, it is one in three. This part 

of the problem is probably on a par with Monty Hall in 

the difficulty of getting your head around it. But there is 

a more fiendish part. We were wrong in discarding the 

Tuesday. Saying the boy was born on a Tuesday changes 

the probability.
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To see this we need a much bigger table. It starts like 

this:

Child A Child B
1. Boy (Mon) Girl (Mon)
2. Boy (Tue) Girl (Mon)
3. Boy (Wed) Girl (Mon)
4. Boy (Thu) Girl (Mon)
…
14. Girl (Sun) Girl (Mon)
15. Boy (Mon) Girl (Tue)
16. Boy (Tue) Girl (Tue)
…

In total we have 196 entries in this table. We go through 

every single sex/day combination in the first column 

combined with a girl born on Monday (fourteen of them 

in all), then every single sex/day combination in the first 

column combined with a girl born on Tuesday (fourteen 

of these too) and so on until we have cycled through 

every option for the second child.

Now we need to know two things. How many of  

those pairs feature a boy born on a Tuesday (like item 2 

above) and how many of those have a second boy? We 

are going to have one combination of child A as a boy 

born on Tuesday with every possible child B – fourteen 

of those, plus thirteen other combinations where child 

B was a boy born on Tuesday, but child A wasn’t (we 

have already counted the instance were both child A and 

child B are a boy born on Tuesday). So there are 27 rows 

that match our circumstance of having a boy born on 

Tuesday.
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We now need to pin down how many of those rows 

had two boys. The first set of fourteen all had a boy as 

child 1, and half of those – seven also had a boy as child 

2. Of the thirteen additional rows where child B was a 

boy born on a Tuesday, six would have child A also a 

boy. So of the 27 rows with a boy born on a Tuesday, 

thirteen of them have a second boy. The answer to ‘I have 

two children. One is a boy born on a Tuesday. What is the 

probability I have two boys?’ is 13 in 27 – almost, but not 

quite, one in two.

This really upsets common sense, if you are still dar-

ing to make use of such a fragile mechanism after all the 

random world has thrown at us. Just by specifying the 

day on which one of the children was born we change 

the probability of both children being boys from one in 

three to 13 in 27. Yet our minds rebel at this. Surely we 

could have chosen any day? The only way I can see to 

make some sense of this is to point out that in any par-

ticular real circumstance, you can’t choose that day at 

random; it is extra information that depends on the cir-

cumstance. The boy will have been born on a particular 

day and the result of that is that it cuts down the options, 

just like Monty Hall did when he opened a door and 

showed a goat. It’s just that the reality is harder to accept 

in this example.

Confusing though the Monty Hall problem and the 

children problems are, they follow nice, easy statistics – 

on average, for instance, two times out of three you will 

get the car if you changed door in the Monty Hall prob-

lem. But most of the things we experience in life don’t 

have such clearly predictable probabilities. The real 
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world is usually much more complex and less suscepti-

ble to analysis by conventional statistics. Luckily, there 

is another way of looking at statistics that does enable 

numbers to be used to make predictions where what is 

known is much more fuzzy. It’s called Bayesian statis-

tics, and for most of its life it has been severely frowned 

upon by the great and good of the statistical world, but it 

is an approach that is now much more commonly used 

and more widely accepted.
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CHAPTER 16

The Reverend Bayes and 
the golden retriever

The statistical old fogies who have a problem with the 

Bayesian approach complain that it is too subjective – 

but as we will see, the whole point of the approach is to 

get a handle on problems where that level of subjectiv-

ity is necessary. The power of going Bayesian is that it 

will work whether we are dealing with classical random-

ness, chaotic randomness – or no randomness at all. The 

downside is that in some circumstances it won’t be as 

accurate as the traditional approach to probability (some-

times given the label ‘frequentist’, because this method 

depends on making predictions about events that hap-

pen with a known frequency).

The rather odd, if mellifluous, name ‘Bayesian’ comes 

from the man who started it all, the mathematician and 

church minister Thomas Bayes, who lived in the first 

half of the 18th century. Bayes never actually published 

a practical version of his method, but he did describe the 

concept with a very specific case of it being used, while 

the final, more practical version was derived from his 

notes after his death.

In effect, to use Bayesian probability, you first take a 

best guess at the chances of something occurring and then 

improve on that guess given any subsequent informa-

tion. As much as possible, the inputs should be facts, but 

the process works with the best data you have available 
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– a much more likely situation in the real world than 

having the perfect accuracy assumed by conventional 

statistics. The distinction from traditional probability is 

that instead of looking at how often things should crop 

up as predicted by some distribution, we are looking for 

our best knowledge on what is happening. The mechan-

ism of Bayesian probability is obfuscated by unnecessar-

ily complex (and rather quaint) terminology, referring 

to ‘priors’ and ‘posteriors’, but what is going on is often 

actually quite simple.

The rest of this chapter is going to take the form of 

an experiment. We are going to make a prediction using 

Bayesian statistics. As it happens there is no secret to the 

answer to the particular question I am going to use – I 

know what the answer is in advance. But I didn’t need 

to know it. I will use some equations part way through 

this process, but there will be a chance to skip over them. 

However I would encourage you to check them out. The 

maths is really very trivial and this is a remarkably power-

ful technique that you may well find useful in the future.

What we are about to do is to make prediction pos-

sible given limited information. We will start with the 

basic information that we do have and try to improve the 

outcome until we have the best guess we can make given 

the evidence available. This is about as good as predic-

tion can ever be if we don’t have enough knowledge to 

apply traditional statistics usefully.

The case of the informative mug
So let’s take an actual example of Bayesian probability at 

work. I have a dog. (This is true.) What is the probability 
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that my dog is a golden retriever? Unless you know me, 

your immediate reaction might be ‘I haven’t got a clue’ 

but we can do a bit of digging and start to get to a sens-

ible guess. From the Kennel Club registration statistics, 

around 6 per cent of dogs registered in the UK in 2006 

were golden retrievers. This statistic is pretty vague, as 

it is only for registered (i.e. pedigree) dogs, so the actual 

percentage is likely to be lower, but golden retrievers 

have also increased in popularity over time, so that might 

balance out. Anyway, it’s the best we can do.

So our starting point, with no other knowledge, is to 

assume that there is a six in 100 or 6 per cent chance that I 

have a golden retriever. It’s not an accurate value, but it is 

the best we can do with no further information. It’s better 

than nothing. If we now get hold of some extra informa-

tion, Bayes allows us to add in that extra information and 

see how it changes our prediction. In this particular case 

(this also is true) it happens that as I am typing I have a 

mug on my desk with a picture of a golden retriever on 

it. Could that help us get our probability estimate more 

accurate? Let’s see how that information changes things.

We have to be a bit creative at this point. I would 

guess that the chances of owning such a mug if you have 

a golden retriever are 50 per cent, but the chances of 

owning such a mug if you don’t have a golden retriever 

are just 1 per cent. That’s the subjective bit. I don’t know 

those numbers – though I could research them and get 

better values. If I have that information, Bayes’ theorem 

gives me a method of improving on my original 6 per 

cent estimate. If you get a pain between the eyes when 

faced with an equation or two you can skip the next page 
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or so – but I recommend carrying on and taking it slowly. 

This genuinely is a lot simpler than it looks at first sight.

Bayes’ theorem says:

P A B
P B A P A

P B
( | )

( | ) ( )
( )

=
×

In English, that says that the probability of A, given B, 

is equal to the probability of B given A times the prob-

ability of A, divided by the probability of B. With these 

kind of equations P (something) means the probability 

of something, and P (something | something else) means 

the probability of something given something else. It’s no 

more complicated than that.

Let’s use my example to make things clearer. We’ll 

turn A into G for golden retriever, and B into M for mug. 

So P (G), for example, means ‘probability of a golden 

retriever’ and P (G | M) means the probability of a golden 

retriever given a mug with a golden retriever on it.

So the equation becomes

P G M
P M G P G

P M
( | )

( | ) ( )
( )

=
×

It says the probability of having a golden retriever, given 

that I have the mug, is the probability of having the mug 

if I have a golden retriever times the probability of hav-

ing a golden retriever and divided by the probability of 

having the mug.

Now we need to fill in some values. First the top bit of 

the equation. We said the probability of having the mug 
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if I have a golden retriever is 50 per cent – 0.5. And the 

probability of having a golden retriever is 0.06. So the 

top bit – P (M | G) × P (G) – is 0.5 × 0.06 = 0.03.

We also need the probability of having the mug or 

P (M) for the bottom of the equation. This has two com-

ponents. The chance I have the mug and do have a golden 

retriever, and the chance I have the mug and don’t have 

a golden retriever. We can write that out as:

P (M) = P (M | G) × P (G) + P (M | g) × P (g)

where ‘g’ means ‘not having a golden retriever’. It’s the 

probability of having a mug given a golden retriever, 

times the probability of having a golden retriever, plus 

the probability of having a mug given no golden retriever, 

times the probability of no golden retriever.

So P (M) = 0.5 × 0.06 + 0.01 × 0.94 (because given that 

the chance I have a golden retriever is 0.06, the chance I 

don’t have a golden retriever is 0.94).

A quick rattle on the calculator tells me P (M) is 0.0394

** REJOIN US HERE ** if you don’t like equations.

So going on my guess about the significance of the 

mug, the chance of my having a golden retriever given 

that I own the mug is 0.03/0.0394 – which is around 0.76 

or 76 per cent.

Something remarkable has happened. Remember, my 

original prediction for the chances of my having a golden 

retriever, only knowing that I have a dog, was a 6 per cent 

chance. Now, given that I have that mug on my desk, the 
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chance has risen to 76 per cent. It is beginning to look 

significantly more likely. And I can reveal that Bayes was 

right – I do have a golden retriever.

Good guesses are better than nothing
Those who don’t like Bayesian statistics will start mum-

bling and muttering at this point. Yes, they will say, but 

the information you used to modify the original value 

was guesswork. We don’t know how many people who 

have golden retrievers have mugs like that, nor for that 

matter how many people who don’t have golden retriev-

ers have mugs like that. It was those figures of 50 per cent 

and 1 per cent respectively that made the whole thing 

work. But these seemed reasonable figures to me. And 

they may be the best I can do.

Ideally I would improve on those values. I just came 

up with those numbers off the top of my head. A quick 

and dirty way to enhance them a little would be to ask 

a few other people what their best guesses of those two 

figures are. This is the so-called ‘wisdom of crowds’. It is 

much less mysterious and mystical than it sounds. Almost 

always, if you have a single guess for a value (or a single 

poll if you take an opinion poll), then combine that with a 

range of others, you will improve the quality of the guess. 

This is because the chances are that the first person you 

ask (or first poll you take) won’t be the closest to the actual 

value, but averaging over a range will include several who 

are closer, and will smooth out any extreme ideas, as one 

individual might not be representative.

Of course, there is always the danger that bringing in 

others will make things worse. Say, for instance, I was 
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asking people’s opinion of the outcome of the Monty Hall 

problem (see page 231) and the first person I asked was 

an expert in probability, who would get the answer right, 

while most of the other people I asked were unfamiliar 

with the problem and would get the answer wrong. Then 

the crowd would make things worse. But in most cases, if 

we ask people to take a guess at information, the answer 

is not so clear-cut. Certainly in the golden retriever prob-

lem I don’t think anyone would have special expertise 

and so it is a valid assumption that asking a group would 

improve my estimate.

We saw earlier (page 107) that there is always a dan-

ger when asking a group of people for their opinion that 

the way you select that group may have an influence on 

the outcome. If, for example, you ask people at a political 

party conference their opinion of the leader of an oppos-

ing party, the chances are that the responses you get will 

not be typical of the population at large. I decided to 

take a straw poll on Facebook, which was certainly not 

representative of the whole population. My sample was 

only from people who are friends with me on Facebook. 

These people have to have a certain level of technology 

just to be on Facebook, and among my friends there will 

be more people living in the area where I live, and more 

people with a scientific background than there are in the 

population at large. But I can make a judgement that this 

won’t produce a significant bias in this instance.

We will come on to what I found out from my straw 

poll in a moment, but let’s just see how we could have 

improved things even more. There is quite good evidence 

that if you ask a group of people for a guess at a piece of 
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information where they have no expertise, then show the 

group the results and ask them to modify their first guess, 

they will produce a better outcome than if you just went 

with their first guess. This so called ‘Delphi’ process 

seems to work a fair percentage of the time to slightly 

improve values. I didn’t want to hassle my information 

providers by asking them twice, so I don’t have such a 

‘Delphi’ group, but there is a way I can approximate to 

the Delphi effect.

The tendency in the Delphi process is to eliminate 

extreme outliers – the highest and lowest values. If people 

originally guessed extreme values, they may well look at 

the crowd and think ‘if everyone else is around there, 

why am I so far out?’ So I can approximate to a Delphi 

outcome by eliminating the top and bottom 10 per cent – 

where I’m likely to find the extreme values that will dis-

tort the average, like Bill Gates in a room – and then take 

an average. I will be removing any freak values and hom-

ing in on the general feeling of the group. This is only 

a test to see how much the result will change. I needn’t 

take the new value – I can stick with my original one – 

but by doing this I get a feel for how much the result is 

being influenced by extreme guessers who could be in a 

world of their own.

When I take a wider set of opinions by doing a poll of 

some kind I am obviously still only combining guesses. I 

could get closer still to the truth by doing a survey of mug 

owners, not asking for opinions but asking actual people 

for facts on how their ownership of golden retriever 

mugs corresponded with dog ownership. Depending 

on my sample size, I could come close to obtaining real 
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values for those two percentages. But part of the point of 

this exercise is to demonstrate how powerful Bayesian 

statistics are for making a prediction given limited infor-

mation. Bayes won’t necessarily produce the correct 

probabilities, but it will give you a best guess, given the 

information you have.

So what was the outcome? In response to asking for 

help on Facebook I got 31 replies to add to my own. 

Averaged across those replies, the probability of my hav-

ing a golden retriever given that I have the mug is 56 per 

cent. When I knocked off the bottom and top 10 per cent 

of values this only shifted to 57 per cent. This was despite 

having a couple of responses that I found quite surpris-

ing. One individual (who, as it happens, I know owns 

a golden retriever) thought it was equally likely some-

one would have the mug whether or not they owned that 

breed of dog.

Even more extreme were two individuals who thought 

that someone would be more likely to have the mug if they 

didn’t own a golden retriever. Their argument was that it 

was an aspirational dog, so quite a lot of people would 

have the mugs because they wished that they could own 

the dog. These two were, in some ways, forming a popu-

lation on their own, as they both work in the same office 

and didn’t see what everyone else was saying.

Mr Bayes’s oracle
So how well do we do at making a prediction thanks to 

Bayes? What can we learn from the exercise? A first point 

is that there seems little doubt that having that mug sig-

nificantly increases the chances that I do own a golden 



Dice WorlD

248

retriever. In all but the three responses described above, 

the chances shot up by at least a factor of three, and in 

many cases a factor of ten or more. The outcome is not 

definitive. Getting 56 or 57 per cent likelihood is not a 

convincing enough percentage to be sure about what the 

truth is. But what I can say is that this is our best guess, 

given the information we have.

If I were forced to bet on the outcome, for example, 

the 56 per cent figure gives me guidance that I ought to 

put my money on having a golden retriever. I might not 

win in over 40 per cent of cases, but it is still the best 

guess I have, given the information presented. And why 

would I go for anything other than the best guess?

Remember, this is what science is doing all the time. 

When we say that, for instance, the universe began 

13.7 billion years ago in the big bang, we are not stating a 

fact. Science is not about absolute facts. I can never prove 

that the universe began this way. Evidence could come 

along that disproves the theory. It only takes one certain 

contradictory fact to kill a theory. But all we can say is 

that this is our best theory given the data that we have 

at the moment. Sometimes that might be a 99 per cent 

certain best guess. At other times, just like the golden 

retriever mug, it might be just a 57 per cent certain best 

guess. But it’s still the best we have right now.

Dark matter would be a good example of this. One 

of the mysteries of cosmology is where all the mass in 

the universe comes from. When something like a galaxy 

is spinning round, we can judge from the way it sticks 

together (or flies apart) just how much mass there is in it. 

If we add up all the visible stuff in a galaxy, there is far 
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too little to keep it all together, so cosmologists speculate 

that there must be ‘dark matter’ – extra dollops of mas-

sive stuff we can’t detect.

At the time of writing, an alternative theory to 

dark matter, called MOND (a contraction of MOdified 

Newtonian Dynamics), is gaining support. This theory 

has been around a while, but has been reinforced by 

recent data. MOND says that there is no dark matter, but 

rather that Newton’s formula for the gravitational force 

has to be modified slightly when dealing with some-

thing as big as a galaxy – a variation that is entirely pos-

sible. Dark matter is still our best-supported theory at the 

moment. But right now, like the golden retriever, it is 

probably only around a 57 per cent best guess.

Bayesian statistics has proved to be our best tool for 

predicting the future in a real, messy world that isn’t 

driven by neat classical randomness that handily fits a 

distribution. You don’t need Bayesian statistics if you are 

trying to predict the outcome of a toss of a coin or the 

spin of a roulette wheel, but the vast majority of real-

world situations are not like that. When in chapter 9 we 

looked at the probability of a medical test having a false 

result, we were using Bayesian statistics. The method 

works by recognising that the information we have is 

limited. Rather than simply trusting that information, it 

factors in the chance of getting things wrong. In the case 

of the medical test we knew the error rates – often we 

have to make an estimate. This is the closest we get to 

a functioning crystal ball. But it certainly isn’t a way of 

predicting what human beings will actually do in any 

particular circumstance.
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Is there a way to do this? Does a deterministic view of 

the universe – the mechanical universe of Newton and 

Laplace – mean that all our actions are pre-ordained? Or 

does the randomness at the heart of the universe mean 

that nothing can ever be predicted? These are essential 

considerations if we are to take on one of the fundamen-

tal questions about the nature of humanity. Do we have 

free will?
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CHAPTER 17

Free will?

For centuries, human beings have struggled with the 

concept of free will, and never more so than once it was 

possible to imagine that we lived in a deterministic, 

clockwork universe. How could anyone ever make a real 

choice if everything was determined in advance because 

each action at the atomic level led to the next? In the 

inexorable chain of events from beginning to end of the 

universe, Newton and Laplace left no place for any true 

decision making. Perhaps the ultimate impact of ran-

domness on our lives is to leave some wiggle room for 

free will, if we feel that it is necessary.

When statistical predictions first became common-

place there was a concern that the very existence of such 

forecasts suggested an absence of free will. Let’s say that 

statistics showed that one in 100,000 Londoners was a 

murderer. Or that one in 1,000 would suffer from a par-

ticular disease. It seemed almost as if these numbers 

were taking away individual freedom by looming over 

us like the hand of fate. How could people truly have 

free will if a certain proportion of them were doomed to 

commit a crime or to suffer from an illness?

This concern really doesn’t make a lot of sense. To 

think that the numbers force us to behave in a particular 

way is similar to the gambler’s fallacy that says that, for 

instance, if a roulette wheel has just come up with a red 
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four times in a row it is more likely to come up with 

a black next time. In reality, the wheel has no memory. 

The next spin will have an equal chance of coming up 

red or black (if it’s a fair wheel). There is no magic force 

impelling the next turn of the wheel towards a particular 

colour to pull the total towards the mean. Similarly the 

fact that other people aren’t murderers doesn’t make it 

more likely that you are a murderer.

The inverse of the gambler’s fallacy is also seen in 

sport. It comes across in the idea that a sportsperson 

or team is ‘coming into form’ or ‘building up momen-

tum’ with a run of wins, in basketball given the dra-

matic description that someone has a ‘hot hand’. This 

last example was actually studied in 1985 by psycholo-

gist Thomas Gilovich. He found that 91 per cent of bas-

ketball fans believed that someone has a better chance 

of making a shot if he or she has just succeeded two or  

three times than if the shot was preceded by a couple of 

misses.

Many sports fans (and many sports players) think that 

a run of a certain outcome makes it more likely that this 

outcome will be repeated. It sort of feels right because 

you think that the player is on form if they’ve done 

well – or perhaps that they will be put under a lot of 

psychological pressure if they have failed the last few 

times. However, when Gilovich studied actual shots in 

one team for a season he found that players who had just 

succeeded with between one and three shots were no 

more likely to succeed than players who had just failed 

for one, two or three shots.
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My lucky numbers
Another example of the way that a misunderstanding of 

statistics comes into gambling is the obsession with sta-

tistics in a lottery in terms of which numbers have come 

up most often – which could either be used to suggest 

that 1) if particular numbers haven’t come up as often 

as the rest, they are ‘due’, or 2) that if certain numbers 

come up more often than most, they are ‘lucky’. There is 

even one website for the Irish Lottery that comments, ‘To 

improve your chances of winning the Irish Lottery we 

have compiled a stats section based on previous draws.’ 

And that would help how exactly?

The UK National Lottery kindly provides a frequency 

table for the main Lotto game. From this, we can see that 

at the time of writing, 38 and 44 were the most frequently 

drawn numbers, coming up 241 times, where 20 seemed 

to be a particularly unlucky number, only having made 

it out 171 times. This might seem too wide a variance 

for the balls to be truly random, and if you look at how 

often the different frequencies came up it can look a little 

random.

But this is misleading, because there are too few 

occurrences of any particular frequency to expect a nice, 

neat distribution. If we divide the frequencies into eight 

different ranges, allocating the balls to one of eight buck-

ets, we start to get something that is considerably closer 

to a normal distribution, allowing for the fact we are still 

dealing with small numbers. When the various values 

are plotted, we do find that most balls fall around the 

average number of draws and a few are off in the tails. 

What has happened in the past is no guide to the future. 
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All we know is that we will expect the overall distri-

bution to stay roughly normal – but 38 and 44 are not 

‘lucky’ and neither is 20 ‘unlucky’ nor more likely to be 

drawn in the future than any other ball because some-

how it is due a turn. Even the Lotto people have a rather 

bizarre view of this, as they specify the most ‘overdue’ 

numbers (at the time of writing, 47 hasn’t been drawn for 

188 days) – somehow suggesting that this makes them 

more likely to come up next time.

This doesn’t mean that statistics can’t be helpful in 

improving your chances in the lottery, just not in the way 

you might imagine. Statistics can’t tell us anything about 

which balls are going to be drawn on any particular occa-

sion. But they can help maximise your winnings if you 

are lucky enough to get the right numbers. Most lotteries 

have a prize pot that is divided among the people who 

Occurrences of frequencies of ball selection in Lotto draws
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get all the numbers right. The more people who win on 

the same draw, the less cash you get.

To maximise your winnings, you need to make sure 

that you have a selection of numbers that is less likely 

to be chosen by other players. One thing to avoid is hav-

ing all the numbers in your selection under 32. This is 

because many people use birthdays and anniversaries 

to provide their selection, and assuming they aren’t also 

including years (unlikely in the range of numbers avail-

able in most lotteries), they will only choose numbers 

between 1 and 31. It might also be worth avoiding 38 and 

44 in case people choose these thinking they are ‘lucky’. 

Surprisingly, given how unlikely it feels, the sequence 

1 2 3 4 5 6 is also quite popular. By having a near-random 

set of numbers that include one or more bigger than 31 

you can somewhat improve your chances of winning a 

greater share of the pot.

Let’s go back to my statistic about London murderers 

and imagine it was true (it’s not, I made it up). One in 
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100,000 Londoners is a murderer. We go out and select 

100,000 people at random, including you – if you don’t 

live in London, we’ll transport you there first. We go 

through the room one by one and by some magic means 

establish if each person is a murderer. We establish that 

the other 99,999 aren’t. Does this change you in any way? 

If there is one murderer in every 100,000 people and the 

other 99,999 are innocent, does this make you guilty? Of 

course not.

There is no influence on an individual from the sta-

tistics. It’s a one-way street. The people produce the  

statistics, but the statistics don’t change the people. (At 

least not in the sense we are thinking here. Reading  

statistics can, of course, influence how people behave.) 

It’s not that the statistics drain away free will, but rather 

that the collective actions of free will produce the 

statistics.

For that matter, we need to bear in mind the direction 

of time. Accurate statistics are always backward looking. 

They tell us what has happened. As soon as we use sta-

tistics to predict the future we have to assume that the 

appropriate distributions apply and that events are not 

connected to each other. This is certainly a reasonable 

assumption in many circumstances if, say, we are using 

statistics to predict the actions of many billions of mol-

ecules in a gas. But when we deal with a group of people 

it is all too easy for chaos to enter the mix.

Interestingly, and perhaps worryingly, we often see a 

sort of statistical fatalism coming into the way that courts 

take into account extenuating circumstances when some-

one has been convicted of a crime. The argument used 
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may well be that ‘40 per cent of individuals with the 

accused person’s background commit this kind of crime, 

a far higher percentage than for those who don’t have 

this background.’ We are asked to make the leap from the 

statistic to concluding that the background is a contribu-

tory factor to this individual committing the crime. And 

yet this is like assuming that a black number will follow 

a string of reds in roulette. Without specific evidence for 

a causal link for this particular individual, we are giving 

statistics more power than they deserve.

There is always an escape route from the apparent 

iron fist of statistics. In 1994, for the first time since 

records began, no eight-year-old girls died in Sweden. 

I am sure there are other occurrences of this kind, this 

just happens to be the one I’ve come across. Based on 

statistical evidence there should have been fatalities of 

eight-year-old girls that year. But the fact is none died. It 

was probably a result of both the steady increase in qual-

ity of healthcare and relatively small numbers, meaning 

that a year really isn’t long enough a period to get a good 

prediction. But there is always a way to escape the idea 

that statistical predictions in some way limit what will 

happen. They don’t, full stop.

More dangerous to the concept of free will is the idea 

of the brain as a mechanical device, a meat machine. We 

know that there are various factors that will influence our 

decision-making over which we have no control. There 

are genetic factors and medical ones. Brain tumours or 

brain damage can result in drastic changes in behav-

iour, sometimes leading to violence and other criminal 

acts. As people get older, diseases like Alzheimer’s can 
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effectively strip away the person we know and with it a 

lot of their free will.

I had no choice
It might seem that worrying about free will is just an 

exercise for philosophers who have far too much time 

on their hands. However, this is far more than an oppor-

tunity to indulge in abstract thinking. The existence of 

free will is a central tenet of the way our judicial system 

currently works. We assume that in almost all cases indi-

viduals do what they do out of choice that is enabled 

by free will. Occasionally we will reduce their liability 

when they are considered to be acting ‘when the balance 

of mind is disturbed’, but usually we expect people to 

take responsibility for their actions.

Take away free will entirely and there will inevita-

bly be a defence that you shouldn’t punish someone 

for anything that they do, as they had no choice. You 

may still incarcerate them to reduce the chance of them 

re-offending, but punishment and deterrence become 

meaningless concepts. The concepts underlying the legal 

system assume that alleged criminals are rational people 

who make all their decisions consciously, and so should 

always be culpable if they do something wrong.

The extreme downside of this comes through in the 

modern obsession with blame. In medieval times, unless 

magic was considered to play a part, when something 

went wrong it was assumed to be an act of God and 

people got on with their lives. Now, when anything sig-

nificant goes wrong we assume that there is fault, usu-

ally both in individuals and systems. We want someone 



free wIll?

259

to take the blame. We can’t accept that accidents will 

happen. Of course, some accidents are preventable, and 

sometimes the reason they aren’t prevented is because 

of negligence. But the majority of accidents do not fall 

into this category. We shouldn’t always be looking for a 

conscious actor to take the rap.

We only have to look at the realities of life faced 

by some individuals to see that the assumption of free 

choice of action is limited. Everyone occasionally makes 

an involuntary motion, one that has no conscious exer-

tion to make it happen, but for some the experience is 

common. If you suffer from Tourette’s syndrome, for 

instance, you will experience movements and even say 

things without any conscious effort. For the rest of us it 

can be difficult to understand that this is the case. But 

not only is it true, all of us have an even more dramatic 

break between our conscious will and our body’s actions.

Back in the 1960s, American scientist Benjamin Libet 

discovered something remarkable about the way we 

make a conscious decision to do something basic like 

move a finger. Test subjects reported being aware of the 

intention to move about a quarter of a second before the 

action took place. But by monitoring brain activity using 

an EEG machine, Libet found that the brain kicked into 

action a good second before the individuals were aware 

of the intention to move. The unconscious brain starts 

the activity, then we become aware of the intention.

Some have argued that there are problems with Libet’s 

approach as it was dependent on experimental subjects 

reporting the point in time when they felt they made the 

conscious decision to act. It is hard to see how this could 
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be avoided, but it is a potential weakness in the experi-

ment. Others have suggested that what is being measured 

looks like the precursor to a decision but is actually just 

spontaneous brain activity. Yet if Libet’s theory is cor-

rect, the implication is quite simple. Our conscious deci-

sion process is more a rationalisation after the fact than a 

true act of free will.

It is possible to argue (as Libet did) that we still have 

time to veto the action in the quarter of a second of aware-

ness we have before the physical movement occurs. More 

recent research has shown this to be true. Test subjects’ 

brains showed signs of readiness to act whether or not 

they then actually went ahead with the action. But this 

is still an unsettling concept.

It would be interesting to really test any philosopher 

who denies the existence of free will as to what they 

really believe about themselves in their spare time. My 

suspicion is that after a hard day’s pontificating they go 

home and know perfectly well that when they are decid-

ing to drink a chardonnay rather than a claret, or choos-

ing to listen to a particular piece of music, they believe 

that they are exerting a form of free will. But I’m not sure 

they would admit it.

A spanner in the clockwork
The random nature of the universe doesn’t magically 

restore free will, but it does perhaps modify our view of a 

deterministic life in which everything is pre-written and 

we just go through the motions. Chaotic randomness is 

still deterministic, but makes it impossible to predict out-

comes, cutting the ground away from under the tempting 
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ideas behind Isaac Asimov’s classic Foundation series of 

books.

In these stories, originally written in the 1950s, 

Asimov imagined a future branch of mathematics that 

was so sophisticated that it could be used to predict the 

future. Called psychohistory, it featured an intensely 

complex mathematical model of the galactic empire in 

which the stories are set. By careful manipulation of 

this mathematics, the Foundation could prepare for the 

inevitable downfall of the empire and plan for its rise.

In the books, the Foundation’s mastermind, Hari 

Seldon, appears from time to time as a projection, giv-

ing uncanny predictions of what is happening at the 

moment. Eventually, though, things go wrong. The pre-

diction begins to stray further and further from reality. 

The reason given is the rise of a man known as the Mule, 

who is a mutant and as such is somehow outside the pre-

dictive capability of the mathematics.

Although Foundation and its sequels first appeared 

before chaos theory was developed, it perhaps should 

have been obvious that the behaviour of human beings, 

let alone a whole intergalactic empire, was beyond pre-

diction. The systems involved are just too complex and 

time and again we get the situation where small changes 

in initial conditions make huge differences down the 

line. Asimov assumed that just as statistical mechanics 

enables us to ignore the individual behaviour of atoms to 

get an overall picture of how a gas behaves, so statistical 

psychology – psychohistory – would make it possible to 

predict the behaviour of humanity as a whole. But the 

whole foundation of Foundation was wrong.
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This chaotic randomness of human existence may 

not restore free will, but it means that we can’t say with 

any certainty what the outcome of many of our acts will 

be, so we don’t feel that our existence is permanently 

working along predictable tram tracks that guide us from 

beginning to end of our lives.

Then there is true randomness at the level of  

quantum particles. Everything we know is built on  

quantum particles. All matter, all forces. Everything. 

And every one of those quantum particles is just as weird 

and random in its actions as the decaying atom decid-

ing the fate of Schrödinger’s cat. So at a fundamental 

level there is no determinism. This doesn’t give us free 

will per se. We have no control over the way those ran-

dom behaviours play out. But at least it does mean that,  

even at the absolute level, the tram tracks don’t exist.  

Stuff happens, and it’s not pre-ordained. It might be a 

prediction for anarchy and pandemonium rather than 

rational, thinking action – but we aren’t following a 

script. We may be puppets, but no one is pulling the 

strings.

What does this say for our legal system? If you accept 

that free will is a dubious concept, it needs a radical 

overhaul. What it doesn’t mean is that there is a get-out 

clause for everyone who commits a crime, because they 

had no choice about it. We still need to prevent crime 

from being committed, but the focus has to move away 

from obsession with blame, which assumes free will on 

the part of an individual in almost all cases. Look at the 

case of Anders Behring Breivik who committed mass 

murder, killing 69 people in Norway in 2011. There was 
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much debate over whether anyone could do this and 

truly be sane, as Breivik was declared to be.

It is hard to argue that this was a rational decision 

on Breivik’s part. An act of reasoned free will by a sane 

person. And yet it cannot be simply ignored and treated 

as the symptom of an illness. There really is no way that 

this can be seen as anything other than the result of the 

nature of Breivik’s brain, something he had no choice 

over. But at the same time, society needs to act to pro-

tect itself. Arguably, the only real meaningful prison sen-

tence would be to lock someone away for the minimum 

time that would keep the risk of reoffending to a prede-

termined level. It’s not an emotion-led approach – and 

not at all easy to calculate those risks – but it makes more 

sense than trying to decide if an individual was exercis-

ing free will or not when arguably we are all at the mercy 

of the chemical and physical composition of our brains.

The random deity
As well as considering the impact of randomness on our 

own free will, philosophers have also regularly explored 

the implications for the existence of a god. As we have 

seen, Laplace thought that his deterministic universe 

did not require a god. It certainly didn’t need one to 

keep things going once they were started, though in fact 

Laplace had nothing to say about how the universe came 

into existence in the first place. He had not really elimi-

nated the need for a creator, just for a god who interfered 

with things as they went along.

For many, though, this picture is not particularly com-

fortable, because they want a god with whom they have a 
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relationship. In Laplace’s mechanical universe there was 

no requirement for outside interference – though again 

there was nothing to stop a god taking a hand, just as we 

can reach out to a clock and change the position of its 

hands, overriding the clockwork.

As for randomness itself, we have seen how Einstein 

complained that God did not play dice. At one level this 

is a confusing statement as there is no evidence that 

Einstein had a religious faith. It seems that he used the 

term ‘God’ more as a compact way of saying ‘the rules of 

how the universe works’. However, those who do believe 

in God and want their creator to be fair and just are some-

times unhappy with the unfair, uncaring nature of a uni-

verse that is so dependent on chaos and fundamental 

randomness at the quantum level.

Perhaps the best approach if you have a religious faith 

is to take a step back and say that it is entirely possible 

to separate the mechanism and the outcome. Just as all 

the everyday things we use, from computers to cars – 

and for that matter people – are made up of quantum 

par ticles that have weird, random behaviour but at the 

macro level carry on in a stable, non-random fashion, so 

we could envisage a creation that has elements of ran-

domness and chaos but that seen at the macro level fol-

lows a creator’s plan.

I am not saying that we can deduce there is a creator. 

If you like you can (and some have) make use of Bayesian 

statistics to try to determine whether or not God exists, 

but that is a futile exercise because we have no way of 

even approximating the probabilities we need to feed 

into the equation. Instead, what I am saying is that you 
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pays your money and you takes your choice. The random 

foundations of the universe and the impact of chaos nei-

ther prevent nor encourage a belief in God.

When you look back over the way that our world man-

ages to bring together such wild randomness and yet to 

appear stable and sometimes predictable, I think the best 

response is to have a sense of wonder. The more we dis-

cover about our dice world, the more fascinating it is. 

For me it’s a major part of what makes science such fun. 

If physics was just about Newton’s laws and the like it 

would do the job and give us good engineering, but it 

would be boring in the way that many people remem-

ber science being at school. But such people are wrong. 

And the reason they are wrong is that real science is so 

intriguing, mind boggling and fascinating, thanks to the 

dice world in which we live.

And what of free will? Perhaps the best we can do is 

to decide that in principle it doesn’t exist, but the sensa-

tion of it being there is so impossibly real that we might 

as well think of it as being true. Free will, arguably, is the 

same as the steady, reliable existence of a chair. In prin-

ciple it’s a mass of random, weirdly behaving quantum 

particles that don’t even stay in one place at a time. But 

in practice you can sit on it and it will stop you falling 

to the ground.

That’s my impression of free will. But the final deci-

sion on whether or not it exists is up to you.

Or is it?
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