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5.4.2 Occupation Number Representation (ONR) . . . . . . . . . . . . . 125

5.5 Bound State of a Two-particle System with Central Interaction . . . . . . 126
5.6 Bound States of Hydrogen (or Hydrogen-like) Atoms . . . . . . . . . . . . 131
5.7 The Deuteron Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.8 Energy Levels in a Three-dimensional Square Well: General Case . . . . . 144
5.9 Energy Levels in an Isotropic Harmonic Potential Well . . . . . . . . . . . 147
Appendix 5A1: Special Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5A1.1 Legendre and Associated Legendre Equations . . . . . . . . . . . . 156
5A1.2 Spherical Harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5A1.3 Laguerre and Associated Laguerre Equations . . . . . . . . . . . . 162
5A1.4 Hermite Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5A1.5 Bessel Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Appendix 5A2: Orthogonal Curvilinear Coordinate Systems . . . . . . . . . . . 174
5A2.1 Spherical Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . 174
5A2.2 Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . 175
5A2.3 Parabolic Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 177
5A2.4 General Features of Orthogonal Curvilinear System of Coordinates 178



6 SYMMETRIES AND CONSERVATION LAWS 181
6.1 Symmetries and Their Group Properties . . . . . . . . . . . . . . . . . . . 181
6.2 Symmetries in a Quantum Mechanical System . . . . . . . . . . . . . . . . 182
6.3 Basic Symmetry Groups of the Hamiltonian and Conservation Laws . . . 183

6.3.1 Space Translation Symmetry . . . . . . . . . . . . . . . . . . . . . 184
6.3.2 Time Translation Symmetry . . . . . . . . . . . . . . . . . . . . . . 185
6.3.3 Spatial Rotation Symmetry . . . . . . . . . . . . . . . . . . . . . . 185

6.4 Lie Groups and Their Generators . . . . . . . . . . . . . . . . . . . . . . . 188
6.5 Examples of Lie Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.5.1 Proper Rotation Group R(3) (or Special Orthogonal Group SO(3)) 191
6.5.2 The SU(2) Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.5.3 Isospin and SU(2) Symmetry . . . . . . . . . . . . . . . . . . . . . 194

Appendix 6A1: Groups and Representations . . . . . . . . . . . . . . . . . . . . 199

7 ANGULAR MOMENTUM IN QUANTUM MECHANICS 203
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.2 Raising and Lowering Operators . . . . . . . . . . . . . . . . . . . . . . . 206
7.3 Matrix Representation of Angular Momentum Operators . . . . . . . . . . 208
7.4 Matrix Representation of Eigenstates of Angular Momentum . . . . . . . 209
7.5 Coordinate Representation of Angular Momentum Operators and States . 212
7.6 General Rotation Group and Rotation Matrices . . . . . . . . . . . . . . . 214

7.6.1 Rotation Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
7.7 Coupling of Two Angular Momenta . . . . . . . . . . . . . . . . . . . . . . 218
7.8 Properties of Clebsch-Gordan Coefficients . . . . . . . . . . . . . . . . . . 219

7.8.1 The Vector Model of the Atom . . . . . . . . . . . . . . . . . . . . 221
7.8.2 Projection Theorem for Vector Operators . . . . . . . . . . . . . . 221

7.9 Coupling of Three Angular Momenta . . . . . . . . . . . . . . . . . . . . . 227
7.10 Coupling of Four Angular Momenta (L− S and j − j Coupling) . . . . . 228

8 APPROXIMATION METHODS 235
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
8.2 Non-degenerate Time-independent Perturbation Theory . . . . . . . . . . 236
8.3 Time-independent Degenerate Perturbation Theory . . . . . . . . . . . . . 242
8.4 The Zeeman Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
8.5 WKBJ Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
8.6 Particle in a Potential Well . . . . . . . . . . . . . . . . . . . . . . . . . . 262
8.7 Application of WKBJ Approximation to α-decay . . . . . . . . . . . . . . 264
8.8 The Variational Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
8.9 The Problem of the Hydrogen Molecule . . . . . . . . . . . . . . . . . . . 270
8.10 System of n Identical Particles: Symmetric and Anti-symmetric States . . 274
8.11 Excited States of the Helium Atom . . . . . . . . . . . . . . . . . . . . . . 278
8.12 Statistical (Thomas-Fermi) Model of the Atom . . . . . . . . . . . . . . . 280
8.13 Hartree’s Self-consistent Field Method for Multi-electron Atoms . . . . . . 281
8.14 Hartree-Fock Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
8.15 Occupation Number Representation . . . . . . . . . . . . . . . . . . . . . 290

9 QUANTUM THEORY OF SCATTERING 299
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
9.2 Laboratory and Center-of-mass (CM) Reference Frames . . . . . . . . . . 300

9.2.1 Cross-sections in the CM and Laboratory Frames . . . . . . . . . . 302
9.3 Scattering Equation and the Scattering Amplitude . . . . . . . . . . . . . 303



9.4 Partial Waves and Phase Shifts . . . . . . . . . . . . . . . . . . . . . . . . 306
9.5 Calculation of Phase Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
9.6 Phase Shifts for Some Simple Potential Forms . . . . . . . . . . . . . . . . 313
9.7 Scattering due to Coulomb Potential . . . . . . . . . . . . . . . . . . . . . 320
9.8 The Integral Form of Scattering Equation . . . . . . . . . . . . . . . . . . 324

9.8.1 Scattering Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . 327
9.9 Lippmann-Schwinger Equation and the Transition Operator . . . . . . . . 329
9.10 Born Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

9.10.1 Born Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 332
9.10.2 Validity of Born Approximation . . . . . . . . . . . . . . . . . . . . 334
9.10.3 Born Approximation and the Method of Partial Waves . . . . . . . 337

Appendix 9A1: The Calculus of Residues . . . . . . . . . . . . . . . . . . . . . . 342

10 TIME-DEPENDENT PERTURBATION METHODS 351
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
10.2 Perturbation Constant over an Interval of Time . . . . . . . . . . . . . . . 353
10.3 Harmonic Perturbation: Semi-classical Theory of Radiation . . . . . . . . 358
10.4 Einstein Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
10.5 Multipole Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
10.6 Electric Dipole Transitions in Atoms and Selection Rules . . . . . . . . . . 366
10.7 Photo-electric Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
10.8 Sudden and Adiabatic Approximations . . . . . . . . . . . . . . . . . . . . 369
10.9 Second Order Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

11 THE THREE-BODY PROBLEM 377
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
11.2 Eyges Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
11.3 Mitra’s Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
11.4 Faddeev’s Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
11.5 Faddeev Equations in Momentum Representation . . . . . . . . . . . . . . 391
11.6 Faddeev Equations for a Three-body Bound System . . . . . . . . . . . . 393
11.7 Alt, Grassberger and Sandhas (AGS) Equations . . . . . . . . . . . . . . . 396

12 RELATIVISTIC QUANTUM MECHANICS 403
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
12.2 Dirac Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
12.3 Spin of the Electron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
12.4 Free Particle (Plane Wave) Solutions of Dirac Equation . . . . . . . . . . 409
12.5 Dirac Equation for a Zero Mass Particle . . . . . . . . . . . . . . . . . . . 413
12.6 Zitterbewegung and Negative Energy Solutions . . . . . . . . . . . . . . . 415
12.7 Dirac Equation for an Electron in an Electromagnetic Field . . . . . . . . 417
12.8 Invariance of Dirac Equation . . . . . . . . . . . . . . . . . . . . . . . . . 422
12.9 Dirac Bilinear Covariants . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
12.10 Dirac Electron in a Spherically Symmetric Potential . . . . . . . . . . . . 428
12.11 Charge Conjugation, Parity and Time Reversal Invariance . . . . . . . . . 436
Appendix 12A1: Theory of Special Relativity . . . . . . . . . . . . . . . . . . . . 445

12A1.1 Lorentz Transformation . . . . . . . . . . . . . . . . . . . . . . . . 445
12A1.2 Minkowski Space-Time Continuum . . . . . . . . . . . . . . . . . . 448
12A1.3 Four-vectors in Relativistic Mechanics . . . . . . . . . . . . . . . . 450
12A1.4 Covariant Form of Maxwell’s Equations . . . . . . . . . . . . . . . 452



13 QUANTIZATION OF RADIATION FIELD 455
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
13.2 Radiation Field as a Swarm of Oscillators . . . . . . . . . . . . . . . . . . 455
13.3 Quantization of Radiation Field . . . . . . . . . . . . . . . . . . . . . . . . 459
13.4 Interaction of Matter with Quantized Radiation Field . . . . . . . . . . . 462
13.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
13.6 Atomic Level Shift: Lamb-Retherford Shift . . . . . . . . . . . . . . . . . 476
13.7 Compton Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
Appendix 13A1: Electromagnetic Field in Coulomb Gauge . . . . . . . . . . . . 497

14 SECOND QUANTIZATION 501
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
14.2 Classical Concept of Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
14.3 Analogy of Field and Particle Mechanics . . . . . . . . . . . . . . . . . . . 504
14.4 Field Equations from Lagrangian Density . . . . . . . . . . . . . . . . . . 507

14.4.1 Electromagnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . 507
14.4.2 Klein-Gordon Field (Real and Complex) . . . . . . . . . . . . . . . 508
14.4.3 Dirac Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 510

14.5 Quantization of a Real Scalar (KG) Field . . . . . . . . . . . . . . . . . . 511
14.6 Quantization of Complex Scalar (KG) Field . . . . . . . . . . . . . . . . . 514
14.7 Dirac Field and Its Quantization . . . . . . . . . . . . . . . . . . . . . . . 519
14.8 Positron Operators and Spinors . . . . . . . . . . . . . . . . . . . . . . . . 522

14.8.1 Equations Satisfied by Electron and Positron Spinors . . . . . . . . 524
14.8.2 Projection Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 525
14.8.3 Electron Vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

14.9 Interacting Fields and the Covariant Perturbation Theory . . . . . . . . . 527
14.9.1 U Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
14.9.2 S Matrix and Iterative Expansion of S Operator . . . . . . . . . . 531
14.9.3 Time-ordered Operator Product in Terms of Normal Constituents 532

14.10 Second Order Processes in Electrodynamics . . . . . . . . . . . . . . . . . 534
14.10.1 Feynman Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

14.11 Amplitude for Compton Scattering . . . . . . . . . . . . . . . . . . . . . . 540
14.12 Feynman Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 545

14.12.1 Compton Scattering Amplitude Using Feynman Rules . . . . . . . 546
14.12.2 Electron-positron (e−e+) Pair Annihilation . . . . . . . . . . . . . 547
14.12.3 Two-photon Annihilation Leading to (e−e+) Pair Creation . . . . 549
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Preface

This book has grown out of our combined experience of teaching Quantum Mechanics at
the graduate level for more than forty years. The emphasis in this book is on logical and
consistent development of the subject following Dirac’s classic work Principles of Quan-
tum Mechanics. In this book no mention is made of postulates of quantum mechanics and
every concept is developed logically. The alternative ways of representing the state of a
physical system are discussed and the mathematical connection between the representa-
tives of the same state in different representations is outlined. The equations of motion in
Schrödinger and Heisenberg pictures are developed logically. The sequence of other top-
ics in this book, namely, motion in the presence of potential steps and wells, bound state
problems, symmetries and their consequences, role of angular momentum in quantum me-
chanics, approximation methods, time-dependent perturbation methods, etc. is such that
there is continuity and consistency. Special concepts and mathematical techniques needed
to understand the topics discussed in a chapter are presented in appendices at the end of
the chapter as appropriate.

A novel inclusion in this book is a chapter on the Three-body Problem, a subject that
has reached some level of maturity. In the chapter on Relativistic Quantum Mechanics an
appendix has been added in which the basic concepts of special relativity and the ideas
behind the covariant formulation of equations of physics are discussed. The chapter on
Quantization of Radiation Field also covers application to topics like Rayleigh and Thom-
son scattering, Bethe’s treatment atomic energy level shift due to the self-interaction of the
electron (Lamb-Retherford shift) and Compton effect. In the chapter on Second Quantiza-
tion the concept of fields, derivation of field equations from Lagrangian density, quantization
of the scalar (real and complex) fields as well as quantization of Dirac field are discussed.
In the section on Interacting Fields and Covariant Perturbation Theory the emphasis is
on second order processes,such as Compton effect, pair production or annihilation, Möller
and Bhabha scattering. In this context, Feynman diagrams, which delineate different elec-
tromagnetic processes, are also discussed and Feynman rules for writing out the transition
matrix elements from Feynman graphs are outlined.

A number of problems, all based on the coverage in the text, are appended at the end of
each chapter. Throughout this book the SI system of electromagnetic units is used. In the
covariant formulation, the metric tensor gµν with g11 = g22 = g33 = g44 = 1 is used. Details
of trace calculations for the cross section of Compton scattering are presented. It is hoped
that this book will prove to be useful for advanced undergraduates as well as beginning
graduate students and take them to the threshold of Quantum Field theory.

V. S. Mathur and Surendra Singh
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1

NEED FOR QUANTUM MECHANICS AND ITS
PHYSICAL BASIS

1.1 Inadequacy of Classical Description for Small Systems

Classical mechanics, which gives a fairly accurate description of large systems (e.g., solar
system) as also of mechanical systems in our every day life, however, breaks down when
applied to small (microscopic) systems such as molecules, atoms and nuclei. For example,
(1) classical mechanics cannot even explain why the atoms are stable at all. A classical atom
with electrons moving in circular or elliptic orbits around the nucleus would continuously
radiate energy in the form of electromagnetic radiation because an accelerated charge does
radiate energy. As a result the radius of the orbit would become smaller and smaller,
resulting in instability of the atom. On the other hand, the atoms are found to be remarkably
stable in practice. (2) Another fact of observation that classical mechanics fails to explain
is wave particle duality in radiation as well as in material particles. It is well known
that light exhibits the phenomena of interference, diffraction and polarization which can
be easily understood on the basis of wave aspect of radiation. But light also exhibits the
phenomena of photo-electric effect, Compton effect and Raman effect which can only be
understood in terms of corpuscular or quantum aspect of radiation. The dual behavior of
light, or radiation cannot be consistently understood on the basis of classical concepts alone
or explained away by saying that light behaves as wave or particle depending on the kind
of experiment we do with it (complementarity). Moreover, a beam of material particles,
like electrons and neutrons, demonstrates wave-like properties (e.g., diffraction). A brief
outline of phenomena that require quantum mechanics for their understanding follows.

1.1.1 Planck’s Formula for Energy Distribution in Black-body
Radiation

The quantum nature of radiation, that radiation is emitted or absorbed only in bundles
of energy, called quanta (plural of quantum) or photons was introduced by Planck (1900).
According to Planck, each quantum of radiation of frequency ν has energy E given by

Eν = hν , (1.1.1)

where h = 6.626068 × 10−34 J-s (≡ 4.1357 × 10−15 eV-s) is a universal constant known as
Planck’s constant. On the basis of this hypothesis, he could explain the energy distribution
in the spectrum of black-body radiation. Planck derived the following formula for the energy
distribution in black-body radiation:

u(ν, T )dν =
8πhν3dν

c3
1

exp(hν/kBT )− 1
(1.1.2)

where u(ν, T )dν is the energy density for radiation with frequencies ranging between ν and
ν + dν and kB is the Boltzmann constant. Equation(1.1.2) is also known as Planck’s law,

1
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and has been verified in numerous experiments on the black-body radiation for all frequency
ranges.
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FIGURE 1.1
Energy distribution (eV/m3·Hz) in black-body radiation. The solid curve corresponds to
Planck’s law and the dashed curve corresponds to the classical Rayleigh-Jean’s formula [see
Problem 1].

1.1.2 de Broglie Relation and Wave Nature of Material Particles

de Broglie’s derivation of his famous relation

λ =
h

p
(1.1.3)

was based on the conjecture that, if a material particle of momentum p is to be associated
with a wave packet of finite extent, then the particle velocity v = p/m should be identified
with the group velocity vg of the wave packet.

It may be recalled that a wave packet results from a superposition of plane waves with
wavelength (or equivalently, frequency) spread over a certain range. As a result of this
superposition, the amplitude of the resultant wave pattern (wave-packet) is not fixed but
is subject to a wave-like variation and the velocity with which the wave packet advances in
space, known as the group velocity, is given by

vg ≡ dω

dk
= u+ k

du

dk
, (1.1.4)

where ω = 2πν is the angular frequency, k = 2π/λ is the wave number and u(ω) = ω/k is
the phase velocity. Wavelength λ, frequency ν, and phase velocity u of the wave, of course,
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satisfy the fundamental wave relation u = νλ. Thus while the wave propagates with phase
velocity u, the modulation (wave packet) propagates with velocity vg given by Eq.(1.1.4).

If we now invoke Planck’s quantum condition E = hν = ~ω (~ = h/2π), where E is the
total energy (including rest energy) of the particle, then Eq.(1.1.4) can be written as,

vg =
d(E/~)
dk

=
1
~
dE

dp

dp

dk
. (1.1.5)

It is easily seen that the relation dE/dp = v holds both for a relativistic (v/c ≈ 1) and a
non-relativistic (v/c � 1) particle1. Identification of v with vg in Eq. (1.1.5) immediately
leads us to de Broglie relation

dp

dk
= ~ ⇒ p = ~k =

h

λ
. (1.1.6)

It is easy to see that de Broglie relation is relevant not only for a material particle but
also for a quantum of radiation, i.e., a photon. Recalling that the energy of a photon of
frequency ν is Eν = hν and the rest mass assigned to it is zero, we have, according to the
relativistic energy momentum relation [Appendix 12A1, Eq.(12A1.24)],

E =
√
p2c2 +m2c4 = pc ,

or p =
E

c
=
hν

c
. (1.1.7)

Using this in de Broglie relation, we find λ = h/p = c/ν, which is the logical relation between
wavelength λ and frequency ν. For material particles, such as electrons, de Broglie relation
was put to test by Davisson and Germer (1926). They showed that electrons of very high
energy are associated with de Broglie wavelengths of the order of X-ray wave lengths. When
the beam of electrons was reflected from the surface of a Nickel crystal, they found selective
maxima only for specific angles of incidence θ such that 2d sin θ = nλ, where d is the spacing
of atomic planes in the lattice [see Fig.(1.2)], and n is an integer (order of diffraction) just
as in the case of X-rays. The wavelength of the electron beam found from this observation
agreed with that computed from de Broglie’s relation. In Thomson’s experiment (1927)
a collimated electron beam was incident normally on a thin gold foil. Diffraction from
differently oriented crystals gives rings on a photographic plate just as obtained in the case
of X-rays. In this case also computation of wave length from experimental observations
agreed with calculation according to de Broglie relation.

1.1.3 The Photo-electric Effect

The quantum idea of Planck was subsequently used by Einstein (1905) to explain photo-
electron emission from metals. His famous, yet simple, equation

hν = eΦ +
1
2
mv2 , (1.1.8)

where hν is the energy of the incident photon, eΦ is the energy needed by the electron to
overcome the surface barrier (Φ is called the work function) and v is the velocity acquired
by the ejected electron, has been extensively verified by experiments.

1From the energy-momentum relation E =
q
p2c2 +m2

0c
4 for a relativistic particle we have dE/dp =

pc2/E = c
q
E2 −m2

0c
4/E = v, because E = m0c2/

p
1− v2/c2. For a non-relativistic particle (v/c �

1, E ≈ m0c2 + p2/2m0), this relation is obvious.
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FIGURE 1.2
Bragg reflection from a particular family of atomic planes separated by a distance d. Incident
and refected rays from two adjacent planes are shown. The path difference is ABC−AD =
2d sin θ.

According to Einstein’s photo-electric equation (1.1.8) (i) the photo-electrons can be
emitted only when the frequency of the incident radiation is above a certain critical value
called the threshold frequency, (ii) The maximum kinetic energy of the electron does not
depend on the intensity of light but only on the frequency of the incident radiation, and
(iii) A greater intensity of the incident radiation leads to the emission of a larger number of
photo-electrons or a larger photo-electric current. All these predictions have been verified.

1.1.4 The Compton Effect

The frequency of radiation scattered by an atomic electron differs from the frequency of
the incident radiation and this difference depends on the direction in which the radiation
is scattered. This effect, called Compton effect can again be easily understood on the basis
of quantum aspect of radiation.

Consider a photon of frequency ν and energy hν incident on an atomic electron at O and
let it be scattered at an angle θ with energy E′ = hν′ while the atomic electron, initially
assumed to be at rest, recoils with velocity v in the direction φ [Fig.(1.3)]. According to the
relativistic energy-momentum relation for a zero rest mass particle, the incident photon has
a momentum p = hν/c and the scattered photon has momentum p′ = hν′/c. The electron
with rest mass m is treated as a relativistic particle. The momentum and energy of the
target electron (at rest) are given, respectively, by pe0 = 0 and Ee0 = mc2. For the recoil
electron the total energy, including rest energy, is

Ee =
mc2√
1− β2

, (1.1.9)

where β = v/c. The momentum of the recoil electron is in the direction φ and its magnitude
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FIGURE 1.3
Compton scattering of a photon by an electron.

is

pe =
mβc√
1− β2

. (1.1.10)

Application of the principles of conservation of energy and momentum in this process enables
us to calculate the change in the wavelength, or frequency, of the scattered photon.

Conservation of energy requires

hν +mc2 = hν′ +
mc2√
1− β2

. (1.1.11)

Conservation of momentum leads to

hν

c
=

mβc√
1− β2

cosφ+
hν′

c
cos θ , (1.1.12a)

0 =
mβc√
1− β2

sinφ− hν′

c
sin θ . (1.1.12b)

Eliminating φ from Eqs.(1.1.12) and using ν = c/λ, we find

h2

(
1
λ2

+
1
λ′2
− 2
λλ′

cos θ
)

=
m2c2β2

1− β2
. (1.1.13)

From Eq.(1.1.11) we have:

h2

(
1
λ2

+
1
λ′2
− 2
λλ′

)
+ 2mch

(
1
λ
− 1
λ′

)
=
m2c2β2

1− β2
. (1.1.14)

Subtracting Eq. (1.1.14) from Eq.(1.1.13), we get:

2h2

λλ′
(1− cos θ) = 2mch

(
1
λ
− 1
λ′

)
or (λ′ − λ) =

h

mc
(1− cos θ) . (1.1.15)

The quantity h/mc, which has dimensions of length, is called the Compton wavelength of
the electron and has the value 2.4262 × 10−3 nm. The result (1.1.15) has been verified
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experimentally. Thus simple particle kinematics enables us to account for both the photo-
electric effect and the Compton effect provided we regard radiation to be consisting of
bundles of energy called quanta.

In the case of Raman effect, part of the energy of the incident quantum of light may be
given to the scattering molecule as energy of vibration (or of rotation). Conversely it may
happen that some of the energy of vibration (or rotation) of the molecule may be transferred
to the incident quantum of light. The equation of energy in this case is

hν = hν′ ± nhν0 , (1.1.16)

where ν0 is one of the characterstic frequencies of the molecule. Hence Raman effect may
also be understood on the basis of quantum aspect of radiation.

However the corpuscular and wave aspects of radiation, as well as of material particles,
cannot be understood within the framework of classical mechanics. Quantum mechanics
does enable us to understand the dual aspect (wave and corpuscular) of radiation and
material particles, consistently [see Sec. 1.2 Interference of photons].

1.1.5 Ritz Combination Principle

Another important observation which defies classical description is Ritz combination prin-
ciple in spectroscopy. Classically, if an atomic electron has its equilibrium disturbed in
some way it would be set into oscillations and these oscillations would be impressed on the
radiated electromagnetic fields whose frequencies may be measured with a spectroscope.
According to classical concepts the atomic electron would emit a fundamental frequency
and its harmonics. But this is not what is observed; it is found that the frequencies of
all radiation emitted by an atomic electron can be expressed as difference between certain
terms,

ν = νmn = Tm − Tn , (1.1.17)

the number of terms Tn being much smaller than the number of spectral lines. This ob-
servation is termed as Ritz combination principle. The inevitable consequence that follows
from the Ritz combination principle is that the energy content of an atom is also quantized,
i.e., an atom can assume a series of definite energies only and never an energy in-between.
Consequently an atom can gain or lose energy in definite amounts. When an atom loses
energy, the difference between its initial and final energy is emitted in the form of a ra-
diation quantum (photon) and if an atom absorbs a quantum of energy (i.e. a photon of
appropriate freqency), its energy rises from one discrete value to another.

The results of the experiments of Frank and Hertz in which electrons in collision with
atoms suffer discrete energy losses also support the view that atoms can possess only discrete
sets of energies. This is unlike the classical picture of an atom as a miniature solar system
(with the difference that the force law in this case is Coulomb law, instead of gravitational
law). A planet in the solar system need not have discrete energies.

Bohr’s Old Quantum Theory

Neils Bohr (1913) had suggested that the energy of an electron in an atom (say, the Hydrogen
atom) may be required to take only discrete values if one is prepared to assume that (i) the
electron can move only in certain discrete orbits around the nucleus and (ii) the electron
does not radiate energy when moving in these discrete orbit. It is only when it jumps from
one discrete orbit to another that it radiates (or absorbs) energy. This implies that the
angular momentum of the electron about the nucleus should be quantized, i.e., allowed to
take only discrete values. Bohr’s model with the electron moving in an specified circular
orbit around the atomic nucleus is shown in Fig. (1.4).
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FIGURE 1.4
Bohr model of the Hydrogen atom with the electron moving in a specified circular orbit
around the nucleus.

According to Bohr, the angular momentum of the electron is quantized in units of ~:

L = mvr = n~ , n = 1, 2, 3, · · · (an integer) (1.1.18)

and its total energy is given by (SI units):

E =
1
2
mv2 − e2

4πε0r
. (1.1.19)

Since the electrostatic attraction of the electron by the nucleus provides the centripetal
force, we have

e2

4πε0r2
=
mv2

r
. (1.1.20)

Eliminating v from Eqs.(1.1.18) and (1.1.19) we have

rn =
4πε0~2n2

me2
≡ a0 n

2 , (1.1.21)

where a0 = 4πε0~2/me2 is called the radius of the first Bohr orbit, or just the Bohr radius.
From Eqs. (1.1.19)- (1.1.21) we can express the total energy as

En =
1
2

(
e2

4πε0rn

)
− e2

4πε0rn
= − e2

8πε0a0

1
n2

. (1.1.22)

The quantity e2/8πε0a0 = 13.6 eV is called a Rydberg. The energy levels pertaining to
various electron orbits, according to Bohr, are shown in Fig.(1.5)

Jumping of the electron from higher orbits to the orbits corresponding to n = 1, n = 2, n =
3, respectively, gives rise to the Lyman series, Balmer series, Paschen series of spectral lines
in Hydrogen spectrum. Bohr’s theory thus explained Ritz combination principle and the
observed spectra of Hydrogen. However, the problem of accounting for the remarkable
stability of atoms persisted. If, according to Bohr, the electron moves in a specified orbit
around the nucleus and it has acceleration directed towards the centre, it would radiate
energy and the orbit would get shorter and shorter, resulting in the instability of the atom.
On the other hand, atoms are found to be remarkably stable!

Classical ideas also fail to explain the chemical properties of atoms of different species.
For example, why are the properties of the Neon (Ne) atom, with ten electrons surrounding
the nucleus, drastically different from those of Sodium (Na) atom which has just one more
(eleven) electrons? The explanation can only be given in terms of a quantum mechanical
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FIGURE 1.5
Energy levels of the Hydrogen atom and the spectral series.

principle, viz., Pauli exclusion principle,according to which each quantum state is either
unoccupied or occupied by just one electron. In the case of Neon the first three electronic
shells are completely filled, thus making the atom chemically inactive. In the case of Sodium
the eleventh electron goes to the next unfilled shell. This electron called valence electron
gives the Sodium atom valency equal to one and makes it chemically very active. Thus from
the number of electrons in the atom we can generally estimate the electronic configuration
in the atom to determine its valency and infer its chemical behavior. This also explains why
all atoms of the same element (same Z) have identical chemical properties. This is also the
principle behind the periodic classification of elements.

Classical ideas also cannot explain why an alpha particle inside a nucleus, with energy far
less than the height of the Coulomb barrier at the nuclear boundary, is able to leak through
the barrier.

In addition to this there are several other properties of materials which cannot be under-
stood reasonably in terms of classical ideas. For example, solid materials have an enormous
range of electrical conductivity (conductivity of silver is 1024 times as large as that of fused
quartz). In terms of classical ideas one cannot comprehend why relative motion of neg-
ative particles (electrons) with respect to positive ions occurs more readily in silver than
in quartz. Further, on the basis of classical ideas, we cannot understand why magnetic
susceptibility (or permeability) of iron is much larger than that for other materials. Expla-
nation of these phenomena, and a host of others at the atomic or molecular level, demands
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a new mechanics with radically new concepts. Before going into these new concepts it is
important to ponder over the following question: Large and small are relative terms. Larger
objects are made up of smaller objects, smaller objects are made up of still smaller objects
and so on. Then why does it happen that classical concepts break down at a certain point
so that they are no longer valid for still smaller objects, say atoms? The answer is that
every observation is accompanied by a disturbance. This disturbance can be minimized
by sophisticated instruments and devices, but this cannot be done beyond a certain point.
There is always an uncertain intrinsic disturbance accompanying an observation which can-
not be done away with by improved technique or increased skill of the observer. A system
for which the intrinsic disturbance accompanying an observation is negligible is termed as
large in the absolute sense. A system for which the intrinsic disturbance accompanying an
observation is not negligible is termed as small in the absolute sense. It is for such systems
that classical concepts break down. It is for such small objects, in the absolute sense, that
a new mechanics, called quantum mechanics, based on radically new concepts, is needed.

1.2 Basis of Quantum Mechanics

1.2.1 Principle of Superposition of States

What could be the basis of the new mechanics? We shall see in the following illustrations
that a new principle called the principle of superposition of states of a physical system could
form the basis of this mechanics. In what follows we shall first elaborate on the term state
of a physical system in quantum mechanics, and then on superposition of states.

The state of a physical system is characterized by the result of a certain observation on
the system in that state being definite. We will explore this concept in subsequent sections
and elaborate on how to represent the states of a physical system mathematically. Presently,
to specify a physical state we shall just put some label within the symbol | 〉 and call it a
ket.

According to the principle of superposition of states a physical system in a superposition
state can be looked upon as being partly in each of the two or more other states. In other
words, a superposition state, say |X 〉, may be looked upon as a linear combination of two
(or more) other states, say |A 〉 and |B 〉:

|X 〉 = C1 |A 〉+ C2 |B 〉 ,

where C1 and C2 are some constants. The implication of this superposition is as follows:
suppose, in the state |A 〉 of the system, an observable, say α, gives a result a (i.e., the
probability of getting result a is 1 and that of getting the result b is 0 and in the state |B 〉
the same observable gives a result b (i.e., the probability of getting result a is zero and that
of getting the result b is 1). Now what would be the result of the same measurement in
the superposed state? The answer is that the result would not be something intermediate
between a and b. The result will be either a or b but which one, we cannot foretell. We
can only express the probability of getting the result a or b. In other words, though we
expect the properties of the state |X 〉 to be intermediate between the component states,
the intermediate character lies not in the results of observation for α on state |X 〉 being
intermediate between those for the component states |A 〉 and |B 〉, but in the probability
of getting a certain result on state |X 〉 being intermediate between the corresponding
probabilities for states |A 〉 and |B 〉. For the superposed state |X 〉, the probability for
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getting the result a lies between 0 and 1 and the probability of getting the result b also lies
between 0 and 1 and the sum of the two probabilities equals one.

We can generalize this principle to the superposition of more than two states by writing
|X 〉 = C1 |a1 〉+C2 |a2 〉+ · · ·+Cn |an 〉, where |a1 〉, |a2 〉, |a3 〉 · · · , |an 〉 are the states of
a system in which an observation α gives results a1 , a2 , . . . , an, respectively. If the same
observation is made on the superposed state |X 〉, the result would be indeterminate. It
could be either a1 or a2, · · · , or an. We can state the probabilities2 of getting the results
a1 , a2 , . . . , an, viz., |C1|2, |C2|2, |C3|2, . . . , |Cn|2 and the sum of these probabilities must
equal one. The following examples illustrate the principle of superposition of states.

1.2.1.1 Passage of a polarized photon through a polarizer

It has been found that when polarized light is used to eject photoelectrons, there is a
preferential direction of emission. Since photoelectric effect needs the photon concept for
its explanation, fact implies that polarization may be attributed to individual photons.
Thus if the incident light is polarized in a certain sense, the associated photons may be
taken to be polarized in the same sense.

To illustrate the principle of superposition of state we consider what happens to a single
photon, polarized at an angle θ to the transmission axis of the polarizer when it meets
the polarizer. We know that if the photon is polarized parallel to the transmission axis,
it crosses the crystal and appears on the other side as a photon of the same energy (or
frequency) polarized parallel to the polarizer axis (because there is complete transmission
of the incident light when polarized parallel to the transmission axis). If, on the other hand,
the photon is polarized perpendicular to the transmission axis of the polarizer, it is stopped
and absorbed. Furthermore, classical electrodynamics tells us that if there is an incident
beam polarized at an angle θ to the transmission axis then a fraction cos2 θ of it will be
transmitted and appear on the other side as light polarized paralllel to the transmission
axis while a fraction sin2 θ will be stopped and absorbed. But as regards a single photon
polarized at an angle θ to the transmission axis, one cannot say that a fraction cos2 θ of it
would be transmitted and a fraction sin2 θ of it would be stopped and absorbed because the
photon, if it appears on the other side has the same energy. To maintain the indivisibility of
the photon therefore, one has to sacrifice the concept of determinacy of classical mechanics
and bring in indeterminacy. Thus the answer to the question as to what is the fate of a
single photon (polarized at an angle θ to the transmission axis) when it crosses the crystal
is that one does not know. One can only state the probability of its transmission (cos2 θ)
and that of absorption (sin2 θ) and when it is transmitted it appears on the other side as
photon polarized parallel to the trasnmission axis and having the original energy.

In the context of the principle of superposition of states, the state of the polarized photon
(polarized at an angle θ to the polarizer axis) may be looked upon as a superposition of two
states: the state of polarization parallel to the transmission axis and a state of polarization
perpendicular to the transmission axis. Thus the state of a photon polarized at an angle θ
to the polarizer axis can be written as

|θ 〉 = C1 |⊥〉+ C2 |‖ 〉 .
When such a photon crosses the polarizer it is subjected to observation and the state is
disturbed. Then it may jump to any one of the component states. Which state it will jump
into is not certain; only the corresponding probability can be calculated. If it jumps to |‖ 〉
state, for which the probability is cos2 θ, it crosses the polarizer and appears on the other

2The interpretation of |Cn|2 as the probability of getting a result an when the observation α is made on
the superposed state |X 〉 is justified in Sec. 1.10.
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side as a photon polarized parallel to the polarizer axis with its energy (or frequencdy)
unchanged. If it jumps to |⊥〉 state, for which the probability is sin2 θ, it is stopped and
absorbed.

1.2.1.2 Interference of photons

Another illustration of the principle of superposition of states is provided by interference of
photons, i.e., an attempt to understand interference of light on the basis of photon concept.

To far zone

Far-zone intensity patterns

S1

S2

Two-slit Single-slit

O
A′
B′

A
B

FIGURE 1.6
Young’s two-slit interference setup. The figure is not to scale. The intensity patterns
sketched here are for the far zone of two closely spaced identical narrow slits illuminated by
collimated light.

In an interference experiment a beam from a monochromatic source is split into two
beams by means of slits S1 and S2 as shown in Fig. (1.6). When only one of the slits
(either S1 or S2) is opened, the intensity distribution is somewhat like the dashed curve in
Fig. (1.6). Thus some photons do reach the point A i.e. A is not a totally dark point. But
when both S1 and S2 are opened we have an interference pattern shown by the continuous
curve and A is totally dark while the points O and B are bright and so on. How does
one understand this? Is it that photons reaching A from S1 and S2 annihilate each other?
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This cannot happen for it would violate the conservation of energy. To explain this we take
recourse to the principle of superpostion of states. After passage through the slits the state
of a photon in this experiment may be looked upon as a supersposition of two translation
states of being associated with a beam through S1 and of being associated with a beam
through S2. One cannot tell which of the two beams the photon is actually associated with
unless one deliberately observes, and this observation disturbs the state of the photon. As
a result of this observation, the photon will jump from the superposed state to one of the
translational states, and so one will find it associated with either the beam through S1 or
through S2. However, in this process the interference pattern will be lost.

On this basis one can easily understand the interference pattern. An incoming photon
is associated with both translational states that interfere. At points O and B, where the
interference is constructive, the probability of the photon reaching there is large. Where
there is destructive interference the probability of photon reaching there is zero. Thus
we have a probability distribution for a single photon. When instead of a single photon
we have an incoming beam of photons, the probability distribution becomes the intensity
distribution.

x

Δx

FIGURE 1.7
A wave packet associated with a moving particle. ∆x, the extent of the wave packet, may
be looked upon as the positional uncertainty of the particle.

1.2.2 Heisenberg Uncertainty Relations

According to de Broglie we can generally associate a particle moving with volocity v, with a
wave packet so that v = vg , where vg is the group velocity of the wave packet [Eq. (1.1.3)].
If a particle happens to be associated with a continuous plane wave, characterized with a
definite wavelength, then it is naturally assigned a definite momentum (since p = h/λ),
i.e., uncertainty in momentum ∆p = 0. Such a particle can exist anywhere within the
continuous wave extending from −∞ < x < +∞. Thus ∆x → ∞ for this particle. An
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example of a particle with precise momentum is the photon which cannot be positionally
located at any time.

Now consider a particle associated with a wave packet shown in Fig.(1.7). Classically a
wave packet of extent ∆x may be looked upon as the result of superpostion of continuous
waves of wavelength ranging approximately from λ to λ+∆λ where

1
∆x
≈ −2π

∆λ

λ2
.

This relation follows from ∆x∆k ≈ 1 and ∆k = −2πλ2∆λ. Now, in the light of the principle
of superpositon of states, we can look upon this state of a particle (associated with the wave
packet) as one resulting from the superposition of several momentum states, with momenta
ranging from p to p+∆p, or wavelengths ranging from λ to λ+∆λ (each state of definite
momentum can be represented by continuous plane wave of a specific wavelength by virtue
of de Broglie relation). In such a superposed state a measurement of the momentum can
yield any value within p and p = p+∆p. From p = h/λ, we find ∆p = −h∆λ/λ2 = h/2π∆x,
which implies

∆x∆p ≈ ~ . (1.2.23)

Thus if a particle is associated with the wave packet of spatial extent ∆x, its position
uncertainty is ∆x and its momentum uncertainty is ∆p such that ∆p∆x ≈ ~ .

t

Δt

FIGURE 1.8
A wave packet of duration ∆t. Its duration ∆t may be looked upon as the time spent on
the observation of the energy of the particle.

We can alternatively consider the particle to be associated with a time packet, i.e., a
wave packet of duration ∆t in time. We can then look upon the extent ∆t of the time
packet to be the time spent on the observation (or assessment) of the energy of the particle.
Clasically such a wave packet results from the superposition of plane waves with frequencies
between ν and ν +∆ν such that ∆ν ≈ 1/2π∆t. Using Planck’s condition E = hν, we find
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∆E = h∆ν = h/2π∆t, which leads to

∆E∆t ≈ ~ . (1.2.24)

Since the state of the particle associated with the time packet can be looked upon as a
continuous superposition of states with frequencies between ν and ν + ∆ν (or of states
with energies between E and E +∆E), a measurement of energy in this state can give any
value ranging from E and E +∆E. Thus ∆E is the uncertainty in the energy of a particle
associated with the time packet of duration ∆t.

1.3 Representation of States

The states of a physical system should be represented in such a way that the underlying
principle of superposition of states is incorporated in the mathematical formulation. Dirac
postulated that states of a physical system might be represented by vectors in an infinite
dimensional space called Hilbert space. A typical vector may be denoted by |A 〉, called ket
A, A being a suffix to label the state. Since a vector space has the property that two or
more vectors belonging to it can be added to give a new vector in the same space, that is,

|X 〉 = C1 |A 〉+ C2 |B 〉 , (1.3.1)

the principle of superposition of states finds the following mathematical expression:
The correspondence between a ket vector and the state of dynamical system at a particular

time is such that if a state labeled by X results from the superposition of certain states
labeled by A and B, the corresponding ket vector |X 〉 is expressible linearly in terms of the
corresponding ket vectors |A 〉 and |B 〉 representing the component states [Eq.(1.3.1)].

The preceding statement leads to certain properties of the superposition of states:

1. When two or more states are superposed, the order in which they occur in the super-
position is unimportant, i.e., the superposition is symmetric between the states that
are superposed. This means C1 |A 〉+C2 |B 〉 and C2 |B 〉+C1 |A 〉 represent the same
state. This is also true in vector addition (commutativity holds).

2. If a state represented by |A 〉 is superposed onto itself it gives no new state. Mathe-
matically,

C1 |A 〉+ C2 |A 〉 = (C1 + C2) |A 〉
represents the same state as |A 〉 does. It therefore follows that if a ket vector corre-
sponding to a state is multiplied by any nonzero complex number, the resulting ket
vector corresponds to the same state. In other words, it is only the direction and not
the magnitude of a ket vector that specifies the state.

3. If |X 〉 = C1 |A1 〉 + C2 |A2 〉 + · · · + Cn |An 〉, then the state represented by |X 〉 is
said to be dependent on the component states |A1 〉 , |A2 〉 , · · · , |An 〉.

An important question that may be asked is why vectors belonging to an infinite di-
mensional space are chosen to represent physical states of any system. This is done to
include the possibility of having an infinite number of mutually orthogonal ket vectors3

which correspond to an infinite number of mutually orthogonal states.

3In three dimensional space we can think of only three mutually orthogonal vectors. In an N -dimensional
space we can think of N mutually orthogonal vectors.
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1.4 Dual Vectors: Bra and Ket Vectors

Corresponding to a set of vectors in a vector space we can have another set of vectors in a
conjugate space. Mathematicians call these two sets of vectors as dual vectors. Following
Dirac we call one set of vectors as ket vectors and the second set of vectors as bra vectors.
We have one to one correspondence in the two sets of vectors, for example the vectors |A 〉
and 〈A| , belonging to the two different vector spaces, correspond to each other and therefore
represent the same physical state. The two vectors are called conjugate imaginaries of each
other. Similarly |B 〉 and 〈B| are conjugate imaginaries of each other, then the set of vectors

|A 〉+ |B 〉 and 〈A| + 〈B|
C |A 〉 and C∗ 〈A|

C1 |A 〉+ C2 |B 〉 and C∗1 〈A| + C∗2 〈B|

are also conjugate imaginaries of each other. The whole mathematical theory which Dirac
has developed is symmetric between bras and kets.

Though the two sets of vectors, kets and bras, belong to different spaces and a ket vector
cannot be added to a bra vector, we can define the product of a bra and a ket vector (taken
in this order so that it becomes a bracket) the result being a complex number4. It turns out
that the brackets 〈A|B〉 and 〈B|A〉, both complex numbers, are in fact complex conjugates
of each other, i.e.,

〈A|B〉 = 〈B|A〉 . (1.4.1)

In Dirac notation a bar over a bracket or a complex number indicates its complex conjugate.
At some places we may also use a star (*) to denote the complex conjugate of a number.
From Eq. (1.4.1) we have 〈A|A〉 = 〈A|A〉 i.e. 〈A|A〉 is real and positive except when |A 〉
is zero in which case 〈A|A〉 = 0. The positive square root of 〈A|A〉 defines the length of
the ket vector |A 〉 (or of its conjugate imaginary 〈A| ). The ket vector or bra vector is said
to be normalized when

〈A|A〉 = 1 .

The bra vectors 〈A| and 〈B| or the ket vectors |A 〉 and |B 〉 are said to be orthogonal if
the scalar product

〈A|B〉 = 0 or 〈B|A〉 = 0 .

1.5 Linear Operators

A linear operator5 α̂ has the property that it can operate on a ket vector from left to right
to give another ket vector

α̂ |A 〉 = |F 〉 . (1.5.1)

4This is somewhat like the inner producdt of a covariant vector Ai and a contravariant vector Bi. The two
vectors cannot be added but an inner product

P
i AiB

i (or simply AiB
i ) exists.

5In our notation we use a caret over the symbols representing linear operators to distinguish them from
numbers.
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A linear operator can also operate on a bra vector from right to left to give another bra
vector

〈B| α̂ = 〈C| . (1.5.2)

We shall first state the properties of a linear operator, develop an algebra for ket and bra
vectors and linear operators, and subsequently take up their physical interpretation.

1.5.1 Properties of a Linear Operator

A linear operator α̂ is considered to be known if the result of its operation on every ket
vector or every bra vector is known. If a linear operator, operating on every ket vector gives
0 (null vector), then the linear operator is a null operator. Further, two linear operators are
said to be equal if both produce the same result when applied to every ket vector. Some
other properties of linear operators are

α̂ { |A 〉+ |A′ 〉} = α̂ |A 〉+ α̂ |A′ 〉 , (1.5.3)
α̂ {C |A 〉} = Cα̂ |A 〉 , (1.5.4)

(α̂+ β̂) |A 〉 = α̂ |A 〉+ β̂ |A 〉 , (1.5.5)

α̂β̂ |A 〉 = α̂
{
β̂ |A 〉

}
6= β̂ {α̂ |A 〉} . (1.5.6)

In general, the commutative axiom of multiplication does not hold for the product of two
operators α̂ and β̂ (α̂β̂ 6= β̂α̂). In particular, if two operators, say α̂ and β̂ commute, then
this is stated explicitly as

(α̂β̂ − β̂α̂) = 0̂ or [α̂, β̂] = 0̂ .

1.6 Adjoint of a Linear Operator

If α̂ is a linear operator, its adjoint α̂† is defined such that the ket α̂ |P 〉 and the bra 〈P | α̂†
are conjugate imaginaries of each other. That is, if

α̂ |P 〉 = |A 〉 (1.6.1)

then the adjoint of α̂ is defined by

〈P | α̂† = 〈A| . (1.6.2)

Since 〈A|B〉 = 〈B|A〉, this implies

〈P | α̂† |B 〉 = 〈B| α̂ |P 〉 (1.6.3)

This is a general result, which holds for any linear operator α̂ and for any set of vectors
|A 〉 and |B 〉. It expresses a frequently used property of the adjoint of an operator. Several
important corrolaries follow from the definition of the adjoint of a linear operator.

1. The adjoint of the adjoint of a linear operator is the original operator:
(
α̂†
)† = α̂.

By replacing the linear operator α̂ by its adjoint α̂† in Eq.(1.6.3) we have

〈P | (α̂†)† |B 〉 = 〈B| α̂† |P 〉 , (1.6.4)
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and by interchanging the labels of bra and ket vectors in Eq.(1.6.3) we find

〈B| α̂† |P 〉 = 〈P | α̂ |B 〉 . (1.6.5)

On taking the complex conjugate of this equation we obtain

〈B| α̂† |P 〉 = 〈P | α̂ |B 〉 . (1.6.6)

A comparison of Eqs. (1.6.4) and (1.6.6) shows 〈P | (α̂†)† |B 〉 = 〈P | α̂ |B 〉 which
implies (α̂†)† = α̂.

2. The adjoint of the product of two operators is equal to the products of the adjoints in
the reversed order: (α̂β̂)† = β̂†α̂†.

Let 〈P | α̂ = 〈A| and 〈Q| β̂† = 〈B| so that α̂† |P 〉 = |A 〉 and β̂ |Q 〉 = |B 〉. Then
we have the inner products

〈B|A〉 = 〈Q| β̂†α̂† |P 〉 , (1.6.7)

〈A|B〉 = 〈P | α̂β̂ |Q 〉 . (1.6.8)

But from the definition of inner product, we have

〈B|A〉 = 〈A|B〉
= 〈P | α̂β̂ |Q 〉
= 〈Q| (α̂β̂)† |P 〉 . (1.6.9)

Comparing Eq.(1.6.7) and (1.6.9) we have

(α̂β̂)† = β̂†α̂† . (1.6.10)

This can be generalized to the product of three or more operators as

(α̂β̂γ̂)† = γ̂†(α̂β̂)† = γ̂†β̂†α̂† (1.6.11)

(α̂β̂ · · · δ̂)† = δ̂† · · · β̂†α̂† . (1.6.12)

3. |A 〉 〈B| behaves like a linear operator and that ( |A 〉 〈B| )† = |B 〉 〈A|
It is easy to see that |A 〉 〈B| behaves like a linear operator because operating on a
ket from left, it gives another ket and operating on a bra from right, it gives another
bra,

|A 〉 〈B| P 〉 = 〈B|P 〉 |A 〉 = a complex number× |A 〉 ,
and 〈Q|A〉 〈B| = a complex number× 〈B| .
Now 〈Q|A〉 〈B| is a bra vector whose conjugate imaginary is the ket 〈Q|A〉 |B 〉 =
〈A|Q〉 |B 〉 = |B 〉 〈A|Q〉. Since conjugate imaginary of 〈Q| α̂ is α̂† |Q 〉 it follows
that if we identify |A 〉 〈B| as an operator α̂ then |B 〉 〈A| should be identified with
α̂†. Hence the operators |A 〉 〈B| and |B 〉 〈A| are adjoint of each other,

( |A 〉 〈B| )† = |B 〉 〈A| . (1.6.13)

A linear operator that is equal to its own adjoint

α̂ = α̂† , (1.6.14)

is called a self-adjoint or Hermitian operator. The term real operator is also used sometimes.
If, on the other hand, a linear operator satisfies α̂ = −α̂†, then the operator α̂ is called an
anti-Hermitian or pure imaginary operator.
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1.7 Eigenvalues and Eigenvectors of a Linear Operator

In general, a linear operator α̂ operating on a ket |B 〉 gives another ket, say, |F 〉

α̂ |B 〉 = |F 〉 .

The direction of the new ket vector |F 〉 is, in general, different from that of |B 〉. In a
particular situation (for a specific ket vector |A 〉) it may happen that

α̂ |A 〉 = α |A 〉 , (1.7.1)

where α may be a complex number. When this happens, we say that |A 〉 is an eigen ket
vector of α̂, belonging to the eivenvalue α. It can happen that a linear operator α admits
a set of eigen kets belonging to different eigenvalues:

α̂ |α′ 〉 = α′ |α′ 〉
α̂ |α′′ 〉 = α′′ |α′′ 〉

...

α̂
∣∣∣α(s)

〉
= α(s)

∣∣∣α(s)
〉

where we have labeled the eigen kets by writing the eigenvalues inside them. Eigenvalues of
operators are denoted by removing the carets and putting primes or suffixes on the symbols
representing the corresponding operators. Several corollaries follow from the definition of
an eigenvalue.

1. The eigenvalues of a self-adjoint (Hermitian) operator (α̂† = α̂) are real.

Let |α 〉 be an eigen ket of a Hermitian operator α̂ belonging to eigenvalue α,

α̂ |α 〉 = α |α 〉 . (1.7.2)

Multiplying on the left by 〈α| we get

〈α| α̂ |α 〉 = α 〈α|α〉 . (1.7.3)

Taking the complex conjugate of both sides we have

〈α| α̂ |α 〉 = α∗ 〈α|α〉 = α∗ 〈α|α〉 . (1.7.4)

But from the definition (1.6.3) of adjoint operator the left hand side of this equation
〈α| α̂ |α 〉 = 〈α| α̂† |α 〉. Using this in Eq.(1.7.4) we find that 〈α| α̂† |α 〉 = α∗〈α|α〉
or 〈α| α̂ |α 〉 = α∗ 〈α|α〉, since α̂† = α̂. On comparing this result with Eq. (1.7.3) we
conclude

α∗ = α , (1.7.5)

which implies that α is real. This can be generalized to all eigenvalues of a self-adjoint
operator α̂ and we conclude that the eigenvalues of a self-adjoint operator are real.

2. The eigenvalues associated with the eigen kets of a self-adjoint (Hermitian) operator
are the same as the eigenvalues associated with eigen bras of the same operator.
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Let |α′ 〉 be an eigen ket belonging to eigenvalue α′ of a self-adjoint (Hermitian)
operator:

α̂ |α′ 〉 = α′ |α′ 〉 , (1.7.6)

where α′ is real, since α† is Hermitian. Taking the conjugate imaginary of both sides
leads to

〈α′| α̂† = α′∗ 〈α| . (1.7.7)

But, since α̂† = α̂ and α′∗ = α′ (real), Eq. (1.7.4) leads to

〈α′| α̂ = α′ 〈α′| . (1.7.8)

Thus the conjugate imaginary of an eigen ket of a Hermitian operator α̂ is an eigen
bra of the same operator belonging to the same eigenvalue. The converse also holds.

Proceeding in this manner we can show that this result holds for other eigen kets and
eigenvalues as well.

3. Eigenvectors belonging to different eigenvalues of a Hermitian aperator are orthogonal.

If |α′ 〉 and |α′′ 〉 are the eigen kets belonging, respectively, to the eigenvalues α′ and
α′′ of a Hermitian operator α̂, then

α̂ |α′ 〉 = α′ |α′ 〉 (1.7.9)
α̂ |α′′ 〉 = α′′ |α′′ 〉 . (1.7.10)

Taking conjugate imaginary of each side of Eq. (1.7.9) we obtain

〈α′| α̂† = α′∗ 〈α′| ,
or 〈α′| α̂ = α′ 〈α′| , (1.7.11)

where we have used α̂† = α̂ (Hermitian operator) and α′∗ = α′ (eigenvalue of a
Hermitian operator). Multiplying Eq. (1.7.14) on the right by |α′′ 〉 we get

〈α′| α̂ |α′′ 〉 = α′ 〈α′|α′′〉 , (1.7.12)

and multiplying Eq (1.7.15) on the left by 〈α′| we get

〈α′| α̂ |α′′ 〉 = α′′ 〈α′|α′′〉 , (1.7.13)

where α′ and α′′, being a numbers, have been taken out of the brackets. Subtracting
Eq. (1.7.18) from (1.7.17) we obtain

(α′ − α′′) 〈α′|α′′〉 = 0 . (1.7.14)

This equation implies that, if α′ 6= α′′, then 〈α′|α′′〉 = 0. In other words, eigenvectors
(eigen kets or eigen bras) of a self-adjoint operator α̂, belonging to different eigenvalues
are orthogonal in the sense that their inner product is zero, i.e., 〈α′|α′′〉 = 0.

If α′′ = α′ then 〈α′|α′′〉 = 〈α′|α′〉 6= 0 and is taken to be unity if |α′ 〉 is normalized.
In general, if the eigenvectors are normalized〈

α(r)
∣∣∣α(s

〉
= δrs . (1.7.15)
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1.8 Physical Interpretation

So far we have defined a linear operator and its adjoint and have developed an algebra
involving ket and bra vectors and linear operators. We have also mathematically defined
eigenvectors (eigen kets and eigen bras) and eigenvalues of a linear operator and have
established some corollaries. We shall now explore if we can give a physical meaning to
Hermitian (self-adjoint) linear operators, their eigenvalues and their eigen kets or eigen
bras.

Self-adjoint operators may correspond to real dynamical variables of classical mechanics.
Such operators may be expressed in terms of the position and momentum operators and
may represent some physical quantity, e.g., energy or angular momentum. Because of
their correspondence with some observable physical quantities, these operators may also be
termed as observables6. We can now give a physical meaning to eigenvectors (kets or bras)
and eigenvalues and also the orthogonality of eigenvectors.

1.8.1 Physical Interpretation of Eigenstates and Eigenvalues

The equation α̂ |α′ 〉 = α′ |α′ 〉 can be given the following physical interpretation. When the
system is in the state specified by |α′ 〉 then an observation pertaining to the operator α̂
made on the system is certain to give the result α′. Likewise, the eigenvalue equation

α̂
∣∣∣α(r)

〉
= α(r)

∣∣∣α(r)
〉

(1.8.1)

implies that when the physical system is in the state represented by
∣∣α(r)

〉
, the result

of measurement of a physical quantity pertaining to α̂ is completely predictable and it is
α(r). Various eigenvalues of the self-adjoint operator represent the results of measurement
pertaining to the Hermitian operator α̂ on the respective eigenstates. If the physical system
is not in any one of the eigenstates of α̂ but in an arbitrary state |X 〉 which is expressible
as a superposition of these eigenstates:

|X 〉 = C1 |α′ 〉+ C2 |α′′ 〉+ · · ·+ CN

∣∣∣α(N)
〉
≡

N∑
r=1

Cr

∣∣∣α(r)
〉
, (1.8.2)

then the result of a measurement pertaining to α̂ will be indeterminate. It will, of course,
be one of the eigenvalues of α̂ but which one we cannot foretell. We can thus inter-
pret the eigenvalues of α̂ as the possible results of measurements of α̂ on the system in
any state. The results of measurement of α̂ will never be different from the eigenvalues
α′, α′′ · · · α(r) · · ·α(N). If the state of the system happens to be an eigenstate of α̂, the
results of measurement of α̂ is predictable and is the corrsesponding eigenvalue. If the state
is not an eigenstate of α̂ then the result is indeterminate, but it is one of the eigenvalues. It
is now also evident why we have required an observable to be a self-adjoint operator. Only
a self-adjoint operator can admit real eigenvalues and we do require the eigenvalues to be
real because the results of any physical observation must be real.

6In addition to being self-adjoint linear operators, observables must conform to the requirement of com-
pleteness [see Sec. 1.10].
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1.8.2 Physical Meaning of the Orthogonality of States

The eigenstates of a Hermitian (self-adjoint) operator α̂ belonging to different eigenvalues,
say α(r) and α(s) are orthogonal in the sense that

〈
α(r)

∣∣∣α(s)
〉

= δrs , (1.8.3)

where we have assumed that all eigen kets or bras are normalized. This is how we express
orthogonality condition mathematically. It means that the overlap between two orthogonal
states is zero or the projection of one orthogonal state on the other is zero.

Physically a set of states |α′ 〉 , |α′′ 〉 · · · ∣∣α(r)
〉

are said to be orthogonal to each other if
there exists an observation (in this case pertaining to α̂) which, when made on the system
in each one of these states, is destined to give different results.

1.9 Observables and Completeness Criterion

We have seen that for an operator α̂ to be an observable, that is, for it to correspond to a
measurable quantity, it must be a Hermitian (self-adjoint) operator because its eigenvalues,
which represents the possible results of measurement, must be real. Consequently, the
eigenvectors of α̂ must satisfy the orthogonality condition

〈
α(r)

∣∣∣α(s)
〉

= δrs . (1.9.1)

However, to be classed as an observable, a Hermitian operator α̂ must, in addition, satisfy
the completeness criterion, i.e., the eigenvectors of α̂ must form a complete set of ket vectors
so that an arbitrary state |X 〉 can be expressed in terms of them:

|X 〉 =
N∑
r=1

Cr

∣∣∣α(r)
〉
. (1.9.2)

It is only when an arbitrary state |X 〉 is expressible in terms of the eigenstates of α̂ that
α̂ can be measured in the state |X 〉 and the result is one of the eigenvalues of α̂. If the
eigenstates of α̂ do not form a complete set and an arbitrary state |X 〉 of the system is
not expressible in terms of them, then α̂ cannot be called an observable. We shall see an
example of a Hermitian operator that is not an observable in Chapter 3.

The completeness condition can be expressed mathematically as follows. Let an operator∑N
r=1

∣∣α(s)
〉 〈
α(s)

∣∣ operate on an arbitrary state |X 〉, which can be expressed in terms of
the eigen kets of α̂ by means of Eq.(1.9.2), since the set of eigen kets

∣∣α(s)
〉

form a complete
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set. Then

N∑
s=1

∣∣∣α(s)
〉〈

α(s)
∣∣∣X〉 =

N∑
s=1

∣∣∣α(s)
〉〈

α(s)
∣∣∣ N∑
r=1

Cr

∣∣∣α(r)
〉

=
N∑
r=1

Cr

N∑
s=1

∣∣∣α(s)
〉〈

α(s)
∣∣∣α(r)

〉
=

N∑
r=1

Cr

N∑
s=1

∣∣∣α(s)
〉
δrs

=
N∑
r=1

Cr

∣∣∣α(r)
〉

= |X 〉 .

Since |X 〉 is an arbitrary state, it follows that

N∑
s=1

∣∣∣α(s)
〉〈

α(s)
∣∣∣ = 1̂ , (1.9.3)

is a unit operator. Equation (1.9.3) can be looked upon as the mathematical expression of
the completeness condition.

Thus, if an operator α̂ is to be an observable, its eigenstate must satisfy the twin condi-
tions of

(i) orthogonality:
〈
α(s)

∣∣∣α(r)
〉

= δrs (1.9.1)

and (ii) completeness:
N∑
r=1

∣∣∣α(r)
〉〈

α(r)
∣∣∣ = 1̂ . (1.9.3)

If the eigenvalues of α̂ are not discrete but continuous so that α varies continuously in a
certain range, then the completeness relation can be written as∫

|α 〉 dα 〈α| = 1̂ . (1.9.3a)

It could also be that eigenvalues of α̂ are discrete in a certain range and continuous in
another. In such a case the completeness condition can be written as

N∑
r=1

∣∣∣α(r)
〉〈

α(r)
∣∣∣ +

∫
|α 〉 dα 〈α| = 1̂ . (1.9.3b)

The operator
∣∣α(r)

〉 〈
α(r)

∣∣ may be regarded as the projection operator for the state
∣∣α(r)

〉
for it is easily seen that, operating on any arbitrary state |X 〉, it projects out the state∣∣α(r)

〉
apart from a multiplying constant. Physically the completeness condition (1.9.3)

implies that the sum of the projection operators for all eigenstates of an observable α̂ is a
unit operator.

It may be noted that observables, that is, the operators corresponding to some physical
measurements, are not the only operators used in quantum mechanics. Apart from observ-
ables, we use several other linear operators which have different functions to perform but
they all have the common property that their operation on a state, in general, yields a new
state.
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1.10 Commutativity and Compatibility of Observables

If two observables α̂ and ξ̂ do not commute, α̂ξ̂ 6= ξ̂α̂, then the eigenstates of α̂ are not the
eigenstates of ξ̂ and vice versa. This means that if

∣∣ξ(s)
〉

is an eigenstate of ξ̂ belonging to
the eigenvalue ξ(s), then a measurement pertaining to the observable α̂ on the system in the
state

∣∣ξ(s)
〉
, will disturb the state. To see this we express the state

∣∣ξ(s)
〉

as a superposition
of the eigenstates of α̂ as∣∣∣ξ(s)

〉
=
∑
r

∣∣∣α(r)
〉〈

α(r)
∣∣∣ ξ(s)

〉
≡
∑
r

Cr

∣∣∣α(r)
〉
, (1.10.1)

where Cr =
〈
α(r)

∣∣∣ ξ(s)
〉
. (1.10.2)

We arrived at this expansion by inserting a unit operator 1̂ =
∑
r

∣∣α(r)
〉 〈
α(r)

∣∣ before∣∣ξ(s)
〉
. A measurement of α̂ on the system in the state

∣∣ξ(s)
〉

will throw it into one of the
eigenstates of α̂; which one, we cannot foretell. Thus the result of measurement of α̂ will
be indeterminate although it will be one of the eigenvalues of α̂. We can interpret |Cr|2 as
the probability of getting the result α(r) when an observation for α̂ is made on the system
in the state

∣∣ξ(s)
〉
. This interpretation is justified because∑

r

|Cr|2 =
∑
r

C∗rCr =
∑
r

〈
ξ(s)
∣∣∣α(r)

〉〈
α(r)

∣∣∣ ξ(s)
〉

=
〈
ξ(s)
∣∣∣ ξ(s)

〉
= 1 ,

which conforms to the fact that the probability of getting any one of the eigenvalues of α̂
as the result, when an observation for α̂ is made on the system in the state

∣∣ξ(s)
〉
, is one.

In view of the interpretation of |Cr|2 as a probability, the coefficient Cr ≡
〈
α(r)

∣∣ ξ(s)
〉

is
referred to as a probability amplitude.

Conversely, an eigenstate of α̂, say
∣∣α(r)

〉
, may be expanded in terms of the eigenstates

of the observable ξ̂ by introducing the unit operator 1̂ =
∑
s

∣∣ξ(s)
〉 〈
ξ(s)
∣∣ before

∣∣α(r)
〉
:∣∣∣α(r)

〉
=
∑
s

∣∣∣ξ(s)
〉〈

ξ(s)
∣∣∣α(r)

〉
≡
∑
s

C ′s

∣∣∣ξ(s)
〉

(1.10.3)

where C ′s =
〈
ξ(s)
∣∣∣α(r)

〉
. (1.10.4)

A measurement of ξ̂ in the state
∣∣α(r)

〉
will throw the system into any one of the eigenstates

of ξ̂; which one, again, we cannot foretell. Thus the result of measurement of ξ̂ on the state∣∣α(r)
〉

is indeterminate although it will be one of the eigenvalues of ξ̂. We can interpret
|C ′s|2 as the probability of getting the result ξ(s) when an observation for ξ̂ is made on
the system in the state

∣∣α(r)
〉
. Since C ′s [Eq.(1.10.4)] and Cr [Eq. (1.10.2)] are complex

conjugates of each other |C ′s|2 = |Cr|2, it follows that the probability of getting the result
ξ(s) when an observation for ξ̂ is made on the system in a state in which a measurement of
α̂ is destined to give a result α(r) equals the probability of getting the result α(r) when an
observation for α̂ is made on the system in a state in which ξ̂ is destined to give the result
ξ(s).

In short, if the observables α̂ and ξ̂ do not commute, their measurements are not com-
patible in the sense that we cannot find a single state in which both observables can be
simultaneously measured without disturbing the state.

When, however two observables say ξ̂ and η̂ commute: [ξ̂, η̂] = ξ̂η̂ − η̂ξ̂ = 0, then they
admit a set of simultaneous eigenstates |ξ′, η′ 〉 , |ξ′′, η′′ 〉 , · · · , ∣∣ξ(s), η(s)

〉
. In any one of

these states both observables can be measured without disturbing the state.
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As we shall see in the next section, the position and momentum observables do not
commute: [x̂, p̂x] 6= 0. Consequently, if there is a state in which a measurement of p̂x gives
a precise result, the measurement of x̂ is uncertain and vice versa. Thus the measurement
of x̂ and p̂x are not compatible. On the other hand, in the hydrogen atom problem, as we
shall see later, the set of observable Ĥ (Hamiltonian), L̂2 (angular momentum squared),
and L̂z (z-component of angular momentum) commute:

[Ĥ, L̂2] = 0 = [L̂2, L̂z] = [Ĥ, L̂z] .

This set of commuting observable admits the set of simultaneous eigenstates |n , ` ,m 〉. In
any one of these states the measurements corresponding to the observables Ĥ, L̂2, L̂z may
be simultaneously performed, without disturbing the state, giving the results En, ~2`(`+1)
and m~, respectively.

1.11 Position and Momentum Commutation Relations

In classical mechanics, if we consider a system of particles with f degrees of freedom then
we need to specify f generalized position coordinates, q1 , q2 , · · · , qf and f generalized
momenta p1 , p2 , · · · , pf where the quantities qi and pi are said to be canonically conjugate
to each other. After expressing the Hamiltonian in terms of these coordinates one can write
the classical equations of motion in the canonical form and solve them, subject to given
boundary conditions. Subsequently one can accurately determine any quantity relevant to
the system at any time [see Appendix 1A1], provided all the initial conditions of the system
are known.

In quantum mechanics we treat the generalized position coordinates and generalized mo-
menta as observables or self-adjoint or Hermitian operators conforming to the completeness
criterion. Thus we have the coordinate observables q̂1 , q̂2 , · · · , q̂f and momentum observ-
ables p̂1 , p̂2 , · · · , p̂f . All position observables commute with each other:

[q̂i, q̂j ] = 0 , i, j = 1, 2, · · · f . (1.11.1)

Their measurements are compatible with another and there exist simultaneous eigenstates
in each of which all positon coordinates can be measured without disturbing the state.
Similarly, all momentum observables commute with each other:

[p̂i, p̂j ] = 0 , i, j = 1, 2, · · · f . (1.11.2)

Measurements of all momentum observables are compatible with one another; therefore,
there exist simultaneous eigenstates where all momenta can be measured without disturbing
the state.

Now, the principle of uncertainty tells us that the measurements of a position observable x̂
and its canonically conjugate momentum p̂x are not compatible. If there is a state in which
p̂x is measured with complete determinacy, a measurement of x will give indeterminate
result and vice versa. Thus x̂ and p̂x do not commute

[x̂, p̂x] 6= 0 (1.11.3)

and, in general,
[q̂i, p̂i] 6= 0 . (1.11.4)
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To work out this commutator we note that [q̂i, p̂i] is a pure imaginary (anti-Hermitian)
operator7 and can be put equal to iX̂ where X̂ is a self-adjoint (Hermitian) operator. For
the operator X̂ we can make the choice X̂ = ~1̂, based on dimensional considerations (the
product of momentum and coordinate has dimensions of action or ~). This choice yields
results in agreement with observations. Thus the commutator of position and momentum
observables is

[q̂i, p̂j ] = i~ 1̂ . (1.11.5)

This commutator, together with the relations,

[q̂i, q̂j ] = [p̂i, p̂j ] = 0̂ (1.11.6)

gives the set of commutation relations for the set of observables q̂i and p̂i. On the basis of
these commutation relations (choosing the operator X̂ = ~ 1̂) we are able to derive results
which are consistent with observations. This is one reason for accepting the commutation
relations Eq. (1.11.5) and (1.11.6) for the position and momentum observables.

Another reason for accepting these commutation relations is the close analogy between
the classical Poisson bracket (CPB) of two classical dynamical variables u and v defined
by8

{u, v} =
∑
i

{
∂u

∂qi

∂v

∂pi
− ∂u

∂pi

∂v

∂qi

}
, (1.11.7)

and (ih)−1 times the quantum commutator brackets of the correspomding observables û
and v̂, viz. (i~)−1[û, v̂]. Both of these brackets, which otherwise have completely different
definitions, satisfy some common identities:

Classical Poisson Bracket Quantum Commutator Bracket
{u, v} = −{v, u} [α̂, β̂] = −[β̂, α̂]
{u, C} = 0 [û, C] = 0̂
{u1 + u2, v} = {u1, u}+ {u2, v} [û1 + û2, v̂] = [û1, v̂] + [û2, v̂]
{u, v1 + v2} = {u, v1}+ {u, v2} [û, v̂1 + v̂2] = [û, v̂1] + [û, v̂2]
{u1u2, v} = {u1, v}u2 + u1 {u2, v} [û1û2, v̂] = [û1, v̂] û2 + û1 [û2, v̂]
{u, v1v2} = {u, v1} v2 + v1 {u, v2} [û, v̂1v̂2] = [û, v̂1] v̂2 + v̂1 [û, v̂2]

Jacobi identity:

{u, {v, w}}+ {v, {w, u}}
+ {w, {u, v}} = 0

Jacobi identity:

[û, [v̂, ŵ]] + [v̂, [ŵ, û]]

+ [ŵ, [û, v̂]] = 0̂

Now just as in classical mechanics the CPB of two real dynamical variables is real, so also
in quantum mechanics we expect the analogous brackets for two observables (self-adjoint
operators) to be self-adjoint. Now [û, v̂] is pure imaginary. To make it self-adjoint (Hermi-
tian), we may divide it by i~. Thus the quantum analogue of CPB {u, v} is (i~)−1[û, v̂].

7We can easily see that the commutator of two self-adjoint operators α̂ and β̂ is anti-Hermitian: [α̂, β̂]† =

−[α̂, β̂].

Proof: [α̂, β̂]† = (α̂β̂ − β̂α̂)† = (α̂β̂)† − (β̂α̂)†= β̂†α̂† − α̂†β̂† = β̂α̂− α̂β̂ = −[α̂, β̂].
8For the properties and significance of classical Poisson brackets, see Appendix (1A1).
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Incidentally, there also exists a close analogy between the classical equations of motion
for a real dynamical variable α

dα

dt
=
∂α

∂t
+ {α,H} (1.11.8)

and the Heisenberg equation of motion9 for a Heisenberg observable in quantum mechanics

dα̂H

dt
=
∂α̂H

∂t
+

1
i~

[
α̂H , Ĥ

]
. (1.11.9)

We observe that in the classical equation, the CPB stands in analogy with the quantum
commutator bracket divided by i~ in the Heisenberg equation of motion in quantum me-
chanics.

From the definition of classical Poisson brackets, we can easily work out the fundamental
brackets and write

{qi, pi} = 1 , (1.11.10)
{qi, qj} = {pi, pj} = 0 . (1.11.11)

Writing similar conditions for quantum commutator brackets, in analogy with the classical
Poisson brackets, we get

1
i~

[q̂i, p̂i] = 1̂ ,

1
i~

[q̂i, q̂j ] =
1
i~

[p̂i, p̂j ] = 0̂ ,

which are precisely the quantum commutator relations (1.11.5) and (1.11.6). These equa-
tions are also referred to as the fundamental quantum conditions for the position and
momentum observables. These conditions are based on logical reasoning, apart from an
arbitrariness in the choice of the self-adjoint operator X̂ as ~ 1̂. This choice is made so that
the results of calculations agree with observations.

1.12 Commutation Relation and the Uncertainty Product

On the basis of the commutation relation between two observables Â and B̂

[Â, B̂] = iĈ , (1.12.1)

it is possible to work out the product of minimum uncertainty in the measurements of Â and
B̂ for any (arbitrary) state, say |ψ 〉. For this state the quantum mechanical expectation
values of Â and B̂ are given as

Ā = 〈Â〉 = 〈ψ| Â |ψ 〉 , (1.12.2)

and B̄ = 〈B̂〉 = 〈ψ| B̂ |ψ 〉 . (1.12.3)

(Quantum mechanical expectation value of an observable Â for a state |ψ 〉, which is not an
eigenstate of Â, is the average value of the result when Â is measured on a large number

9In Chapter 3, Sec. 3.8 on Equations of Motion we shall discuss the Schrödinger and Heisenberg pictures
and derive Heisenberg equations of motion.
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of identical systems, each one in the state |ψ 〉). We can treat this quantity as the average
value of Â for the state |ψ 〉. The square of the uncertainty ∆A in the measurement of Â is
given by

(∆A)2 ≡ 〈ψ| (Â− Ā)2 |ψ 〉 = 〈Â2〉 − 〈Â〉2 . (1.12.4)
Similarly, the square of the uncertainty ∆B in the measurement of B̂ is given by

(∆B)2 ≡ 〈ψ| (B̂ − B̄)2 |ψ 〉 = 〈B̂2〉 − 〈B̂〉2 . (1.12.5)

These quantities are like mean square deviations and can be looked upon as the expectation
values of and Â

′2 and B̂
′2 , respectively, where Â′ = (Â − Ā) and B̂′ = (B̂ − B̄). Now let

us define an operator Ô as
Ô = Â+ (α+ iβ)B̂ (1.12.6)

where α and β are real numbers and Â and B̂ are observables and, therefore, self-adjoint
operators. Now the expectation value of ÔÔ† is nonnegative

〈ψ| Ô†Ô |ψ 〉 ≥ 0 , (1.12.7)

because the square of the length of the ket vector Ô |ψ 〉 cannot be negative. Equation
(1.12.6) then implies that

〈ψ| Â2 + (α2 + β2)B̂2 + α(ÂB̂ + B̂Â) + iβ(ÂB̂ − B̂Â |ψ 〉 ≥ 0 .

Using the substitution ÂB̂+B̂Â ≡ Ŝ and the commutator (1.12.1) to write ÂB̂−B̂Â = iĈ,
the inequality (1.12.8) preceding inequality can be written as

〈Â2〉+ 〈B̂2〉
[
α+

1
2
〈Ŝ〉
〈B̂2〉

]2

+ 〈B̂2〉
[
β − 1

2
〈Ĉ〉
〈B̂2〉

]2

− 1
4
〈Ŝ〉2
〈B̂〉2 −

1
4
〈Ĉ〉2
〈B̂〉2 ≥ 0 (1.12.8)

This inequality holds for all real values of α and β. In particular, we can choose these
numbers in such a way that the quantities inside the parentheses are both zero:

α = −1
2
〈Ŝ〉
〈B̂2〉 , β =

1
2
〈Ĉ〉
〈B̂2〉 .

With these choices we have

〈Â2〉 − 1
4
〈Ŝ〉2
〈B̂2〉 −

1
4
〈Ĉ〉2
〈B̂2〉 ≥ 0

or 〈Â2〉〈B̂2〉 ≥ 1
4

(
〈Ŝ〉2 + 〈Ĉ〉2

)
≥ 1

4
〈Ĉ〉2 . (1.12.9)

If Â′ ≡ Â − 〈Â〉 and B̂′ ≡ B̂ − 〈B̂〉, then obviously [Â′, B̂′] = [Â, B̂] = iĈ. Therefore,
following Eq. (1.12.9), we have the inequality

〈Â′2〉〈B̂′2〉 ≥ 1
4
〈Ĉ〉2 . (1.12.10)

Using Eqs. (1.12.4) and (1.12.5) in this equation we obtain

∆A∆B ≥ 1
2
〈Ĉ〉 . (1.12.11)

The uncertainty relation for position and momentum observables follows from this equation.
Recalling that the commutation relation for the observables x̂ and p̂ is [x̂, p̂] = i~ 1̂, we have
the important result

∆x∆p ≥ ~
2
. (1.12.12)

This is the product of uncertainties in the measurement of position and momentum coor-
dinates of a particle in any state. The minimum value of this product is ~/2.
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Problems

In computing various physical quantities the following table of constants and their combina-
tions may be useful. A good reference for most recent values of constants is NIST website:
http://physics.nist.gov/cgi-bin/cuu/

Constant Name Usual symbol and current value
Speed of light c=2.997 924 58×108 m/s
Elementary charge e = 1.602 177× 10−19 C
Electron mass me = 9.109× 10−31 kg
Proton mass mp = 1.673× 10−27 kg
Proton-to-electron mass ratio mp/me = 1836
Neutron mass mn = 1.675× 10−27 kg
Bohr magneton µB = 9.274× 10−24 J/T

= 5.788× 10−5 eV/T
Nuclear magneton µN = 5.051× 10−27 J/T

= 3.152× 10−8 eV/T
Planck’s constant h = 6.626 069× 10−34 J-s

~ ≡ h/2π = 1.054 572× 10−34 J-s
Gravitational constant G = 6.67428(67) 6× 10−11 N-m2/kg2

Fine structure constant α = e2/4πε0~c = 1/137.036 ≈ 1/137
Stefan-Boltzmann constant σ = 5.670 4× 10−8 W/m2-K4

Boltzmann constant k
B

= 1.380 65× 10−23 J/K
≡ 8.6173× 10−5 eV/K

Avogadro’s number NA = 6.022 141 79(30)× 1023 /mol

In practice, it is easier and more useful to remember certain combinations of fundamental
constants rather than the constants themselves.

Combination of Constants

Fine structure constant α = e2/4πε0~c 1/137.036 ≈ 1/137
~c 197.3271 eV- nm (MeV-fm)
kBT 1/40 eV at 293 K; 1/39 eV at 300K
Electron rest mass energy mec

2 0.5110 MeV
Proton rest mass energy mpc

2 938.28 MeV
Neutron rest energy mnc

2 939.57 MeV
Proton-electron mass ratio mp/me 1836.15
Bohr radius a0 = ~/mecα 0.5292× 10−10 m
Planck time

√
~G/c5 5.4× 10−44 s

Compton wavelength of electron ~/mec 3.8616×10−13 m
1 degree 1.745×10−2 rad
1 eV 1.602×10−19 J

Energy of a photon can be calculated by using the formula

E = hν =
2π~c
λ

=
1238

λ(in nm)
eV .

http://physics.nist.gov/cgi-bin/cuu/


NEED FOR QUANTUM MECHANICS AND ITS PHYSICAL BASIS 29

1. Given that there are 8πν2/c3dν modes (Planck considered each mode to be an oscil-
lator, see Chapter 13) per unit volume in the frequency range ν and ν + dν, calculate
the average radiation energy density for a cavity in equilibrium at temperature T by
assuming that the energy of an oscillator E is (i) continuous (ii) quantized (E = nhν,
n = 0, 1, 2, · · · ) in units of hν. Note that the probability that an oscillator has energy
E is ∝ exp(−E/kBT ). Does this help you appreciate Planck’s insight?

2. The energy of a proton beam is 1000 eV. Calculate the associated de Broglie wave
length. Given: 1 eV=1.602× 10−19 J. For other constants see the table above.

3. Calculate the de Broglie wavelength of electrons in a beam of energy 20 keV. How
does this compare to the wavelength of X rays of 20 keV?

4. The work function of Barium is 2.11 eV. Calculate the threshold frequency and thresh-
old wavelength for the light which can emit photo-electrons from Barium.

5. The threshold wavelength of radiation for photo-electric emission from tungsten is 230
nm. Find the kinetic energy of photo-electrons emitted from its surface by ultra-violet
light of wave length 180 nm.

6. A photon of wave length 331 nm falls on a photo-cathode and an electron of energy
3 × 10−19 J is emitted. In another case a photon of wave length 100 nm is incident
on the same photo-cathode and an electron of energy 0.972 × 10−19 J is emitted.
Calculate from this data,

(a) the work function and the threshold wave length of the photo-cathode.
(b) the value of Planck constant h.

7. A photon of ultra-violet radiation of wave length 300 nm is incident on a photo-
cathode. The work function of the material of the photo cathode is 2.26 eV. Calculate
the velocity of the photo electron emitted.

8. The work function of the surface of a photo-cathode is 3.30 eV. Calculate the thresh-
old frequency of radiation, and the corresponding wavelength, which can emit photo
electrons when incident on the surface.

9. In an X-ray scattering experiment the Compton shift was found to be 2.4× 10−3 nm
for scattering at 90o. What would be the Compton shift for scattering at 45o?

10. Calculate the radius of the first Bohr orbit a0 for the Hydrogen atom.

11. According to classical electrodynamics an accelerated electron will lose energy at the
rate dE/dt = −e2a2/6πε0c3. Calculate the acceleration of an electron in a circular
Bohr orbit of radius a0 = 4πε0~2/mee

2. How long does it take the electron to reduce
its energy from −13.6 eV (ground state energy) to −2 × 13.6 eV assuming that it
continues to radiate at this rate?

12. According to Bohr, the Balmer series of spectral lines of Hydrogen arise due to the
jump of the electron from higher orbits, n = 3, 4, 5, etc to the orbit n = 2. Calculate
the wave lengths of the first three Balmer lines in nm. [The energy of the electron in
the nth orbit is given by En = − 1

2
e2

4πε0a0

1
n2 .]

13. What is the frequency of the light emitted by an electron in a transition from the first
excited state to the ground state in hydrogen? Compare this with the frequency of
the orbital motion of the electron in the first excited state. [Given: The velocity of
an electron for the nth energy level is vn = αc/n and the radius its orbit is given by
aon

2, where ao = 0.0529 nm is the Bohr radius and α is the fine structure constant.]
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Section 1.2 onwards

1. If F̂ is a linear operator show that F̂ + F̂ † is a self-adjoint (Hermitian) operator and
F̂ − F̂ † is a pure imaginary (anti-Hermitian) operator.

2. Prove that [
Â ,

1
B̂

]
= − 1

B̂

[
Â , B̂

] 1
B̂
.

3. Prove that

(i) exp(L̂)α̂ exp(−L̂) = α̂+
[
L̂ , α̂

]
+ 1

2!

[
L̂,
[
L̂ , α̂

]]
+ · · ·

(ii) eλÂB̂e−λÂ = B̂ + λ
[
Â , B̂

]
+ λ2

2!

[
Â ,
[
Â , B̂

]]
+ · · ·

4. Prove that a linear operator that commutes with an observable ξ also commutes with
a function of ξ̂.

5. Show that
(
α̂β̂γ̂δ̂

)†
= δ†γ̂†β̂†α̂†.

6. If Â is a self-adjoint (Hermitian) operator show that 〈ψ| Â2 |ψ 〉 ≥ 0 where |ψ 〉 is an
arbitrary state.

7. Prove that if Â and B̂ are self-adjoint (Hermitian) operators, the product ÂB̂ is also
self-adjoint (Hermitian) provided Â and B̂ commute.

8. Two observables ξ̂ and α̂ do not commute. Show that in a state in which the observable
α̂ is certain to have the value α(n), the probability of ξ̂ having the value ξ(r) is the
same as the probability of α̂ having the value α(n) in a state in which ξ̂ is certain to
have the values ξ(r).

9. If
∣∣α(r)

〉
represents a complete set of eigenstates of observable α̂, belonging to the

eigenvalues α(r), r = 1, 2, 3 · · · , so that an arbitrary state may be expanded in terms of
them, i.e. |ψ 〉 =

∑
r cr

∣∣α(r)
〉
, then show that 〈ψ| α̂ |ψ 〉 =

∑
r |cr|2α(r). Hence give a

physical interpretation to the quantum mechanical expectation value 〈Â〉 = 〈ψ| Â |ψ 〉
of an observable Â for the state |ψ 〉 .

10. The eigenstates
∣∣ξ(r)

〉
of an observable ξ̂ satisfy, apart from the orthogonality condi-

tion, the completeness criterion as well,∑
r

P̂r = 1̂, , where P̂r =
∣∣∣ξ(r)

〉〈
ξ(r)
∣∣∣ .

Show that P̂r may be regarded as the projection operator for the state
∣∣ξ(r)

〉
in the

sense that operating on an arbitrary state it projects out this particular state. Hence
interpret physically the completeness criterion in terms of the projection operators
P̂r.

11. Show that the commutator [x̂ , p̂n] = i~np̂n−1 .

12. Show that the commutator [x̂n , p̂] = i~nx̂n−1 .

13. Show that if Â and B̂ are self-adjoint operators, then [Â, B̂] is a pure imaginary
operator.
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Appendix 1A1: Basic Concepts in Classical Mechanics

In this appendix some of the basic concepts in classical mechanics, which are required for
Chapter 1 are outlined. In order to specify the configurations of N particles 3N coordinates
are needed. If there are, say n, constraints on the system, then we have to specify 3N -
coordinates and n constraints on them. If the coordinates are so chosen that n restrictions
amount to holding n of the coordinates as constants, then we have to specify only 3N − n
coordinates. Then the number of coordinates f = 3N − n is referred to as the number
of degrees of freedom of the system; the relevant coordinates are called the generalized
coordinates. Generalized coordinates do not pertain necessarily to individual particles and
they may not necessarily have dimension of length. For example, for a two-particle system
the generalized coordinates can be the coordinates of the center of mass (R, Θ, Φ ) and
the relative coordinates (r, θ, ϕ). If the only restriction happens to be that the distance
between the two particles is fixed then this amounts to holding r constant. The number of
degrees of freedom is f = 5 and the relevant generalized coordinates then are

q1 = R, q2 = Θ, q3 = Φ, q4 = θ, q5 = φ .

1A1.1 Lagrange Equations of Motion

Consider a system with f degrees of freedom. The configuration can be specified by f
generalized coordinates, say q1, q2, · · · qf . The time rates of change of these generalized
coordinates q̇1, q̇2, · · · , q̇f are called generalized velocities. The generalized velocities also
need not have dimensions of velocity. It is possible to express the total kinetic energy of
the system as a function of all qi and q̇i. Also the total potential energy can be expressed
as a function of all qi’s. The Lagrangian of the system defined by

L = T − V (1A1.1.13)

is also a function of generalized coordinates and generalized velocities. In the Lagrangian
formulation of mechanics the equations of motion can be written as

d

dt

(
∂L(qi, q̇i)

∂q̇i

)
− ∂L(qi, q̇i)

∂qi
= 0 . (1A1.1.14)

There is an alternative formulation called the Hamiltonian formulation. This formulation
is in terms of the generalized coordinates qi and the generalized momentum coordinates pi,
defined by

pi =
∂L(qi, q̇i)

∂q̇i
=
∂T

∂q̇i
. (1A1.1.15)

The Hamiltonian H of the system is defined by

H(qi, pi) = T + V . (1A1.1.16)

The transformation from the Lagrangian formulation (in which the description is in terms
of qi and q̇i’s) to the Hamiltonian formulation( in which the description is in terms of qi
and pi) can be brought about by what is known as the s lLegendre transformations. These
equations of motion in Hamiltonian formulation, also called Hamilton’s equations of motion
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(or equations of motion in the canonical form), are

q̇i =
∂H

∂pi
, (1A1.1.17)

ṗi = −∂H
∂qi

. (1A1.1.18)

It may be seen that in the Hamiltonian formulation the generalized position and momentum
coordinates are treated on a reciprocal basis. The position and momentum coordinates, qi
and ṗi are said to be canonically conjugate to each other. One can see that the equations
of motion in the canonical form are symmetric between qi and pi (except for a difference of
sign).

1A1.2 Classical Dynamical Variables

A function of generalized position and momentum coordinate and also of time (explicit de-
pendence), which may also correspond to a physical quantity is called a classical dynamical
variable. Examples are: Hamiltonian, total angular momentum, total linear momentum etc.
Even the generalized position and momentum coordinates qi and pi may also be regarded
as classical dynamical variables.

The equation of motion of a classical dynamical variables α(qi, pi, t) can be derived as
follows:

dα

dt
=
∂α

∂t
+
∑
i

(
∂α

∂qi
q̇i +

∂α

∂pi
ṗi

)
=
∂α

∂t
+
∑
i

(
∂α

∂qi

∂H

∂pi
− ∂α

∂pi

∂H

∂qi

)
,

where we have used the equations of motion in the canonical form (1A2.5) and (1A2.6).
Thus

dα

dt
=
∂α

∂t
+ {α, H} . (1A1.1.19)

Here the curly bracket {α,H} is called the classical Poisson bracket (CPB)of the dynamical
variables α and H. In general, for any two dynamical variables α and β we define CPB by

{α, β} =
∑
i

(
∂α

∂qi

∂β

∂pi
− ∂α

∂pi

∂β

∂qi

)
. (1A1.1.20)

Since qi and pi are also to be treated as classical dynamical variables we can also define the
Poisson brackets for them (known as fundamental Poisson brackets). We can easily verify
that

{qi, qj} = 0 = {pi, pj} , (1A1.1.21)
{qi, pj} = δij . (1A1.1.22)

It may be observed that the basic feature of classical mechanics is determinacy in the sense
that if all details about a system of particles (interactions etc.) are known and the initial
configuration of a system is known, then one can, in principle, write the classical equations
of motion [Eq. (1A2.5) and (1A2.6)] and solve them for qi(t) and pi(t) subject to initial
conditions. Subsequently one can calculate precisely any quantity relevant to the system at
any time.
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2

REPRESENTATION THEORY

2.1 Meaning of Representation

The bra and ket vectors, as well as linear operators, are somewhat abstract mathemat-
ical quantities. Although the logic behind representing physical states and observables,
respectively, by ket (or bra) vectors and self adjoint linear operators is perfect and, having
developed the algebra for these quantities, we have been able to deduce therefrom some
general results, identities and corollaries, yet these abstract quantities are not the ones in
terms of which we can carry out numerical calculations and arrive at numbers to be com-
pared with the experimental results. So we ask if it is possible to find more convenient
mathematical quantities to represent ket vectors and linear operators that can be handled
more conveniently. The answer is in the affirmative.

Each of the various ways in which an abstract mathematical quantities, like a ket vector
or a linear operator, can be represented by a set of numbers is called a representation. The
set of numbers that represent the abstract quantity are called the representatives of the
abstract quantity in that representation.

2.2 How to Set up a Representation

To set up a representation, we choose a complete set of commuting observables (CSCO).
A set of commuting observables is said to be complete if specifying the eigenvalues of
all the observables determines a unique (to within a multiplicative phase factor) common
eigenvector. From a given CSCO, we can obtain another CSCO by adding an observable
that commutes with all the observables in the original set. For this reason, one usually
confines to the minimal set of observables needed to construct a unique orthonormal basis
of common eigenvectors. It is clear that for a given system several sets of CSCO may exist.
The choice of the complete set of commuting observables characterizes the representation.

Consider the CSCO consisting of observables ξ̂ , η̂ , ζ̂ , · · · . These observables naturally
admit a set of simultaneous eigenstates [eigen bras or eigen kets, also called the basis states]

35
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of the representation:

〈ξ′ , η′ , ζ ′ · · ·| ≡ 〈ξ′|
〈ξ′′ , η′′ , ζ ′′ · · ·| ≡ 〈ξ′′|

...〈
ξ(r) , η(r) , ζ(r) · · ·

∣∣∣ ≡ 〈ξ(r)
∣∣∣

...〈
ξ(N) , η(N) , ζ(N) · · ·

∣∣∣ ≡ 〈ξ(N)
∣∣∣ .

Here N is the total number of basis states, which form a complete set. In what follows we
will use an abbreviated notation for denoting the simultaneous eigenstates by suppressing
eigenvalues of all operators except one. The ket to be represented is multiplied on the left
by each one of the basis bras in succession to get a set of numbers which may be arranged
in the form of a column vector (matrix):

|A 〉 →



〈ξ′|A〉
〈ξ′′|A〉

...〈
ξ(r)
∣∣A〉

...〈
ξ(N)

∣∣A〉


=



C1

C2

...
Cr
...
CN


≡ C . (2.2.1)

The column vector C thus represents |A〉 in the ξ̂, η̂, ζ̂, · · · representation. In other words,
the set of numbers C1 , C2 , · · ·Cr , · · · , CN , where Cr =

〈
ξ(r)
∣∣A〉, can be looked upon as the

representative of |A〉 in this representation. Likewise, the state vector 〈A| is represented by
a row matrix:

〈A| →
(
〈A| ξ′〉 〈A| ξ′′〉 · · · 〈A| ξr〉 · · · 〈A|ξ(N)〉

)
≡ (C∗1 C∗2 · · · C∗r · · · CN ) ≡ C† . (2.2.2)

Since |A〉 and 〈A| represent the same physical state, the column vector C and the row vector
C† can be regarded as representatives of the same state1.

We can give a physical interpretation to the representatives of |A〉 (or 〈A|)

1. Since the basis states
∣∣χ(r)

〉
satisfy the completeness criterion

∑N
r=1

∣∣ξ(r)
〉 〈
ξ(r)
∣∣ = 1̂,

we can expand the state |A 〉 in terms of basis states as

|A 〉 =
N∑
r=1

∣∣∣ξ(r)
〉〈

ξ(r)
∣∣∣ |A 〉 =

N∑
r=1

Cr

∣∣∣ξ(r)
〉
. (2.2.3)

From this equation we see that we can look upon the representatives Cr of |A〉 as
the coefficients of expansion when |A〉 is expanded in terms of the basis kets of the
representation.

1A dagger on a matrix, in our notation, means Hermitian conjugate of the matrix.
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2. From the normalization condition

〈A|A〉 = 1 , (2.2.4)

we have 〈A|
(

N∑
r=1

∣∣∣ξ(r)
〉〈

ξ(r)
∣∣∣) |A 〉 =

N∑
r=1

C∗rCr = 1 . (2.2.5)

We can look upon C∗rCr = |Cr|2 as the probability of getting the result ξ(r) when an
observation ξ̂ is made on the system in state |A 〉. The sum of these probabilities, i.e.,
the probability of getting any one of the results ξ′ , ξ′′· · ·ξ(r)· · ·ξ(N), is naturally equal
to 1. This is represented by Eq. (2.2.5).

2.3 Representatives of a Linear Operator

A linear operator α̂ is known, if the result of its operation on an arbitrary ket, say |X〉, is
known. Now, since |X〉 may be expanded in terms of the basis kets ( |X 〉 =

∑N
r=1 Cr

∣∣ξ(r)
〉
),

we can say that α̂ is known if the result of its operation on each one of the basis kets is
known, i.e., if the set of ket vectors α̂|ξ′〉 , α̂ |ξ′′ 〉 , · · ·, α̂ ∣∣ξ(r)

〉
, · · ·, α̂ ∣∣ξ(N)

〉
is known. But

each one of this set of N ket vectors is known, respectively, by its representatives given in
the following columns:

〈ξ′| α̂ |ξ′ 〉 〈ξ′| α̂ |ξ′′ 〉 · · · 〈ξ′| α̂ ∣∣ξ(r)
〉 · · · 〈ξ′| α̂ ∣∣ξ(N)

〉
〈ξ′′| α̂ |ξ′ 〉 〈ξ′′| α̂ |ξ′′ 〉 · · · 〈ξ′′| α̂ ∣∣ξ(r)

〉 · · · 〈ξ′′| α̂ ∣∣ξ(N)
〉

...〈
ξ(s)
∣∣ α̂ |ξ′ 〉 〈ξ(s)

∣∣ α̂ |ξ′′ 〉 · · · 〈ξ(s)
∣∣ α̂ ∣∣ξ(s)

〉 · · · 〈ξ(r)
∣∣ α̂ ∣∣ξ(N)

〉
...〈

ξ(N)
∣∣ α̂ |ξ′ 〉 〈ξ(N)

∣∣ α̂ |ξ′′ 〉 · · · 〈ξ(N)
∣∣ α̂ ∣∣ξ(r)

〉 · · · 〈ξ(N)
∣∣ α̂ ∣∣ξ(N)

〉
.

Thus, a linear operator α̂ may be represented by a set of numbers forming a square (N×N)
matrix M(α̂) ≡M given by

M =



M11 M12 · · · M1r · · · M1N

M21 M22 · · · M2r · · · M2N

...
Ms1 M12 · · · Msr · · · MsN

· · ·
MN1 MN2 · · · MNr · · · MNN


, (2.3.1a)

where a typical matrix element Msr is given by

Msr =
〈
ξ(s)
∣∣∣ α̂ ∣∣∣ξ(r)

〉
. (2.3.1b)

If the number of basis states is infinite (N → ∞), then the representative matrix for α̂ is
infinite dimensional.

Some corollaries result from matrix representation of operators:
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1. The matrix representing the product of two operators α̂ and β̂ equals the product of
the matrices (taken in the same order) representing these operators:

M(α̂β̂) = M(α̂)M(β̂) (2.3.2)

with Msr(α̂β̂) =
N∑
k=1

Msk(α̂)Mkr(β̂) . (2.3.3)

From the definition of a typical element of the matrix representing the product oper-
ator α̂β̂ we have

Msr(α̂β̂) ≡
〈
ξ(s)
∣∣∣ α̂β̂ ∣∣∣ξ(r)

〉
=
〈
ξ(s)
∣∣∣ α̂ N∑

k=1

∣∣∣ξ(k)
〉〈

ξ(k)
∣∣∣ β̂ ∣∣∣ξ(r)

〉
=

N∑
k=1

Msk(α̂)Mkr(β̂)

where we have used the completeness condition for the basis states |ξ(k)〉. Thus the
matrix M(α̂β̂) is the product M(α̂) ×M(β̂). Note that, in general, M(α̂)M(β̂) 6=
M(β̂)M(α̂).

2. The matrix M(α̂), representing a self adjoint operator α̂ (α̂† = α̂) is a Hermitian
matrix:

M† = M or
[
M†
]
sr
≡M∗rs(α̂) = Msr(α̂) . (2.3.4)

From the definition of a typical matrix element[
M†
]
sr
≡M∗rs(α̂) =

〈
ξ(r)
∣∣ α̂ ∣∣ξ(s)

〉
=
〈
ξ(s)
∣∣∣ α̂† ∣∣∣ξ(r)

〉
=
〈
ξ(s)
∣∣∣ α̂ ∣∣∣ξ(r)

〉
= Msr(α̂) .

Thus the matrix elements satisfy the condition for the matrix equality M† = M to
hold.

3. The matrix representing the observable ξ̂ itself or η̂ or ζ̂ , · · · in the ζ̂ , ξ̂ , η̂ , · · · repre-
sentation is diagonal, the diagonal elements being the respective eigenvalues.

Again, by using the definition of matrix elements, we have

Msr(ξ̂) =
〈
ξ(s)
∣∣∣ ξ̂ ∣∣∣ξ(r)

〉
= ξ(r)

〈
ξ(s)
∣∣∣ ξ(r)

〉
= ξ(r)δsr . (2.3.5)

In other words,

M =


ξ′ 0 · · · 0
0 ξ′′ 0 · · · 0
...
0 0 · · · ξ(N)

 . (2.3.6)
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Similarly, for any other observable, say η̂, characterizing the representation, we have

Msr(η̂) =
〈
ξ(s)
∣∣∣ η̂ ∣∣∣ξ(r)

〉
=
〈
ξ(s) , η(s) , ζ(s) · · ·

∣∣∣ η̂ ∣∣∣ξ(r) , η(r) , ζ(r) · · ·
〉

= η(r)δsr . (2.3.7)

The ξ̂ , η̂ , ζ̂ , · · · representation is, therefore, also referred to as one in which the ob-
servables ζ̂ , ξ̂ , η̂· · · are diagonal (i.e., represented by diagonal matrices).

4. If an operator α̂ admits the set of eigenvalues α(1), α(2), · · ·, α(N) then the matrix,
representing α̂ in any representation, also admits the same set of eigenvalues.2

Let the observable α̂ admit a set of eigenstates
∣∣α(1)

〉
,
∣∣α(2)

〉
, · · · , ∣∣α(N)

〉
belonging,

respectively, to the eigenvalues α(1), α(2), · · ·, α(N):

α̂
∣∣∣α(n)

〉
= α(n)

∣∣∣α(n)
〉
. (2.3.8)

Consider a representation in which a set of observables ξ̂ , η̂ , ζ̂ , · · · are diagonal and
the observable α̂ is represented by the matrix

M = M(α̂) =



M11 M12 · · · M1r · · · M1N

M21 M22 · · · M2r · · · M2N

...
Ms1 M12 · · · Msr · · · MsN

...
MN1 MN2 · · · MNr · · · MNN


, (2.3.9)

where Msr =
〈
ξ(s)
∣∣ α̂ ∣∣ξ(r)

〉
. Also, in the same representation, the state

∣∣α(n)
〉

is
represented by the column vector An given by

An =



A1n

A2n

...
Arn

...
ANn


where Arn =

〈
ξ(r)
∣∣∣An〉 .

2In general, a matrix M multiplying a column vector X gives a new column vector Y = MX. But it is
possible to find a set of column vectors X1 , X2 , · · · , Xn , · · · , XN , such that MXn = λnXn, n = 1 , 2 , · · · , N .
When this is so, Xn is called an eigenvector of M , belonging to the eigenvalue λn and the set of numbers
λ1 , λ2 , · · · , λN are called the eigenvalues of the matrix M . The number of eigenvalues a N × N square
matrix can admit, equals its order N [see Appendix 3A1].
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Let us see the result of operating matrix M on the column vector An,

MAn =



M11 M12 · · · M1r · · · M1N

M21 M22 · · · M2r · · · M2N

...
Ms1 M12 · · · Msr · · · MsN

· · ·
MN1 MN2 · · · MNr · · · MNN





A1n

A2n

...
Arn

...
ANn



=



∑N
r=1M1rArn∑N
r=1M2rArn

...∑N
r=1MsrArn

...∑N
r=1MNrArn


= α(n)



A1n

A2n

...
Asn

...
ANn .


.

Thus, in concise form,
MAn = α(n)An . (2.3.10)

This result follows because
N∑
r=1

MsrArn =
N∑
r=1

〈
ξ(s)
∣∣∣ α̂ ∣∣∣ξ(r)

〉〈
ξ(r)
∣∣∣α(n)

〉
=
〈
ξ(s)
∣∣∣ α̂ N∑

r=1

∣∣∣ξ(r)
〉〈

ξ(r)
∣∣∣α(n)

〉
=
〈
ξ(s)
∣∣∣ α̂1̂

∣∣∣α(n)
〉

= α(n)Asn . (2.3.11)

Thus An is an eigenvector of the matrix M belonging to the eigenvalue α(n). We can
prove this for any index n. In other words, the eigenvalues of the matrix M , which
represents the observable α̂ in some representation are the same as the eigenvalues
admitted by the observable itself. Further, the eigenvectors of the matrix M are
the column vectors which represent the eigenstates

∣∣α(1)
〉
,
∣∣α(2)

〉
, · · · , ∣∣α(N)

〉
in the

ξ̂ , η̂ , ζ̂ , · · · representation. To summarize, if

α̂
∣∣∣α(n)

〉
= α(n)

∣∣∣α(n)
〉
, (2.3.12)

then
MAn = α(n)An n = 1 , 2 , · · · , N . (2.3.13)

The operator equation (2.3.8), as well as the matrix equation (2.3.10), represents the
physical fact that if, on a system in a quantum state represented by either |α(n)〉 or
the column matrix An, an observation pertaining to the observable α̂ (or M) is made,
the result is destined to be the eigenvalue α(n).

2.4 Change of Representation

It is possible to set up alternative representations for physical states (ket vectors) and ob-
servables (self-adjoint operators conforming to completeness criterion). We shall see that
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column vectors representing the same physical state and square matrices representing the
same observable in two different representations are connected through a unitary trans-
formation. In other words, one can change from one representation to another through a
unitary transformation3.

Consider a representation in which the set of observables ξ̂ , η̂ , ζ̂ , · · · are diagonal and
the basis states are

∣∣ξ(1)
〉
,
∣∣ξ(2)

〉
, · · ·, ∣∣ξ(N)

〉
, where the abbreviated notation

〈
ξ(r)
∣∣ ≡〈

ξ(r), η(r), ζ(r), · · ·∣∣ is used. Let ket |A〉 be represented in this representation by a column
vector A

|A 〉 → A =



A1

A2

...
Ar
...
AN


(2.4.1)

where
Ar =

〈
ξ(r)
∣∣∣A〉 . (2.4.2)

Also, let an observable α̂ be represented by an N ×N square matrix K

α̂→ K(α̂) =



K11 K12 · · · K1r · · · K1N

K21 K22 · · · K2r · · · K2N

...
Ks1 Ks2 · · · Ksr · · · KsN

· · ·
KN1 KN2 · · · KNr · · · KNN


(2.4.3)

Krs =
〈
ξ(r)
∣∣∣ α̂ ∣∣∣ξ(s)

〉
. (2.4.4)

Now, consider an alternative representation in which a set of observable P̂ , Q̂, R̂, · · · are
diagonal and basis states are

∣∣P (1)
〉
,
∣∣P (2)

〉
, · · ·, ∣∣P (N)

〉
. We assume for simplicity that

the number of basis states is the same in both representations. In the second representation

|A 〉 → C =



C1

C2

...
Cr
...
CN


(2.4.5)

3A unitary transformation S transforms a square (N × N) matrix K to another square matrix R, and a
column matrix A to another column matrix C, such that

K
S−→ SKS† = R

and A
S−→ SA = C .

Here the transforming matrix S is unitary: S S† = I and S† S = I, where S† is the Hermitian adjoint of
S. It can be shown that (i) eigenvalues of a square matrix are not changed if the matrix is subjected to
a unitary transformation, i.e., if KA = aA, then RC = aC . Thus, matrix K and R have the same set
of eigenvalues. (ii) Any relationship between the matrices is preserved under a unitary transformation (see
Appendix 3A1).
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where
Cr =

〈
P (r)

∣∣∣A〉 . (2.4.6)

while

α̂→ L(α̂) =



L11 L12 · · · L1n · · · L1N

L21 L22 · · · L2n · · · L2N

...
Lm1 Lm2 · · · Lmn · · · LmN
· · ·
LN1 LN2 · · · LNn · · · LNN


(2.4.7)

Lmn =
〈
P (m)

∣∣∣ α̂ ∣∣∣P (n)
〉
. (2.4.8)

The mathematical relationship between the square matrices K and L representing the
same observable α̂ in the two different representations and that between the column vectors
A and C representing the physical state |A〉 in the two representations is easily established.
From the definition of matrix L, we have reperesenting

Lmn ≡
〈
P (m)

∣∣∣ α̂ ∣∣∣P (n)
〉

=
∑
r

∑
s

〈
P (m)

∣∣∣ ξ(r)
〉〈

ξ(r)
∣∣∣ α̂ ∣∣∣ξ(s)

〉〈
ξ(s)
∣∣∣P (n)

〉
=
∑
r

∑
s

SmrKrsS
∗
ns =

∑
r

∑
s

SmrKrs(S†)sn = (SKS†)mn . (2.4.9)

Here Smr =
〈
P (m)

∣∣ ξ(r)
〉

and Sns =
〈
P (n)

∣∣ ξ(s)
〉
, which implies that

(S†)sn = S∗ns =
〈
P (n)

∣∣ ξ(s)
〉

=
〈
ξ(s)
∣∣∣P (n)

〉
. (2.4.10)

Hence matrix L and K are related by

L = SKS† . (2.4.11)

Also, from the definition of column matrix C, we have

Cm ≡
〈
P (m)

∣∣∣A〉 =
∑
s

〈
P (m)

∣∣∣ ξ(s)
〉〈

ξ(s)
∣∣∣A〉

=
∑
s

SmsAs = (SA)m , (2.4.12)

which means that C and A are related by

C = SA . (2.4.13)

Thus we can pass on from a representation in which the set of commuting observables
ξ̂, η̂, ζ̂, · · · are diagonal, to the one in which P̂ , Q̂, R̂, · · · are diagonal, through the transfor-
mation

K
S−→ SKS† = L

and A
S−→ SA = C .
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We can also show that the square matrix S, which brings about the transformation, is
unitary SS† = S†S = I. By considering a typical matrix element of SS†, we have

(SS†)mn =
∑
r

(S)mr(S†)rn = SmrS
∗
nr

=
∑
r

〈
P (m)

∣∣∣ ξ(r)
〉 〈

P (n)
∣∣ ξ(r)

〉
=
∑
r

〈
P (m)

∣∣∣ ξ(r)
〉〈

ξ(r)
∣∣∣P (n)

〉
=
〈
P (m)

∣∣∣P (n)
〉

= δmn . (2.4.14)

This implies that
SS† = I . (2.4.15)

Similarly, by considering a typical element of S†S, we have

(S†S)rs =
∑
m

(S†)rm(S)ms = S∗mrSms

=
∑
m

〈
P (m)

∣∣ ξ(r)
〉 〈

P (m)
∣∣∣ ξ(s)

〉
=
∑
m

〈
ξ(r)
∣∣∣P (m)

〉〈
P (m)

∣∣∣ ξ(s)
〉

=
〈
ξ(r)
∣∣∣ ξ(s)

〉
= δrs (2.4.16)

and this implies that
S†S = I . (2.4.17)

It could be that the total number of basis states in the ξ̂ , η̂ , ζ̂, representation is N , while
that in the P̂ , Q̂ , R̂ representation is M( 6=N). Consequently, the square matrix K (repre-
senting α̂ in the former representation) has dimension (N × N), while the square matrix
L (representing α̂ in the latter representation) has dimension (M ×M). Also, the column
vector A, has N elements while the column vector C, has M elements. The transforming
matrix S (Smr = 〈P (m)|ξ(r)〉) is then a rectangular matrix of dimension (M × N), while
S† is a rectangular matrix of dimension (N ×M). Obviously, SS† = I (unit matrix of
dimension M ×M), while S†S = I (unit matrix of dimension N ×N). The transformation
relations

K → SKS† = L

and A→ SA = C

are still valid. However, S being a rectangular matrix, does not admit an inverse.

2.5 Coordinate Representation

As all the position observables q̂1 , q̂2 , · · ·q̂f , for a system with f degrees of freedom, commute
with each other, we can set up a representation in which the position observables are
diagonal. This representation is called the coordinate representation. In this representation,
the basis states 〈q1 , q2· · ·qf | are the simultaneous eigenstates of q̂1 , q̂2· · ·q̂f belonging to the
eigenvalues q1 , q2· · ·qf , each eigenvalue varying continuously over a certain range. Thus
the basis bras, in this case, do not form a denumerable set of states (as, for example∣∣ξ(1)

〉
,
∣∣ξ(2)

〉
, · · · etc.) but a continuous set of states. Consequently, the representatives

〈q1 , q2· · ·qf |A〉 of a state |A 〉, in this representation do not form a discrete set of numbers
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which could be written in the form of a column vector. The representative numbers, in
this case, vary continuously with the continuous variation of the eigenvalues of the position
observables. So we can regard 〈q1, q2, · · · , qf |A〉, the coordinate representative of state |A〉,
as a function of the eigenvalues of the position observables. This function

〈q1 , q2· · ·qf |A〉 ≡ ΨA(q1 , q2· · ·qf )

is called the wave function and is the most common means of representing the physical state
|A〉 of a system.

2.5.1 Physical Interpretation of the Wave Function

We have seen that, in the ξ̂ , η̂ , ζ̂ , · · · representation, the quantity |Cr|2 = |〈ξ(r)|A〉|2 is
interpreted as the probability of getting the result ξ(r), when a measurement of ξ̂ is made
on the system in state |A〉. Likewise, we can interpret

| 〈q1, q2, · · · , qf |A〉 |2dq1dq2 · · · dqf ≡ |ΨA(q1, q2, · · · , qf )|2dq1dq2 · · · dqf
to be the probability that the results of measurements of q̂1 , q̂2 , · · ·q̂f on the system in state
|A〉 will lie between q1 and q1 + dq1 , q2 and q2 + dq2, · · ·, qf and qf + dqf , respectively. Con-
sequently,

∫ · · · ∫ |ΨA|2dq1dq2 · · · dqf gives the probability that the results of measurements
of coordinate observables on the system in state |A〉 will lie within the respective ranges of
the eigenvalues. This probability is obviously equal to 1:∫

· · ·
∫
|ΨA(q1, q2, · · · , qf )|2dq1dq2 · · · dqf = 1 . (2.5.1)

This condition is called the wave function normalization condition. This condition also
follows from the normalization of the ket vector |A〉:

〈A|A〉 = 1 . (2.5.2)

By using the completeness criterion∫
· · ·
∫
|q1, q2, · · · , qf 〉 dq1dq2 · · · dqf 〈q1, q2, · · · , qf | = 1̂ (2.5.3)

for basis vectors in the coordinate representation, we obtain from Eq. (2.5.2),∫
· · ·
∫
〈A| q1, q2, · · · , qf 〉 dq1dq2 · · · dqf 〈q1, q2, · · · , qf |A〉

=
∫
· · ·
∫

Ψ∗(q1, q2, · · · , qf )dq1dq2 · · · dqfΨ(q1, q2, · · · , qf ) = 1 ,

which is the wave function normalization condition given by Eq. (2.5.1).

Normalization condition on the wave function with one degree of freedom.

The number of position observables to be used to set up a coordinate representation is
obviously equal to the number of degrees of freedom of the physical system. For a system
with one degree of freedom, for example, a particle constrained to move along a straight
line (say, the x-axis), the position observable is q̂1 = x̂. In a representation in which x̂ is
diagonal, the state |A〉 is represented by the wave function 〈x|A〉 = ΨA(x), where x is the
continuously varying eigenvalue of the position observable, and |ΨA(x)|2dx = | 〈x|A〉 |2dx
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gives the probability that a measurement of x̂ in the state |A〉 will yield a result between x
and x + dx. This interpretation follows from the fact that the state |A〉 can be expanded
in terms of the eigenstates |x〉 of the observable x̂ as:

|A 〉 =
∫
|x 〉 dx 〈x|A〉 =

∫
ΨA(x)dx |x 〉 . (2.5.4)

Since the kets |x〉 form a continuum of states, this expansion is not discrete, but continuous.
In the case of expansion of an arbitrary state |A 〉 in terms of a complete set of discrete
eigenstates of an observable [Eq. (2.2.11)], we interpreted |Cr|2 as the probability of getting
the result ξ(r) when an observation for ξ̂ is made on the system in the state |A 〉. In the
present context we can interpret |ΨA(x)|2dx as the probability that a measurement for x̂
gives a result between x and x+dx on the system in state |A 〉. The normalization condition
for ψA(x) is given by ∫

Ψ∗(x)Ψ(x)dx = 1 . (2.5.5)

where the integration is over the whole range of eigenvalues of x̂. This interpretation also
implies that ΨA(x) should be a continuous function of x.

2.5.1.1 Normalization condition on the wavefunction with three degrees of
freedom

For a system with three degrees of freedom, for example, a particle moving in three-
dimensional space, we naturally choose the three commuting position observables to be

q̂1 = x̂ , q̂2 = ŷ , q̂3 = ẑ .

In this representation, the set of commuting observables x̂, ŷ, ẑ are diagonal and the basis
states |x, y, z 〉 = |r 〉, where x, y, z denote the continuously varying eigenvalues of x̂, ŷ, ẑ
form a continuum of states. The basis states correspond to various locations of the particle
in three-dimensional space. In this representation, a state |A〉 of the system is represented
by the wave function ΨA(x, y, z) = 〈x, y, z|A〉 and |〈x, y, z|A〉|2dxdydz represents the prob-
ability that a measurement of position observables x̂, ŷ, ẑ on the system in this state, will
yield results between x and x + dx, y and y + dy, and z and z + dz, respectively. The
normalization condition4∫∫∫

|ΨA(x, y, z)|2dxdydz ≡
∫∫∫

|ΨA(~r)|2d3r = 1 (2.5.6)

simply expresses the fact that the probability that the particle is found somewhere within
the available space is one. This interpretation of ΨA(~r) naturally implies that ΨA(~r) should
be continuous at all points of available space.

2.6 Replacement of Momentum Observable p̂ by −i~ d
dq̂

Before justifying this replacement, it is necessary to specify the meaning of the operator d
dq̂ .

To start with, consider a system with only one degree of freedom. The operator d
dq̂ may be

4It may be noted that a change in the coordinates from x , y , z to r , θ , ϕ does not mean a change in the
representation because the two sets of coordinates are related.
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regarded a linear operator which, like any linear operator, can operate on a ket vector to
the right to give another ket

d

dq̂
|P 〉 = |R 〉 ,

and it can also operate on a bra vector to the left to give another bra vector,

〈Q| d
dq̂

= 〈S| ,

such that {
〈Q| d

dq̂

}
|P 〉 = 〈Q|

{
d

dq̂
|P 〉
}
. (2.6.1)

Now let the coordinate representative of |P 〉 be Ψ(q) so that

〈q|P 〉 = Ψ(q) (2.6.2)

which implies that
〈P |q〉 = Ψ∗(q) (2.6.3)

and the coordinate representative of |Q〉 be Φ(q) which implies that

〈Q|q〉 = Φ∗(q) . (2.6.4)

Now, if we accept the definition that the coordinate representative of d
dq̂ |P 〉 equals the

partial derivative with respect to q, of the coordinate representative of the state |P 〉:

〈q| d
dq̂
|P 〉 =

∂

∂q
〈q|P 〉 =

∂

∂q
Ψ(q) , (2.6.5)

then we can show, using the condition (2.6.1), that the linear operator d
dq̂ is pure imaginary

operator. To show this, we introduce in Eq. (2.6.1) the unit operator

1̂ =
∫
|q 〉 dq 〈q| ,

after the curly bracket on the left hand side and before the curly bracket on the right-hand
side, to get ∫

〈Q| d
dq̂
|q 〉 dq 〈q|P 〉 =

∫
〈Q| q〉 dq 〈q| d

dq̂
|P 〉

=
∫

Φ∗(q)dq
∂

∂q
Ψ(q)

= Φ∗(q)Ψ(q)|qmaxqmin
−
∫
∂Φ∗(q)
∂q

Ψ(q)dq .

The first term on the right is zero, since the function Φ(q) and Ψ(q) satisfy the boundary
conditions. This leads to∫

〈Q| d
dq̂
|q 〉 dqΨ(q) = −

∫
∂Φ∗(q)
∂q

Ψ(q)dq . (2.6.6)

Since Ψ(q) is arbitrary, by comparing the integrands on the two sides, we have

−〈Q| d
dq̂
|q 〉 =

∂Φ∗(q)
∂q

. (2.6.7)
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Also, from Eq. (2.6.5), we have

〈q| d
dq̂
|Q 〉 =

∂Φ(q)
∂q

. (2.6.8)

Since the right hand sides of these equations are complex conjugates of each other, we have

〈q| d
dq̂
|Q 〉∗ = −〈Q| d

dq̂
|q 〉

or 〈Q|
(
d

dq̂

)†
|q 〉 = −〈Q| d

dq̂
|q 〉 . (2.6.9)

Since this holds for arbitrary |q 〉 and 〈Q| we have the operator relation 5(
d

dq̂

)†
= − d

dq̂
(2.6.10)

showing that d
dq̂ is a pure imaginary (anti-Hermitian) operator.

We can also easily work out the commutation relations between the operators d
dq̂ and q̂.

By letting d
dq̂ q̂ operate on |P 〉 and taking the coordinate representative of the resulting ket,

we have

〈q| d
dq̂
q̂ |P 〉 =

∂

∂q
{qΨ(q)}

= Ψ(q) + q
∂Ψ(q)
∂q

= 〈q|P 〉+ 〈q| q̂ d
dq̂
|P 〉 .

Since this holds for an arbitrary ket |P 〉, we have the operator relation

d

dq̂
q̂ = 1̂ + q̂

d

dq̂

or
[
d

dq̂
, q̂

]
= 1̂

or
[
−i~ d

dq̂
, q̂

]
= −i~ 1̂ . (2.6.11)

Since d
dq̂ is anti-Hermitian, the operator −i~ d

dq̂ is a Hermitian (self-adjoint) operator. Ac-
cording Eq. (2.6.11), the self-adjoint operator−i~ d

dq̂ satisfies the same commutation relation
with q̂ as p̂ does. This is one argument in support of the replacement of the observable p̂
by the self-adjoint operator −i~ d

dq̂ .
Another argument in support of the identification of the momentum observable p̂ with

the operator −i~ d
dq̂ is that, operating on an eigenstate |p〉 of momentum, it reproduces the

eigenvalue p multiplied by the same state |p〉:

− i~ d

dq̂
|p 〉 = p |p 〉 ,

or 〈q| − i~ d

dq̂
|p 〉 = p 〈q| p〉 . (2.6.12)

5To show this, Dirac introduced the concepts of standard ket and standard bra. While his arguments are
quite logical, this can also be shown without having to introduce these concepts.



48 Concepts in Quantum Mechanics

To show the validity of Eq. (2.6.12), consider the left hand side of this equation, which gives

〈q| − i~ d

dq̂
|p 〉 = −i~ ∂

∂q
〈q| p〉 . (2.6.13)

Now the momentum eigenstate in the coordinate representation is just the plane wave,

〈q| p〉 = Ceipq/~ . (2.6.14)

Using Eq. (2.6.14) in Eq. (2.6.13), we immediately get Eq. (2.6.12). Note that consideration
of the time dependence of states will not make any difference in this result. Thus we have
the important result:

If we use x̂ to denote the position observable and p̂x to denote the corresponding momentum
observable, the preceding arguments justify the replacement of the observable p̂x by −i~ d

dx̂
in the coordinate represenation.

This result is very useful when we wish to express the Schrödinger equation in the coordinate
representation.6

We can easily generalize the results of this section to a system with f degrees of free-
dom. Let the coordinate representative of state |A〉 of such a system be denoted by
ΨA(q1, q2, · · ·, qf ) ≡ 〈q1, q2, · · ·, qf |A〉. This definition implies Ψ∗A(q1, q2, · · ·, qf ) = 〈A| q1, q2, · · ·, qf 〉.
We can now introduce linear operators d

dq̂1
, d
dq̂2
, · · · , d

dq̂f
. Each of these operators operating

to the right on a ket yields another ket vector and operating to the left on a bra vector
yields another bra vector. Thus d

dq̂r
operating on |A 〉 and 〈B| vectors yields

d

dq̂r
|A 〉 ≡ |C 〉 and 〈B| d

dq̂r
≡ 〈D|

such that {
〈B| d

dq̂r

}
|A 〉 = 〈B|

{
d

dq̂r
|A 〉
}
. (2.6.15)

If we again accept the definition that the coordinate representative of d
dq̂r
|A 〉 equals the

partial derivative with respect to qr of the coordinate representative of |A〉:

〈q1, q2, · · ·, qf | d

dq̂r
|A 〉 =

∂

∂qr
〈q1, q2, · · ·, qf |A〉 ≡ ∂ΨA(q1, q2, · · ·, qf )

∂qr
, (2.6.16)

then, using the condition (2.6.15), we can show that d
dq̂r

is a pure imaginary operator.
To show this, we again introduce the unit operator

1̂ =
∫
· · ·
∫
|q1 , q2 , · · ·qf 〉 dq1dq2 · · · dqf 〈q1 , q2 , · · ·qf | ,

6The corresponding result for the momentum representation that the position observable x̂ can be replaced
by i~ d

dp̂
, although correct in principle as this also conforms to the basic commutation relation, is of use only

in a limited number of cases. In Chapter 3 we will learn that it is more convenient to use Fourier transforms
of the interaction potential instead.
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after the curly bracket on the left hand side of Eq. (2.6.15) and before the curly bracket on
the right hand side of Eq. (2.6.15), to get∫

· · ·
∫
〈B| d

dq̂r
|q1, q2, · · ·, qf 〉 dq1dq2 · · · dqf 〈q1, q2, · · ·, qf |A〉

=
∫
· · ·
∫
〈B| q1, q2, · · ·, qf 〉 dq1dq2 · · · dqf 〈q1, q2, · · ·, qf | d

dq̂r
|A 〉

=
∫
· · ·
∫

Ψ∗B(q1, q2, · · ·, qf )
∂ΨA(q1, q2, · · ·, qf )

∂qr
dq1dq2 · · · dqf .

Integrating the right hand side with respect to qr by parts, and letting the first term equal
to zero on account of boundary conditions, we get∫

· · ·
∫
〈B| d

dq̂r
|q1, q2, · · · , qf 〉ΨA(q1, q2, · · ·, qf )dq1dq2 · · · dqf

= −
∫
· · ·
∫
∂Ψ∗B(q1, q2, · · · , qf )

∂qr
ΨA(q1, q2, · · ·, qf )dq1dq2 · · · dqf .

Since ΨA(q1, q2, · · ·, qf ) represents an arbitrary state we have, on comparing the integrands
on both sides,

−〈B| d

dq̂r
|q1 , q2 , · · · , qf 〉 =

∂Ψ∗B(q1 , q2 , · · · , qf )
∂qr

. (2.6.17)

Also, according to Eq. (2.6.16), we have

〈q1 , q2 , · · · , qf | d

dq̂r
|B 〉 =

∂ΨB(q1 , q2 , · · · , qf )
∂qr

. (2.6.18)

Since the right hand sides of Eqs.(2.6.17) and (2.6.18) are complex conjugates of each other,
−〈B| d

dq̂r
|q1, q2, · · · , qf 〉 and 〈q1, q2, · · · , qf | d

dq̂r
|B 〉 are also complex conjugates of each

other. This leads to the result (
d

dq̂r

)†
= − d

dq̂r
,

which shows that the operator d
dq̂r

is a pure imaginary operator and, therefore, the operator
−i~ d

dq̂r
is a self-adjoint (Hermitian) operator.

Now, if we let d
dq̂r

q̂s operate on the ket |A〉, and take the coordinate representative of the
resulting ket, we obtain

〈q1 , q2 , · · · , qf | d

dq̂r
q̂s |A 〉 =

∂

∂qr
〈q1 , q2 , · · · , qf | q̂s |A 〉

=
∂

∂qr
[qsΨA(q1 , q2 , · · · , qf )]

= δrsΨA(q1 , q2 , · · · , qf ) + qs
∂ΨA(q1 , q2 , · · · , qf )

∂qr

= δrsΨA(q1 , q2 , · · · , qf ) + 〈q1 , q2 , · · · , qf | q̂s d

dq̂r
|A 〉 .

Comparing the operators sandwiched between the states 〈q1 , q2 , · · · , qf | and |A〉 on the two
sides, we get

d

dq̂r
q̂s = 1̂δrs + q̂s

d

dq̂r

or
d

dq̂r
q̂s − q̂s d

dq̂r
= 1̂δrs . (2.6.19)
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Similarly, in accordance with Eq. (2.6.16), we have

〈q1 , q2 , · · · , qf | d

dq̂r

d

dq̂s
|A 〉 =

∂

∂qr

∂

∂qs
ΨA(q1 , q2 , · · · , qf )

=
∂

∂qs

∂

∂qr
ΨA(q1 , q2 , · · · , qf )

= 〈q1 , q2 , · · · , qf | d

dq̂s

d

dq̂r
|A 〉 , (2.6.20)

where we have interchanged the order of differrentiation in the second step. Equation
(2.6.20) hold for an arbitrary ket |A 〉. It follows therefore that

d

dq̂r

d

dq̂s
=

d

dq̂s

d

dq̂r
. (2.6.21)

Multiplying both sides of Eqs.(2.6.19) and (2.6.21) by −i~, we can write(
−i~ d

dq̂r

)
q̂s − q̂s

(
−i~ d

dq̂r

)
= δrs(−i~)1̂(

−i~ d

dq̂r

)(
−i~ d

dq̂s

)
−
(
−i~ d

dq̂s

)(
−i~ d

dq̂r

)
= 0

which can be compared to the commutation relations satisfied by p̂r and q̂s:

p̂r q̂s − q̂sp̂r = −i~ δrs1̂ (2.6.22)
p̂rp̂s − p̂sp̂r = 0 . (2.6.23)

This gives justification for the replacement of the operator p̂r by −i~ d
q̂r

.

2.7 Integral Representation of Dirac Bracket 〈A2| F̂ |A1 〉
For simplicity, we confine our attention to a system with three degrees of freedom. Let

F̂ = F̂ (x̂, ŷ, ẑ, p̂x, p̂y p̂z) = F̂ (x̂ ŷ, ẑ,−i~ d

dx̂
,−i~ d

dŷ
,−i~ d

dẑ
)

be an operator in Dirac space so that it can operate to the right on a ket as also to the left
on a bra vector so that{

〈A2| F̂
}
|A1 〉 = 〈A2|

{
F̂ |A1 〉

}
= 〈A2| F̂ |A1 〉 . (2.7.1)

In the coordinate representation, in which the coordinate observables x̂, ŷ, ẑ are diagonal
and the basis states are |x, y, z 〉 ≡ |r 〉, the states |A1〉 and |A2〉 are represented by the
wave functions Ψ1(r) and Ψ2(r), respectively, where

Ψ1(r) = 〈r|A1〉 (2.7.2a)
Ψ2(r) = 〈r|A2〉 . (2.7.2b)
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Now, the Dirac bracket 〈A2|F̂ |A1〉 can be written as

〈A2| F̂ |A1 〉 =
∫
〈A2| r〉 d3r 〈r| F̂ (x̂, ŷ, ẑ,−i~ d

dx̂
,−i~ d

dŷ
,−i~ d

dẑ
) |A1 〉

=
∫

Ψ∗2(r)F (x, y, z,−i~ ∂

∂x
,−i~ ∂

∂y
,−i~ ∂

∂z
)Ψ1(r)d3r

=
∫

Ψ∗2(r)FΨ1(r) d3r , (2.7.3)

where we have used Eq. (2.6.5) or Eq. (2.6.17), and put F = F (x, y, z,−i~ ∂
∂x ,−i~ ∂

∂y ,−i~ ∂
∂z ) =

F (r,−i~∇). Thus the differential operator F , representing Dirac linear operator F̂ in the
coordinate representation, is specified by the equation:7

〈r|F̂ |A〉 = F〈r|A〉 = FΨA(r). (2.7.4)

Hermitian Adjoint of a Differential Operator in the Coordinate Space

Let the coordinate representative of a Dirac linear operator F̂ be F , and the coordinate
representative of its adjoint F̂ † be F†. The latter may also be called the Hermitian adjoint
(also referred to as Hermitian conjugate) of the differential operator F . Now, from the
definition of the adjoint of a linear operator, we have

〈A1|F̂ †|A2〉 =
[
〈A2|F̂ |A1〉

]∗
, (2.7.5)

for arbitrary 〈A1| and |A2 〉. In the coordinate representation the two sides of this take the
form ∫

Ψ∗1(r)F†Ψ2(r)d3r =
[∫

Ψ∗2(r) (FΨ1(r)) d3r

]∗
=
∫

(FΨ1(r))∗Ψ2(r)d3r (2.7.6)

where Ψ1(r) = 〈r|A1〉 and Ψ2(r) = 〈r|A2〉. Equation (2.7.6) may be looked upon as the
definition of the Hermitian conjugate F† of a differential operator F in the coordinate space.

7The linear operator dn

dx̂n
, operating on a ket means d

dx̂
operating n times in succession on the ket to the

right. Thus

〈r|
d2

dx̂2
|A 〉 = 〈r|

d

dx̂

d

dx̂
|A 〉 = 〈r|

d

dx̂
|B 〉 , where |B 〉 =

d

dx̂
|A 〉

=
∂

∂x
〈r|B〉 =

∂

∂x
〈r|

d

dx̂
|A 〉 =

∂2

∂x2
〈r|A〉 =

∂2

∂x2
ΨA(r) .

Similarly,

〈r|
d2

dx̂2
+

d2

dŷ2
+

d2

dẑ2
|A 〉 =

„
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

«
〈r|A〉 = ∇2ΨA(r)

and 〈r| −
~2

2µ

„
d2

dx̂2
+

d2

dŷ2
+

d2

dẑ2

«
+ V̂ (x̂, ŷ, ẑ) |A 〉 =

„
−

~2

2µ
∇2 + V (r)

«
ΨA(r) .

In general,

〈r| F̂ (x̂, ŷ, ẑ,−i~
d

dx̂
,−i~

d

dŷ
,−i~

d

dẑ
) |A 〉

= F (x, y, z,−i~
∂

∂x
,−i~

∂

∂y
,−i~

∂

∂z
) 〈r|A〉 = FΨA(r) ,

which is Eq. (2.7.4).
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If the linear operator F̂ is Hermitian (self-adjoint) (F̂ † = F̂ ) or, equivalently, the differ-
ential operator F is Hermitian8 (F† = F), then the condition for F to be called Hermitian
becomes ∫

Ψ∗1(r)FΨ2(r)d3r =
∫

[FΨ1(r)]∗Ψ2(r)d3r , (2.7.7)

where the functions Ψ1(r) and Ψ2(r) are the coordinate representative of arbitrary states
|A1 〉 and |A2 〉.

2.8 The Momentum Representation

The momentum observables p̂1 , p̂2 , · · ·p̂f , like the position observables q̂1 , q̂2 , · · ·q̂f , also
form a set of commuting observables. So, we can as well set up an alternative representation
in which the basis states are the simultaneous eigenstates of the momentum observables,
〈p1, p2, · · ·, pf |, where p1, p2, · · ·, pf represent the continuously varying eigenvalues of the
momentum observables. This representation is called the momentum representation. In this
representation, the representatives of a state |A〉 are the set of numbers 〈p1 , p2 , · · ·pf |A〉,
which vary continuously with the eigenvalues p1 , p2 , · · ·pf . In other words, an arbitrary
state |A〉 can be represented by the function ΦA(p1 , p2 , · · ·pf ) of the eigenvalues of the
momentum observables:

Φ(p1 , p2 , · · ·pf ) = 〈p1 , p2 , · · ·pf |A〉 . (2.8.1)

The function ΦA(p1 , p2 , · · ·pf ) is called the momentum representative of the state |A〉, or
the wave function of the system in momentum space.

2.8.1 Physical Interpretation of Φ(p1 , p2 , · · ·pf )

The normalization condition 〈A|A〉 = 1 for state |A〉 implies∫
· · ·
∫
〈A| p1 , p2 , · · ·pf 〉 dp1dp2 · · · dpf 〈p1 , p2 , · · ·pf |A〉

=
∫
· · ·
∫
|ΦA(p1 , p2 , · · ·pf )|2 dp1dp2 · · · dpf = 1 (2.8.2)

which means that |ΦA(p1 , p2 , · · ·pf )|2 dp1dp2 · · · dpf could be interpreted as the probability
that the results of measurements of momentum observables p̂1 , p̂2 , · · · , p̂f on state |A 〉 will
lie between p1 and p1 +dp1, p2 and p2 +dp2, and so on. The normalization condition (2.8.2)
expresses the fact that the probability that measurements of p̂1 , p̂2 , · · · , p̂f on the state |A〉
will yield results that lie within the respective ranges of their eigenvalues is one.

8In our notation (†) put on a Dirac linear operator means the adjoint of the linear operator; when ‘†’ is
put on a differential operator, it means its Hermitian conjugate, and when put on a matrix, it means the
Hermitian adjoint of the matrix.
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2.9 Dirac Delta Function

The need for delta function arises when we wish to write the orthogonality condition for
the eigenstates of an observable which admits continuous eigenvalues. We know that if an
observable α admits a set of discrete eigenvalues, say α(r), then its eigenvectors belonging
to different eigenvalues are orthogonal:〈

α(r)
∣∣∣α(s)

〉
= δrs (2.9.1)

and
∑
s

〈
α(r)

∣∣∣α(s)
〉

= 1 . (2.9.2)

If there is an observable, say q̂, which admits continuous eigenvalues q, then the orthogo-
nality of eigenstates |q〉 of the observable q̂ demands that

〈q| q′〉 = 0 if q 6= q′ (2.9.3)
〈q| q′〉 → ∞ as q → q′ (2.9.4)

with
∫
〈q| q′〉 dq′ = 1 , (2.9.5)

where the integration is over the entire range of the eigenvalue q. Dirac invented a function
δ(x−a) to describe such a behavior. Formal definition and properties of Dirac delta function
δ(x− a) are as follows:

1. Dirac delta function is defined by

δ(x− a) =

{
0 if x 6= a

∞ if x = a
(2.9.6)

such that
∫
δ(x− a)dx = 1 . (2.9.7)

2. Dirac delta function is a symmetric function of its argument:

δ(x− a) = δ(a− x).

3. (x− a)δ(x− a) = 0.

4. δ[c(x− a)] = 1
c δ(x− a).

5. Assuming that f(x) has a single zero x0,

δ(f(x)) =
δ(x− x0)∣∣∣∣ dfdx

∣∣∣∣
x=x0

.

6. f(x)δ(x− a) = f(a)δ(x− a).

7.
∫
f(x)δ(x− a)dx = f(a).

Graphically, the delta function δ(x− a) may be regarded as a symmetric function with a
peak at r = a with the height of the peak tending to infinity and its width tending to zero,
such that the area under the curve is finite (= 1) [see Fig. 2.1]. Mathematically, the delta
function can be represented in a number of ways:



54 Concepts in Quantum Mechanics

f(x)

x

a0

�∆x

FIGURE 2.1
A symmetric function f(x) centered at x = a leads to a delta function δ(x − a) when its
width ∆x→ 0 and peak height →∞ such that the area under the curve is equal to 1.

(i)

δ(x− a) = lim
g→∞

sin[g(x− a)]
π(x− a)

or δ(x) = lim
g→∞

sin(gx)
πx

. (2.9.8)

To prove this identity, let us examine the function

sin(gx)
πx

=
g

π

sin(gx)
gx

.

We note that this function has a principal peak of height g/π at x = 0. The width
of its principal maximum is 2π/g and the function oscillates with a period π/g [ see
Fig. 2.2]. As g → ∞, the height of the peak tends to infinity and its width tends to
zero. Also, the area under the curve∫ ∞

−∞

sin(gx)
πx

dx =
1
π

∫ ∞
−∞

sin(t)
t

dt = 1

independent of the value of g. So the function limg→∞
sin(gx)
πx has the properties of

the δ function and can furnish a representation for it.

(ii) Delta function also has a Fourier representation. To establish the Fourier representa-
tion, we recall that the Fourier transform φ(k) of a function f(x) is given by

φ(k) =
1√
2π

∫ ∞
−∞

f(x)e−ikxdx ,

whereas f(x), the inverse Fourier transform of φ(k) is expressed as

f(x) =
1√
2π

∫ ∞
−∞

φ(k)eikxdk .
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sin(gx)

x
03 π

g- π
g

2 π
g

3 π
g

4 π
g

π
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g-

4 π
g-

πx
g
π

FIGURE 2.2
Graphical representation of the function f(x) = sin(gx)/πx.

Combining these two equations, we have the Fourier integral theorem:

f(x) =
1

2π

∫ ∞
−∞

f(x′)dx′
∫ ∞
−∞

e−ik(x′−x)dx . (2.9.9)

Comparing this result with the property (7) of delta function

f(x) =
∫
dx′ f(x′)δ(x′ − x) , (2.9.10)

we have the representation

δ(x′ − x) =
1

2π

∫
dk e−ik(x′−x)

or δ(x− a) =
1

2π

∫
dk e−ik(x−a) . (2.9.11)

2.9.1 Three-dimensional Delta Function

The product of three delta functions

δ3(r − a) = δ(x− ax)δ(y − ay)δ(z − az)
is called the three-dimensional delta function. With the help of Eq. (2.9.11) it follows that

δ3(r − a) =
1

(2π)3

∫
dkx e

−ikx(x−ax)

∫
dky e

−iky(y−ay)

∫
dkz e

−ikz(z−az)

≡ 1
(2π)3

∫
d3k e−ik·(r−a) . (2.9.12)

Apart from enabling one to write the orthogonality conditions for the eigenstates of an
observable, which admits continuous eigenvalues, the delta function has other uses also.
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For example, it can be used to express the charge density ρ(r) on account of a point charge
Q at r = a as

ρ(r) = Qδ3(r − a) . (2.9.13)

We can easily see that the integrated charge is Q∫
ρ(r)d3r = Q . (2.9.14)

With this brief digression on Dirac delta function, we can resume our discussion of the
momentum representation.

2.9.2 Normalization of a Plane Wave

The eigenstate |p〉 [or |k 〉, where k = p/~] of momentum observable p̂ can be expressed in
the coordinate representation as

|p 〉 → 〈x| p〉 = C eipx/~ (2.9.15)

or |k 〉 → 〈x| k〉 = C ′ eikx . (2.9.16)

Here we consider the particle to have only one degree of freedom. We shall see that the
normalization constants C and C ′ are different. This means the normalization constant
for the plane wave depends on whether we use p or k to specify the continuously varying
eigenvalue of the momentum observable.

Now the normalization condition for the momentum state |p 〉 is

〈p| p′〉 = δ(p− p′) . (2.9.17)

On the other hand

〈p| p′〉 =
∫
〈p|x〉 dx 〈x| p′〉

=
∫
C∗e−ipx/~Ceip

′x/~dx = |C|2 2π δ[(p− p′)/~]

= |C|2 2π ~ δ(p− p′) . (2.9.18)

Comparing this to the right hand side of Eq. (2.9.17), we have 2π ~ |C|2 = 1, which gives

C =
1√
h
, (2.9.19)

where we have chosen the normalization constant to be real and positive. Similarly, the
normalization condition 〈k| k′〉 = δ(k − k′) gives

C ′ =
1√
2π

. (2.9.20)

2.10 Relation between the Coordinate and Momentum
Representations

For simplicity, consider a system with one degree of freedom. Then the coordinate repre-
sentative of a state |A〉 is given by the wave function Ψ(x) = 〈x|A〉 and the momentum
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representative of the same state is given by Φ(k) = 〈k|A〉, where we use k = p
~ to represent

the continuously varying eigenvalue of the momentum observable. Now the momentum
representative of the state can be written as

Φ(k) = 〈k|A〉 =
∫
〈k|x〉 dx 〈x|A〉 =

1√
2π

∫
ψ(x) e−ikxdx . (2.10.1)

Thus the momentum representative is the Fourier transform of the coordinate representa-
tive.

Similarly, the coordinate representative can be written as

Ψ(x) = 〈x|A〉 =
∫
〈x| k〉 dk 〈k|A〉 =

1√
2π

∫
Φ(k) eikxdx . (2.10.2)

Thus the coordinate representative is the inverse Fourier transform of the momentum rep-
resentative. If we use p to denote the continuously varying momentum eigenvalue, then we
can rewrite these very relations as

Φ(p) =
1√
h

∫
Ψ(x) e−ipx/~dx , (2.10.3)

and Ψ(x) =
1√
h

∫
Φ(p) eipx/~dp . (2.10.4)

For a system with three degrees of freedom, we can take the three commuting coordinate
observables to be x̂ , ŷ , ẑ. Then the coordinate representative of the state |A〉 is the wave
function ΨA(r) ≡ ΨA(x, y, z) = 〈x, y, z|A〉.

For the momentum representation, we take the three commuting momentum observables
to be p̂x , p̂y , p̂z (or k̂x, k̂y, k̂z). Then the state |A 〉 is represented by the function ΦA(k) ≡
ΦA(kx, ky, kz) = 〈kx, ky, kz|A〉. Using the resolution of the unit operator in the coordinate
representation, we can express the momentum representative of state |A 〉 as

ΦA(k) =
∫∫∫

〈kx, ky, kz|x, y, z〉 dxdydz 〈x, y, z|A〉

=
∫∫∫

〈kx|x〉 〈ky| y〉 〈kz| z〉 dxdydzΨA(x, y, z)

=
1

(2π)3/2

∫∫∫
e−ik·rΨA(r)d3r . (2.10.5)

This equation shows that the momentum representatives of state |A 〉 is the three-dimensional
Fourier transform of the coordinate representative of the same state. Likewise, the coordi-
nate representative of state |A 〉

ΨA(r) =
∫∫∫

〈x, y, z| kx, ky, kz〉 dkxdkydkz 〈kx, ky, kz|A〉

=
1

(2π)3/2

∫∫∫
eik·rΦA(k)d3k , (2.10.6)

is found to be the three-dimensional inverse Fourier transform of its momentum represen-
tative.

If we choose to express the continuously varying eigenvalues of momentum observables
by (px, py, pz) = p instead of (kx,ky,kz) = k, then these relations can be written as

Φ(p) =
1

h3/2

∫∫∫
e−ip·r/~Φ(r)d3r , (2.10.7)

Ψ(r) =
1

h3/2

∫∫∫
eip·r/~Φ(p)d3p . (2.10.8)
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These relations can be generalized to a system with f degrees of freedom in a straightforward
manner:

ΦA(p1, p2, · · · , pf ) ≡ 〈p1, p2, · · · , pf |A〉
=

1
~f/2

∫
· · ·
∫
e−i(p1q1+p2q2+···+pfqf )/~Ψ(q1, q2, · · · , qf )dq1dq2 · · · dqf , (2.10.9)

Ψ(q1, q2, · · · , qf ) ≡ 〈q1, q2, · · · , qf |A〉
=

1
~f/2

∫
· · ·
∫
e(p1q1+p2q2+···+pfqf )/~Φ(p1, p2, · · · , pf )dp1dp2 · · · dpf . (2.10.10)

Comparison of Coordinate and Momentum Representations

Although the coordinate and momentum representations are different, there are some sim-
ilarities. The table below compares the two representations.

Coordinate Representation Momentum Representation

1. In the coordinate representation, the posi-
tion observables q̂1, q̂2, · · ·, q̂f are taken to be
diagonal and the basis states are taken to be
the simultaneous eigenstates |q1, q2, · · ·, qf 〉 of
these observables, where q1, q2, · · ·, qf repre-
sent the continuously varying eigenvalues of
these observables. So the basis states are not
denumerable, but form a continuous set of
states.

1. In the momentum representation, the mo-
mentum observables p̂1, p̂2, · · ·, p̂f are taken to
be diagonal and the basis states are taken to
be the simultaneous eigenstates |p1, p2, · · ·pf 〉
of these observables, where p1, p2, · · ·pf rep-
resent the continuously varying eigenvalues
of the momentum observables. So the basis
states are not enumerable, but form a contin-
uous set of states.

2. An arbitary state |X〉 is represented
by the set of numbers 〈q1, q2, · · ·, qf |X〉 ≡
Ψ(q1, q2, · · ·, qf ) which vary continuously with
the eigenvalues of the position observables. So
Ψ(q1, q2, · · ·, qf ) may be looked upon as a func-
tion of the eigenvalues. It is generally referred
to as the wave function of the system in the
coordinate space.

2. An arbitary state |X〉 is represented
by the set of numbers 〈p1, p2, · · ·, pf |X〉 ≡
Φ(p1, p2, · · ·, pf ) which vary continuously with
the eigenvalues of the momentum observables.
So Φ(p1, p2, · · ·, pf ) may be looked upon as a
function of the eigenvalues. It is generally re-
ferred to as the wave function of the system
in the momentum space.

3. The expression |Ψ(q1, · · ·qf )|2dq1· · ·dqf
may be interpreted as the probability that
a measurement of the observables q̂1, q̂2, · · ·q̂f
on the system in state |X〉 (or Ψ) will lead
to results between q1 and q1 + dq1 , q2 and
q2 + dq2 · · ·, and qf + dqf . The normal-
ization of the state 〈X|X〉 = 1 implies∫ · · · ∫ |Ψ(q1, · · ·, qf )|2dq1· · ·dqf = 1.

3. The expression |Φ(p1, · · ·pf )|2dp1· · ·dpf
may be interpreted as the probability that a
measurement of the observables p̂1 , p̂2 , · · ·p̂f
on the system in state |X〉 (or Φ) will lead
to results between p1 and p1 + dp1 , p2 and
p2 + dp2 · · ·, and pf + dpf . The normaliza-
tion of the state 〈X|X〉 = 1 implies that∫ · · · ∫ |Φ(p1, · · ·, pf |2dp1· · ·dpf = 1
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Problems

1. A two-dimensional vector space is spanned by two orthogonal vectors |1 〉 and |2 〉. A
linear operator Â has the following effect on these vectors:

Â |1 〉 = 2 |1 〉+ i
√

2 |2 〉 ,
Â |2 〉 = −i

√
2 |1 〉+ 3 |2 〉 .

(a) Obtain the matrix representation of the operator Â in this basis. Is this matrix
Hermitian? If so, find the eigenvalues and eigenvectors of this matrix.

(b) Express the eigenstates |x1 〉 and |x2 〉 of Â in terms of the basis vectors |1 〉 and
|2 〉. For this first express the column matrices representing the states |x1 〉 and
|x2 〉 in terms of those representing the basis states.

(c) Write out the projection operators that will project the eigenstates |x1 〉 and
|x2 〉.

(d) Obtain the matrices representing these projection operators in the basis spanned
by the basis states. Show that these matrices satisfy the closure condition.

2. Prove that [x̂, f̂(p̂)] = i~
df̂(p̂)
dp̂

, where
df̂(p̂)
dp̂

means differentiating the function f(p)

with respect to p and replacing the variable p by the linear operator p̂.

[Hint: Following Dirac, x̂ = i~
d

dp̂
where

d

dp̂
can be treated as a linear operator with

the property 〈p| d
dp̂
|A 〉 =

∂

∂p
〈p|A〉 . ]

3. Prove that [F̂ (x̂), p̂] = i~
dF̂ (x̂)
dx̂

, where
dF̂ (x̂)
dx̂

means differentiating the function F (x)
with respect to x and replacing the variable x by the linear operator x̂.

[Hint: Following Dirac, p̂ = −i~ d

dx̂
where

d

dx̂
can be treated as a linear operator with

the property 〈x| d
dx̂
|A 〉 =

∂

∂x
〈x|A〉 . ]

4. Show that in a representation in which a set of commuting observables ξ̂, η̂, ζ̂ are
diagonal, the operators ξ̂2, η̂2, ζ̂2 and ζ̂ η̂ are also represented by diagonal matrices.

5. If the Hamiltonian of a system

Ĥ =
p̂2

2µ
+ V̂ (x̂, ŷ, ẑ) ,

admits a set of eigenstates |n 〉 with energies En (n = 1, 2, · · · , N) show that∑
n

(En − Em)|xnm|2 =
~2

2µ
,

where the summation is over all the eigenstates of Ĥ and x̂ is a Cartesian compo-
nent of r̂ with xnm = 〈n| x̂ |m 〉 is an element of the matrix representing x̂ in the
representation in which Ĥ is diagonal.
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[Hint: Use the identity x̂2Ĥ−2x̂Ĥx̂+Ĥx̂2 = [x̂, [x̂, Ĥ]] and evaluate the commutator
bracket on the right hand side using the basic commutation relations. Then take
expectation value of both sides in state |m 〉.]

6. An element of the matrix, representing an observable α̂ = α(q̂,−i~∂/∂q̂) in the
ξ̂, η̂, ζ̂ · · · representation, is given by αps =

〈
ξ(p)
∣∣ α̂ ∣∣ξ(s)

〉
, where the basis states∣∣ξ(s)

〉 ≡ ∣∣ξ(s), η(s), ζ(s), ...
〉
. If the basis states

∣∣ξ(s)
〉

are represented by the wave
functions Ψs(r) =

〈
r| ξ(s)

〉
in the coordinate representation, re-express this matrix

element in the integral form in terms of the wave functions.

[Hint: Use Eq. (2.6.5)].

7. Show that the eigenvalues of a matrix are not changed if it is subjected to a unitary
transformation.

8. In problem (5) show also that∑
m

(En − Em) |pmn|2 =
1
2
〈n| p̂2V̂ + V̂ p̂2 − 2p̂V̂ · p̂ |n〉

= −~2

2

∫
ψ∗n(r)

(∇2V (r)
)
ψn(r) dτ

where |pmn|2 = |〈m| p̂ |n 〉|2 and p̂ is the momentum operator −i~∇.

[Hint: Since
[
p̂, Ĥ

]
=
[
p̂, V̂

]
, we have (En − Em) 〈m| p̂ |n 〉 = 〈m| [p̂, V̂ ] |n 〉. Pre-

multiply both sides scalarly by 〈n| p̂ |m〉 and sum over m to get∑
m

(En − Em) |pmn|2 = 〈n| p̂2V̂ − p̂V̂ · p̂ |n 〉 = 〈n| V̂ p̂2 − p̂V̂ · p̂ |n 〉

=
1
2
〈n| p̂2V̂ + V̂ p̂2 − 2p̂V̂ · p̂ |n 〉

Use Eq. (2.6.5) to write the right hand side in the integral form and simplify.]

9. Show that the matrix representing a unitary operator Û [Û−1 ≡ Û†] in any repre-
sentation is a unitary matrix. What is the significance of unitary transformations in
quantum mechanics?

10. A certain observable is represented in a certain representation, by the following matrix

M =
1√
2

0 1 0
1 0 1
0 1 0

 .

Find the eigenvalues and normalized eigenvectors of this matrix. Does any physical
quantity correspond to this operator?

11. The eigen kets
∣∣ξ(n)

〉
of an observable, belonging to different eigenvalues ξ(n) (n =

1, 2, · · ·N) are orthogonal in the sense that〈
ξ(m)

∣∣∣ ξ(n)
〉

= δmn .

If these states be represented by a wave function in the coordinate representation
(consider the system to have three degrees of freedom), then express this orthogonality
condition in terms of the wave functions.



REPRESENTATION THEORY 61

12. The complete set of eigenstates
∣∣ξ(n)

〉
(n = 1, 2, · · ·N) of an observable satisfy the

completeness criterion
N∑
n=1

∣∣∣ξ(n)
〉〈

ξ(n)
∣∣∣ = Î .

If this set of states is represented by the set of wave functions ψn(r) =
〈
r| ξ(n)

〉
in

the coordinate representation (assume the system to have three degrees of freedom),
then re-express the completeness criterion in terms of wave functions.

13. In problems (11) and (12), write the orthogonality condition and the completeness
criterion in the coordinate representation when the number of degrees of freedom is
f and the set of commuting coordinate observables are q̂1, q̂2, q̂3, · · · , q̂f .

14. Find the momentum representative of the plane wave state which is expressed by the
wave function

Ψk0(r) =
1√
2π

eik0·r ,

in the coordinate representation.

15. The ground state wave function of the Hydrogen atom is represented by

〈r|n = 1, ` = 1,m = 0〉 ≡ Ψ100(r) =
1√
πa3

o

e−r/ao .

Find the corresponding wave function in the momentum space.

[Ans: φ(p) = (2πao)3/2π−5/2~5/2/(a2
op

2 + ~2)2]

16. A linear harmonic oscillator in its ground state has the wave function

ψ(x) =
(

1
a
√
π

)1/2

e−x
2/2a2

,

in the coordinate space. Show that its momentum representative is

φ(p) =
(

a

~
√
π

)1/2

e−a
2p2/2~2

.

17. A particle is in a state described by the wave function

ψ(x) =
1

(2πσ2)1/4
e−x

2/4σ2
exp(ikox)

at time t = 0 in the coordinate space.

(a) Find the corresponding wave function φ(p) in the momentum space.

(b) Determine the expectation values of x̂ and x̂2 for this state,

〈x〉 =
∫ ∞
−∞

dxψ∗(x)xψ(x) and 〈x2〉 =
∫ ∞
−∞

dxψ∗(x)x2ψ(x)

and hence the quantity ∆x =
√〈x2〉 − 〈x〉2 using ψ(x).
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(c) Determine the expectation values of p̂ and p̂2 for this state

〈p〉 =
∫ ∞
−∞

dpψ∗(p)pψ(p) and 〈p2〉 =
∫ ∞
−∞

dpψ∗(p)p2ψ(p)

and hence the quantity ∆p =
√〈p2〉 − 〈p〉2 .

(d) Find the product (∆x)(∆p) for this state.

18. Show that the eigenvalues of the matrix representing an observable α̂ in any repre-
sentation are the same as the eigenvalues of α̂ itself.

19. The 2s state of the Hydrogen atom has the wave function

Ψ200(r) =
1√

32πa3
o

(2− ρ)e−ρ/2 .

where ρ is equal to r/ao and ao = Bohr radius. Find the momentum representative
of this state.

20. The ground state wave function of a linear harmonic oscillator is given by

ψ(x) = No e
−x2√mk/2~ .

Show that its ground state wave function in the momentum space is

φ(p) = Mo e
−p2/2~

√
mk .

Determine the normalization constants No and Mo.

21. Three (2×2) matrices σx, σy, σz satisfy the following equations:

σ2
x = σ2

2 = σ2
3 = I ,

σxσy − σyσx = 2iσz ,
σyσz − σzσy = 2iσx ,
σzσx − σxσz = 2iσy .

Find the three matrices if σz is to be diagonal.

22. The state of a particle with one degree of freedom is described by the wave function

ψ(x) = φ(x) exp(−ipox/~) ,

where the function φ(x) is real. What is the physical meaning of the quantity po?

23. Normalize the following function in momentum space

φ(p) = N exp(−αp/~) , p = |p|

and show that its coordinate representative is

ψ(r) =
(2α)3/2

π

α

(α2 + r2)
.
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24. A wave packet may be looked upon as a result of superposition of plane continuous
waves with wavelength λ (or wave numbers k = 2π/λ ) varying in a certain range.
Let a wave packet at t = 0 be given by

Ψ(x, 0) =
1√
2π

∫ ∞
−∞

dkφ(k)eikx ,

where φ(k) has a Gaussian shape

φ(k) = aoe
−(k−k0)2σ2

,

ψ(x) and φ(k) being the coordinate and momentum representatives of the same state.
Evaluate |ψ(x, 0)|2 and |φ(k)|2 and estimate the product of maximum uncertainties in
the measurements of x and p in the state of a particle represented by the wave packet
at t = 0. Given: p = h/λ = ~k.

25. Show that
(i) the eigenvalues of a Hermitian matrix are real
(ii) the eigenvalues of a unitary matrix are uni-modular
(iii) eigenvalues of an orthogonal matrix are ±1

26. Show that the eigenvalues of a matrix are invariant under a unitary transformation.

27. Show that the trace of a matrix is unchanged under a unitary transformation.

28. Show that the eigenvector Xk and X` of a matrix M , belonging to different eigenvalues
λk and λ` are orthogonal in the sense that X†kX` = 0 if λk 6= λ`, where X†k represents
the complex conjugate of the transpose of matrix Xk.

29. At a given time the normalized wave-function of a particle moving along x direction
is given by

Ψ(x) =
1

(σ2π)1/4
e−x

2/2σ2
eipx/~ .

For this state find

(a) the most probable location of the particle

(b) the expectation value 〈x〉 for x

(c) the expectation value of its momentum

(d) 〈p2〉 and 〈x2〉 for this state and hence (∆x)2 ≡ 〈x2〉−〈x〉2 and (∆p)2 ≡ 〈p2〉−〈p〉2

30. The state of an oscillator of angular frequency ω is represented by the wave function:

Ψ(x) = e−mωx
2/~ .

Find the momentum representative of this state. What are the quantum mechanical
expectation values of its momentum and position?

Find the probability that the magnitude of momentum is larger than (m~ω)1/2.

31. Define Dirac delta function δ(x). Show that∫ x2

−x1

dxf(x)δ(x) = f(0) ,

where x1 and x2 are arbitrary positive numbers.
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32. Show that
δ(x2 − a2) =

1
2|a| [δ(x− a) + δ(x+ a)] .

33. Show that

δ(f(x)) =
δ(x− x0)∣∣∣∂f∂x ∣∣∣

x=x0

.

where x0 is the zero of f(x).

34. Show that

δ′(x) = −δ(x)
x

.

35. In a three-dimensional vector space spanned by orthonormal basis vectors |1 〉 , |2 〉 , |3 〉
a linear operation R̂ has the following effect on these vectors:

R̂ |1 〉 = |1 〉 , R̂ |2 〉 = |3 〉 , and R̂ |3 〉 = − |2 〉 .
(a) Write the matrix representation of R̂ in this basis.
(b) Calculate the eigenvalues and eigenvectors of R̂.

36. The ground state of the Hydrogen atom is represented by the wave function

Ψ100(r) =
1√
πa3

o

e−r/ao ,

where ao = Bohr radius. Find:
(a) the quantum mechanical expectation value of r: 〈r〉100

(b) the most probable value of r
(c) the root-mean square value of r:

[〈r2〉100

]1/2
37. The first excited state of the Hydrogen atom is represented by

Ψ200(r) =
1√

32πa3
o

(r/ao − 2)e−r/2ao .

For this state find
(a) the quantum mechanical expectation value of r
(b) the most probable value of r
(c) the root mean square value of r

38. If α̂† is the adjoint of a linear operator α̂, then show that

(〈P | α̂ |Q 〉)∗ = 〈Q| α̂† |P 〉 .
Also show that, in the coordinate representation this criterion is expressed as∫

(αqφ1(q))∗ φ2(q) dτ =
∫

ϕ∗1(q)α†q φ2(q) dτ

where φ1(q) = 〈q|Q〉 and φ2(q) = 〈q|P 〉 are the coordinate representatives of the
states |Q 〉 and |P 〉 and αq and α†q are, respectively, the coordinate representatives of
the linear operators α̂ and α̂† given by

〈q| α̂ |Q〉 = αq 〈q|Q〉 = αqφ1(q)

and 〈q| α̂† |P 〉 = α†q 〈q|P 〉 = α†qφ2(q) .
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Express the condition for α̂ to be a self-adjoint operator (or αq to be a Hermitian
operator).

39. Show that for any state of the Hydrogen atom

〈T 〉 = −1
2
〈V 〉

where T and V represent, respectively, the kinetic energy and the Coulomb potential
energy in the Hamiltonian. Check this for the ground state and the first excited state
of the Hydrogen atom. The relevant wave functions are given in problems (36) and
(37).

40. In dealing with the coordinate representation of the Schrödinger equation in three
dimensions it is convenient to introduce a radial momentum operator. Show that the
radial momentum operator

p̂r =
1
2
[
r̂−1r̂ · p̂+ p̂ · r̂r̂−1

]
,

satisfies the following commutation relation

[x̂, p̂r] = i~
x̂

r̂
, [ŷ, p̂r] = i~

ŷ

r̂
, [ẑ, p̂r] = i~

ẑ

r̂
, [r̂, p̂r] = i~

where the operator r̂ is defined by r̂2 = r̂ · r̂ and r̂r̂−1 = 1 = r̂−1r̂.

[Hint: Express p̂r in terms of Cartesian observables x̂, p̂x, etc. and use their com-
mutation relations. Finally, to establish the last relation use [f(r̂), p̂] = i~∇f(r̂) (see
problems 2 and 3)].

Using the coordinate representative of radial momentum operator

pr = −i~1
r

∂

∂r
r = −i~

(
∂

∂r
+

1
r

)
,

show that it is Hermitian provided that the wave functions satisfy the following con-
straint

lim
r→0

rψ(r) = 0 .

Why is p̂r not an observable?

[Hint: Solve the eigenvalue problem for pr in the coordinate representation with the
constraint just stated.]
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3

EQUATIONS OF MOTION

3.1 Schrödinger Equation of Motion

We shall now consider the connection between the state of a system at one time and that at a
subsequent time, provided that, in between, the state is not disturbed by an observation. It
may be recalled that making an observation on a dynamical system will, in general, disturb
the state of the system unless the state happens to be an eigenstate of the observable
pertaining to the observation. If the state is not disturbed in between, the time evolution
of the state of the system is governed by an equation of motion which would enable one to
determine the state at a later time if the state at an earlier time is known. Such an equation
of motion would enable one to get a complete dynamical picture of the system.

To determine such an equation of motion, we are guided by two principles:

1. The principle of superposition of states holds good at all times. This means that if
the state of the system initially can be regarded as a superposition of other states,
then the superposition relationship holds throughout the time evolution of the state
unless it is disturbed by an observation.

2. The length or the norm of the ket vector representing the state of the system is
preserved at all times.

According to the first requirement, if the initial state is expresssed as |R(t0) 〉 = C1 |A(t0) 〉+
C2 |B(t0) 〉, then the subsequent state can be expressed as |R(t) 〉 = C1 |A(t) 〉+C2 |B(t) 〉.
Now this is possible only if the state at time t results from the operation of a linear (time-
dependent) operator T̂ on the state at t0:

|R(t) 〉 = T̂ |R(to) 〉 , (3.1.1)

where the operator T̂ cannot depend on the state in question (to preserve linearity). It
can, however, depend on the initial and final times to and t and the nature of the system.
We will make this explicit by writing T̂ ≡ T̂ (t, to). It is obvious that T̂ (to, t0) = 1̂ is the
identity operator.

The second requirement, 〈R(t)|R(t)〉 = 〈R(t0)|R(t0)〉, implies that the operator T̂ must
be unitary:

T̂ †T̂ = T̂ T̂ † = 1̂ . (3.1.2)

Now consider an infinitesimal time translation operation when t→to or ∆t ≡→ 0. For
physical continuity, we assume that the limit

lim
t→to

|R(t) 〉 − |R(to) 〉
t− to = lim

∆t→0

|R(to + ∆t) 〉 − |R(to) 〉
∆t

exists and can be represented by
[
d
dt |R(t) 〉]

t=to
. By virtue of Eq. (3.1.1) this derivative is

given by [
d

dt
|R(t) 〉

]
t=to

= lim
t→to

T̂ (t, to)− 1̂
t− to |R(to) 〉 ≡ α̂ |R(to) 〉 , (3.1.3)

67
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where the liner operator α̂ is given by

α̂ ≡ lim
t→to

ˆT (t, to)− 1̂
t− to . (3.1.4)

It can be seen that α̂ is a pure imaginary operator and, therefore, i~ α̂ is a Hermitian (or
self-adjoint) operator.1

Now there are reasons for identifying the operator i~ α̂ with the Hamiltonian Ĥ of the
system and we shall discuss them shortly. If we make this identification, Eq. (3.1.3) can be
written as

i~
d

dt
|R(t) 〉 = Ĥ |R(t) 〉 , (3.1.5)

where we have dropped the label to since to is an arbitrary initial time. Equation (3.1.5),
called the Schrödinger equation of motion, gives a causal connection between the state of
the system at some initial time and at a subsequent time. The justifications for identifying
the operator i~ α̂, with Ĥ are as follows.

1. Theory of special relativity puts (E/c2) in the same relation to time t as momenta
px, py, pz are to position coordinates x, y, z. In other words, px, py, pz, E/c2 transform
exactly as x, y, z, t do, or px, py, pz, iE/c form a four-vector just as x, y, z and ict do.
Now in quantum mechanics px, py, and pz are replaced by −i~ ∂

∂x ,−i~ ∂
∂y ,−i~ ∂

∂z . So
iE/c must be replaced by −i~ ∂

∂(ict) or E by i~ ∂
∂t . So the operator i~(∂/∂t) or i~α̂ is

essentially the energy operator − the Hamiltonian.

2. The Schrödinger equation of motion (3.1.5) refers to the so called Schrödinger picture,
in which the states change with time and observables are independent of time. From
this picture, we can go over to another picture called the Heisenberg picutre, in which
the states are independent of time and the time dependence is passed on to the
observables, called the Heisenberg observables [see Sec. 3.8]. In this picture, the
equation of motion for an observable F̂H is given by

dF̂H

dt
=
∂F̂H

∂t
+

1
i~

[F̂H , ĤH ] . (3.1.6)

This equation is analogous to the classical equation of motion for a real dynamical
variables Fc:

dFc
dt

=
∂Fc
∂t

+ {Fc, Hc} ,
where the curly bracket stands for classical Poisson Bracket and Hc is the classical
Hamiltonian. We have seen that 1/i~ times the commutator bracket is the quan-
tum analog of classical Poisson bracket. Now, since Hc is the classical Hamiltonian,
the operator ĤH could be identified as the Hamiltonian in the Heisenberg picture.
Therefore, the operator Ĥ in Eq.(3.1.5) could be identified as the Hamiltonian in
the Schrödinger picture2. When the system has a classical analog then we may also
assume that the Hamiltonian operator occuring in the Schrödinger equation of mo-
tion (3.1.5) is the same function of the coordinate and momentum observables as its
classical counterpart is of the canonical coordinates and momenta. However, as Dirac

1For small time translation, t = to + ∆t, (∆t→0), we can write T̂ = α̂∆t+ 1̂ and T̂ † = α†∆t+ 1. Then the

unitarity of T̂ implies (α̂∆t+ 1̂)(α̂†∆t+ 1̂) = 1̂. Expanding and neglecting terms of of order (∆t)2, we get
(α̂+ α̂†)∆t+ 1̂ = 1̂, which leads to α̂† = −α̂.
2In fact, ĤH is identical with Ĥ.
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has observed,3 this assumption holds good only when the Hamiltonian is expressed
in terms of Cartesian coordinates and momenta and not in terms of more general
curvilinear coordinates and canonically conjugate momenta.

3.2 Schrödinger Equation in the Coordinate Representation

The Schrödinger equation of motion

i~
d

dt
|R(t)〉 = Ĥ|R(t)〉 (3.2.1)

may easily be written in the coordinate representation. Consider the system to have three
degrees of freedom and take the basis states to be the simultaneous eigenstates |x, y, z 〉
of three commuting observables x̂, ŷ, ẑ, where x, y, z represent the continuously varying
eigenvalues of the coordinate observables. The state |R(t)〉 can be represented by the wave
function Ψ(x, y, z, t) = 〈x, y, z|R(t)〉. Premultiplying Eq. (3.2.1) on both sides by 〈x, y, z|
and expressing the Hamiltonian explicitly, we obtain

i~
d

dt
〈x, y, z|R(t)〉 = 〈x, y, z|

[
p̂2
x + p̂2

y + p̂2
z

2m
+ V̂ (x̂, ŷ, ẑ)

]
|R(t) 〉

or i~
d

dt
Ψ(x, y, z, t) = 〈x, y, z|

[
− ~2

2m

(
d2

dx̂2
+

d2

dŷ2
+

d2

dẑ2

)
+ V̂ (x̂, ŷ, ẑ)

]
|R(t) 〉

=
[
− ~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ V (x, y, z)

]
Ψ(x, y, z, t)

where we have made use of Eq. (2.6.5). Writing r for x, y, z we obtain

i~
d

dt
Ψ(r, t) =

[
− ~2

2m
∇2 + V (r)

]
Ψ(r, t) . (3.2.2)

This is the Schrödinger equation of motion in the coordinate representation for a system
with three degrees of freedom.

We can as well write Schrödinger equation of motion in the coordinate representation for
a system with many degrees of freedom, for example, for a system in which more than one
particles are involved. This equation is

i~
d

dt
Ψ(q1 , q2 , · · · , qf , t) = HΨ(q1 , q2 , · · · , qf , t) (3.2.3)

where the differential operator H, which is the coordinate representative of the Hamilto-
nian operator, can be obtained just by replacing the coordinate and momentum observ-
ables, occurring in the expression for the Hamiltonian operator Ĥ by q1 , q2 , · · · , qf and
−i~ ∂

∂q1
,−i~ ∂

∂q2
, · · · ,−i~ ∂

∂qf
, respectively, where q1 , q2 , · · · , qf are the continuously vary-

ing eigenvalues of the Cartesian coordinate observables of the system.

3See Principles of Quantum Mechanics, P. A. M. Dirac, Third Edition, footnote, page 144.
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3.3 Equation of Continuity

We have given the coordinate representative Ψ(r , t) ≡ 〈r |R(t) 〉 of state |R(t) 〉 the inter-
pretation that

ρ(r, t)d3r = Ψ∗(r, t)Ψ(r, t)d3r (3.3.1)

represents the probability that at time t, the particle will be found in the region of space
d3r = r2dr sin θdθ dφ around the point r (Sec.2.5). So ρ(r, t) may be interpreted as the
probability density at time t and the normalization condition∫

Ψ∗(r, t)Ψ(r, t)d3r =
∫
ρ(r, t)d3r = 1 , (3.3.2)

expresses the notion that the particle will be found somewhere in the space available to
the system. We now show that the time-dependent Schrödinger equation (3.2.2) leads to
the equation of continuity, which expresses the conservation of probability everywhere in
space accessible to the system. The time-dependent Schrödinger equation and its complex
conjugate are given by

i~
∂

∂t
Ψ(r, t) =

[
− ~2

2m
∇2 + V (r)

]
Ψ(r, t) (3.2.2*)

−i~ ∂
∂t

Ψ∗(r, t) =
[
− ~2

2m
∇2 + V (r)

]
Ψ∗(r, t) .

Premultiplying the first equation by Ψ∗(r, t) and post-multiplying the second equation by
Ψ(r, t), and subtracting the results, we get

∂

∂t
Ψ∗Ψ = − ~

2im
∇ · [Ψ∗(∇Ψ)− (∇Ψ)∗Ψ] . (3.3.3)

If we interpret

S(r, t) =
~

2im
[Ψ∗(∇Ψ)− (∇Ψ)∗Ψ] = Re

[
~
im

Ψ∗(∇Ψ)
]

(3.3.4)

as the probability current density, then Eq. (3.3.3) can be written as

∂ρ(r, t)
∂t

+∇ · S(r, t) = 0 . (3.3.5)

This equation is of the same form as the equation continuity in electrodynamics

∂ρch(r, t)
∂t

+∇ · j(r, t) = 0 , (3.3.6)

where ρch(r, t) is the electric charge density and j(r, t) is the electric current density.
The equation of continuity in electrodynamics represents conservation of charge. Equation
(3.3.5) is the quantum analog of the equation of continuity representing the conservation
of probability (or the norm) N≡∫ ρ(r , t)d3r = 1. Recalling that the divergence represents
net probability current out of a small volume element, the equation of continuity implies
that if the probability density ρ(r , t) in a certain region of space increases with time, then
there must be a net in-flow of probability into this region (∇ ·S < 0) and if the probability
density decreases with time, then there must be a net out-flow of probability (∇ · S > 0).
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3.4 Stationary States

We can relate the state of a system |R(t)〉 at time t to its state |R(0)〉 at time t = 0 through
a linear (time evolution) operator T̂ (t):

|R(t)〉 = T̂ (t)|R(0)〉 . (3.4.1)

Substituting Eq. (3.4.1) into Schrödinger equation (3.1.5), we get

i~
dT̂ (t)
dt

= ĤT̂ (t) . (3.4.2)

If the Hamiltonian Ĥ is independent of time (or Ĥ is invariant under the time translation
operation), then Eq. (3.4.2) may be integrated to give

T̂ (t) = e−iĤt/h . (3.4.3)

It is easy to chaeck that the time evolution operator T commutes with the Hamiltonian:

[Ĥ , T̂ (t)] = 0 . (3.4.4)

It follows from this equation that, if the system is initially (t = 0) in an eigenstate of
the Hamiltonian, then at a later time also, it continues to be in the eigenstate of the
Hamiltonian. To see this consider an eigenstate |Rn(0) 〉 at t = 0 of the Hamiltonian
belonging to the eigenvalue En

Ĥ|Rn(0)〉 = En|Rn(0)〉 , (3.4.5)

where the index n labels eigenstates and eigenvalues of the Hamiltonian. According to Eq.
(3.4.1), this state evolves into state |Rn(t) 〉 = T̂

∣∣R(0)
〉

such that

Ĥ|Rn(t)〉 = ĤT̂ |Rn(0)〉 = T̂ Ĥ |Rn(0) 〉
= EnT̂ |Rn(0) 〉 = En |Rn(t) 〉 .

Thus |Rn(t)〉 is also an eigenstate of Ĥ belonging to the same eigenvalue En. Moreover,
the time evolution of an eigenstate is especially simple:

|Rn(t) 〉 = e−iĤt/~ |Rn(0) 〉 = e−iEnt/~ |Rn(0) 〉 . (3.4.6)

Such states as |Rn(t)〉, which systems with time-independent Hamiltonians admit and whose
time dependence is given by Eq. (3.4.6), are called stationary states. The stationary states
|Rn(t)〉 given by Eq. (3.4.6) are so called because (1) the probability density ρ(r, t) is
independent of time and (2) the expectation value 〈α̂〉 = 〈Rn(t)|Ô|Rn(t)〉 of an observable
Ô for such states is independent of time.

By substituting Eq. (3.4.6) in the time-dependent Schrödinger equation (3.1.5), we find
that the time-independent part |Rn(0)〉 of the stationary state satisfies the time-independent
Schrödinger equation:

Ĥ|Rn(0)〉 = En|Rn(0)〉 . (3.4.7)

Thus, if the Hamiltonian of a system is time-independent, then we can find the allowed
energies (energy eigenvalues) and the corresponding states (energy eigenstates) by solving
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the time-independent Schrödinger equation (3.4.7), usually in some representation such as
the coordinate representation. Since the time-independent Schrödinger equation also has
the form of an eigenvalue equation, we will also refer to it as the Schrödinger eigenvalue
equation as distinct from the time dependent Schrödinger equation. Once the possible
energies En of the stationary states have been determined, the time dependence of these
states is simply expressed via Eq. (3.4.6).

3.5 Time-independent Schrödinger Equation in the Coordinate Rep-
resentation

The time-independent Schrödinger equation (3.4.7), since it is an eigenvalue equation for
the Hamiltonian, may be rewritten as

Ĥ |En 〉 = En |En 〉 , (3.5.1)

where we have designated the eigenstates by their corresponding energy eigenvalues ( |En 〉 ≡
|Rn(0) 〉).

The form of equation (3.5.1) in the coordinate representation will depend on the number
of degrees of freedom of the system. Consider a system with one degree of freedom. Such
a system is characterized by one position observable x̂ and one momentum observable p̂
(≡ −i~ d

dx̂ ). The Hamiltonian for such a system is expressed as4

Ĥ =
p̂2

2m
+ V̂ (x̂) = − ~2

2m
d2

dx̂2
+ V̂ (x̂) . (3.5.2)

To express this equation in the coordinate representation, we choose the basis states to be
the eigenstates 〈x| of the position observable x̂, where x denotes the continuously varying
eigenvalues of x̂. Then the state |En〉 is represented by the wave function

〈x|En〉 = Ψn(x) . (3.5.3)

Premultiply both sides of Eq. (3.5.1) by 〈x| and using the expression for Ĥ given by
Eq. (3.5.2), we get

〈x| − ~2

2m
d2

dx̂2
+ V̂ (x̂) |En 〉 = En 〈x|En〉 ,

or − ~2

2m
d2

dx2
Ψn(x) + V (x)Ψn(x) = EnΨn(x) , (3.5.4)

where we have used Eq. (2.6.5) for the first term and let V̂ (x̂) operate to the left on
〈x| in the second term. Thus the time-independent Schrödinger equation written in the
coordinate representation (or in the coordinate space) is second order differential equation.
The differential operator

Ĥ =
(
− ~2

2m
d2

dx2
+ V (x)

)
(3.5.5)

4The linear operator d2

dx̂2 stands for d
dx̂

d
dx̂

or the operator d
dx̂

operating two times on the state on the right,
in succession.
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is the Hamiltonian operator in the coordinate space and the wave function Ψn(x) = 〈x|En〉
is the coordinate representative of the state |En〉. To minimize the proliferation of symbols
we will often use the symbol H to denote the Hamiltonian operator in the coordinate
representation.

We can write, similarly, the time-independent Schrödinger equation in the coordinate
space for a system with three degrees of freedom. In this case, the basis states are the
simultaneous eigenstates |x, y, z 〉 of the three commuting coordinate observables x̂ , ŷ , ẑ,
where x, y, z are the continuously varying eigenvalues of the three observables. The mo-
mentum observables, which are not diagonal in this representation, are given, respectively,

p̂x = −i~ d

dx̂
, p̂y = −i~ d

dŷ
, p̂z = −i~ d

dẑ
.

For such a system the Hamiltonian operator can be written explicitly as

Ĥ = − ~2

2m

(
d2

dx̂2
+

d2

dŷ2
+

d2

dẑ2

)
+ V̂ (x̂, ŷ, ẑ) . (3.5.6)

Using this in the time-independent Schrödinger equation (3.5.1) and pre-multiplying both
sides of the resulting equation by 〈x, y, z|, we get

〈x, y, z| − ~2

2m

(
d2

dx̂2
+

d2

dŷ2
+

d2

dẑ2

)
+ V̂ (x̂, ŷ, ẑ) |En 〉 = En 〈x, y, z|En〉

or
[
− ~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ V (x, y, z)

]
Ψn(x, y, z) = EnΨn(x, y, z) (3.5.7)

Here we have used Eq. (2.6.5) for the first term and let V̂ (x) operate to the left on 〈x, y, z|
in the second term. Ψn(x, y, z) = 〈x, y, z|En〉 is the wave function representing the state
|En〉 in the coordinate representation. This may also be called the coordinate representative
of the state |En〉. The differential operator

− ~2

2m

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ V (x, y, z) ≡ − ~2

2m
∇2 + V (r) (3.5.8)

represents the Hamiltonian operator in the coordinate space. Thus the time-independent
Schrödinger equation in the coordinate space, for a system with three degrees of freedom,
is a second order partial differential equation for the wave function.

Working in the coordinate representation in three dimensions, we can as well use polar
coordinates (r , θ , ψ) instead of the Cartesian coordinates (x, y, z). This leads to

Ψn(x, y, z) ≡ Ψn(r) = ψn(r, θ, ϕ) (3.5.9)
V (x, y, z) ≡ V (r) = V (r, θ, ϕ) (3.5.10)

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
≡ ∇2 =

1
r2

∂

∂r
r2 ∂

∂r
+

1
r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
r2 sin2 θ

∂2

∂ϕ2
. (3.5.11)

Similar, expressions in cylindrical and other coordinate systems can be written down. It
is important to note that transformation from one set of space coordinates to another,
does not imply a change of representation because the two sets of coordinates are mutually
related.

Finally, the time-independent Schrödinger equation in the coordinate representation for
a physical system with f degrees of freedom can be written by choosing the basis states
to be the simultaneous eigenstates 〈q1, q2, · · ·qf | of f commuting Cartesian coordinate ob-
servables q̂1 , q̂2 , · · ·q̂f , where q1 , q2 , · · · , qf represent the continuously varying eigenvalues
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of the coordinate observables. Now the Hamiltonian operator Ĥ of such a system may be
expressed in terms of the position and momentum observables as

Ĥ = Ĥ

(
q̂1 , q̂2 , · · ·q̂f ,−i~ d

dq̂1
,−i~ d

dq̂2
, · · · ,−i~ d

dq̂f

)
. (3.5.12)

Using this in the time-independent Schrödinger equation (3.5.1) and multiplying both sides
of the resulting equation, from left, by 〈q1, q2, · · ·| , we get

〈 q̂1 , q̂2 , · · · , q̂f | Ĥ |En 〉 = En 〈 q̂1 , q̂2 , · · ·q̂f |En〉
or H(q1, · · ·qf ,−i~ d

dq1
, · · · ,−i~ d

dqf
)Ψn(q1, · · ·, qf ) = EnΨn(q1, · · ·, qf ) . (3.5.13)

Here Ψn(q1· · ·qf ) = 〈q1 , q2 , · · · , qf |En〉 is the coordinate representative of the state |En〉
and Eq. (2.7.4) has been used.

3.6 Time-independent Schrödinger Equation in the Momentum
Representation

Let us first consider a system with only one degree of freedom. This system is characterized
with one position observable x̂ and one momentum observable p̂. The Hamiltonian can be
explicitly written as

Ĥ =
p̂2

2m
+ V̂ (x̂) . (3.6.1)

In the momentum representation, the observable p̂ is diagonal and the basis states are
〈p|, where p stands for the continuously varying eigenvalue of the observable p̂. In this
representation, the state |En 〉 is represented by the function

Φn(p) = 〈p|En〉 , (3.6.2)

which is referred to as the wave function in the momentum space. With the Hamiltonian
given by Eq. (3.6.1), the time-independent Schrödinger equation (3.5.1) becomes[

p̂2

2m
+ V̂ (x̂)

]
|En 〉 = En |En 〉 .

Pre-multiplying both sides of this equation by 〈p|, we get[
p2

2m
〈p|En〉+ 〈p| V̂ (x̂) |En 〉

]
= En 〈p|En〉

or
(
p2

2m
− En

)
Φn(p) = −〈p| V̂ (x̂) |En 〉 = −

∫
〈p| V̂ (x̂) |p′ 〉 dp′ 〈p′|En〉

or
(
p2

2m
− En

)
Φn(p) = −

∫
v(p, p′)Φn(p′)dp′ . (3.6.3)
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Thus, in the momentum representation, the time-independent Schrödinger equation Ĥ|En〉 =
En|En〉 reduces to an integral equation. The kernel v(p, p′) can be expressed explicitly as

v(p, p′) = 〈p| V̂ (x̂) |p′ 〉
=
∫∫
〈p|x〉 dx 〈x| V̂ (x̂) |x′ 〉 dx′ 〈x′| p′〉

=
1

2π~

∫∫
e−ipx/~dxV (x)δ(x− x′)dx′ eip′x′/~

=
1

2π~

∫
e−i(p−p

′)x/~V (x)dx . (3.6.4)

Thus v(p, p′) is the Fourier transform of the potential function V (x).
Consider now a system with three degrees of freedom. In this case, the system is charac-

terized by three coordinate observables x̂ , ŷ , ẑ and three momentum observables p̂x , p̂y , p̂z.
The time-independent Schrödinger equation in three dimension can be written explicitly as(

p̂2
x + p̂2

y + p̂2
z

2m
+ V̂ (x̂, ŷ, ẑ)

)
|En 〉 = En |En 〉 . (3.6.5)

To express this equation in the momentum representation, we choose the basis states to be
the simultaneous eigenstates |px, py, pz 〉 ≡ |p 〉 of three mutually commuting momentum
observables p̂x , p̂y , p̂z. Here px , py , pz represent the continuously varying eigenvalues of the
three momentum observables. In this representation, the state |En〉 is represented by the
function Φn(p) = 〈px, py, pz|En〉 = 〈p|En〉. Pre-multiplying both sides of Eq. (3.6.5) by
〈p| , we get

〈p| p̂
2
x + p̂2

y + p̂2
z

2m
+ V̂ (x̂, ŷ, ẑ) |En 〉 = En 〈p|En〉 ,

or
(
p2

2m
− En

)
Φn(p) = −

∫∫∫
〈p| V̂ |p ′ 〉Φn(p ′)d3p′ . (3.6.6)

The quantity 〈p|V̂ |p ′〉 is easily be seen to be the three-dimensional Fourier transform of
the potential function V (r):

v(q) ≡ 〈p| V̂ |p′ 〉 =
1

(2π~)3

∫∫∫
e−i(p−p

′)·r/~V (r)d3r , (3.6.7)

where q = (p− p′)/~. This can be worked out if V (r) is known.
For a central potential, V (r) = V (r), we can carry out integration over the angles of r

by using spherical polar coordinates to express the integral in Eq. (3.6.4) as

v(q) ==
1

(2π~)3

∫∫∫
e−iqV (r) ·r r2dr sin θ dθ dϕ . (3.6.8)

To perform angular integration, we choose the polar axis to be along the direction of q.
Then using the substitution ξ = cos θ we obtain

v(q) =
2π

(2π~)3

∫ ∞
0

V (r)r2dr

∫ 1

−1

e−iqrξdξ

=
1

2π2~3q

∫ ∞
0

V (r)r sin(qr) dr , (3.6.9)
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where we have written v(q) = v(q), since the right-hand side of Eq. (3.6.9) depends only
on the magnitude of q. It can be easily seen that, for Yukawa, exponential and Gaussian
forms of (spherically symmetric) potentials

VY(r) = −V0
e−µ r

r
, (3.6.10)

Vexp(r) = −V0 e
−µ r , (3.6.11)

VG(r) = −V0 e
−µ2r2 , (3.6.12)

v(q) has the following expressions

vY(q) = − V0

2π2~3µ(µ2 + q2)
, (3.6.13)

vexp(q) = − V0µ

π2~3(µ2 + q2)2
, (3.6.14)

vG(q) = − V0

(2~
√
πµ)3

e−q
2/4µ2

, (3.6.15)

where q ≡ |p− p ′|/~.

3.6.1 Two-body Bound State Problem (in Momentum Representation)
for Non-local Separable Potential

A simple application of the time-independent Schrödinger equation in the momentum rep-
resentation is the two-body bound state problem for nonlocal separable potential. The
two-body Schrödinger equation in the center of mass frame [see Chapter 5] in momentum
representation is (

p2

2µ
− En

)
Φn(p) = −

∫
〈p| V̂ |p ′ 〉Φn(p ′)d3p′ (3.6.16)

where µ is the reduced mass of the particles, Φn(p) = 〈p|En〉 is the momentum representa-
tive of the two-body state |En〉 with energy En. If the potential is local, the potential at a
point r depends only on its cordinate r:

〈r|V̂ |r ′〉 = V (r) δ3(r − r ′) . (3.6.17)

For a such a potential, the matrix element

〈p| V̂ |p ′ 〉 =
1

(2π~)3

∫
e−i(p−p

′)·r/~V (r)d3r ≡ V (p− p ′) (3.6.18)

is a function of the difference p−p′ only. We can then substitute this into the Schrödinger
equation (3.6.16) in the momentum representation and solve it for En and φn(p).

Yamaguchi5 introduced a non-local potential for the two-body interaction, with a sepa-
rable form

〈p| V̂ |p ′ 〉 = − λ

2µ
g(p)g(p ′) , (3.6.19)

5Y. Yamaguchi, Phys. Rev. 95, 1628 (1954).
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where µ is the reduced mass of the two-body system and λ is a parameter. For such a
potential Eq. (3.6.16) assumes the form

1
2µ
(
p2 + α2

)
Φ(p) =

λ

2µ

∫
g(p)g(p′)Φ(p′)d3p′ , (3.6.20)

where En = −α2

2µ is a negative quantity, being the energy of a bound state. For spherically
symmetric interaction, we can assume that g(p) depends only on the magnitude p = |p| of
p:

g(p) = g(p) . (3.6.21)

The Schrödinger equation (3.6.16) then has a simple solution

Φ(p) = N
g(p)

α2 + p2
, (3.6.22)

where N is a normalization constant. Substituting into Eq. (3.6.20), we get

1
λ

=
1

λ(α)
=
∫
g2(p′)d3p′

α2 + p′2
. (3.6.23)

The potential parameter λ, thus, depends on the two-body binding energy α2

M . In other
words, the energy with which the two-body potential is to bind the two-body system dictates
the parameter λ. It can also be easily seen that the normalization constant N of the two-
body wave function Φ(p) in the momentum space is given by

1
N2

=
∫

g2(p) d3p

(α2 + p2)2
. (3.6.24)

3.7 Time-independent Schrödinger Equation in Matrix Form

We can alternatively choose a representation in which a set of observables, say ξ̂ , η̂ , ζ̂· · ·
are diagonal. The choice of these observables is suggested by the problem. The basis
states of this representation are (using the abbreviated notation): |ξ′ , η′ , ζ ′· · · 〉 ≡ |ξ′ 〉,
|ξ′′ , η′′ , ζ ′′· · · 〉 ≡ |ξ′′ 〉, · · · , ∣∣ξ(N) , η(N) , ζ(N)· · ·〉≡ ∣∣ξ(N)

〉
. We assume that the number

of basis states is finite. If the number of basis states is infinite, we can truncate the basis
to retain only the first N states.

In this representation, the Hamiltonian Ĥ of the system is represented by an N × N
matrix

H =



H11 H12 · · · H1j · · · H1N

H21 H22 · · · H2j · · · H2N

...
Hi1 Hi2 · · · Hij · · · HmN

...
HN1 HN2 · · · HNj · · · HNN


, (3.7.1)

where a typical matrix element Hij is given by

Hij =
〈
ξ(i)
∣∣∣ Ĥ ∣∣∣ξ(j)

〉
. (3.7.2)
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If we choose to represent the basic states
∣∣ξ(j)

〉
in the coordinate representation∣∣∣ξ(j)

〉
→
〈
r| ξ(j)

〉
= χj(r) , (3.7.3)

then the elements of Hamiltonian matrix H can be expressed in integral form [see Eq.
(2.7.3)]

Hij =
∫
χ∗i (r)

(
− ~2

2m
∇2 + V (r)

)
χj(r)d3r (3.7.4)

and can be evaluated numerically. Further, in this (ξ̂ , η̂ , ζ̂ , · · ·) representation, the eigen-
state |En〉 of Ĥ, belonging to the energy value En can be represented by a column matrix
An

An =



A1n

A2n

...
Ajn

...
ANn


(3.7.5)

where
Ajn = 〈ξ(j)|En〉 . (3.7.6)

Thus the state |En 〉 can be expressed as

|En 〉 =
∑
j

Ajn

∣∣∣ξ(j)
〉

(3.7.7)

or Ψn(r) ≡ 〈r|En〉 =
∑
j

Ajnχj(r) , (3.7.8)

where Ψn(r) is the coordinate representative of the state |En〉.
Now we can see that the time-independent Schrödinger equation (3.5.1) can be written

as a matrix eigenvalue equation:

HAn = EnAn , (3.7.9)

or, explicitly,



H11 H12 · · · Hit · · · H1N

H21 H22 · · · H2t · · · H2N

...
Hs1 Hs2 · · · Hst · · · HsN

...
HN1 HN2 · · · HNt · · · HNN





A1n

A2n

...
Atn

...
ANn


= En



A1n

A2n

...
Atn

...
ANn


. (3.7.10)

In the standard eigenvalue problem, the elements of the Hamiltonian matrix H are known,
while its eigenvalues En and eigenvectors An are to be determined. This is a routine
mathematical problem and can be solved manually by setting up the secular equation and
solving it, if the matrix dimension is small. When the matrix dimension is large, it can be
done on a computer by feeding all the elements of the Hamiltonian matrix into the computer
and running the program for finding the eigenvalues and eigenvectors of the matrix. This
procedure is referred to as the program for diagonalizing the matrix H because the problem
of finding the eigenvalues and eigenvectors of a matrix is equivalent to that of finding a



EQUATIONS OF MOTION 79

unitary transformation, represented by a unitary matrix S, (S†S = SS† = I) which would
reduce H to the diagonal form

H
S−→ S H S† =


E1 0 · · · 0
0 E2 · · · 0
... · · ·
0 0 · · · EN

 . (3.7.11)

The diagonal elements of the diagonalized matrix are the eigenvalues of the Hamiltonian
matrix (or the eigenvalues of the Hamiltonian Ĥ) while various columns of S† yield the
eigenvectors An of H, belonging to various eigenvalues En [see Appendix 3A1]. Thus
the eigenvalues E1 , E2 , · · ·En of Ĥ, can be determined by solving the matrix eigenvalue
problem. The corresponding wave functions Ψn are obtained via Eq. (3.7.8) since the
eigenvectors

An =



A1n

A2n

...
Atn

...
ANn


are also known.

3.8 The Heisenberg Picture

There are two ways of looking at the observables and states of a physical system. They are
referred to as

1. Schrödinger picture

2. Heisenberg picture

In the Schrödinger picture, we view the state of a physical system to be evolving with time,
while observables are taken to be time-independent. In this picture, the equation of motion
governs the time evolution of the state and is referred as the Schrödinger equation of motion:

i~
d

dt
|R(t) 〉 = Ĥ |R(t) 〉 . (3.8.1)

In the Heisenberg picture, we view the state of a dynamical system (the Heisenberg state)
to be independent of time, while the time dependence is passed on to the observables.
Consequently, the equation of motion in the Heisenberg picture pertains to the observables,
the states in this picture being independent of time.

The change from Schrödinger to Heisenberg picture may be brought about by a unitary
transformation.6 To identify this unitary transformation, we note that the expectation
value 〈R(t)| α̂ |R(t) 〉 of an observable α̂ (in the Schrödinger picture) can be rewritten, by

6A unitary transformation changes a state |X 〉 → |X′ 〉 ≡ Û |X 〉 and an observable α̂→ α̂′ ≡ Û α̂Û†, the

transformation operator Û being unitary: ÛÛ† = Û†Û = 1̂. Such a transformation preserves the norm of
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using the time evolution operator T (t), as 〈R(0)| T̂ †(t)α̂T̂ (t) |R(0) 〉. This equation can
be interpreted as the expectation value of a time-dependent observable T̂ †(t)α̂T̂ (t) in the
time-independent state |R(0) 〉. This suggests that the unitary transformation needed to
pass from the Schrödinger picture to Heisenberg picture is the adjoint (or inverse) T̂ †(t)
of the time-evolution operator T̂ (t) defined by Eqs.(3.4.1) and (3.4.3). Consequently, the
passage from Schrödinger picture state |R(t) 〉 and observables α̂ to Heisenberg picture state∣∣RH 〉 and obsevables αH(t) is defined by∣∣RH 〉 = T̂ †(t) |R(t) 〉 = T̂ †(t)T̂ (t) |R(0) 〉 = |R(0) 〉 (3.8.2)

and α̂H = T̂ †(t) α̂ T̂ (t) . (3.8.3)

So we see that the state of the system in the Heisenberg picture is time-independent; the
time dependence is passed on to the observable α̂H . Here the superscript H distinguishes
the Heisenberg picture states and observables from those in the Schrödinger picture.

To obtain the equation of motion for an observable in the Heisenbeg picture, we multiply
Eq. (3.8.3) by T̂ (t), from the left and use its unitarity (T̂ (t)T̂ †(t) = 1 = T̂ †(t)T̂ (t) to get

T̂ α̂H = α̂T̂ . (3.8.4)

Differentiating this equation with respect to t and multiplying both sides by i~, we get

i~

(
dT̂

dt
α̂H + T̂

dα̂H

dt

)
= i~

(
dα̂

dt
T̂ + α̂

dT̂

dt

)

or ĤT̂ α̂H + i~T̂
dα̂H

dt
= i~

dα̂

dt
T̂ + α̂ĤT̂ (3.8.5)

where we have used Eq. (3.4.2) to replace i~dT̂dt by ĤT̂ . Now, since α̂ is a Schrödinger
observable, it has either no time dependence at all (dα̂dt = 0) or at most, an explicit time
dependence (dα̂dt = ∂α̂

∂t ). Premultiplying both sides of Eq. (3.8.5) by T † and inserting
T̂ †(t)T̂ (t) = 1 between α̂ and Ĥ on the right hand side, we get

T̂ †ĤT̂ α̂H + i~
dα̂H

dt
= i~T̂ †

∂α̂

∂t
T̂ + T̂ †α̂T̂ T̂ †ĤT̂

or
dα̂H

dt
=
∂α̂H

∂t
+

1
i~

[
α̂H , ĤH

]
, (3.8.6)

where
[
α̂H , ĤH

]
is the commutator of Heisenberg operators7 α̂H and ĤH ≡ Ĥ. This

equation is called the Heisenberg equation of motion.
Working in the Schrödinger picture, we could not see any semblance between the classical

equations of motion and the equation of motion in quantum mechanics. But in Heisenberg
picture we immediately see the close connection between quantum mechanical equation of
motion (3.8.4) and its classical counterpart:

dαcl
dt

=
∂αcl
∂t

+ {αcl, Hcl} , (3.8.7)

a state |X〉
〈X|X〉 = 〈X′|X′〉 ,

and also, the expectation value of an observable for any state

〈X|α̂|X〉 = 〈X′|α̂′|X′〉 .

7It is easily seen that ĤH ≡ T̂ †ĤT̂ is the same as Ĥ.
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where αcl is a real classical dynamical variable, and Hcl is the classical Hamiltonian. We
find that the classical Poisson bracket, occurring in classical equation of motion, corresponds
to 1

i~ times the quantum commutator bracket, in the Heisenberg equation of motion.
For a Schrödinger observable α̂ that has no explicit time dependence (dα̂dt = ∂α̂

∂t = 0), that
is, it has no time dependence at all (not even explicit time dependence) ∂α̂H

dt ≡ T̂ † ∂α̂∂t T̂ = 0.
Then the Heisenberg equation of motion reduces to

dα̂H

dt
=

1
i~

[
α̂H , ĤH

]
. (3.8.8)

If an observable α̂ commutes with the Hamiltonian: [α̂, Ĥ] = [α̂H , ĤH ] = 0, the Hesienberg
equation of motion leads to dα̂H/dt = 0, which implies that α̂H is a constant of motion and
its expectation value in any state is constant in time:

〈α̂〉 = 〈R(t)| α̂ |R(t) 〉 = 〈R(0)| T̂ †α̂T̂ |R(0) 〉 =
〈
RH
∣∣ α̂H ∣∣RH 〉 .

From this equation we imediately see

d〈α̂〉
dt

=
〈
RH
∣∣ dα̂H
dt

∣∣RH 〉 = 0 .

Thus, commutativity of α̂ and Ĥ implies not only that their measurements are compatible
and there exist simultaneous eigenstates of α̂ and Ĥ, but also that α̂ is a conserved quantity
and its expectation value for any state is constant in time.

3.9 The Interaction Picture

Another picture, called the interaction picture is useful in such problems in which the
Hamiltonian Ĥ has a dominant time-independent part Ĥ0 and an interaction part ĤI which
depends on time. In the Schrödinger picture, the equation of motion for such a system may
be written as

i~
d

dt
|Ψ(t) 〉 = (Ĥ0 + ĤI) |Ψ(t) 〉 . (3.9.9)

To go to the interaction picture we invoke a unitary transformation through the operator
T̂ †(t) ≡ eiĤ0t/~ so that

|Ψ(t) 〉 → eiĤ0t/~ |Ψ(t) 〉 ≡ ∣∣Ψint(t)
〉
, (3.9.10)

while any observable α̂ in the Schrödinger picture is transformed to α̂int(t)

α̂→ eiĤ0t/~α̂ e−iĤ0t/~ ≡ α̂int(t) . (3.9.11)

This implies that8

ĤI → eiH0 t/~ĤIe
−i Ĥ0t/~ ≡ H int

I . (3.9.12)

8In our notation the suffix ‘I’ on Ĥ is used to denote the interaction part of the Hamiltonian while the
superscript ‘int’ indicates that the operator pertains to the interaction picture.
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We can easily see that the state
∣∣Ψint(t)

〉
in the interaction picture satisfies a Schrödinger

-like equation of motion

i~
d

dt

∣∣Ψint(t)
〉

= Ĥ int
I (t)

∣∣Ψint(t)
〉
. (3.9.13)

Thus while in the Schrödinger picture the state is time-dependent and in the Heisenberg
picture the state is time-independent and time dependence is passed on to the observables,
in the interaction picture the time dependence caused by the full Hamiltonian is split into
two parts. A part of the time dependence is assigned the state vector

∣∣Ψint(t)
〉

while
the residual time dependence is retained by Ĥ int

I (t). This picture is not relevant when we
deal with stationary states but can be useful when the interaction part of the Hamiltonian
depends on time. This picture is very useful in the theory of interacting quantum fields and
is discussed in more detail in Chapter 14 (Section 14.9).

Problems

1. By expressing the state |R(t) 〉 as a column vector and the Hamiltonian operator by
a square matrix in a certain representation, say ξ, η, ζ, · · · representation, write the
Schrödinger equation of motion

i~
d

dt
|R(t) 〉 = |R(t) 〉

as a matrix equation.

2. Take ψ(x) = A exp[i(kx−ωt)], where ω = E/~, and show that the probability current
density S is given by S = ~k

m ρ(x), where ρ(x) = ψ∗(x, t)ψ(x, t) is the probability
density. Note the similarity of this equation with the corresponding equation in fluid
mechanics j = ρ(x)v.

3. Calculate the probability current corresponding to the wave function

ψ(r, θ) = f(θ)
exp(ikr)

r
.

Examine S for large values of r and interpret your result.

4. Use Heisenberg equation of motion to derive the time rate of change of the expectation
value of an observable α̂ given by∫

ψ∗(r, t)αrψ(r, t)d3r

where αr is the coordinate representative of the observable α̂, defined by

〈r| α̂ |R(t) 〉 = αr 〈r|R(t)〉 = αrψ(r, t) .

5. Write the time-independent Schrödinger equation for a system with Hamiltonian Ĥ =
Ĥo + Ĥ ′ in a matrix representation in which the unperturbed Hamiltonian Ĥo is
diagonal and the basis states |En 〉 are the eigenstates of the unperturbed Hamiltonian
Ĥo, belonging to the eigenvalues En.
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6. A particle (with one degree of freedom) is moving in a potential V (x) = 1
2kx

2. Write
down the time-independent Schrödinger equation in the momentum representation.

7. A particle with three degrees of freedom is moving in a spherically symmetric potential
V (r). Write down the time-independent Schrödinger equation for the particle when
V (r) has the following alternative forms:

(a) Yukawa form: V (r) = −Vo e−µrr
(b) Exponential form: V (r) = −Voe−µr

(c) Gaussian form: V (r) = −Voe−αr2

where Vo and µ and α are real constants. The Fourier transforms of these potential
forms are given by Eqs. (3.6.13) through (3.6.15).

8. Show that the problem of finding the eigenvalues and eigenvectors of a square matrix
is equivalent to that of diagonalizing the matrix.

9. If a unitary matrix U diagonalizes a square matrix M so that U M U† = D, then show
that the elements of the diagonal matrix D are just the eigenvalues of M and the
various columns of U† (Hermitian adjoint of U) are the eigenvectors of M belonging
to these eigenvalues.

10. Show that the necessary and sufficient condition that two square matrices be diag-
onalized by the same unitary transformation is that they commute. What is the
significance of this result in quantum mechanics?

11. Using the Schrödinger equation in the matrix form, work out the unitary transfor-
mation matrix T̂ (t) which would bring about a transformation from the Schrödinger
picture to the Heisenberg picture. Finally derive Heisenberg equations of motion for
the Heisenberg operators in the matrix form.

12. Show that the commutator bracket of position and momentum observables has the
same value i~ 1̂ in both the Schrödinger and Heisenberg pictures.

13. Show that if two operators commute in the Schrödinger picture, they also do so in the
Heisenberg picture.

14. Show that the basic commutator [x̂H , p̂H ] is a constant of motion.

15. Show that the expectation value of an observable for any state is the same in both
the Schrödinger and Heisenberg pictures.

16. Write down the Heisenberg equation of motion in the energy representation (a matrix
representation in which the Hamiltonian is diagonal).

17. Show that if an observable α̂ (in the Schrödinger picture) does not explicitly depend
on time then

d

dt
〈α〉 =

1
i~
〈ψ| [α̂, Ĥ] |ψ 〉 ,

where 〈α〉 = 〈ψ| α̂ |ψ 〉 denotes the quantum mechanical expectation value of α̂ for
the state |ψ 〉.
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18. Given the Hamiltonian of a particle:

Ĥ =
1

2m
p̂2 + V̂ (r̂) ,

show, by using the Heisenberg equations of motion and the basic commutation rela-
tions for x̂, ŷ, ẑ and p̂x, p̂y, p̂z, that the expectation values of x̂ and p̂x (as also of ŷ,
p̂y and ẑ and p̂z) satisfy the classical equations of motion:

m
d〈x〉
dt

= 〈px〉

and
d〈px〉
dt

= −
〈
∂V

∂x

〉
.

19. Find the equations of motion for the Heisenberg operators x̂H , p̂H , (x̂H)2, (p̂H)2 if the
Hamiltonian of the system is given by:

Ĥ =
p̂2

2m
+ V̂ (x̂, ŷ, ẑ).

20. A particle is subject to a central potential such that its Hamiltonian is

Ĥ =
p̂2

2m
+ V̂ (r̂) ,

where p̂2 = p̂2
x + p̂2

y + p̂2
z and r̂2 = r̂ · r̂. Which of the following observables are

constants of motion: p̂x, L̂z, L̂2 ? Prove your answer.

21. Prove that in the Schrödinger picture, the evolution of a state is given by

|R(t) 〉 =
∞∑
k=0

1
k!

(−iĤ t/~)k |R(0) 〉 .

22. The wave function representing the state of a free particle at time t = 0 is given by:

ψ(x, t = 0) = A exp(ip0x/~) exp(−(x− x0)2/4σ2)

where po and xo are real parameters.

(a) Determine the normalization constant A and, using the Schrödinger equation for
a free particle, show that ψ(x, t) for t > 0 is given by:

ψ(x, t) =
(2π)−1/4√
σ + i~t

2mσ

exp(ik0x0) exp(−σ2k2
o)

× exp
[−(x− x0)2 + 4σ4k2

0 + +4i(x− x0)σ2ko
4σ2 + (2i~t/m)

]
,

where ko = po/~.

(b) Calculate 〈x〉 and 〈p〉 as functions of time.

(c) Calculate 〈x2〉 and 〈p2〉 hence ∆x and ∆p given by (∆x)2 = 〈x2〉 − 〈x〉2 and
(∆p)2 = 〈p2〉 − 〈p〉2.
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[Hint: The general solution of Schrodinger equation of motion for a free particle is:

ψ(x, t) =
∫
a(k)

1√
2π

exp(ikx) exp(−i~k2t/2m)dk .

Putting t = 0 on both sides would not change a(k) which can be determined because
the form of ψ(x, 0) is given.]

23. For a free particle in one dimension, show that

(a) 〈p〉 is a constant in time while 〈x〉 increases linearly with time.

(b) Derive the equation of motion satisfied by 〈x2〉.
(c) Solving this equation show that

[∆x(t)]2 =
1
m2

[∆p]2t2 + [∆x(0)]2 .

where ∆x(t) and ∆p(t) have been defined in Problem 22.

24. Show that, in the interaction picture, the state
∣∣Ψint(t)

〉
satisfies the Schrödinger -like

equation

i~
d

dt

∣∣Ψint(t)
〉

= Ĥ int
I (t)

∣∣Ψint(t)
〉
,

where
∣∣Ψint(t)

〉 ≡ eiĤ0t/~ |Ψ(t) 〉 and Ĥ int
I (t) ≡ ei Ĥ0t/~ĤIe

−i Ĥ0 t/~.
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Appendix 3A1: Matrices

Determination of Eigenvalues and Diagonalization of a Matrix

3A1.1 Characteristic Equation of a Matrix

Let M be a N ×N square matrix and X a N × 1 column matrix (also a vector)

X =


x1

x2

...
xN

 .

In general, the product MX = Y is a column vector Y that is different from from X.
However, if for a certain choice of X, it so happens that

MX = λX , (3A1.1.1)

then the column vector X is called an eigenvector of M belonging to the eigenvalue λ. A
square matrix of order N ×N can have a set of N eigenvalues and N eigenvectors.

To determine the possible eigenvalues and eigenvectors of a matrix M, we rewrite Eq. (3A1.1.1)
as as a set of N linear equations:

(M11 − λ)x1 +M12x2 + · · ·+M1NxN = 0 ,
M21x1 + (M22 − λ)x2 + · · ·+M1NxN = 0 ,

...
MN1x1 +MN2x2 + · · ·+ (MNN − λ)xN = 0 .

(3A1.1.2)

This set of linear equations admits a non-trivial solution only if the determinant

det(M − λI) ≡

∣∣∣∣∣∣∣∣∣∣∣

(M11 − λ) M12 M13 · · · M1N

M21 (M22 − λ) M23 · · · M2N

M31 M32 (M33 − λ) · · · M2N

...
MN1 MN2 MN3 · · · (MNN − λ)

∣∣∣∣∣∣∣∣∣∣∣
= 0 . (3A1.1.3)

This equation, called the characteristic equation of matrix M , reduces to an N th degree
equation in λ:

λN + b1λ
N−1 + b2λ

N−2 + · · ·+ bN−1λ+ bN = 0 , (3A1.1.4)

and, therefore, admits N roots: λ1 , λ2, · · · , λN , which are the N eigenvalues of the matrix
M . To determine the eigenvector

Xr =


x1r

x2r

...
xNr
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corresponding to the eigenvalue λr, we replace λ in Eq. (3A1.1.2) by the eigenvalue λr, and
solve the resulting equations for x1r , x2r , · · · , xNr. By repeating it for all 1≤r≤N , we can
determine all N eigenvectors of M belonging, respectively, to the eigenvalues λ1 , λ2 , · · ·λN :

X1 =


x11

x21

...
xN1

 , X2 =


x12

x22

...
xN2

 , · · · , XN =


x1N

x2N

...
xNN

 .

3A1.2 Similarity (and Unitary) Transformation of Matrices

A similarity transformation is brought about by a square non-singular matrix S. It trans-
forms a given matrix A into A′ such that

A
S−→ A′ = SAS−1 . (3A1.1.5)

The same matrix transforms a column vector X to X ′ such that

X
S−→ X ′ = SX . (3A1.1.6)

This transformation preserves the relationship between matrices and column vectors and
leaves the eigenvalues of the matrix invariant (unchanged).

When the transforming matrix S is unitary (SS† = S†S = I), the inverse transformation
is S−1 = S†, and the transformation S is termed as unitary similarity transformation:

A′ = S AS† and X ′ = SX . (3A1.1.7)

If S is a real orthogonal matrix (STS = SST = I), the inverse transformation S−1 = ST ,
where ST is the transpose of matrix S, the similarity transformation reduces to

A′ = SAST and X ′ = SX . (3A1.1.8)

This is a special case of unitary transformation.

3A1.3 Diagonalization of a Matrix

Let a matrixM admit the set of eigenvalues λ1 , λ2 , · · ·λj , · · ·λN and eigenvectorsX1 , X2 , · · · , XN

such that that MXr = λrXr. Let us form a square matrix S from all these eigenvectors
according to

S ≡ (X1 X2 · · · XN )=


X11 X12 · · · X1N

X21 X22 · · · X2N

...
...

XN1 XN2 · · · XNN

 , (3A1.1.9)

and let D be the diagonal matrix whose diagonal elements are the eigenvalues of M

D =


λ1 0 0 · · · 0
0 λ2 0 · · · 0

...
0 0 0 · · · λN

 . (3A1.1.10)

Then we can easily verify that

SD = MS or D = S−1MS . (3A1.1.11)
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If S is unitary (which will happen if the eigenvectors Xr of the matrix M satisfy the twin
conditions of orthogonality Xr

†Xk = δrk and completeness
∑
rXrX

†
r = I), then

D = S†M S . (3A1.1.12)

The unitary matrix S† thus transforms the matrix M to the diagonal form

D = S†M S . (3A1.1.13)

The diagonal elements of D are simply the eigenvalues of the matrix M and various columns
of the matrix S (the adjoint of the transforming matrix S†) are just the eigenvectors Xr of
M belonging to the eigenvalues λr (r = 1 , 2 , · · · , N).

For a matrix M of large dimensionality, the determination of its eigenvalues λr and
eigenvectors Xr (r = 1 , 2 , · · · , N) (or the determination of its diagonalizing matrix S† and
S, and the diagonalized matrix D) can be done on a computer.
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4

PROBLEMS OF ONE-DIMENSIONAL
POTENTIAL BARRIERS

Among the simplest applications of Schrödinger ’s time-independent equation for stationary
states are the problems pertaining to the motion of a particle in the presence of potential
steps. In the present chapter we shall consider the following problems:

(a) Motion of a particle across a potential step of finite height and infinite extent.

(b) Motion of a particle through a potential barrier of finite height and finite extent.

(c) Leakage of a particle within a potential well, through a potential barrier of finite
height and finite extent.

(d) Motion of a particle in a periodic potential.

Before proceeding further we note that physically acceptable wave functions must satisfy
the time-independent Schrödinger equation and preserve the probabilistic interpretation of
the wave function. These requirements lead to certain conditions on the wave function:

(i) The wave function ψ(x) must be a single-valued function of x so that a unqiue
probability |ψ(x)|2dx of locating the particle between x and x + dx can be assigned
to each point x. For a bound state (localized) wave function ψ(x), the probablity of
finding the particle somewhere in space must equal one:

∫∞
−∞ |ψ(x)|2dx = 1 . This

is a statement of the normalization of bound state wave function. Once normalized,
the wave function remains normalized for all times since the Schrödinger equation
preserves normalization.

For the normalization integral to be finite, the wave function must be finite everywhere
and satisfy the boundary condition ψ(x) → 0 as |x| → ∞ for a bound state.1 As a
consequence of boundary conditions, the bound state spectrum in one dimension is
discrete and nondegenerate. This means that each bound state energy eigenvalue
belongs to one (and only one) wave function.

(ii) The wave function as well as its first derivative must be continuous at each point in
space even if the potential has (finite) discontinuity. This is because the wave function
must be twice differentiable as it satisfies a second order differential equation. For
the wave function’s second derivative to exist, its first derivative must be continuous,
which in turn requires the wave function itself to be continuous.

When the potential has infinite discontinuity (as in an infinite square well or Dirac
delta function potential), the first derivative may be discontinuous and the wave
function may have a kink.

1For scattering solutions, the wave function approaches a constant as |x| → ∞ corresponding to incident or
scattered particle flux ∝ |ψ(x)|2.
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4.1 Motion of a Particle across a Potential Step

Consider the motion of a particle of energy E along a single axis [number of degrees of
freedom of the system f = 1)] in the presence of a potential step of height Vo. In this case,
the potential V (x) has the form [Fig. 4.1]

V (x) =

{
0 , x < 0 : Region I
Vo , x > 0 : Region II .

(4.1.1)

The particle approaches the potential step from the left. We consider two cases separately:

(i) Particle energy greater than the potential step: E > Vo

Let the quantum state of the particle in regions I and II be represented by ψ1(x) and ψ2(x)
in the coordinate representation. Then for the potential of Eq. (4.1.1), time-independent
Schrödinger equation [Eq. (3.5.4)] takes the following forms for the two regions

d2ψ1(x)
dx2

+ k2ψ1(x) = 0 x < 0 : Region I (4.1.2)

d2ψ2(x)
dx2

+ k′2ψ2(x) = 0 x > 0 : Region II (4.1.3)

where

k =

√
2mE
~2

and k′ =

√
2m(E − Vo)

~2
. (4.1.4)

The respective solutions in the two regions are

ψ1(x) = Aeikx +Be−ikx , (4.1.5)

ψ2(x) = Ceik
′x +De−ik

′x . (4.1.6)

If we assume a particle incident from the left, there is no possibility of a wave traveling
from right to left in region II. This implies that D = 0. For the continuity of the wave
function, it is necessary to match the wave function and its first derivative at the point of
discontinuity of the potential at x = 0. This requires

ψ1(x = 0) = ψ2(x = 0) (4.1.7)

and
dψ1

dx

∣∣∣∣
x=0

=
dψ2

dx

∣∣∣∣
x=0

. (4.1.8)

These conditions, with the help of Eqs. (4.1.5) and (4.1.6) yield

B =
k − k′
k + k′

A (4.1.9a)

and C =
2k

k + k′
A . (4.1.9b)

We have seen in Chapter 3, Sec. 3.4 that the probability current density

S(x, t) = Re
[
ψ∗

~
im

dψ

dx

]
(4.1.10)
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can be regarded as the probability per unit area that the particle will pass across a
given point per unit time. We can easily calculate the probability current density for the
incident wave ψi(x) = Aeikx, the reflected wave ψr(x) = Be−ikx or the transmitted wave
ψt(x) = Ceik

′x in accordance with Eq. (4.1.10) to obtain

Si =
~k
m
|A|2 , (4.1.11)

Sr =
~k
m
|B|2 , (4.1.12)

St =
~k′

m
|C|2 . (4.1.13)

x=0

V(x)

Vo

E

0
x

Region I Region II

FIGURE 4.1
Potential step with height Vo less than the energy E of the particle.

Now, the transmittivity T equals the ratio of the transmitted to incident current

T =
St
Si

=
4kk′

(k + k′)2
=

4
√
E(E − Vo)

(
√
E +

√
E − Vo)2

. (4.1.14)

Similarly, the reflectivity R equals the ratio of reflected current to the incident current.

R =
Sr
Si

=
(
k − k′
k + k′

)2

=

[√
E −√E − Vo√
E +

√
E − Vo

]2

. (4.1.15)

It is easily verified that T +R = 1. This means the particle is either reflected or transmitted
at the step. The variation of transmittivity and reflectivity as functions of E/Vo is shown
in Fig. 4.2.

We note in this case (E > Vo) that although the kinetic energy of the particle is large
enough to overcome the potential barrier and classically the particle should be transmitted
over the potential step, according to quantum mechanics [Fig. 4.2], there is a finite
probability that the particle will turn back (reflected). Thus even in this relatively simple
problem, quantum mechanics predicts a nonclassical behavior for a material particle. This
behavior is a direct consequence of the wave-like character that quantum mechanics ascribes
to material particles. The probability of reflection, of course, decreases with increasing
E/Vo.
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FIGURE 4.2
Transmittivity T and reflectivity R as functions of E/Vo.

(ii) Particle energy less than the potential step: E < Vo

The potential step and particle energy relative to it are shown in Fig. 4.3 for this case. The
time-independent Schrödinger equation for regions I and II, in the coordinate representation,
now takes the form

d2ψ1(x)
dx2

+ k2ψ1(x) = 0 , x < 0 : Region I (4.1.16)

d2ψ2(x)
dx2

− κ2ψ2(x) = 0 , x > 0 : Region II (4.1.17)

where

k =

√
2mE
~2

and κ =

√
2m(Vo − E)

~2
. (4.1.18)

These equations are similar to those in the previous case (E > Vo), except that in this case
k′2 is replaced by −κ2 = −2m(Vo − E)/~2. Since Vo > E in this case, κ2 is positive and κ
is real. The solutions in regions I and II may easily be written as

ψ1(x) = Aeikx +Be−ikx (4.1.19)

ψ2(x) = Ceκx +De−κx . (4.1.20)

We discard the positive exponential term (C = 0) in ψ2(x) because we expect ψ2(x)→ 0 as
x→∞. Again, we match the solutions in the two regions at the boundary x = 0 (point of
discontinuity of the potential). This leads to the following expressions for the amplitudes
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FIGURE 4.3
Potential step with height Vo greater than the energy E of incident particle.

B adb D:

B =
k − iκ
k + iκ

A , (4.1.21)

and D =
2k

k + iκ
A . (4.1.22)

The probability current densities for the incident and reflected waves ψi(x) = Aeikx and
ψr(x) = Be−ikx are, respectively,

Si =
~k
m
|A|2 , (4.1.23)

Sr =
~k
m
|B|2 . (4.1.24)

The reflectivity R = Sr/Si is then given by

R =
|B|2
|A|2 =

|1− iκ/k|2
|1 + iκ/k|2 = 1 . (4.1.25)

Thus the particle is totally reflected at the step. This result is to be expected, even
classically, since there can be no transmission of particles through a potential step of infinite
extent if E < Vo. Yet there is a new feature which is not present in the classical theory. The
wave function in the region II (x > 0) is finite and exponentially decaying. This implies
that the particle can be found in Region II, whereas, classically, it is forbidden to enter this
region.
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Potential barrier of finite extent a with height of the barrier Vo less than the energy E of
the incident particle.

4.2 Passage of a Particle through a Potential Barrier of Finite
Extent

Consider a particle of energy E incident from the left on a potential barrier of height Vo
and width a. The potential corresponding to such a barrier has the form

V (x) =

0 , −∞ < x < 0 : Region I
Vo , 0 < x < a : Region II
0 , a < x <∞ : Region III .

(4.2.1)

This potential is shown graphically in Fig. 4.4. As before, we consider two cases separately:
(i) particle energy greater than the height of the potential barrier (E > Vo) and (ii) particle
energy less than the height of the potential barrier (E < Vo).

(i) Particle energy greater than the barrier height: E > Vo

In this case, the time-independent Schrödinger equation [Eq. (3.5.4)] in the coordinate
representation for regions I, II and III can be written as

d2ψ1(x)
dx2

+ k2ψ1(x) = 0 Region I (4.2.2)

d2ψ2(x)
dx2

+ k′2ψ2(x) = 0 Region II (4.2.3)

d2ψ3(x)
dx2

+ k2ψ3(x) = 0 Region III (4.2.4)

where

k =

√
2mE
~2

and k′ =

√
2m(E − Vo)

~2
. (4.2.5)
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The solutions in the three regions are, respectively,

ψ1(x) = Aeikx +Be−ikx Region I (4.2.6)

ψ2(x) = Ceik
′x +De−ik

′x Region II (4.2.7)

ψ3(x) = Geikx + Fe−ikx Region III . (4.2.8)

Since, for a particle incident from left, there cannot be any possibility of the particle moving
from right to left in region III, we choose F = 0. In this case, two sets of boundary conditions
have to be obeyed at the potential steps at x = 0 and x = a. These are given by

ψ1(x = 0) = ψ2(x = 0) , (4.2.9a)

dψ1(x)
dx

∣∣∣∣
x=0

=
dψ2(x)
dx

∣∣∣∣
x=0

, (4.2.9b)

and ψ2(x = a) = ψ3(x = a) , (4.2.10a)

dψ2(x)
dx

∣∣∣∣
x=a

=
dψ3(x)
dx

∣∣∣∣
x=a

. (4.2.10b)

These conditions lead, respectively, to

A+B = C +D , (4.2.11a)
k(A−B) = k′(C −D) , (4.2.11b)

and Ceik
′a +De−ik

′a = Geika , (4.2.12a)

k′(Ceik
′a −De−ik′a) = kGeika . (4.2.12b)

If we determine the expressions for C/G and D/G from the last two conditions and
substitute them into the expressions for A/G and B/G, determined from the first two
conditions, we get

A

G
=

1
4

[(
1 +

k

k′

)(
1 +

k′

k

)
ei(k−k

′)a +
(

1− k

k′

)(
1− k′

k

)
ei(k+k′)a

]
. (4.2.13)

Now, the probability current density Si for the incident wave ψi(x) = Aeikx and St for the
transmitted wave ψt(x) = Geikx can be obtained from Eq. (4.1.10) to be

Si =
~k
m
|A|2 ,

St =
~k
m
|G|2 .

Taking the ratio of the transmitted and incident probability current densities, using
Eq. (4.2.13) for the ratio G/A and simplifying the result, we find the transmission coefficient
(transmittivity) to be

T ≡ St
Si

=
|G|2
|A|2 =

1

1 + 1
4

(
k
k′ − k′

k

)2
sin2(ak′)

. (4.2.14)

From this expression we see that, in general, T < 1, so that there is always some possibility
of reflection. However, when sin(ak′) = 0 or ak′ = Nπ (N = integer) then T = 1, which
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FIGURE 4.5
Transmission of a particle through a potential well of depth Vo and of finite extent a.

implies complete transmission. This is phenomenon is called transmission resonance. In
terms of de Broglie wavelength inside the barrier λ′ = 2π/k′, the condition for transmission
resonance can be written as a = Nπ/k′ = Nλ′/2. Hence the transmission resonances occur
whenever an integer number of half (de Broglie) wavelengths can fit inside the barrier. We
also note that if k′ = k ( Vo = 0), there is complete transmission, which is to be expected,
even classically.

The same formula for the transmission coefficient is applicable if there is a potential well
instead of a potential barrier, i.e., the height of the potential barrier +Vo is replaced by
−Vo (Fig. 4.5) so that the potential is given by

V (x) =

0, −∞ < x < 0
−Vo, 0 < x < a
0, a < x <∞ .

In this case the transmission coefficient is given by

T =
St
Si

=
1

1 + 1
4 ( k
k′′ − k′′

k )2 sin2(ak′′)
, (4.2.15)

where

k′′ =

√
2m(E + Vo)

~2
. (4.2.16)

Here also we have T < 1, in general. So there is a possibility of reflection at the boundary
x = 0. This is totally unexpected according to classical mechanics. On the other hand,
when sin(ak′′) = 0 or ak′′ = Nπ (N is an integer), then there is complete transmission.
This is called transmission resonance. Such transmission resonances for specific energies
occur in the scattering of electrons from noble gasses like Argon and Neon. This effect is
also known as the Ramsauer-Townsend effect.

(ii) Particle energy less than the barrier height: E < Vo

Consider case of a particle incident from the left with energy less than the barrier height
as shown in Fig. 4.6. According to classical mechanics there cannot be any transmission
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FIGURE 4.6
Transmission of a particle through a potential barrier of finite extent and height Vo greater
than the energy E of the incident particle.

of particles in this case since E < Vo. However, as we shall see, according to quantum
mechanics, there exists a finite (non-zero) probability that the particle with E < Vo would
cross the barrier if it is of finite extent.

As before, the time-independent Schrödinger equation in the coordinate representation
in the three regions can be written as

d2ψ1(x)
dx2

+ k2ψ1(x) = 0 , −∞ < x < 0 : Region I (4.2.17)

d2ψ2(x)
dx2

− κ2ψ2(x) = 0 , 0 < x < a : Region II (4.2.18)

d2ψ3(x)
dx2

+ k2ψ3(x) = 0 , a < x <∞ : Region III (4.2.19)

where

k =

√
2mE
~2

and κ =

√
2m(Vo − E)

~2
. (4.2.20)

The solutions in the three regions are of the form

ψ1(x) = Aeikx +Be−ikx Region I (4.2.21)

ψ2(x) = Ceκx +De−κx Region II (4.2.22)

ψ3(x) = Geikx + Fe−ikx Region III . (4.2.23)

We must choose F = 0 because for particles incident on the barrier from the left, we
cannot have a wave traveling from right to left in Region III. We have two sets of boundary
conditions to be satisfied at x = 0 and x = a:

ψ1(0) = ψ2(0)

dψ1

dx

∣∣∣∣
x=0

=
dψ2

dx

∣∣∣∣
x=0

ψ2(a) = ψ3(a)

dψ2

dx

∣∣∣∣
x=a

=
dψ3

dx

∣∣∣∣
x=a

.
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These boundary conditions give us, after some simplification,

A

G
= eiak

[
cosh(κa)− i

2

(
k

κ
− κ

k

)
sinh(κa)

]
. (4.2.24)

The probability current densities for the incident wave ψi(x) = Aeikx and the transmitted
wave ψt(x) = Geikx are, respectively, according to Eq. (4.1.10),

Si =
~k
m
|A|2 and St =

~k
m
|G|2 .

Using these probability current densities we find that the transmission coefficient T = St/Si
is finite and given by

T =
St
Si

=
|G|2
|A|2 =

1

1 + 1
4

(
k
κ + κ

k

)2
sinh2(κa)

. (4.2.25)

Even in the case when the height of the barrier Vo � E or κ/k � k/κ and sinhκa ≈ eκ a/2,
we find finite transmission given by

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8
E/Vo

E > VoE < Vo

T

FIGURE 4.7
Transmission coefficient as function of E/Vo.

T ≈ 16(E/Vo)× e−2κa . (4.2.26)

Hence there is a finite probability of tunneling of a particle through a potential barrier of
height Vo provided the width a of the barrier is finite. This probability, of course, decreases
rapidly as the barrier gets thicker (a increases) or height Vo increases.

The transmission coefficient of a particle, for a barrier of finite width a and height Vo is
plotted in Fig. 4.7 as a function of particle energy E. We see that even for particle energies
insufficient to surmount the potential barrier (E < Vo), the transmission coefficient is non-
zero. For particle energies exceeding the barrier height (E > Vo) perfect transmission
(T = 1) occurs at resonance energies given by the relation

k′a =

√
2m(E − Vo)

~2
a = Nπ , N = 0, 1, 2, · · · (4.2.27)
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The conclusion that a particle could tunnel through a potential barrier of finite width even
if its energy is less than the height of the barrier led Gamow to provide an explanation for
the α-decay of a nucleus, in which an α-particle with energy less than the height of the
Coulomb barrier could leak through the barrier and come out of the nucleus.

4.3 Tunneling of a Particle through a Potential Barrier

It is well known that α-particles are held inside the nucleus by strong attractive forces of
short range of the order of nuclear radius R. Outside the range the only force is the Coulomb
repulsive force which decreases with increasing distance. The potential energy curve for this
problem is shown in Fig. (4.8). Mathematically, we can represent this potential as

V (r) =

−U , r < R
2Ze2

4πε0r
, r > R

(4.3.1)

where R is the nuclear radius. The attractive nuclear force dominates inside the nucleus
(r < R). Outside the nucleus Coulomb interaction between the α particle (charge +2e) and
the daughter nucleus (charge Ze) dominates.

In alpha-decay, the height of the Coulomb barrier at r = R

Vc(R) =
2Ze2

4πε0R
≡ Vo (4.3.2)

is found to be much larger than the energy E of the α-particle escaping through the potential
barrier. Classical mechanics cannot explain how an α-particle with energy E < Vo is able
to overcome the barrier. Gamow explained this on the basis of quantum mechanics and this
effect came to be known as quantum mechanical tunneling effect.

For the physically realistic potential (potential well of depth U for r < R and Coulomb
barrier for r > R) [Fig. 4.8], this problem can actually be treated by using an approximation
called WKBJ approximation [Chapter 8]. However, this problem was first qualitatively
treated by Gamow for an idealized potential that has the shape shown in Fig. 4.9(a). It
consists of a potential well of depth U surrounded by a potential barrier of finite height Vo
and finite width a = b−R. Mathematically this potential can be expressed as

V (r) =

−U , 0 ≤ r < R : Region I
Vo , R < r < b : Region II
0 , b < r <∞ : Region III .

(4.3.3)

This is a three-dimensional problem with a spherically symmetric potential. It may be
noted here (and it will be discussed in detail in the next chapter) that in a problem with
spherically symmetric potential, the Schrödinger equation in the coordinate representation
[Eq. (3.5.7), Chapter 3], may be separated into a radial and an angular equation. The
substitution u(r) = rR(r) reduces the radial equation further to the form of a one-
dimensional Schrödinger equation with an additional term (the centrifugal potential) in
the potential. This additional term arises due to the angular momentum of the particle.
By considering only the particle motion with zero angular momentum, the radial can be
written as [

− ~2

2m
d2

dr2
+ V (r)

]
u(r) = Eu(r) . (4.3.4)
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FIGURE 4.8
The nuclear potential well and the Coulomb barrier for an α-particle. R is the nuclear
radius.

This is exactly of the form of one-dimensional Schrödinger equation [Eq. (3.5.4), Chapter
3] with x replaced by r and ψ(x) replaced by u(r).

Let us denote the radial function in the three regions by u1(r), u2(r) and u3(r). Then
the Schrödinger equation for the three regions may be written as

d2u1(r)
dr2

+ δ2u1(r) = 0 , 0 < r < R : Region I (4.3.5)

d2u2(r)
dr2

− κ2u2(r) = 0 , R < r < b : Region II (4.3.6)

d2u3(r)
dr2

+ k2u3(r) = 0 , b < r <∞ : Region III (4.3.7)

where

δ =

√
2m(E + U)

~2
, κ =

√
2m(Vo − E)

~2
, and k =

√
2mE
~2

. (4.3.8)

The solutions in the three regions can be written as

u1(r) = A sin δr +A1 cos δr , (4.3.9)

u2(r) = B+e
κr +B−e

−κr , (4.3.10)

u3(r) = Ceik(r−b) +De−ik(r−b) , (4.3.11)

where we have written the constants in u3 as Ce−ikb and Deikb in anticipation of the
boundary condition at r = b. Since u1(r) must vanish at r = 0 so that the radial wave
function is finite at the origin, we must choose A1 = 0. In region III, we cannot have an
incoming wave (corresponding to particle flux incident from the right). Therfore, we must
put D = 0.
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FIGURE 4.9
(a) A potential well of depth U and adjacent potential barrier of height Vo and width
a = b−R; (b) In the limit b→∞ the barrier extends to infinity.

The solutions in the three regions, as well as their first derivatives, must satisfy the
following boundary conditions at r = R and r = b

u1(R) = u2(R) , (4.3.12a)

du1

dr

∣∣∣∣
r=R

=
du2

dr

∣∣∣∣
r=R

, (4.3.12b)

u2(b) = u3(b) , (4.3.13a)

du2

dr

∣∣∣∣
r=b

=
du3

dr

∣∣∣∣
r=b

. (4.3.13b)

These boundary conditions lead to the following equations

A sin δR−B+e
κR −B−e−κR = 0 , (4.3.14a)

A
δ

κ
cos δR−B+e

κR +B−e
−κR = 0 , (4.3.14b)

B+e
κb +B−e

−κb − C = 0 , (4.3.15a)

B+e
κb −B−e−κb − ik

κ
C = 0 . (4.3.15b)

The condition that these equations give a nontrivial solution for A ,B+ , B− , and C is that
the determinant ∣∣∣∣∣∣∣∣

sin δR −eκR −e−κR 0
δ
κ cos δR −eκR e−κR 0

0 eκb e−κb −1
0 eκb −e−κb − ikκ

∣∣∣∣∣∣∣∣ = 0 . (4.3.16)

On simplification, this gives

eκa(k + iκ) (κ sin δR+ δ cos δR) + e−κa(k − iκ) (κ sin δR− δ cos δR) = 0 , (4.3.17)
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where a = b − R is the width of the potential barrier. This transcendental equation
determines particle energy E permitted by the potential well.

To gain some insight into the problem, let us consider particle energy E not too close
to the top of the barrier or a barrier that is not too thin. Then, as a first approximation,
we can neglect e−κa compared to eκa in Eq. (4.3.17). This gives us κ sin δR + δ cos δR =
κ sin δR [1 + (δ/κ) cot δR] = 0. Using the definition of κ and δ in terms of particle energy
[Eq. (4.3.8)], this leads us to

1 +
δ

κ
cot δR = 1 +

√
E + U

Vo − E cot

(√
2m(E + U)

~2
R

)
= 0 . (4.3.18)

The energies En, determined by this equation, would be the exact energy levels of the
particle if b→∞ or e−κa → 0. In other words these are the exact energy levels of a particle
in a potential well of the kind given by Fig. 4.9(b) when the barrier, of height Vo, is of
infinite extent. However, when b is finite and e−κ(b−R) is small but not equal to zero, the
energy of the particle in the potential well, as given by the above expression, is only an
approximation. To find better estimates for the allowed energies than those given by Eq.
(4.3.18), let us denote a particular solution of Eq. (4.3.18) by parameters κ0, δ0, k0 which
correspond to the approximate energy level E0. To obtain an improved approximation we
put

E = E0 + ∆E , κ = κ0 + ∆κ , k = k0 + ∆k , δ = δ0 + ∆δ ,

where we have k0∆k = −κ0∆κ = δ0∆δ = m∆E/~2 in view of Eq. (4.3.8).
Substituting for κ, k, and δ in the exact Eq. (4.3.17) and simplifying with the help of

Eq. (4.3.18), we obtain a complex value for E with

∆E = E′ − iE′′ , (4.3.19)

where

E′ =
2~2

m
e−2κ0a

(
k2

0 − κ2
0

k2
0 + κ2

0

)(
1

Rκ0 + 1

)(
δ2
0κ

2
0

δ2
0 + κ2

0

)
, (4.3.20)

E′′ =
2~2

m
e−2κ0a

(
1

Rκ0 + 1

)(
δ2
0κ

2
0

δ2
0 + κ2

0

)(
2κ0k0

k2
0 + κ2

0

)
. (4.3.21)

We can interpret the complex energy as follows. In a stationary state, energy E is real
and the probability P =

∫ R
0
dr|u1(r)e−iEt/~|2 =

∫ R
0
dr|u1(r)|2 of finding the particle within

the region of the potential well is constant in time. But, if for a certain state energy
E = E0 + ∆E = E0 +E′− iE′′ is complex, then this probability varies with time according
to

P (t) =
∫ R

0

dr|u1(r)e−iEt/~|2 =
∫ R

0

dr|u1(r)|2e−2E′′t/~ . (4.3.22)

Thus the probability of finding the particle in the potential well decays exponentially with
time as it should do for radioactive decay. We can write the probability

P (t) = P (0)e−t/τ = P (0)e−λt , (4.3.23)

where τ is the mean lifetime and λ = 1/τ is the decay constant. The mean lifetime τ = 1/λ
is given

τ =
1
λ

=
m

4~
e2κ0a(κ0R+ 1)

(
1
δ2
0

+
1
κ2

0

)(
k2

0 + κ2
0

2k0κ0

)
, (4.3.24)
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where

k0 =

√
2mE0

~2
, κ0 =

√
2m
~2

(Vo − E0) , and δ0 =

√
2m
~2

(E0 + U) . (4.3.25)

Thus the probability for the particle to be in the nucleus decays exponentially in time in
accordance with the observed law of radio-active decay. Thus Gamow was able to explain
why an α-particle is able to leak out of the potential well even if its energy E is less than
the height Vo of the barrier of finite thickness a. If, instead of the barrier shown in Fig.
4.9(a), we have the Coulomb barrier of Fig. 4.8, then qualitatively the same explanation
will hold. A more realistic treatment of α-decay, considering the Coulomb barrier, is given
using the WKBJ approximation in Chapter 8.

4.4 Bound States in a One-dimensional Square Potential Well

Complex energy encountered in the previous example means that states with energy
E > V∞, where V∞ is the potential far from the origin, that are localized in the well do not
exist. For localized solutions, particle motion and therefore the integral

∫∞
0
|ψ(r)|2dr must

be bounded. This is clearly not the case with the wave function given by Eqs. (4.3.11) for a
finite barrier. On the other hand, if the barrier extends all the way to infinity, the solution
u2(r) with B+ = 0 is valid throughout the region R ≤ r < ∞; it vanishes as r → ∞ and
represents bounded motion. This is a necessary but not sufficient condition for stationary
solutions which are localized in the well (bound state solutions). To explore bound state
solutions let us consider a one dimensional potential well [Fig 4.10]

V(x)

E

Vo

0 a x

(a)

-a

−U

(b)

Region 1 Region 2 Region 3

V(x)

E

(to infinity)

−U

FIGURE 4.10
(a) One-dimensional potential well of finite depth and (b) one-dimensional potential with
infinitely repulsive walls (one-dimensional box).

V (x) =

{
−U , −a ≤ x ≤ a
V0 , |x| > a .

(4.4.1)
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For bound states we must look for solutions that vanish as |x| → ∞. This is possible only
for E < V0. We are therefore looking for stationary solutions with −U ≤ E ≤ V0. Once
again we have to solve the Schrödinger equation with the potential (4.4.1) in three different
regions. Let us denote the wave function in the three regions by ψ1(x), ψ2(x) and ψ3(x).
Then the Schrödinger for the three regions may be written as

d2ψ1(x)
dx2

− κ2ψ1(x) = 0 , −∞ < x < −a : Region I (4.4.2)

d2ψ2(x)
dx2

+ k2ψ2(x) = 0 , −a < x < a : Region II (4.4.3)

d2ψ3(x)
dx2

− κ2ψ3(x) = 0 , a < x <∞ : Region III (4.4.4)

where

κ =

√
2m(Vo − E)

~2
and k =

√
2m(E + U)

~2
. (4.4.5)

The solutions in the three regions can be written as

ψ1(x) = A1e
κx +B1e

−κx , (4.4.6a)
ψ2(x) = A2 sin kx+B2 cos kx , (4.4.6b)

ψ3(x) = A3e
κx +B3e

−κx . (4.4.6c)

The boundedness of the solution as x → −∞ requires that B1 = 0. Similarly, the
boundedness as x→∞ requires A3 = 0. Thus the bounded solution has the form

ψ1(x) = A1e
κx −∞ < x < −a , (4.4.7a)

ψ2(x) = A2 sin kx+B2 cos kx, −a < x < a , (4.4.7b)

ψ3(x) = B3e
−κx a < x <∞ . (4.4.7c)

As seen before, the solutions of the Schrödinger equation and their derivatives must be
continuous across the boundaries. Matching the solutions and their derivatives at x = ±a
leads us to

A1e
−κa = −A2 sin ka+B2 cos ka , (4.4.8a)

κA1e
−κa = kA2 cos ka+ kB2 sin ka , (4.4.8b)

B3e
−κa = A2 sin ka+B2 cos ka , (4.4.8c)

−κB3e
−κa = kA2 cos ka− kB2 sin ka . (4.4.8d)

Thus we have a set of four coupled linear equations in the unknown coefficients A1, A2, B2

and B3. The conditions for a nontrivial solution of these equations is that the determinant∣∣∣∣∣∣∣∣
− sin ka cos ka −e−κa 0
k cos ka k sin ka −κe−κa 0
sin ka cos ka 0 −e−κa
k cos ka −k sin ka 0 κe−κa

∣∣∣∣∣∣∣∣
= e−2κa (2κ sin ka+ 2k cos ka) (−2κ cos ka+ 2k sin ka) = 0 . (4.4.9)

This leads to the condition

k tan ka = κ , (4.4.10)
or k cot ka = −κ . (4.4.11)
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It is not possible to satisfy these conditions simultaneously. Hence we have two classes of
solutions governed, respectively, by (4.4.10) and (4.4.11). However, in either of these cases,
energy E is the only unknown quantity since both κ and k depend on it via Eq. (4.4.5).
Since Eqs. (4.4.10) and (4.4.11) can be satisfied only for certain values of E, it is clear that
quantum mechanically, localized solutions are possible only for certain special values of
energy. Thus in contrast to unbounded motion discussed in Secs. 4.1 through 4.3, bounded
motion is allowed only for certain discrete values of energy. These values correspond to
bound states, where the particle is localized in the well.

An inspection of Eqs. (4.4.8) shows that the first constraint (4.4.10) corresponds to
A2 = 0 and the second constraint (4.4.11) corresponds to B2 = 0, leading to the two classes
of solutions of the form

Class I : k tan ka = κ ψI(x) =

{
Ae−κ|x| , |x| > a

Ae−κa 1
cos ka cos kx , −a < x < a

(4.4.12)

Class II : k cot ka = −κ ψII(x) =

{
Be−κ|x| , |x| > a

Be−κa 1
sin ka sin kx , −a < x < a .

(4.4.13)

It can be seen that class I solutions are even functions ψI(−x) = ψI(x) of x and are said
to have even parity, whereas class II solutions are odd functions ψII(−x) = −ψII(x) of x
and are said to have odd parity. Thus to specify a bound state uniquely, we need not only
the energy but also the parity. The origin of this fact is that the potential, and therefore
the Hamiltonian under consideration is symmetric (invariant) under the reflection of the
coordinate (the operation of changing x→ −x). Whenever the Hamiltonian possesses such
a symmetry, the eigenstates of the Hamiltonian are labeled by the appropriate quantum
number reflecting this symmetry. This will be discussed more fully in Chapter 6 on
symmetries in quantum mechanical systems.

It is worth noting that, if we let b → ∞ in the three-dimensional tunneling problem
considered in Sec. 4.4, we obtain Eq. (4.3.18), which coincides with Eq. (4.4.11) for odd
parity solutions. Solutions of this equation will be considered in Chapter 5 in the context of
bound states in an attractive square well potential in three dimensions. Here we concentrate
on the even parity solutions.

The allowed energy values can be obtained by solving the transcendental Eqs. (4.4.10)
graphically. In the limit Vo → ∞, we have a particle confined to a box with infinitely
repulsive walls [Fig. 4.10(b)]. Equations (4.4.10) and (4.4.12) in this case lead to

cos ka = 0 ⇒ ka =
(
n+

1
2

)
π , n = 0, 1, 2, 3 · · · (4.4.14)

with eigenfunctions and energy eigenvalues given by

ψI(x) = A cos(2n+ 1)πx/2a − a ≤ x ≤ a (4.4.15)

and En = −U +
~2

2m
(2n+ 1)2π2

4a2
. (4.4.16)

The eigenfunction vanishes outside the box. Odd parity solutions (Type II) in this limit,
V0 →∞, are obtained from Eqs. (4.4.11) and (4.4.13) to be

ψII(x) = A sinnπx/a − a ≤ x ≤ a (4.4.17)

with En = −U +
~2

2m
n2π2

4a2
. (4.4.18)
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To find the energy eigenvalues in the general case, we write Eqs.(4.4.10) as

tan ka =
κa

ka
=

√
k2
oa

2 − k2a2

ka
, (4.4.19)

where k =

√
2m(E + U)

~2
, ko =

√
2m(Vo + U)

~2
. (4.4.20)

Then the energy eigenvalues are obtained by plotting the functions

0

2

4

6

8

10

ka
ππ/2 3π/2 2π 5π/2 3π0

tan ka

κa/ka

(koa)2=502

FIGURE 4.11
Graphical solution of the eigenvalue equation for the one-dimensional square potential
well for even parity states. The solid curves are y = tan ka and the dashed curves are
y =

√
k2
oa

2 − k2x2/ka.

y = tan ka and y =

√
k2
oa

2 − k2a2

ka
, (4.4.21)

and finding their points of intersection. Figure 4.11 shows a plot of these functions.
The number of intersections and, therefore, the number of bound states increases as the
parameter 2m(Vo+U)a2

~2 increases. We see that there is always at least one intersection no
matter how shallow or narrow the well is. Therefore at least one even-parity bound state
will always exist in a one-dimensional potential well. A similar analysis for the odd-parity
states shows that for at least one odd-parity bound state to exist, the well depth and range
product 2m(V0 +U)a2/~2 must exceed a certain value. In Chapter 5, we shall see that the
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condition for a bound state to exist in a three-demensional potential well coincides with Eq.
(4.4.11).

It is clear that the wave function for bound states has different characteristics; it is
localized inside the well and is normalizable.

4.5 Motion of a Particle in a Periodic Potential

We now consider the quantum mechanical motion of a particle in a periodic potential.
An example of this would be the motion of an electron in a solid, where atomic nuclei
occupy relatively fixed positions on a regular lattice. An electron moving in any direction
will see a potential which is a periodic function of position. Although the actual form of
this potential would be quite complex, novel features that arise in this problem can be
extracted by considering a simpler model for the potential due to Kronig and Penney. In
the Kronig-Penney model, we consider one-dimensional motion of a particle of mass m in a
periodic potential with rectangular sections of length a (barriers) and b (valleys), such that
the potential has period L = a+ b [Fig. (4.12)]:

V (x) =
{
Vo , −a/2 < x < a/2
0 , a/2 < x < a/2 + b

(4.5.1)

and V (x+ nL) = V (x) , (4.5.2)

where n is an integer.

V(x)

−a/2 0 a/2 a/2+b 3a/2 +b (n−1)L+a/2 nL−a/2 nL+ a/2

1st
valley

nth
valley

(n+1)th
valley

nth
barrier

1st
barrier

x

....

Vo

FIGURE 4.12
Periodic potential with period L, where each barrier is of height Vo and width a and each
valley is of width b with a+ b = L.

For this potential, the time-independent Schrödinger equation in, say, the n-th valley, is

d2ψ(x)
dx2

+ k2ψ(x) = 0 , (n− 1)L+ a/2 < x < nL− a/2 (4.5.3)

where k2 = 2mE/~2 . (4.5.4)

The solution in the n-th valley will be a linear combination of e±ikx, which we write as

ψn(x) = Ane
ik(x−nL) +Bne

−ik(x−nL) . (4.5.5)
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The solution in the (n+1)-th valley can be written by replacing n in the preceding equation
by n+ 1 as

ψn+1(x) = An+1e
ik[x−(n+1)L] +Bn+1e

−ik[x−(n+1)L] . (4.5.6)

The time-independent Schrödinger equation in, say, the n-th barrier, will be

d2φ(x)
dx2

− κ2φ(x) = 0 , nL− a/2 < x < nL+ a/2 (4.5.7)

where κ2 = 2m(Vo − E)/~2 = (2mVo/~2)− k2 (4.5.8)

and we have assumed E < Vo. The solution of Eq (4.4.7) within the n-th barrier will be a
linear combination of exponential functions e±κx, which we write as

φn(x) = Cne
κ(x−nL) +Dne

−κ(x−nL) . (4.5.9)

Matching the solutions and their derivatives at the boundaries x = nL − a/2 and
x = nL+ a/2 of the n-th barrier, we obtain the following equations

ψn(nL− a/2) = φn(nL− a/2) , (4.5.10a)

dψn
dx

∣∣∣∣
x=nL−a/2

=
dφn
dx

∣∣∣∣
x=nL−a/2

, (4.5.10b)

ψn+1(nL+ a/2) = φn(nL+ a/2) , (4.5.11a)

dψn+1

dx

∣∣∣∣
x=nL+a/2

=
dφn
dx

∣∣∣∣
x=nL+a/2

. (4.5.11b)

Using Eqs. (4.4.5), (4.4.6) and (4.4.9), the first two conditions give(
Cn
Dn

)
=

1
2

(
e−ika/2e−κa/2

(
1− i kκ

)
eikae−κa/2

(
1 + i kκ

)
e−ika/2eκa/2

(
1 + i kκ

)
eikaeκa/2

(
1− i kκ

) )(An
Bn

)
, (4.5.12)

while the last two conditions give(
An+1

Bn+1

)
=

1
2

(
e−κa/2eik(b+a/2)

(
1− κ

ik

)
eκa/2eik(b+a/2)

(
1 + κ

ik

)
e−κa/2e−ik(b+a/2)

(
1 + κ

ik

)
eκa/2e−ik(b+a/2)

(
1− κ

ik

))(Cn
Dn

)
. (4.5.13)

Eliminating Cn and Dn from Eqs. (4.4.12) and (4.4.13), we get a relation connecting the
solutions in the n-th and (n+ 1)-th valley(

An+1

Bn+1

)
=
(
R11 R12

R21 R22

)(
An
Bn

)
, (4.5.14)

where

R12 = R∗21 =
1
2
eik(a+b)(−iτ) sinhκa , (4.5.15)

R11 = R∗22 = eikb
(

coshκa− iσ
2

sinhκa
)
, (4.5.16)

and the constants τ and σ are given by

σ =
κ

k
− k

κ
, τ =

κ

k
+
k

κ
. (4.5.17)
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Note that the matrix R, known as the transfer matrix, is independent of the integer n. It
can be seen that the determinant of the matrix is unity

det(R) = |R11|2 − |R12|2 = 1 , (4.5.18)

and its trace is given by

η ≡ trace(R) = R11 +R22 = 2
(

cos kb coshκa+
σ

2
sin kb sinhκa

)
. (4.5.19)

Eigenvalues of the matrix R are obtained by solving the characteristic equation∣∣∣∣R11 − λ R12

R12 R11 − λ
∣∣∣∣ = λ2 − ηλ+ 1 = 0 , (4.5.20)

where we have used Eqs.(4.4.18) and (4.4.19). The roots of Eq. (4.4.20) are given by

λ± =
1
2

(
η ±

√
η2 − 4

)
, (4.5.21)

where η = trace(R) is given by Eq. (4.4.19). It is easily checked that

λ+ + λ− = trace(R) = η , (4.5.22a)
λ+λ− = det(R) = 1 . (4.5.22b)

Since η is real, it follows from these conditions that the eigenvalues of R are either complex
conjugates of one another and have unit magnitude (unimodular) or they are real and one

of them exceeds unity. Let the eigenvectors of R corresponding to λ± be
(
a+

b+

)
and

(
a−
b−

)
so that

R

(
a+

b+

)
= λ+

(
a+

b+

)
(4.5.23a)

and R

(
a−
b−

)
= λ−

(
a−
b−

)
. (4.5.23b)

Then the column vector
(
A0

B0

)
, which determines the solution of Schrödinger equation in

the zeroth valley (around x = 0) can be expressed as a linear combination of the eigenvectors
of R as (

A0

B0

)
= C1

(
a+

b+

)
+ C2

(
a−
b−

)
. (4.5.24)

Using Eq. (4.4.14) recursively, we can express the column vector
(
An
Bn

)
, which determines

the solution of the Schrödinger equation in the n-th valley, in terms of the solution in the
zeroth valley:(

An
Bn

)
= R

(
An−1

Bn−1

)
= R2

(
An−2

Bn−2

)
= · · · = Rn

(
A0

B0

)
= Rn

[
C1

(
a+

b+

)
+ C2

(
a−
b−

)]
,

or
(
An
Bn

)
= C1(λ+)n

(
a+

b+

)
+ C2(λ−)n

(
a−
b−

)
. (4.5.25)

This equation expresses the wave function in the n-th valley in terms of the wave function
in the zeroth valley.1 In order for the resulting wave function to be physically acceptable,

1Solution in one valley can be related to that in any other using the transfer matrix R.
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it must remain finite in all regions of space including n → ∞. For this to happen, the
eigenvalues λ± must be less than unity. From Eqs. (4.4.21) and (4.4.22) and the comments
following them, it follows that this condition will be met provided that η is restricted to
the range |η| < 2 or −2 < η < 2. If |η| > 2, then λ± are real and λ+ > 1. This implies
that λn+ → ∞ as n → ∞ so that the wave function grows without limit as n → ∞.
Thus physically acceptable solutions are possible if −2 < η < 2 which, with the help of
Eq. (4.4.19), leads to

−1 < coshκa cos kb− k2 − κ2

2kκ
sinhκa sin kb < 1 . (4.5.26)

For values of κ and k satisfying this inequality, since −1 < η/2 < 1, we may write
η/2 = cosKL, where K is some wave number. Using this in Eq. (4.4.21), we see that
the eigenvalues of the transfer matrix for allowed values of k can be written as

λ+ = eiKL = λ∗− , (4.5.27)

showing that they are unimodular and complex conjugates of one another.
So far we have considered the case E < Vo. The results for E > Vo can be obtained by

replacing κ→ iK and ~2K2

2m = (E − Vo). This gives us

−1 ≤ cosKa cos kb− K
2 + k2

2Kk sinKa sin kb ≤ 1 . (4.5.28)

-2

-1

0

1

2

kbπ 3π 4π 5π

η(k) P=10

2π

FIGURE 4.13
Plot of η(k) as a function of kb. Allowed values of k are shown by the bold portions of the
kb axis.

The new feature in this problem is that the condition for allowed energies is an inequality
(4.4.26) or (4.4.28), which may be satisfied for a range, possibly continuous, of energies. By
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the same argument, certain other range-of-energy values, for which the inequality is violated,
may be forbidden. For example, since coshκa ≥ 1, energy values for which kb = Nπ, where
N is an integer, violate condition (4.4.26) and are, therefore, forbidden or lie at the edge
of allowed bands. Furthermore, since sines and cosines are bounded oscillatory functions,
several ranges of allowed and forbidden energy may exist. Thus the energy spectrum of a
particle in a periodic potential will consist of allowed bands of energy separated by forbidden
bands of energy (gaps).

0

40

80

120

160

kb
π 3π 4π 5π

2mE(k)b2

P=10

2π

h
2

0

FIGURE 4.14
Plot of E(k) as a function of allowed values of k. Forbidden energies are shown by the
dotted portion of the curve.

We can get a clearer picture by considering the limiting case Vo → ∞, a → 0 such that

mbVoa/~2 → P (a finite number). In this limit κ2 ≈ 2mVo/~2, σ ≈ κ
k ≈

√
P
k

√
2
ab , and κa =√

2Pa
b � 1 so that Eq. (4.4.26) leads to |η(k)|/2 ≡ | cosh(κa) cos kb+(σ/2) sinh(κa) sin kb| ≈

| cos kb+ P sin kb
kb | < 1 or

−1 ≤ cos kb+ P
sin kb
kb

≤ 1 (4.5.29)

as the condition for allowed k values (and therefore the allowed energy values E(k) =
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~2k2/2m). Here we have used sinhκa ≈ κa ≈
√

2Pa
b . If we plot cos kb + P (sin kb/kb)

as a function of kb for a fixed value of P , say P = 10, we find that for kb = Nπ,
(N = 0, 1, 3, 5, · · · ) its magnitude exceeds 1. These values of k therefore correspond
to forbidden energies. Figure 4.13 shows such a plot. The bold regions along the kb
axis correspond to allowed values of k (|η(k)|/2 < 1) and, therefore, to allowed energies
E(k) = ~2k2/2m. Energy levels corresponding to k values outside these regions are not
allowed.

We may look at this situation in another way. For a free electron of momentum ~k, a
plot of E(k) = ~2k2/2m vs k is a parabola. However, for an electron moving in a periodic
potential, certain values of energies are disallowed. In such a case a plot of E vs k is not a
smooth parabola. The parabolic relation is interrupted for values for k close to an integral
multiple of π/b [Fig. 4.14].

We have thus seen how the band structure of energy levels of an electron, in a periodic
potential arises. Although the Kronig-Penney model makes a drastic assumption in treating
the potential due to atoms in a lattice as a square well, the fundamental result that a
periodic potential leads to allowed energy bands and forbiden energy gaps is independent
of this idealization.

Problems

1. Consider the solution of time-independent Schrödinger equation in the presence of a
potential step [Sec. 4.1] when particle energy is less than the step height (E < Vo).
Examine the continuity of the wave function and its derivative across the potential
step in the limit Vo →∞. Is the wave function continuous? What about the derivative
of the wave function?

2. A particle of mass M = 939 MeV with energy E is incident from the left on a potential
barrier of height Vo and of finite extent a represented by

V (x) =


0 x < 0
Vo 0 < x < a

0 x > a .

If Vo = 2.0 MeV and the extent a = 3 fm, calculate the first two resonant energies for
perfect transmission. (Given: ~2/M = 41.6 Mev·fm2. )

3. In problem 2, if the potential of height 2.0 MeV is replaced by a potential well of
depth 2.0 MeV of the same extent (3.0 fm) then what would be the first two resonant
energies for perfect transmission.

4. Calculate the probability of transmission of a particle of mass M = 939 MeV/c2 and
kinetic energy 1.0 MeV through a potential barrier of height (a) 3.0 MeV (b) 30.0
MeV and of extent 3.0 fm in both cases.

5. A particle of mass m is incident from the left on a potential barrier of finite extent
represented by

V (x) =


0 x < 0
Vo 0 < x < a

0 x > a.
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Calculate the first three resonant energies for complete transmission given Voa
2 =

9π2~2

8m . Plot the transmission coefficient T as a function of E/Vo for 0 < E/Vo < 3.

6. Consider a periodic potential

V (x) =

{
Vo −a/2 < x < a/2
0 a/2 < x < b

and V (x + nL) = V (x) where L = (a + b) and n is an integer. The solutions in the
n-th and (n+ 1)-th valleys on the two sides of the n-th barrier are given by

ψn(x) = Ane
ik(x−nL) +Bne

−ik(x−nL) , (n− 1)L+ a/2 <x < (n− 1)L+ a/2 + b .

ψn+1(x) = An+1e
ik[x−(n+1)L] +Bn+1e

−ik[x−(n+1)L] , nL+ a/2 <x < nL+ a/2 + b .

The solution within the barrier itself is given by

φn(x) = Cne
κ(x−nL) +Dne

−κ(x−nL) , (n− 1)L+ a/2 + b < x < nL+ a/2 .

Here k2 = 2mE/~2 and κ2 = 2m(Vo − E)/~2. By matching the solutions at the
boundaries of the barrier, show that(

An+1

Bn+1

)
=

(
R11 R12

R21 R22

)(
An
Bn

)
where the matrix R is independent of n, being given by

R12 = R∗21 = (1/2)eik(a+b)(−iτ) sinh(κa)

and R11 = R∗22 = eikb cosh(κa)− i(σ/2) sinh(κa)
with τ = (κ/k + k/κ) and σ = (κ/k − k/κ) .

7. In problem 6 show that the eigenvalues λ+ and λ− of matrix R are given by

λ± =
1
2

(
η ±

√
η2 − 4

)
where η = 2Re(R11) = 2[cosh(κa) cos kb+

σ

2
sinh(κa) sin kb ] .

Relate the solution in the n-th valley, i.e., the column vector
(
An
Bn

)
to the solution in

the zeroth valley
(
A0

B0

)
. Hence show that if the solution in the n-th valley, for any

large value of n, is to be physical then the condition |η| ≤ 2 or

1
2
|η| = | cosh(κa) cos kb+

σ

2
sinh(κa) sin kb| ≤ 1 (4.5.30)

must hold. Hence show that energies E = ~2k2/2m of the particle, corresponding to
kb in the vicinity of nπ, are forbidden.

8. Consider the barrier in problem 5 and 6 to become infinite (Vo →∞) with the width
a tending to zero so that Voa tends to a finite quantity, say, Voa → ~2P/m. Choose
P equal to π and plot |η|/2 as a function of kb and show the forbidden regions of kb.
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9. What boundary conditions must be satisfied by the bound state wave function in one
dimension? Show that the bound states are nondegenerate. [Hint: Assuming that two
different eigenfunctions belong to the same energy leads to a contradiction.] What
can you say about the degeneracy of unbound (scattering) solutions?

10. Consider the bound states of a one-dimensional square well potential

V (x) =

{
−Vo |x| < a

0 |x| > a .

Determine the allowed bound state energies. [Hint: You should get two conditions -
one for the states that are even functions of x and the other for the states that are odd
functions of x.] What is the condition for at least one (a) even-parity bound state,
(b) odd-parity bound state to exist?
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5

BOUND STATES OF SIMPLE SYSTEMS

5.1 Introduction

We shall now apply the time-independent Schrödinger equation to study the bound states
of simple systems.

1. A free particle in a box with sharp boundaries.

2. Particle moving in a one-dimensional harmonic potential well (a simple harmonic
oscillator).

3. Two-body system with mutual central interaction between its constituents. Under
this heading we shall consider (i) the problem of the Hydrogen (or Hydrogen-like)
atoms and (ii) the bound state of the neutron-proton system (the deuteron).

4. A particle in three-dimensional (a) square well potential (b) harmonic oscillator
potential.

As discussed in Chapter 4, a physically acceptable wave function in the coordinate space
satisfies the following conditions:

(i) Continuity: The wave function must be single-valued and both the wave function and
its first derivative must be continuous even if the potential has a (finite) discontinuity
at some point. When the potential has infinite discontinuity the first derivative may
be discontinuous and the wave function may have a kink.

(ii) Boundary Conditions: For a bound state of the system, the wave function must
be finite everywhere and decrease to zero as r →∞. This condition follows from the
requirement that bound state wave function must be normalized to unity in order to
maintain the probabilistic interpretation of ψ(r).

5.2 Motion of a Particle in a Box

Consider a particle which moves freely inside a cubical box of dimension L and volume
V = L3. If we choose the origin of the coordinates at one corner of the cube as in Fig. 5.1,
then the particle confinement to the cube means that the walls are infinite potential steps so
that the wave function must vanish at the boundary surfaces x = 0 , x = L ; y = 0 , x = L ;
z = 0 , and x = L shown in Fig. 5.1. For this problem the time-independent Schrödinger
equation in the coordinate representation [see Eq. (3.5.7)] is

− ~2

2m

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

]
ψ(x, y, z) = Eψ(x, y, z) . (5.2.1)
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Since the boundary surfaces coincide with the coordinate surfaces in the Cartesian
coordinate system, we look for solutions separable in these coordinates by assuming the
wave function ψ(x, y, z) to have the form

ψ(x, y, z) = u1(x)u2(y)u3(z) . (5.2.2)

Substituting this in Eq. (5.2.1) and separating the variables we obtain

d2u1(x)
dx2

+ k2
1u1(x) = 0 , (5.2.3)

d2u2(y)
dy2

+ k2
2u2(y) = 0 , (5.2.4)

d2u3(z)
dz2

+ k2
3u3(z) = 0 , (5.2.5)

where
k2

1 + k2
2 + k2

3 ≡ k2 =
2mE
~2

. (5.2.6)

The solutions of these equations can be written easily

(0,0,0)

x

y

x=L

y=L

z=L

FIGURE 5.1
A three-dimensional box with impenetrable walls corresponds to a potential function which
vanishes everywhere inside the box but has an infinite positive step at the walls.

u1(x) = C1 sin k1x+D1 cos k1x , (5.2.7)
u2(y) = C2 sin k2y +D2 cos k2y , (5.2.8)
u3(z) = C3 sin k3x+D3 cos k3z . (5.2.9)
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Application of the boundary condition that the wave function vanish at the bounding
surfaces of the box requires u1(x), u2(y), and u3(z) to satisfy u1(0) = 0 = u1(L),
u2(0) = 0 = u2(L), and u3(0) = 0 = u3(L). These requirements on Eqs. (5.2.7) −
(5.2.9) lead to

D1 = D2 = D3 = 0 , (5.2.10)
k1L = n1π , k2L = n2π , k3L = n3π , (5.2.11)

where n1, n2 and n3 can take positive integer values 1,2,3, · · · . The normalized wave
functions are given by

ψn1,n2,n3(x, y, z) =

√
8
L3

sin
(n1πx

L

)
sin
(n2πy

L

)
sin
(n3πz

L

)
. (5.2.12)

From Eqs. (5.2.6) and (5.2.11), the energy levels are given by

En ≡ En1,n2,n3 =
~2k2

2m
=

~2π2

2mL2
(n2

1 + n2
2 + n2

3) ≡ ~2π2

2mL2
n2 . (5.2.13)

The wave function (5.2.12) may be considered the coordinate respresentative of the
stationary state |n1, n2, n3 〉 characterized by three integer quantum numbers. Each state
may be represented by a point in the positive octant of three-dimensional (n1, n2, n3) space
(Fig. 5.2).

Note that several states may correspond to the same energy. For example, the states
(2, 1, 1), (1, 2, 1) and (1, 1, 2) belong to the same value of energy 6~2π2/2mL2. These states
are said to be degenerate in energy. The number of states that have the same or very nearly
the same energy increases as the energy increases. Furthermore, the spacing between the
successive energy levels ∆E = |En1,n2,n3−En1+1,n2,n3 | = ~2π2(2n1 + 1)/2mL2 can be made
as small as desired by making L sufficiently large. We shall see in later chapters that when
a system makes a transition from one energy state to another, the rate of transition depends
on the density of states in the vicinity of the final energy state.

5.2.1 Density of States

We may find the number of energy levels dN(E) within energy interval E and E + dE (or
with n between n and n + dn) by counting the number of points that lie in a spherical
shell or radius E and thickness dE. It may be noted here that although the energy E
(and therefore n) is quantized, the spacing between the successive energy levels becomes
infinitesimally small as L becomes large. We can then treat E and therefore n as continuous
variables. Then from Eq. (5.2.13) an energy interval dE corresponds to an interval dn given
by

dE =
~2π2

2mL2
× 2ndn . (5.2.14)

Now the number of points in the positive octant of a spherical shell of radius n and thickness
dn is dN = 1

8 × 4πn2dn. With the help of Eq. (5.2.13) and (5.2.14) we find

dN(E) =
1

4π2

[
2m
~2

]3/2

L3
√
EdE =

1
4π2

[
2m
~2

]3/2

V
√
EdE , (5.2.15)

where V is the volume of the box (occupied by the system). This is an important quantity
that will be used in later chapters.
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n1

n2

n3

FIGURE 5.2
When a particle is enclosed in cubical box of dimension L the energy levels are discrete.
Each energy state corresponds to a point in three-dimensional (n1, n2, n3) space in the
positive octant. The spacing between the successive energy levels can be made as small as
desired by choosing L sufficiently large.

5.3 Simple Harmonic Oscillator

Among the bound state problems, one of the simplest and most important is that of a linear
harmonic oscillator, that is, aparticle of mass m moving in a one-dimensional quadratic
potential

V (x) =
1
2
kx2 . (5.3.1)

Classically, such a particle executes simple harmonic motion with angular frequency

ω =

√
k

m
. (5.3.2)

To treat this problem quantum mechanically we first write the Hamiltonian operator

Ĥ =
p̂2

2m
+

1
2
mω2x̂2 , (5.3.3)

where x̂ and p̂ are the position and momentum operators (observables) satisfying the
commutation relations

[x̂, p̂] = i~1̂ . (5.3.4)
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FIGURE 5.3
Harmonic oscillator potential in one dimension.

The time-independent Schrödinger equation [Eq. (3.5.1)] is

Ĥ |E 〉 = E |E 〉 . (5.3.5)

This equation physically means that a measurement of energy in state |E 〉 will definitely
give the result E. We shall see that the system can exist in stationary states belonging to
certain specific energies E0, E1, E2, · · · . The problem is to find the allowed values of energy
(energy eigenvalues) and the corresponding states (eigenstates). To do this, we write the
time-independent Schrödinger equation (5.3.5) in some representation, say, the coordinate
representation. Then Eq. (5.3.5) with the Hamiltonian given by Eq. (5.3.3) assumes the
form [

− ~2

2m
d2

dx2
+

1
2
mω2x2

]
ψ(x) = Eψ(x) , (5.3.6)

where ψ(x) = 〈x|E〉 is the coordinate representative of the state |E 〉 and x stands for the
continuously varying eigenvalue of the observable x̂. Equation (5.3.6) may be rewritten as

d2ψ(x)
dx2

+
(

2mE
~2
− m2ω2

~2
x2

)
ψ(x) = 0 . (5.3.7)

Introducing the variable ξ =
√
mω/~ x and substituting ψ(x) = u(ξ)

(
mω
~
)1/4 in Eq.

(5.3.7), we find1

d2u(ξ)
dξ2

+
(

2E
~ω
− ξ2

)
u(ξ) = 0 . (5.3.8)

For large ξ (large x) this equation assumes the form

d2u(ξ)
dξ2

+ (∓1− ξ2)u(ξ) = 0 . (5.3.9)

1Since |ψ(x)|2 is interpreted as a probability density, it must conform to the transformation law for
probability densities, i.e., under a change of variable ξ = ξ(x), the wave function ψ(x) is transformed
to function u(ξ) such that |u(ξ)|2dξ = |ψ(x)|2dx.
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Note that we have retained a term ∓u(ξ) [from the (2E/~ω)u(ξ) term], which is negligible
anyway compared to ξ2u(ξ) in the limit considered here, because this allows us to integrate
Eq. (5.3.9) to give

u(ξ) ∼ e±ξ2/2 . (5.3.10)

The boundary condition
lim
x→∞

ψ(x) = 0 (5.3.11)

demands that u → 0 as ξ → ∞. This means we have to discard the positive exponential
and write u ∼ e−ξ

2/2 as |ξ| → ∞. The complete solution of Eq. (5.3.8) is therefore of the
form

u(ξ) = e−ξ
2/2v(ξ) . (5.3.12)

Substituting this into Eq. (5.3.8), we find that v(ξ) satisfies the equation

d2v(ξ)
dξ2

− 2ξ
dv(ξ)
dξ

+
(

2E
~ω
− 1
)
v(ξ) = 0 . (5.3.13)

In order to satisfy the boundary condition at infinity, Eq. (5.3.13) must admit a polynomial
solution. This is possible only if the coefficient of v(ξ) is a nonnegative even integer [see
Appendix 5A1 Sec. 4 for the solution of this equation]

2E
~ω
− 1 = 2n , where n = 0, 1, 2, 3 · · · (5.3.14)

With this constraint Eq. (5.3.13) reduces to Hermite equation

d2v(ξ)
dξ2

− 2ξ
dv(ξ)
dξ

+ 2nv(ξ) = 0 , (5.3.15)

while the allowed values of energy, labeled by index n, are given by

En =
(
n+

1
2

)
~ω . (5.3.16)

The Hermite equation admits normalizable solutions

vn(ξ) = Hn(ξ) , (5.3.17)

called Hermite polynomials. Explicitly,

Hn(ξ) = (−1)neξ
2 dn

dξn
e−ξ

2
(5.3.18)

Thus the eigenfunctions of the linear harmonic oscillator are

ψn(x) = Nne
−α2x2/2Hn(αx) , (5.3.19)

where α =
√
mω/~ and the normalization constant Nn is given by

Nn =
[

α

2nn!
√
π

]1/2

. (5.3.20)

It may be noted that eigenfunctions of the harmonic oscillator ψn(x) are normalized
orthogonal functions. This is expressed by writing
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FIGURE 5.4
Harmonic oscillator wave functions for n = 0, 1, 2, 3, 4. Here α =

√
mω/~.

∫ ∞
−∞

dxψn(x)ψm(x) = δmn . (5.3.21)

Figure 5.4 shows harmonic oscillator wave functions for n = 0 − 4. The wave function for
the ground state n = 0 is a Gaussian centered at x = 0. All other wave functions oscillate as
functions of x and have n zeros. Figures 5.5 and 5.6 show the probability density |ψn(x)|2
as a function of x for n = 0, 1 and 10. The horizontal lines show the allowed range of a
classical oscillator with the same total energy as the quantum mechanical oscillator. The
classical probability distribution Pcl(x) for finding the particle between x and x + dx is
easily computed as the fraction of each period 2π/ω that the particle spends in the interval
x and x+ dx. This is given by

Pcl(x)dx =
ω

2π
2dx
v(x)

, (5.3.22)

where v(x) is the speed of the particle and we have used the fact that in each period the
particle is found in any interval twice. If we write the position of the classical oscillator as
x(t) = A sinωt, where the amplitude A is related to the energy E by A =

√
2E/mω2, we

can express the speed of the oscilator as a function of position as

v(x) = ω
√
A2 − x2 . (5.3.23)

Using this, we find the classical probability distribution for the position of the oscillator is
given by

Pcl(x) =
1

π
√
A2 − x2

. (5.3.24)
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FIGURE 5.5
Harmonic oscillator probability density (a) |ψ0(x)|2 and (b) |ψ1(x)|2 compared with the
classical probability density for the same average energy Pcl(x) = 1/π

√
A2 − x2.

As expected this distribution is nonzero only for −A ≤ x ≤ A since the oscillator is confined
to the region between classical turning points x = ±A. In contrast to this, quantum
mechanically, there is significant probability for the particle to be found in the classically
forbidden region. It may be noted that the classical and quantum mechanical distributions
differ signficantly for small n (See Fig. 5.5(a) and 5(b) for n = 0, 1) but as n increases, the
average probability distribution according to quantum mechanics approaches the classical
probability distribution (shown by the dashed curve for n = 10).

5.4 Operator Formulation of the Simple Harmonic Oscillator
Problem

In the preceding section we solved the eigenvalue problem for the simple harmonic oscillator
by using the coordinate representation of the time-independent Schrödinger equation. This
can be done with equal ease in the momentum representation as well because of the
symmetric role played by the position and momentum observables in the Hamiltonian for
a simple harmonic oscillator. In fact it is possible to solve the eigenvalue problem for the
harmonic oscillator without using any specific representation. To see this, we begin by
writing the Hamiltonian of a linear harmonic oscillator as

Ĥ = ~ω
(

p̂2

2m~ω
+
mω

2~
x̂2

)
, (5.4.1)

where ω is the classical frequency ω =
√
k/m and the observables x̂ and p̂ satisfy the

commutation relations (5.3.4). By factoring out ~ω from the Hamiltonian, we have made
its coefficient in Eq. (5.4.1) dimensionless. It is clear that

√
2m~ω has dimensions of

momentum and
√

2~/mω has dimensions of length.
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FIGURE 5.6
Probability density |ψ10(x)|2 as a function of x. The dotted curve shows the classical
distribution. We can see that the average probability distribution according to quantum
mechanics approaches the classical probability distribution, shown by dotted curve, for large
n.

Let us introduce dimensionless operator â and its Hermitian adjoint â† by

â =
1√
2

[√
mω

~
x̂+

i√
m~ω

p̂

]
, (5.4.2)

â† =
1√
2

[√
mω

~
x̂− i√

m~ω
p̂

]
. (5.4.3)

With the help of the commutation relations of x̂ and p̂ [Eq. (5.3.4)], we find that â and â†

satisfy the commutation relation

[â†, â] ≡ ââ† − â†â = 1 . (5.4.4)

From the definition of â and â† we also find that

ââ† = â†â+ 1 =
1

~ω

[
1
2
mω2 x̂2 +

p̂2

2m
+

1
2

~ω
]
. (5.4.5)

A comparison of Eqs. (5.4.5) and (5.4.1) allows us to write the Hamiltonian in terms of â
and â† as

Ĥ = ~ω
(
â†â+

1
2

)
=

1
2

~ω
(
â†â+ ââ†

)
. (5.4.6)

The commutation relations of â and â† with the Hamiltonian (5.4.6) are found, with the
help of Eq. (5.4.4), to be

[â, Ĥ] = ~ω[â, â†â+
1
2

] = ~ω(ââ† − â†â)â = ~ω â , (5.4.7)

[â†, Ĥ] = ~ω[â, â†â+
1
2

] = ~ωâ†(â†â− ââ†) = −~ω â† . (5.4.8)

5.4.1 Physical Meaning of the Operators â and â†

Let |En 〉 be an eigenstate of Ĥ belonging to the eigenvalue En = (n+ 1/2)~ω so that

Ĥ |En 〉 = En |En 〉 . (5.4.9)
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To find out what the states â |En 〉 and â† |En 〉 represent, we let Ĥ operate on them.
Operating on â |En 〉 by Ĥ and using the commutation relation (5.4.7), we find

Ĥ (â |En 〉) = (âĤ − ~ω â) |En 〉 = (En − ~ω) (â |En 〉) . (5.4.10)

From this equation we see that â |En 〉 is an eigenstate of Ĥ belonging to eigenvalue
En − ~ω ≡ En−1. Hence â may be called a lowering operator since operating on the
eigenstate |En 〉 by â results in lowering of energy by one quantum of energy (~ω). The term
annihilation operator is also used since lowering of energy by ~ω may also be interpreted as
annihilation of one quantum of energy. Similarly,

Ĥ
(
â† |En 〉

)
= (â†Ĥ + ~ω â†) |En 〉 = (En + ~ω)

(
â† |En 〉

)
(5.4.11)

shows that â† |En 〉 is an eigenstate of Ĥ, belonging to energy En + ~ω ≡ En+1. The
operator â† is, therefore, called a raising operator (or creation operator) since â† acting on
an energy eigenstate raises the energy by one quantum (or creates one quantum of energy).

It is clear that each time we operate on an energy eigenstate |En 〉 by â we get a new
energy eigenstate with one quantum of energy ~ω less than the previous one and every time
we operate by â† we get a new energy eigenstate with one quantum of energy more than the
previous one. It also follows from Eqs. (5.4.10) and (5.4.11) that successive energy levels of
a harmonic oscillator are separated by one quantum of energy ~ω.

What is the lowest energy state of the oscillator? If we assume that |E0 〉 is the lowest
energy state ground state with energy E0, then it must satisfy

Ĥ |E0 〉 = E0 |E0 〉 , (5.4.12)
â |E0 〉 = 0 , (5.4.13)

where the last equation follows from the fact that there are no states with energy lower
than E0. Pre-multiplying Eq. (5.4.13) with â†, we obtain

â†â |E0 〉 = 0 . (5.4.14)

Using Ĥ given by Eq. (5.4.6) in Eq. (5.4.12), we find(
â†â+

1
2

)
~ω |E0 〉 = E0 |E0 〉 . (5.4.15)

The first term on the left-hand side of this equation is zero from Eq. (5.4.14). This implies
that the ground state energy E0 is given by

E0 =
1
2

~ω . (5.4.16)

We can now ascertain what the energy eigenvalues are. In view of Eq. (5.4.11), â† |E0 〉 is
a state with energy eigenvalue E1 = E0 + ~ω. Repeated applications of â† on the ground
state then show that â†n |E0 〉 is a state with energy En = n~ω + E0. Hence the energy
levels of a simple harmonic oscillator are

En = n~ω + E0 = (n+ 1/2)~ω , n = 0, 1, 2, · · · (5.4.17)

As already noted, successive energy levels differ in energy by ~ω. The unit of energy ~ω
or spacing between successive energy levels is referred to as a quantum of energy and n is
referred to the number of quanta (photons or phonons). The ground state is known as the
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zero-quantum state and its energy Eo is referred to as zero-point energy. First excited state
is one-quantum state, and so on.

With the help of Eq. (5.4.17), the eigenvalue equation Ĥ |En 〉 = En |En 〉 [Eq. (5.4.9)]
can be rewritten as (

â†â+
1
2

)
|En 〉 =

(
n+

1
2

)
|En 〉

or â†â |En 〉 = n |En 〉 . (5.4.18)

The operator â†â = n̂ may be called the number operator since its eigenvalue n is the
number of quanta in the state. The state |En 〉 = |n+ 1/2 〉 may as well be represented by
the number n written within the ket so that

n̂ |n 〉 = n |n 〉 and Ĥ |n 〉 = (n+ 1/2)~ω |n 〉 . (5.4.19)

Furthermore, with the help of Eqs. (5.4.10) and (5.4.11) we see that â† |n 〉 and â |n 〉 are
essentially the states |n+ 1 〉 and |n− 1 〉 so that we can write

â† |n 〉 = Cn |n+ 1 〉 ,
â |n 〉 = Dn |n− 1 〉 .

To determine the constants Cn and Dn, we multiply each equation by its Hermitian
conjugate from the left. This gives us

〈n| ââ† |n 〉 = |Cn|2 〈n+ 1|n+ 1〉 ⇒ |Cn|2 = (n+ 1) ,

〈n| â†â |n 〉 = |Dn|2 〈n− 1|n− 1〉 ⇒ |Dn|2 = n .

Thus apart from a phase factor, Cn =
√
n+ 1 and Dn =

√
n, so that the effect of â and â†

on state |n 〉 is specified by

â† |n 〉 =
√
n+ 1 |n+ 1 〉 , (5.4.20)

â |n 〉 =
√
n |n− 1 〉 . (5.4.21)

5.4.2 Occupation Number Representation (ONR)

The representation in which the observables n̂ and Ĥ are diagonal is called the occupation
number representation. The basis states of this representation are |0 〉 , |1 〉 , |2 〉 , · · · , |n 〉 · · · .
Since both operators n̂ and Ĥ are diagonal in this basis,

〈s| n̂ |r 〉 = rδsr , (5.4.22)

〈s| Ĥ |r 〉 = (r + 1/2)δsr , (5.4.23)

their matrix representatives are diagonal matrices

n̂ ≡


0 0 0 0 0 · · ·
0 1 0 0 · · ·
0 0 2 0 · · ·
· · · · · · · · · · · ·

 , (5.4.24)

Ĥ ≡


1
2 0 0 0 0 · · ·
0 3

2 0 0 · · ·
0 0 5

2 0 · · ·
· · · · · · · · · · · ·

 . (5.4.25)
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A typical element of the matrix representing the raising operator â† in the ONR is given by

〈m| â† |n 〉 =
√
n+ 1 δm,n+1 , (5.4.26)

while that representing the lowering operator â is given by

〈m| â |n 〉 =
√
n δm,n−1 . (5.4.27)

These matrices are not diagonal; they are one step off diagonal

â† ≡


0 0 0 0 · · ·√
1 0 0 0 · · ·

0
√

2 0 0 · · ·
0 0

√
3 0 · · ·

...
...

...
...

. . .

 , (5.4.28)

â ≡


0
√

1 0 0 · · ·
0 0

√
2 0 · · ·

0 0 0
√

3 · · ·
...

...
...

...
. . .

 . (5.4.29)

With the help of Eqs. (5.4.2) and (5.4.3) together with Eqs. (5.4.26) and (5.4.27), we can
easily see that the typical elements of the matrices representing the position and momentum
operators

x̂ =

√
~

2mω
(
â+ â†

)
, (5.4.30)

and p̂ = −i
√

~mω
2

(
â− â†) , (5.4.31)

will be given, respectively, by

xn′n ≡ 〈n′| x̂ |n 〉 =

√
~

2mω
(√
n δn′,n−1 +

√
n+ 1 δn′,n+1

)
, (5.4.32)

pn′n ≡ 〈n′| p̂ |n 〉 = −i
√

~mω
2

(√
n δn′,n−1 −

√
n+ 1 δn′,n+1

)
. (5.4.33)

5.5 Bound State of a Two-particle System with Central Interaction

The interaction between two particles is referred to as central interaction if the interaction
potential depends only on the magnitude of the vector r12 = r2 − r1 from one particle to
the other and not on its direction.

An example of a two-particle system is the Hydrogen atom where the two particles are
the proton (charge +e) and the electron (charge −e) interacting via the Coulomb potential

V (r) = − e2

4πε0r
, (5.5.1)

where r is the distance between them. Other examples include singly ionized Helium, doubly
ionized Lithium, and, in general, a multiply ionized atom with a single electron where the
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two interacting particles are the nucleus and the electron. The mutual interaction between
the nucleus with charge +Ze (Z being the atomic number or the number of protons inside
the nucleus) and electron is the Coulomb interaction (5.5.2) with e2 replaced by Ze2. Under
this heading we may also consider the deuteron, which is a bound system of the neutron
and proton) interacting via a central nuclear potential Vnp(r).

For such two-body systems the Hamiltonian can be written as

Ĥ =
p̂2

1

2m1
+
p̂2

2

2m2
+ V̂ (r̂2 − r̂1) (5.5.2)

where m1 and m2 are the masses of the particles and V̂ (r̂2− r̂1) is the interaction between
them. Since Ĥ is independent of time, the time dependence of the state |R(t) 〉 can be
factored out as

|R(t) 〉 = e−iEt/~ |R(0) 〉 , (5.5.3)

where |R(0) 〉 is the state at t = 0. Substituting it in the Schrödinger equation of motion,

i~
d

dt
|R(t) 〉 = Ĥ |R(t) 〉 , (5.5.4)

we find that |R(0) 〉 satisfies the time-independent Schrödinger equation (eigenvalue
equation)

Ĥ |R(0) 〉 = E |R(0) 〉 . (5.5.5)

It is clear that E is the eigenvalue of the two-body Hamiltonian Ĥ. To determine the
possible states and the possible energies (eigenvalues) that the system can have, we write
the eigenvalue equation in, say, the coordinate representation. In this representation the
position observables r̂1 and r̂2, which commute with each other, are taken to be diagonal.
The basis states are |r1, r2 〉 where r1 and r2 are the continuously varying eigenvalues of
the respective coordinate observables. In this representation, the momentum observables
p̂1 and p̂2 may be replaced by the operators −i~∇̂1 and −i~∇̂2, respectively. To write Eq.
(5.5.5) in the coordinate representation, we write the Hamiltonian operator explicitly, as in
Eq. (5.5.2) and premultiply both sides of Eq. (5.5.5) by the basis bra vector 〈r1, r2| . This
gives [see Chapter 3, Eq. (3.5.7)][

− ~2

2m1
∇2

1 −
~2

2m1
∇2

2 + V (r2 − r1)
]

Ψ(r1, r2) = EΨ(r1, r2) (5.5.6)

where ∇2
1 =

∂2

∂x2
1

+
∂2

∂y2
1

+
∂2

∂z2
1

, (5.5.7)

∇2
2 =

∂2

∂x2
2

+
∂2

∂y2
2

+
∂2

∂z2
2

, (5.5.8)

and Ψ(r1, r2) = 〈r1, r2|R(0)〉 , (5.5.9)

is the coordinate representative of the state |R(0) 〉.
To proceed further we note that the potential depends only on the relative coordinates

r2− r1 ≡ (x2− x1, y2− y1, z2− z1) of the particles, which suggests that the problem might
be simpler in terms of relative coordinates instead of the coordinates of the two particles.
Accordingly, we introduce the relative and center-of-mass coordinates, r ≡ (x, y, z) and
R ≡ (X,Y, Z) via

r = r2 − r1 , (5.5.10)

R =
m1r1 +m2r2

m1 +m2
. (5.5.11)
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Note that these equations represent a coordinate transformation, not a change of
representation. We are still working in the coordinate representation in terms of a new
set of coordinates.

By expressing the differential operators ∂2

∂x2
1
, ∂

2

∂x2
2
, etc. in terms of new coordinates

R = (X,Y, Z) and r = (x, y, z), we can write Eq. (5.5.6) as[
− ~2

2µ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
− ~2

2M

(
∂2

∂X2
+

∂2

∂Y 2
+

∂2

∂Z2

)
+ V (r)

]
Ψ = EΨ (5.5.12)

where M = m1 + m2 is the total mass and µ = m1m2/(m1 + m2) is the reduced mass.
From Eq. (5.5.12) we see that the kinetic energy term has separated into the sum of kinetic
energy of center of mass motion and kinetic energy of relative motion. Since the potential V
depends only on the relative coordinate r, the overall Hamiltonian itself separates into two
independent parts, one representing the center of mass motion as a free particle of mass M
and the other representing the relative motion as a particle of mass µ moving in a potential
V (r). Hence we look for the wave function Ψ(r1, r2) as the product

Ψ(r1, r2) = Φcm(R)ψ(r) , (5.5.13)

where Φcm(R) describes the motion of the center of mass and ψ(r) describes the relative
motion of the particles. Substituting this form of the wave function in Eq. (5.5.12) and
dividing both sides by Φcm(R)ψ(r) we obtain two independent equations[

− ~2

2M

(
∂2

∂X2
+

∂2

∂Y 2
+

∂2

∂Z2

)]
Φcm(R) = E0Φcm(R) , (5.5.14)[

− ~2

2µ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+ V (r)

]
ψ(r) = Eψ(r) , (5.5.15)

where the total energy has been written as the sum of center of mass energy E0 and energy
of relative motion E as E = E0 + E. The first equation represents the eigenvalue equation
for the center of mass motion of the two-body system. This motion is usually not of much
interest but plays an important role in cooling and trapping of atoms and ions in optical
or magneto-optical traps. The motion of the center of mass (free or confined) is easily
discussed in terms of problems already considered once the form of the confining potential
is known. For example, the center of mass motion of ions confined to a magneto-optical
trap can be described as the motion of a particle in a harmonic oscillator potential.

The second equation [Eq. (5.5.15)], represents the relative motion of the two particles. It
is the equation of motion for a particle of effective mass µ = m1m2/(m1+m2) with energy E
moving in a potential V (r). In what follows we consider relative motion in the presence of a
central potential V (r) = V (r), which depends only on r and not on the relative orientation
of the particles. Such a potential is said to be spherically symmetric.

Introducing spherical polar coordinates r , θ , ϕ (because of the spherical symmetry of the
potential) and expressing the differential operators in terms of these variables [see Appendix
5A2], we can write Eq. (5.5.15) as[

− ~2

2µ
∇2 + V (r)

]
ψ(r, θ, ϕ) = Eψ(r, θ, ϕ) , (5.5.16)

where ∇2 ≡ 1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
r2 sin2 θ

∂2

∂ϕ2
. (5.5.17)

We can separate the radial and angular dependence of the wave function by writing

ψ(r, θ, ϕ) = R(r)Y (θ, ϕ) . (5.5.18)
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Substituting this in Eq. (5.5.16) and separating the terms that depend on radial and angular
variables, we arrive at

1
R(r)

[
d

dr
r2 dR

dr
+

2µr2

~2
(E − V (r))R

]
= − 1

Y

[
1

sin θ
∂

∂θ
sin θ

∂Y

∂θ
+

1
sin2 θ

∂2Y

∂ϕ2

]
. (5.5.19)

Since radial coordinate r and angular coordinates (θ, ϕ) are independent variables, a
function of r (on the left side) and a function of angles (on the right side) cannot be
equal to one another for all values of r and (θ , ϕ) unless both are separately equal to a
constant, say λ. Thus Eq. (5.5.19) separates into two equations

d

dr

(
r2 dR

dr

)
+

2µ r2

~2
(E − V (r))R(r) = λR(r) , (5.5.20)

and −
{

1
sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2

}
Y (θ, ϕ) = λY (θ, ϕ) . (5.5.21)

The angular equation may again be separated into two independent equations by the
substitution

Y (θ, ϕ) ≡ Θ(θ)Φ(ϕ) (5.5.22)

in Eq. (5.5.21). Dividing the resulting equation throughout by Θ(θ)Φ(ϕ) and separating
the variables we get

d2Φ
dϕ2

= −m2Φ , (5.5.23)

and sin θ
d

dθ
sin θ

dΘ
dθ

+ λ sin2 θΘ = m2Θ , (5.5.24)

where we have written the separation constant as m2. The physically acceptable normalized
solutions of Eq. (5.5.23) are

Φm(ϕ) =
1√
2π

exp(imϕ) , (5.5.25)

where m, called magnetic quantum number, must be a positive or negative integer including
zero for Φm(ϕ) to be a single-valued function of ϕ. The normalization condition for Φm(ϕ)
is ∫ 2π

0

dϕ Φ∗m′(ϕ)Φm(ϕ) =
∫ 2π

0

dϕ

(
eim

′ϕ

√
2π

)∗
eimϕ√

2π
= δmm′ . (5.5.26)

Equation (5.5.24) for Θ can be transformed to a more recognizable form by the substitution
w = cos θ

d

dw
(1− w2)

dP

dw
+
(
λ− m2

1− w2

)
P (w) = 0 (5.5.27)

where P (w) = Θ(θ). This equation resembles the associated Legendre equation. For
physically acceptable solutions of this equation, which remain finite for all w, including
w = ±1 (corresponding to the polar axis θ = ±π/2), we require λ = `(` + 1), where ` is a
positive integer, including zero. With this restriction on λ, this equation admits polynomial
solutions, called associated Legendre polynomials, denoted byP |m|` (w) and given by

P
|m|
` (w) = (1− w2)|m|/2

d|m|

dw|m|
P`(w) , (5.5.28)
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where P`(w) is Legendre polynomial of order `. Since P`(w) is polynomial of order ` in
w, it is clear from the definition (5.5.28) that |m| ≤ ` or −` ≤ m ≤ `. The normalization
integral for the associated Legendre polynomial is given by

1∫
−1

dwP
|m|
` (w)P |m|`′ (w) =

π∫
0

sin θdθP |m|` (cos θ)P |m|`′ (cos θ)

=

√
(`+ |m|)! 2

(`− |m|)! (2`+ 1)
δ``′ . (5.5.29)

With the help of Eqs. (5.5.25), (5.5.26), (5.5.28), and (5.5.29), the normalized solution of
the angular equation (5.5.21) is given by

Y`m(θ, ϕ) =

√
(`− |m|)!(2`+ 1)

4π(`+ |m|) P
|m|
` (cos θ) exp(imϕ) . (5.5.30)

These functions, called spherical harmonics, are normalized and satisfy the orthogonality
condition

2π∫
0

dϕ

π∫
0

sin θdθ Y ∗`m(θ, φ)Y`m′(ϑ, ϕ) = δ``′δmm′ . (5.5.31)

Spherical harmonics are eigenfunctions of the square of the angular momentum operator L̂2

and also of L̂z, the z-component of the angular momentum operator. To see this we express
the components of the orbital angular momentum operator (in coordinate representation)
in spherical polar coordinates as

Lx = −i~
(
y
∂

∂z
− z ∂

∂y

)
= i~

(
sin θ

∂

∂θ
+ cot θ cosϕ

∂

∂ϕ

)
, (5.5.32)

Ly = −i~
(
z
∂

∂x
− x ∂

∂z

)
= i~

(
− cosϕ

∂

∂θ
+ cot θ sinϕ

∂

∂ϕ

)
, (5.5.33)

Lz = −i~
(
x
∂

∂y
− y ∂

∂x

)
= −i~ ∂

∂ϕ
, (5.5.34)

L2 = L2
x + L2

y + L2
z = −~2

(
1

sin θ
∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

)
. (5.5.35)

Comparing Eq. (5.5.35) with the left-hand side of the angular equation (5.5.21) we
immediately see that

L2 Y`m(θ, ϕ) = `(`+ 1)~2 Y`m(θ, ϕ) . (5.5.36)

Finally, using Eq. (5.5.34) for Lz and the definition of Y`m(θ, ϕ) we see

LzY`m(θ, ϕ) = m~ Y`m(θ, ϕ) . (5.5.37)

Hence spherical harmonics Y`m(θ, ϕ) are simultaneous eigenstates of L2 and Lz belonging
to the eigenvalues `(`+ 1)~2 and m~, respectively.

We can summarize the results of this section by saying that the relative motion of two-
body systems involving spherically symmetric potential is described by a wave function of
the form

ψ(r, θ, ϕ) = R`(r)Y`m(θ, ϕ) , (5.5.38)
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where the angular part of the wave function is the same for all spherically symmetric central
potentials, while the radial function R`(r) satisfies Eq. (5.7.21) with λ = `(`+ 1)

1
r2

d

dr
r2 dR`

dr
+
[

2µ
~2

(E − V (r))− `(`+ 1)
r2

]
R`(r) = 0 . (5.5.39)

The radial function is different depending on the form of the potentials V (r).
For bound states of a given potential V (r), if any, the normalization condition, in terms

of R` reads ∫ ∞
0

dr |rR`(r)|2 = 1 . (5.5.40)

For this integral to be finite the radial function must satisfy the boundary conditions: (i)
for large distances from the origin, it must vanish sufficiently rapidly that rR`(r) → 0 as
r →∞ and (ii) near the origin r = 0, its behavior must be such that rR`(r)→ 0 as r → 0.
The last requirement can be justified as follows. By noting 1

r2
d
dr r

2 dR`
dr = 1

r
d2

dr2 rR`(r), we
see that the radial equation (5.5.39) can be cast into an equation for u`(r) = rR`:

d2

dr2
u`(r) +

2µ
~2

[
E − V (r)− ~2`(`+ 1)

2µr2

]
u`(r) = 0 . (5.5.41)

Thus the radial equation reduces to a one-dimensional Schrödinger equation for u`(r) =
rR`(r) for a particle of mass µ subject to an effective potential V (r)+ ~2`(`+1)

2µr2 in the region
r ≥ 0 and an infinitely repulsive potential in the region r < 0. It follows that the wave
function u(r) = rR`(r) must vanish for r < 0. The condition rR`(r) → 0 as r → 0 then
ensures the continuity of the wave function. Thus the boundary conditions satisfied by the
radial function of a bound state wave function are

u`(r) ≡ rR`(r)→ 0 as r → 0 , (5.5.42)
u`(r) ≡ rR`(r)→ 0 as r →∞ . (5.5.43)

Extending the analogy of the radial equation to one dimensional Schrödinger equation
further, we conclude that the bound state energy spectrum of a central potential is discrete
and each bound state energy En corresponds to one (and only one) radial function. In
other words En and ` uniquely determine the radial function. We may then label the radial
wave function by Rn`. Note that these comments refer only to the radial part of the wave
function.

5.6 Bound States of Hydrogen (or Hydrogen-like) Atoms

For this problem the two-body interaction is of the form

V (r) = − Ze2

4πε0r
. (5.6.1)

For Z = 1, this interaction refers to the Hydrogen atom, for Z = 2 it refers to the singly
ionized He atom and so on. For the Hydrogen atom problem, the reduced mass is given by

µ = memp/(me +mp) = me[1−me/(me +mp)] (5.6.2)
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where me and mp are, respectively, the mass of the electron and the proton. Using
me = 0.511 Mev/c2 and mp = 938 MeV/c2, we find that µ = 0.999me. For this reason we
can refer(inaccurately) to the relative motion as motion of the electron around the proton
or the nucleus. Such a picture would be highly inaccurate for positronium (bound state of
an electron and positron), which is also described by the Coulomb potential (5.6.1) with
Z = 1, and reduced mass µ = me/2.

As seen in the previous section, the solution of the Schrödinger equation for the relative
motion has the form

ψ(r, θ, ϕ) = R`(r)Y`m(θ, ϕ) , (5.5.38*)

where R`(r) satisfies the radial equation

1
r2

d

dr
r2 dR`

dr
+
[

2µ
~2

(
E − Ze2

4πε0r

)
− `(`+ 1)

r2

]
R`(r) = 0 . (5.6.3)

This equation depends on ` but not m. Therefore we expect energy levels to be 2`+ 1-fold
degenerate with respect to the direction of orbital angular momentum in space. Note that
for bound states in Coulomb potetial, E = −|E| < 0 is a negative quantity. We can cast
radial equation (5.6.3) in a more convenient form by introducing parameters κ and γ by

κ =

√
8µ|E|

~2
≡
√
−8µE

~2
, (5.6.4)

γ = Z
2µe2

4πε0~2κ
≡ Z e2

4πε0~c

√
µc2

2|E| . (5.6.5)

It can be seen that the parameter κ has dimensions of inverse length, whereas γ is
dimensionless. Using the scaled dimensionless radial variable

ρ = κ r , (5.6.6)

we can write the radial equation as

1
ρ2

d

dρ
ρ2 dF`

dρ
+
(
−1

4
+
γ

ρ
− `(`+ 1)

ρ2

)
F`(ρ) = 0 , (5.6.7)

where F`(ρ) is the radial function in terms of the scaled radial variable. To ensure the
normalization condition (5.5.40) let us examine the behavior of the radial function for
ρ→ 0 and ρ→∞. Multiplying Eq. (5.6.7) by ρ2 and taking the limit ρ→ 0 we obtain the
equation satisfied by F`(ρ) for small ρ

d

dρ
ρ2 dF`

dρ
− `(`+ 1)F`(ρ) = 0 . (5.6.8)

We seek solutions of the form F`(ρ) = constant × ρc, which may be thought of as the first
term of the series solution for small ρ. Substituting this in Eq. (5.6.7) we find

c(c+ 1) = `(`+ 1) . (5.6.9)

This gives c = −(`+ 1) or `. The solution with c = −(`+ 1) does not satisfy the boundary
condition ρF`(ρ) → 0 [Eq. (5.5.42)] as ρ → 0. Thus for a given `, the acceptable solution
near ρ = 0 has the the form

F`(ρ) ≈ constant× ρ` . (5.6.10)
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To calculate the asymptotic behavior of the radial function, we take the limit ρ→∞ of Eq.
(5.6.6). By dropping terms with 1/ρ and 1/ρ2 dependence we obtain

d2F`
dρ2

− 1
4
F = 0 , (5.6.11)

which implies that F` ≈ e±ρ/2, independent of `. Once again, the normalizable solution,
which vanishes as ρ→∞ [Eq. (5.5.43)] is the negative exponential

F`(ρ) ∼ e−ρ/2 . (5.6.12)

Incorporating the behavior of F`(ρ) for small and large ρ as specified in Eqs. (5.6.10) and
(5.6.12) we seek solutions of the form

F`(ρ) = e−ρ/2ρ`u(ρ) . (5.6.13)

Using this in Eq. (5.6.7), we find that u(ρ) satisfies the equation

d2u

dρ2
+ (2`+ 2− ρ)

du

dρ
+ (γ − `− 1)u(ρ) = 0 . (5.6.14)

This equation, called the associated Laguerre equation, admits a polynomial solution only
if γ−`−1 is a positive integer, including zero [see Appendix 5A1 Sec. 3]. If this condition is
not met, normalizable solutions satisfying the condition (5.5.43) are not possible. Hence we
conclude that γ must be a positive integer n which for a given ` must satisfy the condition

γ ≡ n ≥ `+ 1 . (5.6.15)

Combining this with the definition of γ [Eq. (5.6.5)] we find the allowed bound state energies
(eigenvalues) are given by

En = − Z2e4µ

2(4πε0~)2n2
≡ − Z2e2

8πε0a0n2
, (5.6.16)

where a0 =
4πε0~2

µe2
=

4πε0~c
e2

~
µc

. (5.6.17)

The parameter a0, with dimensions of length, is known as the Bohr radius.2 It emerges as a
natural unit for atomic lengths. The integer n is called the principal quantum number. This
solves the bound state energy eigenvalue problem for the Coulomb potential. As concluded,
on general grounds, in the preceding section, the bound state spectrum is indeed discrete.
Moreover, since the potential V (r)→ 0 as r →∞, the number of bound states (En < 0) is
infinite.

The solutions of the radial equation (5.6.14) with γ = n [Eq. (5.6.15)], are the associated
Laguerre polynomials3 defined by

L2`+1
n+` (ρ) =

n−`−1∑
s=0

(−1)s[(n+ `)!]2ρs

(n− `− 1− s)!(2`+ 1 + s)! s!
. (5.6.18)

2We neglect the difference between a0, defined here, and Bohr radius
“

4πε0~2

mee2

”
since the reduced mass

µ = 0.999me [Eq. (5.6.2)] differs negligibly even for the lightest of the nuclei in the hydrogenic atoms.
3Different notations for the associated Laguerre polynomial may be found in other texts. Our Lβα in the

notation used in Merzbacher, Messiah and Liboff would be denoted by Lβα−β .
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Note that L2`+1
n+` (ρ) is a polynomial of degree n− `− 1. The radial function is thus labeled

by two indices n and `. It is important to remember that the radial function depends on
index n via the scale factor κ as well, which from Eqs. (5.6.5) and (5.6.15) is given by

κn =
2Z
na0

. (5.6.19)

Reverting back to the unscaled radial variable via the relation ρ = κnr = 2Zr/na0 [Eq.
(5.6.6)], the normalized solution of the radial equation (5.6.3) is

Rn `(r) =
(

2Z
na0

)3/2
√

(n+ `)!
2n[(n+ `)!]3

e−Zr/na0 ρ`L2`+1
n+` (2Zr/na0) . (5.6.20)

Collecting all the information of this section we can, finally, write down the normalized
Hydrogen atom wave function as

ψn`m(r, θ, ϕ) =
(

2Z
na0

)3/2
√

(n− `− 1)!
2n[(n+ `)!]3

e−Zr/na0

(
2Zr
na0

)`
L2`+1
n+` (2Zr/na0)Y`m(θ, ϕ) .

(5.6.21)
We see that the bound state wave function is completely determined by the principal
quantum number n, orbital angular momentum quantum number `, and magnetic quantum
number m. In other words, the energy (Ĥ), orbital angular momentum squared (L̂2),
and the z-component of the orbital angular momentum (L̂z) form a complete set of
observables for the Hydrogen atom. The wave function (5.6.21) can then be looked upon
as the coordinate representative ψ`mn(r) = 〈r|n, `,m〉 of the bound state |n, `,m 〉 of
the Hydrogen atom characterized by the principal quantum number n, orbital angular
momentum quantum number ` and magnetic quantum number m. The state |n, `,m 〉 is a
simultaneous eigenstate of Ĥ, L̂2, and L̂z

Ĥ |n, `,m 〉 = En |n, `,m 〉 , (5.6.22)

L̂2 |n, `,m 〉 = `(`+ 1)~2 |n, `,m 〉 , (5.6.23)

L̂z |n, `,m 〉 = m~ |n, `,m 〉 . (5.6.24)

The energy corresponding to state |n, `,m 〉, written in terms of Bohr radius a0 is

En = − Z2e2

8πε0a0n2
= −Z

2

n2

e2

8πε0a0
. (5.6.25)

Using the last expression, the bound state energy can be written as En = −Z2/n2 in units of
energy called Rydberg ( 1 Rydberg=e2/8πε0a0 ≈ 13.6 eV). From the dependence of bound
state energy on n, we see that there are an infinite number of bound states. The distance
between successive energy levels decreases as n increases and the levels become crowded as
we approach the limit E∞ = 0.

The bound state energy depends only on the principal quantum number n and not on
the quantum numbers ` and m. This means there are several linearly independent states
that correspond to the same value of energy. The number of such states associated with an
energy level is referred to as its degree of degeneracy. To calculate the degree of degeneracy
of an energy level we note that, according to Eq. (5.6.14), for a given value of the principal
quantum number n, the angular momentum quantum number ` can take the values

` = 0, 1, 2, · · ·n− 1. (5.6.26)
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These states with different ` but the same n have the same energy. But each value of `
corresponds to 2`+ 1 values of m. Hence the degree of degeneracy of the n-th energy level
is given by

n−1∑
`=0

∑̀
m=−`

m =
n−1∑
`=0

(2`+ 1) = n2 . (5.6.27)

The bound state energy levels of the Hydrogen atom are thus n2-fold degenerate. The
occurrence of degeneracy is associated with symmetry properties of the system. The
degeneracy of energy levels with respect to m reflects the invariance of the Coulomb system
under rotations about the origin. This is a property common to all centrally symmetric
potentials. The degeneracy with respect to ` corresponds to another symmtery property
that is peculiar to the Coulomb potential [see Chapter 6]. In the spectroscopic notation,
the ` values are denoted by lower case letters s, p, d, f, · · · corresponding, respectively, to
` = 0, 1, 2, 3, · · · so that the levels of the Hydrogen atom are denoted by n followed by the
symbol for `. Thus the first level (n = 1) consists of one 1s state. The second level (n = 2)
consists of one 2s and three 2p states. The third level (n = 3) consists of one 3s, three 3p,
and five 3d states and so on. If we include electron spin (not considered so far), which can
take two values ± 1

2 , then the degree of degeneracy of each energy level doubles to 2n2. For
example, the first level consists of two 1s states. The second level consists of two 2s and
six 2p states.
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FIGURE 5.7
Radial probability distribution r2R2

10(r) for the Hydrogen atom.
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The radial functions Rn`(r) for the first few states are given below:

R10 =
(
Z

a0

)3/2

2e−Zr/a0 ,

R20 =
(
Z

2a0

)3/2

2
(

1− r

2a0

)
e−Zr/2a0 ,

R21 =
(
Z

2a0

)3/2 1√
3

(
r

a0

)
e−Zr/2a0 ,

R30 =
(
Z

3a0

)3/2

2

[
1− 2

3
r

a0
+

2
27

(
r

a0

)2
]
e−Zr/3a0 ,

R31 =
(
Z

3a0

)3/2 8
9
√

2

(
r

a0

)(
1− 1

6
r

a0

)
e−Zr/3a0 ,

R32 =
(
Z

3a0

)3/2 4
27
√

10

(
r

a0

)2

e−Zr/3a0 .

(5.6.28)

These expressions confirm the role of Bohr radius a0 as a natural unit for atomic lengths.
Thus small and large atomic distances are defined relative to a0. For small and large
distances, the form of the radial function is given by

Rn`(r) ≈
(
Z

a0

)3/2


2

n2(2`+ 1)!

√
(n+ `)!

(n− `− 1)

(
2Zr
na0

)`
r � a0

2(−1)n−`−1

n2
√

(n+ `)!(n− `− 1)!

(
2Zr
na0

)n−1

e−Zr/na0 r � a0 .

(5.6.29)

The probability of finding the electron in a spherical shell of radius r and thickness dr,
centered at the nucleus, when the system is in the state specified by the quantum numbers
n, `,m is given by r2R2

n`(r)dr. Figures (5.7) through (5.9) show r2R2
n`(r) as a function of

r/a0 for the 1s, 2s and 2p states of the Hydrogen atom (Z = 1).
From the expression for the radial function and the integrals involving associated Laguerre

polynomials, the mean values

〈rk〉n`m =
∫ ∞

0

drrk+2R2
n`(r) , (5.6.30)

for k = −3,−2,−1, 1, and 2 are given by

〈r−3〉n`m =
Z3

a3
0n

3`(`+ 1/2)(`+ 1)
, (5.6.31)

〈r−2〉n`m =
Z2

a2
0n

3(`+ 1/2)
, (5.6.32)

〈r−1〉n`m =
Z

a0n2
, (5.6.33)

〈r〉n`m =
a0

2Z
[
3n2 − `(`+ 1)

]
, (5.6.34)

〈r2〉n`m =
a2

0n
2

2Z2

[
5n2 + 1− 3`(`+ 1)

]
. (5.6.35)

In closing the discussion of bound states of hydrogenic atoms we mention that the exact
treatment given here is possible because we have considered only the Coulomb interaction
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FIGURE 5.8
Radial probability distribution r2R2

2`(r) for the Hydrogen atom.

between the electron and the nucleus. This is not the whole story. The electron carries an
intrinsic spin and magnetic moment. The magnetic moment of the moving electron interacts
with the Coulomb field of the nucleus, giving rise to the so-called spin-orbit interaction term
in the Hamiltonian [see Chapter 8]. The proton in the Hydrogen atom (and the nucleus in
many hydrogenic atoms) also has an intrinsic magnetic moment, which intreacts with the
magnetic moment of the electron. These and other interactions lead to additional terms in
the Hamiltonian. Fortunately, these additional terms are small compared to the Coulomb
interaction and, as discussed in Chapter 8, their effect on energy levels can be calculated by
treating them as perturbations to the dominant Coulomb interaction. Their most important
effect is to remove (at least partially) the degeneracy of energy levels.

5.7 The Deuteron Problem

Another important two-body problem in physics is the deuteron which is the bound state
of a neutron (n) and a proton (p). This is the most fundamental problem in nuclear physics
and is an important source of information on the nature of the n−p interaction. Unlike the
H-atom problem where the electron-nucleus interaction was precisely known and our aim
was to determine the energy levels of the atom, in the deuteron problem the basic input
(the n − p interaction Vnp) is not precisely known and so our aim is to infer the nature of
the n− p interaction by using the empirical data about the deuteron:

(a) Experimentally it is known that the deuteron exists in a weakly bound state of binding
energyB = 2.23 MeV. Besides the ground state no stable excited states of the deuteron
have been found to exist.

(b) The total angular momentum of the deuteron is J = 1 (in units of ~).
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Radial probability distribution r2R2

3`(r) for the Hydrogen atom.

(c) The rms charge radius of the deuteron is 2.14 fm (1 fermi ≡ 1fm=10−15 m). It has zero
electric dipole moment and a very small electric quadrupole moment Q = 0.286 e-fm2.

(e) The deuteron magnetic moment µd = 0.8574 µN is very close to the sum of neutron
and proton magnetic moments µp +µn = 2.7928 µN − 1.9132 µN = 0.8796 µN , where
nuclear magneton µN = 5.0507866× 10−27 joules/tesla is the natural unit for nuclear
magnetic moments.

From its vanishing electric dipole moment and a very small value of electric quadrupole
moment4 it follows that the deuteron state is primarily a spherically symmetric s-state(` =
0). This is supported also by the fact that the magnetic moment of the deuteron is the sum
of the proton and the neutron magnetic moments, indicating that their spins are parallel
(S = 1) and there is no orbital motion of the proton relative to the neutron. This is
consistent with the total angular momentum of the ground state being J = 1.

The n − p interaction must be attractive for a bound state to exist and like all nuclear
interaction it must be short ranged. The spatial extent of a wave function is determined
by its binding energy and not by the range of the potential. The small binding energy of
the deuteron indicates that the deuteron is an extended object and is not sensitive to the
details of the potential. We assume that the n− p interaction is central and derivable from
a potential function. To start with, we take a very simple potential in form of a square well
as shown Fig. 5.10

V (r) =

{
−Vo r ≤ ro
0 r > ro

(5.7.1)

where ro is the range of the interaction. We ask what the energy level structure is and what
values of Vo and ro are consistent with a bound state (` = 0) at energy B = 2.226 Mev.

4The non-zero quadrupole moment tells us that the deuteron is, strictly speaking, not a pure s-state. An
s-state has spherical symmetry and therefore cannot have an electric quadrupole moment. A non-zero
quadrupole moment requires a deformation proportional to Y20, which corresponds to a d-state (` = 2).
However, since the quadrupole moment is small, to a first approximation, we can ignore non-zero ` states.
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FIGURE 5.10
Examples of two-body central potentials in three dimensions: (a) spherically symmetric
square well potential, (b) exponential potential well.

As in the case of the Hydrogen atom, the Schrödinger equation (5.5.16) representing the
relative motion of the two particles (n and p) can be separated into the radial and angular
parts since the potential is central. The radial equation (5.5.39) in this case (` = 0) can be
written as

1
r2

d

dr
r2 dR

dr
+

2µ
~2

[E − V (r)]R(r) = 0 (5.7.2)

where µ = mpmn/(mn+mn) is the reduced mass for the n−p system. Using the substitution
u(r) = rR(r) and E = −B (B being the binding energy) we can write the radial equation
in the two regions as

d2u1

dr2
+ k2u1(r) = 0 r ≤ ro (Region I)

(5.7.3)

d2u2

dr2
− κ2u2(r) = 0 r > ro (Region II)

(5.7.4)

where k2 =
2µ
~2

(Vo −B) and κ2 =
2µB
~2
≡ 2µ

~2
Vo − k2 . (5.7.5)

The solutions in the two regions are of the form

u1(r) = A1 sin(kr) +D1 cos(kr) , r ≤ ro , (5.7.6)
u2(r) = A2 exp(−κ r) +D2 exp(κ r), r > ro , (5.7.7)

where A1, D1, A2, and D2 are constants to be determined. Since u(r) = rR(r) is required
to satisfy the boundary conditions for a bound state wave function, it must vanish at the
origin and fall off to zero as r →∞ [Eqs. (5.5.42) and (5.5.43)]. To satisfy these conditions
we must choose D1 = 0 = D2. The continuity of the wave function and its derivative
requires that the sinusoidal solution in region 1 and the exponential solution in region 2
and their derivatives must match at r = ro:

u1(ro) = u2(ro) ⇒ A1 sin kro = A2e
−κro , (5.7.8)

du1

dr

∣∣∣∣
ro

=
du2

dr

∣∣∣∣
ro

⇒ A1k cos kro = −A2κe
−κro . (5.7.9)

These conditions lead to the transcendental equation
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(kro) cot(kro) = −κ ro , (5.7.10)

which must be satisfied by the allowed values of binding energy. To find the allowed binding
energies we must solve Eq. (5.7.10) or, equivalently, the set of two simultaneous equations

y = cotx, (5.7.11)

y = −κro
x

= −
√
k2
or

2
o − x2

x
(5.7.12)

for kro = x, where k2
or

2
o = 2µVor2

o/~2. A plot of these curves is shown in Fig. 5.11.
The bound state energies are determined by the values of x = kro, where the two curves
intersect. It can be seen that for a given depth Vo and range ro of the potential well, the
two curves intersect at a finite number of points. This means the bound states are discrete
and their number is finite. Denoting the number of bound states by N and labeling them
according to their binding energies in descending order Vo > B1 > B2 > B3 · · · > BN > 0,
we see that the first bound state lies deepest in the well and the last one just below the
top of the well. From Fig. 5.11, we can see that the n-th intersection occurs in the range
nπ > x ≡ kro > (2n− 1)π/2. Using the definition (5.7.5) of k, we find the binding energy
Bn of the n-th state satisfies

Vo − ~2n2π2

2µr2
o

< Bn < Vo − ~2(2n− 1)2π2

8µr2
o

. (5.7.13)



BOUND STATES OF SIMPLE SYSTEMS 141

Since the minimum value of the binding energy is zero, it follows from Eq. (5.7.13) that to
support N bound states the potential Vo must satisfy the condition

Vor
2
o ≥

~2

2µ
(2N − 1)2π2

4
. (5.7.14)

This is a relationship between the range and depth of the potential well to support N bound
states. The larger the product Vor2

o, the larger the number of bound states. This means
there are more bound states if the well is deep or broad or both. In particular, no bound
state can exist unless

Vor
2
o ≥

~2π2

8µ
. (5.7.15)

Let us apply these results to the deuteron. Using the binding energy B = 2.226
MeV (from the data presented at the beginning of this section) and reduced mass µ =
mnmp/(mn + mp) ≈ M/2, where M is the nucleon mass (assuming neutron and proton

masses to be equal: mn ≈ mp ≡M = 938 MeV), the parameter κ =
√

MB
~2 ≈ 0.232 fm−1.

For the range of interaction we may take ro = 3 fm, a value comparable to the charge radius
of the deuteron. This gives us κro ≈ 0.70.

To find the parameters of the potential to fit the deuteron binding energy, we need the
first (taking the deuteron to be the ground state of the n − p system) solution of the
transcendental equation (5.7.10) with κro ≈ 0.70. Assuming that the well depth is large
compared to the binding energy, the required solution for x is slightly larger than π/2.
Using the substitution x = π/2 + ε, and assuming ε to be small compared to π/2, in Eq.
(5.7.10) we estimate ε ≈ 2κro/π = 0.44 (a more careful estimate gives ε = 0.350). Using
this estimate x ≡ kro = π

2 + 0.44 ≈ 2.01. Comparing the magnitudes of kro and κro we
find k2/κ2 ≡ Vo/B − 1 ≈ 8.25 or Vo = 9.25B = 20.6 MeV. Thus the depth of the potential
Vo is indeed large compared to the binding energy of the deuteron consistent with our
assumption. That is why the deuteron is called a weakly bound system.

The normalized ground state radial wave function for the deuteron is given by

u(r) =



√
2κ

κro + 1
sin(kr) for r ≤ ro

√
2κ

κro + 1
sin(kro) exp[−κ(r − ro)], for r > ro .

(5.7.16)

Figure 5.12 shows u(r) as a function of r. The spatial extent of the wave function,
approximately 1/κ ≈ 4.3 fm, is larger than the range of the potential ro. This means
the particles spend significant time outside the range of interaction as expected of a weakly
bound system. The fraction of the time for which the separation is greater than ro is easily
calculated as the integral∫ ∞

ro

dr|u(r)|2 =
1

[(κro + 1)(1 + (κro/kro)2)]
, (5.7.17)

which yields a value of 52%. So the particles spend more than half their time outside the
range of the potential.

Note that the knowledge of the binding energy allows us to determine only the depth-
range combination Vor

2
o, not the depth Vo and range ro separately. If ro can be measured

independently, for example, in scattering experiments, then the well depth Vo can be
determined.
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FIGURE 5.12
Deuteron wave function u(r) as a function of r. Here ro is the range of the interaction.

On the question of excited states of the deuteron

We may now ask whether excited s-states (` = 0) are possible for the deuteron. We find
that the range and depth combination for the deuteron Vor

2
o = 185 MeV· fm2 is less than

~29π2

8µ = 460 MeV· fm2, the minimum needed for at least one excited s-state to exist [Eq.
(5.7.14)]. Hence we conclude that the excited s-states of the deuteron are not possible with
the depth and range combination that fits the observed data.

Let us also examine whether the deuteron can exist as a bound system in a higher
angular momentum state. We will show that for the depth-range combination that we
have estimated, the deuteron cannot exist as a bound system in the p-state. Still higher
angular momentum states would then be ruled out automatically, since the effective binding
potential becomes less and less attractive as ` increases. Let us assume that in the p-state
the system is just bound so that E = −B = 0. Then the radial equation (5.5.39) for the
potential V (r) given by Eq. (5.7.1), and ` = 1, assumes the form:

d2u

dr2
+
(
k2

0 −
2
r2

)
u(r) = 0 , r ≤ ro (5.7.18)

d2u

dr2
− 2
r2
u(r) = 0 , r > ro (5.7.19)

where ko =
√

2µVo/~2 . With the change of variables

ξ = k0r and u(r) =
√
ko (v(ξ)/ξ) , (5.7.20)
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in (5.7.18), we find that v(ξ) satisfies the equation

1
ξ

d2v(ξ)
dξ2

− 2
ξ2

dv(ξ)
dξ

+
v(ξ)
ξ

= 0 . (5.7.21)

Multiplying throughout by ξ and differentiating the resulting equation with respect to ξ we
can cast this equation in the form [

d2

dξ2
+ 1
]

1
ξ

dv

dξ
= 0 . (5.7.22)

From this the solution for 1
ξ
dv
dξ can be immediately recognized as a combination of sin ξ and

cos ξ. The solution for v(ξ) which vanishes at ξ = 0 [consistent with Eq. (5.5.42)] is then

v(ξ) = A1(sin ξ − ξ cos ξ) for r < ro . (5.7.23)

The solution of Eq. (5.7.19) is u(r) = C/r for r > ro, which via Eq. (5.7.20) leads to

v(ξ) = A2 for r > ro . (5.7.24)

Here A1 andA2 are constants. Matching the solutions as well as their first derivatives at
r = ro or at ξ = koro, we get

koro sin(koro) = 0 , (5.7.25)

which is possible only if koro = π or Vor2
o = ~2π2

2µ . Thus the minimum value of the range
and depth combination needed for at least one p-state exceeds that for the s-state [Eq.
(5.7.15)]. This is to be expected as a deeper potential well is needed to overcome the
cetrifugal contribution to the effective potential. For the deuteron µ ≈= M/2, M = 938
MeV being the nucleon mass, this leads to Vor2

o = 408 MeV, which exceeds the range-depth
combination (185 MeV·fm2) for the deuteron. Thus this range-depth combination for the
deuteron rules out a bound p-state.

The question of nonzero angular momentum bound states of the deuteron is relevant
since its nonzero quadrupole moment would require an ` = 2 state. Indeed there is some
evidence that the deuteron state is an admixture containing a large ` = 0 component and
a small ` = 2 component. Such an admixture would be ruled out if central forces were the
only forces acting between the neutron and proton. This suggests that noncentral forces
also play a role in the n− p interaction.

Deuteron problem with an exponential potential

We have seen that the deuteron is a weakly bound system. It is therefore not expected to
be sensitive to the details of the potential. To explore this further, let us consider another
attractive potential of the form

V (r) = −Vo exp(−r/ro) , (5.7.26)

where ro defines the range of the potential. Substituting this into the radial equation (5.7.2)
with u(r) = rR(r) for the s-state (` = 0), we get

d2u

dr2
+

2µ
~2

(
E + Voe

−r/ro
)
u(r) = 0 . (5.7.27)

Introducing the independent variable z by

z =

√
8µVo
~2

ro exp(−r/2ro) , (5.7.28)
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we can transform the radial equation to the Bessel form5

d2χ

dz2
+

1
z

dχ

dz
+
(

1− ν2

z2

)
χ(z) = 0 , (5.7.29)

where ν2 ≡ 8µB
~2

r2
o , (5.7.30)

and χ(z) denotes the transformed radial function. This equation has two independent
solutions: Jν(z) and J−ν(z) [see Appendix 5A1 Sec. 5]. In the limit z → 0 (or r →∞),

Jν(z) ≈ zν

2nΓ(ν + 1)
and J−ν(z) ≈ z−ν

2−νΓ(−ν + 1)
. (5.7.31)

We rule out J−ν because it diverges for z → 0 (r → ∞). So the acceptable solution Eq.
(5.7.29) is

χ(z) = AJν(z) , (5.7.32)

or u(r) = A Jν

(√
8µVo
~2

ro exp(− r

2ro
)

)
. (5.7.33)

Further, u(r) must satisfy the boundary condition u(0) = 0 [Eq. (5.5.42)] at the origin.

This means Jν

(√
8µVo

~2 ro

)
= 0, which implies that

(√
8µVo

~2 ro

)
must be a zero of Jν .

For the deuteron problem, the value of ν =
√

8µB
~2 ro ≈ 1.4 if the range ro is taken be of

the order of 3 fm. If z1 is the first zero of J1.4(z) then the above condition demands that√
8µVo

~ ro = z1 or

r2
oVo =

~2

8µ
z2

1 . (5.7.34)

This is the relationship between the depth and range, if the potential has an exponential
shape. Once again we see that a knowledge of the binding energy allows us to determine
only the range-depth combination for the potential as was the case for the square well
potential. The behavior of the wave function is also qualitatively similar to that discussed
for the s-state in a square well.

5.8 Energy Levels in a Three-dimensional Square Well: General
Case

In Sec. 5.7, we considered the problem of bound state energy levels in a square well for
` = 0. Here we consider the bound states in a spherical square well potential for arbitrary
values of `. Obviously, the results of this section will reduce to those of Sec. 5.7 for ` = 0.

Consider a particle of mass m moving in a spherical potential well of the form:

V (r) =

{
−Vo , r ≤ a
0 , r > a.

(5.7.1*)

5See Appendix 5A1 Sec. 5 for Bessel equation.
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Such a potential could describe, for example, a nucleon moving in a nucleus, independently
of others, in a common potential V (r). The potential V (r) takes into account the effect of
other nucleons in an average sense. The radial equation (5.5.39) for the spherical square
well potential of Eq. (5.7.1*) may be written as

d2R`
dr2

+
2
r

dR`
dr
− 2m

~2
(Vo −B)R`(r)− `(`+ 1)

r2
R`(r) = 0, for r < a , (5.8.1)

and
d2R`
dr2

+
2
r

dR`
dr
− 2mB

~2
R`(r)− `(`+ 1)

r2
R`(r) = 0, for r > a , (5.8.2)

where we have put E = −B, since we are interested in the spectrum of bound states, which
will have negative energies.

With the substitution

ρ = kr , (5.8.3)

and R`(r) = k3/2 y`(ρ)
ρ1/2

, (5.8.4)

where k2 =
2m
~2

(Vo −B) , (5.8.5)

Eq. (5.8.1) reduces to the Bessel form

d2y`(ρ)
dρ2

+
1
ρ

dy`(ρ)
dρ

+
(

1− (`+ 1/2)2

ρ2

)
y`(ρ) = 0 . (5.8.6)

The general solution of this equation can be written as a linear combination of J`+1/2(ρ)
and J−(`+1/2)(ρ) as

y`(ρ) = AJ`+1/2(ρ) +A′J−(`+1/2)(ρ) . (5.8.7)

Since R`(r) must be finite for all values of r, we must rule out J−(`+1/2), which is singular
at the origin. Then choosing A′ = 0 in Eq. (5.8.7), we can write the radial wave function
(5.8.5) inside the well as

R`(r) = Ak3/2 1
(kr)1/2

J`+1/2(kr) ≡ Cj`(kr) for r < a (5.8.8)

where we have replaced Ak3/2 by another constant C by writing Ak3/2 = C
√
π/2. This

allows us to write the solution inside the well in terms of the spherical Bessel function
j`(kr) =

√
π

2kr J`+1/2(kr) [see Appendix 5A1 Sec. 5].
The radial equation (5.8.2) for the exterior region (r > a) may similarly be reduced to

the Bessel form by using the substitution

ρ = iκr , κ = (2mB/~2)1/2 (5.8.9)

and y`(ρ) as defined in Eq. (5.8.4). In this case, since the domain of ρ does not include the
origin ρ = 0, both solutions of Eq. (5.8.6) are acceptable. The general solution outside the
well can then be written as

R`(r) = D

√
π

2iκr
J`+1/2(iκr) +D′(−1)`+1

√
π

2iκr
J−(`+1/2)(iκr)

≡ Dj`(iκr) +D′η`(iκr) (5.8.10)

where j`(ρ) ≡ √π/2ρJ`+1/2(ρ) and η`(ρ) ≡ (−1)`+1
√
π/2ρJ−(`+1/2)(ρ) are, respectively,

the spherical Bessel and spherical Neumann functions [see Appendix 5A1]. Instead of the
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spherical Bessel functions, another set of functions, known as spherical Hankel functions of
the first and the second kind, are more convenient for boundary conditions at infinity. They
are defined as linear combinations6

h
(1)
` (ρ) ≡ j`(ρ) + iη`(ρ)→ 1

ρ
exp[i(ρ− (`+ 1)π/2)] , (5.8.11)

h
(2)
` (ρ) = j`(ρ)− iη`(ρ)→ 1

ρ
exp[−i(ρ− (`+ 1)π/2)] , (5.8.12)

where ρ = iκr and the arrow specifies the asymptotic ( ρ → ∞) behavior. In the exterior
region (r > a) we must choose the solution to be h(1)

` because asymptotically it will fall off
as e−κr, which is the desired behavior.

Having identified the acceptable solutions inside and outside the well we can write the
interior and exterior radial wave function in terms of these solutions. The energy levels of
the system may be obtained from the continuity condition7

1
Rint

dRint

dr

∣∣∣∣
r=a

=
1

Rext

dRext

dr

∣∣∣∣
r=a

. (5.8.13)

For the s-state ( ` = 0) we obtain

Rint(r) = j0(kr) =
sin(kr)
kr

, r < a (5.8.14)

and Rext(r) = h
(1)
0 (iκr) = −e

−κr

κr
, r > a . (5.8.15)

Using the matching condition (5.8.13) we have,

ka cot(ka) = −κa . (5.8.16)

As expected this is the same as Eq. (5.7.10) with ro replaced by a. This is the equation we
discussed in Sec. 5.7.

Similarly, for the p-state (` = 1), we have

Rint(r) = Aj1(kr) =
sin(kr)
k2r2

− cos(kr)
kr

, (r < a) (5.8.17)

and Rext(r) = Ch
(1)
1 (iκr) = Ci

(
1
κr

+
1

κ2r2

)
e−κr , (r > a) . (5.8.18)

Matching condition (5.8.13) gives us, for this case,

cot(ka)
ka

− 1
k2a2

=
1
κa

+
1

κ2a2
. (5.8.19)

We can show in this case that there is no bound state for Voa2 < π2~2

2µ , one bound state for
π2~2

2µ ≤ Voa2 < (2π)2~2

2µ and so on.
This can be continued for higher values of `. In each case we obtain a transcendental

equation for binding energy. These equations have to be solved numerically to find the
allowed energy values. Solutions of Eq. (5.8.16) give us energies for 1s, 2s, 3s,· · · states,
while the solutions of Eq. (5.8.19) give us the energies for 1p, 2p, 3p, · · · states. For each
value of ` only a finite number of excited states are possible, depending on the values of Vo
and a.

6From the explicit expressions for j` and η` given in Appendix 5A1, the forms of the corresponding spherical
Hankel functions of the first kind may be derived.
7The continuity of the radial wave function and its first derivative expressed by Rint(r)|r=a = Rext(r)|r=a
and dRint

dr

˛̨̨
r=a

= dRext
dr

˛̨̨
r=a

may be combined into a single equation given by Eq. (5.8.13).



BOUND STATES OF SIMPLE SYSTEMS 147

Energy levels in a spherical square well potential of infinite depth

The eigenvalue problem for the bound state of a square can be solved for the case Vo →∞.
In this case the potential function is V (r)→ −∞ for r < a and 0 for r > a. If we measure
the energies from the bottom of the well, we may as well take the potential to be

V (r) =

{
0 , for 0 < r < a

∞ , for a < r <∞ .
(5.8.20)

In this case the radial function vanishes for r > a. Inside the well (r < a) the radial equation
(5.5.41) for u`(r) = rR`(r) can be written as

d2u`
dr2

− `(`+ 1)
r2

u`(r) + k2u`(r) = 0 , for r < a, (5.8.21)

where k2 =
2mE
~2

. (5.8.22)

Note that since the bottom of the well is chosen to be the zero of energy, the bound state
energy E is positive (E > 0). With the substitution ρ = kr and u`(r) = k1/2ρ1/2y`(ρ), Eq.
(5.8.21) reduces to the Bessel form

d2y`(ρ)
dρ2

+
1
ρ

dy`(ρ)
dρ

+
(

1− (`+ 1/2)2

ρ2

)
y`(ρ) = 0 . (5.8.23)

The regular solution of this equation, which goes to zero as ρ→ 0 (r → 0), is

y`(ρ) = J`+1/2(ρ) . (5.8.24)

Then the radial function, with the help of Eq. (5.8.4), can be written as

R`(r) ≡ u`(r)
r

= A
J`+1/2(kr)√

kr
= Cj`(kr) . (5.8.25)

The boundary condition at r = a requires R`(a) = 0 or

j`(ka) = 0 . (5.8.26)

If ωn` denotes the n-th zero of j`(ka), then the allowed values of k and E are given by

kn` =
ωn`
a
, (5.8.27)

En` =
~2

2m
ω2
n`

a2
. (5.8.28)

The radial part of the corresponding wave function is given by

Rn`(r) = Cn` j`(kn`r) = Cn` j`(ωn`r/a) , (5.8.29)

where the normalization constant Cn` is determined by the condition (5.5.40).

5.9 Energy Levels in an Isotropic Harmonic Potential Well

Consider a particle of mass m moving a three-dimensional potential well of the shape

V (r) =
1
2
mω2r2 (5.9.1)
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FIGURE 5.13
Isotropic harmonic potential well in three dimensions.

where ω is the natural frequency of a classical oscillator. A constant potential term can be
added to this potential, which amounts to a change in the reference level from where the
energy is measured. We will measure the energy levels from the bottom of the well so that
V (0) = 0.

By writing the potential as V (r) = 1
2mω

2(x2 +y2 +z2) we can see that particle motion in
this potential may be considered as a superposition of independent simple harmonic motion
in x, y and z directions. Since the natural frequency is the same in all directions, the choice
of x, y, and z axes is arbitrary and the oscillator is called an isotropic oscillator. The shape
of the potential is shown in Fig. 5.13.

With the potential (5.9.1), the radial equation (5.5.41) for u`(r) = rR`(r) takes the form:

d2u`(r)
dr2

−
[
`(`+ 1)
r2

+
m2ω2r2

~2
− 2mE

~2

]
u`(r) = 0 . (5.9.2)

By expressing the energy in units of ~ω by writing E = ε~ω and distance in units of
√

~/mω
by writing r =

√
~
mω ρ, we find the radial equation can be written as

d2v`(ρ)
dρ2

−
[
`(`+ 1)
ρ2

+ ρ2 − 2ε
]
v`(ρ) = 0 (5.9.3)

where v`(ρ) is related to the radial function by u`(r) = (mω/~)1/4v`(ρ). To solve this
equation we note that we are looking for solutions that have the correct behavior, v` → 0
as ρ → ∞ (or r → ∞) [Eq. (5.5.43)]. In the limit ρ → ∞ this equation assumes the
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approximate form
d2v`
dρ2

− (ρ2 ∓ 1)v` = 0 . (5.9.4)

Here we have retained a term ∓v`(ρ) from 2εv`, which is negligible compared to ρ2u` but
allows this equation to be integrated. Equation (5.9.4) has solutions e±ρ

2/2. Out of these,
only the negative exponential

v` ∼ exp(−ρ2/2) (5.9.5)

has the correct asymptotic behavior. The radial function u`(r) must also have the correct
behavior u`(0) = 0 [Eq. (5.5.42)] near the origin r = 0. In this limit, Eq. (5.9.3) assumes
the form

d2v`(ρ)
dρ2

− `(`+ 1)
ρ2

v`(ρ) = 0 . (5.9.6)

Assuming a series solution, the leading term of which is of the form u` ∼ ρν , we find ν = `+1
or ν = −`. Of the two solutions corresponding to these values of ν, only

v`(ρ) ∼ ρ`+1 (5.9.7)

has the requisite behavior for ρ→ 0. Incorporating the small and large ρ behavior, we look
for the solutions of Eq. (5.9.3) in the form

v`(r) = ρ`+1 exp(−ρ2/2)f`(ρ) . (5.9.8)

Substituting this into the radial equation (5.9.3), we find that f` must satisfy the equation

d2f`
dρ2

+
(

2`+ 2
ρ
− 2ρ

)
df`
dρ
− (3 + 2`− 2ε)f`(ρ) = 0 . (5.9.9)

Since f`(ρ) must be a regular function, we try a series solution of the form

f`(ρ) =
∞∑
s=0

asρ
s . (5.9.10)

Susbtituting this in Eq. (5.9.9), we obtain

∞∑
s=0

[(3 + 2`− 2ε+ 2s)as − ((s+ 2)(s+ 1) + (2`+ 2)(s+ 2))as+2] ρs = 0 . (5.9.11)

This leads to a two-step recursion relation for the coefficients an

as+2 = − (2ε− 2`− 3− 2s)
(s+ 2)(s+ 2`+ 3)

as . (5.9.12)

This recursion relation connects coefficients of even powers of ρ to coefficients of even powers
and coefficients of odd powers to coefficients of odd powers. With the help of this recursion
relation all even power coefficients can be expressed in terms of a0 and odd power coefficents
can be expressed in terms of a1. Hence we get two possible solutions. The choice a1 6= 0
gives the odd power solution which, by factoring out ρ, can be written as ρ× F (ρ2), where
F (ρ2) is a function of ρ2. This results in changing the power of ρ in Eq. (5.9.8) from `+ 1
to `+ 2 and thus modifying the small ρ behavior of the wave function. Therefore we choose
a1 = 0, leaving only the even power solution based on a0 6= 0. With the substitution s = 2p,
the recursion relation for the even power solution can be written as

ap+1 = − [ 1
2 (ε− `− 3/2)− p]

(p+ 1)(p+ `+ 3/2)
ap . (5.9.13)
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For normalizable solutions, this series must terminate. An inspection of Eq. (5.9.13) shows
that for this to be the case ε−`− 3

2 must equal a positive even integer 2nr (nr = 0, 1, 2, 3, · · · ).
Since ` takes values 0, 1, 2, · · · , this means ε − 3

2 itself must equal a positive integer n ≥ `
such that n− ` = 2nr. These conditions can be written as(

ε− 3
2

)
= n , n = 0, 1, 2, 3, · · · (5.9.14)

n− ` = 2nr = 0, 2, 4, · · · (5.9.15)

Recalling that ε ≡ E/~ω, these conditions imply that the allowed energy values are given
by

En =
(
n+

3
2

)
~ω , n = 0, 1, 2, 3 · · · (5.9.16)

and since n − ` is a non-negative even integer, it follows that for a given n, the allowed
values of ` are given by

` = n, n− 2, n− 4, · · · , 1 or 0 . (5.9.17)

Here the smallest value of ` is 1 for odd values of n and 0 for even values. This determines
the allowed energy levels in a three-dimensional isotropic harmonic potential well.

For these values of energy, the series in Eq. (5.9.13) terminates at p = nr = (n− `)/2 and
the solution is a polynomial in ρ2 of order (n− `)/2. Equation (5.9.13) can be recognized as
the recursion relation for the associated Laguerre polynomial [Appendix 5A1, Eq. (5A1.3.5)]

L
`+1/2
(n+`+1)/2(ρ2) =

(n−`)/2∑
p=0

(−1)p
[{(n+ `+ 1)/2}!]2

{(n− `)/2− p}!p!(p+ `+ 1/2)!
ρ2p . (5.9.18)

Collecting all the information, the radial function Rnl(r), labeled by the energy index n
and angular momentum index ` is given by

Rn`(r) = An`

(√
mω

~
r

)`
e−mωr

2/2~L
`+1/2
(n+`+1)/2

(
mωr2

~

)
, (5.9.19)

An` =
(mω

~

)3/2

√
2× ((n− `)/2)!

[((n+ `+ 1)/2)!]3
. (5.9.20)

The energy levels for the isotropic harmonic oscillator are highly degenerate as the energy
depends only on n and not on ` and m. Rotational invariance of the Hamiltonian can
explain the degeneracy relative to the index m. The degeneracy relative to ` is indicative
of a larger symmtery of the Hamiltonian; rotational invariance of the Hamiltonian alone is
not sufficient to explain this degeneracy. To compute the degree of degeneracy we note that
for a given n, the ` values are given by

` =

{
0, 2, 4, · · · , n : total (n+ 2)/2 terms for even n

1, 3, 5, · · · , n : total (n+ 1)/2 terms for odd n .
(5.9.21)

For each value of ` there are 2` + 1 values that m can take. The degree of degeneracy is
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then
n∑

even `

(2`+ 1) = 1 + 5 + 9 + · · ·+ (2n+ 1) =
(n+ 2)

2
· 1

2
(2n+ 1 + 1))

=
1
2

(n+ 1)(n+ 2) (5.9.22)
n∑

odd `

(2`+ 1) = 3 + 7 + 11 + · · ·+ (2n+ 1) =
(n+ 1)

2
· 1

2
(2n+ 1 + 3)

=
1
2

(n+ 1)(n+ 2) . (5.9.23)

Thus the degeneracy of level En is given by (n+1)(n+2)/2 for all n. Each state |n, `,m 〉 is
specified by three quantum numbers corresponding to the eigenvalues (n+3/2)~ω, ~2`(`+1)
and m of the operators Ĥ, L̂2, and L̂z, which form a complete set of observables for this
problem. The wave function ψn`m(r) is then a representative of the state |n, `,m 〉 in the
coordinate representation:

< r|n, `,m > ≡ ψn`m(r) = Rn`(r)Y`m(θ, ϕ)

= An`

(√
mω

~
r

)`
e−mωr

2/2~L
`+1/2
(n+`+1)/2

(
mωr2

~

)
Y`m(θ, ϕ) , (5.9.24)

where An` is given by Eq. (5.9.20).

Problems

1. The quantum states of a linear mechanical harmonic oscillator are given by

< x|ψn >= ψn(x) = NnHn(αx) exp(−α2x2/2)

where α = (mk/~2)1/4 =
√
mω/~ and ω =

√
k/m is the classical frequency of the

oscillator.

Use this wave function to evaluate the matrix elements xnm and pnm and check your
results with Eqs. (5.4.32) and (5.4.33).

2. Show that H ′n(ξ) = 2nHn−1 and Hn+1 = 2ξHn − 2nHn−1 where Hn(ξ) is a Hermite
polynomial of order n and H ′n(χ) = d

dχ Hn(χ).

3. In a one-dimensional harmonic oscillator problem, the Hamiltonian may also be
expressed as Ĥ = ~ω(â†â + 1

2 ) where â† and â are the creation and annihilation
operators so that â |n 〉 =

√
n |n− 1 〉 and â† |n 〉 =

√
n+ 1 |n+ 1 〉. Determine the

following matrix elements: (x2)mn , (p2)mn, (x3)mn, (p3)mn. The operators x̂ and p̂
are defined in terms of â and â† by Eqs. (5.4.30) and (5.4.31).

4. Write the time-independent Schrödinger equation for the linear harmonic oscillator
in the momentum representation for the wave function φ(p). Justify any boundary
conditions that must be imposed. Find the normalized wave function for the ground
state and the first excited state and show that they are the Fourier transforms of the
corresponding wave functions in the coordinate representation.
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5. Prove the addition theorem for spherical harmonics

P`(cosα) =
4π

2`+ 1

∑̀
m=−`

Y`m(θ, ϕ)Y`m(θ′, ϕ′) ,

where θ, ϕ and θ′, ϕ′ are the angles of r and r′ and α is the angle between r and r′.

6. Using the Harmonic oscillator wave function given in Problem 1 to evaluate

< x2 >nn=
∫
ψ∗n(x)x2ψn(x)dx

using the generating function of Hermite polynomials,

S(ξ, s) = exp
(−s2 + 2sξ

)
=
∞∑
n=0

Hn(ξ)
n!

sn .

Check your result with that in Problem 3.

7. Work out Problem 6 also using the matrix elements xmn = 〈m| x̂ |n 〉 derived in
Problem 1 [also in Eq. (5.4.32)].

8. Consider the problem of a particle of mass m moving in a two-dimensional harmonic
oscillator potential well

V (x, y) =
1
2
mω2

1x
2 +

1
2
mω2

2y
2 .

(a) Write the energy eigenvalues and the corresponding coordinate wave functions. If
ω1 = ω = ω2, write down the states that have the energy 10~ω.

(b) Find the energy eigenvalues and eigenfunctions for a two-dimensional isotropic
harmonic oscillator (ω1 = ω2 = ω) in cylindrical coordinates. Discuss the degeneracy
of energy levels. What is the significance of quantum numbers needed to uniquely
specify the states of the oscillator? Hence identify the complete set of observables for
this problem.

9. A charged particle (charge e, mass m) moves in a constant magnetic field B = ez B
corresponding to the vector potential A = ex(−yB). The Hamiltonian for this
problem can be writen as

Ĥ =
1

2m
(p̂x + eyB)2 +

p̂2
y

2m
+

p̂2
z

2m
.

(a) Show that p̂x and p̂z commute with the Hamiltonian. Hence Ĥ, p̂x, and p̂z
have simultaneous eigenstates |kx, kz, E 〉 with eigenvalues ~kx, ~ky, E, respectively,
corresponding to the coordinate space wave function

〈x, y, z| kx, kz, E〉 =
ei(kxx+kzz)

2π
ψ(y) .

(b) Show that ψ(y) satisfies the equation for a linear harmonic oscillator[
1

2m
∂2

∂y2
+

1
2
mΩ2

c (y + yo)2

]
ψ(y) =

(
E − ~2k2

z

2m

)
ψ(y) ,

where yo = ~kx/eB and Ωc = eB/m is the cyclotron frequency. Find the eigen
energies of this equation.
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10. The ground state of Hydrogen atom is represented by the coordinate space wave
function

ψ100(r) =
1

(πa3
0)1/2

e−r/a0 ,

where a0 = 4πε0~/mee
2 is the first Bohr radius. Find the quantum mechanical

expectation value of r for this state. Compare it with the most probable value and
the root mean square value [〈r2〉100]1/2 of r for this state.

11. The first excited state of Hydrogen atom is represented by

ψ200 =
1

(32πa3
0)1/2

(r/a0 − 2) e−r/2a0 .

Find for this state (a) quantum mechanical expectation value of r, (b) the most
probable value of r, and (c) root mean square value of r.

12. Calculate the probability current density using the stationary state Hydrogen atom
wave function ψn`m(r, θ, ϕ, t) given that

∇ = er
∂

∂r
+ eθ

1
r

∂

∂θ
+ eϕ

1
r sin θ

∂

∂ϕ
.

Show that only the azimuthal component of the current density is nonzero and is
given by

j = eϕ
|ψn`m|2m~
µr sin θ

.

By treating this current density as a classical current density compute the z-
component) of the magnetic moment arising from this current density.

13. Show that for any state of the Hydrogen atom, 〈T̂ 〉 = 1
2 〈V̂ 〉, where T̂ and V̂ are

respectively, the kinetic and potential energy operators. Check this for the 1s and 2s
states of the Hydrogen atom. The relevant wave functions are given in Problems 7
and 8.

14. The radial wave functions for the |n = 3, `,m 〉 states of the Hydrogen atom (` ≤ n−1
and −` ≤ m ≤ +`) are given by

R30(r) = 2(1/3a0)3/2

(
1− 2r

3a0
+

2r2

27a2
0

)
e−r/3a0 ,

R31(r) =
8

9
√

2
(1/3a0)3/2

(
r/a0 − r2

6a2
0

)
e−r/3a0 ,

R32(r) =
4

27
√

10
(1/3a0)3/2(r/a0)2e−r/3a0 .

Calculate the most probable value of r in the 3s ( |n = 3, l = 0,m = 0 〉) state. Also
determine the quantum mechanical expectation value of r for all the three states.

15. In the deuteron problem take the n-p interaction to be spherically symmetric and of
the square well shape

V (r) =

{
−Vo , 0 < r < ro

0 , r > ro .
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Matching the solutions for ` = 0 in the two regions at r = ro , establish the condition:

kro cot(kro) = −κro ,

where k =
√

2µ(Vo −B)/~2, κ =
√

2µB/~2 and E = −B. Taking Vo = 40 MeV
(� B) and ro = 1.85 fm estimate the binding energy B of the deuteron ground state.

Show that the experimental information about B enables one only to find the depth
range relationship for the potential Vor2

o = π2

8µ~2.

16. Assuming the n− p interaction to have an exponential form

V (r) = −Vo exp(−r/ro) ,

reduce the radial equation for the s-state (` = 0)

d2

dr2
u(r) +

2µ
~2

[E + Vo exp(−r/ro)]u(r) = 0

to Bessel form by the substitution: z = 2(
√

2µVo/~)ro exp(−r/2ro).
Show that in this case the boundary condition enables one to establish the following
depth-range relation

Vor
2
o = ~2y2

1/8µ

where y1 is the first zero of Jν(z) where ν =
√

(8µB/~2).

17. Show that
∞∫

0

jl(kr)jl(kr′)k2dk = (π/2)
δ(r − r′)

r2
.

18. Solve the three-dimensional harmonic oscillator problem by writing the Hamiltonian
as the sum of the Hamiltonian for three linear harmonic oscillators:

Ĥ =
p̂x

2

2m
+

1
2
mω2x̂2 +

p̂y
2

2m
+

1
2
mω2ŷ2 +

p̂z
2

2m
+

1
2
mω2ẑ2 ≡ Ĥ1 + Ĥ2 + Ĥ3 .

Find the eigenfunctions in the form ψ(x, y, z) = X(x)Y (y)Z(z) and the corresponding
energy eigenvalues. How are these levels related to those discussed in the text? Discuss
energy level degeneracy in terms of these levels.

19. Show that the three-dimensional delta function can be expressed as

δ3(r − r′) =
δ(r − r′)

r2

δ(θ − θ′)
sin θ

δ(ϕ− ϕ′) .

20. Establish the recursion relations

(a) 2J ′n(x) = Jn−1(x)− Jn+1(x)

(b)
2n
x
Jn(x) = Jn−1(x) + Jn+1(x)

where J ′n(x) denotes the derivative of Jn(z) with respect to its argument x.
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21. Prove the following relations for the Legendre polynomials

(a) nPn−1(x) = nxPn(x) + (1− x2)
dPn
dx

(b) (n+ 1)Pn+1(x) = (n+ 1)xPn(x)− (1− x2)
dPn
dx

(c) (n+ 1)Pn+1(x)− (2n+ 1)xPn(x) + nPn−1(x) = 0

22. Prove the following relations for the spherical Bessel functions

(a) jl−1(x) + jl+1(x) =
2l + 1
x

jl(x)

(b)
d

dx
jl(x) =

1
(2l + 1)

[l jl−1 (x)− (l + 1)jl+1 (x)]

23. If F (k) is the Fourier transform of f(x) and G(k) is the Fourier transform of g(x)
then show that the Fourier transform of f(x)g(x) is∫

F (k′)G(k − k′)dk′ .
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Appendix 5A1: Special Functions

In this appendix we consider some special functions and the pertinent differential equations
which are used in Chapter 5.

5A1.1 Legendre and Associated Legendre Equations

The equation

(1− x2)
d2y

dx2
− 2x

dy

dx
+ `(`+ 1)y = 0 , (5A1.1.1)

is called the Legendre equation. The solution to this equation may be found by series
method by assuming that

y = xc
∞∑
s=0

asx
s . (5A1.1.2)

Substituting this into Eq. (5A1.1.1) and equating the coeffiecient of each power of x, say,
x(c+s−2) to zero we can express as in term of as−2. For s = 0, s = 1 and arbitrary s we get,
respectively,

a0c(c− 1) = 0
a1(c+ 1)c = 0

}
(5A1.1.3)

as+2 =
(c+ s)(c+ s+ 1)− `(`+ 1)

(c+ s+ 1)(c+ s+ 2)
as , s ≥ 0 . (5A1.1.4)

If a0 6= 0 then c(c − 1) = 0 and if a1 6= 0 then c(c + 1) = 0. By considering various
possibilities, we find that it is sufficient to consider either a0 6= 0 or a1 6= 0 but not both.
We choose a0 6= 0 so that c = 0 or c = 1. Then the solution y can be written as the sum
of two power series, one involving even powers (c = 0) and the other involving odd powers
(c = 1) of x:

y = a0even

[
1− `(`+ 1)

2!
x2 +

`(`+ 1)(`− 2)(`+ 3)
4!

x4 + · · ·
]

+ a0odd

[
x− (`− 1)(`+ 2)

3!
x3 +

(`− 1)(`+ 2)(`− 3)(`+ 4)
5!

x5 + · · ·
]
. (5A1.1.5)

Both even and odd power series are solutions of the Legendre equation and converge for
0 < x2 < 1 regardless of the value of `. The series diverge at x2 = 1 unless they terminate.
An inspection of the recurrence relation (5A1.1.4) shows that it will terminate only if ` is
zero or a positive integer. When ` is an even integer the c = 0 series becomes a polynomial
and when it is an odd integer the c = 1 series becomes a polynomial. These polynomials
are called the Legendre polynomials and are denoted by P`(x). The constants a0even

and a0odd are chosen such that P`(1) = 1. The first few Legendre polynomials are:

P0(x) = 1 , P1(x) = x ,

P2(x) =
1
2
(
3x2 − 1

)
, P3(x) =

1
2
(
5x3 − 3x

)
,

P4(x) =
1
8
(
35x4 − 30x2 + 3

)
, P5(x) =

1
8
(
63x5 − 70x3 + 15x

)
.
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A convenient expression for the Legendre polynomials is the so-called Rodrigue’s formula

P`(x) =
1

2``!

(
d

dx

)`
(x2 − 1)` , (5A1.1.6)

which is useful in establishing many properties of Legendre polynomials.
The orthogonality of Legendre polynomials may easily be established. Since P`(x) satisfies

the Legendre equation (5A1.1.1), we have

d

dx

[
(1− x2)

d

dx
P`(x)

]
+ `(`+ 1)P`(x) = 0 . (5A1.1.7)

Multiplying this equation on the left by P`′(x) and integrating over x from -1 to +1, we get

P`′(x)(1− x2)
dP`(x)
dx

∣∣∣∣1
−1

−
∫ 1

−1

dx

[
dP`′(x)
dx

(1− x2)
dP`(x)
dx

]
+ `(`+ 1)

∫ 1

−1

dxP`′(x)P`(x) = 0

or
∫ 1

−1

dx

[
dP`′

dx
(1− x2)

dP`(x)
dx

]
= `(`+ 1)

∫ 1

−1

dxP`′(x)P`(x) .

Interchanging ` and `′ and subtracting the resulting equation from the equation above, we
get

(`− `′)(`+ `′ + 1)
∫ 1

−1

dxP`′(x)P`(x) = 0 . (5A1.1.8)

This implies that ∫ 1

−1

dxP`′(x)P`(x) = 0 if ` 6= `′ . (5A1.1.9)

The value of this integral for ` = `′, may be obtained by using the fact that the function

(1− 2xz + z2)−1/2 =
∞∑
`=0

P`(x)z` (5A1.1.10)

serves as the generating function for Legendre polynomials. Squaring both sides of this
equation and integrating them over x from -1 to +1, we get∫ 1

−1

dx(1− 2xz + z2)−1 =
∑
`

∑
`′

z`+`
′
∫ 1

−1

dxP`(x)P`′(x) ,

or
1
z

[ln(1 + z)− ln(1− z)] =
∑
`

z2`

∫ 1

−1

dx [P`(x)]2 ,

where we have used the orthogonality condition for Legendre polynomials on the right-hand
side. Writing the series expansion for the left-hand side and equating the coefficients of z2`

on both sides we get ∫ 1

−1

dx [P`(x)]2 =
2

2`+ 1
. (5A1.1.11)

Equations (5A1.1.9) and (5A1.1.11) may be combined as∫ 1

−1

dxP`(x)P`′(x) =
2

2`+ 1
δ``′ . (5A1.1.12)
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Another set of polynomials closely associated with the Legendre polynomials are the
so-called associated Legendre polynomials. If we differentiate the Legendre equation
(5A1.1.1) m times and put

(1− x2)m/2
dmy

dxm
= w(x) , (5A1.1.13)

we get, after some simplification, the associated Legendre equation

(1− x2)
d2w(x)
dx2

− 2x
dw(x)
dx

+
[
`(`+ 1)− m2

1− x2

]
w(x) = 0 . (5A1.1.14)

The polynomial solutions of this equation for integer `, called associated Legendre
polynomials Pm` (x), are given by

Pm` (x) = (1− x2)m/2
dmP`(x)
dxm

. (5A1.1.15)

Obviously Pm` (x) = 0 for m > ` since P` is a polynomial in x of order `.
To establish the orthogonality condition for the associated Legendre polynomials, we start

with Eq. (5A1.1.14) for Pm` (x) and Pm`′ (x):

d

dx

[
(1− x2)

dPm` (x)
dx

]
+
[
`(`+ 1)− m2

1− x2

]
Pm` (x) = 0 ,

and
d

dx

[
(1− x2)

dPm`′ (x)
dx

]
+
[
`′(`′ + 1)− m2

1− x2

]
Pm`′ (x) = 0 .

Multiplying the first equation by Pm`′ (x), the second by Pm` (x) and subtracting the results,
we get

d

dx

[
(1− x2)

(
Pm`′

dPm` (x)
dx

− Pm` (x)
dPm`′ (x)
dx

)]
+ (`− `′)(`+ `′ + 1)Pm` (x)Pm`′ (x) = 0 .

On integrating both sides of this equation over x from -1 to +1, the first term contributes
nothing, leaving us

(`− `′)(`+ `′ + 1)
∫ 1

−1

dxPm` (x)Pm`′ (x) = 0 .

This equation implies ∫ 1

−1

dxPm` (x)Pm`′ (x) = 0 for ` 6= `′ . (5A1.1.16)

For ` = `′ the integral is not zero and gives the normalization integral for the associated
Legendre polynomials

N`m ≡
∫ 1

−1

dx [Pm` (x)]2 . (5A1.1.17)

To evaluate this integral, we use Eq. (5A1.1.15) to write it as

N`m =
∫ 1

−1

dx(1− x2)m
dmP`(x)
dxm

dmP`(x)
dxm

. (5A1.1.18)

Integration by parts once gives us

N`m = −
∫ 1

−1

dx
d

dx

[
(1− x2)m

dmP`(x)
dxm

]
dm−1P`(x)
dxm−1

. (5A1.1.19)
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Now take Eq. (5A1.1.1) with y(x) = P`(x) and differentiate it (m − 1) times using the
Leibnitz differentiation theorem. This gives, on multiplying both sides with (1 − x2)m−1

and simplifying,

d

dx

[
(1− x2)m

dmP`(x)
dxm

]
+ (`+m)(`−m+ 1)(1− x2)m−1 d

m−1P`(x)
dxm−1

= 0 .

Using this result in Eq. (5A1.1.19) we get

N`m = (`+m)(`−m+ 1)
∫ 1

−1

(1− x2)m−1 d
m−1P`(x)
dxm−1

dm−1P`(x)
dxm−1

.

Treating this as a recurrence relation, we get after m iterations,

N`m = (`+m)(`−m+ 1)(`+m− 1)(`−m+ 2) · · · (`+ 1)`
∫ 1

−1

dx [P`(x)]2

=
(`+m)!

`!
`!

(`−m)!
2

2`+ 1

or N`m ≡
∫ 1

−1

dx [Pm` (x)]2 =
(`+m)!
(`−m)!

2
2`+ 1

. (5A1.1.20)

By combining Eqs. (5A1.16) and (5A1.20), the orthogonality of associated Legendre
polynomial can be written as∫ 1

−1

dxPm` (x)Pm`′ (x) =
(`+m)!
(`−m)!

2
2`+ 1

δ``′ . (5A1.1.21)

From our discussion of the associated Legendre polynomials it might appear that m is
restricted to nonnegative integers m ≤ `. However, if we express P`(x) by Rodrigue’s
formula [Eq. (5A1.1.6)], both positive and negative values of m (−` ≤ m ≤ `) may be
permitted. Using this definition and the Leibnitz differentiation formula we have

Pm` (x) =
1

2``!
(1− x2)m/2

d`+m

dx`+m
(x2 − 1)` , (5A1.1.22)

P−m` (x) = (−1)m
(n−m)!
(n+m)!

Pm` (x) . (5A1.1.23)

Table 5.1 below lists the first few associated Legendre polynomials and the corresponding
spherical harmonics.

5A1.2 Spherical Harmonics

In solving the time-independent Schrödinger equation for a spherically symmetric potential
V (r) = V (r)

− ~2

2µ
∇2Ψ(r) + V (r)Ψ(r) = EΨ(r) , (5A1.2.1)

or even the Laplace equation ∇2Ψ(r) = 0, we can express the function Ψ(r) as a product
of radial and angular functions as

Ψ(r) = R(r)Y (θ, ϕ) . (5A1.2.2)
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TABLE 5.1

The first few associated Legendre polynomials and spherical harmonics

P0 = 1 Y 0
0 =

(
1

4π

)1/2

P 1
1 = − sin θ Y 1

1 = −1
2

(
3

2π

)1/2

sin θeiϕ

P 0
1 = cos θ Y 0

1 =
1
2

(
3
π

)1/2

cos θ

P−1
1 =

1
2

sin θ Y −1
1 =

1
2

(
3

2π

)1/2

sin θe−iϕ

P 2
2 = 3 sin2 θ Y 2

2 =
1
4

(
15
2π

)1/2

sin2 θe2iϕ

P 1
2 = −3 sin θ cos θ Y 1

2 = −1
2

(
15
2π

)1/2

sin θ cos θeiϕ

P 0
2 =

1
2

(3 cos2 θ − 1) Y 0
2 =

1
4

(
5
π

)1/2

(3 cos2 θ − 1)

P−1
2 =

1
2

sin θ cos θ Y −1
2 =

1
2

(
15
2π

)1/2

sin θ cos θe−iϕ

P−2
2 =

1
8

sin2 θ Y 2
2 =

1
4
(

15
2π

)1/2 sin2 θe−2iϕ

P 3
3 = −15 sin3 θ Y 3

3 = −1
8

(
35
π

)1/2

sin3 θei3ϕ

P 2
3 = 15 sin2 θ cos θ Y 2

3 =
1
4

(
105
2π

)1/2

sin2 θ cos θe2iϕ

P 1
3 = −3

2
sin θ(5 cos2 θ − 1) Y 1

3 = −1
8

(
21
π

)1/2

sin θ(5 cos2 θ − 1)eiϕ

P 0
3 =

1
2

(5 cos3 θ − 3 cos θ) Y 0
3 =

1
4

(
7
π

)1/2

(5 cos3 θ − 3 cos θ)

P−1
3 =

1
8

sin θ(5 cos2 θ − 1) Y −1
3 =

1
8

(
21
π

)1/2

sin θ(5 cos2 θ − 1)e−iϕ

P−2
3 =

1
8

sin2 θ cos θ Y −2
3 = 1

4

(
105
2π

)1/2

sin2 θ cos θe−2iϕ

P−3
3 =

1
48

sin3 θ Y −3
3 = −1

8

(
35
π

)1/2

sin3 θe−i3ϕ

Since the Laplacian operator ∇2 in spherical polar coordinates may be expressed as [see
Appendix 5A2, Eqs. (5A2.4.13) and (5A2.4.15)]

∇2 =
1
r2

∂

∂r
r2 ∂

∂r
+

1
r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
r2 sin2 θ

∂2

∂ϕ2
, (5A1.2.3)

the original equation (5A1.16) may be separated into radial and angular parts by the method
of separation of variables. The form of the radial equation will, of course, depend on the
form of the potential V (r). However, irrespective of the form of the spherically symmetric
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potential V (r), the angular equation has the same form:

−
[

1
sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

]
Y (θ, ϕ) = λY (θ, ϕ) , (5A1.2.4)

where λ is a constant. The angular equation (5A1.2.4) admits physically acceptable solution
only if λ = `(` + 1) where ` is a non-negative integer [` = 0, 1, 2, 3, · · · ]. The solutions of
Eq. (5A1.2.4) are referred to as spherical harmonics.

To find the form of spherical harmonics we write Y (θ, ϕ) as a product of a function of θ
and a function of ϕ as

Y (θ, ϕ) = Θ(θ)Φ(ϕ) . (5A1.2.5)

With this substitution we can rewrite the angular equation (5A1.2.4), as

− 1
Φ
d2Φ
dϕ2

=
sin θ
Θ(θ)

d

dθ
sin θ

dΘ
dθ

+ `(`+ 1) sin2 θ . (5A1.2.6)

Since ϕ and θ are independent variables, a function of ϕ cannot be equal to a function of θ
for all values of θ and ϕ unless both functions are equal to a constant. Equating both sides
of Eq. (5A2.27) to a constant m2, we can separate the angular equation into an equation
involving θ and another involving ϕ:

d2Φ
dϕ2

+m2Φ = 0 , (5A1.2.7)[
sin θ

d

dθ
sin θ

d

dθ
+ `(`+ 1) sin2 θ

]
Θ(θ) = m2Θ(θ) . (5A1.2.8)

The normalized solutions of the Φ-equation are

Φm(ϕ) =
1√
2π

eimϕ . (5A1.2.9)

For single-valued solutions [Φ(ϕ + 2π) = Φ(ϕ)] valid over the entire angular range
0 < ϕ < 2π, the parameter m must be a positive or negative integer including 0
[m = 0,±1,±2,±3, · · · ]. With this restriction, the Φ-solutions satisfy the orthonormality
condition ∫ 2π

0

dϕΦm(ϕ)Φ∗m′(ϕ) = δmm′ . (5A1.2.10)

The Θ-equation admits a physically acceptable (polynomial) solution only if λ = `(` + 1),
where ` is a non-negative integer. With the change of variables

cos θ = x and Θ(θ)→ w(x)

the Θ-equation can be put in the form

(1− x2)
d2w(x)
dx2

− 2x
dw(x)
dx

+
[
`(`+ 1)− m2

1− x2

]
w(x) = 0 . (5A1.2.11)

This is the associated Legendre equation [Eq. (5A1.1.14)] whose normalized solutions are
the normalized associated Legendre polynomials Pm` (x)

Pm` (x) =

√
(`−m)!(2`+ 1)

(`+m)!2
Pm` (x) , (5A1.2.12)∫ 1

−1

dx Pm` (x)Pm`′ (x) = δ``′ . (5A1.2.13)
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The normalized spherical harmonics can then be written as8

Y`m(θ, ϕ) =

√
(`−m)!(2`+ 1)

(`+m)!4π
Pm` (cos θ)eimϕ . (5A1.2.14)

In view of the orthonormality of angular harmonics [Eqs. (5A1.2.10) and (5A1.2.13)], the
orthogonality of spherical harmonics∫ 2π

0

dϕ

∫ π

0

sin θdθY ∗`m(θ, ϕ)Y`m(θ, ϕ) = δ``′δmm′ (5A1.2.15)

is established.

5A1.3 Laguerre and Associated Laguerre Equations

The equation

x
d2y(x)
dx2

+ (1− x)
dy(x)
dx

+ αy(x) = 0 (5A1.3.1)

is called Laguerre equation, and

x
d2u(x)
dx2

+ (β + 1− x)
du(x)
dx

+ (α− β)u(x) = 0 , (5A1.3.2)

is called the associated Laguerre equation. The latter can be obtained by differentiation both
sides of Laguerre equation β times and putting dβy(x)/dxβ = u(x). Equation (5A1.3.2) is
of significance in the Hydrogen atom problem. It can be solved by the usual series method
by assuming

y(x) = xc
∞∑
s=0

asx
s . (5A1.3.3)

Substituting into Eq. (5A1.3.2) and equating the coefficient of each power of x, say xc+s−1,
to zero we get

as(c+ s)(c+ s+ β)− as−1(c+ s− 1− α+ β) = 0 . (5A1.3.4)

Putting s = 0 and using the fact that a−1 = 0, we get

a0c(c+ β) = 0 .

For nontrivial soultions (a0 6= 0), we must have c = 0 or c = −β. The choice c = −β will
make the solution singular at the origin. So c = 0 is the acceptable solution. On using Eq.
(5A1.3.4) as a recurrence relation, we can express all coefficients in terms of a0 as

as = − (α− β − s+ 1)
s(s+ β)

as−1 = (−1)s
β!(α− β)!

s!(s+ β)!(α− β − s)! a0 . (5A1.3.5)

If we choose

a0 =
(α!)2

β!(α− β)!
(5A1.3.6)

8Sometimes a factor (−1)m, called the Condon-Shortley phase, is included in the definition of spherical
harmonics.
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then we can write

as =
(−1)s(α!)2

s!(β + s)!(α− β − s)! (5A1.3.7)

and y(x) =
∞∑
s=0

(−)s(α!)2xs

s!(β + s)!(α− β − s)! . (5A1.3.8)

If α − β is a positive integer then Eq. (5A1.3.2) admits a polynomial solution, called
associated Laguerre polynomial Lβα(x) given by

y(x) = Lβα(x) =
α−β∑
s=0

(−)s(α!)2xs

s!(β + s)!(α− β − s)! . (5A1.3.9)

Analytic Forms of Laguerre and Associated Laguerre Polynomials

Consider the simple equation

x
dw

dx
+ (x− α)w = 0 , (5A1.3.10)

whose solution is w(x) = ce−xxa. If we differentiate both sides of this equation α+ 1 times
and put dαw/dxα = z(x), we get

x
d2z

dx2
+ (x+ 1)

dz

dx
+ (α+ 1)z = 0 . (5A1.3.11)

The solution of this equation is

z(x) =
dα

dxα
(
ce−xxα

)
. (5A1.3.12)

If we further write
z(x) = e−xy(x) , (5A1.3.13)

then y(x) satisfies the equation

x
d2y

dx2
+ (1− x)

dy

dx
+ αy = 0 , (5A1.3.14)

which is the Laguerre equation. Its solution can, therefore, be written as

y(x) = ex z(x) = ex
dα

dxα
ce−xxα . (5A1.3.15)

Since α is an integer the function y(x) is a polynomial in x. The solutions of Eq. (5A1.3.14)
are called the Laguerre polynomials and denoted by Lα(x):

Lα(x) = ex
dα

dxα
ce−xxα . (5A1.3.16)

Since the associated Laguerre equation results when both sides of Laguerre equation are
differentiated β time and dβy/dxβ is put equal to u we can express the associated Laguerre
polynomial as

Lβα(x) =
dβ

dxβ

[
ex

dα

dxα
ce−xxα

]
≡ dβ

dxβ
Lα(x) . (5A1.3.17)

It can be checked that when the constant c in Eq. (5A1.3.17) is chosen to be (−1)β , the
resulting polynomials Lβα(x) are identical with those given by Eq. (5A1.3.9).
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Orthonormality of Associated Laguerre Functions

We now show that the associated Laguerre functions

Lβα(x) = e−x/2x(β−1)/2Lβα(x) (5A1.3.18)

where α and β are integers, form a set of orthogonal functions with the normalization
integral given by

IN =
∫ ∞

0

e−xxβ−1
[
Lβα(x)

]2
x2dx =

(α!)3(2α− β + 1)
(α− β)!

. (5A1.3.19)

To prove this result in several steps. First consider the integral

I1 ≡
∫ ∞

0

e−xxγLα(x)dx . (5A1.3.20)

Using the expression for Lα(x) given by Eq. (5A1.3.16) and integrating by parts γ times
we find

I1 = c(−1)γγ!
∫ ∞

0

dα−γ

dxα−γ
(
e−xxα

)
dx . (5A1.3.21)

It follows from this equation that the integral

I1 ≡
∫ ∞

0

e−xxγLα(x)dx =

{
0 γ < α

c(−1)α(α!)2 γ = α .
(5A1.3.22)

Next consider the integral

I2 ≡
∫ ∞

0

e−xxγLβα(x)dx =
∫ ∞

0

e−xxγ
dβ

dxβ
Lα(x)dx , (5A1.3.23)

where in the last step, we have used definition of the associated Laguerre polynomial.
Integrating by parts β times we find

I2 = (−1)β
∫ ∞

0

[
dβ

dxβ
(
e−xxγ

)]
Lα(x)dx

= (−1)β
∫ ∞

0

[
(−1)βe−xxγ + β(−1)β−1e−xγxγ−1 + · · · ]Lα(x)dx . (5A1.3.24)

Using the result (5A1.3.22) we find that this integral vanishes for γ < α while for γ = α we
get

I2 = (−1)2β

∫ ∞
0

Lα(x)e−xxαdx = (−1)α(α!)2 , γ = α . (5A1.3.25)

Thus we have the result

I2 ≡
∫ ∞

0

dx e−xxγLβα(x) =


0 , γ < α

c(−1)α(α!)2 , γ = α .

(5A1.3.26)

Now consider the integral

I3 =
∫ ∞

0

e−xxβLβα(x)Lβγ (x)dx . (5A1.3.27)
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Since Lβα(x) is a polynomial in x of degree α−β, it follows that xβLβγ (x) = xβ dβ

dxβ
Lγ(x) is a

polynomial in x of degree γ. Using this result in combination with (5A1.3.22), we conclude
I3 = 0 if γ < α. Similarly, since xβLβα(x) = xβ dβ

dxβ
Lα(x) is a polynomial in x of degree α,

it follows that I3 = 0 if α < γ. Thus we have

I3 ≡
∞∫

0

e−x xβ Lβα L
β
γ (x) dx = 0 if γ 6= α . (5A1.3.28)

By a similar argument we can show that

I4 ≡
∞∫

0

e−xxβ+1Lβα(x)Lβγ (x)dx = 0 , if γ 6= α . (5A1.3.29)

For γ = α, the integral I3 [ Eq. (5A3.26)] becomes,

I3(γ=α) =

∞∫
0

e−x xβ Lβα(x) Lβα(x)dx . (5A1.3.30)

To evaluate this integral we express xβ Lβα(x) in the integrand as a polynomial using the
definition (5A.3.17)

xβ Lβα(x) = xβ
∂β

∂xβ

[
cex

dα

dxα
(
xα e−x

)]
= c xβ

∂β

∂xβ
[
ex
{

(−1)αe−x xα + α(−1)α−1 e−x αxα−1 + ...
} ]

= c xβ (−1)α α(α− 1) ... (α− β + 1)xα−β + smaller powers of x

= c (−1)α
α!

(α− β)!
xα + smaller powers of x .

Using this result in Eq. (5A1.3.30) for γ = α, we find by virtue of the result (5A1.3.26),
that only the xα term gives nonzero contribution

I3(γ=α) = c (−1)α
α!

(α− β)!

∞∫
0

e−x xα Lβα(x) dx

= c (−1)α
α!

(α− β)!
I2(γ = α)

= c2 (−1)2α (α!)3

(α− β)!
using Eq. (5A1.3.26) .

Since c2 = (−1)2β and both 2α and 2β are even integers, we have

(I3)γ=α =
(α!)3

(α− β)!
. (5A1.3.31)

Finally, take up the normalization integral

IN ≡
∞∫

0

e−xxβ+1
[
Lβα(x)

]2
dx .
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Replacing one of the factors Lβα(x) in the integrand by the series (5A1.3.9) starting from
the highest power of x, we get

IN =

∞∫
0

dx e−xLβα(x)xβ+1

[
(−1)α−β(α!)2 xα−β

0!α!(α− β)!
+

(−1)α−β−1(α!)2xα−β−1

1!(α− 1)!(α− β − 1)!
+O(xα−β−2)

]

=
(−1)α−βα!

(α− β)!

∞∫
0

dx e−x xα+1Lβα(x) +
(−1)α−β−1 α2((α− 1)!)

(α− β − 1)!
c (−1)α(α!)2

(5A1.3.32)

where we have used the fact that, by virtue of the result (5A1.3.26), the contribution from
xα−β−2 and smaller powers vanishes. To evaluate the remaining integral

I5 ≡
∞∫

0

dx e−x xα+1 Lβα(x) =

∞∫
0

dx e−x xα+1 dβ

dxβ
Lα(x) (5A1.3.33)

we integrate by parts β times in succession, and then expand dβ

dxβ

(
x−x xα+1

)
by the Leibnitz

differentiation theorem and use the result (5A1.3.26) to get

I5 = (−1)2β c

∫ ∞
0

dxxα+1 d
α

dxα
(e−x xα) + c β(−1)α+2β−1 (α+ 1)(α!)2 . (5A1.3.34)

The value of the integral on the right-hand side of this equation may be obtained by
integrating by parts α times in succession to get the result c (−1)α+2β [(α+ 1)!]2, so that

I5 = c (−1)α+2βα!(α+ 1)!(α− β + 1)! . (5A1.3.35)

Susbtituting this in Eq. (5A1.3.32) above, and combining the two terms in the resulting
equation, we get

IN =
(α!)3

(α− β)!
(2α− β + 1) (5A1.3.36)

where we have taken c to be equal to (−1)β and α and β to be non-negative integers.

5A1.4 Hermite Equation

The second order equation
dy

dx2
− 2x

dy

dx
+ 2ny = 0 (5A1.4.1)

is called Hermite equation. To solve this equation we follow the usual method of series
expansion by writing y(x)

y(x) = xc
∞∑
s=0

asx
s .

Substituting this in Eq. (5A1.4.1) and equating the coefficient of each power of x, say of
xc+s−2, to zero we get

as(c+ s)(c+ s− 1) = 2as−2(c+ s− 2− n) . (5A1.4.2)

Putting s = 0 and 1 and using the fact that a−1 = 0 = a−2, we get, respectively,

a0c(c− 1) = 0 ,
a1(c+ 1)c = 0 .

(5A1.4.3)
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If a0 6= 0 then c(c − 1) = 0 and if a1 6= 0 then c(c + 1) = 0. By considering various
possibilities, as in the case of Legendre polynomials, it is sufficient to consider c = 0 and a0

and a1 to be arbitrary. Then Eq. (5A.4.38) leads to the recursion relation

as = −2(−s+ 2 + n)
s(s− 1)

as−2 , s ≥ 2 . (5A1.4.4)

With the help of this equation, even coefficients a0, a2, a4, · · · can be expressed in terms of
a0 and the odd coefficients a1, a3, a5, · · · can be expressed in terms of a1. Thus the general
solution of the Hermite equation can be written as a sum of two series, one involving even
power of x, and the other involving odd powers of x as

y = a0

(
1− 2n

2!
x2 + 22 n(n− 2)

4!
x4 ....

)
+ a1

(
x− 2(n− 1)

3!
x3 + 22 (n− 1)(n− 3)

5!
x5 ....

)
.

Since a0 and a1 are arbitrary, each of the two series is a solution of the Hermite equation.
It can be seen from these series that when n is a non-negative even integer, the first series
becomes a polynomial and when n is a non-negative odd integer, the second series becomes
a polynomial.

For integer n it is convenient to rewrite the polynomial solution by expressing all the
coefficients in terms of the coefficient of the highest power of x. To do this we rewrite Eq.
(5A1.4.4) as

as−2 = − s(s− 1)
2(n− s+ 2)

as .

This gives

an−2 = − n(n− 1)
2 · 2 an = − n(n− 1)

22 1!
an

an−4 =
n(n− 1)(n− 2)(n− 3)

42 · 2!
an

and so on. The polynomial solution is thus

y =
an
2n

[
(2x)n − n(n− 1)

1!
(2x)n−2 +

n(n− 1)(n− 2)(n− 3)
2!

(2x)n−4

− n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)
3!

(2x)n−6 + · · ·
]
. (5A1.4.5)

With the choice an = 2n, the series is called the Hermite polynomial of order n. The first
few Hermite polynomials are:

H0(x) = 1
H1(x) = 2x

H2(x) = 4x2 − 2

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 48x2 + 12

H5(x) = 32x5 − 160x3 + 120x .

(5A1.4.6)
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Analytic Expression for Hermite Polynomial

Consider a simple differential equation

du(x)
dx

+ 2xu(x) = 0 ,

whose solution is u(x) = Ce−x
2
. If we differentiate this equation n times with respect to x

and put dnu(x)/dxn = z(x) , then this equation transforms to

d2z

dx2
+ 2x

dz

dx
+ 2(n+ 1)z = 0 .

It is obvious that the solution of this equation is given by

z(x) =
dnu(x)
dxn

=
dn

dxn

(
Ce−x

2
)
.

By carrying out the differentiation, we find the z(x) can be written as the product of e−x
2

and a polynomial of order n in x

z(x) = e−x
2
y(x).

Substituting this in the differential equation for z(x), we find the polynomial y(x) satisfies
the equation

d2y

dx2
− 2x

dy

dx
+ 2ny = 0 (5A1.4.7)

which is the Hermite equation. Obviously, the polynomial y(x) is given by

y(x) = ex
2 dn

dxn
(C e−x

2
) , (5A1.4.8)

where C is a constant. This polynomial can be identified with the Hermite polynomial by
the choice C = (−1)n so that

Hn(x) = (−1)n ex
2 dn

dxn
( e−x

2
) . (5A1.4.9)

Orthogonality of Hermite Polynomials

Hermite polynomials Hn(x) form a set of orthogonal functions in the sense that

Imn ≡
∞∫
−∞

e−x
2
Hm(x)Hn(x)dx = 0 for m 6= n . (5A1.4.10)

To show this, we first observe that

d

dx
Hn(x) = 2nHn−1(x) . (5A1.4.11)

This can be seen by simply differentiating the series (5A1.4.5). By expressing Hn(x) in the
integrand by means of Eq. (5A1.4.9) and integrating once, we find

Imn =

∞∫
−∞

Hm(x)Hn(x) e−x
2
dx = (−1)n

∞∫
−∞

Hm(x)
dn

dxn
e−x

2
dx

= (−1)nHm(x)
dn−1

dxn−1
e−x

2
∣∣∣∣∞
−∞
− (−1)n

∞∫
−∞

dHm(x)
dx

dn−1

dxn−1
( e−x

2
) dx .
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The integrated term vanishes since

dn−1

dxn−1
(e−x

2
) = e−x

2 × polynomial of order (n− 1) in x .

Using Eq. (5A1.4.11) to express the first derivative of Hm(x) in terms of Hm−1(x) we find
the integral Imn is given by

Imn = (−1)n+1 2m

∞∫
−∞

Hm−1(x)
dn−1

dxn−1
( e−x

2
) dx . (5A1.4.12)

Using this equation for Imn as a recurrence relation m times, we get

Imn = (−1)n+m 2mm!

∞∫
−∞

H0(x)
dn−m

dxn−m
( e−x

2
) dx (5A1.4.13)

= (−1)n+m 2mm!
[
dn−m−1

dxn−m−1
( e−x

2
)
]+∞

−∞
. (5A1.4.14)

This vanishes if n > m. Similarly, if m > n, we can interchange the role of Hm(x) and
Hn(x) and show that Imn = 0 if m > n. Thus

Imn = 0 for m 6= n . (5A1.4.15)

The normalization integral Inn, from Eq. (5A1.4.13), is given by

Inn = (−1)2n 2n n!

∞∫
−∞

e−x
2
dx = 2nn!

√
π . (5A1.4.16)

Using this result we can define normalized Hermite polynomials by

Hn(x) =
1√

2n n!
√
π
e−x

2/2Hn(x) . (5A1.4.17)

These functions satisfy the orthonormality condition∫ ∞
−∞
Hm(x)Hm(x)dx =

1
2nn!

√
π

∫ ∞
−∞

e−x
2
Hm(x)Hm(x)dx = δmn . (5A1.4.18)

5A1.5 Bessel Equation

The equation

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0 (5A1.5.1)

is called Bessel equation of order n. For its solution we again use the series method and
assume that

y(x) = xc
∞∑
s=0

asx
s . (5A1.5.2)

Substituting this series into Eq. (5A1.5.1) and equating the coefficient of each power of x,
say, xc+s, to zero we get

as
[
(c+ s)2 − n2

]
= −as−2 . (5A1.5.3)
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This enables all even coefficients to be expressed in terms of a0 and all odd coefficients to
be expressed in terms of a1. Putting s = 0 into Eq. (5A1.5.3) we get the indicial equation

a0

(
c2 − n2

)
= 0

which implies c = ±n if a0 6= 0. Putting s = 1 into Eq. (5A1.5.3) we get

a1

[
(c+ 1)2 − n2

]
= 0 , (5A1.5.4)

which implies c = (n−1) or −(n+1) if a1 6= 0. A careful consideration of possible scenarios
shows that the two conditions are equivalent and it is sufficient to choose either a0 or a1

nonzero, but not both. Making the first choice (a0 6= 0), we have c = ±n. Expressing all
the coefficients in terms of a0 we can write the series solution for Bessel equation as

y = a0 x
c

[
1− x2

(c+ 2)2 − n2
+

x4

((c+ 4)2 − n2)((c+ 2)2 − n2)

+
x6

((c+ 6)2 − n2)((c+ 4)2 − n2)((c+ 2)2 − n2
+ ...

]
(5A1.5.5)

where c = ±n. Both [y]c=n and [y]c=−n are solutions of Eq. (5A1.5.1). For c = n, the s-th
term of the series can be written9 as

ts =
(−1)s x2s+n

(2n+ 2s)(2s)(2n+ 2s− 2)(2s− 2) · · · (2n+ 2) 2
a0

=
(−1)s x2s+nΓ(n+ 1)

22s Γ(n+ s+ 1) Γ(s+ 1)
a0

If a0 is chosen to be 1/2nΓ(n+ 1), the series is denoted by Jn(x) and called Bessel function
of order n

[y]c=n =
∞∑
s=0

(−1)s

Γ(n+ s+ 1) Γ(s+ 1)

(x
2

)n+2s

≡ Jn(x) . (5A1.5.6)

Similarly, the choice c = −n leads to J−n(x) (Bessel function of order −n)

[y]c=−n =
∞∑
s=0

(−1)s

Γ(s− n+ 1) Γ(s+ 1)

(x
2

)−n+2s

≡ J−n(x) . (5A1.5.7)

Bessel functions Jn(x) and J−n(x) constitute two independent solutions of the Bessel
equation for noninteger values of n. When n is an integer, Jn(x) and J−n(x) are related by

J−n(x) = (−1)n Jn(x) . (5A1.5.8)

For integer n, the independent solutions of Bessel equation are denoted by Jn(x) and Yn(x),
where Yn(x), called Bessel function of order n of the second kind, is defined by

Yn(x) = lim
r→n

1
sin rπ

[cos rπ Jr(x) − J−r(x)] . (5A1.5.9)

9For integer argument, the Γ-function is defined by Γ(n+1) = nΓ(n) = n!, Γ(1) = 1, Γ(0) =∞. For negative
integer values of its argument also, it is infinity. For positive half-integer argument Γ(n+ 1

2
) = (n− 1

2
)Γ(n− 1

2
)

with Γ(1/2) =
√
π .
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Bessel functions for integer and half integer order are built-in functions in many popular
mathematical programs such as Mathcad and Mathematica. When plotted as functions of
x, they look like damped sine or cosine functions. Of the two independent solutions, Jn(x)
is regular at the origin, whereas Yn(x) (or J−n(x) for non-integer n) is singular at the origin.

It can be easily seen that the series for Bessel functions of order 1/2 and −1/2 assume
the following forms:

J 1
2

(x) =

√
2x
π

sinx
x

, (5A1.5.10)

J
− 1

2
(x) =

√
2x
π

cosx
x

. (5A1.5.11)

Using the recurrence formula

(2n/x)Jn(x) = Jn+1(x) + Jn−1(x) , (5A1.5.12)

we can also derive the expressions for Bessel functions of order ±3/2 and ±5/2:

J 3
2
(x) =

√
2
πx

(
sinx
x
− cosx

)
, (5A1.5.13)

J− 3
2
(x) = −

√
2
πx

(cosx
x

+ sinx
)
, (5A1.5.14)

J 5
2
(x) =

√
2
πx

(
3− x2

x2
sinx− 3

x
cosx

)
, (5A1.5.15)

J− 5
2
(x) =

√
2
πx

(
3
x

sinx+
3− x2

x2
cosx

)
. (5A1.5.16)

Bessel functions of half-integer order are useful in the discussion of many quantum
mechanical problems involving central potentials.

Spherical Bessel Functions

The half-integer Bessel functions J`+ 1
2
(x) , when multiplied by

√
π/2x give what are known

as spherical Bessel functions and are denoted by j`(x):

j`(x) =
√

π

2x
J`+ 1

2
(x) . (5A1.5.17)

The negative half-integer Bessel functions J−`− 1
2
(x) when multiplied by

√
π/2x are called

spherical Neumann functions and denoted by η`(x):

η`(x) =
√

π

2x
(−1)`+1 J−`− 1

2
(x) . (5A1.5.18)

The first few spherical Bessel and spherical Neumann functions are, explicitly,

j0(x) =
sin x

x
, η0(x) = −cos x

x
,

j1(x) =
sin x

x2
− cos x

x
, η1(x) = −cosx

x2
− sinx

x
, (5A1.5.19)

j2(x) =
(

3
x3
− 1
x

)
sinx− 3

x2
cosx , η2(x) = −

(
3
x2
− 1
x

)
cosx− 3

x2
sinx .
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For small values of their arguments, spherical Bessel functions yield

j`(x) x→0−−−→ 2``!
(2`+ 1)!

x` =
x`

(2`+ 1)!!
, (5A1.5.20a)

η`(x) x→0−−−→ − (2`)!
2``!

x−`−1 = −(2`− 1)!!x−`−1 . (5A1.5.20b)

The asymptotic (x → ∞) forms of j`(x) and η`(x), useful in scattering and radiation
problems, are given by

j`(x) x→∞−−−−→ 1
x

cos [x− (`+ 1)π/2] =
1
x

sin(x− `π/2) , (5A1.5.21a)

η`(x) x→∞−−−−→ 1
x

sin [x− (`+ 1)π/2] = − 1
x

cos(x− `π/2) . (5A1.5.21b)

Another set of functions, the so-called spherical Hankel functions, are useful in scattering
problems. They are introduced by the relations

h
(1)
` (x) = j`(x) + iη`(x) , (5A1.5.22a)

h
(2)
` (x) = j`(x)− iη`(x) (5A1.5.22b)

Their asymptotic forms, with the help of Eqs. (5A1.5.21) and (5A1.5.22), are given by

h
(1)
` (x) x→∞−−−−→ 1

x
ei[x−(`+1)π/2] = − i

x
ei(x−`π/2) , (5A1.5.23a)

h
(2)
` (x) x→∞−−−−→ 1

x
e−i[x−(`+1)π/2] =

i

x
e−i(x−`π/2) . (5A1.5.23b)

From the asymptotic forms (5A1.5.21) and (5A1.5.23) we see that whereas spherical Bessel
and Neumann functions j`(x) and η`(x) correspond to standing spherical waves, spherical
Hankel functions correspond to traveling spherical waves.

Modified Bessel Equation

The differential equation

x2 d
2y

dx2
+ x

dy

dx
− (x2 + n2

)
y = 0 (5A1.5.24)

is called the modified Bessel equation. This equation reduces to Bessel form with the
substitution ξ = ix. The function In(x) = i−nJn(ix) is thus a solution of the modified
Bessel equation. Using the series expression for Bessel function [Eq. (5A.5.6)] we obtain

In(x) =
∞∑
r=0

(
x
2

)n+2r

Γ(r + 1) Γ(n+ r + 1)
. (5A1.5.25)

If n is a fraction, In(x) and I−n(x) are independent solutions of the modified Bessel equation
of order n. For small and large values of its argument, In(x) has the following limiting forms:

In(x) x→0−−−→ 1
Γ(n+ 1)

(x
2

)n
, (5A1.5.26a)

In(x) x→∞−−−−→ 1√
2πx

[
ex + e−x e−i(n+1/2)π

]
. (5A1.5.26b)
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A second independent solution of the modified Bessel equation (5A1.5.24) is defined as

Kn(x) =
π

2
I−n(x)− In(x)

sinnπ
, (5A1.5.27)

which for integer n must be treated as a limit. This functions takes the following limiting
forms for small and large values of its argument

K0(x) x→0−−−→ − ln(x/2)− 0.5772 · · · , (5A1.5.28a)

Kn(x) x→0−−−→ Γ(n)
2

(
2
x

)n
, n > 0 (5A1.5.28b)

Kn(x) x→∞−−−−→ 1√
2πx

e−x . (5A1.5.28c)

In contrast to Bessel function, modified Bessel functions are not oscillatory. Instead, their
behavior (for large values their argument) is similar to the exponential functions. For this
reason In and Kn are sometimes referred to as hyperbolic Bessel functions.

We can also introduce the modified spherical Bessel functions (for integer n) by

in(x) =
√

π

2x
In+ 1

2
(x) ≡ i−njn(ix) , (5A1.5.29a)

kn(x) =
√

π

2x
Kn+ 1

2
(x) ≡ −inh(1)

n (ix) . (5A1.5.29b)

For small argument, these have the following limiting forms

in(x) x→0−−−→ xn

(2n+ 1)!!
, kn(x) x→0−−−→ (2n− 1)!!

xn+1
, (5A1.5.30a)

and for large argument

in(x) x→∞−−−−→ ex

2x
, kn(x) x→∞−−−−→ e−x

x
. (5A1.5.31a)

Orthogonality of Bessel Functions

Let αnk (k = 1, 2, 3, · · · ) be the zeros of Bessel function of order n > −1, i.e., αnk are the
positive roots of the equation

Jn(α) = 0 . (5A1.5.32)

Then Bessel functions Jn(αnkx) ( k = 1, 2, 3, · · · ) of order n form a set of orthogonal
functions satisfying ∫ 1

0

xJn(αnkx)Jn(αnk′x)dx =
1
2
J2
n+1(αnk) δkk′ . (5A1.5.33)
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Appendix 5A2: Orthogonal Curvilinear Coordinate Systems

The position of a particle in space can be specified, not only by the Cartesian system of
coordinates (x , y , z), with range −∞ < x, y, z < ∞, but also by other sets of coordinates:
(a) spherical polar (r , θ , ϕ),(b) cylindrical (ρ , ϕ , z), (c) parabolic (ξ , η , ϕ) and so on. These
different sets of coordinates of a point are mathematically related to each other. They are
called orthogonal curvilinear coordinate systems because in any such system the curves,
along which one (and only one) of the coordinates varies, are mutually orthogonal at a
particular point. We now consider specific coordinate systems.

5A2.1 Spherical Polar Coordinates

Let OX, OY , OZ be the set of Cartesian axes and P be a point whose Cartesian coordinates
are (x , y , z) as shown in Fig. (5A2.1). The spherical polar coordinates of P are:

(i) r = OP is the distance of point P from the origin, which varies in the range 0 ≤ r <∞.

(ii) θ = ∠ZOP is the angle that OP makes with the Z-axis. It varies in the range
0 ≤ θ ≤ π, where θ = 0 on the +Z polar axis and θ = −π on the −Z polar axis.

(iii) ϕ = ∠P ′OX is the angle that the plane containing OP and OZ makes with the
XZ-plane. It varies in the range 0 ≤ ϕ ≤ 2π, where ϕ = 0 if P lies in the XZ-plane
and ϕ = π/2 if it lies in the Y Z-plane.

Mathematically, they are related to x, y, z via the transformation

x = r sin θ cosϕ ,
y = r sin θ sinϕ ,
z = r cos θ .

(5A2.1.1)

Conversely, we have
r =

√
x2 + y2 + z2 ,

θ = arccos(z/r) ,

ϕ = tan−1(y/x) .

(5A2.1.2)

Coordinate Curves

1. Along the line OP , only r increases. This is called the r-curve and er is a unit vector
along this curve.

2. Along the circle PQS′Q′P ′SP only θ changes. This is called the θ-curve. A unit
vector along the tangent to this curve at P is denoted by eθ. If θ changes by dθ, the
distance moved along this curve is rdθ.

3. Along the curve PGP ′G′P only ϕ changes. This is called the ϕ-curve. A unit vector
tangential to this curve at P is denoted by eϕ. If ϕ changes by dϕ, the distance moved
along this curve is r sin θ dϕ.

It may be noted that, unlike the unit vectors ex, ey, ez in the Cartesian system, the
unit vectors er , eθ , eϕ change their directions from point to point. However, at any
point these three unit vectors are mutually orthogonal.
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FIGURE 5A2.1
Spherical polar coordinates of point P . êr , êθ , êϕ denote, respectively, the unit vectors
along the r-curve, θ-curve and ϕ-curve at the point P .

Coordinate Surfaces

1. The surface of a sphere of radius r, with its center at the origin, is the surface of
constant r.

2. The curved surface of a cone with its axis as the z-axis and semi-vertical angle θ is
the surface of constant θ.

3. The plane containing the lines PO and OZ is a surface of constant ϕ.

5A2.2 Cylindrical Coordinates

The cylindrical coordinates of a point P in terms of its Cartesian coordinates (x , y , z) are
given by [see Fig. 5A2.2],

ρ = OQ = SP =
√
x2 + y2 ,

ϕ = ∠XOQ = ∠LSP = tan−1 y

x
,

z = OS = QP .

(5A2.1.3)
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Conversely,
x = ρ cosϕ ,
y = ρ sinϕ ,
z = z .

(5A2.1.4)
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L
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FIGURE 5A2.2
Cylindrical coordinates of a point P : ρ = SP = OQ; z = OS = QP ; ϕ = ∠XOQ = ∠LSP .

Coordinate Curves

(i) Along the line SP (or OQ), only ρ increases. This is the ρ-curve. A unit vector at P ,
along this curve is denoted by êρ.

(ii) Along the line QP only z increases. This is called the z-curve. A unit vector at P ,
tangential to this curve, is denoted by êz .

(iii) Along the circle PKP ′LP only ϕ changes. This is the ϕ-curve. A unit vector at P ,
along this curve is denoted by êϕ . If ϕ changes by dϕ, the distance moved along this
curve is ρ dϕ.

It may be seen that, although the directions of these unit vectors change from point to
point, at any point P the unit vectors êρ , êϕ , êz are orthogonal.

Coordinate Surfaces

(i) The surface of a cylinder with axis OZ and radius ρ, is the surface of constant ρ .
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(ii) The plane passing through the point P , and parallel to XY -plane is the surface of
constant z.

(iii) The plane containing the lines OQ or SP and OZ is the surface of constant ϕ.

5A2.3 Parabolic Coordinates

The parabolic coordinates (ξ , η , ϕ) of a point P are mathematically defined in terms of the
spherical polar coordinates as

ξ = r(1− cos θ) = r − z ,
η = r(1 + cos θ) = r + z ,

ϕ = ϕ azimuthal angle .
(5A2.1.5)

To see this geometrically, let OX, OY, OZ be the Cartesian axes [Fig. 5A2.3] and through
the point P , let us draw two parabolas PRP ′ and PR′S′ with the focus at the origin, and
with z-axis as the common axis. (Only two parabolas with a common axis and focus can
be drawn through a point in a plane.) The plane in which these parabolas are drawn may
be characterized by the azimuth angle ϕ, i.e., the plane containing the vectors OP and OZ.
The angle ϕ is defined in the same way as the angle between the plane containing the lines
OP and OZ and the XZ-plane. Thus ϕ = 0 if P lies in the X − Z plane.

The equations to the parabolas in polar coordinates may be written as

ξ

r
= 1− cos θ (5A2.1.6)

and
η

r
= 1 + cos θ . (5A2.1.7)

The latus rectums of the two parabolas, ξ and η , and the azimuth ϕ angle constitute the
parabolic coordinates of the point P .

Coordinate Curves

(i) Along the curve PRP ′, the coordinates ξ and ϕ are fixed and only η varies. This is
the η-curve. A unit vector along this curve at any point may be denoted by êη . If η
changes by dη, the distance moved along this curve is

√
ξ+η

2
√
η dη.

(ii) Along the curve PR′P ′, η and ϕ are fixed and only ξ changes. This is called the
ξ-curve. A unit vector along this curve at any point may be denoted by êξ. If ξ
changes by dξ, the distance moved along this curve is

√
ξ+η

2
√
ξ
dξ.

(iii) Along the circle PGP ′G only ϕ changes. This is called the ϕ-curve. A unit vector at
P , tangential to this curve is denoted by êϕ. If ϕ changes by dϕ then the distance
moved along this curve is

√
ξη dϕ.

The unit vectors êξ , êη , êϕ have different directions at different points, but at any point P
they are mutually orthogonal.

Coordinate Surfaces

(i) The surface generated by the revolution of the parabola PRP ′ about its axis (z-axis)
is a surface of constant ξ.
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η/r=(1+cosθ)

eξ

eη

R′

FIGURE 5A2.3
This figure shows the parabolic coordinates of a point P . ξ is the latus rectum of the
parabola PRP ′ and equals 2×OR. η is the latus rectum of the parabola PR′P ′ and equals
2×OR′. ϕ is the angle which the plane containing OP and OZ makes with the XZ plane.

(ii) The surface generated by the revolution of the parabola PR′P ′ about its axis is a
surface of constant η.

(iii) The plane containing the line OP and OZ is a surface of constant ϕ.

5A2.4 General Features of Orthogonal Curvilinear System
of Coordinates

Let P be a point whose curvilinear coordinates are u1 , u2 , u3 and P ′ be its infinitesimally
close neighbor whose curvilinear coordinates are u1 +du1 , u2 +du2 , u3 +du3 [Fig. (5A2.4)].
Then the vector ~PP ′ is given by

PP ′ ≡ dr = e1h1du1 + e2h2du2 + e3h3du3 , (5A2.1.8)

where h1 , h2 , h3 are the scale factors. This means that to find the length traversed along
the u1 -curve when u1 changes by du1, du1 is to be multiplied by the scaling factor h1, and
so on. From the definition of infinitesimal displacement dr in Eq. (5A2.1.8),

dr2 = dr.dr = h2
1du

2
1 + h2

2du
2
2 + h2

3du
2
3 . (5A2.1.9)

The volume enclosed by a rectangular parallelepiped, whose adjacent sides are
e1h1du1 , e2h2du2 , and e3h3du3 is given by;

dV = (e1h1du1 × e2h2du2) · e3h3du3 = h1h2h3du1du2du3 . (5A2.1.10)
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P

U1

U3
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FIGURE 5A2.4
A general orthogonal curvilinear system of coordinates. The coordinates of a point P are
u1 , u2 , u3. PU1 , PU2 , PU3 are the coordinate curves at P . For an infinitesimal change du1

in u1 the infinitesimal distance moved along this coordinate curve is h1du1.

In this system of coordinates, the gradient of a scalar function ψ(x, y, z) is expressed as

∇ψ =
1
h1

∂ψ

∂u1
e1 +

1
h2

∂ψ

∂u2
e2 +

1
h3

∂ψ

∂u3
e3 . (5A2.1.11)

Also, if A = A1e1 +A2e2 +A3e3 is a vector, then its divergence is given by

∇ ·A =
1

h1h2h3

[
∂(A1h2h3)

∂u1
+
∂(A2h1h3)

∂u2
+
∂(A3h1h2)

∂u3

]
. (5A2.1.12)

Hence if we replace A by ∇ψ, and identify the components of A by the components of ∇ψ,
then

∇.∇ψ ≡ ∇2ψ =
1

h1h2h3

[
∂(A1h2h3)

∂u1
+
∂(A2h1h3)

∂u2
+
∂(A3h1h2)

∂u3

]
. (5A2.1.13)

In particular, for Cartesian coordinates we have

dr = exdx+ eydy + ezdz ,
⇒ h1 = h2 = h3 = 1 .

(5A2.1.14)

For spherical polar coordinates, we have

dr = erdr + eθrdθ + eϕr sin θdϕ ,
⇒ h1 = 1 , h2 = r , h3 = r sin θ .

(5A2.1.15)
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For cylindrical coordinates we have

dr = eρdρ+ eϕρdϕ+ ezdz ,
⇒ h1 = 1 , h2 = ρ , h3 = 1 .

(5A2.1.16)

For parabolic coordinates, we have

dr = eξ

√
ξ + η

2
√
ξ
dξ + eη

√
ξ + η

2
√
η
dη + eφ

√
ξηdϕ ,

⇒ hξ =
√
ξ + η

2
√
ξ

; hη =
√
ξ + η

2
√
η

; hϕ =
√
ξη .

(5A2.1.17)

Once the scaling factors h1 , h2 , h3 for an orthogonal curvilinear system of coordinates are
known, the operator ∇2 can be expressed in terms of the corresponding coordinates.
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SYMMETRIES AND CONSERVATION LAWS

6.1 Symmetries and Their Group Properties

A physical system is set to possess a symmetry, if it remains invariant (unchanged) under
each one of the symmetry operations of the system. As a simple example, we may consider a
system consisting of three identical particles placed at the vertices A ,B ,C of an equilateral
triangle [Fig. 6.1]. The symmetry operations which leave the system unchanged are as
follows.

Rotations1 of the triangle about an axis passing through its centroid O and perpendicular
to its plane, through (i) 0, (ii) 2π/3, and (iii) 4π/3 and reflections about the perpendiculars
(iv) AP (v) BQ and and (vi) CR. This set of six symmetry operations, which we may call,
respectively, E,D,F,A,B,C forms a group under multiplication in the sense that

A

B C

R

P

Q

O

FIGURE 6.1
Symmetry operations of an equilateral triangle.

1. Closure holds. Two operations done in succession are equivalent to a single operation
which is also contained in the group. (Example: D × F ≡ E ).

2. Identity exists. The identity operation E has the property that E×X = X×E ≡ X,
where X is any element of the group [example: E ×D = D × E = D].

1We limit our discussion to counterclockwise rotations.

181



182 Concepts in Quantum Mechanics

3. Existence of the inverse. Every element X of the group has a unique inverse, X−1 = Y ,
which is contained in the group, such that XY = Y X = E [example D−1 = F so that
D × F = F ×D = E].

4. Associativity holds. The associative law of multiplication holds among the elements,
so that A× (B × C) = (A×B)× C.

The symmetry group of the equilateral triangle, also called the group D3, is characterized
by the group multiplication table [Table 6.1]

TABLE 6.1

Multiplication Table for Group D3

× E A B C D F
E E A B C D F
A A E D F B C
B B F E D C A
C C D F E A B
D D C A B F E
F F B C A E D

Likewise four identical particles placed at the vertices of a square constitute a system
with eight symmetry operations. This is called the D4 group.

6.2 Symmetries in a Quantum Mechanical System

A physical system is characterized by its Hamiltonian Ĥ. If the latter is independent of time
its eigenstates and corresponding energies are given by the time-independent Schrödinger
equation

Ĥ |En 〉 = En |En 〉 . (6.2.1)

If this system, i.e., its Hamiltonian, remains invariant under a set of unitary symmetry
operations Ê, R̂, Ŝ, Û , · · · , then these operations form a group, called the symmetry group
of the Hamiltonian, in the sense that, among the symmetry operations (i) closure holds,
(ii) identity exists,(iii)inverse exists and (iv) associative law of multiplication holds. These
symmetries lead to the following consequences:

1. The Hamiltonian commutes with each one of the unitary symmetry operators

Under a symmetry operation R̂

Ĥ → R̂ĤR̂† ≡ Ĥ ′ . (6.2.2)

Since this symmetry operation leaves the Hamiltonian invariant, we have, Ĥ ′ = Ĥ
or R̂ĤR̂† = Ĥ. Post-multiplying both sides of this equation with R̂, we get, since
R̂†R̂ = R̂R̂† = 1̂,

R̂Ĥ = ĤR̂ or [R̂, Ĥ] = 0 . (6.2.3)
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2. The energy levels of the system are degenerate, the degeneracy being a consequence of
the invariance of Ĥ under these symmetry operations.

Consider the eigenvalue equation (6.2.1) and let R̂ be one of the symmetry operators,
which leaves the Hamiltonian invariant so that R̂Ĥ |En 〉 = EnR̂ |En 〉. In view of Eq.
(6.2.3) we can as well write

ĤR̂ |En 〉 = EnR̂ |En 〉 . (6.2.4)

This equation shows that R̂ |En 〉 is also an eigenstate of Ĥ, belonging to the same
energy En.

Similarly, Ŝ |En 〉 , Û |En 〉 , · · · are all eigenstates of Ĥ belonging to the same
eigenvalue. This degeneracy is thus a consequence of the symmetry of the
Hamiltonian.

3. Unitary symmetry operations give rise to conservation laws.

Let the symmetry operation Û(a) be unitary so that we can write it as Û(a) =
exp(−iaÂ), where a is a real parameter and Â is a Hermitian operator. If the
Hamiltonian remains invariant under the symmetry operation Û(a), then according
to Eq. (6.2.3),

[Û , Ĥ] = 0 ⇒ [exp(−iaÂ), Ĥ] = 0

⇒ [Â, Ĥ] = 0 . (6.2.5)

This result combined with Heisenberg equation of motion, implies that the observable
Â is a constant of motion and corresponds to a conserved quantity.

6.3 Basic Symmetry Groups of the Hamiltonian and Conservation
Laws

Every physical system has three basic symmetries. Apart from these symmetries, physical
systems may have specific symmetries as well. These basic symmetries are:

1. Space translation symmetry

2. Time translation symmetry

3. Rotational symmetry

We begin by clarifying the meaning of transformation of a physical system under symmetry
operations. We describe the effect of symmetry operation R on a system in quantum state
|ψ 〉 by a linear operator R̂ such that the new state of the system is described by |ψ′ 〉

|ψ′ 〉 = R̂ |ψ 〉 . (6.3.1)

It is important to remember that while R operates in ordinary space (spanned by
coordinates r, momenta p, and time t), operator R̂ acts in state space. Equation (6.3.1)
means that the transformed wave function ψ′(r) = 〈r|ψ′〉 at ro is obtained from the value
of the original wave function ψ(r) = 〈r|ψ〉 at the point r′o which under R transforms to
ro = Rr′0:

ψ′(ro) = ψ(r′o) = ψ(R−1ro) , ro = Rr′o (or r′o = R−1ro) . (6.3.2)
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Since this holds for any arbitrary point r0, we can write

〈r|ψ′〉 =
〈R−1r

∣∣ψ〉 . (6.3.3)

Combining this with Eq. (6.3.1) we have the relation

〈r| R̂ |ψ 〉 = 〈r|ψ′〉 ≡ 〈R−1r
∣∣ψ〉 , (6.3.4)

defining the linear operator R̂ in the coordinate representation. Operator R̂ is unitary, since
the norms of |ψ 〉 and |ψ′ 〉 are equal.

Having defined the transformation of state vectors, we can deduce the transformation law
for observables. Let X̂ be an observable corresponding to a measurement of some property
of the system by a device fixed to the system. Under the action of R, the X̂ is transformed
into an operator X̂ ′ corresponding to a measurement by the transformed device, while the
state |ψ 〉 of the system is transformed into |ψ′ 〉. It is clear that measurement of X̂ in state
|ψ 〉 must yield the same value as the measurement of X̂ ′ on state |ψ′ 〉, i.e.,

〈ψ| X̂ |ψ 〉 = 〈ψ′| X̂ ′ |ψ′ 〉 = 〈ψ| R̂†X̂ ′R̂ |ψ 〉 . (6.3.5)

Since this must hold for every |ψ 〉, we have R̂†X̂ ′R̂ = X̂ or

X̂ ′ = R̂X̂R̂† . (6.3.6)

These ideas will become clearer as we consider specific examples of these transformations.

6.3.1 Space Translation Symmetry

According to this symmetry, the Hamiltonian of any physical system is invariant under a
spatial translation through an arbitrary displacement vector a and, in fact, under each one
of the spatial translation operations which form a ‘continuous group’. These transformations
are defined by Ur = r + a and, conversely, U−1r = r − a.

Let Û(a) denote the corresponding translation operator in the space of state vectors |ψ 〉.
Then a state transform according to

|ψ′ 〉 = Û(a) |ψ 〉 . (6.3.7)

In analogy with Eqs. (6.3.3) and (6.3.4), the coordinate representatives of this state yields

ψ′(r) ≡ 〈r| Û(a) |ψ 〉 = ψ(U−1r) = ψ(r − a) . (6.3.8)

Making a Taylor exapansion around r, we obtain

ψ ′(r) ≡ ψ(r − a) = ψ(r)−
(
ax

∂

∂x
+ ay

∂

∂y
+ az

∂

∂z

)
ψ(r)

+
1
2!

(
ax

∂

∂x
+ ay

∂

∂y
+ az

∂

∂z

)2

ψ(r) + · · · ,

= exp [−a ·∇]ψ(r) . (6.3.9a)

Using Eq. (6.3.8), this can be written as

〈r| Û(a) |ψ 〉 = exp [−a ·∇] 〈r|ψ〉

= 〈r| exp
[
− i

~
a · (−i~∇)

]
|ψ 〉

= 〈r| exp(− i
~
p̂ · a) |ψ 〉 . (6.3.9b)
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In the last step we have used Eq. (2.6.5) of Chapter 2: ∂
∂x 〈r|ψ〉 = 〈r| ddx̂ |ψ 〉 and

introduced the mometum operator p̂ = −i~∇. Since the state |ψ 〉 is arbitrary, we have the
transformation law for state vectors

|ψ′ 〉 = exp
[
− i

~
p̂ · â

]
|ψ 〉 . (6.3.10)

It follows, since p̂ is Hermitian, that the operator Û(a) is unitary, as it should be.
Now, according to Eq. (6.3.6), the Hamiltonian will transform to Ĥ ′ = Û(a)ĤÛ†(a)

under space translation. If the Hamiltonian of the system is to remain invariant under
the space translation operation, we must have Ĥ ′ ≡ Û(a)ĤÛ†(a) = Ĥ. By virtue of the
unitarity of Û(a), this leads to

ĤÛ(a)− Û(a)Ĥ ≡
[
Ĥ , Û(a)

]
= 0 ,

or
[
Ĥ , exp(−ip̂ · a/~)

]
= 0 . (6.3.11)

The last equation implies that[
Ĥ , p̂x

]
= 0 =

[
Ĥ , p̂y

]
=
[
Ĥ , p̂z

]
, (6.3.12)

or that the momentum of an isolated system is conserved or a constant of the motion.
It may be noted that the set of spatial translation operations Û(a), where the

displacement vector a may vary continuously, form a continuous group. Hence the
invariance of the Hamiltonian of a system, under a set of spatial translation operations
which form a continuous group, leads to the conservation of linear momentum.

6.3.2 Time Translation Symmetry

The invariance of the Hamiltonian Ĥ of an isolated system, under time translation
operation, obviously implies that its energy does not change with the passage of time. The
implication of the invariance of Ĥ under time translation operation T̂ (t) as conservation of
energy, or vice versa, may formally be seen as follows:

Conservation of energy implies, according to the Heisenberg equation of motion, that
[Ĥ , Ĥ] = 0, which is obvious. This implies that[

exp(−iĤt/~) , Ĥ
]

= 0 ,

or
[
T̂ (t) , Ĥ

]
= 0 , (6.3.13)

where T̂ (t) = exp(−iĤt/~) is the time translation operator [Eq. (3.4.3), Chapter 3]. Eq.
(6.3.13) implies invariance of the Hamiltonian under the time translation operation.

It may be noted that the set of operations T̂ (t), where t is a continuous parameter, form
a continuous group, called the time translation group.

Thus the invariance of the Hamiltonian of a system, under the group of time-translation
operations, leads to the conservation of energy.

6.3.3 Spatial Rotation Symmetry

Isotropy of space requires that a physical system should behave in the same way if it is
rotated in space in an arbitrary manner. The rotation about an arbitrary axis, say about
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the direction n, through an arbitrary angle θ may be specified by the operator R̂n(θ). This
means that the rotated state |ψ′ 〉 may be obtained by the operation of the rotation operator
on the original state |ψ 〉:

|ψ 〉 → |ψ′ 〉 = R̂n(θ) |ψ 〉 . (6.3.14)

Since the parameters θ and n, specifying the rotation operation, can vary continuously,
these set of rotation operations constitute a continuous set. Moreover, they constitute a
continuous group, called rotation group or R(3) group, as these operators also satisfy the
conditions of closure, existence of identity and inverse, and associative law of multiplication.
It may be pointed out here that the rotation group belongs to a class of groups called Lie
groups.

Let us first identify the rotation operator R̂z(δθ), corresponding to anticlockwise rotation
R of the coordinate system about z-axis through an infinitesimal angle δθ [Fig. 6.2]. Then
we can see from Fig. 6.2(b) that underR−1, a point P (x, y, z) is transformed to P ′(x′, y′, z′)
with

x′ = x+ yδθ

y′ = y − xδθ
z′ = z

 ≡ R−1r . (6.3.15)

P

P′

x′

θ

δθ
C

θ

X

Y

O x

y′

X

Y

O

Y′

X′

|ψ>

|ψ′>

δθ

y

R

R−1

R−1

(a) (b)

FIGURE 6.2
Schematic representation of the passive and active transformation of the state of a system
[Fig. 6.2(a)]. A positive rotation R of coordinate axes through δθ about the z-axis with the
system being fixed (passive rotation) is equivalent to keeping the coordinate axes unchanged
and rotating the system (active rotation) through −δθ (R−1). Under R−1 a point P is
transformed to P ′. The state |ψ′ 〉 which arises from |ψ 〉 through rotation R−1, appears in
the original coordinate system exactly as |ψ 〉 does in the rotated coordinate system. From
the figure [Fig 6.2(b)] it can be seen that PP ′ = OP · δθ and x′ − x = CP = PP ′ sin θ =
OPδθ · sin θ = yδθ. Similarly, y′ − y = −CP = −OPδθ · cos θ = −xδθ.

As a result of this rotation let the state of the system change from |ψ 〉 to |ψ′ 〉, where

|ψ′ 〉 = R̂z(δθ) |ψ 〉 . (6.3.16)
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Then, according to Eq. (6.3.4), we have

< r|R̂z(δθ)|ψ > =< r|ψ′ >= ψ(R−1r) = ψ(x+ yδθ, y − xδθ, z) ,
= ψ(x, y, z) + yδθ

∂ψ

∂x
− xδθ∂ψ

∂y
+ · · · ,

=
[
1 + δθ

(
y
∂

∂x
− x ∂

∂y

)]
ψ(r) ,

or < r|R̂z(δθ)|ψ > =< r|
[
1̂ + δθ

(
ŷ
d

dx̂
− x̂ d

dŷ

)]
|ψ > , (6.3.17)

where, in the last step we have used Eq.(2.7.4), Chapter 2 to replace differential operators
by observables. Hence the operator for corresponding to infinitesimal rotation about z-axis
is given by

R̂z(δθ) =
(

1̂− i

~
δθ L̂z

)
, (6.3.18)

where

L̂z = x̂p̂y − ŷp̂x = −i~
(
x̂
d

dŷ
− ŷ d

dx̂

)
. (6.3.19)

A finite rotation by an angle θ about the z-axis is equivalent to N rotations, each of
magnitude δθ = θ/N about the z-axis, in succession. When N tends to infinity, δθ becomes
infinitesimal and we have

R̂z(θ) = lim
N→∞

[
1− i δθ

~
L̂z

]N
= exp

(
− iθ L̂z

~

)
. (6.3.20)

If, instead of the z-axis, the rotation is about an arbitrary direction n, the rotation operator
is

R̂n(θ) = e−iθL̂.n/~ . (6.3.21)

From this expression we can see that the rotation operator R̂n(θ) is unitary, since L̂ is
Hermitian.

The invariance of the Hamiltonian under rotation implies R̂n(θ)ĤR̂†n(θ) = Ĥ or, since
the rotation operator R̂n(θ) is unitary,

[R̂n(θ), Ĥ] = [exp(−iθL̂ · n/~), Ĥ] = 0 ,

or [L̂x, Ĥ] = [L̂y, Ĥ] = [L̂z, Ĥ] = 0 . (6.3.22)

The conservation of orbital angular momentum (being a consequence of invariance of
Hamiltonian under arbitrary rotation) holds good if the particle is not endowed with intrinsic
angular momentum (or spin) and its states may be specified by a one-component (scalar)
wave function. The electron, however, has an intrinsic angular momentum.

According to Uhlenbeck and Goudsmit, the indirect evidence for intrinsic angular
momentum, (or spin) in the case of electron came from several observations like anomalous
Zeeman effect, doublet-structure of the spectra of alkali atoms. The famous Stern-Gerlach
experiment provided direct and decisive evidence for the existence of electron spin, 1

2 (in
units of ~), and for the fact that an electron can exist in two alternative spin states, viz.,
the spin up state in which the spin is along the z-direction and the spin down state in which
the spin is directed opposite to the z-direction. The z-direction is arbitrary and is used here
only for definiteness.
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When a particle is endowed with spin,the total state |Ψ 〉 of the particle may be regarded
as the product of two states

|Ψ 〉 = |ψ 〉 |χ 〉 , (6.3.23)

where the state |ψ 〉 characterizes the orbital angular momentum of the particle and, for this
state, a coordinate representation is possible. The state |χ 〉 denotes the spin state of the
particle, and as we shall see later, the spin state cannot admit a coordinate-representation.
It can only admit a matrix representation, i.e., it can only be represented by a column
matrix. Hence the total wave function in this case is a multi-component wave function.

Now, under a rotation θ about z-axis, |ψ 〉 transforms to |ψ′ 〉 = exp(−iL̂zθ/~) |ψ 〉.
Likewise we can assert that the spin state |χ 〉 transforms to |χ′ 〉 = exp(−iŜzθ/~) |χ 〉 .
Since the transformation operator has to be unitary, Ŝz is hermitian. By analogy Ŝz may
be called the spin angular momentum of the particle. Thus under spatial rotation of θ
about the z-axis,

|Ψ 〉 → |Ψ′ 〉 = exp[−i(L̂z + Ŝz)θ/~] |ψ 〉 |χ 〉 ≡ exp(−iĴzθ/~) |Ψ 〉 , (6.3.24)

where Ĵz = L̂z+Ŝz is called the z-component of the total angular momentum of the system.
For rotation about an arbitrary direction n, the rotation operator is given by:

R̂n(θ) = exp(−iĴ · n θ/~) (6.3.25)

so that

|Ψ 〉 → |Ψ′ 〉 = R̂n(θ) |Ψ 〉 .

The set of rotation operators R̂n(θ) forms a group. The components Ĵx , Ĵy , Ĵz of the vector
operator Ĵ (the total angular momentum operator) are called the generators of the rotation
group because any element of the group may be constructed in terms of the generators and
the continuous parameters θ and n.

In accordance with the postulate of isotropy of space we assume that the Hamiltonian
of the system is invariant under arbitrary rotation in space or under each one of the set of
rotation operations which form the rotation group. This implies that

[exp(−i Ĵ · nθ/~), Ĥ] = 0 ,

or [Ĵx, Ĥ] = [Ĵy, Ĥ] = [Ĵz, Ĥ] = 0 . (6.3.26)

Thus if a particle is endowed with spin, isotropy of space implies conservation of total
angular momentum Ĵ .

6.4 Lie Groups and Their Generators

A Lie group is a group of continuous transformations, each element of which leaves the
Hamiltonian of a system, invariant. In what follows, we shall study the general properties of
Lie groups and their generators. In particular, we shall consider (1) the three-dimensional
rotation group R(3) [also called the special orthogonal group SO(3)] and (ii) the special
unitary group SU(2).
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Continuous Groups and Lie Groups

A set of coordinate transformation operations g(a), under which

x→ x′ = g(a)x , (6.4.1)

where x stands for a set of coordinates (x1 , x2 , x3 · · · , xn) of the system and a stands for
a set of parameters (a1 , a2 , a3 , · · · , ar), is said to form a continuous group, if

(1) Closure holds,
g(a)⊗ g(b) = g(c) , (6.4.2)

where g(c) is also an element of the group.

(2) A unique identity element g(a0) exists, such that

g(a0)⊗ g(a) = g(a) = g(a)⊗ g(a0) . (6.4.3)

(3) For every element g(a), a unique inverse g(ā) exists, which also belongs to the group
such that

g(ā)⊗ g(a) = g(a0) = g(a)⊗ g(ā) . (6.4.4)

(4) Associative law of multiplication holds:

{g(a)⊗ g(b)} ⊗ g(d) = g(a)⊗ {g(b)⊗ g(d)} . (6.4.5)

The multiplication sign ⊗ between the two operators means that the operations are done
in succession.

If from the closure condition (6.4.2) one implies that c is an analytic function of a and b
such that c = c(a, b) or, explicitly,

ck = φk(a1 , a2 , · · · , ar; b1 , b2 , · · · , br) , k = 1, 2, 3, · · · r (6.4.6)

then the continuous group is called a Lie group.

Generators of a Lie Group

Consider a Lie group of transformation matrices of order of order (n× n ),

g(a) =


g11(a) g12(a) · · · g1n(a)
g21(a) g22(a) · · · g2n(a)

...
...

...
...

gn1(a) gn2(a) · · · gnn(a)

 .

Each of these matrices transforms an n-dimensional vector

x ≡


x1

x2

...
xn

→ x′ ≡


x′1
x′2
...
x′n

 ,

according to x→ x′ = g(a) x , (6.4.7)

or, explicitly, x′k =
n∑
j=1

gkj(a)xj ≡ fk(x1, x2, · · · , xn; a1, a2, · · · , ar) . (6.4.8)
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Recall that in Eqs. (6.4.7) a stands for {a1 , a2 , · · · ar}. We may adopt the convention that
the identity transformation operator g(a0) corresponds to a ≡ a0 = 0 or a1 = a2 = · · · ar = 0
so that

xk = fk(x1, x2, · · · , xn; a1 = 0, a2 = 0, · · · , ar = 0) ≡ fk(x, 0) . (6.4.9)

We can make a small change in x by varying a by a small amount da around the identity
a0. Then x = x+ dx = f(x, da) or, explicitly,

xk + dxk = fk(x1, · · · , xn; da1, da2, · · · daν · · · dar) . (6.4.10)

This implies that

dxk = fk(x1, x2, · · · , xn; da1, da2, · · · , dar)− fk(x1, x2, · · · , xn; 0, 0, · · · , 0)

or dxk =
r∑

ν=1

(
∂fk
∂aν

)
daν =

r∑
ν=1

ukνdaν (6.4.11)

where ukν ≡
(
∂fk
∂aν

)
a=0

. (6.4.12)

Let ψ(x) be the wave function representing the state of a physical system. Under the
infinitesimal transformation x → x′ = g(da)x, let the wave function ψ(x) → ψ′(x) =
ψ(x′) = ψ(x+ dx) ≡ ψ(x) + dψ(x). Then the change dψ(x) is given by

dψ =
n∑
k=1

∂ψ

∂xk
dxk =

n∑
k=1

∂ψ

∂xk

r∑
ν=1

ukν(x)daν ,

=
r∑

ν=1

daν

{
n∑
k=1

ukν
∂

∂xk

}
ψ ,

or dψ = −i
r∑

ν=1

daνXνψ , (6.4.13)

where Xν =
n∑
k=1

i
∂fk
∂aν

∂

∂xk
. (6.4.14)

The set of operators X̂1, X̂2, · · · , X̂r are called the generators of the Lie group and are
as many in number as the number of parameters aν . Thus under the infinitesimal
transformation x→ x′ = g(da)x, the wave function transforms according to ψ(x)→ ψ′(x),
where

ψ′(x) = ψ + dψ =

(
1− i

r∑
ν=1

daνXν

)
ψ(x) . (6.4.15)

With the choice of all the parameters aν to be real, and all the generators Xν made
Hermitian [Eq. (6.4.14)], the transformation equation (6.4.15) for an infinitesimal
transformation may easily be generalized for a finite transformation [as in Eq. (6.3.18)]
by constructing a set of unitary operators

Ûν = exp(−iaνXν) , (6.4.16)

for ν = 1, 2, · · · , r, where the parameters aν can vary continuously from the identity (aν = 0)
to any finite values within the respective ranges. An arbitrary element of the Lie group
may now be expressed as the product of unitary operators, so that

U = exp

(
−i

r∑
ν=1

aνXν

)
. (6.4.17)
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To summarize, the coordinate transformation x → x′ = g(a)x leads to the following
transformation for the state function:

ψ(x)→ ψ ′(x) = Uψ(x) = exp

(
−i

r∑
ν=1

aνXν

)
ψ(x) . (6.4.18)

It is obvious that if this set of transformation operators, which form the Lie group, leave
the Hamiltonian of a system invariant, then the Hamiltonian must commute with each one
of the generators: X1 , X2 · · · , Xr, so every generator corresponds to a conserved quantity
for the system.

6.5 Examples of Lie Group

6.5.1 Proper Rotation Group R(3) (or Special Orthogonal Group SO(3))

This is a group of transformations wherein a typical 3× 3 transformation matrix A, which
is real, orthogonal and unimodular, transforms a three-dimensional vector x→ x′:

x→ x′ = Ax . (6.5.1)

The three-dimensional vector in this case represents the Cartesian coordinates of a particle
and the state of the particle may be specified by the wave function ψ(x1, x2, x3). The
conditions satisfied by the real matrix A are:

(i) AAT = I, where AT is the transpose of A.

(ii) det(A) = |A| = 1 .

For the identity operator we have

A0 ≡ I =

1 0 0
0 1 0
0 0 1

 . (6.5.2)

Let A = I + dg be an infinitesimal transformation which carries the column vector x→ x′,
where

x′ ≡ x+ dx = (I + dg)x or dx = dg x . (6.5.3)

The orthogonality condition on A = I + dg then implies that dg is an anti-symmetric
matrix: dgT = −dg. In view of this observation, the diagonal elements of dg are zero and
the off-diagonal elements can be expressed in terms of three independent parameters as

dg =

 0 da3 −da2

−da3 0 da1

da2 −da1 0

 , (6.5.4)

where da1, da2, da3 are real and infinitesimal parameters. Using this in Eq. (6.5.3) we can
write the infinitesimal transformation asdx1

dx2

dx3

 =

 0 da3 −da2

−da3 0 da1

da2 −da1 0

x1

x2

x3


or

dx1 = da3 x2 − da2 x3

dx2 = −da3 x1 + da1 x3

dx3 = da2 x1 − da1 x2

 . (6.5.5)
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According to Eq. (6.4.11), this implies that

f1(x, a) ≡ x′1 = x1 + a3x2 − a2x3 , (6.5.6a)
f2(x, a) ≡ x′2 = x2 − a3x1 + a1x3 , (6.5.6b)
f3(x, a) ≡ x′3 = x3 + a2x1 − a1x2 . (6.5.6c)

There will be three generators in this case as there are three parameters. They can be
worked out, according to Eq. (6.4.14), as follows

X1 = i

{
∂f1

∂a1

∂

∂x1
+
∂f2

∂a1

∂

∂x2
+
∂f3

∂a1

∂

∂x3

}
,

= i

(
x3

∂

∂x2
− x2

∂

∂x3

)
= i

(
z
∂

∂y
− y ∂

∂z

)
= Lx/~ . (6.5.7)

X2 = i

{
∂f1

∂a2

∂

∂x1
+
∂f2

∂a2

∂

∂x2
+
∂f3

∂a2

∂

∂x3

}
,

= i

(
−x3

∂

∂x1
+ x1

∂

∂x3

)
= i

(
x
∂

∂z
− z ∂

∂x

)
= Ly/~ . (6.5.8)

X3 = i

{
∂f1

∂a3

∂

∂x1
+
∂f2

∂a3

∂

∂x2
+
∂f3

∂a3

∂

∂x3

}
,

= i

(
x2

∂

∂x1
− x1

∂

∂x2

)
= i

(
y
∂

∂x
− x ∂

∂y

)
= Lz/~ . (6.5.9)

The generators of R(3) group satisfy the same commutation relations as the components of
orbital angular momentum:

[Xk, X`] = iεk`mXm , (6.5.10)

whereas [Lk , L`] = i~εk`mLm where εk`m is the alternating symbol2. In terms of these
generators and continuous parameters, a typical R(3) operator for a finite transformation
may be constructed from Eq. (6.4.17) as

U = exp

(
−i

3∑
ν=1

aνXν

)
(6.5.11)

which transforms ψ(x)→ ψ′(x) = Uψ(x) = exp
[
−i

3∑
ν=1

aνXν

]
ψ(x).

2The alternating symbol is defined by

εijk =

8><>:
1 if ijk is a cyclic permutation of (123)

−1 if ijk is a cyclic permutation of (213)

0 in all other cases

.

Each index takes on values 1, 2 and 3. It is also easy to establish the following identity

εijkεimn = δjmδkn − δjnδkm .
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6.5.2 The SU(2) Group

A group of transformations, each of which transforms a two-dimensional column vector
x → x′ = Ax, so that in component form(

x′1
x′2

)
=
(
a11 a12

a21 a22

)(
x1

x2

)
, (6.5.12)

where A is a unitary matrix (AA† = A†A = I ) of determinant unity, is called an SU(2)
group. Let us take an infinitesimal transformation operator to be

A = I + dg . (6.5.13)

Then the unitary nature of A implies that da is an anti-Hermitian matrix

(dg)† = −dg . (6.5.14)

Then if we choose dg to be a traceless matrix of the form(
ida1 da2 + ida3

−da2 + ida3 −ida1

)
(6.5.15)

where da1 , da2 , da3 are infinitesimal parameters, the requirements of unitarity of A, as well
as its unimodular character (detA = 1), are automatically met.

For an infinitesimal transformation x→ x′ ≡ x+ dx = (I + dd)x, we have dx = dg x or(
dx1

dx2

)
=
(

ida1 da2 + ida3

−da2 + ida3 −ida1

)(
x1

x2

)
. (6.5.16)

This together with (6.4.11) gives

f1(x, a) ≡ x′1 = x1 + ia1x1 + (a2 + ia3)x2 , (6.5.17a)
and f2(x, a) ≡ x′2 = x2 + (−a2 + ia3)x1 − ia1x2 . (6.5.17b)

Then according to Eq. (6.4.14), the generators of this group are:

X1 = i

{
∂ f1

∂a1

∂

∂x1
+
∂ f2

∂a1

∂

∂x2

}
= −

(
x1

∂

∂x1
− x2

∂

∂x2

)
, (6.5.18)

X2 = i

{
∂ f1

∂a2

∂

∂x1
+
∂ f2

∂a2

∂

∂x2

}
= i

(
x2

∂

∂x1
− x1

∂

∂x2

)
, (6.5.19)

X3 = i

{
∂ f1

∂a3

∂

∂x1
+
∂ f2

∂a3

∂

∂x2

}
= −

(
x2

∂

∂x1
+ x1

∂

∂x2

)
. (6.5.20)

It can be seen that the generators X1, X2, X3 satisfy the following commutation relations

[Xk , X`] = −2iεk`mXm , (6.5.21)

where (k, `,m) are a cyclic permutation of (1,2,3). Redefining the generators to be

τk ≡ −1
2
Xk , (6.5.22)

we can rewrite the commutation relations as

[τk , τ`] = iεk`mτm . (6.5.23)
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Thus we see that the three generators of the SU(2) group satisfy commutation relations
similar to those satisfied by the generators of the rotation group R(3) [Eq. (6.5.10)].

Though the two groups are not isomorphic, in that there is no one-to-one correspondence
between the elements of SU(2) and R(3) groups, there is a homomorphic mapping of SU(2)
onto R(3). This means that every SU(2) transformation corresponds to a unique rotation
while every 3-dimensional rotation corresponds to a pair of SU(2) transformations. A two-
dimensional matrix representation of the generators τk can be in terms of the Pauli matrices

τ1 ≡− X1

2
→ 1

2

(
0 1
1 0

)
≡ 1

2
σ1 (6.5.24a)

τ2 ≡− X2

2
→ 1

2

(
0 −i
i 0

)
≡ 1

2
σ2 (6.5.24b)

τ3 ≡− X3

2
→ 1

2

(
1 0
0 −1

)
≡ 1

2
σ3 (6.5.24c)

Higher dimensional matrix representations are also possible.
In terms of the generators Xk or τk and the continuous parameters ak, a typical SU(2)

transformation operator (for a finite transformation) is given according to Eq. (6.4.16) by

U = exp

(
−i

3∑
k=1

akXk

)
. (6.5.25)

This transforms a state ψ(x)→ ψ′(x) = Uψ(x).
SU(2) symmetry, i.e., invariance of the Hamiltonian under the group of SU(2)

transformations, implies that each one of the generators of SU(2) corresponds to a conserved
quantity.

6.5.3 Isospin and SU(2) Symmetry

The isospin formalism was developed by Heisenberg to incorporate the following
observations into a mathematical formalism:

(a) If Coulomb interaction could be ignored, then the strong interaction between two
nucleons or between a nucleon and a pion or between two pions is independent of the
charge states of the interacting particles.

(b) The members of a charge multiplet, e.g., the neutron and proton or the pions
(π+ , π0 , π−) have very nearly the same mass.

To develop this formalism Heisenberg postulated the existence of an isospin vector in
the fictitious isospin space, in analogy with the angular momentum vector J in the real
space. In the quantum mechanical treatment, both these vectors correspond to vector
operators. Heisenberg further postulated that the components of the isospin vector operator,
T̂1 , T̂2 , T̂3, satisfy commutation relations similar to those satisfied by the components of
angular momentum operator

[T̂ 2, T̂k] = 0 , (6.5.26a)

[T̂k, T̂`] = iεk`mT̂m , (6.5.26b)

where k , ` ,m are again a cyclic permutations of (1,2,3). (It may noted here that while spin
or angular momentum has dimension of ~, isospin is dimensionless.)
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Now, in physical space, rotational symmetry implies that the rotation leaves the
Hamiltonian invariant, and the Hamiltonian commutes with the components of angular
momentum. Since Ĥ , Ĵ2 , and Ĵz form a set of commuting observables, their simultaneous
eigenstates |n, j,m 〉, with −j ≤ m ≤ j, are given by

Ĥ |n, j,m 〉 = En,j |n, j,m 〉 , (6.5.27a)

Ĵ2 |n, j,m 〉 = ~2j(j + 1) |n, j,m 〉 , (6.5.27b)

Ĵz |n, j,m 〉 = ~m |n, j,m 〉 . (6.5.27c)

All these states have energies, which depend on the quantum numbers n and j but not on
m. This degeneracy of the quantum states is a consequence of rotational symmetry. As is
well known, this symmetry is violated when an external magnetic field, say, in z-direction,
is applied. In that case the energies depend on m as well.

Carrying the analogy between isospin and angular momentum further, Heisenberg
postulated that rotation of axes in the fictitious isospin space leaves the strong interaction
Hamiltonian Ĥs (without Coulomb interaction) invariant and that this symmetry (called
isospin symmetry) is violated when Coulomb or electromagnetic interaction is switched on.
The invariance of the strong interaction Hamiltonian Ĥs under rotation in isospin space
implies that Ĥs commutes with the rotation operators in the isospin space and hence with
the components of the isospin vector T̂1 , T̂2 , T̂3. We can assume that Ĥs , T̂

2 , T̂3 form a set
of commuting observables and that they admit a set of simultaneous eigenstates |Et, t, t3 〉
with −t ≤ t3 ≤ t which satisfy

Ĥs |Et, t, t3 〉 = Et |Et, t, t3 〉 , (6.5.28a)

T̂ 2 |Et, t, t3 〉 = t(t+ 1) |Et, t, t3 〉 , (6.5.28b)

T̂3 |Et, t, t3 〉 = t3 |Et, t, t3 〉 . (6.5.28c)

The set of particle states |Et, t, t3 〉 forms an isospin (or charge) multiplet. These particle
states have very nearly the same energy (mass), but different charges. This is so because,
according to isospin symmetry, energy (mass) depends on t but not on t3. This symmetry
is, however, violated when the electromagnetic interaction is switched on, in which case the
energy (mass) would depend on t3 as well.

It may be pointed out here that the charge Q associated with a member of an isospin
(or charge) multiplet is related to the third component of isospin (t3 ) assigned to it by the
relation

Q = t3 +
Y

2
, (6.5.29)

where Y is the hypercharge associated with the multiplet. The isospin t and the hypercharge
Y have the same values for the whole multiplet, while different members of the isospin (or
charge) multiplet are distinguished by different values of t3. The assignment of isospin t to
a charge multiplet can be made on the basis of its multiplicity (2t+1). The nucleon doublet
is assigned t = 1/2 while the pion triplet is assigned t = 1. There are several examples of
charge (or isospin) multiplets in strongly interacting particles.

Coming back to the analogy between spin (angular momentum) and isospin, we note
that, whereas in the former case the external magnetic field may be switched on or
off, the electromagnetic interactions in the latter case are always there. But since the
electromagnetic interaction is much weaker than the strong interaction, the actual energies
(masses) of particle states belonging to an isospin multiplet would differ only slightly,
compared to the ideal (hypothetical) case when the electromagnetic interaction is assumed
to be switched off and there is no mass difference between the members of the isospin
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multiplet. That is why the masses of the particles associated with an isospin multiplet are
nearly, but not exactly, equal.

Now, what has SU(2) symmetry to do with isospin symmetry? We note that the
generators of SU(2) symmetry group and the generators of the 3-dimensional rotation group
in the isospin space, viz. the components T̂1 , T̂2 , T̂3 of isospin, satisfy identical commutation
relations [Eqs. (6.5.10) and (6.5.26)]

Further, according to isospin symmetry, the strong interaction does not distinguish
between the members of an isospin multiplet, for example between the states of the nucleon
doublet consisting of the proton (p) and the neutron (n)

|p 〉 ≡ |t = 1/2, t3 = 1/2 〉 represented by
(

1
0

)
, (6.5.30a)

|n 〉 ≡ |t = 1/2, t3 = −1/2 〉 represented by
(

0
1

)
, (6.5.30b)

or a linear combination of them, say

|N 〉 ≡ c1 |p 〉+ c2 |n 〉 represented by
(
c1
c2

)
. (6.5.30c)

We can as well say that strong interaction is invariant under an operation which brings
about the following transformation of states(

1
0

)
→
(

0
1

)
→
(
c1
c2

)
. (6.5.31)

But such a transformation may be brought about by a general SU(2) transformation

U = exp

(
3∑
k=1

akτk

)
, (6.5.32)

where the generators τ1 , τ2 , τ3 have representations in terms of Pauli matrices [Eq. (6.5.24)].
Similarly, for the isospin triplet of pions π+, π0, and π−,

∣∣π+
〉 ≡ |t = 1, t3 = 1 〉 represented by

1
0
0

 , (6.5.33a)

∣∣π0
〉 ≡ |t = 1, t3 = 0 〉 represented by

0
1
0

 , (6.5.33b)

∣∣π− 〉 ≡ |t = 1, t3 = −1 〉 represented by

0
0
1

 , (6.5.33c)

or a linear combination of these, say,

|π 〉 ≡ c1|π+ > +c2|π0 > +c3|π− > represented by

c1c2
c3

 , (6.5.33d)

isospin symmetry implies that a unitary operation can bring about the transformation of
states 1

0
0

→
0

1
0

→
0

0
1

→
c1c2
c3

 .
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would leave the strong interaction Hamiltonian invariant. But this transformation again
may be brought about by an SU(2) transformation operator U [Eq. (6.5.32)] where, for the
generators τk, we may now have a three dimensional matrix representation:

τ1 =
1√
2

0 1 0
1 0 1
0 1 0

 , τ2 =
i√
2

0 −1 0
1 0 −1
0 1 0

 , τ3 =

1 0 0
0 0 0
0 0 −1

 . (6.5.34)

The invariance of the strong interaction Hamiltonian under rotation of axes in the fictitious
isospin space (isospin symmetry) or under an SU(2) transformation (SU(2)-symmetry) are
equivalent statements and imply the commutation of the Hamiltonian with each one of
the components of isospin or with each one of the generators of SU(2) group. This is also
referred to as conservation of isospin in strong interactions.

Problems

1. Show that the following set of eight matrices

E =
(

1 0
0 1

)
, A =

(
0 1
−1 0

)
, B =

(−1 0
0 − 1

)
, C =

(
0 − 1
1 0

)
,

D =
(

1 0
0 − 1

)
, F =

(−1 0
0 1

)
, G =

(
0 − 1
−1 0

)
, H =

(
0 1
1 0

)
,

form a group under matrix multiplication. Construct the group multiplication table.

2. Define homomorphism in groups. Show that the symmetry group D of equilateral
triangle [or the matrix group E′, A′, B′, C ′, D′, F ′ (Appendix 6A1)] is homomorphic
onto the group consisting of {1,−1} under multiplication.

3. Show that the invariance of the Hamiltonian of a system, under the group of rotation
operations R̂(α, β, γ), where α, β, γ are the Euler angles, results in degeneracy so that
the simultaneous eigenstates |n, j,m 〉 of Ĥ, Ĵ2, Ĵz, with −j ≤ m ≤ j all correspond
to the same energy.

4. The SO(2) group is a group of all transformations wherein a transformation matrix
A, which is real orthogonal and unimodular, transforms a vector

X =
(
x1

x2

)
to X ′ =

(
x′1
x′2

)
.

Show that a typical transformation matrix

A =
(

cosϕ sinϕ
− sinϕ cosϕ

)
,

where ϕ is a parameter, can be expressed as A = exp(iσ2ϕ), where σ2 =
(

0 − i
i 0

)
is a Pauli matrix.
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5. As a result of an SO(2) transformation, a function ψ(x, y) transforms to ψ′(x, y) =
ψ(x′, y′), so that ψ′(x, y) = R(ϕ)ψ(x, y). Show that the generator of this
transformation is given by X = (x2

∂
∂x1
− x1

∂
∂x2

). To make the generator Hermitian
we can write it as i~X = −i~(x1

∂
∂x2
− x2

∂
∂x1

) = L3. Then show that for a finite
transformation, R(ϕ) is given by R(ϕ) = exp(ϕX) = exp(−iL3ϕ/~).

6. Find the isospin t and the hypercharge Y associated with the charge quadruplet
(∆++,∆+,∆0,∆−). Find the third component of isospin t3 associated with each one
of the charge states so as to justify the charge on them in accordance with the formula
Q = t3 + Y

2 .
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Appendix 6A1: Groups and Representations

A set of elements, E,A,B,C,D, · · · , X, Y , which may all be numbers, matrices, vectors,
symmetry operations, or some such entities, are said to form a group if, among them, a
kind of operation, called group multiplication ⊗, is defined such that

(1) On multiplying an element A of the set with another element B, one gets an element
C belonging to the same set: A⊗B = C. This property is called closure.

(2) One of the elements of the set, say E, is the identity such that E ⊗X = X = X ⊗E
where X can be any element of the set. This property is called the existence of the
identity.

(3) Every element X of the set admits an inverse Y ≡ X−1, which is contained in the
set, such that X ⊗X−1 = E = X−1 ⊗X. This property is called the existence of the
inverse.

(4) The associative law of multiplication holds, i.e., A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C. This
property is called associativity (of group multiplication).

Examples of groups include:

(a) The set of all positive and negative integers including zero forms a group under the
operation of simple addition.

(b) The set of all (n× n) non-singular matrices including the unit matrix forms a group
under matrix multiplication.

(c) The set of all three-dimensional vectors forms a group under vector addition.

(d) The symmetry operations of an equilateral triangle (E,A,B,C,D, F ) form a group.

Multiplication of two operations means performing the two operations in succession.

Isomorphism and Homomorphism in Groups

Two groups are said to be isomorphic when a unique one-to-one correspondence exists
between their elements so that the product of any two elements in the first group corresponds
to the product of the corresponding elements in the second group. The elements of the two
groups may consist of different entities with different rules of combination (multiplication),
but they are said to be isomorphic if the above mentioned one-to-one correspondence exists
between them. Obviously, two isomorphic groups have to be of the same order, i.e., both
have to have the same number of elements. It follows that two isomorphic groups have the
same multiplication table.

For example, the group D3 of the symmetry elements of an equilateral triangle consisting
of the elements E,A,B,C,D, F and the group of 2× 2 matrices M : {E′, A′, B′, C ′, D′, F ′}
under matrix multiplication, where,

E′ =
(

1 0
0 1

)
, A′ =

(
1 0
0 −1

)
, B′ =

− 1
2

√
3

2

√
3

2
1
2

 ,

C ′ =

 − 1
2 −

√
3

2

−
√

3
2

1
2

 , D′ =

 − 1
2

√
3

2

−
√

3
2 − 1

2

 , F ′ =

− 1
2 −

√
3

2

√
3

2 − 1
2

 ,

(6A1.1.35)
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are isomorphic, and it may be verified that they have the same multiplication table [Table
6.1].

Homomorphism is a less sharp correspondence between two groups. A group G :
{E,A,A′, B,C,C ′, · · · .} is said to be homormorphic onto another group H : {Ē, Ā, C̄},
if to every element of G there corresponds one and only one element of H, while to every
element of‘H there corresponds at least one element of G but more than one element of
G may also correspond to one element of H. The correspondence between the two groups
has to be such that products correspond to products. Unlike isomorphism, homomorphism
is not a reciprocal relationship. The number of elements in G must be greater than the
number of elements in H if G is homomorphic onto H. One may also say that isomorphism
is a special case of homomorphism.

Matrix Representation of a Group

The matrix representation of a group G is a matrix group M onto which the group G to
be represented is homomorphic. In particular when the group G to be represented, and
the matrix group, are isomorphic then the matrix representation is said to be faithful.
For example, the matrix group M : {E′A′B′C ′D′F ′} is a faithful representation of the
symmetry group of an equilateral triangle. Each matrix group is clearly its own faithful
representation. On the other hand, one may regard all elements of the group to correspond
to a one-dimensional matrix group consisting of only the identity element {I}. This is
because all the elements of the first group can be mapped on to the group consisting
of the identity {I}. The latter may be called an unfaithful representation of the whole
group D3. We can also regard the elements E,F,D of the group D3 to be mapped to
one-dimensional matrix {I} while the elements A,B,C are mapped on the one-dimensional
matrix {−I}. This is because the operators (group elements) E,D,F stand for the rotations
of the equilateral triangle about an axis through the center and perpendicular to the plane
of the triangle through 0, 2π/3 and 4π/3, while A,B,C stand for reflections about the
medians. The matrix group consisting of +I and −I is also an unfaithful representation of
the whole group D3.

The dimension of a matrix representation of a group is equal to the number of rows (or
columns) in the matrices representing the group.

Reducible and Irreducible Representations of the Group

Starting from a matrix representation M : {D(A1), D(A2), · · · , D(Ah)} of a group
G : {A1, A2, A3 , · · · , Ah} we can get another representation by subjecting all the matrices
of this representation to the same similarity transformation. The new representation is
equivalent to the former representation.

Now, from two different representations of the group, of different dimensions m and n,
viz.,

M : {D(A1), D(A2), · · · , D(Ah)} (m− dimensional) , (6A1.1.36)
and M ′ : {D′(A1), D′(A2), · · · , D′(Ah)} (n− dimensional) , (6A1.1.37)

it is possible to form an (m+ n)-dimensional representation(
D(A1) 0

0 D′(A1)

)
,

(
D(A2) 0

0 D′(A2)

)
, · · · ,

(
D(Ah) 0

0 D′(Ah)

)
.

Furthermore, the matrices of this (m+ n)-dimensional representation may all be subjected
to a similarity transformation to give an equivalent representation. The resulting (m+ n)-
dimensional representation said to be reducible for the simple reason that the matrices of
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this representation may all be put in a block diagonal form by a similarity transformation
and from this one can get two sets of representation matrices of (reduced) orders m and n.

A reducible representation of a group is one of which all the representative matrices can
be reduced to a block diagonal form through a similarity (or unitary) transformation. When
all the representative matrices of a group cannot be reduced to a block diagonal form by a
similarity transformation then the matrix representation is said to be irreducible.
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7

ANGULAR MOMENTUM IN QUANTUM
MECHANICS

7.1 Introduction

The invariance of the Hamiltonian of a physical system under spatial rotation, together with
the connection between the rotation operator R̂n(θ) and the angular momentum operator
Ĵ ≡ (Ĵx, Ĵy, Ĵz), leads to the principle of conservation of angular momentum [Chapter 6,
Sec. 6.3] and to the status of total angular momentum as a constant of motion. This makes
angular momentum a very important quantity in quantum mechanics.

Commutation Rules for the Components of Angular Momentum

It is easy to verify that components of orbital angular momentum

L̂x = ŷp̂z − ẑp̂y , (7.1.1a)

L̂y = ẑp̂x − x̂p̂z , (7.1.1b)

L̂z = x̂p̂y − ŷp̂x , (7.1.1c)

do not commute with one another. In fact, using the basic commutation relations between
the observables x̂, ŷ, ẑ and p̂x, p̂y, p̂z, we find

[L̂x, L̂y] = i~L̂z , (7.1.2a)

[L̂y, L̂z] = i~L̂x , (7.1.2b)

[L̂z, L̂x] = i~Ly . (7.1.2c)

In vector notation, these relations may be written as

L̂× L̂ = i~L̂ . (7.1.3)

These commutation relations are characteristic, not only of the components of orbital
angular momentum, but also of the components of total angular momentum. We can
in fact show, quite independently, that the generators Ĵx, Ĵy, Ĵz of the rotation group [a
typical operator being R̂n(θ) ≡ exp(−in · Ĵ θ/~)], which are the components of total angular
momentum, obey the same commutation relations as the components of orbital angular
momentum do. To see this, let us consider the system to be consisting of a particle P ,
whose distance from the origin is unity. Let us apply two infinitesimal clockwise rotations
about the x and y-axes, respectively, and investigate the difference which arises by applying
them in different order. We adopt the active view of rotation. This means positive rotations
of the system are taken to be clockwise. Let P be a point situated on x-axis a unit distance
from the origin so that its Cartesian coordinates are (1, 0, 0). First consider the case when
the rotation about the x-axis precedes that about the y-axis [Fig. 7.1]. The first rotation

203
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X

Y

Z

P
(1,0,0)

(1,0,δθy)

δθy

P′

O

FIGURE 7.1
Displacement of the particle from P → P ′ when rotation about the x-axis through angle δθx
precedes that about the y-axis through angle δθy. Note that we are using the active view
of rotations in which the axes stay fixed but the system is rotated. This means a counter-
clockwise rotation of coordinate axes (with the system fixed) is equivalent to a clockwise
rotation of the system by the same amount (with the axes fixed).

about the x-axis leaves P unchanged while the second about the y-axis brings it P ′ in the xz
plane. Next consider the case when rotation about the y-axis precedes that about the x-axis
[Fig. 7.1], so that P → P ′ → P ′′. It is clear from the figures that the difference between
the two sets of operations, with the order of rotations interchanged, is a net displacement
of the particle of magnitude δθxδθy in the xy plane. This displacement is equivalent to a
counter-clockwise rotation about the z-axis of magnitude δθxδθy.

Mathematically, the difference between these infinitesimal rotations can be expressed as[
R̂y(δθy)R̂x(δθx)− 1̂

]
−
[
R̂x(δθx)R̂y(δθy)− 1̂

]
=
[
R̂z(−δθxδθy)− 1̂

]
. (7.1.4)

Using R̂x(δθx) =
(

1− iδθxĴx/~
)

for an infinitesimal rotation, and similar expressions for

R̂y and R̂z in Eq.(7.1.4), and expanding the resuting expressions on both sides, being careful
about the order of operator multiplication, we obtain

1
~2
δθxδθy(ĴxĴy − ĴyĴx) =

i

~
δθxδθyĴz ,

or ĴxĴy − ĴyĴx = i~Ĵz . (7.1.5a)

Similarly, by considering the difference between two sets of infinitesimal rotations about y
and z-axes in different order (and also about z- and x-axes) we can get the commutation
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X

Y

Z

P P′

δθx

(1,0,0)

(1, δθyδθx, δθy)δθy

P′′

O

(1,0,δθy)

FIGURE 7.2
Displacement of the particle from P → P ′ → P ′′ when rotation about the y-axis through
angle δθy precedes that about the x-axis through angle δθx.

relations

[ĴyĴz − ĴzĴy] = i~Ĵx , (7.1.5b)

and [ĴyĴz − ĴzĴy] = i~Ĵx . (7.1.5c)

Although the components of angular momentum do not commute among themselves, it is
easily verified, using the commutation relations (7.1.5), that each Cartesian component of
angular momentum operator commutes with square of the angular momentum operator
Ĵ2 = Ĵ2

x + Ĵ2
y + Ĵ2

z :

[Ĵ2, Ĵx] = [Ĵ2, Ĵy] = [Ĵ2, Ĵz] = 0 . (7.1.6)

In view of the commutation relations (7.1.5) and (7.1.6), we can choose one of the
components of angular momentum, say Ĵz, to construct simultaneous eigenstates of the
set of commuting observables Ĵ2 and Ĵz. If we label the simultaneous eigenstates of Ĵ2 and
Ĵz as |η,m 〉, then

Ĵ2 |η,m 〉 = η~2 |η,m 〉 , (7.1.7)
Jz |η,m 〉 = m~ |η,m 〉 . (7.1.8)

What are the sets of values that η and m can take? We shall discuss this in the next section.
In what follows, we will use ~ as unit of angular momentum so that it will not appear

explicitly in equations involving angular momentum operators. We can restore it at the end
of the calculations using dimensional arguments.
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7.2 Raising and Lowering Operators

Let us introduce two operators Ĵ+ and Ĵ− defined by

Ĵ+ = Ĵx + iĴy , (7.2.1)

Ĵ− = Ĵx − iĴy . (7.2.2)

It is easy to check that Ĵ+ and Ĵ− are not self-adjoint operators. On the other hand Ĵ− is
the adjoint of Ĵ+ and vice versa. Using the definition of Ĵ± and Eq. (7.1.5), the following
commutation relations can be established

[Ĵ2, Ĵ+] = [Ĵ2, Ĵ−] = 0 , (7.2.3)

[Ĵz, Ĵ+] = +Ĵ+ , (7.2.4)

[Ĵz, Ĵ−] = −Ĵ− , (7.2.5)

[Ĵ+, Ĵ−] = 2Ĵz . (7.2.6)

According to the properties of linear operators, Ĵ+ and Ĵ− operating on the state |η,m 〉
would yield states which are different from the original state. Let us examine whether the
new states Ĵ± |η,m 〉 are still the eigenstates of Ĵ2 and Ĵz.

From Eqs. (7.2.3), we have

Ĵ2Ĵ+ |η,m 〉 = Ĵ+Ĵ
2 |η,m 〉 = ηJ+ |η,m 〉 , (7.2.7)

and Ĵ2Ĵ− |η,m 〉 = Ĵ−Ĵ
2 |η,m 〉 = ηJ− |η,m 〉 . (7.2.8)

Thus J+ |η,m 〉 and J− |η,m 〉 remain eigenstates of Ĵ2 with the same eigenvalue η. However,
from Eqs. (7.2.4) and (7.2.5) we have

ĴzĴ+ |η,m 〉 = (Ĵ+Ĵz + Ĵ+) |η,m 〉 = (m+ 1)Ĵ+ |η,m 〉 , (7.2.9)

and ĴzĴ− |η,m 〉 = (Ĵ−Ĵz − Ĵ−) |η,m 〉 = (m− 1)Ĵ− |η,m 〉 . (7.2.10)

This means that Ĵ+ |η,m 〉 is an eigenstate of Ĵz belonging to the eigenvalue (m+ 1) while
Ĵ− |η,m 〉 is an eigenstate of Ĵz belonging to the eigenvalue (m − 1). Thus apart from a
multiplying constant, we can interpret the states Ĵ+ |η,m 〉 and Ĵ− |η,m 〉 as |η,m+ 1 〉 and
|η,m− 1 〉, respectively. The operators Ĵ+ and Ĵ− are termed as the ‘raising’ and ‘lowering’
operators, respectively. By applying the raising operator to a state |η,m 〉 in succession
we can construct states with m increasing in steps of unity. Similarly, by applying the
lowering operator to the state |η,m 〉 in succession, we can construct successive states with
m decreasing in steps of unity. Hence, in the set of states |η,m 〉, the m-values (eigenvalues
of Ĵz) are spaced by unity. It is natural to ask if the sequence of m values is bounded. Let
us investigate this further.

Using the definition Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z in Eq. (7.1.6) we get

(Ĵ2
x + Ĵ2

y ) |η,m 〉 ≡ (Ĵ2 − Ĵ2
z ) |η,m 〉 = (η −m2) |η,m 〉 . (7.2.11)

Since Ĵ2
x + Ĵ2

y is the sum of the squares of Hermitian operators, its eigenvalue (η−m2) must
be non-negative, which means

m2 ≤ η or −√η ≤ m ≤ √η . (7.2.12)
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Thus the spectrum of m is bounded both from above and below. Let us denote the upper
and lower limits of m by m2 and m1, respectively. Then, according to the concept of raising
and lowering operators, the lower and upper limits of m must be such that

Ĵ+ |η,m2 〉 = 0 or Ĵ−Ĵ+ |η,m2 〉 = 0 , (7.2.13a)

Ĵ− |η,m1 〉 = 0 or Ĵ+Ĵ− |η,m− 〉 = 0 . (7.2.13b)

Using the commutation relations for the components of angular momentum, we can establish
that

Ĵ−Ĵ+ = Ĵ2
x + Ĵ2

y + i(ĴxĴy − ĴyĴx) = Ĵ2 − Ĵ2
z − Ĵz , (7.2.14)

Ĵ+Ĵ− = Ĵ2
x + Ĵ2

y − i(ĴxĴy − ĴyĴx) = Ĵ2 − Ĵ2
z + Ĵz . (7.2.15)

Hence Eq. (7.2.13) imply that

η −m2
2 −m2 = 0 = η −m2

1 +m1 . (7.2.16)

This yields m1 = −m2 or m1 = m2 + 1. The latter value for m1 is obviously absurd since
the lower limit cannot exceed the upper limit. Hence the lower and upper bounds of m
must satisfy m1 = −m2. If we rename the upper limit m2 as j, then m1 = −j. Using this
in Eq. (7.2.16), the eigenvalue of Ĵ2 can be written as

η = j(j + 1) , (7.2.17)

and j can be called the total angular momentum quantum number for the state while m
can be called the magnetic quantum number.The state itself can be labeled by the quantum
numbers j and m as |j,m 〉 with

Ĵ2 |j,m 〉 = j(j + 1) |j,m 〉 , (7.2.18a)

Ĵz |j,m 〉 = m |j,m 〉 . (7.2.18b)

Since we can go from m = j to m = −j in a total of 2j+ 1 steps, it follows that 2j+ 1 must
be a positive integer and therefore, j must be an integer or a half integer. The magnetic
quantum number m can then take any value from +j to −j in integer steps.

We can now express the states Ĵ+ |j,m 〉 and Ĵ− |j,m 〉 from Eqs. (7.2.9) and (7.2.10) as
|j,m+ 1 > and |j,m− 1 >, respectively, apart from some multiplying constants

Ĵ+ |j,m 〉 = Γjm+ |j,m+ 1 〉 , (7.2.19a)

Ĵ− |j,m 〉 = Γjm− |j,m− 1 〉 . (7.2.19b)

To determine the constant Γjm+ , we multiply each side of Eq. (7.2.19a) by its conjugate
imaginary from the left and use Eq. (7.2.14) to get

|Γjm+ |2 = 〈jm| Ĵ−Ĵ+ |jm 〉 = 〈jm| Ĵ2 − Ĵ2
z − Ĵz |jm 〉 ,

= j(j + 1)−m2 −m = (j −m)(j +m+ 1) ,

or |Γjm+ | = Γjm+ =
√

(j −m)(j +m+ 1) , (7.2.20)

where we have taken the constant Γjm+ to be real assuming the phase factor to be 1.
Proceeding in a similar manner with Eq. (7.2.19b), the constant Γjm− is found to be

Γjm− =
√

(j +m)(j −m+ 1) , (7.2.21)

where we have chosen Γjm− to be real, again assuming the phase factor to be 1.
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7.3 Matrix Representation of Angular Momentum Operators

We can set up a matrix representation for angular momentum operators. To set up this
representation we choose the set of commuting observables Ĵ2 and Ĵz to be diagonal and
the basis states to be the set of their simultaneous eigenstates |j,m 〉, where −j ≤ m ≤ j.
In this representation any observable X̂, which may stand for any of the operators
Ĵx, Ĵy , Ĵz , Ĵ+ , Ĵ− , Ĵ

2 or any combination of them, may be represented by a (2j+1)×(2j+1)
matrix as

X̂ → [Xmm′ ] =


Xj,j Xj,j−1 Xj,j−2 · · · Xj,−j
Xj−1,j Xj−1,j−1 Xj−1,j−2 · · · Xj−1,−j

...
...

...
...

...
X−j,j X−j,j−1 X−j,j−2 · · · X−j,−j

 , (7.3.1)

where a typical matrix element is Xmm′ = 〈jm| X̂ |jm′ 〉. Obviously, the operators Ĵ2 and
Ĵz are represented by the diagonal matrices,

Ĵ2 → [J2
mm′ ] =


j(j + 1) 0 · · · 0

0 j(j + 1) · · · 0
...

...
...

...
0 · · · j(j + 1) 0
0 · · · 0 j(j + 1)

 ≡ j(j + 1) I , (7.3.2a)

with J2
mm′ ≡ 〈jm| Ĵ2 |jm′ 〉 = j(j + 1) δmm′ , (7.3.2b)

and Ĵz → [(Jz)mm′ ] =


j 0 0 · · · 0
0 j − 1 0 · · · 0
...

...
...

...
...

0 0 · · · −(j − 1) 0
0 0 · · · 0 −j

 , (7.3.3a)

with (Jz)mm′ ≡ 〈jm| Ĵz |jm′ 〉 = m′ δmm′ (7.3.3b)

where I is the identity matrix.
To construct the matrices representing Ĵx and Ĵy in this representation we first construct

the matrices representing Ĵ+ and Ĵ−. These follow immediately from Eqs. (7.2.19), (7.2.20)
and (7.2.21) to be

(J+)mm′ ≡ 〈jm| Ĵ+ |jm′ 〉 =
√

(j −m′)(j +m′ + 1) δm,m′+1 , (7.3.4)

(J−)mm′ ≡ 〈jm| Ĵ− |jm′ 〉 =
√

(j +m′)(j −m′ + 1) δm,m′−1 . (7.3.5)

In terms of these matrices, those representing Ĵx and Ĵy may easily be determined by using
the relations

Ĵx =
1
2

(
Ĵ+ + Ĵ−

)
, (7.3.6a)

Ĵy =
1
2i

(
Ĵ+ − Ĵ−

)
. (7.3.6b)
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Pauli Spin Matrices

As a simple example let us determine the matrices representing the angular momentum
operators for the total angular momentum quantum number j = 1/2. In this case 2j+1 = 2
so that the matrices representing the angular momentum operators are 2×2 matrices [with
the notation Xmm′ =

〈
1
2 ,m

∣∣ X̂ ∣∣ 1
2 ,m

′ 〉]
Ĵ2 →

(
j(j + 1) 0

0 j(j + 1)

)
=
(

3/4 0
0 3/4

)
=

3
4

(
1 0
0 1

)
=

3
4
I , (7.3.7)

Ĵz →
(
j 0
0 − j

)
=
(

1/2 0
0 − 1/2

)
=

1
2

(
1 0
0 − 1

)
≡ 1

2
σz , (7.3.8)

Ĵ+ →
( 〈

1
2 ,

1
2

∣∣ Ĵ+

∣∣ 1
2 ,

1
2

〉 〈
1
2 ,

1
2

∣∣ Ĵ+

∣∣ 1
2 ,− 1

2

〉〈
1
2 ,− 1

2

∣∣ Ĵ+

∣∣ 1
2 ,

1
2

〉 〈
1
2 ,− 1

2

∣∣ Ĵ+

∣∣ 1
2 ,

1
2

〉) =
(

0 1
0 0

)
, (7.3.9)

Ĵ− →
( 〈

1
2 ,

1
2

∣∣ Ĵ− ∣∣ 12 , 1
2

〉 〈
1
2 ,

1
2

∣∣ Ĵ− ∣∣ 12 ,− 1
2

〉〈
1
2 ,− 1

2

∣∣ Ĵ− ∣∣ 12 , 1
2

〉 〈
1
2 ,− 1

2

∣∣ Ĵ− ∣∣ 12 ,− 1
2

〉) =
(

0 0
1 0

)
. (7.3.10)

From Eqs. (7.3.6), (7.3.9) and (7.3.10), we find that the matrix representations of Ĵx and
Ĵy for j = 1/2 are

Jx =
1
2

(
Ĵ+ + Ĵ−

)
→ 1

2

(
0 1
1 0

)
≡ 1

2
σx , (7.3.11)

and Jy =
1
2i

(
Ĵ+ − Ĵ−

)
→ 1

2

(
0 −i
i 0

)
≡ 1

2
σy . (7.3.12)

The matrices σx, σy, σz are called Pauli spin matrices. For a spin-half particle, the spin
operator Ŝ ≡ (Ŝx, Ŝy, Ŝz) can be represented (in a representation in which Ŝ2 and Ŝz are
diagonal) by

Ŝ =
~
2
σ , (7.3.13)

where σ is called the Pauli spin vector, whose components are the Pauli spin matrices.
Hence Sx = ~σx/2, Sy = ~σy/2, Sz = ~σz/2. It may be noted here that for spin operators
and spin states, coordinate representation is not possible; the only possible representation
is the matrix representation.

7.4 Matrix Representation of Eigenstates of Angular Momentum

A simultaneous eigenstate |j,mo 〉 of Ĵ2 and Ĵz may be represented by a column vector
in a representation in which Ĵ2 and Ĵz are diagonal and the basis states are |j,m 〉 with
−j ≤ m ≤ j as

|j,mo 〉 →


〈j, j| j,mo〉
〈j, j − 1| j,mo〉
〈j, j − 2| j,mo〉

...
〈j,−j| j,mo〉

 ≡


δj,mo
δj−1,mo

δj−2,mo
...

δ−j,mo

 . (7.4.1)

It is obvious that only one of the elements of the representative column matrix is non-zero
and its value is unity; all others are zero. For example, the states |j, j 〉 and |j,−j 〉 are
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represented as

|j,m = j 〉 →


1
0
0
...
0

 and |j,m = −j 〉 →


0
0
0
...
1

 .

As a special case, consider the representation of angular momentum states for j = 1/2.
These states, referred to as the spin states, have the following representation∣∣∣∣j =

1
2
,m =

1
2

〉
→
(

1
0

)
≡ α , (7.4.2)∣∣∣∣j =

1
2
,m = −1

2

〉
→
(

0
1

)
≡ β . (7.4.3)

The spin states α ≡
(

1
0

)
and β ≡

(
0
1

)
are also referred to as spin-up and spin-down states,

respectively. Since Ĵ2 and Ĵz for j = 1/2 have the matrix representation Ĵ2 → 3
4I and

Ĵz → 1
2σz, corresponding to the eigenvalue equations in Dirac notation,

Ĵ2

∣∣∣∣12 ,±1
2

〉
=

3
4

∣∣∣∣12 ,±1
2

〉
, (7.4.4)

Ĵz

∣∣∣∣12 ,±1
2

〉
= ±1

2

∣∣∣∣12 ,±1
2

〉
, (7.4.5)

we have the matrix equations

Ĵ2α ≡ 3
4
Iα =

3
4
α , (7.4.6a)

Ĵ2β ≡ 3
4
Iβ =

3
4
β , (7.4.6b)

Ĵzα ≡ 1
2
σzα =

1
2
α , (7.4.7a)

Ĵzβ ≡ 1
2
σzβ = −1

2
β . (7.4.7b)

The physical content of the two sets of equations, (7.4.4) and (7.4.5) on the one hand and
Eqs. (7.4.6) and (7.4.7) on the other, is the same. Thus the state |1/2, 1/2 〉 represented
by matrix α is the simultaneous eigenstate of Ĵ2 and Ĵz, belonging to the eigenvalues
j(j + 1) = 3/4 and m = 1/2, respectively. Likewise the state |1/2,−1/2 〉 represented
by matrix β is the simultaneous eigenstate of Ĵ2 and Ĵz belonging to the eigenvalues
j(j + 1) = 3/4 and m = −1/2, respectively, the angular momentum being expressed in
units of ~.

Thus for an electron or any spin-half particle, there are two alternative spin states:

the spin up state |1/2, 1/2 〉, represented by
(

1
0

)
≡ α and spin down state |1/2,−1/2 〉

represented by matrix
(

0
1

)
≡ β. The direct evidence for the spin of the electron and

for the fact that it can exist in two alternative spin states came from the Stern-Gerlach
experiment.
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Stern-Gerlach Experiment

As is well known, the magnetic moment of an electron due to its orbital motion is

µ
L

= − e

2me
g
L
L (7.4.8)

where L is the orbital angular momentum of the electron and the gyromagnetic ratio g
L

1

pertaining to orbital motion is 1. The negative sign in µ
L

reflects the fact that for electrons
µ is directed opposite to L. On account of its intrinsic (spin) angular momentum, the
electron also has an intrinsic magnetic moment, which can be similarly written down as

µ
S

= − e

2me
g
S
S , (7.4.9)

where g
S

is the gyromagnetic ratio pertaining to spin and is assigned the value 2 in
accordance with experimental data and Dirac theory [Chapter 12]. Hence the total magnetic
moment of the electron is given by

µ = µ
L

+ µ
S

= − e

2me
(2S +L) . (7.4.10)

For a silver atom in its ground state, the angular momentum as well as the magnetic
moment, is due to the spin of the valence electron. Putting L = 0 and S = ~σ/2, we have

µ = −µ
B
σ , (7.4.11)

where µ
B

= e~/mc is Bohr magneton (atomic unit of magnetic moment). In the Stern-

A

B

z

Oven

Magnets

South

FIGURE 7.3
The set-up for the Stern-Gerlach experiment.

1The gyromagnetic ratio g is defined to be the ratio of the magnetic moment in units of Bohr magneton
(µB = e~/2me) to the corresponding angular momentum (in units of ~). Thus corresponding to orbital

and spin angular momenta we have gL ≡
µ
L
/µB
L/~ and gS =

µ
S
/µB
S/~ .
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Gerlach experiment an inhomogeneous magnetic field is produced predominantly along
the z-direction, perpendicular to the direction of a collimated beam of silver atoms. The
gradient of the magnetic field created by the special design of magnetic poles is along the
z-direction as shown in Fig. 7.3. Then the inhomogeneous field between the pole pieces in
the vicinity of some suitably chosen origin can be written as

B(z) = B0 + z
∂B

∂z
ez , (7.4.12)

where B0 = B(0) is the value of the field at the origin and the field gradient ∂B
∂z ≡

(
∂B
∂z

)
z=0

is assumed to be constant between the pole pieces. If a particle with magnetic moment µ
[Eq. (7.4.11)] enters the region of the inhomogeneous magnetic field, it will experience a
force given by

F = −∇(−µ ·B) = µz

(
∂B

∂z

)
= −µBσz

(
∂B

∂z

)
. (7.4.13)

The force on the particle, which lasts for a short time while the particle passes through the
inhomogeneous magnetic field, will direct particles in different directions depending on the
value of σz (the projection of spin along the z-axis). An atom with its magnetic moment
pointing along the +z axis will be deflected upward, whereas an atom whose magnetic
moment was pointed in the −z would be deflected downward. Thus the atoms exiting the
magnetic field would be spread out according to the z-component their magnetic moment
leaving a record on the photographic plate. Classically, since all orientations of the magnetic
moment are possible, we would expect a smear of silver atoms on the photographic plate.
However, it was found that the silver atoms accumulated only at two distinct positions
A and B on the photographic plate indicating that there are only two possible values of
σz : +1 and −1 [Fig. 7.3]. Silver atoms with σz = +1 (spin up) were deflected toward
B and those with σz = −1 were deflected toward A (since for the electrons the magnetic
moment is directed opposite to their spin).

When the Stern-Gerlach experiment was repeated with the field and field gradient
along x-direction, which was also perpendicular to the beam of silver atoms, the silver
atoms accumulated at two distinct spots along the x-direction. What this experiment
demonstrated was the quantization of Ĵz; given the direction of magnetic field gradient, the
magnetic force on a particle of magnetic moment µ may take on only a discrete set of values
depending on the projection of its angular momentum in the direction of the field gradient,
thus implying the quantization of angular momentum. If the orbital angular momentum of
the particle is zero, we can determine the magnitude of its spin from the number of spots
(2S + 1) on the photographic plate.

7.5 Coordinate Representation of the Orbital Angular
Momentum Operators and States

For the orbital angular momentum states and operators we can have a matrix representation
as well as a coordinate representation, in addition to the option of representing these entities
in the Dirac notation. On the other hand, as already mentioned, for the spin states and
operators, the only possible representation, other than that in the Dirac notation, is the
matrix representation.

In the coordinate representation, the set of coordinate observables x̂ , ŷ , ẑ are taken to
be diagonal (we assume the system to have three degrees of freedom), and the basis states
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are the simultaneous eigenstates |x, y, z 〉 of these observables. The state |`,m 〉, which
is the simultaneous eigenstate of L̂2 and L̂z and is characterized by the orbital angular
momentum quantum number ` and magnetic quantum number m, may then be represented
by the function

〈x, y, z| `,m〉 = Ỹ`m(x, y, z) ≡ Ỹ`m(r) . (7.5.1)

The eigenvalue equations

L̂2|`,m > = ~2 `(`+ 1)|`,m > (7.5.2a)

L̂z|`,m > = ~m |`,m > (7.5.2b)

may be written in the coordinate representation by pre-multiplying both sides of these two
equations on the left by 〈x, y, z| . Using Eqs. (7.1.1), (2.7.4) and (7.5.1), these equations
reduce to the set of differential equations:

−~2

[(
y
∂

∂z
− z ∂

∂y

)2

+
(
z
∂

∂x
− x ∂

∂z

)2

+
(
x
∂

∂y
− y ∂

∂x

)2
]
Ỹ`m(x, y, z)

≡ L2Ỹ`m(x, y, z) = ~2`(`+ 1)Ỹ`m(x, y, z) , (7.5.3)

and −i~
(
x
∂

∂y
− y ∂

∂x

)
Ỹ`m(x, y, z) ≡ LzỸ`m(x, y, z) = m~Ỹ`m(x, y, z) . (7.5.4)

Here L2 and Lz are the differential operators, representing Dirac linear operators L̂2 and
L̂z, in the coordinate space and Ỹ`m(x, y, z) ≡ 〈x, y, z| `,m〉.

We can as well use the spherical polar coordinates r, θ, ϕ, instead of the Cartesian
coordinates to express the states and observables; this does not imply a change in
representation but merely a coordinate transformation. With this change in in coordinates,
the angular momentum observables may be re-expressed as

L2 = −~2

[
1

sin θ
∂

∂θ
sin θ

∂

∂θ
+

1
sin2 θ

∂2

∂ϕ2

]
, (7.5.5)

and Lz = −i~ ∂

∂ϕ
, (7.5.6)

while the function Ỹ`m(x, y, z) ≡ Ỹ`m(r) may be rewritten as Ỹ`m(r, θ, ϕ). Since the
differential operators L2 and Lz involve only the angles θ and ϕ, their simultaneous
eigenfunctions will also depend only on these variables. These functions, called spherical
harmonics, are denoted by Y`m(θ, ϕ) and satisfy the eigenvalue equations [see Sec. 5.5, Eqs.
(5.5.36) and (5.5.37) and also Appendix 5A1],

L2Y`m(θ, ϕ) = ~2`(`+ 1)Y`m(θ, ϕ) , (7.5.7a)
LzY`m(θ, ϕ) = ~mY`m(θ, ϕ) . (7.5.7b)

The functions Ỹ`m(r) occurring in Eqs. (7.5.3) and (7.5.4) are called harmonic polynomials
and are expressed in terms of spherical harmonics as

Ỹ (r) = r`Y`m(θ, ϕ) . (7.5.8)

According to Eqs. (7.5.3) and (7.5.4) the harmonic polynomials are also simultaneous
eigenfunctions of L2 and Lz, belonging to the eigenvalues `(`+ 1)~2 and m~.

To summarize, we use the coordinate representation for the orbital angular momentum
states, whereas for the spin states the column matrix representation is adopted. The product
of an orbital angular momentum state and a spin state can thus be represented by the
product of a wave function and a column matrix or by a multi-component wave function.
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7.6 General Rotation Group and Rotation Matrices

In considering spatial rotations in three-dimensional space, we may consider either (a) the
rotation of the coordinate system (O, X, Y, Z) (characterized by its origin O and axes OX,
OY and OZ) with the physical system fixed in space (passive viewpoint) or (b) the rotation
of the physical system in the opposite sense with the coordinate system fixed in space (active
viewpoint). We will adopt the active viewpoint. Thus a positive rotation of the coordinate
system (the physical system being fixed) about a certain axis through an angle θ will be
described as rotation of the physical system (the coordinate system being fixed) about the
same axis through an angle −θ.

As we have seen in Sec. 6.3, we can specify rotation in terms of a unit vector n along the
axis of rotation (which requires two independent parameters for its specification) and the
angle of rotation θ. Alternatively, a general rotation can also be specified by three Euler
angles which take the original axes (O, X, Y, Z) into the new set of axes (O, X ′′′, Y ′′′ , Z ′′′)
as follows. We first define a general rotation in terms of the rotations of coordinate axes by
adopting the passive viewpoint and then write down the corresponding rotation operator
for the active viewpoint.

X

Z=Z′

Y

Y′
α α

X′

α

FIGURE 7.4
The first step of Euler rotation involves rotation of axes about OZ through angle α (positive
when measured counterclockwise).

(i) A rotation of the coordinate axes about the original z-axis through angle α in the
counter clockwise sense, taking the axes (O, X, Y, Z) to (O, X ′, Y ′, Z ′) [Fig. 7.4].

(ii) Next, a rotation is brought about the new y-axis (OY ′) through angle β so that the
new coordinate axes are (O, X ′′, Y ′′, , Z ′′) [Fig. 7.5].
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X

Z=Z′

Y

Y′=Y′′

X′

X′′

Z′′
β

α α

β

β

FIGURE 7.5
The second step of Euler rotation involves rotation of axes about OY ′ through angle β
(positive when measured counterclockwise).

(iii) Finally a rotation is brought about OZ ′′ axis through angle γ, the new coordinate
axes being (O, X ′′′, Y ′′′, Z ′′′) [Fig. 7.6].

The rotation operator describing the rotation of the physical system (active viewpoint)
corresponding to the Euler rotation outlined above is given by

R̂(α, β, γ) = R̂z′′(γ) R̂y′(β) R̂z(α) ,

= e−iγĴz′′/~e−iβĴy′/~e−iαĴz/~ . (7.6.1)

Note the angular momentum operators and the order in which they appear in this equation.
We can put this equation in a form where only the components of angular momentum along
the coordinate axes OX, OY , and OZ (which stay fixed in the active viewpoint) appear by
using the transformation properties of operators under rotation. Under the rotation R̂z(α),
the operator Ĵy is transformed into Ĵy′ = R̂z(α)Ĵy R̂†z(α) = e−iαĴz/~Ĵye

iαĴz/~ so that

R̂y′(β) ≡ e−iβĴy′/~ = e−iαĴz/~ e−iβĴy/~ eiαĴz/~ . (7.6.2)

Similarly, noting that Ĵz′′ is obtained from Ĵz by successive application of the rotations
R̂z(α) and Ry′(β) so that Ĵz′′ = e−iβĴy′/~ e−iαĴz/~Ĵze

iαĴz/~eiβĴy′/~, which allows us to
write

R̂z′′(γ) = R̂y′(β) R̂z(α) R̂z(γ) R̂†z(α) R̂†y′(β) ,

= e−iβĴy′/~ e−iαĴz/~ e−iγĴz/~ eiαĴz/~ eiβĴy′/~ . (7.6.3)
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X

Y

Y′=Y′′

X′

X′′
X′′′

Y′′′

β

α α

β

∞

∞

Z′′=Z′′′
∞

Z=Z′

FIGURE 7.6
The third step of Euler rotation is the rotation of axes about OZ ′′ through angle γ (positive
when measured counterclockwise).

Substituting Eqs. (7.6.2) and (7.6.3) into Eq. (7.6.1), we can eliminate Ĵy′ and Ĵz′′ to arrive
at

R̂(α, β, γ) = exp
[
− i

~
α Ĵz

]
exp

[
− i

~
β Ĵy

]
exp

[
− i

~
γ Ĵz

]
. (7.6.4)

Thus in the active view of rotation, wherein the coordinate axes are fixed, the rotation of
the system (particle) corresponding to Euler angles (α, β, γ) may be achieved by a rotation
γ about z-axis first, followed by a rotation β about y-axis and finally a rotation α about
z-axis, all in the clockwise sense.

Group Property of Rotation Operators

The infinite set of rotation operators, corresponding to continuously varying angles α (0 ≤
α ≤ 2π), β (0 ≤ β ≤ π) and γ (0 ≤ γ ≤ 2π) constitutes a continuous (Lie) group. Every
rotation operator R̂(α, β, γ), for given values of α, β, and γ is a member of this group and
the group elements obviously satisfy (i) closure, (ii) existence of identity, (iii) existence of
inverse, and (iv) associativity under group multiplication.
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7.6.1 Rotation Matrices

A matrix representation for the rotation operators R̂(α, β, γ) may be set up by choosing a
representation in which the commuting observables Ĵ2 and Ĵz are diagonal and the basis
states are 2j + 1 simultaneous eigenstates |j,m 〉 with −j ≤ m ≤ j. In this representation,
the rotation operator R̂(α, β, γ) is represented by a (2j+1)(2j+1) matrix Dj whose typical
matrix element is given by

Dj
mm′(α, β, γ) = 〈j,m| R̂(α, β, γ) |j,m′ 〉 . (7.6.5)

This matrix is called the rotation matrix (or simply the D-matrix) and each matrix element
is a function of Euler angles.

Under the rotation specified by the Euler angles (α, β, γ), the eigenstate |j,m 〉 of Ĵ2 and
Ĵz transforms to R̂(α, β, γ)|j,m >, which may be called the rotated state. It is clear from
the structure of R̂(α, β, γ) that the rotated state will have the same j but different m, in
general because Ĵx, Ĵy, and Ĵz commute with Ĵ2 but not among themseleves. In fact, the

rotated state may be expanded by inserting a unit operator
j∑

m′=−j
|j,m′ 〉 〈j,m′| as

R̂(α, β, γ) |j,m 〉 =
j∑

m′=−j
|j,m′ 〉 〈j,m′| R̂(α, β, γ)|j,m > ,

=
j∑

m′=−j
Dj
m′m(α, β, γ) |j,m′ 〉 , (7.6.6)

which shows that the rotated state is an eigenstate of Ĵ2 belonging to the same eigenvalue
j(j + 1) as the original state |j,m 〉. The value for Ĵz, however, is indeterminate for this
state and can have any value in the range −j ≤ m ≤ +j.

Properties of Rotation Matrices

(i) Since the rotation operator is unitary

R̂(α, β, γ)R̂†(α, β, γ) = 1̂ = R̂†(α, β, γ)R̂(α, β, γ) , (7.6.7)

the representative matrix is also unitary

Dj(Dj)† = I = (Dj)†Dj , (7.6.8)

or
j∑

m′=−j
Dj
mm′(α, β, γ)Dj∗

km′(α, β, γ) = δmk =
j∑

m′=−j
Dj∗
m′m(α, β, γ)Dj

m′k(α, β, γ) .

(7.6.9)

(ii) The set of functions Dj
mm′(α, β, γ) may also be treated as a complete set of functions

in the space of Euler angles and they satisfy the orthonormality condition,

2π∫
0

dα

π∫
0

sinβdβ

2π∫
0

dγDj∗
mk(α, β, γ)Dj′

m′k′(α, β, γ) = δjj′δmm′δkk′
8π2

2j + 1
. (7.6.10)

Consequently these functions may be used as a basis of expansion so that any function
of Euler angles may be expanded in terms of these functions.
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(iii) The functions Dj
mm′(α, β, γ) for integral values of j (j = L) are also the eigenfunctions

ψLKM (α, β, γ) of a symmetric top:

ψLKM (α, β, γ) =
(

2L+ 1
8π2

)1/2

DL
−K,−M (α, β, γ) . (7.6.11)

In this state, the square of the orbital angular momentum is L(L+ 1) (in units of ~2),
its z-component is M (in units of ~) and its component along the body-fixed axis is
K (in units of ~).

Transformation of Spherical Harmonics

We can now easily see how spherical harmonics transform under a rotation specified by
Euler angles. Let θ, ϕ be the angular coordinates of a point r and θ′, ϕ′ be the angular
coordinates of the point R−1r, then under the rotation R a state |`,m 〉 is transformed
according to

R̂(αβ, γ) |`,m 〉 =
∑̀

m′=−`

|`,m′ 〉 〈`,m′| R̂(α, β, γ) |`,m 〉 . (7.6.12)

Taking the coordinate representative of both sides, by premultiplying both sides by 〈r| , and
using 〈r| R̂(α, β, γ) |`,m 〉 ≡ 〈R−1r

∣∣ `,m〉 = r`Y`m(θ′, ϕ′) and 〈r| |`,m 〉 = r`Y`m(θ, ϕ),
we obtain the transformation

Y`m(θ′, ϕ′) =
∑̀

m′=−`

D`
m′m(α, β, γ)Y`m′(θ, ϕ) , (7.6.13)

where the coordinates θ′, ϕ′ may be regarded as the coordinates of r relative to the new
set of axes obtained by the rotation R on the original set of axes. Equation (7.6.13) shows
how spherical harmonics of the rotated cordinates θ′, ϕ′ are expressd in terms of spherical
harmonics of the original coordinates θ, ϕ.

7.7 Coupling of Two Angular Momenta

Suppose two angular momenta Ĵ1 and Ĵ2 are to be added (or coupled) to give the total
angular momentum Ĵ = Ĵ1 + Ĵ2. The component angular momenta could, for example,
represent the orbital angular momentum and spin of a single particle, or the spins of two
particles or the total angular momenta of two particles. Now the Cartesian components
of the angular momenta Ĵ1, Ĵ2 and Ĵ satisfy the usual commutation relations. With the
help of these commutation relations, it may be easily verified that out of all these angular
momentum operators, we can form two different sets of mutually commuting observables:
(i) Ĵ2

1 , Ĵ1z, Ĵ
2
2 , Ĵ2z and (ii) Ĵ2, Ĵ2

1 , Ĵ
2
2 and Ĵz.

The simultaneous eigenstates of the first set of commutating variables are |j1m1j2m2 〉 ≡
|j1m1 〉 |j2m2 〉, where −j1 ≤ m1 ≤ j1 and −j2 ≤ m2 ≤ j2. These states are referred to as
the uncoupled states. The total number of uncoupled states is obviously (2j1 + 1)(2j2 + 1).
The simultaneous eigenstates of the second set of commuting observables are denoted by
|(j1, j2)jm > with |j1 − j2| ≤ j ≤ j1 + j2 and are called the coupled states. The total

number of the coupled states,
j1+j2∑

j=|j1−j2|

j∑
m=−j

m =
j1+j2∑

j=|j1−j2|
(2j + 1) = (2j1 + 1)(2j2 + 1), is

the same as the number of uncoupled states as it should be.
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In quantum mechanics, coupling of two angular momenta Ĵ1 and Ĵ2 implies construction
of the the coupled states |(j1, j2)jm >, which are simultaneous eigenstates of Ĵ

2
, Ĵz (and

also of Ĵ
2

1, Ĵ
2

2) in terms of the uncoupled states |j1m1j2m2 〉, which are the products of
the simultaneous eigenstates of Ĵ2

1 , Ĵ1z and Ĵ2
2 , Ĵ2z. Since the uncoupled states form a

complete set of states, any coupled state can be expressed in terms of them. Thus for the
ket |j,m 〉 ≡ |(j1j2)jm 〉, we have

|j,m 〉 ≡ |(j1j2)jm >=
∑
m1

∑
m2

|j1m1j2m2 > 〈j1m1j2m2| jm〉 . (7.7.1)

The coefficients 〈j1m1j2m2| jm〉 are called the vector coupling coefficients or Clebsch-
Gordan coefficients and are taken to be real

〈j1m1j2m2| (j1j2)jm〉 = 〈 (j1j2)jm| j1m1j2m2〉 . (7.7.2)

We shall denote these coefficients by (j1m1j2m2|jm) so that Eq. (7.7.1) may be rewritten
as

|j,m 〉 =
j1∑

m1=−j1

j2∑
m2=−j2

(j1m1j2m2|jm) |j1m1 〉 |j2m2 〉 . (7.7.3)

Since the coupled states also form a complete set of states, being the simultaneous
eigenstates of a set of commuting observables Ĵ2, Ĵ2

1 , Ĵ
2
2 and Ĵz, it is also possible to express

an uncoupled |j1m1j2m2 〉 state in terms of the coupled states as

|j1m1j2m2 〉 =
j1+j2∑

j=|j1−j2|

j∑
m=−j

|(j1j2)jm 〉 〈 (j1j2)jm| j1m1j2m2〉 , (7.7.4)

where, as will be seen in the next section, the limits of j are given by |j1−j2| ≤ j ≤ |j1 +j2|.
The summation over m is redundant because the uncoupled state |j1m1j2m2 〉 is an
eigenstate of Ĵz = Ĵ1z + Ĵ2z belonging the eigenvalue m1 + m2 so only the coupled
states with m = m1 + m2 will contribute. In other words, the Clebsch-Gordan coefficient
(j1m1j2m2|jm) vanishes unless m = m1 +m2. Making use of this explicitly and the reality
of Clebsch-Gordan coefficients [Eq. (7.7.2)] we can write Eq. (7.7.4) as

|j1m1 j2m2 〉 =
j1+j2∑

j=|j1−j2|

(j1m1j2m2|j,m1 +m2) |(j1j2)j,m1 +m2 〉 . (7.7.5)

From Eq. (7.7.3) we note that in the coupled state Ĵ1z and Ĵ2z are not well defined (although
their sum Ĵz = Ĵ1z = Ĵ2z is) while from Eq. (7.7.5) we note that in the uncoupled state Ĵ2

is not well defined.

7.8 Properties of Clebsch-Gordan Coefficients

(a) The Clebsch-Gordan coefficient (j1m1j2m2|jm) vanishes unless m = m1 +m2.

Operating on both sides of Eq. (7.7.3) with Ĵz = Ĵ1z + Ĵ2z, and using Ĵz |jm 〉 =
m |jm 〉 and (Ĵ1z + Ĵ2z) |j1m1 〉 |j2m2 〉 = (m1 +m2) |j1m1 〉 |j2m2 〉, we get

m|jm >=
∑
m1

∑
m2

(j1m1j2m2|jm)(m1 +m2) |j1m1 〉 |j2m2 〉 . (7.8.1a)
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Transposing the right-hand side of this equation to the left-hand side and combining
the two terms by expressing |jm 〉 in terms of uncoupled states, we get∑

m1

∑
m2

(m−m1 −m2)(j1m1j2m2|jm)|j1m1 > |j2m2 >= 0 . (7.8.1b)

Since the uncoupled states are orthogonal to each other and no linear relationship
can exist between them, each one of the terms in the sum must vanish. Hence
(m−m1 −m2)(j1m1j2m2|jm) = 0, which implies the Clebsch-Gordan coefficient

(j1m1j2m2|jm) = 0 if m 6= m1 +m2 . (7.8.2)

As a result of this property, the double summation in Eq. (7.7.3) (expansion of a
coupled state in terms of uncoupled states) may be replaced by a single summation:

|(j1j2)jm 〉 =
j2∑

m2=−j2

(j1, (m−m2), j2m2|jm) |j1,m−m2 〉 |j2,m2 〉 . (7.8.3)

(b) Orthogonality of Clebsch-Gordan Coefficients

From the orthogonality of the coupled states, 〈 (j1j2)jm| (j1j2)j′m′〉 = δjj′δmm′ , and
the expansions

|(j1j2)j′m′ 〉 =
∑
m′1

∑
m′2

(j1m′1j2m
′
2|j′m′) |j1m′1 〉 |j2m′2 〉 ,

and 〈 (j1j2)jm| =
∑
m1

∑
m2

(j1m1j2m2|jm) 〈j1m1| 〈j2m2| ,

we have∑
m1

∑
m2

∑
m′1

∑
m′2

(j1m1j2m2|jm)(j1m′1j2m
′
2|j′m′)δm1m′1

δm2m′2
= δjj′δmm′ ,

or
j2∑

m2=−j2

(j1,m−m2, j2m2|jm)(j1,m′ −m2, j2m2|j′m′) = δj j′δmm′ . (7.8.4)

This expresses the orthogonality condition for Clebsch-Gordan coefficients.

(c ) The ∆-Condition

The Clebsch-Gordan coefficient is zero unless j1, j2, j satisfy the ∆-condition that
the sum of any two of the j’s is greater than the third and the absolute difference
of any two of the j’s is less than the third. Mathematically, for the Clebsch-Gordan
coefficient to be non-zero, the following conditions must be satisfied

|j1 − j2| ≤ j ≤ j1 + j2 ,

|j − j1| ≤ j2 ≤ j + j1 ,

|j − j2| ≤ j1 ≤ j + j2 .

(7.8.5)

The coupled state |(j1j2)jm > does not exist if the ∆-condition is not satisfied. Since
the coupled state can be expressed in terms of the uncoupled states, multiplied by
Clebsch-Gordan coefficients, it follows that the Clebsch-Gordan coefficient vanishes if
the ∆-condition is not satisfied.
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(d) Symmetry Relations

In the Clebsch Gordan coefficient (j1m1j2m2|jm), the positions of j1m1, j2m2 and
jm may be interchanged and the signs of magnetic quantum numbers be so adjusted
that the equality m = m1 +m2 is satisfied. The relationship between these coefficients
can be given by the symmetry relations

(j1m1j2m2|jm) =



(−)j1+j2−j(j2m2j1m1|jm)
(−)j1+j2−j(j1,−m1, j2,−m2|j,−m)

(−)j1−m1

(
2j+1
2j2+1

)1/2

(j1,m1, j, −m|j2,−m2)

(−)j2+m2

(
2j+1
2j1+1

)1/2

(j,−m, j2,m2|j1,−m1)

(7.8.6)

Appendix (7A1) gives, without derivation, the analytic expression for the Clebsch-
Gordan coefficients (j1,(m −m2), j2,m2|jm). Simplified analytic expressions for the
Clebsch-Gordan coefficients are also given for j2 = 1/2 and 1 in Tables 7.1 and 7.2.

7.8.1 The Vector Model of the Atom

The vector model is a means to visualize the coupled and uncoupled atomic angular
momentum states in a semi-classical way. To visualize the coupled state |(j1j2)jm > we
may assume that the (classical) angular momentum vectors J1 (of length j∗1 =

√
j1(j1 + 1))

and J2 (of length j∗2 =
√
j2(j2 + 1)) both precess about the total angular momentum J

(with the same angular frequency) and the vector J itself precesses about the z-direction.
The vectors J1 and J2 can, for example, represent the orbital angular momentum and the
spin of a valence electron in an atom. According to this model the projections of the vectors
along the z-direction (direction of the applied magnetic field), m1 and m2, are uncertain
while the projection of J along the z-axis is well-defined [Fig. 7.7]. The angle θ between
the vectors J1 and J2 is fixed

cos θ =
j∗2 − j∗21 − j∗22

2j∗1 j
∗
2

=
j(j + 1)− j1(j1 + 1)− j2(j2 + 1)

2
√
j1(j1 + 1)j2(j2 + 1)

(7.8.7)

as are the lengths of the vectors J1, J2 and J.
The uncoupled state |j1m1j2m2 >, which occurs when the applied magnetic field along

the z-direction is so high that the coupling between the orbital angular momentum and spin
is broken, can be visualized by assuming that the vectors J1 and J2 precess independently
about the z-direction so that their projections m1, m2 along the z-axis are well-defined
[Fig. ??]. In this case there is uncertainty, both in magnitude and direction about the total
angular momentum J.

7.8.2 Projection Theorem for Vector Operators

A typical matrix element for an observable in the angular momentum operator basis is of the
form 〈n′, j′,m′| Ô |n, j,m 〉, where n and n′ represent quantum numbers needed to complete
the basis states. The observable Ô can be a scalar, vector or a tensor operator. Operators
can be classified according to their transformation under rotation. Thus an observable Ô
is said to be a scalar if it commutes with the angular momentum operator. This follows
from the law of transformation of operators (6.3.6) under a rotation R̂. For an infinitesimal
rotation through an angle δθ about an axis n, we have R̂n(δθ) = 1 − i~−1δθ n · Ĵ . The



222 Concepts in Quantum Mechanics

θ
J1

J2
J

m

O

Z

FIGURE 7.7
Vector model of the atom showing the coupled state in which the vectors J1 and J2 precess
about J while J precesses about the z-direction.

operator Ô is transformed according to

Ô′ ≡ R(δθ) Ô R̂†(δθ) =
(

1− i

~
δθ n · Ĵ

)
Ô

(
1 +

i

~
δθ n · Ĵ

)
= Ô − i

~
δθ [n · Ĵ , Ô] , (7.8.8)

where we have kept only the first order terms. But for a scalar, we must have Ô′ = Ô for
all rotations R̂. Comparing this with Eq. (7.8.8), we find that a scalar operator satisfies
the commutation relation

[Ĵ , Ô] = 0 . (7.8.9)

Examples of scalar operators include Ĵ2, p̂2, r̂ · p̂ and the Hamiltonian Ĥ of an isolated
system. For such operators the matrix element

〈n′, j′,m′| Ô |n, j,m 〉 = αj(n′, n)δjj′δmm′ (7.8.10a)

where αj(n′, n) is a constant which depends on j, n, n′ but not m. In particular, for fixed n
and j we have

〈n, j,m′| Ô |n, j,m 〉 = αj(n)δmm′ , (7.8.10b)

that is, the matrix representation of Ô is a diagonal matrix and all the diagonal elements
are equal. Thus in the subspace with fixed (n, j) spanned by 2j + 1 basis states |n, j,m 〉
(−j ≤ m ≤ j), a scalar operator is proportional to the identity operator. This relation is an
example of the Wigner-Eckart theorem, which can be applied to a whole class of operators
known as the irreducible tensor operators. Scalar operators are a special, and the simplest,
case of these operators. In addition to the scalar operators already considered, we consider
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O

m2

Z

J1

J2
J

m1

FIGURE 7.8
In the uncoupled state both J1 and J2 precess independently about the z-direction. J is
undefined.

vector operators, which are another class of irreducible tensor operators and derive results
analogous to Eq. (7.8.10).

A vector observable V̂ is a set of three operators V̂x, V̂y, V̂z, which satisfy the following
commutation relations[

Ĵx, V̂x

]
= 0 ,

[
Ĵy, V̂y

]
= 0 ,

[
Ĵz, V̂z

]
= 0 , (7.8.11a)[

Ĵx, V̂y

]
= i~ V̂z ,

[
Ĵy, V̂z

]
= i~ V̂x ,

[
Ĵz, V̂x

]
= i~ V̂y , (7.8.11b)[

Ĵx, V̂z

]
= −i~ V̂y ,

[
Ĵy, V̂x

]
= −i~ V̂z ,

[
Ĵz, V̂y

]
= −i~ V̂x . (7.8.11c)

Note that the relations in the second and third columns are obtained by cyclic permutations
of the indices x, y, and z. These relations follow from the transformation law for the
components of a vector under rotation. Consider, for example, an infinitesimal rotation
through an angle δϕ about the z-axis. Then, according to Eq. (6.3.6), a vector operator V̂
is transformed to

V̂
′ ≡ Rn(δϕ)V̂ R†n(δϕ) =

(
1− i~−1δϕ Ĵz

)
V̂
(

1− i~−1δϕ Ĵz

)
,

= V̂ − i~−1δϕ [Ĵz, V̂ ] . (7.8.12)

The vector operator V̂ is also a vector, whose components transform, according to
Eq. (6.3.15), as

V̂ ′x = Vx + δϕ V̂y , (7.8.13a)

V̂ ′y = −δϕ V̂x + Vy , (7.8.13b)

V̂ ′z = Vz . (7.8.13c)
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A component-by-component comparison of Eqs. (7.8.12) and (7.8.13) leads to the
commutator relations in the third column of Eq. (7.8.11). Similarly, by considering rotations
about x and y axes, other commutation relations can be established.

For a single particle with orbital and spin angular momentum observables L̂ and Ŝ,
the angular momentum operator is L̂ + Ŝ. It is then easy to show that, beside Ĵ , L̂
and Ŝ, position and momentum observables r̂ and p̂ are vector observables satisfying
the commutation relations (7.8.11). For a system consisting of two electrons, the angular
momentum operator is Ĵ = Ĵ1 + Ĵ2 and L̂1, Ŝ1, r̂1, L̂2, etc. are all vector operators.

If we introduce the operators V̂± and Ĵ± by

V̂± = V̂x ± i V̂y, and Ĵ± = Ĵx ± i Ĵy , (7.8.14)

then, with the help of Eqs. (7.8.11), we can show that[
Ĵz, V̂±

]
= ±~V̂± , (7.8.15)[

Ĵ+, V̂+

]
= 0 =

[
Ĵ−, V̂−

]
, (7.8.16)[

Ĵ+, V̂−

]
= 2~V̂3 , (7.8.17)[

Ĵ−, V̂+

]
= −2~V̂3 . (7.8.18)

Consider now the basis states |n, j,m 〉 where n denotes quantum numbers, in addition to
the angular momentum quantum numbers j and m, that are needed to specify the states
of the system completely. Operating with both sides of Eq. (7.8.15) on |n, j,m 〉, and
rearranging, we obtain

Ĵz

(
V̂± |n, j,m 〉

)
= V̂±Ĵz |n, j,m 〉 ± ~V̂± |n, j,m 〉 = (m± 1)~V̂± |n, j,m 〉 . (7.8.19)

From this we see that V̂± |n, j,m 〉 is an eigenstate of Ĵz with eigenvalue (m± 1)~. Since Ĵz
is a Hermitian operator, states belonging to its different eigenvalues are orthogonal. From
this we have the selection rules

〈n′, j′,m′| V̂z |n, j,m 〉 = 0 , if m′ 6= m, (7.8.20)

〈n′, j′,m′| V̂+ |n, j,m 〉 = 0 , if m′ 6= m+ 1 , (7.8.21)

〈n′, j′,m′| V̂− |n, j,m 〉 = 0 , if m′ 6= m− 1 . (7.8.22)

Restricting now to the 2j + 1 dimensional subspace spanned by |n, j,m 〉 (−j ≤ m ≤ j),
with fixed values of n and j, we obtain from Eq. (7.8.16)

〈n, j,m+ 2| Ĵ+V̂+ |n, j,m 〉 = 〈n, j,m+ 2| V̂+Ĵ+ |n, j,m 〉 . (7.8.23)

Inserting the unit operator
∑j
m=−j |n, j,m 〉 〈n, j,m| = 1̂ between Ĵ+ and V̂+ and using

Eqs. (7.8.20) through (7.8.22), we obtain

〈n, j,m+ 2| Ĵ+ |n, j,m+ 1 〉 〈n, j,m+ 1| V̂+ |n, j,m 〉
= 〈n, j,m+ 2| V̂+ |n, j,m+ 1 〉 〈n, j,m+ 1| Ĵ+ |n, j,m 〉 ,

or
〈n, j,m+ 1| V̂+ |n, j,m 〉
〈n, j,m+ 1| Ĵ+ |n, j,m 〉

=
〈n, j,m+ 2| V̂+ |n, j,m+ 1 〉
〈n, j,m+ 2| Ĵ+ |n, j,m+ 1 〉 . (7.8.24)
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Using this relation recursively for −j ≤ m ≤ j − 2, we have

〈n, j,−j + 1| V̂+ |n, j,−j 〉
〈n, j,−j + 1| Ĵ+ |n, j,−j 〉

=
〈n, j,−j + 2| V̂+ |n, j,−j + 1 〉
〈n, j,−j + 2| Ĵ+ |n, j,−j + 1 〉

=
〈n, j,−j + 3| V̂+ |n, j,−j + 2 〉
〈n, j,−j + 3| Ĵ+ |n, j,−j + 2 〉

· · ·

=
〈n, j, j| V̂+ |n, j, j − 1 〉
〈n, j, j| Ĵ+ |n, j, j − 1 〉 . (7.8.25)

Denoting the common ratio in Eq. (7.8.25), which can depend only on n and j, by λ+(n, j),
we can express the matrix element of V̂+ in terms of the matrix element of Ĵ+ as

〈n, j,m+ 1| V̂+ |n, j,m 〉 = λ+(n, j) 〈n, j,m+ 1| Ĵ+ |n, j,m 〉 . (7.8.26)

Using the selection rule (7.8.21), which implies 〈n, j,m′| V̂+ |n, j,m 〉 and 〈n, j,m′| Ĵ+ |n, j,m 〉
are nonzero only if m′ −m = 1, we can write Eq. (7.8.26) as

〈n, j,m′| V̂+ |n, j,m 〉 = λ+(n, j) 〈n, j,m′| Ĵ+ |n, j,m 〉 , (7.8.27)

for arbitrary values of m and m′. Similarly, by taking the matrix element of [Ĵ−, V̂−] = 0
between 〈n, j,m− 2| and |n, j,m 〉, and using the selection rule (7.8.22), we find the matrix
element of V̂− is proportional to that of Ĵ−,

〈n, j,m′| V̂− |n, j,m 〉 = λ−(n, j) 〈n, j,m′| Ĵ− |n, j,m 〉 . (7.8.28)

Finally, by taking the matrix element of commutation relation (7.8.18) between 〈n, j,m|
and |n, j,m 〉 and using the selection rule (7.8.20) we find

−2~ 〈n, j,m| V̂z |n, j,m 〉 = 〈n, j,m| Ĵ−V̂+ − V̂+Ĵ− |n, j,m 〉
= ~

√
j(j + 1)−m(m+ 1) 〈n, j,m+ 1| V̂+ |n, j,m 〉

− ~
√
j(j + 1)−m(m− 1) 〈n, j,m| V̂+ |n, j,m− 1 〉 .

The matrix elements on the right can be replaced by the matrix elements of Ĵ+ with the
help of Eq. (7.8.27). Evaluating the resulting matrix elements of Ĵ+ and simplifying we
find

〈n, j,m| V̂z |n, j,m 〉 = m~ λ+(n, j) . (7.8.29)

Similar argument, starting with (7.8.17), leads to

〈n, j,m| V̂z |n, j,m 〉 = m~ λ−(n, j) . (7.8.30)

A comparison of Eqs. (7.8.29) and (7.8.30), shows that we must have

λ−(n, j) = λ+(n, j) ≡ λ(n, j) . (7.8.31)

Since any component of V̂ can be expressed as a combination of V±, and Vz, it follows from
Eqs. (7.8.27) through (7.8.31) that

〈n, j,m′| V̂ |n, j,m 〉 = λ(n, j) 〈n, j,m′| Ĵ |n, j,m 〉 . (7.8.32)
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Thus inside the subspace spanned by the states |n, j,m 〉 (−j ≤ m ≤ j), the matrix elements
of V̂ are proportional to those of Ĵ . This result constitutes the Wigner-Eckart theorem for
vector operators. The quantity λ(n, j) is known as the reduced matrix element.

It follows from Eq. (7.8.34) that the matrix element of Ĵ · V̂ is

〈n, j,m′| Ĵ · V̂ |n, j,m 〉 =
∑
m′′

〈n, j,m′| Ĵi |n, j,m′′ 〉 〈n, j,m′′| V̂i |n, j,m 〉

= λ(n, j)
∑
m′′

〈n, j,m′| Ĵi |n, j,m′′ 〉 〈n, j,m′′| Ĵi |n, j,m 〉

= λ(n, j) 〈n, j,m′| Ĵ2 |n, j,m 〉 = λ(n, j) ~2 j(j + 1)δmm′ .
(7.8.33)

Note that this result is similar to Eq. (7.8.10), which is to be expected since Ĵ · V̂ is a
scalar operator. Using this in Eq. (7.8.32) we can write

〈n, j,m′| V̂ |n, j,m 〉 =
〈n, j,m′| Ĵ · V̂ |n, j,m 〉

~2 j(j + 1)
〈n, j,m′| Ĵ |n, j,m 〉 . (7.8.34)

Thus within the (2j + 1)-dimensional space spanned by |n, j,m 〉, all vector operators are
proportional to Ĵ . This result is known as the projection theorem. Physically, this result can
be understood in terms of a (classical) vector model of the system. For an isolated physical
system, the total angular momentum J is a constant of motion. So all physical quantities
associated with the system rotate about the vector J . In particular, for a vector quantity
V , only its component parallel to vector J has nonzero time average value [Fig. 7.9].

V

J

V||
V⊥

FIGURE 7.9
Classical vector model of the projection theorem. Since the vector V rotates rapidly about
the total angular momentum vector J , only its projection V ‖ parallel to J has nonzero
(expectation) value.

V ‖ =
J · V
J2

J , (7.8.35)

which is the classical analog of Eq. (7.8.34). It must be kept in mind that the proportionality
of vector V̂ and Ĵ holds as long as we restrict to the states belonging to the same subspace
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with fixed n and j. A vector operator V̂ may possess nonzero matrix element between
states belonging to different subspaces, whereas the corresponding matrix elements of Ĵ
always vanish. We shall see examples of this in Sec. 8.4.

7.9 Coupling of Three Angular Momenta

The formalism of preceding section for the coupling of two angular momenta can be extended
to the coupling of three or more angular momenta. We shall illustrate this for the coupling
of three and four angular momenta, which are useful in discussing two-body problems.

Consider three angular momentum operators Ĵ1, Ĵ2 , Ĵ3, which combine to give the total
angular momentum operator Ĵ = Ĵ1 + Ĵ2 + Ĵ3. Let us construct the coupled states, which
are the simultaneous eigenstates of Ĵ2 and Ĵz from the uncoupled states, which are the
simultaneous eigenstates of Ĵ2

1 , Ĵ1z, Ĵ
2
2 , Ĵ2z, Ĵ

2
3 , Ĵ3z. There are three alternative schemes

to do this.
One scheme is to add Ĵ1 and Ĵ2 first and then add the resultant to the Ĵ3:

Ĵ1 + Ĵ2 = Ĵ12 , (7.9.1a)

and Ĵ12 + Ĵ3 = Ĵ . (7.9.1b)

According to this scheme, simultaneous eigenstates of Ĵ2
1 , Ĵ

2
2 , Ĵ

2
12, Ĵ

2

3, Ĵ
2, and Ĵz can be

constructed as

|(j1j2)j12j3; jm 〉 =
∑
m1

∑
m2

∑
m12

∑
m3

(j1m1j2m2|j12m12)(j12m12j3m3|jm)

× |j1m1 〉 |j2m2 〉 ||j3m3 〉 . (7.9.2)

Two additional schemes are

Ĵ2 + J3 = Ĵ23

Ĵ1 + Ĵ23 = Ĵ

}
, (7.9.3)

or
Ĵ1 + Ĵ3 = Ĵ13

Ĵ13 + Ĵ2 = Ĵ

}
. (7.9.4)

The first of these lead to the simultaneous eigenstates of Ĵ2
1 , Ĵ

2
2 , Ĵ

2
3 , Ĵ

2
23, Ĵ

2, Ĵz as

|j1(j2j3)j23jm 〉 =
∑
m1

∑
m23

∑
m2

∑
m3

(j2m2j3m3|j23m23)(j1m1j23m23|jm) |j1m1 〉 |j2m2 〉 |j3m3 〉 .

(7.9.5)
Simultaneous eigenstates of Ĵ2

1 , Ĵ
2
3 , Ĵ

2
13, Ĵ

2
2 , Ĵ

2, Ĵz may be similarly expressed.
All these sets of orthonormal states, say, the first two |(j1j2)j12j3jm 〉 and
|j1(j2j3)j23jm 〉, form a complete set of states and any one state from the former set may
be expressed in terms of the latter set of states and vice versa. For example, the state
|(j1j2)j12j3 jm 〉 can be expressed as

|(j1j2)j12j3 jm 〉 =
∑
j23

U(j1j2j j3j12j23) |j1(j2j3)j23jm 〉 . (7.9.6)
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The coefficients U(j1j2jj3j12j23) are called the normalized Racah coefficients which can be
expressed in terms of Racah coefficients W or the so-called 6− j symbols as follows

U(j1j2j j3j12j23) =
√

(2j12 + 1)(2j23 + 1) W (j1j2j j3j12j23))

=
√

(2j12 + 1)(2j23 + 1) (−1)−j1−j2−j3−j
{
j1 j2 j12

j3 j j23

}
. (7.9.7)

Analytic expression for Racah coefficients are given at the end of this chapter.

7.10 Coupling of Four Angular Momenta (L−S and j−j Coupling)

In dealing with two particles with spin, we have to add four angular momenta corresponding
to their orbital motion and spin. Let us denote the four angular momenta by L̂1, L̂2 and
Ŝ1, Ŝ2 , where L̂1, L̂2 may denote the orbital angular momenta of two electrons and Ŝ1, Ŝ2

their spins, so that L̂1 + L̂2 + Ŝ1 + Ŝ2 = Ĵ . There are many ways of doing this. Two
common alternatives are the so-called L− S coupling and j − j coupling schemes.

(i) The L-S coupling scheme, where the orbital and spin angular momenta are added and
the resultants are added to obtain the total angular momentum operator,

L̂1 + L̂2 = L̂

Ŝ1 + Ŝ2 = Ŝ

L̂+ Ŝ = Ĵ

 . (7.10.1)

(ii) The j − j coupling scheme, where the orbital and spin angular momenta of each
particle are added and the results are added to obtain the total angular momentum
operator,

L̂1 + Ŝ1 = Ĵ1

L̂2 + Ŝ2 = Ĵ2

Ĵ1 + Ĵ2 = Ĵ

 . (7.10.2)

In the L − S scheme we construct the coupled state |(`1`2)L(s1s2)S; jm 〉, which is a
simultaneous eigenstate of the set of commuting observables L̂2

1, L̂
2
2, L̂

2, Ŝ2
1 , Ŝ

2
2 , Ŝ

2, Ĵ2, Ĵz
as

|(`1`2)L(s1s2)S; jm 〉 =
∑
mL

∑
mS

(LmLSmS |j,m) |(`1`2)LmL 〉 |(s1s2)SmS 〉 (7.10.3)

where |(`1`2)LmL 〉 =
∑
m`1

∑
m`2

(`1m`1`2m`2 |LmL)|`1m`1 〉 |`2m`2 〉 (7.10.4)

and |(s1s2)Sms 〉 =
∑
ms1

∑
ms2

(s1ms1s2ms2 |Sms) |s1ms1 〉 |s2ms2 〉 . (7.10.5)

In the j−j coupling scheme we construct the j−j coupled state |(`1s1)j1(`2s2)j2; jm >, the
simultaneous eigenstate of the set of commuting observables L̂2

1, Ŝ
2
1 , Ĵ

2
1 , L̂

2
2, Ŝ

2
2 , Ĵ

2
2 , Ĵ

2, Ĵz as

|(`1s1)j1(`2s2)j2; jm 〉 =
∑
m1

∑
m2

(j1m1j2m2|jm) |(`1s1)j1m1 〉 |(`2s2)j2m2 〉 (7.10.6)
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where |(`1s1)j1m1 〉 =
∑
m`1

∑
ms1

(`1m`1s1ms1 |j1m1) |`1m`1 〉 |s1ms1 〉 (7.10.7)

and |(`2s2)j2m2 〉 =
∑
m`2

∑
ms2

(`2m`2s2ms2 |j2m2) |`2m`2 〉 |s2ms2 〉 . (7.10.8)

The set of L − S coupled states form a complete set of states and so do the set of j − j
coupled states. The overlap 〈 (`1`2)L(s1s2)S; jm| (`1s1)j1(`2s2)j2; jm〉 between an L − S
and j − j coupled state can be expressed in terms of the the so called LS − jj coupling
coefficient

〈 (`1`2)L(s1s2)S; jm| (`1s1)j1(`2s2)j2; jm〉 =

`1 `2 Ls1 s2 S
j1 j2 j


=
√

(2L+ 1)(2S + 1)(2j1 + 1)(2j2 + 1)

`1 `2 Ls1 s2 S
j1 j2 j

 , (7.10.9)

where the square bracket is called the LS − jj coupling coefficient while the curly bracket
is called the 9 − j symbol. Equation (7.10.9) implies that an L − S coupled state may
be expressed in terms of the set of j − j coupled states and a j − j coupled state may be
expressed in terms of L−S coupled states. The 9−j symbol has some symmetry properties:

(i) The effect of interchanging two rows or two columns of the 9− j symbol is to multiply
by a phase factor (−1)Σ, where Σ = `1 + `2 + L+ s1 + s2 + S + j1 + j2 + j= sum of
all the nine j’s.

(ii) The 9-j symbol is unchanged under reflection about the principal diagonal,`1 `2 Ls1 s2 S
j1 j2 j

 =

`1 s1 j1
`2 s2 j2
L S j

 . (7.10.10)

Analytic Expression for the Clebsch-Gordan Coefficient

Racah (1942) gave an analytic expression for the Clebsch-Gordan coefficient (j1m1j2m2|jm)
if the ∆(j1j2j) condition is fulfilled:

(j1m1j2m2|jm) =δm,m1+m2

[
(2j + 1)(j1 + j2 − j)!(j + j1 − j2)!(j + j2 − j1)!

(j1 + j2 + j + 1)!

]1/2

× [(j1 +m1)!(j1 −m1)!(j2 +m2)!(j2 −m2)!(j +m)!(j −m)!]1/2

×
∑
k

(−)k

k!
[(j1 + j2 − j − k)!(j1 −m1 − k)!(j2 +m2 − k)!

× (j1 − j2 +m1 + k)!(j − j1 −m2 + k)!]−1 . (7.10.11)

Here k takes all integral values, consistent with the factorial notation.
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Analytic Expression for the Racah Coefficient

W (a, b, c, d, e, f) = (−)−a−b−c−d
{
a b e
d c f

}
= ∆(a b c)∆(c d e)∆(a c f)∆(b d f)

×
∑
k

[
(−)k+a+b+c+d(k + 1)!

(k − a− b− c)!(k − c− d− e)!(k − a− c− f)!(k − b− d− f)!(a+ b+ c+ d− k)!

× 1
(a+ d+ e+ f − k)!(b+ c+ e+ f − k)!

]
(7.10.12)

where

∆(a b c) =


(a+ b− c)!(a− b+ c)!(−a+ b+ c)!

(a+ b+ c+ 1)!
, if a,b,c satisfy ∆ condition.

0, if a,b,c do not satisfy ∆ condition.
(7.10.13)

Here k takes all integral values consistent with the factorial notation.

TABLE 7.1

Clebsch-Gordan coefficients for j2 = 1/2.

m2 → m2 = 1
2 m2 = − 1

2

j = j1 + 1
2

(
j1+m+1/2

2j1+1

)1/2 (
j1−m+1/2

2j1+1

)1/2

j = j1 − 1
2 −

(
j1−m+1/2

2j1+1

)1/2 (
j1+m+1/2

2j1+1

)1/2

TABLE 7.2

Clebsch-Gordan coefficients for j2 = 1.
m2 → m2 = 1 m2 = 0 m2 = −1

j = j1 + 1
(

(j1+m)(j1+m+1)
(2j1+1)(2j1+2)

)1/2 (
(j1−m+1)(j1+m+1)

(2j1+1)(j1+1)

)1/2 (
(j1−m)(j1−m+1)
(2j1+1)(2j1+2)

)1/2

j = j1 −
(

(j1+m)(j1−m+1)
2j1(j1+1)

)1/2 (
m

{j1(j1+1)}1/2

) (
(j1+m+1)(j1−m)

2j1(j1+1)

)1/2

j = j1 − 1
(

(j1−m)(j1−m+1)
2j1(2j1+1)

)1/2

−
(

(j1−m)(j1+m)
j1(2j1+1)

)1/2 (
(j1+m+1)(j1+m)

2j1(2j1+1)

)1/2
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Problems

1. Prove the commutation relations:

(a) [L̂j , x̂k] = i ~εjk`x` .

(b) [Lj , pk] = i ~εjk`p`, where L̂i is the ith component of the orbital angular
momentum and εik` is the alternating symbol. Also show that [L̂x, p̂2] = 0
and [L̂x, r̂2] = 0, where p̂2 = p̂2

x + p̂2
y + p̂2

z and r̂2 = x̂2 + ŷ2 + ẑ2.

2. Show that, for a state |j,m 〉, corresponding to a definite value of Ĵz, the quantum
mechanical expectation values of Ĵx and Ĵy are zero.

3. The spin component of the electron along z-axis is +1/2 (in units of ~) when it is in
the state |s = 1/2,m = 1/2 〉. If there is a z′-axis, making angle θ with the z-axis,
calculate the probabilities that the component of spin along z′-axis will have values
+~/2 and −~/2. Also calculate the quantum mechanical expectation value of the
projection of spin along z′-axis, for this state.

4. In a representation in which Ĵ2 and Ĵz are diagonal, deduce matrices representing the
operators Ĵ+, Ĵ−, Ĵx, Ĵy for the cases (a) j = 1 and (b) j = 3/2.

5. In the state |j,m = j 〉 the square of the total angular momentum of the particle
is ~2 j(j + 1) and its projection along the z-axis is maximum m = j. Along a
direction making an angle θ with the z-axis the angular momentum can have different
projections with various probabilities. Calculate the probabilities of the projections
m = +j and m = −j.

6. Show that the operator σ1 ·σ2 has eigenvalue +1 for spin triplet state χm1 and −3 for
the spin singlet state χ0

0 of two spin-half particles. Construct the projection operators
for the triplet and singlet states.

7. Couple the spins of two spin-half particles and express the spin triplet state (S = 1)
and spin singlet state (S = 0) in terms of the uncoupled states. For the Clebsch-
Gordan coefficients you can use Table 7.1.

8. Couple the orbital angular momentum l = 1 of an electron with its spin (s = 1/2)
and write the wave functions of the coupled states (P3/2 and P1/2) in terms of the
uncoupled states. For the Clebsch-Gordan coefficients you may use Table 7.2. For m
take the maximum value ( 3/2 and 1/2 ) in the two cases.

9. Couple the orbital angular momentum ` = 2 of an electron to its spin (S = 1/2)to
construct the coupled states |j = 5/2,m = 5/2 〉 and |j = 3/2,m = 3/2 〉. Take the
Clebsch-Gordan coefficients from Table 7.2.

10. Couple the spin of a two-Fermion system (S = 1) to their relative orbital angular
momenta (i) L = 0 and (ii) L = 2 to construct 3S1 and 3D1 states, respectively. Use
the Clebsch-Gordan coefficients from Table 7.2 and for m take the maximum value.

11. If V̂ is a vector operator then 〈jm| V̂z |jm 〉 = m
j(j+1) 〈jm| Ĵ · V̂ |jm 〉. This is

called the projection theorem for vector operators. Use this theorem to find the
quantum mechanical expectation value for the operator µz for the coupled state
|(j1j2)j,m = j 〉. Given: µ = g1Ĵ1 + g2Ĵ2.
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12. In the coordinate representation, the orbital angular momentum operators
L̂x , L̂y, L̂z, L̂

2 are represented, respectively, by the differential operators

Lx = −i ~
(
y
∂

∂z
− z ∂

∂y

)
,

Ly = −i ~
(
z
∂

∂x
− x ∂

∂z

)
,

Lz = −i ~
(
x
∂

∂y
− y ∂

∂x

)
L2 = L2

x + L2
y + L2

z .

Re-express these differential operators in spherical polar coordinates.

13. Taking L̂2 to be represented in the coordinate representation by the differential
operator

L̂2 ≡ −~2

[
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2

]
,

solve the eigenvalue equation

L̂2Y (θ, ϕ) = λY (θ, ϕ)

to find the set of eigenvalues and eigenfunctions of L̂2. Show that these eigenfunctions
are also the eigenfunctions of L̂z = −i ~ ∂

∂ϕ .

14. Show that the rotation operator pertaining to a rotation of axes, first by angle α about
z-axis and then by angle β about the new y-axis and finally by angle γ about the new
z-axis is given by: R̂(α, β, γ) = exp(−iαĴz) exp(−iβĴy) exp(−iγĴx) where Ĵx, Ĵy, and
Ĵz are components of the vector operator Ĵ (in units of ~).

15. If A and B are two vectors and σ = (σx, σy, σz) is the Pauli spin vector then show
that

(σ ·A)(σ ·B) = A ·B + iσ · (A×B) .

16. In the spherical polar coordinate system, the z-component L̂z of the orbital angular
momentum is given by

Lz = −i ~ ∂

∂ϕ
.

Prove the commutation relation [L̂z, ϕ] = i~1, and show that the product of
uncertainties in the simultaneous measurements of L̂z and ϕ̂ is given by

∆Lz∆ϕ ≥ ~/2 .

17. Show that the total angular momentum quantum number j, defined by

Ĵ2 |j,m 〉 = ~2 j(j + 1) |j,m 〉

can take only positive integer or half-integer values.
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8

APPROXIMATION METHODS

8.1 Introduction

We have seen that to determine the possible energies En (energy eigenvalues) which a
physical system can have and the corresponding eigenfunctions (wave functions) ψn, we
have to set up and solve the time-independent Schrödinger equation

Hψn = Enψn . (8.1.1)

In this equation, the wave function ψn, representing the n-th eigenstate of the system
in the coordinate representation, is a function of the continuously varying eigenvalues of
the position observables of the system, the number of position observables being equal to
number of degrees of freedom of the system. The Hamiltonian operator H, in the coordinate
representation, is a differential operator involving the continuously varying eigenvalues of
the position observables and the derivatives with respect to them. Since we will be dealing
with the operators mostly in the coordinate representation, we shall denote them without
the caret.

Now, the exact solutions of the time-independent Schrödinger equation are possible only
in a limited number of cases such as the Hydrogen or Hydrogen-like atoms, linear harmonic
oscillator, and other problems discussed in Chapter V. Even only slightly more complicated
problems lead to equations that cannot be solved exactly. In such cases we have to take
recourse to approximation methods. Different approximation methods are useful in different
situations. Some of these methods discussed in this chapter are:

1. Perturbation methods
In many problems, quantities of different order of magnitude appear in the
Hamiltonian so that it can be written as H0+λH ′, where the second term λH ′ is small
(to be defined more precisely later) compared to H0 such that when it is neglected, the
problem can be solved excatly. H0 is referred to as the unperturbed Hamiltonian and
the small term λH ′ is referred to as a perturbation (correction) to the Hamiltonian
H0. In such cases, the first step is to solve the simplified problem exactly and then
calculate approximately the corrections due to the small term that were neglected in
the simplified problem. The methods for calculating these corrections are referred to
as perturbation methods. These methods may be further classified into two groups.

(a) Time-independent perturbation theory deals with perturbations that do not
depend on time. Two cases, when the unperturbed Hamiltonian admits (i) non-
degenerate states and (ii) degenerate states, will be considered separately.

(b) Time-dependent perturbation theory deals with perturbations that depend on
time and will be discussed in Chapter 10.
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2. Variational method

3. Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) approximation

4. Born approximation (used in scattering theory) discussed in Chapter 9

5. Adiabatic and Sudden approximations (Chapter 10)

In addition, we will also discuss approximation methods pertaining to many Fermion
(or many electron) systems. These include Hartree and Hartree-Fock equations for N -
electron atoms, statistical model of the atom and occupation number representation
for dealing with many Fermion systems.

8.2 Non-degenerate Time-independent Perturbation Theory

Consider the Hamiltonian H to be time-independent in which case the time-independent
Schrödinger equation is:

Hψn = Enψn , (8.1.1*)

where En is the energy for the eigenstate ψn. Suppose that the total Hamiltonian H can
be split up into two parts:

H = H0 + λH ′ , (8.2.1)

where H0 is the unperturbed part and λH ′ is the perturbation. Here λ is a parameter,
introduced purely as a device to keep track of different orders of corrections. By varying it
between 0 and 1 we can also use it to tune the strength of the perturbation. At the end of the
calculations we simply put λ = 1. The unperturbed part is such that the time-independent
Schrödinger equation

H0ψ
(0)
n = E(0)

n ψ(0)
n (8.2.2)

is exactly solvable. We shall further assume in this section that the energy levels for H0

are non-degenerate. This means that there exists only one state ψ(0)
n corresponding to each

energy E(0)
n . The unperturbed states form an orthonormal complete set satisfying∫

d3rψ(0)∗
m (r)ψn(0)(r) = δmn (8.2.3)

and
∑
n

ψ(0)∗
n (r)ψ(0)

n (r′) = δ3(r − r′) . (8.2.4)

The eigenstate ψn of the full Hamiltonian can now be expanded in terms of the eigenstates
of H0 as

ψn(r) =
∑
m

amnψ
(0)
n (r) . (8.2.5)

Now, since the perturbation is small, we expect that the changes in the wave functions as
well as energies will be small. Accordingly, we assume that the coefficients amn have a
perturbation expansion in powers of λ (or the perturbation)

amn = a(0)
mn + λa(1)

mn + λ2a(2)
mn + · · · . (8.2.6a)

The coefficients a(s)
mn are chosen so that

a(0)
nn = 1 and a(s)

nn = 0 for s ≥ 1 . (8.2.6b)
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Without this last requirement, the coefficients are not uniquely defined. Similarly, we
assume that the energy En also has a perturbation expansion

En = E(0)
n + λE(1)

n + λ2E(2)
n + · · · . (8.2.7)

Substituting these expansions into the perturbed Schrödinger equation (8.1.1*), we get

(H0 + λH ′)
∑
m

(a(0)
mn + λa(1)

mn + λ2a(2)
mn + · · · )ψ(0)

m

= (E(0)
n + λE(1)

n + λ2E(2)
n + · · · )

∑
m

(amn
(0) + λa(1)

mn + λ2a(2)
mn + ...)ψ(0)

m . (8.2.8)

Collecting and equating the zero, first, and second order terms in λ from both sides, we get∑
m

a(0)
mnH0ψ

(0)
m = E(0)

n

∑
m

a(0)
mnψ

(0)
m , (8.2.9)∑

m

H0a
(1)
mnψ

(0)
m +

∑
m

H ′a(0)
mnψ

(0)
m =

∑
m

E(0)
n a(1)

mnψ
(0)
m +

∑
m

E(1)
n a(0)

mnψ
(0)
m , (8.2.10)∑

m

(
H0a

(2)
mn +H ′a(1)

mn

)
ψ(0)
m =

∑
m

(
E(0)
n a(2)

mn + E(1)
n a(1)

mn + E(2)
n a(0)

mn

)
ψ(0)
m . (8.2.11)

Similar relations for terms involving higher powers of λ can be obtained. The first equation
(8.2.9) gives us ∑

m

a(0)
mn

(
E(0)
m − E(0)

n

)
ψ(0)
m = 0 . (8.2.12a)

Multiplying both sides by ψ
(0)∗
k , integrating over the coordinate space and using the

orthogonality of unperturbed wave functions, we get

a
(0)
kn

(
E

(0)
k − E(0)

n

)
= 0 . (8.2.12b)

Now, since the states are non-degenerate, the difference (E(0)
k − E(0)

n ) is nonzero only for
k = n. It follows that for Eq. (8.2.12b) to hold all a(0)

kn with k 6= n must vanish and for
k = n we must have a(0)

nn = 1. This can be summarized as

a(0)
mn = δmn . (8.2.13)

Using this result in Eq. (8.2.10), we obtain∑
m

(
E(0)
m − E(0)

n

)
a(1)
mnψ

(0)
m =

(
E(1)
n −H ′

)
ψ(0)
n . (8.2.14a)

Multiplying both sides of this equation by ψ(0)∗
k , integrating over the coordinate space, and

using the orthogonality and linear independence of unperturbed wave functions, we get

(E(0)
k − E(0)

n )a(1)
kn = E(1)

n δkn −H ′kn (8.2.14b)

where
H ′kn ≡

∫
d3rψ

(0)∗
k (r)H ′ψ(0)

n (r) (8.2.14c)

is the kn-th element of the matrix representing H ′ in the basis in which H0 is diagonal. If
we put k = n on both sides of Eq. (8.2.14b), we obtain

E(1)
n = H ′nn =

∫
d3rψ(0)∗

n (r) H ′ ψ(0)
n (r) . (8.2.15)
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Thus we have the important result that the first order correction to the energy En is simply
the expectation value of the perturbation H ′ in the unperturbed state ψ(0)

n .
For k 6= n, Eq. (8.2.14b) leads to the first order correction to the state amplitude

a(1)
mn =

H ′mn

E
(0)
n − E(0)

m

, m 6= n , (8.2.16)

where we have replaced k by m, since it is an arbitrary index. Thus, correct to first order
in the perturbation H ′, the energy and the wave function for the n-th state are given by

En = E(0)
n +H ′nn , (8.2.17)

ψn =
∑
m

(
a(0)
mn + a(1)

mn

)
ψ(0)
m = ψ(0)

n +
∑
m 6=n

H ′mn

E
(0)
n − E(0)

m

ψ(0)
m . (8.2.18)

To find the second order correction to the energy, we rearrange Eq. (8.2.11) to get∑
m

a(2)
mn(E(0)

m − E(0)
n )ψ(0)

m +
∑
m

a(1)
mn(H ′ − E(1)

n )ψ(0)
m = E(2)

n ψ(0)
n . (8.2.19a)

Again multiplying both sides by ψ(0)∗
m and integrating over the coordiates space, we obtain

a
(2)
kn (E(0)

k − E(0)
n ) +

∑
m

a(1)
mnH

′
km − E(1)

n a
(1)
kn = E(2)

n δkn . (8.2.19b)

Putting k = n on both sides of this equation, we get∑
m 6=n

a(1)
mnH

′
nm = E(2)

n . (8.2.19c)

Substituting the expression for a(1)
mn given in Eq. (8.2.16), the second order correction to

the energy En can be written as

E(2)
n =

∑
m 6=n

H ′mn H
′
nm

E
(0)
n − E(0)

m

. (8.2.20)

For k 6= n, Eq. (8.2.18b) give the second order correction to the wave function which, with
the help of Eq. (8.2.16), can be written as

a
(2)
kn =

∑
m 6=n

H ′km H ′mn(
E

(0)
n − E(0)

m

)(
E

(0)
n − E(0)

k

) − H ′nnH
′
kn(

E
(0)
n − E(0)

k

)2 , k 6= n . (8.2.21)

Combining Eqs. (8.2.17) and (8.2.20), and (8.2.18) and (8.2.21), we obtain the energy and
wave function of state ψn correct to second order in the perturbation

En = E(0)
n +H ′nn +

∑
m 6=n

H ′mn H
′
nm

E
(0)
n − E(0)

m

, (8.2.22)

ψn = ψ(0)
n +

∑
m6=n

[
H ′mn

E
(0)
n − E(0)

m

(
1− H ′nn

E
(0)
n − E(0)

m

)

+
∑
k 6=n

H ′mk H
′
kn(

E
(0)
n − E(0)

m

)(
E

(0)
n − E(0)

k

)
ψ(0)

m . (8.2.23)

This procedure can be continued to calculate higher order corrections. It will be seen that
the calculation of energy correction E(s)

n requires knowlege of ψn only to order s− 1 in the
perturbation. Let us consider some applications of the results so far.
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Perturbation by a Linear Potential

A harmonic oscillator of charge e described by the Hamiltonian operator

Ĥo =
p̂2
x

2m
+

1
2
mω2x̂2 , (8.2.24)

is subject to an external electric field in +x direction. This causes a perturbation
Ĥ ′ = −eE x̂ = −βx̂. We are interested in calculating the effect of this perturbation on
the eigenstates and eigenvalues. First of all note that this problem can be solved exactly
by writing the total Hamiltonian as

Ĥ ≡ Ĥ0 + Ĥ ′ =
p̂2
x

2m
+

1
2
mω2x̂2 − βx̂ =

p̂2
x

2m
+

1
2
mω2(x̂− β/mω2)2 − β2

2mω2
. (8.2.25)

By introducing new observables X̂ = x̂ − β/mω2 and p̂X = p̂x so that [X̂, p̂X ] = i~, the
total Hamiltonian can be written as

Ĥ =
p̂2
X

2m
+

1
2
mω2X̂2 − β2

2mω2
. (8.2.26a)

This Hamiltonian has exact energy eigenvalues

En = (n+ 1/2)~ω − β2

2mω2
(8.2.26b)

and eigenfunctions Ψn(X) = ψn(x−β/mω2), where ψn(z) are the linear harmonic oscillator
eigenfunctions discussed in Sec. 5.3.

We now use perturbation theory to calculate the correction to energy levels due to Ĥ ′.
The unperturbed Hamiltonian Ĥ0 has eigenvalues E(0)

n = (n + 1/2)~ω and eigenfunctions
Ψ(0)
n (x) = ψn(x). Since the levels of a harmonic linear oscillator are non-degenerate, we

can use non-degenerate perturbation theory to calculate the change in En. The first order
correction to the energy of the n-th level is given by

E(1)
n = −β 〈n| x̂ |n 〉 = −β

∞∫
−∞

ψn(x) x ψn(x)dx, (8.2.27)

which vanishes, since the wave functions of linear oscillator have definite parity ψn(−x) =
(−1)nψ(x). We shall see that symmetry arguments play an important role in simplifying
the calculations.

So the first order correction to energy vanishes. In search of leading nonzero corrections
we calculate the second order correction given by Eq. (8.8.20). To evaluate this, we work
in the occupation number represenation [Sec. 5.4] and express the perturbation in terms of
annihilation and creation operators as

Ĥ ′ = −β
√

~
2mω

(â+ â†) . (8.2.28)

Its nonzero matrix elements are [see Chapter 5, Eq. (5.4.32)]

〈n+ 1| Ĥ ′ |n 〉 = H ′n+1,n = −β
√

~
2mω

√
n+ 1 , (8.2.29a)

〈n− 1| Ĥ ′ |n 〉 = Hn−1,n = −β
√

~
2mω

√
n . (8.2.29b)
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Using these and the unperturbed energy E
(0)
n = (n + 1/2)~ω, we find the second order

energy correction [Eq. (8.2.20)] is

E(2)
n =

∑
m 6=n

H ′mn H
′
nm

E
(0)
n − E(0)

m

=
|H ′n+1,n|2
E

(0)
n − E(0)

n+1

+
|H ′n−1,n|2
E

(0)
n − E(0)

n−1

= − β2

2mω2
. (8.2.30)

Hence to second order in the perturbation the energies are

En = E(0)
n −

β2

2mω2
. (8.2.31)

A comparison of this to the exact energy (8.2.26b) shows that this is exact. Indeed it can
be shown that corrections of order higher than 2 in perturbation are zero.

Ground State Energy of Helium Atom

As another application of the results of this section, we calculate the ground state energy of
a Helium atom. In this calculation we ignore electron spin. The Hamiltonian for a Helium
atom [Fig. 8.1] (in the coordinate representation) may be written as

H = − ~2

2me
∇2

1 −
~2

2me
∇2

2 −
2e2

4πε0r1
− 2e2

4πε0r2
+

e2

4πε0r12

≡ H0 +
e2

4πε0r12
≡ H0 +H ′ , (8.2.32)

where me is the mass of the electron. The suffixes 1 and 2 refer to the two electrons and we
regard the electron-electron interaction as the perturbation. The unperturbed Hamiltonian
H0 is the sum of the Hamiltonians H01 and H02 for the two electrons, each interacting with
a nucleus of charge +2e:

H0 =
(
− ~2

2me
∇2

1 −
2e2

4πε0r1

)
+
(
− ~2

2me
∇2

2 −
2e2

4πε0r2

)
≡ H01 +H02 .

The unperturbed ground state wave function and energy for a Helium atom are determined
by

(H01 +H02)ψ0
gs(r1, r2) = E0

gsψ
0
gs(r1, r2) , (8.2.33)

where the unperturbed ground state wave function can be written as the product of single-
electron wave functions

ψ(0)
gs (r1, r2) = ψ1gs(r1)ψ2gs(r2) (8.2.34)

where H01ψ1gs(r1) = E1gsψ1gs(r1) , (8.2.35)
and H02ψ2gs(r2) = E2gsψ2gs(r2) . (8.2.36)

Now the single-electron ground state energy and wave function are given by

E1gs = − Z2e2

8πε0ao
= E2gs , with Z = 2 , (8.2.37)

and ψ1gs(r1) =
(
Z3

πa3
o

)1/2

exp(−ρ1/2), where ρ1 = 2Zr1/ao (8.2.38)
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+Ze Z=2

r1 r2

r12=| r1- r2|
e-

e-

FIGURE 8.1
Helium atom has two-electrons interacting with a nucleus of charge +2e. The nucleus can be
considered infinitely heavy compared to the electrons. We can then consider the electrons
to be moving in the electrostatic potential of the nucleus.

and ao = 4πε0~2/mee
2 is the Bohr radius. The expression for ψ2gs(r2) can be obtained

from ψ1gs(r1) by replacing the index 1 by 2. With the help of these equations, we find that
the unperturbed ground state energy of the He atom is

E(0)
gs = − 2Z2e2

8πε0ao
≡ −2Z2 Rydberg , (8.2.39)

and the unperturbed ground state wave function is

ψ(0)
gs (r1, r2) =

(
Z3

πa3
o

)
exp [−(ρ1 + ρ2)/2] . (8.2.40)

From Eq. (8.2.15), the first order perturbation correction E
(1)
gs to the ground state energy

is simply the expectation value of the perturbation in the unperturbed state:

E(1)
gs =

∫
d3r1

∫
d3r2ψ

0
gs ∗ (r1, r2)

e2

4πε0r12
ψ0
gs(r1, r2)

=
Ze2

128π3ε0ao

∫∫
exp[−(ρ1 + ρ2)]

1
|ρ1 − ρ2|

d3ρ1d
3ρ2 . (8.2.41)

Taking the value of the integral1 to be 20π2, we obtain

E(1)
gs =

5Z
4

e2

8πε0ao
. (8.2.42)

1An integral of the kind

I =
1

4πε0

ZZ
F (r1)F (r2)

|r1 − r2|
d3r1d

3r2

may be looked upon as twice the potential energy of a spherically symmetric charge distribution F (r) =
(qo/a3)f(r/a), where a has dimension of length and qo is the total charge in Coulomb. To calculate the
work done in building up the charge distribution, we divide the charge distribution into thin concentric
spherical shells of radius r and thickness dr and imagine the charge to be built up by adding these shells of
charge starting with r = 0 to all the way up to r → ∞. At a certain stage of this process, when a charge
distribution of radius r already exists, the electrostatic potential at the surface of this charge distribution
is given by

V (r) =
1

4πε0r

rZ
0

4πr′2dr′ F (r′) =
qo

ε0aρ

ρZ
0

ρ′2dρ′f(ρ′) ,

where ρ = r/a. To extend this charge distribution of radius r to one of radius r+ dr, with the same charge
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Total ground state energy of the normal Helium atom, correct to first order is, therefore,
with Z = 2

Egs =
(
−2Z2 +

5
4
Z

)
e2

8πε0ao
= −5.5 Rydberg = −74.8 eV . (8.2.43)

For comparison, the observed value of the ground state energy of the Helium atom is
−78.9 eV.

8.3 Time-independent Degenerate Perturbation Theory

We shall now consider the perturbation method for stationary states when the unperturbed
Hamiltonian H0 admits degenerate states. Let the energy levels of H0 be denoted by
E

(0)
1 , E

(0)
2 , · · · , E(0)

k , · · · . and let the level E(0)
k be α-fold degnerate such that it corresponds

to a set of states ψ0
k1 , ψ

0
k2 , · · · , ψ0

kα. In such a case, we can construct a suitable linear
combination of the degenerate states

χ0
k` =

α∑
` ′=1

K`` ′ψ
0
k` ′ (8.3.1)

so that the `-th perturbed wave function tends to the above combination when the
perturbation vanishes. Thus, to first order in perturbation, the perturbed wave function
may be expressed as

ψk` = χ0
k` + λψ′k` . (8.3.2)

Expanding the correction ψ′k` in terms of the orthogonal set of functions ψ(0)
k` as

ψ ′k` =
∑
` ′k′

ak`,k′`′ψ
0
k′` ′ , (8.3.3)

and substituting this in the perturbed Schrödinger equation we obtain

(H0 + λH ′)(χ0
k` + λψ′k`) = (E0

k + ΛE′k`)(χ
0
k` + λψ′k`) (8.3.4)

distribution, we must bring in an amount of charge dq = F (r)4πr2dr = qof(ρ)4πρ2dρ from infinity to a
distance r = aρ from the center. The amount of work done in this process is given by

dW = V (r)dq =
4πq2o
ε0a

ρdρ f(ρ)

ρZ
0

ρ′2dρ′ f(ρ′) .

Hence the total work in building up, from the origin outward, a spherical charge distribution of density f(ρ)
is given by

W =
1

2
I =

4πq2o
ε0a

∞Z
0

ρ dρ f(ρ)

ρZ
0

ρ′2 dρ′ f(ρ′) .

For f(ρ) = e−ρ we have W = 1
2
I =

4πq2o
ε0a

5
8

, which gives

I =
1

4πε0

q2o
a

ZZ
f(ρ1)f(ρ2)

|ρ1 − ρ2|
d3ρ1d

3ρ2 =
5πq2o
εoa

or

ZZ
e−(ρ1+ρ2)

|ρ1 − ρ2|
d3ρ1d

3ρ2 = 20π2 .
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where we have considered terms only up to the first order in the perturbation. Collecting
zero order terms from both sides, we get

(H0 − E0
k)χ0

k` = 0 , (8.3.5)

which is the unperturbed equation.
Collecting the first order terms we get

H0ψ
′
k` +H ′χ0

k` − E0
kψ
′
k` − E′k`χ0

k` = 0 . (8.3.6)

Using the expansions (8.3.1) and (8.3.3), we can rewrite this equation as∑
k′` ′

(H0 − E0
k)ak`,k′`′ψ0

k′`′ +
∑
` ′

(H ′ − E′k`)K`` ′ψ
0
k` ′ = 0 .

Pre-multiplying both sides on the left by ψ(0)∗
kj , and integrating over the coordinate space,

we get ∑
k′` ′

(E0
k′ − E0

k)ak`,k′` ′δkk′∆j` ′ +
∑
`′

∫
ψ0∗
kj (H

′ − E′k`)K``′ψ
0
k`′dτ = 0 .

The first term vanishes because of the degeneracy of energy levels. Then we get∑
`′

(H ′j`′ − E′k`∆j`′)K``′ = 0 , (8.3.7)

where H ′j`′ ≡
∫
ψ0∗
kj H

′ ψ0
k`′dτ , (8.3.8)

and ∆j`′ ≡
∫
ψ0∗
kjψ

0
k`′dτ . (8.3.9)

Note that if the degenerate eigenfunctions ψ0
kj for j = 1, 2, · · · , α, belonging to the same

energy Ek(0) are orthogonal to each other, then ∆j`′ may be replaced by δj`′ .
Thus we get a set of linear equations in K`1,K`2, · · · ,K`α:

α∑
` ′=1

Aj` ′K`` ′ = 0 j = 1, 2, · · · , (8.3.10)

where Aj` ′ ≡ H ′j` ′ − E′k`∆j` ′ . (8.3.11)

The condition that the set of equations (8.3.10) gives a non-trivial solution for the set of
quantities K``′ is that the determinant of the matrix of the coefficients Aj`′ must vanish:∣∣∣∣∣∣∣∣∣

H ′11 − E′k`∆11 H ′12 − E′k`∆12 · · · H ′1α − E′k`∆1α

H ′21 − E′k`∆21 H ′22 − E′k`∆22 · · · H ′2α − E′k`∆2α

...
...

...
...

H ′α1 − E′k`∆α1 H ′α2 − E′k`∆α2 · · · H ′αα − E′k`∆αα

∣∣∣∣∣∣∣∣∣ = 0 . (8.3.12)

This secular equation is an α-degree polynomial in E′k` and by solving it we may find α

roots and label these roots by ` and call them E
(1)
k` where ` = 1, 2, 3, · · · , α. Thus, as a result

of the first order correction to the energy, the degeneracy is removed, partly or completely,
and we have

E
(0)
k → E0

k + E′k` , ` = 1, 2, · · · , α .
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For any one of the roots E′k` of the secular equation (8.3.12), we may solve the set of linear
equations Eq. (8.3.10) to determine the set of coefficients K``′ to get the corresponding
zero order wave function χ

(0)
k` to which the perturbed wave function ψk` tends when the

perturbation vanishes. Thus

to zero order ψk` = χ0
k` , (8.3.13)

and, to first order Ek` = E0
k + E

(1)
k` . (8.3.14)

In a very special case when the degenerate wave functions ψ(0)
k` can be identified with the

correct combination χ
(0)
k` , we have K``′ = δ``′ . Also ∆j` = δj` if the set of degenerate

functions are orthogonal to each other. In such a case the set of linear equations (8.3.10)
implies that Aj` ≡ H ′j` − E′k`δj` = 0 or

E
(1)
k` = H ′`` =

∫
ψ0∗
k`H

′ψ0
k`dτ . (8.3.15)

Some of the most important application of the degenerate perturbation theory are in atomic
physics. A few of these will be considered next.

Stark Effect in Hydrogen

We have seen that with the exception of the ground state, all energy levels of the Hydrogen
atom with pure Coulomb interaction are highly degenerate. Some of this degeneracy is
removed when an electric field is applied. This is called the Stark effect.

We can see this as follows. In the presence of an external electric field E = Eez, where the
z-axis is chosen along the direction of the field, the perturbed Hamiltonian of the Hydrogen
atom may be written as

H = − ~2

2m
∇2 − e2

4πε0r
− E · d ≡ H0 +H ′ . (8.3.16)

where d = −er is electric dipole moment of the atom and the unperturbed Hamiltonian H0

and the perturbation H ′ can be written as

H0 = − ~2

2m
∇2 − e2

4πε0r
, (8.3.17a)

H ′ = −E · (−er) = eEz = eEr cos θ . (8.3.17b)

The unperturbed problem for the Hydrogen atom was solved in Chapter 5 and the
unperturbed wave functions are simply the functions ψ(0)

n`m(r, θ, ϕ) given there. We can
now discuss the effect of the perturbation on various states. We will consider only the
n = 1 and n = 2 states here.

For n = 1 we have the ground state wave function

ψ100(r, θ, ϕ) =
1√
πa3

o

e−r/ao . (8.3.18)

The ground state is nondegenerate. The first order correction 〈ψ100| Ĥ ′ |ψ100 〉 to the energy
of the ground state vanishes because the ground state wave function (8.3.18) is an even
function of z whereas the perturbation (in the form eEz) is an odd function of z.
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For n = 2 we have four states which are degenerate in energy. The corresponding wave
functions are

ψ200 =
1√

32πa3
o

(
r

ao
− 2
)
e−r/2ao ,

ψ211 =
1√

64πa3
o

r

ao
e−r/2ao eiϕ sin θ ,

ψ211̄ =
1√

64πa3
o

r

ao
e−r/2ao e−iϕ sin θ ,

ψ210 =
1√

32πa3
o

r

ao
e−r/2ao cos θ .

To determine the first order perturbation correction to the energy in this case we set up the
secular determinant and equate it to zero. Since the degenerate functions ψ200, ψ211, ψ211̄

and ψ210 are orthogonal ∆j`′ = δj`′ , where j or `′ stand for the set of quantum numbers
200, 211 etc.

The secular equation is (1̄ ≡ −1):∣∣∣∣∣∣∣∣
(H ′200,200 − E′) H ′200,211 H ′200,210 H ′200,211̄

H ′211,200 (H ′211,211 − E′) H ′211,210 H ′211,211̄

H ′210,200 H ′210,211 (H ′210,210 − E′) H ′210,211̄

H ′211̄,200 H ′211̄,211 H ′211̄,210 H ′211̄,211̄ − E′

∣∣∣∣∣∣∣∣ = 0 , (8.3.19)

where E′ denotes the first order perturbation correction to the energy of n = 2 state. We
can easily check that the only two nonzero matrix elements of H ′ in Eq. (8.3.19) are

H ′200,210 = H ′210,200 = eE
∫
d3rψ∗210r cos θψ200 = −3eEao (8.3.20)

Using this result in Eq. (8.3.19) we find, on simplification, the following equation

E′2
(
E′2 − (3eEao)2

)
= 0 , (8.3.21a)

which gives four roots
E′ = 0, 0, 3eEao, −3eEao . (8.3.21b)

Thus the four-fold degeneracy of the n = 2 state is partly lifted in first order of the
perturbation. The first two values (both zero) of E′ lead to energy E2 = E

(0)
2 =

−e2/32πε0ao and correspond to any two linearly independent combinations of ψ211 and
ψ211̄. This level is two-fold degenerate. The remaining two values correspond, respectively,
to antisymmetric and symmetric combinations of ψ200 and ψ210:

E
(0)
2 →


E

(0)
2 + 3eEao = − e2

32πε0ao
+ 3eEao ↔ χ−2 = 1√

2
(ψ200 − ψ210) ,

E
(0)
2 − 3eEao = − e2

32πε0ao
− 3eEao ↔ χ+

2 = 1√
2
(ψ200 + ψ210) .

(8.3.22)

The functions on the right represent the combinations of degenerate states to which the
perturbed states corresponding to these energies will tend as the perturbation is withdrawn.

We note that the perturbation mixes only states with the same m value. This is a
consequence of the fact that the perturbation commutes with L̂z. Hence the perturbed
states can still be required to be eigenstates of L̂z. This means that it was necessary to
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consider only the linear combination of ψ210 and ψ200 to construct orthonormal basis of
degenerate states, which would have resulted in a quadratic secular equation. The states
ψ211 and ψ211̄ stay unmixed. Recognition of symmetries of Ĥ0 and Ĥ ′ can simplify the
calculations considerably. We shall see many examples of this in the next few applications
of degenerate perturbation theory.

Fine Structure of Hydrogen

In Chapter 5 we solved the Hydrogen-like atom problem with Hamiltonian Ĥ0 = p̂2

2me
− Ze2

4πε0r
.

This Hamiltonian ignored the spin of the electron (as also the nucleus) and assumed electron
motion to be non-relativistic. Hence there are several corrections to this Hamiltonian, which
include the relativistic correction to the kinetic energy due to the fast motion of the electron
and the spin-orbit interaction due to the spin of the electron. These corrections are of the
same order of magnitude. They follow naturally in the non-relativistic limit of Dirac theory
discussed in Chapter 13.

From the relativistic expression E =
√
p2c2 +m2

ec
2 for the energy of a particle we obtain

the kinetic energy K after subtracting the rest energy mec
2. For non-relativistic speeds

v/c = pc/E � 1, the kinetic energy is given by

K =
√
p2c2 +m2

ec
4 −mec

2 = mec
2

[√
1 +

p2c2

m2
ec

4
− 1

]
=

p2

2me
− p4

8m3
ec

2
+ · · · . (8.3.23)

The first term is the non-relativistic kinetic energy already included in the Hamiltonian Ĥ0.
The second term gives relativistic correction to the kinetic energy

Ĥkin = − p̂4

8m3
ec

2
. (8.3.24)

The spin-orbit term arises from the interaction of electron spin with the electric field
produced by the nucleus. Electron spin arises naturally in the Dirac theory of the electron.
It suffices to say at this stage that there is wealth of spectroscopic evidence for the existence
of an intrinsic angular momentum (spin) and associated magnetic moment of the electron.
This can form the basis for introducing a spin-dependent term in the Hamiltonian.

The spin of the electron participates in the conservation of angular momentum on equal
footing with the orbital angular momentum and like any angular momentum associated
with a charge particle, gives rise to an intrinsic magnetic moment

µ = − e

2me
g
S
S , (8.3.25)

where S is the spin angular momentum of the electron and g
S

is the corresponding gyro-
magnetic ratio (the ratio of the magnetic moment to the spin angular momentum). For the
electron spin g

S
= 2. This magnetic moment moving in the electric field of the nucleus sees

a magnetic field Bn = −v×E/c2, where v = p/me is the velocity of the electron and E is
the electric field of the nucleus given by

E = −∇
[
− Ze

4πε0r

]
= − Ze

4πε0r3
r . (8.3.26a)

With the help of this equation, the magnetic field of the nucleus as seen by the electron can
be written as

Bn = −v ×E/c2 =
p

me
×
[

Ze

4πε0c2r3
r

]
= − Ze

4πε0mec2r3
L , (8.3.26b)
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where L = r × p is the orbital angular momentum of the electron. The potential energy
associated with the interaction of the intrinsic magnetic moment with this magnetic field is

HLS = −µ ·Bn = − e

2me
g
S
S ·
[
− Ze

4πε0mec2r3
L

]
=

Ze2

4πε0m2
ec

2r3
S ·L . (8.3.26c)

Thus the interaction of the moving intrinsic magnetic moment of the electron with the
electric field of the nucleus is really an interaction between the spin and orbital angular
momentum of the electron. For this reason, this interaction is also referred to as spin-orbit
interaction.

We have used the nonrelativistic kinematics to arrive at the spin-orbit interaction, which
has the correct form but it is twice as large as a relativistically correct treatment gives.
This factor is explained by the Thomas precession. Incorporating this we get the final form
for the spin-orbit interaction

ĤLS =
Ze2

8πε0m2
ec

2r3
Ŝ · L̂ . (8.3.27)

Both Ĥkin and ĤLS are small terms compared to H0. Therefore a first order perturbative
treatment is adequate to calculate their effect on the energy levels. The total Hamiltonian
can be written as

Ĥ = Ĥ0 + Ĥ ′ , (8.3.28a)

where Ĥ0 =
p̂2

2me
− Ze2

4πε0r
, (8.3.28b)

and Ĥ ′ = Ĥkin + ĤLS . (8.3.28c)

Because of the introduction of spin, the basis states must now include the information about
the spin and the orbital angular momentum of the electron. The unperturbed states may
thus be labelled as

∣∣E0
n

〉
= |n`m` sms 〉. This implies that every state of theH atom without

spin, is now doubled due to the two possible states of the spin ms = ± 1
2 and for each n we

now have 2n2 degenerate states. We are thus dealing with degenerate perturbation theory
and even for moderate values of n we have to diagonalize faily large energy matrices. We
can avoid a lot of this work if we notice that Ĥ ′ commutes with Ĵ2, L̂2, Ŝ2, and Ĵz, where
Ĵ = L̂+ Ŝ is the total angular momentum observable. Hence a suitable basis is |n(`s)jm 〉.
These states are easily constructed from uncoupled (angular momentum) states |n`m` sms 〉
with the help of Clebsch-Gordan coefficients. In this scheme atomic states are written in
rather arcane (but standard) spectroscopic notation as

∣∣n 2S+1LJ
〉
, where n denotes the

principal quantum number, the total orbital angular momentum L is denoted by capital
letters S, P,D, F, · · · , which correspond, respectively, to L = 0, 1, 2, 3, 4 · · · and S and J
indicate numerical values of total spin and total angular momenta. (We use upper case
letters to denote total angular momenta and lower case letters to denote angular momenta
of individual electrons.) For single electron atoms the lower case and upper case letters can
be used interchangeably. This also holds for alkali atoms: Lithium, Sodium, Potassium,
Cesium, Rubidium etc. as long as we restrict to the excitation of the single electron outside
the closed shell. In this notation, the lowest lying states of hydrogenic atoms are labelled
as follows.

For n = 1, the orbital angular momentum is L = ` = 0 and the electron spin S = s = 1
2

leading to total angular momentum J = 1
2 and m = ± 1

2 . These states are labeled as
12S1/2 (m values are suppressed).
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For n = 2, the orbital angular momentum is L = ` = 0, 1 and spin S = s = 1
2 giving

us J = j = 1
2 (` = 0); 1

2 (` = 1), 3
2 (` = 1) for a total of eight (2n2) states. These

states are denoted by 2S1/2, 2P1/2, and 2P3/2, respectively. The m values have been
suppressed.

For n = 3 we have L = ` = 0, 1, 2 and S = s = 1
2 giving us J = j = 1/2(` =

0); 1/2, 3/2(` = 1); and 3/2, 5/2(` = 2) for a total of eighteen states. These are
denoted by 2S1/2; 2P1/2, 2P3/2; 2D3/2, 2D5/2 .

By expressing L̂ · Ŝ as

L̂ · Ŝ =
1
2

[
(L̂+ Ŝ)2 − L̂2 − Ŝ2

]
=

1
2

[
Ĵ

2 − L̂2 − Ŝ2
]
, (8.3.29)

we see that with basis vectors |n(`s)jm 〉, both Ĥ0 and Ĥ ′ are diagonal.

The first order correction E
(1)
LS ≡ 〈n(`s)jm| ĤLS |n(`s)jm 〉 to the energy of state

|n(`s)jm 〉 due to spin-orbit interaction is then

E
(1)
LS =

Ze2

16πε0m2
ec

2

〈
1
r3

〉
n`

~2 [j(j + 1)− `(`+ 1)− s(s+ 1)] . (8.3.30)

Substituting the value of
〈

1
r3

〉
n`

from Eq. (5.6.31) in this equation and rewriting the
resulting expression in terms of unperturbed energy

E(0)
n = − Z2e2

2aon2
, ao =

4πε0~2

mee2
, (8.3.31)

we find the first order correction due to spin-orbit interaction is

E
(1)
LS = mec

2 (Zα)2

4n3

[j(j + 1)− `(`+ 1)− s(s+ 1)]
`(`+ 1/2)(`+ 1)

, (8.3.32)

where α =
e2

4πε0~c
≈ 1

137
. (8.3.33)

The dimensionless constant α, because of its origin in this calculation, is called the fine
structure constant. From Eq. (8.3.32) we can see that spin-orbit correction is indeed a
small fraction |E(1)

LS |/|E(0)
n | ≈ O[(Zα)2/n] of the unperturbed energy. However, for each

energy level with a given n, the degeneracy with respect to ` is lifted but in a special way;
for each nonzero orbital angular momentum `, the total angular momentum can take two
values j = `+ 1

2 and `− 1
2 so that each energy level with given n and ` 6= 0 splits into two

with the j = `+ 1
2 level having higher energy than j = `− 1

2 level. Formula (8.3.32) holds
for ` = 0 as well. In this case (` = 0), there is no spin-orbit splitting as we only have one
value of j = 1

2 .

To calculate the correction due to the kinetic energy Ĥkin term we note that from
Ĥ0 = p̂2

2me
− Ze2

4πε0r
, which holds for hydrogenic atoms, we can write the kinetic energy

term as

Ĥkin = − 1
2mec2

(
p2

2me

)2

= − 1
2mec2

[
Ĥ0 +

Ze2

4πε0r

]2

. (8.3.34)
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This term is also diagonal in |n(`s)jm 〉 basis, giving the first order correction E
(1)
kin ≡

〈n(`s)jm| Ĥkin |n(`s)jm 〉

E
(1)
kin = − 1

2mec2
〈n(`s)jm|

(
Ĥ0 +

Ze2

4πε0r

)(
Ĥ0 +

Ze2

4πε0r

)
|n(`s)jm 〉

= − 1
2mec2

[
E(0)2
n +

2Ze2E
(0)
n

4πε0

〈
1
r

〉
n`

+
(
Ze2

4πε0

)2〈 1
r2

〉
n`

]
. (8.3.35)

Substituting the expressions for the unperturbed energy [Eq. (8.3.31)] and the radial
integrals from Eqs. (5.6.32) and (5.6.33), we obtain the first order relativistic correction

E
(1)
kin = −mec

2 (Zα)4

2n4

[
2n

(2`+ 1)
− 3

4

]
. (8.3.36)

Note that this correction is always negative since ` ≤ n−1, so that the relativistic correction
always lowers the energy levels. It is of the same order mc2×α4 as the spin-orbit correction.
However, since it depends only on n and ` but not j, it changes the overall dependence of
energy on n and ` but does not contribute to the splitting of the energy levels.

Combining the spin-orbit and relativistic corrections, both being of the same order
(|E(0)

n |α4 ), for a level with quantum number n, we obtain the overall change in energy

E
(1)
FS ≡ E(1)

LS + E
(1)
kin = −mec

2(Zα)4

2n4

[
n

j + 1
2

− 3
4

]
= E(0)

n

(Zα)2

n2

[
n

j + 1
2

− 3
4

]
, (8.3.37)

for both ` = j ± 1
2 . The overall energy change in energy thus depends only on n and

j. Its net effect is to split each unperturbed n, ` 6= 0 level into two with n, j = ` + 1
2 and

n, j = `− 1
2 , the level with lower j having the lower energy. The splitting of a level with given

` is due entirely to the spin-orbit interaction, while the kinetic energy correction decreases
the energy of both states relative to the unperturbed energy level. Figure 8.2 shows the
fine structure of the n = 2 level in hydrogen when spin-orbit and kinetic energy corrections
are included. Note that 2S1/2 and 2P1/2 levels are still degenerate. This degeneracy is
removed when further (small) corrections due to the vacuum quantum fluctuations of the
electromagnetic field are taken into account (not shown). The split between 2S1/2 and 2P1/2

levels is called the Lamb shift. It can only be calculated using quantum field theory, which
explains the Lamb shift to 12 decimal places in agreement with experiment!

In closing this section we note that by a judicious choice of unperturbed basis states
based on a recognition of appropriate symmetries, we were able to turn the calculation of
degenerate perturbation theory into one of nondegenerate perturbation theory.

8.4 The Zeeman Effect

The change in the energy levels of an atom caused by the application of a uniform external
magnetic field is called the Zeeman effect. Again we illustrate this for hydrogenic atoms. If
such an atom is placed in a uniform external magnetic field B, represented by the vector
potential

A =
1
2
B × r , with∇ ·A = 0, and B =∇×A , (8.4.1)
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2S1/2 2P1/2
2P3/2 2S1/2

2P3/2

2P1/2
2S1/2 ,

2P1/2

2P3/2

=0,1, s=1/2

Spin-orbit
splitting

Spin-orbit + relativistic
(fine structure) splitting

Pure Coulomb
interaction

n=2
=1, s=1/2, j=3/2,m

=1, s=1/2, j=1/2,m
=0, s=1/2, j=1/2,m

FIGURE 8.2
Fine structure splitting n = 2 level in hydrogen atom. The figure is not to scale. The
middle column shows the effect of spin-orbit correction alone, while the third column shows
the effect of both spin-orbit and relativistic kinetic energy correction. Lamb shift splitting
of 2S1/2 and 2P1/2 levels is not shown.

its kinetic energy must be modified by replacing the momentum p̂ → (p̂ + eA) (electronic
charge being −e). In addition, the interaction of the intrinsic magnetic moment of the
electron [Eq. (8.3.25)] with the external magnetic field adds a term −µ̂ · B to the
Hamiltonian. Thus the overall Hamiltonian becomes

Ĥ =
(p̂+ eA)2

2me
− Ze2

4πε0r
+ ĤFS , (8.4.2)

where the fine structure Hamiltonian ĤFS = ĤLS + Ĥkin represents the sum of the spin-
orbit interaction and the relativistic correction to the kinetic energy. In Eq. (8.4.3), written
in the coordinate representation, A is an ordinary function and p̂ (≡ −i~∇) is a differential
operator acting to the right on a wave function. Keeping this in mind, the first term of the
Hamiltonian (8.4.2) can be written as

1
2me

(p̂+ eA)2ψ(r) =
1

2me
(−i~∇+ eA) · (−i~∇+ eA)ψ(r) ,

=
(
− ~2

2me
∇2 − ie~

me
A ·∇

)
ψ(r) +

(
ie~
2me
∇ ·A+

e2A2

2me

)
ψ(r) .

(8.4.3a)

Using ∇ ·A = 0 and

− ie~
me
A ·∇ψ(r) =

e

2me
(B × r) · p̂ψ(r) =

e

2me
B · (r× p̂)ψ(r) =

e

2me
B · L̂ψ(r) , (8.4.3b)
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where L̂ = r × p̂, in Eq. (8.4.3a) we have

1
2me

(p̂+ eA)2 =
p̂2

2me
+

e

2me
B · L̂+

e2(r ×B)2

8me
. (8.4.4)

Using this in Eq. (8.4.2) together with the expression for the intrinsic magnetic moment of
the electron (8.3.25), we find the overall Hamiltonian for a hydrogenic atom in an external
uniform field is

Ĥ =
p̂2

2me
− Ze2

4πε0r
+ ĤFS +

e

2me
(L̂+ 2Ŝ) ·B +

e2(r ×B)2

8me
. (8.4.5)

Recall that the contributions from ĤLS are of order mec
2α2 ≈ 10−4 eV. The order of

magnitude of the fourth term is e~
2me

B = 5.8 × 10−9 eV
gauss × B(in gauss). Thus unless

the external field is as large as 104 gauss, an extremely large field (the earth’s magnetic
field is about 1 gauss), the fourth term is small compared with the ĤFS term. The fifth
term, quadratic in the field, is completely negligible, being of the order of 10−15 to 10−16

eV/gauss2. Ignoring the fifth term we can then write the Hamiltonian for a hydrogenic
atom in an external magnetic field as

Ĥ =
p̂2

2me
− Ze2

4πε0r
+ ĤFS + Ĥmag , (8.4.6a)

where ĤFS = ĤLS + Ĥkin , (8.4.6b)

Ĥmag =
eB

2me
(L̂z + 2Ŝz) =

eB

2me
(Ĵz + Ŝz) , (8.4.6c)

L̂z, Ŝz, and Ĵz(= L̂z + Ŝz) are, respectively, the z-components of orbital, spin and total
angular momentum operators and we have taken the direction of B field to be the z-axis.

The next step depends on the what choice we make for the unperturbed Hamiltonian and
that depends on the relative size of ĤFS and Ĥmag. From the discussion in the preceding
paragraph, it follows that we have to consider weak (B < 104 gauss) and strong magnetic
fields separately.

Weak Field Zeeman Effect

In this case the unperturbed Hamiltonian is Ĥ0 = p̂2

2me
− Ze2

4πε0r
+ ĤFS . We have seen that

fine structure interaction forces the atom into eigenstates of Ĵ2 and Ĵz. The unperturbed
Hamiltonian Ĥ0 and L̂2, Ŝ2, Ĵ2, and Ĵz form are mutually commuting observables. Hence
the basis states are |`sjm 〉 (suppressing n). Of these observables only Ĵ2 fails to commute
with the perturbation Ĥmag. This means Ĥmag is diagonal in `, s,m. Besides the diagonal
elements only nonzero elements of Ĥmag are

eB

2me
〈n`sj′m| Ĵz + Ŝz |n`sjm 〉 =

eB

2me

[
m~δj′j + 〈`sj′m| Ŝz |`sjm 〉

]
. (8.4.7)

The remaining matrix element can be evaluated by expressing the coupled angular
momentum states |`sjm 〉 in terms of uncoupled states |m`ms 〉 using the Clebsch-Gordan
coefficients [Chapter 7] as

〈 (`s)j′m| Ŝz |(`s)jm 〉 =
∑
ms

〈j′m| Ŝz |`, m` = m−ms, s,ms 〉 〈`,m` = m−ms, s,ms| jm〉

= ~
∑
ms

ms(`,m` = m−ms, s,ms|j′m)(`,m` = m−ms, s,ms|jm) ,

(8.4.8)
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where we have suppressed ` and s values in writing the coupled states for the ease of writing
and treated the CG coefficients to be real. For our case of hydrogenic atoms s = 1

2 we have
using Table 7.1

〈 (`, 1/2)`± 1/2,m| Ŝz |(`, 1/2)`± 1/2,m 〉 = ± m~
2`+ 1

, (8.4.9)

〈 (`, 1/2)`± 1/2,m| Ŝz |(`, 1/2)`∓ 1/2,m 〉 = − ~
2`+ 1

√(
`+

1
2

+m

)(
`+

1
2
−m

)
.

(8.4.10)

Thus Ĥmag mixes certain states with j = `± 1
2 . The mixed states are still the eigenstates of

L̂2, Ŝ2, Ĵz. For weak fields (B � 104 gauss), the mixing is small and |n`sjm 〉 are still good
basis states. Thus to first order in B, the correction to the energy is simply the expectation
value of Ĥmag in the state |n`sjm 〉. Combining (8.4.7) and (8.4.9), we find

E(1)
mag ≡

eB

2me
〈 (`, 1/2)`± 1/2,m| Ĵz + Ŝz |(`, 1/2)`± 1/2,m 〉 ,

=
eB

2me

[
m~± m~

2`+ 1

]
=
e~B
2me

(
2j + 1
2`+ 1

)
m, (8.4.11)

for both values of j. The first order shift (weak field) of energy levels can thus be written
as

E(1)
mag =

e~B
2me

gjm, (8.4.12)

where, in analogy with the gyromagnetic ratio gs for spin and and g` for orbital angular
momentum, we have introduced the gyromagnetic ratio gj = 2j+1

2`+1 , called the Landé g-
factor. Unlike gs and g`, however, Landé g-factor is not constant but depends on j and `.
The weak field energy of a hydrogenic level is then

En`sjm = E(0)
n

[
1 +

(Zα)2

n2

(
n

j + 1
2

− 3
4

)]
+
e~B
2me

gjm. (8.4.13)

The weak field Zeeman shift is proportional to m and lifts the remaining degeneracy of
energy levels with respect to m. Figure 8.3 shows the splitting of 2P (n = 2, ` = 1) level
due to spin-orbit and weak field magnetic interaction. The magnetic splitting (Zeeman
splitting) of levels is uniform within each multiplet (−j ≤ m ≤ j sublevels) belonging to a
given value of j but differs from one multiplet to another due to different Landé g-factors.
For historical reasons, this is referred to as anomalous Zeeman effect.

The weak field Zeeman splitting for a multiplet of levels belonging to a given J can be
calculated quite generally (even for multi-electron atoms) using the projection theorem [see
Chapter 7], according to which the expectation value of any vector operator V̂ in the sub-
space spanned by 2j + 1 magnetic levels of total angular momentum J (which is obtained
by summing two angular momenta L and S) is proportional to the expection value of Ĵ .
In our case, the vector operator is L̂ + 2Ŝ = Ĵ + Ŝ. Then the weak-field Zeeman shift is
given by

E(1)
mag =

〈
(`s)jm

∣∣∣∣∣
(

1̂ +
Ĵ · Ŝ
Ĵ2

)
Ĵz

∣∣∣∣∣ (`s)jm
〉

eB

2me
,

=
eB

2me

〈
n(`s)jm

∣∣∣∣∣
(

1̂ +
Ĵ2 + Ŝ2 − L̂2

2Ĵ2

)
Ĵz

∣∣∣∣∣n(`s)jm

〉

=
e~B
2me

gjm, (8.4.14)
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FIGURE 8.3
Weak B-field (anomalous) Zeeman splitting for 2P (n = 2, ` = 1) level in hydrogen.

where

gj = 1 +
j(j + 1) + s(s+ 1)− `(`+ 1)

2j(j + 1)
,

is called Lande’s splitting factor (g-factor). It is easy to check that for 2P1/2and 2P3/2 this
gives Landé g-factors of 2/3 and 4/3 in agreement with the previous calculation. It should
be kept in mind that projection theorem gives level splitting in the weak field limit and
does not rule out magnetic interaction mixing states with different j-values.

Strong Field Magnetic Splitting: Paschen-Back Effect

For very large external magnetic fields (large compared to the internal magnetic field),
the magnetic interaction Ĥmag dominates ĤFS . In that case we can ignore ĤFS . The
appropriate commuting obsevables in this case are L̂2, L̂z, Ŝ

2, Ŝz and Ĵz = L̂z + Ŝz, which
commute with both Ĥ0 = p̂2

2me
− Ze2

4πε0r
and Ĥmag. The unperturbed states |n`sm`ms 〉 are

degenerate but Ĥmag is diagonal in them! Hence the first order correction to energy levels
is

E(1)
mag =

e~B
2me

(m` + 2ms) . (8.4.15)

This regime of the Zeeman splitting is referred to as the strong-field Zeeman effect or the
Paschen-Back effect. The strong field drives the atom into states of definite `,m`, s,m`.
The level structure in this case is different from the weak field case. This is shown in Fig.
8.4 for the 2P state of the hydrogen atom. Calculation of the energy shift due to ĤFS is
left to the problem at the end of this chapter.
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FIGURE 8.4
Strong B-field Zeeman splitting for 2P (n = 2, ` = 1) level in hydrogen.

The transition from the weak field to strong field is smooth. We have focused on the
calculation of energies. If we calculate the perturbed states we find that in weak fields
Ĥmag � ĤFS the basis states have strong |`sjm 〉 flavor. For strong magnetic fields
Ĥmag � ĤFS the basis states are |`m`sms 〉. For intermediate fields, mixing of states with
different j occurs and the states have a character intermediate between the two extremes.
As the field strength increases starting from zero, the character of the perturbed states
changes smoothly from |`sjm 〉 to |`m`sms 〉. The operator Ĵz commutes with Ĥmag for all
field strengths so that m = m` +ms is always a good quantum number.

8.5 WKBJ Approximation

This method of approximation, known after Wentzel, Kramers, Brillouin and Jeffreys, for
solving one-dimensional Schrödinger equation is applicable in situations where the potential
V (x) is a slowly varying function of x. This method is expected to work best for states
with large quantum numbers (semiclassical limit). However, in certain cases the WKBJ
method works better than naively expected and may even yield the exact result (such as the
harmonic oscillator energy levels). In any case, one may trust the WKBJ approximation for
highly excited states and then extend its limits toward the ground state with less confidence.
In this sense it is complementary to the variational method that works well near the ground
state. These two techniques together give quick but not very precise information for low
lying states and highly excited states.
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In a region where where the potential varies slowly the local de Broglie wavelength

λ(x) =
h

p(x)
=

2π~
[2m(E − V (x))]1/2

(8.5.1)

also varies slowly with x so that the wave function ψ(x) does not deviate significantly from
the form it would take if V (x) or p(x) were independent of x, i.e., the wave function will be
of the plane wave form ψ(x) ∼ eikx (k = p/~). In such cases, without loss of generality, we
may assume ψ(x) to have the form

ψ(x) = exp[iS(x)/~] , (8.5.2)

where the normalization constant has been absorbed in the definition of S(x). To see
how the WKBJ method works, consider the time-independent Schrödinger equation in one
dimension in the presence of a potential V (x). We express the function S(x) as a power
series in ~ as

S(x) = S0(x) + ~S1(x) + ~2S2(x) + · · · . (8.5.3)

Substituting this in the time-independent Schrödinger equation we find

E =
1

2m

(
dS

dx

)2

− i~
2m

dS

dx
+ V (x) . (8.5.4)

In the semi-classical limit ~→ 0, we have

E =
1

2m

(
dS0

dx

)2

+ V (x) . (8.5.5)

This equation is the same as E = p2

2m + V (x) provided that

dS0

dx
= ±

√
E − V (x) = ±p . (8.5.6)

It is clear that we can interpret p(x) as the momentum of the particle if E > V (x). The
point where V (x) = E is called a classical turning point. Thus in the semiclassical limit
~ → 0, the wave function ψ0(x) = eiSo(x)/~ contains all the information needed for the
classical motion. To go beyond the classical limit we need to consider higher order terms in
~ in the expansion of S(x). It is also clear that the behavior of the solution will be different
in different regions depending on whether E < V (x) or E > V (x).

So as a first step, we establish the form of the solution for a general potential V (x), in
the two regions called Region I [E > V (x)] and Region II [E < V (x)]. Figure 8.5 shows E
and V (x) and the two regions I and II. Classically, a particle moving from right (Region I)
to left will turn back as soon as it reaches the turning point x0, where V (x0) = E, because
it does not have enough energy to cross the potential barrier and move into the region
II. According to quantum mechanics, the particle has a finite probability to appear in the
region II as well. The Schrödinger equation, and its solution, of course, have different forms
on the two sides of the turning point.

The time-independent Schrödinger equation for a one-dimensional problem [Eq. (3.5.9)]



256 Concepts in Quantum Mechanics

V(x)

x

E

Region II Region I
E < V(x) E > V(x)

V(x)

x0

FIGURE 8.5
The point x = x0 at which V (x) = E is the classical turning point for a particle moving
from right to left.

may then be written as2

d2ψ

dx2
+ k2(x)ψ(x) = 0, k2 =

2m
~2

[E − V (x)] Region I: V (x) < E , (8.5.7)

d2ψ

dx2
− κ2(x)ψ(x) = 0 , κ2 =

2m
~2

[V (x)− E] Region II : V (x) > E . (8.5.8)

Once we get the solution of Eq. (8.5.7) for the region I [V (x) < E], we can easily deduce
the solution of Eq. (8.5.8) for region II [V (x) > E] by replacing ik(x) by κ(x).

Assuming a solution of the form (8.5.2) with an expansion of S(x) in powers of ~ [Eq.
(8.5.3)] and substituting it in Eq. (8.5.7), we obtain

i~(S′′0 + ~S′′1 + · · · )− (S′0 + ~S′1 + · · · )2 + p2(x) = 0 , (8.5.9)

where the primes denote derivatives with respect to x such that S′ = dS/dx, S′′ = d2S/dx2,
· · · . Equating the terms of the same order in ~ from both sides, we have

−(S′0)2 + p2(x) = 0 , (8.5.10a)
iS′′0 − 2S′0S

′
1 = 0 , (8.5.10b)

S′0S
′
2 +

1
2

(S′1)2 − i

2
S′′1 = 0 , (8.5.10c)

etc.

On integration, the first equation (8.5.10a) leads to

S0(x) = ±
∫ x

p(x′)dx′ = ±~
∫ x

k(x′)dx′ , (8.5.11)

2It may be noted that even if the problem is three-dimensional, as long as the potential V (r) is spherically
symmetric, the radial equations may still be put in the forms of Eqs. (8.5.7) and (8.5.8) by writing the radial
function as R`(r) = u`(r)/r. The dependent variable in these equations would be u`(r) instead of ψ(x),

the independent variable would be r instead of x, and the effective potential would be V (r) + ~2

2m
`(`+1)

r2

instead of V (x).
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where the constant of integration is taken into account by leaving the lower limit of
integration unspecified. The second equation (8.5.10b) gives

S1(x) =
i

2
lnS′0(x) + constant =

i

2
ln[k(x)] + C1 , (8.5.12)

where C1 is the constant of integration. The third equation (8.5.10c) gives

S2(x) = ∓1
4
p′(x)
p2(x)

∓ 1
8

∫ x (p′)2

p3
dx . (8.5.13)

Restricting only to zero and first order terms in ~, we find that the wave function in region
I [V (x) < E] must be of the form

ψ(x) = exp[i(S0 + ~S1)/~] = exp
[
±i
∫ x

k(x′)dx′ − 1
2

ln k(x) + C1

]

=
A√
k(x)

exp

±i x∫
x0

k(x′)dx′

 , (8.5.14)

where the constants have all been absorbed into the definition of A.
To find the form of the solution for region II [V (x) > E], we have to consider Eq. (8.5.8)

which may be obtained by replacing ik(x) by κ(x) in Eq. (8.5.7). So the WKBJ solution
in the region II [V (x) > E] has the form

ψ(x) =
B√
κ(x)

exp
[
±
∫ x

x0

κ(x′)dx′
]

=
B√
κ(x)

exp
[
∓
∫ x0

x

κ(x′)dx′
]
. (8.5.15)

Thus the WKBJ solutions of the Schrödinger equation on the two sides of the turning point
are, respectively,

ψ(x) ≈ A√
k(x)

e±iξ1 , ξ1 ≡
∫ x

x0

k(x′)dx′, Region I: E > V (x) , (8.5.16)

ψ(x) ≈ B√
κ(x)

e∓ξ2 , ξ2 ≡
∫ x0

x

κ(x′)dx′, Region II: E < V (x) . (8.5.17)

Physical boundary conditions must be considered in order to decide which combination of
solutions is valid in the different regions of type I and II. Such considerations also determine
the constants A and B in the appropriate regions.It may noted that ξ1 and ξ2 so defined are
both positive. (Since k(x) and κ(x) are both positive in the respective regions, the upper
limit should be greater than the lower limit in the integrals for ξ1 and ξ2 if they are to be
positive.) It is clear that these two solutions are, respectively, approximations to the actual
wave functions in the region I (on the right of the turning point where V (x) < E) and in
the region II (on the left of the turning point where V (x) > E. At or near the turning point
x = x0, however, these solutions are not valid because at this point λ = h/h → ∞. This
can be seen more clearly by investigating the conditions for the validity of WKBJ solutions.

The Validity of WKBJ Approximation

The validity of the WKBJ approximation may be judged by comparing the magnitudes of
the successive terms, S0 and ~S1 in the expansion of S(x). For this approximation to be
valid, ∣∣∣∣~S1

S0

∣∣∣∣� 1 . (8.5.18)
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Since S0 = ~
∫ x
x0
k(x′)dx is a monotonically increasing function of x, as long as k(x′) does

not vanish, the ratio |~S1/S0| is small if∣∣∣∣~S′1S′0

∣∣∣∣� 1 . (8.5.19)

Using S′0(x) = ±~k(x) from Eq. (8.5.10a) and S′1 = iS′′0 /2S
′
0 = ik′(x)/2k(x) from Eq.

(8.5.10b), condition (8.5.19) becomes∣∣∣∣~2 k′(x)
k(x)

1
~k(x)

∣∣∣∣ =
∣∣∣∣ λ4π 1

k(x)
dk

dx

∣∣∣∣� 1 . (8.5.20)

This means that as long as the fractional change in k(x) (momentum) over a distance
λ(x)/4π is small, the approximation is valid in that domain of x. This condition is, obviously,
satisfied for a constant potential and also for a slowly varying potential, in regions far away
from the turning point. But it breaks down at or near the turning point where λ→∞. For
this reason the WKBJ solutions are also referred to as asymptotic solutions (valid far from
the turning point). Since there may be several regions of type I and II, we need to connect
the solutions in different regions to one another. This is done by means of the conection
formulas.

The Connection Formulas

The WKBJ solutions on the two sides of the classical turning point (CTP) have different
forms. In the region V (x) < E the solutions are oscillatory and can be written as some
linear combinations of solutions (8.5.16). In the region V (x) > E, they are combinations
of increasing and decreasing exponential forms (8.5.17). To connect these WKBJ solutions
in the two regions across the CTP (where the WKBJ solutions are not valid), we solve the
Schrödinger equation exactly for a linear slowly varying potential,

V (x) = E − ~2

2m
Cx , (8.5.21)

where E is the energy of the particle and we have written the slope of the potential near the
turning point as ~2C

2m in terms of a positive constant (C > 0) for later convenience. We may
look upon the assumed form of the potential as a Taylor series expansion of the potential
near the classical turning point. The exact solution of the Schrödinger equation with this
potential can then be worked out on both sides of the turning point and can be matched to
the WKBJ solutions on the two sides. This procedure gives rise to the so called connection
formulas and the corresponding WKBJ solutions are said to be connected.

For the potential given by Eq. (8.5.21), the Schrödinger equation near the turning point
x = 0 can be written as 3

d2ψ1

dx2
+ k2(x)ψ1(x) = 0

k2(x) =
2m
~2

[E − V (x)] = Cx

 Region I: x > 0 , (8.5.22)

d2ψ2

dx2
− κ2(x)ψ2(x) = 0

κ2(x) =
2m
~2

[V (x)− E] = −Cx = C|x|

 Region II: x < 0 . (8.5.23)

3In the vicinity of a turning point at x = x0, the potential has the form V (x) = E − ~2

2m
C(x − x0). By a

change of independent variable X = x− x0, the potential can be brought to the form V (X) = E − ~2

2m
C X

with a turning point at X = 0.
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x

E

x0

Region I
E > V(x)

Region II
E < V(x)

(a)

x

E

x=0

Region I
E > V(x)

Region II
E < V(x)

V(x)=E -(h2C/2m) x
(b)

V(x)

FIGURE 8.6
For a linear potential of the form V (x) = E− ~2C

2m x, the classical turning point is at x = 0.

Introducing the independent variable ξ1 and the dependent variable v(ξ1) in Eq. (8.5.22) by

ξ1 =
∫ x

0

k(x′)dx′ =
√
C

2
3
x3/2 , (8.5.24)

and ψ1(x) =

√
ξ1(x)
k(x)

v(ξ1) =
(

2
3C

)1/6

ξ
1/3
1 v(ξ1) , (8.5.25)

we find that the Schrödinger equation in region I reduces to the Bessel equation of order 1/3:

d2v(ξ1)
dξ2

1

+
1
ξ1

dv(ξ1)
dξ1

+
(

1− 1
32

1
ξ2
1

)
v(ξ1) = 0 . (8.5.26)

Hence v(ξ1) = J± 1
3
(ξ1) and the solution in region I is given by

ψ±1 (x) = A±

√
ξ1
k
J± 1

3
(ξ1) . (8.5.27)

Similarly, in region II [E < V (x) ;x < 0], we introduce the independent variable ξ2 and the
dependent variable w(ξ2) through the equations

ξ2 =
∫ 0

x

κ(x′)dx′ = (2
√
C/3)|x|3/2 , (8.5.28)

ψ2(x) =

√
ξ2
κ(x)

w(ξ2) =
(

2
3C

)1/6

ξ
1/3
2 w(ξ2) . (8.5.29)

Note that ξ2 increases as we move away from the turning point into region II. These
substitutions reduce the Schrödinger equation in region II to the form of modified Bessel
equation of order 1/3:

d2w(ξ2)
dξ2

2

+
1
ξ2

dw(ξ2)
dξ2

+
(
−1− 1

32

1
ξ2
2

)
w(ξ2) = 0 . (8.5.30)

The solution of this equation is the modified Bessel functions I±1/3(ξ2) so that the WKBJ
solution in region II [V (x) > E] is

ψ±2 (x) = B±

√
ξ2
κ
I± 1

3
(ξ2) . (8.5.31)
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The modified Bessel function is also called Bessel function of imaginary argument because
it is related to the Bessel function by Iν(ξ2) = e−iπν/2Jν(iξ2) [see Chapter 5, Appendix
5A1 Sec. 5]. Thus the two forms of the solution are analytic continuations of each other as
x changes sign and with the choice B± = ∓A±, the two functions ψ1 (in region I) and ψ2

(in region II) constitute a continuous solution of the Schrödinger equation near the turning
point.

Now Eqs.(8.5.27) and (8.5.31) are valid for all values of x only for the potential E− ~2C
2m x

[Eq. (8.5.21)]. What then is gained by writing the solution [Eqs. (8.5.27) and (8.5.31)] in
terms of k(x) and κ(x) for a general potential V (x) that is strictly not equal to E − ~2C

2m x
but which merely behaves like it near the turning point? The reason is the remarkable
observation that the asymptotic forms of J±1/3ν(ξ1) and I±1/3(ξ2) for large arguments
ξ1, ξ2 →∞ [See Appendix 5A1 Sec. 5]:

J±1/3(ξ1)
ξ1→∞−−−−→

√
2
πξ1

cos(ξ1 ∓ π

6
− π

4
) ,

I±1/3(ξ2)
ξ2→∞−−−−→

√
1

2πξ2

[
eξ2 + e−ξ2 exp−iπ(1/2±1/3)

]
,

I−1/3 − I1/3 ξ2→∞−−−−→ sin(π/3)
√

2
πξ2

e−ξ2 ,

(8.5.32)

are such that away from the turning point x = 0, i.e., for large ξ1 =
∫ x

0
k(x′)dx′ and

ξ2 =
∫ 0

x
κ(x′)dx′, appropriate combinations of Eqs. (8.5.27) and (8.5.31) agree with the

WKBJ forms (8.5.16) and (8.5.17). This allows us to use Eqs. (8.5.27) and (8.5.31) with
B± = ∓A± to interpolate between WKBJ solutions in regions of type I and II for any
potential. Using the asymptotic form of the solution near the turning point we find that

ψ+
1 → A+

√
2
πk

cos(ξ1 − 5π/12) , (8.5.33)

and ψ+
2 → −A+

√
1

2πκ

[
eξ2 + e−ξ2e−i5π/6

]
, (8.5.34)

are connected asymptotic solutions. Similarly, the asymptotic forms of ψ−1 and ψ−2

ψ−1 → A−

√
2
πk

cos(ξ1 − π/12) , (8.5.35)

and ψ−2 → A−

√
1

2πκ

[
eξ2 + e−ξ2 e−iπ/6

]
, (8.5.36)

are also connected asymptotic solutions. It is obvious that a linear combination of the
asymptotic forms of ψ+

2 and ψ−2 on the far left of the turning point will connect with the
corresponding linear combination of ψ+

1 and ψ−1 on the far right of the turning point. We
will illustrate it by two examples.

Consider the combination ψ+ + ψ− with A+ = A− = 1. Using the asymptotic forms
(8.5.33) through (8.5.36), we obtain

ψ+ + ψ− →


(

2
π k

)1/2√3 cos (ξ1 − π/4) Region I

(
1

2π k

)1/2√3 e−ξ2 Region II .

(8.5.37)

Hence we have the connection formula

e−ξ2

2
√
κ

II→I−−−→ cos(ξ1 − π
4 )√

k
. (8.5.38)
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Let us form another linear combination and work out its asymptotic forms in the two
regions:

1√
3

[
(ψ+ + ψ−) cos η − (ψ+ − ψ−) sin η

]
−→


(

2
πk(x)

)1/2

cos(ξ1 − π/4 + η) Region I

2 sin η
(

1
2πκ(x)

)1/2

eξ2 Region II .
(8.5.39)

This gives the connection formula

eξ2√
κ(x)

sin η II←I←−−− cos(ξ1 − π/4 + η)√
k(x)

. (8.5.40)

Other connection formulas may be derived by choosing different combinations. What
combinations to choose depends on the boundary conditions to be satisfied or some other
information we have about the system. We will see an example of this in the discussion of
α decay.

The connection formulas must be used with caution; the arrow indicates the direction
in which the formulas can be used reliably to connect the asymptotic solutions. For
example, the arrow in Eq. (8.5.38) means that the WKBJ solution e−ξ2/2

√
κ(x) in

region II [E < V (x)] connects to the WKBJ solution cos(ξ1 − π/4)/
√
k(x) in the region

I [E > V (x)]. This is because we know the boundary condition on the wave function in the
inaccessible region, viz., that the wave function has to vanish far from the turning point.
The reverse connection can lead to errors. For example, if we use the arrow in the reverse
direction, a small error in the phase of the cosine term would introduce a sine term, whose
contribution in region I might be considered negligible, but according to (8.5.40) it would
connect to a positive exponential function in region II. In general, we always start with the
wave function in the region of space where the boundary conditions on the wave function
are known and then match it onto the adjacent region through the connection formula. We
will see an example of this in nuclear α-decay.

x

E

Region I
E > V(x)

x0

Region II
E < V(x)

V(x)

FIGURE 8.7
Potential increasing through the classical turning point.

If the potential V (x) is increasing through the turning point so that the region I [E >
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V (x)] is on the left and region II [E < V (x)] is on the right [Fig. 8.7], the connection
formulas are

1√
k(x)

cos
[∫ 0

x

k(x′)dx′ − π

4

]
I←II←−−− 1√

κ(x)
exp[−

∫ x

0

dx′κ(x′)] , (8.5.41)

1√
k(x)

cos
[∫ 0

x

k(x′)dx′ − π

4
+ η

]
I→II−−−→ sin η√

k(x)
exp[

∫ x

0

dx′κ(x′)] . (8.5.42)

Finally, the case of the potential where two (or more) classical turning points converge
or are not sufficiently separated requires special treatment because the region of validity of
one solution may overlap with that of the next. Other connection formulas by assuming the
potential to have the form V (x) = E− ~2C

2m (x−xo)n near the turning point can be devloped
in terms of Bessel functions of order ± 1

n+2 . For some potentials, such as the infinite square
well, the wave function must vanish in region I at the infinite potential barrier. In such
cases the connection formulas are simply

0↔ sin
[∫ x

0
k(x′)dx′

]√
k(x)

. (8.5.43)

8.6 Particle in a Potential Well

We can now apply the WKBJ approximation to find the energy levels of a particle in
a potential well V (x) where V (x) is a slowly varying function of x. Consider a particle
moving in a one-dimensional potential well as shown in Fig. 8.8. For any energy level E
there are two ‘classical turning points’ x1 and x2, given by

V (x1) = V (x2) = E . (8.6.1)

The regions x < x1 and x > x2, referred to as regions II and II′, respectively, are the
classically forbidden regions where E < V (x), while the region x1 ≤ x ≤ x2, referred to as
region I, is characterized by E > V (x). Since the state we are referring to is a bound state,
the WKBJ wave function in regions II and II′ should contain a decreasing exponential term.

Let us introduce variables ξ1 and ξ2 on the two sides of the CTP x1 by

ξ2 =
∫ x1

x

κ(x′)dx′, κ2(x′) =
2m
~2

[V (x′)− E] ; Region II , (8.6.2)

and ξ1 =
∫ x

x1

k(x′)dx′, k2(x′) =
2m
~2

[E − V (x′)] ; Region I . (8.6.3)

The limits are chosen to keep both ξ1 and ξ2 positive. Using the first connection formula
(8.5.38), we can connect the WKBJ wave function with the negative exponential term
exp(−ξ2)/2

√
κ(x) in region IIL with the WKBJ wave function cos(ξ1 − π/4)/

√
k(x) in

region I.
Similarly, on the two sides of the CTP x2, we define the variables ξ′1 and ξ′2 by

ξ′2 =
∫ x

x2

κ(x′)dx′, κ2(x′) =
2m
~2

[V (x′)− E] ; Region II′ , (8.6.4)

and ξ′1 =
∫ x2

x

k(x′)dx′, k2(x′) =
2m
~2

[E − V (x′)] ; Region I , (8.6.5)
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x

E

Region II Region I Region II′
E < V(x) E > V(x) E < V(x)

V(x)

x1 x2

FIGURE 8.8
A particle with energy E in a potential well V (x), where V (x) is a slowly varying function
of x. The points x1 and x2 are the classical turning points at which E = V (x1) = V (x2).

where the limits are again such that both ξ′1 and ξ′2 are positive away from the turning
point. Using the same connection formula, we can connect the WKBJ wave function with
the negative exponential term exp(−ξ′2)/2

√
κ(x) in region II′ with the WKBJ wave function

cos(ξ′1 − π/4)/
√
k(x) in region I. Thus we have

ψI(x) =


ψA(x) = A√

k(x)
cos
(∫ x

x1
k(x′)dx′ − π/4

)
I ← II ,

ψB(x) = B√
k(x)

cos
(∫ x2

x
k(x′)dx′ − π/4) I ← II ′ .

(8.6.6)

At any point x in region I, in between and away from the turning points x1 and x2, these
WKBJ solutions must be the same function. This requirement can be written in terms of
its logarithmic derivative as

1
ψA(x)

dψA
dx

=
1

ψB(x)
dψB
dx

. (8.6.7)

This condition, with the help of the relation
∫ x2

x
k(x′)dx′ =

∫ x2

x1
k(x′)dx′ − ∫ x

x1
k(x′)dx′,

leads to

tan

 x∫
x1

k(x′)dx′ − π/4
 = tan

(∫ x

x1

k(x′)dx′ − Φ + π/4
)
, (8.6.8)

where Φ ≡
∫ x2

x1

k(x′)dx′ . (8.6.9)
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Equation (8.6.8) is solved by

x∫
x1

k(x′)dx′ − π/4 = nπ +

x∫
x1

k(x′)dx′ − Φ + π/4 ,

or Φ ≡
x2∫
x1

k(x)dx =
(
n+

1
2

)
π . (8.6.10)

Using (8.6.3) or (8.6.5), this can be written as

x2∫
x1

√
2m[E − V (x)] dx =

(
n+

1
2

)
~π , (8.6.11)

which tells us that there is a bound state with energy E provided that the condition (8.6.11)
is satisfied. Note that x1 and x2 also depend on energy. By solving this equation we can
determine the energy levels in a potential well. It should be kept in mind that because
of the assumptions made in arriving at the WKBJ solutions we expect these energy levels
to be more accurate for large n than for small n. In fact, using p = ~k = (h/2π)k, the
condition (8.6.10) can also be written as the Bohr-Sommerfeld’s quantization condition

2

x2∫
x1

p(x)dx ≡
∮
p(x)dx =

(
n+

1
2

)
h , (8.6.12)

which is expected to hold in the limit of large quantum numbers.
As a simple application of these results consider the linear harmonic ocillator with V (x) =

1
2mω

2x2. Then for an energy E there are two turning points x1,2(E) = ±√2E/mω2. The
integral (8.6.11) in this case is easily evaluated to give

√
2E/mω2∫

−
√

2E/mω2

√
2m(E2 −m2ω2x2) dx = E

π

ω
= ~π

(
n+

1
2

)
, (8.6.13)

which gives En = ~ω(n + 1/2), a result we already know so well. The fact that we get
energy levels correct all the way down to the ground state is accidental.

8.7 Application of WKBJ Approximation to α-decay

An important application of the WKBJ method is to nuclear α-decay, in which a parent
nucleus of charge (Z + 2) decays into an α-particle of charge 2e and a daughter nucleus
of charge Ze. To describe this we imagine that the α-particle moves in the field of the
daughter nucleus.

Inside the nucleus the α-particle is attracted to the center by the nuclear force which
dominates the electrostatic repulsion due to the daughter nucleus. Once it is outside of
the range of the nuclear force, only the electrostatic repulsion and the angular momentum
barrier remain. We will assume the nuclear potential to be a short range square well of V0.
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Then the potential has the shape shown in Fig. 8.9 and can be represented mathematically
by

V (r) =


−V0 for r < R ,

2Ze2

4πε0r
for r > R .

(8.7.1)

It seems that the depth V0 of the potential well is not very large because even the lowest state

rR

V(r)

Vc(r)=
2Ze2

4µ≤or

E

b

I II III

−V0

2Ze2

4µ≤oR

FIGURE 8.9
Nuclear potential as seen by an alpha particle. The depth of the potential well of radius
R is V0. The height of the adjacent Coulomb barrier Vc = 2Ze2/4πε0R at r = R is much
larger than the energy E of the particle. At the CTP (r = b), the Coulomb potential
Vc(b) = 2Ze2/4πε0b = E. The regions I, II, III are as indicated.

of the alpha particle is unbound. We are required to explain how an alpha particle within
the nucleus, with energy E much less than the height of the Coulomb barrier 2Ze2/4πε0R,
is able to leak through the barrier and come out with the same energy E. A qualitative
explanation for this was provided by Gamow [Chapter 4]. To give a realistic explanation
we will use WKBJ approximation. We divide the space into three regions [see Fig. 8.9]:

(a) Region I, where r < R and V (r) = −V0. In this region we define

α2 =
2µ
~2

(E + V0) . (8.7.2)

(b) Region II, where R ≤ r ≤ b and V (r) = 2Ze2/4πε0r > E. In this region we define

κ2(r) ≡ 2µ
~2

(
2Ze2

4πε0r
− E

)
(8.7.3)

where b is the CTP so that E = 2Ze2/4πε0b.
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(c) Region III, where r > b and V (r) = 2Ze2/4πε0r < E. In this region we define

k2(r) ≡ 2µ
~2

(
E − 2Ze2

4πε0r

)
. (8.7.4)

Then the radial Schrödinger equation for u(r) = rR(r) for ` = 0 [Eq. (5.5.41)] in the three
regions has the forms:indexWKBJ approximation!applied to radial equation

d2u1

dr2
+ α2u1(r) = 0 , α2 =

2µ
~2

(E + V0) Region I: r < R , (8.7.5)

d2u2

dr2
− κ2(r)u2(r) = 0, κ2(r) =

2µ
~2

(
2Ze2

4πε0r
− E

)
Region II: R ≤ r ≤ b , (8.7.6)

d2u3

dr2
+ k2(r)u3(r) = 0, k2(r) =

2µ
~2

(
E − 2Ze2

4πε0r

)
Region III: r > b . (8.7.7)

The solution in region I is
u1(r) = A1 sin(α r) , (8.7.8)

where the constant A1 is to be determined by applying the continuity condition to the wave
function and its derivative at r = b. This function already satisfies the boundary condition
at r = 0. In region III we need a solution whose asymptotic form represents a wave traveling
away from the barrier

u3(r) =
A3√
k

exp
[
i

(∫ r

b

k(r′)dr′ − π

4

)]
, (8.7.9)

where the phase π/4 has been included to simplify the calculation. To use the connection
formulas to extend this into region II, we write this equation as

u3(r) =
A√
k

[
cos
(∫ r

b

k(r′)dr′ − π

4

)
+ i sin

(∫ r

b

k(r′)dr′ − π

4

)]
. (8.7.10)

According to the connection formulas (8.5.41) and (8.5.42), this solution extends into region
II in the form

u2(r) =
A3√
κ(r)

[
1
2

exp

(
−
∫ b

r

κ(r′)dr′
)
− i exp

(∫ b

r

κ(r′)dr′
)]

, R < r � b ,

=
A3√
κ(r)

[
1
2
e−s exp

(∫ r

R

κ(r′)dr′
)
− ies exp

(
−
∫ r

R

κ(r′)dr′
)]

. (8.7.11)

Here we have introduced a parameter s by

s =
∫ b

R

κ(r′)dr′ =
∫ b

R

√
2µ
~2

(
2Ze2

4πε0r′
− E

)
dr′ ,

=

√
4µZe2b

4πε0~2

[
cos−1

√
R

b
−
√
R

b
− R2

b2

]
, (8.7.12)

which will be a large number as E = Vc(b) = 2Ze2/4πε0b is assumed to be small compared
to the height of the barrier Vc(R) = 2Ze2/4πε0R. (That is why we can apply the WKBJ
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method.) This means we can neglect the first term on the right hand side in Eq. (8.7.11).
Then, applying the boundary conditions at r = R we get

A1 sin(αR) = −i esA3√
κ(R)

, (8.7.13a)

and α cot (αR) ≈ −κ(R) . (8.7.13b)

Now the flux of the transmitted wave is ~
µ |A3|2 and that of the wave incident wave at r = R

is ~α
4µ |A1|2. Using the definition of transmission coefficient [Sec. 4.2], we find

T =
(~/µ)|A3|2

(~α/4µ)|A1|2 =
4κ(R)

α[1 + cot2(αR)]
e−2s =

4ακ(R)
α2 + κ2(R)

e−2s (8.7.14)

where s given by Eq. (8.7.12). This is the probability that the α-particle will escape every
time it hits the barrier. The frequency with which the α-particle hits the barrier is v

2R = ~α
2R .

Hence the probability of escape per second (the rate of nuclear decay) is given by

λ = T
~α
µ2R

=
4α2~κ(R)

2µR[α2 + κ2(R)]
e−2s =

4(E + V0)
(V0 + Vc(R))

√
Vc(R)− E

2µR2
e−2s . (8.7.15)

Then the lifetime τ of the nucleus is given by

τ ≡ λ−1 =
[V0 + Vc(R)]
4(E + V0)

√
2µR2

Vc(R)− Ee
2s ≡ τ0e2s . (8.7.16)

For α-particle energies small compared to the barrier height Vc(R), we have b� R, so that

2s ≈ 2

√
4µZe2b

4πε0~2

π

2
=

4πZe2

4πε0~c

√
µc2

2E
≈ 4Z√

E(in MeV)
, (8.7.17a)

ln
1
τ

= ln
1
τ0
− 4Z√

E(in MeV)
(8.7.17b)

where we have used reduced µ = mαmZ
mα+mZ

≈ mα ≈ 3.8 × 103 MeV, where mZ is the
daughter nucleus mass. The numerical constants are hard to compute reliably because of
large uncertainties in the shape of the nuclear potential. Nevertheless, the last equation
predicts the Z and E dependence accurately, which fits the experimental data over a large
range of lifetimes.

8.8 The Variational Method

The variational method is another widely used approximation method in quantum
mechanics. This method is frequently used in atomic, molecular and nuclear problems
to estimate the ground state energy and ground state wave function of a system. The basis
of this method is the variational principle explained below.

Consider a system whose Hamiltonian H is known and the system is understood to admit
a set of discrete energy levels Ei, and normalized and orthogonal eigenstates |ψi 〉, such that

Ĥψi = Ei |ψi 〉 , i = 1, 2, 3, · · · (8.8.1)
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The energy levels Ei and the eigenfunctions |ψi 〉, which in the coordinate representation are
functions of the continuously varying position coordinates of the system, are not known and
need to be determined. Now consider any state |φ 〉 be of the system, which is normalized

〈φ|φ〉 = 1 , (8.8.2)

and may depend on a number of adjustable parameters. Then the variational principle
states that the expectation value

E(φ) ≡ 〈φ| Ĥ |φ 〉

is always greater than, or at most equal to, the ground state energy E0 of the system, i.e.,
E(φ) ≥ E0; the equality being obtained if |φ 〉 is, somehow, chosen to be |ψ0 〉.

According to this principle, we can obtain an estimate for the ground state energy by
making an educated choice for the ground state. We choose a trial ground state |φ(λi) 〉
which includes some parameters λi that relate to the physical properties of the system
and work out the expectation value E(φ) = E(λi) in terms of these parameters, called
the variational parameters. Note that as a function of these parameters, we are really
considering a family of trial states. By choosing these parameters to minimize E(φ) = E(λi),
we can get the best E(λoi ) for the ground state energy E0 as also the best ground state
|φ(λoi ) 〉 (for the optimal values λoi of the variational parameters), within the family of trial
states.

To prove the variational principle, we expand the trial state in terms of the complete set
of states |ψi 〉. No generality is lost in assuming that the states |ψi 〉 are orthogonal since,
if any of these functions are degenerate, orthogonal linear combinations of them can always
be constructed. Thus we have

|φ 〉 =
∑
i

ai |ψi 〉 . (8.8.3)

The normalization condition 〈φ|φ〉 = 1 on φ implies∑
i

a∗i ai = 1 . (8.8.4)

Using Eq. (8.8.3), the energy expectation value can be evaluated as

E(φ) = 〈φ| H |φ 〉 =
∑
i

∑
j

a∗jaiEiδij =
∑
i

|ai|2Ei . (8.8.5)

Since E0 is the lowest energy of the system, being the ground state energy (E0 ≤
E1, E2, E3, · · · ), if we replace all the energies under the sum in Eq. (8.8.5) by E0 and
use the normalization condition

∑
i |ai|2 = 1 we immediately obtain

E(φ) ≡
∑
i

|ai|2Ei ≥
(∑

i

|ai|2
)
E0 = E0 . (8.8.6)

This is the variational principle, which says that the energy expectation value in any trial
state is an upper bound to the ground state energy. In case all ais, except ao, are zero so
that φ = ψo then only the equality holds and E(φ) = E0. Thus unless we are able to guess
the trial function φ(r) = 〈r|φ〉, which is identical with the ground state wave function
ψ0(r) = 〈r|ψ0〉, the expectation value E(φ) > E0. By adjusting the variational parameters
to minimize E(φ) ≡ E(λi) we can get the best estimate to the ground state energy and
the best approximation to the ground state wave function. We may even try alternative
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forms of the trial wave function and find the one that with the adjustment of the variation
parameters gives the minimum E.

Good physical intuition about the system is the key to the accuracy of the variational
method in estimating the ground state energy. It is even possible in many cases to obtain
estimates of the next few excited states above the ground state. The variational method is
complementary to the WKBJ method in that while the former is used for estimating the
energy of the ground state or at most the first few low lying states, the WKBJ is reliable
for large quantum number states.

As an application of the variational method let us estimate the ground state energy of
the normal Helium atom.

Ground State Energy of the Helium Atom

The complete Hamiltonian of the normal Helium atom, without spin degree of freedom, is
given by

H =
(
− ~2

2m
∇2

1 −
2e2

4πε0r1

)
+
(
− ~2

2m
∇2

2 −
2e2

4πε0r2

)
+

e2

4πε0|r1 − r2|
≡ H1 +H2 +H12 . (8.8.7)

In the ground state both electrons must occupy the lowest hydrogenic state |ψ100 〉 [see
Sec. 5.6]. Therefore, for the trial wave function we use the product of the ground state
hydrogenic wave functions with nuclear charge Ze for the two electrons and treat Z as a
variational parameter. Treating Z as a variational parameter allows us to take into account
the fact that the full nuclear charge Ze is not seen by either of the electrons because of the
screening effect of the other. (In the Hamiltonian, of course, we put Z = 2.) Thus, for the
trial wave function, we have

φ(r1, r2;Z) = ψ100(r1;Z)ψ100(r2;Z) =
(
Z3

πa3
o

)
e−Z(r1+r2)/ao , (8.8.8)

where Z will be treated as a variational parameter. Then the energy integral is

E(Z) =< φ|H|φ >
= 〈ψ100(1;Z)| H1 |ψ100(1;Z) 〉 × 〈ψ100(2;Z)|ψ100(2;Z)〉
+ 〈ψ100(1;Z)|ψ100(1;Z)〉 × 〈ψ100(2;Z)| H2 |ψ100(2;Z) 〉
+ 〈φ(1, 2;Z)| H12 |φ(1, 2;Z) 〉

= 2× 〈ψ100(1;Z)| H1 |ψ100(1;Z) 〉+ 〈φ(1, 2;Z)| H12 |φ(1, 2;Z) 〉 , (8.8.9)

where we have used the fact that hydrogenic wave functions are normalized, 〈ψ100|ψ100〉 = 1
and that the expectation value of H1 in the state |ψ100(1;Z) 〉 is equal to the expectation
value of H2 in state |ψ100(2;Z) 〉. To evaluate the first term we write

H1 = − ~2

2m
∇2

1 −
Ze2

4πε0r1
+

(Z − 2)e2

4πε0r1
. (8.8.10a)

Then with the help of Eq. (5.6.33) [〈r−1〉n`m = Z/aon
2] we have〈

(Z − 2)e2

4πε0r

〉
100

=
(Z − 2)e2

4πε0
Z

ao
, (8.8.10b)

〈ψ100(1;Z)| H1 |ψ100(1;Z) 〉 = − Z2e2

8πε0ao
+

(Z − 2)e2

4πε0
Z

ao
,

= 〈ψ100(2;Z)| H2 |ψ100(2;Z) 〉 . (8.8.10c)
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There remains the last term in Eq. (8.8.9), which in the coordinate representation can be
written as

〈φ(1, 2;Z)| H12 |φ(1, 2;Z) 〉 =
(
Z3

πa3
o

)2
e2

4πε0

∫∫
exp[−2Z(r1 + r2)/ao]

|r1 − r2| d3r1d
3r2 . (8.8.11)

With the change of variables ρi = 2Zri
ao

and ρ12 = |ρ1 − ρ2|, this integral takes the form

(
Z3

πa3
o

)2
e2

4πε0
a5
o

32Z5

∫∫
exp[−(ρ1 + ρ2)]

ρ12
d3ρ1d

3ρ2 . (8.8.12)

The ρ-integral was evaluated in Sec. 8.2 [Footnote 1] and has the value 20π2. Thus we have
finally

E(Z) = −2
[
Z2e2

8πε0ao

]
+ 2

[
(Z − 2)Ze2

4πε0ao

]
+

5
8

Ze2

4πε0ao
=

e2

4πε0ao

(
Z2 − 27Z

8

)
. (8.8.13)

To minimize the energy with respect to Z, we put dE
dZ = 0, which yields Zo = 27/16. Putting

this optimum value of the variational parameter in Eq. (8.8.13) we get

E = −5.7
e2

8πε0ao
= −5.7 Rydberg (8.8.14)

This compares favorably with the experimentally measured value Eexp = −5.808 Rydberg.
We note that if we simply put Z = 2, we get -5.5 Rydberg, showing clearly that treating

Z as a variational parameter results in a better estimate for the ground state energy. Also
note that the variational method gives a better value for the ground state energy of the
normal Helium atom than the first order perturbation calculation.

8.9 The Problem of the Hydrogen Molecule

The basic question as to what binds two neutral Hydrogen atoms into a molecule cannot be
answered classically. This type of binding of identical atoms, called homopolar binding, was
first explained by Heitler and London on the basis of quantum mechanics. They showed
that the homopolar bond is due to a typical quantum effect called the exchange effect.

The Hydrogen molecule consists of two nuclei (protons) A and B a definite distance R
apart and two electrons 1 and 2 [Fig. 8.10]. In the coordinate representation the Hamiltonian
operator of the system can be written as

H = − ~2

2m
(∇2

1+∇2
2)+

e2

4πε0R
+

e2

4πε0r12
− e2

4πε0r1A
− e2

4πε0r2B
− e2

4πε0r2A
− e2

4πε0r1B
. (8.9.1)

If we write r1A ≡ r1 and r2B = r2 then r2A = R+ r2 and r1B = −R+ r1 [Fig. 8.10]. It
is not possible to solve the equation exactly for this problem. The most convenient method
for this problem is the variational method.

To write the trial wave function we note that if we regard this system as consisting of two
independent Hydrogen atoms in the ground state with electron 1 attached to nucleus A and
electron 2 attached to nucleus B (neglecting the interactions −e2/4πε0r2A, −e2/4πε0r1B ,
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A BR

2

r1= r1A r2=r2B

r1= r1A

r1B

FIGURE 8.10
In the Hydrogen molecule, the labels A and B denote the protons; 1 and 2 denote the
electrons.

e2/4πε0R and e2/4πε0r12), then the ground state wave function of this system may be
written as

u1(r1, r2) = uA(r1)uB(r2) , (8.9.2)

where uA(r1) =
1√
πa3

o

exp(−r1A/ao) =
1√
πa3

o

exp(−r1/ao) (8.9.3)

and uB(r2) =
1√
πa3

o

exp(−r2B/ao) =
1√
πa3

o

exp(−r2/ao) . (8.9.4)

Now, since the two electrons are identical, we can regard this system as consisting of two
independent Hydrogen atoms in the ground state with electron 1 attached to nucleus B and
electron 2 attached to nucleus A (neglecting the interaction terms in the Hamiltonian). In
that case the ground state wave function of the system can be written as

u2(r1, r2) = uA(r2A)uB(r1B) , (8.9.5)

where uA(r2A) =
1√
πa3

o

exp(−r2A/ao) (8.9.6)

and uB(r1B) =
1√
πa3

o

exp(−r1B/ao) . (8.9.7)

Therefore, for the ground state trial wave function of the Hydrogen molecule, we choose a
linear combination of u1(r1, r2) and u2(r1, r2)

ψ(r1, r2) = u1(r1, r2) + Cu2(r1, r2) (8.9.8)

where C is regarded as a variational parameter. Note that the trial wave function ψ(r1, r2)
is, in general, not normalized even if u1(r1, r2) and u2(r1, r2) are. Then according to the
variational principle, the best approximation to the ground state energy of the Hydrogen
molecule is obtained by minimizing the integral

E(C) =
∫
ψ∗Hψdτ∫
ψ∗ψdτ

, (8.9.9)
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with respect to the variation parameter C. Using Eq. (8.9.8) we find the energy integral
E(C) can be written as

E(C) =
H11 + C H12 + C H21 + C2H22

1 + C2 + 2Cγ
, (8.9.10)

where Hij ≡
∫
ui(r1, r2)H uj(r1, r2)dτ1dτ2 , (8.9.11)

γ ≡
∫
u1(r1, r2)u2(r1, r2)dτ1dτ2 , (8.9.12)

and the functions u1 and u2 have been assumed to be normalized to unity. Since H is
symmetric between the two electrons, we conclude H11 = H22 and H12 = H21. Explicitly,
we have4

H22 =
∫∫

uA(r2A)uB(r1B)HuA(r2A)uB(r1B)d3r1Bd
3r2A , (8.9.13)

H11 =
∫∫

uA(r1A)uB(r2B)HuA(r1A)uB(r2B)d3r1Ad
3r2B , (8.9.14)

H12 =
∫∫

uA(r1)uB(r2)H uA(r2)uB(r1)d3r1d
3r2 , (8.9.15)

and H21 =
∫∫

uA(r2)uB(r1)HuA(r1)uB(r2)d3r1d
3r2 . (8.9.16)

The equalities H11 = H22 and H12 = H21 are obvious because interchanging 1 and 2
leaves these integrals unchanged but transforms H11 ↔ H22 and H12 ↔ H21. Using these
symmetry properties we can write the energy integral as

E(C) =
(1 + C2)H11 + 2C H12

1 + C2 + 2C γ
. (8.9.17)

The optimum value of the variation parameter C, which minimizes E(C) can be found from
the condition ∂I/∂C = 0, which gives

(1− C2)(H12 −H11) = 0 or C = ±1 . (8.9.18)

Thus we obtain two solutions

For C = +1 : Es(R) = (H11 +H12)/(1 + γ) , (8.9.19)
For C = −1 : Ea(r) = (H11 −H12)/(1− γ) . (8.9.20)

One of these solutions corresponds to the minimum of E(C) and the other to the maximum.
We must investigate which of the two values of C gives the minimum value of E(C).

We note that C = +1 corresponds to the wave function

ψ = ψs(r1, r2) = u1(r1, r2) + u2(r1, r2) , (8.9.21)

which is a symmetric function of the spatial coordinates r1 and r2. Since electrons, being
Fermions, obey the Pauli principle, the overall space-spin wave function of the two electrons
must be anti-symmetric in space-spin coordinates. Hence it follows that if the space function

4dτ ≡ dτ1dτ2 ≡ d3r1d3r2 ≡ d3r1Ad3r2B = d3r1Bd
3r2A.
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is symmetric, the spin function of the two electrons must be anti-symmetric so that the two
electrons must find themselves in the spin singlet state

χ0
0 =

1√
2

[α(1)β(2)− β(1)α(2)] . (8.9.22)

On the other hand, C = −1 corresponds to the wave function

ψ = ψa(r1, r2) = u1(r1, r2)− u2(r1, r2) , (8.9.23)

which is an anti-symmetric (under the interchange of spatial coordinates r1 and r2) wave
function. Hence, according to Pauli, the spin state in this case must be symmetric so that
the two electrons must find themselves in one of the spin triplet states

χ1
1 = α(1)α(2), (8.9.24)

χ0
1 =

1√
2

[α(1)β(2) + β(1)α(2)] , (8.9.25)

χ−1
1 = β(1)β(2). (8.9.26)

To answer the question whether the space symmetric (and spin anti-symmetric) or the space
anti-symmetric (and spin symmetric) ground state wave function corresponds to the bound
state of the Hydrogen molecule, we have to work out the integrals H11 = H22, H12 = H21

and γ explicitly. Using the complete Hamiltonian (8.9.1) in Eqs. (8.9.13) through (8.9.16),
we find that the matrix elements H11 and H22 are given by

H22 = H11 = 2E0 +
e2

4πε0R
+ 2J + J ′ , (8.9.27)

where E0 = −e2/8πε0ao is the ground state energy of the Hydrogen atom and the integrals
represented by J and J ′ are given by

J ≡
∫
uA

2(r1A)
(
− e2

4πε0r1B

)
d3r1 =

∫
uB

2(r2B)
(
− e2

4πε0r2A

)
d3r2

=
e2

4πε0ao

[
− 1
D

+ e−2D

(
1 +

1
D

)]
, (8.9.28)

and J ′ ≡
∫∫

u2
A(r1)u2

B(r2)
(

e2

4πε0r12

)
d3r1d

3r2

=
e2

4πε0ao

[
1
D
− e−2D

(
1
D

+
11
8

+
3D
4

+
D2

6

)]
. (8.9.29)

Here D = R/ao is the nuclear separation in units of Bohr radius ao. Similarly, the elements
H12 = H21 can be written as

H21 = H12 =
(

2E0 +
e2

4πε0R

)
γ + 2Kγ1/2 +K ′ (8.9.30)

where γ given by

γ1/2 =
∫
uA(r1A)uB(r1B)d3r1 =

∫
uB(r2B)uA(r2A)d3r2

= e−D
(

1 +D +
D3

3

)
(8.9.31)
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is consistent with Eq. (8.9.12) and K and K ′ are given by

K =
∫
uA(r1A)

[
− e2

4πε0r1A

]
uB(r1B)d3r1 =

∫
uB(r2B)

[
− e2

4πε0r2B

]
uA(r2A)d3r2

= − e2

4πε0ao
e−D(1 +D) (8.9.32)

and K ′ =
∫∫

uA(r1A)uB(r2B)
[

e2

4πε0r12

]
uA(r2A)uB(r1B)d3r1d

3r2

=
e2

20πε0ao

[
−e−2D

(
−25

8
+

23
4
D + 3D2 +D3

)
+

6
D

{
γ(0.5772 + lnD) + ∆2Ei(−4D)− 2γ∆Ei(−2D)

}]
, (8.9.33)

where ∆ ≡ exp(−D)(1−D +D3/3) , (8.9.34)

Ei(x) ≡
x∫

−∞

exp(−u)
u

du . (8.9.35)

Using these expressions we find

For C = +1 Es(R) =
H11 +H12

1 + γ
= 2ε0 +

e2

4πε0R
+

2J + J ′ + 2Kγ1/2 +K ′

1 + γ
. (8.9.36)

For C = -1 Ea(R) =
H11 −H12

1− γ = 2ε0 +
e2

4πε0R
+

2J + J ′ − 2Kγ1/2 −K ′
1− γ . (8.9.37)

By plotting Es(R) and Ea(R) as functions of R [Fig. 8.11], we find that the curve for
Ea(R) corresponds to repulsion at all distances, there being no equilibrium position for the
nuclei. The curve for Es(R) corresponds to attraction of Hydrogen atoms resulting in the
formation of a stable molecule. Es(R) shows a minimum at R = 0.080 nm. We can interpret
this to be the equilibrium distance between the two protons in the Hydrogen molecule (the
experimental value of the equilibrium distance is 0.074 nm). The value of E(R)− 2ε0 at this
value of R is equal to -3.14 eV. This implies that the energy of dissociation of the Hydrogen
molecule into atoms is 3.14 eV. (This value is smaller than the experimental value of 4.52
eV.)

In answer to the question as to what constitutes the chemical bond between two neutral
atoms (like Hydrogen atoms), we can say that the bond is due to a pair of electrons held
jointly by two atoms. As to what causes the attraction between two Hydrogen atoms when
the spins of the two electrons are anti-parallel, we may say that the binding comes about
because of the exchange energies K and K ′.

8.10 System of n Identical Particles: Symmetric and
Anti-symmetric States

It can be seen that the Hamiltonian of n identical particles is invariant under the exchange
of coordinates of any pair of particles (permutation operation) or under the exchange of
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FIGURE 8.11
Plot of (E(R)− 2ε0) as a function of R. Ea corresponds to the case when the electrons are
in spin triplet (symmetric) state and the spatial wave function is anti- symmetric and Es to
the case when the electrons are in spin singlet (anti-symmetric) state and the spatial part
of the wave function is symmetric.

coordinates of more than one pair of particles. Mathematically,

Ĥ → P̂ ĤP̂−1 = Ĥ ⇒ P̂ Ĥ = ĤP̂ or [P̂ , Ĥ] = 0 . (8.10.1)

So the Hamiltonian of n identical particles commutes with the permutation operator.
Let us investigate the effect of the permutation operation on an n-particle wave function

Ψ(X1, X2, · · · , Xn) , where X stands for x, y, z, ζ with ζ being the spin coordinate of the
particle which can take values +1 or −1 (corresponding to spin up or down). Suppose Ψ is
an eigenstate of Ĥ, belonging to the eigenvalue E,

HΨ(X1, X2, · · · , Xn) = EΨ(X1, X2 · · · , Xn) . (8.10.2)

Now PHΨ(X1, X2, ...Xn) = PEΨ = EPΨ(X1, X2, ...Xn) and, since P and H commute,
we can have

HPΨ(X1, X2 · · · , Xn) = E PΨ(X1, X2, · · · , Xn) . (8.10.3)
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Thus the state PΨ corresponds to the same energy as the state Ψ.
To identify the state PΨ, we note that since the particles are identical, any observable

quantity which depends on the particle coordinates must remain unchanged as a result of
the permutation of particle coordinates. Now the wave function Ψ(X1, X2, ...Xn) is not an
observable quantity, but |Ψ(X1, X2, ...Xn)|2 is, as this has the interpretation of probability
density. Hence we must have |PΨ(X1, X2, ....Xn)|2 = |Ψ(X1, X2, ...Xn)|2, which is possible
only if

PΨ(X1, X2, ...Xn) = ±Ψ(X1, X2, ...Xn) . (8.10.4)

In other words, the wave function of an n-particle system should either be symmetric or
anti-symmetric with respect to a permutation operation.

Now, whether the wave function of a system of n identical particles is symmetric or
anti-symmetric, depends on the spin of the particles or the statistics obeyed by them, i.e.,
on whether the particles are Bosons obeying Bose-Einstein statistics or Fermions obeying
Fermi-Dirac statistics. If the n identical particles are Bosons, that is, they all have an
integer spin (including zero), then the total wave function is symmetric with respect to
permutation of the coordinates of the particles. Hence in this case

Ψ(X1,X2, ....Xn) =
1√
n!

∑
P

P{φ1(X1)φ2(X2) · · ·φn(Xn)} , (8.10.5)

where φ1, φ2, · · · , φn are the single particle states occupied by n particles, and the
permutation operator P permutes the coordinates X1, X2, X3 · · · , Xn. The sum is over
all the n! permutations and the factor 1/

√
n! is to normalize the symmetric n-particle wave

function. It is assumed that the single-particle wave functions are normalized.
If, on the other hand the n identical particles are Fermions, i.e., they all have a half-integer

spin, then the total wave function is anti-symmetric. In this case

Ψ(X1, X2, ..., .Xn) =
1√
n!

∑
P

∈PP{φ1(X1)φ2(X2) · · ·φn(Xn)} , (8.10.6)

where εP = (−1)s, s being the number of interchanges in the permutation P to bring it
to the original sequence, and the sum is over all the n! permutations. The anti-symmetric
n-particle wave function (8.10.6) may also be written in a determinant form (also called
Slater determinant)

Ψ(X1, X2, ...., Xn) =
1√
n!

∣∣∣∣∣∣∣∣∣
φ1(X1) φ1(X2) · · · φ1(Xn)
φ2(X1) φ2(X2) · · · φ2(Xn)

... · · · · · · ...
φn(X1) φn(X2) · · · φn(Xn)

∣∣∣∣∣∣∣∣∣ . (8.10.7)

If, in the determinant form of n-particle wave function, two single-particle states are the
same, say φ1 = φ2, i.e., both states are characterized by the same set of quantum numbers,
then the determinant vanishes. So the determinant form explicitly incorporates the Pauli
exclusion principle, i.e., two identical particles (Fermions) cannot occupy the same state.

Ground State of Helium Revisited

As the simplest example of an n-particle Fermion system, we consider the two-electron
system in a Helium atom. The Hamiltonian of the system can be written as

H =
(
− ~2

2m
∇2

1 −
2e2

4πε0r1

)
+
(
− ~2

2m
∇2

2 −
2e2

4πε0r2

)
+

e2

4πε0r12
≡ H0

1 +H0
2 +H12 . (8.10.8)
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If the interaction H12 is ignored, then to the first approximation the two-electron wave
function may be written as

Ψ(X1, X2) =
1√
2

∣∣∣∣φ1(X1) φ1(X2)
φ2(X1) φ2(X2)

∣∣∣∣ ,
where φi represents a single-particle wave function, which is the product of a spatial part
and a spin part. In the ground state of the Helium atom, both the electrons occupy the
lowest spatial state corresponding to n = 1, ` = 0,m = 0 so that the spatial part of the
wave function is ψ100(r) ≡ ψ0(r). It follows from Pauli’s principle that the spin quantum
numbers (ms) of the two electrons must be different, i.e., the two electrons should be in
opposite spin states (spin up and spin down). Hence the single-particle wave functions are
φ1(X) = ψ0(r)α(ζ) and φ2(X) = ψ0(r)β(ζ) and therefore

Ψ0(X1, X2) =
1√
2

∣∣∣∣ψ0(r1)α(ζ1) ψ0(r2)α(ζ2)
ψ0(r1)β(ζ1) ψ0(r2)β(ζ2)

∣∣∣∣
= ψ0(r1)ψ0(r2)

1√
2

[α(ζ1)β(ζ2)− β(ζ1)α(ζ2)]

≡ ψ0(r1)ψ0(r2)χ0
0(ζ1, ζ2) . (8.10.9)

Thus the spatial part of the wave function is symmetric, while the spin part is anti-
symmetric. The overall wave function, which is the product of spatial and spin wave
functions, is anti-symmetric under the exchange of electron (spin and spatial) coordinates.
Using this wave function we find the unperturbed energy is (Z = 2)

E(0) = −2
Z2e2

8πε0ao
= −8 Rydberg = −108.8 eV . (8.10.10)

This estimate, which is too high, can be improved by treating the interaction term as a
perturbation. The first order perturbation correction E(1) to the ground state energy is
equal to the expectation value of the perturbation part of the Hamiltonian (H12) in the
unperturbed state

E(1) =
∑
ζ1

∑
ζ2

∫∫
ψ∗0(r1)ψ∗0(r2)χ0∗

0 H12ψ0(r1)ψ0(r2)χ0
0d

3r1d
3r2

=
∫∫

ψ∗0(r1)ψ∗0(r2)H ′ψ0(r1)ψ0(r2)d3r1d
3r2 =

5
8
× 2

e2

4πε0ao

where we have made use of the normalization condition for the singlet spin state χ0
0. The

evaluation of the spatial integral has already been done in Sec. 8.2 [footnote 1].
The ground state energy of the Helium atom is therefore given by

Egs = 2
(
− 22e2

8πε0ao

)
+

5
2

e2

8πε0ao
= −11

2
e2

8πε0ao
(8.10.11)

where ε0 = − 22e2

8πε0ao
is the ground state energy of the Hydrogen-like atom with Z = 2.

This result is the same as that obtained in the perturbation calculation without considering
the electron spin and anti-symmetric states. However, the effects of spin and total anti-
symmetrization become important for the excited states of the normal Helium atom, which
we consider next.
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8.11 Excited States of the Helium Atom

In this case the two electrons can exist in different orbitals so that the Pauli principle does
not restrict the spin quantum numbers to be different, i.e., the two electrons can exist in
any spin state, α or β. We have the following possibilities for the states φ1 and φ2

I φ1(X) = ψa(r)α(ζ) φ2(X) = ψb(r)α(ζ)
II φ1(X) = ψa(r)β(ζ) φ2(X) = ψb(r)β(ζ)
III φ1(X) = ψa(r)α(ζ) φ2(X) = ψb(r)β(ζ)
III φ1(X) = ψa(r)β(ζ) φ2(X) = ψb(r)α(ζ) .

The anti-symmetric wave functions in the four cases are:

ΨI(X1, X2) =
1√
2

∣∣∣∣ψa(r1)α(ζ1) ψa(r2)α(ζ2)
ψb(r1)α(ζ1) ψb(r2)α(ζ2)

∣∣∣∣
=

1√
2

[ψa(r1)ψb(r2)− ψb(r1)ψa(r2)]χ+1
1 (ζ1, ζ2) , (8.11.1)

where χ+1
1 (ζ1, ζ2) = α(ζ1)α(ζ2) , (8.11.2)

ΨII(X1, X2) =
1√
2

∣∣∣∣ψa(r1)β(ζ1) ψa(r2)β(ζ2)
ψb(r1)β(ζ1) ψb(r2)β(ζ2)

∣∣∣∣
=

1√
2

[ψa(r1)ψb(r2)− ψb(r1)ψa(r2)]χ−1
1 (ζ1, ζ2) , (8.11.3)

where χ−1
1 (ζ1, ζ2) = β(ζ1)β(ζ2) , (8.11.4)

ΨIII(X1, X2) =
1√
2

∣∣∣∣ψa(r1)α(ζ1) ψa(r2)α(ζ2)
ψb(r1)β(ζ1) ψb(r2)β(ζ2)

∣∣∣∣
=

1√
2

[ψa(r1)ψb(r2)α(ζ1)β(ζ2)− ψb(r1)ψa(r2)β(ζ1)α(ζ2)] ,

ΨIV (X1, X2) =
1√
2

∣∣∣∣ψa(r1)β(ζ1) ψa(r2)β(ζ2)
ψb(r1)α(ζ1) ψb(r2)α(ζ2)

∣∣∣∣
=

1√
2

[ψa(r1)ψb(r2)β(ζ1)α(ζ2)− ψb(r1)ψa(r2)α(ζ1)β(ζ2)] .

From ΨIII and ΨIV one can form alternative combinations:

1√
2

(ΨIII + ΨIV ) =
1√
2
{ψa(r1)ψb(r2)− ψb(r1)ψa(r2)}χ0

1(ζ1, ζ2) , (8.11.5)

where χ0
1(ζ1, ζ2) =

1√
2

[α(ζ1)β(ζ2) + β(ζ1)α(ζ2)] , (8.11.6)

and
1√
2

(ΨIII −ΨIV ) =
1√
2
{ψa(r1)ψb(r2) + ψb(r1)ψa(r2)}χ0

0(ζ1, ζ2) , (8.11.7)

where χ0
0(ζ1, ζ2) =

1√
2

[α(ζ1)β(ζ2)− β(ζ1)α(ζ2)] . (8.11.8)

We note that the states ΨI(X1, X2), ΨII(X1, X2), 1√
2
(ΨIII + ΨIV ) are all anti-symmetric

in space coordinates and symmetric in spin coordinates. The spin states χm1 with m =
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+1,−1, 0 are referred to as the spin triplet states. The last combination 1√
2
(ΨIII − ΨIV )

is symmetric in space coordinates and anti-symmetric in spin coordinates. The spin state
χ0

1 is called the spin singlet state.
When we calculate the energy of the Helium atom for the above states, to the first order

of perturbation, we find that the energy when the space function is anti-symmetric and the
spin function is symmetric is different from the energy when the space function is symmetric
and the spin function is anti-symmetric. When the space function is anti-symmetric (and
the spin state is triplet), the energy is given by

Easym =
1
2

∫∫
[ψ ∗a (r1)ψ∗b (r2)− ψ∗b (r1)ψ∗a(r2)]

×
(
H0

1 +H0
2 +

e2

4πε0r12

)
[ψa(r1)ψb(r2)− ψb(r1)ψa(r2)]d3r1d

3r2 . (8.11.9)

The spin functions χ+1
1 , χ−1

1 or χ0
1, being normalized, contribute a factor 1 to the integral.

When the space function is symmetric (and the spin state is singlet), the energy is

Esym =
1
2

∫∫
[ψ∗a(r1)ψ∗b (r2) + ψ∗b (r1)ψ∗a(r2)]

×
(
H0

1 +H0
2 +

e2

4πε0r12

)
[ψa(r1)ψb(r2) + ψb(r1)ψa(r2)]d3r1d

3r2 . (8.11.10)

In this case also, the spin function χ0
0, being normalized, contributes a factor 1. We can

combine Eqs. (8.11.9) and (8.9.10) into one with the understanding that the upper signs
pertain to spatially symmetric (spin singlet) state while the lower signs pertain to spatially
anti-symmetric (spin triplet) state. Further, if εa and εb are the energies of the Hydrogen-
like atom with Z = 2 in the states designated by a and b, then

E = εa + εb +
1
2

∫∫
[(ψ∗a(r1)ψ∗b (r2)± ψ∗b (r1)ψ∗a(r2)]

e2

4πε0r12

× [ψa(r1)ψb(r2)± ψb(r1)ψa(r2)]d3r1d
3r2

= εa + εb +
1
2

∫∫
e2

4πε0r12

[|ψa(r1)|2|ψb(r2)|2 + |ψb(r1)|2|ψa(r2)|2] d3r1d
3r2

± 1
2

∫∫
e2

4πε0r12
[ψ∗a(r1)ψ∗b (r2)ψb(r1)ψa(r2) + ψ∗b (r1)ψ∗a(r2)ψa(r1)ψb(r2)] d3r1d

3r2 .

Since r1 and r2 are dummy variables and r12 = |r1 − r2| is symmetric between r1 and r2

the contribution of the first two integrals in the above expression is the same and so is the
contribution of the last two integrals. Hence the energy levels of the Helium atom are given
by

E = εa + εb + C ± J , (8.11.11)

where C ≡
∫∫

e2

r12
|ψa(r1)|2|ψb(r2)|2d3r1d

3r2 , (8.11.12)

and J ≡
∫∫

e2

r12
ψ∗a(r1)ψ∗b (r2)ψb(r1)ψa(r2)d3r1d

3r2 . (8.11.13)

Here C is the energy of Coulomb interaction between the charge clouds of the two electrons.
The last term J has no classical analog for it appears only because anti-symmetric total
wave function has been used. The sign of this term is + or −, depending on whether the
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space part of the total wave function is symmetric and spin state is singlet or the space part
of the wave function is anti-symmetric and the spin state of the electron pair is triplet.

If the excited state of the Helium atom is such that the orbitals of the two electrons are
the same ( a = b), then the exchange term J is zero and the energy is

E = 2εa + C . (8.11.14)

But when the orbitals of the two electrons are different (a 6= b), then the energy levels

E = εa + εb + C − J (8.11.15)

corresponding to the spin triplet state (spatial function anti-symmetric) are different from
the energy level

E = εa + εb + C + J (8.11.16)

corresponding to the spin singlet state (spatial function symmetric). Thus a normal Helium
atom has two distinct spectra, viz., triplet spectra given by Eq. (8.11.15) and singlet
spectra given by Eq. (8.11.16). Obviously, the singlet energy levels, which are higher, are
non-degenerate and the triplet energy levels, which are lower, are degenerate since each
level corresponds to three spin states.

8.12 Statistical (Thomas-Fermi) Model of the Atom

The statistical model of the atom is an approximate method for dealing with multi-electron
atoms. This model was introduced by Thomas and Fermi as a means for obtaining a self-
consistent potential V (r) and electron density distribution ρ(r) around an atomic nucleus.
This model assumes that V (r) varies slowly enough over an electron wavelength so that
electrons may be localized within a volume over which the potential changes by a small
fraction of itself. In other words an electron in a statistical atom may be represented locally
by a plane wave just like a free electron. The electrons then can be treated according to
statistical mechanics, and can be regarded as obeying Fermi-Dirac statistics which requires
the electron states to fill in order of increasing energy such that, according to Pauli, the
occupancy for each state is zero or one. At low temperatures one may regard the electrons
to be completely degenerate which means that all energy levels up to a certain maximum
EF (Fermi energy) are completely occupied and those above EF are completely unoccupied.

The number of particle states dn, corresponding to momentum between p and p + dp
within a volume dτ is given by Eq. (5.2.15) with E = p2/2m,

dn = 2× 4πp2dpdτ

h3
. (8.12.1)

The factor of 2 takes account of two spin states of the electron for the same energy.
Since it is the case of complete degeneracy, the number of electrons in a volume dτ around

a point r is given by

ρ(r)dτ =
8π
h2

∫ PF

0

p2dpdτ =
8π
3h2

P 3
F dτ (8.12.2)

where PF is the maximum momentum of the Fermi distribution for electrons located around
the point r. In other words around the point r the electrons can have momentum up to a
certain maximum given by

EF =
P 2
F

2m
− eV (r) =

P 2
F

2m
−
[
Ze2

4πε0r
− eB(r)

]
(8.12.3)
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where −Ze2/4πε0r is the potential energy of the electron on account of the nucleus of
charge Ze and eB(r) is its potential energy on account of the electron distribution — the
total potential energy of the electron at the point r being −eV (r). We assume spherically
symmetric electron distribution as well as potential. EF is independent of r, being the
maximum total energy of the Fermi distribution. According to Poisson’s equation which
ensures self-consistency between the electronic charge distribution, ρch(r) = −eρ(r) , and
the potential V (r) (due to nuclear charge as well electronic charge distribution) [March
(1957)], we have

∇2V (r) = −ρch(r)
ε0

=
eρ(r)
ε0

or ∇2

(
P 2
F

2me
− EF

e

)
=

e

ε0

8π
3h3

P 3
F . (8.12.4)

If we write

P 2
F

2m
= eV (r) + EF ≡ Ze2

4πε0r
φ(ξ) , (8.12.5)

and r = bξ , (8.12.6)

where b ≡
(

3π
4

)2/3 4πε0~2

2me2Z1/3
, (8.12.7)

and assume the atom to be spherically symmetric so that ∇2 → 1
r2

d
dr (r2 d

dr ), then Eq.
(8.12.4) reduces to the form

d2φ

dξ2
=
φ3/2

ξ1/2
. (8.12.8)

This is the Thomas-Fermi equation. Bush and Caldwell (1938) solved this equation
numerically, for the first time, for the boundary conditions

(i) V (r)→ Ze
4πε0r

or φ→ 1 as r → 0

(ii) ρ(r)→ 0 or φ→ 0 as r →∞
Solutions for other boundary conditions appropriate to different physical problems were
obtained by several other workers [March (1957)]. Modifications in this model to include
exchange energy of the electrons were made by Dirac (1930). Modifications for higher
temperatures, when the electrons are no longer completely degenerate, were made by
Feynman, Metropolis and Teller (1949). Relativistic generalization of Thomas-Fermi
equation was done by Mathur (1957, 1960).

8.13 Hartree’s Self-consistent Field Method for
Multi-electron Atoms

The most general problem in atomic physics is that of n electrons in an atom. For such a
system one can write the total Hamiltonian as

H =
n∑
k=1

hk +
n∑
k<`

n∑
`

vk` , (8.13.1)
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where hk is the single-electron Hamiltonian given by

hk = − ~2

2m
∇2
k −

Ze2

4πε0rk
(8.13.2)

and vk` =
e2

4πε0|rk − r`| . (8.13.3)

The exact n-particle Schrödinger equation for this problem

HΦ(r1, r2, · · · , rn) = EΦ(r1, r2, · · · , rn) (8.13.4)

is exceedingly complicated because Φ is a function of position coordinates of all the electrons
and H involves, apart from kinetic energy and interaction of individual electrons with the
nucleus, all the inter-electron interactions.

A considerable simplification of the problem was introduced by Hartree (1928). According
to Hartree, each electron moves independently of others and its wave function satisfies an
equation which takes account of its interaction with all other electrons as well as the nucleus.
Let ψ`(r`) be the wave function of the `-th electron. Then the average interaction of the
k-th electron with all other electrons is

vk(rk) =
∑
6̀=k

∫
ψ∗` (r`)

e2

4πε0|rk − r`|ψ`(r`)d
3r` (8.13.5)

and the Schrödinger equation satisfied by the k-th electron wave function is

[
− ~2

2m
∇2
k −

Ze2

4πε0rk
+ vk(rk)

]
ψk(rk) = εkψk(rk) (8.13.6)

or

− ~2

2m
∇2
k −

Ze2

4πε0rk
+
∑
6̀=k

∫
e2|ψ`(r`)|2

4πε0|rk − r`|d
3r`

ψk(rk) = εkψk(rk) . (8.13.7)

Since similar single-particle equations will hold for all other electrons, we have a set of n
independent single-particle equations for k = 1, 2, · · · , n.

To solve these equations, we begin by choosing a set of n approximate single-particle
wave functions ψk(rk) = ψn′`′m′(rk) = Rn′`′(rk)Y`′m′(θk, ϕk). The guiding principle
for assigning the quantum numbers n′, `′,m′ to the k-th electron can be the electronic
configuration in the atom. Using the initial choice for single-particle wave functions, vk(rk)
[Eq. (8.13.5)] are determined and Hartree equations (8.13.6) solved to get a new set of
functions ψk(rk). The new set of functions can then be used in Eq. (8.13.5) to obtain a
more accurate estimate of the average potential vk(rk) experienced by the k-th electron
due to the presence of the other electrons. Using this improved average potential, we can
again solve the set of equations (8.13.6) to get more accurate single-particle wave functions.
We can repeat the whole cycle of operations until self-consistency is achieved, i.e., until the
latest set of vk(rk) differs negligibly from the previous set.
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Total Energy of the Atom

In Dirac notation, Hartree equations (8.13.6) may be written asĥk +
∑
` 6=k

〈`| v̂k` |` 〉
 |k 〉 = εk |k 〉 , (8.13.8a)

where v̂k` =
e2

4πε0r̂k`
=

e2

4πε0|r̂k − r̂`| , (8.13.8b)

ĥk =
p̂2
k

2m
− Ze2

4πε0r̂k
and |k 〉 ≡ |ψk 〉 . (8.13.8c)

Pre-multiplying both sides of Eq. (8.13.8a) by 〈k| we obtain

〈k| ĥk |k 〉+
∑
` 6=k

〈k`| v̂k` |`k 〉 = εk ,

where the states 〈k`| and |`k 〉 are conjugate imaginaries of each other. By summing the
last equation over all electrons, we obtain the total energy of the atom

E =
∑
k

〈k| ĥk |k 〉+
∑
k<`

∑
〈k`| v̂k` |`k 〉

=
∑
k

εk −
∑
k<`

∑
〈k`| v̂k` |`k 〉 , (8.13.9)

where
∑
k<`

∑
means summation over all electron pairs when each pair is counted only once.

The subtraction of the second term in the last step compensates for the double counting of
the interactions in the first term

∑
k

εk.

Variational Method of Deriving Hartree Equations

We have seen that, if H represents a one-particle Hamiltonian in coordinate representation

H = − ~2

2m
∇2 + V (r) , (8.13.10)

then, according to the variational principle, a function ψ(r), which minimizes the integral,

E ≡
∫
ψ∗(r)Hψ(r)dτ (8.13.11)

and, at the same time, preseves the normalization integral

N ≡
∫
ψ∗(r)ψ(r)dτ , (8.13.12)

is given by5

Hψ(r) = Λψ(r) . (8.13.13)

The constant Λ turns out to be the stationary value of E. In other words, Eq. (8.13.13)
serves the purpose of selecting the best function ψ which makes the integral E stationary
and at the same time holds the normalization integral N constant.

5For calculus of variation see Appendix 14A1. Work out Problem 17 in this chapter.
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This principle may be generalized to many particle systems. Accordingly, the best ground
state function for an n-electron atom is the one which minimizes the energy,

E =
∫

Ψ∗HΨdτ

subject to the condition that Ψ remains normalized,
∫

Ψ∗Ψdτ = 1. In the n-electron case,
the Hamiltonian is

H =
∑
k

(
− ~2

2m
∇2
k −

Ze2

rk

)
+

1
2

∑
k

∑
` 6=k

e2

4πε0rk`
. (8.13.14)

Let us choose the trial wave function to be a product of single-electron wave functions

Ψ = ψ1(r1)ψ2(r2) · · ·ψk(rk) · · ·ψn(rn) . (8.13.15)

Then the integral to be minimized is

E =
∫∫
· · ·
∫
d3r1d

3r2 · · · d3rnψ
∗
1(r1)ψ∗2(r2) · · ·ψ∗n(rn)

×
∑

k

(
− ~2

2m
∇2
k −

Ze2

4πε0rk

)
+

1
2

∑
k

∑
` 6=k

e2

4πε0rk`

ψ1(r1)ψ2(r2) · · ·ψn(rn) .

(8.13.16)

where we seek δE = 0 while keeping the normalization integral equal to 1.
Consider the variation of ψk(rk) for a specific k. This function must be chosen to minimize

the above integral while preserving the normalization integral
∫
ψ∗k(rk)ψk(rk)d3rk = 1. The

variational principle now tells us that the function ψk which satisfies this condition is given
by

δ


∫
d3rkψ

∗
k(rk)

(
− ~2

2m
∇2
k −

Ze2

4πε0rk

)
ψk(rk)

+
∑
6̀=k

∫∫
d3rkd

3r`ψ
∗
k(rk)ψ∗` (r`)

e2

4πε0rk`
ψk(rk)ψ`(r`)


= δ

∫
ψ∗k(rk)


(
− ~2

2m
∇2
k −

Ze2

4πε0rk

)
+
∑
` 6=k

∫∫
ψ∗` (r`)

e2

4πε0rkl
ψ`(r`)d3r`

ψk(rk)d3rk

≡ δεk = 0 (8.13.17)

subject to the condition that ∫
ψ∗k(rk)ψk(rk)d3rk = 1 . (8.13.18)

Note that other terms in the sum over k do not contribute to this variation since variation
is given only to to one ψk. It may also be noted that the factor 1/2 in the sum over inter-
electron interactions in Eq. (8.13.16) takes care of double counting. But in Eq. (8.13.17),
since variation is given only to one ψk(rk) for a specific k, there is no question of double
counting and so there is no factor of 1/2.
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The variational principle now tells us that the function ψk(rk), which satisfies conditions
(8.13.17) and (8.13.18) is given by− ~2

2m
∇2
k −

Ze2

4πε0rk
+

e2

4πε0

∑
` 6=k

∫ |ψ`(r`)|2
rk`

d3r`

ψk(rk) = εkψk(rk) . (8.13.19)

This gives us the set of Hartree equations for k = 1, 2, · · · , n.

8.14 Hartree-Fock Equations

Hartree equations were modified by Fock, who considered the fact that because electrons
are Fermions, they require the n-electron wave function to be anti-symmetric:

Ψ(X1, X2 · · · , Xn) =
1

(n!)1/2

∣∣∣∣∣∣∣∣∣
φ1(X1) φ1(X2) · · · φ1(Xn)
φ2(X1) φ2(X2) · · · φ2(Xn)

... · · · ...
φn(X1) φn(X2) · · · φn(Xn)

∣∣∣∣∣∣∣∣∣ (8.14.1)

where Xi ≡ (ri, ζi) specifies the space and spin coordinates of the i-th electron and
φs(Xi) = ψs(ri)α(ζi) or ψs(ri)β(ζi), depending on whether in the s-th state the i-th
electron is in spin up or spin down state. The determinant wave function comprises n!
terms and can be written more compactly as

Ψ(X1, X2, · · · , Xn) =
1√
n!

∑
P

εP P [φ1(X1)φ2(X2) · · ·φn(Xn)] , (8.14.2)

where summation is over all permutations of 1, 2, · · · , n and εP = +1 or −1 depending on
whether it is an even or odd permutation. The permutation operator may act either upon
the subscripts of φs (the quantum numbers of single-particle states ) or upon the subscripts
of Xi.

Let us calculate E given by

E =
∫∫
· · ·
∫

Ψ∗HΨdX1dX2 · · · dXn (8.14.3)

using the determinant form (8.14.1) for Ψ. Since the Hamiltonian H, in the coordinate
representation [Eq. (8.13.14)], is a symmetric operator and is unchanged by any permutation
of electronic coordinates, we can write

E =
√
n!
∫∫
· · ·
∫

Ψ∗0H Ψ0dX1dX2 · · · dXn , (8.14.4)

where Ψ0 = φ1(X1)φ2(X2) · · ·φn(Xn). Using Eq. (8.14.2) in this equation, we find

E =
∫∫
· · ·
∫ ∑

P

∈P P{φ∗1(X1)φ∗2(X2) · · ·φ∗n(Xn)}
{∑

k

(
− ~2

2m
∇2
k −

Ze2

4πε0rk

)

+
1
2

∑
k

∑
` 6=k

e2

4πε0rk`

φ1(X1)φ2(X2) · · ·φn(Xn)dX1dX2 · · · dXn . (8.14.5)
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Now, when the single-particle operators are sandwiched between the states Ψ∗ and Ψ, only
the identity permutation in Ψ∗ will give non-zero result. But when a two-particle operator
e2/r12 is sandwiched between Ψ∗ and Ψ then the identity permutation, as well as the one
in which the coordinates of the k-th and `-th particles are exchanged, will give a non-zero
contribution. This is because the single-particle wave functions are ortho-normal. This
leads us to

E =
n∑
k=1

∫
φ∗k(Xk)

{
− ~2

2m
∇2
k −

Ze2

4πε0rk

}
φk(Xk)dXk

+
1
2

n∑
k

n∑
` 6=k

∫∫
{φ∗k(Xk)φ∗` (X`)− φ∗k(X`)φ∗` (Xk)} e2

4πε0rk`
φk(Xk)φ`(X`)dXkdX` .

Expressing the single-particle states φk and φ` in terms of the space and spin parts, and
considering the fact no part of the Hamiltonian depends on spins and that the spin functions
are normalized and orthogonal, we can do away with spin functions. In the last term the
spins of the k-th and `-th electrons must be parallel, otherwise the term will vanish. This
gives us

E =
n∑
k=1

∫
d3r1ψ

∗
k(r1)

{
− ~2

2m
∇2

1 −
Ze2

4πε0r1

}
ψk(r1)

+
1
2

n∑
k=1

n∑
` 6=k

∫∫
d3r1d

3r2
e2

4πε0r12
|ψk(r1)|2|ψ`(r2)|2

− 1
2

n∑
k=1

n∑
` 6=k ,|| spins

∫∫
e2

4πε0r12
ψ∗k(r1)ψ∗` (r2)ψk(r2)ψ`(r1)d3r1d

3r2 . (8.14.6)

In this expression we have replaced the dummy variables rk and r` by r1 and r2 respectively,
in the first two integrals and by r2 and r1, respectively, in the third integral. The last term
is the exchange energy.

Now we apply the variational principle to find the best single-particle wave functions (for
k = 1, 2, · · · , n) which minimize E and at the same time keep the normalization integral
constant. Then, if we we vary only one single-particle wave function ψk(r1), the integral to
be minimized is

εk =
∫
ψk(r1)hkψk(r1)d3r1 , (8.14.7)

where hk ≡
{
− ~2

2m
∇2

1 −
Ze2

4πε0r1

}
+

e2

4πε0

n∑
` 6=k

∫ |ψ`(r2)|2
r12

d3r2

− e2

4πε0

∑
6̀=k, || spins

∫
ψ∗` (r2)ψk(r2)ψ`(r1)

4πε0r12ψk(r1)
d3r2 (8.14.8)

such that the normalization integral
∫
ψ∗k(r1)ψk(r1)d3r1 is constant. The factor of 1/2 in

the summations is removed as there is no double counting now since k is fixed.

According to the variational principle, the single-particle wave function ψk must satisfy
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hkψk(r1) = εkψk(r1), where εk is the stationary value of the integral (8.14.8), or explicitly,− ~2

2m
∇2

1 −
Ze2

4πε0r1
+

e2

4πε0

n∑
` 6=k

∫ |ψ`(r2)|2
r12

d3r2

ψk(r1)

− e2

4πε0

n∑
` 6=k

ψ`(r1)
∫
ψ∗` (r2)ψk(r2)

r12
d3r2 = εkψk(r1) . (8.14.9)

We can take equations like this to hold for all single-particle wave functions. We can as well
remove the restriction ` 6= k from both summations. These equations are called Hartree-
Fock equations.

Exchange Energy

The exchange energy has no classical analog. It arises because of the exchange of the
electronic coordinates in various terms of the expanded determinant wave function and takes
care of the correlations between the positions of electrons with parallel spins . The exchange
energy of an n-electron system may easily be calculated in the plane wave approximation,
assuming that the electrons are free. Such a calculation is useful in the theory of metals and
also in the statistical model of the atom in which one treats electrons as localized within a
volume over which the fractional change in potential is small. Considering the last term in
Eq. (8.14.6), we have for the total exchange energy

Eexch =
n∑
i=1

εexch,i (8.14.10)

where εexch,i = −
n∑

`=1, || spins

∫∫
e2

4πε0r12
ψ∗i (r1)ψ∗` (r2)ψi(r2)ψ`(r1)d3r1d

3r2 . (8.14.11)

We may regard εexch,i as the exchange energy of the i-th electron due to all other electrons.
Let us calculate this term when the wave functions ψi(r1) and ψ`(r2) can be approximated
by plane waves

ψi(r1) =
1√
V
eiki·ri , ψ`(r2) =

1√
V
eik`·r2 (8.14.12)

in Eq. (8.14.11). This gives, on transforming to the relative and center-of-mass coordinates
in the double integral in Eq. (8.14.11), and evaluating the integral,

εexch,i =
n∑

`=1, || spins

− e2

4πε0V
4π

|ki − k`|2 . (8.14.13)

Since the momenta p` = ~k` pertaining to the plane wave states of the `-th electron are
continuously varying, we can replace the summation over ` by integration over the k`-space
so that ∑

`, || spins

→
∫
V d3p`
h3

≡
∫
V d3k`
(2π)3

. (8.14.14)

Multiplication by 2 in the phase space V d3p` is avoided because we are considering the
exchange between electrons of like (parallel) spins. Thus Eq. (8.14.13) gives us the exchange
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energy contribution

εexch,i = − e2

4πε0V
4πV
(2π)3

kF∫
0

2πk2
`dk`

+1∫
−1

d(cos θ)
(k2
i + k2

` − 2kik` cos θ)

= − e
2kF

8π2ε0

[
k2
F − k2

i

kF ki
ln
(
kF + k1

kF − ki

)
+ 2
]

(8.14.15)

where ~kF = PF is the maximum momentum of the Fermi distribution.

Thomas-Fermi-Dirac Model of the Atom

Dirac (1930) introduced the exchange correction into the Thomas-Fermi model of the atom;
the modified model is known as the Thomas-Fermi-Dirac model. When we include the
exchange energy, the total energy of the electron on the top of the Fermi distribution may
be re-expressed as [see Eq. (8.12.3)]

EF =
~2k2

F

2m
− eV (r)− e2kF

4π2ε0
. (8.14.16)

Using Poisson’s equation, ∇2V (r) = −ρch/ε0 = eρ(r)/ε0, where ρ(r) is the electron number
density, we have

∇2

(
P 2
F

2m
− e2PF

4π2ε0~

)
=

32π2e2

12πε0h3
P 3
F . (8.14.17)

This is the Thomas-Fermi-Dirac equation.

Average Exchange Energy per Electron

The total exchange energy of an n-electron system is found from Eqs. (8.14.10) and (8.14.13)
to be

Eexch = − e2

ε0V

n∑
i

n∑
` ,‖ spins

1
|ki − k`|2 . (8.14.18)

Changing the summations into integrations we obtain

Eexch = − e2

ε0V

(
V

(2π)3

)2 ∫
d3ki

∫
d3k`

|ki − k`|2 .

Introducing the relative momentum k and center-of mass momentum K variables by

k =
1
2

(ki − k`) and K = ki + k` , (8.14.19)

we can write the exchange contribution as

Eexch = − e2

ε0V

(
V

(2π)3

)2 ∫
d3k

4k2

∫
d3K . (8.14.20)

If we consider it to be a case of complete degeneracy, both ki and k` are restricted by

ki ≡ |k +
K

2
| =

√
k2 + (K2/4) +Kk cosα ≤ kF (8.14.21a)

k` ≡ | − k +
K

2
| =

√
k2 + (K2/4)−Kk cosα ≤ kF (8.14.21b)
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where α is the angle between K and k.
To carry out the integration we note that if (i) k + K

2 ≤ kF or K
2 ≤ (kF − k), then

both conditions (8.14.21) are satisfied for all values of α. On the other hand, if (ii)
kF − k ≤ 1

2K ≤
√
k2
F − k2, then both conditions are satisfied for restricted range of α

given by

−k
2
F − k2 −K2/4

Kk
≤ cosα ≤ k2

F − k2 −K2/4
Kk

.

Finally, if (iii) 1
2K >

√
k2
F − k2, the above conditions [Eq. (8.14.21)] are not satisfied.

Hence for integration over K-space, we divide the integral into three regions

(i)
1
2
K < kF − k

(ii) kF − k ≤ 1
2
K ≤

√
k2
F − k2

and (iii)
1
2
K >

√
k2
F − k2 .

Then the integral can be carried out as

∫
d3K =

2(kf−k)∫
0

K2dK

∫ 1

−1

2πd(cosα) +

2
√
k2
F−k2∫

2(kF−k)

K2dK

(k2
f−k

2−K2/4)/Kk∫
−(k2

F−k2−K2/4)/Kk

2πd(cosα)

=
32π
3
k3
F

(
1− 3

2
k

kF
+

1
2
k3

k3
F

)
.

Exchange energy contribution then becomes

Eexch = − e2

ε0V

(
V

(2π)3

)2
kF∫
0

4πk2dk

4k2

32π
3
k3
F

(
1− 3k

2kF
+

1
2
k3

k3
F

)
= − e2V

16π4ε0
k4
F . (8.14.22)

Because of complete degeneracy, the total number of states must equal the total number of
electrons

n =
2V
h3

PF∫
0

4πp2dp =
2V
h3

4π
3
P 3
F . (8.14.23)

Using this to define the average volume per electron V/n and equating it to a spherical
volume of radius rs via V/n = 3h3/8πP 3

F ≡ 4πr3
s/3, the average exchange energy per

electron can be written as

εexch = Eexch/n = −0.916
rs

Rydberg , (8.14.24)

where 1 Rydberg = e2/8πε0ao and rs is expressed in units of the Bohr radius ao.
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8.15 Occupation Number Representation

The occupation number representation (ONR) allows one to deal with a system of n
indistinguishable particles in a simple way and applies to both particles obeying Fermi-Dirac
statistics (Fermions) and particles obeying Bose-Einstein statistics (Bosons). However, in
the present section we shall develop this formalism essentially for Fermions.

A non-interacting n-Fermion system is represented by the Slater determinant wave
function:

ΨS(X1, X2, · · · , Xn) =
1√
n!

∣∣∣∣∣∣∣∣∣
φν1(X1) φν1(X2) · · · φν1(Xn)
φν2(X1) φν2(X2) · · · φν2(Xn)

... · · · ...
φνn(X1) φνn(X2) · · · φνn(Xn)

∣∣∣∣∣∣∣∣∣ (8.15.1)

where φν1 , φν2 , · · · , φνn are the single-particle states, obtained on the basis of the assumption
that the particles are non-interacting, moving independently of each other in a common
potential. The subscript S denotes the ordered set of single-particle states characterized
by labels ν1, ν2, · · · , νn, where each label ν stands for a set of quantum numbers and Xi

denotes the position and spin coordinates of the i-th particle. If it is a system in which the
Fermions are interacting with each other then the actual anti-symmetric wave function of
the system may be expanded linearly in terms of the determinant wave functions ΨS as

Ψ(X1, X2, · · · , Xn) =
∑
S

CSΨS(X1, X2, · · · , Xn) (8.15.2)

where the sum over S extends over various ordered set of levels. One can see that the
set Ψ(X1, X2, · · · , Xn) for all ordered sets of levels S, is indeed a complete set of totally
anti-symmetric n-particle wave functions provided the single-particle wave functions φν(X)
form a complete orthonormal set.

Now, if the number of particles is large, the use of Slater determinants is cumbersome.
Moreover, the information the determinant contains is redundant. Since the particles are
indistinguishable, it is not meaningful to say which particle occupies which single-particle
state. All that matters is whether the single-particle state ν1 is occupied or unoccupied.
Thus, for Fermions, an ordered set of occupied single-particle states,

|S 〉 ≡ |ν1, ν2, · · · , νn 〉 (8.15.3)

specifies the n-particle state Ψ(X1, X2, · · · , Xn) and reference to the coordinates is not
necessary. The representation of an n-particle state in terms of an ordered set of occupied
single-particle states is called occupation number representation (ONR).

Creation and Annihilation Operators

In ONR, a single-particle state of a Fermion is to represented by |νi 〉. This state can be
thought of as arising from a state with no particle at all (the vacuum state |0 〉) by adding
a particle in the state characterized by νi . The addition of a particle in the state (or level)
is described by an operator b̂†νi operating on the vacuum state |0 〉:

|νi 〉 = b̂†νi |0〉 . (8.15.4)

The operator b̂†νi is called the creation operator for a single-particle in the state νi.
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In general, we define a creation operator b̂†ν by

b̂†ν |ν1, ν2, · · · , νn〉 = |ν1, ν2, · · · , νn〉 (8.15.5)

where the state ν of the (n+ 1)-th particle may not be necessarily ordered. We can restore
the order by interchanging the order of single-particle states. This interchange results in a
change of sign if an odd number of interchanges are required to reduce the disordered state
to an ordered state and no sign change if an even number of interchanges are required. For
example, an ordered state |ν1, ν2 〉 represents∣∣∣∣φν1(X1) φν1(X2)

φν2(X1) φν2(X2)

∣∣∣∣ .
The state |ν2, ν1〉 then represents∣∣∣∣φν2(X1) φν2(X1)

φν1(X2) φν1(X2)

∣∣∣∣ = −
∣∣∣∣φν1(X1) φν1(X1)
φν2(X2) φν2(X2)

∣∣∣∣ .
Hence |ν2, ν1〉 = −|ν1, ν2〉. It follows that the ket vector |ν1, ν2, · · · , νn〉 representing the
n-particle state may be obtained by a succession of creation operators operating upon the
vacuum state via

|ν1, ν2, · · · , νn〉 = b̂†ν1 b̂
†
ν2 · · · b̂†νn |0〉 . (8.15.6)

From the anti-symmetry of the Slater determinant (or ordered state) we can see that the
creation operators for Fermions satisfy anti-commutation relations, for we have

b̂†ν b̂
†
ν′ |0〉 = |ν, ν′〉

and b̂†ν′ b̂
†
ν |0〉 = |ν′, ν〉 = −|ν, ν′〉 .

These relations imply that

b̂†ν b̂
†
ν′ = −b̂†ν′ b̂†ν or b̂†ν b̂

†
ν′ + b̂†ν′ b̂

†
ν ≡ [b̂†ν , b̂

†
ν′ ]+ = 0 . (8.15.7)

We can also see that the adjoint of b̂†ν , that is b̂ν can be interpreted as the annihilation
operator, for we have

b̂†ν |0〉 = |ν〉
and writing the conjugate imaginary of both sides we have,

〈0|b̂ν = 〈ν| .
From these relations we find

〈0| b̂ν b̂†ν |0 〉 = 〈ν| ν〉 = 1 .

But 〈0| 0〉 also equals one, so we conclude

b̂ν b̂
†
ν |0 〉 = |0 〉 or b̂ν |ν 〉 = |0 〉 . (8.15.8)

Hence b̂ν may be regarded as the annihilation (or destruction) operator for a particle in the
state |ν〉.

It can be seen that the annihilation operators also satisfy anti-commutation relations.
To see this we take the adjoint of the operator products on both sides of Eq. (8.15.7) and
obtain

b̂ν′ b̂ν = −b̂ν b̂ν′ or b̂ν b̂ν′ + b̂ν′ b̂ν ≡ [b̂ν , b̂ν′ ]+ = 0 . (8.15.9)
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It can also be see that [b̂ν , b̂†ν ]+ = 1̂, for we have

b̂ν b̂
†
ν |S 〉 =

{
0 if ν is contained in S ≡ (ν1, ν2, · · · , νn) ,
|S 〉 if ν is not contained in S .

Here we have used the fact that each single-particle state is occupied at most by one Fermion.
We also have

b̂†ν b̂ν |S 〉 =

{
|S 〉 if ν is contained in S ,

0 if ν is not contained in S .

Hence (b̂ν b̂†ν + b̂†ν b̂ν) |S 〉 = |S 〉 , irrespective of whether ν is or is not contained in S. Hence
we have the result

b̂ν b̂
†
ν + b̂†ν b̂ν ≡ [b̂ν , b̂†ν ]+ = 1̂ .

Furthermore, since b̂ν b̂
†
ν′ = −b̂†ν′ b̂ν , if ν 6= ν′ we have

[b̂ν , b̂
†
ν′ ]+ = δνν′ . (8.15.10)

Fock Space

We can visualize a Hilbert space spanned by the single-particle states |νi〉 for all νi and
another Hilbert space spanned by two particle states |νi, νj〉. Both of these have been
encountered before. In general we can consider a Hilbert space spanned by n-particle
states |ν1, ν2, · · · , νn〉, where ν1, ν2, · · · , νn represents an ordered set of states. As we have
seen these states can be obtained from the vacuum state by applying appropriate creation
operators. We can as well think of a great Hilbert space, called a Fock space, spanned by
the vacuum state, all single-particle states, all two particle states, all three particle states
and so on.

One-body and Two-body Operators

Having established the correspondence between the Slater determinants ΨS(X1, X2, · · · , Xn)
and the ONR vectors |S〉 ≡ |ν1, ν2, · · · , νn〉, we now establish a similar correspondence be-
tween the operators O(X1, X2, · · · , Xn) in the configuration space (or in coordinate repre-
sentation) and the operators Ô in the Fock space by the requirement∫

· · ·
∫

ΨS′(X1, X2, · · · , Xn)O(X1, X2, · · · , Xn)ΨS(X1, X2, · · · , Xn)dX1dX2 · · · dXn

= 〈S′|Ô|S〉 (8.15.11)

for any two many-particle states S′ and S. Because the particles are indistinguishable, all
many-body operators O(X1, X2, · · · , Xn) in the coordinate space must be symmetric under
the permutation of coordinates. Essentially we shall be interested in one and two-body
operators

O(I)(X1, X2, · · · , Xn) =
n∑
i=1

O(1)(Xi) (8.15.12)

and O(II)(X1, X2, · · · , Xn) =
∑
i<j

∑
O(2)(Xi, Xj) , (8.15.13)

where O(1) and O(2) depend, respectively, on the coordinates of one and two particles.
For instance, O(1)(X) could be a single-particle Hamiltonian in some external potential
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while O(2)(X1, X2) could represent the potential energy of interaction between a pair of
particles. In the Fock space, the operators corresponding to O(I)(X1, X2, · · · , Xn) and
O(II)(X1, X2, · · · , Xn) are, respectively, Ô(I) and Ô(II). According to the requirement in
Eq. (8.15.11), it follows that

Ô(I) =
∑
ν

∑
ν′

O
(1)
νν′ b̂

†
ν b̂ν′ , (8.15.14)

where O
(I)
νν′ ≡

∫
φ∗ν(X)O(1)(X)φν′(X)dX , (8.15.15)

Ô(II) =
1
2

∑
νν′

∑
µµ′

O
(2)
νµµ′ν′ b̂

†
ν b̂
†
µb̂ν′ b̂µ′ , (8.15.16)

and O
(2)
νµµ′ν′ ≡

∫
dX1

∫
dX2φ

∗
ν(X1)φ∗µ(X2)O(2)(X1, X2)φµ′(X1)φν′(X2) .

(8.15.17)

It is easy to check that in the simple case when the system consists of two identical Fermions,
the bracket 〈pq| Ô(I) |`k 〉 gives the same answer as the integral∫∫

1√
2

∣∣∣∣φ∗q(X1) φ∗p(X1)
φ∗q(X2) φ∗p(X2)

∣∣∣∣ (O(1)(X1) +O(1)(X2)
) 1√

2

∣∣∣∣φ`(X1) φk(X1)
φ`(X2) φk(X2)

∣∣∣∣ dX1dX2 ,

viz., O(1)
q` δpk + O

(1)
pk δq` − O(1)

p` δqk − O(1)
qk δp`, when Eq. (8.15.14) is used. Also the bracket

〈pq|Ô(II)|`k〉 gives the same answer as the integral∫∫
1√
2

∣∣∣∣φ∗q(X1) φ∗p(X1)
φ∗q(X2) φ∗p(X2)

∣∣∣∣ O(2)(X1, X2)
1√
2

∣∣∣∣φ`(X1) φk(X1)
φ`(X2) φk(X2)

∣∣∣∣ dX1dX2 ,

viz., O(2)
qp` k −O(2)

pq` k, when Eq. (8.15.16) is used.
Here it may be noted that |`k 〉 denotes the ordered state of two particles and the

interchange of ` and k amounts to a change of sign. It may also be noted that the conjugate
imaginary of the ket |qp 〉 is bra 〈pq| .

Using the occupation number representation it is possible to work out the expectation
values of the operators of the type O(I)(X1, X2, · · · , Xn) and O(II)(X1, X2, · · · , Xn) for the
n-particle anti-symmetric states [Eq. (8.15.1)] with relative ease. ONR is quite useful in the
microscopic theories of nuclear structure where nuclear properties are understood in terms
of the motions of individual nucleons. The main virtue of ONR lies in its mathematical
convenience. It provides a simple shorthand formulation for taking into account Pauli’s
principle in many body calculations of any degree of complexity by observing the rules of
algebra of particle creation and annihilation operators.

Problems

1. There is another internal magnetic interaction term in the Hydrogen atom, which
arises due to the intrinsic magnetic dipole moment of the proton (nucleus)

µp =
egp
2mp

I ,
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where gp ≈ 5.6 is the gyromagnetic ratio for the proton and I is its spin. The
electron is perturbed by the magnetic field produced by this dipole. Write down
the Hamiltonian for this interaction. This interaction is responsible for the hyperfine
splitting of hydrogenic levels and is called hyperfine interaction. Which of these terms
contributes to the ground state? Calculate the effect of this interaction on the ground
state of the Hydrogen atom. This splitting is the origin of the famous “21–cm line”
of the Hydrogen.

Ans:
[
− µoe

4πmer3

L · µp
r3

− µo
4πr3

{
3(µe · er)(µp · er)− µe · µp

}− 2µo
3
µe · µpδ(r)

]
,

where µp and µe are the magnetic (dipole) moments of the proton and the electron,
er = r/r is a unit vector from the nucleus to the electron and me and mp are,
respectively, the electron and proton masses.

2. Show that the first order perturbation energy equals the quantum mechanical
expectation value of the perturbation for the unperturbed state.

3. A one-dimensional harmonic oscillator is perturbed by an external potential energy,
so that

Ĥ = Ĥ0 + Ĥ ′ =
(
p̂2

2m
+

1
2
kx̂2

)
+ bx̂3 + cx̂4 .

Calculate the change in each of the first three energy levels as a result of the
perturbation given

ψn(x) = NnHn(αx) e−α
2x2/2

Nn =
(

α

2n n!
√
π

)1/2

, α =
√
mω

~
H0(ξ) = 1 ; H1(ξ) = 2ξ ; H2(ξ) = 4ξ2 − 2 .

4. Use the properties of Bessel function for small and large arguments to show that the
solutions (8.5.27) and (8.5.31) (as well as their derivatives) are continuous across the
turning point. Hence derive the connecting formulas (8.5.38) and (8.5.40).

5. A one-dimensional potential well is given by V (x) = −V0(1 − |x|/a) for |x| < a and
zero for |x| > a. How many bound states can exist for this potential?

6. Calculate the (bound) energy levels for the Hydrogen atom by applying the WKBJ
method to the radial equation for the function rR(r) [Eq. (8.5.41)]. Compare them
with the exact energy levels.
Ans: −mec2Z2α2

2

[√
`(`+ 1 + n+ 1

2

]
, where α is the fine structure constant.

7. Find the energy levels for H = p̂2

2m + Cr in the WKBJ approximation.

8. Use the following trial functions to estimate the ground state energy of the Hydrogen
atom by the variational method.

(i) ψ1(α, r) = A/(r2 + α2), where α is the variation parameter.

(ii) ψ2(α, r) = Ce−αr
2/2, where α is the variation parameter.

9. A trial function ψ differs from the actual eigenfunction uE of H (HuE = EuE) by a
small amount, so that ψ = uE + ε ψ1 where uE and ψ1 are normalized and orthogonal
and the parameter ε� 1. Show that the expectation value of H for the state ψ differs
from E by a term of the order of ε2.
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10. A particle of mass m is bound by a potential V (r) = −V0e
−r/a where ~2

mVoa2 = 3
4 .

Using the trial wave function φ = Ne−αr find the upper bound to the energy of the
ground state.

11. Find the ground state energy for the Hamiltonian

H = − ~2

2m
d2

dx2
+

1
2
mω2x2

using the trial wave function ψ(x) = N e−αx
2

and α as the variational parameter.

12. Use the variational principle to estimate the energy of the first excited state of a linear
harmonic oscillator. How would you choose the trial function?

13. In a Hydrogen-like atom problem consider the atomic nucleus to be a uniformly
charged sphere of radius R instead of being a point charge. This would modify the
Coulomb potential to

Vc(r) =

{− Ze2

4πε0r
for r > R

Ze2

8πε0R

[(
r
R

)2 − 3
]

for r ≤ R .

Use first order perturbation theory to calculate the energy shift caused by this
modification for the |n = 1 , ` = 0 ,m = 0 〉 state.

14. The unperturbed Hamiltonian for two identical linear oscillators is given by

H0 =
(
− ~2

2m
d

dx2
1

+
1
2
kx2

1

)
+
(
− ~2

2m
d

dx2
2

+
1
2
kx2

2

)
.

The oscillators interact via the Hamiltonian H1 = ε
2 kx1 x2 (x2

1 +x2
2) where ε is small.

Show that this interaction does not change the ground state energy of the system while
the energy of the unperturbed first excited state (which is degenerate) undergoes a
splitting given by (

2 ± 3
4
∈ ~√
mk

)
~ω ,

where ω =
√
k/m is the classical frequency. (Use perturbation theory for degenerate

energy levels.)

15. The Hamiltonian of the Hydrogen atom placed in a uniform magnetic field B = Bez
is (apart from its internal Hamiltonian)

H = −µ
B
Bσez + gσe · σp ,

where σe and σp are the Pauli spin vectors for the electron and proton, respectively,
µ
B

is Bohr magneton and the magnetic field is applied in the z-direction. When B is
zero, the energy for all the three triplet states |S = 1 , Sz = ± 1 , 0 〉 of the electron-
proton system is g since the value of σe · σp for the triplet states is +1. Using the
degenerate state perturbation theory calculate the energy shifts when B is non zero.

16. Estimate the ground state energy of a particle moving in a potential V (r) = −Voe−µ2r2

using the variational method and the trial wave function ψ(r) = Ae−β
2r2 , given

Vo = π4

4
~2µ2

m , where m is the mass of the particle.
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17. Given the Hamiltonian operator for a particle, H = −K∇2 + V (x, y, z) , where K =
~2/2m, show that the function ψ(x, y, z), which makes the integral

∫∫∫
ψ∗Hψ dxdy dz

stationary (minimum), while keeping the normalization integral
∫
ψ∗ψ dx dy dz a

constant, is given by:
Hψ(x, y, z) = λψ(x, y, z).

(It is to be assumed that the permissible function is to vanish at the boundary of
volume integration.)

[HINT: From the boundary conditions we have∫∫∫
ψ∗∇2ψ dx dy dz = −

∫∫∫
(ψ∗xψx + ψ∗yψy + ψ∗zψz)dx dy dz ,

where ψx denotes the derivative ψx ≡ ∂ψ
∂x of ψ. So the integral to be made stationary

(minimum) is ∫∫∫ [
K
(
ψ∗xψx + ψ∗yψy + ψ∗zψz

)
+ ψ∗V ψ

]
dx dy dz .

Since the normalization integral is to be kept constant, we may construct the function,
whose integral is to be minimized, as

F =
[
K(ψ∗xψx + ψ∗yψy + ψ∗zψ)

]
+ ψ∗V ψ + λψ∗ψ ,

where λ is an undetermined multiplier. Using this function in the Euler-Lagrange
equations:

∂F

∂ψ
−
(
∂

∂x

∂F

∂ψx
+

∂

∂y

∂F

∂ψy
+

∂

∂z

∂F

∂ψz

)
= 0

and
∂F

∂ψ∗
−
(
∂

∂x

∂F

∂ψ∗x
+

∂

∂y

∂F

∂ψ∗y
+

∂

∂z

∂F

∂ψ∗z

)
= 0 ,

where ψ,ψ∗ and their derivatives are to be treated as independent variables, gives the
desired equations.]

18. Show that if the Hamiltonian of a system changes suddenly from Ho to Ho+V in time
∆t which is short compared to all relevant periods, the changed state of the system
is given by

|ψ(t+ ∆t) 〉 = exp

− i
~

t+∆t∫
t

V (t′)dt′

 |ψ(t) 〉 .

19. From the orthonormality and completeness of single-particle wave functions ψν(X)
(where X ≡ r, ζ) show that the set of anti-symmetric functions ΨS(X1, X2, ...XN )
given by

ΨS(X1, X2, ....XN ) =
1√
N !

∣∣∣∣∣∣∣∣∣
ψν1(X1) ψν2(X1) · · · ψνN (X1)
ψν1(X2) ψν2(X2) · · · ψνN (X2)

...
...

ψν1(XN ) ψν2(XN ) · · · ψνN (XN )

∣∣∣∣∣∣∣∣∣ ,
for all permuted sets of N labels

S ≡ ν1, ν2, · · · , νN ,
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S ′ ≡ ν2, ν1, · · · , νN ,
and so on, form a complete orthonormal set of totally anti-symmetrized N -particle
wave functions.

20. Using the anti-symmetry of N -particle wave functions, expressed as Slater
determinants, show that the creation operators b̂†ν satisfy the condition

b̂†ν b̂
†
ν′ = −b̂†ν′ b̂†ν .

Hence show that the adjoints of the creation operators, b̂ν can be interpreted as
annihilation operators and show that b̂ν b̂ν′ = −b̂ν′ b̂ν . Interpret this as conforming to
Pauli’s principle. Also show that

b̂ν b̂
†
ν |S 〉 ≡ b̂ν b̂†ν |ν1, ν2, · · · , νN 〉 =

{
0 if ν ∈ S

|S 〉 if ν /∈ S
,

and b̂†ν b̂ν |S 〉 ≡ b̂†ν b̂ν |ν1, ν2, · · · , νN 〉 =

{
|S 〉 if ν ∈ S
0 if ν /∈ S .

Hence b̂ν b̂†ν + b̂†ν b̂ν ≡ [b̂ν , b̂†ν ]+ = 1̂ is an identity.

21. In the configuration space, one-body operator OI(X1, X2, · · · , XN ) and two-body
operator OII(X1, X2, · · · , XN ) are defined by

OI(X1, X2, · · · , XN ) =
∑
i

O(1)(Xi) ,

and OII(X1, X2, · · · , XN ) =
∑
i<j

O(2)(Xi, Xj) =
1
2

∑
i 6=j

O(2)(Xi, Xj) .

Show that, in the occupation number representation, one- and two-particle operators
can be represented by

Ô(I) =
∑
ν,ν′

O
(1)
νν′ b̂

†
ν b̂ν′ ,

Ô(II) =
∑
νν′µµ′

O
(2)
ν µµ′ ν′ b̂

†
ν b̂
†
µb̂ν′ b̂µ′ ,

where O
(1)
νν′ , ≡

∫
ψν∗(X)O(1)(X)ψν′(X)dX

and O
(2)
νµµ′ν′ =

∫
dX

∫
dX ′ψ∗ν(X)ψ∗µ(X ′)O(2)(X,X ′)ψµ′(X)ψν′(X ′) .

22. Show that, for the two-Fermion system, the integral∫∫
Ψ∗pq(X1, X2)OI(X1, X2)Ψ` k(X1, X2)dX1dX2

has the same value as the bracket 〈p, q| ÔI |`, k 〉 and the integral∫∫
Ψ∗pq(X1, X2)ÔII(X1, X2)Ψ` k(X1, X2)dX1dX2

has the same value as the bracket 〈pq| ÔII |`k 〉, where Ψ`k is the determinant wave
function for the ordered state |`k 〉 and the ONR operators ÔI and ÔII are defined
as in Problem 21.



298 Concepts in Quantum Mechanics

23. The ordered state |S 〉 = |ν1, ν2, · · · , νn 〉 of a system of n Fermions may be
represented, in the coordinate representation, by a Slater determinant given in
Problem 19. Show that the expectation value of one-body operator Ô(I) ≡∑n
i=1O

(i)(Xi) for this state, obtained by evaluating the integral∫∫
· · ·
∫

Ψ∗S(X1, X2, · · · , Xn)
n∑
i=1

O(1)(Xi)ΨS(X1, X2, · · · , Xn) dX1dX2 · · · dXn

gives the same result as obtained by evaluating the bracket

〈S| ÔI |S 〉 ≡ 〈νn, νn−1, · · · , ν1| ÔI |ν1, ν2, · · · , νn 〉 .

The one particle operator ÔI in the occupation number representation is defined as
in Problem 21.
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9

QUANTUM THEORY OF SCATTERING

9.1 Introduction

Most of our knowledge about the structure of matter and interaction between particles
is derived from scattering experiments. From a theoretical point of view, scattering
problems are concerned with the continuous (and positive) energy eigenvalues and unbound
eigenfunctions of the Schrödinger equation. We have already encountered one-dimensional
examples of scattering in Chapter 4, in the discussion of reflection and transmission of an
incident particle with definite momentum from a potential step or barrier. In this chapter
we consider scattering from a more formal point of view. We will confine our discussion to
elastic scattering (scattering without loss or gain of energy by the projectile) from central
potentials although many of the concepts and results are applicable to inelastic scattering.

In a typical scattering experiment, a target particle of mass m2 is bombarded with
another particle (projectile) of mass m1 and carrying a momentum p1. After interaction
with the target particle the projectile is scattered at some angle θ0 with respect to the
incident direction (z-direction). Since we will be dealing with elastic scattering from central
potentials, we can infer from the symmetry of the problem that the scattering will be axially
symmetric. This means the probability of the projectile being scattered in a direction θ0, ϕ0

will not depend on the azimuth angle ϕ0. According to quantum mechanics, the angle θ0

at which a projectile is scattered in a particular case cannot be predicted. However, if a
beam consisting of a large number of identical particles, each carrying the same momentum
p1, is incident on a target consisting of a large number of scatterers, we can use quantum
mechanics to predict the angular distribution of scattered particles provided the interaction
between the incident and target particles is known. It may be noted here that the scattering
problem, despite the involvement of many particles in the incident beam and the target,
remains essentially a two-body problem. Accordingly, we treat the problem as that of
a single incident particle striking a single target particle and endeavor to calculate the
probability of the incident particle being scattered in a direction (θ0, ϕ0) into a solid angle
dΩ0 = sin θ0dθ0dϕ0. This probability is related to the number of particles scattered per
second in the direction (θ0, ϕ0), within the solid angle dΩ0 and is usually quantified in terms
of the differential cross-section σ(θ0) for scattering defined as

dσ(θ0) ≡ σ(θ0)dΩ0 =

Number of particles scattered per second into
the solid angle dΩ0 in direction (θ0, ϕ0)

Incident flux density×Number of targets
.

The quantity σ(θ0) has the dimensions of area/steradian. Hence σ(θ0)dΩ0 can be thought
of as an effective cross-sectional area of the incident beam that would contain the number
of particles scattered by a single scatterer into the solid angle dΩ0 in direction (θ0, ϕ0).

299
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ϕ0

dA=r2dΩ0

dΩ0

X

Y
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Incident
particle flux

O

Scattering
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FIGURE 9.1
In a typical scattering experiment, particle flux emerging through a small area dA = r2dΩ0

located far from the scattering region and subtending a solid angle dΩ0 at the scattering
region is measured.

9.2 Laboratory and Center-of-mass (CM) Reference Frames

In describing the scattering we have to use different reference frames. A frame of reference
in which the observer and the target are at rest is called the laboratory frame of reference.
Obviously, the experimental measurements for the scattering cross-sections are carried out
in the laboratory frame. On the other hand the theoretical calculations for the scattering
cross-sections are conveniently made in another frame called the center-of-mass (CM) frame
of reference in which the center of mass of the two particles, target and the projectile, is
at rest. The advantage of the center-of-mass reference frame is that we consider only the
relative motion of the two particles. As seen in the case of bound state problems, by
working in the center-of-mass frame, we are able to reduce the two-body problem to a
one-body problem. To compare the results of the theoretical calculations with those of the
experiments, of course, we have to transform from the CM frame to the laboratory frame
where the observations are made. To find this transformation let us consider the kinematics
of scattering.

Let m1 be the mass of the incident particle whose velocity is v [Fig. 9.2(a)] in the
laboratory frame, in which the target of mass m2 is at rest. We take the direction of the
momentum of the incident particle to be the polar axis (z-axis). After the collision, let the
incident particle be scattered into the direction (θ0, ϕ0) with velocity v1 and let the target
recoil in the direction (φ0, π + ϕ0) with velocity v2. Since the collision is elastic, we can
apply the laws of conservation of momentum and kinetic energy to the scattering process.
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By equating the momentum and kinetic energy before and after the collision, we obtain the
following equations

m1v = m1v1 cos θ0 +m2v2 cosφ0 ,

0 = m1v1 sin θ0 −m2v2 sinφ0 ,

1
2
m1v

2 =
1
2
m1v

2
1 +

1
2
m2v

2
2 .

(9.2.1)

θ0m1

φ0
v

m1

m2

v1

v2

CM

v′

θ
m1

v′′

m1

m2

CM

v′
m2

vf

vf′

′′

(a) (b)

FIGURE 9.2
(a) Elastic scattering of a particle of mass m1 from a target of mass m2 in the laboratory
frame. θ0 is the scattering angle in the laboratory frame and φ0 is the recoil angle of the
target. (b) Elastic scattering as viewed in the center-of-mass frame. θ is the scattering
angle in the CM frame. Initially the particles approach the center-of-mass with velocities
v and v′ and, after collision, recede away with velocities v′′f and v′f such that |v′′f | = |v′′|
and |v′f | = |v′|.

Let us view this same process in the center-of-mass frame [Fig. 9.2(b)]. We note that, in
the laboratory frame the center-of-mass frame moves with velocity1

v′ =
m1v

m1 +m2
. (9.2.2)

In this frame, the particles of mass m1 and m2 approach the center-of-mass with velocities
v′′ = v − v′ and v′, respectively [Fig. 9.2]. The conservation of momentum requires that,
after the collision, the two particles will recede away from the center of mass in opposite
directions with velocities v′′f and v′f , respectively, so that |v′′f | = |v′′| and |v′f | = |v′| Let
this direction be θ. Thus while θ0 is the angle of scattering in the laboratory frame, θ is
the corresponding angle of scattering in the CM frame.

The relationship between θ0 and θ is easily determined using the law of addition of
velocities. According to this law the vector sum of the velocity v′ of the center of mass in
the laboratory frame and the velocity v′′f of mass m1 after collision in the center-of-mass
frame, should be equal to the velocity v1 of mass m1 in the laboratory frame after collision
[Fig. 9.3]. Working with the components of velocities, we obtain

1This relation is obtained by taking the time derivative of the center-of-mass coordinate R = m1r1+m2r2
m1+m1

.
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θ0
v′

v′′
v1

θ

FIGURE 9.3
Relation between the scattering angles in the laboratory frame and the CM frame.

v1 cos θ0 = v′ + v′′f cos θ = v′ + v′′ cos θ ,

v1 sin θ0 = v′′f sin θ = v′′ sin θ ,

so that tan θ0 =
v′′ sin θ

v′ + v′′ cos θ
=

sin θ
γ + cos θ

, (9.2.3)

where γ ≡ v′

v′′
=

v′

v − v′ =
m1

m2
. (9.2.4)

From this we see that if m1 � m2 (target much more massive than projectile) then θ ≈ θ0.
On the other hand, if m1 ≈ m2 (projectile and target equally massive) then γ ≈ 1 and

tan θ0 ≈ sin θ
1 + cos θ

= tan(θ/2) ⇒ θ0 ≈ θ/2. (9.2.5)

9.2.1 Cross-sections in the CM and Laboratory Frames

The number of particles scattered per second into a solid angle dΩ0 about the direction
(θ0, ϕ0) in the laboratory frame is exactly the same as the number of particles scattered
into a solid angle dΩ about direction (θ, ϕ) in the center-of-mass frame. This means

Fnσ0(θ0)dΩ0 = Fnσ(θ)dΩ , (9.2.6)

where F is the flux density (number of particles per unit area per second) of the incident
particles and n is the number of scatterers in the target. Thus the cross-sections in the
center-of-mass frame and the laboratory frame are related by

σ0(θ0)
σ(θ)

=
sin θ dθ

sin θ0 dθ0
. (9.2.7)

Using the relation (9.2.3) between the angles θ and θ0 we find

γ cos θ + 1
(γ + cos θ)2

dθ = sec2 θ0 dθ0 = (1 + tan2 θ0)dθ0 =
(1 + γ2 + 2γ cos θ)

(γ + cos θ)2
dθ0 . (9.2.8)

With the help of this equation we find

sin θ
sin θ0

dθ

dθ0
=

sin θ
sin θ0

(1 + γ2 + 2γ cos θ)
(γ cos θ + 1)

=
sin θ sec θ0

tan θ0

(1 + γ2 + 2γ cos θ)
(γ cos θ + 1)

or
sin θ
sin θ0

dθ

dθ0
=

(1 + γ2 + 2γ cos θ)3/2(γ + cos θ)2

(γ cos θ + 1)
. (9.2.9)

This leads us to the following relation between the cross-sections in the laboaratory frame
and the CM frame

σ0(θ0) =
[

(1 + γ2 + 2γ cos θ)3/2

γ cos θ + 1

]
σ(θ) . (9.2.10)
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9.3 Scattering Equation and the Scattering Amplitude

As already noted, elastic scattering is a two-body problem involving a projectile of mass
m1 and a target of mass m2. The wave function Ψ(r1, r2), representing the scattering
state of this system in the laboratory frame may, therefore, be obtained by solving the
time-independent Schrödinger equation

HΨ(r1, r2) = E0Ψ(r1, r2) , (9.3.1)

where H is the Hamiltonian operator of the two-body system. For central interaction
between the particles, the Hamiltonian in the coordinate representation has the form

H = − ~2

2m1
∇2

1 −
~2

2m2
∇2

2 + V (|r1 − r2|) . (9.3.2)

As in the case of two-body bound state problem discussed in Sec. 5.5, we can reduce the
scattering problem to center-of-mass motion corresponding a particle of mass M = m1 +m2

moving freely and the motion of a fictitious particle of reduced mass µ = m1m2/(m1 +m2)
moving in a potential V . Accordingly, we introduce the center-of-mass coordinate R and
the relative coordinate r by

R =
m1r1 +m2r2

m1 +m2
, and r = r1 − r2 . (9.3.3)

Since the potential depends only on the relative coordinate r, it is possible to express the
total wave function Ψ(r1, r2) as a product of two functions Φcm(R) and ψ(r). Substituting
Ψ(r1, r2) = Φcm(R) and ψ(r) in Eq. (9.3.1), with the Hamiltonian (9.3.2) expressed in
terms of R and r, and dividing the result by Φcm(R)ψ(r) we obtain after separating the
variables two independent equations

− ~2

2(m1 +m2)
∇2
R Φcm(R) = Ecm Φcm(R) (9.3.4)

and
[
− ~2

2µ
∇2
r + V (r)

]
ψ(r) = E ψ(r) (9.3.5)

where
Ecm = E0

m1

m1 +m2
(9.3.6a)

is the energy associated with the motion of the center-of-mass and

E = E0 − Ecm = E0
m2

m1 +m2
(9.3.6b)

is the energy associated with the relative motion of the particles in the CM frame.
In scattering problems our main interest is in Eq. (9.3.5), which describes the relative

motion of the two particles in the center-of-mass frame. It may be noted that while
Eq. (9.3.5) for the scattering problem looks the same as Eq. (5.5.15) for the bound
state problem, the energy spectrum and the asymptotic behavior of the wave function are
different in the two cases. Whereas the bound state problem deals with the discrete part
of the energy spectrum, which is determined by the asymptotic (large distance) behavior
limr→∞ ψ(r) → 0 of the wave function, the scattering problem concerns the continuous
part of the energy spectrum, where the energy E is specified in advance and the asymptotic
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behavior of the wave functions is sought in terms of E. In the scattering problem, the wave
function ψ(r) has the following asymptotic behavior [r →∞ where V (r)→ 0]

lim
r→∞

ψ(r) ≡ ψ(+)(r) = A

[
eik·r + f(θ)

eikr

r

]
, (9.3.7)

which is a superposition of a plane wave and an outgoing spherical wave. Here A is a
normalization constant. The reason for this prescribed asymptotic behavior is simple.
When the colliding particles are far apart they no longer interact so that we want the wave
function to be a superposition of a plane wave representing the incident particle moving
with momentum ~k and an outgoing spherical wave representing the scattered particle. The
amplitude f(θ) (also called scattering amplitude) of the outgoing spherical wave depends
on θ (the ϕ-dependence being ruled out because of axial symmetry) and falls off as 1/r
since the radial flux density must fall off as 1/r2. The asymptotic form of the wave function
satisfies the Schrödinger equation in the force-free (V = 0) region through terms of order
1/r.

Scattering equation (9.3.5) admits another solution ψ(−)(r), which behaves asymptoti-
cally as a plane wave plus an incoming wave. This solution is not relevant to scattering
problems, since the scattered particle is expected to travel outward from the region of
interaction.

Using the definition of probability current density S(r) = ~
2iµ [ψ∗∇ψ − (∇ψ)∗ψ] [Eq.

(3.3.4)], we find that the plane wave term

ψinc(r) = Aeik·r = Aeikz (9.3.8)

associated with the incident particle corresponds to a incident particle flux density

Sinc(r, t) = |A|2 ~k
µ
. (9.3.9)

Similarly, the scattered wave

ψsc(r) = Af(θ)
exp(ikr)

r
(9.3.10)

corresponds to scattered particle flux density

Ssc(r, t) = |A|2 ~k′

µ r2
|f(θ)|2 (9.3.11)

where k′ is the scattering vector and we have retained only the lowest order term in 1/r,
higher order terms being negligible compared to the leading 1/r2-term in the asymptotic
region. Note that for elastic scattering considered here |k| = k = |k′|

From the scattered particle flux density (the number of particles crossing a unit area per
second), the number of scattered particles crossing a small area element dA, located at a
distance r in the direction (θ, ϕ), per second is found to be Ssc · dA = Sscr

2dΩ, where
dΩ = k′

|k′| · dA/r2 is the solid angle subtended by the area element dA at the scattering
center [Fig. 9.4]. By definition of the scattering cross-section, this number Sscr2dΩ, the
number of particles scattered into the solid angle dΩ per second, must equal the number of
particles contained in a cross-sectional area dσ of the incident beam

dσ × Incident flux density = Ssc · dA = Sscr
2dΩ

or dσ × |A|
2~k
µ

= |A|2|f(θ)|2 ~k′

µ
dΩ

or
dσ

dΩ
≡ σ(θ) = |f(θ)|2 . (9.3.12)
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FIGURE 9.4
The incident particle with momentum ~k in center-of-mass frame is associated with a plane
wave and the scattered particle is associated with an outgoing spherical wave ψsc. To
calculate the flux of particles scattered in the direction k′ (or θ, ϕ), we need to consider
only the scattered wave because of the collimation of the incident beam.

Note that the normalization constant A has disappeared from the expression for σ(θ). We
may normalize the wave function to unit incident flux or normalize it over a large box that
has periodic boundary conditions. We will simply choose A = 1. Finally, it should be
pointed out that theoretically, at any point P [Fig. 9.4] there exists a superposition of the
incident plane wave and the scattered (outgoing spherical) wave [Eq. (9.3.7)]. However, in
the experiment, the incident wave can be eliminated at all angles except in a narrow range
around the forward direction (θ = 0) by using a directional detector or using a collimated
beam. Therefore, at nonzero scattering angles, we can consider only the scattered wave for
the purpose of calculating the flux of particles emerging from the scattering region.

Determination of Scattering Amplitude f(θ)

The problem of calculating the differential cross-section of elastic scattering, in the center-of-
mass frame, now reduces to solving the scattering equation (9.3.5), which may be rewritten
as [∇2 + k2 − U(r)

]
ψ(r) = 0 , (9.3.13a)

where k2 ≡ 2µE
~2

, and U(r) ≡ 2µ
~2
V (r) . (9.3.13b)

By solving this equation we determine the asymptotic form of the solution ψ(+)(r) and
extract the scattering amplitude f(θ). This can be done either by using

(i) the method of partial waves

(ii) the Born approximation
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The method of partial waves is exact and involves no approximation. However, it is
convenient to use this method only when the energy E is low; with increasing energy, the
method becomes increasingly complex because, as we shall see later, an increasingly large
number of partial waves have to be considered. At high energies such that the interaction
between the two particles may be treated as a perturbation compared to the energy E,
we can use the Born approximation. We shall discuss the method of partial waves for
spherically symmetric potential first followed by a discussion of the Born approximation.

9.4 Partial Waves and Phase Shifts

When the interaction potential is spherically symmetric, V (r) = V (r), then the scattering
equation (9.3.5) may be separated into radial and angular equations by the substitution,
ψ(r) = R`(r)Y`m(θ, ϕ) and expressing the Laplacian operator ∇2 in terms of polar angles
θ, ϕ. We have already gone through this exercise in connection with the bound state
problems [see Chapter 5, Eqs. (5.5.17) and (5.5.18)]. The angular solutions Y`m(θ, ϕ)
are the familiar functions called spherical harmonics. The radial equation (5.5.39) in the
present context can be rewritten as

d2R`(r)
dr2

+
2
r

dR`(r)
dr

+
[
k2 − U(r)− `(`+ 1)

r2

]
R`(r) = 0 . (9.4.1)

This equation is to be solved for the given potential V (r) and energy E > 0 to find the
asymptotic form of the radial function. As discussed in Chapter 5, Sec. 5.5, the regular
solution of the radial equation (9.4.1) which vanishes [rR`(r) → 0] as r → 0 is uniquely
determined once V (r) and E are specified. The solution is labeled by the angular momentum
eigenvalue ` and energy E via the relation k =

√
2µE/~2 . The general solution of the

scattering equation (9.3.13) then has the form

ψ(r) =
∞∑
`=0

∑̀
m=−`

A`mR`(r)Y`m(θ, ϕ) . (9.4.2)

Since the scattering solution has no ϕ-dependence, only the m = 0 terms contribute.
Recalling that Y`0 → P`(cos θ), the complete solution of the scattering equation (5.3.13)
can then be written as

ψ(r) =
∞∑
`=0

B`R`(r)P`(cos θ) . (9.4.3)

To compute the general asymptotic form of the wave function we consider the radial equation
in the limit r →∞. With the substitution u`(r) = rR`(r) [see Sec. 5.5], the radial equation
becomes

d2u`(r)
dr2

+
[
k2 − U(r)− `(`+ 1)

r2

]
u`(r) = 0 . (9.4.4)

If the potential V (r) falls off sufficiently fast with distance, we can neglect both the potential
and the centrifugal term so that the radial equation (9.4.4) assumes the form

d2u`(r)
dr2

+ k2u`(r) = 0 , (9.4.5)
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with solutions u`(r) ∼ e±ikr. Factoring out this phase term, we write the radial function as
u`(r) = v`(r)e±ikr. Substituting this in Eq. (9.4.4), we find that v`(r) obeys the equation

d2v`(r)
dr2

± 2ik
dv`(r)
dr

−
[
U(r) +

`(`+ 1)
r2

]
v` = 0 . (9.4.6a)

It must still satisfy the condition v`(0) = 0 to conform to the requirement u`(0) = 0 on radial
function. If we assume that v`(r) is slowly varying, we can neglect |d2v`/dr

2| compared with
|k dv`dr |, Eq. (9.4.6a) yields

1
v`

(r)
dv`(r)
dr

= ∓ i

2k

[
U(r) +

`(`+ 1)
r2

]
. (9.4.6b)

This equation is readily integrated to give

v`(r) ≈ exp
[
∓ i

2k

∫ r

dr′
(
U(r′) +

`(`+ 1)
r′2

)]
(9.4.6c)

and u`(r) ≈ exp
[
±i
{
kr − 1

2k

∫ r

dr′
(
U(r′) +

`(`+ 1)
r′2

)}]
. (9.4.6d)

Now the intergral in v`(r) converges in the asymptotic limit r →∞ if the potential U(r)→ 0
falls off faster than 1/r with increasing r [or rU(r) → 0 as r → ∞]. Hence letting r → ∞
we can put the integral equal to some finite constant ε`

1
2k

∫ r

dr′
[
U(r′) +

`(`+ 1)
r′2

]
= ε` . (9.4.7)

So the asymptotic behavior of the radial functions R`(r) = u`(r)/r is given by the linear
combination of ei(kr−ε`) and e−i(kr−ε`) as

R`(r) ∼ sin(kr − `π/2 + δ`)
kr

, (9.4.8)

where we have written ε` = `π/2 − δ` so that δ` = 0 when the potential is absent2. Thus
the constant δ` is the difference in phase of the actual wave function and the wave function
of free motion in the absence of the potential. For this reason it is called the phase shift
and is determined by the behavior of u`(r) in the region of finite r where the potential is
nonzero.

Substituting the asymptotic form of the radial function (9.4.8) in Eq. (9.4.3), we find the
general asymptotic form of the wave function for a potential that falls off faster than 1/r
as

ψ(r) ∼
∞∑
`=0

B`
sin(kr − `π/2 + δ`)

kr
P`(cos θ) . (9.4.9)

This equation is to be compared with Eq. (9.3.7) to determine the scattering amplitude.
To facilitate this comparison, we express the incident plane wave ψin(r) = eikz in terms of
spherical harmonics. This is easily done by noting that eikz is the solution of the Schrödinger
equation for a free particle

(∇2 + k2)ψ(r) = 0 (9.4.10)

2In the absence of any potential [U(r) = 0], the regular (at r = 0) solution of the radial equation is

R`(r) ∼ j`(kr) with asymptotic behavior ∼ sin(kr−`π/2)
kr

[Sec. 5.8].
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in Cartesian coordinates when the particle has momentum ~k in +z direction. On the other
hand, solutions of this equation which are regular as r → 0 in spherical polar coordinates
are of the form [cf. Chapter 5, Eq. (5.8.11)]

ψk`(r) ∼ j`(kr)Y`m(θ, ϕ) , (9.4.11)

where j`(kr) is the spherical Bessel. Using the solutions in the spherical polar coordinates
as a basis and noting that the plane wave solution eikz = eikr cos θ is independent of the
azimuthal angle ϕ, we can write the incident plane wave as the sum

ψinc(r) = eikz =
∞∑
`=0

C`j`(kr)P`(cos θ) . (9.4.12)

To determine the constants C` we multiply both sides of this equation with P`′(cos θ) sin θdθ
and integrate over θ to get,

π∫
0

eikr cos θP`′(cos θ) sin θdθ = A`′j`′(kr)
2

2`′ + 1
(9.4.13)

where the orthogonality condition for Legendre’s polynomials has been used. This equation
holds for all values of r. Hence replacing ` by `′ in Eq. (9.4.13), integrating by parts, and
taking the limit r →∞, we get

2ei`π/2
sin(kr − `π/2)

kr
= C`

sin(kr − `π/2)
kr

2
2`+ 1

, (9.4.14)

which immediately leads to
C` = ei`π/2(2`+ 1) . (9.4.15)

Thus a plane wave can be expanded in terms of the solutions of the free-particle Schrödinger
equation in the spherical polar cordinates as

ψinc(r) ≡ eikz =
∞∑
`=0

ei`π/2(2`+ 1)j`(kr)P`(cos θ)

r→∞−−−→
∞∑
`=0

ei`π/2(2`+ 1)
sin(kr − `π/2)

kr
P`(cos θ) . (9.4.16)

This expansion amounts to expressing the state of a particle with a definite linear momentum
~k, as a superposition of partial waves each of which represents a state of definite angular
momentum ~

√
`(`+ 1) of the particle about the scattering center. Obviously, when the

momentum of the particle is well defined, its angular momentum about the scattering
center is indeterminate since the corresponding observables do not commute.

Comparing the asymptotic form of the solution of the scattering equation (9.4.9) with
that for a free particle (9.4.16) we find that the presence of a potential introduces a phase
shift δ` in each partial wave. Phase shift δ`(k) depends on (i) `, (ii) momentum ~k or energy
E, and (iii) the nature of the interaction V (r).

Scattering amplitude in terms of phase shifts

Having expressed the incident plane wave in terms of partial waves, we can now determine
the scattering amplitude f(θ) in terms of phase shifts by equating the asymptotic form
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(9.4.9) of the solution of the scattering equation with Eq. (9.3.7):

∞∑
`=0

B`
sin(kr − `π/2 + δ`)

kr
P`(cos θ) = eikz + f(θ)

eikr

r

=
∞∑
`=0

ei`π/2(2`+ 1)
sin(kr − `π/2)

kr
P`(cos θ) + f(θ)

eikr

r
. (9.4.17)

Equating the coefficients of e−ikr

r and eikr

r from both sides, we get

B` = eiδ`+i`π/2(2`+ 1) (9.4.18)

and f(θ) =
1
k

∞∑
`=0

(2`+ 1)eiδ` sin δ` P`(cos θ) . (9.4.19)

From these equations we find the differential scattering cross-section is

σ(θ) = |f(θ)|2 =
1
k2

∣∣∣∣∣
∞∑
`=0

(2`+ 1)eiδ` sin δ`P`(cos θ)

∣∣∣∣∣
2

. (9.4.20)

By integrating the differential scattering cross-section over all angles, we obtain the total
scattering cross-section as

σtot =

π∫
0

|f(θ)|22π sin θdθ

=
2π
k2

∞∑
`=0

∞∑
`′=0

(2`+ 1)(2`′ + 1)ei(δ`−δ`′ ) sin δ` sin δ`′
π∫

0

P`(cos θ)P`′(cos θ) sin θdθ

or σtot =
4π
k2

∞∑
`=0

(2`+ 1) sin2 δ` , (9.4.21)

where we have used the orthogonality property of the Legendre polynomials. From Eq.
(9.4.19) we note that the imaginary part of the scattering amplitude in the forward direction
(θ = 0) is given by

Im f(θ = 0) =
1
k

∞∑
`=0

(2`+ 1) sin2δ` . (9.4.22)

Hence the total scattering cross-section σtot may also be expressed as

σtot =
4π
k
Im f(θ = 0) . (9.4.23)

This result is called the optical theorem.
From the expressions for σ(θ) and σtot [Eqs. (9.4.20) and (9.4.21)] it might appear that

an infinite number of phase shifts, δ0, δ1, δ2, · · · δ` · · · are needed for the calculation of the
differential and total cross-sections. However, we can see from a semi-classical argument
that if the interaction has a finite range, i.e., if the potential vanishes beyond a certain
range [V (r) = 0 for r > b], then only a finite number of partial waves undergo phase shifts.
To see this consider a particle with momentum p = ~k approaching a target O so that
its impact parameter is s [Fig. 9.5]. It is then obvious that if s > b, the particle will



310 Concepts in Quantum Mechanics

b

s

p=hk

O

FIGURE 9.5
Impact parameter and the range of interaction. When the impact parameter s is larger
than the range of interaction b, the incident particle remains unaffected by the potential.

go unscattered while if s ≤ b, then the particle will undergo scattering. Now, classically,
the angular momentum of the particle with respect to the target is ~ks. It follows that
particles with angular momentum ~

√
`(`+ 1) ≈ ~` > ~kb will remain unscattered. This

result means that partial waves with ` > kb will not undergo scattering or

δ` = 0 for ` > kb . (9.4.24)

Hence if the energy of the incident particle E = ~2k2/2µ in the center-of-mass frame is
known and the range b of the interaction is given, we need to calculate the phase shifts only
for the partial waves with ` ≤ kb.

Sign of the phase shift and the nature of the potential

So far we have merely expressed the scattering cross-section in terms of partial wave phase
shifts. The phase shifts must be determined by solving the Schrödinger equation for a given
potential. In practice we often face the inverse problem, i.e., we seek to infer the potential
from the phase shifts measured in an experiment. A simple relationship between the sign
of the phase shift and the overall nature (attractive or repulsive) of the potential can be
established generally. Consider two potentials V (r) and V ′(r). Then the radial functions
u`(r) = rR`(r) and u′`(r) = rR′`(r) in the two cases satisfy

d2u`(r)
dr2

+
[
k2 − U(r)− `(`+ 1)

r2

]
u`(r) = 0 (9.4.25)

and
d2u′`(r)
dr2

+
[
k2 − U ′(r)− `(`+ 1)

r2

]
u′`(r) , = 0. (9.4.26)

where U(r) = 2µV (r)/~2, U ′(r) = 2µV ′(r)/~2 and k2 = 2µE/~2. The asymptotic solutions
of these equations are

u`(r) ∼ sin(kr − `π/2 + δ`) (9.4.27)
and u′`(r) ∼ sin(kr − `π/2 + δ′`) . (9.4.28)

Multiplying Eq. (9.4.25) by u′`(r), Eq. (9.4.26) by u`(r) and taking the difference of the
resulting equations, we get

d

dr

[
u`(r)

du′`(r)
dr

− u′`(r)
du`(r)
dr

]
= −[U(r)− U ′(r)]u`(r)u′`(r) . (9.4.29a)
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Integrating this equation with respect to r from r = 0 to some value r = R, and recalling
that both radial functions satisfy the boundary condition u`(0) = 0 = u′`(0), we get[

u`(r)
du′`(r)
dr

− u′`(r)
du`(r)
dr

]
r=R

= −
R∫

0

[U(r)− U ′(r)]u`(r)u′`(r)dr. (9.4.29b)

This equation holds for all values of R. By choosing R to be sufficiently large, we can use the
asymptotic forms for the functions u`(r) and u′`(r) on the left-hand side of Eq. (9.4.29b).
We then find

k sin(δ ′` − δ`) = −2µ
~2

R∫
0

[V ′(r)− V (r)]u`u′`dr . (9.4.30)

If the difference V ′(r)− V (r) ≡ ∆V (r) between the two potentials is small, we expect the
two radial functions to be similar. We can then ignore the difference between them in the
integral on the right-hand side and write

k sin(∆δ`) = −2µ
~2

∞∫
0

∆V (r) u2
`(r)dr . (9.4.31)

Since u2
`(r) is a positive quantity, we see that the change in the phase shift is in opposite

direction to the average (weighted by the radial function squared) change in the potential.
Thus if the potential changes to become more positive (repulsive), the phase shift will
decrease and if it changes to be more negative (attractive) the phase shift will increase.
As a specific example consider V (r) = 0 so that δ` = 0. Then for a repulsive potential
V ′(r) > 0 the phase shift δ′` is negative [Eq. (9.4.31)]. This means the radial function is
pushed out in comparison with the radial function j`(kr) for V = 0 [Fig. 9.6]. For an
attractive potential (V ′(r) < 0) δ′` is positive, which means the radial function is pulled in
compared to j`(kr) [Fig.(9.6)].

9.5 Calculation of Phase Shift

We now come to the calculation of phase shifts. For a potential that has a finite range ro,
the condition rV (r) → 0 as r → ∞ is clearly satisfied. Therefore the method of partial
waves is applicable. The radial equation in the interior region r ≤ ro is [see Sec. 9.4]

d2Rin
` (r)
dr2

+
2
r

dRint
` (r)
dr

+
[
k2 − U(r)− `(`+ 1)

r2

]
Rin
` (r) = 0 , r < ro , (9.4.1*)

where U(r) = 2µV (r)/~2 and k2 = 2µE/~2 and we have denoted the solution of this
equation by Rint

` (r). The radial equation in the exterior region (r > ro) where V (r) = 0
has the form

d2Rex
` (r)
dr2

+
2
r

dRex
` (r)
dr

+
[
k2 − `(`+ 1)

r2

]
Rex
` (r) = 0 , r > ro , (9.4.1*)

whose solutions are j`(kr) and η`(kr) [Chapter 5, Sec. 5.8]. Since r = 0 is excluded from
the exterior region [r > ro] both are acceptable solutions. We choose the exact solution in
the external region to be the combination

Rex
` (r) = cos δ` j`(kr)− sin δ` η`(kr) , (9.5.1)
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FIGURE 9.6
A comparison of the radial function R`(r) for a potential V (r) with the radial function j`(kr)
in the absence of interaction. When the potential is positive (repulsive) δ` is negative and
the radial function is pushed out [curve (a)]. When the potential is negative (attractive)
then δ` > 0 and the radial function is pulled in [curve (b)] as compared to j`(kr).

which conforms to the prescribed asymptotic form

Rex
` (r) ∼ sin(kr − `π/2 + δ`)

kr
, (9.4.8*)

since asymptotic forms of j`(kr) and η`(kr) are

j`(kr) ∼ sin(kr − `π/2)
kr

, and η`(kr) ∼ −cos(kr − `π/2)
kr

. (9.5.2)

Requiring the interior and exterior solutions and their derivatives to match at the boundary
r = ro, we obtain

Rin
` (ro) = Rex

` (ro) (9.5.3a)

and
(
dRin

`

dr

)
r=ro

=
(
dRex

`

dr

)
r=ro

. (9.5.3b)

These can be combined to yield the condition for the continuity of the logarithmic derivatives
of the solutions in the two regions

1
Rin
` (ro)

[
dRin

`

dr

]
r=ro

=
1

Rex
` (ro)

[
dRex

`

dr

]
r=ro

. (9.5.4)
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Denoting the logarithmic derivative of the interior wave function at ro by γ` and using the
exterior solution (9.5.1) in Eq. (9.5.4), we find

γ` =
k j′`(kro) cos δ` − kη′`(kro) sin δ`
j`(kro) cos δ` − η`(kro) sin δ`

, (9.5.5a)

where j′`(ρ) ≡ dj`(ρ)
dρ

and η′`(ρ) ≡ dη`(ρ)
dρ

. (9.5.5b)

By rearranging this equation we find that the phase shift is given by

tan δ` =
k j′`(kro)− γ`j`(kro)
kη′`(kro)− γ`η`(kro)

(9.5.6)

Thus, if the logarithmic derivative of the internal wave function at the boundary r = ro is
known for a given value of `, then the phase shift δ` can be calculated.

Phase shifts as meeting grounds for theory and experiment

Experimentally measured differential cross-sections σ(θ0) for different laboratory energies
E0 can be converted to center-of-mass cross-section for the corresponding CM energies E (or
k) and this data can be analyzed in terms of s-wave (` = 0), p-wave (` = 1), d-wave (` = 2),
· · · phase shifts δ0(k), δ1(k), δ2(k), · · · , with the help of Eq. (9.4.20). These experimentally
measured phase shifts can then be compared with the theoretically calculated phase shifts
based on model potentials and the use of Eq. (9.5.6). We may thus regard the phase shifts
as the meeting grounds for the theory and experiment.

9.6 Phase Shifts for Some Simple Potential Forms

We illustrate the method for calculating the phase shifts by considering two simple
potentials.

(a) Hard Sphere Potential

This potential describes the scattering when the target and projectile particles cannot come
closer than a certain relative distance distance ro. Thus for r < ro the particles see an
infinitely repulsive barrier. This interaction corresponds to a potential of the form

V (r) =

{
∞ , for r < r0

0 , for r > r0 ,
(9.6.1)

where r is the relative coordinate. In this case the radial wave function Rin
` (r) in the interior

region (r ≤ ro) vanishes. So from Eq. (9.5.3a), we find

tan δ` =
j`(kro)
η`(kro)

. (9.6.2)

The calculation of the phase shift is particularly simple for kro << 1 (low energies or short
range of potential or both), where

j`(kro) ≈ (kro)`

(2`+ 1)!!
and η`(kro) ≈ − (2`− 1)!!

(kro)`+1
. (9.6.3)
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With the help of these expressions we find

tan δ` ≈ δ` = − (kro)2`+1

(2`+ 1)!! (2`− 1)!!
. (9.6.4)

From this equation we see that (i) all phase shifts are negative as expected for a repulsive
potential, (ii) δ` falls off rapidly as ` increases, and (ii) all phase shifts tend to zero as
kro → 0.

Substituting the phase shifts from Eq. (9.6.4) into Eq. (9.4.21), we find the total
scattering cross-section is given by

σtot = 4πr2
o

∞∑
`=0

(kro)4`

[2`+ 1)!!(2`− 1)!!]2
. (9.6.5)

In the very low energy limit, kro → 0, only the ` = 0 term (s-wave) contribution survives,
giving

δ0 = −kro , (9.6.6)

σtot =
4π
k2

sin2 δ2
0 = 4πr2

o . (9.6.7)

Note that this is four times the classical scattering cross-section from a hard sphere. In
the classical scattering, the incident particle sees the geometrical crosss-section πa2 of the
sphere. In the quantum mechanical scattering, the wave-like character of the projectile
causes diffraction at the edges, resulting in a larger cross-section.

(b) Attractive Square-well Potential

The attractive square-well potential has the form

V (r) =

{
−Vo , for r < ro

0 , for r > ro .
(9.6.8)

Recall that this potential was used in Chapter 5 to describe the short range neutron-proton
interaction. In this case the radial equation (9.4.1) for the interior region (r < ro) is

d2Rin
` (r)
dr2

+
2
r

dRin
` (r)
dr

+
[
α2 − `(`+ 1)

r2

]
Rin
` (r) = 0 , (9.6.9a)

where α2 ≡ k2 + k2
o and k2

0 ≡
2µVo
~2

. (9.6.9b)

As seen in Sec. 9.5, the independent solutions of this equation are j`(α r) and η`(α r). Since
the solution η` is singular at r = 0 (which is part of the interior region), we drop it and
write the regular solution [cf. Eq. (9.4.11)]

Rin
` (r) = A`j`(α r) . (9.6.10)

The logarithmic derivative of the interior wave function is given by

γ` =
[

1
Rin
`

(
dRin

`

dr

)]
r=ro

=
α j′`(α ro)
j`(α ro)

. (9.6.11)
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Using the explicit form of spherical Bessel functions we can calculate the logarithmic
derivative of the interior radial function. For example, for the s-wave (` = 0) and p-wave
(` = 1) we get3

γ0 =
α j′0(α ro)
j0(α ro)

= α cot(α ro)− 1
ro

(9.6.12)

and γ1 =
α j′1(αro)
j1(αro)

= α
(α2r2

o − 2) + 2αro cot(αro)
αro − α2r2

o cot(αro)
. (9.6.13)

Results like these, when used in Eq. (9.5.6), for different ` will yield the corresponding
phase shifts. In general, the exact results must be obtained numerically. However, in
certain limits, we can obtain analytically tractable results. Thus using Eqs. (9.6.12) and
(9.6.13) in Eq. (9.5.6), we find that low energy (kro � 1) phase shifts for the s and p waves
are given by

tan δ0 ≈ − γ0kr
2
o

1 + γ0ro
(9.6.14)

and tan δ1 ≈ (kro)3

3
1− γ1ro
2 + γ1ro

. (9.6.15)

In the low energy limit or when short range potentials (as in neutron-proton scattering) are
involved, scattering is dominated by the s-wave. For example consider the scattering of a
1 MeV neutron from a proton-rich target (water, for example). As seen in Chapter 5, the
range of nuclear force is ro ≈ 2 fm (2 × 10−15 m). Neglecting the motion of the protons,

the CM energy is E = 0.5 MeV. This corresponds to k =
√

2µE
~2 =

√
2µc2E
~2c2 ≈ 0.1 fm−1 and

therefore to koro = 0.2. Since only the partial waves with ` < kro contribute to scattering
[Eq. (9.4.24)], it is clear that ` = 0 partial wave will dominate scattering.

Let us therefore consider the contribution of the s-wave phase shift to the total scattering
cross-section. Using Eq. (9.6.12) for γ0 in Eq. (9.6.14), we find

tan δ0 ≈ − γ0kr
2
o

1 + γ0ro
= −kr0

[
αro cotαro − 1
αro cotαro

]
= kro

[
tanαro
αro

− 1
]
. (9.6.16)

Then the total scattering cross-section in the low energy limit kro � 1 is given by

σtot =
4π
k2

sin2 δ0 ≈ 4πr2
o

[
tanαro
αro

− 1
]2

. (9.6.17)

Recalling that α2 = k2 + k2
o = 2µ(E+Vo)

~2 [Eq. (9.6.9b)], we see that when k � ko (E � Vo),
scattering is almost independent of the energy of the incident particle and, since the s-wave
dominates, scattering is spherically symmetric.

This formula is not applicable if the range and depth of the potential are such that
the condition α ro ≈ (2N + 1)π/2 , where N is an integer, is satisfied. In this case
tan (α ro)→∞, indicating a large increase in the cross-section. This case will be considered
next.

3Explicit expressions for j`(ρ) and η`(ρ) for ` = 0, 1, 2 are given in Appendix 5A1. For ρ� 1, we have

j0(ρ) ≈ 1− ρ2/6 · · · η0(ρ) = −1/ρ
j1(ρ) ≈ ρ/3 · · · η1(ρ) = −1/ρ2 · · ·

Using explicit expressions for j` we get Eqs. (9.6.12) and (9.6.13), and using Eq. (9.5.6) for phase shifts,
we can get Eqs. (9.6.14) and (9.6.15), where we let kro → 0 .
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Resonance Scattering

From Eq. (9.6.17), we see that low energy scattering cross-section for a square well potential
increases significantly when

α ro ≡
√

2µ(E + Vo)r2
o

~2
=

(2N + 1)π
2

. (9.6.18)

For these values we get, from Eq. (9.6.16), tan δ0 → ∞ or δ0 ≈ (2m + 1)π/2 so that at
these values the scattering cross-section is given by

σtot =
4π
k2

sin2 δ0 =
4π
k2
� 4πr2

o . (9.6.19)

From our discussion of bound states in a square well for ` = 0 [see Sec. 5.7], we know that
this is the condition for the occurrence of a ` = 0 bound state with E ≈ 0. Thus whenever
αro approaches any of the values given by (9.6.18), the cross-section peaks at the value
4π/k2.

To examine the behavior of cross-section as αro → (2N +1)π/2, we see from Eq. (9.6.12)
that near a resonance γ0 ro = −1 and (α ro) cot(α ro) � 1. Hence the phase shift δ0 is
given by [Eq. (9.6.14)]

cot δ0 = −1 + γ0ro
γ0kr2

o

=
αro cot(αro)

kro[αro cot(αro)− 1]
≈ α

k
cot(αro) , (9.6.20)

whence
σtot =

4π
k2

sin2 δ0 =
4π
k2

1
1 + cot2 δ0

≈ 4π
k2 + α2 cot2(α ro)

. (9.6.21)

From Eqs. (9.6.17) and (9.6.21), we see that for most low energies the incident particle is
scattered as if the potential were a hard sphere potential of radius ro and scattering almost
independent of energy. But for certain energies given by

cot(αro) = 0 ⇒
√
k2

0 + k2ro ≈ k0 +
k2

2k0
)ro = (2N + 1)π/2,

where k2
o ≡ 2µVo

~2 , the particle interacts strongly, enhancing the cross-section from the value
4π r2

o to a very large value 4π/k2 [Fig.(9.7)] and, unlike off-resonance scattering, has strong
energy dependence. From a physical viewpoint, resonance scattering means that whenever
the potential well has a bound state with a binding energy close to zero, the (low energy)
particle has a tendency to be bound to the well. Since a bound state with positive energy
does not really exist, the particle interacts strongly, which causes enhanced scattering. This
is called resonance scattering.

Resonances like the one just discussed for ` = 0 also exist for nonzero values of `, whenever
the potential well supports a bound state with nearly zero energy for that value of `. When
this happens the incident particle tends to stick around the well producing a large distortion
of its wave function leading to a large amount of scattering.

Ramsauer-Townsend Effect

A rare (noble) gas atom consists of closed electronic shells so its atomic size is small and
the combined force of the atom on an external electron is strong and has a short range.
Hence if a beam of slow electrons (k small) is incident on such atoms and V (r) has a short
range and is strongly attractive, then only the s-wave suffers an appreciable phase shift. If
the attractive potential is strong enough, it can change the phase of the s-wave significantly
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4π/k2

4πro
2

k2

σo

FIGURE 9.7
Resonance scattering. For low energy the total cross-section of scattering is close to 4π r2

o

(ro is the range of interaction) and rather insensitive to energy. In a small neighborhood of
certain specific energies, the cross-section may show strong dependence on energy increasing
to a very large value 4π/k2 before returning to the background value 4πr3

o outside the
neighborhood.

while the phase shifts δ` for higher partial waves are still zero. In particular, if the depth and
range of the potentials are such that the phase shift δ0 ≈ π, then the scattering cross-section

σtot =
4π
k2

∞∑
`=0

(2`+ 1) sin2 δ` ≈ 0.

This accounts for the extremely low minimum observed in the elastic scattering of electrons
by rare gas atoms at about 0.7 eV of incident energy. This is called the Ramsauer- Townsend
effect.

(c) s-Wave Phase Shift for a Potential of Exponential Shape

Let us consider another short range potential, which does not have a sharp cut-off. A
potential that has this feature is the attractive exponential potential

V (r) = −Vo exp(−αr). (9.6.22)

The radial part of the scattering equation for ` = 0 assumes the form

d2Ro(r)
dr2

+
2
r

dRo(r)
dr

+ [k2 − U(r)]Ro(r) = 0 , (9.6.23)

where
U(r) =

2µ
~2
V (r) = −2µVo

~2
e−αr = −Uoe−αr . (9.6.24)
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With the substitution Ro(r) = u(r)/r, we can rewrite Eq. (9.6.23) as

d2u(r)
dr2

+ [k2 + Uo exp(−αr)]u(r) = 0 (9.6.25)

If we introduce the change of variable in Eq. (9.6.25) by

z =
2
√
Uo
α

e−αr/2 , (9.6.26)

and denote the solution of the resulting equation by Φ(z), we obtain

d2Φ(z)
dz2

+
1
z

dΦ(z)
dz

+
(

1 +
ν2

z2

)
Φ(z) = 0 , (9.6.27)

where ν2 =
4k2

α2
. (9.6.28)

This equation may be looked upon as Bessel equation of imaginary order (±iν) and admits
the following two solutions4

J+iν(z) = cos(ν ln z) +
∞∑
m=1

(−1)mz2m cos(um − ν ln z)
22mm!(12 + ν2)1/2(22 + ν2)1/2 · · · (m2 + ν2)1/2

, (9.6.29)

J−iν(z) = sin(ν ln z)−
∞∑
m=1

(−1)mz2m sin(um − ν ln z)
22mm!(12 + ν2)1/2(22 + ν2)1/2 · · · (m2 + ν2)1/2

, (9.6.30)

where

um =
m∑
s=1

tan−1(ν/s). (9.6.31)

A complete solution of Eq. (9.6.25), which conforms to the requirements for r → 0 and
r →∞,

u(0) = 0 and u(r) r→∞−−−→ sin(kr)
k

+Aeikr , (9.6.32)

may be obtained from the combination {Ji ν(z)J−i ν(z0) − J−i ν(z)Ji ν(z0)} and is of the
form

u(r) =
eiδ0(k)

k

(
sin[kr + δ0(k)] +

∞∑
m=1

Cme
−mαr sin[um + kr + δ0(k)]

)
, (9.6.33)

where

δ0(k) = θ − kb, (9.6.34)

θ = tan−1 (J−i ν(z0)/Ji ν(z0)) , (9.6.35)

z0 ≡ z(r = 0) = 2
√
U0/α, (9.6.36)

b =
2
α

ln(2
√
U0/α), (9.6.37)

Cm =
(−4U0/α

2)m

2mm![(12 + ν2)(22 + ν2) · · · (m2 + ν2)]1/2
. (9.6.38)

4For details see R. Vyas and V. S. Mathur, Phys. Rev. C 18, 1537 (1978).
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We can identify δ0(k) with the s-wave phase shift because

Ro(r) =
u(r)
r

r→∞−−−→ eiδ0(k)

kr
sin[kr + δ0(k)] . (9.6.39)

Thus the s-wave phase shift is given by

tan δ0(k) =
tan θ − tan kb

1 + tan θ tan kb
, (9.6.40)

where tan θ =
sin(ν ln z0)−

∞∑
m=1

Cm sin(um − ν ln z0)

cos(ν ln z0) +
∞∑
m=1

Cm cos(um − ν ln z0)
. (9.6.41)

If the exponential potential corresponds to the realistic binding of the n − p system
(the deuteron with binding energy B=2.226 MeV), then z0 is a zero of Jµ(z) with
µ ≡ 2

√
MB/~α ≈ 1.4 [see Sec. 5.7]. Let us calculate the low energy scattering cross-

section in this case. Once again, since scattering is dominated by the s-wave, we have

σtot =
4π
k2

sin2 δo =
4π
α2

[
4
ν2

tan2 θ

1 + tan2 θ

]
=

4π
α2

[
4
ν2

J2
−iν(z0)

J2
iν(z0) + J2

−iν(z0)

]
≡ X2 . (9.6.42)

Now in the limit k → 0 (or ν → 0) we can neglect J−iν(z0) as compared to Jiν(z0)
[see Eqs. (9.6.29) and (9.6.30)]. It is to be kept in mind that z0 is a zero of Jµ(z) with
µ = 2

√
MB/~α, and not of Jiν(z) or J0(z) as ν → 0. Using this we find

lim
ν→0

X ≈ 2
√

4π
α

lim
ν→0

J−iν(z0)
νJiν(z0)

, (9.6.43)

which is of the form 0/0. To evaluate this limit we use L’Hospital’s rule. We differentiate
both numerator and denominator with respect to ν using Eqs. (9.6.25) and (9.6.26) and
finally put ν = 0 and z = z0. On simplify the result we get

α√
4π

lim
ν→0

X = 2 ln(z0)

1−

∞∑
m=1

(−z2
0/4)m 1

(m!)2

m∑
s=1

(1/s)

(ln z0)J0(z0)

 . (9.6.44)

Substituting this in Eq. (9.6.42), we find

σtot
k→0−−−→ 4π

α2
(2 ln z0)2

1−

∞∑
m=1

(−z2
0/4)m 1

(m!)2

m∑
s=1

(1/s)

(ln z0)J0(z0)


2

, (9.6.45)

where z0 ≡ (2
√
U0/α) is the first zero of Jµ(z) with µ = 2

√
MB/~α ≈ 1.4. Since the range

of the exponential potential r0 ≈ 1/α, this result is comparable to the value 4π r2
o = 4π/α2

which we obtained for the hard sphere or the square-well potentials of range ro in the low
energy scattering limit.
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9.7 Scattering due to Coulomb Potential

The Coulomb potential falls off as 1/r (not faster than 1/r). So the method of partial waves
is not quite applicable to Coulomb scattering. The problem, however, can be solved in an
alternative way. By finding the asymptotic form of the Coulomb wave function ψc(r) for
the scattering state and identifying the form of the Coulomb scattering amplitude fc(θ),
one can determine the differential cross-section of Coulomb scattering. The use of parabolic
coordinates instead of polar coordinates enables one to write the scattering equation for
Coulomb potential in a convenient form.

Let us consider the general case in which an incident particle of charge Ze is scattered
by a target of charge Z ′e. The Schrödinger equation for this system, describing the relative
motion of the two particles in the center-of-mass frame, may be written as[

− ~2

2µ
∇2 +

ZZ ′e2

4πε0r

]
ψc(r) =

~2k2

2µ
ψc(r) , (9.7.1)

where µ = m1m2
m1+m2

is the reduced mass, and E = ~2k2

2µ is the energy associated with the
relative motion in the CM frame. We rewrite Eq. (9.7.1) using the system of parabolic
coordinates (ξ, η, ϕ) defined by 5

ξ = r(1− cos θ) = r − z ,
η = r(1 + cos θ) = r + z ,

ϕ = azimuthal angle ϕ ,

(9.7.2a)

instead of polar coordinates (r, θ, ϕ). As in the case of spherical polar coordinates, the
azimuth is just the angle between planes containing the point P and the z-axis and the
XZ plane. If, in the former plane, we draw two parabolas passing through the point P
with z-axis as the common axis and the origin as the focus, then the latus rectums of the
two parabolas are the parabolic coordinates ξ and η of the point P . This is an orthogonal
curvilinear system of coordinates and at any point the tangents to the curves along which
ξ, η, ϕ increase are mutually orthogonal to each other.

In the parabolic system of coordinates the Laplacian ∇2 is expressed as

∇2 ≡ 4
ξ + η

[
∂

∂ξ

(
ξ
∂

∂ξ

)
+

∂

∂η

(
η
∂

∂η

)]
+

1
ξη

∂2

∂ϕ2
, (9.7.2b)

so the scattering equation (9.7.1) takes the form

1
ξ + η

{
∂

∂ξ

(
ξ
∂ψc
∂ξ

)
+

∂

∂η

(
η
∂ψc
∂η

)}
+
k2

4
ψc =

nk

(ξ + η)
ψc , (9.7.3)

where

n ≡ µZZ ′e2

~24πε0k
, (9.7.4)

and the term 1
ξη

∂2ψc
∂ϕ2 has been dropped because ψc does not depend on ϕ due to axial

symmetry of the problem.

5For details regarding the parabolic coordinate system see Appendix 5A2.
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Recalling that in the scattering solution in the asymptotic limit has an incident plane
wave part eikz = eik(ξ−η)/2 and a spherically outgoing wave part eikr/r, we look for Coulomb
scattering solution ψc in the form

ψc ≡ ψc(r) = e[ik(η−ξ)/2]f(ξ) = eikzf(ξ) . (9.7.5)

Substituting this form into Eq. (9.7.3) we find that f(ξ) satisfies the equation

ξ
d2f

dξ2
+ (1− ikξ)df

dξ
− nkf(ξ) = 0 . (9.7.6)

With the substitution
ζ = ikξ and G(ζ) = f(ξ) , (9.7.7)

Eq. (9.7.6) assumes the form

ζ
d2G

dζ2
+ (1− ζ)

dG

dζ
+ inG(ζ) = 0 . (9.7.8)

This equation resembles the confluent hypergeometric equation which has the standard form

Z
d2F

dZ2
+ (b− Z)

dF

dZ
− aF (Z) = 0 . (9.7.9)

The independent solutions of this equation are

W1(a, b;Z) =
Γ(b)

Γ(b− a)
(−Z)−ag(a, a− b+ 1;−Z) (9.7.10)

and W2(a, b;Z) =
Γ(b)
Γ(a)

exp(Z)Za−bg(1− a, b− a;Z) (9.7.11)

and the asymptotic form of the function g(α, β;Z) is

g(α, β;Z) ∼ 1 +
αβ

Z
+O(1/Z2) . (9.7.12)

The general solution of the confluent hypergeometric equation (9.7.9) is a linear combination
of the W1 and W2

F (a, b;Z) = C1W1(a, b;Z) + C2W2(a, b;Z) . (9.7.13)

Comparing Eq. (9.7.8) with the standard form (9.7.9), we find a = −in and b = 1. Then
the solution, which is regular at the origin, is the linear combination with (C1 = C2 = C):

G(ζ) = f(ξ) = C [W1(−in, 1, ikξ) +W2(−in, 1, ikξ)] . (9.7.14)

Its asymptotic behavior is

f(ξ) r→∞−−−→C
[

Γ(1)
Γ(1 + in)

(−ikξ)in
(

1 +
n2

ikξ

)
+

Γ(1)eikξ

Γ(−in)
(ikξ)−in−1

(
1 +

(1 + in)2

ikξ

)]
. (9.7.15)

Reverting back to r and z coordinates by writing ξ = r − z , (kξ)in = ein ln k(r−z),
±i = exp(±iπ/2) and substituting the result in Eq. (9.7.5), we find the asymptotic
behavior, correct up to order 1/r,

ψc(r) = eikzf(ξ) ∼ Ceikz

Γ(1 + in)

[
enπ/2ein ln k(r−z)

(
1 +

n2

ik(r − z)
)

+
Γ(1 + in)
Γ(1− in)

(−in)eik(r−z)enπ/2
e−in ln k(r−z)

ik(r − z)
]
.
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Expressing r − z = r(1 − cos θ) = 2r sin2(θ/2) in terms of spherical polar coordinates, we
can write the asymptotic form of the scattering solution as

ψc(r) ∼ Cenπ/2

Γ(1 + in)

[
ei(kz+n ln 2kr sin2(θ/2)

(
1 +

n2

i2kr sin2(θ/2)

)
− n

(2k sin2 θ/2)
Γ(1 + in)
Γ(1− in)

e−in ln sin2(θ/2) e
i(kr−n ln 2kr)

r

]
. (9.7.16)

We are thus able to express the asymptotic behavior of the Coulomb wave function as a
distorted plane wave, represented by the first term, plus Coulomb scattering amplitude
multiplied by distorted outgoing spherical wave, represented by the second term. From
this asymptotic form, the scattering amplitude fc(θ) for the Coulomb potential is easily
identified to be the coefficient of the spherically expanding wave ei(kr−n ln 2kr)/r

fc(θ) ≡ n

2k sin2(θ/2)
e−in ln sin2(θ/2)+2iη0+iπ , (9.7.17)

where exp(2iη0) ≡ Γ(1 + in)
Γ(1− in)

. (9.7.18)

Using this expression for the scattering amplitude, we find the Coulomb scattering cross-
section σc(θ) is given by

σc(θ) = |fc(θ)|2 =
n2

4k2 sin4(θ/2)
=
(
ZZ ′e2

16πε0E

)2

cosec4(θ/2) , (9.7.19)

where E = ~2k2/2µ is the center-of-mass energy of the projectile. This is the classical
Rutherford’s formula. Thus the quantum mechanical result for the differential cross-section
for Coulomb scattering agrees with the classical result. However, the angle-dependent phase
factor e−in ln sin2(θ/2) can lead to nonclassical features in the scattering of identical particles
as we shall see next.

Pure Coulomb Scattering of Identical Particles

In pure Coulomb scattering of identical particles, say, proton on proton (p − p) scattering
when the nuclear part of the interaction can be ignored, the overall wave function, which
is the product of space and spin parts Ψtot = Ψspace × Ψspin must be anti-symmetric.
(For scattering of identical Bosons the overall wave function must be symmetric under an
exchange of particle coordinates.) The spin part of the wave function for the two particles
(projectile and target) can be anti-symmetric (spin singlet χ0

0) or symmetric (spin triplet
χm1 ). This means that the space function is symmetric under an exchange of particle
coordinates if the particles are in spin singlet state and anti-symmetric if the particles are
in spin triplet state.

Now the space part of the wave function can be written as the product of center-of-mass
wave function and the wave function for relative motion

Ψspace(r1, r2) = ψ(r)Φcm(R) , (9.7.20)

where the center-of-mass coordinate R and relative coordinate r are given by

R =
1
2

(r1 + 2) , r = r1 − r2 . (9.7.21)

Under an exchange of space coordinates of the particles

R→ R , Φcm(R)→ Φcm(R) , (9.7.22a)
r → −r , ψ(r)→ ψ(−r) . (9.7.22b)
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Thus the center-of-mass wave function Φcm is always symmetric under an exchange of
particle coordinates. It follows that for the total wave function to be anti-symmetric
under an exchange of particle coordinates, ψ(r) must be symmetric (ψ(−r) = ψ(r)) under
exchange when the particles are in spin singlet state and anti-symmetric (ψ(−r) = −ψ(r))
when the particles are in spin triplet state. Recalling that r → −r means r, θ, ϕ) →
(r, π − θ, π + ϕ) and the asymptotic form of the unsymmetrized wave function is

ψ(r) ∼ eikz + f(θ)
eikr

r
, (9.7.23)

we can write the symmetric and antisymetric space wave functions as

ψsym ∼
[
eikz + e−ikz

]
+ [f(θ) + f(π − θ)]e

ikr

r
, (9.7.24a)

ψanti ∼
[
eikz − e−ikz]+ [f(θ)− f(π − θ)]e

ikr

r
. (9.7.24b)

Thus we can define symmetric and anti-symmetric scattering amplitudes as

fsym(θ) = f(θ) + f(π − θ) , (9.7.25a)
fanti(θ) = f(θ)− f(π − θ) . (9.7.25b)

Hence the Coulomb scattering cross-sections for proton-proton scattering in the spin singlet
and triplet states are, respectively,

σsinglet = |fc(θ) + fc(π − θ)|2 , (9.7.26a)

σtriplet = |fc(θ) + fc(π − θ)|2 . (9.7.26b)

If the incident proton and the target proton are unpolarized, then the probability of their

θ
m

m

m

m

π−θ

m

m

m

m

(a) (b)

FIGURE 9.8
When the incident particle and the target are identical, it is not possible to distinguish
between the two situations when the scattering angle is θ and π − θ in the centre-of-mass
frame of reference.

being in the spin singlet (S = 0) state is 1/4 and that of their being in the spin triplet
(S = 1) state is 3/4. Hence, in this case,

σun(θ) =
3
4
|fc(θ)− fc(π − θ)|2 +

1
4
|fc(θ) + fc(π − θ)|2

= |fc(θ)|2 + |fc(π − θ)|2 − 1
2

[fc(θ)f∗c (π − θ) + f∗c (θ)fc(π − θ)] . (9.7.27)
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0 90 180Scattering angle     θ

σ (θ )

FIGURE 9.9
Pure Mott scattering cross-section (continuous curve) and measured (qualitative) p − p
scattering cross-section (dashed curve) in the center-of-mass frame.

Substituting the expression for fc(θ) given by Eq. (9.7.17) we get, after simplification

σ(θ) =
(

e2

16πε0E

)2 [ 1
sin4(θ/2)

+
1

cos4(θ/2)
− cos[n ln(tan2 θ/2)]

sin2(θ/2) cos2(θ/2)

]
. (9.7.28)

This is the Mott scattering formula. We can see that Mott scattering is symmetric about
θ = π/2 [Fig. 9.9]. Thus the nonclassical phase shift of the scattering amplitude shows up
in the interference term. The observed p− p scattering cross-section deviates considerably
from Mott scattering cross-section, particularly around θ = π/2 because the actual p − p
interaction consists of Coulomb interaction as well as short range nuclear interaction.

9.8 The Integral Form of Scattering Equation

The Schrödinger equation for scattering E > 0

(∇2 + k2)ψ(r) = U(r)ψ(r) , (9.8.1a)

where k2 =
2µE
~2

, and U(r) =
2µV (r)

~2
(9.8.1b)
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can be written in an integral form

ψ(r) = eik·r +
∫
Gk(r, r′)U(r′)ψ(r′)d3r′ . (9.8.2)

Here the first term eik·r is a solution of the Schrödinger equation for a free particle(∇2 + k2
)
ψ(r) = 0 , (9.8.3)

and the function Gk(r, r′) is the Green’s function, satisfying the equation

(∇2 + k2)Gk(r, r′) = δ3(r − r′) . (9.8.4)

Equation (9.8.2) is called an integral equation because the unknown function ψ(r) also
appears in the integral on the right-hand side.

It is straightforward to check that when Eq. (9.8.2) is substituted on the left-hand side
of Eq. (9.8.1) and Eqs. (9.8.3) and (9.8.4) are used we recover the right-hand side of Eq.
(9.8.1). Equation (9.8.2) does not yet represent a solution to the scattering problem because
the energy E only specifies the magnitude of k and the Green’s function could be any one
of infinitely many solutions of Eq. (9.8.4). This arbitrariness is removed once we impose
the appropriate boundary conditions on the wave function.

In the scattering problem, the first term eik·r, which is a solution of the Schrödinger
equation for a free particle, may be taken to represent a plane corresponding to an incident
particle of energy E = ~2k2/2µ and momentum ~k, while the second term, which depends
on the potential V (r), must represent, asymptotically, an outgoing wave corresponding to
scattered particle. Thus the problem of solving the scattering equation has been reduced
to the problem of finding the appropriate Green’s function, which leads to the correct
asymptotic behavior (outgoing spherical wave) for the wave function.

Expression for the Green’s Function Gk(r, r′)

Introducing the Fourier transform g(k′, r′) of Green’s function Gk(r, r′) by

Gk(r, r′) =
1

(2π)3/2

∫
d3k′g(k′, r′)eik

′·r , (9.8.5)

and the following representation of the three-dimensional delta function [Chapter 2, Eq.
(2.9.12)]

δ3(r − r′) =
1

(2π)3

∫
d3k′ eik

′·(r−r′) , (9.8.6)

in Eq. (9.8.4), we find

g(k′, r′) =
1

(2π)3/2

e−ik
′·r′

k2 − k′2 . (9.8.7)

Substituting this into Eq. (9.8.5), we get

Gk(r, r′) =
1

(2π)3

∫
exp[ik′ · (r − r′)]

k2 − k′2 d3k′ . (9.8.8)

Taking the direction of unit vector (r − r′) = |r − r′|n ≡ ρn to be the direction of polar
axis and the direction of k′ to be given by the angles θ′, ϕ′, we can carry out the angular
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integration

Gk(r, r′) =
2π

(2π)3

∞∫
0

2πk′2dk′
π∫

0

sin θ′dθ′
eik
′ρ cos θ′

k2 − k′2 ,

=
1

4π2iρ

 ∞∫
0

k′dk′ eik
′ρ

k2 − k′2 −
∞∫

0

k′dk′ e−ik
′ρ

k2 − k′2

 .
Changing the variable k′ to −k′ in the second integral, we may rewrite this equation as

Gk(r, r′) =
1

4π2iρ

∞∫
−∞

k′dk′ eik
′ρ

k2 − k′2 (9.8.9)

where ρ ≡ |r − r′|. This integral has singularities at k′ = ±k and is not defined as
an ordinary integral. However, by treating it as the limiting value of certain integrals
defined in the complex k′ plane, we can find Green’s functions appropriate for different
boundary conditions satisfied by the wave function. Here we consider two Green’s functions,
G

(+)
k (r, r′) and G

(−)
k (r, r′), defined by

G
(+)
k (r, r′) = lim

ε→0

1
(2π)3

∫
d3k′ eik

′·(r−r′)

k2 − k′2 + iε
= lim
ε→0

1
4π2iρ

∞∫
−∞

k′dk′ eik
′ρ

k2 − k′2 + iε
(9.8.10)

and G
(−)
k (r, r′) = lim

ε→0

1
(2π)3

∫
d3k′ eik

′·(r−r′

k2 − k′2 − iε = lim
ε→0

1
4π2iρ

∞∫
−∞

k′dk′ eik
′ρ

k2 − k′2 − iε . (9.8.11)

It turns out that these Green’s functions lead to very different asymptotic behavior for the
wave function.

The integrals over k′ in G
(+)
k (r, r′) and G

(−)
k (r, r′) can be evaluated by the method

of contour integration [see Appendix 9A1]. The integrand has simple poles at k′ =
±√k2 + iε ≈ ±(k + iε/2k). Choosing the path of integration to run along the real axis
from −∞ to +∞ and along a semi-circle of large radius in the upper half plane (ρ > 0) as
shown in Fig. 9.10, we find that only the residue at the simple pole k′ = k + iε/2k in the
upper half of the complex-k′ plane contributes to the integral leading to

G
(+)
k (r, r′) = lim

ε→0

1
4π2iρ

∞∫
−∞

k′dk′ eik
′ρ

(k + iε
2k + k′)(k + iε

2k − k′)

= lim
ε→0

1
4π2iρ

2π i×
[
−e

ikρ−ερ/2k

2

]
= − 1

4π
eikρ

ρ
,

or G
(+)
k (r, r′) = − 1

4π
eik|r−r

′|

|r − r′| . (9.8.12)

Similarly, the integrand in Eq. (9.8.11) has simple poles at k′ = k − iε/2k and k′ =
−k + iε/2k. Choosing the path of integration as in Fig 9.11, we find only the residue from
the pole at k′ = −k + iε/2k in the upper half of the complex-k′ plane contributes, leading
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FIGURE 9.10
For the calculation of G(+)

k (r, r′) the pole of the integrand at k′ = k+ i ε2k lies in the upper
half of the complex k′-plane while that at k′ = −k − i ε2k lies in the lower half.

us to

G
(−)
k (r, r′) = lim

ε→0

1
4π2iρ

∞∫
−∞

k′dk′ eik
′ρ

(k − iε
2k + k′)(k − iε

2k − k′)

= lim
ε→0

1
4π2iρ

2π i×
[
−e
−ikρ−ερ/2k

2

]
= − 1

4π
e−ikρ

ρ
,

or G
(−)
k (r, r′) = − 1

4π
e−ik|r−r

′|

|r − r′| . (9.8.13)

We shall see that G
(+)
k leads to the scattering wave function ψ(+)(r), which behaves

asymptotically as a plane wave plus an outgoing spherical wave. On the other hand, G(−)
k

leads to the scattering function ψ(−)(r) which behaves asymptotically as a plane wave plus
an ingoing spherical wave. It is straightforward to check that while both Green’s functions
satisfy Eq. (9.8.4), they solve very different physical problems. Green’s functions G(+)

k and
G

(+)
k are also referred to, respectively, as retarded and advanced Green’s functions.

9.8.1 Scattering Amplitude

With G(+)(r, r′) given by Eq. (9.8.12) as the Green’s function, the integral equation for
the scattering wave function reads

ψ
(+)
k (r) = eik·r +

∫
Gk

(+)(r, r′)U(r′)ψ(+)
k (r′)d3r′

= eik·r −
∫

ei k|r−r
′|

4π|r − r′|U(r′)ψ(+)
k (r′)d3r′ . (9.8.14)

The contribution to the integral comes from the values or r′ where the potential is nonzero.
This means that if the potential vanishes sufficiently rapidly, then in the asymptotic limit
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FIGURE 9.11
For the calculation of G(−)

k (r, r′) the pole of of the integrand at k′ = −k + i ε2k lies in the
upper half of the k′-plane while that at k′ = k − i ε2k lies in the lower half.

r →∞ we can approximate the exponent in the integrand as

k|r − r′| ≈ kr − kn · r′ ≡ kr − k′ · r′ , n = r/r , (9.8.15)

where n is a unit vector in the direction of r (the direction of scattering) or the final
momentum k′ = kn. In the denominator we can neglect r′ compared to r. The reason for
keeping the second term in Eq. (9.8.15) is that it can lead to a significant variation of the
phase e−ik

′·r′ as r′ varies over the region of nonzero potential. Hence G(+) leads to the
asymptotic expression

ψ
(+)
k (r) ∼ eik·r − 1

4π
2µ
~2

eikr

r

∫
e−ik

′·r′V (r′)ψ(+)
k (r′)d3r′ . (9.8.16)

This has precisely the form needed for describing the scattering of an incident plane wave
eik·r [corresponding to a particle with center-of-mass momentum ~k] by a potential V (r)
producing a spherically outgoing wave (corresponding to the scattered particle). Comparing
this to the asymptotic form of the scattering solution

ψ
(+)
k (r) ∼ eik·r + f(θ)

eikr

r
, (9.8.17)

we find that the scattering amplitude f(θ) is given by

f(θ) = − 1
4π

2µ
~2

∫
eik

′·r′ V (r′)ψ(+)
k (r′)d3r′ . (9.8.18)

This expression for the scattering amplitude is exact but only formal since we must still
solve the integral equation (9.8.14) for ψ(+)

k (r) appearing in the integrand. However, it can
form the basis for obtaining approximate expressions for the scattering amplitude. Some of
these will be discussed in Sec. 9.10.
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9.9 Lippmann-Schwinger Equation and the Transition Operator

The integral scattering equation (9.8.2)

ψ
(+)
k (r) = eik·r +

∫
d3r′G

(+)
k (r, r′)U(r′)ψ(+)

k (r′), (9.8.2*)

where G
(+)
k (r, r′) =

1
(2π)3

∫
d3k′

eik
′·(r−r′)

−k′2 + k2 + iε
, (9.8.12*)

may be written, in Dirac notation, as6

|ψ(+)
k 〉 = |k〉+ ĝ0(k2 + iε)v̂|ψ(+)

k 〉 , (9.9.1)

where ĝ0(z) = (z − ĥ0)−1 , (9.9.2)

is called the resolvent operator for the free Hamiltonian ĥ0 ≡ p̂2/2µ (For convenience, we
will use the units ~ = 2µ = 1 throughout this section.) To see this we first note that the
Green’s function G(+)

k (r, r′) is only the matrix element of the resolvent operator ĝ0(k2 + iε)
between the coordinate states 〈r| and |r′〉

〈r|ĝ0(k2 + iε)|r′〉 =
∫ ∫

〈r|k′〉d3k′〈k′|(k2 + iε− ĥ0)−1|k′′〉d3k′′〈k′′|r′〉 ,

where we have introduced unit operators in accordance with the completeness condition for
momentum eigenfunctions, before and after the resolvent operator. On substituting for the
coordinate representatives of momentum states and simplifying, we obtain

〈r|ĝ0(k2 + iε)|r′〉 =
1

(2π)3

∫
eik·(r−r

′)

k2 + iε− k′2 d
3k′ = G

(+)
k (r, r′). (9.9.3)

Now, we can rewrite Eq. (9.8.2) as7

ψ
(+)
k (r) = eik·r +

∫∫
d3r′d3r′′G

(+)
k (r, r′)v(r′)δ3(r′ − r′′)ψ(+)

k (r′′)

or
〈
r|ψ(+)

k

〉
= 〈r|k〉+

∫∫
〈r|ĝ0(k2 + iε)|r′〉d3r′〈r′|v̂|r′′〉d3r′′〈r′′|ψ(+)

k 〉

= 〈r|k〉+ 〈r|ĝ0(k2 + iε)v̂|ψ(+)
k 〉 , (9.9.4)

where we have removed unit operators between ĝ0 and v̂ and between v̂ and |ψ(+)
k 〉. Since

this holds for any state |r 〉, this implies∣∣∣ψ(+)
k

〉
= |k 〉+ ĝo(k2 + iε)v̂

∣∣∣ψ(+)
k

〉
. (9.9.1*)

6We use small letters with a caret - v̂ , ĝo, ĝ, ĥ0, ĥ, etc. to denote two-body operators in a space spanned
by two-body states. The capital letters will be used (Chapter 11) to denote operators in space spanned by
three-body states.
7For a local two-body central potential v̂,˙

r′
˛̨
v̂
˛̨
r′′
¸

= v(r′)δ3(r′ − r′′) = v(r′)δ3(r′ − r′′).



330 Concepts in Quantum Mechanics

The scattering amplitude f(θ), given in the integral form by Eq. (9.8.10), may also be
written in the concise Dirac notation as

f(θ) = − 1
4π

∫∫
e−ik

′·r′v(r′)δ3(r′ − r)ψk(r′′)d3r′d3r′′

= − (2π)3

4π

∫∫ 〈
k′
∣∣ r′〉 d3r′ 〈r′| v̂ |r′′ 〉 d3r′′

〈
r′′|ψ(+)

k

〉
or f(θ) = −2π2〈k′|v̂|ψ(+)

k 〉, (9.9.5)

where we have removed the unit operators between 〈k′| and v̂ and between v̂ and |ψ(+)
k 〉.

The generalization of the scattering equation (9.9.1) to off-shell energies (i.e., replacement
of (k2+iε) to any complex energy z ≡ s+iε, where s is not necessarily equal to k2), results in
a very important equation in the formal theory of scattering, called the Lippmann-Schwinger
equation: ∣∣∣ψ(+)

s

〉
= |k 〉+ ĝ0(z)v̂

∣∣∣ψ(+)
s

〉
. (9.9.6)

This equation can be written in any representation (coordinate or momentum) and it can
be shown that, for any potential v̂, this equation admits a unique solution for all complex
values of z, except at the bound state poles (i.e., at z = −EBn , which are the energies of the
bound states of the two-body system), and at the right-hand cut (i.e., at z= real positive
energies).

The Transition Operator

The Lippmann-Schwinger equation can also be written in the operator form by introducing
the transition operator t̂(z) by the equation

t̂(z)|k〉 = v̂|ψ(+)
k 〉 . (9.9.7)

To see this, we pre-multiply both sides of Eq. (9.9.6) by v̂, then we get

v̂|ψ(+)
s 〉 = v̂|k〉+ v̂ĝ0(z)v̂|ψ(+)

s 〉
or t̂(z)|k〉 = v̂|k〉 + v̂ĝ0(z)t̂(z)|k〉 .
Since this holds for any state |k 〉, we obtain the operator equality

t̂(z) = v̂ + v̂ĝ0(z) t̂(z) , (9.9.8)

which is the operator version of the Lippmann-Schwinger equation. The following operator
identities may easily be established

(i) ĝ(z) = ĝ0(z) + ĝ0(z)v̂ĝ(z), (9.9.9)
(ii) ĝ(z) = ĝ0(z) + ĝ(z)v̂ĝ0(z), (9.9.10)

(iii) ĝ(z)v̂ = t̂(z)ĝ0(z), (9.9.11)

(iv) v̂ĝ(z) = ĝ0(z)t̂(z) (9.9.12)

where ĝ(z) ≡ (z − ĥ)−1 ≡ (z − ĥ0 − v̂)−1 . (9.9.13)

To prove the first identity, we multiply both sides of Eq. (9.9.2) from the right by the unit
operator 1̂ = (z − ĥ0 − v̂)ĝ(z) and then rearrange we get the identity (9.9.9).

If we pre-multiply both sides of Eq. (9.9.2) by the unit operator 1̂ = ĝ(z)(z− ĥ0− v̂), we
get ĝ0(z) = ĝ(z)(z − ĥ0 − v̂)(z − ĥ0)−1 = ĝ(z)− ĝ(z)v̂ĝ0(z) which, on rearrangement, leads
to Eq. (9.9.10).
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To establish the identity (9.9.11) we write the Lippmann-Schwinger equation (9.9.8) as

v̂ = [1̂− v̂ĝ0(z)]t̂(z) = [1̂− {(z − ĥ0)− (z − ĥ0 − v̂)}ĝ0(z)]t̂(z)

= (z − ĥ0 − v̂)ĝ0(z)t̂(z) .

Multiply both sides from the left by ĝ(z) to get the identity (9.9.11). Also, from Eqs.
(9.9.10) and (9.9.11), we have ĝ(z) = ĝ0(z) + ĝ0(z)t̂(z)ĝ0(z), which, when compared with
Eq. (9.9.9), yields t̂(z)ĝ0(z) = v̂ĝ(z), viz., the identity (9.9.12).

Using the identities (9.9.11) and (9.9.12), the Lippmann-Schwinger equation (9.9.8) may
be written alternatively as

t̂(z) = v̂ + v̂ĝ(z)v̂ (9.9.14)

or t̂(z) = v̂ + t̂(z)ĝo(z)v̂ . (9.9.15)

Equations (9.9.8), (9.9.14) and (9.9.15) may all be looked upon as versions of the Lippmann-
Schwinger equations in the operator form.

In the momentum representation Eq. (9.9.8) may be written in the integral form

〈k|t̂(z)|k′〉 = 〈k|v̂|k′〉 +
∫ 〈k|v̂|q〉d3q〈q|t̂(z)|k′〉

z − q2
. (9.9.16)

The quantity 〈k| t̂(z) ∣∣k′ 〉 (or 〈q| t̂(z) ∣∣k′ 〉 ) is the matrix element of the two-body
transition operator in the momentum representation.

If z = k2 + iε and ε→ 0 and |k| = |k′|, then the matrix element is termed an on-energy
shell or simply as on-shell t-matrix element.

If z = k2 + iε and ε→ 0 but |k| 6= |k′|, then the matrix element is termed a half off-shell
t-matrix element.

If z 6= k2 + iε and |k| 6= |k′|, then the matrix element is termed a full off-shell t-matrix
element.

The on-shell t-matrix element
〈
k′
∣∣ t̂(k2 + iε) |k 〉 =

〈
k′
∣∣ v̂ ∣∣∣ψ(+)

k

〉
where |k| = |k′| is

related to the scattering amplitude f(θ) [Eq. (9.9.5)] and has a bearing only on two-body
scattering. Conversely, from the two-body scattering, we can get information only about
the on-shell elements of the two-body t-matrix. The half off-shell and full off-shell t-matrix
elements remain undetermined from the two-body data. The off-shell behavior of the t-
matrix can be put to test only in a three-body calculation.

It may be seen that if the two-body potential is non-local and separable8,

〈k|v̂|k′〉 = − λ

M
g(k)g(k′), (9.9.17)

where g(k) is a real function of k and λ and M are parameters characterizing the interaction,
then the corresponding t-matrix element also has a separable form,

〈k| t̂(z) ∣∣k′ 〉 = −g(k)g(k′)
D(z)

. (9.9.18)

To check this we may put both separable forms (9.9.17) and (9.9.18) into the Lippmann-
Schwinger equation in the momentum representation [Eq. (9.9.16)] and find that k and k′

dependence of both sides of the equation is consistent and

D(z) =
1

(λ/M)
+
∫

g2(k′)d3k′

s+ iε− k′2 , (9.9.19)

8Y. Yamaguchi, Phys. Rev. 95, 1628 (1954). The function g(k) should not be confused with the resolvant
operator ĝ(z) defined in Eq. (9.9.13).



332 Concepts in Quantum Mechanics

where z = s+ iε.

9.10 Born Expansion

The integral expression for the scattering amplitude f(θ) [Eq. (9.8.10)] involves the total
scattering wave function ψ

(+)
k (r′), which is the solution of the integral equation

ψ
(+)
k (r) = eik·r +

∫
G

(+)
k (r, r′)U(r′)ψ(+)

k (r′)d3r′ . (9.8.14*)

Exact solutions of this equation are rare. However we can develop an approximation scheme
by solving the integral equation iteratively. As a first approximation, the function ψ(+)

k (r′)
in Eq. (9.8.14*) may be replaced by eik·r

′
, and we may write

ψ
(+)
k (r) = eik·r +

∫
K1(r, r′)eik·r

′
d3r′ , (9.10.1)

where K1(r, r′) ≡ G(+)
k (r, r′)U(r′) . (9.10.2)

Now the function eik·r
′

+
∫
K1(r′, r′′)eik·r

′′
d3r′′ would be a better approximation to the

function ψ
(+)
k (r′) under the integral in Eq. (9.8.14*) than the plane wave function eik·r

′
.

So if we use this in (9.8.14*), we obtain

ψ
(+)
k (r) = eik·r +

∫
G

(+)
k (r, r′)

{
eik·r

′
+
∫
K1(r′, r′′)eik·r

′′
d3r′′

}
U(r′)d3r′

= eik·r +
∫
K1(r, r′)eik·r

′
d3r′ +

∫
K2(r, r′)eik·r

′
d3r′ (9.10.3)

where K2(r, r′) ≡
∫
K1(r, r′′)K1(r′′, r′)d3r′′ , (9.10.4)

where in the second integral, we have interchanged the dummy variables r′ and r′′.
Repeating this iterative process indefinitely, we get

ψ
(+)
k (r) = eik·r +

∞∑
n=1

∫
Kn(r, r′)eik·r

′
d3r′ , (9.10.5)

where Kn(r, r′) ≡
∫
K1(r, r′′)Kn−1(r′′, r′)d3r′′ . (9.10.6)

This is called the Born series or Born expansion. If the iteration is carried out indefinitely,
then this convergent series represents the exact solution of the integral equation (9.8.14).
The convergence and the validity of approximations based on this series are discussed in
books on scattering theory.

9.10.1 Born Approximation

When the energy of the incident particles is very high then there is justification in retaining
only the first term in the Born series (9.10.5). This amounts to replacement of the function
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ψ
(+)
k (r′) by eik·r

′
in the integral expression [Eq. (9.8.18)] for the scattering amplitude

f(θ) ≈ fBA(θ) = − 1
4π

2µ
~2

∫
e−ik

′·r′V (r′)eik·r
′
d3r′

or fBA(θ) = − µ

2π~2

∫
eiK·r

′
V (r′)d3r′, (9.10.7)

where K = k − k′ , K = |K| = 2k sin(θ/2) (9.10.8)

is the momentum transfer vector and θ is the angle of scattering (angle between the vectors
k and k′) in the center-of-mass frame. This approximation is known as the first Born
approximation in which the scattering amplitude is proportional to the three-dimensional
Fourier transform of the scattering potential.

If the potential is spherically symmetric V (r) = V (r) then the integration over angles of
r′ is easily carried out by choosing the polar axis to be along the momentum transfer vector
K. This gives us

f(θ) ≈ fBA(θ) = −2µ
~2

∞∫
0

V (r′)
sin(Kr′)
Kr′

r′2dr′ . (9.10.9)

If the form of scattering potential V (r′) is known, the scattering amplitude f(θ) and the
differential cross-section for elastic scattering in the center-of-mass frame may easily be
worked out.

Scattering from the Screened Coulomb Potential

Let the interaction between two charged particles of charge Ze and Z ′e, respectively, be
represented by the screened Coulomb potential

V (r) =
ZZ ′e2

4πε0r
exp(−r/ro), (9.10.10)

where ro is the screening radius. This potential takes into account the screening of
Coulomb interaction between the atomic nucleus and a charged projectile due to the
presence of electrons in the atom. Note that the screened Coulomb potential, apart from
the multiplicative factors, has the form of the Yukawa potential, originally introduced to
describe the nuclear interaction between protons and neutrons due to pion exchange. Using
this in Eq. (9.10.10) we get

fBA(θ) = −µZZ
′e2

2πε0~2

∞∫
0

1
r′

exp(−r′/ro)r′2 sinKr′

Kr′
dr′,

= −µZZ
′e2

2πε0~2

1
K

[
K

(K2 + 1/r2
o)

]
= −µZZ

′e2

2πε0~2

r2
o

1 + 4k2r2
o sin2(θ/2)

. (9.10.11)

From this expression we obtain the differential scattering cross-section due to screened
Coulomb potential

σ(θ) =
(2µZZ ′e2r2

o/4πε0~2)2

(1 + 4k2r2
o sin2(θ/2))2

. (9.10.12)

At low energies kro � 1, the scattering cross-section has a weak dependence on the angle
of scattering. At higher energies kro � 1 it is highly peaked in the forward direction θ = 0.
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For ro →∞, the screened potential approaches the Coulomb potential and we get

f cBA(θ) = −µZZ
′e2

2πεo~2

1
K2

= −µZZ
′e2

2πεo~2

1
4k2 sin2(θ/2)

and σc(θ) = |f cBA(θ)|2 =
(
µZZ ′e2

8πεo~2k2

)2 1
sin4(θ/2)

. (9.10.13)

We recognize this to be the Rutherford formula for Coulomb scattering. This agreement
happens to be an accident because the Born amplitude is not the correct Coulomb scattering
amplitude [see Sec. 9.7].

Scattering from the Square Well Potential

For a potential of the shape

V (r) =

{
−Vo , for r ≤ ro
0 , for r > ro ,

(9.10.14)

the scattering amplitude in the Born approximation is calculated to be [Eq. (9.10.9)]

fBA(θ) = −µVo
~2

∫ ro

0

sinKr′

Kr′
r′2dr′ =

2µVoro
~2K2

[
cos(Kro)− sin(Kro)

Kro

]
,

K = |k − k′| = 2k sin θ/2 .
(9.10.15)

From this we can calculate the scattering cross-section σBA(θ) = |fBA(θ)|2. Note that the
angular dependence is hidden in K.

In the low energy limit kro � 1 or Kr = 2kr sin θ/2� 1, we obtain

fBA =
2µVoro
~2K2

[
−1

2
(Kro)2

]
= −2µVor3

o

3~2
, (9.10.16)

σ =
∫
dΩ|fBA|2 = 4πr2

o

[
2µVor2

o

3~2

]2

. (9.10.17)

It is easy to check that phase shift analysis [Eq. (9.6.17)] leads to the same result in the
low energy limit.

9.10.2 Validity of Born Approximation

We have seen that the total scattering solution is given by

ψ(+)(r) = eik·r + ψsc(r)

= eik·r − 1
4π

2µ
~2

∫
eik|r−r

′|

|r − r′| V (r′)ψ(+)(r′)d3r′ . (9.10.18)

The (first) Born approximation consists in replacing the function ψ
(+)
k (r′) by the plane

wave function exp(ik · r′) in the integrand of Eq. (9.10.18). We expect this approximation
to be justified if the scattered wave

ψ(1)
sc (r) = − 1

4π
2µ
~2

∫
eik|r−r

′|

|r − r′| V (r′)eik·r
′
d3r′ , (9.10.19)
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is small compared to the plane wave amplitude in the coordinate range where the potential
is nonzero, i.e., near the origin r = 0. From Eq. (9.10.19), we estimate the scattered wave
near r = 0 to be

ψsc(0) = − 1
4π

2µ
~2

∫
eikr

′

r′
V (r′)eik·r

′
d3r′ . (9.10.20)

If we assume the potential to be spherically symmetric, V (r) = V (r), and carry out the
angular integration, the condition for the Born approximation to be valid, |ψsc(0)| �
|eik·r| = 1, can be written as

2µ
k~2

∣∣∣∣∫ dr′ eikr
′
sin kr′V (r′)

∣∣∣∣� 1 . (9.10.21)

Some qualitative conclusions can be drawn from this even without detailed knowledge of
the potential.

At low energies kr′ � 1, we can approximate eikr
′ ≈ 1 and sin kr′ ≈ kr′ under the

integral in Eq. (9.10.21) giving us the condition for the valdity of Born approximation to
be

2µ
~2

∣∣∣∣∫ r′V (r′)dr′
∣∣∣∣� 1 . (9.10.22)

Thus if the potential has depth (or height) Vo and range ro, the condition for Born
approximation to be good is

µVor
2
o

~2
� 1 . (9.10.23)

This condition means the Born approximation is valid if the potential is too weak to support
a bound state [see Sec. 5.7].

At high energies kr′ � 1, where r′ is at most of the order of the range of the potential, the
function ekr

′
sin kr′ = (e2ikr′ − 1)/2i in the integrand of Eq. (9.10.16) oscillates rapidly, so

that the principal contribution to the integral comes from values of kr′ < 1. If the potential
has depth Vo and range ro, the condition for the validity of the Born approximation in the
high energy limit becomes

2µ
~2k

∣∣∣∣∣
∫ 1/k

o

dr′ V (r′)
1
2i

(e2ikr − 1)

∣∣∣∣∣ =
µVo
~2k2

=
µVor

2
o

~2k2r2
o

� 1 . (9.10.24)

This can be written as
µVor

2
o

~2
� k2r2

o . (9.10.25)

It may be noted that this condition (in the high energy limit) may be satisfied even when
the potential supports bound states. It also follows from (9.10.23) and (9.10.25) that if the
Born approximation is valid at low energies it is also valid at high energies.

Born Approximation for the Square Well Potential

For the attractive square well potential [Eq. (9.10.14)], the scattering wave ψsc(0) [Eq.
(9.10.20)] is given by

ψsc(0) =
µVo

2~2k2
[cos 2kro − 1− i(sin 2kro − 2kro)] . (9.10.26)

The condition for the validity of the Born approximation, and therefore the scattering
amplitude (9.10.15) to be a good approximation to the exact result, then takes the form

µVo
2~2k2

∣∣4k2r2
o − 4kro sin(2kro) + 2− 2 cos(2kro)

∣∣1/2 � 1 . (9.10.27)
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At small energies (kro � 1), this leads to

µVo
2~2k2

× 2k2r2
o =

µVor
2
o

~2
� 1 . (9.10.28)

Thus we can expect the Born approximation to be valid at low energies for potential too
weak (depth-range combination too small) to support a bound state.

For high energies (kro >> 1) the first term inside the absolute value sign in Eq. (9.10.27)
dominates. Then we can expect the Born aproximation to be valid if

µVor
2
o

~2
� kro . (9.10.29)

If the square well potential is strong enough to bind the two-body system and conforms to
the depth-range relationship (to support at least one bound state)

Vor
2
o ≈

π2~2

8µ
, (9.10.30)

the condition (9.10.29) is still satisfied for sufficiently high energies kro � 1. Born
approximation thus supplements the method of partial waves which would have required a
large number of partial waves to calculate the cross-section in this case [see Sec. 9.4].

The above discussion in terms of the bound state should not be taken too far because
if we have a barrier (Vo < 0) instead of a well, there are no bound states but there is still
a criterion for the validity of the Born approximation, which in fact is the same as Eq.
(9.10.17).

Validity of Born Approximation for Screened Coulomb Potential

Let us consider the conditions under which the scattering amplitude (9.10.11) under Born
approximation is expected to be valid for the screened Coulomb potential [cf. Eq. (9.10.10)]

V (r) =
ZZ ′e2

4πε0
e−αr

r
≡ Vo e

−αr

αr
, Vo =

ZZ ′e2α

4πε0
. (9.10.31)

According to Eq. (9.10.21), we can expect Eq. (9.10.11) to be valid if

(
µZZ ′e2

4πε0~2k

) ∣∣∣∣∣∣
∞∫

0

exp(2ikr′)− 1
r′

e−αr
′
dr′

∣∣∣∣∣∣� 1 . (9.10.32)

By evaluating the integral, we can write this condition as 9

µZZ ′e2

4πε0~2k

√(
ln
√

(1 + 4k2r2
o)
)2

+
(
tan−1 2kro

)2 � 1 , (9.10.33)

where ro = α−1 is the effective range of the potential. (9.10.34)

9The integral to be evaluated is I =
R∞
0

exp(2ikr′)−1
r′ e−αr

′
dr′. By differentiating I with respect to α, we

find
∂I

∂α
= −

Z ∞
0

(e2ikr
′
− 1)e−αr

′
dr′ =

1

α− 2ik
+

1

α
,

which is readily integrated to yield I = ln
“

1 + 2ik
α−2ik

”
= − ln[1− i(2k/α)]. The constant of integration in

the last step is fixed by noting that I → 0 as α→∞.
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For low energies kro � 1 this criterion becomes 2µZZ′e2ro
4πε0~2 � 1. If we define an effective

barrier (since we have assumed both the projectile and the target particles to have like
charges) Vo = ZZ′e2

4πε0ro
and effective range ro, this condition is simply Vor

2
0 � 1, which is

similar to that for a spherical square well. Hence Born approximation does not hold for
kro � 1 and cannot be used for scattering of slow electrons from atoms.

For high energies kro >> 1, the criterion (9.10.33) becomes µZZ′e2

4πε0~2k ln(2kro)� 1 which
can always be satisfied provided the energy is sufficiently large.

9.10.3 Born Approximation and the Method of Partial Waves

The method of phase shift analysis discussed in Sec. 9.4 gives exact expression for the
scattering cross-section in terms of the phase shifts experienced by angular momentum
partial waves. The phase shifts are expressed in terms of the logarithmic derivative of the
radial function which is obtained by solving the radial Schrödinger equation for the given
scattering potential. However, the relation between the phase shifts and the scattering
potential remains recondite. A partial wave analysis of the integral equation provides a
direct connection bewteen the phase shifts and the scattering potential.

We have seen the following expansions of the incident plane wave (solution of the
scattering equation in the absence of scattering potential) and of the solution of the
scattering equation with the scattering potential [Eqs. (9.4.16) and(9.4.3)]:

ψinc(r) = eik·r =
∞∑
`=0

i`(2`+ 1)R`(r)P`(cos θ) (9.10.35)

and ψ
(+)
k (r) =

∞∑
`=0

B`R
′
`(r)P`(cos θ) (9.10.36)

where the radial functions

R`(r) =
u`(r)
kr

and R′`(r) =
u′`(r)
kr

(9.10.37)

are determined by the following differential equations

d2u`
dr2

+
(
k2 − `(`+ 1)

r2

)
u`(r) = 0 (9.10.38)

and
d2u′`
dr2

+
(
k2 − U(r)− `(`+ 1)

r2

)
u′`(r) = 0 . (9.10.39)

The solution of the first equation and its asymptotic form are given by

u`(r) = kr j`(kr) ∼ sin(kr − `π/2), (9.10.40)

and, as we have seen in Sec. 9.4, if V (r) falls off faster than 1/r as r → ∞, the radial
function u′`(r) has the asymptotic form

u′`(r) ∼ sin(kr − `π/2 + δ`) . (9.10.41)

Multiplying Eq. (9.10.38) by u′`(r) and Eq. (9.10.39) by u`(r) and subtracting we get

d

dr

[
u′`(r)

du`
dr
− u`(r)du

′
`

dr

]
= −U(r)u`(r)u′`(r). (9.10.42a)
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Integrating both sides over r from 0 to R we get

[
u′`(r)

du`
dr
− u`(r)du

′
`

dr

]
r=R

= −2µ
~2

R∫
0

u`(r)V (r)u′`(r)dr, (9.10.42b)

because both radial functions must vanish at the origin u`(0) = u′`(0) = 0. If we let R→∞
we can use the asymptotic forms for u`(r) and u′`(r) on the left-hand side and find

k sin δ` = −2µ
~2

∞∫
0

u`(r)V (r)u′`(r)dr . (9.10.43)

This is an explicit expression for the phase shift in terms of the scattering potential and
the radial function. Now, if we invoke the Born approximation, we can use the replacement
u′`(r) ≈ u`(r) = krj`(r) under the integral in Eq. (9.10.43) to get

sin δ` = −2µk
~2

∞∫
0

V (r)[j`(kr)]2r2dr . (9.10.44)

Using the expression (9.4.19) for the scattering amplitude in terms of the phase shifts, we
get

f(θ) = −2µ
~2

∞∑
`=0

(2`+ 1)P`(cos θ)

∞∫
0

[j`(kr)]2V (r)r2dr (9.10.45)

where we have approximated eiδ` sin δ` by sin δ`. By using the mathematical identity

∞∑
`=0

(2`+ 1)[j`(kr)]2P`(cos θ) =
sin(Kr)
Kr

, (9.10.46)

where K = 2k sin(θ/2), in Eq. (9.10.45), we recover the Born expression (9.10.9) for the
scattering amplitude

f(θ) = −2µ
~2

∞∫
0

sin(Kr)
Kr

V (r)r2dr . (9.10.47)

As a simple application of Eq. (9.10.44), consider a short range potential so that the
contribution to the integral comes form small values of r ∼ 0. Then using the small
argument expansion for j`(kr) ≈ (kr)`/(2`+ 1)!!, we obtain the expression

δ` ≈ − 2µk2`+1

~2[(2`+ 1)!!]2

∞∫
0

r2`+1V (r)dr . (9.10.48)

If V (r) = Vo for r < ro and vanishes for r > ro we obtain for the `th partial wave phase
shift

δ` = −2µVor2
o

~2

(kro)2`+1

(2`+ 3)[(2`+ 1)!!]2
. (9.10.49)

This expression shows that the phase shifts decrease rapidly with ` and beyond ` ≈ kro,
the phase shifts are negligible.
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Problems

1. A particle of mass m1 collides elastically with a particle of mass m2 which is initially
at rest in the laboratory frame of reference. Show that all recoil (mass m2) particles
are scattered in the forward hemisphere in the laboratory frame. If the angular
distribution is symmetric in the center-of-mass system, what is it for m1 in the
laboratory system.

2. A plane wave can be expanded in term of the partial waves as

eikz =
∞∑
`=0

i`(2`+ 1) j`(kr)P`(cos θ).

Interpret this expansion in terms of the principle of superposition of states.

3. Assuming the range of the n− p interaction to be of the order of 3 fm (3× 10−15 m),
estimate which partial waves will undergo phase shifts if neutrons of energy

(i) 10 Mev
(ii) 1.0 MeV
(iii) 0.01 MeV
(iv) 1.0 kev

are incident on a proton target given ~2

2µ = ~2

M = 41.47 MeV·fm2?

4. Derive the following relation

k sin (δ` − δ`′) =
−2µ
~2

∫
[V (r) − V ′(r)] u`(r)u′`(r) dr

where ~2k2

2µ is the energy of relative motion of colliding particles in the center-of-mass
frame, δ` and δ′`′ are the `th partial wave phase shifts for potentials V (r) and V ′(r),
respectively, and u`(r) = rR`(r) and u′`(r) = R′`(r)r are the radial functions for the
two potentials. From this infer what the sign of the phase shift has to do with the
nature (attractive or repulsive) of the scattering potential.

5. Prove the optical theorem

σtot =
4π
k
Im [f(0)] ,

where Im [f(0)] is the imaginary part of the forward scattering amplitude f(0).

6. Use optical theorem to show that the Born approximation cannot be expected to give
the correct scattering amplitude or the correct differential scattering cross-section in
the forward direction.

7. Considering the potential to have a square well shape

V (r) =

{
−Vo , for r ≤ ro
0 , for r > ro ,

show that, for low energies E = ~2k2/2µ, the condition of resonance scattering can
be met if cotαoro ≈ 0 , where α2

o ≡ Uo = 2µVo/~2 , in which case

σtot =
4π

k2 + α2
o cot2(αoro)

.
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8. Considering the scattering potential to be of three-dimensional square well shape,
find the limit for the total scattering cross-section when the center-of-mass energy, or
k = (2µE/~2)1/2, tends to zero. You may consider only s or p-wave phase shifts. For
what values of Vor2

o is the scattering cross-section zero (Ramsauer-Townsend effect).

9. Calculate the center-of-mass scattering amplitude in the Born approximation where
the interaction between the two particles is

(i) Exponential: V (r) = −Vo e−r/a
(ii) Yukawa: V (r) = −Vo e−µ rr

The Fourier transforms of these potential forms are given in Eqs. (3.6.13) through
(3.6.15).

10. Assuming the n− p interaction to be of square well shape for a short range potential,

V (r) =

{
−Vo , for r ≤ ro
0 , for r > ro ,

set up the radial equations for scattering in the internal r < ro and external r > ro
regions. Obtain expressions for the s- and p-wave phase shifts when the energy is
small ( kro � 1).

11. Calculate the differential cross-section of scattering dσ
dΩ for a square well potential

V (r) =

{
−Vo , for r ≤ ro
0 , for r > ro ,

in the Born approximation. Show that (a) the scattering is peaked in the forward
direction, and (b) at large energies the cross-section is inversely proportional to the
energy.

12. Show that in the Born approximation the differential scattering cross-section for a
potential V (r) is exactly the same as that obtained from the potential −V (r).

13. Show that the first Born amplitude is essentially the three-dimensional Fourier
transform of the potential

fBA(θ) = −
√
π

2
2µ
~2

1
(2π)3/2

∫
V (r)eiK·rd3r ,

where K = k − k′.
14. Calculate the s-wave phase shift for a spinless particle scattered by a target with a

hard sphere interaction between them. What is the extreme low energy limit for the
total scattering cross-section? Explain the result.

15. For the screened Coulomb potential,

V (r) =
ZZ ′e2

4πε0r
exp(−r/ro)

work out the differential cross-section of scattering in Born approximation. Consider
the limit when the range ro tends to infinity. Show that the total cross-section obtained
from the differential cross-section diverges.
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16. Calculate the Coulomb scattering cross-section for two identical spinless charged
particles (Bosons) and compare it to that for two identical spin half particles in a
state with total spin 1. Discuss the angular dependence in the two cases.

17. Assuming the neutron-neutron strong interaction potential to be the same as the
neutron-proton (deuteron) potential [see Chapter 5] which supports a single bound
state of ` = 0, discuss the low energy limit of neutron-neutron scattering cross-section.

18. Consider the scattering from a delta-shell potential V (r) = (Vo/ro)δ(r − ro).
(i) Use the first Born approximation to compute the scattering amplitude and

investigate the conditions under which the approximation is valid.

(ii) Compute the phase shift for the s-wave in the first Born approximation and
compare it with the exact result

tan δ0 =
(2µVo/~2k) sin2 kro

1 + (µVo/~2k) sin 2kro
.

19. Express the form of Coulomb scattering wave function as a function of r and θ. What
conclusions can you draw regarding its form at forward angles?
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Appendix 9A1: Calculus of Residues

Function of a Complex Variable

A complex number, z = x + iy, may be represented by a point in the complex z-plane
or the X − Y plane where OX is called the real axis and OY the imaginary axis. This
representation of complex numbers is referred to as an Argand diagram. When z denotes
any one of the set of complex numbers, we call it a complex variable. If, for each value of
z, the value of a second complex variable w is prescribed, then w is called a function of the
complex variable z and is written as

w = f(z) . (9A1.1.1)

If each value of z corresponds to only one value of w, then the function w = f(z) is said to
be single-valued. If a single value of z corresponds to more than one value of w, then the
function w = f(z) is said to be multi-valued. It is possible to resolve w = f(z) into real
and imaginary parts as

w = f(z) = u(x, y) + i v(x, y) (9A1.1.2)

where u and v are real functions of the real variables x and y. The function f(z) is continuous
at a point z = z0 if and only if all the following three conditions are satisfied:

(i) f(z0) exists

(ii) limz→z0 f(z) exists

(iii) limz→z0 f(z) = f(z0)

Differentiability

If the limit lim∆z→0
f(z+∆z)−f(z)

∆z exists, and is independent of the manner in which
∆z ≡ ∆x+ i∆y → 0, then the function f(z) is said to be differentiable. The necessary twin
conditions, called Cauchy-Riemann conditions, for the function f(z) to be differentiable are

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
. (9A1.1.3)

Contour Integral of a Function of a Complex Variable

The integral
∫ zn
z0
f(z) dz of a function of a complex variable along a curve Γ may be

defined as follows [Fig. 9A1.1]. We divide the curve into n segments by means of points
z0, z1, z2, · · · , zn and denote the interval between points zr−1 and zr by ∆zr and the average

value of the function in this interval by f̄(zr). Then the sum Ln =
n∑
r=1

f̄r(zr)∆zr in the

limit n→∞ equals the integral
zn∫
z0

f(z) dz along the curve (contour) Γ.

Cauchy’s Theorem

It can be shown that if a function f(z) of a complex variable is analytic (i.e., single-valued,
continuous and differentiable) on and every point inside a closed curve (contour) C, then∮

C

f(z)dz = 0. (9A1.1.4)
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X=Re z

Y=Im z

z0 z1 z2

zn

zr−1

zr

Γ

FIGURE 9A1.1
The integral of f(z) along a curve from z0 to zn in the complex z-plane depends on the
curve and on the direction the curve is traversed.

By convention, the integration along a closed contour in the counter-clockwise sense is taken
to be positive.

A corollary that follows from this theorem is that if f(z) is analytic at all points on and
inside a closed contour C except in regions bounded by closed curves C1, C2, · · · , Cn, then∮

C

f(z)dz =
∮
C1

f(z)dz +
∮
C2

f(z)dz + · · ·+
∮
Cn

f(z)dz. (9A1.1.5)

Cauchy’s Integral Formula

If a function f(z) is analytic at all points on and inside a closed contour C, then the function
defined by φ(z) = f(z)

(z−a) is not analytic at the point z = a. Let C1 be a small closed circle
with center at z = a and radius r [Fig. 9A1.2]. According to Cauchy’s theorem (corollary),∮

C

φ(z)dz =
∮
C1

φ(z)dz . (9A1.1.6)

The contour integral on the right-hand side may be easily evaluated by putting z−a = reiθ

and dz = reiθ i dθ. In the limit r → 0, its value is 2π i f(a).
Using Eq. (9A1.1.6) we have∮

C

f(z)
z − adz = 2π i f(a) or f(a) =

1
2π i

∮
C

f(z)dz
z − a . (9A1.1.7)

It is remarkable that Cauchy’s integral formula enables one to compute the value of the
function f(z) at any point a inside the contour C from the knowledge of the function on
the boundary of the contour.
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X=Re z

Y=Im z

C

a

C1
r

FIGURE 9A1.2
C is a closed contour and C1 is a small circle within it with its center at a.

Taylor Series Expansion

We can rewrite Cauchy’s integral formula as

f(z) =
1

2π i

∮
C

f(t)dt
t− z , (9A1.1.8)

where the function f(t) of the complex variable t is analytic at every point on and inside
the closed contour C. At a point a = z + h, within the closed contour C, we have

f(z + h) =
1

2π i

∮
C

f(t)dt
t− (z + h)

. (9A1.1.9)

Using the identity

1
t− (z + h)

= (t− z)−1

[
1 +

h

t− z +
h2

(t− z)2
+ · · ·+ hn

(t− z)n
]

+
hn+1

(t− z)n+1

1
[t− (z + h)]

,

and substituting this series in Eq. (9A1.1.9), we find

f(z + h) =
∑
r

Crh
r , (9A1.1.10)

where

Cr =
1

2π i

∮
C

f(t)
(t− z)r+1

dt . (9A1.1.11)

It can be shown that Taylor’s expansion series is convergent.



QUANTUM THEORY OF SCATTERING 345

Laurent Series Expansion

If a function f(z) of a complex variable z is analytic at all points on two closed contours C
and C1 and within the annular space between them but not within C1 (which surrounds a
point z0), then the function at any point a within the annular region is given by

f(a) =
1

2π i

∮
C

f(z)dz
z − a −

1
2π i

∮
C1

f(z)dz
z − a . (9A1.1.12)

This can be seen easily by considering a closed contour Γ, which encloses the annular region

X=Re z

Y=Im z

C

C2
r

C1

z0
a

Γ=C+C2+C1

FIGURE 9A1.3
The closed contour Γ encloses the ring space between the closed contours C and C1 but
excludes a small circle C2 surrounding the point a in the ring space.

but excludes a small circle surrounding the point a [Fig. 9A1.3]. Within the space enclosed
by Γ, the function φ(z) = f(z)

z−a is analytic. Therefore, the contour integral
∮
Γ

φ(z)dz = 0

implies ∮
C

φ(z)dz −
∮
C1

φ(z)dz − 2π i f(a) = 0 ,

which leads to Eq. (9A1.1.12).
If the point a within the annular space is put equal to z0 + h, where z0 is a point

within the inner contour C1 at which the function f(z) is not analytic, then we can rewrite
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Eq. (9A1.1.12) as

f(z0 + h) =
1

2π i

∮
C

f(z)dz
z − (z0 + h)

− 1
2π i

∮
C1

f(z)dz
z − (z0 + h)

. (9A1.1.13)

X=Re z

Y=Im z

C

C1

z0

FIGURE 9A1.4
The concentric circles about z = z0 represent the closed contours C and C1.

For simplicity we may visualize the contours C and C1 as represented by concentric circles
about the point z0 [Fig. 9A1.4]. Since the point z0 +h lies in the annular space, |z−z0| ≥ h
for the first integral along C in Eq. (9A1.1.13) while |z − z0| ≤ h for the second integral
along C1. So in the first case we should expand (z − (z0 + h))−1 in powers of h

z−z0 as

1
z − (z0 + h)

=
1

z − z0

[
1 +

h

z − z0
+

h2

(z − z0)2
+ · · · hn

(z − z0)n
+ · · ·

]
,

and in the second case −(z − (z0 + h))−1 should be expanded in powers of z−z0
h as

−1
z − (z0 + h)

=
1
h

[
1 +

z − z0

h
+

(z − z0)2

h2
+ · · ·+ (z − z0)n

hn
+ · · ·

]
.

Substituting the respective series in Eq. (9A1.1.13), we get the following series expansion
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for the function at a point in the annular space:

f(z0 + h) =
∞∑
n=0

anh
n +

∞∑
m=1

bmh
−m , (9A1.1.14)

where an =
1

2π i

∮
C

f(z)
(z − z0)n+1

dz , (9A1.1.15)

and bm =
1

2π i

∮
C1

f(z)
(z − z0)−m+1

dz . (9A1.1.16)

This is the Laurent series expansion of a function f(z0 + h), z0 + h being a point in the
annular space where the function is analytic while z0 is the point where the function is
not analytic. It can be seen that Laurent series expansion is convergent. The series with
negative powers of h is called the principal part of the function f(z) at z0. If this series
terminates at a finite value of m then the singularity at z = z0 is called a pole of order m.
If this series terminates at m = 1, the pole is called a simple pole. If the series in negative
powers of m is infinite, then the singularity at z = z0 is called an essential singularity.

Residue at a Pole

In the Laurent series expansion if we let z = z0 + h, or h = z − z0, where z0 is a singular
point and z = z0 +h is a point in the annular space where the function is analytic, then we
may write the expansion as

f(z) =
∞∑
n=0

an(z − z0)n +
∞∑
m=1

bm(z − z0)m ,

where the coefficients an and bm are defined in Eqs. (9A1.15) and (9A1.16). The coefficient

b1 =
1

2π i

∮
C1

f(z)dz , (9A1.1.17)

where C1 is a closed curve (circle) surrounding the pole at z = z0 is generally a complex
number and is called the residue at the pole z = z0. It follows that∮

C1

f(z)dz = 2π i b1 = 2π i× Residue at the pole at z = z0 . (9A1.1.18)

Cauchy’s Residue Theorem

If f(z) is analytic on and inside all points within a closed contour C except at a finite
number of points (poles) z1, z2, · · · , zn [Fig. 9A1.5] and if these points are surrounded by
small circles C1, C2, · · · , Cn, respectively, then according to Cauchy’s theorem∮

C

f(z)dz =
∮
C1

f(z)dz +
∮
C2

f(z)dz + · · ·+
∮
Cn

f(z)dz ,

and, using Eq. (9A1.1.18), we can write∮
C

f(z)dz = 2π i×
n∑
r=1

Residue of f(z) at z = zr . (9A1.1.19)



348 Concepts in Quantum Mechanics

Thus, according to Cauchy’s residue theorem, the integral
∮
C

f(z)dz can be evaluated if its

residues at all poles within the closed contour C are known.

FIGURE 9A1.5
The closed contour C encloses a number of singular points (poles) surrounded by small
circles C1, C2, · · · , Cn. Note that there may be other singular points outside the region
enclosed by C.

Calculation of Residues

If there is a simple pole at z = zr so that

f(z) =
∞∑
n=0

an(z − zr)n +
b1

z − zr ,

then the residue at z = zr is

b1 = Residue at zr = lim
z→zr

(z − zr)f(z) . (9A1.1.20)

If there is a pole of order m at zr, then

b1 = Residue at zr = lim
z→zr

[
1

(m− 1)!
dm−1

dzm−1
{(z − zr)mf(z)}

]
. (9A1.1.21)
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Evaluation of Real Integrals Using the Calculus of Residues

To evaluate an integral
∫∞
−∞ f(x)dx, where the real function f(x) is singular at a number

of points x1, x2, · · · , xn, we consider the function f(z) of a complex variable z, which has
the same functional form as f(x). If the function f(z) satisfies the following conditions

1. It is analytic in the upper half of the z-plane except at a finite number of poles10.

2. z f(z)→ 0 uniformly as z →∞.

Then, the integral
∮
C
f(z)dz may be evaluated by choosing the closed contour C to be

a semi-circle of radius R in the upper half of the complex z-plane, bounded by the real
axis [Figs. 9.10 and 9.11] and using Cauchy’s residue theorem (9A1.1.19) to evaluate the
residues at the poles of f(z) in the upper half of the complex z-plane. In the limit R→∞,

the integral
∮
C

f(z)dz →
∞∫
−∞

f(x)dx. Thus we have a simple prescription for evaluating real

integrals when the integrand has poles at a finite number of points in the complex plane.
Other integrals may require closed contours different from the one considered here, the idea
being that on a part of the contour the complex integral should coincide with the given
integral and the contribution from the rest of the contour should be known (preferably
vanish).

10We assume that there are no poles on the real axis. If there are poles on the real axis, we have an improper
integral, which is not uniquely defined. In such cases we may choose to include or exclude them, depending
on the physics of the problem under consideration.
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10

TIME-DEPENDENT PERTURBATION METHODS

10.1 Introduction

We now consider systems for which the Hamiltonian contains time-dependent interaction
terms. In such cases we cannot reduce the time-dependent Schrödinger equation to an
eigenvalue equation. However, if the time-dependent terms can be regarded as small
perturbations, we can develop a form of perturbation theory that can be used to calculate
the effects of time-dependent terms. Consider a system for which the Hamiltonian may be
written as the sum of a dominant unperturbed part Ĥ0 and a small perturbation Ĥ ′ as

Ĥ = Ĥ0 + λĤ ′(t) , (10.1.1)

where the unperturbed Hamiltonian Ĥ0 is independent of time, whereas the perturbation Ĥ ′

may depend on time. The parameter 0 < λ < 1 has been introduced to keep track of various
orders of approximations as in the case of time-independent perturbation theory discussed
in Chapter 8. The basic idea is that a small perturbation to the Hamiltonian will produce a
small change in the wave function. For a time-dependent perturbation, this change means
that a system, initially in a particular eigenstate of Ĥ0, will find itself in a time-dependent
admixture of the eigenstates. Thus the time-dependent perturbation causes the system to
undergo transition to different eigenstates of Ĥ0. So for time-dependent perturbations our
interest lies in calculating the probabilities for transition to different states.

To proceed further, we assume that for the unperturbed Hamiltonian, the exact solutions
for the time-independent Schrödinger equation

Ĥ0 |ψn 〉 = En |ψn 〉 . (10.1.2)

are known. Then the equation of motion for the unperturbed system

i~
∂

∂t
|ψ(t) 〉 = Ĥ0 |ψ(t) 〉 , (10.1.3)

has the solution
|ψm(t) 〉 = |ψm 〉 e−iEmt/~ . (10.1.4)

These solutions form an orthonormal complete set. The wave function |Ψ(t) 〉 for the
complete time-dependent Hamiltonian (10.1.1) obeys the following equation of motion

i~
∂

∂t
|Ψ(t) 〉 = (Ĥ0 + λĤ ′(t)) |Ψ(t) 〉 . (10.1.5)

It is usually not possible to solve this equation exactly. If the perturbation Ĥ ′ is weak, it is
sufficient to find the lowest order effects of Ĥ ′ on the system behavior. To do this we expand
the wave function Ψ(r, t) in terms of the complete set of time-dependent eigenfunctions of
the unperturbed Hamiltonian

|Ψ(t) 〉 =
∑
m

am(t) |ψm 〉 e−iEmt/~ , (10.1.6)

351
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where the summation extends over all the eigenstates of the unperturbed system. Since
the expansion coefficients am(t) depend on time, this is called the method of variation of
constants and is due to Dirac (1926). Substituting this expansion into the equation of
motion (10.1.5) for the full Hamiltonian we get∑

m

i~ ȧm |ψm 〉 e−iEmt/~ =
∑
m

am(t)λĤ ′ |ψm 〉 e−iEmt/~ , (10.1.7)

where Eq. (10.1.2) has been used. Pre-multiplying both sides of Eq. (10.1.7) by 〈ψn| , we
get ∑

m

i ~ȧmδmne−iEmt/~ =
∑
m

am(t)λH ′nme
−iEmt/~ (10.1.8)

where the orthogonality condition for the states |ψn 〉 has been used and where

H ′nm ≡ 〈ψn| Ĥ ′(t) |ψm 〉 . (10.1.9)

Equation (10.1.8) then leads to

i ~ȧn =
∑
m

am(t)λH ′nm(t) exp(iωnmt) (10.1.10)

where ωnm = (En−Em)/~. If we assume that at the initial time t = 0, the system is in the
unperturbed state |ψno 〉, then Eq. (10.1.10) must be solved subject to the initial condition

an(0) = δnno . (10.1.11)

To solve Eq. (10.1.10) we express the state amplitude an(t) as a series in powers (the order
of perturbation) of λ1

an(t) = a(0)
n (t) + λa(1)

n (t) + λ2a(2)
n (t) + · · ·+ λ sa(s)

n (t) · · · (10.1.12)

Such an expansion seems reasonable if the perturbation λĤ ′ is small compared to Ĥ0. Then
we expect successive corrections to state amplitudes to depend on successively higher powers
of the perturbation and the series to converge rapidly. The smallness of the perturbation
will be made more precise below. Substituting this expansion into Eq. (10.1.10), we get

i~(ȧ(0)
n + λȧ(1)

n + λ3ȧ(3)
n + · · · ) =

∑
m

(am(0) + λa(1)
m + λ3a(3)

m + · · · )λH ′nmeiωnmt . (10.1.13)

Equating terms independent of λ from both sides we get ȧ(0)
n = 0, which can be integrated

immediately to give
a(0)
n (t) = an(0) = δnno . (10.1.14)

Equating the coefficients of λs (s = 1, 2, 3, · · · ) from both sides, we get

ȧ(s)
n =

1
i~
∑
m

a(s−1)
m (t) eiωnmtH ′nm . (10.1.15)

By putting s = 1 in this equation we find the equation of motion for the first order correction

ȧ(1)
n (t) =

1
i~
∑
m

δmno H
′
nm e

iωnmt =
1
i~
H ′nno(t)e

iωnno t , (10.1.16)

1The actual expansion is in powers of Ĥ′ (strength of perturbation). The parameter λ allows us to keep

track of the powers Ĥ′.
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which can be integrated formally to give

a(1)
n (t) =

1
i~

t∫
0

H ′nno(t
′) eiωnno t

′
dt′ . (10.1.17)

If desired, the second and higher order corrections to am(t) may similarly be found. We
will confine our attention to the first and second order corrections in this chapter.

With these corrections, we can rewrite the series (10.1.12) for am(t) as

an(t) = δnno +
1
i~

t∫
0

H ′nno(t
′)eiωnno t

′
dt′

+
1

(i~)2

∑
m

t∫
0

dt2e
iωnmt2H ′nm(t2)

t2∫
0

dt1e
iωmno t1H ′mno(t1) + · · · (10.1.18)

Physical Significance of the Coefficient an(t)

If the perturbation lasts only for a finite time T or vanishes sufficiently rapidly as t→ ±∞
and the Hamiltonian returns to its unperturbed value Ĥ0, we can interpret limt→∞ |an(t)|2
as the probability that the system will be found in the stationary state |ψn 〉, if initially it was
in the stationary state |ψno 〉 of the unperturbed Hamiltonian. In other words |an(t)|2 after
the perturbation has ceased, can be regarded as the probability of transition |ψno 〉 → |ψn 〉.
For n = no, this probability is ≈ 1. For n 6= no, this probability is ≈ |a(1)

n |2 to the first
order of perturbation. If |a(1)

n |2 does not vanish, the transition |ψi 〉 → |ψn 〉 is said to be
allowed in the first order. If it vanishes the transition is referred to as a first-order forbidden
transition. This does not mean that the transition cannot occur at all; it may still occur in
the second (or higher) order of perturbation but with much reduced probability.

So far we have not specified the time dependence of Ĥ ′, which can be of many different
types. For example, we could imagine a perturbation that is turned on suddenly, a
perturbation with periodic (harmonic) time dependence, or one that varies slowly. These
time variations can produce very different time evolution of the wave function. We shall
consider two examples of these time-dependent perturbations which are of considerable
physical interest

(i) Perturbation is switched on for a small time and is constant over this time interval,
say 0 ≤ t ≤ T .

(ii) Perturbation varies harmonically with time.

Other types of time dependencies will be considered toward the end of this chapter.

10.2 Perturbation Constant over an Interval of Time

In this case the perturbation has the following time dependence

H ′(t) =


0 for −∞ < t < 0 ,
H ′ for 0 < t < T ,

0 for 0 < t <∞ .

(10.2.1)
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time t

H′

0

time t0

H′

time t0

H′

FIGURE 10.1
Examples of different types of time dependence of the perturbation: (a) sudden turn on,
(b) periodic variation, (c) slow variation. Each time dependence produces different time
evolution of the wave function.

Then the transition amplitude for n 6= no (final state different from the initial state) in the
first order is given by

an(T ) ≈ a(1)
n (T ) =

1
i~

T∫
0

H ′nnoe
iωnno t

′
dt′ = − H

′
nno

~ωnno

[
eiωnnoT − 1

]
= −iH ′nno eiωnnoT/2

[
sin[(En − Eno)T/2~]

(En − Eno)/2
]
, ωnno =

(En − Eno)
~

. (10.2.2)

The probability of transition to state |n 〉 in time T is then

|an(T )|2 = |H ′nno |2
sin2[(En − Eno)T/2~]

[(En − Eno)/2~]2
≡ |H

′
nno |2T 2

~2

sin2 φ

φ2
,

φ =
(En − Eno)T

2~
.

(10.2.3)

We note that for very short times, the probability grows as T 2 for transition to all states.
For longer times, a plot of the transition probability |an(T )|2 in Fig. 10.2 shows that
although the transition probability is an oscillatory2 function of En, it is significant only

2The oscillatory behavior of transition probability is an artifact of the sharp turn-on of the perturbation. It
is possible to consider smoother turn-on of perturbation, which does not exhibit ringing of the probability.
The results, however, do not depend on such details.
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−π π 2π 3π−2π−3π 0

Eno Eno+2π/TEno−2π/T Eno+4π/TEno−4π/T En=Eno+2nπ/T

φ

|an(T)|
2

FIGURE 10.2
Probability |an(T )|2 of a first-order transition from state |no 〉 to state |n 〉 as a function of
φ (or En) assuming H ′nno to be a slowly varying function of En.

for states with energies that fall under the central peak. This means from the initial
state no the system can make a transition to any one of the final states |k 〉 with energy
|En − Eno | < 2π/T . This is a form of energy-time uncertainty principle and says that
when a constant perurbation acts for a duration ∆t = T the probability is significant for
transitions that conserve energy to within ∆E = 2π~/T .

The total probability for first-order transition is given by the sum
∑
n |an(T )|2. This

sum is an oscillatory function of time if we are dealing with transitions to a discrete set of
final states. It must be kept in mind that this probability cannot exceed unity. Indeed, it
should stay small compared to unity in view of the perturbative nature of the calculation.
For long times, higher order effects of perturbation as well as the depletion of initial state
population must be taken into account.

A useful formula can be derivedif the final state belongs to a continuum or a group
of closely spaced energy levels and we are interested in the probability of transition to a
small group ∆En of states around |n 〉. The matrix element H ′nno is not expected to vary
significantly over such a group of final states. We can then write the sum of transition
probabilities over the final states as an integral over energy En

∫
∆En

|an(T )|2ρ(En)dEn =
|H ′nno |2

~2

∫
∆En

sin2[(En − Eno)T/2~]
[(En − Eno)/2~]2

ρ(En)dEn , (10.2.4)

where ρ(En) is the density of final states near energy En. Now the width of the central
maximum decreases with increasing time as ∆E ∼ 2π/T . When T is sufficiently large, the
central peak becomes very narrow and falls entirely within the interval ∆En. The density
of state ρ(En) can then be evaluated at the center of the peak En = Eno and taken out of
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the integral. The remaining integral is then simply the area under the curve in Fig. 10.2∫
∆En

sin2[(En − Eno)T/2~]
[(En − Eno)/2~]2

dEn
φ=(En−Eno )T/2~−−−−−−−−−−−−→ 2~T

∞∫
−∞

sin2 φ

φ2
dφ = 2~Tπ , (10.2.5)

where we have extended the limits of integration from −∞ to ∞ with little error since
the function sin2 φ

φ2 lies essentially inside the group ∆En of final states. Total transition
probability then depends linearly on the duration T of the perturbation according to

Pno→n =
2πT

~
|H ′nno |2ρ(En = Eno) . (10.2.6)

We can define a transition rate (probability of transition per unit time) by writing
Pno→n ≡ w T where

w =
2π
~
|H ′nno |2ρ(En = Eno) . (10.2.7)

This formula for the transition rate is called Fermi’s golden rule and has wide applications
in quantum mechanics.

Born Approximation Formula

As a simple application of Fermi’s golden rule, consider the elastic scattering of two particles
in the center-of-mass frame when the energy of relative motion is so high that the interaction
Ĥ ′ = V̂ may be treated as a perturbation. This problem conforms to the constant
perturbation we have just considered for when the particles are far apart their interaction
can be ignored; and as they approach one another, their interaction can be considered to
be turned on.

Suppose the initial momentum and energy are ~k0 and Ek0 = ~2k2
0/2µ and the final

momentum and energy are ~k and Ek = ~2k2/2µ, where |k| = |k0| so that the intial
and final energies are the same. µ is the reduced mass of the particles. The momentum
transferred in the scattering is ~q = ~(k0 − k). It is easily seen that q = |q| = 2k sin(θ/2),
where θ is the angle between k0 and k [Fig. 10.3]. Let us consider the transition from initial
momentum state |Ek0 ,k0 〉 to any one of the final states |Ek,k 〉, such that the direction of
the final momentum lies within the solid angle dΩ and the magnitude of k is the same as
that of k0, within the limits of uncertainty. Note that the states are labeled not only by the
energy eigenvalue but also by the momentum vector. To use Fermi’s golden rule (10.2.7)
we put,

〈r|Ek0 , ~k0〉 = uk0(r) =
1√
L3

eik0·r , (10.2.8a)

〈r|Ek, ~k〉 = uk(r) =
1√
L3

eik·r , (10.2.8b)

〈r| Ĥ ′ |r′ 〉 = 〈r| V̂ |r′ 〉 = V (r)δ3(r − r′) , (10.2.8c)

where L3 is the quantization volume and V (r) is the interaction potential. Using these we
find that the matrix element and first order transition rate are given by

〈Ek,k| Ĥ ′ |Ek0 ,k0 〉 = 〈k| V̂ |k0 〉 =
∫∫
〈k| r〉 d3r 〈r| V̂ |r′ 〉 d3r′ 〈r′|k0〉

=
1
L3

∫
e−ik·rV (r)eik0·r d3r =

1
L3

∫
eiq·rV (r)d3r , (10.2.9)

and w =
2π
~L6

∣∣∣∣∫ exp(iq · r)V (r)d3r

∣∣∣∣2 ρ(Ek) , (10.2.10)
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θ

dΩ

k0

kϕ q=k0−k

FIGURE 10.3
Scattering in the center-of-mass frame. k0 and k are the relative momenta before and after
scattering and dΩ = sin θdθ dϕ is the elementary solid angle in the direction of k (θ, ϕ) into
which the particle with momentum ~k is scattered.

where w is the transition rate (probability per unit time) for scattering from state |Ek0 , ~k0 〉
to states |Ek = Ek0 , ~k 〉 with momentum vectors ~k pointing into the solid angle dΩ. The
density of such final states is

ρ(Ek) = ρk
dk

dEk
=

k2dΩ

(2π/L)3

dk

dEk

E= ~2k2
2µ−−−−−→ µkL3dΩ

8π3~2
. (10.2.11)

Using this in Eq. (10.2.10), the transition rate can be written as

w =
µkdΩ

4π2~3L3

∣∣∣∣∫ exp(iq · r)V (r)d3r

∣∣∣∣2 . (10.2.12)

This expression has an undesirable dependence on the volume of quantization L3. A way
out of this is to note that w is the rate at which particles scatter into the solid angle dΩ
for an incident particle flux density corresponding to one particle in volume L3. A single
incident particle per L3 moving with speed v = ~k/µ constitutes a particle flux density of
v/L3 = ~k/µL3. If we divide the transition rate w by the incident flux we obtain the rate of
transition into the solid angle dΩ per unit incident flux density or the differential scattering
cross-section [see Sec. 9.1]

dσ =
Number of particles scattered into solid angle dΩ

Incident flux
=

w

~k/µL3

=
µL3

~k
2

~L6

∣∣∣∣∫ eiq·rV (r)d3r

∣∣∣∣2 k µL3dΩ
8π3~2

or
dσ

dΩ
=

µ2

4π2~4

∣∣∣∣∫ eiq·rV (r)d3r

∣∣∣∣2 . (10.2.13)
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This is independent of L3. A differential cross-section has units of area per unit solid angle
(cm2/steradian) and is the quantity measured in scattering experiments. Equation (10.2.13)
is the Born Approximation formula and agrees with the results of Sec. 9.10.

10.3 Harmonic Perturbation: Semi-classical Theory of Radiation

Let us consider a perturbation that varies harmonically (time dependence as e±iωt)

Ĥ ′(t′) =


0 , for t′ < 0,
Ĥ ′oe

−iωt′ + Ĥ ′†oe
iωt′ , for 0 ≤ t′ ≤ t

0 , for t′ > t.

(10.3.1)

Such a perturbation arises when an atomic system interacts with an external electromagnetic
radiation field. Electromagnetic field is described in terms of the magnetic and electric field
vectors B and E obeying Maxwell’s equations [Appendix 12A1]:

∇ ·E(r, t) =
ρ

ε0
∇ ·B(r, t) = 0 (10.3.2)

∇×E(r, t) +
∂B(r, t)

∂t
= 0 ∇×B(r, t)− 1

c2
∂E(r, t)

∂t
= µ0j . (10.3.3)

Alternatively, the electromagnetic field may be specified by the vector and scalar potentials
A(r, t) and φ(r, t), defined by

B(r, t) =∇×A(r, t) , (10.3.4)

and E(r, t) = −∇φ(r, t)− ∂A(r, t)
∂t

. (10.3.5)

These equations do not determine the vector and scalar potentals uniquely for another set
of potential (gauge transformation), A′ = A+∇χ and φ′ = φ− ∂χ

∂t , yields the same fields.
Using this freedom, we choose to work in the Coulomb gauge, in which the vector potential
satisfies3

∇ ·A = 0 . (10.3.6a)

Then the transverse parts of the electric and magnetic fields are given by

B(r, t) =∇×A(r, t) and E(r, t) = −∂A(r, t)
∂t

, (10.3.6b)

where we have retained symbol E to denote the transverse part of the electric field. Note
that since the magnetic field always satisfies ∇ ·B = 0, it is a pure transverse field. The
longitudinal part of the electric field gives the Coulomb interaction energy, which is already
included in the atomic Hamiltonian. Using Eq. (10.3.6b) in Maxwell’s equation we find the
vector and scalar potentials satisfy the inhomogeneous wave equation [see Appendix 12A1]

∇2A(r, t)− 1
c2
∂2A(r, t)

∂t2
= −µ0j⊥ (10.3.7)

and ∇2φ(r, t) = − ρ

ε0
, (10.3.8)

3As is well known, there can be several choices of vector and scalar potentials connected by gauge
transformations, which correspond to the same field vectors E and B. Of these the Coulomb gauge
(sometimes also referred to as the radiation gauge) is a specific choice. See Appendix 12A1 for details.
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where j⊥ is the transverse current density satisfying ∇ · j⊥ = 0 in the Coulomb gauge.
When the atomic system interacts with an electromagnetic field we follow the classical

procedure so that p̂ → p̂ + eA(r̂) and Ĥ → Ĥ + eφ(r̂), where we have taken electronic
charge to be −e andA and φ are now functions of atomic operator r̂. Then the Hamiltonian
for this system (atom + field) may be written as(

Ĥ + eφ
)

=
1

2m
(p̂+ eA)2

or Ĥ =
[{

p̂2

2m
+ V (r̂)

}
+

e

m
A · p̂+

e2A2

2m

]
, (10.3.9)

where the potential V (r̂) = −eφ(r̂) and we have used the result p̂ ·A(r̂, t) = A(r̂, t) · p̂ in
the Coulomb gauge.4 Assuming that the second order term e2A2

2m is small compared to the
first order term A · p̂, we can drop it and write the Hamiltonian (10.3.9) as

Ĥ = Ĥo + λĤ ′(t) , (10.3.10)

where Ĥo =
p̂2

2m
+ V (r̂) , (10.3.11a)

Ĥ ′(t) =
e

m
A(r̂, t) · p̂ . (10.3.11b)

On substituting the general solution of Eq. (10.3.7) corresponding to a traveling wave of
single-frequency ω in free space,

A(r̂, t) = Ao e
i(k·r̂−ω t) +A∗o e

−i(k·r̂−ω t) (10.3.12)

in Eq. (10.3.11b), we get time dependent perturbation of the form (10.3.1), where

Ĥ ′o =
e

m
eik·r̂Ao · p̂ , (10.3.13)

and Ĥ ′o
† =

e

m
e−ik·r̂A∗o · p̂ . (10.3.14)

Once again, we recall that we are working in the Coulomb gauge so that p̂ · A(r, t) =
A(r, t) · p̂, even though p̂ and r̂ do not commute. This means Ĥ ′o and Ĥ ′o

† are adjoints of
one another. Thus the interaction of the atomic system with radiation field gives rise to
harmonic perturbation. This perturbation will induce transitions between different states
of the atom.

We have seen in Sec. 10.1, the probability of transition from an initial state |i 〉 to a final
state |f 〉 in time t, is given by |af (t)|2, where (to first order in perturbation) af (t) is given
by

af (t) = δfi +
1
i~

t∫
0

eiωfit
′
H ′fi(t

′)dt′

= δfi +
1
i~

t∫
0

eiωfit
′ 〈f | Ĥ ′oe−iω t

′
+ Ĥ ′o

†eiω t
′ |i 〉 dt′ , (10.3.15)

4To see this consider any state |Ψ 〉 of the system. Then the matrix element

〈r| p̂ ·A(r̂, t) |Ψ 〉 = −i~∇ · [A(r, t)Ψ(r)] = −i~[∇ ·A(r, t)]Ψ(r, t)− i~A(r, t) ·∇Ψ(r, t)

= −i~A(r, t) ·∇Ψ(r, t) = A(r, t) · p̂ Ψ(r, t) ,

by virtue of the fact that in Coulomb gauge ∇ ·A(r, t) = 0. Since this holds for any state |Ψ 〉 we can write
the Hamiltonian in the form (10.3.9) in the Coulomb gauge.
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where ωfi = (Ef −Ei)/~. Then the probability of transition |i 〉 → |f 〉 (f 6= i) in time t is
given by

|af (t)|2 ≈
∣∣∣∣∣∣ 1
i~

t∫
0

eiωfit
′ 〈f | Ĥ ′oe−iωt

′
+ Ĥ ′o

†eiωt
′ |i 〉

∣∣∣∣∣∣
2

. (10.3.16)

On simplifying this we obtain,

|af (t)|2 =
1
~2

∣∣∣∣(H ′o)fi(ei(ωfi−ω)t − 1
ωfi − ω

)
+ (H ′o

†)fi

(
ei(ωfi+ω)t − 1
ωfi + ω

)∣∣∣∣2 . (10.3.17)

where the matrix elements (H ′o)fi and (H ′o
†)fi are given by

(H ′o)fi =
e

m
〈f | eik·r̂Ao · p̂ |i 〉 (10.3.18)

and (H ′o
†)fi =

e

m
〈f | e−ik·r̂A∗o · p̂ |i 〉 . (10.3.19)

An inspection of Eq. (10.3.17) and the discussion following Eq. (10.2.3) induced by constant
perturbation show that the probability of transition |i 〉 → |f 〉 is appreciable when the
denominator of one of the terms in Eq. (10.3.17) tends to zero, i.e., when either (i)
~ω ≈ Ef − Ei or (ii) ~ω ≈ −(Ef − Ei) = Ei − Ef . In the first case, Ef ≈ Ei + ~ω, the
first term in Eq. (10.3.17) dominates and the second term makes a negligible contribution.
In the second case, Ef ≈ Ei − ~ω, the second term in Eq. (10.3.17) dominates and the
first term contributes negligibly. The first condition is satisfied when the final level Ef lies
above Ei and the transition is an upward transition resulting in the absorption of a photon
[Fig. 10.4(a)]. On the other hand, the second condition is satisfied when the final level lies
below the initial level (Ef < Ei) so that the transition is a downward transition, resulting in
the emission of a photon [Fig. 10.4(b)]. This is unlike the case of perturbation constant in
time, where, during a transition, the energy was required to be conserved within the limits
allowed by the uncertainty principle. In the case of harmonic perturbation, the energy
needed for upward transition comes from the perturbing field while the energy released in
the downward transition goes to the radiation field. The radiation field remains almost
unchanged by these processes because, in the semi-classical limit, the radiation field is
regarded as infinite source and sink of quanta.

Ef
hω

Ei

(a)

Ei
hω

Ef

(b)

FIGURE 10.4
(a) An upward transition (Ef > EI) is accompanied by the absorption of a quantum of
energy ~ω ≈ (Ef − Ei) = ~ωfi. (b) A downward transition (Ef < Ei) is accompanied by
the emission of a quantum of energy ~ω ≈ −(Ef − Ei) = −~ωfi.
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FIGURE 10.5
Probability |af (t)|2 of absorptive transition to level |f 〉 for a system initially starting in
state |i 〉 as a function of φ or ω. Note that for absorption ωfi = (Ef −Ei)/~ > 0 [Ef > Ei].
The same curve applies to emission if ωfi = (Ef − Ei)/~ < 0 [Ef < Ei] in the label is
replaced by −ωfi.

It is straightforward to work out the dependence of the transition probability |af (t)|2 on
the frequency ω of radiation field for both absorption (Ef > Ei) and emission (Ef < Ei). In
the case of absorption, the first term in Eq. (10.3.17) dominates over the second. Neglecting
the second term we obtain

|af (t)|2 =
t2

~2
|(H ′o)fi|2

sin2[(ω − ωfi)t/2]
[(ω − ωfi)t/2]2

. (10.3.20)

Thus the probability of transition in time t is proportional to t2. This has been observed
with monochromatic radiation from a laser incident on a two-level atomic system.

The time dependence of transition probability is modified drastically for a broadband
perturbing radiation field or when the final state belongs to a continuum of states. To see
this we note from Fig. 10.5 that, for a transition to take place, it is not necessary that ω
exactly equal ωfi but can have a spread of the order of ∆ω = 4π/t. Qualitatively, this means
when the transition is induced by a broadband radiation field, all frequency components
that lie under the central peak (within ∆ω of ωfi) contribute to the transition. Since the
height of the peak is proportional to t2 and its width is proportional to 1/t, the area of
the principal peak (or the transition probability) is proportional to time t, leading to a
transition rate that is constant in time for broadband excitation.

To calculate the transition rate for broadband excitation, we use Eq. (10.3.18) in the
coordinate representation and write the transition probability (10.3.20) for absorption from
a monochromatic perturbation of freqeuncy ω as

|af (t)|2 =
t2

~2
|Aω|2

∣∣∣∣ i~em
∫
u∗f (r)eik·rεo ·∇ui(r)dτ

∣∣∣∣2 sin2(ω − ωfi)t/2
(ω − ωfi)t/2)2

. (10.3.21)
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Here we have written the vector potential amplitude as Ao = Aωεo so that Aω is the vector
potential amplitude at frequency ω and εo is the polarization of the incident field. The
amplitude Aω can be expressed in terms of energy density Iω as5

|Aω|2 → Iω
2ε0ω2

. (10.3.22)

For a distribution of frequencies, we sum the contributions from all frequency components6

to obtain

|af (t)|2 =
t2

~2

∑
ω

Iω
2ε0ω2

∣∣∣∣ i~em
∫
u∗fe

ik·rεo ·∇uidτ
∣∣∣∣2 sin2(ω − ωfi)t/2

(ω − ωfi)t/2)2
. (10.3.23)

For a continuous distribution of frequencies we replace the frequency sum by an integral∑
ω
Iω →

∫
dωI(ω), where I(ω) is the spectral energy density (energy per unit volume

per unit frequency interval) of the radiation field so that I(ω)dω is the energy density of
the radiation field within a frequency band dω in the neighborhood of ω. For finding the
total rate of transition we can assume the spectrum of the perturbing radiation field has a
bandwidth ∆ω centered at ω ≈ ωfi.

The total transition rate is then given by

|af (t)|2 =
t2e2

2ε0m2

∫
dω

I(ω)
ω2

∣∣∣∣∫ u∗fe
ik·rεo ·∇uidτ

∣∣∣∣2 sin2(ω − ωfi)t/2
[(ω − ωfi)t/2]2

. (10.3.24)

The last factor in the integrand is sharply peaked at ω ≈ ωfi. We can therefore take the
factor I(ωfi)/ω2

fi and the matrix element out of the integral. The remaining integral can
be evaluated by extending the limits of integration from −∞ to ∞ with little error

∞∫
−∞

dω
sin2(ω − ωfi)t/2
[(ω − ωfi)t/2]2

=
2π
t
. (10.3.25)

Using this result in Eq. (10.3.24), we find the probability of transition increases linearly
with time

|af (t)|2 =
πte2

ε0m2ω2
fi

I(ωfi)
∣∣∣∣∫ u∗fe

ik·rεo ·∇uidτ
∣∣∣∣2 . (10.3.26)

Thus absorption from a broadband field results in a constant transition rate

wabs
i→f =

πe2

ε0m2ω2
fi

I(ωfi)
∣∣∣∣∫ u∗fe

ik·rεo ·∇uidτ
∣∣∣∣2 . (10.3.27)

5Classically, the power flow across a unit area normal to the propagation vector is given by the Poynting
vector S = 1

µ0
(E ×B). Expressing the fields in terms of A [Eqs. (10.3.4) and (10.3.5)], with A given by

Eq. (10.3.12), we find the Poynting vector averaged over one oscillation is given by

S = cε02ω2|Aω |2ek

where ek is a unit vector in the direction of propagation of the incident radiation. If Iω is the energy density
(energy per unit volume) at frequency ω, then |S| ≡ cIω = cε02ω2|Aω |2ek or |Aω |2 = Iω

2ε0ω2

6In calculating the probability from the amplitude af (t) we not only generate terms like Eq. (10.3.21) for
each frequency component, but also cross terms (interference terms). The interference terms, however, make
negligible contribution over time scales large compared with 2π/∆ω.
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Similarly, the transition rate for emission (Ef < Ei) when the spectrum of a broadband
perturbing radiation is centered at ~ω ≈ −(Ef − Ei) ≡ −~ωfi is given by

wemi→f =
πe2

ε0m2ω2
fi

I(ωfi)
∣∣∣∣∫ u∗f e

−ik·rε∗o ·∇uidτ
∣∣∣∣2 . (10.3.28)

If we consider absorption and emission between two fixed levels say, |n 〉 and |m 〉 with
Em < En [Fig. 10.4], then for absorption the system must start intially in the lower state
|m 〉 and end up in the excited state |n 〉. The rate for this transition is

wab
m→n =

πe2

ε0m2ω2
nm

I(ωnm)
∣∣∣∣∫ u∗ne

ik·rεo ·∇umdτ
∣∣∣∣2 . (10.3.29)

For emission, the system must start in the upper state |n 〉 and end up in the lower state
|m 〉. The rate for this transition is

wem
n→m =

πe2

ε0m2ω2
nm

I(ωnm)
∣∣∣∣∫ u∗m e−ik·rε∗o ·∇undτ

∣∣∣∣2 . (10.3.30)

Since the rates of absorption and emission of radiation are proportional to the spectral
energy density of the perturbing electromagnetic field, these processes are referred to as
induced absorption and induced emission (or stimulated emission), respectively.

By writing absorption and emission rates as wab
m→n = I(ωnm)Bab

m→n and wem
n→m =

I(ωnm)Bem
n→m, we find

Bab
m→n =

πe2

ε0m2ω2

∣∣∣∣∫ u∗ne
ik·rεo ·∇umdτ

∣∣∣∣2 , (10.3.31)

Bem
n→m =

πe2

ε0m2ω2

∣∣∣∣∫ u∗m e−ik·rε∗o ·∇undτ
∣∣∣∣2 . (10.3.32)

The coefficients Babm→n and Bemn→m, defined by Eqs. (10.3.31) and (10.3.32), are called
the coefficient of induced absorption and coefficient of induced (or stimulated) emission,
respectively. An inspection of these equations shows that the integrals in the expressions
for wab

n→m and wem
n→m are complex conjugates of one another so that Babm→n = Bemn→m and

the rate of induced transition |m 〉 → |n 〉 is the same as the rate of induced transition
|n 〉 → |m 〉 provided the perturbing radiation field has the same intensity at the transition
frequency.

10.4 Einstein Coefficients

According to semi-classical theory of radiation, absorption and emission of radiation by
an atomic system can take place only in the presence of a perturbing radiation field.
However, the transition n → m (Em < En) is known to occur even in the absence of
a perturbing radiation field. This happens on account of the interaction of the atomic
electron with the vacuum of the electromagnetic field. This emission, which occurs without
the perturbing influence of the external radiation field, is called spontaneous emission. It
cannot be explained on the basis of semi-classical theory of interaction of radiation field
with atomic systems, but would result from a theory in which the radiation field is also
quantized [Chapter 13].
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Presently, without going into the quantization of the radiation field, one may define the
coefficient of spontaneous emission Aem

n→m as the probability per unit time of spontaneous
emission (in the absence of external radiation field) when the system is initially in the
excited state |n 〉:

wsp
n→m = Aem

n→m . (10.4.1)

From a very simple consideration of detailed balancing in an assembly of identical atoms
in different excited states, and in statistical equilibrium with the radiation field at a
certain temperature, Einstein was able to derive a relationship between the coefficient of
spontaneous emission A and the coefficient of induced emission B (We have already seen
that the coefficients of induced emission Bab

m→n and induced absorption Bem
n→m are equal).

Let pm and pn be the probabilities for the atom to be in the states |m 〉 and |n 〉, respectively.
Then the rate of absorption of radiation will be

Rm→n = pmw
ab
m→n = pmI(ωnm)Bab

m→n , (10.4.2)

and the rate of emission (rate of induced emission + rate of spontaneous emission) will be

Rn→m = pnw
em
m→n + pnA

em
n→m = pnI(ωnm)Bem

n→m + pnA
em
n→m . (10.4.3)

If the assembly of atomic systems and radiation is in equilibrium at a certain temperature
T then rates of upward and downward transition between levels |n 〉 and |m 〉 must be equal.
With Eqs. (10.4.2) and (10.4.3) this gives us

pn
pm

=
I(ωnm)Bm→n

I(ωnm)Bn→m +An→m
=

I(ωnm)Bn→m
I(ωnm)Bn→m +Bn→m

, (10.4.4)

where we have used Bn→m = Bm→n. But according to Maxwell-Boltzmann distribution,
in thermal equilibrium the level probabilities pn and pm are related by

pn
pm

=
e−En/kBT

e−Em/kBT
= e−~ωnm/kBT , (10.4.5)

where kB is the Boltzmann constant and ωnm = (En − Em)/~ is the transition frequency.
Using this result in Eq. (10.4.4), we find the coefficients of spontaneous and induced emission
are related by

An→m
Bn→m

= I(ωnm)
[
e~ωnm/kBT − 1

]
. (10.4.6)

Now, according to Planck’s law [Chapter 1, Eq. (1.1.2)], the spectral energy density for
radiation in equilibrium at temperature T is

I(ω)dω =
~ω3

π2c3
dω

e~ω/kBT − 1
. (1.1.2*)

Using this result in Eq. (10.4.4), we find the ratio of spontaneous to induced emission is

An→m
Bn→m

=
~ω3

nm

π2c3
. (10.4.7)

Thus, from very simple considerations, Einstein was able to deduce the ratio between the
coefficients of spontaneous and induced emission. These two coefficients are known as
Einstein A and B coefficients.
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10.5 Multipole Transitions

The transition rates involve the matrix element [see Eq. (10.3.27)]

αfi ≡
∫
u∗fe

ik·rε0 ·∇ui dτ . (10.5.1)

For atomic systems interacting with visible or ultra-violet light, the quantity

k · r ≈ 2πa
λ

,

where a is of the order of atomic size and λ is the wavelength of radiation. For atomic size
a ≈ 0.1 nm and the wavelegth of light ranging from ultra-violet to infra-red (approximately,
100 nm to 1000 nm) this ratio varies from 10−2 to 10−3. Hence in these cases, the factor
eik·r ≈ 1 to an excellent approximation, and we can write the matrix element as

αfi ≡
∫
u∗fεo ·∇ui dτ . (10.5.2)

This is known as the electric dipole approximation and the corresponding transition is
referred to as electric dipole transition.

In the case of nuclear transitions, the quantity k · r is small but not negligible. In such
cases we can consider a few terms in the expansion of eik·r, and express the matrix element in
Eq. (10.5.1) as a series. The successive terms of this series are referred to as matrix elements
of the electric and magnetic multipoles of order ` = 1, 2, 3, · · · Accordingly, the transition is
referred to as the electric 2`-pole [dipole (E1), quadrupole (E2), octupole (E3), in general
(E`)] transition if it is brought about by the corresponding electric multipole operator Q`m
[parity: (−1)`], or the magnetic 2`-pole (or M`) transition if it is brought about by the
corresponding magnetic multipole operator M`m [parity: (−1)`+1]. The electromagnetic
transitions conserve parity and angular momentum. If Ji and Jf are the spins of the initial
and final states and πi and πf are their parities then conservation of angular momentum
and parity requires

|Ji − Jf | ≤ ` ≤ Ji + Jf (10.5.3)

πf =

{
πi(−1)` for E` transition
πi(−1)`+1 for M` transition.

(10.5.4)

Accordingly, transitions of even parity (i.e., with no difference between the parities of
the initial and final states) can be M1 (magnetic dipole), E2 (electric quadrupole), M3
(magnetic octupole), E4 (electric hextapole), · · · transitions. On the other hand, transitions
of odd parity (i.e. those in which the initial and final states of the nucleus have opposite
parities) are E1 (electric dipole), M2 (magnetic quadrupole), E3 (electric octupole). · · ·
transitions. Hence if the spins (used in the sense of total angular momentum) and parities
of the initial and final states of a nucleus are given, then one can identify the nature of
electromagnetic transitions that could occur between them. For example, if the spin parity
(using the notation Jπ, where J denotes the spin and π denotes the parity) of the initial
nuclear state is 1+ (Ji = 1, π = +) and the final state spin parity is 0+, then ` = 1 and
∆π = 0 so that this transition is a pure M1 (magnetic dipole) transition. As another
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example, if Jπii = 3
2

+ and Jf =πf= 5
2

+, then 1 ≤ ` ≤ 4 and ∆π = 0 and it can be a mixed
M1, E2, M3, E4 transition.7

10.6 Electric Dipole Transitions in Atoms and Selection Rules

We have seen that for atomic transitions, we may put eik·r ≈ 1 since atomic size is small
compared to the wavelength of radiation (|k·r| � 1). In this (electric dipole) approximation,
if the field polarization is denoted by unit vector εo, the transition matrix element αfi
[Eq. (10.6.6)] can be written as

αfi ≈
∫
u∗fεo ·∇uidτ =

i

~

∫
u∗fεo · puidτ =

m

~2
(Ei − Ef )εo · rfi , (10.6.5)

where the matrix element rfi is given by

rfi = 〈f | r̂ |i 〉 =
∫
u∗fruidτ . (10.6.6)

This result is conveniently obtained by evaluating αfi in the Heisenberg picture

αfi =
i

~
εo · 〈f | p̂ |i 〉 =

i

~
εo ·

〈
fH
∣∣ p̂H ∣∣iH 〉 .

Using the Heisenberg equation of motion for r̂H , we find that the matrix element

αfi =
i

~
εo ·

〈
fH
∣∣ p̂H ∣∣iH 〉 =

i

~
εo ·

〈
fH
∣∣ md̂r

H

dt

∣∣iH 〉 =
m

~2
εo ·

〈
fH
∣∣ [r̂, Ĥ]

∣∣iH 〉
=
m

~2
(Ei − Ef )εo ·

〈
fH
∣∣ r̂H ∣∣iH 〉 =

m

~2
(Ei − Ef )εo · rfi .

It follows that a transition (emissive or absorptive) can occur only if εo · rfi is non-zero.
The conditions necessary for this requirement to be met give rise to what are known as the
electric dipole (E1) selection rules. To explore these conditions, consider first the case of
polarization parallel to the x-axis, εo = ex. Then the matrix element αfi = xfi. Expressing

x in terms of spherical harmonics as x = r sin θ cosϕ = r
√

2π
3 [Y1,1(θ, ϕ) + Y1,−1(θ, ϕ)] and

using the coordinate representation for the states

uf (r) ≡ 〈r| f〉 = 〈r|nf , `f ,mf 〉 = Rnf `f (r)Y`fmf (θ, ϕ) (10.6.7)
and ui(r) ≡ 〈r| i〉 = 〈r|ni, `i,mi〉 = Rni`i(r)Y`imi(θ, ϕ) (10.6.8)

where n is the principal quantum number and `(` + 1) and m are the eigenvalues of the
orbital angular momentum operator L̂2 and its z-component L̂z. The subscripts i and f

7Electric and magnetic multi-pole transitions of the same order cannot interfere with each other because
they cannot occur simultaneously between the same two levels for parity considerations. But electric and
magnetic multipole transitions of orders differing by one may interfere.
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refer to the initial and final states. Then the matrix element xfi can be written as

xfi = 〈nf , `f ,mf | x |ni, `i,mi 〉

=

∞∫
0

Rnf `f (r)rRni`i(r)r
2dr×

√
2π
3

π∫
0

2π∫
0

Y ∗`fmf (θ, ϕ) [Y1,1(θ, ϕ) + Y1,−1(θ, ϕ)]Y`imi(θ, ϕ)dΩ . (10.6.9)

The angular integral in the last step may be evaluated in terms of the Clebsch-Gordan
coefficients defined in Chapter 7 as∫

Y ∗`fmf (θ, ϕ) [Y1,1(θ, ϕ) + Y1,−1(θ, ϕ)]Y`imi(θ, ϕ)dΩ

=

√
3(2`i + 1)

4π(2`f + 1)
(1 0 `i 0|`0) [(1 1 `imi|`fmf ) + (1,−1 `imi|`fmf )] , (10.6.10)

where we have used the identity∫
Y ∗`m(θ, ϕ)YLM (θ, ϕ)Y`′m′(θ, ϕ)dΩ =

√
(2L+ 1)(2`′ + 1)

4π(2`+ 1)
(L0`′0|`0)(LM`′m′|`m) ,

(10.6.11)
and (LM`′m′|`m) are the Clebsch-Gordan coefficients. From the properties of Clebsch-
Gordan coefficients we can see that the angular integral and, therefore xfi, is non-zero only
if,

(i) `i, `f , and 1 satisfy the 4-condition, i.e., `i = `f ± 1 or ∆` ≡ |`i − `f | = 1 (The case
∆` = 0 is ruled out because the initial and final states have to have opposite parities
for electric dipole transition), and

(ii) mf = mi ± 1 or ∆m = ±1.

Consider now the case in which the incident radiation polarized in an arbitrary direction
εo (or is unpolarized) and find the conditions for the matrix element αfi = εo · rfi to be
non-zero. Writing the incident polarization as εo = ex cosα + ey sinβ + ez cos γ in terms
of its direction cosines cosα, cosβ, and cos γ, the matrix element can be written as

εo · r = x cosα+ y cosβ + z cos γ = r(sin θ cosϕ cosα+ sin θ sinϕ cosβ + cos θ cos γ)
≡ r(C1Y11(θ, ϕ) + C2Y1,−1(θ, ϕ) + C3Y10(θ, ϕ) , (10.6.12)

where C’s are constants involving the direction cosines. Then the matrix element can be
written as

εo · rfi =

∞∫
0

Rnf `f (r)rRni`i(r)dr
∫
Y`fmf (θ, ϕ)

[C1Y11(θ, ϕ) + C2Y1,−1(θ, ϕ) + C3Y10(θ, ϕ)]Y`imi(θ, ϕ)dΩ . (10.6.13)

The angular integral can be evaluated in terms of Clebsch-Gordan coefficients as√
3(2`i + 1)

4π(2`f + 1)
(10`i0|`f0) [C1(1 1`imi|`fmf ) + C2(1,−1 `imi|`fmf ) + C3(10`imi|`fmf )] .

(10.6.14)
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It follows from the properties of the Clebsch-Gordan coefficients, that this is non-zero (and
so εo · rfi is non-zero) only if (i) `f , `i and 1 satisfy the ∆-condition, viz., ∆` = ±1 and
(ii) ∆m = 0,±1. The case ∆` = 0 is ruled out because the initial and final atomic states
must have opposite parities to allow an electric dipole transition. These selection rules
are consistent with those we stated earlier for electric dipole transitions [Eqs. (10.5.3) and
(10.5.4)].

10.7 Photo-electric Effect

Due to the perturbing effect of the external radiation field, the absorption of a light quantum
of energy ~ω by an atom may result in the emission of an electron, in which case the atom
makes a transition from its initial bound state |i 〉 to an ionized state |f 〉 (represented by
uk(r) = eik·r/L3/2 in the coordinate space), belonging to a continuum of states. In this case
(Ef > Ei) the probability of transition in time t is given by the first term of Eq. (10.3.17):

|af (t)|2 =
∣∣∣∣ (H ′o)fi~

ei(ωfi−ω)t − 1
ωfi − ω

∣∣∣∣2 . (10.7.1)

The matrix element (H ′o)fi is given by

(H ′0)fi ≡ i~e
m

∫
uf
∗(r)eik·rA0 ·∇uidτ (10.7.2)

where e is the magnitude of the electronic charge. In this case we assume that the incident
photon has a definite energy ~ω. On the other hand, the final state |f 〉 ≡ |Ek, ~k 〉 is part
of a continuum of states with |k| = k lying between k and k + dk and the direction of k
within a solid angle dΩ. For the transition probability per unit time from |i 〉 to one of the
|Ek, ~k 〉 states we apply Fermi’s golden rule [Eq. (10.2.5)]

wi→f =
2π
~
|Hfi|2ρ(Ef ) , (10.2.5*)

where the density of final states ρ(Ef ) near the energy Ef = Ek = ~2k2/2m is given by

ρ(Ef ) =
dΩ kmL3

8π3~2
. (10.2.8*)

In the present context this leads to the transition rate

wfi =
2π
~

∣∣∣∣ ie~m
∫
u∗f (r)eik·rA0 ·∇ui(r)dτ

∣∣∣∣2 dΩ kmL3

8π3~2
. (10.7.3a)

The incident photon flux density for the monochromatic field is given by

Intensity
~ω

=
cε02ω2|A0|2

~ω
. (10.7.3b)

Dividing Eq. (10.7.3a) by Eq. (10.7.3b), we get the transition rate per unit incident flux
density (differential cross-section)

dσ =
w

flux density
=

2π
~

∣∣∣∣− ie~m
∫
u∗i (r)e−ik·rA0 ·∇uf (r)dτ

∣∣∣∣2 dΩkmL3

8π3~2

~ω
c2ε0ω2|A0|2

or
dσ

dΩ
=
e2k |εo · k|2
8π2ε0mcω

∣∣∣∣∫ u∗i (r)ei(k0−k)·rd3r

∣∣∣∣2 , (10.7.4)
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where we have taken the final state to be a plane wave state and we have used the fact
that the integrals are complex conjugates of each other, except for sign. If the bound state
function uno(r) is known, the last integral can be evaluated. Note that the cross-section
is proportional to the absolute value of the Fourier transform squared of the bound state
radial function with respect to q = k0 − k.

10.8 Sudden and Adiabatic Approximations

Finally, we consider two extreme cases of the time variation of the perturbation where the
Hamiltonian of a system changes from Ĥo at t = t0 to Ĥo + Ĥ ′ at time t = t1. The nature
of approximations that are applicable in dealing with such changes depends on whether the
change is sudden or gradual (or adiabatic). The terms sudden and adiabatic are defined
relative to some characteristic time scale of the system, which may vary from one system to
another and from one type of interaction to another for the same system. For example, for
a harmonic oscillator of natural frequency ωo, the characteristic time would be the classical
period 2π/ωo of oscillation; for a spin system in a magnetic field, it would be the inverse
of the classical cyclotron frequency. If the Hamiltonian changes in time T = t1 − to that is
short compared to the classical period 2π/ωo so that ωoT � 1, we say the change is sudden
and if it changes so slowly that ωoT � 1, we say the change is slow or adiabatic. Let us
consider these cases separately and examine what kind of approximations can be used to
deal with such perturbations.

Adiabatic Approximation

Consider a system subjected to a perturbation Ĥ ′(t) which vanishes for t < to and varies
slowly with time so that the Hamiltonian changes from Ĥo at time to to Ĥo + Ĥ ′(t) at time
t, the change being small due to slow variation. Assuming that the system is initially in
state |ψno(to) 〉 ≡ e−iEno to |Ψno(to) 〉 — an eigenstate of Ĥo with eigenvalue E(0)

no ≡ Eno(to)
— the state |Ψno(t) 〉 into which it evolves in time t may still be labeled by no and expanded
as

|Ψno(t) 〉 =
∑
n

an(t)e−iE
(0)
n t/~ |ψn(to) 〉 , (10.8.1)

where E
(0)
n = En(to) denote the eigenvalues of the permissible orthogonal eigenstates

|ψn(to) 〉 of Ĥo at time to. It may also be pointed out here that, in general, the states
|Ψn(t) 〉 ≡ e−iEn(t)t/~ |ψn(t) 〉 are not strictly stationary as |Ψn(t) 〉 as well as En(t) may
have slow dependence on time. Now, to first order in Ĥ ′

an(t) =
1
i~

∫ t

to

dt′H ′nno(t
′)eiωnno t

′
, ωnno = (E(0)

n − E(0)
no )/~ (10.8.2a)

ano(t) = 1− i

~

∫ t

to

dt′H ′nono(t
′) . (10.8.2b)

Integrating these by parts we obtain

an(t) = −
[
H ′nno(t

′)
~ωnno

eiωnno t
]t
to

+
1

~ωnno

∫ t

to

dt′eiωnno t
′ ∂H ′nno
∂t′

. (10.8.3)
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The first term vanishes at the lower limit. If Ĥ ′(t) is slowly varying, the second term is
small compared to the first, and we have approximately

an(t) ≈ −H
′
nno(t)

~ωnno
eiωnno t = − H ′nno(t)

E
(0)
n − E(0)

no

eiωnno t . (10.8.4)

Similarly for ano we have

ano(t) ≈ e−iH
′
nono

(t−to)/~ ≡ ano(to)e−iH
′
nono

t/~ . (10.8.5)

Thus to first order in Ĥ ′, the wave function |Ψno(t) 〉 becomes

|Ψno(t) 〉 = ano(to) |ψno(to) 〉 e−i(E
(0)
no

+H′nono )t/~ +
∑
n 6=no

an(t) |ψn(to) 〉 e−iE(0)
n t/~

= e−i(E
(0)
no

+Hnono )t/~ano(to) |ψno(to) 〉+ e−iE
(0)
no
t/~

∑
n 6=no

H ′nno(t)

E
(0)
no − E(0)

n

|ψn(to) 〉
 .

(10.8.6)

The second term is proportional to H ′. If we multiply the second term, which is of first
order in H ′, by exp[−iH ′nonot/~], we cause an error at most of order H ′2. Hence to first
order in the perturbation we have

|Ψno(t) 〉 ≈ e−i(E
(0)
no

+H′nono )t/~

ano(to) |ψno(to) 〉+
∑
n 6=no

H ′nno(t)

E
(0)
no − E(0)

n

|ψn(to) 〉
 . (10.8.7)

We recognize that the quantity inside the square brackets is simply an eigenstate of the
Hamiltonian Ĥo + Ĥ ′(t) at time t with eigenvalue Eno = E

(0)
no + H ′nono(t) with t as

a parameter. This means the system originally in an eigenstate |Ψno(t0) 〉 of Ĥo with
eigenvalue E

(0)
no evolves smoothely into an eigenstate |Ψno(t) 〉 of the new Hamiltonian

with eigenvalue Eno(t) = E
(0)
no + H ′nono(t) under adiabatic perturbation. Since the system

evolves continuously we say it stays in state no-th state. Extending this to other states
(assuming them to be discrete), we can say that under adiabatic perturbation the eigenvalues
E1(to), E2(to), E3(to), · · · and the eigenfunctions |Ψ1(to) 〉 , |Ψ2(to) 〉 , |Ψ3(to) 〉 · · · of the
Hamiltonian Ĥ0 at time to, evolve continuously into the eigenvalues E1(t), E2(t), E3(t), · · ·
and the eigenfunctions |Ψ1(t) 〉 , |Ψ2(t) 〉 , |Ψ3(t 〉 , · · · of the Hamiltonian Ĥ(t) = Ĥo+Ĥ ′(t)
at time t. This is the physical content of the adiabatic theorem.

The conditions for the adiabatic theorem to hold are easily derived from Eq. (10.8.3). If
the perturbation changes slowly, we can take ∂H ′/∂t outside the integral in Eq. (10.8.3),
so that∣∣∣∣∫ t

to

dt′eiωnno t
′ ∂H ′nno
∂t′

∣∣∣∣ ≈ ∣∣∣∣∂H ′nno∂t

∫ t

to

dt′eiωnno t
′
∣∣∣∣ =

∣∣∣∣∂H ′nno∂t

2 sin[ωnno(t− to)/2]
ωnno

∣∣∣∣ .
Hence the condition for the first term in Eq. (10.8.3) to dominate, and the adiabatic theorem
to hold is ∣∣∣∣ 1

ωnno

∂H ′nno
∂t

∣∣∣∣� ∣∣H ′nno∣∣ or
1

ωnno

∣∣∣∣ 1
H ′nno

∂H ′nno
∂t

∣∣∣∣� 1 . (10.8.8)

That is, the fractional change in the perturbation Ĥ ′ during periods ∼ 2π/ωnno of transition
from state no to other states n, should be small for the adiabatic approximation to hold. In
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this limit the probability of transition to a state with ωnno 6= 0 is determined by the second
term in Eq. (10.8.3)

pno→n =
∣∣∣∣ 1
~ωnno

∫ t

to

dt′eiωnno t
′ ∂H ′nno
∂t′

∣∣∣∣2 , (10.8.9)

which in view of the inequality (10.8.9), would be very small.
We have considered the adiabatic approximation for perturbations that are so weak

that perturbation theory can be used. However, the conclusions are valid even when the
perturbation changes by large amounts as long as the change takes over a time long enough
that the condition (10.8.9) is met. The basic idea of adiabatic approximation is that if
∂H ′/∂t is small enough then the wave function at any instant t = τ is given by the eigenvalue
equation

[Ĥo + Ĥ ′(τ)] |ψn(τ) 〉 = En(τ) |ψn(τ) 〉 . (10.8.10)

An important application of adiabatic approximation is in the collision of molecules in a
gas. Intermolecular forces come into play as the molecules approach one another. Since
the average speed of gas molecules is small compared to the electronic speeds in atoms,
the molecules do not move much during one electronic period. Hence the change in inter-
molecular forces in one electronic period is small and we may view intermolecular force
as being adiabatically switched on with regard to electronic transitions. On other hand
the adiabatic approximation may not be satisfied with respect to rotational or vibrational
periods. Consequently one finds that while rotational and vibrational states are altered in
the collision, electronic states remain largely unchanged.

As a way of illustrating adiabatic and sudden approximations and their relation to
perturbation theory, consider a charged linear oscillator, which is subjected to a perturbing
electric field

E(t) =
Eo√
π
e−t

2/τ2
, (10.8.11)

parallel to its axis. Here Eo is the peak value of the electric field and and τ characterizes
the time scale for the variation of the electric field. Suppose the oscillator is in the ground
state initially. The Hamiltonian for the linear oscillator can be written as

Ĥ =
p̂2

2m
+

1
2
mω2x̂2 − exEo e

−t2/τ2

√
π

= Ĥo +H ′(t) . (10.8.12)

Then the probability of transition (in first order of perturbation ) to state n is given by

pn =
1
~2

∣∣∣∣∣∣
∞∫
−∞

dt 〈n| Ĥ ′ |0 〉 eiωn0t

∣∣∣∣∣∣
2

=
e2E2

0 | 〈n| x̂ |0 〉 |2
~2

∣∣∣∣∣∣
∞∫
−∞

dte−t
2/τ2+iωn0t

∣∣∣∣∣∣
2

. (10.8.13)

The matrix element 〈n| x̂ |0 〉 according to Eq. (5.4.32) is given by

〈n| x̂ |0 〉 =

√
~

2mω
δn1 (10.8.14)

so that the only nonzero transition probability in first order is to state n = 1

p1 =
e2E2

0

2m~ω

∣∣∣∣∣∣
∞∫
−∞

dte−t
2/τ2+iω10t

∣∣∣∣∣∣
2

=
e2E2

0 τ
2

2m~ω
e−(ωτ)2/2 . (10.8.15)

Note that the quantity eE0τ is the impulse received by the oscillator. Hence the quantity
in front of the exponential is essentially the ratio of energy received by the oscillator to
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the quantum of energy. Transition to states with n > 1 is possible only in higher orders of
perturbation.

We can see that if τ � 1/ω, the probability for transition from the ground state is
exponentially small. This is the adiabatic limit. On the other hand if τ � 1/ω, the
perturbation aproaches a delta function and this probability is approximately constant and
given by

pn =
e2E2

0 τ
2

2m~ω
. (10.8.16)

This, of course, has to be small since we have used a perturbative treatment.

Sudden Approximation

In the other extreme case of time variation, where the perturbation is applied suddenly, the
derivative ∂H′

∂t becomes large at the instant of application. Then we can ignore the first term
(again working with small perturbation so that the perturbative treatment is applicable)
in Eq. (10.8.3). Taking out the comparatively slowly varying phase factor eiωnno t we can
carry out the integration to yield

an(t) =
H ′nno
~ωnno

eiωnno t (10.8.17)

with the transition probability given by

pno→n =
∣∣∣∣ H ′nno~ωnno

∣∣∣∣2 , (10.8.18)

where we have assumed that the interaction is zero for t < to and changes to value H ′

within a very short time interval thereafter. The condition for the sudden approximation
to be valid is, from Eq. (10.8.3),

1
ωnno

∣∣∣∣ 1
H ′nno

∂H ′nno
∂t

∣∣∣∣� 1 . (10.8.19)

This result is consistent with the formula (10.8.18) of Sec. 10.2 for the case of a perturbation
which is turned on suddenly at t = t0. The maximum value of transition probability (10.2.3)
for (n 6= no) is indeed given by Eq. (10.8.18) and for short times the transition to an
orthogonal state is negligible, being ∼ |Hnno |2T 2. The probability that the system will
make a transition to an orthogonal state, as a result of sudden change in the Hamiltonian,
is very small.

If the change in the Hamiltonian is sudden but small, we can speak of the transition
between the states of the original Hamiltonian. However, if the change is sudden and large
it is more meaningful to talk about the transition to the states of the new Hamiltonian.
These probabilities are also easily calculated. Consider a system initially in an eigenstate∣∣∣ψ(0)

no

〉
of the original Hamiltonian Ĥo and let the Hamiltonian change suddenly to Ĥ. If the

change occurs in a time short compared to the characteristic periods 2π/ωnno for transition
to other states, the state of the system is unable to vary and remains the same as before the
change. It is, however, not an eigenstate (stationary state) of the new Hamiltonian Ĥ. By
expanding the initial state |ψno 〉 in terms of the eigenstates |ψn 〉 of the new Hamiltonian
Ĥ as ∣∣∣ψ(0)

no

〉
=
∑
m

am |ψm 〉 , (10.8.20)
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we find the probability of transition from state
∣∣∣ψ(0)
no

〉
of the original Hamiltonian to state

|ψm 〉 of the new Hamiltonian is given by

pno→m = |am|2 =
∣∣∣〈ψm|ψ(0)

no 〉
∣∣∣2 . (10.8.21)

10.9 Second Order Effects

Second and higher order perturbation effects can play a significant role if the first order
matrix elements vanish. This is particularly important when periodic perturbations, such
as those induced by the electric field of a laser are experienced by atoms and molecules. In
many cases such effects are purposely enhanced, for example, in coherent light generation in
nonlinear optics. In such cases it becomes necessary to calculate the second order transition
probabilities. We shall confine ourselves to calculating second order transition probability
with periodic perturbations. Consider a periodic perturbation of the form

Ĥ ′(t) = Ĥ ′(0)e−iωt + Ĥ ′†eiωt , (10.9.22)

which is turned on at t = 0 and stays on for a long time. We assume, for simplicity
of writing, that Ĥ ′(0) ≡ Ĥ ′ is Hermitian. Then, from Eq. (10.1.18), the second order
transition amplitude for transition from an intial state i to some final state f will be

a
(2)
f = − 1

~2

∑
m

H ′fmH
′
mi

∫ t

0

dt2e
iωfmt1(e−iωt1 + eiωt1)

∫ t1

0

dt2e
iωmit2(e−iωt2 + eiωt2)

= − 1
~2

∑
m

H ′fmH
′
mi

∫ t

0

dt2e
iωfmt1(e−iωt1 + eiωt1)

×
[
ei(ωmi−ω)t1 − 1
i(ωmi − ω)

+
ei(ωmi+ω)t1 − 1
i(ωmi + ω)

]
. (10.9.23)

On carrying out this integration we get eight terms involving the frequencies ωfi ± 2ω,
ωmi ± ω, ωfm ± ω and ωfi. When the perturbation has been on for a time large compared
with the period of any these frequencies, a careful consideration of each of these terms,
following the discussion of the first order terms shows, that significant contribution to
second order amplitude comes from the term whose frequency vanishes. If we consider
transition between nondegenerate levels ωfi 6= 0 and ωmi ± ω and ωnm ± ω are nonzero,
i.e., the frequency of periodic perturbation does not match any of the transition frequecies,
then the only contribution can come from the terms involving ωfi ± 2ω:

a
(2)
f ≈ −

it

~2

∑
m

H ′fmH
′
mi

[
ei(ωfi−2ω)t/2

ωmi − ω
(

sin[(ωfi − 2ω)t/2]
(ωfi − 2ω)t/2

)
+
ei(ωfi+2ω)t/2

ωmi + ω

(
sin[(ωfi + 2ω)t/2]

(ωfi + 2ω)t/2

)]
. (10.9.24)

The first term dominates when ωfi ≈ 2ω (Ef > Ei) and the second term dominates when
−ωfi ≈ 2ω (Ef < Ei). We will see in Chapter 13 that these terms correspond to two-photon
absorption and emission processes respectively. Important observation here is that when
the condition ωfi ≈ 2ω is satisfied, the second order transition amplitude has the same time
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dependence as the first order contribution. Hence the transition probability for absorption
in second order is

|af |2 =
t2

~2

∣∣∣∣∣∑
m

H ′fmH
′
mi

~(ωmi − ω)

∣∣∣∣∣
2(

sin(ωfi − 2ω)t/2
(ωfi − 2ω)t/2

)2

. (10.9.25)

From this point onward we can use arguments similar to those used for first order transition.
For example, when the final level lies in the continuum, where the level density is ρ(Ef ),
the second order absorption rate is given by

w
(2)
i→f =

1
t

∫
∆Ef

dEf ρ(Ef )|a(2)
f |2 ,

=
t

~2

∫
∆Ef

ρ(Ef )dEf

∣∣∣∣∣∑
m

H ′fmH
′
mi

~(ωmi − ω)

∣∣∣∣∣
2(

sin[(ωfi − 2ω)t/2]
(ωfi − 2ω)t/2

)2

. (10.9.26)

The integrand is sharply peaked at ωfi = 2~ω since sin2(ωfi−2ω)t/2
(ωfi−2ω)t/2 → (2π/t)δ(ωfi − 2ω)

as t → ∞. We can then evaluate the integral at its and get the absorption rate in second
order as

w
(2)
i→f =

2π
~

∣∣∣∣∣∑
m

H ′fmH
′
mi

Em − Ei − ~ω

∣∣∣∣∣
2

ρ(Ef = Ei + ~ω) . (10.9.27)

Note that the second order rate in general is much smaller than the first order rate unless,
of course, the first order rate vanishes. The second term in Eq. (10.9.23) describes, for
example, the decay of an excited state which is forbidden in the first order. We shall
encounter more examples of second order processes in Chapter 13.

The range of processes described by the second order transition amplitude is much richer
than what we have described. If the interaction Hamiltonian has two frequencies ω1 and
ω2 present in it, the second order amplitude will have terms that will dominate when ωfi
equals second harmonic [±2ω1, ±2ω2] or sum and difference fequencies [ ±(ω1±ω2). These
terms play an important role in nonlinear optics.

Problems

1. A linear harmonic oscillator has time-dependent perturbation so that its total
Hamiltonian is given by

Ĥ =

{
p̂2

2m + 1
2kx̂

2 ≡ Ĥ0 for t < 0
Ĥ0 + εx̂e−t/τ for t > 0

where ε is a small number. Using the first order time-dependent perturbation theory
find the probability of transition of the oscillator from the ground state of its first
excited state in time t > 0.

2. Calculate the probability/time for the spontaneous radiative transition 2p → 1s in
a Hydrogen atom.
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3. A system with Hamiltonian Ĥ0 can exist in two states with energies E1 and E2

where E1 is the ground level. It is subjected to a time-dependent perturbation
Ĥ ′(t) = −µ̂Eo cosωt so that

〈E1| Ĥ ′(t) |E1 〉 =0 = 〈E2| Ĥ ′(t) |E2 〉
〈E1| Ĥ ′(t) |E2 〉 =− 1

2
~Ωo eiωt + c.c. = 〈E2| Ĥ ′(t) |E1 〉∗

where ~Ωo = µ12Eo = µ21Eo. Writing the state of the system as |Ψ 〉 =
a1(t)e−iE1t/~ |E1 〉 + a2(t)e−iE2t/~ |E2 〉, show that a1(t) and a2(t) obey the coupled
equations (k = 1, 2)

i~ ȧk(t) =
2∑

n=1

an(t) H ′kn(t) ei(Ek−En)t/~ .

Write the coupled equations explicitly and argue that the term with dominant
oscillations at frequency ω + ωo can be ignored compared to the term containing
oscillations at frequency ω−ωo where ωo = (E2−E1)/~. This is the so-called rotating
wave approximation (RWA).

Assuming that the system is initially (t = 0) in the ground state, find the probabilities
|a1(t)|2 and |a2(t)|2 that, the states |E1 〉 and |E2 〉 are populated, by solving the
coupled equations for a1 and a2 in the RWA. Define short time. How do these
probabilities depend on time for very short times?

4. Show that when an atom is placed in a radiation field with ∇ · A(r, t) = 0, its
Hamiltonian is modified (in the coordinate representation) from H0 = − ~2

2m∇2 +V (r)
to H = H0 + i~e

m A ·∇. Show also that the perturbation term is Hermitian.

5. A Hydrogen atom in its ground state (1s) is subjected to the following time-dependent
homogeneous electric field

E(t) =

{
0 , t < 0
E0e

−t/τ , t > 0 .

Find the probability that the atom is in 2s state after a long time.

Find also the corresponding probability that it is in one of the 2p states. Hint:
Evaluate |an(t)|2 [from Eq. (10.1.17)] for the two cases in the limit t→∞.

6. A Hydrogen atom in its ground state is subjected to the electric field of a UV laser
E(t) = E0 sin(ko ·r−ωt) with ω > me4/2(4πε0)2~3. What is the probability per unit
time that the atom will be ionized?

7. A Hydrogen atom in its first excited state (2p) is placed in a cavity at temperature T .
At what temperature of the cavity are the probabilities of spontaneous and induced
emissions 2p→ 1s equal?

8. A Tritium atom (H3) nucleus has two neutrons and one proton. It can decay by
β-emission to a Helium nucleus with two protons and one neutron. If a Tritium atom
in its ground state decays by β emission, calculate the probability that the He+

3 atom
is produced in an excited state given that the kinetic energy of the emitted electron
(β particle) is about 16 keV and that both H3 and He+

3 are hydrogenic atoms.
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9. A charged linear harmonic oscilator in its ground state is subjected to a electric field
which is suddenly turned on at t = 0 from 0 to some value Eo (not necesarily small).
Find the probability of excitation of the n-th level of the final Hamiltonian. Hint:
The new Hamiltonian can be written as

Ĥ =
p̂2

2m
+

1
2
mω2x̂2 − ex̂E0 =

p̂2

2m
+

1
2
mω2

(
x̂− eEo

mω2

)2

− e2E2
o

2mω2
.

Answer: pn = n̄n

n! e
−n̄, where n̄ = e2E2

o/2m~ω3. Show that in the weak field limit this
agrees with the perturbative result (10.8.16).

10. Consider a perturbation which is constant H ′ over an interval 0 ≤ t ≤ T and zero
outside this interval. Derive an expression for the second order transition rate when
the final state is part of a continuum of states. Show that correct to second order, the
transition rate is given by

wi→f =
2π
~

∣∣∣∣∣H ′fi +
∑
m

H ′fmH
′
mi

Ei − Em

∣∣∣∣∣
2

ρ(Ef ) . (10.9.28)
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11

THE THREE-BODY PROBLEM

11.1 Introduction

Systems of many particles are common in nature. The complexity of the corresponding
quantum mechanical problem increases rapidly as the number of particles increases. We have
seen that it is possible to deal with two-body quantum systems effectively by transforming
to center-of-mass coordinates, at least within the framework of non-relativistic quantum
mechanics. The complexity of the problem increases enormously when we consider systems
of three particles. Not only are we dealing with an expanded phase space, but also the task
of selecting, out of many possibilities, the correct variables to describe the system. Among
the important three-body systems that require a quantum mechanical treatment are the
triton (bound state of two neutrons and a proton), the Helium atom (bound state of two
electrons and a point nucleus) and numerous nuclear and atomic scattering events in which
three particles participate. Despite the complexity of the problem, considerable progress
has been made. This chapter describes some approaches to the three-body bound state
problem in quantum mechanics.

The early methods to tackle the three-body bound state problem were based on the
variational approach. In these methods, a trial function ψ of the coordinate of the particles
involving several flexible parameters is chosen. (In some cases the choice may be suggested
by the assumed form of two-body interaction between pairs of particles.) The Hamiltonian
H of the three-body system being known, the energy integral

∫
Ψ∗HΨdτ is expressed in

terms of the variational parameters, which are adjusted so as to minimize the value of the
energy integral. The best set of values for the parameters thus found then gives the most
appropriate ground state wave function for the system and the value of this integral for these
values of the parameters gives the corresponding ground state energy. From the variational
ground state wave function, other quantities relevant to the ground state of the system can
be calculated.

11.2 Eyges Approach

Among the earliest non-variational approaches to the three-body bound state were those
of Eyges (1961), Mitra (1962) and Faddeev (1962). Eyges considered a system of three
identical particles with an attractive interaction between the pairs and wrote down the
three-body Schrödinger equation for the bound state in the coordinate representation and
proposed the following structure for the total three-body bound state wave function

Ψ(R) = ψ(r12,ρ3) + ψ(r23,ρ1) + ψ(r31,ρ2) , (11.2.1)

377
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where R specifies the spatial configuration of the three particles which can alternatively be
specified by the set of vectors (r12,ρ3) or (r23,ρ1) or (r31,ρ2). Here ρk is the coordinate
of the k-th particle with respect to the center-of-mass of the other two and rij ≡ rk is the
relative coordinate of ij-th (or k-th) pair. According to Eyges the function ψ(r,ρ) can be
assumed have the same form for each set of coordinates. Eyges derived an integral equation
for ψ(r,ρ) and Fourier transformed his results to write his equations in the momentum
representation.

We present a derivation of Eyges equation. Our approach differs slightly from Eyges’
original derivation as we work in the momentum representation from the very beginning.
The Schrödinger equation for the bound state of three particles having the same mass in
the center-of-mass frame is (

Ĥ0 +
3∑
i=1

V̂i

)
|Φ〉 = E |Φ〉 ,

(
Ĥ0 + α2

0

)
|Φ〉 = −

3∑
i=1

V̂i |Φ〉 . (11.2.2)

Here the bound state energy E = −~2α2
0/M), where M is the common mass of the particles,

has been written as E = −α2
0 by choosing units such that ~ = 1 = M . This equation may

be written in the momentum representation by choosing the basis set 〈P | to be the set of
continuum states of three particles1

〈P | ≡ 〈q1,p1| ≡ 〈q2,p2| ≡ 〈q3,p3|
where qk is the momentum of k-th particle in the center-of-mass frame and pk is the reduced
center-of-mass momentum of the ij (or k-th) pair. Any of the three sets of vectors can be
expressed in terms of any other set.

In the momentum basis, the three-particle equations assume the form of an integral
equation(

p2
k +

3
4
q2
k + α2

0

)
Φ (qk,pk)

= −
∫∫
〈qk,pk| V̂1 + V̂2 + V̂3 |q′k,p′k〉 d3q′kd

3p′kΦ (q′k,p
′
k) , (11.2.3a)

where Φ (qk,pk) = 〈qk,pk|Φ〉 . (11.2.3b)

1Explicitly, qk = P k and pk ≡ pij =
mjP i−miP j
mi+mj

, where P 1,P 2,P 3 are the momenta of the three

particles in the center-of-mass frame. The free Hamiltonian Ĥ0 is given by

H0 =
P 2

1

2m1
+

P2

2m2
+

P 2
3

2m3
=

q2k
2nk

+
p2k

2µk
, (k = 1, 2, 3) ,

where

nk =
mk(mi +mj)

mi +mj +mk
and µk ≡ µij =

mimj

mi +mj
.

If the three particles have the same mass then

nk =
2M

3
, µk =

M

2
and H0 =

1

M
(p2k +

3

4
q2k) = p2k +

3

4
q2k in units ~ = 1 = M.

Expression of any one set of vectors in terms of the other set is very simple in this case. For example,

q1 = p3 −
q3

2
, p1 = −

1

2
p3 −

3

4
q3 ; q2 = −p3 −

1

2
q3 , p2 = −

p3

2
+

3

4
q3 .

In these sets of equations we can permute the indices 1,2,3 in cyclic order.
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Following Eyges, we assume the following form for the complete three-body wave function
in the momentum space

Φ (qk,pk) = ϕ (q1,p1) + ϕ (q2,p2) + ϕ (q3,p3) . (11.2.4)

If we also assume that(
p2

1 +
3
4
q2
1 + α2

0

)
φ (q1,p1) =

−
∫∫
〈q1,p1| V̂1 |q′1,p′1〉 d3q′1d

3p′1 {φ (q′1,p
′
1) + φ (q′2,p

′
2) + φ (q′3,p

′
3)} , (11.2.5)(

p2
2 +

3
4
q2
2 + α2

0

)
φ (q2,p2) =

−
∫∫
〈q2,p2| V̂2 |q′2,p′2〉 d3q′2d

3p′2 {φ (q′1,p
′
1) + φ (q′2,p

′
2) + φ (q′3,p

′
3)} , (11.2.6)(

p2
3 +

3
4
q2
3 + α2

0

)
φ (q3,p3) =

−
∫∫
〈q3,p3| V̂3 |q′3,p′3〉 d3q′3d

3p′3 {φ (q′1,p
′
1) + φ (q′2,p

′
2) + φ (q′3,p

′
3)} , (11.2.7)

then by adding these equations together we get back the three-particle Schrödinger equation
(11.2.3a).

The structure of these three equations being the same, one can choose any one of them
(say Eq. (11.2.7)) as the typical integral equation for φ. Now

〈q3,p3| V̂3 |q′3,p′3〉 =
∫∫∫∫

〈q3,p3|ρ3, r3〉 d3ρ3d
3r3 〈ρ3, r3| V̂3 |ρ′3, r′〉

d3ρ′3d
3r′3〈ρ′3, r′3|q′3,p′3〉

where the set of coordinate states |ρ3, r3〉 provides a basis2for the coordinate representation
of state and observables. Here ρ3 is the position of particle 3 in the center-of-mass of the
pair (1, 2) while r3 ≡ r12 is the relative coordinate of the pair. Further, since V̂3 is a two-
body operator in a three-body space (i.e., the space scanned by three particle states) and
only the pair 3 interacts, ρ3 and ρ′3 dependence in the matrix element 〈ρ3, r3| V̂3 |ρ′3, r′3〉
can be factored out as a three-dimensional delta function and we have

〈ρ3, r3| V̂3 |ρ′3, r′3〉 = δ3 (ρ3 − ρ′3) 〈r3| v̂3 |r′3〉

where v̂3 is two-body operator in a two-body space.3 Further if the interaction V̂3 is local,
we have

〈r3|v̂3|r′3〉 = v3(r3)δ3 (r3 − r′3)

where v3(r3) is the conventional potential, i.e., a function of the relative coordinate r3 of
the interacting pair. Also since

〈ρ3, r3|q3,p3〉 =
eiq3·ρ3

(2π)3/2

eip3·r3

(2π)3/2

2|ρ3, r3〉 ≡ |ρ2, r2〉 ≡ |ρ1, r1〉 since the three sets of vectors are related.
3Operators in three-body space will be denoted by capital letters while those in two-body space will be
denoted by small letters.
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where we have taken ~ = 1, we can write

〈q3,p3| V̂3 |q′3,p′3〉 =
1

(2π)6

∫∫
ei ρ3.(q

′
3−q3)eir3.(p

′
3−p3) v3(r3) d3ρ3d

3r3 ,

=
δ3(q′3 − q3)

(2π)3

∫
v3(r) d3r ei r.(p

′
3−p3) . (11.2.8)

We can drop the suffix 3 on v3(r) since we expect the interaction between all particle pairs
to be similar. Using Eq. (11.2.8) we can write Eq. (11.2.7) as(

p2
3 +

3
4
q2
3 + α2

0

)
φ(q3,p3) =

−1
(2π)3

∫
v(r)d3r

∫∫
ei r.(p

′
3−p3)

× δ3(q′3 − q3)d3q′3d
3p′3 [φ(q′1,p

′
1) + φ(q′2,p

′
2) + φ(q′3,p

′
3)]

and since d3q′3d
3p′3 = d3q′2d

3p′2 = d3q′1d
3p′1, we can rewrite the above equation as(

p2
3 +

3
4
q2
3 + α2

0

)
φ(q3,p3) = − 1

(2π)3

∫
v(r)d3r

×
[∫∫

d3q′3d
3p′3 e

i r·(p′3−p3)δ3(q′3 − q3)φ(q′3,p
′
3)

+
∫∫

d3q′1d
3p′1e

i r·(− 1
2p
′
1+ 3

4q
′
1+ 1

2p1− 3
4q1)δ3

(
p1 +

1
2
q1 − p′1 −

1
2
q′1

)
φ(q′1,p

′
1)

+
∫∫

d3q′2d
3p′2e

i r·(− 1
2p
′
2− 3

4q
′
2+ 1

2p2+ 3
4q2)δ3

(
−p2 +

1
2
q2 + p′2 −

1
2
q′2

)
φ(q′2,p

′
2)
]

where, in the second and third integrals we have expressed p′3, q
′
3;p3, q3 in terms of

p′1, q
′
1;p1, q1 and p′2, q

′
2;p2, q2, respectively. Using the identity δ3(s/2) = 8 δ3(s) and

integrating the first, second and third terms over q′3, q
′
1, q
′
2, respectively, and replacing,

in the three integrals, the dummy variables p′3,p
′
1,p
′
2, respectively, by p′ we get(

p2
3 +

3
4
q2
3 + α2

0

)
φ(q3,p3) = − 1

(2π)3

∫
v(r)d3r

∫
d3p′

×
{
ei r.(p

′−p3)φ (q3,p
′) + 8 ei r·(2p1−2p′)φ (2p1 − 2p′ + q1, p

′)

+ 8 ei r.(2p2−2p′) φ(2p′ − 2p2 + q2 , p
′)
}
.

We may now express the momenta p1, q1 and p2, q2 in terms of p3, q3 and write(
p2

3 +
3
4
q2
3 + α2

0

)
φ(q3,p3) = − 1

(2π)3

∫
v(r)d3r

∫
d3p′

×
{
ei r.(p

′−p3)φ (q3,p
′) + 8ei r.(−2p′−p3− 3

2q3)φ (−2q3 − 2p′, p′)

+ 8 e i r.(−2p′−p3+ 3
2q3) φ (−2q3 + 2p′, p′)

}
.

Changing the dummy variables in the second and third integrals from p′ to −p′2 (d3p′ →
1
8d

3p′), and replacing the vectors q3,p3 on both sides by just q,p, we get(
p2 +

3
4
q2 + α2

0

)
φ(q,p) = − 1

(2π)3

∫
v(r) d3r

∫
d3p′

×
{
e i r.(p

′−p)φ (q,p′) + ei r.(p
′− 3

2q−p)φ

(
−2q + p′, −p

′

2

)
+ ei r·(−p+ 3

2q+p′) φ

(
−2q − p′, −p

′

2

)}
. (11.2.9)
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Equation (11.2.9) was derived by Eyges4.
By changing the variable of integration in the second integral by letting p′−2q → p′ and

in the third integral by letting −p′ − 2q → p′ and also change the order of integration over
the coordinate and momentum space, we can put Eyges’ equation (11.2.9) in the form(

p2 +
3
4
q2 + α2

0

)
φ(q,p) = −

∫
d3p′ {φ (q, p′) 〈p| v̂ |p′〉

+φ (p′, −p′/2− q) 〈p| v̂ |p′ + q/2〉
+φ (p′, p′/2 + q) 〈p| v̂ |−p′ − q/2〉} (11.2.10)

where

〈p|v̂|p′〉 ≡ 1
(2π)3

∫
v(r) d3r e i r.(p

′−p) = vt(p− p′) (11.2.11)

and vt(p − p′) can be looked upon as the Fourier transform of the potential function
v(r). The form (11.2.10) of Eyges’ equation can be derived directly from (11.2.7) by using
the identity 〈q3,p3| V̂3 |q′3,p′3〉 = δ3 (q3 − q′3) 〈p3| v̂3 |p′3〉 and changing dummy variables,
without making any assumption about the local character of the two-body potential.

11.3 Mitra’s Approach

Mitra also solved the time-independent Schrödinger equation for the bound state of three
particles of the same mass using, for the pair interactions, non-local separable potentials
introduced by Yamaguchi (1951) [see Sec. 3.6, Chapter 3]. He also worked in momentum
representation choosing, for the basis states, the continuum of free states |P 1,P 2,P 3 〉
where P 1,P 2,P 3 are the momenta of the three particles in the center-of-mass frame so
that P 1 +P 2 +P 3 = 0. Since only two of these momenta are independent, we can choose
one of the following alternative sets of momentum variables

P 12 = P 1 + P 2 and p12 =
P 2 − P 1

2
,

or P 23 = P 2 + P 3 and p23 =
P 3 − P 2

2
,

or P 31 = P 3 + P 1 and p31 =
P 1 − P 3

2
.

These are essentially the sets of momenta for three free particles that we had introduced in
the context of Eyges’ equations (viz., q3,p3 or q1,p1 or q2,p2), except for a change in the
signs of both momentum variables.

The three-body Schrödinger equation in the center-of-mass frame is

Ĥ |Ψ〉 ≡
(
P̂ 2

1 + P̂ 2
2 + P̂ 2

3

2M
+ V̂12 + V̂23 + V̂31

)
|Ψ〉 = E |Ψ〉 .

4The symbols K2, k, and κ in Eyges’ notation stand for α2
0, p, and q in our notation. Also φ(k,κ) of Eyges

stands for φ(κ,k ) ≡ φ(q,p) in our notation. Discrepancies in signs are due to his using r13 instead of r31.
(The permutation of indices should be cyclic.)
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In the momentum basis |P s 〉, where P s stands for either one of the sets of moments P 12,p12

or P 23,p23 or P 31,p31, the above equation may be written as5

(
P 2

1 + P 2
2 + P 2

3

2M
+
α2

0

M

)
〈P s|Ψ〉 = −

∫
〈P s|V̂12 + V̂23 + V̂31

∣∣P ′s〉 d3P ′s
〈
P ′s|Ψ

〉
, (11.3.1)

where −α2
0
M = E is the three-body energy in the center-of-mass frame. Also d3P ′s =

d3P ′12d
3 p′12 = d3P ′23d

3p′23 = d3P ′31d
3p′31. If we assume that V̂np 6= V̂nn, let 1 and 2 denote

the neutrons and 3 denote the proton in the triton and assume the two-body interaction to
be non-local and separable (Yamaguchi form), then

〈P |V̂12|P ′〉 = 〈P 12,p12|V̂nn|P ′12,p
′
12〉

= δ3
(
P ′12 − P 12

) 〈p12| v̂nn |p′12〉

= δ3
(
P ′12 − P 12

) (−λ1

M

)
f (p12) f (p′12) . (11.3.2)

Similarly, 〈P |V̂31|P ′〉 = δ3
(
P ′31 − P 31

) 〈p31| v̂np |p′31〉

= δ3
(
P ′31 − P 31

) (−λ0

M

)
g (p31) g (p′31) , (11.3.3)

and 〈P | V̂23

∣∣P ′〉 = δ3
(
P ′23 − P 23

) (−λ0

M

)
g (p23) g (p′23) . (11.3.4)

The three-dimensional delta function is factored out because one of the three particles in
the interaction is a spectator, meaning that it does not interact and is not affected. For
example in Eq. (11.3.2) the particle 3 with momentum P 3 = −P 12 is a spectator, hence the
term δ3

(
P 3 − P ′3

)
= δ3

(
P ′12 − P 12

)
is factored out. Substituting the forms of interactions

in the three-body Schrödinger equation we get

1
M

(
P 2

1 + P 2
2 + P 1 · P 2 + α2

0

)
Ψ (P 1,P 2)

=
(
λ1

M

) ∫
d3p′12 f (p12) f (p′12) [Ψ

(
P ′1,P

′
2

)
]P ′12=P 12

+
(
λ0

M

) ∫
d3p′31 g (p31)

[
g (p′31) Ψ

(
P ′1,P

′
2

)]
P ′31=P 31

+
(
λ0

M

) ∫
d3p′23 g (p23) [g (p′23) Ψ

(
P ′1,P

′
2

)
]P ′23=P 23 (11.3.5)

where, on the left-hand side we have put P 3 = − (P 1 + P 2) and the right-hand side
has been simplified using the property of delta functions. Now, let us designate P 12 as
P , p12 as p and p′12 as p′ in the first integral, then P ′1 = P ′12

2 − p′12 → P
2 − p′ and

P ′2 = P 12
2 + p′12 → P

2 + p′, since P ′12 = P 12 = P . In the second integral P ′31 = P 31

implies P ′2 = P 2. Also p′31 = P ′1 + P ′2
2 = P ′1 + P 2

2 and d3p′31 → d3P ′1. In the third integral

P ′23 → P 23 implies P ′1 = P 1, p′23 = −P ′2 − P ′1
2 = −P ′2 − P 1

2 and d3p′23 → d3P ′2. Hence

5 |P s 〉 ≡ |P 1,P 2 〉 ≡ |P 12,p12 〉 ≡ |P 23,p23 〉 ≡ |P 31,p31 〉.
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Eq. (11.3.5) takes the form

(P 2
1 + P 2

2 + P 1 · P 2 + α2
0) Ψ (P 1,P 2) = λ1

∫
d3p′ f(p) f(p′) Ψ

(
P

2
− p′, P

2
+ p′

)
+λ0

∫
d3P ′1 g

(
P 1 +

P 2

2

)
g

(
P ′1 +

P 2

2

)
Ψ
(
P ′1,P 2

)
+λ0

∫
d3P ′2 g

(
−P 2 − P 1

2

)
g

(
−P ′2 −

P 1

2

)
Ψ
(
P 1,P

′
2

)
. (11.3.6)

If we consider the two-body interaction to be in the S-state, we can assume g (p) = g(p)
and f (p) = f(p). By observation and intuition, Mitra found that Ψ (P 1,P 2) could have
the following structure

Ψ (P 1,P 2) = D−1 (P 1,P 2)[
g

(
P 1 +

1
2
P 2

)
φ (P 2) + f(p)χ(P ) + g

(
P 2 +

1
2
P 1

)
φ(P 1)

]
, (11.3.7)

where D (P 1,P 2) =
(
P 2

1 + P 2
2 + P 1 · P 2 + α2

0

)
. (11.3.8)

The functions φ (P 1), φ (P 2) and χ (P ) are called the spectator functions. By substituting
the structure for the three-body wave function Ψ into Eq. (11.3.6) we arrive at the following
coupled integral equations for the spectator functions φ and χ which involve the form factors
g and f of the separable interaction:

[λ−1
0 − h0(P 2)]φ(P 2) =

∫
d3ξ D−1(P 2, ξ)

[
g(P 2 +

1
2
ξ)g(ξ +

1
2
P 2) φ(ξ)

+g(ξ +
1
2
P 2)f(P 2 +

1
2
ξ)χ(ξ)

]
, (11.3.9)

(λ−1
1 + h1(P ))χ(P ) = 2

∫
d3ξ D−1(P , ξ)f(ξ +

1
2
P )g(P +

1
2
ξ)φ(ξ) , (11.3.10)

where h0(P ) =
∫

d3p

(
p2 +

3
4
P 2 + α2

0

)−1

g2(p) (11.3.11)

and h1(P ) =
∫

d3p

(
p2 +

3
4
P 2 + α2

0

)−1

f2(p) . (11.3.12)

We note that in one of these equations (11.3.10) the function χ(P ) is expressed as an
integral involving the function φ only. Hence by substituting for χ into Eq. (11.3.9) one
can get a single integral equation for φ which is amenable to solution. Using this solution in
Eq. (11.3.10) to determine the function χ one can get finally the three-body wave function
from Eq. (11.3.7). Detailed calculations for the three-body bound states were made by
Mitra and his collaborators, who also considered spin dependence and tensor components
in nuclear interaction (of Yamaguchi form) to calculate binding energy of 3H, Coulomb
energy of 3He and electro-magnetic form factors of 3H and 3He.

The structure (11.3.7) of Mitra’s three-body bound state wave function Ψ is of
considerable interest. It is a linear combination of three terms and each one turns out
to be a product of one- and two-particle wave functions. For instance the first term is the
product of two functions

g(P 1 +
1
2
P 2)D−1 (P 1,P 2) ≡ g (p31)

(
p2

31 +
3
4
P 2

2 + α2
0

)−1

and φ (P 2) .
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The first factor may be regarded as the two-body bound state wave function6 of particles 1
and 3 with

(− 3
4P

2
2 − α2

0

)
as the energy associated with the particle pair (1,3). The second

factor φ(P 2) may be regarded as the spectator function of particle 2 in the presence of the
pair (1,3).

A similar interpretation holds for the function χ(P ) which may be looked upon as the
spectator wave function of particle 3 in the presence of the pair (1,2) while

D−1 (P 1,P 2) f(p) ≡ f (p12)
p2

12 + 3
4P

2
3 + α2

0

plays the role of the two-body wave function of particle pair 1,2 with bound state energy
equal to (−α2

0 − 3
4P

2
3 ). Similarly, in the third term, φ(P 1) is the spectator wave function

of particle 1 in the presence of the pair (2,3) while

D−1 (P 1,P 2) g(P 2 +
1
2
P 1) ≡

(
p2

23 +
3
4
P 2

1 + α0
2

)−1

g (p23)

may be looked upon as the two-body bound state wave function of particle 2 and 3 with
bound state energy

(−α2
0 − 3

4P
2
1

)
. The complete three-body wave function is a linear

combination of the products of one- and two-particle wave functions.
If, in Mitra’s treatment of the triton problem, the n− p and n− n interactions are taken

to be similar, i.e.,

〈p|v̂np|p′〉 = 〈p|v̂nn|p′〉 = − λ

M
g(p)g(p′),

and the neutron and proton are assigned the same mass, then we can take

φ(p) = χ(p)

and Ψ (P 1,P 2) = D−1 (P 1,P 2)
{
g

(
P 1 +

1
2
P 2

)
χ (P 2) + g (p) χ (P )

+ g

(
P 2 +

1
2
P 1

)
χ (P 1)

}
, (11.3.13)

where the spectator function χ(P ) satisfies the integral equation7

(λ−1
0 − h0(P ))χ(P ) = 2

∫
d3ξ D

−1
(P , ξ)g

(
ξ +

1
2
P

)
g

(
P +

1
2
ξ

)
χ(ξ) . (11.3.14)

The vectors

P , p, P 1 +
1
2
P 2 , P 2 +

1
2
P 1 ,

P

2
− p , P

2
+ p

6It may be recalled [Sec. 3.6, Chapter 3] that with the use of the non-local separable potential the two-body
bound state wave function in the momentum representation is given by

φ(p) = N g(p)/(p2 +B),

where −B is the energy associated with the particle pair, p being the relative momentum of the pair and
g(p) is the form factor of the separable interaction.
7With the substitutions λ1 = λ0, f = g, φ = χ and h1(P ) = h0(P ), both the equations (11.3.9) and
(11.3.10) reduce to Eq. (11.3.14).
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in Mitra’s notation are essentially equal to −q3, −p3, −p2, p1, q1, q2, respectively, of our
earlier notation. Hence, according to our earlier notation,

Ψ (P 1,P 2) =
[

g (−p2)
p2

2 + 3
4q

2
2 + α2

0

χ (q2) +
g (−p3)

p2
3 + 3

4q
2
3 + α2

0

χ (−q3)

+
g (p1)

p2
1 + 3

4q
2
1 + α2

0

χ (q1)
]

(11.3.15)

or Ψ (P 1,P 2) = φ (p2, q2) + φ (p3, q3) + φ (p1, q1) , (11.3.16)

where

φ (p, q) =
g (p)

p2 + 3
4q

2 + α2
0

χ (q) ,

and we have assumed that in the S-state, g(p) = g(|p|) = g(p) and χ(q) = χ(|q|) = χ(q).
Equation (11.3.16) has precisely the structure of the three-body wave function suggested
by Eyges but with the additional provision due to Mitra that each of the three terms may
be looked upon as a product of bound state of two particles and the spectator function of
the third particle.

11.4 Faddeev’s Approach

It was thought that a straightforward generalization of the two-body Lippmann-Schwinger
(LS) equation [see Chapter 9, Sec. 9.7] for a three-body system might provide a basis for
the description of the three-body problem. Thus in analogy with the two-body LS equation
[Chapter 9, Eq. (9.9.8)], the three-body LS equation may be written as

T̂ (z) = V̂ + V̂ Ĝ0(z)T̂ (z) (11.4.1)

where T̂ (z) is the three-body transition operator,

V̂ = V̂12 + V̂23 + V̂31 ≡ V̂3 + V̂1 + V̂2

is the sum of all the two-body interactions in three-body space8 and Ĝ0(z) = (z − Ĥ0)−1

is the free resolvent operator in three-body space, Ĥ0 being the free Hamiltonian of three
particles.

Written in momentum representation9Eq. (11.4.1) assumes the form

〈qk,pk| T̂ (z) |q′k,p′k〉 = 〈qk,pk|V̂ |q′k,p′k〉∫∫
〈qk,pk|V̂ G0(z)|q′′k ,p′′k〉 d3q′′k d

3p′′k〈q′′k ,p′′k |T̂ (z)|q′k,p′k〉. (11.4.2)

8It may be recalled that V̂k’s are two-body operators in the space spanned by three-body states in
the sense that only two of the particles (k-th pair) interact and the third (k-th particle) remains free.

T̂k(z) = V̂k + VkG0(z)Tk(z) is also a two-body operator in a three-body space. On the other hand, T̂ (z)

and Ĝ0(z) are three-body operators in three-body space. As mentioned earlier we use capital letters to
denote operators in three-body space, while small letters are used to denote operators in two-body space.
Thus 〈qk,pk|V̂k|q′k,p

′
k〉 = δ3

`
qk − q′k

´
〈pk|v̂k|p′k〉 and 〈pk, qk|T̂k(z)|p′k, q

′
k〉 = δ3

`
qk − q′k

´
〈pk|t̂k|p′k〉,

the delta function being factored out because the kth particle is a spectator.
9The momenta pk and qk for the basis states are as defined in the context of Eyges’ equations.
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The kernel of this integral equation is 〈qk,pk|V̂ Ĝ0(z)|q′′k ,p′′k〉. For the solution of an integral
equation like (11.4.2) to exist, the Schmidt norm of its kernel,

N =
∫∫∫∫ ∣∣∣〈qk,pk| V̂ Ĝ0(z) |q′′k ,p′′k〉

∣∣∣2d3qk d
3pk d

3q′′k d
3p′′k , (11.4.3)

must be bounded. The kernel may be expressed as10

〈qk,pk|V̂kG0(z)|q′′k ,p′′k〉 =
〈pk|v̂k|p′′k〉δ3(qk − q′′k)

z − p
′′2
k

2µk
− q

′′2
k

2nk

. (11.4.4)

The integrand |〈qk,pk|V̂kG0(z)|q′′k ,p′′k〉|2 thus involves the square of the delta function
δ3 (qk − q′′k). Hence the Schmidt norm would not be bounded and the three-body LS
equation would not be solvable.

Another problem with the three-body LS equation is that the solution, if it existed, would
be non-unique. To see this we start with the operator identity11

Ĝ(z) = Ĝ0(z) + Ĝ0(z) V̂ Ĝ(z) , (9.9.9*)

where G(z) = (z − Ĥ)−1 = (z − Ĥ0 − V̂1 − V̂2 − V̂3)−1 is the full resolvent operator and
z = E0 + iε. Let us introduce the operator

P̂n = lim
ε→0

+iε Ĝ(En + iε) . (11.4.5)

We can interpret the operator P̂n as the projection operator for the state |Ψn〉 where |Ψn〉 is
the (three-body) eigenstate of the full Hamiltonian Ĥ = Ĥ0 + V̂ belonging to the eigenvalue
En such that

Ĥ |Ψn 〉 = En |Ψn 〉 . (11.4.6)

In other words, P̂n can project out the state |Ψn〉 when it operates on the state |Φn〉 which
is a (three-body) eigenstate of the free Hamiltonian Ĥ0, belonging to the same eigenvalue
En. To check this we let Ĥ operate on the projected state P̂n |Φn〉:

ĤP̂n |Φn〉 = Ĥ lim
ε→0+

iεG(En + iε) |Φn〉
= lim

ε→0+
iε(En + iε− (En + iε− Ĥ)) Ĝ(En + iε) |Φn〉

= lim
ε→0+

{
(En + iε)P̂n|Φn〉 − iε |Φn〉

}
= En P̂n |Φn〉 .

Hence the projected state P̂n |Φn〉 may be identified with the state |Ψn〉. Now, if we let
both sides of the operator equation (9.9.4*), pre-multiplied by iε, operate on |Φn〉, we get

10Since
˛̨
q′′k ,p

′′
k

¸
is an eigenstate of Ĥ0,

Ĝ0(z)
˛̨
q′′k ,p

′′
k

¸
=

 
z −

p′′k
2

2µk
−
q′′k

2

2nk

!−1 ˛̨
q′′k ,p

′′
k

¸
.

11This identity may be obtained from the three-body LS equation T̂ (z) = V̂ + Ĝ0(z)V̂ T̂ (z) in the same way
as the corresponding identity for the two-body operators in two-body space, viz., ĝ(z) = ĝ0(z) + ĝ0(z)v̂ĝ(z)
was derived from the two-body LS equation t̂(z) = v̂ + v̂ĝ0(z) t̂(z) [Chapter 9, Sec. 9.9]. Other identities

like Ĝ(z)V̂ = Ĝ0(z) + T̂ (z) and V̂ Ĝ(z) = T̂ (z) Ĝ0(z), may be similarly derived.



THE THREE-BODY PROBLEM 387

in the limit ε→ 0,

lim
ε→0+

iεĜ(En + iε) |Φn〉 = lim
ε→0+

{
iεĜ0(En + iε) |Φn〉

+ Ĝ0(En + iε)V̂ iεĜ(En + iε) |Φn〉 }
or |Ψn〉 = |Φn〉+ Ĝ0(En + iε)V̂ |Ψn〉 . (11.4.7)

We can look upon Eq. (11.4.7) as three-body Lippmann-Schwinger equation in terms of
three-body states or as state version of the LS equation.

Now, let us define
∣∣∣Φ(i)
n

〉
to be an eigenstate of Ĥi = Ĥ0 + V̂i belonging to the same

eigenvalue En. (This is possible because, to the energy of the bound (i-th) pair, we can add
the energy of the i-th particle so that the total energy is En.) If we let both sides of the
operator equation (9.9.9*)12, pre-multiplied by iε, operate on

∣∣∣Φ(i)
n

〉
then we get

iεG(En + iε)
∣∣∣Φ(i)
n

〉
= iε Ĝ0(En + iε)

∣∣∣Φ(i)
n

〉
+ G0(En + iε) V̂ iεG(En + iε)

∣∣∣Φ(i)
n

〉
.

The first term on the right-hand side is zero because(
Ĥ0 − En

) ∣∣∣Φ(i)
n

〉
6= 0 .

Using this result and defining a state∣∣∣Ψ(i)
n

〉
≡ lim
ε→0+

iεG(En + iε)
∣∣∣Φ(i)
n

〉
,

we can write the above equation as∣∣∣Ψ(i)
n

〉
= G0(En + iε) V̂

∣∣∣Ψ(i)
n

〉
. (11.4.8)

Hence, in addition to the inhomogeneous integral equation (11.4.7), we also have a
homogeneous integral equation (11.4.8). The existence of the homogeneous equation (11.4.8)
implies that the inhomogeneous equation (11.4.7) cannot have a unique solution, because
to a solution of the inhomogeneous equation the solution of the homogeneous equation can
always be added and the result will still be a solution of the inhomogeneous equation. Such
arbitrariness in the solution of an integral equation is undesirable because, while boundary
conditions have to be imposed on the solution of a differential equation, they are inherent
in an integral equation. The arbitrariness in the solution of Eq. (11.4.7) would imply that,
among several available solutions, a solution is to be sought through additional requirements.
Such subsidiary conditions would destroy the usefulness of an integral equation.

To circumvent the difficulties associated with the solution of the three-body Lippmann-
Schwinger equation, Faddeev decomposed the three-body operator T̂ (z) as 13

T̂ (z) =
∑
i

∑
j

τ̂ij(z), (11.4.9)

where
τ̂ij(z) = δij V̂i + V̂iĜ(z)V̂j . (11.4.10)

12See Sec. 9.9.
13This derivation follows T. A. Osborn, SLAC Report no.79 (December 1967) prepared under AEC Contract
AT(04-3)-515 for the USAEC San Francisco Operations Office.
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If we sum both sides of Eq. (11.4.10) over i and j the result is the three-body LS equation:

T̂ (z) = V̂ + V̂ Ĝ(z)V̂ = V̂ + V̂ Ĝ0(z)T̂ (z) = V̂ + T̂ (z)Ĝ0(z)V̂ , (11.4.11)

where we have used the operator identities

Ĝ(z)V̂ = Ĝ0(z) T̂ (z) (11.4.12a)

and V̂ Ĝ(z) = T̂ (z) Ĝ0(z) . (11.4.12b)

The operator identity (11.4.12a) also implies

Ĝ0(z)
∑
i

∑
j

τ̂ij(z) = Ĝ(z)
∑
j

Vj

or Ĝ0(z)
∑
i

τ̂ij(z) = Ĝ(z) V̂j . (11.4.13)

Using Eqs. (11.4.13) one can rewrite Eq. (11.4.10) as

τ̂ij(z) = δij V̂i + V̂iĜ0(z)
∑
k

τ̂k j(z).

If this equation is iterated, its kernel will involve non-compact terms like V̂iĜ0V̂iĜ0. To
eliminate such terms Faddeev transferred V̂iĜ0τ̂ij(z) from the right-hand side to the left-
hand side so that the equation takes the form:(

1− V̂iĜ0(z)
)
τ̂i j(z) = δi jVi + V̂iĜ0(z)

∑
k 6=i

τ̂k j(z)

and summing over j we get(
1− V̂iG0(z)

)
T (i)(z) = Vi + ViG0(z)

∑
k 6=i

T̂ k(z) , (11.4.14)

where T̂ (i)(z) ≡
∑
j

τ̂i j . (11.4.15)

Now, since the solution of two-body LS equation in three-body space14, viz.,

T̂i(z) = V̂i + V̂iĜ0(z) Ti(z),

14It may be noted that, for the case when only one of the pair interaction is operative, one can have the
following version of Eqs. (11.4.12a) and(11.4.12b):

Ĝi(z)V̂i = Ĝ0(z)T̂i(z)

and V̂iĜi(z) = T̂i(z)Ĝ0(z) ,

where Ĝi(z) = (z − Ĥi)−1 = (z − Ĥ0 − V̂i)−1

and T̂i(z) is the two-body transition operator in three-body space, defined by the LS equation

T̂i(z) = V̂i + V̂iĜ0(z)T̂i(z) = V̂i + T̂i(z)Ĝ0(z)V̂i.

The matrix element of T̂i(z) in the momentum basis is given byD
qi,pi

˛̨̨
T̂i(z)

˛̨̨
q′i,p

′
i

E
= δ3

`
qi − q′i

´fi
pi

˛̨̨̨
t̂i

„
z −

q2i
2ni

« ˛̨̨̨
p′i

fl
.

Here, the energy carried by the i−th particle,
q2i
2ni

, is subtracted from z so that

t̂i

„
z −

q2i
2ni

«
is the two-body transition operator in two-body space.
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exists, i.e.,

T̂i(z) =
(

1− V̂iĜ0(z)
)−1

V̂i

exists, the reciprocal of the operator
(

1̂− V̂iĜ0(z)
)

also exists. So we can pre-multiply

both sides of Eq. (11.4.14) by
(

1̂− V̂iĜ0(z)
)−1

and write

T (i)(z) =
(

1̂− V̂iĜ0(z)
)−1

V̂i +
(

1̂− V̂iĜ0(z)
)−1

V̂iĜ0(z)
∑
k 6=i

T̂ k(z) ,

or T̂ (i)(z) = T̂i(z) + T̂i(z) Ĝ0(z)
∑
k 6=i

T̂ (k)(z) , (11.4.16)

where T̂ (z) =
∑
i

∑
j

τ̂i j(z) =
3∑
i=1

T̂ (i)(z) . (11.4.17)

Equation (11.4.16) represents a set of coupled equations, called Faddeev equations, which
can be explicitly written as

T̂ (1)(z) = T̂1(z) + T̂1(z) Ĝ0(z)
[
T̂ (2)(z) + T̂ (3)(z)

]
(11.4.16a)

T̂ (2)(z) = T̂2(z) + T̂2(z) Ĝ0(z)
[
T̂ (3)(z) + T̂ (1)(z)

]
(11.4.16b)

T̂ (3)(z) = T̂3(z) + T̂3(z) Ĝ0(z)
[
T̂ (1)(z) + T̂ (2)(z)

]
(11.4.16c)

where T̂ (z) is given by Eq. (11.4.17)

T̂ (z) = T̂ (1)(z) + T̂ (2)(z) + T̂ (3)(z) . (11.4.17)

Written in momentum representation these equations will assume the form of three
coupled integral equations. The kernel of these equations is compact and they are, in
principle, solvable. Instead of writing Faddeev equations in terms of the transition operator
T̂ (z) ≡ ∑

i

T̂ (i)(z), it is more useful to formulate them in terms of state vectors. For this

purpose we first obtain the resolvent version of Faddeev equations. From Eqs. (11.4.4) and
(11.4.12b) we have

Ĝ(z) = Ĝ0(z) + Ĝ0(z) T̂ (z) Ĝ0(z)

= Ĝ0(z) + Ĝ0(z)
∑
i

T̂ (i)(z) Ĝ0(z) .

Let G(i)(z) be defined by
Ĝ(i)(z) ≡ −Ĝ0(z) T̂ (i)(z) Ĝ0(z) (11.4.18)

so that
Ĝ(z) = Ĝ0(z) −

∑
i

Ĝ(i)(z) . (11.4.19)

To obtain the resolvent version of Faddeev equation we pre- and post-multiply both sides
of Faddeev equation (11.4.16) by Ĝ0(z) and use the definition of G(i)(z) [Eq. (11.4.18)] to
get

Ĝ0(z) T̂ (i)(z)Ĝ0(z) = Ĝ0(z) T̂i(z) Ĝ0(z) + Ĝ0(z) T̂i(z)
∑
k 6=i

Ĝ0(z)T̂ (k)(z)Ĝ0(z) ,

or −Ĝ(i)(z) = Ĝ0(z) T̂i(z) Ĝ0(z) + Ĝ0(z) T̂i(z)
∑
k 6=i

−Ĝ(k)(z) .

(11.4.16a*)
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Now, in analogy with the identity

Ĝ(z) = Ĝ0(z) + Ĝ0(z)T̂ (z)Ĝ0(z) , (11.4.20)

we can derive the identity

Ĝi(z) = Ĝ0(z) + Ĝ0(z)T̂i(z)Ĝ0(z) (11.4.21)

for the case in which only one pair interaction (i-th) is operative. Using Eq. (11.4.21) in
Eq. (11.4.16a), we get

Ĝ(i)(z) = Ĝ0(z)− Ĝi(z) + Ĝ0(z) T̂i(z)
∑
k 6=i

Ĝ(k)(z) . (11.4.22)

This is the resolvent version of Faddeev equations where Ĝ(z) can be expressed in terms of
G(i)(z) by Eq. (11.4.19).

From the resolvent version of Faddeev equations (11.4.19) and (11.4.22) we can derive
the state version of Faddeev equations. Let

∣∣∣Φ(3)
n

〉
represent an eigenstate of Ĥ3 = Ĥ0 + V̂3

belonging to the eigenvalue En. (In this (asymptotic) state the third pair is bound and
the third particle is free.) Also let |Ψ3n〉 be the eigenstate (scattering state) of the total
Hamiltonian Ĥ = Ĥ0 + V̂ = Ĥ0 +

∑
i

Vi belonging to the same eigenvalue En. From the

definition of the projection operators P̂ (3)
n ≡ iε Ĝ3 (En + iε) and P̂n = iε Ĝ (En + iε), we

have15

iε Ĝi (En + iε)
∣∣∣Φ(j)
n

〉
= δij

∣∣∣Φ(j)
n

〉
, (11.4.24)

and iε Ĝ (En + iε)
∣∣∣Φ(3)
n

〉
= |Ψ3n〉 , (11.4.25)

where lim ε→ 0+ is implied. In |Ψ3n〉, the index 3 signifies the total state of the three-body
system when particle 3 is incident on bound pair 3 and eventually all the three pairs are
interacting. Further, iε Ĝ0 (En + iε) |Φ(i)

n 〉 = 0 since Ĥ0|Φ(i)
n 〉 6= En|Φ(i)

n 〉.
Now from Eqs. (11.4.25) and (11.4.19) we get

|Ψ3n〉 = iε

[
Ĝ0(En + iε)−

3∑
i=1

Ĝ(i)(En + iε)

]
|Φ(3)
n 〉 =

∑
i

|ψ(i)
3n〉 (11.4.26)

where |ψ(i)
3n〉 is defined by

|ψ(i)
3n〉 ≡ −iεG(i)(En + iε)|Φ(3)

n 〉 . (11.4.27)

15

iε
“
En + iε− Ĥi

”−1 ˛̨̨
Φ

(j)
n

E
=

iε

En + iε− Ĥi

˛̨̨
Φ
j)
n

E
= 0 if i 6= j as Ĥi

˛̨̨
Φ

(j)
n

E
6= En

˛̨̨
Φ

(j)
n

E
and iε

“
En + iε− Ĥi

”−1 ˛̨̨
Φ

(i)
n

E
=

iε

En + iε− Ĥi

˛̨̨
Φ

(i)
n

E
=

iε

En + iε− En

˛̨̨
Φ

(i)
n

E
=
˛̨̨
Φ

(i)
n

E
(11.4.23)

If we let Ĥ operate on the state P̂n

˛̨̨
Φ

(3)
n

E
, we get

Ĥ P̂n

˛̨̨
Φ

(3)
n

E
= iε

“
En + iε− (En + iε− Ĥ

”
Ĝ(En + iε)

˛̨̨
Φ

(3)
n

E
= En P̂

˛̨̨
Φ

(3)
n

E
.

Hence Pn

˛̨̨
Φ

(3)
n

E
may be identified with |Ψ3n〉.
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Pre-multiplying both sides in the resolvent version of Faddeev Eq. (11.4.22) by −iε and
letting both sides operate on

∣∣∣Φ(3)
n

〉
, we get

−iε Ĝ(i)(En + iε)|Φ(3)
n 〉 = −iε Ĝ0(En + iε)|Φ(3)

n 〉+ iε Ĝi(En + iε)|Φ(3)
n 〉

− iε Ĝ0(En + iε) T̂i(En + iε)
∑
k 6=i

Ĝ(k)(En + iε)|Φ(3)
n 〉

or |ψ(i)
3n〉 = δi3|Φ(3)

n 〉+ Ĝ0(En + iε) T̂i(En + iε)
∑
k 6=i

ψ
(k)
3n 〉 . (11.4.28)

This is the state version of Faddeev equations in which the total state of the three-body
system is split as in Eq. (11.4.26). Explicitly, we have

|Ψ3n〉 = |ψ(1)
3n 〉+ |ψ(2)

3n 〉+ |ψ(3)
3n 〉 , (11.4.29)

where ∣∣∣ψ(1)
3n

〉
= Ĝ0(En + iε) T̂1(En + iε)

[ ∣∣∣ψ(2)
3n

〉
+
∣∣∣ψ(3)

3n

〉]
, (11.4.30)∣∣∣ψ(2)

3n

〉
= Ĝ0(En + iε) T̂2(En + iε)

[ ∣∣∣ψ(3)
3n

〉
+
∣∣∣ψ(1)

3n

〉]
, (11.4.31)∣∣∣ψ(3)

3n

〉
= |Φ(3)

n 〉+ Ĝ0(En + iε) T̂3(En + iε)
[∣∣∣ψ(1)

3n

〉
+
∣∣∣ψ(2)

3n

〉]
. (11.4.32)

11.5 Faddeev Equations in Momentum Representation

In the momentum representation, the three-body state |Ψ3n〉 may be represented by the
function

Ψ3n (qk,pk) ≡ Ψ3n(P ) = 〈qk,pk|Ψ3n〉 , (11.5.1)

where k = 1, 2, 3. Also, in momentum representation, Eq. (11.4.29) can be written as

Ψ3n (qk,pk) ≡ ψ(1)
3n (q1,p1) + ψ

(2)
3n (q2,p2) + ψ

(3)
3n (q3,p3), (11.5.2)

where ψ(1)
3n (q1,p1) , ψ(2)

3n (q2,p2), and ψ
(3)
3n (q3,p3) are defined by

ψ
(1)
3n (q1,p1) =

〈
q1,p1

∣∣∣ψ(1)
3n

〉
=
〈
q2,p2

∣∣∣ψ(1)
3n

〉
=
〈
q3,p3

∣∣∣ψ(1)
3n

〉
=
〈
P
∣∣∣ψ(1)

3n

〉
,

ψ
(2)
3n (q2,p2) =

〈
q2,p2

∣∣∣ψ(2)
3n

〉
=
〈
q3,p3

∣∣∣ψ(2)
3n

〉
=
〈
q1,p1

∣∣∣ψ(2)
3n

〉
=
〈
P
∣∣∣ψ(2)

3n

〉
,

ψ
(3)
3n (q3,p3) =

〈
q3,p3

∣∣∣ψ(3)
3n

〉
=
〈
q1,p1

∣∣∣ψ(3)
3n

〉
=
〈
q2,p2

∣∣∣ψ(3)
3n

〉
=
〈
P
∣∣∣ψ(3)

3n

〉
,

(11.5.2a)

and the set of Faddeev equations (11.4.28) can be written as

〈P |ψ(i)
3n〉 = δi3〈P |Φ(3)

3n 〉+ 〈P |Ĝ0(En + iε) T̂i(En + iε)
(∣∣∣ψ(j)

3n

〉
+
∣∣∣ψ(k)

3n

〉)
(11.5.3)

where i, j, k = 1, 2, 3 or 2, 3, 1 or 3, 1, 2 (i 6= j 6= k), and

〈P | ≡ 〈q1,p1| ≡ 〈q2,p2| = 〈q3,p3| .
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Let us consider the simple case when mi = mj = mk = M . Also, for ease of writing, we
take M = 1 = ~. Writing Eq. (11.5.3) for i = 3, we have

ψ3
3n (q3,p3) = Φ(3)

n (q3,p3) +
1

En + iε− p2
3 − 3

4q
2
3

∫ ∫
〈q3,p3| T̂3(En + iε) |q′3,p′3〉

d3q′3 d
3p′3

[
ψ

(1)
3n (q′1,p

′
1) + ψ

(2)
3n (q′2,p

′
2)
]

= Φ(3)
n (q3,p3) + (En − 3

4
q2
3 + iε− p2

3)−1

∫
d3q′3δ

3(q′3 − q3)
∫
d3p′3

×
〈
p3

∣∣∣∣t̂3(En + iε− 3
4
q′3

2
)∣∣∣∣p′3〉 {ψ(1)

3n (q′1,p
′
1) + ψ

(2)
3n (q′2,p

′
2)
}
.

Putting En − 3
4q

2
3 + iε ≡ s+ iε ≡ z , expressing q′1,p′1 and q′2,p′2 in terms of q′3,p′3 in

ψ
(1)
3n and ψ

(2)
3n , respectively, integrating over q′3 and finally replacing, on both sides of the

equation, q3,p3 by q,p and the dummy variable p′3 by p′ we get

ψ
(3)
3n (q,p) = Φ(3)

n (q,p) + (s+ iε− p2)−1

∫
〈p|t̂3(s+ iε)|p′〉

×
{
ψ

(1)
3n

(
p′ − 1

2
q , −1

2
p′ − 3

4
q

)
+ ψ

(2)
3n

(
−p′ − 1

2
q , −1

2
p′ +

3
4
q

)}
d3p′ .

Now, changing in the above equation the dummy variable p′ by p′+ 1
2q in the first integral

and by −p′ − 1
2q in the second integral, we can rewrite this equation as

ψ
(3)
3n (q,p) = Φ(3)

n (q,p)

+(s+ iε− p2)
∫
d3p′

{〈
p
∣∣t̂3(s+ iε)

∣∣p′ + 1
2
q

〉
ψ

(1)
3n

(
p′, −1

2
p′ − q

)
+
〈
p
∣∣t̂3(s+ iε)

∣∣− p′ − 1
2
q

〉
ψ

(2)
3n

(
p′,

1
2
p′ + q

)}
. (11.5.4)

Again, putting i = 1 in Eq. (11.5.3) we have, similarly,

〈P |ψ(1)
3n 〉 = 〈P |G0(En + iε)T1(En + iε)|

{∣∣∣ψ(2)
3n

〉
+
∣∣∣ψ(3)

3n

〉}
.

By a similar set of manipulations,

(1) taking 〈P | ≡ 〈q1,p1|,
(2) introducing the unit operator

∫∫ |q′1,p′1〉d3q′1 d
3p′1〈q′1,p′1| after T̂1(En + iε) and

writing
〈
q′1,p

′
1

∣∣∣ψ(3)
3n

〉
≡ ψ

(3)
3n (q′3,p′3) and

〈
q′1,p

′
1

∣∣∣ψ(2)
3n

〉
≡ ψ

(2)
3n (q′2,p′2), in

accordance with Eq. (11.5.2a),

(3) expressing q′2,p′2 and q′3,p
′
3 in ψ

(2)
3n (q′2,p′2) and ψ

(3)
3n (q′3,p′3) respectively, in

terms of q′1,p′1,

(4) integrating over q′1 and replacing the dummy variable p′1 by p′ + q/2 in the first
integral and by −p′ − q/2 in the second integral, we get

ψ
(1)
3n (q,p) = (s− p2 + iε)−1

∫
d3p′

{〈
p
∣∣t̂1(s+ iε)

∣∣p′ + 1
2
q

〉
ψ

(2)
3n

(
p′,−1

2
p′ − q

)
+
〈
p
∣∣t̂1(s+ iε)

∣∣− p′ − 1
2
q

〉
ψ

(3)
3n

(
p′,

1
2
p′ + q

)}
. (11.5.5)



THE THREE-BODY PROBLEM 393

By following the same procedure for i = 2 in Eq. (11.5.3) we get

ψ
(2)
3n (q,p) = (s− p2 + iε)−1

∫
d3p′

{〈
p
∣∣t̂2(s+ iε)

∣∣p′ + 1
2
q

〉
ψ

(3)
3n

(
p′,−1

2
p′ − q

)
+

〈
p
∣∣t̂2(s+ iε)

∣∣− p′ − 1
2
q

〉
ψ

(1)
3n

(
p′,

1
2
p′ + q

)}
. (11.5.6)

To summarize, if particle 3 is incident on pair 3 and eventually all the three pairs interact
then the total three-body wave function is given by

Ψ(P ) ≡ Ψ3n (qk,pk) = ψ
(1)
3n (q1,p1) + ψ

(2)
3n (q2,p2) + ψ

(3)
3n (q3,p3)

and the functions ψ(1)
3n , ψ(2)

3n , ψ(3)
3n satisfy the set of coupled integral equations (11.5.5) and

(11.5.6) and (11.5.4). Here Φ(3)
3n (q,p) represents the asymptotic state of the system when

only pair 3 is interacting and is bound and particle 3 is free and the total energy of the
system is En.

11.6 Faddeev Equations for a Three-body Bound System

We can adapt Faddeev equation for a three-body bound system as well. We again consider
the simple case in which the three particles are identical and spinless and the interaction is
central and attractive. This implies that V̂1 = V̂2 = V̂3 = V̂ and t̂1(z) = t̂2(z) = t̂3(z) =
t̂(z). For the three-body bound state one may also drop the inhomogeneous term Φ(3)

n in
Eq. (11.5.3) and assume the three-body bound state energy En to be −α2

0~2

M or −α2
0 in

units of ~ = 1 = M . Further we can designate the bound state wave function Ψ3n (q,p) as
simply Ψn (q,p) and the function ψ

(i)
3n (q,p) as simply ψ(i)

n (q,p), since the suffix 3 has no
relevance now. Hence

Ψn (qk,pk) = ψ(1)
n (q1,p1) + ψ(2)

n (q2,p2) + ψ(3)
n (q3,p3)

where ψ(1)
n , ψ(2)

n , ψ(3)
n satisfy the set of coupled equations (11.5.4) through (11.5.6), without

the inhomogeneous term. Since these three equations then become similar, except for a
cyclic permutation of 1, 2, 3, we may drop the suffix i in ψ

(i)
n and simply write

Ψn (qk,pk) = ψn (q1,p1) + ψn (q2,p2) + ψn (q3,p3) , (11.6.1)

where ψn(q,p) satisfies the integral equation

ψn(q,p) =
(
s− p2

)−1
∫
d3p′

{〈
p
∣∣t̂(s+ iε)

∣∣− p′ − 1
2
q

〉
ψn

(
p′,

1
2
p′ + q

)
+
〈
p
∣∣ t̂(s+ iε)

∣∣p′ + 1
2
q

〉
ψn

(
p′,−1

2
p′ − q

)}
, (11.6.2)

with s = −α2
0 − 3

4q
2. Faddeev equations (11.6.1) and (11.6.2) for the bound state of

three identical particles are the same as Eyges’ equation (11.2.10). The identity of the two
equations can be established if we use the two-body Lippmann-Schwinger equation, written
in the momentum representation

〈p|t̂(s+ iε)|k′〉 = 〈p|v̂|k′〉+
∫ 〈p|v̂|k′′〉d3k′′〈k′′|t̂(s+ iε)|k′〉

s− k′′2 ,
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in Eq. (11.6.2). This gives us

ψn(q,p) =
(
s− p2

)−1
[∫

d3p′
{〈
p |v̂| − p′ − 1

2
q

〉
ψn

(
p′,

1
2
p′ + q

)
+
〈
p |v̂|p′ + q

2

〉
ψn

(
p′, −1

2
p′ − q

)}
+
∫
d3k′′

〈
p |v̂|k′′〉 ∫ d3p′

s− k′′2
{〈
k′′
∣∣t̂(s+ iε)

∣∣p′ + 1
2
q

〉
ψn

(
p′, −p

2
− q
)

+
〈
k′′
∣∣t̂(s+ iε)

∣∣− p′ − 1
2
q

〉
ψn

(
p′,
p′

2
+ q
)}]

.

If we make use of Eq. (11.6.2) again, the second term within square brackets reduces to∫
d3k′′ 〈p| v̂ ∣∣k′′〉 ψn(q,k′′) ≡

∫
d3p′ 〈p| v̂ |p′〉 ψn(q,p′) .

Hence Eq. (11.6.2) is the same as Eyges’ equation (11.2.10).
For further reduction of Faddeev equations (11.6.1) and (11.6.2) to a solvable form, it is

useful to employ a separable approximation for the t-matrix elements, which are determined
by two-body interaction. The t-matrix is separable [see Sec. 9.10] if the two-body potential
is of separable form

〈p′|v̂|p〉 = −λ g(p′) g(p) , with (M = 1 = ~) ,

where the function g(p) is referred to as a form factor and λ is a constant related to the
strength of the interaction. This form of the two-body potential means that the t-matrix
can be written as

〈p′|t̂(z)|p〉 = −g(p′)g(p)
D(z)

, (11.6.3)

where

D(z) ≡ 1
λ

+
∫
g2(p′)d3k′

z − p′2 and λ−1 =
∫
g2(p′)d3p′

B + p′2
(11.6.4)

and +B is the binding energy of the two-body system and we have assumed that in the the
only bound state to exist is in the s-channel.

It may be mentioned here that even if the potential is local and is not separable, it is
possible to construct a separable approximation to the t-matrix using the two-body bound
state wave function in momentum space16. This separable approximation, called the unitary
pole approximation, is fairly effective. The form factor g(p), representing the separable
potential or the separable approximation to the t-matrix, is related to the two-body bound
state wave function φ(p) by

φ(p) =
N g(p)
p2 +B

, (11.6.5)

where the normalization constant N is given by

1
N2

=
∫

g2(p′)d3p′

(p′2 +B)2
. (11.6.6)

In addition to substituting the separable t-matrix (11.6.3) in Eq. (11.6.2), we can also
adopt the structure proposed by Mitra for the function ψn (qi,pi) in Ψn (q,p) ≡ Ψn(P ) in

16M. G. Fuda, Nuclear Physics A116, 83 (1968).
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Eq. (11.6.1). Accordingly, each term ψn (qi,pi) on the right hand side of Eq. (11.6.1) may
be regarded as the product of the bound state of the i-th pair

g(pi)
p2
i + α2

0 + 3
4q

2
i

and the spectator wave function χ(qi) of the i-th particle. One may regard 3
4q

2
i as the

energy taken away by the i-th particle of the three-body system and −α2
0 − 3

4q
2
i to be the

energy associated with the i-th pair. Thus each ψn has the form

ψn (qi,pi) =
g(pi)

α2
0 + 3

4q
2
i + p2

i

χ(qi) .

Using this in Eq. (11.6.1) we get

Ψn (qk,pk) =
g(p1)χ(q1)
α2

0 + 3
4q

2
1 + p2

1

+
g(p2)χ(q2)
α2

0 + 3
4q

2
2 + p2

2

+
g(p3)χ(q3)
α2

0 + 3
4q

2
3 + p2

3

.

This is what Mitra termed the resonating group structure of the three-body wave function.
Using the separable t-matrix and the resonating group structure of the three-body wave
function into Faddeev equation (11.6.2) for the three-body bound state, we can reduce the
latter into an integral equation for the spectator wave function χ(q)17

χ(q) = 2D−1

(
−α2

0 −
3
4
q2

) ∫
d3p′ g

(∣∣p′ + 1
2q
∣∣) g (∣∣ 12p′ + q∣∣)

α2
0 + p′2 + q2 + p′ · q χ(p′), (11.6.7)

where, D(z) = D(s) is defined by Eq. (11.6.4). For the s-state interaction, we may regard
g(k) to depend only on the magnitude of k. Then the equation for the spectator wave
function can be written in a simplified form as

χ(q) = 2D−1

(
−α2

0 −
3
4
q2

) ∞∫
0

χ(p′)Z(q, p′, α0) p′2 dp′ , (11.6.8)

where

Z(q, p′, α0) ≡ 4π

1∫
−1

g

(√
p′2 +

q2

4
+ p′qζ

)
g

(√
p′2

4
+ q2 + p′qζ

)
dζ

(α2
0 + p′2 + q2 + p′qζ)

.

The kernel 2D−1
(−α2

0 − 3
4q

2
)
Z(q, p′, α0)p′2 of the homogeneous integral equation (11.6.8)

involves the three-body binding energy α2
0, which must be found by trial so that the above

equation holds.
Sophistications in the solution of three-nucleon bound state problems using the

homogeneous Faddeev equation were made by Sitenko and Kharchenko (1963) 18who also
took account of spin and isospin of nucleons to construct completely anti-symmetric states
of the three particles. Since then many sophisticated calculations have been done by various
workers for the three-nucleon bound state.

The problem of scattering of one particle by the other two in bound state can also be
tackled within the framework of Faddeev equations (11.5.4) through (11.5.6) if m1 = m2 =

17For details see C. Maheshwari, A. V. Lagu, and V. S. Mathur, Proc Ind. Nat. Sci. Acad. 39, 151 (1973).
18A. G. Sitenko and V. F. Kharchenko, Nucl. Phys. 49, p.1 (1963).
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m3 = M , with Eq. (11.5.4) containing the inhomogeneous term as well. However, for solving
the three-body scattering problem, for example, neutron-deuteron (n−d) scattering, another
version of Faddeev equations due to Alt, Grassberger, and Sandhas19 is more elegant. This
formulation is useful not only for n − d elastic scattering20 but also for calculating the
differential cross-section for any rearrangement process of the kind

a (b⊕ x) +A = B (A⊕ x) + b . (11.6.9)

This describes a scattering event in which a bound state of particles b and x (designated a)
interacts with the target particle A resulting in a bound structure of A and x (designated B)
and an outgoing particle b. The overall effect is the exchange of one of the incident particles
(in the bound state) with the target particle (stripping). In the three-body treatment, the
particles A, b, x are treated as core particles in the sense that their internal structures
remain intact and do not come into play. Thus deuteron stripping (d,p) reactions and
α-transfer (6Li,d) reactions, on closed shell (or even-even) nuclei can be dealt with using
the AGS framework21, if the interactions between pairs (A, b), (A, x), and (b, x) are known
in a separable form. In the AGS formulation the matrix elements of the AGS operators
between the initial and final asymptotic states22 have a direct interpretation as the physical
transition amplitudes and the differential cross-section for the rearrangement process can
be easily expressed in terms of these amplitudes.

11.7 Alt, Grassberger and Sandhas (AGS) Equations

Faddeev operator T (j)(z) [Eqs. (11.4.10) and (11.4.15)] may be expressed as

T̂ (j)(z) =
3∑
i=1

τ̂ji =
3∑
i=1

(
δjiV̂j + V̂j Ĝ(z) V̂i

)
, (11.7.1)

where the operators τ̂ji satisfy the set of equations

τ̂ji = δji T̂j + T̂j G0(z)
∑
k 6=j

τ̂ki . (11.7.2)

Summing both sides of Eq. (11.7.2) over i we get the Faddeev equations

T̂ (j)(z) = T̂j(z) + T̂j(z) Ĝ0(z)
∑
k 6=j

T (k)(z) . (11.7.3)

One may, instead, define an operator Ûji(z), called the AGS operator, by

Ûji(z) = (1− δij)
(
z − Ĥ0

)
+
∑
q 6=j

∑
p 6=i

τ̂qp(z) , (11.7.4)

19E. O. Alt, P. Grassberger, and W. Sandhas, Nucl. Phys. B1 167 (1967).
20P. Doleschall, Nucl. Phys. A201, 264 (1973).
21V. S. Mathur and R. Prasad, Phys. Rev. C24, 2593 (1981); J. Phys. G7, 1955 (1981).
22Initial asymptotic state is the product of the bound state of the initial pair and the free state of the
incident particle. Final asymptotic state may be similarly defined.
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and then show that the AGS operator Ûji(z) so defined is consistent with Alt, Grassberger
and Sandhas definition of Ûji(z):

Ĝ(z) = δij Ĝj(z) + Ĝj(z) Ûji(z) Ĝi(z) . (11.7.5)

To see this we start with the definition (11.7.4),

Ûji(z) = (1− δij)
(
z − Ĥ0

)
+
∑
q

∑
p

(1− δqj) (1− δpi)
(
δqp V̂q + V̂q Ĝ V̂p

)
= (1− δij)(z − Ĥ0) + (V̂ − V̂j − V̂i + δij V̂j + V̂ ĜV̂ − V̂jĜV̂ − V̂ ĜV̂i − V̂jĜV̂i)
= (1− δij)

(
z − Ĥj

)
+
[
1 + V̂ Ĝ(z)− V̂jĜ(z)

]
V̂ i

where V̂ i ≡ V̂ − V̂ i = V̂j + V̂k. So,

Ĝj(z)Ûji(z)Ĝi(z) = (1− δij) Ĝi(z) + Ĝj(z) V̂ iĜi(z)

+Ĝj(z) V̂ Ĝ(z) V̂ iĜi(z)− Ĝj(z)V̂jĜ(z) V̂ iĜi(z) .

Using the identities23

Ĝ(z) = Ĝi(z) + Ĝi(z) V̂ iĜ(z)

Ĝ(z) = Ĝi(z) + Ĝ(z) V̂ iĜi(z) ,

the right-hand side of Eq. (11.7.5) can be written as

δijĜj(z) + Ĝj(z) Ûji(z)Ĝi(z)

= Ĝi(z) + Ĝj(z) V̂ iĜi(z) + Ĝj(z) V̂ (Ĝ− Ĝi)− Ĝj V̂j(Ĝ− Ĝi)
= Ĝi(z) + Ĝj(z) (V̂ i − V̂ + V̂j) Ĝi(z) + Ĝj V̂ Ĝ− Ĝj V̂jĜ
= Ĝi(z) + Ĝj(z)(V̂j − V̂i)Ĝi + Ĝj V̂ jĜ

= Ĝi(z) + Ĝj(z) (Ĝ−1
i − Ĝ−1

j )Ĝi + Ĝ− Ĝj
= Ĝ(z) .

Hence the definitions of the AGS operator in term of Eqs. (11.7.4) and (11.7.5) are
consistent. We shall now use the definition of AGS operator in terms of Eq. (11.7.4) and
Faddeev’s version of three-body equations (11.7.2) to derive the AGS version of three-body

23Ĝi(z) pertains to the interaction V̂i, while Ĝ(z) pertains to V̂i plus an additional interaction V̂ i, i.e., total

interaction V̂ .



398 Concepts in Quantum Mechanics

equations24. We have from Eqs. (11.7.4) and (11.7.2)

Ûji(z) = (1− δji)(z − Ĥ0) +
∑
` 6=j

∑
p 6=i

δ ` p T̂`(z) + T̂`(z) Ĝ0(z)
∑
s6=`

τ̂sp


= (1− δji)(z − Ĥ0) +

∑
` 6=j

∑
.p

(1− δpi) δ`pT̂`(z) +
∑
` 6=j

∑
p 6=i

∑
s 6=`

T̂` Ĝ0(z) τ̂sp(z)

= (1− δji)(z − Ĥ0) +
∑
` 6=j

(1− δ`i) T̂`(z)Ĝ0(z)Ĝ−1
0 +

∑
p 6=i

∑
s6=`

T̂` Ĝ0(z) τ̂sp(z)


= (1− δji)(z − Ĥ0) +

∑
` 6=j

T̂`(z)Ĝ0(z)

(1− δ`i) Ĝ−1
0 +

∑
p 6=i

∑
s6=`

τ̂sp


= (1− δji)(z − Ĥ0) +

∑
` 6=j

T̂`(z) Ĝ0(z) Û`i(z). (11.7.6)

This is the AGS version of Faddeev equations. This set of equations, for a given j and
i = 1, 2, 3, reduces to a set of coupled integral equations when written in the momentum
representation.

The suitability of AGS version of Faddeev equations for three-body scattering or for
reaction dynamics in the three-body framework can be judged from the fact that the
matrix element of the AGS operator between the initial and final asymptotic states can
be interpreted as the physical transition amplitude and the differential cross-section of the
process can be readily expressed in terms of this amplitude.

Let |Φj n(t)〉 = e−iEj nt/~ |φj n〉 be the initial (t → −∞) asymptotic state of the system
so that |φj n〉 is the eigenstate of the Hamiltonian Ĥj = Ĥ0 + V̂j belonging to the energy
En. Here j refers to the initial partition of the three-body system with j-th pair bound
and j-th particle free and n refers to the quantum state of the initial bound pair. Let
|Ψjn(t)〉 = e−iEjnt/~

∣∣ψ+
jn

〉
represent the total state of the system at time t, where

∣∣ψ+
jn

〉
is

the eigenstate of the total Hamiltonian Ĥ = Ĥ0 +
∑
V̂j when all the three pairs interact.

The probability amplitude for the event that the system has made a transition from the
initial asymptotic state |Φj n(t)〉 to a final asymptotic state |Φ im(t)〉 = e−iE im t/~ |φim〉 is
given by

lim
t→∞

〈Φim(t)|Ψjn(t)〉 = Sim,jn .

Thus
Sim,jn = lim

t→∞
e−i(Ejn−Eim)t/~ 〈φim|ψ+

jn

〉
. (11.7.7)

This overlap is referred to as the (im, jn)th element of the S-matrix. From the property of
the projection operator P̂n defined by

P̂n ≡ lim
ε→0+

iεG(Ejn + iε),

that it projects out the state
∣∣ψ+
jn

〉
out of |φjn〉, i.e., iεG(Ejn + iε)|φjn〉 = |ψjn〉, we have

Sim,j n = lim
t→∞
ε→0+

e−i(Ejn−Eim)t/~ 〈φim| iεG(Ej n + iε) |φj n〉 .

24AGS equations may also be derived using definition of the AGS operator Ûji(z) in terms of Eq. (11.7.5)
as done by Alt, Grassberger and Sandhas.
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Now, if we use the definition of the AGS operator in terms of the equation (11.7.5), viz.,
Ĝ(z) = δijĜj(z) + Ĝi(z)Ûij(z)Ĝj(z), we get

Sim,j n = lim
t→∞
ε→0

e−i(Ejn−Eim)t/~
[
iε δij 〈φim| (Ej n + iε− Ej n)−1 |φj n〉

+ (Ejn − Eim + iε)−1 〈φim| Ûi j(Ej n + iε) |φj n〉
]
,

or Sim,jn = δij δim,j n + lim
t→∞

e−i(Ejn−Eim)t/~

Ej n − Eim 〈φim| Ûij(Ejn + iε) |φjn〉 ,

= δij δim,j n − iπ δ(Ejn − Eim) 〈φim|Uij(Ejn + iε)|φjn〉 . (11.7.8)

The delta function25 takes care of the energy conservation in the process. The final and
initial asymptotic states can be expressed as

|φim 〉 ≡
∣∣Qi , di , φ

ni
Ji

〉
,

|φj n 〉 ≡
∣∣∣Qj , dj , φ

nj
Jj

〉
,

where Qi is the momentum of the i-th particle, di specifies its spin orientation and φniJi the
bound state of the i-th pair. If i 6= j and im 6= jn then the probability of the transition
jn→ im is given by

|〈φim|Uij(Ejn + iε)|φjn〉|2 .
The cross-section for the reaction can easily be expressed in term of this probability.

Problems

1. Given

Ĝ(z) = (z − Ĥ)−1 ≡ (z − Ĥ0 − V̂1 − V̂2 − V̂3)−1 ,

and Ĝi(z) = (z − Ĥi)−1 ≡ (z − Ĥ0 − V̂i)−1 ,

show that

(a) Ĝ(z) = Ĝ0(z) + Ĝ0(z) T̂ (z) Ĝ0(z)

(b) Ĝ(z) V̂ = Ĝ0(z) + T̂ (z)

(c) V̂ Ĝ(z) = T̂ (z) Ĝ0(z)

(d) Ĝi(z) V̂i = Ĝ0(z) T̂i(z)

25To show that

lim
t→∞

exp{−i(E − E′)t/~}
(E − E′)

= −iπδ(E − E′) = −iπδ(E′ − E) ,

we may consider the Fourier representation of the delta function

1

2π

∞Z
−∞

exp{∓i(E − E′)s}ds = δ(E − E′) = δ(E′ − E) ,

put s = t/~, and check that the two definitions are consistent. For this we may work out the integral on
the left-hand side of the latter equation, invoke the first definition and arrive at the result δ(E − E′).
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(e) V̂iĜi(z) = T̂i(z) Ĝ0(z)

where T̂ (z) and T̂i(z) are, respectively, the three- and two-body transition operators
in three-body space, defined by

T̂ (z) = V̂ + V̂ Ĝ0(z) T̂ (z)

and T̂i(z) = V̂i + V̂i Ĝ0(z) T̂i(z) .

2. If V̂ i = V̂ − V̂i = V̂j + V̂k, then show that

Ĝ(z) = Ĝi(z) + Ĝi(z) V̂ i Ĝ(z) ,

and Ĝ(z) = Ĝi(z) + Ĝ(z) V̂ i Ĝi(z) .

3. Using Eq. (11.2.7) of this chapter(
p2

3 +
3
4
q2 + α2

0

)
φ (q3,p3) = −

∫∫
〈q3 p3| V̂3 |q′3 p′3〉 d3q′3 d

3p′3

× {φ (q′1,p
′
1) + φ (q′2,p

′
2) + φ (q′3,p

′
3) }

and assuming that

〈q3,p3| V̂3 |q′3,p′3〉 = δ3 (q3 − q′3) 〈p3| v̂3 |p′3〉 ,
where V̂3 is a two-body interaction in a three-body space and v̂3 is a two-body
interaction in two-body space, rewrite this equation in the form(

p2 +
3
4
q2 + α2

0

)
φ(q,p) = −

∫
d3p′

{
φ(q,p′)〈p|v̂|p′〉

+φ
(
p′,
−p′

2
− q

) 〈
p | v̂|p′ + q

2

〉
+φ
(
p′,
p′

2
+ q
) 〈

p | v̂| − p′ − q
2

〉}
.

4. Show that the operators

P̂ (i)
n ≡ lim

ε→0
iεĜi(En + iε)

and P̂n ≡ lim
ε→0

iεĜ(En + iε)

serve, respectively, as the projection operators for the three-body states |Φ(i)
n 〉 (when

only i-th pair interacts and the same is bound) and |Ψ3n〉 (when all the pairs
interact and particle 3 is incident on the 2 − 3 bound system). Hint: Show that
P̂

(i)
n |Φ(j)

n 〉 = δij |Φ(j)
n 〉 and P̂n|Φ(3)

n 〉 = |Ψ3n〉 so that Ĥ P̂n|Φ(3)
n 〉 = EnP̂n|Φ(3)

n 〉.
5. Show that Faddeev’s equations (11.6.1) and (11.6.2) for the three-body bound system

Ψn(qk,pk) = ψn(q1,p1) + ψn(q2,p2) + ψ(q3,p3) ,

where

ψn(q,p) = (s− p2)−1
∫
d3p′{〈p|t̂(s+ iε)| − p′ − 1

2q〉ψn(p′, 1
2p
′ + q)

+〈p|t̂(s+ iε)|p′ + 1
2q〉ψn(p′, − 1

2p
′ − q)}

are equivalent to Eyges’ equations (11.2.4) and (11.2.10).
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6. Show that the matrix element of the AGS operator Ûij(z) between the initial and
final asymptotic states,

|φj n〉 ≡ |Qj , dj,φ
nj
Jj
〉

and
|φim〉 ≡ |Qi, di, φ

ni
Ji
〉

of a three-body system serves as the physical transition amplitude in a rearrangement
collision,

a(b⊕ x) +A→ B(A⊕ x) + b{
j-th pair and
j-th particle

}
→
{
i-th pair and
i-th particle

}
in the sense that the S-matrix can be expressed as

Sim,j n ≡ lim
t→∞
〈Φim(t)|Ψj n(t)〉 = δijδim,j n− iπδ(Ej n−Eim)〈φim|Uij(En+ iε)|φj n〉 .

Here |Ψj n(t)〉 represents the time-dependent state into which the initial state
|Φj n(t)〉 ≡ exp(−iEnt/~)|φj n〉 evolves with time.
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12

RELATIVISTIC QUANTUM MECHANICS

12.1 Introduction

We have seen in earlier chapters that non-relativistic quantum mechanics does provide a
consistent scheme to explain numerous phenomena in atomic, molecular and nuclear physics,
but it does not conform to the equivalence of space and time as envisaged in the theory of
relativity.

Non-relativistic quantum mechanics is also unable to explain some observations like fine
structure of the energy levels of the Hydrogen and Hydrogen-like atoms and the spin and
intrinsic magnetic moment of the electron. In general, non-relativistic quantum mechanics
cannot explain the behavior of particles moving with velocities comparable to that of light.
The first step toward relativistic1 generalization of Schrödinger equation was taken by Klein
and Gordon.

Klein-Gordon Equation

In non-relativistic quantum mechanics, the state of a particle is described by the Schrödinger
equation

i~
d

dt
|R(t) 〉 = Ĥ |R(t) 〉 . (12.1.1)

In the coordinate representation, this equation reads

i~
∂

∂t
ψ(r, t) = Hψ(r, t) , (12.1.2)

where H is the Hamiltonian operator in the coordinate representation, given by

H = − ~2

2m
∇2 + V (r) . (12.1.3)

Obviously, the Schrödinger equation does not satisfy the requirement of symmetry between
space and time coordinates as required by the theory of relativity since it involves time and
space derivatives of different orders. Another shortcoming is that the spin and the intrinsic
magnetic moment of the electron, which are well established properties of the electron, are
not inherent in the equation. The spin and intrinsic magnetic moment have to be artificially
grafted into the equation, in that we multiply the wave function by the spin state, which is

either α =
(

1
0

)
or β =

(
0
1

)
, and add a term −µ

B
σ ·B to the Hamiltonian, if an external

magnetic field B is present.
An attempt to make a relativistic generalization of the Schrödinger equation was made

by Klein and Gordon. Instead of using the non-relativistic energy-momentum relation

1A brief overview of the special relativity and covariant formulation of electromagnetic theory may be found
in Appendix 12A1.
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E = p2/2m for a free particle, which implies H = (−i~∇)2

2m = − ~2

2m∇2, they chose to use the
relativistic energy-momentum relation

E2 = c2p2 +m2c4 , (12.1.4)

where E is the total energy, including the rest mass energy. This implies H2 = c2(−i~∇)2 +
m2c4 so that the relativistic equation of motion may be written as(

i~
∂

∂t

)2

ψ = H2ψ = [c2(−i~∇)2 +m2c4]ψ (12.1.5)

or
(
∇2 − 1

c2
∂2

∂t2

)
ψ(r, t) =

m2c2

~2
ψ(r, t) . (12.1.6)

This is known as the Klein-Gordon equation. It satisfies the relativistic requirement of
the equation of motion being symmetric in space and time coordinates as both space
and time derivatives are of the second order in this equation. Since the d’Alembertian
operator

(
∇2 − 1

c2
∂2

∂t2

)
= ∂

∂xµ
∂
∂xµ

is an invariant operator under Lorentz transformations
[see Appendix 12A1], it suggests that ψ(r, t) = ψ(xµ) is a scalar (one component) or
invariant under Lorentz transformations. Since the solution of Klein-Gordon equation is a
one-component wave function, it can describe a particle of zero-spin, e.g., a pion, and is not
suitable for describing an electron which has spin 1/2 (in units of ~).

There is, however, one disturbing feature of the Klein-Gordon (KG) equation which
delayed its acceptance as the basis for a relativistic quantum theory by physicists for some
time. In order to interpret the wave function as a probability amplitude we must be able
derive an equation of continuity, which expresses the conservation of probability. When this
is done2 we obtain an equation which can be put in the form of the equation of continuity

∇ · j +
∂ρ

∂t
= 0 , (12.1.7)

where the probability current density is given by

J =
~

2im
(ψ∗∇ψ − ψ∇ψ∗) , (12.1.8)

as in the nonrelativistic theory. The expression for the probability density turns out to be

ρ(r, t) =
i~

2mc2

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
, (12.1.9)

which need not be positive because the Klein-Gordon is second order in time so that ψ
and ∂ψ

∂t can be specified independently. The probability density ρ(r, t) = ψ∗ψ in the non-
relativistic equation is guaranteed to be positive. Hence in the Klein-Gordon equation,
ρ(r, t) cannot be interpreted as the probability density. Due to this feature, the Klein-
Gordon equation was ignored for several years after it was proposed in 1927. In 1934, Pauli

2The equation of continuity (12.1.7) may be derived by multiplying the KG equation (12.1.6) by ψ∗ from
the right, and its complex conjugate equation by ψ from the left, and subtracting the results to get`

ψ∗∇2ψ − ψ∇2ψ∗
´
−

1

c2

„
ψ∗

∂2ψ

∂t2
− ψ

∂2ψ∗

∂t2

«
= 0

or ∇ · (ψ∗∇ψ − ψ∇ψ∗) −
1

c2
∂

∂t
(ψ∗

∂ψ

∂t
− ψ

∂ψ∗

∂t
) = 0

which may be re-written as ∇ · j + ∂ρ
∂t

= 0, where j and ρ are defined by Eqs. (12.1.8) and (12.1.9).
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and Weisscopf re-established its validity as a field equation for spin zero particles in the
same sense as Maxwell’s equations are the field equations for the photons. According to the
theory of quantization of wave fields, particles called quanta can be created or destroyed
[Chapter 13]. Consequently, the concept of the conservation of probability, which expresses
itself through the equation of continuity, has to be interpreted differently.

12.2 Dirac Equation

Dirac approached the problem of finding a relativistic generalization of the Schrödinger
equation differently. Instead of writing Eq. (12.1.5), he looked for an equation of motion
first order in time by writing

i~
∂ψ

∂t
= Hψ , (12.2.1)

and for H, he wrote terms linear in p = −i~∇. This was necessary since a relativistic
equation must involve space and time derivatives of the same order. Accordingly, Dirac
wrote down H as the most general linear combination of four momentum (p, imc)

H = cα · p + β mc2 = c(α1p1 + α2p2 + α3p3) + β mc2 (12.2.2)

where α1, α2, α3, and β are dimensionless quantities [independent of p ≡ (p1, p2, p3), r and
t] which are to be determined. To identify the nature of αk and β, and their mathematical
representation, we require that a solution of the Dirac equation for a free particle must also
be a solution of the Klein-Gordon relativistic equation. This requires that

(cα · p+ βmc2)2 = c2p2 +m2c4 . (12.2.3)

Allowing the possibility that the quantities αk and β may not commute, we can re-write
this condition as

c2
∑
k

∑
`

1
2

(αkα` + α`αk)pkp` +mc3
∑
k

(αkβ + βαk)pk + β2m2c4 = c2
∑
k

p2
k +m2c4 .

Comparing the two sides of this equation we conclude that αk’s and β must satisfy the
following conditions

1
2

(αkαl + αlαk) = δkl , (12.2.4)

αkβ + βαk = 0 , (12.2.5)

and β2 = 1 . (12.2.6)

An inspection of these equations (e.g., the non-commutativity) shows αk’s and β cannot
be complex numbers. They can, however, be matrices. Obviously, we need four distinct
matrices which anti-commute with each other and the square of each matrix is a unit matrix.
To find a representation for these matrices we note that they must be Hermitian because
the Hamiltonian (12.2.2) must be Hermitian. Now 2× 2 Pauli spin matrices σ1, σ2, and σ3

satisfy these conditions but are only three in number and a unit 2×2 matrix cannot be taken
as the fourth because it commutes with all of them. Thus a 2×2 matrix representation for
αk and β is ruled out and we must look at their higher order matrix representation.
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Our search for higher order matrix representation is guided by two constraints that emerge
from Eqs. (12.2.4) through (12.2.6):

(a) the order of these matrices must be even, and

(b) the matrices must be traceless.

To see the justification for the first, we assume that the matrices are of order (N ×N) and
rewrite Eq. (12.2.5) as αkβ = −βαk. Then the determinants of the matrices must satisfy

det(αk) det(β) = det(−I) det(β) det(αk)

or 1 = det(−I) = (−1)N , (12.2.7)

where in the last step we have used the fact that det(−I) = (−1)N for N × N identity
matrix I. To prove the second constraint, multiply Eq. (12.2.5) from the left by αk and
take the trace of the resulting matrix equation to get

Tr (α2
kβ)+Tr (αkβαk) = Tr (α2

kβ)+Tr (αkαkβ) = 0 ⇒ Tr (β)+Tr (β) = 0 , (12.2.8)

where, in the last step, we have used α2
k = I and the cyclic property Tr (AB)=Tr (BA)

of the trace of a matrix product. Thus matrix β is traceless. Similarly by multiplying
Eq. (12.2.5) by β and taking the trace we can show that the matrices αk must also be
traceless.

Now we have ruled out N = 2 matrix representation for αk, β already. So we look for
a representation in terms of the next simplest allowed case (N = 4) of 4 × 4 matrices.
There are an infinite number of ways of representing these 4× 4 matrices, all satisfying the
constraints established above. We will use the standard representation, which is outlined
below. Since αk, β matrices anti-commute among themselves, only one of them can have a
diagonal representation. Choosing matrix β to be diagonal and traceless, we can have the
following representation for it

β =


1 0 0 0
0 1 0 0
0 0 − 1 0
0 0 0 − 1

 ≡ ( I 0
0 − I

)
(12.2.9)

where I represents a 2×2 unit matrix. Then a representation for αk’s, which is consistent
with the commutation relations (12.2.4), is

αk =
(

0 σk
σk 0

)
, k = 1, 2, 3 (12.2.10)

where σk are 2×2 Pauli matrices. Using the properties of Pauli matrices, it is easily verified
that αk’s and β are Hermitian, anti-commute among themselves, and the square of each
of the four matrices is a unit matrix. Thus, explicitly, αk, β have the following matrix
representation

α1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 α2 =


0 0 0 − i
0 0 i 0
0 − i 0 0
i 0 0 0

 (12.2.11a)

α3 =


0 0 1 0

0 0 0 − 1
1 0 0 0

0 − 1 0 0

 β =


1 0 0 0
0 1 0 0

0 0 − 1 0
0 0 0 − 1

 . (12.2.11b)



RELATIVISTIC QUANTUM MECHANICS 407

We can also introduce Dirac matrices γµ, where the index µ can take the values µ = 1, 2, 3, 4,
by

γk = −iβαk , k = 1, 2, 3 (12.2.12)
γ4 = β . (12.2.13)

It may be easily verified that Dirac matrices are all Hermitian and satisfy the following
anti-commutation relations

γµγν + γνγµ = 2δµνI . (12.2.14)

Equation of Continuity and Probability Density from Dirac Equation

We can rewrite Dirac equation (12.2.1), with H defined by Eq. (12.2.2) and p replaced by
−i~∇, as

1
c

∂ψ

∂t
+

3∑
k=1

αk
∂ψ

∂xk
+
imc

~
βψ = 0 . (12.2.15)

In view of the 4 × 4 matrix representation for αk and β, the solution ψ of this equation
must be a column vector with four elements. Taking the Hermitian adjoint of both sides of
Eq. (12.2.15), we have

1
c

∂ψ†

∂t
+

3∑
k=1

∂ψ†

∂xk
α†k −

imc

~
ψ†β† = 0 , (12.2.16)

where ψ† is the conjugate transpose of the column matrix ψ and is a row matrix. Since
the matrices αk and β are Hermitian, we can drop the dagger sign on them. Multiplying
Eq. (12.2.15) from the left by ψ† and Eq. (12.2.16) from the right by ψ and adding the
resulting equations, we get, after some simplification

∂(ψ†ψ)
∂t

+
3∑
k=1

∂

∂xk
(cψ†αkψ) = 0 . (12.2.17)

If we identify the probability density ρ and probability current density J by

ρ = ψ†ψ , (12.2.18)

Jk = cψ†αkψ or J = cψ†αψ , (12.2.19)

then Eq. (12.2.17) has the form of the equation of continuity. Moreover, the Dirac equation
gives a probability density (12.2.18) which is guaranteed to be positive definite.

Dirac Equation in a Covariant Form

If we multiply Eq. (12.2.15) on the left by −iβ, put ict = x4 and rearrange we get

γ4
∂ψ

∂x4
+

3∑
k=1

γk
∂ψ

∂xk
+
mc

~
ψ = 0

or γµ
∂ψ

∂xµ
+
mc

~
ψ = 0 , (12.2.20)

where, according to the convention, summation over repeated index µ in the first term is
implied. This is the Dirac equation written in the covariant form.
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Similarly, multiplying the adjoint Dirac equation (12.2.16) by −iβ2 from the right we can
rewrite it as

1
ic

∂ψ†

∂t
β2 +

3∑
k=1

−i∂ψ
†

∂t
β2αk − mc

~
ψ†β = 0

or
∂ψ̃

∂x4
γ4 +

3∑
k=1

∂ψ̃

∂xk
γk − mc

~
ψ̃ = 0

or
∂ψ̃

∂xµ
γµ − mc

~
ψ̃ = 0 (12.2.21)

where ψ̃ = ψ†γ4 . (12.2.22)

Equation (12.2.20) is the covariant form of the Dirac equationand Eq. (12.2.21) is the
covariant form of its adjoint. The covariant form of the equation of continuity may be
obtained by multiplying Eq. (12.2.20) on the left by ψ̃ and (12.2.21) on the right by ψ and
adding the two. This gives us

ψ̃γµ
∂ψ

∂xµ
+

∂ψ̃

∂xµ
γµψ =

∂

∂xµ
(ψ̃γµψ) ≡ ∂jµ

∂xµ
= 0 , (12.2.23a)

where jµ = icψ̃γµψ (12.2.23b)

may be called the four-probability current density. In this form the equation of continuity
is manifestly covariant.

12.3 Spin of the Electron

We shall now see that, unlike the Schrödinger equation where the spin of the electron had
to be introduced in an ad hoc manner, the Dirac equation naturally leads to the spin of
the electron. To see this let us evaluate the commutator bracket of the orbital angular
momentum operator L̂ = r̂ × p with the Dirac Hamiltonian [Eq. (12.2.2)]. Thus for the
commutator of L̂1 we have

[L̂1, Ĥ] = [(x̂2p̂3 − x̂3p̂2) , {c(α1p̂1 + α2p̂2 + α3p̂3) + βmc2}]
= i~c(α2p̂3 − α3p̂2) (12.3.1)

where we used the position-momentum commutation relations to evaluate various terms in
this equation. In a similar manner, we obtain

[L̂2 , Ĥ] = i~c(α3p̂1 − α1p̂3) , (12.3.2)

[L̂3, Ĥ] = i~c(α1p̂2 − α2p̂1) . (12.3.3)

Thus the angular momentum operator L̂ does not commute with the Dirac Hamiltonian.
But the total angular momentum, being a conserved quantity for a free particle, must
commute with the free Hamiltonian. This means the orbital angular momentum cannot be
the total angular momentum. The electron must possess an intrinsic angular momentum,
which when added to its orbital angular momentum, gives the total angular momentum,
which is the conserved quantity.
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To identify this intrinsic angular momentum, let us introduce a matrix operator Σ ≡
(Σ1,Σ2,Σ3) defined by

Σk =
(
σk 0
0 σk

)
, (12.3.4)

where σk’s are Pauli spin matrices.3 Then the commutation

[Σ1, Ĥ] = cp̂2[Σ1, α2] + cp̂3[Σ1, α3],

where we have used the condition that Σk commutes with αk and β. Expressing Σ1, α1

and α3 in terms of Pauli matrices σk, using the anti-commutation relations for σk, and the
relation σkσ` = iσm, where k, `,m are a cyclic permutation of (1,2,3) we find[

(~/2)Σ1, Ĥ
]

= i~c(p̂2α3 − p̂3α2) . (12.3.5)

Adding this to Eq. (12.3.1), we find

[L̂1, Ĥ] + (~/2)Σ1, Ĥ] = [
(
L̂1 + (~/2)Σ1

)
, Ĥ] = 0 . (12.3.6)

Similarly, by considering the commutators of Σ2 and Σ3 with Ĥ, we can show that

[
(
L̂2 + (~/2)Σ2

)
, Ĥ] = 0 , (12.3.7)

[
(
L̂3 + (~/2)Σ3

)
, Ĥ] = 0 . (12.3.8)

By adding Eqs. (12.3.6) through (12.3.8) we find that the observable L̂+ ~
2 Σ ≡ Ĵ commutes

with the Hamiltonian and, therefore, is a constant of motion. The observable Ĵ may be
called the total angular momentum of the electron. Thus preserving the conservation of
angular momentum Dirac equation requires the electron to possess an intrinsic angular
momentum. This instrinsic angular momentum is referred to as the spin of the electron.

The operator ~
2 Σ = ~

2

(
σ 0
0 σ

)
may be regarded as the spin operator of the electron, where

Σ =
(
σ 0
0 σ

)
. Thus spin, an intrinsic property of the electron, follows naturally from the

Dirac equation.

12.4 Free Particle (Plane Wave) Solutions of Dirac Equation

The plane wave solution of the Dirac equation for a free particle should have the form

ψ(r, t) = u exp
[
i

~
(p · r − Et)

]
, (12.4.1)

3Our convention is that the Roman index k runs from 1 to 3 while the Greek index µ runs from 1 to 4.
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where u =


u1

u2

u3

u4

 is called the Dirac spinor. Substituting this form of solution in the Dirac

equation

i~
∂

∂t
ψ(r, t) =

(
c

3∑
k=1

αkpk + βmc2

)
ψ(r, t) , (12.4.2)

we find that u must satisfy

Eu =

(
c

3∑
k=1

αkpk + βmc2

)
u . (12.4.3)

Using the matrix form of u and αk and β, we find explicitly,

E


u1

u2

u3

u4

 = cp1


u4

u3

u2

u1

 − cp2


−iu4

+iu3

−iu2

+iu1

 − cp3


+u3

−u4

−u1

−u2

 −mc2

u1

u2

−u3

−u4

 ,

or


(E −mc2) 0 −cp3 −c(p1 − ip2)

0 (E −mc2) −c(p1 + ip2) cp3

−cp3 −c(p1 − ip2) (E +mc2) 0
−c(p1 + ip2) cp3 0 (E +mc2)



u1

u2

u3

u4

 = 0 . (12.4.4)

Thus we have a set of four linear equations in u1, u2, u3, and u4. For this set of equations
to yield a non-trivial solution for u, the determinant of the coefficient matrix must vanish∣∣∣∣∣∣∣∣

(E −mc2) 0 −cp3 −c(p1 − ip2)
0 (E −mc2) −c(p1 + ip2) cp3

−cp3 −c(p1 − ip2) (E +mc2) 0
−c(p1 + ip2) cp3 0 (E +mc2)

∣∣∣∣∣∣∣∣ = (E2−m2c4−c2p2)2 = 0 . (12.4.5)

This yields two solutions for the energy of a free particle

E ≡ E+ = (c2p2 +m2c4)1/2 ≥ mc2 , (12.4.6a)

E ≡ E− = −(c2p2 +m2c4)1/2 ≤ −mc2 . (12.4.6b)

Thus the energy of a free Dirac particle can be either ≥ mc2 or ≤ −mc2. The energy
between +mc2 and −mc2 is forbidden for a free particle. The question is how to interpret
the negative energy states, i.e., an electron having energy less than its rest mass energy.
In classical physics also we have Eq. (12.4.6) because of the relativistic energy-momentum
relation. But we can ignore negative energies because in classical physics we cannot have
discontinuous jumps in energy. In quantum mechanics, however, we cannot disregard the
negative energy solutions (negative energy states) because discontinuous changes in energy
can occur in quantum mechanics In other words if the initial energy of a particle is E−, it
can subsequently be E+, involving a gap of more than 2mc2. So if we accepts the Dirac
equation, we must accommodate the concept of negative energy states in the framework of
this theory.

Dirac postulated that all the negative energy states of the electron ( −∞ < E ≤ −mc2)
are normally occupied by electrons so that no electron with positive energy can jump
into any negative energy state on account of the Pauli exclusion principle. Dirac further
postulated that no observable properties of matter can be ascribed to the electrons filling
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negative energy states. In other words the electrons filling negative energy states do not
produce any external field and do not contribute to the total charge, momentum or energy
of the system. Alternatively, we can say that the zero points for the total charge, energy
and momentum of the system correspond to that electron distribution in which all the
negative energy states are occupied but no positive energy state is occupied. This state is
called the vacuum state or electron vacuum. Now, if sufficient energy ≥ 2mc2 be given to
a system, this may result in a transition of an electron from a negative energy state to a
positive energy state, since some positive energy states are always unoccupied. As a result
a void or hole will be created in the continuum of negative energy states and an electron
will appear in the positive energy continuum. According to Dirac, this hole in the negative
energy continuum of states can be identified as a real particle with charge +e, mass m and
energy ≥ mc2.

To visualize this, consider what happens when an electron with energy E−(≤ −mc2),
charge −e and momentum p is removed from the continuum of negative energy states
which were all initially occupied by electrons. Initially we had vacuum, but as a result of
removal of the electron from the negative states, the whole system has charge +e, energy
−E− = E+(≥ mc2) and momentum −p, all different from zero. So for all practical purposes
the hole in the negative energy states continuum behaves like a real particle with charge
+e, mass m (energy ≥ mc2), momentum and spin opposite to that of the negative energy
electron. On this basis Dirac was able to predict the existence of a particle which has the
same mass as an electron but opposite charge. When such a particle, now called a positron,
was discovered by Anderson, Dirac’s theory of the electron stood on solid ground and he was
awarded the Nobel Prize. So, if energy greater than 2mc2 is supplied to the vacuum, say
through a gamma-ray photon, then this may raise an electron from a negative energy state
to a positive energy state, resulting in the production of a pair of electron and positron.
This process, which has been observed, is called pair production.

Now we come back to the problem of the solution of a set of linear equations (12.4.4)
involving u1, u2, u3, and u4. By introducing two-component spinors Φ and ξ by

Φ =
(
u1

u2

)
and ξ =

(
u3

u4

)
, (12.4.7a)

we can write Dirac spinor u as

u =
(

Φ
ξ

)
. (12.4.7b)

Substituting this in Eq. (12.4.3) and using the representation of αk and β matrices in terms
of Pauli matrices, we get

E

(
Φ
ξ

)
=

[
3∑
k=1

c

(
0 σk
σk 0

)
pk +

(
I 0
0 − I

)
mc2

](
Φ
ξ

)
. (12.4.8)

This gives us two coupled equations.

c

(
3∑
k=1

σkpk

)
ξ = (E −mc2)Φ , (12.4.9)

and c

(
3∑
k=0

σkpk

)
Φ = (E +mc2)ξ . (12.4.10)

For a state of positive energy E+ = (c2p2 + m2c4)1/2 ≡ |E|, two-component spinors ξ and
Φ are related by

ξ =
c(σ · p)
|E|+mc2

Φ . (12.4.11)
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In the non-relativistic limit (|p|/mc = v/c� 1) E+ → mc2, this relation leads to

ξ ≈ σ · p
2mc2

Φ =
σ · v

2c
Φ , (12.4.12)

where v = p/m is the velocity of the particle. This shows that two-component spinor ξ
is much smaller (by factor v/c � 1) compared to Φ. Hence Φ and ξ may be referred to,
respectively, as large and small components of Dirac spinor u for positive energy. On the
other hand, for the negative energy state (E− = −(c2p2 +m2c4)1/2 = −|E|), we have

Φ =
c(σ · p)
−|E| −mc2 ξ . (12.4.13)

In the non-relativistic limit E− = −|E| → −mc2 yields

Φ ≈ −σ · v
2c

ξ . (12.4.14)

Hence for negative energies Φ and ξ may be regarded, respectively, as the small and large
components of Dirac u. Because of the non-relativistic limits (12.4.11) and (12.4.13), we
may say that Φ is the dominant component of the positive energy solutions (ξ → 0), while
ξ is the dominant component of the negative energy solutions (Φ→ 0).

Now, for each energy (E+ = |E| and E− = −|E|) there exist two solutions for u
corresponding to the two spin states of Dirac particle. We have thus four (spinor) solutions
u+
↑ , u

+
↓ , u

−
↑ and u−↓ , which may also be denoted as U1, U2, U3, and U4, respectively. For

positive energy, with spin state indicated by suffix σ (↑, ↓), we have

u+
σ = C


χ+
σ

(σ · p)χ+
σ

|E|+mc2

 , (12.4.15)

where C is a normalization constant and we are using χ+
σ now to denote the dominant part

Φ of the positive energy spinor u+
σ while the smaller component ξ is given by Eq. (12.4.11).

Taking χ+
σ to be the spin-up state χ+

↑ =
(

1
0

)
, we have for the corresponding Dirac spinor

u+
↑

u+
↑ ≡ U1 = C


1
0

ηp3/p
η(p1 + ip2)/p

 , (12.4.16)

where η = cp/(|E|+mc2). If we take χ+
σ to be the spin-down state χ+

↓ =
(

0
1

)
, we obtain

the corresponding Dirac spinor u+
↓

u+
↓ ≡ U2 = C


0
1

η(p1 − ip2)/p
−ηp3/p

 . (12.4.17)

The normalization constant C is to be so chosen so as to conform to the normalization
condition u+†

σ u+
σ = 1. This gives

C =
1√

1 + η2
. (12.4.18)
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For the negative energy states (E = E− = −|E|), we have

u−σ = C


c(σ · p)χ−σ
−|E| −mc2

χ−σ

 , (12.4.19)

where we are using χ−σ to denote the dominant component ξ of the negative energy spinor,
while its smaller component Φ is given by Eq. (12.4.13). By taking χ−σ to be spin up spinor

χ−↑ =
(

1
0

)
, we obtain the corresponding Dirac spinor

u−↑ ≡ U3 = C


−ηp3/p

−η(p1 + ip2)/p
1
0

 . (12.4.20)

Similarly, by taking χ−σ to be spin down spinor χ−↓ =
(

0
1

)
, we have for the corresponding

Dirac spinor

u−↓ ≡ U4 = C


−η(p1 − ip2)/p

ηp3/p
0
1

 . (12.4.21)

Choosing the z-axis in the direction of the momentum of the particle so that (p3 = p and
p1 = 0 = p2 ), Dirac spinors may be expressed as

u+
↑ =

1√
1 + η2


1
0
η
0

 u+
↓ =

1√
1 + η2


0
1
0
−η

 (12.4.22a)

u−↑ =
1√

1 + η2


−η
0
1
0

 u−↓ =
1√

1 + η2


0
η
0
1

 . (12.4.22b)

12.5 Dirac Equation for a Zero Mass Particle

For a massless (m = 0) Dirac particle, such as the neutrino, η = 1 and the four spinors
become

u+
↑ =

1√
2


1
0
1
0

 u+
↓ =

1√
2


0
1
0
−1

 (12.5.1a)

u−↑ =
1√
2


−1
0
1
0

 u−↓ =
1√
2


0
1
0
1

 . (12.5.1b)



414 Concepts in Quantum Mechanics

We can easily see that, apart from being the eigen-spinors of the Hamiltonian, they are also
the eigen-spinors of the helicity operator

h =
Σ.p
E/c

. (12.5.2)

For the first two spinors (positive energy solutions) in (12.5.1), h = Σ3 has eigenvalues +1
and −1, respectively,

hu+
↑ = u+

↑ and h u+
↓ = −u+

↓ . (12.5.3)

This means that in the first case (eigenvalue +1) the spin is parallel to the momentum and
in the second case (eigenvalue −1), the spin is anti-parallel to the momentum. For the last
two spinors (negative energy solutions), the helicities are is −1 and +1, respectively,

h u−↑ = −u−↑ and h u−↓ = u−↓ (12.5.4)

We can also see that the spinors for a zero mass particle also satisfy the chirality equation,

γ5u = ±u (12.5.5a)

where γ5 = γ1γ2γ3γ4 = −
(

0 I
I 0

)
. (12.5.5b)

is the chirality operator. Equation (12.5.5a) implies

γ5u
+
↑ = −u+

↑ , γ5u
+
↓ = u+

↓ , γ5u
−
↑ = u−↑ , and γ5u

−
↓ = −u−↓ (12.5.6)

A comparison of this equation with Eqs. (12.5.3) and (12.5.4) shows that for all the four
spinors, the helicity and chirality are opposite. It follows from Eq. (12.5.6), that the spinors
for massless Dirac particle satisfy

1
2

(1 + γ5)u+
↓ = u+

↓ ,
1
2

(1 + γ5)u−↑ = u−↑ and
1
2

(1 + γ5)u+
↑ = 0 =

1
2

(1 + γ5)u−↓ ,

and
1
2

(1− γ5)u+
↑ = u+

↑ ,
1
2

(1− γ5)u−↓ = u−↓ and
1
2

(1− γ5)u+
↓ = 0 =

1
2

(1− γ5)u−↑ .

Hence we can look upon the operator 1
2 (1 + γ5) as a projection operator for a negative

helicity or positive chirality state, and the operator 1
2 (1− γ5) as the projection operator for

a positive helicity or negative chirality state.

Weyl’s Two-Component Theory

For a massless spin-half particle, the Dirac equation assumes the form

i~
∂ψ

∂t
= −i~cαk ∂ψ

∂xk
. (12.5.7)

For a free particle ψ has the form ψ = u exp[ i~ (p · r − Et)], where u is a four-component
Dirac spinor. Substitution of this form in Eq. (12.5.7) yields

Eu = cα · pu , (12.5.8)

where E = ± cp for a massless particle. Using the identity αk = −γ5Σk = −Σkγ5, we can
rewrite Eq. (12.5.8) as

Eu = −c(Σkpk)γ5u , (12.5.9)
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where Σk =
(
σk 0
0 σk

)
and sum over a repeated index is implied. Since γ5u = ∓u for

negative (positive) chirality state we can rewrite Eq. (12.5.9) as

Eu = ±c(Σkpk)u , (12.5.10)

where the upper sign is for negative chirality (or positive helicity) state and the lower sign
is for positive chirality (or negative helicity) state.

Now, if we write u =
(
χ1

χ2

)
, where χ1 and χ2 are two-component spinors, then Eq. (12.5.7)

separates into two identical two-component equations

Eχ1 = ±c(σkpk)χ1

and Eχ2 = ±c(σkpk)χ2 .

Taking one of these equations and dropping the suffix on χ, we obtain

c(σkpk)χ = ±Eχ (12.5.11)

This is called Weyl two-component equation for zero mass spin-half particles. The upper
sign is for positive helicity state and the lower sign is for negative helicity state.

Since, experimentally, a neutrino (a massless spin-half particle) is assigned a negative
helicity, we may write the Weyl equation as

c(σ · p)χ = −Eχ (12.5.12a)

or
∂ψ

∂t
= cσk

∂ψ

∂xk
, (12.5.12b)

where ψ = χ exp
[
i
~ (p · r − Et)] is a two-component wave function. From Eq. (12.5.12)

we can readily see that hχ = σ.p
E/cχ = −χ. It appears that for a neutrino, the only

four-component solutions of Dirac equation are u+
↓ and u−↑ , both of which correspond to

negative helicity [Eqs. (12.5.3) and (12.5.4)]. While the former corresponds to a neutrino
with positive energy (negative helicity, of course), the latter corresponds to a neutrino with
negative energy (and negative helicity) or to an anti-neutrino with positive energy because a
void in the continuum of negative energy neutrino states corresponds to anti-neutrino with
signs of p, σ and E reversed. Since h = σ·p

E/c , a positive energy anti-neutrino is assigned a
positive helicity.

Soon after Weyl derived the two-component equations for zero mass and spin-half
particles, Pauli rejected them on the ground that they violated the law of parity, i.e.,
although they were invariant under proper Lorentz transformations, they were not invariant
under improper Lorentz transformations or under space inversions. Weyl’s equations were
reviewed and revived by Salaam, London, Lee and Yang when it was discovered that parity
is violated in weak interactions and that a neutrino is left-handed (helicity = −1) and anti-
neutrino is right-handed (helicity = +1). In the two-component theory the Dirac spinor u+

↓

corresponds to χ↓ =
(

0
1

)
and u−↑ corresponds to χ↑ =

(
1
0

)
.

12.6 Zitterbewegung and Negative Energy Solutions

Zitterbewegung refers to high frequency (≈ mc2/~) oscillations of the position of the electron
over a distance of the order of Compton wavelength ~/mc. We shall see shortly that this is
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solely due to the interference of the positive and negative energy components of the wave
function.

Consider a free particle obeying the Dirac equation. In the Heisenberg picture4, the
equation of motion for the components of the position operator is

ẋk =
i

~
[H,xk] =

i

~

c 3∑
j=1

αjpj + β mc2

 , xk


or ẋk =

ic

~

3∑
j=1

αj [pj , xk] = cαk . (12.6.1)

Thus we may regard αk as the velocity operator in units of c. This relation holds even
in the presence of an electromagnetic field. Despite the fact that the particle is free, the
velocity operator xk = cαk is not a constant of motion as is easily seen from the equation
of motion for αk5,

α̇k =
i

~
[H,αk] =

i

~
(2Hαk − [H,αk]+) =

i

~
(2Hαk − 2cpk) . (12.6.2)

Keeping in mind that pk and H are constants of motion, we can easily verify by direct
substitution that the solution of the differential equation for αk is

αk(t) = cpkH
−1 + e2iHt/~ [αk(0)− cpkH−1

]
. (12.6.3)

The first term on the right-hand side is easily understood; For an eigenstate with energy E
and momentum pk it gives 〈cpkH−1〉 = cpk/E = 〈vk〉/c , where 〈vk〉 is the average velocity
of the particle corresponding to momentum pk [see Sec. 1.1 on de Broglie relation].

To interpret the second term, we use αk(t) given by Eq. (12.6.3) in Eq. (12.6.1) and
integrate the resulting equation to find the Heisenberg operator xk(t) as

xk(t) = xk(0) + c2pkH
−1t− ic~

2
H−1(e2iHt/~ − 1)(αk(0)− cpkH−1) . (12.6.4)

The first and second terms simply describe the uniform motion of a free particle. The
third term seems to imply that the electron executes a very rapid oscillation, in addition to
uniform motion, with a frequency of the order of 2mc2/~ and amplitude of the order of ~/mc.
This motion is referred to as Zitterbewegung. It can be seen that Zitterbewegung arises on
account of the positive and negative energy components in a wave packet. To elaborate, a
wave packet may be expanded in terms of the free particle plane waves, with positive as
well as negative energies, which form a complete set of states. When the expectation value
of the operator α − cpH−1 [Eq. (12.6.4)] is taken for the wave packet, then positive and
negative energy components of the wave packet (with the same momentum) interfere in
the sense that this operator has non-zero matrix elements only between plane wave states
of equal momentum but energy having opposite signs6.The last term in Eq. (12.6.4) thus,
contributes on account of the presence of both positive and negative energy plane waves in
the wave packet.

4To simplify writing we drop the hat (̂ ) and the superscript H to denote Heisenberg operators in these
equations. Thus instead of x̂H , we shall simply write x for the position operator.
5The anti-commutator [H,αk]+ = Hαk + αkH = 2cpk is not zero. In contrast to this, momentum pk is a
constant of motion for a free particle. The relation (12.6.2) may be regarded as a differential equation for
αk(t).
6To see this, we note that the operator Γ± = 1

2

“
1± H

|E|

”
, where |E| =

p
m2c2 + p2c2 , is the projection

operator for the positive (negative) energy states, i.e., HΓ± = ±|E|Γ±.
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12.7 Dirac Equation for an Electron in an Electromagnetic Field

In the classical equations of motion for an electron in an electromagnetic field specified by
vector and scalar potentials A(r, t) and φ(r, t), energy E is replaced by (E − eφ) while
momentum p is replaced by (p − eA), where e is the electron charge. Using the same
prescription for the Dirac equation

i~
∂

∂t
ψ = (cα · p+ β mc2)ψ , (12.7.1)

we may replace the energy operator i~ ∂
∂t by i~ ∂

∂t −eφ and the momentum operator (−i~∇)
by (−i~∇− eA). Making these replacements in Eq. (12.7.1) we have(

i~
∂

∂t
− eφ

)
ψ(r, t) =

[
cα · (−i~∇− eA) + β mc2

]
ψ(r, t) . (12.7.2a)

Pre-multiplying both sides by −β/~c, we get

β

(
1
ic

∂

∂t
+
eφ

~c

)
ψ = −β

3∑
k=1

−iαk
(

∂

∂xk
− ieAk

~

)
ψ − mc

~
ψ . (12.7.2b)

Using the four-potential Aµ ≡ (A1, A2, A3, A4) ≡ (A1, A2, A3, iφ/c) and γ4 = β, γk =
−iβαk we can write the Dirac equation for an electron in an electromagnetic field as[

γ4

(
∂

∂x4
− ie

~
A4

)
+

3∑
k=1

γk

(
∂

∂xk
− ie

~
Ak

)
+
mc

~

]
ψ = 0 ,

or
[
γµ

(
∂

∂xµ
− ie

~
Aµ

)
+
mc

~

]
ψ ≡

[
γµΩµ +

mc

~

]
ψ = 0 , (12.7.3)

where Ωµ ≡
(

∂

∂xµ
− ie

~
Aµ

)
, (12.7.4)

and summation convention (sum over repeated indices) is used7.

Now, to show that the operator (α − cpH−1) with α ≡ α(0), has non-zero matrix elements only between
the plane waves of the same momentum but energy having opposite signs, it is necessary only to show that

Γ±(α− cpH−1)Γ∓ 6= 0 ,

while Γ±(α− cpH−1)Γ± = 0 .

With the help of the anti-commutator Hα+αH = 2cp, we find the commutator of α and Γ± is given by

[Γ±,α] = ∓(α− cpH−1)
H

|E|
.

Using this commutator, it is easy to check that

Γ±[Γ±α]Γ∓ 6= 0 , ⇒ Γ±(α− cpH−1)Γ∓ 6= 0 ,

and Γ±[Γ± , α]Γ± = 0 ⇒ Γ±(α− cpH−1)Γ± = 0 .

7Let us recall that we can write a four-vector Vµ ≡ (V1, V2, V3, V4) ≡ (Vk, V4) ≡ (V , V4), where the Greek
index µ takes on values 1, 2, 3, 4. The first three components (V1, V2, V3) ≡ Vk denote the spatial components
and the fourth V4 denotes the time component of the four-vector. We shall also write Vµ ≡ (Vk, V4), where
the Roman index k = 1, 2, 3.
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The adjoint of the Dirac equation (12.7.2a) is(
−i~ ∂

∂t
− eφ

)
ψ†β2 = c

3∑
k=1

(
i~

∂

∂xk
− eAk

)
ψ†β2αk +mc2ψ†β , (12.7.5)

in which we have used I = β2 in the first two terms. Using the four-potential Aµ and γµ
matrices as before and introducing ψ̃ by ψ̃ = ψ†γ4, we can rewrite the adjoint of the Dirac
equation in an electromagnetic field as(

∂

∂xµ
+
ie

~
Aµ

)
ψ̃γµ − mc

~
ψ̃ = 0 . (12.7.6)

Klein-Gordon Equation for a Charged Particle in Electromagnetic Field

In the presence of an electromagnetic field, the Klein-Gordon equation takes the form(
i~
∂

∂t
− eφ

)2

ψ =
[
c2(−i~∇− eA)2 +m2c4

]
ψ (12.7.7)

Multiplying throughout by −1/c2~2 and introducing the four-potential Aµ = (Ak, iφ/c), we
can rewrite it as

(ΩµΩµ − m2c2

~2
)ψ = 0 , (12.7.8)

where Ωµ is defined in Eq. (12.7.4).

Intrinsic Magnetic Moment of the Dirac Electron

The Dirac equation also incorporates an intrinsic magnetic dipole moment (and also an
imaginary electric dipole moment) for the electron. To see this we start with the covariant
form of the Dirac equation in the presence of an electromagnetic field [Eq. (12.7.3)] and
pre-multiply it by

(
γνΩν − mc

~
)

to get(
γνΩν − mc

~

)(
γµΩµ +

mc

~

)
ψ = 0

or γνΩνγµΩµψ − mc

~
γµΩµψ +

mc

~
γνΩνψ − m2c2

~2
ψ = 0 . (12.7.9)

The second and third terms cancel out. Remembering that γ-matrices do not commute
while the differential operators do, we have for the operator γνΩνγµΩµ

γνγµΩνΩµ = γνγµ
∂

∂xν

∂

∂xµ
− ie

~
γνγµ

(
Aν

∂

∂xµ
+Aµ

∂

∂xν
+
∂Aµ
∂xν

)
− e2

~2
γνγµAνAµ

=
∂

∂xµ

∂

∂xµ
− 2ie

~
Aµ

∂

∂xµ
− ie

~

(
∂Aµ
∂xµ

)
− ie

2~
γµγνFµν − e2

~2
AµAµ , (12.7.10)

where Fµν = ∂Aν
∂xµ
− ∂Aµ

∂xν
is the electromagnetic field tensor [Appendix 12A1] and we have

used the anti-commutation relations for the γµ matrices [Eq. (12.2.14)]. Hence Eq. (12.7.9)
assumes the form[

∂

∂xµ

∂

∂xµ
− ie

~
∂Aµ
∂xµ

− 2ie
~
Aµ

∂

∂xµ
− e2

~2
AµAµ − m2c2

~2

]
ψ − ie

2~
γµγνFµνψ = 0 ,

or
(

ΩµΩµ − m2c2

~2

)
ψ − ie

2~
γµγνFµνψ = 0 . (12.7.11)
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Comparing this form of the Dirac equation with the Klein-Gordon equation (12.7.8) for
a charged particle in an electromagnetic field, we notice an extra term − ie

2~γµγνFµνψ in
Eq. (12.7.11).

To unravel the meaning of this term, consider the wave function ψ to be of the plane wave
form ψ = u exp[ i~ (p ·r−Et)], where u is a Dirac spinor. (We can always expand ψ in terms
of plane wave solutions.) This substitution in the Dirac equation (12.7.11) results in the
following replacements: (−i~ ∂

∂x4
) → iE

c , (−i~ ∂
∂xk

) → pk and A4 → (iφ/c). Multiplying
the resulting equation by (−i~c)2, we have

(E − eφ)2ψ =

[
3∑
k=1

c2 (pk − eAk)2 +m2c4

]
ψ − ie~c2

2
γµγνFµνψ .

In the non-relativistic limit (E − eφ)2−m2c4 ≈ 2mc2(E′− eφ), where E′ = E −mc2 is the
total energy, excluding rest energy of the particle, this equation leads to

(E′ − eφ)ψ =
1

2m

3∑
k−1

(pk − eAk)2ψ +
ie~
4m

γµγνFµνψ . (12.7.12)

Recalling that Fµν is an anti-symmetric tensor (Fµµ = 0, and Fµν = −Fνµ) and the γ-
matrices anti-commute ( γµγν = −γνγµ when µ 6= ν), we can write the last term as

ie~
2m

[γ1γ2F12 + γ2γ3F23 + γ3γ1F31 + γ1γ4F14 + γ2γ4F24 + γ3γ4F34]ψ .

Using the relations γkγ` = iΣm , Fk` = Bm (mth component of the magnetic field) where
k, `,m are cyclic permutations of (1,2,3), γkγ4 = iαk and Fk4 = −iEk/c , (kth component
of the electric field) we have

ie~
4m

γµγνFµν = − e~
2m

[
B ·Σ + iα · E

c

]
where B and E are, respectively, the magnetic and electric fields. Thus the non-relativistic
limit of the Dirac equation (12.7.12) assumes the form

E′ψ =

[
eφ+

1
2m

3∑
k=1

(
pk − e

c
Ak

)2

− e~
2m
B ·Σ− e~

2mc
iα ·E

]
ψ . (12.7.13)

While the first two terms on the right-hand side represent the energy of a charged particle
in an electromagnetic field, the last term represents the energy of the particle due to
an intrinsic magnetic dipole moment µB = e~

2m . The relation between electron spin and
magnetic moment is

µ =
e

m

~
2

Σ =
e

m
S , (12.7.14)

where S = ~
2 Σ is the spin operator for the electron. This equation shows that just as the

orbital angular momentum of a charge particle gives rise to a magnetic moment, so too does
its intrinsic (spin) angular momentum. However the gyromagnetc ratio |µ|/|S| = e/m for
spin-induced magnetic moment is twice as large as it is for the orbital angular momentum
in agreement with the experiments. Thus we see that a charged particle described by the
Dirac equation has an intrinsic spin as well as an intrinsic magnetic dipole moment, which
in the non-relativistic theory were introduced in an ad hoc manner.

Interestingly, Eq. (12.7.13) also predicts an intrinsic (imaginary) electric dipole moment
ie~
2mc . However, this term in Eq. (12.7.13) is of the order of (v/c)2 and is usually neglected
in the non-relativistic limit.
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Dirac Equation in the Non-Relativistic Limit

The four-component Dirac wave function may be written as
(

Φ
χ

)
, where Φ and χ are two-

component wave functions introduced in Sec. 12.4. Substituting this into the stationary
state Dirac equation for an electron in an electromagnetic field[

c

3∑
k=1

αk(pk − eAk) + β mc2

]
ψ = (E − eφ)ψ , (12.7.15)

we obtain the coupled equations

Φ =
cPkσk

E −mc2 − eϕχ, (12.7.16)

and χ =
cPkσk

(E +mc2 − eφ)
Φ , (12.7.17)

where Pk ≡ pk − eAk and sum over repeated indices is implied. For positive energies
(E > mc2), we can put E −mc2 = E′ and write Eq. (12.7.17) as χ = cPkσk

E′−eφ+2mc2 Φ, which
in the non-relativistic limit |E′ − eφ| � 2mc2 gives

χ ≈ Pkσk
2mc

Φ. (12.7.18)

Hence in the non-relativistic limit of positive energy solutions, χ � Φ. Similarly, for
negative energies (E < −mc2), we can put E + mc2 = E′ and write Eq. (12.7.16) as
Φ = cPkσk

E′−eφ−2mc2 χ, which in the non-relativistic limit |E′ − eφ| � 2mc2 gives

Φ ≈ Pkσk
2mc

χ . (12.7.19)

This implies that in the non-relativistic limit of negative energy solutions, Φ� χ.
Thus, for the positive energy states and in the non-relativistic limit, Φ represents the

large component of Dirac wave function and χ represents the small component. On the
other hand, for the negative energy states and in the non-relativistic limit, χ represents the
large component and Φ represents the small component. These conclusions are similar to
those reached in Sec. 12.4 for a free Dirac particle.

In what follows we shall confine ourselves to non-relativistic limit for positive energies
only. From Eqs. (12.7.16) and (12.7.18) we have

(E −mc2)Φ =
[

1
2m

(σ · P )2 + eφ

]
Φ .

Comparing this with the stationary state Schrödinger equation, we see that in the non-
relativistic case, the time-dependent equation of motion for the electron state can be written
as

i~
∂

∂t
Φ =

[
1

2m
(σ · P )2 + eφ

]
Φ . (12.7.20)

This equation can be cast in a different form by using the identity

(σ · P )(σ · P ) = P 2 + iσ · (P × P ) , (12.7.21a)

which follows from the properties of Pauli spin operators [Problem 2, Chapter 12], and the
relation

(P × P )k = ie~(∇×A)k = ie~Bk , (12.7.21b)
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which follows from the commutation relation

[pk, A`] = −i~∂A`
∂xk

. (12.7.21c)

Equation (12.7.21b) can be written as P ×P = ie~B. Using this relation in Eq. (12.7.21a)
and substituting the result in Eq. (12.7.20), we find that in the non-relativistic
approximation, the Dirac equation for positive energies reduces to

i~
∂Φ
∂t

=
[

1
2m

(p− eA)2 − e~
2m

(σ ·B) + eφ

]
Φ . (12.7.22)

This is precisely the non-relativistic Schrödinger-Pauli equation for the electron. As already
observed, the operator µ ≡ µBσ = e~

2mσ may be regarded as the intrinsic magnetic moment
operator for the electron, the intrinsic magnetic moment to be assigned to the electron being
µB .

The term −µBσ · B was artificially introduced by Pauli into the Hamiltonian of an
electron in an electromagnetic field. Now we find that it is a natural outcome when we use
the Dirac equation and investigate its form for positive energies in the non-relativistic limit.
Thus, not only does Dirac theory predict the existence of intrinsic magnetic moment of the
electron, but also gives the correct value for it. It is remarkable that, according to Dirac
theory the gyromagnetic ratio [the ratio of the intrinsic magnetic dipole moment of the
electron (in units of Bohr-magneton µ

B
), to its intrinsic angular momentum (in units of ~)]

comes out to be 2 which is confirmed by experiments. This is one of the major successes of
Dirac theory.

Experimentally, a very small deviation is observed in the electron magnetic dipole moment
from the prediction of Dirac theory. This deviation is termed the anomalous magnetic
moment of the electron. Dehmelt and coworkers have found8 that the magnetic moment of
the electron is µe = 1.001 159 652 188(4) µB . This anomaly has been explained on the basis
of quantum field theory, which yields µe = 1.001 159 652 175(8)µB !

Foldy-Wouthuysen Transformation

We have seen that, in the non-relativistic limit, the Dirac equation may be separated into
positive and negative energy components, each involving two-component wave functions.
In this limit, the Dirac equation reduces to the Schrödinger -Pauli equation for positive
energies. Such a separation can also be brought about for the Dirac equation even in
the relativistic case by invoking a transformation known after Foldy and Wouthuysen.
Consider a transformation of the free Dirac Hamiltonian H = cα · p+ β mc2 by a unitary
transformation U such that

H → UHU† = H ′ . (12.7.23)

We require that under this transformation, the wave function transforms according to

ψ ≡
(

Φ
χ

)
→ Uψ = ψ′ ≡

(
Φ′

χ′

)
(12.7.24)

such that

H ′
(

Φ′

0

)
≡ H ′ψ′+ = +Epψ′+ (12.7.25)

and H ′
(

0
χ′

)
≡ H ′ψ′− = −Epψ′− (12.7.26)

8R. S. Van Dyck, Jr., P. B. Schwinberg, and H. G. Dehmelt, Phys. Rev. Lett. 59, 26 (1987).
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where Ep = (c2p2 + m2c4)1/2 and ψ′+ ≡
(

Φ′

0

)
and ψ′− ≡

(
0
χ′

)
are four-component wave

functions while Φ′ and χ′ are two-component wave functions. According to Foldy and
Wouthuysen, the unitary operator U , which can bring about this transformation, has the
form

U =

√
2Ep

mc2 + Ep

1
2

(
1 +

β H

Ep

)
=

√
mc2 + Ep

2Ep
+

cβα · p√
2Ep(mc2 + Ep)

. (12.7.27)

It may be checked that U is unitary: UU† = U†U = I.
Under this transformation, the Dirac Hamiltonian

H ≡ cα · p+ βmc2 → UHU† = H ′ ≡ β Ep (12.7.28)

while the projection operators Γ± = 1
2 (1± H

Ep
) for the positive and negative energy states

transform as

Γ+ → UΓ+U
† =

1
2

(1 + β) ≡ B+ (12.7.29a)

and Γ− → UΓ−U† =
1
2

(1− β) ≡ B− . (12.7.29b)

Thus the Dirac equation i~ ∂
∂tψ = Hψ with ψ written in terms of two-component wave

functions, is transformed into

i~
∂

∂t
Uψ = UHU†Uψ

or i~
∂

∂t

(
Φ′

χ′

)
= β Ep

(
Φ′

χ′

)
resulting in two two-component equations

i~
∂Φ′

∂t
= +EpΦ′ (12.7.30)

and ı~
∂χ′

∂t
= −Epχ′ . (12.7.31)

The transformed projection operators B± thus separate the transformed Dirac four-
component wave function ψ′ as

B+ψ
′ =

1
2

(1 + β)
(

Φ′

χ′

)
=
(

Φ′

0

)
(12.7.32)

and B−ψ
′ =

1
2

(1− β)
(

Φ′

χ′

)
=
(

0
χ′

)
. (12.7.33)

12.8 Invariance of Dirac Equation

Any equation in physics must be form invariant under a Lorentz transformation, since
physics expressed by the equation must be independent of the reference frame. This
requirement is implicit in the principle of relativity and is referred to as Lorentz invariance or
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covariance. To discuss the invariance of the Dirac equation under Lorentz transformations,
it is convenient to write the Dirac equation for a charged particle (charge e and mass m) in
an electromagnetic field Aν(x) ≡ (A(x), iφ(x)/c) as [Eq. (12.7.3)][

γµ

(
∂

∂xµ
− ie

~
Aµ(x)

)
+
mc

~

]
ψ(x) = 0 (12.8.1)

and its adjoint equation as [Eq. (12.7.6)][
∂

∂xµ
+
ie

~c
Aµ(x)

]
ψ̃(x)γµ − mc

~
ψ̃(x) = 0 (12.8.2)

where ψ̃(x) = ψ†(x)γ4. Here and in the rest of this section x in the argument of Aµ(x) or
ψ(x) represents the space time coordinates: x ≡ (x1, x2, x3, x4) = (x, y, z, ict) ≡ (r, t). From
the forms of the Dirac equation and its adjoint, it is still not obvious that these equations
are form invariant under a Lorentz transformation for, although ψ has four components (a
spinor), it does not transform as a four-vector. So we still need to investigate whether the
Dirac equation is invariant under Lorentz transformations.

Consider a homogeneous Lorentz transformation (space-time transformation in four-
dimensional space) defined by the relation [see Appendix 12A1]

x′µ = aµνxν , (12.8.3a)

where aµν represents the µν element of a 4 × 4 matrix a and a sum over repeated indices
is implied. We will restrict to orthogonal transformations (a−1

µν = aTµν = aνµ) for which the
inverse transformation relation is

xµ = aνµx
′
ν . (12.8.3b)

The orthogonality of transformation is then expressed by

a−1a = aTa = I ⇒ aµρaµσ = δρσ . (12.8.4)

Since all four-vectors transform according to Eqs. (12.8.3), we have

∂

∂xµ
= aνµ

∂

∂x′ν
(12.8.5)

and Aµ = aνµA
′
ν . (12.8.6)

Now suppose that under this transformation spinor functions ψ(x) and ψ̃(x) transform
according to

ψ(x)→ ψ(x′) ≡ ψ′(x) = Sψ(x) , (12.8.7)

ψ̃(x)→ ψ̃(x′) ≡ ψ̃′(x) = ψ̃(x) S̄ , (12.8.8)

where S and S̄ are 4 × 4 matrix operators independent of xµ. From the relation
ψ̃(x) = ψ†(x)γ4, it follows that S̄ = γ4S

†γ4. We may assume that γ-matrices do not
change as a result of this transformation since they are independent of position, momentum
and time variables. Then the invariance of the Dirac equation under Lorentz transformation
means that the equation satisfied by the transformed spinor ψ′(x) in the presence of the
transformed four-potential A′µ(x) has the same form as the original equation (12.8.1)[

γµ

(
∂

∂x′µ
− ie

~
A′µ(x)

)
+
mc

~

]
ψ′(x) = 0 . (12.8.9)
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In addition, we must be able to prescribe an explicit linear relationship [Eq. (12.8.7)]
connecting spinor ψ′(x) to ψ(x). We now find the conditions for the invariance of the
Dirac equation under Lorentz transformations and determine the matrix operator S, which
satisfies these conditions for various orthogonal transformations represented by Eq. (12.8.3).
We shall consider: (a) pure Lorentz transformations (b) pure rotations in ordinary three-
dimensional space (c) space inversion and (d) time reversal.

Using Eqs. (12.8.7) and (12.8.8) in Eq. (12.8.9) and multiplying from the left by S−1 we
get [

S−1γµS

(
∂

∂x′µ
− ie

~
A′µ(x)

)
+
mc

~
S−1S

]
ψ(x) = 0

or
[
S−1γνS

(
∂

∂x′ν
− ie

~
A′ν(x)

)
+
mc

~
S−1S

]
ψ(x) = 0 , (12.8.10)

where in the second step we have changed the dummy index µ to ν. Going back to
Eq. (12.8.1) and using the transformation relations (12.8.5) and (12.8.6) we get[

γµaνµ

(
∂

∂x′ν
− ie

~
A′ν(x)

)
+
mc

~

]
ψ(x) = 0 . (12.8.11)

Comparing Eqs. (12.8.10) and (12.8.11) we conclude that the operators S and S−1 must
satisfy the conditions

S−1γνS = γµaνµ (12.8.12)

and S−1S = I (12.8.13)

for the Dirac equation to be invariant under the transformation (12.8.3). We shall now
proceed to find the matrix operators S for various orthogonal transformations within the
framework of Eq. (12.8.3), which satisfy the conditions in Eqs. (12.8.12) and (12.8.13).

(a) Pure Lorentz Transformations

A pure Lorentz transformation may be viewed as a rotation in Minkowski space by an
imaginary angle. The prototypical transformation is the Lorentz-Einstein transformation
corresponding to a rotation in the x1−x4 plane with the transformation matrix [aµν ] given
by [Appendix 12A1]

[aµν ] =


cosφ 0 0 sinφ
0 1 0 0
0 0 1 0
− sinφ 0 0 cosφ

 (12.8.14)

where φ is given by tanφ = iVc . For this transformation the primed inertial frame moves
relative to the unprimed reference frame with velocity V along the x1 axis. To identify
the operator S

L
we use the conditions (12.8.12) and (12.8.13). Consider the case ν = 1 in

Eq. (12.8.12), which leads to

S−1
L
γ1SL = a1µγµ = a11γ1 + a14γ4 = γ1 cosφ− γ4 sinφ

= [cos(φ/2) + γ1γ4 sin(φ/2)] γ1 [cos(φ/2)− γ1γ4 sin(φ/2)] (12.8.15)

where we have used the trigonometric identities cosφ = cos2(φ/2) − sin2(φ/2), sinφ =
2 sin(φ/2) cos(φ/2) and the anti-commutation relation γµγν + γνγµ = 2δµν in the last step.
So in this case we may identify the operators S

L
and S−1

L
as

S
L

= cos(φ/2)− γ1γ4 sin(φ/2) (12.8.16)

and S−1
L

= cos(φ/2) + γ1γ4 sin(φ/2) . (12.8.17)
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Using the properties of γ-matrices it is easily verified that S−1
L
S
L

= S
L
S−1
L

= I. It is also
easy to check that with this choice of S

L
, the condition (12.8.12) is satisfied for ν = 2, 3,

and 4 as well. Thus the Dirac equation is invariant under pure Lorentz transformations if
S
L

and S
L

are chosen according to Eqs. (12.8.16) and (12.8.17).

(b)Rotations in Three-dimensional Space

As a prototypical example of pure spatial rotation we consider a rotation about x1-axis
through a real angle θ. The transformation matrix [aµν ] for this rotation is given by

[aµν ] =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 . (12.8.18)

To identify the operators S
R

and S
R

in this case we put ν = 2 in Eq. (12.8.12) and get

S−1
R
γ2 SR = a2µγµ = a22γ2 + a23γ3 = γ2 cos θ + γ3 sin θ

= [cos(θ/2)− γ2γ3 sin(θ/2)] γ2 [cos(θ/2) + γ2γ3 sin(θ/2)] . (12.8.19)

We may now identify the operators S
R

and S−1
R

as

S
R

= cos(θ/2) + γ2γ3 sin(θ/2) = exp(γ2γ3θ/2) (12.8.20)

and S−1
R

= cos(θ/2)− γ2γ3 sin(θ/2) = exp(−γ2γ3θ/2) . (12.8.21)

Obviously S−1
R
SR = I = S

R
S−1
R

and it can be verified that the condition (12.8.12) is satisfied
for ν = 1, 3, and 4 as well. Thus the Dirac equation is invariant under spatial rotations also
if the operators S and S−1 are chosen according to Eqs. (12.8.20) and (12.8.21).

Transformations considered thus far can be obtained by successive applications of
transformations which differ infinitesimally from the identity transformation for which the
invariance of the Dirac equation is obvious. For this reason, the invariance of the Dirac
equation under pure Lorentz transformations and rotations has intuitive appeal. This is
not the case with the discrete transformations we are about to consider. Nevertheless the
Dirac equation and the field equations of electrodynamics are believed to be invariant under
these discrete symmetry transformations as well.

(c) Space Inversion or Parity

The transformation matrix corresponding to the operation of space inversion x → x′ ≡
(x′1, x

′
2, x
′
3, x
′
4) = (−x1,−x2,−x3, x4) is

[aµν ] =


−1 0 0 0

0 − 1 0 0
0 0 − 1 0
0 0 0 + 1

 . (12.8.22)

In this case, (12.8.12) requires S−1
P
γk§P = −γk, k = 1, 2, 3 and S−1

P
γ4§P = γ4. Using the

properties of γ-matrices [γµγν = −γνγµ (µ 6= ν)] we easily identify that S
P

and S−1
P

are
given by

S
P

= γ4 , (12.8.23)

and S−1
P

= γ4 . (12.8.24)

The last equation follows from γ2
4 = I. So the Dirac equation equation is invariant under

space inversion (parity) transformation if the operators S
P

and S−1
P

are chosen according
to Eqs. (12.8.23) and (12.8.24).



426 Concepts in Quantum Mechanics

(d) Time Reversal

For the operation of time reversal t→ −t, the transformation matrix is,

[aµν ] =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 − 1

 . (12.8.25)

In this case Eq. (12.8.12) requires S−1
t γkS = γk and S−1

t γ4St = −γ4. Once again
from the anti-commuting property of γ-matrices, we find that St and S−1

t satisfying these
requirements are

St = γ1γ2γ3 ≡ γ5γ4 (12.8.26)

and S−1
t = γ3γ2γ1 ≡ γ4γ5 . (12.8.27)

Using the properties of γ-matrices we can verify that S−1
t St = I = StS

−1
t .

The transformation matrices S derived so far have been determined solely on the basis
of an assumed linear transformation of the Dirac spinor that leaves the Dirac equation
(12.8.1) invariant. However, since we are dealing with a Dirac particle in the presence of
an electromagnetic field, various transformation matrices must also be compatible with the
invariance of the equations of electrodynamics. In particular, the differential equation for
the four-potential [see Appendix 12A1, Eq. (12A1.4.15)]

∂

∂xµ

∂

∂xµ
Aν = −µojν = −µ0 [iec ψ̃(x)γνψ(x)] (12.8.28)

must be form invariant under these transformations. Since the d’Alembertian ∂
∂xµ

∂
∂xµ

is
invariant under various classes of transformations considered thus far, this requirement
means that the corresponding transformation matrix S for the Dirac spinor must be such
that the four-current jµ(x) = iceψ̃(x)γµψ(x) = iceJµ(x) has the same transformation
properties as the four-potential Aµ(x), viz.,

J ′µ(x) = aµνJν(x) or Jν(x) = aµνJ
′
µ(x) .

Recalling that S̄ = γ4S
†γ4 we find that S̄ = S−1 for S = S

L
, S

R
, S

P
(pure Lorentz, pure

rotation, and parity). Hence for these transformations

J ′µ(x) = ψ̃′(x)γµψ′(x) = ψ̃(x)S̄γµSψ(x) = aµνJν(x) ,

which is the same as the transformation law (12.8.6) for the vector potential. Hence the
transformations S

L
, S

R
, and S

P
are compatible with the invariance of both (12.8.1) and

(12.8.28). It is easy to check that in all these cases the adjoint of Dirac equation is also
invariant.

On the other hand, the transformation matrix St = γ5γ4 is not compatible with the
invariance of Eq. (12.8.28) for in this case S̄t = γ4S

†
t γ4 = γ5γ4, which leads to

J ′µ(x) = ψ̃′(x)γµψ′(x) = ψ̃(x)S̄tγµStψ(x) = ψ̃(x)γ5γ4γµγ5γ4ψ(x) = ψ̃(x)γ4γµγ4ψ(x)

= −aµνJν(x) ,

where we have made use of the matrix aµν given by Eq. (12.8.25) and the relation
γ5γµ = −γµγ5 (µ 6= 5). Hence Eq. (12.8.28) is not invariant under this transformation.9 In

9The transformation St = γ5γ4 was introduced by G. Racah, Nuovo Cimento 14, 329 (1937).
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other words, a linear time-reversal transformation S compatible with the invariance of both
the Dirac equation and the equation for four-vector potential does not exist. We shall discuss
an antilinear time reversal operator S

T
which is compatible with the invariance of both

(12.8.1) and (12.8.28) in Sec. 12.11, where another discrete symmetry of electrodynamics,
viz., charge conjugation is also discussed.

To sum up, we can say that the Dirac equation as well as its adjoint are invariant under
all orthogonal transformations (Lorentz, spatial rotation, space inversion) if the forms of
the operators S and S̄ = S−1 are appropriately chosen in each case. For time-reversal
operation the Dirac equation and its adjoint for a free spin half particle are form invariant
for the same conditions with S and S̄ given by Eqs.(12.8.26) and (12.8.27). The discussion
of the time-reversed state which conforms to the form-invariance of the Dirac equation as
well as the electromagnetic equation (12.8.28) will be discussed in Sec. 12.11.

12.9 Dirac Bilinear Covariants

By inserting the operators I , γµ , iγµγν , iγ5γµ , and γ5 between the spinors ψ̃ and ψ, we
can form the following sets of bilinear combinations (of ψ̃ and ψ) containing, respectively,
one, four, sixteen, four, and one elements:

(i) ψ̃ψ (one)

(ii) ψ̃γµψ (four)

(iii) ψ̃iγµγνψ (sixteen)

(iv) ψ̃iγ5γµψ (four)

and (v) ψ̃γ5ψ (one) .

The number of bilinear quantities in a set is determined by the fact that each Greek
index takes on values 1, 2, 3, 4. The quantities in these sets transform, respectively, as
the components of a (i) scalar, (ii) vector, (iii) tensor of second rank, (iv) pseudo-vector,
and (v) pseudo-scalar.

Let us examine the single element ψ̃ψ comprising the first set. Under a Lorentz
transformation (12.8.3) this transforms according to

ψ̃ψ → ψ̃′ψ′ = ψ̃S̄Sψ = ψ̃ψ . (12.9.1)

The transformed quantity is the same as the original quantity. Hence ψ̃ψ is an invariant or
scalar.

The four quantities ψ̃γµψ comprising the second set transform, under a Lorentz
transformation (12.8.3), according to

ψ̃γµψ → ψ̃′ γµψ
′ = ψ̃ S̄γµSψ = ψ̃ aµνγνψ ,

or ψ̃′ γµψ
′ = aµνψ̃γνψ , (12.9.2)

which is the law of transformation for the components of a four-vector.
The 16 quantities ψ̃iγµγνψ transform under a Lorentz transformation according to

ψ̃iγµγνψ → ψ̃′(iγµγν)ψ′ = ψ̃ S̄(iγµγν)Sψ = iψ̃ S̄γµSS̄γνSψ

= iψ̃ aµλ γλ aνργρψ

or ψ̃′(iγµγν)ψ′ = aµλaνρ{ψ̃(iγλγρ)ψ} , (12.9.3)
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which is the law of transformation for the components of a second rank tensor. From the
anti-commutation properties of the gamma matrices it follows that ψ̃iγµγνψ is an anti-
symmetric tensor.

We consider now the fourth set of four quantities ψ̃iγ5γµψ. Under the transformation
(12.8.3) they transform according to

ψ̃(iγ5γµ)ψ → ψ̃′(iγ5γµ)ψ′ = iψ̃ S̄γ5SS̄γµSψ = iψ̃(S̄γ5S)(S̄γµS)ψ (12.9.4)

where we have inserted SS̄ ≡ I between γ5 and γµ. Recall now that for space inversion
(or parity transformation), we have S̄ = γ4 and S = γ4 [Eqs. (12.8.23) and (12.8.24)], and
therefore, S̄γ5S = −γ5, whereas for an identity transformation, S = S̄ = I, and therefore
S̄γ5S = γ5. Hence, for space inversion followed by Lorentz transformation (improper
Lorentz transformation) or for space inversion followed by rotation in three-dimensional
space, we have

ψ̃′(iγ5γµ)ψ′ = −aµνψ̃(iγ5γν)ψ (12.9.5)

and for proper Lorentz transformation, or proper rotation in three-dimensional space, we
have

ψ̃ ′(iγ5γµ)ψ′ = aµνψ̃(iγ5γν)ψ . (12.9.6)

This is the transformation characteristic of a pseudo-vector.
Finally it is easy to see that the quantity ψ̃γ5ψ is a pseudo-scalar under the transformation

(12.8.3). As a result of this transformation

ψ̃γ5ψ → ψ̃′γ5ψ
′ = ψ̃ S̄γ5Sψ =


−ψ̃γ5ψ , for improper Lorentz transformation

ψ̃γ5ψ , for proper Lorentz transformation
(12.9.7)

Dirac bilinear covariants are very useful for the discussion of relativistic weak interactions
between particles.

12.10 Dirac Electron in a Spherically Symmetric Potential

Consider an electron in an external potential V (r). Then the Hamiltonian

H = cα · p+ β mc2 + V (r) , (12.10.1)

commutes with the total angular momentum operator Ĵ and its square Ĵ
2

so both are
constants of motion. We can therefore choose j and mj , both half integers, and energy
eigenvalues as quantum numbers to specify the states. But these are not sufficient as each
value of j may correspond to two non-relativistic states with ` = j ± 1

2 . So we search for
another constant of motion to differentiate between these two. We note that these states
correspond to spin Σ̂ parallel and antiparallel to Ĵ . So we try an operator proportional to
Σ̂ · Ĵ and after some some trial we find that

K = β

(
Σ · J − ~

2
I

)
= β (Σ ·L+ ~I) (12.10.2)

also commutes with H as well as J and, therefore, is also a constant of motion. To see that
the operator K commutes with H we take note of the following commutation relations

(i) [H,β] = c[α, β] · p = −2cβ(α · p) (12.10.3a)
(ii) [H,Σ`] = 2icε`kmαkpm = 2ic[α× p]` (12.10.3b)
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where εk`m is the alternating symbol and summation convention is implied. Using these
relations we find

β[H,Σ`] J` = 2i cβε`kmαkpmJ` = 2i cβ (p× J) ·α . (12.10.4)

(iii) (α · p)(Σ.J) = −γ5 p.J + iα · (p× J) . (12.10.5)

With the help of these results we can evaluate the commutator

[H,β(Σ.J)] = [H,β](Σ · J) + β[H, (Σ · J)]
= −2cβ(α.p)(Σ.J) + β[H,Σ] · J + βΣ · [H,J ]
= −2cβ{−γ5p.J + iα.(p× J)}+ 2icβ (p× J) ·α

= 2cβγ5p.

(
L+

~Σ
2

)
= −c~β (p.α) ,

where we have used γ5Σ = −α and p · L = 0. With the help of Eq. (12.10.3a), we can
replace −c~β(p ·α) in the previous equation by the commutator ~

2 [H,β], giving us

[H,β(Σ · J)] =
~
2

[H,β] . (12.10.6a)

Transposing the right-hand side to the left-hand side and combining the two we get

[H, (βΣ · J − ~
2
β)] ≡ [H,K] = 0 , (12.10.6b)

where K = βΣ · J − ~
2β = β (Σ ·L+ ~I). Now the square of K can be evaluated as

K2 = [β(Σ ·L+ ~I)]2 = L2 + ~Σ ·L+ ~2I

or K2 = J2 +
~2

4
I , (12.10.7)

where we have used the following relations

ΣiΣj = iεijkΣk ,
[Li, Lj ] = i~εijkLk ,

ΣkΣk = 3I ,
[Σk, β] = 0 .

(12.10.8)

Since J commutes with β and Σ ·L, it also commutes with K. So H ,J , and K form a set
of commuting observables. Equation(12.10.7) then leads to the following relation between
the eigenvalues of K2 and those of J2

~2κ2 = ~2j(j + 1) +
~2

4

which gives κ = ±
(
j +

1
2

)
. (12.10.9)

Hence κ can be a positive or negative (non-zero) integer. As already noted, the sign of κ
determines whether the spin is parallel (κ < 0) or antiparallel (κ > 0) to the total angular
momentum.
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We can now construct the simultaneous eigenstates of H, K, J2, and J3 belonging to
eigenvalues E ,−~κ , j(j + 1)~2, and ~mj , respectively. We first write the operator K as

K = β(Σ ·L+ ~I) =
(
σ ·L+ ~I 0

0 −σ ·L− ~I

)
. (12.10.10)

Writing the four-component wave function ψ, representing the simultaneous eigenstate of
the observables H,K, J2, J3 as

ψ =
(

Φ
χ

)
, (12.10.11)

where Φ and χ are two-component wave functions and substituting this form into time-
independent Dirac equation Hψ = Eψ with H given by Eq. (12.10.1), we get[

−i~c
(

0 σk
σk 0

)
∂

∂xk
+
(

0 I ,
−I 0

)
mc2 + V (r)

](
Φ
χ

)
= E

(
Φ
χ

)
. (12.10.12)

Thus yields two coupled equations[
E −mc2 − V (r)

]
Φ− c(σ · p)χ = 0 , (12.10.13)

and
[
E +mc2 − V (r)

]
χ− c(σ · p)Φ = 0 . (12.10.14)

Now, the angular momentum operator L2 does not commute with the Dirac Hamiltonian.
Therefore ` is not a good quantum number in the eigenstate represented by the four-
component wave function ψ. However, by writing L2 as

L2 = J2 − ~σ ·L− 3
4

~2I , (12.10.15)

and operating it on the component states Φ and χ, we see that it is determinate for each
of them with eingenvalues, say, ~2`A(`A + 1) and ~2`B(`B + 1), respectively. Also, from
Eq. (12.10.10) we see that K = σ · L + ~I for the two-component wave function Φ and
K = −(σ ·L+ ~I) for the two-component wave function χ.

Recalling that j,mj , and κ are good quantum numbers for the four-component wave
function ψ as well as each of the two-component wave functions Φ and χ, the equations
L2Φ = ~2`A(`A + 1)Φ and KΦ ≡ (σ ·L+ ~I)Φ = −~κΦ yield, according to Eq. (12.10.15),

j(j + 1) + κ+
1
4

= `A(`A + 1) . (12.10.16)

Similarly, L2χ = ~2`B(`B + 1)χ and Kχ ≡ −(σ ·L+ ~I)χ = −~κχ lead to

j(j + 1)− κ+
1
4

= `B(`B + 1) . (12.10.17)

Thus for each value of j, orbital angular momentum numbers `A and `B can take two values
j ± 1/2, depending on κ as summarized below.

κ = j + 1/2 , `A = j + 1/2 and `B = j − 1/2 , (12.10.18)
κ = −(j + 1/2) `A = j − 1/2 and `B = j + 1/2 . (12.10.19)

Alternatively, we can say that for each value of κ the two-component wave functions Φ and
χ have orbital quantum numbers `A and `B which differ by one and therefore have opposite
parity. This conclusion also follows from the fact that the four-component wave function
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has a definite parity. Using these facts, we can express the two-component wave functions
(belonging to the same E, j, κ, ) in the form

Φ = g(r)Ymjj `A
(θ, ϕ) (12.10.20)

and χ = i f(r)Ymjj `B
(θ, ϕ), (12.10.21)

where the factor i multiplying f(r) has been inserted to make the functions f and g real
for bound state solutions and Yj `A and Yj `B are the normalized spin-angle functions,
representing the coupled states

∣∣(`A 1
2 )jmj

〉
and

∣∣(`B 1
2 )jmj

〉
, respectively. These may be

constructed according to angular momentum coupling rules. Explicitly, the states Ymjj ` (θ, ϕ)
in the coordinate representation for j = `± 1/2 are

j = `+ 1/2 : Ymjj` (θ, ϕ) =

√
`+mj + 1/2

2`+ 1
Y`,mj−1/2(θ, ϕ)

(
1
0

)
+

√
`−mj + 1/2

2`+ 1
Y`,mj+1/2(θ, ϕ)

(
0
1

)
, (12.10.22)

j = `− 1/2 : Ymjj ` (θ, ϕ) = −
√
`−mj + 1/2

2`+ 1
Y`,mj−1/2(θ, ϕ)

(
1
0

)
+

√
`+mj + 1/2

2`+ 1
Y`,mj+1/2(θ, ϕ)

(
0
1

)
. (12.10.23)

The column vectors represent the spin-up and spin-down states of the electron.
In view of Eqs. (12.10.18) and (12.10.19), for negative κ, the first equation (12.10.22)

represents Ymjj `A
(θ, ϕ) (`A = j − 1/2) and the second equation (12.10.23) represents

Ymjj `B
(θ, ϕ) (`B = j + 1/2). For positive κ, the first equation represents Ymjj `B

(θ, ϕ)
(`B = j − 1/2) and the second equation represents Y mjj `A

(θ, ϕ) (`A = j + 1/2).
It is clear that the radial functions f(r) and g(r) depend on the sign of κ. Using the

identity (
σ · r

r

)(
σ · r

r

)
= 1, (12.10.24a)

we can express (σ · p) as

(σ · p) =
(σ · r)
r2

[(σ · r)(σ · p)]

=
σ · r
r2

[r · p+ iσ · (r × p)] =
σ · r
r2
{−i~r · ∇+ iσ ·L}

or (σ · p) =
σ · r
r2

[−i~r ∂
∂r

+ iσ ·L] . (12.10.24b)

Since (σ·r)
r is a pseudo-scalar operator, it preserves j and mj but changes the parity of the

function on which it operates. So for a given j we have(σ · r
r

)
Ymjj lA

(θ, ϕ) = −Ymjj lB
(θ, ϕ) , (12.10.25)

and
(σ · r

r

)
Ymjj lB

(θ, ϕ) = −Ymjj lA
(θ, ϕ) . (12.10.26)

These relations follow from the fact that `A and `B differ by 1 and (σ·r)
r , being a pseudo-

scalar operator, preserves j and mj . Furthermore, the square of (σ·r)
r is a unit operator
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[Eq.(12.10.24a)], its eigenvalues are ±1. Hence the sign on the right-hand sides of Eqs.
(12.10.25) through (12.10.26) must be + or −. The justification for minus sign can be
seen by observing that

(
σ·r
r

)Ymjj `B
(0, 0) = −Ymjj `A

(0, 0) and
(
σ·r
r

)Ymjj `A
(0, 0) = −Ymjj `B

(0, 0)].
With the help of these results we find

(σ · p)χ = i
σ · r
r2

[
−i~r df

dr
+ i(κ− 1)~f

]
Ymjj `B

(θ, ϕ)

or (σ · p)χ = −~
df

dr
Ymjj `A

(θ, ϕ) +
(κ− 1)~

r
fYmjj `A

(θ, ϕ) . (12.10.27)

Similarly, (σ · p)Φ = i~
dg

dr
Ymjj `B

(θ, ϕ) + i
(κ+ 1)~

r
g(r)Ymjj `B

(θ, ϕ) . (12.10.28)

Substituting these relations into the coupled equations (12.10.13) and (12.10.14), and
introducing the functions F (r) and G(r) by

F (r) = rf(r) , (12.10.29)
and G(r) = rg(r), (12.10.30)

we obtain two coupled radial equations

~c
(
dF

dr
− κ

r
F

)
= −(E − V (r)−mc2)G(r) , (12.10.31)

and ~c
(
dG

dr
+
κ

r
G

)
= (E − V (r) +mc2)F (r) . (12.10.32)

For Hydrogen (or Hydrogen-like) atoms, the potential has the Coulomb form

V (r) = − Ze2

4πε0r
. (12.10.33)

Let us introduce dimensionless energy ε, dimensionless radial coordinate ρ, and potential
energy parameter Zα by

E = ε mc2 , ρ =
√

1− ε2 mc
~
r , Zα = Z

e2

4πε0~c
, (12.10.34)

where α is the fine structure constant. Note that we are interested in bound state energies
E < mc2 (ε < 1). With these substitutions, the coupled equations (12.10.31) and (12.10.32)
reduce to (

d

dρ
− κ

ρ

)
F (ρ)−

(√
1− ε
1 + ε

− Zα

ρ

)
G(ρ) = 0 , (12.10.35)

and
(
d

dρ
+
κ

ρ

)
G(ρ)−

(√
1 + ε

1− ε +
Zα

ρ

)
F (ρ) = 0 . (12.10.36)

By examining the behavior of F (ρ) and G(ρ) for large ρ (ρ → ∞) we find that the
normalizable solutions behave like e−ρ. Similarly, by examining the behavior for ρ → 0
by using F and G of the form

F = a0ρ
s , G = b0ρ

s , (12.10.37)

we arrive at the coupled linear equations

(s− κ) ao + Zα b0 = 0 , (12.10.38a)
−Zα a0 + (s+ κ) b0 = 0 . (12.10.38b)
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For nontrivial soultions of this equation we require∣∣∣∣s− κ Zα
Zα (s+ κ)

∣∣∣∣ = s2 − κ2 + (Zα)2 = 0 , ⇒ s = ±
√
κ2 − (Zα)2 . (12.10.39a)

For normalizable regular solutions at ρ = 0, only the positive square root for s is acceptable.
Hence the index s characterizing the small ρ behavior is

s =
√
κ2 − (Zα)2 =

√
(j + 1/2)2 − (Zα)2 . (12.10.39b)

Using these insights we seek solutions of the form

F (ρ) = e−ρρs
∞∑
m=0

amρ
m (12.10.40)

and G(ρ) = e−ρρs
∞∑
m=0

bmρ
m (12.10.41)

Substituting these in Eqs. (12.10.35) and (12.10.36), we obtain

∞∑
m=0

ame
−ρ [(s+m)ρs+m−1 − ρs+m − κρs+m−1

]
−
∞∑
m=0

bme
−ρ

[√
1− ε
1 + ε

ρs+m − Zαρs+m−1

]
= 0 ,

and
∞∑
m=0

bme
−ρ [(s+m)ρs+m−1 − ρs+m + κρs+m−1

]
−
∞∑
m=0

ame
−ρ

[√
1 + ε

1− ερ
s+m + Zαρs+m−1

]
= 0 .

Equating, in both equations, the coefficients of e−ρρs+q−1 from both sides, we have

aq(s+ q − κ)− aq−1 −
(
bq−1

√
1− ε
1 + ε

− bqZα
)

= 0 (12.10.42)

bq(s+ q + κ)− bq−1 −
(
aq−1

√
1− ε
1 + ε

+ aqZα

)
= 0 (12.10.43)

The normalization of the four-component wave function also requires that
∫
ψ†eψedτ must

be finite. This means the integrals
∫
e−2ρρ2s+2F 2(ρ)dρ and

∫
e−2ρρ2s+2G2(ρ)dρ must be

finite. Now the functions F and G diverge as e2ρ unless the power series in both functions
terminates at some finite power of ρ. Assuming that the two series terminate with the same
index n′,

an′+1 = 0 = bn′+1 . (12.10.44)

Setting q = n′ + 1 in Eqs. (12.10.42) and (12.10.43), we find that both equations give

an′ = −
√

1− ε
1 + ε

bn′ . (12.10.45)

This justifies our presumption that the two series for the functions F and G terminate with
the same power index.
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Using this ratio in Eqs. (12.10.42) and (12.10.43), setting q = n′ and eliminating an′−1

or a from the resulting equations we get

[
2εZα√
1− ε2 − (n′ + s)

]
bn′ = 0

or
2ε√

1− ε2 =
n′ + s

Zα
=
n′ +

√
κ2 − (Zα)2

Zα
, n′ = 0, 1, 2, 3 · · · (12.10.46)

Solving for εn′ mc2 ≡ En′ we find the relativistic bound state energy is given by

En′ =
mc2√

1 + Z2α2

(s+n′)2

=
mc2√

1 + Z2α2n
n′+
√

(j+1/2)2−(Zα)2
o2

. (12.10.47)

This formula was first derived by Sommerfeld, using the relativistic version of Bohr’s old
quantum theory. The principal quantum number n of the non-relativistic theory is given
by

n = j + 1/2 + n′ = |κ|+ n′ . (12.10.48)

Since the minimum value of n′ is zero, it follows that n ≥ |κ|. This can be seen explicitly
by expanding the expression of energy En′ in powers of Z2α2

En′ = mc2

[
1− 1

2
(Zα)2

[ n′ +
√

(j + 1/2)2 − (Zα)2 ]2
+

3
8

(Zα)4

[ n′ +
√

(j + 1/2)2 − (Zα)2 ]4
− · · ·

]

= mc2
[
1− 1

2
(Zα)2

(n′ + j + 1/2)2

(
1 +

Zα2

(j + 1/2)(n′ + j + 1
2 )

+ · · ·
)

+
3
8

(Zα)4

(n′ + j + 1/2)4
− · · ·

]
= mc2

[
1− (Zα)2

2n2
− 1

2
(Zα)4

n3

(
1

j + 1/2
− 3

4n

)
+ · · ·

]
.

The first term mc2 is the rest energy of the electron. The second term

−mc
2Z2α2

2n2
= − mZ2e4

2(4πε0~)2n2
= − Ze2

8πε0aon2
,

where ao is the Bohr radius, may be identified as the energy of the non-relativistic Hydrogen
atom [Chapter 5]. Hence n has the significance of the principal quantum number. We also
note that an important correction to Bohr’s formula, the fine structure splitting discussed in
Chapter 8 using perturbative means in the context of non-relativistic qunatum mechanics,
is already contained in the relativistic expression for the bound state energy.

Although ` is not a good quantum number in Dirac theory, the quantum state of Hydrogen
atom, characterized by quantum numbers j,mj and κ may still be designated by specifying
the orbital angular momentum quantum number `A of the upper two-component wave
function Φ, which becomes the wave function of the Schrödinger -Pauli theory in the non-
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relativistic limit. Thus, for example,

2p3/2 : n = 2; j = 3/2; `A = 1 = j − 1/2; κ = −(j + 1/2) = −2; n′ = n− |κ| = 0
2s1/2 : n = 2; j = 1/2; `A = 0 = j − 1/2; κ = −(j + 1/2) = −1; n′ = n− |κ| = 1

2p1/2 : n = 2; j = 1/2; `A = 1 = j + 1/2; κ = +(j + 1/2) = +1; n′ = n− |κ| = 1
3p1/2 : n = 3; j = 1/2; `A = 1 = j + 1/2; κ = +(j + 1/2) = +1; n′ = n− |κ| = 2
3p3/2 : n = 3; j = 3/2; `A = 1 = j − 1/2; κ = −(j + 1/2) = −2; n′ = n− |κ| = 1
3s1/2 : n = 3; j = 1/2; `A = 0 = j − 1/2; κ = −(j + 1/2) = −1; n′ = n− |κ| = 2
3d3/2 : n = 3; j = 3/2; `A = 2 = j + 1/2; κ = +(j + 1/2) = +2; n′ = n− |κ| = 1
3d5/2 : n = 3; j = 5/2; `A = 2 = j − 1/2; κ = −(j + 1/2) = −3; n′ = n− |κ| = 0 .

Note that when `A = j − 1/2, quantum number κ is negative and when `A = j + 1/2, it is
positive.

It may be pointed out here that according to Dirac theory, the states 2s1/2 and 2p1/2

are degenerate, as are the pair of states 3s1/2, 3p1/2) and (3p3/2, 3d3/2 · · · . Experimentally,
however, this degeneracy is lifted. Lamb and Retherford (1947) first observed the energy
shift, now known as the Lamb-Retherford shift between the states 2s1/2 and 2p1/2 of the
Hydrogen atom. The Lamb-Retherford shift, which is 1058 MHz for the 2s1/2 − 2p1/2

levels of Hydrogen, can be explained by considering the interaction of the electron with
the vacuum of the quantized electromagnetic field [Chapter 13]. Further corrections to the
energy of a Hydrogen atom arise due to the interaction between the magnetic moment of
the electron and the nucleus (giving rise to hyperfine splitting) and finite size of the nucleus.
A discussion of these and other corrections to the energy of a Hydrogen atom can be found
in books on atomic physics.

To find the radial functions, we must solve Eqs. (12.10.42) and (12.10.43). The ground
state wave function is easy to compute. In this case

n′ = 0, κ = −1, s =
√

1− (Zα)2 = ε , E0 = mc2
√

1− (Zα)2

and ρ =
√

1− ε2 mc
~
r =

Zr

ao
,

a0

b0
=

√
1− ε
1 + ε

= − (1−√1− (Zα)2 )
Zα

.

Then from Eqs. (12.10.20) through (12.10.23), we find the ground state wave function is

ψ = N

(
Zr

ao

)ε−1

e−Zr/ao

( Ymj1
2 ,0

− Zα
1+εY

mj
1
2 ,1

)
, (12.10.49)

where the normalization constant is given by

N =
(
Z

ao

)3/2

2ε
√

1 + ε

Γ(1 + 2ε)
. (12.10.50)

Note that this wave function displays a mild singularity rν−1 ≈ r−(Zα)2/2. For real nuclei,
which have a finite size, this singularity does not occur. For Zα > 1, the index ν becomes
imaginary and the solutions become oscillatory. However all stable nuclei have Zα < 1.
Nuclei with Zα > 1 can, in principle, be formed in heavy-ion collisions where interesting
new physics emerges. This, however, cannot be described in terms of single particle wave
functions.
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12.11 Charge Conjugation, Parity and Time Reversal Invariance

As noted in Sec. 12.8, the Dirac equation (12.8.1) and the differential equation (12.8.27) for
four-vector potential are invariant under Lorentz transformations, pure spatial rotation and
spatial inversion. We found that a linear transformation S

P
= γ4 of Dirac spinor ensures the

invariance of the Dirac equation under space reflection. However, it was not possible to find
a linear transformation compatible with the invariance under time reversal. In this section
we revisit the invariance of Eqs. (12.8.1) and (12.8.28) under discrete transformations of
(a) charge conjugation (b) parity (space inversion) and (c) time reversal.

Charge Conjugation

The operation C of charge conjugation can, in principle, be defined as one whose application
on the electron (positron) state of momentum p, energy E and spin expectation value
~
2 〈Σ3〉, results in a positron (electron) state of the same momentum, energy and spin
expectation value. In the presence of an electromagnetic field this means that for each
electron state in a potential Aµ there corresponds a positron state (charge conjugate state)
in the potential −Aµ. Such an operation, however, cannot be defined consistently within
the framework of one-electron relativistic theory. In fact a satisfactory formulation of the
charge conjugation operation requires a quantized Dirac field [Chapter 14]. However, we
can explore the connection between electron wave function ψ and the charge conjugate wave
function characterizing the space-time behavior of the negative energy electron state whose
absence appears as the positron state within the framework of single-electron Dirac theory.

Consider a spin-half Dirac particle (electric charge e) in an electromagnetic potential
Aµ(x). The Dirac equation in this case is(

∂

∂xµ
− ie

~
Aµ(x)

)
γµψ(x) +

mc

~
ψ(x) = 0 . (12.11.1)

We define charge conjugate wave function via the transformation

Cψ(x) ≡ ψ
C

(x) = S
C
ψ∗(x) , (12.11.2a)

Acµ(x) = −Aµ(x) , (12.11.2b)

where ψ
C

(x) represents the charge conjugate state ψ
C

and Acµ represents charge conjugate
four-vector potential. The last relation follows since Acµ is supposed to be the four-vector
potential generated by charges and currents with sign of e changed. The operation of
charge conjugation does not affect space-time coordinates (x′ = x). Hence we will use
the unprimed coordinates even for the transformed quantities. Also, unlike Sec. 12.8, we
denote the transformed quantities (wave function, four-vector potential, etc.) with a index
denoting the type of transformation under consideration instead of a prime.

Invariance of Dirac equation under charge conjugation means that ψ
C

also satisfies
the Dirac equation (12.8.1) with Aµ replaced by charge conjugate four-vector potential
(Acµ = −Aµ) (

∂

∂xµ
− ie

~
Acµ

)
γµψC +

mc

~
ψ
C

= 0 . (12.11.3)

We are after the relation between the positive energy solution of the Dirac equation ψ(x)
and the charge conjugate wave function ψ

C
(x).
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Taking the complex conjugate of Eq. (12.11.1) we get(
∂

∂xk
− ie

~
Ack(x)

)
γ∗kψ

∗(x) +
(

∂

∂x4
− ie

~
Ac4

)
(−γ∗4)ψ∗(x) +

mc

~
ψ∗(x) = 0 , (12.11.4)

where we have used A∗k = Ak, A∗4 = −A4, x∗k = xk, x∗4 = −x4 followed by Eq. (12.11.2b).
Using the relation (12.11.2a) in Eq. (12.11.4) and multiplying from the left by S

C
we obtain[(

∂

∂xk
+
ie

~
Ak(x)

)
S
C
γ∗kS

−1
C

+
(

∂

∂x4
− ie

~
Ac4(x)

)
S
C

(−γ∗4)S−1
C

+
mc

~

]
ψ
C

(x) = 0 .

(12.11.5)
A comparison of Eqs. (12.11.5) with (12.11.3) shows that the charge conjugate wave function
ψ
C

satisfies the Dirac equation provided that

S
C
γ∗kS

−1
C

= γk , k = 1, 2, 3, S
C
γ∗4S

−1
C

= −γ4 . (12.11.6)

Now γ1 and γ3 are purely imaginary matrices [γ∗1,3 = −γ1,3] and γ2 and γ4 are real
matrices [γ∗2,4 = γ2,4]. Therefore, Eq. (12.11.6) requires S−1

C
γ1SC = −γ1, S−1

C
γ2SC = γ2,

S−1
C
γ3SC = −γ3 and S−1

C
γ4S

C
= −γ4. Using the anti-commutation property (12.2.24) of

γ-matrices we find that (12.11.6) is satisfied with the choice

S
C

= γ2 and S−1
C

= γ2. (12.11.7)

Note that the relation between ψ
C

and ψ may be written as ψ
C

= S
C
Kψ = γ2Kψ, where K

is the operation of complex conjugation indicating that charge conjugation is not a linear
transformation of the wave function. Transformation S

C
is an example of an antilinear

transformation. 10

It may be tempting to look upon ψ
C

as representing the state of a positron in a potential
Aµ. But ψ

C
= γ2ψ

∗ is the solution of the Dirac equation with the sign of Aµ reversed and
characterizes the space-time behavior of a negative energy electron whose absence appears
as the charge conjugate (positron) state. If we compute the expectation values of various
dynamical variables using the wave functions ψ

C
and ψ, then we obtain the results that

energy, momentum, and spins have opposite signs: E
C

= −E, 〈p〉
C

= −〈p〉, 〈Σ3〉C = −〈Σ3〉.
On the other hand the total charge

Q = e

∫
ψ̃γ4ψ dτ = e

∫
ψ†ψ dτ

does not change sign when ψ is replaced by ψ
C

. All this does not conform to the apparent
definition of charge conjugation operation, according to which the momentum and spin
direction should be unchanged while the particle should be changed to anti-particle. This
only means that if ψ represents the wave function of a positive energy electron in a field
Aµ, the charge conjugate wave function ψ

C
represents the state of negative energy electron

in a field −Aµ, whose absence manifests itself as a positron (with sign of charge changed)
with the same momentum and spin expectation value as the positive energy electron in a
field Aµ.

10It can be checked that jCµ = jµ while A
C

µ = −Aµ. Thus the invariance of electromagnetic equation
(12.8.28) under charge conjugation cannot be guaranteed within the framework of one electron theory and
full charge conjugation operation cannot be consistently implemented without quantizing the electron field.
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Parity (Space-Inversion) Operation

The space-inversion transformation [x → x′ ≡ (x′k, x4) = (−xk, x4)] has already been
defined in Sec. 12.8. In the notation of this section we have

ψ
P

(x) = S
P
ψ(x) or ψ

P
(r, t) = S

P
ψ(r, t) , (12.11.8a)

and APk = −Ak , k = 1, 2, 3 ; AP4 = A4 , (12.11.8b)

where ψ
P

is the space-inverted wave function and the spinor transformation matrix S
P

is
given by

S
P

= γ4 . (12.11.9)

With this identification the space-inverted wave function

ψ
P

(x) ≡ ψ
P

(r, t) = γ4ψ(r, t) (12.11.10)

also satisfies the Dirac equation in terms of time-reversed coordinates and potential.

Time Reversal Operation

Under the time reversal transformation [x′ ≡ (x′k, x
′
4) = (xk,−x4)], we define the wave

function transformation according to

ψ
T

(x) = S
T
ψ∗(x′) , (12.11.11a)

A
T

k (x) = −Ak(x′) , A
T

4 (x) = A4(x′) (12.11.11b)

where ψ
T

(x) is the time-reversed wave function and 4×4 spinor transformation matrix S
T

is
still to be determined. The transformation law for the electromagnetic potential follows from
the fact that the time reversed (ordinary) vector potential is generated by current densities,
the direction of which is reversed with respect the original current densities. The reason
for defining time-reversed wave function in terms of complex conjugate wave function is
suggested by wave mechanics where the time reversal transformation is achieved by complex
conjugation. To find S

T
, we use the time-reversed coordinates x′k = xk, x

′
4 = −x4 and the

time-reversed four-vector potential A
T

µ (x) ≡ Aµ(x′) [Eq. (12.11.11b)] in the Dirac equation
(12.8.1) and take the complex conjugate of the resulting equation to obtain[

γ∗k

(
∂

∂xk
− ie

~
A
T

k (x)
)

+ γ∗4

(
∂

∂x4
− ie

~
A
T

4 (x)
)

+
mc

~

]
ψ∗(x′) = 0 , (12.11.12)

where we have used A
T ∗
k = A

T

k A
T ∗
4 = −AT

4 . Substituting ψ∗(x′) = S−1
T
ψ
T

(x) in
Eq. (12.11.12) and multiplying from the left by S

T
we find[

S
T
γ∗kS

−1
T

(
∂

∂xk
− ie

~
A
T

k (x)
)

+ S
T
γ∗4S

−1
T

(
∂

∂x4
− ie

~
A
T

4 (x)
)

+
mc

~

]
ψ
T

(x) = 0 .

(12.11.13)
The equation satisfied by ψ

T
(x) would have exactly the same form as the Dirac equation

provided that we can find S
T

such that

S
T
γ∗µS

−1
T

= γµ . (12.11.14)

Recalling that γ1, γ3 are imaginary and γ2, γ4 are real matrices, this condition implies
S
T
γ1S

−1
T

= −γ1, S
T
γ2S

−1
T

= γ2, S
T
γ3S

−1
T

= −γ3, and S
T
γ4S

−1
T

= γ4. An inspection of
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these equations together with the anti-commutation relations for γ-matrices shows that a
matrix satisfying the condition (12.11.15) is

S
T

= γ1γ3 . (12.11.15)

Thus the time-reversed wave function is given by

ψ
T

(x) = γ1γ3ψ
∗(x′) (12.11.16)

and it also satisfies the Dirac equation. We can check that the transformation S
T

defined
this way also ensures the invariance of Eq. (12.8.28) for the four-vector potential. To see
this, we take the complex conjugate of Eq. (12.8.28) and use the coordinate transformation
under time reversal xµ → x′µ ≡ (r,−ict) and Eq. (12.11.11b) to get

− ∂

∂x′µ

∂

∂x′µ
A
T

ν (x) = −µoj∗ν(x) (12.11.17a)

and since the d’Alembertian is an invariant operator, we have

− ∂

∂xµ

∂

∂xµ
A
T

ν (x) = −µoj∗ν(x) . (12.11.17b)

Now the right-hand side is

j∗ν(x) = [iecψ̃(x)γνψ(x)]∗ = −iec[ψ†(x)γ4]∗γ∗µψ
∗(x′)

= −iec[ψ∗(x′)]†γ4γ
∗
νψ
∗(x′)

= −iec [S−1
T
ψ
T

(x)]†γ4γ
∗
νS
−1
T
ψ
T

(x)

= −iec ψ̃
T

(x)γ4(γ3γ1)†γ4γ
∗
ν(γ3γ1)ψ

T
(x) = −jTν (x) .

Substituting this in Eq. (12.11.21) we find that the differential equation for four-vector
potential is invariant also. By writing Eq. (12.11.11a) as ψ

T
≡ S

T
ψ∗ = S

T
Kψ, where K is

the operation of complex conjugation, we can see that time reversal, like charge conjugation,
is not a linear transformation.

In summary, we can say, that the Dirac equation is invariant under the operations of
charge conjugation (C), parity (P ) and time reversal (T ). It must also be mentioned that
the conditions like Eqs. (12.11.6) and (12.11.14) determine S within a phase factor and the
exact form of S depends on the particular representation chosen for γ-matrices.

Unlike the Dirac equation, Weyl’s equation for a massless particle

i~
∂

∂t
ψ(r, t) = ∓i~cΣk ∂

∂xk
ψ(r, t) , (12.11.18)

which may also be written as (12.5.10) with the substitution ψ = u exp[ i~ (p · r − Et)], or
as the chirality equation

γ5ψ(r, t) = ∓ψ(r, t) , (12.11.19)

where the upper sign is for a negative chirality (positive helicity) state and the lower sign is
for positive chirality (negative helicity) state, is neither invariant under charge conjugation
ψ(r, t) → ψ

C
(r, t) ≡ γ2ψ

∗(r, t) nor under space inversion ψ(r, t) → ψ
P

(−r, t) ≡ γ4ψ(r, t).
This can be checked by observing that, according to the chirality equation (12.11.19),∫

ψ†(r, t)γ5ψ(r, t)dτ = ∓1 . (12.11.20)
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Now the overlap of γ5ψC with ψ†
C

or of γ5ψP with ψ†
P

, has a sign opposite to the overlap of
γ5ψ with ψ†, while the overlap of γ5ψT with ψ†

T
has the same sign, i.e.,∫

ψ†
C
γ5ψCdτ ≡ 〈γ5〉C = −

∫
ψ†γ5ψ dτ ≡ −〈γ5〉 ,∫

ψ†
P
γ5ψP dτ ≡ 〈γ5〉P = −〈γ5〉 ,

and
∫
ψ
T

†γ5ψT dτ ≡ 〈γ5〉T = +〈γ5〉 .

Hence the Weyl equation (12.11.18) or (12.11.19) is violated for ψ → ψ
C

or ψ → ψ
P

but
not for ψ → ψ

T
. However, note that the Weyl equation is invariant under a combined CP

operation.

Combined CPT Operation

Under a combined CPT operation, the wave function transforms as

ψ
CPT

(r, t) ≡ CPT ψ(r, t) = CP (γ1γ3)ψ∗(r, t)
= Cγ4 γ1γ3ψ

∗(r, t) = γ2γ4 γ1γ3ψ(r, t)
or ψ

CPT
(r, t) = −γ5ψ(r, t) . (12.11.21)

ψ
CPT

(r, t) also satisfies the Dirac equation. A different order of operators, say PCT , simply
results in a change of sign, which is of no consequence. The Weyl equation is also invariant
under a combined CPT operation.

Problems

1. Show that the equation of continuity in the covariant form [Eq. (12.2.23)] may also
be obtained from Eq. (12.2.17) by writing ψ† = ψ̃γ4.

2. Derive the equation of continuity if ψ(r, t) satisfies the Klein-Gordon equation for a
particle of charge e and mass m in an electromagnetic field (A, φ),(

i~
∂

∂t
− eφ

)2

ψ =
[
c2(−i~∇− eA)2 +m2c4

]
ψ .

Identify the expressions for the probability density and probability current density.

[Ans: S = i~
2mc2 (ψ∗ ∂ψ∂t − ψ ∂ψ

∗

∂t ) and j = ~
2im [ψ∗(∇ψ)− (∇ψ∗)ψ]− eA

m (ψ∗ψ)]

3. Find the relativistic bound state energies for a spin zero particle of charge −e moving
in a Coulomb potential [such as a pion (π−) in the field of a nucleus]

V (r) = − Ze2

4πεor
.

Compare the result with that for the Hydrogen atom. What is the non-relativisitic
limit of this expression? Hint: A spin zero particle of charge q in a time-independent
electromagnetic field is described by the time-independent Klein-Gordon equation
(E − qφ)2 = c2(p− qA)2 +m2c4 .
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4. If P and Q are two three-dimensional vectors, show that

(α · P ) (α · Q) = P ·Q I − iΣ · (P ×Q) ,

where α =
(

0 σ
σ 0

)
, Σ =

(
σ 0
0 σ

)
, σ being the Pauli spin vector and I a unit

4× 4 matrix.

5. Calculate the energy values and wave function of a Dirac particle of charge e and mass
m moving in a homogeneous magnetic field of infinite extent. Hint: Take the field
to be in the z-direction so that A1 = − 1

2By, A2 = 1
2Bx, A3 = 0 and use the second

order Dirac equation giving stationary states of energy ±E(
E2

~2c2
− m2c2

~2

)
ψ +

(
∂

∂x
+

1
2
ieB

~
y

)2

ψ

+
(
∂

∂y
− 1

2
ieB

~
x

)2

ψ +
∂2

∂z2
ψ +

eB

~
Σzψ = 0 .

6. An electron at time t = 0 has the wave function

ψ(r, 0) =


a
b
c
d

 eikz , (12.11.22)

where a, b, c, d are independent of r and t. Find the probability for measuring (i)
E > 0, spin up, (ii) E > 0, spin down, (iii) E < 0, spin up, and (iv) E < 0, spin
down.

7. A Dirac particle of mass m and charge e is constrained to move in the z direction in
the presence of four-potential (A, φ) with A = 0 and

φ =

{
Vo/e for z > 0
0 for z < 0 .

A positive energy particle with energy E > 0 is incident from the left. Write down
the solutions to the left and right of the potential step at z = 0 assuming that particle
spin is not affected.

(i) Show that the reflection coefficient is given by

R =

∣∣∣∣∣1−
κ
k

E+mc2

E−Vo+mc2

1 + κ
k

E+mc2

E−Vo+mc2

∣∣∣∣∣
2

,

where k2 = [E2 −m2c4]/(~c)2, κ2 = [(E − Vo)2 − m2c4]/(~c)2. What is the
transmission coefficient?

(ii) What do you expect the reflection coefficient to be as barrier height increases?
Discuss the behavior of R as barrier height increases by considering the following
cases (i)Vo < E −mc2, (ii) Vo = E −mc2, (iii) E + mc2 > Vo > E −mc2, (iv)
Vo > E +mc2 and comment on your result.
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8. Solve the Dirac equation for an attractive square well potential of depth Vo/e and
radius r = ro. Determine the minimum depth for a given ro that will bind a particle
of mass m.

9. Prove that (α · ε) (α · ε) = I, where ε is a three-dimensional unit vector and I is a
4× 4 unit matrix.

10. Show that (α · ε) (α · ε′) + (α · ε′) (α · ε) = 2 (ε · ε′) I , where ε and ε′ are three-
dimensional unit vectors and I is a 4× 4 unit matrix.

11. Show that if Aµ and Bµ are four-vectors and a is a scalar, then

(a) /Aγ5 = − γ5 /A

(b) γµ a γµ = 4aI

(c) γµ /Aγµ = −2 /A

(d) γµ /A /B γµ = 4AλBλI ≡ 4(AB)

(e) γµ /A /B /C γµ = − 2 /C /B /A

(f) /A/B = − /B /A+ 2(AB)

where /A ≡ γρAρ = γ1A1 + γ2A2 + γ3A3 + γ4A4 and (AB) ≡ AλBλI.

12. Show that Tr (α · k)
(
α · k′) =

(
k · k′) Tr I = 4

(
k · k′) where k and k′ are three-

dimensional vectors. Also show that Tr (γµγλ) = 4δµν .

13. Show that Tr (γµγν · · · γρ) = 0 for a matrix product involving an odd number of
γ-matrices.

14. Show that
4∑

µ=1

u†µMuµ = Tr M

where M is a 4× 4 matrix and uµ’s are Dirac spinors.

15. Show that Tr (γλγµγργυ) = 4 (δλµδρυ − δλρδµυ + δλυδµρ) .

16. If pµ and kµ are four-vectors defined by pµ ≡
(
p, iEc

)
, kµ ≡

(
k , iωc

)
where ω = c |k|,

and γµ ≡ (γ1, γ2, γ3, γ4) so that /p = pµγµ and /k = kµγµ, show that

(a) −i [i(/p+ ~/κ)−mc] [(/p+ ~/κ)− imc] = (p+ ~k)2 + m2c2

(b) (p+ ~k)2 + m2c2 = −2m~ω
(c) pµkµ = −mω

17. If A, B, C, D are four-vectors and /A = γµAµ, /B = γµBµ, etc., show that

(a) Tr /A = 0 = Tr /A/B /C)

(b) Tr ( /A/B) = 4AµBµ
(c) Tr ( /A/B /C /D) = 4[(AµBµ)(CνDν)− (AµCµ)(BνDν) + (AµDµ)(BνCν)] .

18. Show that

(a) γ5 = γ1γ2γ3γ4 = −
(

0 I
I 0

)
and

(b) γ5Σk = Σkγ5 = −αk
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where Σk ≡
(
σk 0
0 σk

)
and αk ≡

(
0 σk
σk 0

)
.

19. Show that Γ̂± = 1
2

(
1 ± Ĥ

Ep

)
, where Ep =

√
p2c2 +m2c4 and Ĥ is the

Dirac Hamiltonian, are the projection operators, respectively, for positive (upper
sign)/negative (lower sign) energy states.

20. Show that if Ĥ is the Dirac Hamiltonian for a central potential, then

(a) [H,β] = −2cβ(α · p)

(b) [H,Σ`] = 2icεk`mpkαm where εk`m is Levi-cita antisynmetric tensor,

(c) β [H,Σ`] J` = 2icβ(p× J) ·α and

(d) (α · p)(Σ · J) = −γ5(p · J) + iα · (p× J) .

21. Show that the operator K defned by K = β(Σ · L + ~I) commutes with the Dirac
Hamiltonian H as well as with the operator Jk. Show also that if the eigenvalues of
K2 are ~2κ2 then κ can take positive or negative (non-zero) integer values.

22. Show that for κ = (j + 1/2) or −(j + 1/2)(σ · r
r

)
Y mj `B (0, 0) = −Y mj `A(0, 0)

and
(σ · r

r

)
Y mj `A(0, 0) = −Y mj `B (0, 0) .

Hint: (a) Y`m(0, 0) =
√

2`+1
4π δm0 , (b) θ = 0 and ϕ = 0,

(
σ·r
r

)
= σz .

23. If ψ represents the state of a positive energy electron, being the solution of Dirac
equation i~∂ψ∂t = Hψ, where H = cαk(pk− eAk) +βmc2 and ψ

C
represents its charge

conjugate state, defined by ψ
C

= S
C
ψ∗ = γ2ψ

∗, being the solution of i~∂ψC∂t = H ′ψ
C

,
where H ′ = cαk(pk + eAk) + βmc2, then show that

(i)〈H ′〉
C
≡ ∫ ψ†

C
H ′ψ

C
dτ = −〈H〉 ≡ − ∫ ψ†Hψdτ

(ii) 〈Σ3〉C = −〈Σ3〉 ,
(iii) 〈p〉

C
= −〈p〉, and

(iv) 〈Q〉
C

= 〈Q〉.
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APPENDIX 12A1: Theory of Special Relativity

The theory of special relativity was proposed by Einstein in 1905. Before that, there had
been considerable speculation regarding the existence of a lumeniferous ether (light-carrying
medium), which permeated all space and existed solely as a vehicle for the propagation of
electromagnetic waves. It was believed that there was a preferred reference frame, the
one in which the ether was at rest, in which the laws of electromagnetism were valid.
This set electromagnetic phenomena apart from other other physical phenomena such as
mechanics whose laws were the same in all coordinate systems moving uniformly relative to
one another. However, attempts to detect the existence of lumeniferous ether by studying
the effects of earth’s motion through this medium on various optical and electromagnetic
phenomena gave negative results.

12A1.1 Lorentz Transformation

Against this background Einstein formulated his special theory of relativity. It was based
on two postulates:

1. Laws of physics are the same in all inertial frames (frames in uniform motion relative
to one another) not only with regard mechanical phenomena, but with regard to all
physical phenomena, including optical and electro-magnetic. This means all inertial
are frames are equally good for describing physical laws.

2. The speed of light in vacuum is the same in all directions and with respect to any
uniformly moving observer.

It may be noted that invariance of laws of mechanical phenomena with repect to inertial
frames was known even before Einstein. Thus, if S and S′ are two inertial frames of reference
with S′ moving relative to S with velocity v in the common x-direction and the origins of the
two frames coinciding at t = t′ = 0, then the space-time coordinates of an event according
to S and S′, are related by Galilean transformation

x′ = x− vt, y′ = y, z′ = z, t′ = t.

It naturally followed that observers in S and S′ cannot detect any essential difference
between their frames of reference by performing mechanical experiments alone; the laws of
mechanics will be the same in both frames. But pre-relativistic concepts did not rule out
this possibility if they performed optical or electromagnetic experiments. Einstein, through
his postulates, ruled that even by performing electromagnetic experiments, observers in
their respective frames S and S′ cannot detect any essential difference between their frames
of reference.

These postulates led to a new connection between the space-time coordinates of an event,
as measured by two observers in different inertial frames S and S′ with S′ moving relative
to S with velocity v in the positive x-direction. This connection is summarized by Lorentz
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transformation11

x′ =
x− vt√
1− v2/c2

, y′ = y , z′ = z , t′ =
t− vx/c2√
1− v2/c2

. (12A1.1.1)

The inverse transformations are

x =
x′ + vt′√
1− v2/c2

, y = y′ , z = z′ , t =
t′ + vx′/c2√

1− v2/c2
. (12A1.1.2)

It is easily verified
x2 + y2 + z2 − c2t2 = x′2 + y′2 + z′2 − c2t′2 . (12A1.1.3)

The implication of the principle of equivalence of the inertial frames is that, although
the measurements of the two observers S and S′ are different, both can verify the laws of
physics in their respective frames of reference with equal right and equal success, using their
measurements. Lorentz-Einstein transformations have far reaching consequences, some of
which are summarized below.

Relativity of Simultaneity

If two events appear to be simultaneous to an observer in one inertial frame of reference,
they are not so to an observer in another inertial frame. In other words simultaneity is
relative.

Time Dilation

If two events are spatially coincident and separated by a time interval ∆t′ in a frame of
reference S′, then this interval between the two events is the shortest among the intervals
measured by observers in different states of uniform motion and is called the proper time
interval ∆τ between the two events. Another observer S, moving with velocity v (or
−v) relative to S′, will measure, according to Lorentz transformation (12A1.1.1), a longer
interval ∆t between the two events given by

∆t =
∆t′√

1− v2/c2
=

∆τ√
1− v2/c2

. (12A1.1.4)

Length Contraction

The length of a rod, as measured by an observer at rest with respect to the rod, is called
its proper length `o. Another observer, moving relative to the rod, along its length, will
measure a length `, which is smaller than `o:

` = `0
√

1− v2/c2 . (12A1.1.5)

Relativistic Addition of Velocities

If u ≡ (ux, uy, uz) are the components of the velocity of a body as observed by the observer
in S and u′(u′x, u

′
y, u
′
z) are the components of the velocity of the same body in the frame

of reference S′ , then one can derive the following relations between the components of the

11Lorentz had discovered that Maxwell’s electromagnetic equations remained form invariant, not under
Galilean transformations, but under new transformations which came to be known after him. The physical
basis of these transformations was, however, understood only when Einstein derived them on the basis of
his postulates.
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two velocities on the basis of Lorentz-Einstein transformation relations [Eqs. (12A1.1.1)
and (12A1.1.2)]:

u′x =
ux − v

1− uxv/c2 , u′y =
uy
√

(1− v2/c2)
1− uxv/c2 , u′z =

uz
√

1− v2/c2

1− uxv/c2 . (12A1.1.6)

Conversely, we can express the unprimed components in terms of primed components, either
by solving the three equations simultaneously for ux, uy, and uz or by interchanging the
primed and unprimed components and changing the sign of v. Thus,

ux =
u′x + v

1 + u′xv/c
2
, uy =

u′y
√

(1− v2/c2)
1 + u′xv/c

2
, uz =

u′z
√

1− v2/c2

1 + u′xv/c
2

. (12A1.1.7)

It also follows that the quantities

ux√
1− u2/c2

,
uy√

(1− u2/c2)
,

uz√
(1− u2/c2)

, and
1√

(1− u2/c2)

transform like x, y, z, and t under Lorentz transformations. The first three components are
termed space-like components and the fourth component time-like.

Variation of Mass with Velocity: Relativistic Mass

If the collision of two balls is observed from two different inertial frames of reference S and
S′ and it is required that the momentum be conserved in the collision for both observers,
then an inevitable consequence is that the momentum of the particle for either observer be
defined as

p =
mu√

1− u2/c2
=

m√
1− u2/c2

u ≡ m(u)u, (12A1.1.8)

where m is the rest mass (or proper mass) of the ball as measured by an observer at rest
with respect to the ball. The quantity m(u) = m/

√
1− u2/c2 is called the relativistic mass

of the ball and can be thought of as velocity-dependent mass.

Mass-Energy Equivalence

The relativistic energy of a body of rest mass m moving with velocity u is given by

E =
mc2√

1− u2/c2
≡ m(u)c2 . (12A1.1.9)

A body at rest u = 0 has energy Eo = mc2, which is referred to as its rest mass energy.
Its kinetic energy or the energy acquired by the body by virtue of its motion can then be
defined as the difference between its relativistic energy and the rest mass energy:

T =
mc2√

1− u2/c2
−mc2 ≡ [m(u)−m] c2 , (12A1.1.10)

which can be thought of as the energy due to an increase in its relativistic mass ∆m(u)c2.
Because the relativistic mass is just another name for the energy, it has gradually fallen
into disuse12. Nevertheless it is a useful concept in certain pedagogical contexts.

12Lev. B. Okun, Physics Today 42, 31 (1989).
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12A1.2 Minkowski Space-Time Continuum

An examination of Lorentz transformation equations (12A1.1.1) and (12A1.1.2), shows that
space and time coordinates are treated on the same footing in the theory of special relativity
and they get mixed up in these transformations. This is not so in the non-relativistic
(Galilean) transformations where time maintains a distinct identity (t′ = t) and the rate
of flow of time is the same for observers in all inertial frames. If we denote the space-time
coordinates of an event x, y, z, ict by x1 , x2 , x3 , and x4 then Eq. (12A1.1.3) may be
rewritten as x2

1 + x2
2 + x2

3 + x2
4 = x′1

2 + x′2
2 + x′3

2 + x′4
2 or simply as

xµxµ = x′µx
′
µ , (12A1.2.1)

where, according to the convention, summation over the repeated index µ is implied. This
observation led Minkowski to the concept of space-time continuum or the four-dimensional
space. Accordingly, an event that occurs at a space point x, y, z at time t may be denoted
by a point in the four-dimensional space whose coordinates are x1 , x2 , x3 , x 4(= ict) (or
xµ, where µ = 1, 2, 3, 4). In the four-dimensional space we can visualize four mutually
perpendicular axes, say OX1 , OX2 , OX3 , OX4 , and a point in this space, which is
representative of an event, has four coordinates. We may now visualize a Lorentz
transformation as a rotation of axes OX1 and OX4 in the X1X4 plane, so that the
coordinates of a point, representing an event, change from xµ to x′µ such that the square of
the length of the four-radius vector remains the same, that is to say Eq. (12A1.2.1) holds.

The transformation equation (12A1.1.1) may be rewritten in the new notation as

x′1 = (x1 + iβ x4)/
√

1− β2 ,

x′2 = x2 ,

x′3 = x3 ,

x′4 = (−iβ x1 + x4)/
√

1− β2 ,

(12A1.2.2)

where β = v/c. This set of equations may written in the matrix notation as


x′1
x′2
x′3
x′4

 =


1√

1−β2
0 0 iβ√

1−β2

0 1 0 0
0 0 1 0
−iβ√
1−β2

0 0 1√
1−β2



x1

x2

x3

x4

 (12A1.2.3a)

or x′µ = aµνxν , µ, ν = 1, 2, 3, 4 (12A1.2.3b)

where sum over the repeated index ν is implied (summation convention). The matrix [aµν ],
given by

[aµν ] ≡


1√

1−β2
0 0 iβ√

1−β2

0 1 0 0
0 0 1 0
−iβ√
1−β2

0 0 1√
1−β2

 , (12A1.2.4)

is called the Lorentz transformation matrix. Geometrically, this transformation can be
thought of as resulting from the rotation of the OX1, OX4 axes in the X1, X4 plane by an
imaginary angle φ given by

tanφ = iβ = i v/c . (12A1.2.5)
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O X1

X4

X1′

′X4

Px4

x1

x1′

x4′

φ

FIGURE 12.1
A physical event may be represented by a point P (x1, x2, x3, x4(= ict)) in the four-
dimensional space. Lorentz transformation [Eqs. (12A1.2.2)] may be thought of as resulting
from the rotation of OX1 and OX4 axes in the (X1, X4) plane in four-dimensional space
through an imaginary angle φ, given by Eq. (12A1.2.5). The other two axes, OX2 and OX3

(not shown) are unaffected. Simple geometry gives the relation between the new coordinates
x′1, x

′
4 of the point P in the plane and the old coordinates x1 , x4 [Eqs. (12A1.2.7)]. The

other two coordinates x2 and x3 are unchanged.

This transformation changes x1 and x4 → x′1 and x′4 while x2 and x3 are left unchanged
[Fig. (12.1)]. In terms of φ introduced by Eq. (12A1.2.5), the transformation matrix can
be written as

[aµν ] =


cosφ 0 0 sinφ

0 1 0 0
0 0 1 0

− sinφ 0 0 cosφ

 (12A1.2.6)

and the coordinate transformation relations as

x′1 = x1 cosφ+ x4 sinφ
x′2 = x2

x′3 = x3

x′4 = −x1 sinφ+ x4 cosφ .

(12A1.2.7)

The set of four quantities xν which transform according to Eqs. (12A1.2.7), under rotation
of axes in four-dimensional space form a four-vector. A quantity like xνxν , which remains
unchanged as a result of Lorentz transformation (or under rotation of axes in the four-
dimensional space), as in Eq. (12A1.2.1), is called a four-invariant or a four-scalar. In
addition to the square of the length of the four-radius vector (or of any four-vector) other
invariant quantities are (i) the proper time interval ∆τ , (ii) the rest mass m and rest mass
energy mc2, and (iii) proper length `0. The d’Alembertian operator ∇2 − 1

c2
∂2

∂t2 ≡ ∂
∂xν

∂
∂xν
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is also an invariant operator in the sense that

∂

∂x′µ

∂

∂x′µ
=

∂

∂xν

∂

∂xν
. (12A1.2.8)

12A1.3 Four-vectors in Relativistic Mechanics

In addition to the four-radius vector xν (ν = 1, 2, 3, 4) there exist other four-vectors. In
general if a four-vector is multiplied by an invariant, or differentiated with respect to an
invariant variable , e.g., the proper time, then this gives another four-vector. Thus, qν = dxν

dτ
is a four-vector, called four-velocity, pν = mqν is a four-vector, called the four-momentum.
We can then introduce a four-vector, called four-force as the proper rate of change of four-
momentum

Kν =
dpν
dτ

= m
dqν
dτ

= m
d2xν
dτ2

. (12A1.3.1)

It may be noted that Eq. (12A1.3.1) will retain its form under Lorentz transformation,
wherein the vectors Kν , pν , qν , xν transform to K ′µ, p

′
µ, q

′
µ, x

′
µ, respectively, so that

K ′µ =
dp′µ
dτ

= m
dq′µ
dτ

= m
d2x′µ
dτ2

. (12A1.3.2)

Such equations are called form invariant and such a formulation of equations of physics is
called covariant formulation. It is easy to work out the components of four-velocity, four-
momentum and four-force. In what follows we will take Greek indices to take on values
1, 2, 3, 4 and Roman indices to take values 1, 2, 3. Thus Roman indices will be used to
denote the first three components of four-vector. Using this notation we can write the
components of four-velocity as

qk =
dxk
dτ

=
dxk
dt

dt

dτ
=

uk√
1− u2/c2

, k = 1, 2, 3 ,

q4 =
d(ict)
dτ

=
ic√

1− u2/c2

so that qν ≡
(

u√
1− u2/c2

,
ic√

1− u2/c2

)
, (12A1.3.3)

where u is the ordinary velocity (three-vector) of the particle. From the definition of four-
velocity it is easily checked that, as expected, qµqµ = −c2 is an invariant.

The components of four-momentum are obtained simply by multiplying these equations
by the proper mass (rest mass) m as

pk = mqk = m
uk√

1− u2/c2
, k = 1, 2, 3

p4 = mq4 = m
ic√

1− u2/c2
=
iE

c
,

so that pµ ≡
(
p ,

iE

c

)
, (12A1.3.4)
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where p = mu/
√

1− u2/c2 is the momentum of the particle and E is its total energy.
Similarly, for four-force we have

Kν ≡ dpν
dτ

=

(
F√

1− u2/c2
,

iF · u/c√
1− u2/c2

)
. (12A1.3.5)

A four-vector Sν is called space-like if the scalar AνAν > 0, time-like if AνAν < 0, and
light-like or null-vector if AνAν = 0.

Relativistic Energy-Momentum Relation

Since the square of the length of any four-vector is invariant, it follows that pνpν is an
invariant. Indeed from the definition of four momentum in terms of four-velocity we find

pµpµ = m2(q2
1 + q2

2 + q2
3 + q2

4) = m2 u2 − c2
1− u2/c2

= −m2c2 , (12A1.3.6)

which is an invariant since both the rest mass m and c are invariant. By evaluating this
invariant in a frame where particle momentum is p and total energy is E, we have

p2 − E2

c2
= −m2c2

or E2 = c2p2 +m2c4 . (12A1.3.7)

This is the relativistic relation between the total energy (kinetic + rest energy) and
momentum of a particle in any frame of reference.

Transformation of Electric Current and Charge Densities

The electric charge of a particle is invariant under a Lorentz transformation. Starting from
the four-velocity qµ =

(
u/
√

1− u2/c2, ic/
√

1− u2/c2
)

[Eq. (12A1.3.3)], we can introduce
a four-vector electric current density jµ by multiplying the four-velocity by a Lorentz scalar,
ρo, the proper charge density (charge density in the frame in which the charge distribution
is at rest) by

jµ = (ρoqk, ρoq4) = (ρu, icρ) ≡ (j, icρ), ρ = ρo/
√

1− u2/c2 . (12A1.3.8)

It follows that the components of four-current density transform like a four-vector under a
Lorentz transformation:

j′1 =
j1 − vρ√
1− v2/c2

j′2 = j2

j′3 = j3

j′4 =
j4 − vj1/c√

1− v2/c2

(12A1.3.9)

or j′µ = aµνjν . (12A1.3.10)

The equation of continuity

∇ · j +
∂ρ

∂t
= 0, (12A1.3.11)

which expresses the conservation of charge can be written in a covariant form as

∂jν
∂xν

= 0 . (12A1.3.12)
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12A1.4 Covariant Form of Maxwell’s Equations

Maxwell’s equations,which relate electric and magnetic fields to charge and current densities
are13

∇ ·E = ρ/ε0 , (12A1.4.1)
∇ ·B = 0 , (12A1.4.2)

∇×B − µ0ε0
∂E

∂t
= µ0j , (12A1.4.3)

∇×E +
∂B

∂t
= 0 . (12A1.4.4)

Equations (12A1.4.2) and (12A1.4.4) allow us to introduce a vector potential A and a scalar
potential φ by equations

B =∇× A , (12A1.4.5)

and E = −∇ φ− ∂A

∂t
. (12A1.4.6)

These relations, together with vector identities ∇ · (∇ × A) = 0 and ∇ × (∇ φ) = 0,
ensure that Maxwell’s equations (12A1.4.2) and (12A1.4.4) are already satisfied. In view of
the same vector identities, a Gauge transformation,

A→ A−∇ χ , (12A1.4.7)

and φ→ φ+
∂χ

∂t
, (12A1.4.8)

where χ is an arbitrary scalar field, leaves the field quantities E and B unaltered. Of all
the possible gauge transformations in relativistic formulation of Maxwell’s equations, we
use the Lorentz gauge wherein the potentials satisfy the Lorentz condition

∇ · A+
1
c2
∂φ

∂t
= 0 . (12A1.4.9)

This is because this gauge condition can be put in a covariant form14. Using Eqs. (12A1.4.5)
and (12A1.4.6), we can write the first and third of Maxwell’s equations in terms of the vector
and scalar potentials. Accordingly, Eqs. (12A1.4.1) and (12A1.4.3) yield, respectively,

∇2φ− 1
c2
∂2φ

∂t2
= −ρ/ε0 (12A1.4.10)

and ∇2A− 1
c2
∂2A

∂t2
= −µ0j , (12A1.4.11)

where Lorentz condition (12A1.4.9) has been used. Rewriting these equations as[
∇2 − 1

c2
∂2

∂t2

]
(iφ/c) = − 1

ε0
(icρ)/c2 = −µ0(icρ) , (12A1.4.12)

and
[
∇2 − 1

c2
∂2

∂t2

]
A = −µ0j , (12A1.4.13)

13In these equations we have used MKS (SI) units to express all quantities.
14Another useful choice in non-relativistic radiation problems is the so-called radiation gauge also called
the Coulomb or transverse gauge, wherein the vector potential is chosen to satisfy ∇ ·A = 0. This will be
used in Chapter 13.
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and recalling that the d’Alembertian[
∇2 − 1

c2
∂2

∂ t2

]
≡ ∂

∂xµ

∂

∂xµ

is an invariant operator and the set of four quantities (j, icρ) ≡ jν constitutes the
components of a four-vector, we conclude that the set of four quantities

(A , iφ/c) ≡ Aν (12A1.4.14)

must also constitute the components of a four-vector. Then equations (12A1.4.12) and
(12A1.4.13) can be written in covariant form as

∂

∂xµ

∂

∂xµ
Aν = −µ0jν . (12A1.4.15)

Further, since Aν is a four-vector, quantities like ∂Aν
∂xµ

or ∂Aµ
∂xν

are four-tensors of rank two,
i.e., they transform like the product of two four-vectors. Based on these observations, we
may introduce a new tensor Fµν by

Fµν ≡ ∂Aν
∂xµ

− ∂Aµ
∂xν

, (12A1.4.16)

which is an anti-symmetric (Fµν = −Fνµ) traceless (Fµµ = 0) tensor of rank two. It has six
independent components. The law of transformation for Fµν is characteristic of a tensor of
rank two

Fσρ → F ′σρ = aσµaρνFµν , (12A1.4.17)

where aσν is the Lorentz transformation matrix defined by Eq. (12A1.2.4).
The six independent components of the electromagnetic field tensor are very simply

related to the components of magnetic and electric fields B and E/c, for

F12 =
(
∂A2

∂x1
− ∂A1

∂x2

)
= (∇× A)3 = B3 ,

and similarly, F23 = B1 and F31 = B2. Further,

F41 =
∂A1

∂x4
− ∂A4

∂x1
=
(

1
ic

∂(A1)
∂t

− ∂(iφ/c)
∂x1

)
=
i

c

[
−∂A
∂t
−∇ φ

]
1

= i
E1

c

and similarly, F42 = +iE2 /c and F43 = +iE3/c. Thus the components of the
electromagnetic field tensor are as follows

[Fµν ] =


0 B3 −B2 −iE1/c
−B3 0 B1 −iE2/c
B2 −B1 0 −iE3/c
iE1/c iE2/c iE3/c 0

 . (12A1.4.18)

Using the electromagnetic field tensor Fµν , it is now possible to write Maxwell’s equations
in covariant form. Thus Eqs. (12A1.4.2) and (12A1.4.4) can be rewritten as

∂Fµν
∂xρ

+
∂Fνρ
∂xµ

+
∂Fρµ
∂xν

= 0 . (12A1.4.19)
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Similarly, Eqs. (12A1.4.3) and (12A1.4.1)) can be rewritten as

∂Fµν
∂xν

= µ0jµ . (12A1.4.20)

This is easily seen by writing the corresponding Maxwell’s equations explicitly, in terms of
the components of E and B and then expressing these components in terms of components
of the field tensor (12A1.4.18).

Thus Maxwell’s equations, which predate Einstein’s theory of special relativity, can be
written in a covariant form without any modification. The form invariance of these equations
under Lorentz transformations is an important property of these equations and signifies the
physical fact that although the observers in different frames of reference would differ in their
measurements of physical quantities (including the components of electric and magnetic
fields), they can all formulate the laws of physics in the same way.



13

QUANTIZATION OF RADIATION FIELD

13.1 Introduction

In atomic, nuclear and particle physics we come across several situations where particles or
radiation quanta (photons) are created or destroyed. For example in the beta decay of the
neutron, a neutron is annihilated and a proton, electron and antineutrino are created. In
some situations the interaction of radiation with matter can result in creation or annihilation
of a pair of electron and positron. Such processes cannot be understood on the basis of
(non-relativistic or relativistic) single particle wave equations because in such theories the
probability ψ∗ψdτ (of finding the particle in the region of space dτ) when integrated over
the whole space, results in unity at all times and so the existence of the particle is always
guaranteed. Hence in the framework of single particle wave equation it is not possible to
understand the creation or annihilation of particles. Even a simple process in which an
atom undergoes a transition from an excited to the ground state by spontaneous emission
of a photon in the absence of a perturbing electromagnetic field cannot be explained within
this framework.

The first step toward understanding the creation or annihilation of photons was taken
by Dirac.1 He quantized the radiation field which had hitherto been regarded as a classical
field. As a result Dirac could explain the spontaneous and induced emission of radiation in
a natural way. This was one of the triumphs of Dirac’s quantum theory of radiation and
formed the starting point of quantization of wave fields in general. Among other successes of
this theory were the explanations of Thomson, Rayleigh, Raman, and Compton scattering
processes.

13.2 Radiation Field as a Swarm of Oscillators

To quantize the radiation field we first recall that it is that part of the Hamiltonian, which
depends on the transverse components of the fields. The static part of the Hamiltonian
expresses the Coulomb interaction between the charges. This separation of the Hamiltonian
into radiation and static parts is most conveniently done in the Coulomb gauge [Appendix
13A1]. In the Coulomb gaugethe vector potential satisfies the transversality condition

∇ ·A = 0 , (13.2.1)

1P. A. M. Dirac, The quantum theory of the emission and absorption of radiation, Proc. Roy. Soc. A114,
243 (1927).
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and obeys the equation

∇2A(r, t)− 1
c2
∂2A(r, t)

∂t2
= −µ0j⊥(r, t) . (13.2.2)

where j⊥ is the transverse part of the electric current [Eq. (13A1.1.16)] due to atomic
electrons (or any other charges). In terms of vector potential A, the transverse components
(radiation fields) of the field are

B =∇×A , (13.2.3)

and E⊥ = −∂A
∂t

. (13.2.4)

Note that the B is purely transverse. The Hamiltonian for the radiation field can then be
expressesd as

Hrad =
1
2

∫ [
ε0|E⊥|2 +

1
µ0
|B|2

]
dτ , (13.2.5)

or, equivalently, Hrad =
1
2

∫ [
ε0

∣∣∣∣∂A∂t
∣∣∣∣2 +

1
µ0
|∇×A|2

]
dτ . (13.2.6)

From now on we shall drop the subscript ‘⊥’ on the field components with the understanding
that these are the components we shall be concerned with in quantizing the radiation field.

We first quantize the free field and then take up the interaction of quantized field with
matter. Consider the field in a region of space where j⊥ = 0 so that the vector potential
satisfies

∇2A(r, t)− 1
c2
∂2A(r, t)

∂t2
= 0 . (13.2.7)

Such a field is said to be free. To quantize the free radiation field we must first express
the Hamiltonian of the field in terms of canonical variables. The vector potential is a
function defined for all space time points (r and t). If therefore we wish to specify A(r, t)
in terms of canonical variables, the number of such variables would be infinitely large and
non-enumerable. Although it is possible to work with such a decomposition of the vector
potential, it is easier to work with a discrete decomposition ofA(r, t). To do this we imagine
the radiation field to be enclosed in a very large box of volume V . The vector potential A
can then be expressed in terms of appropriately chosen spatial functions satisfying certain
boundary conditions on the surface of V . The imposition of boundary conditions leads
to a discrete set of functions, which can be used to express the vector potential. At a
suitable stage in the calculation, we allow the volume to tend to infinity. Needless to say
that physically meaningful results should not depend on the exact shapes of the boundary
surfaces and boundary conditions. The solution of Eq. (13.2.7), separable in space and time
variables, can be written in terms of these discrete set of functions as

A(r, t) =
1√
ε0

∑
λ

(qλ(t)uλ(r) + q∗λ(t)u∗λ(r)) , (13.2.8)

where the functions uλ(r) of spatial coordinates, labeled by index λ, form a discrete, though
infinite, set as a result of satisfying the boundary conditions. The index λ represents a set
of numbers needed to specify the spatial and polarization degrees of freedom of the field.
Substituting Eq. (13.2.8) into Eq. (13.2.7) and separating the variables we find uλ(r) and
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qλ(t) satisfy

∇2 uλ(r) +
ω2
λ

c2
uλ(r) = 0 , (13.2.9)

d2

dt2
qλ(t) + ω2

λ qλ(t) = 0 (13.2.10)

where the the separation constant ωλ has dimensions of angular frequency. Indeed, the
equation satisfied by the time-dependent coefficient qλ(t) may easily be recognized as the
equation for a harmonic oscillator of natural (angular) frequency ωλ.

We solve Eq. (13.2.9) in a cubic region of space of side L (V = L3) with its edges oriented
along the coordinate axes, and subject to periodic boundary conditions [see Chapter 5] on
uλ(r) on the faces of the cube:

uλ(x+ L, y, z) = uλ(x, y, z) ,
uλ(x, y + L, z) = uλ(x, y, z) ,
uλ(x, y, z + L) = uλ(x, y, z) .

(13.2.11)

Solutions of Eq. (13.2.9) are then given by

uλ(r) =
1√
V
ελ e

ikλ·r (13.2.12)

where kλ = ωλ/c and ελ is the polarization vector. Periodic boundary conditions lead to a
discrete set of functions by giving discrete values to kλ ≡ (kλx, kλy, kλz):

kλx =
2π
L
nλx , kλy =

2π
L
nλy , and kλz =

2π
L
nλz (13.2.13)

where nλx, nλy, and nλz are positive or negative integers. It may be verified that uλ(r)’s
form a set of orthogonal functions satisfying the condition∫

uλ(r) · u∗µ(r)dτ = δλµ . (13.2.14)

Condition ∇ · Aλ = 0 [Eq. (13.2.1)] now implies

kλ · ελ = 0, for each λ , (13.2.15)

which means that the polarization vector ελ is perpendicular to the wave-vector kλ.
The solution of Eq. (13.2.10) is easily seen to be

qλ(t) = qλ(0) e−iωλt , (13.2.16)

where ωλ is a positive quantity. Since uλ(r) are specified orthogonal functions of space
coordinates, the field A(r, t) is characterized by the set of variables qλ(t). We can now
express the Hamiltonian Hrad of the field in terms of qλ(t) and qλ(t)∗ by using the expression
for it in terms of vector potential

Hrad =
1
2

∫ [
ε0

∣∣∣∣(∂A∂t
)∣∣∣∣2 +

1
µ0
|∇ ×A|2

]
. (13.2.6*)

When we use the expansion (13.2.8), together with Eqs.(13.2.12) and (13.2.16), for the
vector potential A(r, t) in this equation, a typical integral encountered in the evaluation of
the magnetic energy, which gives nonzero contribution is

1
2µ0ε0

∫
(∇× uλ(r)) · (∇× u∗µ(r)

)
dτ =

1
2
k2
λc

2δλµ =
1
2
ω2
λ δλµ , (13.2.17)
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where we have used the results

∇× uλ = −i 1√
V

(ελ × kλ) eikλ·r , (13.2.18)

∇× u∗λ = i
1√
V

(ε∗λ × kλ) e−ikλ·r , (13.2.19)

and [ελ × kλ] · [ε∗λ × kλ] = ε∗λ · [kλ × (ελ × kλ)] = k2
λ (13.2.20)

in evaluating the integral. Terms involving products like (∇×uλ(r)·(∇× uµ(r) give terms
rapidly oscillating in space and or time and average out to zero. Similarly, a typical integral
in the evaluation of electric energy involves

1
2

∫ (
dqλ
dt
uλ

)
·
(
dq∗µ
dt
u∗µ

)
dτ =

1
2
ω2
λ qλ q

∗
µ δλµ . (13.2.21)

Using these results in the Hamiltonian (13.2.6) we get, after some simplification,

Hrad =
∑
λ

ω2
λ(qλq∗λ + q∗λqλ) ≡

∑
λ

Hλ (13.2.22)

where Hλ = ω2
λ(qλq∗λ + q∗λqλ) . (13.2.23)

The momentum of the field given by

G =
1

c2µ0

∫
(E ×B) dτ (13.2.24)

can also be expressed in terms of the variables qλ and q∗λ. Substituting the electric and
magnetic fields, E and B, in term of the vector potential [Eqs. (13.2.3) and (13.2.6)] and
using the expression (13.2.8) for vector potential, we get

G = −ε0
∑
λ,µ

∫
dτ
[
q̇λqµuλ × (∇× uµ) + q̇λq

∗
µuλ ×

(
∇× u∗µ

)
+ c.c.

]
, (13.2.25)

where c.c. stands for the complex conjugate of the expression to the left inside the square
brackets. Using Eqs. (13.2.18) through (13.2.20) in the integrand for G and carrying out
the integration, we obtain

G =
∑
λ

ωλkλ(qλq∗λ + q∗λqλ) ≡
∑
λ

Gλ , (13.2.26)

where Gλ = ωλkλ(qλq∗λ + q∗λqλ) . (13.2.27)

Note that |Gλ| = Hλ/c, which anticipates the energy-momentum relation for a photon.
If we introduce real variable Qλ and Pλ by

Qλ = qλ(t) + q∗λ(t) (13.2.28)
and Pλ = −iωλ [qλ(t)− q∗λ(t)] , (13.2.29)

we can rewrite Hλ and Gλ as

Hλ =
1
2
(
P 2
λ + ω2

λQ
2
λ

)
, (13.2.30)

and Gλ =
1
2

(
kλ
ωλ

)(
P 2
λ + ω2

λQ
2
λ

)
. (13.2.31)
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We can easily see that Qλ and Pλ are canonical variables because they satisfy the equations
of motion in the canonical form2:

Ṗλ = − ∂H

∂Qλ
(13.2.32)

and Q̇λ =
∂H

∂Pλ
. (13.2.33)

An inspection of Eqs. (13.2.22) and (13.2.26) together with (13.2.30) and (13.2.31) shows
that we can look upon the classical radiation field as equivalent to a swarm of independent
oscillators of different frequencies ωλ. This idea was originally introduced by Planck who
also postulated that radiation oscillators can emit or absorb energy in quanta of energy
~ωλ.

13.3 Quantization of Radiation Field

To quantize the radiation field we may now consider the canonical variables Pλ and Qλ of
each radiation oscillator as non-commuting operators P̂λ and Q̂λ satisfying the commutation
relations[

P̂λ, Q̂µ

]
= −i~δλµ (13.3.1)

and
[
P̂λ, P̂µ

]
=
[
Q̂λ, Q̂µ

]
= 0 . (13.3.2)

Obviously the operators P̂λ and Q̂λ are self-adjoint operators. As a result qλ → q̂λ and
pλ → p̂λ. If we now write

P̂λ = −i
(

~ωλ
2

)1/2 (
âλ − â†λ

)
≡ −iωλ(q̂λ − q̂†λ) (13.3.3)

and Q̂λ =
(

~
2ωλ

)1/2 (
âλ + a†λ

)
≡ (q̂λ + q̂†λ) (13.3.4)

where âλ and â†λ are adjoints of each other and so are q̂λ and q̂†λ, then from the commutation
relations (13.3.1) and (13.3.2) we can easily derive the following commutation relations3[

âλ, â
†
µ

]
= δλµ (13.3.5)

and [âλ, âµ] =
[
â†λ, â

†
µ

]
= 0 . (13.3.6)

An implication of the quantization of the radiation field is that the vector potential A(r, t),
which can be expressed in term of the operators âλ and â†λ, is also to be treated as an
operator. Hence the field quantities E and B are also to be treated as operators which do

2From the definition of Pλ and Qλ we find Ṗλ = −iωλ
`
q̇λ − q̇∗λ

´
= −ω2

λ

`
qλ + q∗λ

´
= −ω2

λQλ = − ∂H
∂Qλ

and

Q̇λ =
`
q̇∗λ + q̇λ

´
= −iωλ

`
−q∗λ + qλ

´
= Pλ = ∂H

∂Pλ
.

3Since âλ =
q

2ωλ
~

1
2

“
Q̂λ + iP̂λ

ωλ

”
and â†µ =

“
2ωµ

~

”1/2
1
2

„
Q̂µ −

iP̂µ
ωµ

«
, the commutatorsh

âλ, â
†
µ

i
, [âλ, âµ] ,

h
a†λ, a

†
µ

i
are easily worked out using the commutation relation between P̂λ and Q̂λ.
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not commute. This implies that simultaneous measurement of the field quantities Ê and B̂
at a point with arbitrary accuracy is not possible just as it is not possible to measure the
position as well as the momentum of a particle with arbitrary accuracy. Only their space
average can be known. The Hamiltonian Ĥrad of the radiation field as well as momentum
Ĝ of the field are also operators. Now Ĥλ, defined by

Ĥλ =
1
2

(
P̂ 2
λ + ω2

λQ̂
2
λ

)
, (13.2.30*)

may be expressed in term of the operators âλ and â†λ as

Ĥλ =
~ωλ

2

(
âλ â

†
λ + â†λ âλ

)
=
(
â†λ âλ +

1
2

)
~ωλ . (13.3.7)

Similarly, Ĝλ defined by

Ĝλ =
1
2

(
kλ
ωλ

) (
P̂ 2
λ + ω2

λ Q̂
2
λ

)
(13.2.32*)

may be expressed as

Ĝλ =
~kλ

2

(
âλ â

†
λ + â†λ âλ

)
= ~kλ

(
â†λ âλ +

1
2

)
. (13.3.8)

Using the commutation relations (13.3.5) and (13.3.6) we can also establish the following
commutation relations[

âλ, Ĥλ

]
= âλ~ω or [âλ, n̂λ] = âλ , (13.3.9)[

â†λ, Ĥλ

]
= −â†λ~ω or

[
â†λ, n̂λ

]
= −â†λ , (13.3.10)

where n̂λ ≡ â†λ âλ (13.3.11)

is the number operator. The expression for Ĥλ in terms of the operators âλ and â†λ and
the commutation relations (13.3.9) and(13.3.10) are reminiscent of operators introduced in
Chapter 5 (Sec. 5.4) for the linear harmonic oscillator.

From the form of the Hamiltonian of the radiation field Ĥrad =
∑
λ Ĥλ it is clear that we

are dealing with an infinite number of oscillators (one oscillator corresponding to each degree
of freedom) and that there is no interaction bewteen them since the total Hamiltonian is
simply the sum of the Hamiltonians for each oscillator. It folllows that the eigenstate of
Ĥrad must be the product of eigenstates of Ĥλ

|Ψ〉 = |Ψ1〉 |Ψ2〉 · · · |Ψλ〉 (13.3.12)

where |Ψλ > is the normalized eigenstate of Ĥλ

Ĥλ|Ψλ >= Eλ|Ψλ > . (13.3.13)

To extract the physical significance of the operators âλ and â†λ, let us interpret the states
â†λ |Ψλ 〉 and âλ |Ψλ 〉. Using the commutation relations (13.3.9) and (13.3.10) we find that

Ĥλ â
†
λ |Ψλ 〉 = (Eλ + ~ωλ) â†λ |Ψλ 〉 (13.3.14)

and Ĥλ âλ |Ψλ 〉 = (Eλ − ~ωλ) âλ |Ψλ 〉 . (13.3.15)

Thus â†λ |Ψλ 〉 and âλ |Ψλ 〉 are eigenstates of Ĥλ with eigenvalues Eλ + ~ωλ and Eλ − ~ωλ,
respectively. Operators âλ and â†λ may then be interpreted as the creation and annihilation
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operators for a photon of energy ~ωλ. It follows that â†λ operating on an nλ-photon state
transforms this state into (nλ + 1)-photon state, while âλ transforms the same state into
(nλ − 1)-photon state.

The lowest energy eigenstate |Ψ0λ 〉 and the corresponding eigenvalue E0λ of Ĥλ are easily
found by noting that the operation of âλ on such state will result in annihilation of the state
âλ |Ψ0 〉 = 0. It follows from this result that

â†λ âλ |Ψ0λ 〉 = 0

and Ĥλ |Ψ0λ 〉 ≡
(
â†λ âλ +

1
2

)
~ωλ |Ψ0λ 〉 =

1
2

~ωλ |Ψ0λ 〉

or E0λ =
1
2

~ωλ . (13.3.16)

Since the eigenvalues of Ĥλ can change in steps of ~ωλ, we have

Eλ ≡ Enλ = (nλ + 1/2) ~ωλ (13.3.17)

where nλ, called the occupation number for mode λ, takes on positive integer values
including zero. The eigenvalue equation for Ĥλ can then be written as

Ĥλ |Ψnλ 〉 = (nλ + 1/2) ~ωλ |Ψnλ 〉 , (13.3.18)

and we may represent the nλ-photon state |Ψnλ 〉 by just |nλ 〉 so that

Ĥλ |nλ 〉 = |nλ + 1/2 〉 ~ωλ |nλ 〉
and n̂λ |nλ 〉 = nλ |nλ 〉 . (13.3.19)

The operator n̂λ is called the occupation number operator or simply the number operator.
From the interpretation of the operators âλ and â†λ as annihilation and creation operators
[Eqs. (13.3.14) and (13.3.15)] we may write

â†λ |nλ〉 = C+ |nλ + 1〉 (13.3.20)
and âλ |nλ〉 = C− |nλ − 1〉 . (13.3.21)

The constants C+ and C− are easily seen to be equal to
√
nλ + 1 and

√
nλ, respectively.4

The number operators nλ’s (or Ĥλ) for different modes commute with each other since
there is no interaction between the oscillators. Therefore, the eigenstate of Ĥ can be written
as in Eq. (13.3.12) or as

|Ψ >= |n1 > |n2 > · · · |nλ >≡ |n1, n2, · · · , nλ 〉
∏
λ

|nλ > . (13.3.22)

The state of the radiation field may thus be specified in terms of the occupation numbers
nλ for different modes. A representation in which the set of commuting occupation number
operators n̂1, n̂2, · · · , n̂λ are diagonal and the basis states are |n1, n2, n3, · · · , nλ, · · · 〉 is
called the occupation number representation (ONR). In the ONR, the operators âλ, â

†
λ, and

n̂λ can be represented by matrices of infinite dimensions.

4Taking the Hermitian conjugate of â†λ|nλ〉 = C+|nλ + 1〉 we find 〈nλ|ân = C∗+〈nλ + 1| so that

〈nλ|âλâ†λ|nλ〉 = |C+|2〈nλ + 1|nλ + 1〉 = |C+|2. But 〈nλ|âλa†λ|nλ〉 = 〈nλ|â†λaλ + 1|nλ〉 = (nλ + 1),
giving us |C+| =

√
nλ + 1 . Similarly, from âλ|nλ〉 = C−|nλ − 1〉 and its Hermitian conjugate we obtain

〈nλ| â†λâλ|nλ〉 = |C−|2〈nλ − 1|nλ−1〉. This combined with 〈nλ| â†λâλ|nλ〉 = nλ gives us |C−| =
√
nλ. We

choose C+ and C− to be real and positive.
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The Electromagnetic Vacuum

The state |Ψo >= |n1 = 0, n2 = 0, n3 = 0, · · ·nλ = 0, · · · > in which all modes
(corresponding to any wave vector and polarization) have zero occupation number is called
the vacuum state. This definition is of utmost importance as any state of the electromagnetic
field can be obtained by application of creation operators on it. The application of any
destruction operator on it gives zero,

âλ |Ψ0 〉 = 0 . (13.3.23)

Now the field operators Ê and B̂ do not commute with Ĥλ or the number operator n̂λ and
the number of photons in any mode is precisely known (to be zero) in the vacuum state. It
follows that the field amplitudes are indeterminate in the vacuum state. Indeed, while the
average values of both Ê and B̂ in the vacuum state vanish, average values of fluctuations
from the mean 〈(∆Ê)2〉0 ≡ 〈(Ê − 〈Ê〉)2〉0 and 〈(∆B̂)2〉 ≡ 〈(B̂ − 〈0B̂〉)2〉0 do not and, in
fact, both diverge. Thus the electromagnetic vacuum is no more a placid region of space
characterized by the absence of any quanta but a state of ceaseless activity.

13.4 Interaction of Matter with Quantized Radiation Field

The Hamiltonian of an atomic electron (charge −e and mass m) in an electromagnetic field
characterized by vector potential Â and potential V̂ (r) (which decsribes all external forces
as well as electrostatic Coulomb interaction) is given by

Ĥ =
[p̂+ eÂ(r, t)]2

2m
+ V̂ (r) + Ĥrad (13.4.1)

where we treat the electron non-relativistically. Expanding the first term on the right-hand
side and recalling that each operator acts to its right, we obtain

p̂ · Â+ Â · p̂ = −i~∇ · Â+ 2Â · (−i~∇) = 2Â · p̂ , (13.4.2)

where we have used the transversality condition ∇ · Â = 0 [Eq. (13.2.1)]. Using this result
and the Hamiltonian for the quantized radiation field, we find the total Hamiltonian of the
system (atom + radiation field) can be written as

Ĥ =
p̂2

2m
+ V̂ +

∑
λ

(
â†λâλ + 1/2

)
~ωλ +

e

m
Â · p̂+

e2

2m
Â

2 ≡ Ĥ0 + Ĥ ′ , (13.4.3)

where Ĥ0 =
p̂2

2m
+ V̂ (r) +

∑
λ

(
â†λâλ + 1/2

)
~ωλ (13.4.4)

is the unperturbed Hamiltonian of the atomic system and the radiation field and

Ĥ ′ =
e

m
Â · p̂+

e2

2m
Â

2
(13.4.5)

may be treated as the perturbation, being the interaction of the atomic system with the
electromagnetic field. In what follows we shall drop the Â

2
-term compared to the first term

since it is of second order in the field.
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With the help of Eqs. (13.2.8), (13.2.12), (13.2.32), (13.2.33) (13.3.3), and (13.3.4), the
operator Â representing the vector potential is given by

Â(r) =
∑
λ

√
~

2ε0ωλV

(
ελâλe

ikλ·r + ε∗λâ
†
λe
−ikλ·r

)
. (13.4.6)

Using this in the perturbation Hamiltonian and dropping the Â
2

term, we obtain

Ĥ ′ =
e

m

∑
λ

√
~

2ε0ωλV

(
ελâλe

ikλ·r + ε∗λâ
†
λ e
−ikλ·r

)
· p̂ . (13.4.7)

The eigenstate |Ψi 〉 of the unperturbed Hamiltonian Ĥ0 can be written as the product of the
unperturbed state |ui 〉 of the atomic electron belonging to energy εi and the unperturbed
state of the electromagnetic field

∏
λ |nλ 〉 as

|Ψi 〉 = |ui 〉
∏
λ

|nλ 〉 , (13.4.8a)

where Ĥ0 |Ψi 〉 = Ei |Ψi 〉 (13.4.8b)

and Ei = εi +
∑
λ

(nλ + 1/2) ~ωλ . (13.4.8c)

Here nλ is the number of photons in mode λ and εi is the energy of the atomic system in the
i-th state. To find the probability that the interaction between the atomic electron and the
radiation field produces a transition from atomic state |ui 〉 to some other atomic state |uf 〉,
we must find the matrix element of Ĥ ′ between the initial state |ui 〉 |n1, n2, · · · 〉 ≡ |i; {n}〉
and the final state |uf 〉 |m1,m2, · · · 〉 ≡ |f ; {m}〉 of the radiation field and the atomic
system. This matrix element is given by

〈f ; {m}| Ĥ ′ |i; {n}〉 =
e

m

∑
λ

√
~

2ε0ωλV

{
∫
u∗f (r) eikλ·r (ελ · p̂) ui(r)dτ × 〈{m}| âλ |{n}〉

+
∫
u∗f (r) e−ikλ·r (ε∗λ · p̂) ui(r)dτ × 〈{m}| â†λ |{n}〉

}
.

The operators âλ and â†λ affect only the occupation number of mode λ. The matrix element
of âλ vanishes unless mλ = nλ− 1 while that of â†λ vanishes unless mλ = nλ+ 1. There are,
therefore, only two non-vanishing matrix elements of Ĥ ′

〈f ;nλ − 1| Ĥ ′ |i;nλ 〉 =
e

m

√
~nλ

2ε0ωλV

∫
u∗f e

ikλ·r (ελ · p̂) ui dτ (13.4.9)

and 〈f ;nλ + 1| Ĥ ′ |i;nλ 〉 =
e

m

√
~(nλ + 1)
2ε0ωλV

∫
u∗f e

−ikλ·r (ελ · p̂) ui dτ . (13.4.10)

The first matrix element refers to absorption, as it represents a transition in which the
number of quanta in the field is reduced by one. The probability of this process, which is
proportional to the square of the matrix element is proportional to nλ (the number of quanta
present) or to the intensity of the radiation field. This is therefore induced absorption.
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The second matrix element refers to a process in which the number of quanta is increased
by one. It represents an emissive process and its probability is proportional to (nλ + 1).
Even if the intensity of radiation is reduced to zero (nλ = 0), there is a non-zero probability
of emission. This part of emission probability, which is independent of nλ (or which is
non-zero even if nλ = 0) refers to the process of spontaneous emission. The other part
of the emission probability which is dependent on nλ refers to the process of induced (or
stimulated) emission. The Einstein relationship between the probabilities of spontaneous
emission and of induced emission can be verified in the light of this theory.

It must be kept in mind that absorptive and emissive transitions connect the initial state
to different final states. In the case of absorption, the final state is higher in energy than
the initial state whereas in the case of emission, the final state is lower in energy. To avoid
confusion, therefore, we will write the matrix element for absorption and emission as

M
(ab)
ia ≡ 〈a;nλ − 1| Ĥ ′ |i;nλ 〉 =

e

m

√
~nλ

2ε0ωλV

∫
u∗a e

ikλ·r (ελ · p̂) ui dτ (13.4.11)

M
(em)
ib ≡ 〈b;nλ + 1| Ĥ ′ |i;nλ 〉 =

e

m

√
~(nλ + 1)
2ε0ωλV

∫
u∗b e

−ikλ·r (ελ · p̂) ui dτ (13.4.12)

with Ea > Ei and Eb < Ei.
It is of interest to compare the expressions (13.4.11) and (13.4.12) with the expressions

we obtain from the semi-classical theory in which the vector potential is treated classically
[Eqs. (10.3.18) and (10.3.19)]. We note that for absorption and emission processes we may
define equivalent classical vector potentials for absorption and emission as

Aab =
√

~nλ
2ε0ωλV

ελ e
i(kλ·r−ωλt) (13.4.13)

and Aem =

√
~(nλ + 1)
2ε0ωλV

ε∗λ e
−i(kλ·r−ωλt) . (13.4.14)

With the equivalent vector potentials (13.4.13) and (13.4.14), respectively, for the absorption
and emission of a light quantum by a charged particle we can obtain from the semi-classical
theory matrix elements for one-photon transitions which are identical with those given by a
quantized field theory. Caution must be exercised in using them for multi-photon processes
as they can lead to incorrect results.

Einstein Coefficients

According to Fermi’s golden rule, the probability per unit time for the emissive transition
is given by

wi→f =
2π
~

∣∣∣〈f, nλ + 1| Ĥ ′ |i, nλ 〉
∣∣∣2 ρ(Eλ) (13.4.15)

where the matrix element 〈f, nλ + 1| Ĥ ′ |i, nλ 〉 is given by Eq. (13.4.12) with 〈b| = 〈f |
and the density of final states ρ(Eλ) (number of states of the radiation field per unit energy
interval within a volume V of the configuration space) is given by5

ρE(Eλ)dEλ = V ρν(νλ)dνλ . (13.4.16)

5While atomic states are discrete, the states of the radiation field form a continuum. In our treatment, the
radiation field is confined within a volume V and this effectively discretizes the frequencies, the density of
state being given by Eq. (13.4.17).
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Here ρν(νλ)dνλ is the number of frequencies in the range νλ and νλ + dνλ per unit volume
and is given by

ρν(νλ)dνλ =
8π ν2

λ dνλ
c3

= ρω(ωλ)dωλ . (13.4.17)

Using this in Eq. (13.4.20) we find, with the help of the relation Eλ = hνλ = ~ωλ,

ρω(ωλ) =
ω2
λ

π2c3
, (13.4.18)

ρE(Eλ) = V
ρω(ωλ)

~
. (13.4.19)

Substituting this density of states in Eq. (13.4.19) we find that the transition rate is given
by 6

wi→f =
π e2

ε0m2ω2
λ

~ωλ(nλ + 1)ρ(ωλ)
∣∣∣∣∫ u∗f e

−ikλ·rε∗λ · ∇ui dτ
∣∣∣∣2 . (13.4.20)

Now the energy density I(ωλ)dωλ of the radiation field in the frequency interval dωλ centered
at ωλ is proportional to the number of photons7 nλ in the mode λ

I(ωλ)dωλ = ρ(ωλ)dωλ ~ωλ nλ (13.4.21)

Using Eqs. (13.4.21) and (13.4.18) in Eq. (13.4.20) and dropping the suffix λ for simplicity,
we can write the rate of emissive transition as the sum of two terms

wi→f = I(ω)Bi→f +Ai→f , (13.4.22)

where the first term is proportional to the spectral energy density I(ω) of radiation at
frequency ω while the second term is independent of the spectral energy density. Coefficients
Ai→f and Bi→f are precisely the Einstein A and B coefficients given by

Bi→f =
π e2

ε0m2ω2

∣∣∣∣∫ u∗f e
−ik·rε∗ ·∇ui dτ

∣∣∣∣2 (13.4.23)

and Ai→f =
π e2

ε0m2ω2

~ω3

π2c3

∣∣∣∣∫ u∗f e
−i k·rε∗ ·∇ui dτ

∣∣∣∣2 . (13.4.24)

The ratio of Einstein coefficients is given by

Ai→f
Bi→f

=
~ω3

π2c3
. (13.4.25)

6Noting that p̂→ −i~∇ in coordinate representation, we have˛̨̨̨Z
u∗f e

−ikλ·r (ε∗λ · p̂)uidτ

˛̨̨̨2
= ~2

˛̨̨̨Z
u∗n0

e−ikλ·r ε∗λ ·∇ui dτ

˛̨̨̨2
.

7For radiation in thermal equilibrium at temperature T , the occupation number obeys Bose-Einstein
distribution law nλ = 1/[e~ωλ/kBT − 1]. This relation is, however, not used here.
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13.5 Applications

The Photo-electric Effect

As a simple application of quantization of radiation field, we consider the photo-emission of
electrons when radiation is incident on the surface of a material. In this treatment we shall
consider the electromagnetic field to be quantized but treat the electron non-relativistically.
For this first order process, in which a photon is absorbed by an atom and an electron is
excited from a bound state8

ui(~r) =

√
Z3

πa3
o

exp(−Zr/ao) , (13.5.1)

where ao = 4πε0~2

me2 is the Bohr radius, to a free state

uf (r) =
1√
V
eik·r , (13.5.2)

where p = ~k is the momentum of the electron in the final state. We have assumed that
the final electron energy is large enough that it can be treated like a free particle in the final
state unaffected by the long-range Coulomb potential. Since in photo-electron emission a
photon is absorbed, the relevant transition matrix element (13.4.11) is given by

H ′fi =
e

m

√
~nλ

2ε0ωλV

∫
u∗f (~r) eikλ·r (ελ · p̂) ui(r) dτ . (13.5.3)

Substituting for uf and ui in Eq. (13.5.3), the matrix element can be written as

H ′fi =
e

m

√
~nλ

2ε0ωλ V
(ελ · ~k)

√
Z3

πa3
oV

2π I (13.5.4)

where the integral I is given by

I ≡
∞∫

0

e−Zr/ao r2dr

1∫
−1

eiβ r ζ dζ =
4Z/ao

[(Z/ao)2 + β2]2
(13.5.5)

where β = kλ − k and β · r = βrζ . (13.5.6)

Then the transition probability per unit time wi→f is

wi→f =
2π
~
|H ′fi|2ρE , (13.5.7)

where the density ρE of final electronic states with momentum ~k pointing into the solid
angle dΩ is given by [Sec. 10.2]

ρE =
V k2 dΩ
(2π)3

dk

dE
. (13.5.8)

8For simplicity we assume the atom to be Hydrogen-like and initially in the ground state with binding

energy W = Z2e2

8πε0
me2

4πε0~2 = Z2e2

8πε0ao
.
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FIGURE 13.1
In the photo-eletric effect an incident photon of energy ~ωλ and polarization ελ is absorbed
followed by the emission of an electron traveling with a momentum ~k and energy ~2k2/2m
given by Einstein’s photo-electric equation.

Since E = ~2k2/2m for the electron, we have kdk/dE = m/~2, giving us

ρE =
V kmdΩ
(2π)3~2

. (13.5.9)

Now nλ photons in mode volume V correspond to incident photon flux density nλ c/V .
Then introducing the differential cross-section for photo-electron emission by

dσ =
No. of electrons ejected per/second within solid angle dΩ

Incident photon flux density
=
V wi→f
nλc

, (13.5.10)

and using the expressions for wi→f and the incident photon flux density, we find

dσ

dΩ
=

e2

4πε0~c
32~k
mωλ

(ελ · k)2

(
Z
a0

)5

[
Z2

a2
0

+ |kλ − k|2
]4 . (13.5.11)

This expression contains the angular dependence of photo-electron emisssion relative to
the direction of incident photon wave vector kλ and its polarization ελ. If photon energy
is large compared to the binding energy of the electron but small compared with its rest
mass energy (W � ~ωλ � mc2), we can simplify this expression. According to Einstein’s
photo-electric equation,

~ωλ =
h2k2

2m
+W =

~2

2m

[
k2 +

Z2

a2
o

]
⇒ k2 +

Z2

a2
o

=
2mωλ

~
, (13.5.12a)

so that
Z2

a2
o

+ |kλ − k|2 =
2mωλ

~
− 2kλk cos θ + k2

λ =
2mωλ

~

[
1− v cos θ

c
+

~ωλ
2mc2

]
≈ 2mωλ

~

[
1− v cos θ

c

]
(~ωλ � mc2) (13.5.12b)
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where the binding energy of the electron is W = mZ2e4

2(4πε0)2~2 = ~2

2m
Z2

a2
o
, ωλ = kλc, the velocity

of the electron is v = hk/m and the polar axis (z-axis) is coincident with the direction of
the incident photon kλ so that kλ · k = kλk cos θ. The last step in Eq. (13.5.12b) follows
since the energy of the photon is much less than the rest energy of the electron. If we take
the polarization vector ελ to be parallel to the x-axis, then

ελ · k = k sin θ cosϕ

and the scattering cross-section can be written as

dσ

dΩ
=
(

e2

4πε0~c

)
64
(
kao
Z

)3(
W

~ωλ

)5 (ao/Z)2 sin2 θ cos2 ϕ(
1− v

c cos θ
)4 . (13.5.13)

For an unpolarized (equal mixture of polarizations along x and y-directions) photon beam,
we replace |ελ · k|2 = k2 sin2 θ cos2 ϕ by its average value k2 sin2 θ 1

2 (cos2 ϕ + sin2 ϕ) =
1
2k

2 sin2 θ. We then obtain

dσ

dΩ
=
(

e2

4πε0~c

)
32
(
kao
Z

)3(
W

~ωλ

)5 (ao/Z)2 sin2 θ(
1− v

c cos θ
)4 . (13.5.14)

We note that dσ
dΩ vanishes in the forward direction θ = 0 so that no electrons are emitted in

the direction of the incident photon. Maximum emission would take place in the direction
θ = π/2, ϕ = 0, i.e., the direction of polarization of the photon, but for the denominator
which tends to shift the maximum slightly in the forward direction. Finally, with the
approximation ~2k2/2m ≈ ~ωλ, which is valid for ~ωλ � W , which we are considering
here, we obtain

dσ

dΩ
=
(

e2

4πε0~c

)
64
(
W

~ωλ

)7/2 (ao/Z)2 sin2 θ cos2 ϕ(
1− v

c cos θ
)4 . (13.5.15)

Thus the cross-section varies as Z5/(~ωλ)7/2.

Rayleigh, Thomson and Raman Scattering

We have seen that the emission or absorption of a photon by an atomic system may be
investigated by considering the interaction of the atomic system with the time-dependent
vector potential Â (ri, t), which may be treated as a field operator expressible in terms of
the creation and annihilation operators as

Â (r, t) =
∑
λ

√
~

2ε0ωλV

(
ελâλ e

i(kλ·r−ωλt) + ελâ
†
λ e
−i(kλ·r−ωλt)

)
, (13.5.16)

where, for convenience of writing, we choose a real polarization basis. The Hamiltonian for
interaction between atomic electrons and the radiation field is given by Eq. (13.4.5)

Ĥint(t) =
e

m

∑
i

Â (ri, t) · p̂i +
e2

2m

∑
i

Â (ri, t) · Â (ri, t) ≡ Ĥ
(1)
int + Ĥ

(2)
int , (13.5.17)

where the summation is over atomic electrons, labeled by i, that participate in the
interaction. The summation over i and the index i may be dropped if only one electron
participates in the interaction.
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FIGURE 13.2
Figures (a) and (b) represent annihilation and creation (or creation and annihilation) of a
photon in succession. Figure (c) indicates this as a one step process.

The processes we are considering here are those in which no change in the number of
photons occurs. Since the linear term Â · p̂ changes the number of photons by one, it
makes no contribution to the transition matrix element for these processes in the first order
of perturbation. Such transition may be brought about either (i) by the linear (in vector
potential) term Â · p̂ in second order of perturbation or (ii) by the quadratic (in vector
potential) term Â · Â in first order of perturbation.

These contributions can be visualized by drawing space-time diagrams (Feynman
diagram) [Fig. 13.2]. In such diagrams, which will be discussed in more detail in Chapter
14, a solid line represents the atomic electron and a broken line represents a photon. Time
axis runs upward.

The Â · p̂ interaction acting at time t1 can either annihilate the incoming photon (ωλ, ελ)
[or create the outgoing photon (ω′λ, ε

′
λ)]. When Â · p̂ interaction acts again at time t2(> t1)

it must necessarily create the outgoing photon (ωλ′ , ελ′) if the same has not been created
[Fig. 13.2(a)] or annihilate the incoming photon (ωλ, ελ if the same has not already been
annihilated [Fig. 13.2(b)]; otherwise we get a zero matrix element. The Â · Â term involves
the operators ââ† , â†â , ââ , and â†â†. Obviously, only the first two give a non-vanishing
contribution to the matrix element as they can, in succession, annihilate and create (or
create and annihilate) photons resulting in no change in the number of photons [Figs.
13.2(a) and 13.2(b)]. The one-step process of annihilation and creation of a photon is
indicated by the graph [Fig. 13.2(c)].

To find the probability of transition per unit time, from the atomic state |i 〉 to the state
|f 〉, we use the time-dependent perturbation theory by expanding the total wave function
of the system as

Ψ(r, t) =
∑
j

Cj(t)uj(r) e−iEjt/~ (13.5.18)

and invoking a perturbation expansion for Cj(t)

Cj(t) = δji + C
(1)
j (t) + C

(2)
j (t) + · · · (13.5.19)
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where the first term corresponds to the atom initially in the state |i 〉 and C
(1)
j (t), C(2)

j (t)
etc. are, respectively, the first, second and higher order corrections to amplitude of the j-th
state. In the present treatment we consider terms only up to the second order. Using the
first and second order time-dependent perturbation theory we get the first and second order
amplitudes for transition to state |f 〉 [Chapter 10]:

C
(1)
f (t) =

1
i~

t∫
0

dt1 〈f, ωλ′,ελ′ | Ĥint(t1) |i, ωλ, ελ〉 ei(Ef−Ei) t1/~

C
(2)
f (t) =

1
(i~)2

t∫
0

dt2
∑
I

t2∫
0

dt1 〈f, ωλ′,ελ′ | Ĥint(t2) |I, ωλI , ελI 〉 ei(Ef−EI)t2/~

× 〈I, ωλIελI | Ĥint(t1) |i, ωλ, ελ〉 ei(EI−Ei) t1/~ .

Here the index I labels the intermediate states of the atom and field. Since we are
considering only the second order [in vector potential Â] processes, we use Â · Â part
of the interaction Hamiltonian in the first equation and Â · p̂ part in the second equation.
Thus both C

(1)
f (t) and C

(2)
f (t) are second order terms in vector potential. We then obtain

C
(1)
f (t) =

1
i~

e2

2m

t∫
0

dt1 〈f, ωλ′,ελ′ | Â(r, t1) · Â(r, t1) |i, ωλ, ελ〉 ei(Ef−Ei) t1/~ ,

C
(2)
f (t) =

1
(i~)2

e2

m2

t∫
0

dt2
∑
I

t2∫
0

dt1 〈f, ωλ′,ελ′ | Â(r, t2) · p̂ |I, ωλI , ελI 〉 ei(Ef−EI)t2/~

× 〈I, ωλI , ελI | Â(r, t1) · p̂ |i, ωλ, ελ〉 ei(EI−Ei)t1/~ .

The matrix element for Â · Â interaction is given by(considering one-electron atom),

〈f, ωλ′ , ελ′ |Â(r, t1) · Â(r, t1) |i, ωλ, ελ〉
=

~
2ε0V

〈f, ωλ′ , ελ′ |
∑
λ1,λ2

ελ1 · ελ2

(ωλ1ωλ2)1/2

{
âλ1 â

†
λ2
ei[(kλ1−kλ2 )·r−(ωλ1−ωλ2 )t1]

+ â†λ1
âλ2 e

−i[(kλ1−kλ2 )·r−(ωλ1−ωλ2 )t1] |i, ωλ, ελ 〉
}

where we have dropped terms like âλ1 âλ2 and â†λ1
â†λ2

which do not contribute to the matrix
element when the initial and final states have the same number of photons. Inside the
summation over λ1 and λ2, the first term contributes only when λ1 = λ and λ2 = λ′, while
the second contributes only when λ1 = λ′ and λ2 = λ. All other terms contribute zero. We
can further replace the term ei(kλ1−kλ2 )·r by 1 in the long wavelength approximation. This
means we are assuming that atomic size and, therefore, electron coordinate r are negligible
compared to the wavelength. This is an excellent approximation for interaction of optical
radiation with atoms. The matrix element for Â · Â interaction thus reduces to

〈f, ωλ′ , ελ′ | Â(r, t1) · Â(r, t1) |i, ωλ, ελ 〉
=

~
2ε0(ωλωλ′)1/2V

e−i(ωλ1−ωλ2 )t1 〈f, ωλ′ , ελ′ | (ελ · ελ′)(âλâ†λ′ + â†λ′ âλ) |i, ωλ, ελ 〉 .
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Hence for Â · Â interaction, the transition amplitude is

C
(1)
f (t) =

1
i~

e2

2m
~

2ε0V
√
ωλωλ′

2(ελ · ελ′)fi
t∫

0

dt1 e
i
~ (~ωλ′+Ef−~ωλ−Ei) t1

where ωλ = c|kλ| and ωλ′ = c|kλ′ |.
The second order transition amplitude due to Â · p̂ interaction can be written as

C
(2)
f (t) =

1
(i~)2

∑
I

t∫
0

dt2

t2∫
0

dt1

{
〈f, ωλ′ , ελ′ | e

m

∑
λ1

√
~

2ε0ωλ1V

×
(
âλ1 e

i(kλ1 ·r−ωλ1 t2) + â†λ1
e−i(kλ1 ·r−ωλ1 t2)

)
(ελ1 · p̂) |I, ωλI , ελI 〉 ei(Ef−EI)t2/~

× 〈I, ωλI , ελI |
e

m

∑
λ2

√
~

2ε0ωλ2V

(
âλ2 e

i(kλ2 ·r−ωλ2 t1) + â†λ2
e−i(kλ2 ·r−ωλ2 t1)

)
× (ελ2 · p̂) |i, ωλ, ελ 〉 ei(EI−Ei)t1/~

}
.

An inspection of various terms in this expression shows that nonzero contributions to the
matrix element come only from terms like 〈 ·| â†λ1

|· 〉 〈 ·| âλ2 |· 〉 when λ1 = λ′ and λ2 = λ

and from 〈 ·| âλ1 |· 〉 〈 ·| â†λ2
|· 〉 when λ1 = λ and λ2 = λ′. This leads to

C
(2)
f =

1
(i~)2

( e
m

)2 ~
2ε0V (ωλωλ′)1/2

t∫
0

dt2

t2∫
0

dt1

[∑
I

{
〈f, ωλ′ , ελ′ | â†λ′ ei ωλ′ t2 (ελ′ · p̂) |I 〉 ei(Ef−EI)t2/~

× 〈I| âλ e−iωλt1 (ελ · p̂) |i, ωλ, ελ 〉 ei(EI−Ei)t1/~
}

+
∑
I

{
〈f, ωλ′ , ελ′ | âλ e−iωλt2 (ελ · p̂) |I, ωλ, ελ, ωλ′ , ελ′ 〉 ei(Ef−EI)t2/~

× 〈I, ωλ, ελ, ωλ′ , ελ′ | â†λ′ eiωλ′ t1 (ελ′ · p̂) |i, ωλ, ελ 〉 ei(EI−Ei)t1/~
}]

.

In carrying out the time integrals, we recall from Sec. 10.9 [Chapter 10], that only
the terms whose frequencies can vanish (resonant or energy conserving terms) make
significant contributions in the long time limit. For example, terms with time dependence
ei(Ef−EI+~ωλ′ )t2/~ and ei(Ef−EI−~ωλ)t2/~ give negligible contribution compared to the term
ei(Ef−Ei+~ωλ′−~ωλ)t2/~ since energy conservation Ej − Ei + ~ωλ′ − ~ωλ = 0 holds in the
overall process. Carrying out the integration with respect to t1 and dropping the non-
resonant terms we obtain

c
(2)
f (t) =

ie2

2m2ε0V (ωλωλ′)1/2

∑
I

{
(ελ′ · p)fI(ελ · p)Ii
(EI − Ei − ~ωλ)

+
(ελ · p)fI(ελ′ · p)Ii
(EI − Ei + ~ωλ′)

}

×
t∫

0

dt2 e
i(Ef−Ei+~ωλ′−~ωλ)t2/~ .
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It may also be noted that in the first case [Fig. 13.2(a)] the intermediate state has no
photon and in the second case [Fig. 13.2(b)] it has both photons characterized by λ and λ′.

The overall transition amplitude is obtained by adding the second order contribution due
to Â · p̂ and the first order contribution due to Â ·Â since both are of second order in vector
potential. Then the transition probability per unit time for i→ f transition is

wi→f =
1
t

∫
∆E

∣∣∣C(1)
f (t) + C

(2)
f (t)

∣∣∣2 ρE dE , (13.5.20)

where ∆E represents the energy spread of the set of final states (photons of energy ~ωλ′
and polarization ελ′ . The energy density of ρE of final states [scattered photon with energy
~ωλ′ and momentum ~ωλ′/c within a solid angle dΩ] is given by

ρE =
V ω2

λ′ dΩ
(2π)3 c3~

. (13.5.21)

The time-dependent term in both C(1)
f (t) and C(2)

f (t) is the same [see also Sec. 10.9] and is
easily evaluated to be

t∫
0

ei(~ωλ′+Ef−~ωλ−Ei)t2/~ dt2 = 2ei(ωfi+ωλ′−ωλ)t/2 sin(ωfi + ωλ′ − ωλ)t/2
ωfi + ωλ′ − ωλ ,

where ωfi = (Ef − Ei)/~. Then the transition probability is

∣∣∣C(1)
f (t) + C

(2)
f (t)

∣∣∣2 =

∣∣∣∣∣ e2 (ελ · ελ′)fi
2iV ε0m(ωλωλ′)1/2

+
ie2

2m2ε0(ωλωλ′)1/2V

×
∑
I

{ (ελ′ · p)fI (ελ · p)Ii
(EI − Ei − ~ωλ)

+
(ελ · p)fI (ελ′ · p)Ii
(EI − Ei + ~ωλ′)

}∣∣∣∣2 4 sin2(ωfi + ωλ′ − ωλ)t/2
(ωfi + ωλ′ − ωλ)2

,

(13.5.22)

and the transition rate is given by

wi→f =
1
t

e4

4ε20V 2m2ωλωλ′

∫
∆E

∣∣∣∣∣ (ελ · ελ′)fi − 1
m

∑
I

{
(ελ′ · p)fI(ελ · p)Ii
(EI − Ei − ~ωλ)

+
(p · ελ)fI(ελ′ · p)Ii
(EI − Ei + ~ωλ′)

}∣∣∣∣2 4 sin2(ωfi + ωλ′ − ωλ)t/2
(ωfi + ωλ′ − ωλ)2

× V ω2
λ′ dΩ

(2π)3c3~
~dωλ′ . (13.5.23)

As the function 4 sin2(ωfi+ωλ′−ωλ)t/2
(ωfi+ωλ′−ωλ)2 has a very sharp peak at ωfi + ωλ′ − ωλ = 0, which

gets sharper as t→∞, [ limt→∞
4 sin2(ωfi+ωλ′−ωλ)t/2

(ωfi+ωλ′−ωλ)2 = 2πtδ(ωfi + ωλ′ − ωλ)], the value of
the integral is simply the integrand evaluated at ωλ′ = Ei + ~ωλ − Ef , giving us

wi→f =
e4ωλ′dΩ

(4πε0)2V m2ωλc3

∣∣∣∣∣(ελ · ελ′)fi − 1
m

∑
I

{
(ελ′ · p)fI(ελ · p)Ii
(EI − Ei − ~ωλ)

+
(p · ελ)fI(ελ′ · p)Ii
(EI − Ei + ~ωλ′)

}∣∣∣∣∣
2

.

The remaining dependence of transition rate on quantization volume can be removed if
we work with scattering cross-section. Now one incident photon in quantization volume
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V constitutes an incident photon flux density of c/V . Then the differential cross-section
dσ = wi→f

(c/V ) for the processes under consideration is given by

dσ

dΩ
=
(

e2

4πε0mc2

)2
ωλ′

ωλ

∣∣∣∣ (ελ · ελ′)fi

− 1
m

∑
I

{
(ελ′ · p)fI(ελ · p)Ii
(EI − Ei − ~ωλ)

+
(p · ελ)fI(ελ′ · p)Ii
(EI − Ei + ~ωλ′)

}∣∣∣∣∣
2

. (13.5.24)

This formula for scattering of radiation from matter is known as Kramers-Heisenberg
formula, and was originally derived by Kramers and Heisenberg in 1925, using the
correspondence principle.

As special cases of Kramers-Heisenberg formula we consider the following scattering
processes

(a) Rayleigh scattering is an example of elastic scattering of light wherein there is no
change in the frequency of light (ωλ′ = ωλ), the atom returns to its original state
|i 〉 = |f 〉, and the incident photon energy is much less than the energy difference
between the atomic levels ~ωλ � EI − Ei(= ~ωIi).

(b) Thomson scattering is also an elastic scattering (ωλ′ = ωλ) but the incident photon
energy is much larger than the energy difference between atomic levels (~ωλ �
EI − Ei).

(c) Raman scattering is an example of inelastic scattering wherein a shift in the energy of
the scattered radiation occurs and the atom may be left in a final state different from
its initial state in accordance with the conservation of energy ~ωλ +Ei = ~ωλ′ +Ef .

We shall now consider these specific cases in somewhat more detail.

Rayleigh Scattering

Using the commutation relations between r̂ and p̂ we can derive the following relation

(ελ · ελ′) =
1
i~

[(ελ · r) (ελ′ · p)− (ελ′ · p) (ελ · r)] . (13.5.25)

Further, using the completeness of intermediate states we have, from the above relation,

(ελ · ελ′)ii =
1
i~
∑
I

[(ελ · r)iI (ελ′ · p)Ii − (ελ′ · p)iI (ελ · r)Ii] (13.5.26)

and using the identity

(r · ε)iI =
i

mωIi
(ελ · p)iI (13.5.27)

where ωIi = (EI − Ei)/~ we can rewrite the above equation as

(ελ · ελ′)ii =
1
m~

∑
I

1
ωIi

[(ελ · p)iI (ελ′ · p)Ii + (ελ′ · p)iI (ελ · p)Ii] . (13.5.28)

With the help of this equation we can combine the two terms in Eq. (13.5.24) and get

(ελ · ελ′)ii −
1
m

∑
I

{
(ελ′ · p)iI (ελ · p)Ii
EI − Ei − ~ωλ

+
(ελ · p)iI (ελ′ · p)Ii
EI − Ei + ~ωλ′

}
= − 1

m~
∑
I

{
ωλ (ελ′ · p)iI (ελ · p)Ii

ωI i(ωI i − ωλ)
− ωλ′ (ελ · p)iI (ελ′ · p)I i

ωI i(ω I i + ωλ′)

}
. (13.5.29)
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Since, in this case, ωλ = ωλ′ � ωIi, we can use the approximation9

1
(ωIi ± ωλ)

≈ 1
ωIi

(
1∓ ωλ

ωIi

)
(13.5.30)

and (ελ · ελ′)ii −
1
m

∑
I

{
(ελ′ · p)iI (ελ · p)Ii
EI − Ei − ~ωλ

+
(ελ · p)iI (ελ′ · p)Ii
EI − Ei + ~ωλ′

}
= − ω2

λ

m~
∑
I

m

ωIi

2 {(ελ′ · r)iI (ελ · r)Ii + (ελ · r)iI (ελ′ · r)Ii} . (13.5.31)

Using this in Eq. (13.5.24), we finally have the cross-section for Rayleigh scattering

dσ

dΩ
=
r2
om

2

~2
ω4
λ

∣∣∣∣∣∑
I

1
ωIi
{(ελ′ · r)iI (ελ · r)Ii + (ελ · r)iI (ελ′ · r)Ii}

∣∣∣∣∣
2

(13.5.32)

where ro = e2

4πε0mc2
is the classical radius of the electron. We see that the scattering cross-

section for low frequency radiation (ωλ small compared to atomic transition frequencies)
varies as the fourth power of the frequency. So the scattering cross-section increases with
frequency. Since the wavelength Λ and (angular) frequency ωλ of light are related by
Λ = 2πc/ωλ, it follows that shorter wavelengths are scattered more prominently. This
result, which coincides with the classical result for scattering of light, explains why the sky
is blue and the sunset is red.

Thomson Scattering

At the other extreme, when the incident photon energy ~ωλ is much larger than the energy
difference between atomic levels, ~ωλ � ~ωIi, we neglect ~ωIi = EI −Ei compared to ~ωλ
in Kramers-Heisenberg formula (13.5.24). Then the second term, corresponding to graphs
in Figs. 13.2(a) and (b) reduces to

1
m

1
~ωλ

∑
I

[(ελ′ · p)iI (ελ · p)Ii − (ελ · p)iI (ελ′ · p)Ii] ,

which, of course, is zero. Hence only the matrix element corresponding to the graph in Fig.
13.2(c) contributes to scattering. Further, since (ελ · ελ′)ii is insensitive to the nature of
binding of atomic electrons, the cross-section coincides with the cross-section of scattering
of light by the (unbound) electron obtained by J. J. Thomson

dσ

dΩ
= r2

o | (ελ · ελ′)i i|2 . (13.5.33)

We note that, in contrast to low frequency Rayleigh scattering, high frequency Thomson
scattering is insensitive to ωλ or wavelength of the incident light.

Raman Scattering

The Kramers-Heisenberg formula can also be applied to inelastic scattering of light in which
case ωλ 6= ωλ′ and |i 〉 6= |f 〉. This phenomenon is known as Raman effect after Raman,

9For atoms of atmospheric gases, a typical ωIi is in the ultraviolet region. Hence the approximation
ωλ � ωIi holds for frequencies ωλ in the optical region.
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who observed a shift in the frequency of light scattered by a liquid. If the initial atomic
state |i 〉 is the ground state and the final state is an excited state |f 〉, the energy of the
scattered photon ~ωλ′ has to be less than the initial photon energy ~ωλ (Stokes scattering)
to conserve energy. On the other hand, if the initial atomic state |i 〉 is an excited state and
the final state is a lower state, then ~ωλ′ must be larger than ~ωλ (anti-Stokes scattering).
Thus in both cases of Raman scattering energy conservation requires

~ωλ + Ei = ~ωλ′ + Ef . (13.5.34)

Examples of scattering we have considered correspond to spontaneous scattering. They
involve scattering of weak incident light beams such as those produced by thermal sources.
In such beams, the occupation number of each mode of the field is small. When strong
coherent light beams such as those produced by lasers are present, stimulated scattering
processes can become important. The procedure outlined here can be extended to deal with
such processes as well.

Resonant Scattering

The treatment given above assumes that the condition for resonance ~ωλ = EI −Ei is not
satisfied for any intermediate state |I 〉. However, if the energy of the incident photon is
such that, for some specific state |R 〉 in the summation over I, the condition for resonance
is satisfied, the energy denominator in that particular term vanishes. This singularity does
not exist in practice because the excited states of an atom are no longer stationary states
when the interaction of an atom with quantized radiation field is taken into account. Even
if there are no photons in the field, the atom decays spontaneously to a lower state. This
decay of an excited can be accounted for if we impart to its energy ER a negative imaginary
part, ER − i~γR, where γR is a real constant. With this change, if the atom is excited to
state I = R, the probability for it to stay in that state is given by

PR(t) ∼ e−2γRt . (13.5.35)

Hence (2γR)−1 can be interpreted as the lifetime of the excited state I = R. For atomic
states, a typical value for (2γR)−1 might be 10 ns corresponding to ~γR ≈ 3 × 10−8 eV.
This is small compared with typical energy difference ER − Ei ≈ 1 eV. Thus if there is an
excited state with energy ER = Ei + ~ωλ, then the corresponding term will dominate in
the sum in (13.5.24) and all other terms can be neglected for incident photons of energy in
this range. Then for elastic scattering |f 〉 = |i 〉 and ωλ = ωλ′ = ω we have, with the help
of Eq. (13.5.27),

[
dσ

dΩ

]
resonance

=
(

e2

4πε0

)2
ω4

c4
|(ελ′ · r)iR|2 |(ελ · r)Ri|2

(ER − Ei − ~ω)2 + (~γR)2
. (13.5.36)

Thus compared to off-resonance, where the typical energy denominator is (EI − Ei)2 ≈
1 eV2, the on-resonance denominator is γ2

R ≈ 10−15 eV2, giving us an on-resonance
enhancement of scattering by a factor of 1015!



476 Concepts in Quantum Mechanics

13.6 Atomic Level Shift due to Self-interaction of the Electron:
Lamb-Retherford Shift

Classically the electromagnetic field resulting from the presence of an electron can interact
with the electron itself. The energy of this interaction is called the self-energy of the electron
and, if the electron is taken to be a point particle, this turns out to be infinite. In quantum
theory the self-interaction can be viewed as a two-step process in which the electron emits
a virtual photon and subsequently absorbs it.

Bethe showed that this self-interaction of the electron gives rise to an energy shift of
atomic 2S 1

2
level (in general all S-levels) of the Hydrogen atom while no shift occurs for

2P 1
2

states (in general for all ` 6= 0 states). According to Dirac theory of the electron the
2S 1

2
and 2P 1

2
states of the Hydrogen atom are degenerate. In the non-relativistic theory

as well the 2S 1
2

and 2P 1
2

levels are degenerate because energy depends only on the total
quantum number n and not on the orbital or total angular quantum numbers ` or j. But if
we consider the self-energy of the electron then this gives rise to a relative shift between 2S 1

2

and 2P 1
2

levels (2S 1
2

being higher of the two). This is in conformity with the observation
of Lamb and Retherford who found experimentally that the frequency corresponding to
2S 1

2
− 2P 1

2
separation is about 1000 MHz. Bethe calculated the shift of 2S 1

2
level of the

H-atom due to self-interaction of the electron. He treated the electron in the H-atom
non-relativistically but considered the electromagnetic field to be quantized. Bethe’s work
paved way for more accurate calculation by Tomonaga, Schwinger and Feynman for the
Lamb shift, based on covariant quantum electrodynamics.

The self-interaction of an atomic electron can be represented by the space-time graphs in
Fig. 13.3. According to quantum theory of radiation an atom in state |i 〉 can emit a photon
and go to state |I 〉 even if no external field is present. The atom can subsequently absorb
the photon and return to the state |i 〉 [ Fig. 13.3(a)]. It may also happen that emission is
followed by instantaneous absorption [Fig. 13.3(b)]. The second process is not important
from the point of view of atomic level shift. So we shall consider only the two-step process
shown in Fig. 13.3(a).

The interaction of the electron with the electromagnetic field is given by Eq. (13.4.7):

Ĥ ′ =
e

m

∑
λ

(
~

2ε0ωλV

)1/2

(ελ · p̂)
[
âλ e

ikλ·r + â†λ e
−ikλ·r

]
, (13.6.1)

where âλ and â†λ are, respectively, the annihilation and creation operators for photons of
frequency ωλ and polarization ελ and m is the rest mass of the electron. Then the total
Hamiltonian of the system may be expressed as

Ĥ = Ĥ0 + Ĥ ′, (13.6.2)

where the unperturbed Hamiltonian Ĥ0 ≡ Ĥa+ Ĥrad is the sum of the atomic Hamiltonian
Ĥa and radiation field Hamiltonian Ĥrad and Ĥ ′ is the interaction Hamiltonian (13.6.1).
The stationary states of the unperturbed Hamiltonian are simply the products of the atomic
and field states |j 〉 |n1, n2, · · · , nλ, · · · 〉 = |j 〉 |{nλ}〉 ≡ |j; {nλ}〉, where |j 〉 is a stationary
state of the atom with energy Ej and |{nλ}〉 is the stationary state of the field specified
by the set of occupation numbers {nλ} with energy ε{nλ} =

∑
λ nλ~ωλ, where we have

dropped the zero point energy terms by choosing the zero of energy appropriately.



QUANTIZATION OF RADIATION FIELD 477

A

A

t1

t2

I

A

A

(a) (b)

FIGURE 13.3
Space-time graphs for self-interaction of atomic electron.

The time evolution of the overall state of the system in the presence of perturbation is
governed by the Schrödinger equation

i~
d

dt
|Ψ(t)〉 = (Ĥ0 + Ĥ ′)|Ψ(t)〉 . (13.6.3)

We can expand this state in terms of the stationary states of the unperturbed Hamiltonian
Ĥ0. As a result of self-interaction, the atom initially in state |A 〉 (with the field in vacuum
state) may emit a (virtual) photon into a field mode λ, changing the atomic state into an
intermediate |I 〉 and field state into |1λ 〉), and subsequently absorb the photon restoring
the original atomic and field states. In writing the intermediate single-photon field state
we have suppressed the field modes with zero occupation number. Thus the system states
relevant to the self-interaction are the initial state |A 〉 |Φ0 〉, the intermediate states |I 〉 |1λ 〉
and the final state |A 〉 |Φ0 〉, which coincides with the initial state. All these are eigenstates
of the unperturbed Hamiltonian Ĥ0. Then we can expand the system wave function in
terms these states as

|Ψ(t) 〉 =

cA0e
−iEAt/~ |A 〉 |Φ0 〉+

∑
I,λ

cIλe
−i(EI+~ωλ)t/~ |I 〉 |1λ 〉

 . (13.6.4)

We note that the matrix elements Ĥ ′ between the unperturbed states are

〈Φ0| 〈A| Ĥ ′ |I 〉 |1λ 〉 =
e

m

√
~

2ε0ωλV
ελ · pAI eikλ·r ≈

√
~

2ε0ωλV
ελ · pAI

=
(
〈1λ| 〈I| Ĥ ′ |A 〉 |Φ0 〉

)∗
, (13.6.5)

〈1λ′ | 〈I ′| Ĥ ′ |I 〉 |1λ 〉 = 0 = 〈Φ0| 〈A| Ĥ ′ |A 〉 |Φ0 〉 , (13.6.6)

where in the evaluation of the matrix element, we have used the long wavelength (dipole)
approximation eik·r ≈ 1 since the atomic size is small compared to the wavelengths of
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photons of interest. Substituting the expansion (13.6.4) into Eq. (13.6.3), pre-multiplying
the resulting equation, in succession, by 〈Φ0A| exp(iEAt/~) and 〈1λ′ , I ′| exp[i(~ωλ +
EI′)t/~], respectively, using the orthogonality of unperturbed stationary states and making
use of results (13.6.5) and (13.6.6), we get

dCA
dt

= − ie

m~
∑
I,λ

cIλe
−i(ωIA+ωλ)t

√
~

2ε0ωλV
ελ · pAI , (13.6.7)

dcIλ
dt

= − ie

m~
CAe

−i(ωAI−ωλ)t

√
~

2ε0ωλV
ελ · pIA , (13.6.8)

where we have eventually replaced I ′, λ′ by I, λ, and written CA ≡ cA0 and ωIA =
(EI − EA)/~. These equations have to be solved with the initial condition

CA(0) ≡ cA0(0) = 1 , cIλ(0) = 0 . (13.6.9)

To solve these equations we assume CA(t) to have the form

CA(t) = e−i∆EA t/~ . (13.6.10)

This form for CA(t) implies that the wave function of the atomic state, including self-
interaction, is

〈r|A〉 = ψA(r)e−i(EA+∆EA) t/~ . (13.6.11)

Hence ∆EA may be taken to be the correction to the energy of the initial state on account
of the self-interaction. Substituting Eq. (13.6.10) for CA(t) into Eq. (13.6.8) and integrating
over t, we get

CIλ(t) =
( e
m

)( ~
2ε0ωλV

)1/2

(ελ · p̂)IA

[
e−i(EA+∆EA−EI− ~ωλ)t/~ − 1

]
(EA + ∆EA − EI − ~ωλ)

. (13.6.12)

Substituting this expression for CIλ(t) into Eq. (13.6.7) and using the assumed form
(13.6.10) for CA(t) on the left-hand side of the same equation, we get∆EA, the expression

∆EA =
∑
I,λ

( e
m

)2 ~
2ε0ωλV

(ελ · p̂)AI (ελ · p̂)IA

[
1− ei(EA−EI− ~ωλ) t/~

(EA − EI − ~ωλ)

]
(13.6.13)

where we have neglected ∆EA compared to EA − EI on the right-hand side of this
equation assuming it to be small compared with EA − EI . Since the time interval for
which the perturbation (self-interaction) acts is infinite we may take t → ∞ but, if we
do this the exponential term oscillates instead of converging. The result can be made
convergent by adding an infinitesimal positive imaginary part iε ( where ε → 0+ ) to
EA − EI − ~ωλ/~ ≡ x . The last factor on the right-hand side of Eq. (13.6.13) becomes

lim
ε→0+

t→∞

1− ei(x+iε)t

x+ iε
= − lim

ε→0+
i

∞∫
0

ei(x+iε)t dt = lim
ε→0+

(
x− iε
x2 + ε2

)

=
1
x
− iπ lim

ε→0+

ε/π

x2 + ε2
. (13.6.14)

The second term on the right-hand side is obviously zero for x 6= 0 and is singular at x = 0
such that

∞∫
−∞

ε/π

x2 + ε2
dx = 1 ,



QUANTIZATION OF RADIATION FIELD 479

and can be identified as delta function. Thus the last factor in Eq. (10.6.13) is defined by

lim
ε→0+

t→∞

1− ei(x+iε)

x+ iε
=

1
x
− iπδ(x). (13.6.15)

Writing ∆EA in terms of its real and imaginary parts

∆EA = Re (∆EA) + i Im (∆EA) , (13.6.16)

we find

Re(∆EA) =
∑
I,λ

( e
m

)2 ~
2ε0ωλV

(ελ · p̂)AI (ελ · p̂)IA
EA − EI − ~ωλ

, (13.6.17)

Im(∆EA) = −π
∑
I,λ

( e
m

)2 ~
2ε0ωλV

(ελ · p̂)AI (ελ · p̂)IA δ(EA − EI − ~ωλ) . (13.6.18)

The existence of the imaginary part of ∆EA implies that the state |A〉 is not stable
but decays and the right-hand side of (13.6.18) is proportional to the transition rate for
spontaneous emission, with all allowed intermediate states summed over. Note that because
of the presence of energy conserving delta function, the sum in the imaginary part (13.6.18)
is over real (energy conserving) transitions. Hence the energy shift ∆EA has an imaginary
part only when the atomic state |A 〉 can decay to state |I 〉.

The real part Re(∆EA) has contributions from energy conserving and non-conserving
transitions. It can be looked upon as the energy associated with the emission and re-
absorption of the virtual photons and this is what we can call the level shift on account of
the self-interaction of the electron. To carry out the sum over modes in the expression for
Re (∆EA) we recall that each mode is characterized by a wave vector k and a polarization
vector which depends on k. In fact for a given wave vector k, there are two independent
polarization vectors, εk1 and εk2, which are orthogonal to k and one another.10 Then the
sum over modes

∑
λ

implies
∑
k

∑
εks

. Using the identity for polarization vectors associated

with a given k vector ∑
s

(εks)i(εks)j = δij − κiκj , (13.6.19)

the sum over polarizations∑
s

(εks · p) (εks · p) = p · p− (p · κ) (p · κ) ,

10We can easily write down a set of polarization vectors asociated with a k vector whose polar angles are
θ and ϕ. Then two real orthogonal unit polarization vectors associated with k are

εk1 = cos θ cosϕex + cos θ sinϕey − sin θez ,

εk2 = − sinϕex + cosϕey .

It is easily seen that k · εk1 = 0 = k · εk2, εk1 × εk2 = κ = k
k

, where κ is a unit vector in the direction
of wave vector k. Thus (εk1, εk1,κ) form a right-handed, orthogonal, Cartesian basis. With the help
of the expressions for the polarization vector given here, the following identity is also easily establishedP
s

(εks)i(εks)j = δij − κiκj , where i, j denote the Cartesian components of polarization vectors.

The complex basis vectors

εk1 =
1
√

2
[(cos θ cosϕ− i sinϕ)ex + (cos θ sinϕ+ i cosϕ)ey − sin θez ]

εk2 =
1
√

2
[(i cos θ cosϕ− sinϕ)ex + (i cos θ sinϕ+ cosϕ)ey − i sin θez ]

represent unit right and left circular polarization vectors associated with the wave vector k.
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where κ = k
k is a unit vector in the direction of k. Then we have

Re(∆EA) =
∑
I,k

( e
m

)2 ~
2ε0ωkV

[
(pI A · pAI)

(
1− cos2 θ

)
(EA − EI − ~ωλ)

]
,

where θ is the angle between p and k. Replacing the sum over wave vector k by an integral

1
V

∑
k

→
∫

d3k

(2π)3
,

we obtain

Re(∆EA) =
∑
I

(
e

m

)2 ~
ε0

∫
1

2ωk
(pI A · pAI) sin2 θ

(EA − EI − ~ωλ)
· k

2dk dΩ
(2π)3

= − 2
3π

e2

4πε0m2~c3
∑
I

∞∫
0

Eγ dEγ |pIA|2
Eγ + EI − EA (13.6.20)

where we have used Eγ = ~ω = ~kc and
∫
dΩk(1 − cos2 θ) = 8π/3. Unfortunately, the

integral over Eγ is divergent. How do we make sense of this? We can try to get around
this difficulty by putting an upper limit to the energy of the virtual photons because for
sufficiently high energy photons, the non-relativistic approximation for the electron must
break down. So we might argue that maximum energy of photon is Eγ ≤ mc2. When this
is done we get a finite result, which depends on the cutoff Emax

γ , clearly an undesirable
feature.

The basic suggestion for the removal of the divergence was made by Kramers who noticed
that, even for a free electron of momentum p, there is an energy shift ∆Ep which can be
obtained from Eq. (13.6.20) by replacing the sum over atomic states by the sum over plane
waves for a free particle. Then the matrix element 〈A| p̂ |I〉 becomes 〈p| p̂ |p′〉 = pδp,p′ ,
where we have assumed the system to be enclosed in a certain volume so that the allowed
electron momentum values p are discrete. The sum over intermediate states |I 〉 = |p′ 〉
then gives ∫ Emaxγ

0

∑
p′

| 〈p′ | p̂ |p〉 |2(
Eγ + p′2

2m − p2

2m

) EγdEγ = p2Emax
γ .

Thus the energy shift for a free electron due to self interaction is

∆Ep = − 2
3π

e2

4πε0m2~c3
p2Emax

γ = Cp2 , (13.6.21a)

where C = − 2
3π

e2

4πε0m2~c3
Emax
γ . (13.6.21b)

Thus the self-interaction correction to the energy for a free electron is proportional to p2.
Since the electromagnetic field of a charge particle is an inalieable part of it, this additional
electromagnetic contribution cannot be separated from the usual kinetic energy p2/2m. This
means the observed kinetic energy term p2/2m somehow already accommodates this shift.
Kramer introduced the idea of mass renormalization by suggesting that electromagnetic
self-energy contribution may be regarded as contained in the observed rest mass of the
electron. Following this idea, Bethe argued that since this effect exists for a bound as well
as free electron, the observed energy shift (∆EA)obs of an atomic level |A 〉 ≡ |n, `,m 〉 is
the difference between the self-energy Re (∆EA) of the bound electron in state |A 〉 and that
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of a free electron ∆Ep = Cp2, provided that in the latter case, the electron is assigned a
(momentum)2 equal to the expectation value of (momentum)2 of the electron in the atomic
state |A 〉:

〈A| p̂ · p̂ |A 〉 =
∑
I

pAI · pIA =
∑
I

|pIA|2 . (13.6.22)

The expression for the observed level shift of an atomic level is then the difference

(∆EA)obs = −
(

e2

4πε0~c

)
2

3πm2c2

∑
I

 Emax
γ∫

0

Eγ dEγ |pIA|2
Eγ + EI − EA −

Emax
γ∫

0

|pI A|2 dEγ


or (∆EA)obs =

(
e2

4πε0~c

)
2

3πm2c2

∑
I

|pIA|2 (EI − EA) ln
(
EI − EA + Emax

γ

EI − EA

)
.

(13.6.23)

This expression for level shift has much slower divergence (logarithmic compared to the
original linear divergence) with cut-off photon energy. In fact we can get a sensible result
for level shift if the cutoff energy Emax

γ � |(EI − EA)|. Then, since the logarithmic term
is slowly varying, we take the average value of EI − EA and take it out of the summation
sign giving us

(∆EA)obs =
(

e2

4πε0~c

)
2

3πm2c2
ln
(

Emax
γ

(EI − EA)avg

) ∑
I

|pIA|2 (EI − EA) . (13.6.24)

The sum over states can then be evaluated as11

∑
I

|p I A|2(EI − EA) =
~2

2

∫
|ψA(r)|2∇2V d3r . (13.6.25)

In the Hydrogen atom problem, the potential V (r) = − e2

4πε0r
gives

∇2V ≡ ∇2

(
− e2

4πε0r

)
= +

e2

ε0
δ3(r) . (13.6.26)

To see this we recall that, for a point charge q at the origin, the electrostatic field at a point
r is given by E = qr/4πε0r3 = −∇(q/4πε0r), so that ∇ ·E = −q∇2(1/r). But, according
to Gauss law, ∇ ·E = 1

ε0
ρ(r) = q

ε0
δ3(r). So −∇2

(
1
r

)
= 4πδ3(r).

Using Eqs. (13.6.25) and (13.6.26) in the expression for level shift (13.6.24), we obtain

(∆EA)obs =
(

e2

4πε0~c

)2 4~3

3m2c
ln
(

Emax
γ

(EI − EA)avg

)
|ψA(r = 0)|2 . (13.6.27)

Thus the energy shift for level |A 〉 depends on the value of the wave function at the origin.
For the Hydrogen atom, the wave function at the origin is

|ψA(r = 0)|2 =


1

πn3a3
o

, for |A 〉 ≡ |n, ` = 0, m = 0 〉
0 , for |A 〉 ≡ |n, ` 6= 0, m 〉 .

(13.6.28)

11
h
p̂, Ĥ

i
IA

=
h
p̂, V̂

i
IA

(EA − EI) pIA = [p̂, V ]IA . Pre-multiply both sides by pAI and sum over I to

get (13.6.25) [see Problem 8, Chapter 2].
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Thus for the Hydrogen atom we get

(∆EA)obs =
8

3π

(
e2

4πε0~c

)3
e2

8πε0aon3
ln
(

Emax
γ

(EI − EA)avg

)
. (13.6.29)

This formula was derived by Bethe to account for the Lamb-Retherford observation of
2S 1

2
− 2P 1

2
splitting in the Hydrogen atom. Note that in view of Eq. (13.6.28) the shift of

2P 1
2

state vanishes. Using Bethe’s formula for the splitting of 2S 1
2
− 2P 1

2
states (n = 2) of

Hydrogen, we get a transition frequency

E2S 1
2
− E2P 1

2

(2π~)
=

(∆EA)obs
2π~

,

=
8

3π

(
1

137

)3

13.53 × ln
(

0.512× 106

16.6× 13.53

)
1
8
× 1.6× 10−19

6.63× 10−34
Hz ,

= 1040 MHz, (13.6.30)

where Emax
γ ≈ 0.512 MeV = the rest energy of the electron, and (EI − Eno)Avg = 16.6

Rydberg = 16.6 × 13.53 eV. The value of (EI − EA)avg is taken from Bethe, Brown,
and Stehn12. The value 1040 MHz was found to be in remarkable agreement with the
Lamb-Retherford observations.

A much more sophisticated calculation for Lamb shift, based on Tomonaga, Schwinger
and Feynman’s formulation of covariant quantum electrodynamics, yields a value(

E2S 1
2
− E2P 1

2

)
/h = (1057.70 ± 0.15) MHz

which has even better agreement with the observed value 1057.77 ± 0.10 MHz. This
formulation leads to a finite result avoiding even logarithmic divergence. However, the
idea of mass renormalization, which was so basic to the success of Bethe’s non-relativistic
calculation turns out to be just as essential in the relativistic treatment of level shifts.

13.7 Compton Scattering

As another application of the methods discussed in this chapter we consider Compton
scattering, in which a high energy photon is scattered by a free electron resulting in the
reduction of the photon energy and increase in the energy of the electron. The total
energy and the total momentum are finally conserved in this process. Compton scattering
may be looked upon as a two-step process involving the absorption of one photon and
subsequent emission of another photon. The virtual transitions can occur in two ways:
(a) The electron at rest absorbs the incoming photon (energy ~ω and momentum ~k) and
acquires a momentum ~k in its virtual state. In the subsequent transition this electron emits
the outgoing photon (energy ~ω′ and momentum ~k′), itself being left with momentum
~(k−k′) [Fig. 13.4(a)]. In each of these virtual transitions the momentum is conserved but
not the energy. (b) Alternatively the electron at rest can emit the outgoing photon (energy
~ω′ > 2mc2 and momentum ~k′) and acquire a recoil momentum −~k′ and negative energy.
In the subsequent transition the electron absorbs the incoming photon (energy ~ω and

12H. A. Bethe, L. M. Brown, and J. R. Stehn, Phys. Rev. 77, 370 (1950).
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FIGURE 13.4
Space-time diagrams for Compton scattering.

momentum ~k) and is finally left with momentum −~k′+~k [Fig. 13.4.(b)]. Again, in each
one of these virtual transitions, momentum is conserved but not the energy. Violation of
energy conservation occurs within the limits of the uncertainty principle. Since high energies
are involved in the virtual transitions, the electron has to be treated relativistically. In the
present treatment we shall assume the electromagnetic (radiation) field to be quantized
while the electron will be assumed to obey the single-particle (Dirac) equation.13

The total matrix element Mfi for this process consists of the sum of M (a)
fi and M

(b)
fi

which are the contributions from both ways (a) and (b) in which this transition can occur.
According to second order perturbation theory we have

M
(a)
fi =

∑
a

〈ψf | Ĥ ′ |ψa 〉 〈ψa| Ĥ ′ |ψi 〉
(Ei − E′a)

(13.7.1)

and M
(b)
fi =

∑
b

〈ψf | Ĥ ′ |ψb 〉 〈ψb| Ĥ ′ |ψi 〉
Ei − E′b

(13.7.2)

where E′a and E′b are the energies of the system (electron + photons) in the respective
intermediate state |ψa 〉 and |ψb 〉. The perturbation Ĥ ′, which is the interaction of the
Dirac electron (charge −e) with the electromagnetic field, is given by 14

Ĥ ′ = ecα · Â(r) , (13.7.3)

13In the next chapter we shall consider the same phenomenon assuming both the radiation field and Dirac
field to be quantized.
14As is well known, in the presence of electromagnetic field, p→ p− qA and E → E − qφ. So the single-
particle (charge q) Dirac Hamiltonian, in the presence of quantized electromagnetic field, can be written
as

Ĥ = cα · (p̂− qÂ) + βmc2 + qφ̂ = Ĥ0 + Ĥ′

where Ĥ0 ≡ cα · p̂+ βmc2 and Ĥ′ = −cq α · Â for the case of pure radiation field, where φ̂ = 0.
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where α ≡ (α1, α2, α3) are the 4 × 4 matrices of the Dirac equation and Â(r) is
the electromagnetic field operator expressible in terms of the creation and annihilation
operators. In writing the vector potential we will explicitly use the fact that a mode of the
electromagnetic field is characterized by a wave vector k and a polarization vector. There
are two orthogonal unit polarization vectors εk1 and εk2 associated with each wave vector
k. Together with unit vector κ = k/k in the direction of the wave vector k, the vectors
(εk1, εk2,κ) form a right-handed, orthogonal triad of vectors with εk1×εk2 = κ. Thus the
sum over mode index λ is replaced by a sum over k and s, where s(= 1, 2) refers to two
orthogonal polarizations associated with each k. Then the vector potential is given by

Â(r) =
∑
k,s

√
~

2ε0ωV

(
âks e

ik·r + â†ks e
−ik·r

)
εks (13.7.4)

where ω = |k|c = kc and the matrix elements for the process of Fig. 13.4(a) can be written
as

〈ψa| Ĥ ′ |ψi 〉 = ec 〈a| α ·
∑
k1,s1

√
~

2ε0ω1V

(
âk1s1e

ik1·r + â†k1s1
e−ik1·r

)
εk1s1 |i,k, εks 〉 ,

〈ψf | Ĥ ′ |ψa 〉 = ec
〈
f,k′, εk′s′

∣∣ α · ∑
k2,s2

√
~

2ε0ω2V

(
âk2s2e

ik2·r + â†k2s2
e−ik2·r

)
εk2s2 |a 〉 .

Here the initial state |ψi 〉 = |i,k, εks 〉 has an electron in state i and a single photon of
momentum k (frequency ω = kc) and polarization εks (frequency ω = kc) and the final state
|ψf 〉 =

∣∣f,k′, εk′s′ 〉 has an electron in state f and a photon of wave vector k′ (frequency
ω′ = k′c) and polarization εk′s′ . In the intermediate state |ψa 〉 there are no photons. It
can be seen that non-zero contributions to these two matrix elements come only from terms
corresponding to (k1 = k, εk1s1 = εks) and (k2 = k′, εk2s2 = εk′s′0, respectively. This
gives us

〈ψa| Ĥ ′ |ψi 〉 = ec

√
~

2ε0ωV
〈a| ei k·r(α · εks) |i 〉 (13.7.5)

and 〈ψf | Ĥ ′ |ψa 〉 = ec

√
~

2ε0ω′V
〈f | e−i k′·r(α · εk′s′) |a 〉 . (13.7.6)

Rewriting these matrix elements in the coordinate representation, using

〈r| a〉 = ua e
i ka·r/~ 1

(2π)3/2
,

〈r| i〉 = ui e
i ki·r/~ 1

(2π)3/2
,

〈r| f〉 = uf e
i kf ·r/~ 1

(2π)3/2
,

where ka,ki,kf are the momenta of the electron in the respective states, k and k′ denote
the wave vectors of the incident and scattered photons, respectively, and ua, ui, uf represent
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the spinors of the respective states, we get

〈ψa| Ĥ ′ |ψi〉 = ec

√
~

2ε0ωV
1

(2π)3

∫
ei(−ka +k+ ki) d3r

[
u†a(α · εks)ui

]
= ec

√
~

2ε0ωV
δ3 (−ka + k + ki)

[
u†a(α · εks)ui

]
and 〈ψf | Ĥ ′ |ψa 〉 = ec

√
~

2ε0ω′V
δ3
(−kf − k′ + ka

) [
u†f (α · εk′s′)ua

]
.

The three-dimensional δ functions represents conservation of momentum at each step of the
process (a). Keeping this in mind we can simply write

〈ψa| Ĥ ′ |ψi〉 = ec

√
~

2ε0ωV
[
u†a(α · εks)ui

] ≡ ec

√
~

2ε0ωV
(α · εks)ai ,

〈ψf | Ĥ ′ |ψa〉 = ec

√
~

2ε0ω′V

(
u†f (α · εks′)ua

)
≡ ec

√
~

2ε0ω′V
(α · εk′s′)fa .

Hence the second order matrix element is

M
(a)
fi =

e2c2~
2ε0V

√
ω ω′

∑
a

(α · εk′s′)fa (α · εks)ai
Ei − Ea , (13.7.7)

where Ei = initial energy of the system = mc2 + c~k , E′a = energy of the system in
the intermediate state=energy of the electron in the intermediate state = Ea , E

2
a =

m2c4 + c2(~k)2 , and ~k is the momentum acquired by the electron after absorbing the
initial photon. Since Ea can have positive or negative sign we take it to be given by the
Dirac equation [

cα · (~k) + βmc2
]
ua = Eaua .

Similarly, for process (b), the matrix elements 〈ψb| Ĥ ′ |ψi 〉 and 〈ψf | Ĥ ′ |ψb 〉 are given by

〈ψb| Ĥ ′ |ψi 〉 = ec
〈
b,k, εks,k

′, εk′s′
∣∣ α ·∑

k1,s

√
~

2ε0ω1V

× εk1s1

(
âk1s1e

ik1·r + â†k1s1
e−ik1·r

)
|i,k, εks 〉

and 〈ψf | Ĥ ′ |ψb 〉 = ec
〈
f,k′, εk′s′

∣∣ α ·∑
k2,s

√
~

2ε0ω2V

× εk2s2

(
âk2s2e

ik2·r + â†k2s2
e−ik2·r

) ∣∣b,k, εks,k′, εk′s′ 〉 .
In this case, the intermediate state contains two photons of wave vector and polarization
k, εks and k′, εk′s′ , respectively, in addition to the electron in state |b 〉. It can be
seen that the non-zero contribution to these two matrix elements can come only from
(k1, εk1s1) = (k′, εk′s′) and (k2, εk2s2) = (k, εks), respectively. Thus

〈ψb| Ĥ ′ |ψi 〉 = ec

√
~

2ε0ω′V
〈
b,k, εks,k

′, εk′s′
∣∣ (α · εk′s′) e−i k′·r ∣∣i,k, εks,k′, εk′s′ 〉

= ec

√
~

2ε0ω′V
〈b| (α · εk′s′) e−i k

′·r |i 〉 (13.7.8)

and 〈ψf | Ĥ ′ |ψb 〉 = ec

√
~

2ε0ωV
〈
f,k′, εk′s′

∣∣ (α · εks) ei k·r
∣∣b,k′ εk′s′ 〉

= ec

√
~

2ε0ωV
〈f | (α · εks) ei k·r |b 〉 . (13.7.9)
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Rewriting these matrix elements in the coordinate representation, we have

〈ψb| Ĥ ′ |ψi 〉 = ec

√
~

2ε0ω′V

[
u†b(α · εk′s′)ui

] 1
(2π)3

∫
ei(−kb−k

′+ki)·r d3r ,

= ec

√
~

2ε0ω′V
[
u†a(α · εk′s′)ui

]
δ3
(−kb − k′ + ki

)
and 〈f | Ĥ ′ |b 〉 = ec

√
~

2ε0ωV

[
u†f (α · εks)ub

]
δ3 (−kf + k + kb) .

Again keeping in mind that the three-dimensional delta functions merely represent the
conservation of momentum at each stage of the process (b), we can write

〈ψb| Ĥ ′ |ψi 〉 = ec

√
~

2ε0ω′V
(α · εk′s′)bi , (13.7.10)

and 〈ψf | Ĥ ′ |ψb 〉 = ec

√
~

2ε0ωV
(α · εks)fb . (13.7.11)

With the help of these, the second order matrix element for process (b) can be written as

M
(b)
fi =

e2c2~
2ε0V

√
ωω′

∑
b

(α · εks)fb (α · εk′s′)bi
Ei − E′b

, (13.7.12)

where Ei = initial energy of the system = mc2 + c~k , E′b = energy of the system in the
intermediate state b = Eb+ c~k′+ c~k , Eb = the energy of the electron in the intermediate
state b , E2

b = m2c4 + c2(− ~k)2 , and ~k is the momentum taken away by the emitted
photon [Fig. 13.4 (b)]. Since the sign of Eb could be negative, we take Eb to be given by
the Dirac equation: [

cα · (−~k′) + βmc2
]
ub = Ebub .

In Eq. (13.7.12) we can replace Ei − E′b by (mc2 − c~k′)− Eb .
Now we can write the second order matrix element M (a)

fi [Eq. (13.7.7)] for process (a) as

M
(a)
fi =

e2c2~
2ε0V

√
ωω′

∑
a

u†f (α · εk′s′) (Ei + Ea) uau
†
a (α · εks)ui

E2
i − E2

a

=
e2c2~

2ε0V
√
ωω′

u†f
[
(α · εk′s′)

(
c~k + c~(α · k) + (1 + β)mc2

)
(α · εks)

]
ui

2mc2~ k
,

where we have used the Dirac equation and the completeness condition for the Dirac spinors,

Eaua =
[
c~(α · kλ) + βmc2

]
ua and

∑
a

ua
†ua = 1.

Further, using the anti-commutation relations of αi and β matrices we have

[(1 + β)mc2(α · εks)]ui = [(α · εks)mc2(1− β)]ui ,

and since p = 0 for the initial electron state ui, it follows from the Dirac equation that
(1− β)mc2 ui = 0. Thus the second order matrix element for process (a) can be written as

M
(a)
fi =

e2~c
4ε0V mω

√
ωω′

uf
† (α · εk′s′) (k +α · k) (α · εks) ui . (13.7.13)
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We can deal similarly with the matrix element M
(b)
fi [Eq. (13.7.12)] for process (b).

Since the sign of Eb could be positive or negative, we keep the denominator in the form
(mc2− c~k′)2−E2

b and replace (mc2− c~k′+Eb)ub by [mc2− c~k′− c~(α · k′) +βmc2]ub.
Then we get, finally,

M
(b)
fi =

e2~c
4ε0V mω′

√
ω′ω

uf
† (α · εks) (k′ + α · k′)(α · εk′s′)

)
ui . (13.7.14)

Adding Eqs. (13.7.13) and (13.7.14), we get the overall second order matrix element

Mfi = M
(a)
fi + M

(b)
fi

=
e2~c

4ε0V m
√
ω′ω

uf
†
(

1
ω

[(α · εk′s′) (k + α · k)(α · εks)]

+
1
ω′
[
(α · εks) (k′ + α · k′)(α · εk′s′)

])
ui . (13.7.15)

With the help of the indentity (α · P ) (α · Q) = (P · Q) − iΣ · (P ×Q) we find that

(α · εk′s′) (α · εks) + (α · εks) (α · εk′s′) = 2 (εks · εk′s′) .
Using this result, the second order matrix element and its square can be written as

Mfi =
(

e2~
4ε0V m

√
ωω′

)
uf
†
[
2(εk′s′ · εks) +

1
k

(α · εk′s′)(α · k)(α · εks)

+
1
k′

(α · εks)(α · k′)(α · εk′s′)
]
ui , (13.7.16)

|Mfi|2 = M∗fiMfi =
(

e2~
4ε0V m

√
ω′ω

)2

×
(
ui
†
{

2(εk′s′ · εks) +
1
k

(α · εks)(α · k)(α · εk′s′)

+
1
k′

(α · εks′)(α · k′)(α · εks)
}
uf

)
×
(
uf
†
{

2(εk′s′ · εks) +
1
k

(α · εk′s′)(α · k)(α · εks)

+
1
k′

(α · εks)(α · kk′s′)(α · εk′s′)
}
ui

)
=

e4~2

(4πε0)2m2 ω′ω V 2

(
u†i B uf

) (
u†f C ui

)
, (13.7.17)

where we have used k = ω/c and B and C are defined by

B ≡ 2(εk′s′ · εks) +
1
k

(α · εks)(α · k)(α · εk′s′) +
1
k′

(α · εk′s′)(α · k′)(α · εks) , (13.7.18)

C ≡ 2(εk′s′ · εks) +
1
k

(α · εk′s′)(α · k)(α · εks) +
1
k′

(α · εks)(α · k′)(α · εk′s′) . (13.7.19)

If the electron spin in the final state is not observed and the electrons are initially
unpolarized, we must sum |Mfi|2 over the two spin states of the outgoing positive energy
electron and average over the two spin states of the initial positive energy electron:

1
2

∑
σi

∑
σf

|Mfi|2 =
e4~2

(4πε0)2m2 ω′ω V 2

1
2

∑
si

∑
sf

(
u†i B uf

) (
u†f C ui

)
.
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θ

k
k′

ϕ
ex

ey

ez

εk1 εk2

εk′2

εk′1

κ=k/k

εk1

εk2

(a) (b)

FIGURE 13.5
(a) Two orthogonal linear polarization vectors can be associated with a given k vector.
(b) Polarization basis vectors associated with incident and scattered photon in Compton
scattering.

To calculate the transition rate or the scattering cross-section we also need to sum over
final states since the final state lies in a continuum. The number of states with total energy
between EF and EF + dEF and photon momentum within a solid angle dΩk′ around the
direction k′ of scattered photon is given by

ρEdEf =
V k′2dk′dΩk′

(2π)3
.

To evaluate ρE we need a relation between EF and k′. Let Ef be the final energy of electron
of momentum ~(k − k′) and EF be the total energy of the system (electron + photon).
Then we have the following relations

E2
f = m2c4 + c2~2 |k − k′|2 ,

and EF = Ef + c~k′ =
√
m2c4 + ~2 |k − k′|2c2 + c~k′ ,

so that (EF − c~k′)2 = m2c4 + c2~2 (k2 + k′2 − 2k · k′) .

Differentiating the last equation and re-arranging, we find the relation between the spread
in final energy dEF and the spread in final momentum dk′,

EfdEF = c ~mc2
k

k′
dk′ ,

where we have used the Compton relation [Chapter 1, Eq. (1.1.15)]

1− cos θ =
mc2(ω − ω′)

2π~ωω′
,
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where cos θ = k·k′
kk′ . This relation follows from momentum conservation in Compton

scattering. This gives the density of states

ρF =
k′2

(2π)3

ω′

ω

V

c~mc2
Ef . (13.7.20)

Then the transition probability per unit time (wfi) is given by

wfi =
2π
~

1
2

∑
σi

∑
σf

|Mfi|2 ρF . (13.7.21)

Differential cross-section of Compton scattering is given by

dσ

dΩk′
=

wfi
c/V

=
V

c

2π
~

1
2

∑
σi

∑
σf

|Mfi|2 ρF

=
1
8

e4

(4πε0)2(mc2)3

(
ω′

ω

)2

Ef
∑
σi

∑
σf

(
u†i B uf

) (
u†f C ui

)
, (13.7.22)

where c/V is the incident photon flux density corresponding to one photon per quantization
volume. The sum over spin states of the initial and final positive energy electrons may be
replaced by

∑
i

∑
f (the sum over all the four spin and both positive and negative energy

states of the initial and final electrons) provided we use the projection operators Λf+ and
Λi+ to project out the positive energy states from the final and initial state spinors uf and
ui, respectively:∑

σi

∑
σf

(
u†i B uf

) (
u†f C ui

)
=
∑
i

∑
f

(
u†i B Λf+ uf

) (
u†f C Λi+ ui

)
=
∑
i

(
u†i B Λf+ C Λi+ ui

)
=
∑
i

(
u†i D Λi+ ui

)
, where D ≡ B Λf+ C .

Hence
∑
σi

∑
σf

(
u†i B uf

) (
u†f C ui

)
=

1
2

∑
i

u†i D(I + β)ui (13.7.23)

since DΛi+ =
D(E +H)

2E
=

1
2
D(I + β) , (13.7.24)

and E = mc2 and H = βmc2 for the initial state of the electron represented by the spinor
ui. It can be seen 15 that

∑
i

ui
†D (I + β)ui = Tr {D(I + β)}. Now it is shown at the end

15Let the column matrix uj have components uj1 , uj2 , uj3 and uj4 , then the adjoint u†j , a row matrix, has
the form

u†j =
`
u∗j1 u

∗
j2
u∗j3 u

∗
j4

´
.

Let a square matrix U be defined by

Uij = uji

which means we can write

U = (u1 u2 u3 u4) .
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of this section∑
σi

∑
σf

(
u†i B uf

) (
u†f C ui

)
≡ 1

2
Tr {D(I + β)}

=
8mc2

4Ef

(
ω

ω′
+

ω′

ω
− 2 + 4 cos2 α

)
(13.7.25)

where cos α = εks · εk′s′ . Using this result, we can write the cross-section for observing
photon polarization εk′s′ in the scattering of incident photons with polarization εks

dσ(εks, εk′s′)
dΩk′

=
1
4
r2
o

(
ω′

ω

)2 (
ω

ω′
+
ω′

ω
− 2 + 4 cos2 α

)
, (13.7.26)

where ro = e2

4πε0mc2
= is the classical electron radius. This is the Klein-Nishina formula.

If the incident photon beam is unpolarized and the polarization of scattered photons
is not observed, then we must average this cross-section (13.7.26) over initial polarization
directions and sum over the final polarization states. To do this let us choose the the z−axis
along the direction of incident k vector. Then the polarization vector of the incident photon
may be taken to be

εk(φo) = ex cosφo + ey sinφo , (13.7.27)

where the angle φo is uniformly distributed over the range 0 to 2π corresponding to an
unpolarized incident beam. If we denote the direction of scattered k′ vector by angles θ, ϕ,
then two orthogonal polarization vectors for the scattered photon may be taken to be [see
footnote 10]

εk′1 = cos θ cosϕ ex + cos θ sinϕ ey − sin θ ez , (13.7.28a)
εk′2 = − sinϕex + cosϕ ey . (13.7.28b)

Then the sum of [εk(φo) · εk′s′ ]2 over final polarizations is∑
s′

[εk(φo) ·εk′s′ ]2 = (cos θ cosϕ cosφ0 + cos θ sinϕ sinφo)2 + (− sinϕ cosφo+ cosϕ sinφo)2 .

Expanding and averaging with respect to φo and using the results

1
2π

2π∫
0

dφo cos2 φo =
1
2

=
1

2π

2π∫
0

dφo sin2 φo and
1

2π

2π∫
0

dφo cosφo sinφo = 0 ,

The adjoint U† of U is then

U† =

0BBB@
u†1
u†2
u†3
u†4

1CCCA ,

which means (U†)ij = u∗ij . The orthogonality condition u†i uj = δij , for the spinors implies U†U = I, i.e.,

U is a unitary matrix (UU† = I follows from the completeness condition
4P
i
|ui〉 〈ui| = 1̂ or

P
i
ui u
†
i = I).

Now X
i

u†i Aui =
X
i

X
`

X
k

u∗i` A`k uik

=
X
i

X
`

X
k

U†i` A`k Uki =
X
i

(U†AU)ii = Tr (U†AU) = Tr A .
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we find

1
2π

2π∫
0

dφo
∑
s′

[εk(φo) · εk′s′ ]2 =
1
2

(1 + cos2 θ) . (13.7.29)

Summing the cross-section (13.7.26) over final polarization states and averaging over initial
polarization states

[
dσ

dΩk′

]
unpolarized

=
r2
o

4

(
ω′

ω

)2 1
2π

2π∫
0

dφo
∑
s′

[
ω

ω′
+
ω′

ω
− 2 + 4 (εk(φo) · εk′s′)2

]

=
r2
o

4

(
ω′

ω

)2 [
2
ω

ω′
+ 2

ω′

ω
− 4 + 4 · 1

2
(
1 + cos2 θ

)]
or

[
dσ

dΩk′

]
unpolarized

=
r2
o

2

(
ω′

ω

)2 [
ω

ω′
+
ω′

ω
− sin2 θ

]
. (13.7.30)

This equation expresses the unpolarized Compton scattering cross-section as a function of
the scattering angle θ. This is in excellent agreement with the experimental results and is
regarded as one of the earliest triumphs of Dirac’s theory of the electron. A very different
formula would have been obtained if we had not allowed the electron to have negative energy
in the intermediate state [Fig. 13.4(b)].

Proof of Eq. (13.7.25)

By definition we have
D = B Λf+ C , (13.7.31)

where Λf+ = Ef+Hf
2Ef

, Ef = c~ (k − k′) + mc2 and Hf = cα · (~k − ~k′
)

+ β mc2 and B

and C are given by Eqs. (13.7.18) and (13.7.19). With the help of the expressions for Ef
and Hf , we can write Λf+ as

Λf+ =
c

2Ef
[Q + (1 + β)mc] , (13.7.32a)

where Q ≡ ~ (k − k′) + ~
(
α · k − α · k′) . (13.7.32b)

Using this in the expression (13.7.31) for D, we obtain

Tr
[

1
2
D(I + β)

]
=

c

4Ef

(
Tr BQC + 32mc [εk′s′ · εks)2

]
, (13.7.33)

where we used last three of the following identities:

1. Tr
[
α`1 α

m
2 αn3 β

q
]

= 0 if `+m+ n is odd.

2. (α · εks) (α · εks) = I.

3. (α · k) (α · k) = k2.

4. (α · εks) (α · εk′s′ ) + (α · εk′s′) (α · εks) = 2 (εks · εk′s′ ) .
5. (α · εks ) (α · k) + (α · k) (α · εks ) = 2 ( εks · k) = 0 .

6. (Tr X)∗ = Tr X† .

7. Tr (α · k)
(
α · k′) = (Tr I)

(
k · k′) = 4

(
k · k′) .
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8. Tr P = 0 .

9. Tr [BQCβ] = 0 .

10. βR = −Rβ .
These identities will be used in the following derivations. By introducing matrix operators
P and R by

P = B − 2 (εk′s′ · εks) and R = C − 2 (εk′s′ · εks) ,
we can write

Tr (BQC) = Tr [{2 (εk′s′ · εks) + P} {~ (k − k′) + T} {2 (εk′s′ · εks) + R}] ,
where T = ~α · (k − k′) and k ≡ |k|. On expanding the right-hand side, we obtain

Tr (BQC) = Tr
[

~ (k − k′)
{

4 (εk′s′ · εks)2 + PR
}

+ 2 (εk′s′ · εks) (TR+ PT )

+ 4 (εk′s′ · εks)2
T + ~ (k − k′) 2 (εk′s′ · εks) P

+ 2 (εk′s′ · εks) ~ (k − k′)R + PTR

]
.

The last four terms vanish because P, T, R, and PTR involve odd number of α-matrices
and therefore their traces vanish [identity (1)]. This leads to

Tr (BQC) = Tr
[
~(k − k′)

{
4 (εk′s′ · εks)2 + PR

}
+2 (εk′s′ · εks) (TR+ PT )] . (13.7.34)

Now

Tr (PR) = Tr
[

1
k2

(α · εks) (α · k) (α · εk′s′) (α · εk′s′) (α · k) (α · εks)

+
1
k′2

(α · εk′s′)
(
α · k′) (α · εks) (α · εks)

(
α · k′) (α · εk′s′)

+
1
kk′

(α · εks) (α · k) (α · εk′s′) (α · εks)
(
α · k′) (α · εk′s′)

+
1
kk′

(α · εk′s′)
(
α · k′) (α · εks) (α · εk′s′) (α · k) (α · εks)

]
= Tr

[
2I +

2
kk′

(α · εks) (α · k) (α · εk′s′) (α · εks)
(
α · k′) (α · εk′s′)

]
= 8 +

2
kk′

Tr
[
(α · εks) (α · k)

{
2 (εks · εk′s′)

− (α · εks) (α · εk′s′)
}(
α · k′) (α · εk′s′)

]
= 8 +

2
kk′

[−2 (εks · εk′s′) Tr
{

(α · εks) (α · k) (α · εk′s′)
(
α · k′)}

−Tr {(α · k)
(
α · k′)}] ,

where we have used identities (4) and (5). Using identity (7) in the last step, we get

Tr (PR) = 8 +
2
kk′

[−2 (εks · εk′s′) Tr
{

(α · εks) (α · k) (α · εk′s′)
(
α · k′)} − 4

(
k · k′)] .

(13.7.35)
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Also

Tr (PT + TR)

= Tr
[{

1
k

(α · εks)(α · k)(α · εk′s′) +
1
k′

(α · εk′s′)(α · k′)(α · εks)
}

~α · (k − k′)

+ ~α · (k − k′){1
k

(α · εk′s′) (α · k) (α · εks) +
1
k′

(α · εks)
(
α · k′) (α · εk′s′)

}]
= Tr

[
~
k

(α · εks) (α · k) (α · εk′s′) (α · k) − ~
k

(α · εks) (α · k) (α · εk′s′)
(
α · k′)

+
~
k′

(α · εk′s′)
(
α · k′) (α · εks) (α · k) − ~

k′
(α · εk′s′)

(
α · k′) (α · εks)

(
α · k′)

+
~
k

(α · k) (α · εk′s′) (α · k) (α · εks) − ~
k

(
α · k′) (α · εk′s′) (α · k) (α · εks)

+
~
k′

(α · k) (α · εks)
(
α · k′) (α · εk′s′)− ~

k′
(
α · k′) (α · εks)

(
α · k′) (α · εk′s′)

]
.

Combining 1st and 5th, 4th and 8th, 3rd and 7th, and 2nd and 6th terms on the right-hand
side we get:

Tr (PT + TR) = Tr
[
−2~ (εks · εk′s′) k + 2~ k′ (εks · εk′s′)

+
2~
k′

(α · εk′s′)
(
α · k′) (α · εks) (α · k)

−2~
k

(α · εk′s′)
(
α · k′) (α · εks) (α · k)

]
,

or Tr (PT + TR) = Tr [−~ (k − k′) 2 (εks · εk′s′)

+ 2~
(

1
k′
− 1
k

)
(α · εk′s′)

(
α · k′) (αεks) (α · k)

]
. (13.7.36)

Using Eqs. (13.7.35) and (13.7.36) in Eq. (13.7.34) we get

Tr (BQC) = Tr
[
~(k − k′)

{
4 (εk′s′ · εks)2 + PR

}
+ 2 (εk′s′ · εks) (TR+ PT )

]
= Tr

[
2~(k − k′)− 2~

(
k − k′
kk′

)
k · k′

]
= 8~ (k − k′) (1− cos θ) ,

= 8mc
(ω − ω′)2

ωω′
(13.7.37)

where in the last step we have used k = ω/c and four-momentum conservation for Compton
scattering which leads to mc2(ω − ω′) = ~ωω′(1 − cos θ) [cf. Chapter 1, Eq. (1.1.15)].
Using this result in (13.7.33) we get Eq. (13.7.25):

1
2

Tr [D(I + β)] =
c

4Ef
[Tr BQC + 32mc(εk′s′ · εks]

=
8mc2

4Ef

[
ω

ω′
+
ω′

ω
+ 4 (εk′s′ · εks) − 2

]
.
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Problems

1. Show that the classical Hamiltonian of pure radiation field

H =
1
2

∫ (
ε0|E|2 +

|B|2
µ0

)
=

1
2

∫ {
ε0

∣∣∣∣∂A∂t
∣∣∣∣2 +

|∇ ×A|2
µ0

}
dτ

may be expressed in terms of the field variables Pλ and Qλ as

H =
∑
λ

Hλ =
∑
λ

1
2
(
P 2
λ + ω2

λQ
2
λ

)
where Qλ = qλ(t) + q∗λ(t), Pλ = −iωλ (qλ(t)− q∗λ(t)) and qλ’s occur as coefficients
when A(r, t) is expanded as

A(r, t) =
1√
ε0

∑
λ

[qλ(t)uλ(r) + q∗λ(t)u∗λ(r)],

and functions uλ(r) form a denumerable, though infinite, set satisfying the equation

∇2uλ(r) +
ω2
λ

c2
uλ(r) = 0

and the condition of orthonormality∫
uλ(r) · u∗µ(r)dτ = δλµ .

2. Show that Pλ’s and Qλ’s, defined in problem 1, satisfy the canonical equations:

−Ṗλ =
∂H

∂Qλ
and Q̇λ =

∂H

∂Pλ

and may be regarded as a set of canonically conjugate variables.

3. To quantize the radiation field we may regard Pλ and Qλ as self-adjoint operators P̂λ
and Q̂λ and invoke the following commutation relations between them

[P̂λ, Q̂µ] = −i~δλµ ,

[P̂λ, P̂µ] = [Q̂λ, Q̂µ] = 0 .

Introducing new operators âλ and â†λ by

âλ =

√
2ωλ
~

1
2

(
Q̂λ +

iP̂λ
ωλ

)
and â†λ =

√
2ωλ
~

1
2

(
Q̂λ − iP̂λ

ωλ

)

show that âλ and â†λ satisfy the following commutation relations:

[âλ, â†µ] = δλµ

and [âλ, âµ] = [â†λ, â
†
µ] = 0.
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4. Show that, in view of treating the field variables Pλ and Qλ as operators P̂λ and Q̂λ,
the vector potential A(r, t) and the fields E and B are also operators. Deduce the
commutation relations between their components.

5. Express the Hamiltonian operator of the radiation field as

Ĥ =
∑
λ

Hλ =
∑
λ

~ωλ
2

(âλâ
†
λ + â†λâλ).

Interpret the operators â†λ and âλ as the creation and annihilation operators for a
photon of energy ~ωλ.

6. Show that the Heisenberg equations of motion for the electric and magnetic field
operators coincide with Maxwell’s equations.

7. The eigenstates of the Hamiltonian for a free electromagnetic field are given by
|n1, n2, · · · , nr, · · · 〉 ≡ |{n}〉. Show that the average values of the field operators
Ê and B̂ vanish for this state. Evaluate the mean squared deviations for the electric
field in such a state and show that they diverge even for the ground state. Interpret
your resullt.

8. A single mode electromagnetic field is represented by the vector potential

Â(r, t) =
√

~
2ε0ωV

ε
[
âei(k·r−ωt) + â†e−i(k·r−ωt)

]
. (13.7.38)

Suppose we look for a state which has nonzero expectation value for the electric field.
It is easy to see that such a state must satisfy

â |α 〉 = α |α 〉 , (13.7.39)

where α is a complex number. If such a state could be found then

〈α| Â |α 〉 = A(r, t) =
√

~
2ε0ωV

ε
[
αei(k·r−ωt) + α∗ei(k·r−ωt)

]
.

Determine the state |α 〉. What is the probability of finding n photons in such a state?
Such a state is known as a coherent state of the field. [Hint: If such a state exists we
can express it in terms of number states as |α 〉 =

∑∞
n=0 cn |n 〉.]

9. Consider the interaction of a single-mode quantized radiation field with a classical
current distribution j(r, t) (You may consider the classical current as being due to a
distibution of electrons with a certain momentum distribution.)

(a) Show that the interaction Hamiltonian (13.5.17) (neglecting the A2 term) in this
case can be written as Ĥint = − ∫ d3rj(r, t) · Â(r, t) ≡ f∗(t) â+ f(t) â†.

(b) If such an interaction is turned on at time t = 0 and if the intial state of the
electromagnetic field is the vacuum |0 〉, show that the state of the field evolves
into a coherent state with amplitude α = − i

~
∫ t

0
f(t′)dt′.

10. Single photon absorption and emission by a charged particle interacting with quantum
radiation field is equivalent to that given by the semi-classical theory if the equivalent
vector potentials in the two case are taken to be

Aab =
√

~nλ
2ε0ωλV

ελ e
i(kλ·r−ωλt),
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Aem =

√
~(nλ + 1)
2ε0ωλV

ελ e
−i(kλ·r−ωλt).

With this assumption calculate the transition rate for absorption (wn0→k) and
emission (wi→f ) and show that the emission can take place even when no photons are
present in the radiation field. Work out the ratio of the coefficients of spontaneous
and induced emissions (Einstein coefficients).

11. Calculate the cross-section for the photo-electric effect for the ground state of the
Hydrogen atom with the assumption that the energy transferred to the photo-electron
is large enough for the final state to be treated as a plane wave state and yet its velocity
is non-relativistic.

12. By expressing the ground state wave function of a Hydrogen atom in momentum space,
show that the calculation of the photo-electric cross-section becomes easier when the
matrix element H ′fi [Eq. (13.5.4)] is expressed in terms of an integral in momentum
space.

13. Show that the transition probability for spontaneous emission is equal to the transition
probability for induced emission that would result from an isotopic field of such
intensity that there is one quantum per state of the field in the neighbourhood of
the transition frequency.

14. Using the commutation relations between components of the vector operators r̂ and
p̂, deduce that

1
i~

[(ε · r̂λ)(ελ′ · p̂)− (ελ′ · p̂)(ε̂λ · r̂)] = ελ · ελ′ ,
where ε̂λ and ε̂λ′ are the polarization vectors for photons of energies ~ωλ and ~ωλ′ .
Hence show that

〈i|ελ · ελ′ |i〉 =
1
i~
∑
I

{(ελ · r̂)iI(ελ′ · p̂)Ii − (ελ′ · p̂)iI(ελ · r̂)I i}

where (ελ · r)iI ≡ 〈i|ελ · r̂|I〉.
15. Prove that ∑

I

(EI − Ei)|pI i|2 =
~2

2

∫
|ψi(r)|2∇2V (r)d3r

where ψi(r) ≡ 〈r| i〉 and ψI(r) ≡ 〈r| I〉, pIi ≡ 〈I| p̂ |i 〉 and |i〉 and |I〉 are eigenstates
of Ĥ, belonging to the eigenvalues Ei and EI .
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Appendix 13A1

Electromagnetic Field in Coulomb Gauge

The Hamiltonian for the electromagnetic field is

HF =
1
2

∫
d3r

(
ε0E

2 +
B2

µ0

)
. (13A1.1.1)

Using two of Maxwell’s equations

∇ ·B = 0 , (13A1.1.2)

∇×E = −∂B
∂t

, (13A1.1.3)

we can introduce the vector potential A and the scalar potential φ by

E = −∂A
∂t
−∇Φ , B = −∇×A . (13A1.1.4)

The remaining two Maxwell’s equations

∇ ·E =
ρ

ε0
, (13A1.1.5)

and ∇×B = µ0j +
1
c2
∂E

∂t
, (13A1.1.6)

can then be written in terms of the vector and scalar potentials as

−∇(∇ ·A) +∇2A− 1
c2
∂2A

∂ t2
− 1
c2
∂

∂t
∇φ = −µ0j , (13A1.1.7)

and ∇2φ− 1
c2
∂2φ

∂ t2
+∇ · ∂A

∂t
= − ρ

ε0
. (13A1.1.8)

Equation (13A1.1.4) does not uniquely determine the potentials. For example, another set
of potentials A′ = A −∇χ , and φ′ = φ + ∂χ

∂t also leads to the same fields E and B.
Using this freedom afforded by Eqs. (13A1.1.4) in the choice of vector and scalar potential,
there are two choices made for the potentials. The Lorentz gauge is useful in the relativistic
formulation of electromagnetism as discussed in Appendix 12A1. Another gauge, which is
particularly useful in the non-relativistic light-matter interaction problems, is the Coulomb
gauge, also called the transverse or radiation gauge, where the vector potential satisfies the
condition

∇ · A = 0 . (13A1.1.9)

Then the equations for the scalar and vector potentials reduce to

∇2φ(r, t) = −ρ(r, t)
ε0

(13A1.1.10)

∇2A(r, t)− 1
c2
∂2A

∂t2
= −µ0j(r, t) + µ0ε0∇

∂φ

∂t
. (13A1.1.11)
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The source terms on the right hand side of Eq. (13A1.1.11) for the vector potential A(r, t)
can be written in a more elegant form by using the solution to Eq. (13A1.1.10) for φ

φ(r, t) =
1

4πε0

∫
d3r′ρ(r ′, t)
|r − r ′| . (13A1.1.12)

With the help of this result we find

∂φ

∂t
=

1
4πε0

∫
d3r′(∂ρ/∂t)
|r − r ′| = − 1

4πε0

∫
d3r′
∇′ · j(r ′, t)
|r − r ′|

=
1

4πε0

∫
d3r′∇′ ·

[
j(r ′, t)
|r − r ′| − j(r

′, t) ·∇′
(

1
|r − r ′|

)]
.

The first term is a surface term which vanishes for a localized source when the surface of
integration lies outside the (localized) source. On using the identity

∇′
(

1
|r − r ′|

)
= −∇

(
1

|r − r ′|
)
, (13A1.1.13)

we find that
∂φ

∂t
= − 1

4πε0
∇ ·

(∫
d3r′j(r ′, t)
|r − r ′|

)
. (13A1.1.14)

The equation for the vector potential becomes

∇2A(r, t)− 1
c2
∂2A

∂t2
= −µ0

[
j(r, t) +

1
4π
∇∇ ·

(∫
d3r′j(r ′, t)
|r − r ′|

)]
. (13A1.1.15)

This can be simplified by decomposing vector j(r, t) in terms of its transverse and
longitudinal parts as j = j⊥ + j‖, where

j⊥ = j − j‖ =
1

4π
∇×

[
∇×

∫
d3r

j(r ′, t)
|r − r ′|

]
(13A1.1.16)

j‖ = − 1
4π
∇
[
∇ ·

∫
d3r

j(r′, t)
|r − r′|

]
. (13A1.1.17)

We then find that the vector potential A is determined by the transverse part of j only via
the inhomogeneous wave equation

∇2A(r, t)− 1
c2
∂2A

∂t2
= −µ0j⊥ . (13A1.1.18)

Thus only the transverse part of j drives the potential in the Coulomb gauge. Note that in
view of the Coulomb condition the vector potential is purely transverse in Coulomb gauge.
Taking advantage of our gauge choice we can write the fields also in terms of their transverse
and longitudinal parts as

B =∇×A , E⊥ = −∂A
∂t

, E‖ = −∇φ . (13A1.1.19)

Thus the magnetic field, which is purely transverse, and the transverse part of the electric
field are determined by the vector potential. The Hamiltonian can now be written as

H =
1
2

∫
d3r

[
ε0(E⊥2 + E‖

2 + 2E⊥ ·E‖) +
B2

µ0

]
. (13A1.1.20)
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The term involving the dot product of E⊥ and E‖ vanishes∫
d3rE⊥ ·E‖ = −

∫
d3rE⊥ ·∇φ = −

∫
d3r[∇ · (φE⊥)− φ∇ ·E⊥]

= −
∫
d3r∇ · (φE⊥)

where we have used the result ∇ · E⊥ = 0. The remaining integral is a surface term and
vanishes for localized sources. The term involving E‖ = −∇φ can be transformed as follows

ε0

∫
d3rE2

‖ = ε0

∫
d3r∇φ ·∇φ = ε0

∫
d3r[∇ · (φ∇φ)− φ∇2φ]

= ε0

∫
d3r

[
∇ · (φ∇φ) + φ

ρ

ε0

]
=
∫

d3rφ(r, t)ρ(r, t)

=
1

4πε0

∫∫
d3r′d3r

ρ(r ′, t)ρ(r, t)
|r − r ′| .

Thus this term is proportional to the Coulomb interaction energy of the charges. Indeed
for a collection of point charges ρ(r) =

∑
i qiδ(r − ri), we find

ε0

∫
d3rE‖

2 =
1

4πε0

N∑
i,j

qiqj
|ri − rj | . (13A1.1.21)

Removing the self energy (i = j) terms, which are independent of the locations of the
charges, we can write the Hamiltonian as

Hem = Hes +Hrad ,

where Hes =
1

8πε0

N∑
i,j(i 6=j)

qiqj
|ri − rj | , (13A1.1.22)

and Hrad =
1
2

∫
d3r

(
ε0E⊥

2 +
B2

µ0

)
. (13A1.1.23)

Thus in the Coulomb gauge, the energy associated with the electromagetic field separates
into an electrostatic contribution Hes arising from the Coulomb interaction between charges
and a contribution Hrad which refers only to the transverse components of the field
(radiation fields), which are determined by the vector potential alone, which in turn is
determined by the transverse current j⊥ defined by Eq. (13A1.1.16).

If we have a system of N charges (charge qi mass mi) interacting via the electromagnetic
field, the total Hamiltonian can be written as

H =
N∑
i=1

1
2mi

[pi − qiA(ri)[
2 +Hes +HF ,

=
N∑
i=1

1
2mi

[pi − qiA(ri)]
2 +

1
8πε0

N∑
i,j(i 6=j)

qiqj
|ri − rj | +

1
2

∫
d3r

(
ε0E⊥

2 +
B2

µ0

)
.

(13A1.1.24)
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14

SECOND QUANTIZATION

14.1 Introduction

As mentioned in previous chapters, processes like electron-positron pair creation or
annihilation cannot be understood in the framework of single particle wave equations. Such
processes are best understood in terms of a quantum field theory for the electron, similar
to the one we have for the photon. The electrons may then be treated as quanta of the
electron field (or Dirac field) in the same sense that photons are regarded as the quanta of
the electromagnetic field. When we treat the Dirac equation (or Klein-Gordon equation) on
the same footing as the Maxwell equations and subject the wave field or the wave function to
quantization again in order to obtain the quantum field operators from it then the process
is called second quantization. As a consequence, single-particle probability and current
densities formally go over to particle density and current density operators. However, the
analogy is purely formal as the former are real functions and the latter operators.1 Though
there is a basic difference between quantizing an electromagnetic field, which is a classical
field and quantizing a Dirac field which is not a classical field, second quantization appears to
be the only way to understand a large number of phenomenon pertaining to the interaction
of radiation and matter. The need for second quantization, in fact, followed from the
difficulties faced in the attempts to construct a relativistic single particle wave equation.
We may recall, for example, that the relativistic generalization of the Schrödinger equation,
the Klein Gordon (KG) equation, yielded an equation of continuity in which the probability
density was not a positive definite quantity. For this reason the KG equation was initially
discarded; it came to be accepted only after Pauli and Weisskopf suggested that it could
well serve as a field equation whose quanta are zero-spin particles of mass m. Once the KG
equation was accepted as a field equation, the concepts of probability density and equation
of continuity (which represents conservation of total probability) did not have the same
significance they did in single-particle theory as particles could be created or destroyed in
the framework of field theory. In the Dirac single-particle wave equation we find, of course,
that the probability density ψ†ψ is positive definite. However when we use this equation
for finding the energy E of a free particle we find the answer to be2

E = ±
√
c2p2 + m2 c4 ,

so that the existence of states with negative energy (E < −mc2) has to be accommodated
in the quantum theory. For this purpose, Dirac devised an ingenious hypothesis that the
continuum of negative energy states is normally completely occupied by the electrons and
this produces no observable effects. If energy > 2mc2 is made available to a negative

1First quantization just implies that one describes the electron by a single-particle wave equation (Dirac
equation) or the pion by Klein-Gordon equation. In other words, dynamical variables of classical mechanics
become operators.
2In this chapter the rest mass of the electron is denoted by m.
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energy electron to go to a positive energy state the void or hole created in the negative
energy continuum manifests itself as a positron and we have an electron positron pair. The
subsequent experimental discovery of the positron by Anderson (1932) confirmed Dirac’s
hypothesis. Dirac’s single-particle equation had several other successes as well [Chapter 12].
But the fact remains that the concept of occupied negative energy states was introduced to
save single-particle relativistic theory and in this process one had to postulate an infinite
number of particles in the negative energy states. Hence it was thought that the Dirac
equation, instead of being regarded as a single-particle wave equation should be regarded
as a field equation subject to a second quantization.

Before taking up the quantization of wave fields, in general, we first outline a general
formulation within the framework of which one can obtain the field equations for various
fields by a unique procedure. This formalism for fields, called Lagrangian formalism, was
developed by Heisenberg and Pauli (1929).

14.2 Classical Concept of Field

The concept of field was introduced to understand the interaction between two bodies
separated by a distance. For instance the interaction between two static charged particles
A and B could be viewed as the interaction of the particle B with the electric field created
by the particle A or vice versa. The behavior of a field is determined by the interaction
of a particle with it. The equations pertaining to a field can be derived using Lagrangian
formulation and invoking Hamilton’s variational principle on the same lines as the derivation
of the equation of motion in particle dynamics. Let us recall that the Lagrangian for a
classical system of particles with f degrees of freedom is given by

L(qi , q̇i) = T (qi , q̇i) − V (qi) , (14.2.1)

where T (qi, q̇i) and V (qi) are respectively, the kinetic and potential energy of the system.
Hamilton’s variational principle implies that, out of all paths available to the system, the
actual path followed by the system in moving from a given configuration at time t1 to
another at time t2 is the one for which the variation in the action function

A =

t2∫
t1

L(qi , q̇i , t) dt

as a result of variation in qi’s and q̇i vanishes. This means

δ A =

t2∫
t1

δ L(qi , q̇i , t) dt = 0 . (14.2.2)

The equations of motion that follow from this variational principle are called the Euler-
Lagrange equations and are given by [see Appendix 14A1]

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 i = 1, 2, · · · , f . (14.2.3)

As a concrete example of how a field theory arises in this formulation, consider a linear chain
of N identical particles, each of mass m, connected by identical springs of force constant k.
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Let a be the equilibrium separation between the positions of the successive particles and ηi
the displacement of the i-th particle from its equilibrium position along the chain direction.
Then the Lagrangian of the whole system may be written as

L = T − V =
N∑
i=1

[
1
2
mη̇2

i −
1
2
k (−ηi + ηi+1)2

]
. (14.2.4)

From this discrete system of N degrees of freedom, we can pass to a continuous (one-
dimensional) system with N →∞ degrees of freedom by letting a→ dx, m→ dm = ρ dx,
where ρ is the linear mass density (mass per unit length), so that

(ηi+1 − ηi)
a

→ dη

dx
and

kηi
ηi/a

= ka ≡ Y (Young′s modulus) .

Then the Lagrangian in Eq. (14.2.4) takes the form

L ≡
∑
i

a

[
1
2
m

a
η2
i −

1
2
ka

(−ηi + ηi+1

a

)2
]

→
∫
dx

[
1
2
ρη̇2 − 1

2
Y

(
dη

dx

)2
]
≡
∫
L dx , (14.2.5)

where L ≡ 1
2
ρη̇2 − 1

2
Y

(
dη

dx

)2

(14.2.6)

is called the Lagrangian density. In the continuum limit, particle displacement η has become
a function of continuous variables x and t. In other words, η(x, t) has become a field,
representing an infinite degrees of freedom. In the Lagrangian formulation η(x, t) is treated
as a generalized coordinate of the field just like qi in the case of a system of particles. Thus
a field variable may be regarded as a generalized coordinate of a system with an infinite
number of degrees of freedom.

Generalizing the above considerations to any one-dimensional field, we may take the
Lagrangian density to be

L = L
(
η , η̇ ,

dη

dx

)
, (14.2.7)

where the field η(x, t) representing an infinite degrees of freedom, may be considered as a
disturbance pertaining to the field at point x at time t. Application of Hamilton’s variational
principle [Appendix 14A1]

δ

∫
dtL ≡ δ

∫
dt

∫
dxL

(
η , η̇ ,

dη

dx

)
= 0 , (14.2.2*)

leads to Euler-Lagrange equation

− ∂

∂x

 ∂L
∂
(
∂η
∂x

)
 − d

dt

(
∂L
∂η̇

)
+
∂L
∂η

= 0 . (14.2.8)

This equation may be called the field equation. Returning to the case of a linear chain of
particles where the Lagrangian density is given by Eq.(14.2.6)

L =
1
2
ρη̇2 − 1

2
Y

(
dη

dx

)2

,
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the corresponding Euler-Lagrange equation (14.2.8) gives the field equation

Y
∂2η

∂x2
− ρη̈ = 0 . (14.2.9)

This is the well-known wave equation for a one-dimensional propagation of a disturbance
with velocity

√
Y/ρ. A one-dimensional field is thus specified by its amplitude η(x, t) at

each point in space at all times.
We can generalize the one-dimensional field to a three-dimensional field φ(x, y, z, t) which

is specified by its values at each space point (x, y, z) at all times. The Lagrangian density
in this case will depend on

φ ,
∂φ

∂xk
,
∂φ

∂t
≡ φ̇ , k = 1, 2, 3

so that the Lagrangian can be written as

L =
∫
L
(
φ , φ̇ ,

∂φ

∂xk

)
dτ . (14.2.10)

Hamilton’s principle (14.2.2) then yields Euler-Lagrange equations

−
∑
k

∂

∂xk

(
∂L
∂φk

)
− d

dt

(
∂L
∂φ̇

)
+
∂L
∂φ

= 0 (14.2.11)

where φk ≡ ∂φ
∂xk

and φ̇ = ∂φ
∂t . These field equations lead to explicit equations of motion

once the Lagrangian density for the field is known. We saw an example of this for one-
dimensional Lagrangian density (14.2.6), which leads to the field equation (14.2.9). Notice
that space and time variables appear symmetrically in the Lagrangian formulation of field
equations. Indeed, Eq. (14.2.11) can be written readily in the covariant form as

∂

∂xµ

(
∂L

∂φµ

)
− ∂L

∂φ
= 0 (14.2.12)

where φµ = ∂φ
∂xµ

and xµ ≡ (xk, x4) ≡ (r , ict) . Field equations can also be obtained from
a Hamiltonian formulation, which has the advantage that the analogy between classical and
quantum fields is most direct in this formalism. We will take advantage of both Lagrangian
and Hamiltonian formalisms in developing the quantum field theory.

14.3 Analogy of Field and Particle Mechanics

To pursue the analogy of field and particle mechanics further, we write the classical field
equations in terms of the Lagrangian L rather than the Lagrangian density L. It may be
noted here that while the Lagrangian density L (φ , φk , φ̇) is a function of its arguments
at specific space-time points, the Lagrangian

L ≡
∫
L (φ , φk , φ̇) dτ

depends on the values φ and φ̇ at all space points, at a particular time. In other words, L is
a functional of φ and φ̇ [see Appendix 14A2 for more details on functionals and functional
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derivatives]. To write the classical field equation in terms of the Lagrangian we divide the
configuration space into a large number n of tiny cells of volume ∆τi. In the limit n→∞
and ∆τi → 0, we can treat the quantities φ , φk ≡ ∂φ

∂xk
, φ̇ approximately constant over

each cell and replace the volume integral L =
∫ L (φ , φk , φ̇) dτ by the sum

L =
n∑
i=1

L
(
φi , (φk)i , φ̇i

)
∆τi, (14.3.1)

where φi , (φk)i and φ̇i denote the values of φ , φk , φ̇ in the ith cell. Similarly, the variation

δL =
∫
δL (φ , φk , φ̇) dτ

=
∫ [{

∂L
∂φ
−
∑
k

∂

∂xk

(
∂L
∂φk

)}
δφ +

∂L
∂φ̇

δφ̇

]
dτ , (14.3.2)

can be written as the sum

δL =
n∑
i=1

[{(
∂L
∂φ

)
i

−
∑
k

(
∂

∂xk

[
∂L
∂φk

])
i

}
δφi +

(
∂L
∂φ̇

)
i

δφ̇i

]
∆τi . (14.3.3)

If now all variations δφi in φi and δφ̇i in φ̇i, except a particular δφ̇j , are taken to be zero
then

lim
∆τj→0

δL

δφj ∆τj
=
(
∂L
∂φ

)
j

−
∑
k

(
∂

∂xk

[
∂L
∂φk

])
j

. (14.3.4a)

Similar relations hold for each cell j. This means that, if we denote the limit lim∆τ→0
δL

δφ∆τ

by /∂L
/∂φ

, which is called the functional derivative of L with respect to φ [see Appendix 14A2],
Eq. (14.3.4a) simply gives its value at a point in the jth cell. Thus in the limit n→∞ or
∆τ → 0 we drop the suffix j and define the functional derivative

lim
∆τ→0

δL

δφ∆τ
≡ /∂L

/∂φ
=

∂L
∂φ
−
∑
k

∂

∂xk

(
∂L
∂φk

)
. (14.3.4b)

Similarly if we set all the δφi’s and all δφ̇i’ s except a particular δφ̇j , to be zero then the
limit

lim
∆τj→0

(
δL

δφ̇j ∆τj

)
=
(
∂L
∂φ̇

)
j

gives the value of the functional derivative /∂L
/∂φ̇

at a point in the jth cell. Hence, we may
define the functional derivative

lim
∆τ→0

(
δL

δφ̇∆τ

)
≡ /∂L

/∂φ̇
=

∂L
∂φ̇

. (14.3.5)

The difference in Eqs. (14.3.4b) and (14.3.5) arises because L depends on φk but not on
φ̇k. The field or Euler-Lagrange equations (14.2.11) can then be rewritten as

/∂L

/∂φ
− d

dt

(
/∂L

/∂φ̇

)
= 0 . (14.3.6)
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This form resembles the Lagrange equations of motion for a system of particles with the
generalized coordinates qi replaced by the field quantity φ and partial derivatives ∂L

∂qi
and

∂L
∂q̇i

replaced by functional derivatives /∂L
/∂φ

and /∂L
/∂φ̇

, respectively.
In analogy with particle mechanics (where the generalized momentum is defined as

pi = ∂L
∂q̇i

), we can define the momentum Pj , canonically conjugate to φj , to be the ratio
of the variation δL to the infinitesimal variation δφ̇j when all other variations δφi and δφ̇i
are zero. Thus we have

Pj ≡ δL

δφ̇j
= ∆τj

(
/∂L

/∂φ̇

)
j

= ∆τj

(
∂L
∂φ̇

)
j

≡ ∆τj πj (14.3.7)

where

πj =
(
∂L
∂φ̇

)
j

=
(
/∂L

/∂φ̇

)
j

. (14.3.8)

This allows us to define a field variable π, canonically conjugate to φ, via the relation

π =
∂L
∂φ̇

=
/∂L

/∂φ̇
. (14.3.9)

With the help of Eqs. (14.3.6) and (14.3.7) we also have

Ṗj = (∆τj)
(
d

dt

(
/∂L

/∂φ̇

))
= ∆τj

(
/∂L

/∂φ

)
j

. (14.3.10)

Further, in analogy with the definition of Hamiltonian H =
∑
i

piq̇i − L(qi, q̇i) in particle

mechanics, we can define the Hamiltonian for a field by

H =
∑
i

Pi φ̇i − L =
∑
i

(
πi φ̇i − Li

)
∆τi ≡

∑
i

H i ∆τi (14.3.11)

where Hi = πi φ̇i − Li is the Hamiltonian density within the i-th cell. This implies that in
the continuum limit, the Hamiltonian density of the field may be expressed as H = π φ̇ − L
so that

H =
∫ (

π φ̇ − L
)
dτ . (14.3.12)

Continuing this procedure further, we can also write the field equations in terms of the
Hamiltonian. Noting that the field Lagrangian is a functional of φ and π, the variation δL,
from Eqs. (14.3.2), (14.3.4b) and (14.3.5), can be expressed as

δL ≡
∫
δL dτ =

∫ (
/∂L

/∂φ
δφ +

/∂L

/∂φ̇
δφ̇

)
dτ ,

which implies that the variation in Lagrangian density is

δL =
/∂L

/∂φ
δφ +

/∂L

/∂φ̇
δφ̇

=
d

dt

(
/∂L

/∂φ̇

)
δφ+

/∂L

/∂φ̇
δφ̇

= π̇ δφ + πδφ̇ .
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Hence the variation in Hamiltonian density is

δ H = δ
(
πφ̇ − L

)
= π δφ + φ̇δπ − δL = φ̇δπ − π̇δφ , (14.3.13)

and the corresponding variation in the Hamiltonian is

δH =
∫ (

φ̇ δπ − π̇ δφ
)
dτ . (14.3.14)

Since H is a functional of π and φ, we can write the variation in H as [see Appendix 14A2]

δH =
∫ (

/∂H

/∂π
δπ +

/∂H

/∂φ
δφ

)
dτ . (14.3.15)

A comparison of Eqs. (14.3.14) and (14.3.15) leads to the field equations in Hamiltonian
form

φ̇ =
/∂H

/∂π
=

∂H
∂π

−
3∑
k=1

∂

∂xk

(
∂H
∂πk

)
(14.3.16)

and −π̇ =
/∂H

/∂φ
=

∂H
∂φ

−
3∑
k=1

∂

∂xk

(
∂H
∂φk

)
. (14.3.17)

Equations (14.3.16) and (14.3.17) are referred to as the classical field equations in the
canonical form.

14.4 Field Equations from Lagrangian Density

14.4.1 Electromagnetic Field

By a suitable choice for the Lagrangian density for a field, we can derive the field equations
using Euler-Lagrange equations (14.2.12). The procedure can be adopted not only for
a classical field like electromagnetic but also for fields like Klein-Gordon or Dirac. For
example, if we choose the Lagrangian density

L =
1
µ0

{
− 1

4
Fµν Fµν − 1

2
∂Aµ
∂xν

∂Aν
∂xµ

}
+ jµAµ

= − 1
2µ0

∂Aν
∂xµ

∂Aν
∂xµ

+ jµAµ , (14.4.1)

where Fµν is the electromagnetic field tensor defined by

Fµν =
∂Aν
∂xµ

− ∂Aµ
∂xν

(14.4.2)

with Aν ≡ (A, iφ/c) and jν ≡ (j, icρ), the Euler-Lagrange equations3

∂L
∂Aµ

− ∂

∂xµ

 ∂L
∂
(
∂Aµ
∂xν

)
 = 0 (14.4.3)

3The electromagnetic field is a vector field and we have the four-potential Aµ as the field function.
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lead to the field equations, which are in fact Maxwell’s equations. This is easily verified
since, with the Lagrangian density given by Eq. (14.4.1), we have

∂

∂xν

 ∂L
∂
(
∂Aµ
∂xν

)
 =

∂

∂xν

∂
{
− 1

2µ0

(
∂Aσ
∂xλ

)(
∂Aσ
∂xλ

)}
∂
(
∂Aµ
∂xν

)


= − 1
2µ0

∂

∂xν

(
2
∂Aµ
∂xν

)
= − 1

µ0

∂

∂xν

(
∂Aµ
∂xν

− ∂Aν
∂xµ

+
∂Aν
∂xµ

)
= − 1

µ0

∂

∂xν
Fνµ − 1

µ0

∂

∂xν

∂Aν
∂xµ

= − 1
µ0

∂Fνµ
∂xν

− 1
µ0

∂

∂xµ

∂Aν
∂xν

=
1
µ0

∂Fµν
∂xν

,

where in the last step we have used the Lorentz condition

∇ · A +
1
c2
∂φ

∂t
≡ ∂Aν
∂xν

= 0 . (14.4.4)

Thus Eq. (14.4.3) gives us
1
µ0

∂Fµν
∂xν

= jµ , (14.4.5)

which represents two of Maxwell’s equations [Gauss’s law for the electric field and the
Ampere-Maxwell equation, see Appendix 12A1]. The other two equations, which are
automatically satisfied with the introduction of scalar and vector potentials, may be written
as

∂Fλµ
∂xν

+
∂Fµν
∂xλ

+
∂Fνλ
∂xµ

= 0 . (14.4.6)

14.4.2 Klein-Gordon Field (Real and Complex)

If we choose the Lagrangian density to be given by

L = − 1
2

[
∂φ

∂xµ

∂φ

∂xµ
+
(mc

~

)2

φ2

]
, (14.4.7)

where m is a mass parameter and ~ is a constant, which in combination with m and speed of
light c gives correct dimensions for the Lagragian density. Then Euler-Lagrange equations
lead to the field equation

∂2φ

∂xµ∂xµ
−
(mc

~

)2

φ = 0, (14.4.8)

where ∂2

∂xµ∂xµ
≡ ∇2 − 1

c2
∂2

∂t2 . This is the Klein-Gordon equation (or the equation of
Klein-Gordon field) for a real scalar (or one-component) field.

For a complex scalar field, we can write the Lagrangian density as

L = −
[
∂φ∗

∂xµ

∂φ

∂xµ
+
(mc

~

)2

φ∗ φ

]
= −

[∑
k

∂φ∗

∂xk

∂φ

∂xk
− 1
c2
∂φ∗

∂t

∂φ

∂t
+
(mc

~

)2

φ∗ φ

]
, (14.4.9)
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where the factor of 1
2 is omitted since the square of the field quantities no longer appears

in the Lagrangian density. Corresponding to φ and φ∗, we have the canonically conjugate
variables

π =
∂L
∂φ̇

=
φ̇∗

c2
(14.4.10)

and π∗ =
∂L
∂φ̇∗

=
φ̇

c2
. (14.4.11)

With the Lagrangian density given by Eq. (14.4.9), Euler-Lagrange equations

∂L
∂φ∗

−
∑
k

∂

∂xk

 ∂L
∂
(
∂φ∗

∂xk

)
 − ∂

∂t

 ∂L
∂
(
∂φ∗

∂t

)
 = 0 (14.4.12)

and
∂L
∂φ
−
∑
k

∂

∂xk

 ∂ L
∂
(
∂φ
∂xk

)
 − ∂

∂t

 ∂L
∂
(
∂φ
∂t

)
 = 0 (14.4.13)

lead to the following field equations for the complex KG field:

∑
k

∂2φ

∂x2
k

− 1
c2

∂2φ

∂t2
−
(mc

~

)2

φ ≡ ∂2φ

∂xµ∂xµ
−
(mc

~

)2

φ = 0 (14.4.14)

and
∑
k

∂2φ∗

∂x2
k

− 1
c2

∂2φ∗

∂t2
−
(mc

~

)2

φ∗ ≡ ∂2φ∗

∂xµ∂xµ
−
(mc

~

)2

φ∗ = 0 . (14.4.15)

A real KG field φ = φ∗ can be used to describe a neutral field whereas a complex KG field
can describe a charged field. To see this we multiply Eqs. (14.4.14) and (14.4.15) from the
left by φ and φ∗, respectively and subtract the two; the resulting equation then has the
form of the equation of continuity

∂

∂xµ

[
φ∗

∂φ

∂xµ
− φ∂φ

∗

∂xµ

]
= 0 . (14.4.16)

This allows us to introduce a four-current density

jµ = − ie
~

[
φ∗

∂φ

∂xµ
− φ∂φ

∗

∂xµ

]
, (14.4.17)

where e may be interpreted as the charge of the field and ~ is a constant that takes care
of the dimensions. Four-current density jµ ≡ (j, icρ) corresponds to electric current and
charge densities given by

j = − ie
~

[φ∗∇φ− φ∇φ∗] , (14.4.18)

and ρ =
ie

~c2

[
φ∗
∂φ

∂t
− φ∂φ

∗

∂t

]
. (14.4.19)

It follows from Eq. (14.4.16) that the four-divergence of jµ vanishes,

∂jµ
∂xµ

= 0 , (14.4.20)
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conforming to the equation of continuity ∇ j + ∂ρ
∂t = 0 , expressing charge conservation.

We note that both j and ρ vanish if the field is real. A real field variable thus describes
a neutral (uncharged) particle field, say, a neutral pion field. A complex scalar describes a
charged particles field.

It may be noted that the charge density ρ is proportional to the probability density in the
Klein-Gordon equation and this was found not to be a positive definite [cf. Eqs. (14.4.19)
and (12.1.9)] quantity. However, in the present context, with the inclusion of the charge e,
ρ represents charge density. Hence both the charge density ρ and the total charge of the
field

Q =
∫

ρ dτ (14.4.21)

can be positive or negative.

14.4.3 Dirac Field

For the Dirac field, we take the Lagrangian density to be

L = − c~ψ̃ γρ ∂ψ
∂xρ

− mc2 ψ̃ ψ (14.4.22)

where ψ̃ = ψ† γ4, γ4 = β, and γk = − iβαk (k = 1, 2, 3). It is easy to check that
Euler-Lagrange equation

∂L
∂ψ

− ∂

∂xµ

 ∂L
∂
(
∂ψ
∂xµ

)
 = 0

yields the equation

c~
∂ψ̃

∂xµ
γµ − mc2 ψ̃ = 0 (14.4.23)

while Euler-Lagrange equation

∂L
∂ψ̃

− ∂

∂xµ

 ∂ L
∂
(
∂ψ̃
∂xµ

)
 = 0

yields the equation

c~ γµ
∂ψ

∂xµ
+ mc2 ψ = 0 . (14.4.24)

Since the Lagrangian density is real, we have4

L = − c~ψ̃γµ ∂ψ

∂xµ
−mc2ψ̃ψ = c~

∂ψ̃

∂xµ
γµψ −mc2ψ̃ψ . (14.4.25)

4It can be seen that„
− ψ̃ γk

∂ψ

∂xk

«∗
=

∂ψ̃

∂xk
γkψ and

„
− ψ̃ γ4

∂ψ

∂x4

«∗
=

∂ψ̃

∂x4
γ4ψ .

Since L = − c~ψ̃γµ ∂ψ
∂xµ
− mc2ψ̃ψ is real, −ψ̃γµ ∂ψ

∂xµ
is also real and is equal to its complex conjugate

∂ψ̃
∂xµ

γµψ. Hence the result (14.4.25).
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We have seen [Chapter 12 Eqs. (12.2.18), (12.2.19), and (12.2.23)] that the Dirac equation
yields the equation of continuity in the covariant form, ∂jµ

∂xµ
= 0 where jµ = icψ̃ γµψ and

xµ = (r, ict). This is equivalent to ∇ · j + ∂ρ
∂t = 0 where j = c(ψ†αψ) and ρ = ψ† ψ.

These equations represent conservation of probability. Unlike the Klein-Gordon equation,
in this case the probability density ρ is positive definite. Multiplying the last equation by
e we get an equation of continuity, which represents conservation of charge.

14.5 Quantization of a Real Scalar (KG) Field

To quantize a real scalar field we regard the field quantities φ(x) and π(x), (x = r, ict),
as also their average values φi and πi

(
= Pi

∆τi

)
in the i-th space cell, to be operators and,

in analogy between the coordinates and momenta of particles (q̂i, p̂j) and the space cell
averages for the field and its canonically conjugate momenta (φ̂i, P̂j), impose the quantum
conditions [

φ̂i, φ̂j

]
=
[
P̂i, P̂j

]
= 0 (14.5.1)

and
[
φ̂i, P̂j

]
= i~δij . (14.5.2)

If we take the cell volume ∆τ → 0, we can rewrite these commutation relations as[
φ̂(r, t) , φ̂(r′, t)

]
= [π̂(r, t) , π̂(r′, t)] = 0 , (14.5.3)

and [φ(r, t) , π(r′, t)] = i~ δ3(r − r′) . (14.5.4)

Commutation Relations in Terms of Field Operators

We can expand the scalar field φ(r, t) in terms of a complete set of orthonormal functions.5

We choose this set of functions to be the enumerable set of plane waves satisfying periodic
boundary conditions on the surface of a cubical box of side L and volume L3. At the end
of our calculations we can take the limit L → ∞. This parallels our treatment of the
electromagnetic field in Chapter 13. Needless to say that any physically meaningful results
should be independent of this procedure. Then the field variables φ(r, t) and π(r, t) can be

5We can obtain a discrete (enumerable) set of orthogonal functions by enclosing the system in a cubical
box of dimension L and volume V = L3. In this case

uk(r) =
1
√
V
eik·r ;

Z
d3r u∗k′uk = δk′,k ;

X
k

u∗k(r′)uk(r) = δ(r − r′) .

In the continuum limit L→∞, we have

1
√
V
eik·r →

1

(2π)3/2
eik·r , δk,k′ → δ3(k − k′) , and

X
k

→
Z
d3k .

The arrow implies replaced by and not equality.
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expanded as

φ(r, t) =
1√
V

∑
k

q k(t) eik·r (14.5.5)

and π(r, t) =
1√
V

∑
k

pk(t) e−ik·r , (14.5.6)

where the expansion coefficients qk(t) and pk(t) are given by

qk(t) =
1√
V

∫
d3r e−ik·r φ(r, t) (14.5.7)

and pk(t) =
1√
V

∫
d3r eik·r π(r, t) . (14.5.8)

Since φ(r, t) and π(r, t) are real, it follows that q∗k(t) = q−k(t) and p∗k(t) = p−k(t).
To quantize the field, we regard the field variables φ(r, t) and π(r, t) as operators with

commutation relations given by Eqs. (14.5.3) and (14.5.4). Then it follows from Eqs.
(14.5.7) and (14.5.8) that qk(t) and pk(t) must also be regarded as operators q̂k and p̂k.
With the help of the field commuations (14.5.3) and (14.5.4), we arrive at the following
commuation relations for q̂k and p̂k:

[q̂k(t) , p̂k′(t)] = i~ δk,k′ , (14.5.9)

[q̂k(t) , q̂k′(t)] = [p̂k(t) , p̂k′(t)] = 0 . (14.5.10)

For a real scalar field, the field operators are Hermitian φ̂† = φ̂ and π̂† = π̂ and we have
the operator relations q̂†k = q̂−k and p̂†k = p̂−k.

With the help of Eqs. (14.4.7), (14.4.10) and (14.4.11), we can express the Hamiltonian
density for the quantized field as

Ĥ = π̂
˙̂
φ− L̂ =

˙̂
φ

2

c2
− L̂ =

1
2

[
∇φ̂ ·∇φ̂+ c2π̂2 +

(mc
~

)2

φ̂2

]
.

Using the expansion for the operators φ̂ and π̂

φ̂(r, t) =
1√
V

∑
k

q̂k(t) e ik·r

and
π̂(r, t) =

1√
V

∑
k

p̂k(t) e−ik·r ,

the Hamiltonian for the quantized field can be expressed as

Ĥ ≡
∫
Ĥ dτ =

1
2

∑
k

[
c2p̂k(t) p̂†k(t) +

ω2
k

c2
q̂k(t) q̂†k(t)

]
, (14.5.11)

where we have used the orthonormality of plane wave functions [see footnote 5] and put

k2 +
(mc

~

)2

≡ ω2
k

c2
,

which is easily recognized as the relativistic energy momentum relation

E2
k ≡ ~2ω2

k = c2~2k2 +m2c4.



SECOND QUANTIZATION 513

If we introduce new operators âk and â†k by

q̂k =
(

~c2

2ωk

)1/2 (
âk + â†−k

)
(14.5.12)

and p̂k =
(

~ωk
2c2

)1/2

i
(
â†k − â−k

)
, (14.5.13)

the Hamiltonian of the field can be written as

Ĥ =
∑
k

~ωk
2

(
â†kâk + âkâ

†
k

)
. (14.5.14)

In arriving at this form for the Hamiltonian, we have used the identities∑
k

â†kâ
†
−k =

∑
k

â†−kâ
†
k ,

∑
k

â−kâk =
∑
k

âkâ−k

∑
k

â†kâk =
∑
k

â†−kâ−k ,
∑
k

â−kâ
†
−k =

∑
k

âkâ
†
k .

The Number Representation

The commutation relations (14.5.9) and (14.5.10) for the field operator q̂k(t) and p̂k(t) lead
to the following commutation relations for the operators âk and â†k

[âk, âk′ ] = 0 =
[
â†k, â

†
k′

]
& (14.5.15)

and
[
âk, â

†
k′

]
= δk,k′ . (14.5.16)

In view of these commutation relations we may write the field Hamiltonian as

Ĥ =
∑
k

~ωk
(
N̂k +

1
2

)
(14.5.17)

where N̂k ≡ â†k âk is a Hermitian operator. From the commuation relations for the operators
âk and â†k, the following relations can be established[

âk , N̂k

]
= âk , (14.5.18)[

â†k , N̂k

]
= − â†k , (14.5.19)

and
[
N̂k , N̂k′

]
= 0 . (14.5.20)

These are precisely the commutation relations obeyed by the operators for a linear oscillator
[Chapter 5, Sec. 5.4]. We also encountered these relations in Chapter 13 in the discussion
of quantized electromagnetic field. These operators, therefore, have the same interpretation
as the corresponding operators for the linear oscillator. Thus N̂k is the number operator
for (field) quanta of momentum ~k with integer eigenvalues 0, 1, 2, 3 · · · , and âk and â†k
are, respectively, the annihilation and creation operators for field quanta of momentum
~k. Since the set of Hermitian operators N̂k forms a set of commuting observables, we
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can characterize the field states by the eigenvalues {nk} ≡ nk1 , nk2 , · · · , nk , · · · , of the
number operators N̂k1 , N̂k2 , · · · , N̂k , · · · , as∣∣Ψ{nk}

〉 ≡ |{nk}〉 = |nk1 , nk2 , · · · , nk , · · ·〉 . (14.5.21)

For this state

N̂k |nk1 , nk2 , · · · , nk , · · · 〉 = nk |nk1 , nk2 , · · · , nk , · · · 〉 , (14.5.22)
âk |nk1 , nk2 , · · · , nk , · · · 〉 =

√
nk |nk1 , nk2 , · · · , (nk − 1) , · · · 〉 , (14.5.23)

â†k |nk1 , nk2 , · · · , nk , · · · 〉 =
√
nk + 1 |nk1 , nk2 , · · · , (nk + 1) , · · · 〉 . (14.5.24)

The total energy of the field in this state is given by

Ĥ
∣∣Ψ{nk}

〉
=
∑
k

Ĥk
∣∣Ψ{nk}

〉
=
∑
k

~ωk
(
N̂k +

1
2

)
|nk1 , nk2 , · · · , nk , · · ·〉

=
∑
k

~ωk
(
nk +

1
2

) ∣∣Ψ{nk}
〉
. (14.5.25)

The eigenvalue of the total linear momentum for this state is
∑
k

~knk We can thus

look upon |Ψ〉 as the eigenstate of the field in which there are nk1 particles (quanta)
with energy ~ωk1 and momentum ~k1, nk2 particles with energy ~ωk2 and momentum
~k2 and so on. The state in which all occupation numbers are zero

∣∣Ψ{0} 〉 ≡
|nk1 = 0, nk2 = 0 , · · · , nk = 0 · · · 〉 is called the vacuum state. Any annihilation operator
acting on this state results in zero:

âki
∣∣Ψ{0} 〉 = 0 . (14.5.26)

All other states can be generated from this by operating with appropriate powers of various
creation operators. Thus, for example,

|0k1 , 0k2 , · · · , nk, · · · 〉 =
â†nk

k√
nk!
|0k1 , 0k2 , 0k, · · · 〉 . (14.5.27)

For the matrix elements in these basis states |{nk}〉, we have

〈{nk}| N̂k |{n′k}〉 = nk δn′k1
n′k1

δnk2 n
′
k2
, · · · , δnk , n′k

· · · , (14.5.28)

〈{nk}| â†k |{n′k}〉 =
√
nk + 1 δnk1 n

′
k1
δnk2 n

′
k2
· · · δnk (n′k +1) · · · , (14.5.29)

and 〈{nk}| âk |{n′k}〉 =
√
n′k δnk1 n

′
k1
δnk2 n

′
k2
· · · δnk (n′k−1) · · · . (14.5.30)

The occupation number nk and n′k can have any integer value 0, 1, 2, · · ·∞. This field
corresponds to particles (or field quanta) which obey Bose statistics.

14.6 Quantization of Complex Scalar (KG) Field

With the Lagrangian density (14.4.9) for a complex scalar field φ and the field variables
π and π∗ canonically conjugate to φ and φ∗ given by Eqs. (14.4.10) and (14.4.11), the
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Hamiltonian density and the Hamiltonian take the form

H = πφ̇ + π∗φ̇∗ − L = c2π∗ π +∇φ∗ ·∇φ +
(mc

~

)2

φ∗ φ , (14.6.1)

H =
∫
H dτ =

∫ [
c2π∗π +

3∑
k=1

∂φ∗

∂xk

∂φ

∂xk
+
(mc

~

)2

φ∗ φ

]
dτ . (14.6.2)

Separating the complex field φ into its real and imaginary part by writing

φ =
1√
2

(φ1 − iφ2) (14.6.3a)

and φ∗ =
1√
2

(φ1 + iφ2) , (14.6.3b)

where φ1 and φ2 are real functions, and using it in the expression for the Lagrangian density
(14.4.9) we find that the Euler-Lagrange equations yield the following field equations for φ1

and φ2 [
∂

∂xµ

∂

∂xµ
−
(mc

~

)2
]
φ1 = 0 (14.6.4a)

and
[
∂

∂xµ

∂

∂xµ
−
(mc

~

)2
]
φ2 = 0 . (14.6.4b)

Thus φ1 and φ2 also satisfy the KG equation. Fields φ1(r, t) and φ2(r, t) can be expanded
in terms the complete set of orthonormal set of functions uk = 1√

V
eik·r [see footnote 5] as

φ1(r, t) =
1√
V

∑
k

√
~c2
2ωk

[
a1k e

i(k·r−ωkt) + a∗1k e
−i(k·r−ωkt)

]
(14.6.5a)

and φ2(r, t) =
1√
V

∑
k

√
~c2
2ωk

[
a2k e

i(k·r−ωkt) + a∗2k e
−i(k·r−ωkt)

]
, (14.6.5b)

where
ω2
k

c2
= k2 +

(mc
~

)2

or ~2ω2
k ≡ E2 = c2p2 + m2c4 . (14.6.5c)

Here ωk determined by the last relation ensures that both φ1 and φ2 explicitly satisfy the
Klein-Gordon equation. Using these expressions for φ1 and φ2 in Eq. (14.6.3), we find the
complex fields φ and φ∗ are given by

φ(r, t) =
1√
V

∑
k

√
~c2
2ωk

[
ak e

i(k·r−ωkt) + b∗k e
−i(k·r−ωkt)

]
(14.6.6a)

and φ∗(r, t) =
1√
V

∑
k

√
~c2
2ωk

[
a∗k e

−i(k·r−ωkt) + bk e
i(k·r−ωkt)

]
, (14.6.6b)

where ak =
1√
2

(a1k − ia2k) and bk =
1√
2

(a1k + ia2k) . (14.6.6c)

Conjugate field variables π and π∗ given by Eqs. (14.4.10) and (14.4.11) can then be written
as

π(r, t) =
φ̇∗

c2
=

1√
V

i

c

∑
k

√
~ωk

2

(
a∗k e

−i (k·r−ωkt) − bk e
i (k·r−ωkt)

)
, (14.6.7a)

π∗(r, t) =
φ̇

c2
= − 1√

V

i

c

∑
k

√
~ωk

2

(
ak e

i (k.r−ωkt) − b∗k e
−i (k·r−ωkt)

)
. (14.6.7b)
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Substituting the field expansions given by Eqs. (14.6.6) and (14.6.7) in Eq. (14.6.2), we find
the Hamiltonian is given by

H =
1
V

∫
d3r

∑
k

∑
k′

{(
ωkωk′~2

4

)1/2 (
ak e

ikx − b∗k e
−ikx) (a∗k′ e−ik′x − bk′ e

ik′x
)

+
~c2k · k′√

4ωkωk′
(
a∗k e

−ikx − bk e
ikx
) (

ak′ e
ik′x − b∗k′ e

−ik′x
)

+
~c2

(
mc
~
)2

√
4ωkωk′

(
a∗k e

−ikx + bk e
ikx
) (

ak′ e
ik′x + b∗k′ e

−ik′x
)}

,

where kx ≡ k.r − ωkt , k ≡
(
k , iωk

c

)
and x ≡ (r , ict). Carrying out the spatial

integration with the help of the following results

1
V

∫
ei (k±k′)·r d3r = δk,∓k′ =

1
V

∫
e−i (k±k′)·r d3r

and using the fact that ωk′ = ωk for k′ = ±k, we obtain

H =
∑
k

∑
k′

δk,k′

[(
~(ωkωk′ + c2k · k′)√

4 ωk ωk′

)
(ak a∗k′ + b∗k bk′)

+

(
mc
~
)2 ~c2√

4 ωk ωk′
(a∗k ak′ + bk b

∗
k′)

]
(14.6.8)

where the cross terms, involving the integrals

1
V

∫
d3r e±i (k±k′)·r = δk,−k′

give zero contribution because the factor
(
ω2
k

c2 − k2 − (mc~
)2) from Eq. (14.6.5c) vanishes.

On simplifying Eq. (14.6.8), we get

H =
∑
k

~ωk [ak a∗k + b∗k bk] . (14.6.9)

To quantize the complex scalar field we treat the field quantities φ(r, t) and π(r, t) as
operators and impose the commutation relations[

φ̂(r, t) , π̂(r′, t)
]

= i~ δ3(r − r′) , (14.6.10a)

and
[
φ̂(r, t) , φ̂(r′, t)

]
= [π̂(r, t) , π̂(r′, t)] = 0 . (14.6.10b)

The quantized nature of the fields requires that the coefficients ak, bk , a
∗
k, b
∗
k also be

operators. As usual, we denote the corresponding operators using the same symbols with a
caret âk, b̂k , â

†
k, b̂
†
k. Their commutation relations follow from Eq. (10.6.10).

Using the operator versions of Eqs. (14.6.6) and (14.6.7) and the expansion for the delta
function [see footnote 5] in Eq. (14.6.10a), we obtain∑

k

∑
k′

iωk′/c
2

(4ωkωk′/~2c4)1/2

1
V

{[
âk, â

†
k′

]
ei (k·r−k′·r′)

+
[
b̂k′ , b̂

†
k

]
e−i (k·r−k′·r′) −

[
âk, b̂k′

]
ei (k′·r′+k·r)

+
[
b†k, a

†
k′

]
e−i (k′·r′+k·r)

}
= i~

1
V

∑
k

e ik·(r−r
′). (14.6.11)
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This equation, together with a similar equation resulting from Eq. (10.6.10b), yields the
following commutation relations for operators âk , â

†
k , b̂k, and b̂†k[

ak , â
†
k′

]
=
[
b̂k , b̂

†
k′

]
= δk,k′ (14.6.12)[

âk , b̂k′
]

=
[
â†k′ , b̂

†
k

]
= 0. (14.6.13)

As a result of the field quantization, the Hamiltonian operator becomes

Ĥ =
∑
k

~ωk
(
âk â

†
k + b̂†k b̂k

)
. (14.6.14)

If we introduce Hermitian operators N̂ (+)
k = â†k âk and N̂

(−)
k = b̂†k b̂k, then with the help

of Eqs. (14.6.12) and (14.6.13), the following commutation relation can be established[
âk , N̂

(+)
k

]
= âk , (14.6.15)[

â†k , N̂
(+)
k

]
= −â†k , (14.6.16)[

b̂k , N̂
(−)
k

]
= b̂k , (14.6.17)[

b̂†k , N̂
(−)
k

]
= −b̂†k , (14.6.18)

and
[
b†k , N̂

(+)
k

]
=
[
b̂k , N̂

(+)
k

]
=
[
âk , N̂

(−)
k

]
=
[
â†k , N̂

(−)
k

]
= 0 , (14.6.19)[

N
(+)
k , N̂

(−)
k

]
= 0 . (14.6.20)

A comparison of these commutation relations with those for a linear oscillator shows that
N̂

(+)
k is number operator with eigenvalues 0, 1, 2, 3, · · · and âk and â†k are the corresponding

annihilation and creation operators. Similarly, N̂
(−)
k is also a number operator with

eigenvalues 0, 1, 2, · · · and b̂k and b̂†k are the corresponding annihilation and creation
operators. With the help of commutation relations (14.6.12), the Hamiltonian can be
written in terms of number operators as

Ĥ =
∑
k

Ĥk =
∑
k

~ωk
(
N̂

(+)
k + N̂

(−)
k + 1

)
. (14.6.21)

Charge Operator and Number Operators N̂ (+)
k and N̂

(+)
k

From Eq. (14.4.19) and the definition of π and π∗ from Eqs. (14.4.10) and (14.4.11), the
total charge of the complex scalar field is given by

Q =
∫

ρ dτ =
1
~
ie

c2

∫ (
φ∗

∂φ

∂t
− ∂φ∗

∂t
φ

)
dτ = (− ie /~)

∫
(πφ− π∗φ∗) d3r .

Using the expansions (14.6.6) and (14.6.7) for φ and π we get

Q = e
∑
k

(a∗k ak − b∗k bk) . (14.6.22)

For a quantized field, this leads to the total charge operator

Q̂ = e
∑
k

[
â†k âk − b̂†(k) b̂(k)

]
= e

∑
k

[
N

(+)
k − N

(−)
k

]
. (14.6.23)
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It follows from this equation that N (+)
k may be interpreted as the number operator for field

quanta (particles) with charge e and momentum ~k and energy ~ωk. Using the commuting
set of observables N (+)

k and N
(−)
k , we can specify the state of the field by specifying the

number of quanta of charge e and −e for each value of momentum ~k

∣∣∣{n(+)
k , n

(−)
k }

〉
=
∣∣∣n(+)
k1
, n

(−)
k1

; n(+)
k2

n
(−)
k2

; n(+)
k3
, n

(−)
k3
· · ·
〉
,

where n(±)
k denotes the number of particles in the field with charge ±e and momentum ~k,

so that

Ĥ
∣∣∣{n(+)

k , n
(−)
k }

〉
≡
∑
k

~ωk
(
N̂

(+)
k + N̂

(−)
k + 1

) ∣∣∣{n(+)
k , n

(−)
k }

〉
=
∑
k

~ωk
(
n

(+)
k + n

(−)
k + 1

) ∣∣∣{n(+)
k , n

(−)
k }

〉

and

Q̂
∣∣∣{n(+)

k , n
(−)
k }

〉
= e

∑
k

(
n

(+)
k − n

(−)
k

) ∣∣∣{n(+)
k , n

(−)
k }

〉
.

With the help of commutation relations (14.6.15) to (14.6.18), one can check the following
relations

Q̂ â†k

∣∣∣{n(+)
k , n

(−)
k }

〉
= e

∑
k

(
n̂

(+)
k + 1 − n̂

(−)
k

)
â†k

∣∣∣{n(+)
k , n

(−)
k }

〉
,

Q̂ âk

∣∣∣{n(+)
k , n

(−)
k }

〉
= e

∑
~k

(
n̂

(+)
k − 1 − n̂

(−)
k

)
âk

∣∣∣{n(+)
k , n

(−)
k }

〉
,

Q̂ b̂†k

∣∣∣{n(+)
k , n

(−)
k }

〉
= e

∑
k

(
n̂

(+)
k − 1− n̂

(−)
k

)
b̂†k

∣∣∣{n(+)
k , n

(−)
k }

〉
,

Q̂ b̂k

∣∣∣{n(+)
k , n

(−)
k }

〉
= e

∑
~k

(
n̂

(+)
k + 1 − n̂

(−)
k

)
b̂k

∣∣∣{n(+)
k , n

(−)
k }

〉
.

Similarly, one can also check the following relations

Ĥk â
†
k

∣∣∣{n(+)
k , n

(−)
k }

〉
= ~ωk

(
n

(+)
k + n

(−)
k + 2

)
â†k

∣∣∣{n(+)
k , n

(−)
k }

〉
, (14.6.24)

Ĥk âk

∣∣∣{n(+)
k , n

(−)
k }

〉
= ~ωk

(
n

(+)
k + n

(−)
k

)
âk |Ψ〉 , (14.6.25)

Ĥk b̂
†
k

∣∣∣{n(+)
k , n

(−)
k }

〉
= ~ωk

(
n

(+)
~k

+ n
(−)
k + 2

)
b̂k

∣∣∣{n(+)
k , n

(−)
k }

〉
, (14.6.26)

and Ĥk b̂k

∣∣∣{n(+)
k , n

(−)
k }

〉
= ~ωk

(
n

(+)
k + n

(−)
k

)
b̂k

∣∣∣{n(+)
k , n

(−)
k }

〉
. (14.6.27)

These relations explicitly demonstrate that â†k and âk may be regarded as creation and
annihilation operators, respectively, for particles of charge +e, momentum p = ~k and
energy ~ωk. Similarly, b̂†k and b̂k may be regarded as creation and annihilation operators,
respectively, for particles of charge −e, momentum ~k and energy ~ωk.
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14.7 Dirac Field and Its Quantization

The Lagrangian density (14.4.22) that leads to the correct field equations for the Dirac field
is given by

L = −ψ̃
(
c~ γρ

∂

∂xρ
+ mc2

)
ψ = c~

∂ψ̃

∂xρ
γρψ −mc2 ψ̃ψ , (14.4.22*)

where sum over repeated indices is implied and each one of the four components of ψ is to
be regarded as an independent field variable. It follows from π = ∂ L

∂ψ̇
, that each component

πs = ∂L
∂ψ̇s

= i~ψ†s of π is to be regarded as a field variable canonically conjugate to ψs.
From the Lagrangian density (14.4.22), we obtain the Hamiltonian density

H =
∂L
∂ψ̇

ψ̇ − L =
∑
s

πs
∂ψs
∂t
− L

= i~
(
ψ†

∂ψ

∂t
− ic ψ̃γ4

∂ψ

∂(ict)
− icψ̃γk

∂ψ

∂xk

)
+ mc2 ψ̃ψ

= ψ†
(
cα · p + βmc2

)
ψ . (14.7.1)

This leads to the Hamiltonian

H =
∫
H d3r =

∫
d3r [ψ†

(
cα · p + βmc2

)
ψ] . (14.7.2)

We now make a Fourier expansion of the Dirac field as

ψ(r, t) =
1√
V

∑
p

4∑
ν=1

√
mc2

|Ep| b
(ν)
p (t) u(ν)(p) ei p·r/~ (14.7.3)

and ψ†(r, t) =
1√
V

∑
p

4∑
ν=1

√
mc2

|Ep| b
(ν)∗
p (t) u(ν)†(p) e−ip·r/~ , (14.7.4)

where the time dependence of the field is contained in the coefficients b(ν)
p (t) and b

(ν)∗
p (t)

and u(ν)(p) and u(ν)†(p) represent Dirac spinors with u(1)(p) and u(2)(p) characterizing
the positive energy states and u(3) and u(4) characterizing the negative energy states. Note
that uν(p) is a column matrix while its adjoint denoted by u(ν)†(p) is a row matrix. Then
the Hamiltonian for Dirac field becomes

H =
∫

ψ† (−i~cα ·∇ + γ4mc
2) ψ d3r

=
1√
V

∫
d3r

∑
p

∑
p′

4∑
ν=1

4∑
ν′=1

(√
mc2

|Ep| b
ν∗
p u(ν)†(p) e−ip·r/~

)
(−i~cα ·∇ + γ4mc

2
) (√mc2

|Ep′ | b
(ν′)
p′ u

(ν′)
p′ eip

′·r/~

)
or H =

∑
p

∑
ν

Eνp b(ν)∗
p b(ν)

p . (14.7.5)
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Here Eνp = +|Ep| for ν = 1, 2 and = −|Ep| for ν = 3, 4 and where E2
p = c2p2 + m2c4. In

arriving at Eq. (14.7.5), we have used the identities

1
V

∫
d3r e−i(p−p

′)·r/~ = δp,p′ (14.7.6)

and u(ν)†(p) u(ν′)(p) =
|Ep|
mc2

δνν′ . (14.7.7)

With ψ† and ψ given by Eqs. (14.7.3) and (14.7.4), the total charge of the Dirac field is
given by

Q ≡ e

∫
d3r ψ† ψ = e

∑
p

∑
p′

4∑
ν=1

4∑
ν′=1

mc2√|Ep||Ep′| b(ν)∗
p b(ν)

p u(ν)†(p)u(ν′)(p′)

× 1
V

∫
e−i (p−p′)·r/~ d3r ,

= e
∑
p

4∑
ν=1

b(ν)∗
p b(ν)

p , (14.7.8)

where, once again, we have used the identities (14.7.6) and (14.7.7).
To quantize the Dirac field, we treat the field variables ψ(r, t) and ψ̃(r, t) as operators

which implies that the Fourier expansion coefficients are also operators. Denoting the
corresponding operators by the same symbol with a caret, the Hamiltonian operator of the
field can be written as

Ĥ =
∑
p

4∑
ν=1

Eνp b̂(ν)†
p b̂(ν)

p , (14.7.9)

where Eνp =


+ |Ep| if ν = 1, 2

− |Ep| if ν = 3, 4.

The total charge operator of the field can be written as

Q = e
∑
p

∑
ν

b̂(ν)†
p b̂(ν)

p . (14.7.10)

The operator
N̂ (ν)
p = b̂(ν)†

p b̂(ν)
p , (14.7.11)

can be looked upon as the number operator and b̂(ν)†
p and b̂(ν)

p can be looked upon as creation
and annihilation operators for the Dirac field. If we prescribe the same commutation
relations for them as we did for the KG field, we cannot satisfy the Pauli exclusion principle
according to which, since the quanta of Dirac field are Fermions, the number operator N̂ (ν)

p

can have only two eigenvalues 0 and 1. The way out of this dilemma is to prescribe anti-
commutation relations. Explicitly 〈np| N̂ (ν)

p

∣∣n′p〉 = np δnp,n′p
where np = 0 or 1. So in the

occupation number representation, N̂ (ν)
p can be represented by

(
0 0
0 1

)
. This implies that

b̂
(ν)†
p and b̂(ν)

p can also be represented by 2× 2 matrices
(

0 0
1 0

)
and

(
0 1
0 0

)
, respectively.

This representation yields anti-commutation relations for b̂(ν)†
p and b̂

(ν)
p ,[

b̂(ν)†
p , b̂(ν)

p

]
+

=
(
b̂(ν)†
p b̂(ν)

p + b̂(ν)
p b̂(ν)†

p

)
= 1̂ (14.7.12)
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b̂(ν)†
p , b̂

(ν′)
p′

]
+

= 1̂ δp,p′ δνν′ (14.7.13)

[
b̂(ν)
p , b̂(ν

′)
p

]
+

=
[
b̂(ν)†
p , b̂(ν

′)†
p

]
+

= 0. (14.7.14)

These anti-commutation relations lead to the interpretation of the operators b̂†p and b̂p as
the creation and annihilation operator, respectively, for the quanta of Dirac field. We can
justify this interpretation with the help of identities

N̂ (ν)
p b̂(ν)†

p = b̂(ν)†
p

(
1̂− N̂ (ν)

p

)
(14.7.15)

and N̂ (ν)
p b̂(ν)

p = b̂(ν)
p

(
1̂− N̂ (ν)

p

)
, (14.7.16)

which follow from the anti-commutation relations (14.7.12) through (14.7.14). Now consider
the field state

∣∣∣n(ν)
p = 1

〉
in which there is an electron with momentum p and spin and sign

of energy indicated by ν. Also consider a field state
∣∣∣n(ν)
p = 0

〉
in which there is no electron

with the above specification. Using the identities we can verify the following equations

N̂ (ν)
p b̂(ν)†

p

∣∣∣n(ν)
p = 0

〉
= b(ν)†

p

∣∣∣n(ν)
p = 0

〉
(14.7.17)

N̂ (ν)
p b̂(ν)†

p

∣∣∣n(ν)
p = 1

〉
= 0 (14.7.18)

N̂ (ν)
p b̂(ν)

p

∣∣∣n(ν)
p = 1

〉
= 0 (14.7.19)

N̂ (ν)
p b̂(ν)

p

∣∣∣n(ν)
p = 0

〉
= 0. (14.7.20)

We can interpret Eq. (14.7.17) to mean that b̂
(ν)†
p

∣∣∣n(ν)
p = 0

〉
≡
∣∣∣n(ν)
p = 1

〉
and for this

state N̂ (ν)
p has eigenvalue one. Hence b̂

(ν)†
p is the creation operator for the electron with

momentum p and spin and sign of energy given by ν. Similarly, Eq. (14.7.18) can be
interpreted to mean that b̂(ν)†

p |np = 1〉 is a null state in accordance with the Pauli exclusion
principle which forbids another (identical) Fermion in the same state. Equation (14.7.19)
means that the state of the field b̂

(ν)
p

∣∣∣n(ν)
p = 1

〉
≡
∣∣∣n(ν)
p = 0

〉
. Hence N̂ (ν)

p operating on

this state gives zero. So b̂
(ν)
p may be regarded as annihilation operator for the electron with

the specification mentioned above. Finally, Eq. (14.7.20) can be interpreted to mean that
b̂
(ν)
p

∣∣∣n(ν)
p = 0

〉
is a null state, since b̂

(ν)
p cannot destroy a particle if it did not exist in the

original state. For a general field state
∣∣∣· · · , n(ν)

p , · · ·
〉

the application of these operators
gives the following results

b̂(ν)†
p

∣∣∣· · · , n(ν)
p = 1 , · · ·

〉
= 0

b̂(ν)†
p

∣∣∣· · · , n(ν)
p = 0 , · · ·

〉
=
∣∣∣· · · , n(ν)

p = 1 , · · ·
〉

b̂(ν)
p

∣∣∣· · · , n(ν)
p = 1 , · · ·

〉
=
∣∣∣· · · , n(ν)

p = 0 , · · ·
〉

b̂(ν)
p

∣∣∣· · · , n(ν)
p = 0 , · · ·

〉
= 0 .
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From these relations we have, for the number operator N̂ (ν)
p ≡ b̂(ν)†

p b̂
(ν)
p ,

b̂(ν)†
p b̂(ν)

p

∣∣∣n(ν)
p = 1

〉
=
∣∣∣n(ν)
p = 1

〉
and b̂(ν)†

p b̂(ν)
p

∣∣∣n(ν)
p = 0

〉
= 0 .

The anti-commutation relations for the field operators b̂
(ν)
p and b̂

(ν)†
p lead to anti-

commutation relations for Dirac field operators[
ψ̂ν(r, t) , ψ†ν′(r

′, t)
]

+
= i~ δ3(r − r′) δνν′ (14.7.21)

and [ψν(r, t) , ψν′(r′, t)]+ =
[
ψ†ν(r, t) , ψ†ν′(r

′, t)
]

+
= 0 . (14.7.22)

The Pauli exclusion principle for the field quanta is thus guaranteed if we prescribe anti-
commutation relations, instead of commutation relations, for the field operators.

The time dependence of the operators b̂
(ν)†
p and b̂

(ν)
p can be inferred from Heisenberg

equations of motion

db̂
(ν)
p

dt
=

i

~

[
Ĥ , b̂(ν)

p

]
=


− i |E|

~ b̂
(ν)
p for ν = 1, 2

i |E|
~ b̂

(ν)
p for ν = 3, 4

db̂
(ν)†
p

dt
=

i

~

[
Ĥ , b̂(ν)†

p

]
=


i |E|

~ b̂
(ν)†
p for ν = 1, 2

− i|E|
~ b̂

(ν)†
p for ν = 3, 4.

These equations imply that

b̂(ν)
p (t) = b(ν)

p (t = 0) e∓i |E| t/~ (14.7.23)

and b̂(ν)†
p (t) = b̂(ν)†

p (t = 0) e±i |E| t/~ , (14.7.24)

where the upper sign is for ν = 1, 2 and lower for ν = 3, 4. Then the expansions for the
field operators ψ̂(r, t) and ψ̂†(r, t) (Eqs. (14.7.3) and (14.7.4)) may be rewritten as

ψ̂(r, t) =
1√
V

∑
p

√
mc2

|E|

{
1,2∑
ν

b̂(ν)
p (0)u(ν)(p) exp [i (p · r − |E|t)/~]

+
3,4∑
ν

b̂(ν)
p (0)u(ν)(p) exp [i (p · r + |E|t)/~]

}
(14.7.25)

and ψ̂†(r, t) =
1√
V

∑
p

√
mc2

|E|

{
1,2∑
ν

b̂(ν)†
p (0)u(ν)†(p) exp [−i (p · r − |E|t)/~]

+
3,4∑
ν

b̂(ν)†
p (0)u(ν)†(p) exp [−i (p · r + |E|t)/~]

}
. (14.7.26)

14.8 Positron Operators and Spinors

It is desirable to have a formulation of Dirac field in which the free particle energy is always
positive, while the total charge Q can be negative or positive, depending on whether there
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are excess electrons or positrons in the field. For this we introduce the operators b̂(s)p and
d̂

(s)
p and their adjoints, b̂(s)†p and d̂

(s)†
p , with s = 1, 2 in place of the operators b̂(ν)

p and b̂
(ν)†
p

with ν = 1, 2, 3, 4, such that

b̂(s)p = b̂(ν)
p for s = ν = 1, 2 (14.8.1)

and d̂(s)†
p =

{
−b̂(ν)
−p

b̂
(ν)
−p

for s = 1, ν = 4
for s = 2, ν = 3 . (14.8.2)

We also introduce the electron and positron spinors u(s)(p) and v(s)(p), s = 1, 2, such that

u(s)(p) = u(ν)(p) for s = ν = 1, 2 (14.8.3)

and v(s)(p) =

{
−u(ν)(−p) for s = 1, ν = 4
u(ν)(−p) for s = 2, ν = 3 .

(14.8.4)

The underlying idea is that annihilation of a negative energy electron with momentum
−p and spin down (ν = 4) by the operator b̂(4)

−p, is equivalent to the creation of a positron

with momentum +p and spin up (s = 1) by the operator d̂(1)†
p . Likewise the destruction of

a negative energy electron with spin up (ν = 3) and momentum −p by the operator b̂(3)
−p

can be interpreted as creation of a positron with spin down (s = 2), momentum +p and
positive energy by the operator d̂(2)†

p . The spinors v(s)(p) represent the state of the positron
with spin up (with s = 1) or spin down (with s = 2). These correspond, respectively, to
the states uν(−p) of the electron with negative energy, momentum −p, and spin down (
ν = 4) or spin up (ν = 3), whose absence in the continuum of negative energy states can
be interpreted as the positron.

The spinors u(s)(p) and v(s)(p) also conform to the definition of the charge conjugation
operator Sc(≡ γ2 = −iβα2), such that

Sc u
(s)∗(p) = v(s)(p) (14.8.5)

and Sc v
(s)∗(p) = u(s)(p) , (14.8.6)

as is easily verified6. We can also see that the operators d̂(s)
p and d̂

(s)†
p satisfy the same

anti-commutation relations as b̂(ν)
p and b̂

(ν)†
p . Thus[

d̂(s)
p , d̂

(s′)†
p′

]
+

= 1̂ δss′ δpp′ , (14.8.7)[
d̂(s)
p , d̂

(s′)
p′

]
+

=
[
d̂(s)†
p , d̂

(s′)†
p′

]
+

= 0 , (14.8.8)

just as
[
b̂(ν)
p , b̂

(ν′)†
p′

]
+

= 1̂ δνν′ δpp′ , (14.8.9)

and
[
b̂(ν)
p , b̂

(ν′)
p′

]
+

=
[
b̂(ν)†
p , b̂

(ν′)†
p′

]
+

= 0 . (14.8.10)

Further,[
b̂(s)p , d̂

(s′)
p′

]
+

=
[
b̂(s)†p , d̂

(s′)†
p′

]
+ =

[
b̂(s)†p , d̂

(s′)
p′

]
+

=
[
b̂(s)p , d̂

(s′)†
p′

]
= 0. (14.8.11)

6With Sc = γ2 =

0BB@
0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

1CCA, and u(1) = u+
↑ , u(2) = u+

↓ , u
(3) = u−↑ and u(4) = u−↓ given by

Eqs. (12.4.16), (12.4.17), (12.4.20) and (12.4.21), [see Sec. 12.4 ] and v(s)(p) , u(s)(p) defined by Eqs.
(14.8.3) and (14.8.4), one can check that Sc u(s=1)∗(p) = −u(ν=4)(−p) = v(s=1)(p); Sc u(s=2)∗(p) =
u(ν=3)(−p) = v(s=2)(p) ; Sc v(s=1)∗(p) = u(s=1)(p); Sc v(s=2)∗(p) = u(s=2)(p).
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14.8.1 Equations Satisfied by Electron and Positron Spinors

Column matrices u(s)(p) and v(s)(p) may be looked upon as the electron and positron
spinors, respectively. With the substitutions ψ = u(s)(p) ei pµxµ/~ and ψ̃ = ũ(s)(p) e−ipµxµ/~

in the Dirac equation and its adjoint

γλ
∂ψ

∂xλ
+
mc

~
ψ = 0 and

∂ψ̃

∂xλ
γλ − mc

~
ψ̃ = 0 ,

we find that electron spinors u(s)(p) and ũ(s)(p) = u(s)†(p) γ4 satisfy the equations

(iγλ pλ + mc) u(s)(p) = 0 (14.8.12)

and ũ(s)(p) (ipλ γλ + mc) = 0 . (14.8.13)

The free positron spinor v(s)(p) satisfies the equation7

(−iγµ pµ + mc) v(s)(p) = 0 . (14.8.14)

Using Eq. (14.8.14) it may be verified that the spinor

ṽ(s)(p) ≡ v(s)†(p) γ4

satisfies the equation
ṽ(s)(p) (−iγµ pµ + mc) = 0 . (14.8.15)

If we choose the normalization8

ũ(s′)(p′) u(s)(p) = δss′ δpp′ (14.8.16)

then it is easy to show that

ṽ(s′)(p′) v(s)(p) = −δss′ δpp′ (14.8.17)

and ṽ(s′)(p′) u(s)(p) = ũ(s′)(p′) v(s)(p) = 0 . (14.8.18)

This can be seen using the charge conjugation relations

u(s)(p) = γ2 v
(s)∗(p) and v(s)(p) = γ2 u

(s)∗(p)

in Eq. (14.8.16), where γ2 = SC is the charge conjugation operator. From the convention
(14.8.16) it follows that

u(s′)†(p′)u(s)(p) = δpp′ δss′
E

mc2
(14.8.19)

and v(s′)†(p′) v(s)(p) = δpp′ δss′
E

mc2
, (14.8.20)

7We have u(s)(p) = γ2 v(s)(p) Now (iγµ pµ + mc) u(s)(p) = 0 implies (iγµ pµ + mc) γ2 v(s)∗(p) = 0.
Taking complex conjugates of both sides, and recalling that γ∗1 = −γ1 , γ∗2 = γ2 , γ∗3 = −γ3 , γ∗4 = γ4 and
p∗1 = p1 , p∗2 = p2 , p∗3 = p3 , p∗4 = −p4 , and using the anti-commutation relations for the gamma matrices,
we get Eq. (14.8.14) [see Sec. 12.11].
8This choice is not unique. One can as well choose the condition

u(s′)†(p′)u(s)(p) = δss′δpp′

in which case ũ(s′)(p′)u(s)(p) = mc2

E
δss′δpp′ .
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where E = +
√
p2 +m2c4. To see this, multiply Eq. (14.8.12) on the left by ũ(s′)(p′)γµ

and Eq. (14.8.13) on the right by γµu(s)(p), add the two equations and simplify to get

ũ(s′)(p′)γµu(s)(p) = − ipµ
mc

ũ(s′)(p′)u(s)(p) .

Substituting µ = 4 in this equation and using Eq. (14.8.16), we obtain Eq. (14.8.19).
Similarly, using the relation u(s)(p) = γ2v

(s)∗(p) in Eq. (14.8.19), we obtain Eq. (14.8.20).

14.8.2 Projection Operators

Projection operators

Λ+ =
−iγµpµ +mc

2mc
(14.8.21)

and Λ− =
iγµpµ +mc

2mc
(14.8.22)

project out, respectively, the electron and positron states. Thus

Λ+ u(s)(p) = u(s)(p) ,

Λ+ v(s)(p) = 0 ,

Λ− v(s)(p) = v(s)(p) ,

Λ− u(s)(p) = 0, s = 1, 2 .

These relations are easily established with the help of Eqs. (14.8.14) and (14.8.15) satisfied
by the free electron and positron spinors. We also note that

Λ+ + Λ− = 1̂ . (14.8.23)

The expansions of the field operators ˆ̃
ψ and ψ̂ now take the form [cf. Eqs. (14.7.25) and

(14.7.26)]

ψ̂(r, t) = ψ̂(+)(r, t) + ψ̂(−)(r, t) (14.8.24)

and ˆ̃
ψ(r, t) = ˆ̃

ψ(+)(r, t) + ˆ̃
ψ(−)(r, t) , (14.8.25)

where

ψ̂(+)(r, t) =
1√
V

∑
p

∑
s=1,2

√
mc2

E

{
b̂(s)p u(s)(p) exp [ i (p · r − Et)/~]

}
, (14.8.26)

ψ̂(−)(r, t) =
1√
V

∑
p

∑
s=1,2

√
mc2

E

{
d̂(s)†
p v(s)(p) exp [−i (p · r − Et)/~]

}
, (14.8.27)

and

ˆ̃
ψ(+)(r, t) =

1√
V

∑
p

∑
s=1,2

√
mc2

E

{
d̂(s)
p ṽ(s)(p) exp [i (p · r − Et)/~]

}
, (14.8.28)

ˆ̃
ψ(−)(r, t) =

1√
V

∑
p

∑
s=1,2

√
mc2

E

{
b̂(s)†p ũ(s)(p) exp [−i (p · r − Et)/~]

}
. (14.8.29)
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We note that ψ̂(+) is linear in electron annihilation operators. It can therefore annihilate an
electron. Likewise ψ̂(−) involves d̂(s)†

p and can create a positron. Similarly, ψ̂(+) involving

d̂
(s)
p and ˆ̃

ψ(−) involving b̂(s)†p can respectively, annihilate a positron and create an electron.

Equal time anti-commutation relations9 satisfied by the field operators ψ̂ and ˆ̃
ψ are[

ψ̂ρ(r, t) , ψ̂λ(r′, t)
]

+
= 0 =

[
ψ̂†ρ(r, t) , ψ̂

†
λ(r′, t)

]
+
,[ ˆ̃

ψρ(r, t) ,
ˆ̃
ψλ(r′, t)

]
+

= 0 .

For ψ̂(x) and ψ̂†(x) we have equal time anti-commutation relation[
ψ̂ρ(r, t) , ψ̂

†
λ(r′, t)

]
+

= δρλ δ
3(r − r′) , (14.8.30)

which gives
[
ψ̂ρ(r, t) ,

ˆ̃
ψλ(r′, t)

]
+

= (γ4)ρλ δ3(r − r′) . (14.8.31)

The Hamiltonian operator Ĥ [Eq. (14.7.9)] of the electron field can now be written as

Ĥ =
∑
p

∑
s=1,2

|E|
{
b̂(s)†p b̂(s)p + d̂(s)†

p d̂(s)
p − 1

}
, (14.8.32)

where anti-commutation relation
[
d̂

(s)
p , d̂

(s′)†
p′

]
+

= δss′ δpp′ has been used. Similarly, the

charge operator [Eq. (14.7.10)] can be written as

Q̂ = e
∑
p

4∑
ν=1

b̂(ν)†
p b̂(ν)

p

= e
∑
p

(∑
s=1,2

b̂(s)†p b̂(s)p +
∑
s=1,2

d̂
(s)
−p d̂

(s)†
−p

)
or Q̂ = e

∑
p

∑
s=1,2

{
b̂(s)†p b̂(s)p − d̂(s)†

p d̂(s)
p + 1

}
, (14.8.33)

where again we have used the anti-commutation relations cited above.
From the expressions for the Hamiltonian and charge operators, we see that we can

interpret d̂(s)†
p dsp as the occupation number for a positive energy positron (s = 1 corresponds

to spin up state and s = 2 to spin down state). Thus we have the number operators for the
electrons and positrons with momentum p and spin defined by s:

b̂(s)†p b̂(s)p = N̂ (e−,s)
p , (14.8.34)

and d̂(s)†
p d̂(s)

p = N̂ (e+,s)
p . (14.8.35)

The expressions for Ĥ and Q̂ are not satisfactory in the sense that if we apply Ĥ (or Q̂)
[Eqs. (14.8.32) and (14.8.33)] to vacuum state we get −∞ (and +∞), respectively. However,

9For t′ 6= t, the commutators or anti-commutators (depending on whether the field quanta are Bosons
or Fermions) are functions of the four vector (x − x′) where x ≡ (r, ict). It is possible to work out the
commutation (or anti-commutation) relations for t′ 6= t in a covariant fashion. These are useful in the
completely covariant formulation of quantum electrodynamics as developed by Tomonaga, Schwinger and
Feynman.
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since only the differences in energy and charge are observable, we can subtract the (infinite)
vacuum contribution and redefine the operators Ĥ and Q̂ as

Ĥ =
∑
p

∑
s=1,2

|E|
[
b̂(s)†p b̂(s)p + d̂(s)†

p d(s)
p

]
(14.8.36)

and Q̂ = e
∑
p

∑
s=1,2

[
b̂(s)†p b̂(s)p − d̂(s)†

p d(s)
p

]
. (14.8.37)

With Ĥ and Q̂ redefined this way, their expectation value for the vacuum state is zero. For
any other state, while the eigenvalue of Ĥ is positive, the eigenvalue of Q̂ can be positive
or negative. This subtraction procedure obviously amounts to redefining the charge density
as

ρ̂ = e ψ̂† ψ̂ − e 〈Ψ0| ψ̂† ψ̂ |Ψ0〉 (14.8.38)

where the expectation value of the charge density for the vacuum state has been subtracted
out.

14.8.3 Electron Vacuum

The vacuum state of the electron field is characterized by the eigenvalues of all number
operators N̂ (e+,s)

p and N̂ (e−,s)
p being equal to zero. It can be checked that the electron field

Hamiltonian given by Eq. (14.8.36) or by

Ĥ =
∑
p

2∑
s=1

|E|
[
N̂ (e−,s)
p + N̂ (e+,s)

p

]
(14.8.39)

does not commute with the charge density operator given by Eq. (14.8.38) or with the
current density operator given by

ĵk = ec ψ̂† αkψ̂ − ec 〈Ψ0| ψ̂† αkψ̂ |Ψ0〉 . (14.8.40)

Therefore, for the vacuum state the charge density or the charge current density at any
point of space at any instant of time is indeterminate.

14.9 Interacting Fields and the Covariant Perturbation Theory

(a) Interaction Picture

Physical phenomena involving fundamental particles can be best described in terms of
interacting quantum fields. For example a system of electrons and photons is described by
the total Hamiltonian

Ĥ = Ĥ0 + ĤI (14.9.1)

where
Ĥ0 = Ĥrad + Ĥel (14.9.2)

is the Hamiltonian of the free radiation field and the free electron field and

ĤI =
∫
HIdτ = −

∫
i e c

ˆ̃
ψγµψ̂ Âµdτ (14.9.3)
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is the interaction between the two basic fields [see Appendix 14A3] and e is the charge of
the electron. In the Schrödinger picture the state of the field |Ψs 〉, at any instant t, is given
by the equation of motion

i~
∂

∂ t
|Ψs(t)〉 = (Ĥ0 + ĤI)|Ψs(t)〉. (14.9.4)

From the Schrödinger picture we can go to the Heisenberg picture by the transformation
|Ψs 〉 → Û |Ψs 〉 =

∣∣ΨH
〉

and F̂ → Û F̂ Û† = F̂H where Û = exp
[
i(Ĥ0 + ĤI)(t− t0)/~

]
, t0

being the initial time. In the Heisenberg picture the state of the field has no time dependence
and the equation of motion for the field operator F̂H is given by [see Sec. 3.8 ]

i~
∂

∂ t
F̂H = [F̂H , Ĥ0 + ĤI ] . (14.9.5)

Thus, in the Heisenberg picture, the field operators ψ̂ (pertaining to the electron field) and
Âµ (pertaining to the radiation field) become time-dependent and satisfy the Heisenberg
equations of motion

dψ̂

dt
=
i

~

[
(Ĥ0 + ĤI), ψ̂

]
(14.9.6)

and
dÂµ
dt

=
i

~

[
(Ĥ0 + ĤI), Âµ

]
, (14.9.7)

which are equivalent to the corresponding field equations[
γµ

{
∂

∂xµ
− ie

~
Âµ

}
+
mc

~

]
ψ̂ = 0 (14.9.8)

and
∂2

∂xν∂xν
Âµ = −µ0ĵµ = −µ0

(
iec

ˆ̃
ψγµψ̂

)
. (14.9.9)

An alternative, called the Interaction Picture or Dirac picture [see Sec. 3.9], is very useful
in the formulation of quantum electrodynamics. In this picture the state

∣∣Ψ(s)(t)
〉

of the
field, pertaining to the Schrödinger picture, is transformed to the state |Ψint(t)〉 in the
interaction picture and an operator O(s) in the Schrödinger picture is transformed to Oint

by the following unitary transformation:

|Ψ(s)(t)〉 → exp
[
iĤ0(t− t0)/~

]
|Ψ(s)(t)〉 = |Ψint(t)〉 , (14.9.10)

and Ô(s) → exp
[
iĤ0(t− t0)/~

]
O(s) exp

[
−iĤ0(t− t0)/~

]
= Ôint(t) , (14.9.11)

where t0 is the initial time. Equation (14.9.11) is equivalent to the operator equation

i~
d

dt
Ôint(t) =

[
Ôint, Ĥ0

]
. (14.9.11a)

Thus, an operator in the interaction picture satisfies interaction-free Heisenberg equation
despite the presence of interaction. If the operator Ô in Eq. (14.9.11) represents the
interaction Ĥ

(s)
I , then in the interaction picture10

Ĥ
(s)
I → exp

[
iĤ0(t− t0)/~

]
Ĥ

(s)
I exp

[
−iĤ0(t− t0)/~

]
≡ Ĥ(int)

I (t) . (14.9.12)

10In Ĥint
I , I as subscript implies interaction part of the Hamiltonian while ‘int’ as superscript implies in

the interaction picture.
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Obviously, the unperturbed Hamiltonian in the interaction picture is the same as that in
the Schrödinger picture. Equation (14.9.10) yields the following equation of motion for the
state |Ψint(t)〉 in the interaction picture

i~
d

dt
|Ψint(t)〉 = Ĥ int

I |Ψint(t)〉 , (14.9.13)

where Ĥ int
I (t) is defined by Eq. (14.9.12).

Thus we see that while the state of the field is time-dependent in the Schrödinger
picture and time-independent in the Heisenberg picture, in the interaction picture, the time
dependence is split into two parts. A part of the time dependence, due to the interaction,
is taken up by the state vector |Ψint(t)〉, while Ĥ int

I (t) retains the residual time dependence
of the interaction [Eq. (14.9.12)]. To see this more formally, we note that the Heisenberg
state

|ΨH〉 = exp[i(Ĥ0 + Ĥi)(t− t0)/~]|ΨS(t)〉
is independent of time. Hence

|Ψint(t)〉 = exp(iĤ0(t− t0)/~)|ΨS〉 = exp
[
−iĤI(t− t0)/~

]
|ΨH〉

has time dependence imparted to it by the interaction. The field operators occurring in
H int
I are time-dependent free-field operators given, not by Eqs. (14.9.8) and (14.9.9), but

by [see Eq. (14.9.11a)]

dψ̂

dt
=
i

~

[
Ĥ0, ψ̂

]
and

dÂµ
dt

=
i

~
[Ĥ0, Âµ] ,

which are equivalent to the corresponding free-field equations(
γµ

∂

∂xµ
+
mc

~

)
ψ̂ = 0 ,

and
∂2

∂xν∂xν
Âµ = 0 .

The Schrödinger-like equation in the interaction picture [Eq. (14.9.13)] is better suited for
the description of interacting fields. By transforming away Ĥ0, the interaction picture
focuses on the time dependence induced by the interaction Hamiltonian, which causes
transitions between the eigenstates (field states) of the unperturbed field Hamiltonian.

14.9.1 U Matrix

Let the solution of the equation of motion in the interaction picture [Eq. (14.9.13)] be
formally given by

|Ψint(t)〉 = Û(t, t0)|Ψint(t0)〉 (14.9.14)

where |Ψint(t0)〉 is the state vector in the interaction picture characterizing the state of the
field at some fixed time. Operator Û must satisfy the intial condition Û(t0, t0) = 1̂. Equation
of motion (14.9.14) in the interaction picture is equivalent to the operator differential
equation

i~
d

dt
Û(t, t0) = Ĥ int(t)Û(t, t0) (14.9.15)
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or the integral equation

Û(t, t0) = 1̂− i

~

t∫
t0

Ĥ int
I (t1, t0)Û(t1, t0)dt1 .

The integral equation may be iterated a number of times to obtain a perturbation expansion

Û(t, t0) = 1̂− i

~

t∫
t0

H int
I (t1)dt1

1− i

~

t1∫
t0

Ĥ int
I (t2)Û(t2, t0)dt2

 ,

= 1̂ +
(
− i

~

)∫ t

t0

dt1Ĥ
int
I (t1) +

(
− i

~

)2 ∫ T

t0

dt1Ĥ
int
I (t1)

∫ t1

t0

dt2Ĥ
int
I (t2) + · · ·

+
(
− i

~

)n t∫
t0

dt1

t1∫
t0

dt2 · · ·
tn−1∫
t0

dtn

[
Ĥ int
I (t1)Ĥ int

I (t2) · · · Ĥ int
I (tn)

]
+ · · ·

= Û0(t, t0) + Û1(t, t0) + · · ·+ Ûn(t, t0) + · · · (14.9.16)

where

Ûn(t, t0) =
(
− i

~

)n t∫
t0

dt1

t1∫
t0

dt2. · · ·
∫ tn−1

t0

dtn

[
Ĥ int
I (t1)Ĥ int

I (t2) · · · Ĥ int
I (tn)

]
(14.9.17)

with t ≥ t1 ≥ t2 ≥ · · · ≥ tn−1 ≥ tn ≥ t0. Operator Ûn(t, t0) may also be written as

Ûn(t, t0) =
(
− i

~

)n 1
n!

t∫
t0

dt1

t∫
t0

dt2 · · ·
t∫

t0

dtnP
[
Ĥ int
I (t1)Ĥ int

I (t2) · · · Ĥ int
I (tn)

]
(14.9.18)

where P is Dyson’s chronological [also time ordering] operator which rearranges the product
of operators Ĥ int

I ’s in such a way that operators Ĥ int
i involving later times stand to the left

of those involving earlier times. The factor 1
n! arises because Ûn is completely symmetric

with respect to t1, t2, · · · , tn and so there will be n! ways in which to make this ordering.
As an illustration, consider the second term in the expansion of Û(t, t0)

Û2(t, t0) =
(−i

~

)2
t∫

t0

Ĥ int
I (t1)dt1

t1∫
t0

Ĥ int
I (t2)dt2 ,

which can also be written as

Û2(t, t0) =
(−i

~

)2
t∫

t0

Ĥ int
I (t2)dt2

t2∫
t0

Ĥ int
I (t1)dt1

where t1 and t2 are merely interchanged. Hence Û2(t, t0) may also be written as

Û2(t, t0) =
(−i

~

)2 1
2!

t∫
t0

dt1

t∫
t0

dt2P
[
Ĥ int
I (t1)Ĥ int

I (t2)
]
,
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where

P {Ĥ int
I (t1)Ĥ int

i (t2)} = Ĥ int
I (t1)Ĥ

int

I (t2), if t1 > t2

= Ĥ int
I (t2)Ĥ int

I (t1), if t2 > t1.

This may be generalized to any value of n and hence to any order of expansion of Û(t, t0).
The physical meaning of the operator Û(t, t0) is easy to extract. Let |Ψi〉 = |Ψint(t0)〉 be

the state of the system at time t0 and |Ψint(t)〉 be the state at time t. Then the probability
Pf (t) of finding the system in the final state |Ψf 〉 at time t is given by

Pf (t) = |〈Ψf |Ψint(t)〉 |2 = | 〈Ψf |Û(t, t0)|Ψint(t0)〉 |2
= | 〈Ψf |Û(t, t0)|Ψi〉 |2
= |Ufi(t, t0)|2 (14.9.19)

where Ufi(t, t0) is the matrix element of the operator Û(t, t0) between the initial and final
unperturbed states of the system. The interaction thus causes a transition between the
eigenstates of the unperturbed field Hamiltonian. The field states |Ψi〉 and |Ψf 〉 represent
the eigenstates of the unperturbed field Hamiltonian in the interaction picture. Even if
they represented the states of the unperturbed Hamiltonian in the Schrödinger picture, Ufi
would contain a phase term and Pf (t) would be unaltered.

14.9.2 S Matrix and Iterative Expansion of S Operator

The S operator is defined by

Ŝ = Û(t =∞, t0 = −∞)

which implies that
Sfi = Ufi(t =∞, t0 = −∞) . (14.9.20)

Hence |Sfi|2 may be regarded as the probability of finding the system finally (at t = ∞),
in the state |Ψf 〉 as a result of the interaction, if it was initially (at t = −∞ ) in the state
|Ψi〉.

From the iterative expansion of the U operator we can write down the iterative expansion
of the S operator as

Ŝ = Ŝ(0) + Ŝ(1) + Ŝ(2) + · · ·+ Ŝ(n) · · · , (14.9.21)

where

Ŝ(n) =
(
− i

~

)n 1
n!

∞∫
−∞

dt1

∞∫
−∞

dt2 · · ·
∞∫
−∞

dtnP
[
Ĥ int
I (t1)Ĥ int

I (t2) · · · Ĥ int
I (tn)

]
, (14.9.22)

and P is Dyson time-ordering operator. By expressing the interaction Hamiltonian Ĥ int
I (t)

as
∫ ĤI dτ , where ĤI is the interaction Hamiltonian density, the S operator can be written

in terms of covariant integrals as

Ŝ(n) =
(
−1

~

)n 1
n!

1
cn

∫
d4x1

∫
d4x2 · · ·

∫
d4xnP

[
ĤI(x1)ĤI(x2) · · · ĤI(xn)

]
(14.9.23)

where xn = (rn, ictn) and d4x = d3r c dt and P is Dyson’s time ordering operator, which
reshuffles ĤI ’s in such a way that ĤI ’s involving later times stand to the left of those
involving earlier times.
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For an operator product
[
φ̂(x1)φ̂(x2)φ̂(x3) · · ·

]
involving Boson fields φ̂(x), we have

P
[
φ̂(x1)φ̂(x2)φ̂(x3)

]
= φ̂(x1)φ̂(x2)φ̂(x3), if t1 > t2 > t3

= φ̂(x2)φ̂(x1)φ̂(x3), if t2 > t1 > t3

= φ̂(x3)φ̂(x2)φ̂(x1), if t3 > t2 > t1 .

For an operator product {ψ̂(x1)ψ̂(x2)ψ̂(x3)} involving Fermi fields ψ̂(x), the ordering of
the field operators may involve a change of sign if an odd number of exchanges of the field
operators are required to go from initial order to final order. In this case we introduce
Wick’s time ordering operator T . Thus for an operator product involving three Fermi fields
we have

T
[
ψ̂(x1)ψ̂(x2)ψ̂(x3)

]
= ψ̂(x1)ψ̂(x2)ψ̂(x3) , if t1 > t2 > t3

= −ψ̂(x2)ψ̂(x1)ψ̂(x3) , if t2 > t1 > t3

= ψ̂(x3)ψ̂(x1)ψ̂(x2) , if t3 > t1 > t2 .

For the interaction of the electron-photon fields, the interaction Hamiltonian density,
ĤI = −iec ˆ̃

ψγµψ̂ Âµ is bilinear in Fermi fields. Hence the P product and T product are
identical in this case as only pairs of Fermi fields are involved.

14.9.3 Decomposition of Time-ordered Operator Product in Terms
of Normal Constituents

In order to calculate the transition amplitude from the initial state |i 〉 to the final state
|f 〉 in, say, the n-th order of perturbation theory we need to determine the matrix element
〈f | Ŝn |i 〉. This involves the evaluation of the matrix element of a time-ordered product
T
[
ĤI(x1)ĤI(x2) · · · ĤI(xn)

]
of interaction Hamiltonians. Of the many terms in the

product, only those whose application on the intial state |i 〉 leads to final state |f 〉 would
contribute. For example, if the initial state contains an electron with momentum and spin
(p, s) and a photon with momentum vector and polarization (k, εk) and the final state
contains an electron (p′, s′) and a photon (k′, εk′), then the nonzero contribution to the
transition amplitude comes from those term of Ŝ(n) that contain those annihilation operators
that annihilate the particles in state |i 〉 and those creation operators that subsequently
create the particles leading to the final state |f 〉. In addition, a general term may contain
creation and annihilation operators responsible for the creation and subsequent annihilation
of virtual particles, which are not present in the initial and final states. The contribution
of such terms can be calculated by using the operator commutation (or anti-commutation)
relations to move the annihilation operators to the right so that all annihilation operators
are to the left of creation operators. Such an ordering of operators in which the annihilation
operators are all on the right and creation operators are on the left is called normal ordering.
It is clear that using operator commutation relations, we can write any operator product as a
sum of normal products. Each term in the sum is referred to as a normal constituent (of the
given operator product). Instead of going through tedious algebra of using commutation and
anti-commutation rules each time we calculate a particular term, we can use simple rules
afforded by Wick’s decomposition theorem to express an arbitrary time-ordered product
as a sum of normal constituents. To formulate Wick’s theorem we define the contraction
〈ÂB̂〉0 ≡ 〈Ψ0| ÂB̂ |Ψ0 〉 of two operators Â and B̂ by

T (ÂB̂) ≡ 〈ÂB̂〉0+ : ÂB̂ := 〈Ψ0| ÂB̂ |Ψ0 〉+ : ÂB̂ : , (14.9.24)



SECOND QUANTIZATION 533

where |Ψ0 〉 is the vacuum state and colons enclosing the operator product imply normal
ordering of the operator product. A normal ordered product is either denoted by N̂(· · · ) or
enclosed between two colons. Note that the vacuum expectation value of a normal ordered
product vanishes. The operation of normal ordering of an operator product is distributive

: ÂB̂ + ĈD̂ : = : ÂB̂ : + : ĈD̂ : . (14.9.25)

According to Wick’s theorem an operator product T (ÂB̂ĈD̂ · · · P̂ Q̂) can be written as a
sum of normal constituents as follows. We choose an even number (0,2,4,· · · ) of operator
factors from the given operator product and contract them in pairs. Thus for the product
ÂB̂ there are only two factor pairings, either we choose the pair ÂB̂ or none at all. To each
factor pairing corresponds a normal product, which contains the contractions of paired
operators and unpaired operators arranged in normal order. Then according to Wick’s
theorem

T̂ (ÂB̂ĈD̂ · · · P̂ Q̂) = : ÂB̂ĈD̂ · · · P̂ Q̂ :
+ δP 〈AB〉0 : ĈD̂ · · · P̂ Q̂ : +δP 〈BC〉0 : ÂD̂ · · · P̂ Q̂ :
+δP 〈AC〉0 : B̂D̂ · · · P̂ Q̂ : + · · ·
+ δP 〈ÂB̂〉0〈ĈD̂〉0 : ÊF̂ · · · P̂ Q̂ : + · · · , (14.9.26)

where the sum on the right-hand side includes all possible sets of contractions. The factor
δP is +1 or −1 depending on whether even or odd numbers of exchanges of Fermion
operators are needed to rearrange the given product into normal product. As an example,
the decomposition of the chronological product of four operators T (ÂB̂ĈD̂) into normal
constituents is

T (ÂB̂ĈD̂) = : ÂB̂ĈD̂ :
+δP 〈AB〉0 : ĈD̂ : +δP 〈BC〉0 : ÂD̂ : +δP 〈AC〉0 : B̂D̂ :
+δP 〈CD〉0 : ÂB̂ : +δP 〈AD〉0 : B̂Ĉ : +〈AB〉0〈ĈD̂〉0
+〈BC〉0〈AD〉0 + 〈BD〉0〈AC〉0 .

The operators appearing in the factor pairing have the same relative order as in the original
product.

The decomposition theorem may be proved by induction on m, the number of factors in
the operator product. The theorem is (obviously) true for m = 1 and for m = 2 we have,
rewriting Eq. (14.9.24),

T̂ (Â(x1)B̂(x2)) = 〈Ψ0|Â(x1)B̂(x2)|Ψ0〉+ : [Â(x1)B̂(x2)] : (14.9.27)

irrespective of whether Â and B̂ are four-potential or Dirac field operators or one four-
potential and one Dirac field operator. It can be shown that if the theorem holds for a
product of m− 2 operators, then it holds for a product of m operators as well.11 It follows
that the decomposition theorem holds for all integer values of m.

It may also be recalled that while in Wick’s chronological product (WCP), the ordering
of the operators is such that the earliest operators are on the right so that they are the first
to operate on the state vector of the field, in a normal product the operators are arranged
in such a way that the annihilation operators, removing particles in the initial (earliest)

11A detailed proof of Wick’s decomposition theorem may be found in advanced texts on quantum field
theory.
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state are all on the right and creation operators (which are latest in time) are all on the
left. So time ordering is implicit in a normal product.

For electromagnetic interactions, the normal ordered operator product involves field
operators like ψ̂,

ˆ̃
ψ, Âµ. So each normal constituent : ĈD̂ · · · P̂ Q̂ : may be further split

as a sum of many terms by the substitutions

ˆ̃
ψ = ˆ̃

ψ(+) + ˆ̃
ψ(−) , (14.9.28)

ψ̂ = ψ̂(+) + ψ̂(−) , (14.9.29)

and Âµ = Â(+)
µ + Â(−)

µ . (14.9.30)

The operators on the right-hand side of these equations are either creation or annihilation
operators [Sec. 14.8, Eqs. (14.8.24), (14.8.25) and Sec. 13.5, Eq. (13.5.16)].12Thus each
term of normal constituent contains products of creation and annihilation operators and
normal ordering arranges them so that the annihilation operators (which remove particles
from the initial state) stand to the right of creation operators (which act subsequently to
add new particles to the state). Once this rearrangement is brought about only one term
in the normal constituent contributes to the transition amplitude 〈f | Ô |i 〉 between the
specified initial and final states. This term has the right combination and the right order of
creation and annihilation operators to remove particles from the initial state |i 〉 and add
the required particles to it so that it has a complete overlap with the final state |f 〉.

The decomposition of S(n) into normal constituents and the decomposition of each normal
constituent into normal ordered terms thus amounts to cataloguing various pairs of the
initial and final states of the field which can have a non-zero matrix element for the
interaction. In other words it amounts to listing various processes which can be brought
about by the interaction in a given order of perturbation. Of course, the same process may
be brought about in different orders of expansion of Ŝ.

14.10 Second Order Processes in Electrodynamics

We shall now restrict to processes in electrodynamics brought about by the second order
term S(2) in the expansion of the S operator. The zero order term 1̂ in the expansion of
the Ŝ operator has a non-zero matrix element only between identical initial and final states.
The first order term in the expansion of the Ŝ operator also cannot give rise to any physical

12In Eq. (13.5.16) we replace
P
λ

by summation over all possible wave vectors k and polarization states εkn

(n = 1, 2). In covariant formulation, where Aµ ≡ (A, iφ/c), we write Aµ(x) = A
(+)
µ (x) +A

(−)
µ (x), where

A
(+)
µ ≡

X
k,n

s
~

2ε0ωkV
ε
(n)
µ âkn exp(ikx) ,

A
(−)
µ ≡

X
k,n

s
~

2ε0ωV
ε
(n)
µ â†kn exp(−ikx),

for µ = 1, 2, 3. The four-vectors kµ and xµ are defined by kµ ≡ (k, iω/c) with ω = c|k| and xµ ≡ (r, ict).
For the radiation field we assume that ∇ ·A = 0. This can be taken care of by taking the fourth component
of the polarization vector to be zero: εµ = (εkn, 0). So these equations hold for µ = 1, 2, 3, 4.
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process. This is because

Ŝ(1) =
ie

~

∫
T̂
( ˆ̃
ψ(x)γµÂµ(x) ψ̂(x)

)
d4x = S(1)

a + S
(1)
b + S(1)

c + S
(1)
d

where
Ŝ(1)
a =

ie

~

∫
T̂
( ˆ̃
ψ(+)(x)γµÂµ(x)ψ̂(+)(x)

)
d4x

Ŝ
(1)
b =

ie

~

∫
T̂
( ˆ̃
ψ(+)(x) γµÂµ(x)ψ̂(−)(x)

)
d4x

Ŝ(1)
c =

ie

~

∫
T̂
( ˆ̃
ψ(−)(x)γµ Âµ(x)ψ̂(+)(x)

)
d4x

Ŝ
(1)
d =

ie

~

∫
T̂
( ˆ̃
ψ(−)(x)γµ Âµ(x)ψ̂(−)(x)

)
d4x .

These operators correspond to processes that are unphysical. The operators Ŝ
(1)
a and

Ŝ
(1)
d have non-zero matrix elements between initial and final field states which differ in

an electron-positron (e−e+) pair; they correspond to pair annihilation and pair creation,
respectively. The operators Ŝ(1)

b and Ŝ(1)
c correspond, respectively, to electron and positron

scattering. These processes are not permitted on account of violation of energy and
momentum conservation.

The lowest order term in the S matrix expansion, which corresponds to physical processes,
is of second order. Higher order terms in the expansion of S matrix may contribute but
will not be considered. With ĤI = −iec ˆ̃

ψγµψ̂Âµ the second order term Ŝ(2) is given by

Ŝ(2) =
e2

~2

1
2!

∫
d4x2

∫
d4x1T

[{ ˆ̃
ψ(x2)γµÂµ(x2)ψ(x2)

}{ ˆ̃
ψ(x1)γνÂν(x1)ψ̂(x1)

}]
.

(14.10.1)
Following Wick’s theorem (14.9.26) for decomposing a time-ordered product into its normal
constituents we have

Ĝ = T
{ ˆ̃
ψ(x2)γµÂµ(x2)ψ̂(x2) ˆ̃

ψ(x1)γνÂν(x1)ψ̂(x1)
}

=
8∑
i=1

Ĝi,

so that Ŝ(2) =
e2

2~2

∫∫
d4x2d

4x1

8∑
i=1

Ĝi ≡
8∑
i=1

Ŝ
(2)
i . (14.10.2)

The number of normal constituents of Ŝ(2) (or Ĝ) is only eight despite the presence of as
many as six operators in the time-ordered product. This is because many factor pairs like
〈Ψ0|ψ̂(x2)ψ̂(x1)|Ψ0〉 or 〈Ψ0| ˆ̃ψ(x2) ˆ̃

ψ(x1)|Ψ0〉 are zero. The only non-zero Ĝi ’s will be those

in which the factor pairs contain either a ψ̂ and ˆ̃
ψ pair of operators or two Âµ operators.

Following the rules for the decomposition of a time-ordered product13

T
[{ ˆ̃
ψ(x2)γµÂµ(x2)ψ̂(x2)

}{ ˆ̃
ψ(x1)γνÂν(x1)ψ̂(x1)

}]
or T

[{ ˆ̃
ψ(x1)γνÂν(x1)ψ̂(x1)

}{ ˆ̃
ψ(x2)γµÂµ(x2)ψ̂(x2)

}]
13Since we have to integrate over x1 and x2 eventually, in T [HI(x2)HI(x1)], the order of factors may be
interchanged. Time ordering is taken care of by the operator T .
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into normal constituents we have

Ĝ1 = δP :
[
( ˆ̃
ψ(x2)γµÂµ(x2)ψ̂(x2))( ˆ̃

ψ(x1)γνÂν(x1)ψ̂(x1))
]

: (14.10.3)

Ĝ2 = δP 〈Ψ0|ψ̂(x2) ˆ̃
ψ(x1)|Ψ0〉:

[ ˆ̃
ψ(x2)γµÂµ(x2)γνÂν(x1)ψ̂(x1)

]
: (14.10.4)

Ĝ3 = δP 〈Ψ0|ψ̂(x1) ˆ̃
ψ(x2)|Ψ0〉:

[ ˆ̃
ψ(x1)γνÂν(x1)γµÂµ(x2)ψ̂(x2)

]
: (14.10.5)

Ĝ4 = δP 〈Ψ0|γµÂµ(x2)γνÂν(x1)|Ψ0〉:
[ ˆ̃
ψ(x2)ψ̂(x2) ˆ̃

ψ(x1)ψ̂(x1)
]

: (14.10.6)

Ĝ5 = δP 〈Ψ0|ψ̂(x2) ˆ̃
ψ(x1)|Ψ0〉〈Ψ0|γµÂµ(x2)γνÂν(x1)|Ψ0〉:

[ ˆ̃
ψ(x2)ψ̂(x1)

]
: (14.10.7)

Ĝ6 = δP 〈Ψ0|ψ̂(x1) ˆ̃
ψ(x2)|Ψ0〉〈Ψ0|γνÂν(x1)γµÂµ(x2)|Ψ0〉:

[ ˆ̃
ψ(x1)ψ̂(x2)

]
: (14.10.8)

Ĝ7 = δP 〈Ψ0|ψ̂(x1) ˆ̃
ψ(x2)|Ψ0〉〈Ψ0|ψ̂(x2) ˆ̃

ψ(x1)|Ψ0〉:
[
γµÂµ(x2)γνÂν(x1)

]
: (14.10.9)

Ĝ8 = 〈Ψ0|ψ̂(x1) ˆ̃
ψ(x2)|Ψ0〉〈Ψ0|ψ̂(x2) ˆ̃

ψ(x1)|Ψ0〉〈Ψ0|γµÂµ(x2)γνÂν(x1)|Ψ0〉 . (14.10.10)

The terms Ĝ2 and Ĝ3 are equivalent because, with the interchange of x1 and x2 they become
identical. If we add the two, we can do away with the factor 1

2! in Ŝ(2)
2 . Similarly the normal

constituents involving Ĝ5 and Ĝ6 are equivalent.
Consider now the processes initiated by Ĝ2 (or Ĝ3) and Ĝ4. Writing the operators ˆ̃

ψ , ψ̂
and Φ̂µ in terms of creation and annihilation operators according to Eqs. (14.9.28) through
(14.9.30), and substituting them into the expressions for Ĝ2 and Ĝ4, we can write each
normal constituent in terms of components, each of which can be associated with a specific
physical process.

14.10.1 Feynman Diagrams

Feynman introduced a diagramatic representation of the physical processes corresponding
to different components of a normal constituent. These diagrams are known as Feynman
diagrams. They may be regarded as pictures of actual processes occurring in space-time.
Each Feynman diagram can be correlated with a physical process (or with a specific
component) of a normal constituent according to the following rules [see Fig. 14.1]:

(a) ψ̂(+)(x), which represents an electron (e−) in ( destroyed) at space-time point x (see
Sec. 14.8) is denoted by a straight line segment terminating at a vertex x [Fig.
14.1(a)].

(b) ψ̂(−)(x), which represents a positron (e+) out (created) at space-time point x is
denoted by a straight line segment terminating at a vertex x [Fig. 14.1(b)].

(c) ˆ̃
ψ(+)(x), which represents a positron (e+) in ( or destroyed) at point x is denoted by
a straight line segment emanating from a vertex x [Fig. 14.1(c)].

(d) ˆ̃
ψ(−)(x), which represents an electron (e−) out ( created) at point x is denoted by a
straight line segment emanating at a vertex x [Fig. 14.1(d)].

(e) Â
(−)
µ (x) represents a photon created at x and Â

(+)
µ (x) represents a photon destroyed

at x. These are denoted by dashed lines emanating from (or terminating at) x [Fig.
14.1(e)].

Further, the convention is adopted that time increases upwards in the diagram. This
implies that one can look upon a positron as an electron moving backward in time.
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(f) A factor pair like 〈Ψ0|ψ̂(x2) ˆ̃
ψ(x1)|Ψ0〉, also called virtual electron propagator, is

denoted by a continuous line between space-time points x1 and x2 [Fig. 14.1(f)].

(g) A factor pair, like 〈Ψ0|γµÂµ(x2)γνÂν(x1)|Ψ0〉, also called a virtual photon propagator,
is denoted by a dotted line between the space-time points x1 and x2 [Fig. 14.1(g)].

x

e−(in) x

e+(out) x

e+(in) x

e−(out)

x1 x2
• •

(a) (b) (c) (d) (e)

(f) (g)
x1 x2
• •

•

•

•

• •

•

FIGURE 14.1
Rules for Feynman diagram.

With the help of these rules, we can represent each component of a normal constituent of
Ĝ by a Feynman diagram corresponding to a physical process.

Let us consider the components of the normal constituent Ĝ2. One such component is

Ĝ
(a1)
2 = δP 〈Ψ0|ψ̂(x2) ˆ̃

ψ(x1)|Ψ0〉
[ ˆ̃
ψ(−)(x2)γνÂ(−)

ν (x2)γµÂ(+)
µ (x1)ψ̂(+)(x1)

]
. (14.10.11)

This is represented by the Feynman diagram shown in Fig. 14.2(a). To get the contribution
of this diagram to S(2), we integrate Ĝ(a1)

2 over x1 and x2, and multiply by e2

2~2 . To get
the transition amplitude we take the matrix element of the resulting operator between the
initial and final field states.

Similarly, the component G(a2)
2 of the normal constituent G2 given by

Ĝ
(a2)
2 = δP 〈Ψ0|ψ̂(x2) ˆ̃

ψ(x1)|Ψ0〉
[ ˆ̃
ψ(−)(x2)γνÂ(−)

ν (x1)γµÂ(+)
µ (x2)ψ̂(+)(x1)

]
, (14.10.12)

is represented by the Feynman diagram in Fig. 14.2(b). The diagrams in Fig. 14.2 together
represent Compton scattering (e− + γ → e− + γ).

The component Ĝ(b1)
2 given by

Ĝ
(b1)
2 = δP 〈Ψ0|ψ̂(x2) ˆ̃

ψ(x1)|Ψ0〉
[
ψ̂(−)(x2)γνÂ(−)

ν (x2)γµÂ(+)
µ (x1) ˆ̃

ψ(+)(x1)
]

(14.10.13)
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(a) (b)

γ e−(in)

γ′
e−(out)

x1

x2•

•

γ′ γ

e−(in)

•

•

e−(out)

FIGURE 14.2
Feynman diagrams contributing to Compton scattering by electrons. (a) At space time
point x1 an electron and a photon are destroyed and at x2 an electron and a photon (with
different energies) are created. The line between x1 and x2 represents a virtual electron

propagation and is equivalent to 〈Ψ0|ψ̂(x2) ˆ̃
ψ(x1)|Ψ0〉. (b) At x1 an electron is destroyed

and a photon γ′ is created. At x2 an electron is created and a photon γ is destroyed. The
line between x1 and x2 again represents a virtual electron propagation and contributes a
factor 〈Ψ0|ψ(x2)ψ(x1)|Ψ0〉.

is represented by the Feynman diagram shown in Fig. 14.3(a) and component Ĝ(b2)
2 given

by

Ĝ
(b2)
2 = δP 〈Ψ0|ψ̂(x2) ˆ̃

ψ(x1)|Ψ0〉
[
ψ̂(−)(x2)γνÂ

(−)
ν (x1)γµÂ(+)

µ (x2) ˆ̃
ψ(+)(x1)

]
(14.10.14)

is represented by the Feynman diagram shown in Fig. 14.3(b). The two diagrams of Fig.
14.3 together represent Compton scattering by a positron (e+ + γ → e+ + γ).

The component Ĝ(c1)
2 given by

Ĝ
(c1)
2 = δP 〈Ψ0|ψ̂(x2) ˆ̃

ψ(x1)|Ψ0〉
[
γµÂ

(−)
µ (x1)γνÂ(−)

ν (x2) ˆ̃
ψ(+)(x2)ψ̂(+)(x1)

]
(14.10.15)

is represented by the Feynman diagram shown in Fig. 14.4(a) and Ĝ
(c2)
2 given by

Ĝ
(c2)
2 = δP < Ψ0|ψ̂(x2) ˆ̃

ψ(x1)|Ψ0〉
[
γνA

(−)
ν (x1)γµÂ(−)

µ (x2) ˆ̃
ψ(+)(x2)ψ̂(+)(x1)

]
(14.10.16)

is represented by the Feynman diagram in Fig. 14.4(b). The diagrams of Fig. 14.4 together
represent electron-positron pair annihilation into a pair of photons.

The component Ĝ(d1)
2 given by

Ĝd12 = δP 〈Ψ0|ψ̂(x2) ˆ̃
ψ(x1)|Ψ0〉

[ ˆ̃
ψ(−)(x1)ψ̂(−)(x2)γµÂ(+)

µ (x1)γνÂ(+)
ν (x2)

]
(14.10.17)
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γ e+(in)

γ′
e+(out)

x1

x2•

•

γ′ γ

e+(in)

•

•

e+(out)

(a) (b)

FIGURE 14.3
Feynman diagrams for Compton scattering by a positron. (a) At x1 a positron and a photon
(γ) are destroyed and at x2 a positron and a photon (γ′) are created; (b) At x1 a positron
is destroyed and a photon (γ′) is created and at x2 a positron is created and a photon (γ)
is destroyed.

is represented by the Feynman diagram in Fig. 14.5(a). The component Ĝ(d2)
2 given by

Ĝ
(d2)
2 = δP 〈Ψ0|ψ̂(x2) ˆ̃

ψ(x1)|Ψ0〉
[
ψ̂(−)(x1) ˆ̃

ψ(−)(x2)γµÂ(+)
µ (x1)γνÂ(+)

ν (x2)
]

(14.10.18)

is represented by the Feynman diagram in Fig. 14.5(b). Together, the two diagrams in Fig.
14.5 represent two-photon annihilation and creation of an electron-positron pair (e−e+).

We can similarly split the normal constituent Ĝ4 (or Ŝ
(2)
4 ) into components by the

substitutions as in Eqs. (14.9.28) to (14.9.30). Each one of these components corresponds
to a specific physical process and to one Feynman diagram. For example, the component
Ĝ

(a)
4 given by

Ĝ
(a)
4 = δP 〈Ψ0|γµÂµ(x1)γνÂν(x2)|Ψ0〉

[ ˆ̃
ψ(−)(x1) ˆ̃

ψ(−)(x2)ψ̂(+)(x1)ψ̂(+)(x2)
]

(14.10.19)

is represented by the Feynman diagram shown in Fig. 14.6. This represents Möller (e−e−)
scattering. The component Ĝ(b)

4 given by

G
(b)
4 = δP 〈Ψ0|γµÂµ(x1)γνÂν(x2)|Ψ0〉

[
ψ̂(−)(x1)ψ̂(−)(x2) ˆ̃

ψ(+)(x1) ˆ̃
ψ(+)(x2)

]
(14.10.20)

is represented by the Feynman diagram shown in Fig. 14.6(b). This represents Möller
(e+e+) scattering.

The component Ĝ(c)
4 given by

Ĝ
(c)
4 = δP 〈Ψ0|γµÂµ(x1)γνÂν(x2)|Ψ0〉

[
ψ̂(−)(x2) ˆ̃

ψ(−)(x1) ˆ̃
ψ(+)(x2)ψ̂(+)(x1)

]
(14.10.21)
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(a) (b)

γ

e−(in)

γ′

e+(in)
x1

x2 •

•

γ

e−(in)

γ′

e+(in)
x1

x2 •

•

FIGURE 14.4
Feynman diagrams for electron-positron pair annihilation. (a) At x1 an electron is destroyed
and a photon γ is created. At x2 a positron is destroyed and a photon γ′ is created. This
represents annihilation of an electron-positron pair(e−e+ → γγ′). (b) At space-time point
x1 an electron is destroyed and a photon γ′ is created. At x2 a positron is destroyed and a
photon γ is created. This diagram also represents e−e+ annihilation.

is represented by the Feynman diagram in Fig. 14.7(a). Similarly the component Ĝ(d)
4 given

by

Ĝ
(d)
4 = δP 〈Ψ0|γµÂµ(x1)γνÂν(x2)|Ψ0〉

[
ψ̂(−)(x2) ˆ̃

ψ(−)(x2) ˆ̃
ψ(+)(x1)ψ̂(+)(x1)

]
(14.10.22)

is represented by Fig 14.7(b). Both diagrams in Fig. 14.7 represent Bhabha (e+e−)
scattering.

In all of these diagrams the dotted lines represent the virtual photon propagator

〈Ψ0|γµÂµ(x1)γoÂν(x2)|Ψ0〉.

14.11 Amplitude for Compton Scattering

In the case of Compton scattering (e−γ → e−γ), we have(
S(2)

)
fi

= 〈Ψf |Ŝ(2)a1 + Ŝ(2)a2 |Ψi〉 =
e2

~2
〈Ψf |

∫∫
d4x1d

4x2(Ĝ(a1)
2 + Ĝ

(a2)
2 )|Ψi〉 (14.11.1)

where |Ψi〉 = â†kmb̂
†
r(p)|Ψ0〉 is the initial state of the field with one electron with spin

state r and momentum p and one photon of energy ~c|k| and polarization m. Also|Ψf 〉 =



SECOND QUANTIZATION 541

(a) (b)

γ

e−(out) γ′

e+(out)

x1

x2 •

•

γ

γ′

x1

x2 •

•

e+(out)

e−(out)

FIGURE 14.5
Electron-positron pair creation. (a) At x1 and x2, respectively, photons γ and γ′ are
annihilated and electron e− and positron e+ are created. (b) At x1 and x2 the photons γ
and γ′ are annihilated and positron e+ and electron e− are created.

â†k′nb̂
†
s(p
′)|Ψ0〉 is the final state of the field with an electron in spin state s and momentum

p′ and one photon of energy ~c|k′| and polarization n. For S(2)
fi , the contribution comes

only from Ĝ
(a1)
2 and Ĝ

(a2)
2 represented by Feynman diagrams in Figs. 14.2(a) and 14.2(b),

respectively, where

Ĝ
(a1)
2 = 〈Ψ0|ψ̂(x2) ˆ̃

ψ(x1)|Ψ0〉
[ ˆ̃
ψ(−)(x2)γνÂ(−)

ν (x2)γµÂ(+)
µ (x1)ψ̂(+)(x1)

]
, (14.11.2)

Ĝ
(a2)
2 = 〈Ψ0|ψ̂(x2) ˆ̃

ψ(x1)|Ψ0〉
[ ˆ̃
ψ(−)(x2)γµÂ(+)

µ (x2)γνÂ(−)
ν (x1)ψ̂(+)(x1)

]
. (14.11.3)

We can now use the explicit expressions for ψ̂(+)(x) and ˆ̃
ψ(−) given by Eqs. (14.8.26) and

(14.8.29) and for Â(+)
µ (x) and Â

(−)
µ (x) [Eq. (14.9.30)] the following expressions

Â(+)
ν (x) =

∑
k′

∑
n

√
~

2ε0ωk′V
ε(n)
ν exp(i k′x)âk′n , (14.11.4)

and Â(−)
µ (x) =

∑
k

∑
m

√
~

2ε0ωkV
ε(m)
µ exp(−i κx)â†km , (14.11.5)

where x = (r, ict), p = (p, iE/c), k = (k, iωk/c). Since the letters x, p, κ denote four
vectors, the magnitudes of the three-dimensional vectors r, p and k will be denoted by
r, |p| ≡ P and |k| ≡ K, respectively. The index µ specifies the components of the four-
vector εmµ , while the indices m and n refer to the states of polarization, where ε(m)

4 and ε(n)
4

are taken to be zero.
Now the propagator 〈Ψ0|ψ̂(x2) ˆ̃

ψ(x1)|Ψ0〉 equals 〈Ψ0| ψ̂(+)(x2) ˆ̃
ψ(−)(x1) |Ψ0 〉 as the other

terms in the expansion of (ψ̂(x2) ˆ̃
ψ(x1)) do not contribute. Substituting the explicit
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(a) (b)

e−(out)

x1

x2 •

• x1

x2 •

•

e+(out)

e+(out)

e+(in)

e+(in)

e−(out)

e−(in)

e−(in)

FIGURE 14.6
At x1 an electron is annihilated and an electron is created. At x2 again an electron is
annihilated and an electron is created. This represents Möller (e− e−) scattering. (b) At
x1 a positron is annihilated and a positron is created. At x2 again a positron is annihilated
and a positron is created. This represents Möller (e+ e+) scattering.

expressions for ψ̂(+)(x2) and ˆ̃
ψ(−)(x1) from Eqs. (14.8.26) through (14.8.29), we get, on

simplification,

〈Ψ0|ψ̂(x2) ˆ̃
ψ(x1)Ψ0〉 =

1
V

∑
p

mc2

E

{−iγp+mc

2mc

}
exp

(
ip(x2 − x1)

~

)
, (14.11.6)

where we have used the identities

〈Ψ0|b(s)(p)b(s
′)†(p′)|Ψ0〉 = δp,p′δss′ (14.11.7)

and
∑
s

u(s)(p)ũ(s)(p) =
−iγ p+mc

2mc
, (14.11.8)

with ũ(s) = u(s)†γ4. Replacing the summation over the momentum p by integration over
the momentum space

1
V

∑
p

→ 1
(2π ~)3

∫
d3p,

we have, for the propagator, the integral

〈Ψ0|ψ̂(x2) ˆ̃
ψ(x1)|Ψ0〉 =

1
(2π ~)3

∫
c

2E
(−iγ p+mc) exp[ip(x2 − x1)/~]d3p . (14.11.9)



SECOND QUANTIZATION 543

(a) (b)

e+(in)

x1

x2
•

•

e+(out)

e−(in)

e−(out)

x1

x2 •

•

e−(out)

e+(out)

e−(in)

e+(in)

FIGURE 14.7
Feynman diagrams for the Bhabha scattering. (a) At x1 an electron is annihilated and an
electron is created. At x2 a positron is annihilated and a positron is created. This (direct)
diagram represents Bhabha (e−e+) scattering. (b) At x1 the e−e+ pair is annihilated and a
virtual photon is created. At x2 the e−e+ pair is again created. This (annihilation) diagram
also represents Bhabha scattering.

The propagator may also be expressed as a four-dimensional integral14

〈Ψ0|ψ̂(x2) ˆ̃
ψ(x1)|Ψ0〉 =

1
(2π)4~3

∫
d4q

(−iγ q +mc) exp[iq(x2 − x1)/~]
q2 +m2c2 + iε

, (14.11.10)

where ε is an infinitesimal positive quantity → 0+. Also

q ≡ (p, ip0), q2 = |p|2 − p2
0

and d4q = d3p dp0. Note that since p0 is a variable of integration, it is not necessarily equal
to E

c = (|p|2 +m2c2)1/2. When p0 → E/c, the four-vector q tends to p. Using the identity

(−iγ q +mc)(iγ q +mc) = q2 +m2c2

in Eq. (14.11.10), the propagator can be written as

〈Ψ0|ψ̂(x2) ˆ̃
ψ(x1)|Ψ0〉 =

1
(2π)4~3

∫
d4q

exp [iq(x2 − x1)/~]
γ q − imc+ iε

. (14.11.11)

14One can see that

i

2π

∞Z
−∞

dp0
(−iγ · p− iγ4ip0 +mc) exp[iq(x2 − x1)/~]

p2 − p20 +m2c2 + iε
=

c

2E
(−iγ p+mc) exp[ip(x2 − x1)/~]

where γ ≡ (γ1, γ2, γ3).
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Now

S
(2)a1
fi =

e2

~2
〈Ψf |

∫
d4x1

∫
d4x2Ĝ

(a1)
2 |Ψi〉

=
e2

~2
〈Ψ0|b̂(s)(p′)âk′n

∫
d4x1

∫
d4x2 〈Ψ0|ψ̂(x2) ˆ̃

ψ(x1)|Ψ0〉 ×( ˆ̃
ψ(−)(x2)γνÂ(−)

ν (x2)γµÂµ(+)(x1)ψ̂(+)(x1)â†kmb̂
(r)†(p)

)
|Ψ0〉 . (14.11.12)

Substituting the explicit expressions for the field operators ψ̂(+)(x), ˆ̃
ψ(−)(x), Â

(+)
µ (x) and

Â
(−)
µ (x), simplifying, and using the relations

b̂(r
′)(p′)b̂(r)†(p) |Ψ0 〉 = δp,p′δr,r′ |Ψ0 〉 (14.11.13a)

and âk′m′ â
†
km |Ψ0 〉 = δk′,kδm′,m |Ψ0 〉 , (14.11.13b)

we get

〈Ψf | Ŝ(2)a1 |Ψi 〉 = − e2

ε0(2π ~)4V 2

mc2√
4EE′ωkωk′

∫
d4q

∫
d4x1 exp[i(−q + ~k + p)x1/~]

×
∫
d4x2 exp [i(q − ~k′ − p′)x2/~]

[
ũs(p′)γ ε

(n)
k′

1
γ q − imcγε

(m)
k ur(p)

]
or

〈Ψf |Ŝ(2)a1 |Ψi〉 = − e2

ε0(2π~)4V 2

mc2(2π ~)8√
(4EE′ωkωk′)

∫
d4qδ4(−q + ~k + p)δ4(q − ~k′ − p′)[

ũs(p′) γ ε
(n)
k′

1
γ q − imcγ ε

(m)
k ur(p)

]
(14.11.14a)

= − e2

ε0V 2

mc2(2π ~)4√
(4EE′ωkωk′)

δ4(p+ ~k − ~k′ − p′)[
ũs(p′)/ε

(n)
k′

(
1

~/k + /p− imc
)
/ε

(m)
k ur(p)

]
(14.11.14b)

where we have used the identity

1
(2π~)4

∫
exp(ipx/~)d4x = δ4(p),

and introduced the notation /ε
(n) = γ ε(n) = γµε

(n)
µ , /k = γ k = γµkµ and /p = γ p = γµpµ.

Eq. (14.11.14a) suggests that in the intermediate state the electron has four-momentum

q = p+ ~k = p′ + ~k′ . (14.11.15)

The second term S
(2)a2
fi = 〈Ψf | e2~2

∫
d4x1

∫
d4x2Ĝ

(a2)
2 |Ψi〉, represented by the Feynman

diagram in Fig. 14.2(b), may be treated exactly in the same way as the first, the only
difference being the order in which the two photons, γ and γ′ are absorbed and emitted,
respectively. The four-momentum q′ of the virtual Fermion in this case is given by
q′ = p − ~k′ = p′ − ~k. Hence for S(2)a2

fi we have the same expression with k ↔ −k′
and n↔ m

S
(2)a2
fi = − e2

ε0V 2
(2π ~)4mc

2δ4(p− ~k′ − p′ + ~k)√
4EE′ωkωk′

×[
ũs(p′)/ε

(m)
k

1

/p− ~/k′ − imc/ε
(n)
k′ ur(p)

]
. (14.11.16)
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Hence the total amplitude for Compton scattering is given by

〈Ψf |S(2)a1 + S(2)a2 |Ψi〉 = −i(2π~)44πδ4(p− ~k′ − p′ + ~k)Mfi (14.11.17)

where

Mfi =
e2

4πε0V 2

mc2√
4EE′ωkωk′

ũs(p′)
[
/ε

(n)
k′

−i
~/k + /p− imc/ε

(m)
k

+/ε(m)
k

−i
/p− ~/k′ − imc/ε

(n)
k′

]
ur(p) . (14.11.18)

14.12 Feynman Graphs

We have seen that each Feynman diagram represents a contribution to the S(2) (or G2)
operator, delineating a process involving annihilation or creation of particles at vertices
representing space-time points x1 and x2. To calculate the corresponding transition
amplitudes these have to be integrated over the region spanned by the four vectors x1 and
x2 and the resulting operators have to be sandwiched between the final and initial states
〈Ψf | and |Ψi〉. We have already done this while calculating the transition amplitude for
Compton scattering. These matrix elelments can be obtained in a much simpler and direct
way if we re-draw them in momentum space and follow certain rules devised by Feynman.
This means the vertices are no longer labeled by x1 and x2. Also, since the initial and final
states are now defined, the momentum and polarizations of particles created or annihilated
should be specified. To distinguish the new figures (which look similar but have to be
labeled differently) from the previous ones, we shall call them Feynman graphs. Feynman
graphs for Compton scattering are shown in Figs. 14.8(a) and 14.8(b).

Rules for Writing Transition Amplitude from Feynman Graphs

Feynman devised a set of rules by virtue of which one can write down the expression for the
transition matrix element (or amplitude) from the graph itself. These rules can be derived
rigorously from quantum field theory. Instead of deriving these rules, summarized in Table
14.1, we shall illustrate their use in calculating the transition amplitude for second order
processes and, at least in the case of Compton scattering, check them against our detailed
calculations of the previous section.
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γe−

γ′ e−

•

•

p, r k, εm

q=p+hk=p′+hk′

k′, εn p′, s

M2 ≡
a1

γ

e−

e−

•

•

p, r

k, εm

q′=p-hk′=p′−hk

p′, s

k′, εn

γ′

M2 ≡
a2

(a) (b)

FIGURE 14.8
Feynman graphs for Compton scattering in momentum space. The vertices are no longer
labeled by space-time points x1 and x2, for we eventually have to integrate the operators
Ĝ

(a1)
2 and Ĝ(a2)

2 over the four-spaces spanned by vectors x1 and x2. Further, the initial and
final momenta and polarizations or spins of particles are specified. These are indicated on
the respective lines.

14.12.1 Compton Scattering Amplitude Using Feynman Rules

Using Feynman rules one can associate, with the Feynman graphs representing Compton
scattering [Fig. 14.8], the amplitudes

M
(a1)
2fi =

√
mc2

E′V
ũs(p′)

1√
(2ωκ′)V

i
e√

4πε0
γνε

(n)
ν

i

/q − imci
e√

4πε0
γµε

(m)
µ

1√
(2ωk)V

√
mc2

EV
ur(p)

and M
(a2)
2fi =

√
mc2

E′V
ũs(p′)

1√
(2ωk)V

i
e√

4πε0
γµε

(m)
µ

i

/q
′ − imci

e√
4πε0

γνε
(n)
ν

1√
(2ωk′)V

√
mc2

EV
ur(p),

respectively. Then the matrix element Mfi = M
(a1)
2fi +M

(a2)
2fi can be expressed as

Mfi =
mc2e2

4πε0V 2
√

4EE′ωkωk′
ũs(p′)

[
/ε

(n)
k′

−i
/p+ ~/k − imc/ε

(m)
k

+/ε(m)
k

−i
/p− ~/k′ − imc/ε

(n)
k′

]
ur(p) . (14.12.1)
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This expression for Mfi is exactly the same as Eq. (14.11.18), which we derived in the
last section. Thus, without going into the intricacies of the detailed calculation for the
amplitude Mfi of an electromagnetic process, one can write it from the Feynman graph by
following Feynman rules.

This method of writing down transition amplitudes holds good not only for Compton
scattering, but for other electromagnetic processes as well. In what follows, we will use this
method for writing down the matrix elements for the other second order processes.

14.12.2 Electron-positron (e−e+) Pair Annihilation

The Feynman graphs for this process are given in Fig. 14.9. Following Feynman rules, we
can write down the corresponding amplitudes:

γ

e+

γ′

e− p, r

k, εm

q=p-hk=-p++hk′

k′, εn

p+, s

M2fi ≡
c1 • •

γ

e+

γ′

e− p, r

k, εm

q′=p-hk′=-p++hk

k′, εn

p+, s

M2fi ≡
c2 • •

(a) (b)

FIGURE 14.9
Feynman graphs for e−e+ pair annihilation resulting in the creation of two photons. In the
Feynman graphs the vertices are no longer labeled by space-time points while the lines are
labeled by the momenta and polarizations of the particles created or annihilated.

M
(c1)
2fi =

√
mc2

E+V
ṽs(p+)i

e√
4πε0

γν ε
(m)
ν√

V (2ωk′)
i

/p− ~/k − imci
e√

4πε0

γµε
(n)
µ√

V (2ωk)

√
mc2

EV
ur(p)

and M
(c2)
2fi =

√
mc2

E+V
ṽs(p+)i

e√
4πε0

γνε
(n)
ν√

V (2ωk)
i

/p− ~/k′ − imci
e√

4πε0

γµε
(m)
µ√

V (2ωk′)

√
mc2

EV
ur(p) .
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TABLE 14.1

Rules for writing transition amplitude from Feynman graphs

With a free Fermion (anti-Fermion) line (p, r)
entering a vertex (•), we associate a factor√

mc2

EV
ur(p)

(√
mc2

EV
ṽr(p)

)
p, r

•

p, r

•

Fermion anti-Fermion

With a free Fermion (anti-Fermion) line (p′, s)
leaving a vertex (•), we associate a factor√

mc2

E′V
ũs(p′)

(√
mc2

E′V
vs(p′)

)
p′, s

•

p′, s

•
Fermion anti-Fermion

With a photon line entering (leaving) a vertex, we
associate a factor

1√
(2ωk)V

ε(m)
µ

(
1√

(2ωk′)V
ε(n)
ν

)
k, εm

•

k′, εn

•

With each vertex in an electrodynamic process, we
associate a term i (e/

√
4πε0 ) γµ.

•

For the Fermion propagator between two vertices
we associate a factor i

/q−imc , where /q = γ q and q is
the four-momentum of the virtual Fermion state.
For the virtual photon propagator between two
vertices we associate a term q−2δµν .

• •
q

Fermion

• •
q

photon
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The total amplitude for this process is given by

Mfi = M
(c1)
2fi +M

(c2)
2fi ,

or Mfi =
e2mc2

4πε0V 2
√

4EE+ωkωk′
ṽs
(
p+

) [
/ε

(m) −i
/p− ~/k − imc/ε

(n)

+/ε(n) −i
/p− ~/k′ − imc/ε

(m)

]
ur(p) (14.12.2)

so that
S

(2)
fi = δfi − i(2π~)44πδ4(p+ p+ − ~k − ~k′)Mfi .

14.12.3 Two-photon Annihilation Leading to (e−e+) Pair Creation

This process is represented by the graphs shown in Fig. (14.10). According to Feynman
rules the corresponding amplitudes are

γ

e+

γ′

e−
p, r

k, εm

q=-p+hk=p+-hk′

k′, εn

p+, s

M2fi ≡
d1 • •

γ

e+

γ′

e−
p, r

k, εm

q′=-p++hk=p-hk′

k′, εn

p+, s

M2fi ≡
d2 • •

(a) (b)

FIGURE 14.10
Feynman graphs for two-photon annihilation resulting in e−e+ pair production.

M
(d1)
2fi =

√
mc2

EV
ũr(p)

ie√
4πε0

γµε
(m)
µ√

V (2ωk′)
i

~/k − /p− imc
ie√
4πε0

γνε
(n)
ν√

V (2ωk′)

√
mc2

E+V
vs(p+)

M
(d2)
2fi = −

√
mc2

EV
ũr(p)

ie√
4πε0

γνε
(n)
ν√

V (2ωk′)
i

~/k′ − /p+
− imc

ie√
4πε0

γµε
(m)
µ√

V (2ωk)

√
mc2

E+V
vs(p+)

so that the overal matrix element Mfi = M
(d1)
2fi +M

(d2)
2fi is given by

Mfi =
e2mc2

4πε0V 2
√
EE+ωkωk′

ũr(p)
[
/ε

(m) −i
~/k − /p− imc/ε

(n)

−/ε(n) −i
~/k′ − /p+

− imc/ε
(m)

]
vs(p+) . (14.12.3)

The minus sign in M
(d2)
2fi arises on account of different signs of δP in Ĝ

(d1)
2 and Ĝ

(d2)
2 due

to different numbers of exchange of Fermion operators.
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14.12.4 Möller (e−e−) Scattering

The Feynman graphs that represent Möller (e−e− ) scattering are shown in Figs. 14.11.
According to Feynman rules the corresponding amplitudes are

e−e−
p1′, r′

q=p1-p1′=p2-p2′
M4fi ≡
a1

e−p1, r e− p2, s

p2′, s′

• • M4fi ≡
a2

e− p2, s
e−p1, r

e−
p2′, s′

e−p1′, r′

q=p1-p2′=-p2+p1′
• •

(a) (b)

FIGURE 14.11
Feynman graphs for Möller (e−e−) scattering.

M
(a1)
4fi =

√
mc2

E′1V
ũr′(p′1)i

e√
4πε0

γµ
δµν

(p1 − p′1)2

√
mc2

E1V
ur(p1)

×
√
mc2

E′2V
ũs′(p′2)i

e√
4πε0

γν

√
mc2

E2V
ur(p2) ,

M
(a2)
4fi = −

√
mc2

E′2
ũs′(p′2)i

e√
4πε0

γµ
δµν

(p1 − p′2)2

√
mc2

E1V
ur(p1)

×
√
mc2

E′1V
ũs′(p′1)i

e√
4πε0

γν

√
mc2

E2
ur(p1) .

The complete transition amplitude in this case is given by

Mfi = M
(a1)
4fi +M

(a2)
4fi

=
−e2m2c4

4πε0V 2
√
E1E′1E2E′2

[{ũr′(p′1)γµur(p1)}{ũs′(p′2)γµus(p2)}
(p1 − p′1)2

−{ũs′(p
′
2)γµur(p1)}{ũr′(p′1)γµus(p2)}

(p1 − p′2)2

]
. (14.12.4)

The minus sign arises because of the different sign of δP due to different number of exchanges
of Fermion operators in Ĝ

(a1)
4 and Ĝ

(a2)
4 .

14.12.5 Bhabha (e−e+) Scattering

This scattering process is represented by the Feynman graphs shown in Figs. 14.12. The
first Feynman graph (a) represents the direct scattering process while the second Feynman
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e+e−
p1′, r′

q=p1-p1′=p2′-p2
M4fi ≡
c M4fi ≡

d

(a) (b)

e−p1, r e+ p2, s

p2′, s′

e+
p2, s

e−
p1, r

e−

p2′, s′
e+

p1′, r′

q′=p1+p2 =p1′+p2′
• •• •

FIGURE 14.12
Feynman graphs for Bhabha (e−e+) Scattering.

graph (b) the virtual annihilation and subsequent creation of the e−e+ pair. According to
Feynman rules, the contributions to the amplitude of the process by the two diagrams are

M
(c)
4fi =

√
mc2

E′1V
ũr′(p′1)i

e√
4πε0

γµ

√
mc2

E1V
ur(p1)

δµν
(p1 − p′1)2

×
√
mc2

E2V
ṽs(p2)i

e√
4πε0

γν

√
mc2

E′2V
vs′(p′2) ,

M
(d)
4fi = −

√
mc2

E2V
ṽs(p2)i

e√
4πε0

γµ

√
mc2

E1V
ur(p1)

δµν
(p1 + p2)2

×
√
mc2

E′1V
ũr′(p′1)i

e√
4πε0

γν

√
mc2

E′2V
vs′(p′2) .

The total amplitude is then given by

Mfi = M
(c)
4fi +M

(d)
4fi

=
−e2

4πε0V 2

m2c4√
E1E2E′1E

′
2

[{ũr′(p′1)γµur(p1)}{ṽs(p2)γµvs′(p′2)}
(p1 − p′1)2

−{ṽs(p2)γµur(p1)}{ũr′(p′1)γµvs′(p′2)}
(p1 + p2)2

]
. (14.12.5)

14.13 Calculation of the Cross-section of Compton Scattering

For any electromagnetic process in second order of perturbation, we can write

S
(2)
fi = δfi − i(2π ~)44π δ4(pi − pf )Mfi ,

where pi and pf are the initial and final four-momenta of the system. The expressions for
Mfi, for different processes, have already been given in Sec. 14.12. From this equation the
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transition rate wfi (transition probability per unit time) for i 6= f is given by

wfi =
1
t

∣∣(2π ~)44π δ4(pi − pf )Mf i

∣∣2 .
With the help of the identity [δ4(pi − pf )]2 = δ4(pi − pf ) 1

(2π ~)4V (ict), the transition rate
becomes

wfi = (2π~)4(4π)2δ4(pi − pf )iV c|Mfi|2 . (14.13.1)

Now the final state lies in a continuum with the number of final states with the scattered
photon momentum between ~k′ and ~(k′+dk′) and the recoil electron momentum between
p′ and p′ + dp′ given by

dNf =
V ~3d3K ′

(2π~)3

V d3P ′

(2π~)3
=
V 2K ′2dK ′dΩK′d3P ′

(2π)6 ~3
, (14.13.2)

where K ′ = |k′| and P ′ = |p′| (we use lower case letters k′ and p′ to denote four-vectors and
upper case letters to denote the magnitudes of the corresponding three-dimensional vectors).
Then the transition rate to this group of states is given by wfidNf = wfiK

′2dK ′dΩK′d3P ′.
If we consider the scattered photon going into a solid angle dΩK′ with any energy
~c|k′| = ~cK ′ = ~ωk′ and the recoil electron with any momentum p′, then we must integrate
the transition rate wfidNf over K ′ and P ′ to obtain the total transition rate for photon
scattering into a solid angle dΩK′ . Dividing this rate by the incident photon flux density,
we obtain the cross-section for scattering of a photon into a solid angle dΩK′ around the
direction k′

dσfi =
1
Ji
dΩK′

∫
K ′dK ′

(2π)6~3

∫
d3P ′wfi = dΩK′

4iV 4

~2
|Mfi|2

∫
K ′dK ′

(2π)6~3

∫
d3P ′δ4(pi − pf )

(14.13.3)
where Ji is the incident photon flux density. In the last step we have used the result that
one incident photon in volume V constitutes a photon flux density of

Ji =
c

V
(14.13.4)

and assumed that |Mfi|2 does not vary strongly over the group of final states involved in
the scattering.

If the target electron is unpolarized and polarization of the recoil electron is not observed,
we must average the cross-section (14.13.3) over the spin states of the target electron and
sum over the spin states of the recoil electron. (We postpone averaging over the polarization
states of the incident photon and summing over the polarization states of the scattered
photon. This means we consider the incident and scattered photons to be polarized.) Hence
the differential cross-section for the Compton scattering of photons in the direction of k′

by unpolarized electrons is

dσfi
dΩk′

=
—∑
i

∑
f

V 44~−2|Mfi|2I (14.13.5)

where
—∑
i

and
∑
f

imply, respectively, averaging over the spin states of the target electron

and sum over the spin states of the recoil electron and I stands for the integral

I =
∫

~3K ′2dK ′
∫
d3P ′δ4(pi − pf )

=
1
ic2

∫
E′1

2dE′1

∫
d3P ′δ3(p+ ~k − p′ − ~k′)δ(Ei − Ef ) . (14.13.6)
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Here Ei = c~K+mc2 ( assuming the target electron to be at rest), Ef = c~K ′+E′ = E′1+E′

where E′1 = c~K ′ is the energy of the outgoing photon and E′ is the total energy (including
rest energy) of the recoil electron. The three-dimensional delta function in Eq. (14.13.6)
implies conservation of linear momentum p′ = p + ~(k − k′) = ~(k − k′), since the target
electron is assumed to be at rest (p = 0). This results in

E′2 = ~2c2K2 + E′1
2 − 2~2c2(k · k′) +m2c4 . (14.13.7)

Carrying out the integration over the momentum space, we can write Eq. (14.13.6) as

I =
1
ic2

∞∫
0

E′1
2dE′1δ{f(E′1)} (14.13.8)

where f(E′1) = E′1 − (Ei − E′), (14.13.9)

and p′ = ~(k − k′).
The solution of the equation f(E′1) = 0 is obviously the value of E′1 given by Compton

relation

E′1 = E0 = ~cK ′ where ~K(1− cosϑ) +mc = mcK/K ′ , (14.13.10)

which follows from the conservation of linear momentum and energy in this process. To
evaluate the integral in Eq. (14.13.8), we use the identity

δ{f(E′1)} =
δ(E′1 − E0)∣∣∣∂ f(E′1)
∂E′1

∣∣∣
E′1=E0

, (14.13.11)

since f(E′1) involves both E′1 as well as E′, which in turn depends on E′1. Using Eq.
(14.13.9) we get

I =
1
ic2

∞∫
0

E′1
2dE′1

δ(E′1 − E0)
(1 + ∂E′/∂E′1)E0

and, according to Eq. (14.13.7), we have(
1 +

∂E′

∂E′1

)
=
E′1Ei − (k · k′)~2c2

E′1E
′ ,

so that

I =
(

1
ic2

)
E3

0E
′

E0Ei − c2~2(k · k′) .

The magnitude of the wave-vector k′ is given by |k′| = K ′ = E0/~c, where E0 is the energy
of the scattered photon given by the Compton relation (14.13.10). Using this we we find

I =
1
ic2

(
~ω2

k′E
′

~ωk(1− cos θ) +mc2

)
=

~2ω3
k′E
′

imc4ωk
, (14.13.12)

where ωk′ = cK ′ = c|k′| and cos θ = k·k′
|k||k′| . Using the result for I and Mfi [Eq. (14.12.1)]

in Eq. (14.13.5) we get
dσ

dΩ
=

e4ω2
k′

(4πε0)2c2ω2
k

—∑
i

∑
f

|Tfi|2 (14.13.13)
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where

Tfi = ũs(p′)

{
/ε

(n) i

/p+ ~/k − imc/ε
(m) + /ε

(m) i

/p− ~/k′ − imc/ε
(n)

}
ur(p)

= ũs(p′) O ur(p). (14.13.14)

The matrix operator O is defined by

O =
[
/ε

(n) i

/p+ ~/k − imc/ε
(m) + /ε

(m) i

/p
′ − ~/k − imc/ε

(n)

]
,

=
1

2m

[
i/ε

(n)
/ε

(m)/k

ωk
+
i/ε

(m)
/ε

(n)/k
′

ωk′

]
. (14.13.15)

For putting the operator O in the form (14.13.15) we have used the following identities:

(a) −i[iγ(p+ ~k)−mc][γ(p+ ~k)− imc] = (p+ ~k)2 +m2c4

(b) (p+ ~k)2 +m2c2 = −2mωk~

(c) [iγ(p+ ~k)−mc]γ ε(m)ur(p) = −iγ ε(m)~γ k ur(p)

(d) ~pk = −~mωk

Now the matrix element squared can be written as

|Tfi|2 = [ũs(p′)Our(p)] [ũs(p′)Our(p)]∗

= [ũs(p′)Our(p)]
[
u†r(p) O†(ũs(p′))†

]
or |Tfi|2 = [ũs(p′)Our(p)]

[
ũr(p)Õus(p′)

]
,

where Õ = γ4O
†γ4. Hence

—∑
i

∑
f

|Tfi|2 =
1
2

∑
r

∑
s

[ũs(p′)O ur(p)]
[
ur(p)Õ us(p′)

]
=

1
2

∑
s

ũs(p′)OΛ(+)(p)ÕΛ(+)(p′)us(p′) (14.13.16)

where
Λ(+)(p) =

∑
r

ur(p)ũr(p) =
−iγ p+mc

2mc

is the projection operator15 for the electron state us(p) [Eq. (14.8.21)]. This also implies
that Λ(+)(p′)us(p′) = us(p′).

Since Λ(+)(p′)vs(p′) = 0, we can add a term − 1
2

∑
s
ṽs(p′)OΛ(+)(p)ÕΛ(+)(p′)vs(p′) to

the expression on the right-hand side of Eq. (14.13.16) to get

—∑
i

∑
f

|Tfi|2 =
1
2

∑
s

[ũs(p′)Qus(p′)− ṽs(p′)Qvs(p′)] ,

15If we let the matrix operator
P
r
ur(p)ũr(p) operate on the spinor us(p) [Eq. (14.8.6)], the result is us(p).

This operator can therefore be identified with Λ(+)(p).
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where Q = OΛ(+)(p)ÕΛ(+)(p′) and Õ = γ4O
†γ4. Writing out the matrix products on the

right-hand side of this equation we get
—∑
i

∑
f

|Tfi|2 =
1
2

∑
s

∑
α

∑
β

[ũs,α(p′)Qαβus,β(p′)− ṽs,α(p′)Qαβvs,β(p′)]

=
1
2

Tr Q , (14.13.17)

where we have used the identity∑
s

{ũs,α(p′)us,β(p′)− ṽs,α(p′)vs,β(p′)} = δα,β .

The suffixes α and β have been used to label the components of the spinors us and vs. Thus
—∑
i

∑
f

|Tf i|2 =
1
2

Tr {OΛ(+)(p)ÕΛ(+)(p′)},

where

Õ = γ4O
†γ4 =

i

2m

[
/k/ε

(m)
/ε

(n)

ωk
+
/k
′
/ε

(n)
/ε

(m)

ωk′

]
.

Hence
—∑
i

∑
f

|Tfi|2 =
1

32m4c2
Tr

[{
i/ε

(n)
/ε

(m)/k

ωk
+
i/ε

(m)
/ε

(n)/k
′

ωk′

}
(i/p−mc){

i/k/ε
(m)

/ε
(n)

ωk
+
i/k
′
/ε

(n)
/ε

(m)

ωk′

}
(i/p′ −mc)

]
. (14.13.18)

Let us now introduce a four-vector a defined by

a =
k′

ωk′
− k

ωk
≡ k′

ω′
− k

ω
.

To simplify writing, we will denote ωk and ωk′ by ω and ω′, respectively, and ε(n), ε(m) by
ε′, ε. Now p = (0, imc), since |p| = 0, and k = (k, iω /c), we have

a =
[(
k′

ω′
− k
ω

)
, 0
]

; pa = 0 and a2 =
2m
ωω′~

(ω − ω′).

We also have
i/ε/ε
′/k
′

ω′
+
i/ε
′
/ε/k

ω
= i/ε/ε

′
/a+

2iε′ε/k
ω

,

by virtue of

/ε
′
/ε = −/ε′/ε + 2εε′ and

i/k/ε/ε
′

ω
+
i/k
′
/ε
′
/ε

ω′
= i/a/ε

′
/ε +

2i/kεε′

ω
.

Using these results we find
—∑
i

∑
f

|Tfi|2 =
1

32m4c2
Tr
[(
i/ε/ε
′
/a+ 2iε′ε

/k

ω

)
(i/p−mc)

(
i/a/ε
′
/ε +

2i/kε′ε
ω

)
(i/p′ −mc)

]
=

1
32m4c2

Tr (P +Q+R+ S) (14.13.19)
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where the matrices P , Q, R, and S are defined by

P = i/ε/ε
′
/a(i/p−mc)i/a/ε′/ε(i/p−mc) , (14.13.20)

Q = 4(εε′)2

{
i/k

ω
(i/p−mc) i/k

ω
(i/p′ −mc)

}
, (14.13.21)

R = 2(εε′)
{
i/ε/ε
′
/a(i/p−mc) i/k

ω
(i/p′ −mc)

}
, (14.13.22)

S = 2(εε′)
{
i/k

ω
(i/p−mc)i/a/ε′/ε(i/p′ −mc)

}
. (14.13.23)

Using the identities
/A/B = − /B /A+ 2AB

Tr /A = 0 = Tr /A/B /C

Tr /A/B = 4AB

Tr /A/B /C /D = 4[(AB)(CD)− (AC)(BD) + (AD)(BC)]

where A, B, C, D, are four-vectors, and the relations, k′2 = k2 = ap = ε p = pε′ = εk = 0
and p′ = p+ ~(k − k′), we can show that

P = a2(i/p+mc)
[
i(/p+ ~/k − ~/k′)−mc

]
and Q =

4(εε′)2

ω2
2(kp)(/k/p− ~/k/k′ + imc/k

′) .

Hence Tr P = −a2 Tr {~/p(/k − /k′)} =
8m2(ω − ω′)2

ωω′
, (14.13.24)

and Tr Q =
32(εε′)2

ω2
(kp)2

[
1− ~

(kk′)
(kp)

]
. (14.13.25)

Since Tr R = Tr S, we may write

Tr (R+ S) = 4(εε′) Tr [i/ε/ε′/a(i/p−mc) i/k
ω

(i/p′ −mc)]

=
4(εε′)
ω

Tr [(i/p+mc)/ε/ε′/a/k{i(/p+ ~/k − ~/k′)−mc}]

=
4(εε′)
ω

Tr [(i/p+mc)/ε/ε′/a/k{(i/p−mc)− i~/k′}]

=
4(εε′)
ω

~ Tr (/p/ε/ε′/a/k/k
′) .

The last step follows because Tr {(i/p+mc)/ε/ε′/a/k(i/p−mc)} = Tr {(i/p−mc)(i/p+mc)/ε/ε′/a/k} =
0, and Tr (/ε/ε′/a/k/k′) = 0.

Thus

Tr (R+ S) =
4(εε′)
ω

~ Tr

[
/p/ε/ε
′

(
/k
′

ω′
− /k

ω

)
/k/k
′
]

=
4(εε′)~
ωω′

Tr (/p/ε/ε′/k
′
/k/k
′)

= 8~
(kk′)(εε′)
ωω′

Tr (/p/ε/ε′/k
′)

= 8~
(kk′)(εε′)
ωω′

4[(pε)(ε′k′)− (pε′)(εk′) + (pk′)(εε′)] .
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Using the result (pk)(pk′)/m2 = ωω′, we can simplify this to yield

Tr (R+ S) = 32m2(εε′)2~
(kk′)
(pk)

. (14.13.26)

Thus, finally we have

—∑
i

∑
f

|Tfi|2 =
1

4m2c2

[
(ω − ω′)2

ωω′
+ 4(εε′)2

]
(14.13.27)

and

dσ

dΩK′
=

e4

(4πε0c)2

ω′2

ω2

—∑
i

∑
f

|Tfi|2 =
e4

(4πε0)24m2c4
ω′2

ω2

[
(ω − ω′)2

ωω′
+ 4(ε · ε′)2

]
.

(14.13.28)
The last result agrees with Eq. (13.7.26) of Chapter 13.

The averaging over the initial states of polarization of the incident photon and summing
over the states of polarization of the ejected photon can be done exactly as in Chapter 13
[Sec. 13.7] to get the result[

dσ

dΩ

]
unpolarized

=
r2
0

2

(
ω′

ω

)2{
ω

ω′
+
ω′

ω
− sin2 θ

}
(14.13.29)

where cos θ = k·k′
|k||k′| and r0 = e2

4πε0mc2
= classical radius of the electron.

14.14 Cross-sections for Other Electromagnetic Processes

Trace calculations of a similar nature may be performed to compute the cross-sections
of other electromagnetic processes, using the corresponding amplitudes obtained from the
respective Feynman graphs.

14.14.1 Electron-Positron Pair Annihilation (Electron at Rest)

Starting from the transition amplitude (14.12.2) corresponding to the Feynman diagrams
in Fig. 14.9, one can write the cross-section of the process using Eq. (??). For averaging
the cross-section over electron and positron spins and summing over photon polarizations,
one may carry out the trace calculations to get the result

dσ

dΩ
=
(
r2
0

2

)
m2c4

c|p+|E+ − c2|p+|2 cos θ

[
1− E+

mc2

+
(Ei − c|p+| cos θ)2

E+Ei − Eic|p+| cos θ
− 2

(EiE+ − Eic|p+| cos θ)
(Ei − c|p+| cos θ)2

]
(14.14.1)

where Ei = E+ + mc2, p+ and E+ are the initial momentum and energy of the positron
and

cos θ =
k · p+

|k||p+|
. (14.14.2)
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For the total annihilation cross-section for positrons of energy E+ colliding with electrons
at rest, we get the expression

σtotal = π r2
0

(
mc2

Ei

)[(
E2

+ + 4mc2E+ +m2c4

c2|p+|2
)

ln
{
E+ + c|p+|

mc2

}
−
(
E+ + 3mc2

c|p+|
)]

.

(14.14.3)
This result was first obtained by Dirac (1930).

14.14.2 Möller (e−e−) and Bhabha (e−e+) Scattering

From the amplitudes (14.12.4) and (14.12.5) pertaining to the Feynman graphs of Figs.
14.11 and 14.12, respectively, we can calculate the differential cross-section for Möller and
Bhabha scattering. Averaging over the initial spin states and sum over the final spin states
can be carried out by performing the trace calculations. One then finds that the cross-
section for Möller scattering in the center-of-mass frame is[

dσ

dΩ

]
c.m.

=
r2
0

4
m2c4

E2c4p4
c

[
4(E2 + c2p2

c)
2

sin4 θ
− (8E4 − 4E2m2c4 −m4c8)

sin2 θ
+ c4p4

c

]
(14.14.4)

where pc is the electron momentum in the center-of-mass frame

pc = |p1| = |p2| = |p′1| = |p′2| , (14.14.5)

cos θ =
p1 · p′1
p2
c

, (14.14.6)

E = E1 = E2 = E′1 = E′2 (14.14.7)

and vectors p1, p2, p
′
1, p

′
2 are as defined in Fig. 14.11.

For Bhabha (e−e+ ) scattering, the expression for the differential cross-section (in the
center-of-mass frame) is[

dσ

dΩ

]
cm

= r2
0

m2c4

64E2

[
A

16c4p4
c sin4(θ/2)

+
B

E4
c

+
2C

4c2p2
cE

2
c sin2(θ/2)

]
, (14.14.8)

where

A = 32[2m2c4(m2c4 + p2
cc

2 cos θ − E2) + (c2p2
c cos θ + E2)2 + (c2p2

c + E2)2], (14.14.9)

B = 32c4[2m2c2(m2c2 − p1p2) + (p1p2)2 + (p1p
′
1)2], (14.14.10)

C = −32c4[m2c2(m2c2 − p1p
′
2 + p1p

′
1 − p1p2) + (p1p

′
2)2]. (14.14.11)

Four-vectors p1, p2, p
′
1, p
′
2 have been defined in the expressions (14.12.5) for the amplitude

Mfi for Bhabha scattering and also specified in the relevant Feynman graphs in Fig.14.12.
Also

pc = |p1| = |p′1| = |p2| = |p′2| , (14.14.12)

cos θ =
p1 · p′1
p2
c

, (14.14.13)

and E = E1 = E2 = E′1 = E′2 . (14.14.14)
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Problems

1. An entity F (ψ , π) defined by:

F (ψ , π) =
∫

χ (ψ(r, t) , π(r, t)) dτ

is called a functional of ψ and π , if the variation in F , produced by variations δψ and
δπ in ψ and π, can be expressed as

δF =
∫
{f1(ψ, π) δψ + f2(ψ, π) δπ} dτ.

Define functional derivatives /∂F
/∂ψ

and /∂F
/∂π

of F with respect to ψ and π and show that

/∂F

/∂ψ
= f1(ψ , π)

/∂F

/∂π
= f2(ψ , π) .

2. Using (i) the field equations in the Lagrangian form,

∂

∂xµ

(
∂L
∂φµ

)
− ∂L
∂φ

= 0, or
d

dt

(
/∂L

/∂φ

)
− /∂L

/∂φ
= 0,

(ii) the definition of the field variable π canonically conjugate to φ, viz., π = /∂L
/∂φ̇

such
that the momentum Pi canonically conjugate to φi (mean value of φi in the i-th cell
of volume ∆τi in the configuration space) is given, in analogy with particle dynamics
by

Pi =
δL

δφ̇i
=
(
δL
δφ̇

)
i

∆τi =
(
/∂L

/∂φ̇

)
i

∆τi = πi∆τi,

and (iii) the definition of the Hamiltonian of the field in analogy with particle
dynamics,

H =
N∑
i=1

Piφ̇i − L(φ, φ̇) =
N∑
i=1

(πiφ̇i − Li)∆τi

or H =
∫

(πφ̇− L) dτ =
∫
H dτ ,

in the limit ∆τi → 0, N → ∞, show that H is a functional of φ and π. Also derive
the field equations in the canonical form

φ̇ =
/∂H

/∂π
=
∂H
∂π
−

3∑
k=1

∂

∂xk

(
∂H
∂πk

)
,

and −π̇ =
/∂H

/∂φ
=
∂H
∂φ
−

3∑
k=1

∂

∂xk

(
∂H
∂φk

)
,

where πk ≡ ∂π
∂xk

and φk ≡ ∂φ
∂xk

.
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3. Given the Lagrangian density for the electromagnetic field,

Lem =
1
µ0

(
−1

4
FµνFµν − 1

2
∂Aµ
∂xµ

∂Aν
∂xν

)
+ jµAµ

derive the corresponding field equations.

4. For a real scalar (KG) field the Lagrangian density can be expressed by

L = − 1
2

(
∂ϕ

∂xµ

∂ϕ

∂xµ
+ κ2

0ϕ
2

)
while for a complex scalar (KG) field it is given by

L = −
(
∂ϕ∗

∂xµ

∂ϕ

∂xµ
+ κ2

0ϕ
∗ ϕ

)
where κ0 = mc

~ . Derive the corresponding field equations. Show that a real field may
be looked upon as a neutral field while the complex field can be looked upon as a
charged field. Derive expressions for the charge density ρ and charge current density
j for the field in the latter case.

5. The Lagrangian density for the Dirac field is given as

L = − ψ̃
(
c~ γρ

∂ψ

∂xρ
+ mc2ψ

)
= c~

∂ψ̃

∂xρ
γρψ − mc2ψ̃ψ.

Using the Euler-Lagrange equation derive the field equation (Dirac equation). Work
out the Hamiltonian density, the total Hamiltonian H and the total charge for the
Dirac field.

6. Show that the Hamiltonian density of Dirac field may be expressed as

H = ψ†(c α · p + β mc2)ψ

and the total Hamiltonian of the Dirac field as

H =
∫
H dτ = −c ~

∫
ψ̃ γ4

∂ψ

∂x4
dτ .

Using the Fourier expansion of the Dirac field ψ

ψ(r, t) =
1√
V

∑
p

4∑
ν=1

√
mc2

|Ep| b
ν
p u

ν(p) exp(ip · r/~),

with similar form for ψ†, express the total Hamiltonian and the total charge of the
field in terms of the expansion coefficients as

H =
∑
p

4∑
ν=1

Eνp b
ν∗
p (t) bνp(t) ,

Q = e
∑
p

4∑
ν=1

bν∗p bνp .
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7. To quantize the Dirac field we regard the field functions ψ(r, t) and ψ̃(r, t) as operators

ψ̂ and ˆ̃
ψ. Consequently the Fourier expansion coefficients bνp and bν∗p must also be

treated as operators b̂νp and b̂ν†p , so that the Hamiltonian and charge operators of the
field may be expressed as

Ĥ =
∑
p

4∑
ν=1

Eνp b̂
ν
p b̂

ν†
p ,

Q̂ = e
∑
p

4∑
ν=1

b̂νp b̂
ν†
p .

(a) Infer the time dependence of the operators b̂ and b̂†. (b) What considerations
prompt us to assert that the operators b̂ and b̂† obey anti-commutation relations

[b̂ν†p , b̂
ν′

p′ ]+ ≡ b̂ν†p b̂ν
′

p′ + b̂ν
′

p′ b̂
ν†
p = 1̂δpp′δνν′ ,

[b̂νp, b̂
ν′

p′ ]+ = [b̂ν†p , b̂
ν′†
p′ ]+ = 0,

rather than commutation relations.

8. Show that b̂ν†p and b̂νp may be regarded as the creation and annihilation operators for
an electron with momentum p and spin and sign of energy specified by ν.

9. In place of Dirac field operators b̂(ν)
p and b̂(ν)†

p , (with ν = 1(2) corresponding to positive
energy and spin up (down) and ν = 3(4) corresponding, negative energy with spin
up (down)), one can introduce the electron and positron creation and annihilation
operators b̂(s)†p , b̂

(s)
p and d̂(s)†

p , d̂
(s)
p , with s = 1, 2 corresponding to spin up or down, so

that

b̂(s)p = b̂νp for s = ν = 1, 2

and d̂(s)
p =

{
−b̂(ν)
p for s = 1, ν = 4

+b̂(ν)
p for s = 2, ν = 3

With this, the energy of a free particle is always positive. One can also introduce
electron and positron spinors us(p) and vs(p) so that

us(p) = uν(p) with s = ν = 1, 2
vs(p) = ∓ uν(−p) with s = 1 , ν = 4 (upper sign)

s = 2 , ν = 3 (lower sign) .

Verify that this definition is also consistent with the operation of the charge
conjugation operator given by Sc = γ2 = − iβ α2 so that

Sc u
(s)∗(p) = vs(p)

and Sc v
(s)∗(p) = us(p) .

Dirac spinors u(ν)
p for ν = 1, 2, 3, 4 are given by Eqs. (12.4.16), (12.4.17), (12.4.20)

and (12.4.21) of Chapter 12.

10. Show that the anti-commutation bracket has algebraic properties different from
those of the commutator bracket (or classical Poisson bracket). Deduce the anti-
commutation relations satisfied by the electron and positron creation and annihilation
operators b̂(s)p , b̂

(s)†
p , d̂

(s)
p and d̂

(s)†
p .
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11. Show that, with the introduction of the electron and positron creation and annihilation
operators, the expansions of the field operators ψ̂ and ˆ̃

ψ take the form:

ψ̂(r, t) = ψ̂(+)(r, t) + ψ̂(−)(r, t)

and ˆ̃
ψ(r, t) = ˆ̃

ψ(+)(r, t) + ˆ̃
ψ(−)(r, t) ,

where ψ̂(+) =
1√
V

∑
p

2∑
s=1

√
mc2

Ep

{
b̂(s)p u(s)(p) exp

(
ip · r

~
− iEpt

~

)}
,

ψ̂(−) =
1√
V

∑
p

2∑
s=1

√
mc2

Ep

{
d̂(s)†
p v(s)(p) exp

(
− ip · r

~
+
iEpt

~

)}
,

ˆ̃
ψ(+) =

1√
V

∑
p

2∑
s=1

√
mc2

Ep

{
d̂(s)
p ṽ(s)(p) exp

(
ip.r

~
− iEpt

~

)}
,

ˆ̃
ψ(−) =

1√
V

∑
p

2∑
s=1

√
mc2

Ep

{
b̂(s)†p ũ(s)(p) exp

(
− ip.r

~
+
iEp
~

)}
.

12. Show that, in view of the anti-commutation relations satisfied by the electron creation
and annihilation operators [Problem 10], the equal time (t = t′) anti-commutation
relations, satisfied by the field operators, are as follows

[ψ̂µ(x), ψ̂ν(x)]+ = [ψ̂†µ(x), ψ̂†ν(x′)]+ = [ ˆ̃
ψµ(x), ˆ̃

ψν(x′)]+ = 0

and [ψ̂µ(x), ψ̂†ν(x′)]+ = δµνδ
3(r − r′)

which implies [ψ̂µ(x), ˆ̃
ψν(x′)]+ = (γ4)µνδ3(r − r′) .

Here µ and ν label the four components of the spinors ψ,ψ† and ψ̃ and x ≡ (r, ict).

13. Show that the interaction Hamiltonian, pertaining to the interaction between the
electron field and the radiation field, is given by

ĤI =
∫
Ĥdτ =

∫
−iec ˆ̃

ψγµψ̂Âµdτ .

14. Show that, in the interaction picture, the state of the field |Φint(t)〉 at time t is given
by a Schrödinger-like equation

i~
d

dt
|Φint(t)〉 = Ĥ int

I (t)|Φint(t)〉 ,

where Ĥ int
I (t) is the interaction Hamiltonian in the interaction picture, given by

Ĥ int
I (t) = exp(iĤ0t/~)Ĥ(S)

I exp(−iĤ0t/~) ,

Ĥ
(S)
I being the interaction Hamiltonian in the Schrödinger picture. Thus both |Φint〉

and Ĥ int
I have time dependence.

15. Define the U matrix and S matrix. Write down the iterative expansion of the S
operator. Show that if the interaction density pertains to the interaction of the
electron field and the radiation field,
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Hint
I (t) = −iec ˆ̃

ψγµψ̂ Âµ

then the first order term in the expansion of the S operator, viz.,

Ŝ(1) =
ie

~

∫
ˆ̃
ψγµψ̂Âµd

4x

cannot give rise to any physical process. Draw the relevant Feynman diagrams and
explain what prevents these processes from taking place.

16. What physical processes may be brought about by the second order term in the
expansion of the S operator. Draw the relevant Feynman diagrams.

17. Explain the difference between Feynman diagrams and Feynman graphs. Enunciate
the rules for writing matrix elements (transition amplitudes) for any electrodynamic
process from Feynman graphs. Illustrate this with the example of Compton scattering
from atomic electrons.

18. If the matrices R and S are defined as

R = 2(εε′)
[
i/ε/ε
′
/a(i/p−mc) i/k

ω
(i/p′ −mc)

]
S = 2(εε′)

[
i
/k

ω
(i/p−mc)i/a/ε′/ε(i/p′ −mc)

]
where /p ≡ γp = γµpµ ; /a = γµaµ with a ≡

((
k′

ω′ − k
ω

)
, 0
)

and εε′ = εµε
′
µ, then show

that Tr R = Tr S and calculate Tr (R+ S).

19. Given P = a2(i/p+mc){i(/p+ ~/k− ~/k′)−mc} and Q = 4(εε′) 2kp
ω2 (/k/p− ~/k/k′ +mc/k

′) ,
calculate Trace P and Trace Q. The four-vector a has been defined in problem 18
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Appendix 14A1: Calculus of Variation and Euler-Lagrange
Equations

The calculus of variations deals with the problem of finding a function y = f(x), for which
the integral

A =

x2∫
x1

I(x, y,
dy

dx
)dx (14A1.1)

is stationary (maximum or minimum) for an arbitrary small variation in y. The meaning
of variation in y is illustrated in Fig. 14A1.1. If LQH is the curve y = f(x) joining fixed
points L and B and LSH is the varied curve Y = F (x), joining the same end points, then
δ y = Y (x)−y(x) = F (x)−f(x) is called the variation in y. Obviously δ y is a function of x
which vanishes at the end points x1 (L) and x2 (H). Thus we can speak of the variation of
a function such as y(x) and therefore, also of a constant such as the integral A of (14A1.1),
because the latter will change as y(x) is varied.

L

H•

•
y(x)=f(x)

Y(x)=F(x)

Q

S

δy=SQ

x

y

FIGURE 14A1.1
The function y = f(x) is represented by the curve LQH and the varied function Y = F (x)
is represented by the curve LSH. δy = SQ represents the variation in y at the point x.

Let us now compute the variation in A when y(x) is varied. Let the derivative dy
dx be denoted

by yx. Then the variation in the derivative is given by

δ yx = δ

(
dy

dx

)
=
dY

dx
− dy

dx
=

d

dx
(Y − y) =

d

dx
δy . (14A1.2)

This means that the operations of variation δ and differentiation d
dx may be interchanged.

In the same way, the operations of variation and integration may also be interchanged,
giving us

δA ≡ δ
∫
Idx =

∫
δ I dx, (14A1.3)
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which means that the variation in the integral equals the integral of the variation. Now the
variation in the function I(x, y, dy/dx) as a result of the variation δy in y is given by

δ I = I

(
x, Y,

dY

dx

)
− I

(
x, y,

dy

dx

)
= I(x, y + δ y, yx + δ yx)− I(x, y, yx)

=
{
I(x, y, yx) +

∂ I

∂y
δ y +

∂ I

∂yx
δ yx + · · ·

}
− I(x, y, yx)

=
∂I

∂y
δy +

∂I

∂yx
δyx . (14A1.4)

Then the condition that the integral A be stationary with respect to a variation of y means
that its variation as a result of arbitrary δy must vanish,

δA = δ

∫ x2

x1

Idx =
∫ x2

x1

δ Idx = 0

or

x2∫
x1

(
∂I

∂y
δ y +

∂I

∂yx
δ yx

)
dx = 0,

or

x2∫
x1

∂I

∂y
δ ydx+

[
∂I

∂yx
δ y

]x2

x1

−
x2∫
x1

d

dx

(
∂I

∂yx

)
δ ydx = 0 ,

where the last step follows from the preceding one by integration by parts. The integrated
term gives zero contribution since the variation at the end points vanishes. The condition
for A to be stationary with respect to a variation of y(x) then takes the form

δA ≡
x2∫
x1

δ y

{
∂I

∂y
− d

dx

(
∂I

∂yx

)}
dx = 0 .

Since the variation in y is arbitrary, it follows that the condition for the integral A to be
stationary is

∂I

∂y
− d

dx

(
∂I

∂yx

)
= 0 . (14A1.5)

This equation is called Euler-Lagrange equation.
We may as well consider the case in which the integrand I is a function of one independent

variable x and several dependent variables y1(x), y2(x), · · · , yn(x) and their derivatives
y1x, y2x, · · · , ynx, where ynx ≡ dyn

dx . Then the condition for the integral

A =
∫
I(x; y1, y2, · · · , yn; y1x, y2x, · · · , ynx)dx, (14A1.6)

to be stationary, for arbitrary variations of y1, y2, · · · , yn, is again

δA =

x2∫
x1

δ Idx = 0.

Now the change in I, when y1, y2, · · · , yn, are varied can be expressed as

δ I =
(
∂ I

∂y1
δ y1 +

∂ I

∂y2
δ y2 + · · · ∂ I

∂yn
δ yn

)
+
(
∂ I

∂y1x
δ y1x +

∂ I

∂y2x
δ y2x + · · ·+ ∂ I

∂ynx
δ ynx

)
=

n∑
i

{(
∂I

∂yi

)
δ yi +

(
∂I

∂yix

)
δ yix

}
. (14A1.7)
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The condition δA = 0 then takes the form

n∑
i=1

x2∫
x1

{
∂I

∂yi
δ yi +

∂I

∂yix
δ yix

}
dx = 0 .

Integrating the second term by parts once, we obtain

n∑
i=1

 x2∫
x1

∂I

∂yi
δ yidx+

{
∂I

∂yix
δ yi

}x1

x2

−
x2∫
x1

d

dx

(
∂I

∂yix

)
δyidx

 = 0 .

The integrated term vanishes, since the variation in yi is zero at the end points. Thus the
condition for A to be stationary with respect to variations of yi is

δA ≡
n∑
i=1

x2∫
x1

{
∂I

∂yi
− d

dx

(
∂I

∂yix

)}
δyidx = 0 .

As the variations δyi are arbitrary, the integrand for each term must vanish separately,
leading to the following set of conditions (equations) on yi for the integral A to be stationary

∂I

dyi
− d

dx

(
∂I

∂yix

)
= 0, where i = 1, 2, · · · , n. (14A1.8)

These equations, called the Euler-Lagrange equations, determine the set of functions yi(x)
which make the integral A stationary.

Hamilton’s Principle

Hamilton’s principle describes the motion of a system of particles in terms of a stationarity
condition. It states that the actual motion of a system of particles, with f degrees of
freedom, from an initial configuration at time t1 to a final configuration at time t2, is
determined by the condition that the action, defined by

A =

t2∫
t1

L

(
t, q1, q2, · · · , qf , dq1

dt
,
dq2

dt
, · · · , dqf

dt

)
dt

be stationary, i.e., the variation in A must vanish. Here the Lagrangian L of the system is
defined to be the difference (L = T − V ) between the kinetic energy T and the potential
energy V of the system of particles and can be expressed in terms of the generalized
coordinates qi and generalized velocities qit ≡ dqi/dt [Appendix 1A1]. Then the stationarity
of action implies

δA =

t2∫
t1

δLdt = 0,

for small arbitrary variations of particle coordinates qis. In this case, the Euler-Lagrange
equations may be written down from Eq. (14A1.8) with the following replacements

x→ t, yi → qi, yix → qit =
dqi
dt

= q̇i, I → L and n→ f .
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This gives Lagrange equations of motion for a system of particles with f degrees of freedom

∂ L

∂qi
− d

dt

(
∂ L

∂q̇i

)
= 0 . (14A1.9)

Hamilton’s principle is a very general principle and may also be used to derive equations
for fields as well as particles.

Appendix 14A2: Functionals and Functional Derivatives

The integral

F (g) =
∫ x2

x1

I(x, g)dx (14A2.1)

where x is the independent variable and g(x) is a dependent variable, depends on the values
of the function g(x) at all points in the interval x1 and x2. We say that F is a functional
of g. A variation of the function g(x) will cause a variation in F .

Now consider a variation of g(x) → g(x) + δg(x) such that δg(x1) = 0 = δg(x2). By
dividing the interval [x1, x2] in a large number of cells of length ∆xi, where i = 1, 2, 3, · · · , n,
the variation in F can be written as

δF ≡ [F (g + δg)− F (g)] =
n∑
i=1

[I(xi, gi + δgi)− I(xi, gi)]∆xi

=
n∑
i=1

[
I(xi, gi + δgi)− I(xi, gi)

δgi

]
δgi∆xi

where gi is the value of g in the ith cell and δgi is the change in the value of g in the ith
cell. If we consider the variation of g such only the change δgi in the ith cell is nonzero,
then the limit lim

∆xi→0
δgi→0

δF
∆xiδgi

, if it exists, defines the value of the functional derivative of F

with respect to g at point xi. Since the cell i is arbitrary we can drop the subscript i and
define the functional derivative of F with respect to g by

lim
∆xi→0
δgi→0

δF

∆xiδgi
=
/∂F

/∂g
. (14A2.2)

For our example, it is easy to see that

/∂F

/∂g
=
∂I

∂g
.

As another example, consider the case in which the integrand depends on the function g(x)
as well as its first derivative gx(x) = dg

dx , as in Eq. (14A1.1) of Appendix 14A1. Then the
variation of F due to a variation of g can be written as

δF =
∫ x2

x1

[δI(x, g, gx)] dx =
∫ x2

x1

δg

{
∂I

∂g
− d

dx

(
∂I

∂gx

)}
dx . (14A2.3)

Hence the functional derivative of F with respect to g, in this case is

/∂F

/∂g
=
∂I

∂g
− d

dx

(
∂I

∂gx

)
. (14A2.4)
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It is possible to consider functionals which depend on higher (than first) order derivatives
but they are seldom useful.

In terms of functional derivative, the variation in F [Eq. (14A2.4)] can be written simply
as

δ F =
∫
A

[
/∂F

/∂g
δ g

]
dx, (14A2.5)

and the condition for F to be stationary with respect to a variation of g can be written as

/∂F

/∂g
= 0 . (14A2.6)

This is analogous to the condition for an ordinary function to be stationary with respect to
a variation of its argument. If F is given by an equation like (14A1.1), then Eq. (14A2.6),
together with Eq. (14A2.4) immediately leads to the Euler-Lagrange equation.

Generalization to functionals that depend on a function of several variables and
parameters is straightforward. For example, consider the functional

F (g, t) =
∫
A
χ(x, y, g, gx, gy; t)dτ , (14A2.7)

which depends on a function g = g(x, y; t) of two independent variables x and y (and a
parameter t), as well as its first order derivatives gx(x, y; t) = ∂g

∂x , gy(x, y; t) = ∂g
∂y . Here

dτ = dxdy is a volume element in a two-dimensional region A spanned by x and y.
Then the variation of F due to a variation in g can be written as

δF =
∫
A

{
∂χ

∂g
δg − ∂χ

∂gx
δgx − ∂χ

∂gy
δgy

}
δτ .

Using the results δgx = ∂
∂xδg and δgx = ∂

∂xδg, analogous to Eq. (14A1.2), in this equation
and integrating the second and third terms by parts once, dropping the boundary terms
which vanish since the variation of g at the boundary vanishes, we obtain

δF =
∫
A
δg

{
∂χ

∂g
− ∂

∂x

∂χ

∂gx
− ∂

∂y

∂χ

∂gy

}
δτ . (14A2.8)

We can define functional derivative in this two-dimensional case by

lim
∆τ→0
∆g→0

δ F

δ g∆τ
≡ /∂ F

/∂ g
,

which holds for every point inside the region A. For our particular case we find

/∂ F

/∂ g
=
∂χ

∂g
− ∂

∂x

∂χ

∂gx
− ∂

∂y

∂χ

∂gy
. (14A2.9)

If χ does not depend on gx and gy, the last two terms drop out and we have

/∂ F

/∂ g
=
∂χ

∂g
. (14A2.10)

Finally, if F depends on two functions, g(x, y, z) and h(x, y, z), we may write the variation
in F as

δ F =
∫ [

/∂ F

/∂ g
δ g +

/∂ F

/∂ h
δ h

]
dτ (14A2.11)

where /∂F
/∂g

and /∂F
/∂h

are, respectively, the functional derivatives of F with respect to g and h.
It is clear that the procedure can be generalized to F depending on any number of functions.
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Appendix 14A3: Interaction of the Electron and Radiation Fields

The total Lagrangian density of the electron field interacting with the radiation field may
be written as

L = Le + Lγ + LI (14A3.1)

where Le = −ψ̃(c~γµ
∂ψ

∂xµ
+mc2ψ) = c~

∂ψ̃

∂xµ
γµψ −mc2ψ̃ψ (14.4.26*)

represents the Lagrangian density for pure electron field,

Lγ = − 1
2µ0

∂Aν
∂xµ

∂Aν
∂xµ

with Aν ≡ (A, iφ/c), (14.4.1*)

represents the Lagrangian density for pure radiation field, while

LI = iecψ̃γµψAµ = jµAµ (14A3.3)

represents the Lagrangian density for the interaction between the two fields. The last
expression can be justified because, for LI also we need a scalar in four-space, and the
simplest scalar which can be constructed with the electromagnetic field vector Aµ and the
electron current density vector jµ is jµAµ = iecψ̃γµψAµ. To further justify the form for LI
given by Eq. (14A3.3), we may consider variations in ψ̃, ψ and Aµ and use Euler-Lagrange
equations,

∂L
∂ψ̃
− ∂

∂xµ

 ∂L
∂
(
∂ψ̃
∂xµ

)
 = 0,

∂L
∂ψ
− ∂

∂xµ

 ∂L
∂
(
∂ψ
∂xµ

)
 = 0,

and

∂L
∂Aν

− ∂

∂xµ

 ∂L
∂
(
∂Aν
∂xµ

)
 = 0,

where L is given by Eq. (14A3.1), to derive the field equations for ψ, ψ̃ and Aν . We can
easily see that the results are, respectively,

γµ

(
∂

∂xµ
− ie

~
Aµ

)
ψ +

mc

~
ψ = 0, (12.7.4*)

(
∂

∂xµ
+
ie

~
Aµ

)
ψ̃ γµ − mc

~
ψ̃ = 0, (12.7.5*)

and
∂

∂xµ

∂

∂xµ
Aν = −µ0 jν , (14.4.4*)
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which are the well known field equations. Hence we accept the form for the Lagrangian
density for the interaction, as given by Eq. (14A3.3). Then the the Hamiltonian density
for the interaction is

HI =
∂LI
∂ψ̇σ

ψ̇σ − LI

or HI = −LI = −iecψ̃γµψAµ (14A3.4)

since LI does not depend on ψ̇.

Appendix 14A4: On the Convergence of Iterative Expansion of the
S Operator

The usefulness of the interaction picture in the calculation of transition rates depends
on the convergence of the series in Eq. (14.9.21). One might expect that, in problems
of quantum electrodynamics (QED), the S matrix expansion would converge because the

coupling constant (the fine structure constant ) α =
e2

4πε0~c
� 1 whereas in the realm

of strong interaction, where the coupling constant gπ ≈ 1, the convergence may not be
achieved. Unfortunately, even for problems in quantum electrodynamics, this series is not
convergent.

If one started with a hypothetical electron of bare mass m0 and bare charge e0 and then
made it physical by giving it the property of interaction, it would come to acquire an extra
mass, called self mass δm = δE/c2, and an extra charge, called self charge δe. The self
energy, or self mass δm, of the electron arises due to its interaction with its self field and also
its interaction with the fluctuating electromagnetic vacuum. The self charge δe arises due
to vacuum polarization. Now the total mass m0 + δ m and the total charge e0 + δe could be
made to coincide with the observed rest mass mobs and observed charge eobs, respectively.
This however, is not the end of the story.

If we calculate the self mass and self charge by going to higher orders in the iterative
expansion of the S matrix to include all intermediate processes which involve virtual quanta
of unlimited energy, one encounters the most disturbing feature of quantum field theory,
viz., the occurrence of infinities. It turns out that, for all quantities of physical interest
which should be finite, one gets expressions which tend to infinity, some times quadratically
and some times logarithmically. The way out of this difficulty is suggested by the fact
that all these infinities can be expressed in terms of two basic infinities, viz., the self mass
δ m and self charge δe. So if things are so arranged that wherever the diverging terms
δm and δe occur in the theory, they put together with m0 and e0, respectively, are re-
normalized to the finite observed mass mobs and observed charge eobs of the electron, it
is possible to eliminate all the infinities occurring in the theory. This re-normalization
procedure must, however, be Lorentz-invariant for, if it were not so, the normalization of
infinities would have to be carried out all over again every time one changed the Lorentz
frame, and this would render the theory meaningless. For this one needs a completely
covariant formulation of electrodynamics from the very start. The invariants — bare mass
m0 and bare charge e0 — occur as unknown parameters in the covariant QED calculation.
Such a covariant formulation was achieved in the pioneering works of Tomonaga (1946),
Schwinger (1948) and Feynman (1949). This finally led to an accurate prediction of Lamb-
Retherford shift in 2S1/2−2P1/2 levels in the Hydrogen atom. It also led to the explanation
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for anomalous magnetic moment of the electron. Tomonaga, Schwinger and Feynman
thus demonstrated that, with re-normalization, it was possible to calculate experimentally
measurable quantities with unprecedented accuracy and won the Nobel prize for their
discovery.

In the present context, if one restricts the calculation of cross-sections for electrodynamic
processes only to second order expansion of S matrix, one may use for m and e occurring in
the expressions of probability amplitudes, the observed rest mass and charge of the electron.
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15

EPILOGUE

15.1 Introduction

Quantum mechanics has been enormously successful in explaining the behavior of
microsystems such as molecules, atoms, and nuclei. We have seen that quantum mechanics
describes a quantum system by the wave function ψ, which is the solution of the Schrödinger
equation. The wave function determines the probability amplitudes (whose modulus
squared gives the probability) for all possible outcomes of a measurement corresponding
to an observable on the system. In general, the wave function does not uniquely predict the
result of a measurement; it only provides a probability distribution for all possible results
of the measurement on a quantum system. Only if the system happens to be in an eigen-
state corresponding to the observable being measured, is the result of a measurement of
this observable completely predictable. On the other hand, the results of measurements
corresponding to a conjugate or non-commuting observable, on the same system in the
same state, are indeterminate. Quantum mechanical description of physical systems raises
profound questions: How are the wave function and the probabilities for different outcomes
of a measurement to be interpreted? Does the wave function represent a single system or an
ensemble of systems? Does the physical system actually have the attribute corresponding
to the measurement in question or does the measurement itself create the attribute? These
questions led to different interpretations of quantum mechanics, which were vigorously
debated during the years of its discovery as also in the following decades. The new
idea of indeterminacy was especially difficult to reconcile with the long-held view that
a physical theory should aim at predicting accurately, and without ambiguity, the result of
any measurement on any system, big or small. These debates not only gave us a deeper
understanding of quantum mechanics but also changed profoundly the way we view the
micro-world.

The orthodox interpretation of quantum mechanics, also known as the Copenhagen
interpretation, due mainly to Bohr, Heisenberg and Born (as developed in Chapers I -
III of this text) is the one to which most physicists subscribe. Although never laid down in
detail by any of its proponents, it can be summarized as follows:

The wave function describes a single quantum system and determines the probability
amplitudes (whose modulus squared gives the probabilities) for all possible outcomes
(eigenvalues) of a measurement of an observable on the system. Prior to a measurement,
the system does not actually have an attribute corresponding to any specific eigenvalue of
the observable being measured. Its wave function is a coherent superposition of different
eigenstates of the observable being measured. The act of measurement on the system
forces the system from a coherent superposition to a particular eigenstate limited only by
the statistical weight of the eigenstate in the wave function. This means an immediately
repeated measurement on the system will yield the same result. This discontinuous evolution
(quantum jump or collpase) of the wave function due to an observation is a fundamental
aspect of quantum description of physical systems. The Schrödinger equation of motion
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prescribes continuous evolution of a system in time, provided the system is not disturbed
by an observation.

Quantum mechanical wave function of a quantum system does not allow two non-
commuting variables (such as the position and momentum observables) to have definite
values simultaneously. The Heisenberg uncertainty principle then reflects the fact that non-
commuting variables cannot be measured simultaneously with arbitrary precision. Similarly,
the complementarity principle reflects the fact that the quantum mechanical description in
terms of a wave function implies that an object has both wave and particle aspects, which
are complementary in the sense that their manifestations depend on mutually exclusive
measurements and the information gained through these various experiments exhausts all
possible objective knowledge of the object.

Quantum systems that have interacted in the past, if left undisturbed, remain non-
separable, i.e., remain correlated even if separated by space-like intervals. Thus the quantum
state constitutes an indivisible whole.

Another group of scientists, led primarily by Einstein and Schrödinger, disagreed with the
orthodox interpretation of quantum mechanics. According to Einstein, the wave function
did not describe the behavior of a single quantum system but that of an ensemble of
identical systems, all in the same state. Einstein was troubled by the indeterministic aspect
of quantum mechanics. According to Einstein1, when a certain attribute (such as the
position or momentum of an electron) of a system can be predicted with certainty, without
disturbing the system, then this attribute has a physical reality. This means the system
actually possesses this attribute whether or not we choose to measure it and a complete
physical theory ought to be able to predict with certainty the outcome of a measurement
of this quantity. This must be contrasted with the orthodox interpretation, according to
which the measurement creates the reality of attributes, in a sense. Since the wave function
predicts not a definite outcome for a measurement but only the probabilities for different
outcomes, it is an incomplete description of physical reality. This argument was made in
a dramatic way by Einstein, Podolsky and Rosen (EPR) in a classic paper2 by means of
a gedanken (thought) experiment involving certain two-particle states, now known as the
entangled states, in which, measurements of shared variables on two particles are strongly
correlated.

15.2 EPR Gedanken Experiment

Consider two particles in one-dimensional motion that, having interacted in the past, have
flown apart such that their state is represented by

ψ(x1, x2) =
1

2π~

∫ ∞
−∞

exp
[
i

~
(x1 − x2 + x0)p

]
dp , (15.2.1)

where x1 and x2 are coordinates of the two particles and xo is some constant. Such a state
that cannot be written as the product of states of individual particles (non-factorizable) is
called an entangled state.

1The EPR definition of reality is best described in their own words: “If, without in any way disturbing a
system, we can predict with certainty (i.e., with probability equal to unity) the value of a physical quantity,
then there exists an element of physical reality corresponding to this physical quantity.”
2A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).
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Consider now measurements of two non-commuting observables, say, the momentum and
position observables p̂1 and x̂1 of particle 1. Now, the entangled wave function ψ(x1, x2)
may be looked upon as a continuous superposition of momentum states of particle 1

up(x1) =
1√
2π~

eipx1/~ . (15.2.2)

Hence, if an observation for p̂1 is made on this system in the state ψ(x1, x2) and a result P
is obtained, we conclude that the wave function has collapsed from ψ(x1, x2) to

eiP (x1−x2+xo)/~

2π~
=
eiP (−x2+xo)/~
√

2π~
· e

iPx1/~
√

2π~
≡ φ

P
(x2)up(x1) , (15.2.3)

so that while the particle 1 is in an eigenstate u
P

(x1) of observable p̂1 with eigenvalue P ,
particle 2 is left in the state

φ
P

(x2) =
ei(−P )(x2−x0)/~
√

2π~
(15.2.4)

which is an eigenstate of momentum p̂2 of particle 2 with eigenvalue −P .
Alternatively, if we choose to measure the position observable x̂1, we can regard ψ(x1, x2)

as a superposition of position states

ψ(x1, x2) =
1

2π~

∫ ∞
−∞

exp
[
i

~
(x1 − x2 + xo)p

]
dp

= δ(x1 − x2 + xo) =
∫
δ(x− x1)δ(x− x2 + xo)dx

≡
∫ ∞
−∞

vx(x1)χx(x2)dx (15.2.5)

where
vx(x1) = δ(x− x1) = δ(x1 − x)
χx(x2) = δ(x− x2 + xo) = δ(x2 − x− xo) .

(15.2.6)

Hence, if an observation for the observable x̂1 is made on the system in the entangled state
and a result X is obtained, we conclude that the wave function ψ has collapsed from ψ to
the state

v
X

(x1)χ
X

(x2) = δ(x1 −X)δ(x2 −X − xo)
in which the particle 1 has position X and particle 2 has position xo +X.

To summarize, if the two-particle system is in the state ψ(x1, x2) given by Eq. (15.2.1),
and an observation for p̂1 is made with the result P , then particle 2 is left in an eigenstate
of momentum observable p̂2 with eigenvalue −P . On the other hand if, on the same state,
an observation for the position of particle 1 is made and the result is X then the particle 2
is left in the eigenstate of x̂2 with eigenvalue X +xo. Now the decision whether to measure
p̂1 or x̂1 on particle 1 can be made when the two particles are so far apart that no influence
resulting from the measurement on particle 1 can possibly propagate to particle 2 in the
available time. EPR argued that since we can predict with certainly, and without disturbing
particle 2, the position (or momentum) of particle 2, according to their criterion of reality,
both position and momentum of particle 2 have objective reality, i.e., particle 2 must already
have had definite values for both position and momentum simultaneously, even though no
simultaneous measurement of position and momentum is allowed. Since the wave function
contains no elements corresponding to the reality of position and momentum of particle 2,
they concluded that the wave function is not a complete description of a physical system.
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Note that the EPR argument is based on twin assumptions of particle 2 having its reality
(separate from or independent of particle 1) even though it is connected to particle 1 and
impossibility of any change in the reality of particle 2 as a result of a measurement on particle
1 because of their space-like separation (locality). These assumptions are referred to as
local realism. It is important to realize that although the reality of position and momentum
variables of particle 2 is established in specific contexts (measurements of position and
momentum, respectively, on particle 1), locality ensures that particle 2 would have the
same reality even in the absence of the measurements on particle 1. This combined with
separability implies that particle 2 has definite values for both position and momentum
simultaneously, i.e., they are pre-determined (at the time of its interaction with particle 1)
attributes of particle 2.

The EPR conclusion regarding the incompleteness of wave function description follows
also without any reference to the simultaneous existence of definite values for position and
momentum for particle 2; if we re-examine the EPR gedanken experiment, we find that,
depending on whether we measure the position or momentum of particle 1, particle 2 is left
either in a position eigenstate or in a momentum eigenstate. Now if particle 2 has some
physical reality, independent from particle 1, and locality holds, then the measurement on
particle 1 cannot disturb the assumed reality of particle 2. However, that reality appears
to be represented by two different wave functions, depending on which measurement on
particle 1 is carried out. A complete description would not permit the same physical state
to be represented by wave functions with distinct physical implications. This not being the
case, EPR conclude that the wave function provides an incomplete description of physical
reality.

Einstein did not doubt that quantum mechanics is correct, so far as it goes but considered
it to be an incomplete and probabilistic description of physical reality. He believed that
a complete physical theory ought to predict or describe those attributes of nature that
are independent of measurements or observers. The EPR paper shows that in the case of
interacting systems satisfying the twin conditions of local realism, the description of systems
provided by wave function is not complete. The EPR argument exposes the dilemma that
we have to choose between local realism and quantum mechanical wave function as the basis
for the description of an individual physical system. Einstein referred to this dilemma as a
paradox. Theories which conform to local realism are referred to as local realistic theories.
Such theories require certain parameters to specify the reality of each particle’s variables
and have come to be called hidden variable theories.

According to the standard interpretation of quantum mechanics the EPR experiment
leads to no contradiction since quantum systems that have interacted in the past, if left
undisturbed, remain as one indivisible whole even if they have space-like separation. There is
single reality describing the whole system and the wave function is its complete description.
It should be noted that in the EPR Gedanken experiment, the inference that measurement
of momentum of particle 1 leaves particle 2 in a definite momentum state and, alternatively,
the observation of position of particle 1 leaves the particle 2 in a definite position state leads
to no contradiction in quantum mechanics because x̂1 and x̂2 commute as do p̂1 and p̂2.

For decades the debate whether quantum mechanics or local hidden variable theories are
the correct descriptions of physical reality remained a mere epistemological (epistemology
refers to how we know things) debate. This changed when in a remarkable paper Bell
showed, that the two views of reality have measurable consequences. He derived a set of
inequalities which express the limitations that local realism places on the EPR correlations.
Corresponding limits placed by quantum mechanics on EPR correlations can also be worked
out. These inequalities have been tested in a series of experiments; the results are in
agreement with quantum mechanical predictions and in clear violation of the limits placed
by local realistic theories.
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15.3 Einstein-Podolsky-Rosen-Bohm Gedanken Experiment

The EPR argument was re-cast by Bohm in terms of measurements of spin components
on a spin-entangled state. Bohm’s version of the EPR experiment, described a plausible
experimental scheme where the EPR correlations could be verified. Experimental
arrangements involving measurements of spin components or photon polarization for
spatially separated systems are referred to as as EPRB experiments.

Bohm considered a system of two spin-half particles, initially in the spin singlet state
(J = 0), decays by a process that does not change the total angular momentum. As a
result of angular momentum conservation, the particles fly apart in opposite directions.
Measurements of spin components (which take the place of position and momentum
variables in the EPR experiment) of the particle in any direction a can be carried out by
a Stern-Gerlach magnet followed by a detector D as shown in Fig. 15.1. Like the position
and momentum operators, operators for spin along different directions do not commute.
Likewise, if the spin of particle 1 is measured in some direction a and is found to be + 1

2 (in
units of ~), particle 2 would be found to have spin − 1

2 relative to the same direction and
vice versa.

a
b

b′
S

SG1SG2

D1D2

FIGURE 15.1
The spins of the particles which fly apart from source S are analyzed by two Stern-Gerlach
magnets SG1 and SG2, placed on opposite sides at equal distances from S. The orientations
of the magnets may be adjusted so as to measure the spin components in any specified
direction. D1 and D2 are detectors whose outputs are fed to a coincidence counter.

This is because, given a direction a, the entangled (singlet) state of the two particles may
be written as

χo(1, 2) =
1√
2

[
χ

(1)
1/2(a)χ(2)

−1/2(a)− χ(1)
−1/2(a)χ(2)

1/2(a)
]
, (15.3.1)

where χ(1)
±1/2(a) represents the state of the particle 1 in which the component of its spin

along the direction a is ± 1
2 (in units of ~). The spatial part of the wave function plays no

role here and has been suppressed. According to quantum mechanics, if the spin of particle
1 is measured to be +1/2 in direction a, the spin of the second particle in the same direction
must be −1/2 and vice versa. This is because when the spin of the particle 1 is observed
to be 1

2 , the state of the system collapses from χo(1, 2) to χ(1)
1/2(a)χ(2)

−1/2(a) and when it is

observed to be − 1
2 , it collapses to χ

(1)
−1/2(a)χ(2)

1/2(a). And no matter which component of
the spin of particle 1 is measured, the spin component of the second particle in the same
direction would be equal and opposite. This is because the spin singlet state always has the
form (15.3.1) for any direction a.
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Now, the particles can be allowed to move far apart so that at the time of measurement
any disturbance resulting from a determination of spin of particle 1 could not affect particle
2. Then the spin measurements exhibit correlations similar to those in the EPR experiment
allowing similar arguments and conclusions involving locality, separability, and completeness
of quantum mechanical wave function.

Another variant of EPRB experiment involves an atom undergoing a two-photon decay
without a net change in its angular momentum. The decay scheme is shown in Fig. 15.2.

ω1

ω2

J=0

J=1

J=0

FIGURE 15.2
An atom undergoes a decay in cascades (J = 0 → J = 1 → J = 0) emitting photons
of frequencies ω1 and ω2. The correlation between the polarization states of the two
photons, propagating in opposite directions may be investigated theoretically as well as
experimentally. The simple experimental set-up for this can be as shown in Fig. 15.3.

P1P2

S D1D2

C

FIGURE 15.3
Photons ω1 and ω2 emitted in opposite directions from atomic source A are analyzed by
polarizers P1 and P2. D1 and D2 are the photon detectors and C is a coincident counter.

P1 and P2 are two single-channel polarizers which are so set that P1 passes only a photon
linearly polarized at angle ϕ1 to the x-axis while P2 passes a photon polarized at angle
ϕ2 to the x-axis [see Fig. 15.3] (x, y-axes lie in a plane perpendicular to the direction of
propagation of the photons). The coincidence counter C responds positively when there is
a simultaneous detection of photons in D1 and D2.
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15.4 Theory of Hidden Variables and Bell’s Inequality

Bell3 showed that a physical theory based on local realism places limits on certain
correlations that can be measured in the EPRB type of experiments. He constructed an
explicit theoretical framework within which these correlations can be calculated. This
framework satisfied the criteria of locality and realism as envisioned by Einstein and
incorporated some type of hidden variables. Such theories are referred to as local realistic
or local hidden variable theories. Bell showed that the correlations based on local hidden
variable theories obeyed a certain inequality, now known as Bell’s inequality. The term is
now used for a family of inequalities based on theories similar to but more general than
Bell’s original construct. By computing the expectation values for products of the form
(σ1 ·a)(σ2 · b) quantum mechanically, where σi represents the spin (for spin-half particles)
of the two particles and a and b are unit vectors, Bell showed that quantum mechanical
expectation values violate Bell’s inequality. In other words, Bell proved that no local realistic
theory can agree with all of the statistical predictions of quantum theory.

We now outline a derivation of Bell’s inequality based on a local hidden variable theory
appropriate for EPRB experiments summarized in the previous section. Bell considered an
ensemble of pairs of particles 1 and 2. Each pair of particles is characterized by a variable λ,
which completely determines the properties of the pair at the moment of their interaction.
The variable λ is referred to as a hidden variable. The variable λ may be a single parameter
or it may represent a set of parameters; this point is not relevant to the establishment of the
constraints. It may differ from pair to pair, but the mechanism of interaction establishes a
probability distribution ρ(λ) with the normalization∫

ρ(λ)dλ = 1 . (15.4.1)

Different types (e.g., measurents of spin in different directions) measurements now can be
performed on the particles. Let us designate measurements on particle 1 by α, α′, · · · and
the corresponding outcomes by A(α, λ), A(α′, λ), · · · and that on particle 2 by β, β′, · · ·
and the corresponding outcomes by B(β, λ), B(β, λ′), · · · in a micro-state characterized by
the hidden variable. We assume that A(α, λ) and B(β, λ) can take only two possible values
+1 or −1. For example A(α, λ) = +1 might represent the emergence of particle 1 with spin
projection + 1

2 from SG1 in the EPRB set-up of Fig. 15.1 and A(α, λ) = −1 might represent
the emergence of particle 1 with spin projection − 1

2 along a certain direction perpendicular
to the flight path of particle 1. Then the correlation between the two variables A(α, λ) and
B(β, λ) can be expressed as

C
LHV

(α, β) =
∫
A(α, λ)B(β, λ) ρ(λ)dλ . (15.4.2)

Note that this incorporates both realism (dependence on lambda (pre)-determines the
outcome) and locality (outcome A depends only on α and B only on β). Then given two
measurements α and α′ on particle 1 and β and β′ on partice 2 and the fact |A(α, λ)| = 1,

3J. S. Bell, Physics (NY), 1, 195 (1965); reprinted in J. Bell, Speakable and Unspeakable in Quantum
Mechanics (Cambridge University Press, 2004).
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the following inequalities are easily established

|C
LHV

(α, β)− C
LHV

(α, β′)| ≤
∫
|A(α, λ)[B(β, λ)−B(β′, λ)]|ρ(λ) dλ

or |C
LHV

(α, β)− C
LHV

(α, β′)| ≤
∫
|B(β, λ)−B(β′, λ)|ρ(λ) dλ (15.4.3)

and |C
LHV

(α′, β) + C
LHV

(α′, β′)| ≤
∫
|A(α′, λ)[B(β, λ) +B(β′, λ)]|ρ(λ) dλ

or |C
LHV

(α′, β) + C
LHV

(α′, β′)| ≤
∫
|B(β, λ) +B(β′, λ)|ρ(λ) dλ . (15.4.4)

From the fact that B takes on only the values ±1, it follows that

|B(β, λ)−B(β′, λ)|+ |B(β, λ) +B(β′, λ)| = 2 . (15.4.5)

Adding Eqs. (15.3.3) and (15.3.4) and using Eqs. (15.3.1) and (15.3.5) we obtain the Bell
inequality

|C
LHV

(α, β)− C
LHV

(α, β′)|+|C
LHV

(α′, β) + C
LHV

(α′, β′)|
≤
∫

[|B(β, λ)−B(β′, λ)|+ |B(β, λ) +B(β′, λ)|] ρ(λ)dλ

or S ≡ |C
LHV

(α, β)− C
LHV

(α, β′)|+ |C
LHV

(α′, β) + C
LHV

(α′, β′)| ≤ 2 . (15.4.6)

This is the constraint that EPR correlations must satisfy according to a local realistic theory.
According to quantum mechanics the measurement on particle 1, designated by α, α′, · · ·

may be represented by the observables Â(α), Â(α′), · · · while those on particle 2 designated
by β, β′, · · · may be represented by the observables B̂(β), B̂(β′), · · · . The quantum
correlation between the observations on the two particles in an entangled state |ψ 〉 is then
given by

CQM (α, β) = 〈ψ| Â(α)B̂(β) |ψ 〉 . (15.4.7)

Let us apply the constraint (15.4.6) to quantum mechanical expression for the EPR
correlations in the EPRB set-up in Fig. 15.1. Identifying α with the measurement of
spin 1 in direction of unit vectors a and β with measurement of spin 2 in direction of unit
vector b, we may represent Â(α) by σ1 · a and B̂(β) by σ2 · b and write

CQM (a, b) = χ†o(σ1 · a)(σ2 · b)χo , (15.4.6a)

where χo is the spin-singlet state of the two particles and we have used matrix representation
of the states and observables.

Using the identity

[σ1 · a+ σ2 · b] =
1
2

[(σ1 + σ2) · (a+ b) + (σ1 − σ2) · (a− b)] ,

and squaring the two sides of this equation, we obtain

(σ1 · a)2 + (σ2 · b)2 + 2(σ1 · a)(σ2 · b) =
1
4

[(σ1 + σ2) · (a+ b) + (σ1 − σ2) · (a− b)]2 .

Taking the expectation value of the two sides of this equation in the singlet state (15.3.1)
and using the results (σ1 · a)2 = 1 and (σ2 · b)2 = 1 and the fact that σ1 + σ2 = 0 for the
singlet state, we find

C
QM

(a, b) = −a · b = − cosϕ , (15.4.8)
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where ϕ is the angle between unit vectors a and b. This correlation is −1 for a = b and
+1 for b = −a showing complete anti-correlations of spins as expected for a singlet state.

Choosing b = a′ and a ·b = b ·b′ = cosϕ and using the quantum mechanical expectation
values, we have

S
QM

(ϕ) ≡ |C
QM

(a, b)− C
QM

(a, b′)|+ |C
QM

(a′, b) + C
QM

(a′, b′)|
= | − cosϕ+ cos 2ϕ|+ | − 1− cosϕ| . (15.4.9)

A plot of S
QM

(ϕ) as a function of ϕ is shown by the continuous curve in Fig. 15.4. Bell’s
inequality (15.4.6) is violated where the curve exceeds 2.

0

1

2

3

π/8 π/4 3π/8 π/20
ϕ

FIGURE 15.4
Variation of Bell parameter according to quantum mechanics. The continuous curve
corresponds to Eq. (15.4.9) and the dashed curve corresponds to Eq. (15.4.27). The
regions where the curves lie above the thick horizontal line correspond to violations of
Bell’s inequality.

With the availability of quantitative predictions from both local hidden variable theory
and quantum mechanics, the question as to which of the two descriptions conforms to the
laws of nature can be settled by the experimental observations. A number of experiments
have been carried out to detect EPR correlations. These experiments involve measurements
of photon polarization in the EPRB set-up sketched in Fig. 15.3 rather than the spin
system described in the preceding paragraphs. The photon pairs are generated in the
two-photon cascade decay of an atom with no net change in its angular momentum
(J = 0 → J = 1 → J = 0). Since there is no net change in the angular momentum of the
atom in this cascade decay and photons counter propagating along the z-axis are detected,
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FIGURE 15.5
Rotation of polarization basis vectors through an angle ϕ.

the polarization-entangled two photon state can be written as (in linear polarization basis)

|ψ(1, 2) 〉 =
1√
2

[ |e1x 〉 |e2x 〉+ |e1y 〉 |e2y 〉] . (15.4.10)

If ϕ1 and ϕ2 are, respectively, the angles that linear polarizers P1 and P2 make with the x-
axis, we can express the states |ejx 〉 (photon j polarization along x-axis) and |ejy 〉 (photon
j polarization along y-axis) in terms of polarization states |+, ϕj 〉 and |−, ϕj 〉, where +
means photon j polarization parallel to ϕj (the direction of polarizer Pj) and − means
polarization orthogonal to ϕj (photon polarization in direction ϕj + π/2). It is clear from
Fig. 15.5 that

|+, ϕ1 〉 = cosϕ1 |e1x 〉+ sinϕ1 |e1y 〉 , (15.4.11)
|−, ϕ1 〉 = − sinϕ1 |e1x 〉+ cosϕ1 |e1y 〉 . (15.4.12)

The inverse relation is

|e1x 〉 = cosϕ1 |+, ϕ1 〉 − sinϕ1 |−, ϕ1 〉 , (15.4.13)
|e1y 〉 = sinϕ1 |+, ϕ1 〉+ cosϕ1 |−, ϕ1 〉 . (15.4.14)

Similar relations for photon 2 can be written. Using Eqs. (15.3.13) and (15.3.14) for photon
1 and similar relations for photon 2, we can express the polarization entangled state |ψ(1, 2) 〉
as

|ψ(1, 2) 〉 =
1√
2

[ |+, ϕ1; +, ϕ2 〉 cos(ϕ2 − ϕ1) + |−, ϕ1;−, ϕ2 〉 cos(ϕ2 − ϕ1)

− |+, ϕ1;−, ϕ2 〉 sin(ϕ2 − ϕ1) + |−, ϕ1; +, ϕ2 〉 sin(ϕ2 − ϕ1)] . (15.4.15)

From this expression, the joint probability P (+, ϕ1,+, ϕ2) that photon 1 emerges from P1

set at angle ϕ1 and photon 2 emerges from P2 set at ϕ2 is given by

P (+, ϕ1; +, ϕ2) = | 〈+, ϕ1; +, ϕ2| |ψ(1, 2) 〉 |2 =
1
2

cos2(ϕ2 − ϕ1) . (15.4.16)
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The probability P (−, ϕ1;−, ϕ2) that no photon emerges either from P1 or P2 is given by

P (−, ϕ1;−, ϕ2) = | 〈−, ϕ1;−ϕ2|ψ(1, 2)〉 |2 =
1
2

cos2(ϕ2 − ϕ1) . (15.4.17)

Note that this is equal to P (+, ϕ1; +, ϕ2). This is because the probability P (+, ϕ1 +
π/2; +, ϕ+π/2) that photons will emerge from P1 set at ϕ1 + π/2 and P2 set at ϕ2 + π/2
can be looked upon as P (−, ϕ1;−, ϕ2) that no photons will emerge from P1 and P2 set at
ϕ1 and ϕ2, respectively.

Similarly, the probability P (+, ϕ1;−, ϕ2), that a photon emerges from P1 and no photon
emerges from P2, and the probability P (−, ϕ1,+, ϕ2) that no photon emerges from P1 and
a photon emerges from P2 are given by

P (+, ϕ1;−, ϕ2) = | 〈+, ϕ1;−, ϕ2|ψ(1, 2)〉 |2 =
1
2

sin2(ϕ2 − ϕ1) , (15.4.18)

P (−, ϕ1; +, ϕ2) = | 〈−, ϕ1; +, ϕ2|ψ(1, 2)〉 |2 =
1
2

sin2(ϕ2 − ϕ1) . (15.4.19)

From Eqs. (15.3.16) through (15.3.19), we can see that the probability P1(ϕ1) of photon 1
emerging from P1 set at ϕ1 when P2 is set at ϕ2 and the probability P2(ϕ2) of photon 2
emerging from P2 set at ϕ2 when P1 is set at ϕ1 are

P1(ϕ1) ≡ P (+, ϕ1; +, ϕ2) + P (+, ϕ1;−, ϕ2) =
1
2
, (15.4.20)

P2(ϕ2) ≡ P (+, ϕ1; +, ϕ2) + P (−, ϕ1; +, ϕ2) =
1
2
. (15.4.21)

These probabilities are equal as expected since the photons are produced in pairs.
The joint probability P (+, ϕ1; +ϕ2) given by Eq. (15.3.16) depends on both ϕ1 and ϕ2

but cannot be factored into a product of two probabilities, one depending on ϕ1 and the
other on ϕ2, reflecting the correlations between the photons. The conditional probability
Pc(ϕ2|ϕ1) of detecting photon 2, conditioned on the detection of photon 1, is given by

Pc(ϕ2|ϕ1) ≡ P (+, ϕ1; +, ϕ2)
P1(ϕ1)

= cos2(ϕ2 − ϕ1) . (15.4.22)

This is unity for ϕ2 = ϕ1 and zero for ϕ2 = ϕ1 ± π/2, showing that photon 2 polarization
is definitely parallel to the polarization of photon 1. Equation (15.4.22) shows that the
outcome of polarization measurement on photon 2 of appears to be influenced by the
measurement of polarization on photon 1 even though the two may have a space-like
separation at the time of measurement, reflecting nonlocal character of EPR correlations.
However, seemingly non-local character of EPR correlations cannot be used to influence the
outcome of a measurement on photon 2 by adjusting the angle ϕ1 of polarizer P1 because
setting the polarizer angle ϕ1 gurantees photon 1 polarization to be in direction ϕ1 only
in the special case when the photon emerges from P1. Indeed the probability P2(ϕ2) [Eq.
(15.3.21)] that photon 2 emerges from polarizer P2 set at ϕ2 when polarizer P1 is set at
ϕ1 is independent of ϕ1. So the setting of polarizer P1 has no influence on the outcome of
polarizer 2, indicating that there is no violation of causality due to EPR correlations.

To compare the quantum mechanical results with those of hidden variable theory we
identify measurement α and β in Eq. (15.3.2) with the measurements of polarization
components in directions ϕ1 and ϕ2 or with the settings ϕ1 and ϕ2, respectively, of polarizers
P1 and P2. Further we take the outcome A(ϕ1) = +1 to represent the emergence of
photon from P1 and A(ϕ1) = −1 to represent its failure to emergence from P1. Similarly
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B(ϕ2) = ±1 correspond, respectively, to the emergence and non-emergence of photon from
P2. Then the quantum mechanical correlation between the output of two polarizers will be

C
QM

(ϕ1, ϕ2) = 〈ψ| A(ϕ1)B(ϕ2) |ψ 〉 , (15.4.23)

where |ψ 〉 is the entangled state (15.4.10) of the two photons. This correlation function
is the average of all possible outcomes of polarization measurements weighted by the
corresponding probabilities. We can write it explicitly as

C
QM

(ϕ1, ϕ2) =
∑
A,B

A(ϕ1)B(ϕ2)× P (A,ϕ1;B,ϕ2) ,

= P (+, ϕ1; +, ϕ2) + P (−, ϕ1;−, ϕ2)− P (+, ϕ1;−, ϕ2)− P (−, ϕ2; +, ϕ1) .
(15.4.24)

Using the expressions (15.4.16) through (15.4.19) for these probabilities, we find

CQM (ϕ1, ϕ2) = cos2(ϕ2 − ϕ1)− sin2(ϕ1 − ϕ2) = cos 2(ϕ2 − ϕ1) . (15.4.25)

From this we see that there is complete correlation CQM (ϕ1, ϕ2) = 1 when ϕ2 = ϕ1 and
complete anti-correlation CQM = −1 when ϕ2 = ϕ1 ± π/2.

According to quantum mechanics, the Bell parameter

S
QM
≡ |C

QM
(ϕ1, ϕ2)− C

QM
(ϕ1, ϕ

′
2)|+ |C

QM
(ϕ′1, ϕ2) + C

QM
(ϕ′1, ϕ

′
2)|

= | cos 2(ϕ2 − ϕ1)− cos 2(ϕ′2 − ϕ1)|+ | cos 2(ϕ2 − ϕ′1) + cos 2(ϕ′2 − ϕ′1)| (15.4.26)

for ϕ1 = 0, ϕ2 = 3Φ, ϕ′1 = −2Φ, ϕ′2 = Φ takes the form

S
QM

(Φ) = | cos(6Φ)− cos(2Φ)|+ | cos(10Φ) + cos(6Φ)| . (15.4.27)

This parameter is shown by the dashed curve in Fig. 15.4 as a function of Φ. We see that
S
QM

violates Bell inequality by significant amount for a range of values of φ.
Experimental tests of Bell inequality in the form (15.4.6) using single-channel polarization

measurements just described would be inconclusive because due to finite detector
efficiencies, it is impossible to discriminate directly between a photon that fails to pass
through the analyzer and one which does pass through the analyzer but is not detected
because of the inefficiency of the photo-detectors. For this reason another form of Bell’s
inequality was derived by Clauser and Horne4.

15.5 Clauser-Horne Form of Bell’s Inequality and Its Violation in
Two-photon Correlation Experiments

The Clauser-Horne form of Bell’s inequality, which does not depend on detector quantum
efficiencies α1 and α2 directly, is more suitable for experimental tests of local hidden variable
theories. Let pj(ϕj , λ) be the probability that the photon in the jth arm reaches the
detector Dj when the polarizer Pj is set at angle ϕj and when the hidden variable is λ
and let pj(∞, λ) be the corresponding probability when there is no polarizer in the jth

4J. F. Clauser and M. A. Horne, Phys. Rev. D10, 526 (1974).
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arm. Also, according to local hidden variable theory, the joint probability factorizes as
p12(ϕ1, ϕ2, λ) = p1(ϕ1, λ)p2(ϕ2, λ). This condition is a statement of Bell locality. Note
that the assumed forms for pj and p12 satisfy both the locality [p12(ϕ1, ϕ2, λ) is a product
of individual detection probabilities] and (separate) reality [pj(ϕj , λ) depends only on ϕj ]
conditions.

Now, the probability of detection without a polarizer is at least as great as when a
polarizer is used

pj(ϕj , λ) ≤ pj(∞, λ) . (15.5.1)

This condition is known as no enhancement assumption4. It follows from Eq. (15.5.1) that
the ratios

x = p1(ϕ1, λ)/p1(∞, λ), x′ = p1(ϕ′1, λ)/p1(∞, λ),
y = p2(ϕ2, λ)/p2(∞, λ), y′ = p2(ϕ′2, λ)/p2(∞, λ),

(15.5.2)

all lie in the interval 0 ≤ x, x′, y, y′ ≤ 1 and satisfy the algebraic inequality

−1 ≤ xy − xy′ + x′y + x′y′ − x′ − y ≤ 0 . (15.5.3)

The joint probability P12(ϕ1, ϕ2) for the detection of photons by both the detectors D1 and
D2 when the polarizers in the two arms are set at ϕ1, and ϕ2, respectively, is given by

P12(ϕ1, ϕ2) ≡ η1η2

∫
p12(ϕ1, ϕ2, λ)ρ(λ)dλ = η1η2

∫
p1(ϕ1, λ)p2(ϕ2, λ)ρ(λ)dλ , (15.5.4)

where η1 and η2 are the quantum efficiencies of the two detectors. Similarly, if P12(ϕ1,∞)
and P12(∞, ϕ2), respectively, denote the probabilities of joint detection of photons by D1

and D2 when one, or the other polarizer is removed, then

P12(ϕ1,∞) = η1η2

∫
p1(ϕ1, λ)p2(∞, λ)ρ(λ)dλ , (15.5.5)

P12(∞, ϕ2) = η1η2

∫
p1(∞, λ)p2(ϕ2, λ)ρ(λ)dλ . (15.5.6)

By using the definition of x, x′, y, y′ from Eq. (15.5.2) in the inequality (15.5.3), multiplying
throughout by η1η2p1(∞, λ)p2(∞, λ)ρ(λ)dλ and integrating over λ, we get

− P12(∞,∞) ≤ [P12(ϕ1, ϕ2)− P12(ϕ1, ϕ
′
2) + P12(ϕ′1, ϕ2)

+P12(ϕ,′ , ϕ′2)− P12(ϕ′1,∞)− P12(∞, ϕ2)] ≤ 0 . (15.5.7)

This is the Clauser-Horne version of Bell’s inequality. The advantage of this inequality is
that it involves only the joint probabilities for coincidence counts by the two detectors, all
of which have the same dependence on detector efficiencies. So if we work with the ratios
of probabilities we get a relation independent of detector efficiencies. Dividing through by
P12(∞,∞) we obtain a relation independent of detector efficiencies

−1 ≤S ≡ [P12(ϕ1, ϕ2)− P12(ϕ1, ϕ
′
2) + P12(ϕ′1, ϕ2)

+P12(ϕ,′ , ϕ′2)− P12(ϕ′1,∞)− P12(∞, ϕ2)] /P12(∞,∞) ≤ 0 . (15.5.8)

Any local realistic theory must satisfy this inequality.
With the help of Eqs. (15.4.16), (15.4.20) and (15.4.21), we find

P12(ϕ1, ϕ2) =
1
2
η1η2 cos2(ϕ2 − ϕ1), (15.5.9a)

P12(∞,∞) = η1η2 , (15.5.9b)

P12(ϕ1,∞) =
1
2
η1η2 = P12(∞, ϕ2) . (15.5.9c)
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Using the quantum mechanical expressions (15.4.16), (15.4.20) and (15.4.21) for these
probabilities, we find the Bell parameter in Eq. (15.5.8) is

S
QM
≡ 1

2
[
cos2(ϕ2 − ϕ1)− cos2(ϕ′2 − ϕ1) + cos2(ϕ2 − ϕ′1) + cos2(ϕ′2 − ϕ′1)

]− 1 . (15.5.10)

We can easily check that for the choice ϕ1 = 0, ϕ2 = 3π/8, ϕ′1 = −π/4, ϕ′2 = π/8 the
parameter S

QM
defined by Eq. (15.5.10) is

S
QM

= −
√

2 + 1
2

≈ −1.207 , (15.5.11)

which is less than −1 and for the choice ϕ1 = 0, ϕ = π/8, ϕ′ = π/4, ϕ = 3π/8

SQM =
√

2− 1
2

≈ 0.207 (15.5.12)

which is greater than zero. Both Eqs. (15.5.11) and (15.5.12) violate the inequality (15.5.8).
Bell inequalities like (15.4.6) or (15.5.8) have been tested in increasingly sophisticated

experiments with entangled photon pairs derived from two-photon cascade decay of Ca
atoms5 or optical parametric down-conversion6. Experimental results are found to be
in clear violation of the Bell inequality by several standard deviations and in excellent
agreement with the predictions of quantum mechanics.

S D1

P1,ϕ1P2,ϕ2

four-fold
coincidence

+1+1

−1 −1

FIGURE 15.6
By replacing the single channel polarizers in Fig. 15.3 with polarizing beams splitters we
obtain an optical analog of Stern-Gerlach set-up of Fig. 15.1.

Experiments involving entangled photon pairs derived from two-photon cascade decay

5 S. J. Freedman and J. F. Clauser, Phys. Rev. Lett. 28, 938 (1972).
E. S. Fry and R. C. Thomson, Phys. Rev. Lett. 37, 465 (1976).
A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 47, 460 (1981).
A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982).

6 Z. Y. Ou and L. Mandel, Phys. Rev. Lett. 61, 50 (1988).
T. E. Kiess, Y. H. Shih, A. V. Sergienko, and C. O. Alley, Phys. Rev. Lett. 71, 3893 (1993).
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of Ca atoms have been carried out using the single-channel polarizer7 set-up of Fig. 15.3
as well as the two-channel polarizer set up shown in Fig. 15.6. In two-channel polarizer
experiments of Aspect and coworkers (1982)5, photons in both channels of each polarizer
are detected, i.e., photons with polarization parallel as well as perpendicular to the optic
axis are detected and four-fold coincidence between the detection of photons in the +
as well as − channels, of the two polarizers is measured resulting in the estimate of the
correlation coefficient, C(ϕ1, ϕ2) = P (+, ϕ1; +, ϕ2) + P (−, ϕ1;−, ϕ2) − P (+, ϕ1; +, ϕ2) −
P (+, ϕ1; +, ϕ2) = cos 2(ϕ2 − ϕ1) [see Problem 2]. The data are collected for several other
settings of the polarizers as well. Experiments are compared with the predictions of quantum
mechanics using the Bell-Clauser-Horne-Shimnoy-Holt (BCHSH) form of Bell inequality [see
Problem 3]

−2 ≤ S
BCHSH

≡ C(ϕ1, ϕ2) + C(ϕ1, ϕ
′
2) + C(ϕ′1, ϕ2)− C(ϕ′1, ϕ

′
2) ≤ 2 . (15.5.13)

According to quantum mechanics this Bell parameter S
QM

= 2
√

2 for ϕ2 − ϕ1 =
−(ϕ′2 − ϕ1) = −(ϕ2 − ϕ′1) = π/8 (and ϕ′2 − ϕ′1 = 3π/8) and SQM = −2

√
2 for

ϕ2 − ϕ1 = −(ϕ′2 − ϕ1) = −(ϕ2 − ϕ′1) = 3π/8 (and ϕ′2 − ϕ′1 = π/8), both values giving
maximum violation of the inequality (15.5.13). Experimentally too, the violations are
maximum for these parameters and have the values predicted by quantum mechanics as
seen in Fig. 15.7
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FIGURE 15.7
Violation of Bells inequality −2 ≤ S

BCHSH
≤ 2 in experiment with two-channel polarizers.

The relative orientation of the detectors is shown in the figure to the right of the plot.
The violation (by more than 30 standard deviations) is maximum for ϕ = π/8 ≡ 22.5o

and ϕ = 3π/8 ≡ 67.5o. For these angles, SQM = 2.828 and −2.828, respectively. (Figure
courtesy: A. Aspect).

7In the single-channel polarizer experiment, only the + (or −) channel of each polarizer is monitored, i.e.,
only the photons with polarization parallel (or perpendicular ) to the optic axis are detected and coincidence
between the detection of photons in the + (or − ) channels, is measured. Photons in the second channel of
each polarizer are either absorbed or not detected.
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From a logical standpoint, these experiments still do not rule out a local realistic
explanation because of two loopholes. The first loophole, known as the communication
loophole or locality loophole, comes into play if the possibility of communication between
the two observers at or less than the speed of light cannot be ruled out because the locality
assumption in the derivation of Bell’s inequality requires that the measurements on the two
photons be space-like events. This means that the duration of an individual measurement
has to be shorter than the time it would take any communication to travel, via any channel
(known or unknown) at the speed of light, from one observer to the other. The second
loophole, known as the detection loophole, comes into play because only a small number of
all photon pairs created are collected and detected. Hence it is necessary to assume that
they represent a fair sample of all photon pairs produced. This assumption, in principle,
could be false. Experiments closing one or the other of these two loopholes (but not both)
have also been reported8. The results are in agreement with quantum mechanics and violate
Bell’s inequality by up to 30 standard deviations.

Strong violations of Bell’s inequalities in these experiments, lead us to abandon local
realism as the basis of a microscopic theory to describe physical reality. Although local
realism appears to be an intuitive and reasonable assumption about how the world should
behave according to classical physics, it is not supported by experiments.

To the contrary, excellent agreement with quantum mechanical predictions strongly
supports the quantum mechanical description as a correct and complete description of
physical reality. This means that an entangled EPR photon pair is a non-separable object;
that is, it is impossible to assign individual local properties (local physical reality) to each
photon.

Like the the concept of wave-particle duality of the early quantum revolution, non-
separability emerges as the most emblematic feature of quantum mechanics of entangled
systems. It means that in an entangled quantum state, while the global state of two (or
more) particles is perfectly defined, even if the two particles are far apart, the states
of the individual particles remain indeterminate. The entangled state contains complete
information about the correlation between the two particles but says nothing and, more
importantly, the failure of local realistic theories suggests that nothing can be known about
the states of the individual particles.

The experiments have given us a deeper understanding of the implications of quantum
mechanical description of nature, and it has taken physicists a long time to understand
them. The experiments provide compelling evidence that many basic ideas inherited from
classical physics must be abandoned in favor of quantum way of looking at nature. Quantum
mechanics is consistent within itself. The wave function is a complete description of a
physical system in the sense that it contains all that is knowable about a physical system.
The indeterminacy associated with the probabilistic interpretation of the wave function in
quantum mechanics is not due to a lack of missing information (hidden variable) but is an
intrinsic feature of nature.

The final chapter on the interpretations of quantum mechanics remains a work in progress.
Although the violations of Bell’s inequalities are generally taken to mean that quantum
mechanics is nonlocal, one could argue that these violations imply only that locality and
realism are not compatible simultaneously. There is no a priori logical way to decide whether
one should drop locality or realism or both. These questions continue to be explored and as
these explorations are reduced to quantitative predictions that can be tested in experiments,

8 G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, Phys. Rev. Lett. 81, 5037 (1998).
M. A. Rowe, D. Kielpinski, V. Meyer, C. A. Sackett, W. M. Itano, C. Monroe, and D. J. Wineland, Nature
409, 791 (2001).
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new insights into the meaning of quantum mechanical descriptions of nature will continue
to emerge.

Problems

1. Derive the result (15.4.8). Hint: The rotation operator for a spin-1/2 spinor when
coordinate axes are rotated through an angle ϕ about an axis parallel to unit vector
u is Ru(ϕ) = exp[−iϕu · S], where S in terms of Pauli spin operators is S = 1

2σ (in
units of ~).

2. Consider the photon pairs produced in the two-photon cascade decay J = 0 →
J + 1 → J = 0 of Calcium atoms. Suppose the polarizers in Fig. 15.3 are replaced
by polarizing beam splitters [Fig. 15.6] (two-channel polarizer) so that the photons
emerge polarized either as the ordinary ray or as the extraordinary ray from each beam
splitter and are subsequently detected and joint detection probabilities (coincidence
probabilities) P (+, ϕ1; +ϕ2), P (−, ϕ1;−, ϕ2), P (+, ϕ1;−ϕ2), and P (−, ϕ1; +, ϕ2) are
measured. Here P (+, ϕ1; +ϕ2) is the probability that photon 1 is detected with
polarization in direction ϕ1 and photon 2 is detected with polarization in direction
ϕ2, P (+, ϕ1;−ϕ2) is the probability that photon 1 is detected with polarization ϕ1

and photon 2 is detected with polarization orthogonal to ϕ2. Define the outcome
of measurement on photon 1 by A(ϕ1) = 1 if photon polarization is found to be
parallel to ϕ1 (channel 1) and A(ϕ1) = −1 if photon polarization is found to be
perpendicular to ϕ1 (channel 2). Similarly, the outcome of polarization measurement
on photon 2 is defined by B(ϕ2) = ±1, respectively, for photon polarization parallel
and perpendicular to ϕ2. With this detection scheme [Fig. 15.6], the two-photon
polarization experiment becomes analogous to Stern-Gerlach experiment of Fig. 15.1.

(a) The polarization-entangled state for a pair of photons traveling in opposite directions
can be written as [Eq. (15.4.10)] |ψ(1, 2) 〉 = 1√

2
[ |e1x 〉 |e2x 〉+ |e1y 〉 |e2y 〉]. Find the

probabilities P (±, ϕ1;±, ϕ2) and show that, according to quantum mechanics, the
correlation function

C
QM

(ϕ1, ϕ2) =
∑
A,B

A(ϕ1)B(ϕ2)PAB(ϕ1, ϕ2) = cos 2(ϕ2 − ϕ1) .

(b) Compute the Bell parameter S
BCHSH

of Eq. (15.5.13) according to quantum mechanics
and show that for ϕ1 = 0, ϕ′1 = 2ϕ, ϕ2 = ϕ = −ϕ′2, [Fig. 15.7] it takes the form

S
QM
≡ 3 cos 2ϕ− cos 6ϕ .

Plot it as a function of ϕ and identify regions where BCHSH inequality of (15.5.13)
[see Problem 3] is violated.

3. Show that if x, x′, y, y are four real numbers in the closed interval [−1, 1], the sum
S = xy + xy′ + x′y − x′y′ belongs to the interval

−2 ≤ xy + xy′ + x′y − x′y′ ≤ 2 .

Using this inequality, establish another form of Bell’s inequality for local realistic
theories

−2 ≤ S ≡ C(a, b) + C(a, b′) + C(a′, b)− C(a′, b′) ≤ 2 ,
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where C(a, b) is the correlation function given by

C(a, b) =
∫
A(a, λ)B(b, λ)ρ(λ)dλ .

This form of Bell’s inequality is known as the Bell-Clauser-Horne-Shimony-Holt
(BCHSH) inequality.



EPILOGUE 591

General References

1. P. A. M. Dirac, Principles of Quantum Mechanics, Third Edition, (Clarendon Press,
Oxford, 1971).

2. L. I. Schiff, Quantum Mechanics, Third Edition (McGraw Hill Book Company, Inc.,
New York, 1968).

3. L. D. Landau and E. M. Lishitz, Quantum Mechanics, (Pergamon Press, New York,
1976).

4. D. Bohm, Quantum Theory, (Prentice Hall Inc., New York, 1951), Available also as
a Dover reprint.

5. L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics (McGraw Hill Book
Company, New York, 1935), also available as a Dover reprint.

6. E. M. Corson, Perturbation Methods in Quantum Mechanics of N-electron Systems
(Hafner Publishing Co., New York).

7. E. C. Kemble, Fundamental Principles of Quantum Mechanics (McGraw Hill Book
Company, Inc. New York).

8. R. G. Newton, Scattering Theory of Waves and Particles, Second Edition (Springer-
Verlag, New York, 1982).

9. W. Heitler, Quantum Theory of Radiation (Clarendon Press, Oxford, 1954), also
avialable as a Dover reprint.

10. Ta-You Wu and Takashi Ohmura, Quantum Theory of Scattering (Prentice Hall,
Englewood Cliffs, NJ, 1962).

11. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, Reading, MA, 1967).

12. H. Muirhead, Physics of Elementary Particles (Pergamon Press, Oxford, 1968).

13. M. E. Rose, Elementary Theory of Angular Momentum (John Wiley, New York, 1957),
also available as a Dover reprint.

14. C. S. Wu and S. A. Moszkowski, Beta Decay (Wiley Interscience, New York, 1966).

15. H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry (John Wiley and Sons,
New York, NY, 1947).

16. L. R. B. Elton, Introductory Nuclear Theory (Sir Isaac Pitman and Sons, Ltd.,
London, 1965).


	Cover
	Title Page
	Copyright
	Contents
	Preface
	Acknowledgments
	1 NEED FOR QUANTUM MECHANICS AND ITS PHYSICAL BASIS
	1.1 Inadequacy of Classical Description for Small Systems
	1.1.1 Planck's Formula for Energy Distribution in Black-body Radiation
	1.1.2 de Broglie Relation and Wave Nature of Material Particles
	1.1.3 The Photo-electric Effect
	1.1.4 The Compton Effect
	1.1.5 Ritz Combination Principle

	1.2 Basis of Quantum Mechanics
	1.2.1 Principle of Superposition of States
	1.2.2 Heisenberg Uncertainty Relations

	1.3 Representation of States
	1.4 Dual Vectors: Bra and Ket Vectors
	1.5 Linear Operators
	1.5.1 Properties of a Linear Operator

	1.6 Adjoint of a Linear Operator
	1.7 Eigenvalues and Eigenvectors of a Linear Operator
	1.8 Physical Interpretation
	1.8.1 Physical Interpretation of Eigenstates and Eigenvalues
	1.8.2 Physical Meaning of the Orthogonality of States

	1.9 Observables and Completeness Criterion
	1.10 Commutativity and Compatibility of Observables
	1.11 Position and Momentum Commutation Relations
	1.12 Commutation Relation and the Uncertainty Product
	Appendix 1A1: Basic Concepts in Classical Mechanics
	1A1.1 Lagrange Equations of Motion
	1A1.2 Classical Dynamical Variables

	References

	2 REPRESENTATION THEORY
	2.1 Meaning of Representation
	2.2 How to Set up a Representation
	2.3 Representatives of a Linear Operator
	2.4 Change of Representation
	2.5 Coordinate Representation
	2.5.1 Physical Interpretation of the Wave Function

	2.6 Replacement of Momentum Observable p by (omitted)
	2.7 Integral Representation of Dirac Bracket (A2| F |A1)
	2.8 The Momentum Representation
	2.8.1 Physical Interpretation of Φ(P1,P2,...Pf)

	2.9 Dirac Delta Function
	2.9.1 Three-dimensional Delta Function
	2.9.2 Normalization of a Plane Wave

	2.10 Relation between the Coordinate and Momentum Representations

	3 EQUATIONS OF MOTION
	3.1 Schrödinger Equation of Motion
	3.2 Schrödinger Equation in the Coordinate Representation
	3.3 Equation of Continuity
	3.4 Stationary States
	3.5 Time-independent Schrödinger Equation in the Coordinate Representation
	3.6 Time-independent Schrödinger Equation in the Momentum Representation
	3.6.1 Two-body Bound State Problem (in Momentum Representation) for Non-local Separable Potential

	3.7 Time-independent Schrödinger Equation in Matrix Form
	3.8 The Heisenberg Picture
	3.9 The Interaction Picture
	Appendix 3A1: Matrices
	3A1.1 Characteristic Equation of a Matrix
	3A1.2 Similarity (and Unitary) Transformation of Matrices
	3A1.3 Diagonalization of a Matrix


	4 PROBLEMS OF ONE-DIMENSIONAL POTENTIAL BARRIERS
	4.1 Motion of a Particle across a Potential Step
	4.2 Passage of a Particle through a Potential Barrier of Finite Extent
	4.3 Tunneling of a Particle through a Potential Barrier
	4.4 Bound States in a One-dimensional Square Potential Well
	4.5 Motion of a Particle in a Periodic Potential

	5 BOUND STATES OF SIMPLE SYSTEMS
	5.1 Introduction
	5.2 Motion of a Particle in a Box
	5.2.1 Density of States

	5.3 Simple Harmonic Oscillator
	5.4 Operator Formulation of the Simple Harmonic Oscillator Problem
	5.4.1 Physical Meaning of the Operators â and â†
	5.4.2 Occupation Number Representation (ONR)

	5.5 Bound State of a Two-particle System with Central Interaction
	5.6 Bound States of Hydrogen (or Hydrogen-like) Atoms
	5.7 The Deuteron Problem
	5.8 Energy Levels in a Three-dimensional Square Well: General Case
	5.9 Energy Levels in an Isotropic Harmonic Potential Well
	Appendix 5A1: Special Functions
	5A1.1 Legendre and Associated Legendre Equations
	5A1.2 Spherical Harmonics
	5A1.3 Laguerre and Associated Laguerre Equations
	5A1.4 Hermite Equation
	5A1.5 Bessel Equation

	Appendix 5A2: Orthogonal Curvilinear Coordinate Systems
	5A2.1 Spherical Polar Coordinates
	5A2.2 Cylindrical Coordinates
	5A2.3 Parabolic Coordinates
	5A2.4 General Features of Orthogonal Curvilinear System of Coordinates


	6 SYMMETRIES AND CONSERVATION LAWS
	6.1 Symmetries and Their Group Properties
	6.2 Symmetries in a Quantum Mechanical System
	6.3 Basic Symmetry Groups of the Hamiltonian and Conservation Laws
	6.3.1 Space Translation Symmetry
	6.3.2 Time Translation Symmetry
	6.3.3 Spatial Rotation Symmetry

	6.4 Lie Groups and Their Generators
	6.5 Examples of Lie Group
	6.5.1 Proper Rotation Group R(3) (or Special Orthogonal Group SO(3))
	6.5.2 The SU(2) Group
	6.5.3 Isospin and SU(2) Symmetry

	Appendix 6A1: Groups and Representations

	7 ANGULAR MOMENTUM IN QUANTUM MECHANICS
	7.1 Introduction
	7.2 Raising and Lowering Operators
	7.3 Matrix Representation of Angular Momentum Operators
	7.4 Matrix Representation of Eigenstates of Angular Momentum
	7.5 Coordinate Representation of Angular Momentum Operators and States
	7.6 General Rotation Group and Rotation Matrices
	7.6.1 Rotation Matrices

	7.7 Coupling of Two Angular Momenta
	7.8 Properties of Clebsch-Gordan Coefficients
	7.8.1 The Vector Model of the Atom
	7.8.2 Projection Theorem for Vector Operators

	7.9 Coupling of Three Angular Momenta
	7.10 Coupling of Four Angular Momenta (L – S and j – j Coupling)

	8 APPROXIMATION METHODS
	8.1 Introduction
	8.2 Non-degenerate Time-independent Perturbation Theory
	8.3 Time-independent Degenerate Perturbation Theory
	8.4 The Zeeman Effect
	8.5 WKBJ Approximation
	8.6 Particle in a Potential Well
	8.7 Application of WKBJ Approximation to α decay
	8.8 The Variational Method
	8.9 The Problem of the Hydrogen Molecule
	8.10 System of n Identical Particles: Symmetric and Anti-symmetric States
	8.11 Excited States of the Helium Atom
	8.12 Statistical (Thomas-Fermi) Model of the Atom
	8.13 Hartree's Self-consistent Field Method for Multi-electron Atoms
	8.14 Hartree-Fock Equations
	8.15 Occupation Number Representation

	9 QUANTUM THEORY OF SCATTERING
	9.1 Introduction
	9.2 Laboratory and Center-of-mass (CM) Reference Frames
	9.2.1 Cross-sections in the CM and Laboratory Frames

	9.3 Scattering Equation and the Scattering Amplitude
	9.4 Partial Waves and Phase Shifts
	9.5 Calculation of Phase Shift
	9.6 Phase Shifts for Some Simple Potential Forms
	9.7 Scattering due to Coulomb Potential
	9.8 The Integral Form of Scattering Equation
	9.8.1 Scattering Amplitude

	9.9 Lippmann-Schwinger Equation and the Transition Operator
	9.10 Born Expansion
	9.10.1 Born Approximation
	9.10.2 Validity of Born Approximation
	9.10.3 Born Approximation and the Method of Partial Waves

	Appendix 9A1: Calculus of Residues

	10 TIME-DEPENDENT PERTURBATION METHODS
	10.1 Introduction
	10.2 Perturbation Constant over an Interval of Time
	10.3 Harmonic Perturbation: Semi-classical Theory of Radiation
	10.4 Einstein Coeffcients
	10.5 Multipole Transitions
	10.6 Electric Dipole Transitions in Atoms and Selection Rules
	10.7 Photo-electric Effect
	10.8 Sudden and Adiabatic Approximations
	10.9 Second Order Effects

	11 THE THREE-BODY PROBLEM
	11.1 Introduction
	11.2 Eyges Approach
	11.3 Mitra's Approach
	11.4 Faddeev's Approach
	11.5 Faddeev Equations in Momentum Representation
	11.6 Faddeev Equations for a Three-body Bound System
	11.7 Alt, Grassberger and Sandhas (AGS) Equations

	12 RELATIVISTIC QUANTUM MECHANICS
	12.1 Introduction
	12.2 Dirac Equation
	12.3 Spin of the Electron
	12.4 Free Particle (Plane Wave) Solutions of Dirac Equation
	12.5 Dirac Equation for a Zero Mass Particle
	12.6 Zitterbewegung and Negative Energy Solutions
	12.7 Dirac Equation for an Electron in an Electromagnetic Field
	12.8 Invariance of Dirac Equation
	12.9 Dirac Bilinear Covariants
	12.10 Dirac Electron in a Spherically Symmetric Potential
	12.11 Charge Conjugation, Parity and Time Reversal Invariance
	APPENDIX 12A1: Theory of Special Relativity
	12A1.1 Lorentz Transformation
	12A1.2 Minkowski Space-Time Continuum
	12A1.3 Four-vectors in Relativistic Mechanics
	12A1.4 Covariant Form of Maxwell's Equations


	13 QUANTIZATION OF RADIATION FIELD
	13.1 Introduction
	13.2 Radiation Field as a Swarm of Oscillators
	13.3 Quantization of Radiation Field
	13.4 Interaction of Matter with Quantized Radiation Field
	13.5 Applications
	13.6 Atomic Level Shift: Lamb-Retherford Shift
	13.7 Compton Scattering
	Appendix 13A1: Electromagnetic Field in Coulomb Gauge

	14 SECOND QUANTIZATION
	14.1 Introduction
	14.2 Classical Concept of Field
	14.3 Analogy of Field and Particle Mechanics
	14.4 Field Equations from Lagrangian Density
	14.4.1 Electromagnetic Field
	14.4.2 Klein-Gordon Field (Real and Complex)
	14.4.3 Dirac Field

	14.5 Quantization of a Real Scalar (KG) Field
	14.6 Quantization of Complex Scalar (KG) Field
	14.7 Dirac Field and Its Quantization
	14.8 Positron Operators and Spinors
	14.8.1 Equations Satisfied by Electron and Positron Spinors
	14.8.2 Projection Operators
	14.8.3 Electron Vacuum

	14.9 Interacting Fields and the Covariant Perturbation Theory
	14.9.1 U Matrix
	14.9.2 S Matrix and Iterative Expansion of S Operator
	14.9.3 Time-ordered Operator Product in Terms of Normal Constituents

	14.10 Second Order Processes in Electrodynamics
	14.10.1 Feynman Diagrams

	14.11 Amplitude for Compton Scattering
	14.12 Feynman Graphs
	14.12.1 Compton Scattering Amplitude Using Feynman Rules
	14.12.2 Electron-positron (e-e+) Pair Annihilation
	14.12.3 Two-photon Annihilation Leading to (e-e+) Pair Creation
	14.12.4 Möller (e-e-) Scattering
	14.12.5 Bhabha (e-e+) Scattering

	14.13 Calculation of the Cross-section of Compton Scattering
	14.14 Cross-sections for Other Electromagnetic Processes
	14.14.1 Electron-Positron Pair Annihilation (Electron at Rest)
	14.14.2 Möller (e-e-) and Bhabha(e-e+) Scattering

	Appendix 14A1: Calculus of Variation and Euler-Lagrange Equations
	Appendix 14A2: Functionals and Functional Derivatives
	Appendix 14A3: Interaction of the Electron and Radiation Fields
	Appendix 14A4: On the Convergence of Iterative Expansion of the S Operator

	15 EPILOGUE
	15.1 Introduction
	15.2 EPR Gedanken Experiment
	15.3 Einstein-Podolsky-Rosen-Bohm Gedanken Experiment
	15.4 Theory of Hidden Variables and Bell's Inequality
	15.5 Clauser-Horne Form of Bell's Inequality and Its Violation in Two-photon Correlation Experiments
	General References

	Index



