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PREFACE

Understanding & Harnessing Wavelet “Elephants”

It was six men of Hindustan
To learning much inclined,
Who went to see the Elephant
(Though all of them were blind)
That each by observation
Might satisfy the mind.

The first approached the Elephant
And happening to fall
Against his broad and sturdy side
At once began to bawl:
"Bless me, it seems the Elephant
Is very like a wall".

The second, feeling of his tusk,
Cried, "Ho! What have we here
So very round and smooth and sharp?
To me 'tis mighty clear
This wonder of an Elephant
Is very like a spear".

The third approached the animal,
And happening to take
The squirming trunk within his hands,
Then boldly up and spake:
"I see," quoth he, "the Elephant
Is very like a snake."
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The Fourth reached out an eager hand,
And felt about the knee.
"What most this wondrous beast is like
Is mighty plain," quoth he;
"'Tis clear enough the Elephant
Is very like a tree!"

The Fifth, who chanced to touch the ear,
Said: "E'en the blindest man
Can tell what this resembles most;
Deny the fact who can,
This marvel of an Elephant
Is very like a fan!"

The Sixth no sooner had begun
About the beast to grope,
Than, seizing on the swinging tail
That fell within his scope,
"I see," quoth he, "the Elephant
Is very like a rope!"

And so these men of Hindustan
Disputed loud and long,
Each in his own opinion
Exceeding stiff and strong,
Though each was partly in the right
And all were in the wrong.

“The Six Blind Men and the Elephant” — A Poem by John Godfrey Saxe (1816 – 1887)

The subject of wavelets is certainly an “Elephant”—besides being extremely powerful, it
can also become extremely “heavy” in terms of math. And the various methods of look-
ing at the subject are staunchly defended by the various authors “Exceeding stiff and strong”.

There are a lot of ways to look at the wavelet “elephant”. Vector Spaces, Function
Spaces, Frame Theory, Set Theory, Matrices and Transposes, Finite Elements, Con
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tinuous Time Representations (with double infinite integrals), extensions of the Fast
Fourier Transform or the Short-Time Fourier Transform and even a curve on a sphere
in 4-dimensional space—all these are used by various authors with the same evangeli-
cal zeal as the learned men of Indostan. None of these are really “wrong”,

How This Book Differs From Other Wavelet Texts

“Conceptual Wavelets in Digital Signal Processing”, however, is vastly different from
other books in that we use numerous examples, figures, and demonstrations to show
how to understand and use wavelets. This is a very complete and in-depth treatment of
the subject, but from an intuitive, conceptual point of view. We let you look at a few
key equations found in the more mathematically oriented texts—but only after the con-
cepts are demonstrated and understood.* Then if you desire further study from tradi-
tional texts, this allows you to recognize these equations and understand in advance
how they relate to the real world having actually seen them “in action”.

It has been gratifying to present the 3-day course “Wavelets: A Conceptual, Practical
Approach” at universities, corporations, and conference centers around the country for
the past few years. Much of this book is “built” on these slides and improved by the
comments and suggestions from the attendees. Those with little or no math back-
ground have expressed gratitude for being able to “see the elephant” enough to under-
stand it and use it’s power. Those with a strong mathematical background have ex-
pressed thanks for new insights and intuitive understanding that was not immediately
evident from the equations.

One of the principle contributions of wavelets has been to bring those academic fields
together to observe the “elephant” and to “satisfy the mind”. It is not surprising then
that you will find this particular pachyderm described in terms of wavelets, wavelet fil-
ters, wavelet transforms, filter banks, multirate systems, matched filtering, multiresolu-
tion analysis and so on.

This author’s background is in Digital Signal Processing (Fast Fourier Transforms, Digi-
tal Filtering, etc.). and the description of the elephant is no doubt biased toward time or
frequency representations of data. You will soon learn, however, that both the power
and the complexity of wavelets lies in the fact that they deal with (are localized in) both
time and frequency! It is especially important to understand that this dual
(time/frequency) nature adds literally another dimension to wavelets! Instead of the
data being shown as a function of time or as a function of frequency we now can look
                                                
* The occasional equation, if especially relevant to the explanations on a particular page, can also be found in
the footnotes on that page.
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at the data simultaneously in terms of time and frequency (or at least effective fre-
quency).

Is the extra dimension of effort in learning to use these wavelet tools worth it? I believe
the answer from all the authors would be a resounding “Yes!!”. They, like this author,
have seen how powerful and how handy this “animal” can be for processing signals or
images that have “events” (changes in amplitude, frequency or shape) that start and
stop. These “non-stationary” signals—the most interesting kind—are as diverse as a
human heartbeat, a telemetry pulse from a missile (friendly or not), earthquakes seis-
mic data, and the financial patterns in the stock market.

Because of all this tremendous capability, most authors (including myself) sincerely try
to prevent the student from becoming discouraged when facing this extra dimension.
Thus you will see terms in the title of many wavelet books and websites such as
“Gentle”, “Tutorial”, “Friendly”, “Really Friendly”, “A Primer”, “Made Easy”, and even
“For Kids” (we would like to meet these child prodigies!).

This is also why authors will teach using the tools with which they are most familiar—
and for most wavelet writers this is applied mathematics (a look inside traditional wav-
elet texts quickly reveals a heavy dependence on math). This book takes a very differ-
ent approach in that it doesn’t rely on proofs, theorems, lemmas, etc. etc. to try to teach
concepts through equations. We emphasize informed use of wavelets and leave the rig-
orous proofs to scholarly texts. In the appendix, we reference some excellent traditional
mathematics-based texts, articles, and websites for additional study if desired.

This author also feels strongly (no lack of evangelical zeal here!) that it is important to
be sure that wavelet data is not misused or misinterpreted. As with any technology,
blindly following equations out of context without understanding the concepts behind
them can lead to misinformation. We will show you how to “read” the results of wavelet
displays correctly. We point out common pitfalls in wavelet transforms and how to avoid
them. The real-world intuitive understanding you will obtain from reading this book
should allow you to take full advantage of the powerful capability of wavelets with con-
fidence in obtaining true and meaningful results and without fear of degradation of the
data.

How This Book Is Laid Out— Study Suggestions

(How do you eat an elephant?—one bite at a time).

So how do you “digest” this book? One chapter at a time. Each chapter is designed to
build on the previous chapters to help you gain a conceptual understanding of wavelets.
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Chapter One presents an overview of wavelets, wavelet filters and wavelet transforms
and shows a little of what they can do. This should put you way ahead of the “six blind
men from Indostan” by providing a good “peek at the pachyderm”. The familiar
FFT/DFT is first reviewed and then compared to the Continuos Wavelet Transform
(CWT). The conventional (decimated) Discrete Wavelet Transform (DWT) and the Un-
decimated DWT (UDWT) are introduced and compared. Examples of the capabilities of
these transforms are shown, along with a short overview of the various types of wav-
elets

For a first “bite”, you might also want to look at a short article “Wavelets: Beyond Com-
parison” written by the author as a staff tutorial for Applied Technology Institute.
(www.aticourses.com/ati_tutorials.htm).

Chapter Two provides a step-by-step walk-through of the Continuous Wavelet Trans-
form using a very simple example of 8 exam scores and a Haar wavelet. We actually
construct a CWT display from this data to learn how to “read” this type of display.

Chapter Three uses the same example of 8 exam scores and the Haar wavelet filters,
but provides a step-by-step walk through of the Undecimated Discrete Wavelet Trans-
form (UDWT—a.k.a. RDWT, A’ Trous, or Shift Invariant). We show how this is very
similar to the Continuous Wavelet Transform from Chapter Two.

Chapter Four highlights the downasmpling and upsampling that is added to the UDWT
to produce the better-known conventional (decimated) DWT. We continue with the
same example of 8 exam scores and the Haar wavelet in another step-by-step walk-
through. We also show some simple compression and de-noising and take our first look
at some DWT displays.

Chapter Five shows how some wavelet filters (“crude” wavelets) are generated using
an explicit mathematical equation. The equations, though very simple, are continuous
in time and so we show how to get the discrete points needed to produce actual digital
wavelet filters of varying length.

If Chapter Five can be thought of as “Filters from Wavelets”, then Chapter Six can be
thought of as “Wavelets from Filters”. Starting with wavelet filters that have very few
points (only 2 for the Haar), we learn how we can interpolate or “stretch” them to hun-
dreds of points. Then we learn how to use these very long filters to produce filters of
any desired length. In other words we go from “Filters to Wavelets to Filters”.

In Chapter Seven we explore further and compare the 3 major types of wavelet trans-
forms—the Continuous Wavelet Transform (CWT), the Undecimated Discrete Wavelet
Transform (UDWT), and the conventional (decimated) Discrete Wavelet Transform
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(DWT). We also look briefly at the Wavelet Packet Transform (WPT). We examine the
strengths and weaknesses of each type and show the general types of application of
each. We compare and relate each type of transform to the others and show how, in
each type, that we are still comparing data with the various wavelet filters.

Now somewhat familiar with the wavelet transforms, in Chapter Eight we look at what
gives the “elephant” such strength and power—the Perfect Reconstruction Quadrature
Mirror Filters (PRQMF). We not only discover the amazing “mirror” relationships these
filters have to each other, but that they are actually factors of the relatively simple
Halfband Filters—the very Heart and Soul of the wavelet “elephant” We demonstrate
orthogonality in wavelet filters by comparing them to simple Cartesian coordinates (x-
y-z). In the last section we show how the halfband filters can also be factored another
way into biorthogonal wavelets filters. There is some mathematics (mostly at the high-
school algebra level) in this chapter, but this is in line with a major goal of the book—to
introduce some key equations found in conventional wavelet literature after providing
an intuitive understanding of the concepts (in this case spectral factorization).

In Chapter Nine we introduce a few more desirable qualities of the various wavelets—
some by comparing with arbitrary or “fake” wavelets to highlight these qualities. We
will demonstrate such concepts as regularity, vanishing moments, and stretching and
sliding the wavelet filters to “match” the hidden event in a signal (and thus determine
its location, frequency, and general shape). We also talk about the adaptability of wav-
elets and about spending too much effort to find the “perfect” set of wavelet filters (the
sport of basis hunting). We then demonstrate an even easier way to find the “magic
numbers” of the filters by using the above desirable qualities to create some simple
equations and then using direct substitution to solve them.

By Chapter Ten, we have learned much about the properties of the various wavelets
and wavelet filters and how they can (or cannot) be used in the various wavelet trans-
forms. We now proceed to look at the major wavelet families and how the specific prop-
erties lead to some practical applications. We first look at some crude wavelets such as
the Mexican Hat, Morlet, Gaussian, and Meyer. We then examine the complex versions
of some of these crude wavelets (and some others) such as the Complex Shannon
(Sinc), Complex Frequency B-Spline, Complex Morlet and the Complex Gaussian. We
proceed to the orthogonal wavelets such as the Haar, Daubechies Family, Symlets, Coi-
flets, and the Discrete Meyer. Finally, we look at the Biorthogonal and Reverse Bior-
thogonal wavelets. In the last section we present a table summarizing the attributes of
these various wavelets.

Chapter 11 gives you a break from examining the various aspects of the elephant and
lets you “hop on the Howdah” (seat affixed to an elephant’s back) for a little “ride”. In
this chapter we present some case studies of the applications of various wavelets to
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some real-life problems. We show how to separate noise from the signal by matching
various wavelets to either the noise or the signal and then modifying the Discrete Wav-
elet Transform (DWT} results to keep only the “clean” signal. We also revisit the Con-
tinuous Wavelet Transform (CWT) to demonstrate its power. We perform compression
and denoising on the classic “Barbara” image and even show how to remove “freckles”
(skin imperfections). We highlight a pathological case where the Undecimated DWT will
outperform the conventional (decimated) DWT and provide suggestions for insuring the
integrity of the data. In all these “non-stationary” examples we show why an FFT (or an
STFT) would not work as well—or not work at all.

In Chapter 12 we learn how a conventional DWT can downsample repeatedly and still
have alias cancellation (if done correctly). We look in more detail at the alias cancella-
tion capability of the Perfect Reconstruction Quadrature Mirror Filters from Chapter
Eight. Perfect Reconstruction and Alias Cancellation are demonstrated in both the time
and the frequency domains. In the last section we look at some equations found in
much of the conventional literature that describe Alias Cancellation and Perfect Recon-
struction (often called “No Distortion”). We relate these equations to the concepts we
have already learned in this chapter.

The final chapter, Chapter Thirteen, clarifies some additional key equations from the
traditional wavelet literature by explaining the concepts behind them and/or demon-
strating some alternative methods. In particular, the (continuous time) Wavelet Func-
tion and Scaling Function Dilation Equations are examined. We show how the same
results are obtained by the process of repeated upsampling and convolution. We then
show how this upsampling/convolution process can produce artifacts in a conventional
DWT that look like the “Wavelet Function” or “Scaling Function” itself! (don’t miss this
one!). In the final section we explain some other terms found in much of the wavelet
literature such as forward DWT, inverse DWT, Fast Wavelet Transform, Fast Inverse
Wavelet Transform, and Wavelet Domain and how they relate to the intuitive concepts
and terms we have learned in this book.

The Appendices are not “required reading” per se, but are included to provide enrich-
ment and help. Appendix A presents additional ways to relate wavelet transforms to the
more familiar Fourier Transforms and conventional DSP Filtering. Appendix B dis-
cusses Heisenberg Boxes and the Heisenberg Uncertainty Principle as applied to wav-
elets. Despite the Einstein-sounding name this is actually relativity – er – relatively
simple (sorry, couldn’t resist). Appendix C is a reprint of a short 7-page article
“Wavelets: Beyond Comparison” by the author. This simple “Staff Tutorial” written for
the Applied Technology Institute (Riva, Maryland) is also included here for your con-
venience Appendix D is a resource that presents the author’s recommendations for
wavelet books (at all levels), wavelet articles, and wavelet websites.
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As you can see, the chapters build upon each other to allow you to observe and experi-
ence “this marvel of (a wavelet) elephant” It is sincerely hoped that with the concepts
learned in these chapters and (if needed) some additional specific application-oriented
literature and software, you will be able to harness this “mammoth” power to allow you
a much more complete understanding of your data and to work with it in a more effi-
cient and cost-effective manner.
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 “An investment in knowledge pays the best interest.”
—Benjamin Franklin
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CHAPTER

1 Preview of Wavelets, Wavelet Filters
and Wavelet Transforms

As mentioned in the Preface, wavelets are used extensively in many varied technical
fields. They are usually presented in mathematical formulae, but can actually be under-
stood in terms of simple comparisons or correlations with the signal you’re analyzing.

In this chapter we introduce you to wavelets and to the wavelet filters that allow us to
actually use them in Digital Signal Processing (DSP). Before exploring wavelet trans-
forms as comparisons with wavelets, we first look at some simple everyday
“transforms” and show how they too are comparisons. We next show how the familiar
discrete Fourier transform (DFT) can also be thought of as comparisons with sinusoids.
(In practice we use the speedy fast Fourier transform (FFT) algorithm to implement
DFTs. To avoid confusion with the discrete wavelet transforms soon to be explored, we will
use the term fast Fourier transform or FFT to represent the discrete Fourier transform.*)

Time signals that are simple waves of constant frequencies can be processed in a
straightforward manner with ordinary FFT methods. Real-world signals, however, of-
ten have frequency content that can change over time or have pulses, anomalies, or
other “events” at certain specific times. They can be intermittent, transient, or noisy.
This type of signal can tell us where something is located on the planet, the health of a
human heart, the position and velocity of a “blip” on a RADAR screen, stock market be-
havior, or the location of underground oil deposits. For these signals, we will usually do
better with wavelets.

Jargon Alert: Signals (or noise) that stay at a constant frequency are called
“stationary signals” in wavelet terminology. Signals that can change over
time are called “non-stationary”.

One final thought before beginning: Wavelets deal simultaneously with both time and
frequency and require some effort to master. However their powerful capabilities in
achieving this feat make them well worth the effort. This conceptual method makes

                                                
* MATLAB also uses the term “FFT” rather than “DFT” to compute the discrete Fourier transform.
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learning them possible without advanced math skills and gives you a gut-level compre-
hension in the bargain.

The goal of this preview chapter is to introduce you to some new concepts, show you
some basic diagrams, familiarize you with the jargon, and give you a preliminary feel
for what’s going on. Please don’t be discouraged if everything is not obvious at first
sight.

The next few short chapters will walk you step-by-step through the main concepts and
the later chapters should answer most of the remaining questions. You should then be
prepared to correctly and confidently use wavelets and to better understand the more
advanced math-based texts and papers after you have seen wavelets “in action”.

1.1 What is a Wavelet?

A wavelet is a waveform of limited duration that has an average value of
zero. Unlike sinusoids that theoretically extend from minus to plus infinity,
wavelets have a beginning and an end. Figure 1.1–1 shows a representation
of a continuous sinusoid and a so-called “continuous” wavelet (a Daubechies
20 wavelet is depicted here).

Sinusoids are smooth and predictable and are good at describing constant-
frequency (stationary) signals. Wavelets are irregular, of limited duration,
and often non-symmetrical. They are better at describing anomalies, pulses,
and other events that start and stop within the signal.

Cosine Wave Db20 Wavelet

Figure 1.1–1 A portion of an infinitely long sinusoid (a cosine wave is shown here) and a fi-
nite length wavelet. Notice the sinusoid has an easily discernible frequency while the wavelet
has a pseudo frequency in that the frequency varies slightly over the length of the wavelet.



Chapter 1 - A Preview of Wavelets, Wavelet Filters, and Wavelet Transforms 3

© 2006 Space & Signals Technologies LLC, All Rights Reserved.  www.ConceptualWavelets.com

Figure 1.1–2 shows how wavelets can be stretched or “scaled” to the same
frequency as the anomaly, pulse, or other event. Notice that as the wavelet
is stretched it has a lower frequency. Wavelets can also be shifted in time to
line up with the event. Knowing how much the wavelet was stretched and
shifted to line up (correlate) with the event gives us information as to the
time and frequency of the event.

Jargon Alert: In DSP scaling usually means changing the amplitude
of a signal or waveform. In wavelet terminology, however, the term
scaling means stretching or shrinking the wavelet in time. Thus the
term scaling usually has reference to the frequency (or more pre-
cisely pseudo frequency) of the wavelet. The term dilation is also
used to describe either stretching or shrinking the wavelet in time
(despite the dictionary definition).*

1.2 What is a Wavelet Filter and how is it dif-
ferent from a Wavelet?

Wavelets are a child of the digital age. Some wavelets are defined by a
mathematical expression and are drawn as continuous and infinite. These
are called crude wavelets. However to use them with our digital signal, they
must first be converted to wavelet filters having a finite number of discrete
points. In other words, we evaluate the crude wavelet equation at the desired
points in time (usually equispaced) to create the filter values at those times.

Stretched or “scaled” sinusoid Stretched or “scaled” wavelet

Figure 1.1–2 The infinitely long sinusoid is stretched (or scaled in wavelet terminology) and is
now a lower frequency. The Db20 wavelet is also stretched (scaled) and its pseudo frequency
(average frequency) is also lower.

                                                
* In other words by this definition “dilated pupils” can mean eyes constricted to pinhole openings. “When I
use a word it means just what I choose it to mean—neither more nor less.”—Humpty Dumpty in “Through the
Looking Glass” by Lewis Carroll.
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Jargon Alert: “Crude” wavelets are generated from an explicit
mathematical equation.

Figure 1.2–1 shows the whimsically-named Mexican Hat crude wavelet that
looks like the side view of a sombrero. The mathematical expression for this
particular wavelet as a function of time (t) is given by

mexh(t ) = 2 ( 3 −1 4 ){ }(1− t2 )e−t 2 2

Others wavelets start out as filters having as little as 2 points. Then an ap-
proximation or estimation of a continuous wavelet (for depictions) is built  by
interpolating and extrapolating more points. For these wavelets, there really
is no true continuous form, only an estimation built from the original filter
points. Figure 1.2–2 shows the 4 original filter points (plus 2 zeros at the
same spacing) of the Daubechies 4 (Db4) wavelet superimposed on a 768
point estimation of a “continuous wavelet” built from these points.*

-5 0 5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
17 POINTS ON MEXICAN HAT WAVELET

TIME -->

A
M

P
LI

T
U

D
E

 -
->

 
-5 0 5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
33 POINTS ON MEXICAN HAT WAVELET

TIME -->

A
M

P
LI

T
U

D
E

 -
->

Figure 1.2–1 “Crude” Mexican Hat Wavelet with 17 points (a) then 33 wavelet filter points
superimposed on the continuous (crude) representation (a then b). Although the defining equa-
tion describes an infinite, continuous waveform, by using equispaced discrete points we have
created discrete, finite-length filters ready for use with digital computers.

                                                
* We will demonstrate later how we go from 6 points to 13, 36, etc. to 768. MATLAB uses 768 points as a
suitable approximation of a “continuous” Db4 wavelet.

 a. 17 pts  b. 33 pts
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-0.5
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0.5

1

1.5
DB4 WAVELET BUILT FROM FILTER POINTS

Figure 1.2–2 768 point estimation of a “continuous” Daubechies 4 wavelet built from 6
equispaced filter points (the 4 original filter points and 2 end zeros) superimposed on the graph.

Some wavelets have symmetry (valuable in human vision perception) such
as the Biorthogonal wavelet pairs. Shannon or “Sinc” wavelets can find
events with specific frequencies. (These are similar to the “sin(x)/x” sinc
function filters found in traditional DSP.) Haar wavelets (the shortest) are
good for edge detection and reconstructing binary pulses. Coiflets wavelets
are good for data with self-similarities (fractals) such as financial trends.
Some of the wavelet families are shown below in Figure 1.2–3.

You can even create your own wavelets, if needed. However there is “an
embarrassment of riches” in the many wavelets that are already out there
and ready to go. With their ability to stretch and shift, wavelets are ex-
tremely adaptable. You can usually get by very nicely with choosing a less-
than-perfect wavelet. The only “wrong” choice is to avoid wavelets entirely
due to an abundant selection.

As you can see (Fig. 1.2–3), wavelets come in various shapes and sizes. By
stretching and shifting (“dilating and translating“) the wavelet we can
“match” it to the hidden event and thus discover its frequency and location in
time. In addition, a particular wavelet shape may match the event unusually
well (when stretched and shifted appropriately). This then tells us also about
the shape of the event  (It probably looks like the wavelet to obtain such a
good match or correlation.) For example, the Haar wavelet would match an
abrupt discontinuity while the Db20 would match a chirp signal (see the first
and fourth wavelets in Fig. 1.2–3).
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Haar Shannon or Sinc Daubechies 4 Daubechies 20

Gaussian or Spline Mexican Hat CoifletBiorthogonal

Figure 1.2–3 Examples of types of wavelets. Note 2 wavelets for the Biorthogonal. The Shan-
non, Gaussian, and Mexican Hat are “crude” wavelets that are defined by an explicit mathe-
matical expression (and whose wavelet filters are obtained from evaluating that expression at
specific points in time). The rest are estimations of a “continuous” wavelet built up from the
original filter points.

Jargon Alert: Shifting or sliding is often referred to as “translating”
in wavelet terminology.

1.3 The value of Transforms and Examples of
Everyday Use

Perhaps the easiest way to understand wavelet transforms is to first look at
some transforms and other concepts we are already familiar with.

The purpose of any transform is to make our job easier, not just to see if we
can do it. Suppose, for example, you were asked to quickly take the year
1999 and double it. Rather than do direct multiplication you would probably
do a home-made “millennial transform” in your head something like 1999 =
2000 – 1. Then after transforming you would multiply by 2 to obtain 4000 – 2.
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You would then take an “inverse millennial transform” of 4000 – 2 = 3998 for
the correct answer. You would have described the years in terms of millen-
nia (2000 – 1, 4000 – 2). In other words you compared years with millennia.

Another even more common example is when you ask a dieter how the pro-
gram is working out. They will usually tell you their weight loss, but not
their current weight. This in spite of the fact they have been doing daily for-
ward and inverse transforms between the bathroom scale reading and the
“brag value* that they share with the world. Here they would be describing
their progress in terms of weight loss (instead of bulk weight).

A more advanced example is of course the fast Fourier transform or FFT
which allows us to see signals in the “frequency domain”. Fig. 1.3–1 shows us
the constituent sinusoids of different frequencies (spectrum) that make up
the signal. In other words, we are correlating (comparing) the signal with
these various sinusoids and describing the signal in terms of its frequencies).

Jargon Alert: The use of the FFT is now so commonplace that it’s re-
sults are referred to as the “frequency domain” of a signal. (“Time
domain” is simply the original amplitude vs. time plot of a signal.)

Thus we can say that in the FFT we are comparing and describing the signal
in terms of sinusoids of different frequencies or “stretched” sinusoids (to use
wavelet terminology). In the wavelet transforms we will be comparing and
describing the signal in terms of stretched and shifted wavelets.

The FFT also allows us to manipulate the transformed data and then do an
inverse FFT (IFFT) for custom filtering such as eliminating constant fre-
quency noise. For signals with embedded events (the most interesting kind!)
the FFT tells us the frequency of the event but not the time that it occurred.

Fourier

• • • • • • • • • • • •

Constituent sinusoids (different magnitudes and frequencies)Signal

Transform

Figure 1.3–1 The signal can be transformed into a number of sinusoids of various sizes and
frequencies. When added together (inverse), these sinusoids reconstruct the original signal.

                                                
* Apologies to Sir Lawrence Bragg, a Physics and Signal Processing pioneer.
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1.4 Short-Time Transforms, Sheet Music, and
a first look at Wavelet Transforms

A possible solution to providing both time and frequency information about
an embedded event might be to divide the total time interval into several
shorter time intervals and then take the FFT for each interval. This time-
windowing method would narrow down the time to that of the interval
where the event was found. This short-time Fourier transform (STFT)
method has been around since 1946 and is still in wide use today.

While the STFT gives us a compromise of sorts between time and frequency
information, the accuracy is limited by the size and shape of the window. For
example, using many time intervals would give good time resolution but the
very short time of each window would not give us good frequency resolution,
especially for lower frequency signals.

Longer time intervals for each window would allow us better frequency
resolution, but with these fewer, longer windows we would suffer in the
time resolution (i.e. with very few windows we would have very few times to
associate with the event). Longer time intervals are also not needed for high
frequency signals.

Wavelet transforms allow us variable-size windows. We can use long time in-
tervals for more precise low-frequency information and shorter intervals
(giving us more precise time information) for the higher frequencies.

We are actually already familiar with this concept. Ordinary sheet music is
an everyday example of displaying both time and frequency information—
and it happens to be set up very similar to a wavelet transform display.

Besides demonstrating the concept of longer time for lower frequencies and
shorter times for higher frequencies, sheet music even has a logarithmic
vertical frequency scale (each octave is twice the frequency of the octave
below it). Musicians know that low notes take longer to form in a musical in-
strument. (Engineers know it takes a longer time to examine a low fre-
quency signal.) This is why the Piccolo solo from John Philip Sousa’s “Stars &
Stripes Forever” (Fig. 1.4–1) can’t be played on a Tuba.*

                                                
* There are in fact recordings of tuba players that can press the big valves fast enough to play all the notes in the
piccolo solo, but some of the notes themselves do not have enough time to form in the horn and are not heard.
DSP engineers would refer to this as insufficient integration time.
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Figure 1.4–1 Portion of the piccolo solo from John Philip Sousa’s “Stars and Stripes Forever”

Figure 1.4–2 shows octaves of the note “C” on sheet music (left). A wavelet
display is very much like the configuration to the right. If we use a base 2 log
scale so we have increasing frequency in powers of 2 as the y axis we can see
a remarkable comparison between the sheet music and the wavelet display.
(We will see more of this octave or power of 2 behavior a little later in the
discrete wavelet transforms.)

If you think about it, sheet music has another dimension besides discrete
time and frequency. The volume or magnitude of each note is indicated by
discrete indicators such as ff for fortissimo or very loud.* Sheet music even
describes the time increments. For example, Tempo 60 indicates 60 beats per
minute or 1 beat per second.

Time

Fr
eq

ue
nc

y 
(i

nv
er

se
 o

f 
Sc

al
e)

F
re

qu
en

cy
 -

->

Time -->

ff

tempo 60

4
4

4
4

Figure 1.4–2 Comparison of 5 octaves of the note “C” on sheet music to a (vertically inverted)
wavelet transform time/frequency diagram. Note the powers of 2 in both time (linear scale) and
frequency (log scale) and that higher frequencies require less time for adequate resolution. Note
how magnitude is indicated by fortissimo (ff) on sheet music. Magnitude on the time/frequency
diagram at right is indicated by the brightness or color. Note that both representations indicate
discrete frequencies, discrete times, and discrete magnitudes.

                                                
* Fortissimo is Italian for very loud, pianissimo or pp indicates very soft. The other intensity notations (f, mf,
mp, p, etc.) indicate discrete levels of loudness. The modern piano or pianoforte got its name from its ability to
play notes either piano (soft) or forte (loud).
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In most (but not all) texts, the wavelet display at the right of Figure 1.4–2 is
drawn inverted (“flipped” vertically). In other words the high frequencies are
on the bottom and the lower frequencies are on top. The y axis on most wav-
elet displays shows increasing scale (stretching of the wavelet) rather than
increasing frequency.

Figure 1.4–3 shows a “sneak preview” of a wavelet transform display (c) and
how it compares to an ordinary time-domain (a) and frequency-domain (b)
display.

Imagine if a musical composer had to “de-compose”* by changing a single
note. If he used a musical form similar to (a) he would have to change all the
notes at a particular time (or “beat”). If he used a form similar to (b) he would
have to change all the notes of a particular frequency (or “pitch”). Using a
form similar to (c), as is sheet music, he can change only one note. This is
how denoising or compression is accomplished using wavelet technology. An
unwanted or unneeded portion of data (a computational “wrong note” if you
will) can be easily identified and then changed or deleted without appreciable
degradation of the signal or image.
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a.  2-DimensionalTime 
Domain Display

b.  2-D Frequency 
Domain Display (FFT)

c. 3-D Wavelet Display.
Brightness = Magnitude

Figure 1.4–3 Time domain, frequency domain, and “wavelet domain” display. Note that the
wavelet display (c) incorporates both time and frequency. Note the similarity to sheet music ex-
cept that this display (c) is inverted with increasing stretching or scale (inverse of frequency) as
the vertical or y-axis.
                                                
* “Decomposing” is a term actually used in the discrete wavelet transforms we will soon discuss. Beethoven is
even now decomposing. (You knew that was coming, right?)
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1.5 An example of the Fast Fourier Transform
(FFT) with an Embedded Pulse Signal

In this example we start with a point-by-point comparison of a time-domain
pulse signal (A) with a high frequency sinusoid of constant frequency (B) as
shown in Figure 1.5–1. We obtain a single “goodness” value from this com-
parison (a correlation value) which indicates how much of that particular si-
nusoid is found in our original pulse signal.

We can observe that the pulse has 5 cycles in 1/4 of a second. This means
that it has a frequency of 20 cycles in one second or 20 Hz.

Time (seconds)
0 1/4 1/2 3/4 1

Pulse Signal. 5 cycles in 
1/4 second =  20 Hz.  
Centered at 3/8 second.  

Sinusoid stretched to 20 Hz for 
comparison. Good correlation.  
Same frequency as pulse so 
peaks and valleys can align.

Sinusoid stretched to 
10 Cycles/Sec (10 Hz) 
for comparison.  Poor 
correlation again.    

40 Cycle per Second
(40 Hz) Sinusoid
for comparison with pulse 
signal A.  Poor correlation. 

A

B

C

D

Figure 1.5–1 FFT-type comparison of Pulse Signal with several stretched sinusoids. The
pulse (A) has 5 discernible “peaks” (local maxima) and 5 discernible “valleys” (local minima).
These peaks and valleys will line up best with those of sinusoid C. (We discuss shifts in time or
phase shifts to better align the pulse and sinusoid in a later chapter).
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The first comparison sinusoid (B) has twice the frequency of the pulse or 40
Hz. Even in the time interval where the signal is non-zero (the pulse) it
doesn’t seem intuitively like the comparison would be very good. (A small
mathematical correlation value bears this out.)

By lowering the frequency of (B) from 40 to 20 Hz (waveform C) we are ef-
fectively “stretching in time” (scaling) the sinusoid (B) by 2 so it now has only
20 cycles in 1 second. We compare (C) point-by-point again over the 1 second
interval with the pulse (A). This time the correlation of the pulse (A) with the
comparison sinusoid (C) is very good. The peaks and valleys of (C) and of the
pulse portion of (A) align in time (or can be easily phase-shifted to align) and
thus we obtain a large correlation value.

This same diagram (Fig. 1.5–1) shows us one more comparison of the pulse
with (D). This is our original sinusoid (B) stretched by 4 so it has only 10 cy-
cles in the 1 second interval. The correlation is poor once again because the
peaks and valleys of (A) and (D) no longer line up. We could continue
stretching until the sinusoid becomes a straight line having zero frequency
or “DC” (named for the zero frequency of Direct Current) but all these com-
parisons will be increasingly poor.

An actual FFT compares many “stretched” sinusoids (“analysis signals”) to
the original pulse rather than just the 3 shown in Figure 1.5–1. The best cor-
relation is found when the comparison sinusoid frequency exactly matches
that of the pulse signal. Figure 1.5–2 shows the first part of an actual FFT of
our pulse signal (A).

The locations of our sample comparison sinusoids (B, C, and D) are indicated
by the large dots. (The spectrum of our pulse signal is shown by the solid
curve.) Again, the FFT tells us correctly that the pulse has primarily a fre-
quency of 20 Hz, but does not tell us where the pulse is located in time.*

                                                
* The generalized mathematical equation for the DFT (implemented by the FFT algorithm) is a shortcut for
indicating the real cosines and imaginary sines (Xk) that make up the signal (xn). (We showed cosines only in
the above example to simplify and visually portray the process.)

kX = nx cos(2 nk / N)∑ − j nx sin(2 nk / N)∑
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Frequency (Hz)0 2010 30 40 50

BA C

Figure 1.5–2 Actual FFT plot of the above pulse signal with the three comparison sinusoids.

1.6 Examples using the Continuous Wavelet
Transform

Wavelet transforms are exciting because they too are comparisons, but in-
stead of correlating with various stretched, constant frequency sinusoid
waves they use smaller or shorter waveforms (“wave–lets”) that can start
and stop. In other words, the fast Fourier transform relates the signal to si-
nusoids while the wavelet transforms relate signals to wavelets. In the real
world of digital computers, wavelet transforms relate our discrete, finite
(digital) signal to the discrete, finite, wavelet filters.

Fig. 1.6–1 shows us some of the constituent wavelets that have been shifted
and stretched (from the mother wavelet) that make up the signal. In other
words, we are correlating (comparing) the signal with these various shifted,
stretched wavelets. An actual wavelet transform compares many stretched
and shifted wavelets (“analysis wavelets”) to the original pulse rather than
just these few shown in Figure 1.6–1.

Wavelet

Constituent wavelets (different magnitudes, stretching,  shifting)Signal

shifted

stretched only

stretched 

& shifted

stretched 

& shifted

mother

wavelet

Transform

Figure 1.6–1 The signal can be transformed into a number of wavelets of various stretching,
shifting, and magnitude. When added together these wavelets reconstruct the original signal.
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Figure 1.6–2 demonstrates the stretching and shifting process for the con-
tinuous wavelet transform.

Instead of sinusoids for our comparisons, we will use wavelets. Waveform
(B) shows a Daubechies 20 (Db20) wavelet about 1/8 second long that starts
at the beginning (t = 0) and effectively ends well before 1/4 second. The zero
values are extended to the full 1 second. The point-by-point comparison* with
our pulse signal (A) will be very poor and we will obtain a very small correla-
tion value.

Time (seconds)
0 1/4 1/2 3/4 1

Roughly 40 Hz Db20 Wavelet 
shifted to line up with pulse. 
Still poor comparison because 
frequencies don’t match.  

Roughly 40 Hz Daubechies 
20 (Db20) Wavelet
for comparison with pulse 
signal D.  Poor correlation. 

Pulse Signal. 5 cycles in 
1/4 second =  20 Hz.  

A

Db20 Wavelet stretched by 
2 to rougly 20 Hz and 
shifted for comparison.  
Good correlation.   

B

C

D

shift

stretch

Figure 1.6–2 CWT-type comparison of pulse signal with several stretched and shifted wav-
elets. If the energy of the wavelet and the signal are both unity, these the comparisons are corre-
lation coefficients. Note: Knowing how much (B) was stretched and shifted to match (A) gives us
valuable information about the embedded pulse.

                                                
* The pulse and the wavelets are drawn here as continuous functions. In DSP we would have a finite number of
data points for the signal and we would be comparing these point-by-point with the finite number of values of
the Db20 wavelet filter.
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In the previous FFT discussion we proceeded directly to stretching. In the
wavelet transforms we first shift the unstretched basic or mother wavelet
slightly to the right and perform another comparison of the signal with this
new waveform to get another correlation value. We continue to shift and
when the Db20 wavelet is in the position shown in (C) we get a little better
comparison than with (B), but still very poor because (C) and (A) are differ-
ent frequencies.

Jargon Alert: The unstretched wavelet is often referred to as the
“mother wavelet”. The Db20 wavelet filter we are using here starts
out as 20 points long (hence the name) but can be stretched to many
more points. (A counterpart lowpass filter used in the upcoming
discrete wavelet transform is often called a “father wavelet”. Honest!)*

After we have continued shifting the wavelet all the way to the end of the 1
second time interval, we start over with a slightly stretched wavelet at the
beginning and repeatedly shift to the right to obtain another full set of these
correlation values.

Waveform (D) shows the Db20 wavelet stretched to where the frequency is
roughly the same as the pulse (A) and shifted to the right until the peaks and
valleys line up fairly well. At these particular amounts of shifting and
stretching we should obtain a very good comparison and a large correlation
value. Further shifting to the right, however, even at this same stretching
will yield increasingly poor correlations. Further stretching doesn’t help at all
because even when lined up, the pulse and the over-stretched wavelet won’t
be the same frequency.

In the CWT we have one correlation value for every shift of every stretched
wavelet.† To show the correlation values (quality of the “match”) for all these

                                                
* Mathematically speaking, we replace the infinitely oscillating sinusoid basis functions in the FFT with a set
of locally oscillating basis functions which are stretched and shifted versions of the fundamental, real-valued
bandpass mother wavelet. When correctly combined with stretched and shifted versions of the fundamental, real-
valued lowpass father wavelet they form an orthonormal basis expansion for signals.

† The generalized equation for CWT is a shortcut that shows that the correlation coefficients depend on both the
stretching and the shifting of the wavelet, ψ, to match the signal (xn here) as we have just seen. The equation
shows that when the “dilated and translated” wavelet matches the signal the summation will produce a large
correlation value.

C(stretching,shifting) = nx (stretching,shifting)∑
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stretches and shifts, we use a 3-D display. Figure 1.6–3 shows a Continuous
Wavelet Transform (CWT) display for the pulse signal (A) in our example.

The bright spots indicate where the peaks and valleys of the stretched and
shifted wavelet align best with the peaks and valleys of the embedded pulse
(dark when no alignment, dimmer where only some peaks and valleys line
up, but brightest where all the peaks and valleys align). In this simple exam-
ple, stretching the wavelet by a factor of 2 from 40 to 20 Hz (stretching the
filter from the original 20 points to 40 points) and shifting it 3/8 second in
time gave the best correlation and agrees with what we knew a priori or “up
front” about the pulse (pulse centered at 3/8 second, pulse frequency 20 Hz).

We chose the Db20 wavelet because it looks a little like the pulse signal. If
we didn’t know a priori what the event looked like we could try several
wavelets (easily switched in software) to see which produced a CWT display
with the brightest spots (indicating best correlation). This would tell us some-
thing about the shape of the event.
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Basic wavelet shifted 
to right by 3/8 second 
and stretched to 20 
Hz (wavelet D) best 
matches pulse.

Unstretched 
(low scale, 
high freq) 40 
Hz wavelets 
(B and C) are 
a poor match 
and have no 
bright spots

Figure 1.6–3: Actual CWT display of the above example indicating the time and frequency of
the Pulse Signal. Shifting or translation of the wavelet (filter) in time is the x or horizontal axis,
stretching or dilation of the wavelet (the inverse of its pseudo frequency) is the y or vertical axis,
and the “goodness” of the correlation of the wavelet (at each x-y point) with the signal (pulse) is
indicated by brightness. The fainter bands indicate where some of the peaks and valleys line up
while the center of the brightest band (in the cross-hairs) shows the best “match” or correlation.

Sc
al

e 
(i

nv
er

se
 o

f 
F

re
q)



Chapter 1 - A Preview of Wavelets, Wavelet Filters, and Wavelet Transforms 17

© 2006 Space & Signals Technologies LLC, All Rights Reserved.  www.ConceptualWavelets.com

For the simple tutorial example above we could have just visually discerned
the location and frequency of the pulse (A). The next example is a little more
representative of wavelets in the real world where location and frequency
are not visible to the naked eye. Wavelets can be used to analyze local
events as we will now see.

We construct a 300 point slowly varying sine wave signal and add a tiny
“glitch” or discontinuity (in slope) at time = 180 as shown in Figure 1.6–4 (a).
We would not notice the glitch unless we were looking at the closeup (b).
Using a conventional fast Fourier transform (FFT) on the signal shows its
frequency components (Fig. 1.6–5). The low frequency of the sine wave is
easy to notice, but the small glitch cannot be seen.

While neither the (full-length) time-domain or frequency-domain display tell
us much about the glitch, the CWT wavelet display (Fig. 1.6–6) clearly shows
a vertical line at time = 180 and at low scales. (The wavelet has very little
stretching at low scales, indicating that the glitch was very short.) The CWT
also compares well to the large oscillating sine wave which hides the glitch.
At these higher scales the wavelet has been stretched (to a lower frequency)
and thus “finds” the peak and the valley of the sine wave to be at time = 75
and 225 (see Fig. 1.6–4). For this short discontinuity we used a short 4-point
Db4 wavelet (as shown) for best comparison.

Note that if we were to vertically invert this display with the lower frequen-
cies shown on the bottom, we would see many similarities to the sheet music
notation described earlier.
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Figure 1.6–4 Very small discontinuity at time = 180 (a) cannot be seen without a closeup (b).

 a. Large sinewave
 with small glitch

 b. Closeup of glitch
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Figure 1.6–5 FFT magnitude plot (a) clearly indicates the presence of a large low-frequency
sinusoid. A closeup of the FFT (b) further defines the sine wave in frequency, but does not help
to find the glitch. Note: even if the glitch were large enough to show a noticeable frequency com-
ponent in the FFT, this would still not indicate the time of the glitch-event.

Short “high frequency” wavelet 
compares well to discontinuity. 
It “finds” it’s location at 180.   

Stretched “low frequency” 
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long sinusoidal (wave) signal. 
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Figure 1.6–6 CWT display of result of correlation of signal with various scales (stretching) of
the Daubechies 4 (Db4) wavelet. The short mother wavelet (filter) at scale = 2 is only 4 points
long (the “continuous” estimation of the Db4 is drawn). This short filter compares well with the
short glitch at time 180. The stretched wavelet (filter) at scale = 20 (top) is about 50 points long
and compares better to the large 300 point sinusoid of the main signal than to the glitch.*).
                                                
* We show only to scale = 20 here. A CWT display with much larger scale values would show the best correla-
tion with the sinusoid to be at about scale = 150. The Db4 wavelet filter is stretched to 300 points at scale =
150, and best fits the 300 points of the sine-wave signal. However the glitch at time = 180 would not be so
easily discernible on such a large scale display ant thus it is not shown. We can also adequately locate the peak
and valley of the sine wave at 75 and 225 using just this abbreviated-scale CWT plot—compare Fig 1.6–3 (a).

 a. Full FFT plot  b. Closeup of
     FFT plot
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1.7 A First Glance at the Undecimated Dis-
crete Wavelet Transform (UDWT)

Besides acting as a “microscope” to find hidden events in our data as we have
just seen in the continuous wavelet transform display, discrete wavelet
transforms (DWTs) can also separate the data into various frequency compo-
nents, as does the FFT. We already know that the FFT is used extensively to
remove unwanted noise that is prevalent throughout an entire signal such
as a 60 Hz hum.

Unlike  the FFT, however, the discrete wavelet transform allows us to re-
move frequency components at specific times in the data. This allows us a
powerful capability to throw out the “bad” and keep the “good” part of the
data for denoising or compression. Discrete wavelet transforms also incorpo-
rate easily computed inverse transforms (IDWTs) that allow us to reconstruct
the signal after we have identified and removed noise or superfluous data.

A fair question before proceeding is “What is continuous about the continu-
ous wavelet transform in our world of digital computers that works with dis-
crete data? Aren’t all these transforms “discrete”? What then differentiates
these discrete wavelet transforms from the so-called continuous ones?”

The answer is that although all wavelet transforms in DSP are technically
discrete*, the so-called continuous wavelet transform (CWT) differs in how it
stretches and shifts. The term “continuous” in a CWT indicates all possible in-
teger factors of shifting and stretching (e.g. by 2, 3, 4, 5, etc.) rather than a
mathematically continuous function. By contrast, we will see that discrete
wavelet transforms stretch and shift by powers of 2. Another difference is
that the continuous wavelet transform uses only the one wavelet filter while
the discrete wavelet transform uses 3 additional filters as we will soon see.
We will now look at the 2 best known and most utilized of the DWTs—the
conventional discrete wavelet transform (DWT) and the undecimated dis-
crete wavelet transform (UDWT).

Jargon Alert: Stretching or shifting by powers of 2 is often referred
to as “dyadic”. For example, dyadic dilation means stretching (or
shrinking) by factors of 2 (e.g. 2, 4, 8, 16 etc).

                                                
* As is the discrete Fourier transform  (implemented by the FFT algorithm).
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The undecimated discrete wavelet transform (we’ll explain why it’s called
“undecimated” in a moment) is not as well known as the conventional dis-
crete wavelet transform. However it is simpler to understand than the con-
ventional DWT, compares better with the continuous wavelet transform we
have just studied and is similar enough to the DWT to provide a clear learn-
ing “bridge”. UDWTs also don’t have the “aliasing” problems we will soon en-
counter and discuss in the conventional DWT.

Figure 1.7–1, (a) shows the simplest UDWT. The first thing you will notice on
this signal flow diagram is that it has 4 filters. This is called a filter bank for
this reason. (We will run into this type of figure a lot during the book, but it’s
not necessary to completely understand it at this point in the preview.) These
4 filters are closely related (complimentary) as we will see later.

The left half of the UDWT is called the decomposition or analysis portion
and comprises the forward transform. The right half is called the reconstruc-
tion or synthesis portion and comprises the inverse transform.* The vertical
bar separating the 2 halves represents the area where we can add more
complexity (and capability), but we proceed by ignoring the bar for now.

S  S’

D1

A1

Highpass Halfband Filter

Lowpass Halfband Filter

b.H

S

L L’

H’

 S’

D1

A1

cD1

cA1

a.

Figure 1.7–1 Single-level undecimated discrete wavelet transform (UDWT) filter bank shown
at left (a). The forward transform or analysis part is the half to the left of the vertical bar and is
usually referred to as the decomposition portion. The inverse transform or synthesis part is the
half to the right of the vertical bar and is called the reconstruction portion. The bar itself is
where additional levels of decomposition and reconstruction can be inserted, producing higher
level UDWTs. If the data is left unchanged (no activity in the vertical bar) the functional equiva-
lent of this single-level UDWT is shown in the right diagram (b).

                                                
* The terms UDWT and IUDWT are occasionally used as labels for the forward and inverse transforms. Usu-
ally, however, the term UDWT refers to both halves. The discrete Fourier transform (DFT) and the function-
ally-equivalent fast Fourier transform (FFT) also use the terms analysis and synthesis to describe their left and
right (forward and inverse) halves (FFT and IFFT).
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Jargon Alert: “Decomposition” in wavelet terminology means split-
ting the signal into 2 parts using a highpass and a lowpass filter.
Each of the 2 parts themselves can be decomposed further (split into
more parts) using more filters. “Reconstruction” means using filters
to combine the parts. “Perfect reconstruction” means that that the
signal at the end is the same as the original signal (except for a pos-
sible delay and a constant of multiplication).

On the upper path of Fig. 1.7–1, (a) the signal, S, is first filtered by H
(highpass decomposition filter) to produce the coefficients cD1. At this point
we can do further decomposition (analysis) for compression or denoising, but
for now we will proceed directly to reconstruct (synthesize) the signal. cD1 is
next filtered by H’ (highpass reconstruction filter) to produce the Details
(D1). The same signal is also filtered on the lower path by the lowpass de-
composition filter L to produce the coefficients cA1 and then by the lowpass
reconstruction filter L’ to produce the Approximation (A1).

Jargon Alert: “Approximation” in Wavelets is the smoothed signal af-
ter all the lowpass filtering. “Details” are the residual noise after all
the highpass filtering. cA1 designates the approximation coefficients
and cD1 designates the details coefficients. These coefficients can be
broken down (decomposed) into further coefficients in higher level
systems (depicted by the vertical bar in the center of the diagrams).

H and H’ together produce a highpass halfband filter while L and L’ produce
a lowpass halfband filter as seen in Fig. 1.7–1, (b). These 4 wavelet filters are
non-ideal filters and there is some overlap as depicted in the frequency allo-
cation diagram (Figure 1.7–2).

Jargon Alert: “Halfband filters” split the frequency into a lowpass
and a highpass “half” (A1 and D1 here), usually with some overlap.
We refer to all 4 filters as wavelet filters, but some texts refer to the 2
lowpass filters as scaling function filters and the 2 highpass as wav-
elet filters. Some call only H’ the wavelet filter. Again, Caveat Emptor.

Fig. 1.7–1 showed a single-level UDWT. Fig. 1.7–3 shows a 2-level UDWT.
(Note the additional decomposition and reconstruction as cA1 is split into cD2
and cA2.) Multi-level UDWTs allow us to stretch the filters, similar to what
we did in the CWT, except that it is done dyadically (i.e. by factors of 2). The
stretching is done by upsampling by 2 (e.g. “Hup”) and then filtering (a com-
mon method of interpolation in DSP). With this further decomposing and re-
construction we can split the signal into more frequency bands (Fig. 1.7–4).
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Figure 1.7–2 Frequency allocation after a single-level UDWT*. The diagram is illustrative
only and the actual shape depends on the wavelet filters. Note overlap from non-ideal filtering.
When the Details and Approximations are added together they reconstruct S’ (D1 + A1 = S’)
which is identical to the original signal, S, except for a delay and usually a constant of multipli-
cation. For a very simple denoising, we could just discard these high frequencies in D1 (for
whatever time period in the signal we choose) and A1 by itself would be a rudimentary
“denoised” signal.

H

L
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S
S’

Lup Lup
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Creates 
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lowpass filter.

Creates stretched highpass 
filter

L
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D2
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Figure 1.7–3 A 2-level UDWT. The signal, S, is split into cD1 and cA1. cA1 is then split into
cD2 and cA2. The final signal, S’, is now reconstructed by combining A1 and D1. Since A1 is ob-
tained by combining D2 and A2, S’ = A1 + D1 = A2 + D2 + D1. We could do some denoising or
compression at this point. If there was nothing of interest in D2, for example, we could zero it
out and would have S’ = A2 + 0 + D1 = A2 + D1. Notice that if we set the coefficients cD2 to zero

                                                
* The Nyquist or “folding” frequency is the highest possible frequency without aliasing (discussed shortly).
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that this would also cause D2 to be zero (filtering of zeros still produces zeros). We will discuss
multi-level UDWTs in detail later.

NORMALIZED 
FREQUENCY
(NYQUIST = 1)

A2 D2 D1

A1
S

FREQUENCY 

Figure 1.7–4 Frequency allocation after a 2-level UDWT. Note that the A1 is now split into 2
sub-bands. This allows us better flexibility in denoising or compression.

Jargon Alert: “Upsampling by 2” means placing zeros between the ex-
isting data points. For example, A time-sequence of the numbers
[6,  5,  4,  3] would become with upsampling by 2

[6, 0, 5, 0, 4, 0, 3].

or in some cases

[0, 6, 0, 5, 0, 4, 0, 3, 0]

with a leading and/or a trailing zero (more on interpolation later).

The UDWT (sometimes referred to as the redundant DWT or RDWT) with
it’s method of inserting zeros as part of the stretching of the filters is thus
also called the “A’ Trous” method which is French for “with holes” (zeros).

A 4-level UDWT with more stretched filters splits the signal into 5 frequency
sub-bands (Figure 1.7–5).* By splitting the signal into more sub-bands, we
have more choices as to which sub-band(s) to eliminate or reduce at desired
times before reconstructing the signal (for denoising or compression).

1.8 A First Glance at the conventional Discrete
Wavelet Transform (DWT)

                                                
* The 4-level UDWT signal flow diagram is not shown in this preview because of its size and complexity, but
it functions very similar to the 2-level UDWT except that the filters are stretched not only by 2, but also by 4
and 8 to give us these additional sub-bands. Don’t worry if you don’t understand these multi-level systems in
this preview. We’ll talk more about them later. They are shown here mainly to show you what they look like
and how they have stretched filters similar to the CWT. Hang in there.

M
AG

NI
TU

DE



24 Conceptual Wavelets in Digital Signal Processing

© 2006 Space & Signals Technologies LLC, All Rights Reserved.  www.ConceptualWavelets.com

We stretched the wavelet continuously (by integer steps) in the CWT and
dyadically (by factors of 2) in the UDWT. In the conventional DWT we shrink

Nyquist 
Frequency

S

D2 D1

FREQUENCY

D3D4A4

A1
A2

A3

Figure 1.7–5 Frequency allocation in a 4-level UDWT. Note that S is split into A1 and D1,
A1 is split into A2 and D2, A2 is split into A3 and D3, and finally A3 is split into A4 and D4.

the signal instead (dyadically) and compare it to the unchanged wavelet fil-
ters. We do this through “downsampling by 2”.

Jargon Alert: “Downsampling by 2” means discarding every other
signal sample. For example a sequence of numbers (signal) [5   4   3  
2] becomes [5    3] (or [4   2] depending on where you start). This is
also referred to in wavelet terminology as “decimation by 2” (in spite
of the dictionary definition for the prefix “Deci”).

A single-level conventional DWT is shown in Figure 1.8–1 with the decompo-
sition or analysis portion on the left and the reconstruction or synthesis por-
tion on the right half*. Downsampling and upsampling by 2 is indicated by the
arrows in the circles. For example, if we downsampled then immediately up-
sampled [5  4  3  2] we would first have [5  3] and then [5  0  3  0].

Further decomposition and reconstruction (a higher level DWT) is done in
the vertical bar separating the 2 halves. The single-level DWT shown here is
the same as the single level UDWT except that in discarding every other
point, we have to deal with aliasing. We must also be concerned with shift
invariance (do we throw away the odd or the even values?—it matters!).†

                                                
* As with the UDWT, the term DWT usually refers to both the left half or forward  DWT and the right half or
inverse DWT (occasionally called the IDWT).

† The UDWT has neither of these problems. We will discuss aliasing and shift-invariance more in later chap-
ters.
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Figure 1.8–1 Single-level conventional DWT. Similar to the single-level UDWT with the same
filters (H, H’, L, and L’) but with upsampling and downsampling. With no activity in the vertical
bar, the coefficients cD1 and cA1 will be unchanged between the end of decomposition and the
start of reconstruction Notice that with downsampling the coefficients cD1 and cA1 are about
half the size as those in the Undecimated DWT (UDWT).

Jargon Alert: “Aliasing” means 2 or more signals have the same
sample values.

One pathological example of aliasing caused by downsampling by 2
would be a high frequency oscillating time signal:

[1 -1  1 -1  1 -1  1 -1  1 -1  1 ...

If we downsample by 2 we have left over

[1     1     1     1     1     1 ...

which is a DC (zero frequency) signal. This is obviously not the high
frequency signal we started with but an “alias” instead.

With the potential for aliasing problems because of downsampling we would
not expect to be able to perfectly reconstruct the signal as we did in the
UDWT. One of the remarkable qualities of DWTs is that with the right wav-
elet filters (H, H’, L and L’) we can perfectly reconstruct, even with aliasing!
The stringent requirements on the wavelet filters to be able to cancel out ali-
asing is part of why they often look so strange (as we saw in Figure 1.2–3).
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Jargon Alert: Filters in these filter banks that are able to cancel out
the effects of aliasing (if used correctly) are called “Perfect Recon-
struction Quadrature Mirror Filters” or PRQMFs“.

As with the UDWT, we can denoise our signal by discarding portions of the
frequency spectrum—as long as we careful not to throw away vital parts of
the alias cancellation capability. Correct and careful downsampling also aids
with compression of the signal. With downsampling, cD1 and cA1 are only
about half the size as in the UDWT. So compared to the conventional DWT,
the UDWT is “redundant”. This is why it’s often called a redundant DWT.

Multi-level conventional DWTs produce the same frequency sub-bands as the
multi-level UDWTs we saw earlier (if the aliasing is correctly dealt with).
Figure 1.8–2 shows a 2-level conventional DWT. The frequency allocation is
the same as the 2-level UDWT (see Fig. 1.7–2). Notice that we use the same
4 wavelet filters (H, H’, L, and L’) repeatedly in a conventional DWT.

It’s usually the high-frequencies that comprise the noise in a signal, thus we
decompose the lower frequencies in these multi-level transforms. Figure
1.8–2 shows cA1 split into cA2 and cD2 but cD1 is not split further. We can, of
course split these Details further if we want to. This is done using a wavelet
packet transform and we will look at these in later chapters.
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Figure 1.8–2 2-level conventional DWT. Instead of stretching the filters as in the UDWT (and
CWT), we “shrink” the signal through downsampling and use the same 4 filters (H, H’, L, and
L’) throughout. Note that with downsampling cD2 and cA2 are about 1/4 the size as those in
the UDWT.
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1.9 Examples of use of the conventional DWT

As mentioned, an important advantage of a wavelet transform is that, unlike
an FFT, we can threshold the wavelet coefficients for only part of the time.

Jargon Alert: To “threshold” (used as a verb here) means to disallow
all numbers that are either greater or less (depending on the appli-
cation) than a specified value or threshold (used as a noun).

We will use a seven-level DWT for this next example. Instead of simply A1
and D1 as we saw in Figure 1.8–1, we would have further decomposition of
A1 into A2 and D2, then A2 into A3 and D3, and so on until A6 is decomposed
into A7 and D7. The frequency allocation for a conventional DWT (assuming
no aliasing problems) is the same as that for the UDWT. For example see
figure 1.7–5 for the allocation by a 4-level DWT (or 4-level UDWT).

Suppose we had a binary signal that had a great deal of noise added which
changed frequency as time progressed (e. g. “chirp” noise). Using a 7-level
DWT the noise would appear at different times in the different frequency
sub-bands (D1, D2, D3, D4, D5, D6, D7 and A7). We could automatically
threshold out the noise at the appropriate times in the frequency sub-bands
and keep the “good” signal data.

A portion of the original noiseless binary signal is shown in Figure 1.9–1. The
values alternate between plus and minus one (a Polar Non-Return to Zero or
PNRZ signal). We next bury the signal in chirp noise that is 10,000 times as
great (80 dB). Looking at the signal buried in noise (Figure 1.9–2) we see
only the huge noise in the time domain (a). Using an FFT on the noisy signal
we see only the frequencies of the noise (b).

However, using a conventional DWT with a time-dependant automatic
threshold for the various frequency sub-bands, we are able to reconstruct
the binary signal (see Fig. 1.9–3) from the “scraps” left over after the chirp
segments were thresholded out at the appropriate times. (More details on
how this was done will be given later).

+ 1

- 1
Figure 1.9–1 Portion of original binary signal. Values alternate between plus and minus one.
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Figure 1.9–2 Signal buried in 10,000 times chirp noise is undetectable in either the ampli-
tude vs. time plot (a) or the magnitude vs. frequency (FFT) plot (b).

Modern JPEG compression also uses wavelets. Figure 1.9–4 shows JPEG
image compression. The image on the right was compressed by a ratio of 91:1
using a conventional DWT with a Biorthogonal 9/7* set of wavelets.

+1

-1
+1

-1

Figure 1.9–3 Successful use of discrete wavelet transform. Portion of denoised signal using
time-specific thresholding with a 7-level conventional DWT is shown at bottom. Original binary
signal. is redrawn at top for comparison. The final result is not a perfect reconstruction of the
original, but close enough to discern the binary values.

                                                
* As will be explained further in later chapters, the Biorthogonal 7/9 filters have 7 points in H and L’ and 9
points in H’ and L. This particular set of wavelet filters is referred to in MATLAB as “Bior4.4”
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Biorthogonal 
Wavelet Pair

Figure 1.9–4  JPEG image compression of 91:1 achieved with a conventional DWT using a
Biorthogonal 9/7 set of symmetrical wavelets.

1.10 Summary

In this preview chapter we introduced wavelets by drawing them as continu-
ous functions, but told how they are actually implemented in a digital com-
puter as discrete, short wavelet filters. We showed how some filters come
from a mathematical expression for a continuous wavelet (crude wavelets)
while other wavelets start out as filters with just a few points and then are
built into a suitable estimation of a continuous wavelet. We then looked at
various types of wavelets and their uses.

We next looked at transforms we use everyday and the (hopefully) familiar
FFT and showed how they can be thought of as comparisons (correlations).
We saw that the FFT has the shortcoming of not being able to determine the
time of an embedded event. We discussed short-time Fourier transforms and
then introduced the concept of wavelet transforms by comparing them to or-
dinary sheet music. We compared the fast Fourier transform (FFT) to the
continuous wavelet transform (CWT) using an embedded pulse signal as an
example. We next showcased the ability of a CWT to identify the time of oc-
currence of an embedded glitch, it’s frequency, and it’s general shape.

We moved on to the undecimated discrete wavelet transform (UDWT) and
showed how it is similar in many ways to the CWT but uses all 4 wavelet fil-
ters rather than just one. We also noted that the stretching is done only by
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factors of 2 (dyadically) in the UDWT rather than by every possible integer
value as in the so-called “continuous” wavelet transform.

We continued building our understanding from FFT to CWT to UDWT by
moving on to the conventional DWT. The DWT is similar to the UDWT but
introduces downsampling and thus potential aliasing problems. We men-
tioned special filters that (if used correctly) can cancel out the effects of ali-
asing! We showed two examples of uses of the DWT in signal denoising in a
severe environment and in image compression (JPEG). In the next few short
chapters we will do a step-by-step walk through of these various transforms.

We stress again that this preview is intended to give the reader a feel for how wavelets
and wavelet transforms work. The upcoming chapters from the book “Conceptual Wav-
elets in Digital Signal Processing” are designed to provide much more information and
to facilitate a real-world understanding and applications of these amazing tools.

Some of the chapters are available for download and your personal use now. (Please
observe the legal rules and restrictions—especially not posting this material to any
other websites.) You will want to check back periodically or send an email request for
additional chapters as they come online.

Until the book is completed and published, one option is to attend one of the open
seminars by Mr. Fugal. The comments from attendees have been very favorable and are
one reason why a book and website are being developed. In fact, all the chapters in the
book (including this one) are written using the completed seminar slides as the basis.
Contact D. Lee Fugal at (toll-free) 877-845-6459 for information on the next open semi-
nar. Private seminars are also available for your company or organization.

Another option is to use the consulting services of Mr. Fugal to clarify or expand on
specific sections. You are also welcome to contact him for comments and suggestions, a
short specific question, or for general advice. He can be reached during business hours
at the above number or at l.fugal@ieee.org.

There is much more to discover than can be presented in this short preview. The time
spent, however, in learning, understanding and correctly using wavelets for these
“non-stationary” signals with anomalies at specific times or changing frequencies (the
fascinating, real-world kind!) will be repaid handsomely.



CHAPTER

2
Walk-Through of the Continu-
ous Wavelet Transform (CWT)
using the Haar Wavelet Filters

In chapter one we showed a preview of wavelets, wavelet filters, and wavelet trans-
forms and compared them to some conventional methods such as the FFT and DTFT. In
section 1.6 we demonstrated the principles behind the continuous wavelet transform or
CWT and produced some CWT displays.

In this chapter we will walk through, step-by-step, the process used to construct a CWT
and how to generate data for a CWT display that matches MATLABs Wavelet Toolbox
cwt utility. We will use a very simple, understandable “signal” and the simplest of the
wavelets, the Haar. Our goal in this chapter will be to understand the basic mechanics
of the CWT and how a simple CWT display is generated. We will defer to later chapters
demonstrations of the power of this tool.

2.1 Simple Scenario: Comparing Exam Scores
using the Haar Wavelet

Let’s begin with a simple (albeit contrived) example of some exam scores at a
university. Rather than using a mid-term and final exam, some instructors
(including the author) prefer to assign a grade using a series of equally
weighted exams. We will assume 8 exams throughout the term.

In this hypothetical example the student does fairly well the first half of the
term then neglects his or her studies for the last half. Thus the exam scores
for the term were 80%, 80%, 80%, 80%, 0%, 0%, 0%, and 0%*

We can tell the average of all the scores (40%) and when the scores “tanked”
after the 4th exam just by looking. Knowing the answer in advance, how-
ever, is a good way to learn and to verify the wavelet transforms. Then we
can use them with confidence on real-world data where we can’t simply
“eyeball” the final values.

                                                
*The author actually had a student who got engaged to be married in the middle of the term and the test scores
were fairly close to this hypothetical example!
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We will now walk through the CWT process step by step using the simplest
of the wavelet filters on this example. We begin by comparing the humble
Haar wavelet filter, [1 –1], with the data as shown in Figure 2.1–1.

minus

80  80  80  80   0   0   0   0  

Figure 2.1–1 Comparison of the Haar wavelet filter [1 –1] with the first 2 exam scores. 80
minus 80 = zero.

Comparing the first 2 points with the wavelet filter we obtain 80 – 80 = 0. For
this very simple highpass filter we can say there was no change in the first 2
exam scores.

As demonstrated in the preview chapter, we shall now “shift” in time by one
as shown below in Figure 2.1–2

We still have a zero value after this first shift. If we shift the wavelet filter
once again to the right (not shown) we will also have 80 – 80 = 0. However, if
we shift once more as shown below in Figure 2.1–3 we will have 80 – 0 = 80.

This is significant in that this wavelet process of comparison (correlating) and
shifting has just indicated a large change between the 4th and 5th exam. We
have “found the discontinuity”.

80  80  80  80   0   0   0   0  

minus

(SHIFT)

Figure 2.1–2 Comparison of the Haar wavelet filter [1 –1] with the next 2 exam scores.
Again, 80 minus 80 = zero.
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80  80  80  80   0   0   0   0  

minus

(SHIFT)

Figure 2.1–3 Comparison of the Haar wavelet filter [1 –1]  with the 4th and 5th exam scores.
We now have a non-zero value with 80 minus 0 = 80.

We shift once more to the right (in time) and have the comparison shown in
Figure 2.1–4. For this shift and for all further shifts of this 2-point wavelet
filter ( [1 –1] ) we will be back to zero differences with 0 – 0 = 0.

Thus if we were to list all the comparisons we have done so far with this
Haar wavelet filter we would have the series of 7 numbers:

[0, 0, 0, 80, 0, 0, 0]

This is almost identical to what the wavelet software packages such as the
MATLAB Wavelet Toolbox does. The only difference is that MATLAB has 2
additional comparisons as shown in Figure 2.1–5.

We start comparing a little sooner and end a little later as shown. To do this
we assume zeros on both ends of the exam scores and we end up with a se-
ries of 9 numbers:

[–80, 0, 0, 0, 80, 0, 0, 0, 0]

Figure 2.1–5 shows us how the 2 “end” numbers (–80 and 0) are obtained.

80  80  80  80   0   0   0   0  

minus

(SHIFT)

Figure 2.1–4 Comparison of the Haar wavelet filter [1 –1] with the 5th and 6th exam scores.
The value for this and further shifts will be 0 – 0 = 0.
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(0)  80  80  80  80   0   0   0   0 (0) 

(0)  80  80  80  80   0   0   0   0   (0)

minus

minus

Figure 2.1–5 Comparison of the Haar wavelet filter [1 –1]  starting one data point earlier and
ending 1 data point later. Note that with zeros on both ends we would not obtain any further
information from starting even earlier or ending any later than shown.

2.2 Above Comparison Process seen as sim-
ple Correlation or Convolution

This probably looks familiar as a correlation of the 2-point Haar wavelet fil-
ter [1 –1] with the exam scores “signal”. We could also obtain the exact same
results by performing a convolution of the flipped-in-time filter [–1 1] with
the signal. Here is the MATLAB result convolving the time-reversed filter
with the same 8 exam scores.

conv( [–1 1],[80 80 80 80 0 0 0 0] ) =

–80 0  0  0  80  0  0  0  0

which is identical to the results we got by hand in the last section.(2.1)*

                                                
*We could also have used MATLAB’s cross correlation routine xcorr with the wavelet filter ( xcorr( [1 -1], [80
80 80 80 0 0 0 0] ) ) to obtain the same sequence of numbers. However xcorr zero-pads the 2-point filter to 8
points and we are left with extra zeros. The MATLAB convolution routine conv is not only easier to work with
but also leads us directly into next chapter.
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Notice that the convolution of the 2-point filter and the 8 point signal gives
us 9 points (8+2–1). This is the familiar “L+M–1” result from filtering where
L is the length of the signal, and M is the length of the filter.

In a CWT display we usually wish to keep the total number of points of the
correlation (or convolution with time-reversed filters) to the length of the
original signal. MATLAB, for example, has a routine wkeep that keeps only
the center points. For this scenario it keeps only the middle or “left middle” 8
points of the 9-point correlation. The MATLAB code is shown here:

wkeep( [–80 0 0 0 80 0 0 0 0], 8 )

     = [–80 0 0 0 80 0 0 0]

If we were to look at the magnitude or absolute value of these numbers we
would see indicators that the scores had not only a discontinuity or “drop”
starting at the 5th exam but also another discontinuity or “jump” at the very
first (an artifact in going from knowing nothing of the subject at the begin-
ning of class to an 80% score on the first exam).

For the 2 points (1 and –1) we used in comparing or correlating the exams
we have the above 8 CWT values. For the Haar wavelet filters this is called
scale = a = 2. We recall from chapter one that the next step in the continuous
wavelet transform was to “stretch” (in time) the wavelet filter to 3 points
(scale = a = 3) and perform another correlation.

This start of the correlation or comparison process is shown below in Figure
2.2–1. The filter has now been stretched from [1 –1] to [1  0 –1]. Notice that
for the middle value of the stretched filter we use the average of 1 and –1 or
zero. Again we have zeros outside the range of the 8 exams.

  0   0  80  80  80  80   0   0   0   0  

minus
(SHIFT)

(zero)

Figure 2.2–1 Comparison of the stretched Haar wavelet filter [1 0 –1] with the same 8 exam
values. The first value we would have from this correlation (before shifting in time) would be
0, (plus zero), minus 80 = –80.
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As depicted in Figure 2.2–1, the first value will be 1x0 + 0x0 – 1x80 = –80. As
we shift and compare again, the next value will also be 1x0 + 0x80 – 1x80
= –80. Shifting once again we would have 1x80 + 0x80 – 1x80 = 0. Thus the
first 3 of the 10 values will be [–80, –80, 0]. We “cheat” at this point and use
MATLABs conv routing, remembering to time-reverse the stretched 3-point
filter. We see the –80, –80, and 0 values plus the other 7 here.

oonv( [–1 0 1], [80 80 80 80 0 0 0 0] )

= –80 –80   0   0  80  80   0   0   0   0

Using wkeep to keep the center 8 values we have

wkeep( [–80 –80 0 0 80 80 0 0 0 0], 8 )

= –80   0   0  80  80   0   0   0

For scale = a = 4 we have the original 2-point Haar wavelet filter [1 –1] now
stretched to the four points [1  1 –1 –1]. Figure 2.2–2 shows this dyadically
stretched (stretched by a factor of 2) wavelet ready to correlate with the sig-
nal. We can see from the figure that as we slide and compare the first few
values will be –80, –160, –80, and 0.

As before, we can use the convolution/time reversal shortcut. We set

exams = [80 80 80 80 0 0 0 0]

and let temp be the result of the convolution. We then have

temp = conv(exams, [–1 –1  1  1]

= –80 –160 –80 0 80 160 80 0 0 0 0

0   0   0   80  80  80  80  0   0   0   0  (0) 

minus

(SHIFT)

plus minus

Figure 2.2–2 Comparison of the stretched Haar wavelet filter [1  1 –1 –1] with the exam val-
ues. The first value we would have from this correlation (before shifting in time) would be 0 + 0 –
0 – 80 = –80.
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Keeping the center-left 8 values we have for scale = a = 4 the values

wkeep(temp, 8) = –160 –80 0 80 160 80 0 0

Continuing the process with the 5-point stretched wavelet we have

wkeep( conv(exams, [–1 –1  0  1  1]), 8)

= –160  –80   80  160  160   80    0    0

We can repeat the process as long as we need. In this case we will stop at
scale = a = 10 for a Haar wavelet stretched to 10 points. We have

temp = conv(exams,[–1 –1 –1 –1 –1  1  1  1  1  1] )

= –80 –160 –240 –320 –320 –160 0 160 320 320 240 160
   80  0 0 0 0

and again keeping only the left-center 8 values we have

wkeep(temp,8) = –320 –160 0 160 320 320 240 160

We can now make an array for these scales from a = 2 to a = 10 and from
that array duplicate an actual Haar CWT display for the exams. To complete
our set, however, we need to determine the values for scale = a = 1. Similar
to a 3-point filter with the center point being the average of 1 and –1 or zero,
this single-point filter is also the same average and is simply zero. Thus a
correlation (or convolution for that matter) of zero with the exams would be
simply a set of 8 zeros. Thus for scale = a = 1 we have

0  0  0  0  0  0  0  0

2.3 Display of the Continuous Wavelet Trans-
form (CWT) of the Exam Scores using the
Haar Wavelet Filter.

Placing the 10 sets of values in an array with the 10 point filter at the top and
the 1 point filter at the bottom we have the values shown in Table 2.3–1:
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(scale = 10) –320  –160   0  160  320  320  240  160

(scale = 9)  –240  –80   80  240  320  240  160   80

(scale = 8)  –320 –160    0  160  320  240  160   80

(scale = 7)  –240  –80   80  240  240  160   80    0

(scale = 6)  –240 –160    0  160  240  160   80    0

(scale = 5)  –160  –80   80  160  160   80    0    0

(scale = 4)  –160  –80    0   80  160   80    0    0

(scale = 3)   –80    0    0   80   80    0    0    0

(scale = 2)   –80    0    0    0   80    0    0    0

(scale = 1)     0    0    0    0    0    0    0    0

Table 2.3–1 Raw correlation of exam data with various stretched Haar wavelet filters as they
go from 10 points (  [1  1  1  1  1 –1 –1 –1 –1 –1] ) at scale = a = 10 down to the trivial single
point ( [0] ) at scale = 1.

Notice that the negative numbers also indicate a strong correlation of the
signal with the wavelet filter. The MATLAB Wavelet Toolbox plots these val-
ues in a single 3-D graph using color or brightness as the magnitude (positive
or negative amplitude). In other words, it changes the negative numbers to
positive.

We need to make one other adjustment before graphing these numbers.
Larger scales mean longer filters. In order to compensate we divide each row
by the square root of the scale to “level the playing field” (correct energy rep-
resentation).

For example at scale = 4 we divide by sqrt(4) = 2 and change amplitude to
magnitude. So from

–160   –80    0    80   160    80     0     0

we obtain

  80    40    0    40    80    40     0     0

These adjusted values are now shown for scale = a in table 2.3–2 below. Note
the 2 underlined numbers that are maxima for the entire array.
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(a =10) 101.2  50.6   0.0  50.6 101.2 101.2  75.9  50.6

(a = 9)  80.0  26.7  26.7  80.0 106.7  80.0  53.3  26.7

(a = 8) 113.1  56.6   0.0  56.6 113.1  84.9  56.6  28.3

(a = 7)  90.7  30.2  30.2  90.7  90.7  60.5  30.2   0.0

(a = 6)  98.0  65.3   0.0  65.3  98.0  65.3  32.7   0.0

(a = 5)  71.6  35.8  35.8  71.6  71.6  35.8   0.0   0.0

(a = 4)  80.0  40.0   0.0  40.0  80.0  40.0   0.0   0.0

(a = 3)  46.2   0.0   0.0  46.2  46.2   0.0   0.0   0.0

(a = 2)  56.6   0.0   0.0   0.0  56.6   0.0   0.0   0.0

(a = 1)   0.0   0.0   0.0   0.0   0.0   0.0   0.0   0.0

Table 2.3–2 Correlation of exam data with Haar wavelets from 10 points down to 1 point
after adjusting for the length of wavelets (dividing by square root of length) and using magnitude
of correlations (replacing negatives with positives).

These now correspond to the MATLAB Wavelet Toolbox CWT display (and
most other CWT display software). Figure 2.3–1 shows the MATLAB display
of the exam data for scales 1 through 10. The MATLAB command to do this
can be written in a single line as

c = cwt([80 80 80 80 0 0 0 0],1:1:10,'haar','plot')

Figure 2.3–1 shows the display. We can specify colors but use a gray scale
here for publication. The Wavelet Toolbox Display assigns the brightest color
to the highest value and the darkest to the lowest value. Table 2.3–2 showed
the best correlation to be the first and fifth values of scale = 8. This is seen
also here in Figure 2.3–1 as the 2 brightest values on the display. As ex-
plained in the last section, the center 8 values are shown for each scale.

We can see intuitively why this scale = 8 gives the best “match” by looking at
Figure 2.3–2 below.
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Figure 2.3–1 MATLAB Wavelet Toolbox display of the Continuous Wavelet Transform of the
8 exam scores using the Haar wavelet.

8 PT STRETCHED HAAR WAVELET FILTER
8 EXAM SCORES

80%

0%

+1

-1

Figure 2.3–2 Similarities shown between the exam scores (left) and the 8-point stretched
Haar wavelet.
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We can see from Figure 2.3–2 that there will be a strong negative correlation
when the four –1 values of the stretched Haar filter line up with the 4 non-
zero test scores and a strong positive correlation 4 points when the four +1
values line up. These strong correlations are indicated by the 2 arrows in
Figure 2.3–1.

As a further check, we compare the values from MATLABs cwt routine just
prior to plotting to our own values. For scale = 8 we came up with the fol-
lowing 8 values ready to be plotted:

113.1  56.6   0.0  56.6 113.1  84.9  56.6  28.3

After the single-line MATLAB instruction to perform the CWT and display
the results

c = cwt([80 80 80 80 0 0 0 0],1:1:10,'haar','plot')

the array for the 10 scales (1:1:10 in the cwt instruction) is found in the vari-
able “c”. Looking at the values for scale = 8 we have:

c(8,:) = –113.1371  –56.5685    0.0000   56.5685
          113.1371   84.8528   56.5685   28.2843

which, when rounded off to 1 decimal point and taking the absolute value,
matches our values exactly.

With our step-by-step walk-through of the CWT, we have thus successfully
duplicated the results of the commercial MATLAB Wavelet Toolbox software.

2.4 Summary

In this chapter we performed a walk-through of the continuous wavelet
transform and it’s associated CWT display. We used a hypothetical example of
8 university exams as the “signal” and then correlated these scores point-by-
point with the basic 2-point Haar wavelet filter ( [1 –1] ). We also showed
how this is the same as convolving them with the time-reversed version of
the filter ( [–1  1] ).

We repeated this process for stretched filters using the 3-point [1  0 –1] filter
at scale = 3 and continuing stretching to the 10-point filter [1  1  1  1  1 –1 –1
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–1 –1 –1] at scale = 10. Keeping the center 8 values (same length as the sig-
nal), we were able to produce an array of correlation values for scales rang-
ing from 1 to 10. After normalizing the values and looking at the magnitudes
we were able to see the strong correlations.

A single-line MATLAB instruction produces a display of the CWT of the exam
scores with the Haar wavelet. We can see directly that the display matches
the results we obtained by our walk-through of the CWT. As a further
check, we looked at the results from the MATLAB cwt routine for scale = 8
and saw an exact match of the magnitudes with our own values.

We now move on to a walk-through of the simplest of the discrete wavelet
transforms—the undecimated discrete wavelet transform or UDWT.



CHAPTER

3
Walk-Through of  the Undeci-
mated Discrete Wavelet
Transform (UDWT) using the
Haar Wavelet Filters

In the previous chapter (Ch. 2) we did a walk-through of the continuous wavelet trans-
form or CWT. We are now ready to look at the discrete wavelet transforms.

The 2 best known and most utilized of these are the conventional (decimated) discrete
wavelet transform or DWT and the undecimated discrete wavelet transform or UDWT.
A quick note about terminology is in order here. The DWT is actually more complicated
than the UDWT and an argument could be made that it should be called the decimated
or downsampled discrete wavelet transform, leaving the shorter name to the simpler
UDWT discussed in this chapter. However, the more complicated form is better known
and we thus follow convention calling it the DWT and requiring the simpler form to add
the descriptor “undecimated”. To change things around would be similar to ordering
“caffeinated” coffee and letting the word “coffee” stand for Decaf.*

We now proceed in this chapter to do a step-by-step walk-through of the UDWT. We
will use the same simple “signal” of 8 exam scores and the same basic Haar wavelet as
in the last chapter. We use some MATLAB commands such as conv (for simple convo-
lution) here to expedite the walk-through, but the results of any of these commands
are easily verifiable by hand.

3.1 Single-Level Undecimated Discrete Wav-
elet Transform (UDWT) of Exam Data

Figure 3.1–1 shows the flow diagram for a single-level UDWT. It splits the
signal, S, into a hiighpass (upper) portion and a lowpass (lower) portion. As
mentioned in the preview chapter (Ch. 1), H and H’ combine to form a high-
pass halfband filter while L and L’ combine to form a lowpass halfband filter.

This single-level UDWT doesn’t really demonstrate the full capabilities of the
UDWT and we don’t do any compression or denoising between the left and

                                                
* The author is old enough to remember when a “regular”  television  meant black and white. These days the
default is color and the simpler black and white TV must be specifically designated.
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H

S

L L’

H’

 S’

D1

A1

Decomposition Reconstruction

cD1

cA1

Figure 3.1–1 Signal flow diagram for the single-level undecimated discrete wavelet transform
(UDWT). H and H’ are the highpass filters and L and L’ are the lowpass filters. D1 designates
the details while A1 designates the approximations. The coefficients of the Details and the Ap-
proximations are designated as cD1 and cA1 respectively.

right halves of this transform for now. However, learning is our primary goal
here and thus we do a walk-through to discover the basic mechanics of the
UDWT. Specifically, we want to see if we can reconstruct the original signal,
S, at the end of the process (S’).

We use the same “signal” of 8 university exam scores as in the last chapter:

S = [80 80 80 80  0  0  0  0]

We also use the Haar wavelet filters. In the last chapter we used one of
these filters (and its stretched versions) with the CWT. We called it the Haar
wavelet filter [1  –1]. There are actually four Haar wavelet filters to consider
as we move on to discrete wavelet transforms. They are

H or highpass decomposition filter (“hid”)   = [–1  1]

H’ or highpass reconstruction filter (“hir”) = [ 1 –1]
{This is the filter we used in the CWT)

L or lowpass decomposition filter (“lod”)    = [ 1  1]

L’ or lowpass reconstruction filter (“lor”)  = [ 1  1]
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Notice on the upper path that the signal, S, is first filtered or convolved with
H. This is exactly what we did in the CWT. You’ll recall that we said con-
volving with [–1  1] is the same as correlating with [1 –1] (H’).

Let’s proceed step-by-step along the top path of the UDWT flow diagram (Fig.
3.1–1). We first have the convolution of S = [80 80 80 80  0  0  0  0] with H =
[–1  1] to produce cD1. Using MATLAB shorthand we have

cD1 = conv( S, [–1  1] ) = –80 0 0 0 80 0 0 0 0

which is identical to the CWT values at scale = 2. (section 2.2). We next con-
volve the above 9 numbers of cD1 with H’ to obtain the details (D1).*

d1 = conv(cD1, [1 –1) = –80 80 0 0 80 –80 0 0 0 0

Moving to the lower path on the flow diagram we have the same exam
scores “signal” (S) convolved with L = [1  1] to produce cA1. We have

cA1 = conv(S,[1 1]) = 80 160 160 160 80 0 0 0 0

At the end of the lower (lowpass) path we convolve cA1 with L’ = [1  1] and
we have for the Approximations (A1)

a1 = conv(cA1,[1 1]) = 80 240 320 320 240 80 0 0 0 0

We now combine A1 and D1 to see how well we have reconstructed the
original exam scores:

A1 =  80 240 320 320 240  80   0   0   0   0

plus

D1 = –80  80   0   0  80 –80   0   0   0   0

   =   0 320 320 320 320   0   0   0   0   0
   =   sprime (S’)

The original exam scores were

80%  80%   80%  80%   0%  0%  0%  0%

so we have S’ = S to within a constant of multiplication of 4 and a delay of 1

                                                
* As to the terminology Details and Approximations, highpass filtering usually produces the noise or the “finer
details” of a signal. Lowpass filtering usually produces the smoothed result or an “approximation” of the signal
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Using wkeep to keep the center 8 points removes the delay and dividing by 4
accounts for the constant of multiplication. We have once again our original
exam scores of [80  80  80  80   0   0   0   0].

Notice that we could remove the constant of multiplication in  D1 and A1 be-
fore combining them. Dividing by 4 and keeping only the center 8 values we
would have

D1 (adjusted) = 20   0   0  20 –20   0   0   0

A1 (adjusted) = 60  80  80  60  20   0   0   0

Which, when combined, would give us our 8 original exam scores. Still an-
other way would be, as some texts do, to have the dividing “up front” on the
highpass and lowpass filters. We would then have

H  or HP decomposition filter (hid)  = [–0.5  0.5]

H’ or HP reconstruction filter (hir) = [ 0.5 –0.5]

L  or LP decomposition filter (lod)  = [ 0.5  0.5]

L’ or LP reconstruction filter (lor) = [ 0.5  0.5]

This would produce

 S’ =  0  80  80  80  80   0   0   0   0   0

and, after keeping the middle 8 values, our original exam scores.

Different texts use different multiplication factors for these filters. Some use
±0.5 as we just demonstrated, some use ±1/sqrt(2) = ±0.7071. We usually use
±1 for simplicity and then divide later. Caveat Emptor.

3.2 Frequency Allocation of a Single-Level
UDWT

In section 1.7 we mentioned that the filters H and H’ combine to produce a
highpass halfband filter and that L and L’ combine to produce a lowpass half-
band filter (Figure 3.2–1). We now perform a step-by-step verification to
demonstrate that this is true.
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Figure 3.2–1 Single-level Undecimated Discrete Wavelet Transform (UDWT) filter bank
shown at left (a). The functional equivalent of this single-level UDWT is shown in the right dia-
gram (b).

We saw in the last section that filtering the signal, S, by H and then by H’
means convolving S with H to produce cD1 and then convolving cD1 with H’
to produce D1. Since the order of convolution doesn’t matter, we can first
convolve H with H’ and then convolve the result with S.

For the simple Haar filters we have

conv(H, H’) = conv([–1 1], [1 1]) = [–1  2 –1] = Php

(a result easily verifiable by hand). We designate this highpass halfband filter
result as Php to correspond to nomenclature in many wavelet texts.

Similarly for the lowpass (lower) path we have

conv(L, L’) = conv([1  1], [1  1]) = [1  2  1] = Plp

If we were to add Php to Php we would have [0  4  0]. This is what we saw in
the last section—a delay of one and a constant of multiplication of 4.

We now look at the frequency characteristics of Php and Plp as shown in
Figure 3.2–2 a and b. Notice that the highpass and lowpass filters (a and b)
are vertical and horizontal mirror images of the other. In each frequency
graph we can see perfect symmetry around the superimposed dotted lines.
Notice also that the phase (lower 2 graphs) is linear.
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Figure 3.2–2 Frequency characteristics of the halfband highpass and lowpass filters.

We have learned that the short 2-point Haar filters have great time resolu-
tion and are suited for tasks such as edge detection. Their frequency charac-
teristics are less impressive as we see very short stopbands and passbands
and a huge transition band that spans almost from zero to Nyquist.

Nevertheless, the Haar filters do produce these perfectly valid halfband fil-
ters and we can see (Fig. 3.2–2, top graphs) that at any given frequency the
sum of (a) and (b) will be 1.0. In other words, adding the filters produces a
constant magnitude as the 2 “halves” make an all-pass filter.

So it’s no Surprize that as we process S on the highpass path and on the low-
pass path that the high frequency and low frequency “halves” add to recon-
struct the original signal.

Halfband filters are often depicted as shown in Figure 3.2–3. This shows the
general form, but it must be remembered that the overlap area (transition
bands) for some filters such as the Haar can occupy almost the entire range
of frequency.
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Figure 3.2–3 Frequency allocation after a single-level UDWT. The diagram is illustrative only
and the actual shape depends on the wavelet filters. Note overlap from non-ideal filtering.

In denoising or compression we might wish to manipulate the coefficients
(cD1) or the final Details themselves (D1) before reconstructing. Manipulat-
ing the coefficients (cD1 or cA1) is done in the vertical (gray) bar shown in
Figure 3.1–1. We could, for example, do a very rudimentary denoising by
simply setting the details D1 to zero. S’ would then consist only of the ap-
proximations  or smoothed value of the signal. We would have more flexibil-
ity, however, with the signal being decomposed into more frequency sub-
bands. This is usually done with a multi-level UDWT.

3.3 Multi-Level Undecimated Discrete Wavelet
Transform (UDWT)

We looked at the multi-level UDWT briefly in section 1.7. We will look a little
closer here and even closer in upcoming chapters. Figure 3.3–1 shows a sig-
nal flow diagram of a 2-level UDWT using the basic Haar filters H, H’, L and
L’ along with upsampled-by-2 versions (Hup, H’up, Lup and L’up). We are
now ready to begin the walk-through by following the flow diagram. We use
the same “exams” signal

S = [80 80 80 80 0 0 0 0]

Rather than a complete walk-through as we did in the single-level UDWT,
we can “save some steps” (and learn some valuable concepts). We look first
at the filters L and Hup in the oval (Fig. 3.3–1).
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Figure 3.3–1 Flow diagram for 2-level UDWT. Hup, H’up, Lup and L’up are H, H’, L and L’
upsampled by 2. Filters in the dotted line oval are examples of how a stretched filter is pro-
duced.

The convolution of L = [1  1] and Hup = [–1 0 1]* is

conv([1 1],[–1 0 1]) = [–1 –1  1  1]

which is the filter H = [–1 1] stretched by a factor of 2. In other words we are
convolving the signal on this path in the flow diagram with a stretched filter
just like we did in the CWT of last chapter with scale = a = 4. The only differ-
ence being that in the CWT we used filters of length 2, 3, 4, 5, etc. while in
the UDWT we use dyadic (factors of 2) lengths 2, 4, 8, etc. It is easily verifi-
able by software or by hand that cD2 on Figure 3.3–1 can be obtained by con-
volving the signal with L and then convolving that result by Hup or by con-
volving the signal directly with the stretched filter.

On the bottom path of Figure 3.3–1 we can convolve L and Lup to produce

conv([1 1], [1 0 1]) = [1  1  1  1]

which is L = [1  1] stretched by a factor of 2. cA2 is obtained by filtering S by
this stretched version.

                                                
* We can see here why upsampling or placing zeros between the filter values is referred to in French as ‘A Trous
or “with holes”. The UDWT is thus called the ‘A Trous Transform in some texts and papers.
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Similarly to the CWT, we are again comparing (correlating) the signal with
stretched filters by convolving the signal with time-reversed versions).

For example correlating S with [1  1 –1 –1] is the same as convolving S with
[–1 –1  1  1]. (For [1  1  1  1] the time-reversed version is obviously un-
changed).

Let us next look at Figure 3.3–2 and how cA1 becomes cA1’. We see that the
signal flow within the dotted oval is very similar to a single-level UDWT. The
only difference being that the 4 filters are upsampled versions of the origi-
nals. Looking at the top path of this embedded UDWT (with cD2) we see that
we have a convolution of Hup and H’up. This is given by

conv([–1 0 1],[1 0 –1]) = [–1     0     2     0    –1]

Similarly for the bottom path (with cA2) we have

conv([1 0  1],[1 0  1]) = [ 1     0     2     0     1]

Adding these 2 paths together we have

cA1’ = [0   0   4   0   0]

H

L

Hup

H

S S’

L

Lup Lup

Hup

cD1

cA1

cD2

cA2

cA1’

D1

A1

Figure 3.3–2 Flow diagram for 2-level UDWT with the embedded single-level UDWT (with
upsampled filters) highlighted by the dotted oval.
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In other words cA1’ will perfectly construct cA1 to within a delay and a con-
stant of multiplication. If we remove the delay and divide by 4 we have cA1’ =
cA1. This is almost identical to what we found in the single-level UDWT, the
only difference being a delay of 2 points rather than one.

The MATLAB Wavelet Toolbox software does the removal of delays by
keeping the middle points and uses the “pre-divided” filters to keep the con-
stant of multiplication at 1.0. Thus in MATLAB software cA1’ =  cA1.

This is an important result in that for our walk-through we can treat this 2-
level UDWT much as we did the single level. In other words with no changes
to any of the components Figure 3.3–2 simplifies to Figure 3.1–1 and we have
already performed a walk-through of this single-level UDWT.

Note that in between the forward transform in the left half (decomposition)
and inverse transform in the right half (reconstruction) we have coefficients
cD1, cD2, and cD3. Notice that each is approximately the length of the signal
(plus a few extra points from filtering) so we have a little over 3 times as
much data as we started with. This is why the UDWT is sometimes referred to as
the redundant DWT or RDWT.*

Our goal so far has been to demonstrate perfect reconstruction so we have
left these coefficients untouched. However, we could have adjusted them for
denoising or compression. We can also work with the final Approximations
and Details directly. We re-draw the 2-level UDWT as shown below in Figure
3.3–3. We can see that

A1 = D2 + A2

Thus

S’ = D1 + A1 = D1 + D2 + A2

                                                
* The term redundant does not mean superfluous or unneeded. The conventional decimated DWT must deal
with aliasing problems caused by the removal of some of the data. In addition, the CWT with its numerous
integer-stretched scales has far more data to keep track of than this “redundant” DWT.
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Figure 3.3–3 2-level UDWT signal flow diagram re-drawn to show how final Approximations
(A1. A2) and Details (D1, D2) combine.

3.4 Frequency Allocation of a Multiple-Level
UDWT

The top path in Figure 3.3–3 is identical to the single-level case. H and H’
combine to produce the highpass halfband filter [–1 2  –1] as was shown in
section 3.2 and graphed in Figure 3.2–5 (a). Let’s now look at the middle and
bottom paths in the 2-level UDWT.

We saw in the last section that on the bottom path L = [1 1] and Lup = [1 0 1]
combine to produce the stretched filter [1 1 1 1]. Later on the bottom path L’
= [1 1] and L’up = [1 0 1] will also combine to produce [1 1 1 1] (L = L’ and
Lup = L’up). The combination of these 2 stretched filters is

conv([1 1 1 1], [1 1 1 1]) =  1  2  3  4  3  2  1

or we could verify this step-by step with a “convolution of convolutions”

conv( conv([1 1],[1,0,1]), conv([1 1],[1,0,1]) )

and have the same result ( [1  2  3  4  3  2  1] ).

On the “middle” path in Fig. 3.3–3 L = [1 1] and Hup = [–1 0 1] combine to
form the stretched filter [–1 –1  1  1]. Later on the middle path L’ = [1 1] and
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H’up = [1 0 –1] combine to produce [1  1 –1 –1]. Thus the stretched-by-2 fil-
ters on the middle path combine to produce

conv([–1 –1  1  1],[1  1 –1 –1]) = –1 –2 1 4 1 –2 –1

If we add this result to that of the lower path we have

–1 –2  1  4  1 –2 –1

           +

 1  2  3  4  3  2  1

           =

 0  0  4  8  4  0  0

If we remove the delay (2) and constant of multiplication (4.0) we have the
same lowpass halfband filter [1  2  1] that we had in the single-level case. In
other words, the lowpass halfband filter in the single-level case is split into
two halves itself. As shown in Figure 3.4–1, the bottom path at A2 produces a
lowpass quarter-band filter while the middle path at D2 produces a bandpass
quarter-band filter. These 2 filters combine to produce the lowpass halfband
filter at A1. When combined with the highpass halfband filter at D1, we have
the original signal, S, back.

The frequency transition bands from these non-ideal filters may have con-
siderable overlap. As mentioned before, Haar filters are better used for de-
tecting short events in the time domain than for efficient frequency alloca-
tion. There are other wavelet filters, however, that do have short transition
bands and are well suited for frequency allocation. We used the Haar filters
in this chapter for ease of explanation and, even with sloppy overlap charac-
teristics, they do work together to perfectly reconstruct the original signal.

NORMALIZED 
FREQUENCY
(NYQUIST = 1)A2 D2 D1

FREQUENCY 

2-level
UDWT
freq.
bands

Figure 3.4–1 Frequency allocation in a 2-level UDWT. A2 + D2 combine to cover the lower
half of the frequencies while D1 covers the upper half.

A1
S

M
AG

NI
TU

DE



Chapter 3 - Walk-Through of the UDWT using the Haar Wavelet Filters 55

© 2005 Space & Signals Technologies LLC, All Rights Reserved.  www.ConceptualWavelets.com

We can begin to see here the utility and flexibility of the UDWT, especially
for the multiple-level forms. Remember that, unlike the FFT, we can adjust
Details and Approximations for any desired part of the total time. This gives
us great power to work with embedded pulses or other short-time events in
the signal.

Figure 3.4–2 shows the frequency allocation for a 4-level UDWT Notice that
the frequency band is divided into 5 sub-bands. We can work with any of
these sub-bands (for any desired length of time) for compression or denois-
ing.

The flow diagram for a 4-level UDWT is not drawn but is similar to the 2-
level UDWT in that it has “nested” single-level UDWTs. In other words for
perfect reconstruction the 4-level reduces to a 3-level, the 3-level reduces to
a 2-level, and the 2-level (as we saw in section 3.3) reduces to a single level.
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bands

S

D2 D1

FREQUENCY

D3D4A4

A1
A2

A3

Figure 3.4–2 Frequency allocation for a 4-level UDWT. Note the various ways the signal, S,
can be broken down. S = A1 + D1, S = A2 + D2 + D1, S = A3 + D3 + D2 + D1, S = A4 + D4 + D3
+ D2 + D1.
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3.5 The Haar UDWT as a Moving Averager

Before leaving the UDWT, there is one other concept we should address.
DSP students may be familiar with a simple form of lowpass filtering called a
moving averager, sometimes referred to as a Block Averager.*

In a nutshell, the moving averager does filtering by taking the average of
several points then shifting forward in time by a single point and averaging
the same number of points. This process tends to “average out” any spikes
and thus acts as a lowpass filter.

Using our 8 exams scores again we could construct a 2-point moving aver-
ager as shown in Figure 3.5–1. Here we are taking 2 points at a time. We
start with the first 2 exam scores, add them together, and divide by 2 to pro-
duce

(80 + 80)/2 = 80

or an average of 80% on the first 2 exams. We then shift the 2 arrows for-
ward in time by 1 and average the 2nd and 3rd exam, again obtaining an 80%
average. We shift again to obtain yet another 80% average. The next shift is
(Fig. 3.5–1) shows the average of the 4th and 5th exam which is

(80 + 0)/2 = 40

or an average of 40% for those 2 exams. Further shifts produce averages of
zero.

(SHIFT)

80  80  80  80   0   0   0   0  

plus

Figure 3.5–1 Averaging  2 points at a time to produce a value then shifting to average the
next 2 points. The process of adding the 4th and 5th exam scores together is depicted here. We
must remember to also divide by the number of points in this moving averager (2 points) to pro-
duce the correct average of 40% ( (80 – 0)/2 = 40).

                                                
* If this is familiar, it will help you to understand the concepts of the UDWT. If this is not familiar, this section
may be (1) skipped entirely or (2) studied to add the Moving Averager to your repertoire of filtering techniques.
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We recognize this process as almost identical to the single-level UDWT on
the bottom path (see Fig. 3.1–1). The bottom path of the 2-level UDWT (Fig.
3.3–1) is also a moving averager, but it uses 4 points in each average because
L and Lup act together as the stretched filter [1  1  1  1].

This 4 point block averager adds together 4 successive points and then di-
vides by the length of the block (4) to obtain the average. In Figure 3.5–2 we
show the process as the moving averager has shifted in time from the first
point to the fifth point.

80  80  80  80   0   0   0   0  

(SHIFT)

plus plus plus

Figure 3.5–2 Averaging  4 points at a time to produce a value then shifting to average the
next 4 points. The process of adding the 2nd through 5th exam scores together is depicted here.
After we divide by the number of points in this moving averager (4) we have the correct average
of 60% for these 4 exams ( (80 +  80 + 80 + 0)/4 = 60 ).

3.6 Summary

In this chapter we first looked at the single-level undecimated discrete wav-
elet transform or UDWT . We saw that it uses the same filter as the CWT of
the last chapter plus three additional filters. We learned that H and H’ to-
gether comprise a highpass halfband filter and that L and L’ comprise a low-
pass halfband filter. We looked at the frequency characteristics of these half-
band filters and saw perfect symmetry (even with the huge transition bands
of these simple Haar filters).

We completed our step-by-step walk-through of the single-level UDWT. We
saw that the final Details and Approximations (D1 and A1) combine to per-
fectly reproduce the original signal to within a delay and a constant of multi-
plication. We also explored the option of using pre-divided filters and keeping
only the center points as is done in the MATLAB software. This way we can
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set the constant of multiplication to 1.0 and remove the delay thus having
true perfect reconstruction.

We introduced the coefficients for the Details and Approximations (cD1 and
cA1) and learned that we can modify these coefficients (or the final values
D1 and A1) for compression or denoising.*

We moved on to the 2-level UDWT and saw not only the basic 2-point Haar
filters, but also some upsampled filters with zeros (or “holes” in French) in-
serted between the values. We observed that these filters combine to pro-
duce stretched versions somewhat similar to those we saw in the CWT of the
previous chapter (except the stretching is done by factors of 2). We also saw
how the 2 level UDWT can be thought of as a single-level UDWT with an-
other single-level UDWT (with the upsampled filters) embedded or nested on
the lowpass path.

We saw that the frequency allocation of multi-level UDWT gives us more
sub-bands to work with for compression or denoising and that we have the
flexibility to  work with different time periods within specific sub-bands.

We concluded our discussion of the UDWT by comparing it to a moving aver-
ager—a handy DSP filtering technique. We now move on to the more compli-
cated conventional (decimated) discrete wavelet transform, usually referred
to as simply the DWT.

                                                
* After all, the underlying reason for these wavelet transforms is so we can better perform data processing tasks
such as denoising and compression—not just to see if we can reconstruct the original signal.



CHAPTER

4
Walk-Through of the Conven-
tional (Decimated) Discrete
Wavelet Transform (DWT)
using the Haar Wavelet Filters

We first made our acquaintance with the conventional (decimated) Discrete Wavelet
Transform or DWT in the preview chapter (Ch. 1). In the last chapter (Ch. 3) we com-
pleted our walk-through of the simpler UDWT. We now proceed in this chapter to
walk-through of the slightly more complicated conventional Discrete Wavelet Trans-
form (DWT). We will again use the same simple “signal” of exam scores and the same
basic Haar wavelet.

We will find many similarities to the UDWT, but a few important differences that must
be taken into account when employing this widely-used tool to prevent corruption of
your data.

4.1 Single-Level (Decimated) Discrete Wavelet
Transform (DWT) of Exam Data

In the CWT and in the UDWT of chapters 2 and 3, respectively, we were
comparing (correlating) the signal with the stretched wavelet filters. We
learned that this was the same as convolving the signal with the reconstruc-
tion filters—which happen to be time-reversed versions of the decomposi-
tion filters. For example, H’ is the time reversed version of H. We will soon
see that this relationship holds true for the conventional DWT as well.

We learned earlier that the CWT uses 1 filter and all its stretched versions (2
points, 3 points, 4 points, 5 points, etc.). We also learned that the single-level
UDWT uses 4 filters (H, H’, L, and L’) and these are dyadically stretched (by
factors of 2 to 4 points, 8 points, 16 points, etc.) in the higher level UDWTs.

As discussed briefly in the preview, instead of dyadically stretching the fil-
ters, the conventional (decimated) DWT dyadically shrinks the signal instead.

The signal flow diagram for a single-level conventional DWT is shown in Fig-
ure 4.1–1. It looks much the same as the UDWT except for downsampling by
2 and upsampling by 2 as shown in the circles with arrows inside. The down-
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sampling by 2 is often refereed to as decimation by 2 (ignoring the dictionary
definition of the prefix deci).

Notice that with the downsampling, the Details Coefficients (cD1) and the
Approximations Coefficients (cA1) are each about half the length of the
original signal, S. We can now see even better why the terms undecimated
and redundant are sometimes applied to the simpler UDWT version we
studied in the last chapter.

H

S

L L’

H’

 S’

D1

A1

2

2

2

2

cD1

cA1

cD1

cA1
Decomposition
(“Analysis”)

Reconstruction
(“Synthesis”)

1 2

3 4

Figure 4.1–1 Single-level conventional DWT signal flow diagram. Note the many similarities
to the single-level UDWT (Figure 3.1–1). H, H’, L, and L’ are the same. The main difference is
the downsampling by 2 on both paths in the Decomposition (left) half and the upsampling by 2
on both paths in the reconstruction (right) half. The 4 arrows are to indicate checkpoints as we
follow the flow step-by-step.

We have to be careful using the DWT instead of the simpler UDWT for 2
main reasons:

1. Downsampling by 2 in the DWT can produce aliasing (throwing away half
the samples can lead to false signals).
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2. This transform is not shift-invariant (sometimes called time invariant).
How do you throw away half the samples in the DWT? Throwing away all
the odd samples leaves an entirely different set of data than throwing away
all the even samples. As a pathological example, suppose we had a cosine
signal

S = 1 0 -1 0 1 0 -1 0 . . .

If we throw away all the even samples we have the sinusoidal signal

Sdownsampled = 1 -1  1 -1 . . .

While if we throw away all the odd samples we have the constant zero signal

Sdownsampled = 0  0  0  0 . . .

This is why the simpler (and safer*) UDWT of the last chapter is also referred
to in some texts as a shift-invariant transform (in addition to the designa-
tions redundant, undecimated and A’ Trous we have already mentioned).

To see how (and how well) this method of shrinking the signal works we
now begin a step-by-step walk-through of the conventional (decimated)
DWT. We will shorten the designation to DWT from here on.

We begin again with the 8 exam scores:

S = 80 80 80 80 0 0 0 0

At the #1 arrow checkpoint in Figure 4.1–1 we have convolved the signal
with L = [1 1] and the results are the same as for the UDWT (so far):

conv(S,[1 1]) = 80 160 160 160 80 0 0 0 0

But downsampling by 2 (keeping the even values) gives

cA1=dyaddown(conv(s,[1 1]) = 160 160 0 0

Notice that when we divide by 2 (now instead of later) this gives us the aver-
ages for 4 sets of 2 of the exam scores:

80%  80%    80%  80%     0%  0%    0%  0%

ca1/2 = [80 80 0 0]

                                                
* Having neither of these concerns, the simpler UDWT is a safer method in many cases. If you have the re-
sources to  store extra data, the UDWT should be considered, at least as a backup or at least a sanity check.
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Notice also that the 40% average value from the 4th and 5th exams is not
found—a reminder that the DWT is not shift-invariant.

Using the “pre-divided” averages we have for the upsampled values at the #2
arrow checkpoint of Figure 4.1–1

dyadup(ca1/2) = 0 80 0 80 0  0  0  0  0

And for A1 we have (keeping the middle 8 values)

A1 = wkeep(conv(dyadup(ca1/2),[1 1]), 8)

           =

80 80 80 80 0 0 0 0

Notice that the entire bottom (lowpass) path required a division by 2, rather
than by 4 as in the UDWT.

On the upper (highpass) path at arrow #3 the results are the same as for
UDWT:

conv(S,[-1 1]) = -80 0 0 0 80 0 0 0 0

Downsampling by 2 (again keeping the even values) gives

cD1 = dyaddown(conv(s,[-1 1])) = 0 0 0 0

Notice that now we have the differences in the 4 sets of 2 exam scores:

80%  80%    80%  80%     0%  0%    0%  0%

Note that cD1/2 also produces 4 zeros

Continuing on the upper path, we upsample or place zeros between the val-
ues and we have at arrow #4

dyadup(cd1/2) = 0 0 0 0 0 0 0 0 0

At the end of the upper path we have for D1 (keeping the middle 8 values)

D1 = wkeep(conv(dyadup(cd1/2),[1 -1]), 8)

= 0 0 0 0 0 0 0 0

If we add A1 to D1 we have
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80 80 80 80  0  0  0  0
        +

 0  0  0  0  0  0  0  0
        =

80 80 80 80  0  0  0  0

Notice that we have perfectly reconstructed our exams “signal”, even with
the downsampling and upsampling. This walk-through is not meant to be a
proof, but is an example that the DWT can work OK even with tossing out
half the data. With more complicated data we will need the values of D1 to
cancel out the aliasing in A1. However in this simple example D1 values was
all zeros and we ran into no problems. It turns out that values of D1 that are
very small also have small alias cancellation components and that throwing
away these small (but non-zero) values will have minimal impact on aliasing.

4.2 Additional Example of Perfect Reconstruc-
tion in a Single-Level DWT

Before moving on to the multiple-level DWT, it might be comforting to see if
the alias cancellation works with a more arbitrary signal. We use a random
number generator to produce the signal

S = 0.9794 -0.2656   -0.5484   -0.0963   -1.3807
-0.7284    1.8860 -2.9414

We’ve already walked through the various steps so we’ll just show the
MATLAB code for the highlights (see Fig. 4.1-1).

cD1 = dyaddown(conv(S,[-1 1])) = 1.2451   -0.4521
-0.6523    4.8274

D1 = conv(dyadup(cD1),[1 -1]) =  0  1.2451  -1.2451  -
0.4521  0.4521  -0.6523  0.6523  4.8274  -4.8274  0

cA1 = dyaddown(conv(S,[1  1])) = 0.7138   -0.6446
-2.1090   -1.0554

A1 = conv(dyadup(cA1),[1 1]) = 0  0.7138  0.7138
-0.6446 -0.6446 -2.1090 -2.1090 -1.0554  -1.0554  0
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SUM = D1 + A1 =  0    1.9589   -0.5312   -1.0967   -
0.1925   -2.7613   -1.4567 3.7720   -5.8828   0

If we remove the delay of one by keeping the middle 8 values and then divide
by 2 we have the original random-number signal perfectly reconstructed.

Another indication (but not a proof*) of the alias cancellation capabilities of a
single-level DWT is to look at the Haar filtering, downsampling, and upsam-
pling as a whole before convolving them with a signal. On the bottom path of
the flow diagram at cA1 (Figure 4.1–1) we have L = [1 1] downsampled by
which gives cA1 = [1]. Upsampling by 2 and filtering by L’ = [1 1] gives A1 =
[0  1  1].

On the top path at cD1 we have H = [-1 1] (even) downsampled which gives
cD1 = [1]. Upsampling by 2 and filtering by H’ = [1 -1] gives D1 = [0  1  -1].
Combining A1 and D1 we have [0  2  0].

Thus the single-level DWT serves to delay the input signal by 1 and multiply
it by 2. In other words, it perfectly reconstructs the signal if we remove the
delay and divide by 2.

4.3 Compression and Denoising Example us-
ing the Single-Level DWT

Recall that the final result from our simple exam data DWT was A1 + D1 and
that A1 was reconstructed from cA1 while D1 was reconstructed from cD1.

cD1 was [0   0   0   0], and cA1 (after division by 2) was [80  80   0   0]. We
could obviously compress the data by saving only cA1 and later reconstruct-
ing the data using zeros. For example, we could transmit only non-zero data
and let the DWT on the other end “fill in the blanks” with zeros.

Now suppose your kindly professor gave at least 1% on exams just for sign-
ing your name. The scores would become. [80%   80%    80%   80%     1%   1%    
1%   1%]

Using the (conventional) DWT we would have
                                                
* The conventional DWT is in fact  Linear Time Invariant (LTI) which means we can change to order of convo-
lution around. This LTI property will be discussed further in a later chapter.
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cA1/2 =[80 80 1 1] (averages of the above sets of 2)

cD1/2 =[0 0 0 0] (differences of the above sets of 2)

Again, we could compress by transmitting or saving only the 4 cA1 data
points instead of the 8 exam scores. In reconstructing the signal later we
simply plug in zeros for the cD1 coefficients.

But suppose the Ogre department head did not allow points for name signing.
He/She could “denoise” cA1 by setting the 1’s to 0’s (e.g. “If the average score
for any 2 exams is less than 2%, disallow it as not earned credit”)

Then the Denoised cA1/2 ([80  80  1  1]) becomes [80  80  0  0]. Reconstruct-
ing (with cD1 = zeros = [0  0  0  0] through compression) gives us the final re-
sult [80  80  80  80  0  0  0  0]. In this case we have denoised the signal and
used only cA1 thus achieving a compression ratio of 2:1.

4.4 Multi-Level Conventional (Decimated) Dis-
crete Wavelet Transform (DWT) of Exam
Data using Haar Wavelet Filters

We can perform further compression with higher level DWTs. Figure 4.4–1
shows a 2-level DWT. Note how the signal is repeatedly shrunk by down-
sampling and the filters stay the same. In other words, there are only H, H’,
L, and L’. No Lup , H’up , etc. as in the 2-level Undecimated DWT (UDWT).

We can see that the embedded DWT within the oval in Figure 4.4–1 is exactly
of the form of the single-level DWT. We completed the walk-through of the
single-level in section 4.2 and saw how S’ was perfectly reconstructed from S.
In the same manner here cA1’ is perfectly reconstructed from cA1 (following
the MATLAB software convention of pre-dividing to remove the constant of
multiplication and then keeping only the middle points, thus removing the
delay)..

Further, we can see that cA1 is still the convolution of S and L and will be
the same as in the single-level DWT. Thus with cA1’ = cA1 the diagram sim-
plifies to a single-level DWT and we know we can perfectly construct S,
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We achieved a compression ratio of 2:1 with the single-level DWT. Let’s see if
we can do better here. We know

cD1/2 =  [0 0 0 0]

cA1/2 = [80  80  0  0]

Now we solve for cD2 and cA2:

S’

H

L

H

H

S

L

L

H

D1

A1

L

cD1

cA1 cA1’

cD2

cA2

Figure 4.4–1 2-level (conventional, decimated) DWT. Notice the filters, upsampling, and
downsampling within the oval are identical to the single-level DWT (Fig. 4.1–1).

cD2/4=dyaddown(conv(cA1,[-1 1]))/2 = [0  0]

cA2/4=dyaddown(conv(cA1,[1 1])) = [80 0]

Notice that cA2/4 is the average of first four exam scores and then the aver-
age of the last 4. Also notice that cD2 and cA2 are only 1/4 the length of the
original 9-point signal. With cD1 being 1/2 the length of the original signal we
can see that the total length of all the coefficients in the left or decomposi-
tion half of the DWT (cD1, cD2, and cA2) is the same as the original signal (4
+ 2 + 2 = 8).

We can indeed do better compression here. We have both cD2 and cD1 = ze-
ros. Using only 2 data points (cA2/4 = [ 80  0]) we can reconstruct [80  80  80
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80  0  0  0  0] using the right or reconstruction half* of the DWT as shown in
Figure 4.4–2. For example, we could store or transmit only the 2 data points
of cA2 and later assume zeros for the other coefficients. Then after the up-
sampling and filtering as shown within the dotted lines we can reconstruct
our signal.

For our simple example here we have achieved a compression ratio of 4:1.
With cA2 = [160 0] we could even set things up so that the zero (the 2nd
value) was not kept and achieve an 8:1 ratio. In practice, when coefficients
are very nearly zero, we can set them to zero with minimal adverse effect as
we did in the “Ogre department head” example in the last section.

S’

H

L

H

H

S

L

L

H

D1

A1

L

cD1

cA1 cA1

cD2

cA2

cD1

cD2

cA2

Figure 4.4–2 The right half or reconstruction portion of the DWT can be used at a later date
to rebuild the original data starting with the coefficients.

The 3-level DWT shown in Figure 4.4–3 below produces the same values for
cd1, cd2, ca1, ca2 but also produces cd3 / 2 = [ 40 ], ca3 / 2 = [40].

There is no better compression here (still need 2 values) but notice that ca3/2
= average of [80%  80%  80%  80%  0%  0%  0%  0%] = 40% or a “D Minus”
from the kindly professor.

                                                
* This right half is referred  to in a few  texts as an inverse DWT with the left half referred to as the forward
DWT in an attempt to stay with the convention of the popular fast Fourier transform (i.e. IFFT and FFT). The
author believes this is a poor analogy in that at the end of the left half of the DWT we have only coefficients
and unlike an FFT which can use the results directly as the frequency domain, we have to work further with the
coefficients in a DWT using the right half before we can actually use them in DSP.
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H

HL

L

L L’

L’

H’

L’H’

H H’

S S’

cA1
cA1

cA2
cA2

cA3

cD3

cD2 cD2

cD1cD1

D1

A1
cD3

cA3

Figure 4.4–3 3-level DWT. Note same 4 filters as in the 2 and single-level DWT. Lower 2
arrows show how cA2 is reconstructed using an embedded single-level DWT. Upper arrows then
show how cA1 is reconstructed using another embedded single-level DWT (with cA2 already hav-
ing been reconstructed). Finally, with cA1 perfectly reconstructed, we can perfectly reconstruct S.
Of course we may want to perform denoising or compression using the coefficients cD1, cD2, cD3,
and cA3, in which case we will not, in general, have perfect reconstruction.

4.5 Frequency Allocation in a (Conventional,
Decimated) DWT

The frequency division for DWTs are the same as for the UDWTs. For the
single-level DWT (Fig. 4.1–1) We have A1 and D1 and the frequency alloca-
tion is shown in Figure 4.5–1 below. For the 2-level DWT

D1

Nyquist or 
Folding 

Frequency

FREQUENCY

A1

S’

M
AG

NI
TU

DE

Figure 4.5–1 Frequency allocation after a single-level DWT. Diagram is illustrative only and
the actual shape depends on the wavelet filters. Note overlap from non-ideal filtering.
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We can re-draw the 2-level DWT as shown in Figure 4.5–2. This allows us
flexibility in frequency subdivision. As with the UDWT, we can produce A2 +
D2 = A1, then A1 + D1 = S’. The frequency subbands are shown in Figure
4.5–3.

H

L

H

H

S S’

L

L

H

D1

A1

L L

D2

A2

cD1

cD2

cA2

cA1

Figure 4.5–2 Equivalent 2-level DWT. Instead of combining the data after H’ and L’ (in the
oval) and then upsampling and filtering by L’ as in Fig. 4.4–1, we upsample and filter by L’ on
each path. This give us D2 and A2.

NORMALIZED 
FREQUENCY
(NYQUIST = 1)A2 D2 D1

A1
S

FREQUENCY 

2-level
DWT
freq.
bands

Figure 4.5–3 Frequency allocation for 2-level DWT. S = A1 + D1 or S = A2 + D2 + D1. This
gives us more flexibility

The equivalent diagram for a 3-level DWT (Fig. 4.4–3) can be redrawn as
shown here in Figure 4.5–4. The frequency allocation is shown in Figure 4.5–
5.
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Equivalent DWT System

H

HL

L

L L’

H’

H’

H H’

S S’

cA1

cA2

cA3

cD3

cD2 cD2

cD1cD1

D1

A1

L’ L’

L’ L’

A3

D3

L’

A2

D2
cD3

cA3

Figure 4.5–4 3-level DWT redrawn to show how the various Approximations and Details can
combine. Notice again how cD1, cD2, cD3 and cA3 combined are roughly the size of the original
signal due to downsampling.

A3 D3 D2 D1

Nyquist or 
Folding 

Frequency

FREQUENCY

A2

A1

S

Figure 4.5–5 Frequency allocation for 3-level DWT. S = A1 + D1, A2 + D2 + D1 or A3 + D3 +
D2 + D1.

4.6 Final Approximations and Details and how
to read the DWT Display

As with the UDWT, our goal is usually not perfect reconstruction of the
original signal, but denoising or compression by removing some unwanted or
unneeded components. We showed how to do this with the coefficients (cD1,
cA3, etc.) We now look how to do this with the final Approximations and De-
tails (D1, A3, etc.) For clarity we can look at a DWT display to see graphically
these values. We will stay with our simple example of exam scores for now.
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This DWT display (Figure 4.6–1) is patterned after the MATLAB Wavelet
Toolbox DWT display but is simpler and better suited to learning here.
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Figure 4.6–1 Display of 3-level DWT of exam scores data. Top row shows original signal and
miniature CWT (compare Fig. 2.3–1). 2nd row shows A1 and D1, 3rd row shows A2 and D2,
bottom row shows A3 and D3.

We will not walk through every path but will instead “spot check” the D3 de-
tails (bottom right graph of Fig. 4.6) to see if the display agrees with our
numbers. Figure 4.5-4 (next to bottom path) shows that D3 is built by start-
ing with the coefficients cD3 then upsampling, filtering (convolving) with H’,
upsampling, convolving with L’, upsampling, then convolving with L’ again.

From the first part of the walk-through in Section 4.4 we found cD3/2 was
simply = 40. We will use this “pre-divided” result as a starting point and per-
form the operations depicted in the figure 4.5-4 in 3 steps:

step1 = conv(dyadup(40),[1 -1])= 0 40 -40 0

step2 = conv(dyadup(step1),[1  1]) =

0 0 0 40 40 -40 -40 0 0 0
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step3 = conv(dyadup(step2),[1  1]) =

0 0 0 0 0 0 0 40 40 40 40 -40 -40 -40 -40 0 0 0 0 0 0 0

Keeping the middle 8 values we have D3 = [40 40 40 40 -40 -40 -40 -40]
which agrees with the display.

We can “read” the display to find things about our signal. Looking at the bot-
tom row of Fig. 4.6–1 we see that adding A3 (bottom left graph) to D3 will
produce A2.

Notice that D1 and D2 are both zero (to computer precision). This is signifi-
cant in that it tells us we need only the (non-zero) values in A3 and D3 to re-
construct the signal. In other words, S = A3 + D3 + D2 + D1 = A3 + D3 + 0 + 0
= A3 + D3. We can see this looks correct on the graph. Adding the values of
D3 = [40 40 40 40 -40 -40 -40 -40] to those of A3 = [40 40 40 40 40 40 40 40]
gives us A2 = [ 80 80 80 80 0 0 0 0]. Furthermore, since D1 and D2 contain
only zeros we have A2 = A1 = S’ which is the same as the original 8 exam
scores.

4.7 Denoising using a Multi-Level DWT

Now we know how to read and understand a DWT display, we look at an ex-
ample of denoising using a conventional DWT.

Assume we have a binary signal that we wish to transmit. For example this
could be part of a satellite downlink. We choose an arbitrary 16-bit signal

S = [1 0 1 1 0 0 1 0 1 1 1 0 1 0 0 1]

Using eight chips per bit* we would have 8 x 16 = 128 data points as shown in
Figure 4.7–1. In other words the first bit (1) would be represented by [ 1 1 1 1
1 1 1 1], the second bit (0) would be represented by [ 0 0 0 0 0 0 0 0] and so
on.

                                                
* The number is usually larger than 8 for better processing gain, but 8 chips/bit will do for our instructional
purposes.
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Figure 4.7–1 Representation of a 16-bit binary signal using 8 chips per bit. We use the
“stem” utility for better precision rather than “connecting the dots” in a conventional plot. No
noise is present at this point.

We proceed to perform a DWT on this noiseless signal. A 4-level DWT is suf-
ficient and the DWT display is shown in Figure 4.7–2.

Notice that D1, D2, and D3 are all zero to computer precision. Only D4
(bottom right) has non-zero values. A look at the frequency allocation dia-
gram for a 4-level DWT (Figure 4.7–3) tells us there are no high frequency
values (D1, D2, D3) for this noiseless signal.

As with our other examples, we know the answer in advance and use this to
check the quality of our denoising. We pretend we don’t know the answer
and proceed with the denoising. We do know, however, that any similar bi-
nary pattern (16 bits with 8 chips/bit), will have zeros for D1, D2, D3 (no high
frequency components). We can exploit this fact for denoising of a binary
pattern that has noise added (e.g. rain fade on the downlink portion of a sat-
ellite).
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Figure 4.7–2 4-level DWT display of the noiseless signal. The top row shows the signal in
miniature and then a miniature display of the CWT. The other rows show the Approximations
(left) and Details (right).
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Now we look at same binary signal but with noise added. As shown in Figure
4.74 the noise is heavy enough to make discerning the bits impossible, or at
least highly prone to error.

0 20 40 60 80 100 120 140
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1

1.5

2

2.5

3

Figure 4.7–4 Original binary signal with 8 chips/bit now is difficult or impossible to decipher.

We next take the DWT of the signal, again using the Haar wavelet filters.
The 4-level DWT display is shown in Figure 4.7–5..

Knowing that in a noiseless signal D1, D2, and D3 are zero we can use this
fact to do some denoising. Specifically, we know that in a 4-level DWT

S =A4 + D4 + D3 + D2 + D1 = A4 + D4

because D3, D2, and D1 are zero. We also know that A4 + D4 = A3 so we can
use A3 for the denoised version.

Figure 4.7–6 shows the denoised version of signal by discarding D1, D2, and
D3 (thus using A3). Notice we can now easily discern which bits are one and
which are zero (dotted lines at 1.0 and 0.0 are drawn for comparison). We
can now discern the signal 1 0 1 1 0 0 1 0 1 1 1 0 1 0 0 1 as shown. This can be
done visually or with an algorithm such as comparing with 0.5 to decide if
closer to 1.0 or 0.0.
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Figure 4.7–5 4-level DWT display of the noisy signal. Notice that the noisy signal now has
non-zero components in all of the Details and Approximations.

From Figure 4.7–6 we can see that the signal is

S = [1 0 1 1 0 0 1 0 1 1 1 0 1 0 0 1]

which is indeed the original signal before noise was added.

We will look at a similar real-life example in more detail later. We will also
explain how we can also use the CWT (miniature in upper right corner of
DWT display) to find bits.

In this simple example we discarded all of D1, D2 and D3. Wavelet transforms
involve both time and frequency. We will show an example later where we
discard D1 for only certain times of the signal, D2 for other times, etc.
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Figure 4.7–6 Denoising using the final values of the Details and Approximations. We can
now discern the original binary signal as indicated here.

We can easily write software to discard or limit the Details for a given time
interval. The MATLAB Wavelet Toolbox does this with a capability called
“Interval Dependent Thresholding”

This is a powerful capability of these wavelet transforms not found in the
Fourier transforms. In other words, we could take an FFT of the data and
discard certain frequencies, but these frequencies would be discarded for the
entire length of the signal.

For noise that is “stationary” (constant frequency for the entire length of the
signal), the FFT works fine. However, for real world signals with “events”
that start and stop in time (as in most interesting signals) the DWT will often
outperform the FFT in compression and denoising.

4.8 Summary

In this chapter we examined the more complicated but better-known conven-
tional (decimated) discrete wavelet transform, referred to as simply “the
DWT”. We saw that for the single-level DWT the signal flow diagram is the
same as for the single-level UDWT of the last chapter except the it has
downsampling (“decimation”) by 2 and upsampling by 2. We learned that we
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have to deal with the potential adverse effects of aliasing and lack of shift-
invariance caused by throwing away every other sample.

We performed a step-by-step walk-through of the single-level conventional
DWT and demonstrated that for perfect reconstruction filters, including the
simple Haar filters—the same ones as we used in the single-level UDWT—
that the aliasing from the top or highpass path cancels that of the bottom or
lowpass path. As with the UDWT, we can perfectly reconstruct the original
signal to within a delay and a constant of multiplication.

We moved on to multi-level DWTs and could see how, through downsam-
pling, the signal is shrunk rather than the filters stretched. Because of
shrinking the signal, the DWT is able to use the same set of filters (H, H’, L
and L”) throughout. In other words, there are no “A Trous” or upsampled fil-
ters (Hup, H’up etc.) in the conventional DWT and thus no “stretched” filters
as in the UDWT.

Using the same series of 8 university exam scores as in previous chapters,
we showed how we can achieve substantial compression using a DWT. We
didn’t have any aliasing problems in this benign example, but in later chap-
ters we will show examples of pathological cases where we will have aliasing
problems and how to deal with them.

We learned how to read a DWT display and mentioned that the UDWT dis-
play is set up in same way. We showed an example of de-noising a binary
signal by eliminating some of the subbands (D1, D2, and D3 in our example)
and reconstructing a signal that is not perfect, but readable where the noisy
signal was not.

We discussed the capability to remove or threshold a specific subband for
only a specific length of time. MATLAB Wavelet Toolbox calls this “Interval
Dependent Thresholding” and has software to do this. It’s not difficult to
write software, however, to threshold these specific subbands. This ability to
remove unwanted or unneeded data at a specific time and within a specific
frequency subband is what makes DSP using wavelets so attractive.

We will show in later chapters how to avoid aliasing problems in the conven-
tional DWT by being careful in how we denoise and compress (so as not to
throw away the alias cancellation capability). We will learn when to use the
UDWT, which has no such problems but requires more data storage (the
UDWT has a display identical to the DWT). In addition, we will discuss a hy-
brid method, using both DWT and UDWT, for speed and minimal aliasing.



CHAPTER

5
Obtaining Discrete Wavelet Filters
from "Crude" Wavelet Equations

In Chapter One we showed a preview of wavelets, wavelet filters, and wavelet trans
forms. In Chapters 2 through 4 we performed a step-by-step walk through of the 3 main
wavelet transforms: the Continuous Wavelet Transform or CWT, the Undecimated Dis
crete Wavelet Transform or UDWT, and the conventional (decimated or downsampled)
Discrete Wavelet Transform or DWT.

We showed in these chapters how these transforms are based on correlations of the data
with the wavelet filters. In this chapter we will discuss one method of generating wav
elet filters using equations. Note: This method generates filters that can be used in the
CWT but not in the DWTs. We will show how to generate "DWT-worthy" filters in the
next chapter.

5.1 Review of Familiar DSP Truncated Sinc
Function

We recall from digital signal processing (DSP) that an ideal Lowpass Filter
(LPF) in the frequency domain is an infinitely long Sine function (sin(t)/t)' in
the time dOlllain.

In the real world of finite data, we must of course truncate the length. Sim
ply discarding points at both ends of the Sine function can be thought of as
lllultiplying by a rectangular or "boxcar" window (We often use other win
dows such as Hanlluing, Blackillan, Hanning, etc. to reduce Gibb's effect rip
ples). Thus one way to add extra points to a truncated Sine function is the
familial' luethod f1'0111 DSP of extending the rectangular "window" that trun
cates the infinitely long Sine function. We first look at a Sine function that is
truncated (windowed) to 81-points as shown in Figure 5.1-1:

This is the classical expression. With computers we use sin(rrt)/(rrt). When t is zero we have Sill(O)/(O) so we
use L'Hospitals 11Ile (derivatives ofllumerator and denominator) and we have rrcos(O)/TI = IT/IT = 1. Also, re
sults are often nonualized so at t=O the peak value may be 1, .l/sqrt(2), 1/2 or some other value but the ratio of
the sidelobes to the main lobe is the same.
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81 PTS (UNSTRETCHED) SINC FUNCTION
O.B r-------,---------,----------,-------~

0.6

A
I

UJ 0.4
==I-
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0

-O-~'=Oo----------,-'=------~---------o'=----------02='0

Figure 5.1-1 81 point Sine Function. Note the abrupt truncation at -20 and +20. This is
referred to in DSP as a "boxcar" window. Points are equispaced at 1/2 integers from -20 to +20
(including the peak at time = zero).

The Frequency R.esponse is shown below in Figure 5.1-2. A Discrete Fourier
Transform (also the functionally equivalent but faster FFT) is discrete and
periodic in both the time and frequency domains. We show here the fre
quency response from ° to twice the folding or Nyquist frequency (or
equivalently °to 2rr on the unit circle). Note the ripples (Gibbs effect) and
that the cutoff frequency (0.25 Nyquist) is not precise.

t:R''":"'"''"':'" ,,'c'"'cn
::;; 0 0.5 1 1.5 2

Normalized frequency (Nyquist == 1)

Figure 5.1-2 Frequency response of the 81 point Sine Function truncated to 81 points.

5.2 Adding More Points at the Ends for Better
Filter Performance
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Continuing with our review of conventional DSP, we look at what happens
when we "open the window" by making the truncation of the infinitely long
Sine function less severe. We add 40 points on each end extending the win
dow from 81 points to 161 points as shown in Figure 5.2-1.

... 81 pt window ... ......----- 161 point window ------1..~

81 PTS (UNSTRETCHEO) SING FUNCTION
DB

161 PTS (UNSTRETCHED) SINe FUNCTION
08~-~--~--~--~-~--~--~-~

06 0.6 -----+

t
1

-°3t\-;-O-~_3'"O'----_02"O--;\;-----,'c----'\'-----';2"O-~3,"O.-----,j40

~ 0.4
o

~
c.. 0.2

:lt02

04

I
-O~!,-o---'\'0~"':'''''-'---*------'!'20

Figure 5.2-1 "Boxcar" window is opened up from 81 points to 161 points. Points are still
1/2 integer apart but now begin at -40 and end at +40. Note that the number of points in the
main lobe (9 pts. from -2 to +2) remains the same for the larger window.

The Frequency Response for the less-severely truncated Sine function is
shown in Figure 5.2-2. Note we still have the Gibbs effect-we have not
changed the form of the window, only its size-but the frequency cutoff (still
at 0.25 Nyquist) is now more precise (i.e. the transition band is shorter).

t:IT,""","m~m, "'"' e;""'B
:;; 0 0.5 1 1.5 2

Normalized frequency (Nyquist == 1)

161 PTS (UNSTRETCHED) SINC FUNCTION
~4

!hT • :d
o 0.5 1 1.5 2

Normalized frequency (Nyquist == 1)

Figure 5.2-2 Comparison of the Frequency response of the Sine function truncated to 81
points and then to 161 points Note that the bigger window allows for sharper cutoff frequency
(still at 0.25 Nyquist) as seen at right.
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5.3 Adding More Points by Interpolation for
Lower Cutoff Frequency

We just reviewed the conventional DSP method of adding more points at the
ends of the Sine function by "opening the (boxcar) window", In wavelet proc
essing we add lllOre points but do so by stretching ("dilating" in wavelet ter
minology) the Sine function.

Figure 5.3-1 shows the original 81 point Sine function stretched to 161 points
by interpolating a point between each of the 80 original points. Note that the
nUlllber of points in the main lobe has increased f1'0111 9 points (1/2 integers
from -2 to +2) to 17 points (1/2 integers from -4 to +4). Note also that there
are the same nUlllbel' of lobes, but with more points pel' lobe. In other words,
the points are still equispaced and still 1/2 integer apart but now serve to
stretch the Sine function rather than extend the boxcar window as is often
done in conventional nsp.

.- 81 pt window -. ... 161 point window ..
81 PTS (UNSTRETCHED) SINe FUNCTION 161 POINTS (STRETCHED} SINe FUNCTION

08 0.5

~
0.4 t -----+06-

1 t0.3

04-- 1
~ 0.2
0
to

02 ~ 0.1,
<

-0.1 T
0',;; -0.2

20 .40 ·30 20 ·10 0 10 20 30 40
TIME -->

Figure 5.3-1 By stretching the truncated Sine function (rather than making the "boxcar"
truncation less severe) we have the same waveform but with more points in each lobe.

We now look at the Frequency Response of this stretched waveform. Figure
5.3-2 shows the cutoff frequency has changed from 0.25 Nyquist to 0.125
Nyquist. Note also that the height of the passband has increased.
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I ; : B
0.5 1 1.5 2

Normalized frequency (Nyquist == 1)

t:IT,"""'"",";m' "'"' e;""'D
:;; 0 0.5 1 1.5 2

Normalized frequency (Nyquist == 1)

161 POINTS STRETCHED SINC FUNCTION

!h<>
~4

i: -
::; 0

Figure 5.3-2 Comparison of the frequency response of the original 81-point Sine function
and a stretched ("dilated") 161 point Sine function. Note the cutoff frequency has changed from
0.25 Nyquist to 0.125 Nyquist. In other words, stretching the Sine function by 2 divides the cut
off frequency by 2.

5.4 Multi-Point Stretched Filters ("Crude
Wavelets") from Explicit Equations

Using wavelets in the real world of digital COlllputel'S requires us to obtain fi
nite, discrete wavelet filters for correlation with our finite, discrete data.
These filters start out as a few points and then are stretched by adding more
points by interpolation as we just did with the familial' Sine function. This
was very simple for the Sine function because it had an explicit mathematical
equation: Sinc(t) = sin(t)/t. (Not all wavelets have an explicit equation and
in the next chapter we will discuss those).

As introduced in Chapter One, this type of equation-generated wavelet is re
felTed to in wavelet literature as a crude wavelet. As we just delllOnstrated,
we can stretch the Sine function by interpolating (placing extra points be
tween the existing ones). This type of interpolation is very silllple-we input
desired values of t into the equation and we obtain the sin(t)lt value directly.

The Sine function (with some modifications) can be a wavelet. Obtaining Sine
values at any desired time is no problem. However, we saw one liluitation in
that it is theoretically infinite in length and therefore must somehow be
truncated. In other words it does not "die out" in tillle without windowing.
We will return to the Sine function as a possible wavelet later, but for now
we will look at some Crude Wavelets which, although theoretically infinite in
length (or tilue), soon die out (go toward zero as time increases) and thus be
come useable to produce finite wavelet filters.
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5.5 Mexican Hat Wavelet Filter as an Example
of a Stretched Crude Filter

Like the Sinc function, the Mexican Hat wavelet (Fig. 5.5-1) is defined by an
explicit lllathematical equation:

rnexh(t) = 2/(sqrt(3)*piA O.25) x exp(-tA 2/2) x (1-tA 2)

Although theoretically infinite in length, values outside the "effective length"
of -5 to +5 are essentially zero. For example, the value at 5.1 =3.6939e-06.

Jargon Alert: Effective Length is sometimes referred to as "Effective
Snppol't"

MEXICAN HAT WAVELET

, .. effective length ------..
I
I0.8

0.6

~
0'

~

"0

.;
0.2

C.
E
<t 0

-0.2

-0.4
·6 ·6 ·2 TIM~ (relat'''.i) --> 6 8

Figure 5.5-1 Mexican Hat Wavelet. Note that outside the range of -5 to +5 that the ampli-
tude appears to be zero.

The first thing we notice about this waveform (other than its similarity to a
Mexican Sombrero) is that it looks a little like a severely windowed Sinc
function. If we look at the above equation we see three terlllS. The first terlll
is just a constant, the 2nd terlll is an exponential decay, and the 31'd terlll is
an inverted parabola offset by +1. Figure 5.5-2 shows these last 2 tenus.
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Figure 5.5-2 The non-constant components of the Mexican Hat wavelet. Notice that the
rapidly decaying exponential at left allows only the middle part of the term at right to remain.

Even with explicit, continuous, theoretically infinite lllathematical equations
for these crude wavelets, we stilllllllst produce discrete, finite filters for con·
volving with our signal in the time domain. We have learned that the CWT
begins with a short filter and then stretches it. For the Mexican Hat or mexh'
we will follow the example in the MATLAB Wavelet Toolbox Software and
start with 17 points at the integer values (Fig. 5.5-3).

17 POINTS ON MEXICAN HAT WAVELET

o
TIME

1

8 A L
6

4 r
2- r --

0

\; \(T2 --

4

-0

-0

Figure 5.5-3 Mexican Hat Wavelet with 17 equispaced points on the interval from-8 to +8.
The points were derived by evaluating the explicit equation at integer points (including zero).

MATLAB refers to this filter as lIIexh There is other wavelet software available but the Mathworks MATLAB
Wavelet Toolbox is the most familiar
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After comparing this 17-point "filter" (scale = a = 1) with the signal, the
lVlATLAB CWT software "stretches" it to 33 points corresponding to values of
mexh at the 1/2 integer points from -8 to +8 (-8, -7.5, -7 ... +7.5, +8) as
shown at the left of Figure 5.5-4. This is scale = 2. The next stretching
(scale = 3) is the 49 points corresponding to 1/3 integer values in the same
interval as shown at the right of Figure 5.5-4.

33 POINTS ON MEXICAN HAT WAVELET 49 POINTS ON MEXICAN HAT WAVELET

0.8 1 ~ L
0.6

~ 1-~ 0.4
=>
f-

~ 0.2

"'" 0

-0.2 \ I-0.4
-5 0 5

TIME -->

5o
TIME -->

-5

1

.8 - 1 fI. L

.6 - -

.4 - -

.2 L

.2 \J \(

.4

o

-0

-0

Figure 5.5-4 Mexican Hat Wavelet with 33 equispaced points (112 integer) and then 49
points (113 integer) on the interval from -8 to +8.

We continue to stretch the wavelet by generating 65 points at 1/4 integer in
tervals as shown in Figure 5.5-5. This corresponds to scale = a = 4 in our
CWT processing. A reminder is in order that even though there lllay exist an
explicit mathematical equation as we have here, in the real world of digital
signal processing with discrete data we never actually use a continuous wav
elet. We can see f1'0111 the above figures that as we "dilate" (stretch) the wav
elet further and obtain more points that these points create an estimation
(approximation) of the so-called "continuous wavelef'. We will see more of
this technique in the next chapter.
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65 POINTS ON MEXICAN HAT WAVELET
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Figure 5.5-5 Mexican Hat Wavelet with 65 equispaced points (114 integer apart) superim-
posed on the explicit "point generator" equation

Note that the wavelet is becoming longer (more points) even though the
shape is the same. As the stretching continues, the correlation of these
"crude filters" with the signal in a CWT will produce a result longer than the
original signaL You may recall from DSP that

Total Length = Signal Length + Filter Length -1

or

Total Length = L+M-1

The result is usually truncated to the signal length for the Continuous Wav
elet Transform (CWT).

To show the Mexican Hat Wavelet "in action" we generate a test signaL Fig
ure 5.5-6 shows a 1024 point real split sine signal* in the tillle and frequency
domains. We will use this test signal to evaluate the pel'fol'lnance of some
wavelet filters. The first 512 points of the signal are at 0.125 Nyquist and the
second half is at 0.25 Nyquist as seen in the FFT of the data at right.

A closeup of the signal is shown at the left of Figure 5.5-7. We can see at left
16 points pel' cycle in the first half then changing to 8 points pel' cycle. At the
right we show again the Mexican Hat 33 point wavelet filter. We can see that

. We use (l Cosine as our sinusoidal signal to obtain an FFT with real values.
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Figure 5.5-6 1024 point "split sine" test signal. The first 512 points are at 1/8 Nyquist and
the last 512 points are at 1/4 Nyquist. The FFT of this signal is shown at right.

the filter has a "cycle" f1'0111 negative to positive and back to negative again
and in that cycle there are about 8 points. We can thus predict that when the
filter has about 8 points in its cycle (scale = 2 for the m.exh) that we should
obtain an optimal correlation. We will see shortly that this is the case.

closeup 33 POINTS ON MEXICAN HAT WAVELET. .
0.8 I &0.8 , 000--

0.6 , "cycle"
04

1
0.6 ,- with 8, ,

points~ 0.2 W 0.4 ,
0 0 (scale=> a ::J ,
~ to:J

~ 0.2 - , = 2)
~ -0.2 Cl.

'" '"
,

-0.4 '" I

-0.6

\]TW-0.8 -0.2-T
-460 -0.4

480 500 20 54 60 580 -5 0 5
TIME --> TIME -->

Figure 5.5-7 Closeup of the spilt sine test signal in the area where the frequency changes
from 1/8 to 1/4 Nyquist. Note that in the signal there are 16 points per cycle in the left half and
8 points in the right half. The Mexican Hat 33-point filter reproduced at right has roughly 8
points in it's "cycle" (between 7 and 9 points depending on where you start and stop the cycle).
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Stretched to 65 points at scale = 4, the mexh wavelet has about 16 points pel'
"cycle" as shown in figure 5.5-8 and correlates fairly well the left half of the
split sine signal (16 pts/cycle in the left half).shown again here for reference.

65 POINTS ON MEXICAN HAT WAVELETcloseup
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'" "-0.4 '"
-0.6

-0.2
-0.8

-1 -0.4
460 480 500 520 54 560 580

TIME-->
-5

One
·'cycle"

with
16 pts

5

Figure 5.5-8 The Mexican Hat 65-point filter reproduced at right now has roughly 16 points
in it's "cycle" and should correlate well with the left half of the split sine test signal redrawn at
left.

The CWT of the spilt sine test signal using the Mexican Hat wavelet is shown
below in figure 5.5-9. This shows the excellent correlation of the right half
(higher frequency) at scale = 2 and the left half (lower frequency) at scale =
4.

Looking at scale = 2 (the lower dotted line) we notice that although the right
half shows much better correlation of the wavelet filter with the test signal
(at this particular stretching) as indicated by the brightness, that there is still
some correlation with the left half as indicated by a darker shade of gray, but
not black. This has to do with the bandpass characteristics of this filter and
the fact that the shape of the Mexican Hat filter (at any stretching) does not
match that of our sinusoid test signal very well.

In the next 2 sections we will look at a filter that is a better match for sinu
soids and then look at the bandpass characteristics of both of these filters in
detail.
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Figure 5.5-9 Continuous mexh Wavelet Transform of the spilt sine signal. For the higher
frequency part, the best correlation is found when the Mexican Hat wavelet filter is at 33 total
points (scale = 2) as shown by the lower horizontal dotted line. For the lower frequency portion
(the first 512 points) the best correlation with the 65 point mexh is at scale = 4 (upper dotted
line).

5.6 Morlet Wavelet as another example of
Stretched Crude Filters

Let us look at one more eXalllple of Crude Wavelet Filters generated from an
explicit lllatheillatical equation. Consider the real MOl'let wavelet 01' morl
(thel'e is a complex vel'sion we will discuss latel'). Like the mexh it is simply
derived from a lllathematical equation.

rnorl(t) = exp(-tA 2/2) x cos(5t)

Figure 5.6-1 shows the "continuous" wavelet produced by this equation. We
notice that this simple equation is silllilar to the equation for the mexh wav
elet function we saw in the last section. It is simply a cosine nlOdulated by an
exponential.*

Some authors refer to the Morlet as the "original wavelet". Even though Alfred Haar's wavelet (Haar) predates
the Morlet by decades, this wavelet formulated by Jean Morlet et. al. in the 1980's helped lay the foundation of
this powerful method of time-frequency analysis. Also the Ham is defined, but does not come from an explicit
mathematical equation.
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A A

\!f'-----+--------1

Figure 5.6-1 Representation of the Morlet Wavelet. Note that because of the exponential
term attenuating the cosine term that values outside the range -4 to +4 are essentially zero
(effective support = -4 to +4).

Figure 5.6-2 shows the 2 components. The effective length (or "effective sup
port') is frolll -4 to +4. Outside this range, the values become zero to com
puter precision. For eXalllple at -4.1, the value is -1. 7802e-05.

exp(-(tt"2» cos(S'I)

08
0.5
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0
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-0.5
02

0 -1
0 -5 0

Figure 5.6-2 The components of the Morlet Wavelet. Notice that the rapidly decaying expo-
nential at left rapidly attenuates the cosine function shown at right.

The MATLAB software to generate the Mm'let or marl wavelet filter begins
exactly the same as with the Mexican Hat wavelet with 17 points placed at
the integers from -8 to +8 as shown in Figure 5.6-3 for scale = a = 1. Al
though this allows for consistency with the mexh, we can see that these
points poorly define the shape. 33 points at 1/2 integer spacing (scale = 2) at
the right of the figure do a slightly better job of defining the shape.
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Figure 5.6-3 Morlet Wavelet with 17 equispaced points (integer apart) superimposed on
the explicit "point generator" equation. Stretched to 33 points (1/2 integer apart, at right) the
filter better fits the shape of the wavelet (but we still only have about 3 points per cycle).

Placing points at 1/3, 1/4, 1/5 and 1/6 integers (scale = a = 3, 4, 5, and 6) pro
duces further stretching. Of particular interest are 97 points at scale = 6 and
193 points at scale = a = 12 as shown in Figure 5.6-4.
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Figure 5.6-4 Morlet Wavelet with 97 equispaced points (116 integer apart) superimposed
on the explicit "point generator" equation. Note there are about 8 points per cycle at left. At right
is shown 193 points at 1/12 integer apart (scale = 12). Not there are now about 16 points in a
cycle.
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This MOl'let wavelet looks more like our split sine (cosine) test signal than
the earlier Mexican Hat representation. We could thus expect an even better
correlation when the nUlubel' of points in a wavelet cycle matches those in a
cycles of the test signal. We just saw (Fig. 5.6-4) that at a = 6 we have
roughly 8 points in a wavelet cycle and that at a = 12 we have about 16
points. As expected, we see in Figure 5.6-5 a bright band in the right half at
a = 6 and another bright band in the left half at a = 12.
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Figure 5.6-5 Continuous marl wavelet transform display of the spilt sine signal. For the
higher frequency part, the best correlation is found when the Morlet wavelet filter is at 97 total
points (scale = 6) as shown by the lower horizontal dotted line. This allows roughly 8 points in
each "cycle" of the Morlet wavelet. For the higher frequency portion (the first 512 points) the best
correlation with the 193 point marl is at scale = 12 (upper dotted line).

In comparing the CWT display for the Mexican Hat filters (Fig. 5.5-9) to that
of the MOl'let Wavelet filters (Fig. 5.6-5) we also notice that the Morlet seems
to do a better job of discrimination of the 2 parts of the signal. This is also be
cause the IVIorlet wavelet filters "match" the sinusoidal test signal better than
the Mexican Hat filters.

Figure 5.6-6 below shows the correlation of the Mexican Hat wavelet with
the split sine test signal at levels 2 and 4. Note: This is the same data as can
be seen in the 3-D (Time, Scale, Magnitude) CWT plots above but plotted in a
more conventional 2-D plot (Time and Magnitude for a given scale).
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SPLIT SINE FILTERED BY 33 PT MEXH SPLIT SINE FILTERED BY 65 PT MEXH
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Figure 5.6-6 Correlation Strength of the Mexican Hat Wavelet Transform of the split sine
test signal for scale = a = 2 (left) and scale = a = 4 (right). We see the same bandpass filtering
as in the functionally equivalent CWT display (see Fig. 5.5-9). We notice, however, that the fre
quency discrimination could be improved, especially for the scale = 2 graph at left.

The Mm'let wavelet filters show better bandpass characteristics for our test
signal than the Mexican Hat. We saw this in the CWT display (Fig. 5.6-4) and
can verify this in the conventional 2·D plots of Time vs. Amplitude shown
below in Figure 5.6-7.

SPLIT SINE FILTERED BY 193 PT MORl

, ,

SPLIT SINE FILTERED BY 97 PT MORl

TIME

Figure 5.6-7 Correlation Strength of the Morlet wavelet transform of the split sine test sig
nal for scale = a = 6 (left) and scale = a = 12 (right). As with the functionally equivalent CWT
display (Fig. 5.6-5), we can now see a much better job of bandpass filtering for this test signal
than we saw with the Mexican Hat wavelet (compare with Figure 5.5-9 or Figure 5.6-6).

5.7 Bandpass Characteristics of the Mexican
Hat and Morlet Wavelet Filters
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The power of wavelets in DSP is the ability to silllultaneously discl'ilUinate in
both time and frequency. We have demonstrated how their finite length al
lows them to discl'ilUinate in time and thus identify when an event occurred.
To also discl'ilUinate in frequency these filters must be bandpass.* We have
discussed earlier how stretching 01' "scaling" the wavelet filters lowers their
(pseudo) frequency. We also demonstrated in the previous sections of this
chapter how the Mexican Hat and Mm·let wavelets can function as bandpass
filters. For our test signal the Mm·let wavelet filters did an excellent job of
both time and frequency discrimination (reference Fig. 5.6-5).

We now look at the frequency characteristics of these 2 filters in general. We
look first at the Mexican Hat filter at scale = a = 2. The original 17 point fil
ter is stretched to 33 equation-generated points (see Fig. 5.5-7). Figure 5.7-1
below shows the bandpass nature. With a center frequency of about 0.27
Nyquist we can now see how the right half or last 512 points of the split sine
test signal (frequency = 0,25 Nyquist) was allowed to pass. We can also see
from this frequency response why the left half of the test signal (frequency
0.125 Nyquist) is attenuated, but not completely removed.

3.5,--~-~--~-~--,

33 POINTS ON MEXH WAVELET

tv\: I )j
:2 0 0.5 1 1.5 2

Normalized frequency (Nyquist == 1)

r..
-200 0 0.5 1 1.5 2

Normalized frequency (Nyquist == 1)

TT
0.2 0.4 0.6 0.8

Normalized frequency (Nyquist == 1)

3

2.5 -

Figure 5.7-1 Frequency response of the 33 point Mexican Hat wavelet filter shown from
zero to Nyquist (IT radians) at left and from zero to 2IT at right. Phase is also shown.

We saw earlier in this chapter that the Sinc function is lowpass, not bandpass. Later in the book we will show
how to make a complex Si1lcfil1lctio1l wavelet (filter) and ba1ld-shift it so it can be used as a bandpass filter.
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We next look at the frequency response of the Mexican Hat wavelet filter
stretched to 65 equation-generated points at scale = a = 4 (see Figure 5.5-8).
Figure 5.7-2 shows that the bandpass nature has changed and that it now
has a center frequency of about 0.12 Nyquist. We now see why the lower
frequency (0.125 Nyquist) left half of the test signal was allowed to pass
while the right half was attenuated.

65 POINTS ON MEXH WAVELET •

6 /\1 rE
•

I

•

n5

"." 4
.f " 0

0.5 1 1.5 2
Normalized frequency (Nyquist == 1)

~.c 3 lii 200
":;; •

~

\
~•2 0
•~
ro
~

00 a.. -200
0.2 0.4 0.6 0.8 0

Normalized frequency (Nyquist == 1)

Figure 5.7-2 Frequency response of the 65 point Mexican Hat wavelet filter shown from
zero to Nyquist (IT radians) at left and from zero to 2)"[ at right. We recall that when magnitude is
near zero, as is the case here for high frequencies, that the phase becomes incoherent.

Comparing with Figure 5.7-1 we see the height has doubled while both the
center frequency and the width of the passband are halved. This property is
known as Constant Q. Because of the narrower passband we have the better
discrimination we saw earlier in the right graph of Figure 5.6-5.

The Morlet wavelet filter is now eXalnined. Figure 5.7-3 shows the fre
quency response of the (equation-generated) 97 point Morlet wavelet filter
that corresponds to scale = 6. As with the Mexican Hat filter when it was
stretched to correspond with the higher frequency half of the test signal, we
see the center of the passband to be about 0.27 Nyquist. Thus the higher fre
quency half of the test signal (0.25 Nyquist) is passed. The lower frequency
half of the test signal (0.125) Nyquist will be fairly severely attenuated as
was demonstrated in the previous section.
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97 POINTS ON MaRlET WAVELET
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Normalized frequency (Nyquist == 1)

Figure 5.7-3 Frequency response of the 97 point Mol'let wavelet filter (scale =a =6) shown
from zero to Nyquist (IT radians) at left and from zero to 2rr at right.

As we stretch the Morlet filter by a factor of 2 to 193 points we see the same
constant Q behavior with a higher peak as both the center frequency and
the passband are reduced by a factor of 2 as shown in Figure 5.7-4. Notice
that the center frequency of this bandpass filter is about 0,12 and that it will
allow the lower frequency left half of the test signal to pass while severely
attenuating the right half with its 0.25 Nyquist frequency (see Figure 5.6-5).

193 POINTS ON MORlET WAVELET
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Q.l 193 POINTS ON MORlEr WAVELET
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Figure 5.7-4 Frequency response of the 193 point Mol'let wavelet filter (scale =a = 12).
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A reluindel' is in order here: We can design bandpass filters using conven·
tional DSP methods with sharper cutoffs, better transition bands, etc. than
either the Mexican Hat or the Morlet filters. However, the strength of these
wavelet filters can be seen in their ability to provide simultaneous tillle, fre
quency, and waVefOl'lll shape infol'lllation about an unknown signal. For ex
ample, the CWT displays in this chapter have shown us information about
the frequency of our test signal at any given tim.e. With the better discrimina
tion of the Morlet wavelet than the Mexican Hat we can even tell the
shope(s) of the test signal (2 time-sequential sinusoids). As we proceed we
will discover more ofthe capabilities ofthese powerful tools.

5.8 Summary

In this chapter we got our bearings by reviewing the traditional DSP meth
ods of working with a Sine function. Specifically, we added extra points on
the "ends" which is, in effect, using a larger "boxcar" window on the
(infinitely long) Sine function filter. The Sine function looked the same but
had more "lobes" on the ends. Looking in the frequency domain, we saw the
faluilial' result of a shorter transition band at the Saine cutoff frequency.

We than contrasted this familiar method with that used in wavelet process
ing to stretch (dilate) the filter by interpolating. We showed an interpolated
Sine filter with the additional points placed between the existing points rather
than at the ends as before. The Sine function now has the sallIe number of
lobes as the original, but there were twice as lllany points in each lobe.
Looking again in the frequency dOl11ain, we saw that these additional points
did not affect the transition band, but changed the cutoff frequency by a fac
tor of 2 (from 0.25 to 0.125 Nyquist).

We discussed cl'llde wavelets where the filter points can be generated di
rectly fr0111 an explicit ll1athel11atical equation. We learned that these wav
elets, although theoretically infinite in length, have an effective support or
very limited range where they are non-zero to computer precision.

We looked first at the whimsically named Mexican Hat wavelet filter. Fol
lowing the example of the lVI.ATL.A.B software, we generated 17 integer
spaced points on the interval from -8 to +8. This is scale = a = 1. By using
the Sal11e equation at 1/2 integer intervals, we generated 33 points to produce
a "stretched" filter at scale = 2. We continued this process to produce a 49
point and then a 65 point filter at scales 3 and 4.
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We generated a 1024 point spilt-sine (cosine) test signal with 16 points pel'
cycle for the first 512 points and 8 points pel' cycle for the last 512. When the
Mexican Hat filter is stretched to 33 total points (in the interval from -8 to
+8) it has about 8 points in its :"cyclelJ

• When it is stretched to 65 points
(scale = 4) it has about 16 points in its "cycle". The CWT display for the Mexi
can Hat wavelet filter showed a strong correlation with the right half of the
test signal at scale = 2 when the 8 points in the wavelet "cycle" Inatched the
8 points in a cycle of the test signal. It also showed a strong correlation with
the left half of the signal at scale = 4 when both the wavelet and the left half
of the signal had 16 points.

We pel'fol'lned a similar analysis using the sinusoidallVIol'let wavelet filter on
the saIlle split sine test signaL This is another crude wavelet that uses an
equation to generate points. As the original or "ulOther" wavelet filter of 17
points in the interval from -8 to +8 is stretched to 97 points (scale = 6) we
saw that we had about 8 points in a cycle. As we stretched further to 193
points (scale = 12) we saw we had about 16 points in a cycle.

A Continuous Wavelet Transform (CWT) using the MOl'let wavelet filter with
the sinusoidal test signal showed an excellent correlation with the left and
right halves at scales 12 and 6 respectively. Noting that the correlation was
stronger and the discrimination was better when substituting the MOl'let for
the Mexican Hat, we pointed out that from the CWT and its display we could
deterIuine the specific frequency at specific times and even know what the
signalloolled lille (sinusoidal). In other words, the CWT did a good job of de
scribing our pre-known test signal and thus should be able to be used with
real-life unknown, tillle-Val'ying signals.

Finally, we looked at the frequency characteristics of the Mexican Hat and
MOl'let filters. We saw they are bandpass filters and that by stretching them
we decrease the center frequency (silllilar to the analysis we pm'fanned on
the lowpass Sinc Function at the start of this chapter). We also saw the pass
band become narrower as the filters were stretched.

We now move on to wavelet filters of any desired length that are not gener
ated fr0111 equations, but are built fr0111 a very few points in the "mother"
wavelet filter.

© 2009 Space & Signals Technologies LLC, All Rights Reserved. www.ConceptuaIWavelets.colll



100 Conceptual Wavelcts in D,:gital Signal Proccssing

"Tell me and I forget. Teach me and I remember.
Involve me and I learn."

-Benjamin Franklin
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CHAPTER

6
Obtaining Variable Length Filters
from Basic Fixed Length Filters

In Chapter 5 we discllssed crude wavelets with explicit equations which allowed us to
stretch a wavelet filter to any desired length by simply "plugging in" equispaced values
into the eq uation. For example, if we had 17 eq uispaced values at integers from -8 to +8
(including zero) we could easily interpolate to 33 values by inputting half-integer val
ues (-8.0, -7.5, -7.0 . .. ). This process is of course automated as the filters are stretched
and then correlated with the data by the CWT display software.

In this chapter we will looh at wavelet filters that are not defined by an explicit
mathematical equation. These mother wavelet filters have very few points. We will
study a method of inte/polation that allows us to first stretch these filters to hundreds
of points and thus create an estimation of a «continuous" wavelet.

Next, we will show how to create a wavelet filter of any desired length from these hun
dreds of points llsing numerical analysis techniques-a reminder that we neither need
nor use a "continuous" wavelet in the real world of digital computers.

This process of inte/polation to hundreds of points and then creating filters of any de
sired length is also usually automated in the existing software.

6.1 Review of Conventional Interpolation
Techniques from DSP

A familiar method of interpolation from DSP is to upsample by 2 and then
lowpass filter the result.

Jargon Alert: To upsample by 2 means to place zeJ'os between the exist
ing values. Fo/" example, [1 234 5J upsampled by 2 becomes [1 020304
oSj* This process is often referred to as ~'dyaclic upsampling"

As an eXalllple, we use a familiar Gaussian function with 17 points as shown
at the left of Figure 6.1-1. If we "connect the dots" or plot the data as shown
at right, we see a need for 11101'e points to provide a smoother representation.

. In some instances a zero is also placed on one or both ends. For example, [0 1 0 2 03 040 5 OJ
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GAUSSIAN FUNCTION AT INTEGER POINTS GAUSSIAN FUNCTION AT INTEGER POINTS,
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Figure 6.1-1 17 points of a Gaussian function at left. Connecting the points shows abrupt
changes in the slope (discontinuities in the 1st derivative) and the need for further smoothing.

To obtain more points we could "cheat" by using the same equation* that
generated the 17 points to produce an additional 16 values in between the
existing points. Instead, however, let us follow the example of the lllany
wavelet filters that are not defined by an equation and interpolate directly.
We begin by upsampling by 2 as shown in Figure 6.1-2.

DYADIC UPSAMPUNG,
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Figure 6.1-2 16 zeros placed between the original!? points (dyadic upsampling)

The next step is to lowpass filter. We can see why this step is essential by
looking at the FFTofthe upsampled signal as shown in Figure 6.1-3. Placing
zeros between the points has resulted in a high-frequency image centered
around Nyquist (we will provided insights as to why this is so in a moment) .

. The equation used here is y(n) = exp(-(n A 2)/8)
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fFTOf ORIGINIIL POINTS
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,
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'" 0; ~

FFT OF UPSAMPLED POINTS

Figure 6.1-3 FFT of original 17 points (left) and FFT of upsampled 33 points (right). Note
the high-frequency image around Nyquist.

We proceed to lowpass filter. As we keep only the low frequency cOlllponents
we have in the frequency dOlllain the data as shown in Figure 6.1-4.*

FFT OF UPSAMPLED POINTS AFTER LOWPASS FILTERING
6

5

~ 3

.. 2

I,"

0

"0 20 25 30 35

Figure 6.1-4 FFT of upsampled points after lowpass filtering. Note the high-frequency im-
age is gone (replaced by zeros).

After lowpass filtering we obtain the set of 33 points as shown at the left of
Figure 6.1-5. As we plot these points and compare with the original plot (Fig.
6.1-1) we can see that we have successfully interpolated without using the
original equation.

• Those familiar with interpolation will recall that an alternative to upsamplillg and lowpass filtering is to take
the FFT of the original points, zero-pad in the middle, and take the Inverse FFT. This gives us the same result
as shown above.
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lOWPASS INTERPOLATION
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Figure 6.1-5 Interpolation results. We have the original1? points at the integer values and
16 interpolated points at the half integer values (left). Note the smoother estimation
(approximation) of a Gaussian function we obtain by plotting these 33 values (right).

Note that this interpolation process can be done entirely in the tillle domain.
We start with the original points, upsample by a factor of 2, convolve the data
with a lowpass filter, and use a constant of lllultiplication* later to nOl'lnalize
(adjust for the change of magnitude due to the extra points). We will use this
same process in of upsampling, lowpass filtering, and lliultiplication by a con·
stant to interpolate wavelet filters that are not defined by an equation.

We did use the FFT in the above example for purposes of illustration. Figure
6.1-3 showed a high-frequency component introduced by the upsampling.
We can also demonstrate this concept in the tiUle dOluain. The dyadically up
sampled data can be thought of as the sum of an interpolated low-frequency
signal (our final result as shown in Fig. 6.1-5) and an interpolated high
frequency signal as shown below in Figure 6.1-6. Notice that this high
frequency signal is the saille as our low frequency signal except that the
signs alternate.t

. In conventional DSP we would refer to this as scaling the data. However the wavelet literature uses the teIlllS
scale and scaling to describe stretching or changing the frequency rather than the magnintde. Thus we reserve
these words and use cons/alll o/Illultiplication instead.
t This process is familiar in DSP. To transform a lowpass filter to a highpass filter we use the equation

hH,(n) = (-I)"hL,(n).
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HIGHPASS INTERPOLATION
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Figure 6.1-6 Interpolation results we would obtain using a highpass filter on the upsalll-
pled data. The original 17 points are positive and the 16 interpolated points are negative.

We can see that as we add the high and low frequency signals together in
the tillle dOlllain that every other term will cancel and we will have the ear
lier dyadically upsampled signal with zeros in the odd terlllS. This process is
illustrated in Figure 6.1-7.
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Figure 6.1-7 Demonstration in the time domain of how an upsampled signal is the sum of
the low-frequency and the high-frequency interpolation. As we remove the high-frequency part
from the upsampled signal, we have the desired smoothing.
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6.2 Interpolating the Basic ("Mother") Wavelet
by Upsampling and Lowpass Filtering

The Discrete Wavelet Transform (DWT), used for compression and denoising
(aulOng other things), requires additional constraints on the filters such as
Perfect Reconstruction and Alias Cancellation capabilities. We will begin with
the simplest and shortest of these wavelet filters: The Haar, named for Al
fred Haal'. We used these filters in earlier chapters and they lllay be fmnilial'
to some students as bloch averagers or bloch differentiators. The basic wav
elet filter or mother wavelet filter is the 2-point vector [1-1]. It has a lowpass
counterpart or scaling function filter [11]. These filters were introduced in
Chapter 1 as the highpass reconstruction filter and the lowpass reconstruc
tion filter, l'espectively*.

It will be recalled that the Continuous Wavelet Transform (CWT) used only
one filter and stretched it. For the Haar the basic filter was [1 -I]. Stretching
a crude wavelet filter was easy-we SilUply used the defining equation. To
stretch a Haal' wavelet filter to any desired length we lllust first construct an
estimation of the theoretically continuous wavelet using the interpolation
techniques described in the last section. (This process will be seen later in the
functional diagrmll of a DWT and also in the "Dilation Equation").

For now we proceed to simply build an estimationt of a continuous wavelet
by upsampling and lowpass filtering. We begin by upsampling the Haar wav
elet filter. This becomes [10 -I]. We next lowpass filter by convolving with
the scaling function filter [II]. This gives us a stretched or dilated filter
[1 1-1-1]. The basic filter has been stretched by a factor of 2.

Figure 6.2-1. shows the basic 2-point Haar wavelet filter followed by the re
sults of upsampling and convolving with the basic Haar scaling function low
pass filter ([11])

There (Ire 2 other filters used in the DWT-the ltighpass decolllpositionfilter given by [-II} (for the Haar)
and the lowpass decomposifiollfilter given by [11).
t The word approximafiol1 is more descriptive than estill/atio1l but "Approximation" is reserved in wavelet
literature to describe the ends of lowpass paths in wavelet transforms (e.g. AI, A2, A3, etc.).

© 2009 Space & Signals Technologies LLC, All Rights Reserved. www.ConceptualWavelets.colll



Chapter 6 - Obtaining Variable Length Filters from Basic Fixed Length Filters 107

Basic Haar Wavelet = [I -11
Upsampled Haar
Wavelet = [1 0 -IJ

1

Upsarnpled and filtered
Haar wavelet = [1 1 -1 -1]

-1 -1 -1 -1

Figure 6.2-1 Stretching the basic 2-point Haal' wavelet filter by a factor of 2 to become 4
points long by upsampling and then convolving with the Haar scaling function (lowpass) filter
([1 1]). Note the length will be L + M - 1 = 4 with L = 3 and M = 2.

If we upsample this latest result we have [1010 -10 -1]. Convolving with
the lowpass filter ( [II] ) gives us [1 1 1 1 -1 -1 -1 -I]. We have now
stretched the Haar wavelet filter from its original 2 points to 4 and then 8
points as depicted in Figure 6.2-2.

UPSAMPLED AGAIN FILTER AGAIN STRETCHED AGAIN
1 1 1

5 5 5,
w wa a0 00 S 0 S 0

" "~ ,
<

·0 5 0 5 ·0 5

1 1 1
0 4 0 0 4

# Points (n) # Points (n)

Figure 6.2-2 Stretching the 4-point Haar wavelet filter by a factor of 2 to 8 points by up
sampling and then convolving with the Haar scaling function (lowpass) filter ([1 1]). Note the
length will be L + M - 1 = 8 with L = 7 and 1\'1 = 2 again.
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We upsample and filter (by [1 1]) 4 more times. The wavelet filter is
stretched to 16, 32, 64, then 128 points as shown in Figure 6.2-3.

1

05 05 05 5
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05 -0.5 -0.5 0 5

1 1 1 1
0 10 15 20 0 10 20 30 40 0 20 40 60 80 50 100 150

Figure 6.2-3 Further upsampling and convolving with the lowpass filter produces 16, 32,
64 and 128 points.

With one more upsaillpling and convolving we have 256 points. If we now
plot the points we have a good estimation of what a continuous wavelet
would look like. Ending the stretching at 256 points is an arbitrary, but con
servative choice. rvlATLAB chooses this number as sufficient to estiluate
(appl'OXiluate) a "continuous" wavelet function. IvIATLAB also adds a zero
point to each end for reasons we will soon explain so we actually have 258
points to approximate the Haal' wavelet function.

In the real world of digital computers we work with filters of various lengths
and not with the mathematical representation. We saw this in the last chap
ter as we constructed "crude" filters of various lengths f1'0111 the explicit
equations. The literature, however, often shows the "Haar Wavelet Func
tion" or psi as having a "length" of 1. The value of the psi is often given as

psi(t) = 1, 0 < t < 0.5; -1, 0.5 < t <1; 0 otherwise

We now "connect the dots" and plot the 258 points on a time scale from 0 to 1
(with zero elsewhere). This is shown in Figure 6.2-4 below. Note the discon
tinuities at times 0, 1/2 and 1.
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WAVELET FUNCTION PSI

Discontinuities
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Figure 6.2-4 258 points mapped onto the interval from 0 to 1 provide an estimation of a
"continuous" wavelet function. Note the values outside this interval are zero and that there are
3 discontinuities.

Now we have a detailed estiluation of the wavelet function we can proceed to
produce a filter of any desired length as is required for a CWT.

One method would be to simply interpolate the desired filter points from the
existing points. The problem is with the discontinuities at t = 0, t = 0.5, and t
= 1. Discontinuities in the function or its derivatives is COllllllOn for lllany of
these wavelet functions built from wavelet filters.

A way around this is to first do a numerical integration of the wavelet func
tion and then differentiate (look at the slopes) to find the filter points. For
example, at scale = 5 the Haar CWT requires a 5 point equispaced filter. If
we were to interpolate directly we would choose the values at t = 0, 1/4, 1/2,
3/4, and 1. The values at t = 1/4 and 3/4 are clearly one and minus one, re
spectively, but those at t = 0, 1/2, and 1 are at discontinuities.

If we pel'fOl'lll a numerical integration of these 258 points we acculllulate a
pyramid that increases till t = 0.5 and then decreases back to zero as shown
in Figure 6.2-5. We then chose 6 points over the interval from a to 1 and
look at the slopes (differentiate). The slope between the first 2 points is 1 as
is the slope between the second 2 points. The slope between the 3rd set of 2
points, however, is zero. The last two slopes are -1 and -1. Thus for scale =
5 for the Haar CWT we have the wavelet filter ( [1 -1] ) stretched to
[1 1 0 -1-1]: We can now calculate a Haar filter for any number of points.

This is intuitively COlTect because one requirement is that the coefficients of wavelet filters should sum to zero.
The first 2 and last 2 values cancel thus the center value should be zero.
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Figure 6.2-5 Numerical integration of the 258 point estimation of the Haal' wavelet func
tion builds the pyramid shape. We then differentiate using equispaced points. Ifwe desire a 5
point Haal' filter we use 6 equispaced points and calculate the slope as shown here.

6.3 Frequency Characteristics of the Basic
and Stretched Haar Filters

We begin with the 2 point basic Haar wavelet filter and the 4 point stretched
Haar wavelet filter. Note that the bandpass nature begins to be seen in the 4
point filters shown below in Figure 6.3-1.

FREQUENCY RESPONSE FROM 2 PT FILTER FREQUENCY RESPONSE FROM 4 PT FILTER

iLr::sJ iV1\;21
o 0.5 1 1.5 2 0 0.5 1 1.5 2

FREQ ..> FREQ ..>

Figure 6.3-1 Frequency Response of 2-point Haal' filter ([1-1] ) and 4-point stretched ver-
sion ([1 1 -1-1]). 2-point is "bandpass" only in the interval 0 to 2rr.

The frequency response for the 8, and IG-point filter is shown in Figure
G.3-2.
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FREQUENCY RESPONSE FROM 8 PT FILTER FREQUENCY RESPONSE FROM 16 PT FILTER

W\;f\f\/~ i:hAiA AU AAA
o 0.5 1 1.5 2 0 0.5 1 1.5 2

FREQ ._, FREQ ._,

Figure 6.3-2 Frequency Response of 8, and 16-point stretched Haar wavelet filter. Note
that as the height of the main lobe doubles, the passband center frequency and the width of the
passband are cut in half.

The 2-point Haar wavelet filter is the simplest of the Daubechies (Db) family
of wavelet filters. The next "filters f1'0111 wavelets from filters lJ we will look at
is the Db4, having 4 filter points. This is sometimes referred to as a Db2, with
the "2" signifying an exponent in a process called spectral factorization or as
the number of vanishing moments (we will discuss these topics later in the
book).

The 4 values for the Db4 wavelet filter will be derived later as we discuss the
DWT. For now they willl'eillain "Magic NUIUbel's"* as sometimes referred to
in the literature. An analogy is in order here: Finding the square root of
103,041 is difficult without a computer or hand calculator. Verifying that 321
is the correct answer, however, is very easy. Siluilarly, finding the "lllagic
nUlllbers" is hard but verifying thenl is easy as we will soon show.

Instead of [1-1] for the Haar, the Db4 wavelet function filter is given by

[-0.1294 -0.2241 0.8365 -0.4830]

Instead of [1 1] for the Haar, the LPF or basic Db4 scaling function filter is
closely related to the above 4 numbers and is given by

[0.4830 0.8365 0.2241 -0.1294]

Note that the 4 numbers do not change, only the position and the signs. We
will explore this relationship later. Figure 6.3-3 shows these 2 filters.

Ingrid Daubechies is credited for discovering these numbers through the Spectral Factorization of a halfband
filter.
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4 PT BASIC DB4 WAVELET 4 PT BASIC LPF SCALING FUNCTION
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-0.5 -0.2
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NUMBER OF POINTS (n) --> NUMBER OF POINTS (n) -->

Figure 6.3-3 Daubechies 4 basic or mother wavelet filter and scaling function filter.

We perforlll the sallle series of upsampling and lowpass filtering as we did
for the Db2 or Haar wavelet function filter ( [1-1]): Figure 6.3-4 shows the
basic wavelet filter upsampled with zeros between the existing points and the
result of lowpass filtering by the 4-point Db4 scaling function.

UPSAMPLED STRETCHED

102 4 6 8
NUMBER OF POINTS (n) -->

r
• ~ J l 0

~

-1 o

o

0.5

1.5

-0.5

~ 0.5 ~
w w
0 0
=> =>
to to
~ ~

0- 0-
:2 0 :2

" J 1 "

-0.5
0 2 4 6 B

NUMBER OF POINTS (n) -->

Figure 6.3-4 Four-point Db4 wavelet filter first upsampled (7 points) and then lowpass
filtered by the Db4 scaling function filter to produce the IO-point stretched Db4 filter (7+4-1=10).

• We multiply by sqrt(2) at each step to account for the increased energy.
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We continue the process of upsampling and lowpass filtering to produce in
creasingly stretched wavelet filters with 22, 4G 94, 190, 382 and finally 7GG
points. At this stage software such as lVIATLAB deems this a sufficient esti
mation of a "continuouslJ function. The stretching to 46, 190, and 766 points is
shown below in Figure 6.3-5

1
~ 0.5

E
~ '~lJJIlIJr=.rIlTTnt---j

-'!-----,,,;,_,,,,,---~"'ii_____,,,;,___.j,
NUMBER OF POINTS (n)->

",--------------,

1
~ 0.5

E
~ '1-oil1llGi""""'\I""'!I'-'-j

• PT 0 ... WAvElET FILTER STRETCHED TO ''''' PTS'.'r-'========,,-,]

Figure 6.3-5
766 points.

Four-point Db4 wavelet filter when stretched to 46 points, 190 points, and

r-

If we "connect the dots" by plotting the 7GG points we now have an approxi
mation 01' estimation of a Db4 "continuous" wavelet function built f1'0111 the
original 4 points. Similar to the way we mapped the 258-point Haar wavelet
filter to an interval from 0 to 1, we now map the 7GG point Db4 wavelet filter
onto an interval from 0 to 3. This is shown below in Figure G.3~G.

':0.5 ---+
!
l '

Figure 6.3-6 7GB-point estimation of a continuous wavelet function mapped onto an inter-
val from 0 to 3. The value outside this interval is zero.

The literature usually depicts the Db4 wavelet function or psi ('1-') as having a
"length" of 3 and starting at t = O. One reason for this choice of length can be
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seen f1'0111 having discontinuities in the slope appeal' at 1.0, 1.5, 2.0 and 2.5.
Another l'eluindel' is in order here that we never actually use the wavelet
function. The 766 points connected here are used to produce filters with any
desired number of points. In other words, it is when you convolve your data
with a filter having a certain nUlubel' of points that you detel'luine the real
world tilHe axis.

As with the Haar, we have the Wavelet Function (estimation) and can pro
ceed to produce a filter of any desired length as is required for a CWT. Also
as with the Haul', we use an integral of the wavelet function* and then use
slopes (differentiate) to handle any discontinuities (Fig. 6.3-7).

"r--~-~-~-~-~-~-~-,

Figure 6.3-7 Numerical integration of the 766 point Db4 wavelet scaling function filter.
From this integral we can now differentiate to produce filters of any desired length.

6.4 Perfect Overlay of Filter Points on the
"Continuous" Wavelet Estimation

First, we superimpose the original 4 Db4 filter points that were used to build
this wavelet function. As we convert our 766 point "continuous" function to a
"length" of 0 to 3, the 4 "magic nUlubel''' points

-0.1294 -0.2241 0.8365 -0.4830

For numerical integration purposes, (l leading and trailing zero are often added making the totallellgth 768
points rather than 766. Haar wavelets are often estimated at 258 points rather than 256 for the same reason.
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are found to be at 2/6, 5/6, 8/6 and 11/6. In other words, 1/2 integer apart
starting at 1/3 and ending at 11/6. They are overplotted on the wavelet func
tion estimation in Figure 6.4-1 (left). In actuality, there are 2 additional zero
points with a value of zero. These also match perfectly the values of the 766
point estimation (mapped onto the interval 0 to 3) at 14/6 and 17/6. These are
also shown at the right of Figure 6.4-1. Note that although the original Db4
filter has been lengthened to the 6 points

-0.1294 -0.2241 0.8365 -0.4830 0.0 0.0

that the filter is essentially the same (DSP engineers are familial' with ap
pending zeros to the ends of filters or data for a variety of uses). Thus, the
two additional equispaced zero points (at the end) complete the overlay.

WAVELET FUNCTION PSI WAVELET FUNCTION PSI
15 1 5

Original 4,
e~lisEaced
D 4 Ilter ,
points

,
05 ~ 0.5

f\
~
~

~ 0,
~

-0.5 -0.5

., .,
0 0.5 , 5 2.5 0 05 1.5 2.5

"TIME" (t)--> "TIME" (1)-->

Figure 6.4-1 The original 4 wavelet filter points along with two additional trailing zeros
overplotted on the 766 point estimation of a "continuous" wavelet function built from these sallle
points. When mapped to the interval 0 to 3, the points are located 1/2 integer apart at 2/6, 5/6,
8/6, 11/6, 14/6 and 17/6.

We use the SaIne upsalllpling and lowpass filtering process to interpolate es
timations of other wavelet functions from a very few points. The Db6 and
Db8 filters are shown in Figure 6.4-2. Note that the Db6 has 6 filter points
and 4 end zeros starting at 3/7 mapped onto the interval 0 to 5. The Db8 has 8
filter points and 6 end zeros starting at 4/8 mapped onto the interval 0 to 7.
As with the Db4, the Db6 and Db8 points are also equispaced 1/2 integer
apart on their respective luappings.
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" LJ- L- 0.8 Db8 wat.,let]
--L

Db6 \Vavelet
0.8

Function with 0.6 -FunctionL'with t
0.6

filter points. 0.4 filter points.
0.4 --

0.2

0'
0

0

-0.2
-0.2

-0.4 -0.4

-0.6 _ ---r ---r ---r -0.6

-0.8
4 -0.8

0 , 3 5 6

Figure 6.4-2 Db6 and Db8 estimations (approximations) built from the 6 and 8 points, re-
spectively, in the basic wavelet filter. Note the zero valued points on the end.

We have seen that with the Db4, Db6, and Db8 we can show the filter points
to be an exact fit with extra zeros on the end. All points are 1/2 integer apart.
We will show later that the Db2 or Haar has 2 points ([1-1] ) located at 2/10
and 7/10 and no end zeros. It is interesting to note the progression f1'0111 the
Db2 to the Db8: Starting points are at 1/5, 2/6, 3/7, and 4/8. The number of
end zeros are 0, 2, 4, and 6. The Inapped intervals are 1, 3, 5, and 7. The
spacing of points (including end zeros) is 1/2 integer.

We use this saIlle process of starting with a few points f1'0111 the basic wav
elet filter and interpolating additional points by upsampling and lowpass fil·
tering to produce estilllations of other wavelet function filters. Figure 6.4-3
shows the Coiflet wavelet' and one of the Biorthogonal wavelets.

The Coiflet wavelet shown here is described in the MATL.A.B Wavelet Tool·
box Users Guide as "Coifr'. There are Gvalues in this basic Coifl wavelet fil·
ter. The Biorthogonal wavelet shown at the right (Fig. 6.4-3) is described as
"Bior4.4". We start with the 9 points in the basic wavelet filter. A 10th zero
point is used by lVL4.TL.A.B

. The fit (below) may not appear perfect but the Wolfram Research website cautions against small computer
elTors that cause this. Wolfram also shows the wavelet upside down, in agreement with our method ofproduc
ing functions from filters. (The definition of the wavelet here differs from that of Daubechies by a sign).
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Figure 6.4-3 Estimations of the Coiflet wavelet function (left) and the Biorthogonal 4.4 Or
"9/7" filter (right) with the points of the basic (mother} filter superimposed. Note the 1/2 integer
spacing of the points.

6.5 Frequency Characteristics of some of the
Basic Filters

Before finishing this chapter, we want to look at some additional frequency
characteristics. We explored the Haar filters (section 6.3) and saw that these
2-point basic Haar filters, although excellent for detecting short-term events,
have pOOl' frequency characteristics. We compare in Figure 6.5-1 the fre
quency response from the basic (2-pt) Haar or Db2 filter with that of the ba
sic (4-pt) Db4. Although still a large transition band, we see better perform
ance (at the cost of a slightly longer filter).

Basic Haar 2-pt filter

fJ2=Jo 0.2 0.4 0.6 0.8 1
Normalized frequency (Nyquist == 1)

Basic Db4 Filter

0.2 0.4 0.6 0.8
Normalized frequency (Nyquist == 1)

Figure 6.5-1 Frequency Response of 2-point Haar filter ( {I -1) ) and the 4-point Db4 filter
( [-0.1294 -0.2241 0.8365 -0.4830))
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Of course as we stretch these filters we see the bandpass nature and the re
lationship of bandpass center frequency to bandwidth as we did with the
Haar. Figure 6.5-2 shows the frequency response for the Db4 wavelet filter
stretched to 22 points (by upsampling and lowpass filtering) and then to 50
points.

Db4 filter stretched to 22 pts

I:JIT~I
::i: 0 0.2 0.4 0.6 0.8 1

Normalized freauencv (Nvauist == 1)

• Db4 filter stretched to 50 pts

tl~ ~= 1
~o 02 M OB 08 1

Normalized frequency (Nyquist == 1)

Figure 6.5-2 Frequency Response of 4-point Db4 wavelet filter stretched to 22 points and
then stretched further to 50 points.

The frequency characteristics of the "Coiflet 1" (6-point) filter and the 9-point
wavelet filter from the "Biorthogonal 4.4" (the 9 point filter in the 9/7 high
pass filter set) are shown in Figure 6.5-3.

Basic Coit1et 6-pt filter

71
0.2 0.4 0.6 0.8

Normalized frequency (Nyquist == 1)

Basic Bior 9 pt filter

rl~7~LT~+l
~ 0 0.2 0.4 0.6 0.8 1

Normalized frequency (Nyquist == 1)

Figure 6.5-3 Frequency Response of the basic 6-point Coiflet filter and the basic Biorthogo-
na19-point filter.

Comparing with Figure 6.5-1 we see that these particular basic Coiflet and
Biorthogonal filters seelll to produce better frequency characteristics, again
at the cost of longer filters. We will discuss these filters further, along with
other excellent wavelet filters, as we look at some specific properties and
suggested applications later.
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6.6 Summary

From DSP we learned how to design filters. We learned that a very simple
moving averager can be approxilllated by the (non-recursive) Finite Impulse
R.esponse (FIR.) filter having the difference equation

y(n) = x(n) + x(n-l)

which leads to the filter [Ill'. We have become familial' with this filter in
wavelets as the Haar scaling function filter. Similarly a very simple digital
differentiator can be approximated by a FIR. filter having the difference
equation

y(n) = x(n) - x(n-l)

which leads to the filter [1-1]. We have seen this filter as the Haar wavelet
filter.

We also learned from DSP that any time values associated with these filters
depends on the data we are filtering. In other words, we Silllply convolve our
data with the filters. This also holds true in the design of wavelet filters.

In the previous chapter we learned how to design wavelet filters of any de
sired length using an explicit equation to produce the filter points. In this
chapter we learned to design wavelet filters by first interpolating from the
very few points of the basic 01' mother wavelet filter to a very large number
(256, 768, etc.) of points that approximate a continuous wavelet function.
Next, we use these lllany points to generate an equispaced filter of any de
sired length. We learned to handle discontinuities (in the function and in its
derivatives) by first integrating and then differentiating.

We began this chapter with a review of conventional DSP interpolation tech
niques, specifically the method using upsampling and the lowpass filtering.
We provided insight to this process by showing how a dyadically upsampled
signal can be seen as the SUlll of a low-frequency and a high·frequency sig
nal. Thus filtering out the high frequency signal provides our desired inter
polation.

We moved on to the basic Haar wavelet filter ( [I-I] ) and showed how it
can be interpolated by this method to first [1 0 -I] and then to [II-I-I]. We

• This filter may be lllultiplied by a constant (we have seen this in earlier chapters concerning perfect reCollstl1lC
lion to within a delay and a constant ofumltiplication). For example, using the FIRl routine from MATLAB
we obtain the filter [0.5 0.5].
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continued this process to 8, 16, ... , 256 points. We showed an exaillple of
working with discontinuities by integrating and then differentiating. We
learned earlier that this is stretching of filters is necessary for the Continu
ous Wavelet Transform (CWT). We will soon address the role of these
stretched-by-interpolation filters in the Discrete Wavelet Transform (DWT).

We looked at the frequency characteristics of the basic and stretched Haar
filters and saw that they are bandpass filters and that as the passband center
frequency decreases, so does the width of the passband-while the peak
value doubles (constant Q behavior).

We moved on to the basic Daubechies 4-point wavelet filter or Db4. As with
the Haar (Db2) we demonstrated repeated upsampling and lowpass filtering
to produce a 7GG point approximation (estimation) of the "continuous" wav
elet function. As with the Haar, we then showed how to produce a filter of
any desired length for use in the CWT or DWT.

We showed how this 76G-point appl'OXilllation is mapped onto an interval
from 0 to 3 and we were able to show a perfect fit of the 4 original points to
this estimation at equispaced points 2/G, 5/G, 8/G, and 11/G. We also showed
that at 14/G and 17/G we have 2 additional zero values. We showed a few ex
amples of other basic wavelet filters and how they fit perfectly onto their es
tilllations of a "continuous" wavelet.

Finally, we showed frequency characteristics of these saIlle basic filters and
saw that they were all bandpass in nature with varying passband, transition
band, and stopband characteristics. As with the Haar, stretching these filters
lowers the passband center frequency and reduces the passband width.

All of these filters, whether stretched by interpolation or by using an explicit
equation (crude wavelets), can be used in the CWT. The DWT, however,
cannot use crude wavelets. We now lllOve on to a cOlupal'ison of the advan
tages, disadvantages, l'equil'eillents, and limitations of the CWT vs. the DWT.
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CHAPTER

7
Comparison of the Major Types of
Wavelet Transforms

In Chapter Six we moved on from crude wavelets with explicit equations to stretching a
filter to any desired length by numerical techniques involving upsampling and low
pass filtering (interpolation) followed by integration and differentiation.

We now discuss the advantages and disadvantages of the Continuous Wavelet Trans
form (CWT) and explore the two major types of the Discrete Wavelet Transform (DWT).

7.1 Advantages and Disadvantages of the
Continuous Wavelet Transform

Figure 7.1-1 (left) shows a linear chirp signal with added noise. The CWT
display (right) shows the higher frequencies (at the end of the signal) to be at
the lower scales (less stretching of the Db20 "comparison" wavelet filter) as
can be seen at the bottom right portion ofthe display. The display also shows
the lower frequencies (at the beginning of the signal) to be at the middle left.
It is interesting to see some very low frequencies at the upper left. A close
look at the darker areas of the noisy signal (left) shows a slight sinusoidal
trend that may not be noticed at first.

LINEAR CHIRP SIGNAL WITH NOISE Absolute Values 01 Cn,b CoeNiclents for a = 1 2345 ..

300

6'
5<
53
49
45

4'.3'
Jj!33

~29
25

2'
"D
9
5,

50 100 150 200
time (or space) b

250

Figure 7.1-1 Linear chirp signal with noise added. The CWT indicates both the time and
frequency characteristics of this signal. The excellent results shown here by using a Db20 wav
elet also gives an indication of the general shape of the signal.
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As we have seen in the above eXalllple and in earlier chapters, the CWT pro
vides an excellent overview of the signal. It allows us to identify transient
events and to show the time, the frequency, and the general shape of the
event (by comparing the CWTs obtained by using different wavelets). We
have complete control over the scales with the ability to show every possible
stretching and sliding ofthe wavelet as it is correlated with the signal.

Because the wavelets used in the CWT are not required to COnfOl'lll to the
stringent requirelllents of those used in the DWT (orthogonality, alias can
cellations, etc.) we can "invent" our own wavelet. For example, Figure 7.1-2
shows a "fake" wavelet used with a sinusoid "Split Sine" signal (discussed in
more detail later) that doubles its frequency at time = 128. The CWT using
this home-Illade "wavelet" clearly shows the frequency characteristics of
both halves of the signal.

The CWT is excellent for Signal or Image identification when the form ofthe
desired signal is known. It can correlate a signal that has been shifted in tillle
with the many shifted and stretched wavelets used in the CWT correlations.
This can come in handy with Doppler shifts, delays, slew, chirping and other
kinelllatic behavior. For example, we could make a "mother" wavelet that
replicates the GPS signal we seek. Because of the orbital kinematics of the
satellites the received signal will have noise, Doppler, delay, etc. Using the
CWT algorithms we should identify the known signal at a particular shifting
in tillle and at a particular scale.

FAKE VVAVELET

o

-1 o';------o;o~.5;c--~--L-____'.

20",..'""''"'''"111"1.......,..,..
19
·'8
"7
"6
15
"4
13

·T.\"12

~~~
l>! ~

~
~
~
1

Figure 7.1-2 Arbitrary hand-crafted non-standard "fake" wavelet consisting of one cycle of a
sine wave. CWT display of a "split sine" signal that changes frequency halfway through is de
picted to show that the "fake" wavelet can be used (at least for a CWT).
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One disodvantage of the CWT is that it doesn't have a viable inverse trans
form. We often want to transform, lllanipulate the data, then take an in
verse tl'anSfOl'lll. For example, the FFT can identify a GO-Hz "hum" but we
might want to do more than locate it-we might want to filter it out in the
frequency domain and then take the inverse FFT to produce a "clean" signal.

In the theoretical world of continuous wavelets an inverse CWT is possible.
In practice, however, this is probably not a feasible option*. In other words, it
is very easy to do the analysis, but hard to do the synthesis of signals and im
ages. You can "see it clearly but not do nluch with it". The tasks of COlllpres
sion and denoising are thus better left to the Discrete Wavelet Transforms.

Another disadvantage to the CWT is that it is extremely redundant and can
produce trelllendous alllOunts of data. Every possible scale and time is ana·
lyzed. This is where the CWT gets the name Continuous-for although we
are working with discrete data and discrete wavelet filters, this is as close to
a "continuous" evaluation as we can get with digital cOlllputers! In other
words, the analyzing wavelet is shifted smoothly over the full domain of the
analyzed function for every possible scale.

In real-world problenls with lllany scales one wonders if it is really necessary
to have, for exalllple, a correlation of Inany thousands of data points with a
wavelet stretched to, say, 1000 points followed inlluediately by a correlation
by the same wavelet stretched to 1001 points. In other words, is there much
information to be gained by correlations with ahnost identical stretched wav
elets? It is desirable and intuitively feasible to reduce the redundancy.

The Discrete Wavelet Transforms (DWT) use only those scales that are a
power of 2 (radix 2). Thus the DWTs use what we would call a2, a4, as, a1G,
etc. in CWT terminology and refer to them as levels 1, 2, 3, 4, etc in DWT
terminology In equation form level = log2(scale). For eXalllple, a scale of a
= 32 becomes level 5. Thus we see another advantage of the DWT over the
CWT in being able to substantially reduce the amount of data.

When using a DWT for compression, denoising, etc. it is still a good idea to do
a CWT first as a "sanity check" and to get an initial "feel" for the data. t If the
amount of data is very large, the CWT can be specified in software to pro
duce a subset of all the scales---every third 01' every tenth scale for example.

• An Inverse CWT is a IIIGny-to-one operation. MATLAB does not cUlTently have an "ICWT" routine. One
method requires performing a Discrete Wavelet Transform first, which defeats the pmpose.
t The author likes to include a CWT as one of the displays for the DWT.
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7.2 Stretching the Wavelet-The Undecimated
Discrete Wavelet Transform

Before proceeding, it is a good idea to talk about the nomenclature. This first
type of Discrete Wavelet Transform has many qualifiers-Undecimated, Re
dundant, Stationm:y, Quasi-Continuous, Translation Invariant, Shift In
variant, Algorithme it TrOllS and others. We will see why these qualifiers
might apply as we proceed. The Conventional DWT we will look at in the
next section is 11101'8 complicated than the UDWT and includes dOWnSalllpling

by 2 or "decimation by 2". A single-level UDWT and Conventional DWT are
cOlupal'ed in Figure 7.2-1.

We lllentioned in Chapter One that downsaillpling by 2 Ineans removing
every other data point. For eXalllple, the sequence "1 2 3 4 5 6" becOllles "1 3
5" or "2 4 6" depending upon choosing odd or evens. Choosing to throwaway
the even tilHes will of course produce a different result than throwing away
the odd times. The UDWT does not throwaway data and is sometimes re
felTed to as time-invariant or shift invariant.

H'

L L'

-[[]- -l[]
Undecimated DWT Conventional DWT

Figure 7.2-1 Comparison of the simple "undecimated" DWT at left with the Conventional
(traditional) DWT at right. H, H', Land L' are highpass and lowpass filters. Sand S' are the
signal before and after the transform. The circles with arrows represent downsampling by 2
("decimation by 2") and upsampling by 2.

One wonders then why the Conventional DWT is not called a "Decimated
DWT' or "Shift-Variant DWT and leave the descriptors off the simpler
UDWT.
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The lllain reason is that the Conventional DWT is in wider use A pastry 01'

soft drink is assumed to have sugar added unless it is specified to be "sugar
free". Thus if you wanted a Cola drink without sugar and without caffeine
you would have to use the longer nmne "Sugar-Free Caffeine-Free Cola" and
reserve the siulpler nallle "Cola" for a drink that contains both sugar and caf·
feine. Similarly, coffee is assumed to have caffeine unless specified as
"Decaf'*. Thus we aSSUllle the DWT to have decimation unless specified as
"undeciluated" or by one of the other llalnes.

In the UDWT we stretch ("dilate') the wavelet as we did in the CWT, but in
stead of every possible stretching ("scaling'), we stretch by factors of 2
("dyadically'). We slide ("shift" or "translate') the dyadically stretched wav
elet smoothly along the length of the signal as we did in the Continuous
Wavelet Transform. Figure 7.2-2 illustrates this method.

Figure 7.2-2 UDWT stretching and shifting pattern. Like the CWT, the wavelet is
stretched and slid smoothly across the entire length of the signal. Unh:ke the CWT, however, The
stretching is by factors of 2. The above sketches show the basic wavelet at top, the wavelet
stretched by 2 in the middle, and the same wavelet stretched by 4 at the bottom. The signal
remains the same at all 3 levels. These 3 levels shown here would correspond to the CWT at
scales 2, 4, and 8 and would be referred to as levels 1, 2, and 3.

Notice that the one-to-one correspondence allows for an Inverse UDWT. In
fact, the forward and inverse transforms are usually shown together. This is

• You would get funny looks from your waiu·ess if you ordered "Caffeinated Coffee".
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true for both the UDWT and the Conventional DWT. Further manipulations
of the transformed signal (compression, denoising, etc) are usually pel'
fonned between the forward and inverse transforllls (the vertical gray bar as
depicted at left in figure 7.2-3.

H'H

0--.--..-1

cDI Fu..th ...

decomposition
andlor
manipulations

L Al ~ L'

~--[lSJ
Undecimated DWT

Nyquist Frequency"

Al X Dl I
Fl'equency SpectI'um _

Figure 7.2-3 A single-level UDWT is shown at left. Land L' are the Lowpass decomposi
tion and reconstruction filters (we will also refer to them as "lad" and "lor". Hand H' are the
Highpass decomposition and reconstruction filters ("hid" and "hir"). Details and Approximation
coefficients are represented by cDl and cAl. Dl and Al are the final Details and Approxima
tion and combine to reproduce the signal. Notice how the signal bandwidth is divided into a
Lowpass and Highpass frequency band as shown at right. Because the filters are imperfect
there is a symmetrical overlap as depicted here.

The filters Land L' combine to make a Lowpass Halfband Filter (Pip in
wavelet terminology) Similarly Hand H' combine to make a Highpass Half·
band Filter (Php). Summing the results of the highpass and lowpass half·
band filters produces a constant in the frequency domain The final result, S',
is the same as the original signal, S, except for possible delay and/or a can·
stant of multiplication (depending upon the filters being scaled down or the
delay removed earlier).

Using the simple Haar filters we would have for this single-level UDWT

H = [-1 1], H' = [1 -1], L = [1 1] and L' = [1 1]

Php would be H*H' = [-1 2 -11 and Pip would be L*L' = [121]. Adding these
together we would have [04 01 leading to a perfect reconstruction of the sig·
nal, S, to within a delay (1) and a constant of multiplication (4).

Notice that cDI is the convolution ofthe signal with H ( [-11] ). This is the
same as the correlation of the signal with H' ( [1-1]). But this is exactly
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what we did in the first step of the CWT-correlating the signal with [I-I].
Thus cDI is identical with the CWT at scale = 2 for the Haar wavelet. In
CWT terminology the "wavelet filter" would be H'. Although we don't use the
other 3 filters in the CWT, L' is often referred to as the scaling function fil
ter as first introduced in Chapter One.

We next look at a 2-level UDWT as shown in Figure 7.2-4. Notice that we
have upsampled filters. We recall that upsampling and lowpass filtering is a
method of interpolation and that this is how we stretch the filters. If we look
in the oval dotted line we see that Land Lup function as a stretched filter.
For the Haar filters, for example, L would be [II] and the upsampled ver
sion of H (Hup) would be [-1 0 I].

Convolving L with Hup we obtain [-1-1 1 1] which is H ( [-11] ) stretched
by a factor of 2. Similarly we obtain stretched versions of L ( [1 1 1 I] ),
L' (also [1111] ) and H' ( [1 1 -1 -1] ). We recognize H' as the stretched
Haal' wavelet at scale = a = 4 f1'0111 our earlier CWT discussions. In fact, the
2nd-level Details coefficients, cD2, is the convolution of the signal with the
stretched H filter (in the oval)

stretched H = L*Hup = [-1 -1 1 1]

H cDI

~~
•

, . .....
H~pHup .... cD2, "Ill . •
~f

, .
cAl ,,

•,,-"L .... . .
-~

cA2

Lop Lup

H'
IiZJ DI

Al

Figure 7.2-4 A 2-1evel UDWT. We have the 4 filters as we did in the single-level UDWT.
We also have the upsampled versions of these filters. Within the dotted oval Land Hup COlll

bine to produce a stretched version of the decomposition highpass filter, H. Similarly Land Lup
produce a stretched version of L. In the synthesis or "IUDWT" half at right we have the lowpass
reconstruction filter L' combining with the upsampled versions of H' and L' (H'up and L'up) to
produce a stretched version of H' and L'. The coefficients are cDl, cD2 and cA2.

But this is the same as a correlation with the stretched H'
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stretched H' = H'up*L' = [1 1 -1 -1]

Thus cD2 in this 2-level UDWT is exactly the same as the CWT at scale = a
= 4. This is true not only for the Haar wavelet filters but for the Db4 and
many other filters. This is important because we can relate the UDWT to the
CWT in learning about these transforms. We will learn that the Conven
tional DWT can also be related to the CWT, but not in such a one-to-one
manner as with the UDWT.

At this point we can see the reason for another of the several nallles for the
UDWT. The a1gorithme a' trollS, SOllletillles called the a' trous transforlll is
French for "with holes"*. Upsampling the filters places zeros 01' "holes" in the
filters. Figure 7.2-5 shows a 3·1evel UDWT. We now see more "holes" (zeros)
as we twice upsample the filters. For the Haar wavelet filters then we would
have

L = [1 1], Lup [1 0 1]

Lupup = [1 0 0 0 1], Hupup [-10001]

H'

'1lJ]1l~
L

cAl ~al

cAl

H
LI--------./

,.-.jI.l.HJ_p C_D+l
l
I----...~I

cD2

L
JeD3, ,

, , L cA2 '
" un ~~

• - - - '" - cA3Lupup

I

I
\

Figure 7.2-5 A 3-1evel UDWT. This is similar to the 2-1evel UDWT but now we have up-
sampled versions of the upsampled filters as Lupup, L'upup, Hupup and H'upup.

Within the dotted oval we then have the convolution of 3 filters

Trousers (with holes, of course, for legs and waist) were wom by working-class males during the French revo
lution.
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twice-stretched H = Hupup*Lup*L = [-1 -1 -1 -1 1 1 1 1]

Notice that the on the right side of diagram we have

twice-stretched H'= H'upup*L'up*L=[l 1 1 1 -1 -1 -1 -1]

But this is the stretched filter at scale = a = 8 we saw in the CWT. Again,
the convolution ofthe signal with [-1-1-1 -1 1 1 1 1] is the same as the
correlation of the signal with [1 1 1 1-1-1-1-1]. This means that at cD3
we have exactly the saIlle result as a CWT at scale = a = 8.

Thus we can relate the UDWT to the CWT by noting that cDI (at the first
level) is the same as the CWT at scale = 2, cD2 is the same as the CWT at
scale = 4, and cD3 is the same as the CWT at scale = 8. We also note the
log2 relationship of the CWT scale number to the UDWT (or Conventional
DWT) level number (scale number = 2 A level number).

Looking again at Figure 7.2-5 we see that the coefficients cDl, cD2, cD3,
and cA3 are all approximately the same size as the signal. We will next look
at the more COllllllon method where these coefficients are sluallel' than the
signal. This is why the UDWT (or a' trous) is sometimes referred to as the
redundant Discrete Wavelet Transform or RDWT. It should be remembered,
however, that levels 1, 2, 3, 4, etc. in the UDWT can be compared to scales 2,
4, 8, 16, etc. in the CWT and thus this transforlll is not nearly as "redundanf'
as the CWT. Also "redundant" doesn't lllean any data is duplicated.

The UDWT is a very robust powerful transform and does not have to account
for aliasing, as does the Conventional (downsampled) DWT we will now
study. We will return to the UDWT later to demonstrate its capabilities.

7.3 Shrinking the Signal-The Conventional
Discrete Wavelet Transform

A fair question is: "Instead of stretching all the wavelet filters, could we leave
the filters alone and shrink the signal instead"? The answer is "Yes, if you
know what you are doing and are careful!" This is accomplished by down
sampling the signal, usually by a factor of 2 ("dyadic downsampling"). This is
also referred to as decimation by 2. In other words, by taking every other
sample (downsampling by 2) we are in effect "shrinking" the signal by a fac
tor of 2.
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To an experienced nsp engineer, the terlllS downsampling and decimation
or any other terlll referring to discarding all the odd 01' even data points in
the signal should also bring to mind the possibility of aliasing. We will pro
ceed to show how, if done correctly, the aliasing can be canceled out.

Figure 7.3-1 illustrates the concept of shrinking the signal while leaving the
wavelet (filter) unchanged. This the method used in the Conventional DWT
(usually called simply the DWT).

--1~--:~~?-+1
~t-

---+-
Figure 7.3-1 Conventional DWT method. Instead of stretching the wavelet (filter) like we did
in the CWT and UDWT we shrinh the signal instead by downsampling by 2. The above sketch
shows the original signal at top, the signal downsampled by 2 in the middle graph, and the
sallle signal downsampled by 4 at the bottom. In this transform the wavelet remains the same
at all 3 levels.

Like the Undecimated DWT (UDWT), we change the scales by factors of 2
also. We look only at scales 1, 2, 4, 8, 16 etc. and call thelu "level 1, 2, 3, 4, 5
etc.".

As the signal becomes half as long through downsampling, when we shift in
tilue ("translate") the wavelet forward by 1 point we are, in effect, advancing
by 2 points in the original signal.

Thus the Conventional DWT works with less data then the UDWT and far
less data than the CWT. Thus it is sometimes referred to as a Fast Wavelet
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Transform because these factors of 2 l'eluind one of the faluilial' radix 2 Fast
Fourier Transform.

JaJ'gon AleJ't: Radix 2 means powers of 2 such as 2, 4, 8, etc.

Like the UDWT, the one-to-one correspondence allows for an inverse DWT.
We have presented the single level DWT in Chapter One and also in the pre
vious section. We show here a 2-level Conventional DWT in Figure 7.3-2.

Reconstruction, Synthesis,
or Inverse D\VT

H cDl

~~

~{AI-+H
------(l)~ 1---{j}---<oflJ:l--*

L L
Decomposition, Analysis,
or Forward D\Vf

cAl'

H'
DI

Al

Figure 7.3-2 A 2-1evel Conventional DWT. Notice that only the basic 4 filters-L, L', H,
and H'-are used. Instead of stretched filters we downsample the signal as shown in the circles.
The Approximation and Detatils coefficients are given by cAl, cA2, cDl, and cD2. The final
Approxl:mation and Details are given by Al and Dl. Further manipulations such as compression
and denoising are done between the Forward and Inverse DWT as depicted in the vertical bar.

If a signal, S, were 10,000 points long, the first level Approximation Coeffi
cients (cAl) would be roughly 5000 points long due to downsampling by 2.
Similarly cD1 would be roughly 5000 points. Because of further downsam
pling the 2nd level Details Coefficients (cD2) would be roughly 2500 points
long as would cA2. Notice that if we were to sum cD1, cD2, and cAl we
would 2500 + 2500 + 5000 = 10,000 = original signal length (the sum
would be slightly greater due to the convolutions with the filters Hand L). In
other words, the computer storage required for the coefficients is roughly
the same as that required for the signal.
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It is tempting to think that with this decomposition that "the sum ofthe parts
is equal to the whole". This is not the case, however. We cannot Silllply add
the coefficients together but must first reconstruct them.

Figure 7.3-3 shows a functionally equivalent 2-level DWT. We have taken
the last 2 steps leading to Al (ref. Fig. 7.3-2) and drawn them as separate
paths. We are able to do this because of the Linear Time Invariant or LTI na
ture of these filter banks.

H
~l

H'

r IZI

H
[TI

~2

cAl

cA2
~

L

Figure 7.3-3 Functionally equivalent 2-1evel Conventional DWT. By replicating the upsalll
pIing by 2 and filtering by L' as depicted in the dotted oval, we are able to construct D2 and A2.
D2 and A2 can now be added to reproduce AI. Similarly, Al and Dl sum to reproduce the sig
nal. All 4 of these final Approximations and Details are now approximately the same length as
the original signal. (In practice we trim these final Details and Approximations to the exact
length of the signal so they can add directly.)

We can modify the coefficients or the final Details and Approximations for
denoising, compression, etc. We showed eXalllples in Chapter One of modi
fying the final results and in Chapter Four of modifying the coefficients.

It is important to understand that the Conventional DWT guarantees com
plete alias cancellation and perfect reconstruction of the signal (to within a
possible delay and multiplication constant) only when we do not modify the
coefficients 01' fina/results! :rvIodifications must be made carefully to lllini
mize the effects of aliasing.
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\¥hen we COlllpl'eSS or de-noise the signal we do not wish to have our origi
nal signal back and thus perfect reconstruction is not the goal-we willingly
discard part of the data. Where engineers get into trouble is in not realizing
that in doing so they are also discarding part ofthe alias cancellation!

It turns out that when we keep large values and discard small values (as is
often done in COlllpl'ession) we have a luinimal impact on the alias cancella
tion capability. When we discard zeros we have no adverse impact on alias
cancellation. We will talk 11101'8 about alias cancellation and delllOnstrate this
concept in both the time and frequency domains later.

The frequency allocation chart for the 2-level DWT system (Fig. 7.3-3, above)
is the same as that for the 2-level UDWT and is shown here in Figure 7.3-4.

-.t".~...I:__ .. S ~; A2 t-;;-2--X-----:---~
FREQUENCY ----.

Figure 7.3-4 Frequency allocation of the 2-1evel Conventional DWT (and of the 2-1evel
UDWT). Notice how A2 and D2 combine to reconstruct AI. Al and Dl then can be combined to
reconstruct the signal. Note the overlaps in the various subbands due to non-ideal filtering.

This figure is a simplification, of course, for tutorial purposes. There are 2
caveats that should be addressed: First, the transition bands shown above
can be llluch wider, as we saw in Chapter Six for the Haar wavelet. Second,
there may be aliasing present in A2, for example, and although it will be can
celed by the addition of D2 it may not lie in the frequency bandwidth de
picted. Note that for the Undecimated DWTwe have the first but not the 2nd
of these warnings. In other words, with no decilllation we have no aliasing
problems.

There are 2 further questions that must be addressed before proceeding with
the Conventional DWT and its variations: The first question would be "Why
use the Conventional DWT at all when the Undecimated DWT has no alias
ing concerns.
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In fact, this software is available under the nallle Stationary Wavelet Trans
form or (SWT): Furthermore, the UDWT is time-invariant (or shift invari
ant) and we don't have to worry about whether to discard the odd 01' even
points. This first question takes on extra relevance as we glance again at
Figure 7.3-3 and notice that A2, D2, AI, and DI have all been built up (then
trimmed slightly) to be the same length as the original signal. Thus the ad
vantage of saving storage space would be nullified. This is a correct aSSUlllp

tion if we actually use these final results. In this case it luay be safer to use
the UDWT.

The answer to this first question is that we lllay be able to perform compres
sion and/or de-noising lllOdifying only the coefficients in such as way that we
have luinimal or zero aliasing (as is done in JPEG compression). Figure 7.3-2
showed the diagram for a Conventional DWT that produces only Al and DI
as finall'esults to be added. This does not require as much cOluputation and
storage. In fact, with the storage requirements for all the coefficients being
about the SaIue as the original signal we can perfol'lu in-place storage. If we
can (safely and correctly) use only the coefficients for compression and/or
denoising this can add up to a significant increase in speed and saving of
storage resources for a multiple level transfol'lu.

The 2nd question, "Why not just use Finite Impulse Response (FIR) filters
like we do in conventional DSP?", also deserves consideration. Looking again
at Figure 7.3-4 we know there are already excellent lowpass, bandpass, and
highpass digital filters to apportion the bandwidths as desired.

The answer to this 2nd question is that the wavelet filters have the ability to
discriluinate in both tilue and frequency. In other words, they not only have
a limited bandwidth but they have a limited time-interval. Thus wavelets are
a powerful method to examine and work with signals that also start and stop
and have a limited bandwidth (transient signals).

An example was shown in Chapter One of how wavelets can be used to de
feat a chirp jammer. We reproduce an excerpt here as shown below in Fig
ure 7.3-5.

Thus the name Stationary Wavelet Transfonnjoins the many other descriptors of the simpler form including
Ulldechliated DWT, Redunda1lt DWT, Tillle-I1Ivaria1lt DWT, Shijr-I1Ivarianr DWT, the a' trollS DWT
(because of the "holes") and quasi-conti1ll/olls DWT (because of the smooth shifting of the stretched wavelets
across the undecimated signal as is done in the CWT).
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Figure 7.3-5 A signal embedded in 80 dB of noise is decomposed with a multi-level DWT
using 20-point Daubechies wavelet filters (Db20). The 4th level final result, D4, is shown at left.
The noise completely obstructs the signal for times less than 2000 as shown. With wavelet fil
ters, however, we can selectively threshold out the very large values and keep the remnants of
the signal as shown at right.

Using an automated tillIe-dependant thresholding lllethod we can selectively
threshold out noise for any desired time interval. In this example we set the
noisy portions of Dl, D2, D3, D4 (shown here), D5, etc. to zero at the appro
priate time intervals and keep only the viable portions of the signal. We re
constructed the signal from these selectively-filtered remnants at different
tiules and were able to successfully extract the signal from the noise using
wavelet technology. This would not have been possible using conventional
filtering methods.

7.4 Relating the Conventional DWT to the
Continuous Wavelet Transform

In Section 7.2 we saw that the UDWT had a very direct relationship with the
CWT. The Details coefficients cDl, cD2, and cD3 (ref. Fig. 7.2-5) are exactly
the same as the CWT results at scales 1, 2, and 3. There is also a somewhat
direct relationship of the Conventional DWT to the CWT. We take another
look at the 3-level (decimated) DWT as shown in Figure 7.4-1.
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H'
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Figure 7.4-1 A 3-1evel Conventional DWT. The right half is drawn to produce the final Ap
proximations and Details. Large arrows #1, #2, and #3 indicate points at which the results can
be compared to those of a CWT.

At arrow #1 the signal has been convolved with H or, equivalently, corre
lated with H'. For the Haar wavelet filters this is exactly the same as the reo
suIts from the CWT at scale = 2. It is also the same at this point as the
UDWT results. At arrow #2 the results are not the same as the CWT at scale
= 4. However they are the same if we were to downsample the CWT results.
At arrow #3 the results are the Sallle as if we were to twice downsample the
CWT results at scale = 8.

The cOlllparison is valid for wavelets other than Haal'. For example, using
the Db4 wavelet filters, arrows #1, #2, and #3 on the DWT (Fig. 7.4-1) corre
spond to scales on the CWT of "2.5",5, and 10 (when downsampled).

Thus we see that the CWT, the UDWT and the Conventional (decimated)
DWT are related in that they use comparison (correlations) of the signal with
the wavelet filters. Furtherlllore we have seen that these comparisons are
related to each other in the 3 Inaj01' types of wavelet transforms. This is not a
surprising result---{;onventional DSP filtering convolves the signal with a fil·
tel' and this can also be viewed as a correlation or comparison with the
flipped version ofthe filter:

. Strictly speaking, a robust cross correlation zero-pads the vectors to the same size. For example the convolu
tion of a = [1 2J with b = [34 SJ is [3 10 13 10J while the cross correlation of the flipped version of
a ([21/) with b is [.f 10 13 10 OJ. Ignoring leading or trailing zeros, however, the above statement still holds.
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7.5 Decomposing All the Frequencies-The
Wavelet Packet Transform

In both the Conventional and the Undecimated DWT we have decomposed
the signal into Details and Appl'oxilllations. In lllulti-level tl'ansfol'lns we
have decomposed the Approximations but have not performed any further
decompositions of the Details. Figure 7.5-1 shows the bandwidths for the 3
level Conventional DWT.

s
Al

Dl

Nyquist or
Folding

Frequency

Figure 7.5-1 Frequency allocation for a 3-1evel Conventional DWT (or a UDWT). Imperfect
filtering is indicated in this sketch by the overlapping transition bands.

In many applications we may be interested in both the higher and the lower
frequencies. One of the strengths of wavelets is to provide a method to selec
tively remove specific unwanted frequencies for a specified period of time. In
audio and speech processing the highest frequencies usually represent noise
and we often want to relllOve thenl. In image processing we are often more
interested in the features of the ilnage than in the high-frequency "haze".
This is the rationale for decOlnposing only the lower-frequency Approxima
tions. Thus we see the wider sub-bands as shown above (Fig. 7.5-1). In other
applications, however, we Inay be more interested in the high or the Iniddle
frequencies. For these application we use the Wavelet Packet Transform
(WPT).

The WPT then is a variation of the DWT (or UDWT) that performs decompo
sition of both the Approximations and the Details. Figure 7.5-2 shows a 2
level WPT based on the Conventional (decimated) DWT.
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cDD2H

~
CDl

cAD2

------(l)-
L

Decomposition, Analysis,
or Forward 'VPT

Reconstruction, Synthesis,
or Inverse '''PT

Figure 7.5-2 A 2-1evel (decimated) Wavelet Packet Transform. Both the high and the low
frequencies are decomposed and then later reconstructed. We use the sallle 4 basic filters as in
the DWT. Note that we have 4 sets of coefficients.

Figure 7.5-3 shows the equivalent diagram with paths drawn separately to
reconstruct all the final Details and Approximations.

, ,
H H' , H' ,

cDD2 , ,

H
;+\bQ ~L D2

cDl ,
Dl
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~ I 1

H' I r
I ~

cDA2 H' I

~
,
.'1.2,

( Al
\ H'cAA2 ,
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Figure 7.5-3 The 2-1evel (decimated) Wavelet Packet Transform redrawn (dotted oval) to
produce the final Details and Approximations.

© 2009 Space & Signals Technologies LLC, All Rights R.eserved. www.ConceptualWavelets.com



Chapter 7 - Comparison of the Major Types of Wavelet Transforms 139

The final results are trimmed to signal length and then can be added to
gether. In the DWT we had D2 + A2 = Al with DI by itself. Here we have
AA2 and DA2 adding together to produce Al while AD2 and DD2 produce
Dl. These final results (DA2, AI, etc.) are sometime referred to as nodes'
Figure 7.5-4 shows the frequency sub-bands for a 3-level WPT.

t
S

Al Dl

AA2 DA2 AD2 AD2

I. :"l"vquist
FI'~qll('nry

AAA' DAAJ ADA3 DDA3 AADJ DADJ AADJ DDDJ

/
FREQUENCY ----.

Figure 7.5-4 Frequency allocation for a 3-1evel WPT. Note that the sub-bands of frequency
shown for level 3 here are all the same size. Imperfect filtering is indicated by the non-vertical
transition bands between the frequency bands in this sketch.

We can see from the above figures that the signal, S, can be decomposed and
reconstructed a number of ways. For exaluple, we could use nodes AAA3,
DAA3, DA2, and DI (AAA3 + DAA3 = AA2, DA2 + "AA2" = AI, DI + "AI" =
S). Wavelet packet software gives you a choice the nodes. We will talk later
about "best basis" routines that use entropy and cost functions to help choose
the optimulll nodes.

Before leaving the Wavelet Packet Transform it is interesting to see what
would happen if we switched the right and left halves of the transform as
shown in Figure 7.5-5. This is a lllethod used in tl'ansmllltiplexel's.t

'This same terminology ofpackets and nodes is found in packet sWitching, a conullunications scheme (and pre
cursor to the modern intemet) in which packets (discrete blocks of data) are routed between 1Iodes over data
links shared with other traffic.
t Transnmltiplexer engineers were surprised to see their familiar filter banks used in wavelet technology.
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SIGl~}H'
H'

--IlJ

SIG 2-tG)
I'

SIG3JH'
-o(f)-oiiJ
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51G4
C

TRANS=
MULTIPLEX

SIGNAL

",~~SIGI

~SIG2
L

H
~SIG3

L-oQl{-o(j)" SIG4
L

Figure 7.5-5 A 2-1evel translllultiplexer diagram. Four signals are input and then combined
into a single path. The vertical gray bar here represents a space link or other single path. At the
receiver, the transmultiplexed signal is de-multiplexed into the original 4 signals. This is a ru
dimentary form of a Frequency Division Multiple Access (FDMA) scheme.

7.6 Summary

In this chapter we explored and compared the 3 major types of wavelet
transforms-the Continuous Wavelet Transform (CWT), the Undecimated
Discrete Wavelet Transform (UDWT), and the Conventional (decimated) Dis
crete Wavelet Transform (DWT). We also looked briefly at the Wavelet
Packet Transform (WPT) which is a variation of the DWT or UDWT which
decomposes both the low and high frequencies.

We looked at the strengths of each of these major types of transforms and
indicated the general types of applications of each. We also indicated vulner
abilities which must not be ignored such as aliasing and tinle-variance in the
Conventional (decimated) DWT, the lack of inverse capability in the CWT
and possibly problematic storage space requirements in the UDWT.

We were able to COlllpal'e and relate each type of transform to the others and
in doing so discovered that we are still comparing data (original signal 01'

downsampled) with the various wavelet filters (basic or stretched).

We now proceed to look in 11101'e detail at the Perfect Heconstruction
Quadrature Minor Filters (PRQMF) that combine to build the foundation of
the Discrete Wavelet Transforms-the Halfband Filter.
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CHAPTER

8
PRQMF and Halfband Filters and
How They Are Related

In previous chapters we have introduced the decomposition and reconstruction high
pass and lowpass wavelet filters (L, L', Hand H') and demonstrated how they are llsed
in the major types of wavelet transforms. We have shown how to either stretch the fil
ters 01' how to (careflllly) shrink the signal instead. We have also looked at some of the
general strengths and weahnesses of the various filter banhs that comprise these trans
forms.

We will now look in more detail at the Perfect Reconstruction Qlladratllre Mirror Fil
ters (PRQMF) and how the variolls permlltations of this type of filter relate to each
other. Then we will show how the Halfband Filters-the very fOllndation of discrete
wavelet transforms---£an be factored into these PRQMFs.

We will explore the concept of orthogonality and discover how a signal can be effi
ciently represented by orthogonal wavelets (filters) giving llS a viable basis for DWTs

Finally, we will see how the Halfband Filters can be factored a different way into 2 sets
of llneqllallength filters having limited interrelationships and modified orthogonal
ity-bllt with perfect symmetry-the biorthogonal wavelets.

8.1 Perfect Reconstruction Quadrature Mirror
Filters and their Inter-Relationships

The Haar filters, the Db4 filters, and many others we will study have the ca
pability for perfect reconstruction if used correctly in a UDWT, a conven·
tional DWT, or a Wavelet Packet Transform. We have demonstrated this ca
pability in our earlier walk-throughs of the DWT and UDWT. This is where
the Perfect Reconstruction ("PR") in PRQMF comes from.

The "M" in PRQMF indicates that these filters are mirror images of each
other. Figure 8.1-1 sketches the frequency characteristics of the simple Haar
filters. The lowpass filters (L and L') are shown at left and the highpass fil
ters (H and H') are shown at right. If we were to flip horizontally either filter
about a point 1/2 of Nyquist frequency they would be identical to the other.
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The "Q" in PHQMF comes from using DSP terminology of 2rr radians in the
unit circle. Thus Nyquist frequency can be called 2rr/2 (instead of rr). With this
naming convention half the Nyquist frequency would then be 2rr/4 (instead
of rr/2) indicating one fourth ofthe unit circle. Thus the name "Quadrature".

2rc/2
(folding or

Nyquist
frequency)

I_Lor_L'--+--1-~----,i
o 2rc/4

(DC) (Quadrature
frequency)

I ~~:Ioo-----:L ! HorH' i
o 2rc/4 2rc/2

(DC) (Quadrature (folding or
frequency) Nyquist

frequency)

Figure 8.1-1 Rough sketch of the frequency response of the Haar PRQMF filters. Notice
that these filters are the mirror image of each other and that if either filter were rotated about a
point 1/2 of Nyquist (rr/2 or 2rr/4) they would replicate the other filter.

In order to see the relationship ofthe filters L, L', Hand H' to each other we
need to look at the Db4 filters rather than the simpler Haar filters.' The basic
Db4 filters are again

L lod [-0.1294 0.2241 0.8365 0.4830]
L' lor [ 0.4830 0.8365 0.2241 -0.1294]
H hid [-0.4830 0.8365 -0.2241 -0.1294]
H' hir [-0.1294 -0.2241 0.8365 -0.4830]

L, L' Hand H' all use the same 4 numbers but in different sequence and
signs. Figure 8.1-2 shows the 4 basic Db4 filters and how they relate to each
other.

We remember that all these values lllay be "pre-divided" by a constant such
as 2 or sqrt(2) to avoid having to divide the reconstructed signal (S') at the
end. Dividing by sqrt(2) we would have

L lod [-0.0915 0.1585 0.5915 0.3415]
L' lor [ 0.3415 0.5915 0.1585 -0.0915]
H hid [-0.3415 0.5915 -0.1585 -0.0915]
H' hir [-0.0915 -0.1585 0.5915 -0.3415]

. Albert Einstein said things should be made as simple as possible, but no simpler.
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H
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HI

.--.hHighPassb FLIP Reconsu". "hir"

>< ALTERNATE SIGNS
ALTERl\'ATE SIGNS At'ID FLIP

r <=> ~
J 1FLIP LowPass 1

Reconstruction ..
or "lor"

r

H
ALTER.t~ATESIGNS

AN~ FLIP1L
LowPass

Decomposition 6
or "lod"

HighPass
Decomposition1

or "hid"

Figure 8.1-2 The four basic Db4 filters and their relationship to each other as seen in the
time domain. H' is sometimes called "the wavelet filter" and L' "the scaling function filter".

The 4 basic numbers for the Db4 are not as arbitrary as they first appear.
Using the sequence for L' or lor (the "wavelet filter") we have

(Ha) /4b, (3+a) /4b, (3-a) /4b, - (l-a) /4b

Where a = sqrt(3) and b = sqrt(2). We will revisit these numbers soon.

The simpler Haar filters also obey this same relationship but it is harder to
see. Again for the Haar wavelet filters we have

L
L'
H
H'

lod
lor
hid
hir

[1 1]

[1 1]
[-1 1]
[ 1 -1]

With the Haar wavelets, for example, L' is still the flipped version of L but
the relationship is not as obvious as with the Db4 Land L' filters.

Thus, like the Haar filters, all 4 Db4 filters use the same numbers. Only the
signs and the positions change. We can also see more clearly now the con·
volution/correlation relationships in the discrete wavelet transforms. For ex
alnple, we can see that the convolution of the signal, S, by L is the saIne as
the correlation with flipped version, L'. A l-level UDWT and a conventional
DWT are redrawn below in Figure. 8.1-3.
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L L'

-~CD~ -CD-I[]
Conventional DWTUndecimated DWT

Forward DWT
or --analysis"
portlOll

Inverse DWT
or "synthesis"
portIOn

Figure 8.1-3
DWT.

The four basic Db4 filters as used in a single-level UDWT and Conventional

8.2 Perfect Reconstruction Begins with the
Halfband Filters

We look at a single-level UDWT as drawn in Figure 8.1-3 (left). At the end of
the lower (lowpass) path we have for Al

A1 = S*L*L' = S*(L*L')

0.4830]

-0.1294]0.2241

0.8365

0.8365

0.2241

which means we are convolving S with a filter built from Land L'. If we look
closer at this L*L' filter we will find it is a lowpass halfband filter. Using the
above filter values from the Db4 we can compute this combined filter. We
have for Land L' again

L lod [-0.1294

L' lor [0.4830

convolving the 2 we produce a lowpass halfband filter. Following popular
nallling convention we have Pip as

Plp = [-0.0625 o 0.5625 1 0.5625 -0.0625]

This process is depicted in Figure 8.2-1.
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*
Figure 8.2-1 Convolution of the 4-point lowpass decomposition filter (L) and the 4-point
lowpass reconstruction filter (L') produces the 7-point lowpass halfband filter PIp.

On the upper highpass path of the UDWT we have

D1 = S*H*H' = S*(H*H') = S*(Php)

where Php is the convolution of Hand H'. We then have (ref. Fig. 8.2-2)

Php = [0.0625 0

*

-0.5625 1 -0.5625 o 0.0625]

Figure 8.2-2 Convolution of the 4-point highpass decomposition filter (H) and the 4-point
highpass reconstruction filter (H') produces the 7-point highpass halfband filter Php.

We notice that even though none of the four 4-point wavelet filters are
symmetrical and thus do not have lineal' phase that both the halfband filters
they produce by convolution are syuulletl'ical and will have lineal' phase.

Ifwe add Pip and Php together we have

Plp + Php = [0 o o 2.0 o o 0]

This means that as we convolve the signal with Pip and Php and add the re
sults together to produce S' (ref. Fig. 8.1-3) we will have perfect reconstruc-
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tion to within a delay (3 tiule increments corresponding to the 3 zeros) and a
constant of multiplication (2.0 here). If we choose to "pre divide" the four Db4
filters by sqrt(2) before convolution and the subsequent addition of PIp and
Php' we then have simply a delayed delta function as shown in Figure 8.2-3.

J<LI'gon Alel·t: A delta function (as used in DSP), sometimes called a
K"onechel' delta, has a value of 1 at time = 0 and zero at all other
times. Mathematically it is represented as

I) (n) = 1 for n = 0; I) (n) = 0 for n " 0

where Il is the symbol for the Kronecker delta.

SUM OF Pfp AND Php

0.2

0.4

0.6

0.8

fIIGHPASS IWJBIJlD FIlTER ~)
5

•
3

2

1

o • •
1

2

3

lO\\,PASS f\/I.LfBA.~D FILTER ~I
;

•
,
,
,

• , ,
'. , , , ,

2 3 4 5 6

Figure 8.2-3 Addition of the lowpass halfband filter Pip and the highpass halfband filter
Php produces a delayed delta function (Kronecker delta).

We notice that the odd points in Php are reversed in sign from those of the
lowpass halfband filter. This is a familiar result to filter designers as

n

P (n)
hp

P (n) (-1)
1p

We see siluilar results for the Haal' filters.

P1p

Php

[1 1]*[1 1]

[-1 1] * [1 -1]

[1 2 1]

[-1 2 -1]

Some texts, including the MATLAB documentation, use 0.5 rather than 1.0 as the middle value in the half
band filter.

© 2009 Space & Signals Technologies LLC, All Rights R.eserved. www.ConceptuaIWavelets.com



Chapter 8 - PRQMF and Halfband Filters and How They Are Related 147

Plp + Php = [0 4 0]

Thus for the Haar filters we have a delay of 1 (one leading zero) and a con
stant of multiplication of 4. We will talk later about the role these halfband
filters play in the conventional DWT and how they apply in the "stretched"
filters ofthe multi-level UDWT.

It is not just coincidence that H, H' J Land L' combine in such a way to pro
duce the halfband filters that, in turn, produce perfect reconstruction (once
the delay and constant of multiplication have been removed). This property
of being able to cOlubine in this way is one of the several stringent require
ments of these foul' basic wavelet filters. We will soon discuss how such fil
ters are found.*

8.3 Properties of the Halfband Filters

We have just seen the lowpass and highpass filters in the time domain. We
now look at the frequency characteristics as depicted in Figure 8.3-1 for the
Db4 halfband filters.

Lowpass Halfband Filter (Pip)

0.5

O!----;!-;:-----;f-:----;!-;:---";P,;=--~o 0.2 0.4 0.6 0.8
Normalized frequency (Nyquist == 1)

Highpass Halfband Filter (Php)

0.5

o\:-~~:-----b~-+:---b---!o 0.2 0.4 0.6 0.8
Normalized frequency (Nyquist == 1}

Figure 8.3-1 Frequency characteristics of the Db4 lowpass halfband filter Pip and the
highpass halfband filter Php. Note the sylllmetry about the magnitude 0.5 and about the nor
malized frequency 0.5 (112 Nyquist or 11./2 on the unit circle).

As discussed earlier, we can easily verify that the convolution ofH and H' or Land L' produces a halfband
filter. "Deconvolution" or coming up with the filters is more difficult. We will soon see that there are biortho
gona! filters of different lengths that can also produce (by convolution) halfband filters that are identical to those
produced as described in this section.
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These halfband filters also have lineal' phase. Recall that the 4-point Db4 fil
ters themselves have quadrature mirror syuulletl'y in the frequency domain
with their counterparts (H with H', L with L') but do not have symmetry in
the tiule dOlllain nor do they possess lineal' phase.

The delayed Kronecker delta function we obtained by summing the 7-point
halfband filters Pip and Php is given by

6(n-4) = 10 0 0 1 0 0 0]

The frequency and phase is shown in Figure 8.3-2. It is simply a constant
value for all frequencies. The phase is also lineal'*.

M..9f'~ude 01 S<.<I1 or l"""V"os.H~uHalfb_ Fi~ers

,,
················-r·················r················l·················t·················

,
i

················-r·················r················T·················1·················
o

o OA 0.6
NonnaIized Ireqoeflcy (Nyquist __ 1)

Phase (<ieg)oI &.on oILOWV"'" +Higlpass Halfband Fi~ers

"" r---~~----;,,----,-----,----r

'00 "::::::::::::::::1::::::::::: :::::1::::::....::::::::::::::...:::::::::::::::::::::::::::
-100 ••••••••••••••• ••••••••••

"" Ir---"i,.......;....".,--......--."".--~
Normalized frequency (Nyquist == 1)

Figure 8.3-2 Frequency and phase characteristics of the delayed Kronecker delta function.

Looking again at the end of a single-level UDWT (ref. Fig. 8.1-3), when we
add the lowpass and highpass paths together we can begin to see why we can
achieve perfect reconstruction. In other words we have just seen how the
lowpass and highpass filters combine to produce a Kronecker delta (albeit
possibly delayed and multiplied by a constant).

It then seems intuitively correct that if the signal, S, is multiplied by Php to
produce Dl and the same signal is multiplied by Pip to produce Al that Al +
Dl should reconstruct the signal. Mathematically we can express this (for a
Linear Tillle-Invariant 01' LTI system) as

Al+Dl = KxS*Plp + KxS*Php = KxS*(Plp+Php) Kxs*6 (n-4)

The phase of a Kronecker delta with no delay, b(n) = [1], is not only linear but constant at zero. In the fre
quency domain IIll1ltip~yil1g results by a delayed delta shifts the phase but leaves the magnitude unchanged.
This is of course the counterpart to the time domain where in cOllvolvillgthe signal with the delayed delta we
leave the vailles unchanged but introduce a delay in the signal.
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where K is the constant of multiplication and 8(n-4) represents the delayed
Kronecker delta for this example.

For multi-level UDWTs with stretched filters we can see the same pattern
for perfect reconstruction. Figure 8.3-3 shows a 2-level UDWT. Notice that
cAl' is supposed to be a perfect reconstruction (after removing the delay and
multiplication constant) of cAl. We will demonstrate this using the Haar fil
ters. We have again for the 4 basic filters

H = [ -1 1]

H'= [ 1 -1]

L = [ 1 1]

L'= [ 1 1]

with the "prime" indicating the reconstruction 01' synthesis filters

H'
Dt

H~p
lZl

cAl' At
---+

l!

Lup

cDt

cAl

cD2H"p
-+W------+lI-----tl1-l----...

H

s

Figure 8.3-3 2-1evel UDWT. We can achieve perfect reconstruction for cAl even with up
sampled filters (Hup, H'up, Lup, L'up). With cAl' = cAl we already know we can achieve per
fect reconstruction for S with the basic filters (H, H', L, V). Thus after removing delays and con
stants of multiplication (or pre-dividing the filters) we have S = S' and perfect reconstruction

For the upsampled versions of Haar filters we then have

Hup [ -1 0 1]

H'up 1 0 -1]

Lup 1 0 1]

L'up 1 0 1]
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And the filters produced would be

Hup*H'up [-1 0 2 0 -1]

Lup*L'up [1 0 2 0 1]

Summing the halfband filters we obtain

[ 0 0 4 0 0]

Thus we can achieve perfect reconstruction of cAl with the upsampled fil
ters. After removing the delay (2) and constant of multiplication (4) we have
cAl' = cAl. But this reduces our task of showing perfect reconstruction to
that of showing perfect reconstruction with a single-level UDWT (ref. Fig.
8.1-3) which we have just completed. Thus, although not a mathematical
proof, we have demonstrated that for the upsampled filters found in UDWTs

Hup*H'up + Lup*L'up = delayed Kronecker delta

(a result similar to the unstretched filters) and that we can achieve perfect
reconstruction for multi-level UDWTs.

For the Conventional DWT with downsampling and aliasing concerns we will
later delllonstl'ate alias cancellation in both the tinle and frequency dOlllains
and show how, if done correctly, we can also achieve perfect reconstruction.

8.4 "Reverse Engineering" Perfect Recon
struction to Produce the Basic Filters

We have just seen how halfband filters can combine to provide for perfect
reconstruction. We now "work backwards" to see how the halfband filters
are produced and, in turn, how the basic decomposition and reconstruction
filters are produced.

Rathel' than review the concepts of Digital Filter Design as found in conven
tional DSP, we will simply use existing software to produce halfband filters.
For example lVlATLAB has a linear-phase least-squares errol' luinilllization
Finite Impulse Response (FIR) filter design routine FIRLS.·

. Type "help fids" in MATLAB for more informatioll.
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We simply specify the magnitudes (0 to 1) we wish at specific frequencies (0
to Nyquist with Nyquist normalized to 1). We also specify the size of filter we
desire (input as "N+l"). Thus for the 7-point lowpass halfband filter PIp we
have just studied N = 6. We want a magnitude (M) of 1 at very low frequen
cies (F) and magnitude zero at very high frequencies.

Thus we have, using .002 and 1- .002 = .998 for the low and high frequencies

M = [1 1 0 0], F = [0 0.002 0.998 1], N = 6

FIRLS(N,F,M) = -0.0312 0.0000
0.2812 0.0000 -0.0312

0.2812 0.5000

which is identical (to computer precision) to the convolution of the pre
divided Db4 Land L' filters. The highpass halfband filter can be produced
using FIRLS by simply specifying zero magnitudes at low frequencies and full
magnitude at the high frequencies. Thus we would have

M = [0 0 1 1J, F = [0 0.002 0.998 1], N

FIRLS(N,F,M) = 0.0312 -0.0000 -0.2812
-0.2812 -0.0000 0.0312

6

0.5000

which we could have also acquired by the DSP method of alternating signs of
the lowpass filter.

For the Haar we have for the lowpass halfband filter

M = [1 1 0 0], F = [0 0.002 0.998 1], N 2

FIRLS(N,F,M) = 0.2500 0.5000 0.2500

which is identical to the convolution of the pre-divided Haar lowpass filters

L = [0.5 0.5] and L' = L = [0.5 0.5].

Working backwards now from the halfband filters we know that the lowpass
halfband filter is the convolution of Land L'. For the Haar lowpass halfband
filter we have, using the pre-divided filters Land L' shown above

Plp = [0.25 0.5 0.25]

Even pretending we do not know the answer, it would still be very easy to
COllle up with two Haal' 2-point filters that, when convolved, produce this
Pip.
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The appendices go into lllOre detail about how to perf01'111 a process called
spectral factorization' to obtain the 4 basic filters but for now we will show
the general concept:.

A modified z-transfol"ln of the Haar lowpass halfband filter [0.25 0.5 0.25])
is the 2nd degree polynomial

0.25z2 + .5z + 0.25 = 0

Using the ROOTS software in MATLAB, for example, we obtain

ROOTS ([0.25 0.5 0.25]) = -1 -1

which Ineans the above equation can be factored into

K(z+1) (z+l) = 0

The constant K is necessary because the roots of [2 4 2], [25, 50, 25] or any
number of silUilal' "1-2-1" ratios are also·1 and·1. We can also split the con·
stant K into 2 parts so we have

K1(z+1)K2(z+1) = 0

Taking the inverse z tl'anSfOl'lll we have the convolution

(K1[1 1])*(K2[1 1]) = K1K2[1 2 1]

One of the requirements for a wavelet filter is that the sum of the points for
each of the lowpass filters (L and L') be a constant (usually lot). Thus we
have KI + KI = 1 and K2 + K2 = 1. Thus the constants KI and K2 are both
0.5 and we have for the basic 2-point filters

[0.5 0.5] and [0.5 0.5]

which we recognize as the pre-divided Haar Land L'.

For this quick review we will be dealing with several tenns that are thoroughly discussed and well explained
in DSP texts. "Understanding Digital Signal Processing" by Richard G. Lyons and "The Scientist Gnd Engi
lIeer's Guide to Digital Signal Processing" by Steven W. Smith me excellent examples of explaining the con
cepts as well as the equations. We will thus suspend the "Jargon Alerts" for a short time until we return to
wavelet tenuinology.
t Some texts use 2.0 as this constant, resulting in the more familiar L = L' = [1 1). In her book "flle World
According [0 Wavelets", Barbara Hubbard repeatedly uses the familiar latin expression "Caveat Emptor" (Let
the Buyer Beware) to highlight the different conventions used by different authors.
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We have then successfully "reverse engineered" the process to first find a 3·
point lowpass halfband filter and then to factor this filter into two 2-point fil
ters using lllOdel'n software. This is certainly overkill for the siulple Haal' fil·
tel'S but now that we understand the process let us proceed with a more dif·
ficult problem such as finding Land L' for the Db4 filters.

Before doing this we should make the observation that the lowpass halfband
filter is the convolution of Land L' in the tilue dOlllain. In the frequency do
main, however, the halfband filter is the product of the FFTs of Land L'. In
other words we factor the FFT of Pip into the FFTs of Land L'. This is why
this process is called spectral factorization in wavelet tel'lllinology.

Following the pattern used for the 3-point halfband filter, we recall we first
used FIRLS (or similar software) to design a 7-point halfband filter. We ob
tain as before

M = [1 1 0 0], F = [0 0.002 0.998 1], N = 6

FIRLS(N,F,M) = PIp
0.5000 0.2812

-0.0312 0.0000
0.0000 -0.0312

0.2812

Taking the z transform as we did with the Haar we can produce the 6th de
gree polynOlllial *

K(-0.0312z 6 + O.Ozs + 0.2812z' + 0.5z3 + 0.2812z2

+ O.Oz -0.0312) = 0

Using ROOTS or similar software we have (to computer precision)

ROOTS (PIp) = 3.7321 -1 -1 -1 -1 0.2679

Thus the polynomial can be factored into

K(z - 3.7321) (z+l) (z+1) (z+l) (z+1) (z - 0.2679)

We would like Land L' to both be 4 points in length to produce the 7-point
Pip. Thus we will split the above factors into two 3rd order polynomials (see
appendices for more mathematical details) and the constant K into Kl and
K2 as we did for the Haar. Using the first 3 factors of the above 6th degree
polynomial we have the 3rd degree polynOluial

• For simplicity here we multiply each side of the equation by l to produce this more conventional POlyrlO
mial. We note in passing that the first term is 2 + sqrt(3) and the last term is 2 - sqrt(3).
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K1 (z - 3.7321) (z+1) (z+l)

K1(lz 3 - 1.7321z2 - 6.4642 z - 3.7321)

and using the last 3 factors we have

K2 (z+1) (z+l) (z-O. 2679)

1.7321z2 + 0.4642 z - 0.2679)

Taking the inverse z-tl'anSfOl'lll we have the filters Land L' as

L K1[1 - 1.7321 - 6.4642 - 3.7321]

L' K2[1 + 1.7321 + 0.4642 - 0.2679]

Using the wavelet condition that the coefficients of Land L' each add up to
the constant 1.0 we easily obtain

K1 -0.0915

K2 0.3415

Substituting we now have our pre-divided Db4 filters Land L'

L [-0. 0915
L' = [ 0.3415

0.1585
0.5915

0.5915
0.1585

0.3415]
-0.0915]

We can easily verify this is correct by convolving Land L'

conv(L,Lprirne) = [-0.0312 0.0000
0.2812 0.0000 -0.0312] = Plp

0.2812 0.5000

which is our 7-point lowpass halfband filter. We use a similar method to de
termine Hand H'" Thus we see that we can start with the halfband filters
and determine the constituent wavelet filters f1'0111 them.

We can of course extend this process to longer filters. For exalllple an 11·
point lowpass halfband filter can be "factored" into two G-point filters giving
us the Daubechies Gor DbG Land L'. Similarly a 15-point lowpass halfband
filter can be factored into the 2 lowpass Db8 filters .

. We can use another wavelet requirement that the sum of the squares of the coefficients is equal to a constant.
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8.5 Orthogonal Vectors, Sinusoids, and Wav
elets

The dictionary definition of orthogonal is (1) intersecting 01' lying at right an
gles; (2) having a SUlll of products that is zero. Cartesian Coordinates are of
course an orthogonal systelll. Figure 8.5-1 first shows a distance vector (1, 1)
in tenus of the Cartesian vertical and horizontal unit basis vectors

Xunit = (1, 0) and Yunit = (0, 1)

These orthogonal basis vectors llleet both dictionary definitions. In addition
to being at right angles the dot prodnct (inner product) of these vectors is

(1 0)· (0 1) = 1.0 + 0.1 = 0 + 0 = 0

y Y' (non-orthogonal)

2
2

(I, 1.3 7)'
.'~ (2, 1.87)'

...
00"'--+----.,.-2--X

Figure 8.5-1 A distance vector (thin arrow at 1,1) can be specified in terms of orthogonal
unit basis vectors (shown at left as heavy arrows). Moving the vector in the X direction (dashed
arrow at 2,1) changes the X coordinate but not the Y coordinate. At right we have the sallle dis
tance vector but in a non-orthogonal system with X and Y' as non-orthogonal unit basis vectors.
Moving the vector in the X direction changes both the X and the Y' coordinates.

while the non-orthogonal basis vectors X and y' at the right will produce a
non-zero dot (inner) product. In other words, in a non-orthogonal system the
infol'lllation captured by one vector is NOT independent of the infol'lllation
captured by the other vector. Notice also that we are correlating these dis
tance vectors with the unit basis vectors.

JaJ'gon AleJ't: Basis vectors are the "'base" by which all other vectors
are specified. The Cartesian coordinates unit basis vectors (Xunit
and Yunit) form an QJ,thogonal basis by which other vectors can be
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described. Similarly, orthogonal sinnsoids or OJ·thogonal wavelet fil
ters form an orthogonal basis by which a signal can be efficiently
represented.

We recall that Sines and Cosines are also orthogonal bases for describing a
signal. The sine is 1/4 cycle or 90 degrees out of phase with the cosine and
the dot products are zero. Complex nUlubel's are thus of the f01'n1 cosine +
jsine. Figure 8.5-2 shows this graphically.

Signals can be specified by sets of basis functions, either by Fourier sinusoids
or by various wavelets. We recall that the wavelet tranSfOl'lll is a cross
correlation of a signal with a set of wavelets of various widths and shifts in
tillle. When we have orthogonal wavelets, the inforlnation captured by one
wavelet is independent ofthe information captured by another.

,
/'..-- cosine
,,

Time

1 2

Figure 8.5-2 Sine and Cosine are gO" (11./2 radians) out of phase. Notice that the sine is
symmetric in time intervals 1 and 2 while the cosine is anti-symmetric. Thus the products of the
sine and cosine in interval 2 cancel the products in interval 1 and we have orthogonality.

We now look at the Haar and Db4 wavelets and show how they constitute an
orthogonal basis. Figure 8.5-3 shows a trivial case where wavelets that do
not line up in tillle will produce a dot product of zero. There is no correlation
between the two and thus they are orthogonal.

Let's look at the basic Db4 filters for a llloment. Once again we have

L lod [-0.0915 0.1585 0.5915 0.3415]
L' lor [ 0.3415 0.5915 0.1585 -0.0915]
H hid [-0.3415 0.5915 -0.1585 -0.0915]
H' hir [-0.0915 -0.1585 0.5915 -0.3415]
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"~--TIME----.

"1-----
Figure 8.5-3 A trivial case where two Db4 wavelets (drawn as 7G6-point estimations of a
"continuous" Db4 wavelet) do not overlap at all in time and the dot product will be zero. Thus
these two wavelets are orthogonal. Recall that each wavelet correlates with the signal and thus
the information captured by the first wavelet filter will be independent of the information cap
tured by the second.

Taking the dot or inner product of Land H we have

sum(L. *H) = 3.4694e-18

or zero. *

Hemembering that the 4 basic filter points are 1/2 integer apart on the map
ping of the data points to the interval a to 3 (ref. Fig. 6.4-1), we are only in
terested in the dot product when we shift H by 2 points (i.e. a full integer
shift).

J(LJ'[lon Alept: The term Dyadic T"anslation is used in some texts to
indicate this shifting by 2 to line up at a whole integer apart.

We then have (after adding 2 trailing zeros to L)

Hshift
L

[ 0 0
[-0.0915

-0.3415 0.5915 -0.1585 -0.0915]
0.1585 0.5915 0.3415 (0) (0) ]

Taking the dot product we have

L"Hshift = {0+0-(.3415 x .5915)+(.5915 x .3415)+0+0) 0

MATLAB uses an asterisk for multiplication. The period following "L" allows for computations such as the
dot (inner) product. The terms are then summed resulting in zero to computer precision.
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A cross correlation is a series of dot products. Helllelllbel'ing that the ortho
gonality applies at full integer shifts (including a zero shift) we have

xcorr(L,H) = -0.1166 0 0.2416 o -0.1334 0 0.0084

in other words, Land H are integer orthogonal to each other. We also illus
trate this in the first graphic of Figure 8.5-4 below. In addition to Land H, L'
and H' are also (integer) orthogonal to each other.

All 4 basic filters are orthonormal to themselves (again at whole integer in
tervals). We show this for L' in the second graphic (Fig. 8.5-4). In passing,
we note that the cross correlation of L' with L' is the saIlle as the convolu
tion of L with L' and thus we see the lowpass halfband filter points. Note
also that as these 4-point Db4 filters are shifted by 2 or more whole integers
(in either direction) they must be shifted by 4 (112 integer) points. Thus they
do not line up at all and we revert to the trivial case orthogonality result of
zero.

""

",

CROSS CORRELATION OF L AND H CROSS CORRELAliON Of l..prime AND LprYne

(ORTHOGONALITY RESULTS ONLY AT 'M-IOLE INTEGERS)

,
, L
;

,
,-

~ ~ ,-

" •
I

•,
~, ~,

"
, ,

,
, LL L
,

I,

'1 n,

",

'Tr T, , ,,
"

,~,

(ORTHOGO~ITY RESULTS ONLY AT II>'HOLE INTEGERS)

Figure 8.5-4 The cross correlation of the lowpass decomposition filter (L or lod) and the
highpass decomposition filter (H or hid) is shown at left. When lined up in time they are or
thogonal. They are also orthogonal at integer shifts (-1, +1) as indicated by the arrows. The right
graph shows the cross correlation of L' and L' (autocorrelation). At integer shifts of -1 or +1 they
are orthogonal but when aligned they produce a constant and are thus orthonormal. Integer
shifts of 2 or more will produce zero due to alignment as can be seen in either graphic.

Jw-gon Alel·t: Orthonormal as nsed here means that when aligned
the filters produce a constant non-zero value. When shifted by a
whole integer (two 1/2 integer points for the basic Db4 filters) the
dot product is zero.
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We can also show this orthogonality for stretched filters. Figure 8.5-5 shows
the 7GG point estimation of the "continuous" wavelet function (built from the
4 points of H' or hir) mapped onto the interval a to 3. Another 766 trailing
zeros are appended for this delllonstl'ation. When we shift the wavelet by an
integer to the right (dotted line on left graph) and take the dot product with
the unshifted wavelet we obtain zero to computer precision. Thus the wav
elet function (estimation) is orthogonal to the integer-shifted version of it
self. Again, H' and L' are "integer orthonol'lual" to thelllselves.

When we stretch the wavelet by a factor of 2 to 1532 points (dotted line in
right graph) and take the dot product with the original unshifted 766 point
"wavelet" we again obtain zero to COlllputel' precision and we have ortho
gonality between the wavelet and the dyadically stretched version'.

DOT PRODUCT - 1 2687e 14

LOR AND LOR STRETCHED BY 2

-,

, )..
I . '

, ,- -Jj\I I

o~ !f- ': q-

--, -: \ r
',,\ ,, . , ..,

',;
'0 , , , ,

DOT PRODUCT - 1 0558e 11

LOR AND LOR OFFSET BY AN INTEGER

-,
.
", n

1,- I :
I ,, !-t
~'o~ --- '-:-' '\ y"

, '-\l
'~

'0 , , , , ,

Figure 8.5-5 The first graph shows that a stretched Db4 H' filter (766 point estimation) of
a "continuous" wavelet mapped onto the interval 0 to 3) and the same stretched filter offset by
an integer (mapped on the interval 1 to 4 as shown by the dotted line) have a dot product of zero
(to computer precision) and are thus orthogonal. The right graph shows that the same filter is
also orthogonal to a dyadically stretched version of itself (2 x 766 = 1532 points mapped on the
interval 0 to 6 as shown by the dotted line).

We obtain similar results for the other three basic Db4 filters (L, Hand H')
as we have demonstrated here for L'. They are orthonol'lnal to theulselves.
Further, the decomposition filters (L and H) and the reconstruction filters
(L' and H') are orthogonal. These relationships are depicted in Fig. 8.5-6.

These are impol1ant results when we recall that stretching and shifting of wavelets in the DWT is done by
factors of 2 thus creating a set of Ollhogonal wavelet filters or an "orthogonal basis".
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-J\ orthonormal -J\ ~ orthonormal

~.... .. .... ..

1L orthonormal 1L 4 orthonormal 4.... .. .... ..

-J\ orthogonal 1L ~ orthogonal 4.... .. .... ..
Figure 8.5-6 The orthogonality relationships between the 4-point Db4 filters. They are
drawn as 766 point estimations of "continuous" functions to show the shapes with the original 4
basic filter points superimposed. We have the same relationships for the Db6, Db8, and Db2
(Haar) filters.

The Haal' wavelet filters also have the Saine orthogonality and orthonormal
ity but in a more trivial sense. We recall that the foUl' basic 2-point Haar fil
ters are also 1/2 integer apart when mapped onto their time interval 0 to 1
(ref. Fig. 6.2-4). Thus an integer shift of any of these filters reduces them to
the trivial case where they are not lined up at alL For example we have for L

L"L = (1 1)" (1 1) = 2

L" Lshift = (1 1 (0) (0»" (0 0 1 1) = 0

And L is orthogonal (orthonormal) to itself. The orthogonality relationships
between different Haar filters are similar to those of the Db4. For example
using Land H we have

L"H = (1 1)" (-1 1) = 0

The shifted versions do not line up at all and this also produce zero.

The stretched Haar wavelet filter H'(Haar), like the Db4 stretched wavelet

filter H'(Db4), is also orthogonal to the unstretched version. We have (using
trailing zeros needed to compute the dot product)

H'"H'stretched = (1 -1 (0) (0) )"(1 1 -1 -1) = 0
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Thus we see the Saine orthogonality relationships between the Haal' filters
as we did between the Db4 filters. The Db6, Db8, and many other filters have
these same orthogonality relationships and are suitable for use in the UDWT
01' conventional DWT. Note the "cl'udelJ filters discussed earlier are suitable
for the CWT but lack the orthogonality required for use in the various dis
crete tranSfOl'llls.

Hemembering that the UDWT uses filters stretched by factor of 2 (dyadically)
and that the conventional DWT, in effect, dyadically shifts the wavelet as the
signal is dyadically dOWnSalllpled we can glilllpse the power of these or
thogonal wavelet filters. Just as a vector can be efficiently broken down into
Cartesian coordinates (X and Y), a signal can be efficiently broken down not
only into orthogonal sines and cosines using Fourier techniques, but also into
orthogonal wavelets in their various "dilations and translations" (stretching
and sliding). They are the "constituent wavelets" that comprise a signal (ref.
Fig. 1.6-1).

In other words, the wavelet techniques provide a multi-scale analysis of the
signal as a SUlll of orthogonal signals corresponding to different time scales,
allowing a kind of expedient tillle-scale analysis. These orthogonal wavelet
techniques are sometillles referred to as a fast wavelet transform because of
their efficiency representing the signal with the fewest possible stretched
and shifted wavelet. filters.

With orthogonal unit vectors as a basis, we were able to change the X coor
dinate without affecting the Y coordinate (ref. Fig. 8.5-1). With orthogonal
wavelets as a basis, we can de-noise or COlllpress signals or illlages by re
moving parts of the data in frequency and/or in time (or space) without af
fecting the rest of the data. We will show some examples ofthis later'.

Biorthogonal Filters-Another Way to
Factor the Halfband Filters

In his short courses and seminars the author demonstrates this concept by playing his "Fugal Bugle" along
with several other musical instnllnents in a rendition of Yankee Doodle-but with one of the several Middle C
notes played wrong (an easy task for him, but for this demonstration done on purpose). Denoising using Fourier
techniques gets rid of the wrong note but also all the other "C notes" at thatji-eqllellcy Denoising using time
series techniques gets rid of the wrong note but also all other notes at that particular .lillie. Denoising using
wavelet techniques, however, gets rid of the wrong note but leaves all the other notes untouched.
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The 7 point lowpass halfband filter can be created from the convolution of
the two 4-point basic Db4 Land L' filters. However, there are other filters
that would produce the same result. The 7-point Pip filter is again given by

Pip = [-0.0625 0.0000
0.0000 -0.0625]

0.5625 1.0000 0.5625

but these nUlllbers can be expressed in a simpler fashion as

Pip = [-1 0 9 16 9 0 -1]/16

Ignoring the 16 divisor for moment, it is easily vel'ifiable* that the convolu
tion of the 3- point filter [1 2 1] and the 5-point filter [-I 2 6 2 -I] also pro
duces [-I 0 9 16 9 0 -I]. In other words (including the divisor constants)

Pip = [1 2 1]/4 * [-1 2 6 2 -1]/4

and we could set

L [-1262-1]/4

L' [1 2 1]/4

Figure 8.6-1 shows this convolution ofthe 3-point and 5-point filters.

I_I,
3-point Lowpass
Reconstruction
Filter

5-point Lowpass
Decomposition
Filter

7-point Lowilass
Halfband Filter
(Pip)

Figure 8.6-1 Convolution of the 3-pt. lowpass reconstruction filter with the 5-pt. lowpass
decomposition filter produces the same 7 point lowpass halfband filter as the Db4 L and V.

We could also "factm" the highpass halfband filter

Php = [1 0 -9 16 -9 0 1]/16

. We leamed that convolving the 4-poillt Db4 filters Land L' also produced this simpler "[-1 09 1690 
1]/16" form but the 4 coefficients were in the forlll ±(c ±a)/4b with c being 1 or 3, a = sqrt(3) and b = sqrt(2).
The Db4 convolutional relationship is thus not as easy to see as that of the 3/5 biorthogonals.
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into Hand H' where

H [1 -2 1]/4

H' [12-621]/4

To distinguish these 3/5 biol'thogonal filters from the standard 4-point Db4
filters we will use the notation Hb, Hb', Lb, Lb'. The relationships of these
filters to each other is shown in Figure 8.6-2.

If we were to do this we would have no longer have the relationships be
tween the equal-length filters that we saw earlier (ref. Fig. 8.1-2). For ex
ample the 5-point lowpass reconstruction filter L'b is not simply the "flipped))
version of the lowpass decomposition filter Lb as we saw with the Db4 filters.
In using this 3/5 scheme we are looking at 2 distinct sets of filters--€ach with
one 3-point and one 5-point filter (and no luil'l'ol' images hel'e)-hence the
name biol'thogonal: These filter sets are interchangeable for the best analy
sis/synthesis pel'fol'lnance in applications such as illlage processing.

Hb Hb' Hb' = [ 1 2 -6 2 11/4

Y ~,~m,,,",j Hb = [ 1 -2 11/4
Lb [-1 2 6 2 -11/4=

X Lb' = [ 1 2 11/4

LbA Lb' ili
Hb*Hb'= Highpass H.B.
Lb*Lb'= Lowpass H.B.

Figure 8.6-2 Depiction of the 3/5 biorthogonal filters and their interrelationships. Notice
the conspicuous absence of the ability to change one filter to another by simply flipping the coef
ficients.

The filters are either 3 or 5 points long. However, by adding some leading or
trailing zeros we can lllake them all G points long and enhance the ortho
gonality relationships in the process. Specifically we have (with the original 3
01' 5 points underlined and again ignoring the divisor 4 for a moment)

This is analogous to our American Bi-Centennial celebration in 1976 that happened only after 200 years rather
than 100 years (the American Centennial was celebrated in 1876).
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Lb 0 -1 2 6 2 -1]

Lprimeb 0 0 1 2 1 0]

lib 0 1 -2 1 0 0]

Hprimeb 1 2 -6 2 1 0]

We look briefly at some of the orthogonality relationships of these equal
length zero-padded biorthogonal filters. We can examine the dot products at
various whole integer shifts ("dya.dic transla.tions') as we did in the last sec
tion by looking at the cross correlations.

Figure 8.6-3 shows at left the orthogonality (orthonormality) relationships
between the biorthogonallowpass decomposition filter Lb and the biortho
gonallowpass reconstruction filter L'b (both zero padded as shown above).
The right graph shows the orthonol"lnality between the highpass decomposi
tion filter, Hb, and the highpass reconstruction filter H'b.

CROSS CORRELATION OF lb AND '-I'rimeb CROSS CORRELATION OF Hb AND Hpfimeb

(ORTHOGONALITY RESULTS ONLY AT YoHOLE INTEGERS)

"
;

"

L~ L~;

"
.;

" 2 1 " 1 2
(ORTHOGONALITY RESULTS ONLY AT YoHOLE INTEGERS)

"
•,
"
"
" i 1 1 1•,
" j J,

2 1 " 1 2

Figure 8.6-3 The cross correlation of the b£orthogonal lowpass decomposition filter Lb and
the b£orthogonal lowpass reconstruction filter L'b is shown at left. The right graph shows the
cross correlation of the b£orthogonal highpass decomposition filter Hb and the biorthogonal
highpass reconstruction filter H'b. The arrows show that the dot product is zero at whole integer
shifts. When aligned, of course, we have a non-zero value for these orthonormal relationships.

We notice in the left graph above that we have produced the 7-point lowpass
halfband filter (with leading and trailing zeros and constants of multiplica
tion). This result is not surprising when we recall that because these bim
thogonal filters are symmetric in the time domain (ref. Fig. 8.6-2) that the
cross correlation is the Saine as the convolution and thus we have
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xcorr(Lb,Lprirneb) = conv(Lb,Lprirneb) = Plp

We have similar results with the (zero padded) 3-point Hb and the 5-point
H'b combining to form the highpass halfband filter Php (ref. Fig. 8.6-3,
right).

In other words, our ability to factor these 7-point halfband filters into the
convolution of 3 and 5 point filters (rather than two 4-point Db4 filters) gave
us these biorthogonal filters in the first place! Also, because of the sylllllletl'y
we have L"b and Lb being orthogonal (orthonormal) along with H'b and
Hb.

Where we had self-orthogonality with the four Db4 filters (L, L', H, and H')
we no longer have this with the biorthogonal filters. For example, the bior
thogonal filter Lb is neither orthogonal nor orthonormal with itself (other
than the trivial case where filters do not overlap at all in time). We have the
same lack of self-orthogonality with the other 3 filters (L'b, Hb, and H'b).

Using the leading and trailing zeros as shown above, we do have other or
thogonality relationships. Figure 8.6-4 shows full orthogonality between L'b
and Hb and also between Lb and H'b.

CROSS CORRELATION OF Hb AND lprimeb,
;
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Figure 8.6-4 The cross correlation of the b£orthogonal lowpass decomposition filter Lb and
the biorthogonal highpass reconstruction filter H'b is shown at left. The right graph shows the
cross correlation of the bl:orthogonal highpass decomposition filter Hb and the b£orthogonal low
pass reconstruction filter L'b. The arrows show that the dot product is zero when perfectly
aligned or at whole integer shifts.

Because these biorthogonal filters combine to produce the halfband filters
they also allow for perfect reconstruction. Their (bi) orthogonality also allows
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thenl to be "constituent wavelets" of the signal and to forlll an acceptable ba
sis to contain the infol'lnation found in the signal.

The reason that we go to this extra work and put up with the loss of some in
terrelationships and changes in orthogonality can be seen illllllediately by
simply looking at them-all 4 of the 3/5 biorthogonal filters have perfect
sYlllluetry in the tillle domain! This also means they have lineal' phase in the
frequency domain! SYlllmetry and linear phase are desirable in applications
such as Image Processing because hUluan vision is more tolerant to symmet
ric errors. Syllulletl'y is also handy for extending the boundaries of illlages.

As another exaulple, a 15-point halfband filter can be expressed as the con
volution of 2 S-point non-symmetric Daubechies filters (DbS) 01' it can be ex
pressed as the convolution of a sYlllllletric 7-point filter and a symmetric 9
point filter. This 7/9 filter set is of course called a biorthogonal 7/9 filter.
JPEG image compression uses 7/9 biorthogonal wavelet filters. The Federal
Bureau of Investigation also uses the 7/9 biorthogonal wavelet filters' for
compression of fingerprints.

A sketch of the 7/9 filters showing their orthogonality relationships (same
relationships as the 3/5 filters) is drawn below in Figure S.6-5.

~(9 pt orthonormal
filter) .. ~

llil(9 pt orthogonal
filter) .. ~

L'b
(7 pt
filter

Hb
(7 pt

filter)
orthonormal.. ..

orthogonal.. ~

H'b
(9 pt

filter)

Figure 8.6-5 The orthogonal relationships between the 7/9 biorthogonal filters (drawn as
estimations of "continuous" functions to show the shapes) are shown here. We have the same
relationships for the 3/5 biorthogonal filters discussed earlier.

• These 7/9 filters were chosen over the 8-point Db8 filters for image processing.
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8.7 Summary

In this chapter we explored each terlll of the expression Perfect Reconstruc
tion Quadrature Mirror Filter as used in wavelet transforllls and learned of
their close relationships to each other.

We explored the halfband filters that are created by the UDWT and DWT and
looked at some of the important properties of these filters. By looking at how
the lowpass and highpass halfband filters combine we also acquired some in
sights into how the highpass and lowpass paths of the Discrete Wavelet
Transforms add together to perfectly reconstruct the signal. We found this to
be true even for the upsampled filters used in the multi-level UDWT.

We went on to "reverse engineer" or factor the halfband filters to show how
the basic wavelet filters (H, H' J L, L') are derived. We used SOllle computer
software shortcuts' such as FIRLS and ROOTS to facilitate the process.

We explored the concept of orthogonality in wavelets and showed how a sig
nal can be represented very efficiently by orthogonal wavelet filters as a ba
sis in a silllilar lllanner as a vector can be represented very efficiently by the
orthogonal unit basis vectors of the fallliliar Cartesian Coordinate System.

We proceeded to show how these same highpass and lowpass halfband filters
can be factored into symmetric filters if we are willing to relax the require
ments for equal length, closer interrelationships, and some orthogonality.
We derived a 3/5 set of biorthogonal filters as an alternative to the 4-point
Db4 filters and introduced the 7/9 biorthogonal filters used in image proc
essing (again, because of their perfect synlllletry) as an alternative to the 8
point Db8 filters.

This chapter, especially the section on determining the basic 4 wavelet filters
from the 2 halfband filters, used more equations than usual (but not beyond
the high-school algebra level). One of the stated goals of this book is to intro
duce some key equations found in conventional wavelet literature after pro
viding an intuitive understanding of the concepts. We did this here with the
concept of spectral factorization and will do this again in subsequent chap
ters when we relate concepts such as alias cancellation to a few key equa-

Because computers are used to perform the various wavelet transforms it seems logical that computer software
can be used to perform the tasks of designing the Finite Impulse Response (FIR) halfband filters and of solving
for the roots in a polynomial. A rigorous treatment of these tasks, while interesting and important, falls outside
this book's mission statement ofuuderstanding wavelet concepts and is better left to conventional DSP texts.
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168 Conceptual Wavelcts in D,:gital Signal Proccssing

tions found in the wavelet literature. The appendices provide for a 11101'8

mathelllatical treatment of these concepts, but we will leave the rigorous
proofs to the lllany excellent mathematics-oriented wavelet textbooks avail·
able:

Having explored some of the remarkable properties of the basic filters such
as orthogonality (or biorthogonality) and their ability to combine to produce
lowpass and highpass halfband filters and thus achieve perfect reconstruc
tion, we now proceed to look at additional desirable properties found in the
various wavelets and the wavelet filters from which they are built.

. "It is with logic that one proves, it is with intuition that one invents"-Henry Poincare
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Highlighting Additional Properties by
using "Fake" Wavelets

We have lathed about many of the desirable application properties of wavelets in pre
vious chapters We learned about finite length or compact support and saw how this is
(ound in all the wavelets that are bu.ilt (rom the basic ((inite) (ilters. We also learned
earlier how to work. with the theoretically infinite crude wavelets by using only the
time interval that produces effectively non-zero valnes (effective support) and then u.s
ing only a finite number of these values corresponding to the equispaced points in that
time intervaL

In the last chapter we learned abortt perfect reconstrnction through the use of lowpass
and highpass halfband filters. We saw how to factor (de-convolve) these halfband fil.
tel'S into orthogonal wavelet filters which can represent great amounts of data in the
most compact fashion. We also discussed biortlwgonal wavelet filters that provide for
perfect symmetry and linear phase. We learned that these orthogonal or biorthogonal
filters are snitable for nse in the various Discrete Wavelet Transforms (UDWT, DWT,
WPT).

In this chapter we introduce a few more desirable qnalities of the various wavelets by
comparing them with arbitrary or 'jahe" wavelets to highlight these qualities. We show
how these qualities can also be used to find the 4 "magic numbers" of the Db4 filters.

9.1 Matching the Wavelet to the Signal and
the Concept of Regularity

One of the principle uses of Discrete Wavelet Transforms is for denoising.
This is accomplished in two general ways. The first is by correlating the finite
wavelet (filter) with the transient signal and then extracting it from the
noise. The other way is to correlate the wavelet with the transient noise and
then subtracting it from the signal. Thus, before looking in detail at the vari·
ous application properties and capabilities of the specific wavelets, we should
talk about choosing wavelets by matching their general shapes to that of the
signal (or noise). You may already be familiar with some of these techniques
from nsp and/or telecomlllunications as matched filtering.
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170 Conceptnal Wavelets in Digital Signal Processing

Fourier DSP techniques are about matching the signal to the sinusoids. We
can design a notch filter, for example, that will rem.ave a 60-Hz hum frol11 a
signal. If we are careful, we might even be able to use a brichwall (ilter
(discussed in a future appendix) to first take the FFT of the signal, then reo
move the unwanted frequency components, and finally to take the Inverse
FFT. If the signal or the noise we are interested in is stationm:y (constant
frequency) then we should stick with conventional Fourier DSP techniques.
In other words, the best wavelet would be a wave (sinusoid)!

Just as the Fourier sinusoid is the best "match" to a constant-frequency hum,
we obtain good results when we match the wavelet to the signal (or noise) of
interest. If the signal or noise is transient (starts then stops) wavelet tech·
nology is indicated.

We have learned that as the wavelet filters are stretched and shifted thus
they will (at some "dilation" and "translation"), be the same length and at the
same position as the signal or noise (ref. Fig. 1.6-2 as an example). The
strength of the correlation now depends on how well the wavelet shape
matches that of the transient signal or noise and some wavelets will match
better than others.

For example, if the signal or noise is a chirp then a wavelet such as a Db20
might be a good match. If the signal is binary in nature a binary-looking
wavelet such as the Haar might be the wavelet of choice. Figure 9.1-1 shows
these 2 wavelets with possible applications (based on similarity of shape).

Chirp Signal

II •
Db20 (Chirp) Wavelet

ml~L. ~
Binary Signal Haar (Binary) Wavelet

Figure 9.1-1 Choosing a wavelet that looks like the signal (or noise) is a good start. A 20
point Db20 wavelet filter would be a good starting point for a chirp signal as shown at left. A
Haar wavelet would be a good starting point for a binary signal. Wavelets are drawn here as
multiple point estimations of "continuous" wavelets. Tn the CWT and UDWT the wavelets filters
are stretched and begin to look like this. In the conventional DWT the signal is downsampled
instead but the principle of "matching" is still valid.
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With Wavelet Technology being a "child of the digital computer age", we can
often find the optimum wavelet by trying several candidate wavelets. In
wavelet software the cOlllllland to perforlll a CWT or DWT is often a single
line of code with the wavelet name as one of the input parameters. Evalua
tion a different wavelet is as easy as changing the wavelet name and exe·
cuting again. It is possible to evaluate lllany wavelets in a short time this
way.

We discussed earlier the possibility of crea.ting a customized wavelet (or tem
plate in matched filtering terminology) to match the transient waveform we
are looking for. We might know the pattern of a GPS signal, for example, but
with the slew, chirp, and other kinematic distortions arising from the relative
motion of the satellite and receiver the pattern may be shifted 01' stretched.
Using this customized "GPS wavelet" in a CWT we should be able to deter
mine the amount of stretching and shifting required for a good match and in
turn determine the kinematics.

We will now demonstrate this general process. Suppose we have another
"Split Sine": signal as shown in Figure 9.1-2. An FFT would tell us the (re
quencies but not the time when the signal changed frequencies. A likely can
didate for a custom wavelet to match this changing-frequency signal might
be one cycle of a sine wave. The CWT process would then stretch and shift
this customized 01' "fake" wavelet until it matched each of the 2 different si
nusoids in the split sine signal. We would expect to be able to see on the CWT
display the point in time where the frequency changed.

,

···
11

,

·
111 If,

···I "
, , ,

Figure 9.1-2 256-point Split Sine signaL The frequency increases by a factor of 4 halfway
through as is seen in the close-up at right near the halfway point (128).
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172 Conceptnal Wavelets in Digital Signal Processing

Figure 9.1-3 shows this "fake" wavelet first with 5 points and then with 9
points. Although not an established wavelet, this sine "wavelet" does meet
some of the conditions. For example the sum of the filter points is zero. We
also know the integral of a sine wave (cosine), This wavelet also has a begin
ning and an end. We might think that this would be an ideal wavelet to use
for this particular signal. One of the problems with this particular homemade
':fake" wavelet, however is it's lack of regnlarity.

Figlll'e 9.1-3 An arbitrary wavelet constructed from one cycle of a sine wave. A:> point filter
is shown at left and a stretched 9-point filter is shown at right.

Jargon Alert: Regu.larity as used here has to do with smoothness or
lack of local rapid variations. The fractal-looking Db4, for example,
has poor regularity. The Db2 or Haar has outright discontinuities
while the Db10 is fairly snlooth. For the DbN wavelets, regularity
(and smoothness) increases with N. Infinitely Regnlcu' nleans that it
is smooth everywhere in time-the slope or first derivative has no
discontinuities.

At first glance, this "fake" wavelet seelllS very smooth. However we defined
this arbitrary wavelet as having a start and stop time. This implies that its
value outside these times would be zero. Figure 9.1-4 shows this wavelet (at
left) drawn over a longer time interval. Notice the sharp changes in the slope
(first derivative) at the beginning and end of the sine wave cycle. This "fake"
wavelet is closer to the Db4 in appearance (center). Contrast this single-cycle
sine wave and the Db4 with the r..1lorlet wavelet (right). The Morlet wavelet is
infinitely regulQ,r and can be seen to be very smooth with no discontinuities
in the waveform or slope (first derivative). Of the 3 wavelets, the Nlorlet ap
peal's to be the best match to the portions of the split sine signal.

2009 Space & Signals Technologies LLC, All Rights Reserved. www.ConceptualWavelets.com
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Figure 9.1-4 The single-cycle sine wave "fake wavelet" at left has abrupt changes in slope.
The Db4 wavelet (center) also has abrupt changes in slope and other discontinuities in higher
derivatives. The Modet wavelet has infinite regnlarity (smoothness everywhere in time).

We now simply "plug in" these wavelets to the CWT software to obtain dis
plays as shown in Figure 9.1-5. The Morlet wavelet gives the best discrimina
tion between the low-frequency and high·frequency halves of the split-sine
signal as seen in the CWT display at right. Notice at level 6 the strong corre·
lation between the Morlet wavelet and the high-frequency right half of the
Jot)" 111 deienil'mmg trle time that the frequencY'criange occurred.
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Figure 9.1-5 The displays of Continuous Wavelet Transforms (CWT) using the "fake" sine
wavelet, a Db4 wavelet, and a Morlet wavelet. Notice that all 3 wavelets show where the Split
Sine signal changes frequency from low to high. The Morlet CWT at right (that best matches the
signal) provides the best discrimination.
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174 Conceptnal Wavelets in Digital Signal Processing

9.2 Customized Wavelets, Best Basis, and the
"Sport of Basis Hunting"

The above example illustrates the choice of wavelet need not be perfect. In
experienced wavelet transform users sometimes miss the point that with all
the shifting and stretching involved in the CWT and the various DWTs that
wavelets are extremely adaptable. They are amoeba-like in their ability to
change shape and location. Thus one extreme is to spend an inordinate
amount of time searching for the "perfect" wavelet for each application. This
has been referred to as "The Sport of Basl:s Hnnting". Some even try to con
struct a new wavelet each time. While this is not difficult for the CWT, it can
be very tricky for the Discrete Transforms with their requirements for per·
fect reconstruction, orthogonality, and alias cancellation (DWT).

At the other extreme some users will stick with one wavelet and trust to its
adaptability. While it is not a bad idea to start with a general·purpose wavelet
like the Db4, the ease of simply substituting another wavelet name in the
software allows for rapid comparisons to choose a better wavelet for that
particular application. The reader is to be commended for hislher interest in
understanding and using wavelets. Otherwise with only Fourier analyses
he/she is t.rying to get by with only one basis-an unchanging, infinite
("stationary") sinusoid!

Software exists with names such as "Best Basis" 01' "1\.1atching Pursuit" that
help chose an optimal wavelet from a library 01' an optimal wavelet trans·
form configuration using cost functions such as energy 01' entropy.

JaI'gon AleJ't: Cost Functions deal with return on investlllent (e.g.
most energy or best entropy using a particular wavelet).

Although this software can be helpful you still need to understand what is
going on (one of the main objectives of this book) rather than putting blind
faith in equations or software. For example, with this type of software you
can inadvertently match the noise or other unwanted artifact, rather than
the signal.

One recent method of building a wavelet is known as The Lifting Scheme.
While a full explanation is beyond the scope of this book we present a very
brief overview. This process takes a trivial wavelet and gradually improves
(,'lifts") properties such as smoothness and vanishing moments (more on
vanishing moments later in this chapter).
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Jal'gon Alert: Lifting is used here in the sense of raising in rank or
condition rather than the more common meaning of raising verti
cally frOin a lower to a higher physical position. Think uplifting.

With this method a basis function can be constructed from simpler basis
functions. Orthogonal 01' biol'thogonal wavelets can be built with the lifting
scheme, but only after the fact and only from existing wavelets. This method
does not built wavelet filters from scratch.

Figure 9.2-1 illustrates the methodology. The lifting scheme splits, predicts,
updates, then repeats the process to refine ("lift"). Advantages of using this
scheme include in-place computation, integer-ta-integer transforms (used in
lossless coding), zero-delay filter banks, and faster processing.

,------,---+(+ ------,--.
(to next split,

predict,
update)

Figure 9.2-1 The first step in the lifting scheme. To begin with. the signal S is first split
into odd and even components. A prediction is then made and an update is performed. Note
that the minus means signal from left minus signal from top This is an iterative process produc
ing a more refined (lifted) result.

9_3 Vanishing Moments and another Fake
Wavelet

Jal'gon Alert: Vanishing Moments means that the wavelet can con'e
late with a linear, quadratic, or higher order polynOlnial and obtain
small or zero correlation coefficients.

A signal, a transient pulse or event within the signal, 01' perhaps noise may
be represented by a polynomial-a constant bias, a linear slope, a quadratic,
01' higher degree. It these cases it is possible to separate the signal from the
noise using wavelet technology. Sometimes the noise can be suppressed di
rectly if all or part of the noise can be represented by a polynomial. The
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I••• p_II~."'J]~1...1



176 Conceptnal Wavelets in Digital Signal Processing

Daubechies family of wavelets (Haar or Db2, Db4, Db6 etc.) is excellent for
vanishing momelLts. *

We will demonstrate vanishing moments by creating another "fake wavelet".
This time we will round off the numbers that comprise the Db4 wavelet filA
tel's. Thus for the pre.divided (by sqrt(2») Db4 filters we have

L = lod = [-0.0915 0.1585 0.5915 0.3415]
L' = lor = [0.3415 0.5915 0.1585 -0.0915]
H = hid = [-0.3415 0.5915 -0.1585 -0.0915]
H' = hir = [-0.0915 -0.1585 0.5915 -0.3415]

and the rounded-off ("1"') fake wavelet versions become

Lr = [-0.1 0.2 0.6 0.3]
L'r = [ 0.3 0.6 0.2 -0.1]
Hr = [-0.3 0.6 -0.2 -0.1]
H'r = [-0.1 -0.2 0.6 -0.3]

These fake wavelet filters still have SOllle of the desirable qualities of wavelet
filters. For example the sum of the coefficients is 1.0 for Lr and Vr and 0.0
for HI' and H'r. FUl'ther, if we convolve Lr and Vr we have a lowpass half
band filter and convolving Hr and H'l' produces a highpass halfband filter.
The sum of these two halfband filters produces a delayed delta function as
shown in Figure 9.3-1. Thus these "fake wavelets" can produce perfect re
construction. The results to this point are very similar to using the actual
Db4 filters (ref. Fig. 8.2-3).

LOWPASS HALFBAND FILTER HIGHPASS HALFBANO FILTER , SUM OF FILTERS,.,
",.. "

~
'""" " "0.2 _ +

" --

, ,..,.,

1 1
-0.1

", • , -0.2

~,
I _0.3

,, . . . •
Figlll'e 9.3-1 The rounded-off Db4 or "fake" wavelets produce lowpass and highpass half-
band filters. These fllters add together to produce a delayed Kronecker delta.

The author has simulated Traveling Wave Tube Amplifiers (TWTAs) that had output power related to input
power by a VoltelTa Series involving a 45th degree polynomial!
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These ':rounded Db4" filters can even produce so-called "continuous" wav
elets and scaling functions by ups8mpling and lowpass filtering. Figure 9.3-2
compares the familiar Db4 scaling function (estimation) to the scaling func
tion estimation of the "fake" scaling function. These rounded filters also pro
duced an estimation of the "fake" wavelet function:

"
"

"

SCALING fllNCTION BUILT FROM" C T U" l W>/ .,

•...,
.,

SCALING FUNCTION BuILT FROM ROUNDED lOr

Figure 9.3-2 At left is the familiar scaling function (rom the Db4 filters. At right is a scaling
function from the "rounded" fIlters.

It is in the capability of vanishing moments that the superiority of the Db4 is
seen. The Db4 basic wavelet filter has the capability to suppress noise (or a
signal) that is in the fortn of a constant or a linear slope (first degree poly
nomial)

The dot or inner product (I-point correlation) of the Db4 filter H' with a con
stant (e.g. 1.0) is

(-.0915 x 1)+(-.1585 x 1)+(.5915 x 1)+(-.3415 x 1) = 0

Similarly, the dot product of the rounded filter H'r with the constant 1.0 is

-0.1 -0.2 + 0.6 - 0.3 = 0

Looking at a slope = [ 1 2 3 4] we would have for the dot product with the
Db4 H' values

(-.0915 x 1)+(-.1585 x 2)+(.5915 x 3)+(-.3415 x 4) = 0

At Ihis poinl the author was excited thaI perhaps he had invented a new wavelet with the same properties as
the famous Db4. His elation was short-lived, however, as he soon saw a lack of vanishing momems capability.
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But fol' the rounded filter H'r we have

(-.1 x 1)+(-0.2 x 2)+(0.6 x 3)+(- 0.3 x 4) = 0.1 ~ 0

and thus the rounded "fake" filter has only one vanishing moment while the
Db4 has two. This process is illustrated in Figure 9$-3.- product 01 hir with slope product of hir with slope

-2 1 2 3
SUM OF TERMS" _9.897e_13 SUM OF TERMS" 0.1

I

~

,
2 3 ,

o

0.5

-1.5

.05I
.,

O~,---+---+---l
0.5

2.5

1.5

35

Figure 9.3-3 At left a linear slope [1 2 3 4]. The dot product or 1-point cross correlation of
this slope with the Db4 filter H' yields a sum of terms of 9.897e-13 01' zero to computer preci
sion as shown in the middle graph. The dot product of the same slope with the "fake" rounded
off wavelet H'r, however, yields a non-zero value of 0.1 as shown at right.

9.4 Examples of Use of Vanishing Moments

Consider a very small arbitrary event given by [12 -2]. We now add this to a
lOOO·point parabola

y(n) = n 2

at n = 400 and obtain the combined signal as shown at the right of Figure
9.4-1. At n = 400, y(n) = 160,000 and the small event would be lost among
these large numbers.

We now pretend that we don't know where the event is located or what it
looks like as we try various methods to find and examine these small num
bers (integers between -2 and 2) overwhelmed by the large polynomial (y
values up to 1,000,000 as n goes from zero to 1000)
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Figure 9.4-1 A small event ranging from -2 to +2 (left) is added to a parabola that ranges
from 1 to 1,000,000. The combined signal is shown at right and, without foreknowledge of the
location, the event would be impossible to detect using conventional methods.

Using an FIT, as shown in the left graph of Figure 9.4-2, indicates only the
very low "frequency" of the parabola and does not show the high frequency
of the event. Also, we recall that an FFT does not indicate the location of an
event. Even using a standard CWT (right) we see only some edge effects.

x to" FFT OF PARABOLA WITH EVENT"r'-------------,

" --

"

0.' /'

',P---,';,;o,---;,""o,---"",,,,,-,,,,,,,,,..--,~,,o

"""H
""..
"."

j; :6

"',,,,,,,,

CWT OF PARABOLA AND EVENT (Db6 WAVELET)

time (or sp",<:e) b

Figure 9.4-2 The FIT of the combined signal (left graph) shows only the parabola compo
nents as indicated by the arro\1,'S. The CWT of the combined signal (without special image en
hancement) shows only some edge effects as indicated by the arrow at right.

Using a conventional DWT with a Db6 basic wavelet, however, we obtain
very interesting and useful results. The Db6 6-point wavelet filter when cor
related with a constant line, a lineal' slope, 01' a parabola will produce zero re
sults. Figure 9.4-3 shows the conventional DWT display.
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Figure 9.4-3 Three-level conventional DWT display for the combined signal using a Db6
wavelet. Note in Details Dl and D2 zero correlation everywhere but the hidden event (arrows).

Using the results from D1 and/or D2 we could locate the event. D3 (bottom
right graph) also should show the event, but when compared with some end
effects, the event is too small. Compare the scale on this D3 graph (-2000 to
+1000) with the D1 and D2 graphs (integers less than 10).

We can produce even more remarkable results. One of the strengths of
wavelets is that we can work with specific sub·intervals of time. Seeing from
the DWT display that the event is in the neighborhood of n :;;: 400, we focus
on the range from 300 to 500 and run the S8Ille DWT but down to level G.
Figure 9.4-4 shows Dl, D2, D3, and D4 in close-up (D5 and D6 not shown).
Notice that the size of these details is decreasing. Also notice that D3 and D5
look like the Db6 basic wavelet (ref. Fig. 6.4-2). We'll show you why later.

We recall that the signal S' is reconstructed from the level I Approximations
and Details. Specifically,

S' = A1 + 01

Al is reconstructed from A2 and D2, A2 is reconstructed from A3 and D3 and
so on. Thus the signal can be reconstructed, for this G-Ievel DWT, as

S' = A6 + 06 + 05 + 04 + 03 + 02 + 01
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Figure 9.4-4 Close-ups in the range n = 300 to 500 of the Details Dl, D2, D3, and D4. At
each level, including D5 and D6 (not shown), the correlation of the Db6 basic wavelet filter with
the parabola is zero (vanishing moments) while the correlation with the event produces non-zero
results.

But because of the vanishing moments property we saw that Dl through D6
were all zero except for the event. Thus if we set all the details to zero and
then reconstruct we should be able to isolate the polynomial noise portion
(parabola) of the combined signaL In other words

S = A6 + 0 + 0 +0 + 0 + 0 + 0 = A6

Figure 9.4-5 shows the result of subtracting A6 from the combined signal. At
left we can see the event at n = 400. In a further close-up at right we can see
that we have isolated the event from the combined signal very well.

COMBINED SIGNAL MINUS A6 FURTHER CLOSE-UP OF FINAL RESULT
2

1.5
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Figure 9.4-5 Extracting the event by subtracting the parabola from the combined signal.
The further close-up at right shows the original event [1 2 -2] located at 400.

To recap, we added an event ranging from -2 to +2 to a polynomial ranging
from zero to one million. We pretended we didn't know the event or where it
was located in the combined signal. Using DWT vanishing moments, how-
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ever, we were able to isolate it and show the exact location and the (almost)
exact values for the event·.

:Most texts use the number of points in the Daubechies basic filter to name
the wavelet (e.g., 4 points in the Db4, 6 points in the Db6, etc.). However a
few, including the MATLAB documentation, use the number of vanishing
moments to describe the wavelet. Thus the 4-point wavelet filter we call the
Db4 has 2 vanishing lllomentst (and thus can isolate up to a 2nd degree poly
nomial) and is designated "Db2"in l\/Lt\TL..t\B. Similarly, the G.point Db6 filter
has 3 vanishing moments (able to discern a constant, lineal' slope, and a pa
rabola as we have seen) and is designated "Db3".

There is one more interesting example that may serve to give the reader a
"feel" for vanishing moments, Consider a view of a city skyline that might
have been designed by 1. M, Peit and notice the slopes and higher order poly
nomials, Treating the skyline as a "signal", figure 9.4-6 shows a 2·level con·
ventional Db6 DWT display for this "signal",

SKYLINE

~::llliiJiCJ
o 500 1000 200 400 600 800 1000

200 50 lime(or~p3C4l)b

-.:;P1Jj2L=~l-.;:E±fEl
<~~N.J25!j

o 500 1000 0 500 1000
APPROXIMATIONS DETAILS

Figure 9.4-6 DWT display of an I. 1\1. Pei-type skyline. The skyline "signal" is shown in the
upper left graph. The CWT display in the upper right graph shows some high fl'equency (small
scales) that indicate the building edges. This can be seen much more clearly, however in the Dl
display (middle right graph) that clearly shows the building edges.

Starting at n = 399 the perfect values would be (0 1 2 -2 0). The actual values are vety close to perfect with
J-0.0181 0.9825 1.9831 -2.0163 -0.0160)

We discussed earlier how the Spectral Factorization process has an exponent of2 for what we call the "Db4".
~ I. M. Pei is a prize-winning architect, known for his high modemisl architecture that offen involves mathe
matical shapes such as linear slopes and parabolas.
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As with the "event" in the parabola, the correlation of the Db6 wavelet with
the flat roofs, the sloped roofs, or the stylized parabolic roof produces zeros
and only the building edges are shown.

9_5 Finding the "Magic Numbers" of Basic Db4
Filters using Wavelet Properties

In the last chapter we demonstrated how to find the four "magic numbers"
used to create each of the Db4 wavelet filters by "reverse engineering" using
a computer software and the z-tranSfOl'lll. Now that we understand addi
tional concepts such as vanishing moments we'll show you an even easier
way.

We'll start with the basic "wavelet filter" which is the highpass reconstruction
fi.lter hi .. or H' (if we upsample and lowpass filter these 4 numbers repeat
edly we have an estimation of the wavelet function-ref. Fig. 6.4-1). We will
designate the 4 values as

H' = [ cO I el , e2 , e3]

Using the relationships of the four filters to each other (ref. Fig 8.1-2) we
have

H' [ cO, cl, c2, c3]
H [ c3, c2, cl, cO]
L [ cO, -el, c2, -c3]
L' [-e3 , c2, -el, cO]

We learned in this chapter that the dot product of H' with a constant is zero
(lst vanishing moment). Using [1 1 1 1] as the constant bias we have for
om' first equation (using "x" as the multiplication indicator)

eOxl + elxl + e2xl + e3xl = cO + el + e2 + e3 = 0

We desire that the dot product of H' with a linear slope also be zero (2nd
vanishing moment). Using [1 2 3 4] as the slope we have for our 2nd equa·
tion

eOxl + elx2 + e2x3 + e3x4 = cO + 2el + 3e2 + 4e3 = 0

We learned that each of the wavelet filters is integer orthogonal (ref. Fig.
8.5-6). With the 4 filter values spaced 1/2 integer apart in time we would
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have a zero value for the dot product of H' and H' shifted by 2. In other
words the dot product of

H' = [cO c1 c2 c3 (0) (0]

with the integer-shifted version of itself

H'shifted = [0 0 cO cl c2 c3]

gives us our 3rd equation

cOc2 + clc3 = 0

Another requirement for these filters is that the coefficients of the scaling
function fLlter, L', add to a constant: This gives us our fourth equation

-c3 + c2 -c1 + cO = sqrt(2)

We now have four equations in four unknowns. With simple substitution we
obtain

cO = -0.1294, c1 = -0.2241, c2 = 0.8365, c3 = -0.4830

and we have for our filters the familiar results

L lod [-0.1294 0.2241 0.8365 0.4830]
L' = lor [ 0.4830 0.8365 0.2241 -0.1294]
H = hid [-0.4830 0.8365 -0.2241 -0.1294]
H' = hir [-0.1294 -0.2241 0.8365 -0.4830]

9.6 Summary

In this chapter we talked about matching the signal (or the noise) to a wav·
elet with the same general shape. The stretching and shifting of this wavelet
that occurs in the wavelet transforms will then allow for a strong correlation
and the ability to segregate the noise from the signal.

We demonstrated how we could use a customized wavelet in a CWT and in
troduced the concept of regu.larity. We saw that an infinitely regnlar
(smooth) wavelet like the :Morlet out-performed our "fake" wavelet.

. lfwe use 1.0 instead of sql1(2),.as is fmUlct in some texts, we obtain the "pre-divided" (by sqrt(2» filters.
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We noticed, however, that either the Morlet or the "fake" wavelet would suf·
fice to show where the frequency changed in the split-sine test signal. Thus
we saw that the "Sport of Basis Hunting" to find (or build) the "perfect" wav
elet Illay be counter-productive and ignores one of the major strengths of
wavelet technology-the ability to stretch and shift the wavelet in tillle or
space to line up with the event. The other extreme is to try to get by with
only one wavelet as we have with the sinusoidal "wave" used as a basis for
Fourier analysis. A good rule of thumb then is to pick a wavelet that looks
somewhat like the signal or noise we want to isolate and let the wavelet
transforllls do their magic.

We touched on the concept of Best Basis or Matching Pursu.it where soft·
ware is used the choose the "best" wavelet based on cost functions using cri
teria such as entropy and added a caveat that the software could chose a
wavelet that matched an artifact or noise instead of what we wanted. We
then gave a very brief overview of the lifting scheme where a trivial wavelet
can be recursively improved (lifted) to create a more suitable wavelet for a
particular use.

Next, we introduced the concept of vanishing moments and demonstrated
their utility to isolate the signal from the noise when either one can be rep
resented by a polynomial. We generated another "fake wavelet" similar to
the Db4 by rounding off the numbers. This fake wavelet emulated the Db4
properties very well until we tried to use it to isolate a slope (first degree
polynomial). The Db4 classic wavelet filter performed flawlessly producing a
zero dot product (vanishing moment) while the fake wavelet fell short. We
showed some examples of the use of vanishing moments.

Armed with our knowledge of vanishing moments, orthogonality, and some
other basic desired attributes of wavelet filters, we were able to easily derive
the filtel' coefficients fol' the Db4.

Having added to our knowledge of desirable qualities in wavelets, we are
now ready to introduce the various wavelet families and describe the
strengths, weaknesses, and suggested applications of each.
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"The roots of education are bitter, but the
fruit is sweet."

-Aristotle
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CHAPTER

10
Specific Properties and Applications
of Wavelet Families

By this point, we ha.ve learned mu.ch about the properll:es of the various wavelets and
wavelet filters and how they can (or cannot) be used in the various wavelet transforms.
We are now in a position to look at the major wavelet families and how the specific
properties lead to some practical applications.

It has been said that one of the biggest contributions of wavelets has been to bring vari·
ous disciplines together and to provide material for research papers. Engineers in one
discipline are surprised to see the same methods used by other disciplines but labeled
differently. A wavelet transform to one person is seen as multiresolution analysis, a
multil'ate system 01' a filter banh by others. Add to this Tower-of-Babel-lihe diversity in
nomenclatu.re the proliferation of the exponentially-increasing nnmber of papers de
sC1'l:bing new wavelets 01' variations on existing wavelets and it is not snrprising that
we have a great nnmber of wavelets and wavelet families out there.

Some words of encouragement are in order. In the first place, the increasing number of
wavelets is really an "embarrassment of riches". We don't have to understand com
pletely the mechanics and be able to use every wavelet in existence any more than we
have to u.nderstand the mechanics and personally drive every ma}?-e and model of car,
trnck, or bus on the highway. We learn how to "drive" the general fam£lies of wavelets
and enou.gh mechanics to lmow where to look (or who to ask) if we encounter problems.
Trying ont additional new wavelets is then not much different than test-driving a new
car

If conventional techniques snch as the FFT now seem easy by comparison to Wavelet
Technology this is understandable because in the "good old days" we were looking only
at freqnency. Wavelets add literally an ent/:reIJ' new dimension by simu.ltaneously
worhing with both time and frequency. Recall that the CWT needs three dimensions to
show the resnlts. We have time or space as the x-axis, frequency 01' scale as the y-axis,

When first leaming to fly a slllall phme, the author was overwhelmed by the !lumber of gauges, displays, and
meters found in modern cockpit avionics and felt he was nol up to the task of operating such a complicated ma
chine with such an abundance of information! The wise flighl instl1lctor covered up all the gauges, etc. except
the compass, altimeter, airspeed indicator, and fuel gauge. On a nice day, with the instmctor by his side, the
author could now fly! The additional gauges were then uncovered one-by-one and they were then seen to be
helps rather than hindrances. The addition highly useful infonnation "uncovered" by using wavelet technology
011 your data is analogolls to the additional infonnatioll found by uncovering modem avionics gauges and dis
plays. Hang in there!
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a.nd magnitude at that particular time and frequ.ency as the z-axis (indicated by
brightness or color in the CWT displa.y).

Being able to discern the time, the frequency and even the general shape of a transitory
event (by comparisons to the candidate wavelets), is a powerfnl technique. And al
though it is by necessity more complicated, the extra effort in learning to nnderstand
and use these amazing tools is more than offset by the vastly improved ability to fully
exploit any digital signal containing events that start and stop and/or change fre
quency (the most interesting kind!).

10.1 (Real) Crude Wavelets

The properties we have previously studied can now be used to classify the
various types of wavelets. The first type is the crude wavelets. We have al·
ready learned about crude wavelets and how the basic (real) fi1tel' coeffi·
cients are produced by evaluating the explicit mathematical equation at
equispaced points in time. Stretched filters are easily obtained by evaluating
the equation at more points.*. Crude filters are bandpass with the center
frequency decreasing for the stretched wavelet (more interpolated points).

We have recently learned that this type of wavelet has no orthogonality, no
vanishing moments and no additional filters. In other words, we have a
(stretchable) "wavelet filter" (H') from the explicit equation for use in the
CWT but not the "scaling function filter" (V) or the other 2 filters (H and L).
Thus crude filters can be used in a CWT but not a DWT.

Because these wavelets (and filters) come from an explicit mathematical
equation, they are smooth and are thus regular. They are also by design
symmetrical.

These wavelets are theoretically infinite in time but the values are essen·
tially zero outside a small range (e.g. from t = -5 to t = +5) and thus they
have "effective support" in that range (rather than "compact support" where
the wavelet is a finite length). Some of the better-known crude wavelets
with real coefficients are now discussed.

Some authors refer to these as "COI/f;/1lI0IlS wavelers" because of the continuous nanrre of the filtet··coefficient
generalillg explicit mathematical equation. Most avoid this tenll, however, stressing thal we never actually use
a continuous wavelet in Digital Signal Processing but rely on the various discrete filters instead.
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MEXICAN IMTWAVELET-This wavelet was used as our first example of
a crude wavelet. The estimation for a continuous Mexican Hat wavelet is
shown in Figure 10.1-1 along with the three dimensional version.

08

06

04

02

Figure 10.1-1 The Mexican Hat wavelet as drawn frol11 its explicit mathematical equation.
The 3-D version is shown at right. It looks even more like a Sombrero, especially if the square
corners were rounded.

We can observe that this wavelet is symmetrical in time: It also looks very
smooth. In fact, the 1\.1exican Hat is a good example of an infifu:tely regnlar
wavelet as discussed earlier. The explicit mathematical equation for the
1\tlexican Hat Wavelet is given by (using the l\1ATLAB format of "*" to indi
cate multiplication)

mexh(t) = (2/(sqrt(3ll*pi'O.25)* exp(-t'2/2ll*(1-t'2)

The effective support is from -5 to +5 (we mentioned earlier that the value
at t = 5.1 was less than 0.000004). The process of "stretching" this filter to ob
tain more points was shown in Figures 5.5-3 and 5.5-4. We also demon
strated the constant Q bandpass nature of the Mexican Hat wavelet (with
the center frequency decreasing as it is stretched) in Figures 5.7-1 and 5.7-2.

Having the traits of smoothness (regularity), symmetry, and a very rapid de
cay, the Mexican Hat wavelet is often used in vision analysis because these
traits are similar to those of the human eyet . The 3-D version is used in
earthquake analysis by placing these smooth, rapidly decaying, symmetrical
"sombreros" along the fault lines in the computer simulations.

The Mexican Hat wavelet is in fact derived from a function that is prop0l1ionai to the 2nd derivative of the
Gaussian Probability Density FtlllCIion-thus the symmetly.
t Neurons in the human eye work somewhat like a Mexican Hat wavelet. Hold 2 fingers together near your eye
and look through the slit. As you squeeze the slit together most people will see little black lines that are 1I0t
really there, nor are they diffraction patterns. See wllliamcalvin.comlbk7/bk7ch13.htm for a discussion.
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MORLET WAVELET-Named for Jean Morlet, a geophysicist and one of
the early inventors of wavelets, this was the first wavelet (after the Haar) to
be developed and is another example of a crude wavelet. We used this wav
elet earlier to demonstrate regularity by showing its improved performance
over a "fake sine wavelet" in correlating with a asplit sine" signal (ref. Fig.
9.1-4 and 9.1-5).

The explicit mathematical equation for the Mol'let Wavelet is given by

morlet(t) = exp(-t'2/2 <cos(5t)

The Morlet is sometimes described as a modulated Gaussian (see next sub·
section). The above equation used to generate points equispaced in time is
graphed below in Figure 10.1-2.

n~ __

Figure 10.1-2 The real Mol'let wavelet as drawn from its explicit mathematical equation.
Effective support is from -4 to +4 as indicated by the dotted lines.

The :t\1ol'1et Wavelet shares most of the same traits as the Mexican Hat.
Points are produced from its explicit mathematical equation (ref. Fig. 5.6-3),
it is symmetrical, infinitely regular, and has an effective support from -4 to
+4. It has only the one stretchable filter and is not orthogonal, thus it can be
used in a CWT, but not in a DWT. We saw earlier that more points are reo
quired to simulate this shape than that of the IVlexican Hat (ref. Fig. 5.63) but
that the frequency resolution was better.

With smoothness and periodicity, we saw that the :t\10rlet is good for periodic
or continuously varying data. Examples of use of the real :t\IIorlet wavelet in
clude sinusoidal pulses and atmospheric indices (such as cyclical changes in
air pressure and in storm tracks).
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GAUSSIAN WAVELETS-The familiar Gaussian probability density func
tion, shown at the left in Figure 10.1-3, does not sum to zero and is not a
wavelet, crude or otherwise. However its del'ivitives can produce wavelets.
The well·known equation for the Gaussian function is simply

gaussian(t) = exp(-tA 2)

~~ Go\IJSSWllWA'MET GNJSSlAN2WAVElET GItlISSIo'IllWl\VElET Go\IJSSWl(WAI'El!T,;
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Figure 10.1-3 The Gaussian function (not a wavelet) is drawn in the first graph. The first
through 4th del'ivitives of the Gaussian function (normalized) are drawn in the next 4 graphs.
The final graph, for example, can be l'efe1'l'ed to as a Gaussian 4 wavelet.

If we look at the slope of the Gaussian function we see that it starts at zero,
becomes positive, goes to zero at the top, becomes negative, and goes to zero
again. This is exactly what we see in the 2nd graph. This waveform does in
deed have components that sum to zerO and we can use this to generate
points for the wavelet filters at equispaced time intervals.· This wavelet can
be called a "Gaussian 1 wavelet" indicating the first derivative of the Gaus
sian. The effective support is from -5 to +5.

Looking at the slope of the 2nd graph we can see the pattern for the 3rd
graph (the 2nd derivative of the Gaussian). This graph should look familiar
as an upside-down (negative of the values) Mexican Hat wavelet. The final 2
graphs are the 3rd and 4th derivitives of the Gaussian and are called the
Gau.ssian 3 and Gau.ssian 4 wavelets. This process can be continued with
more derivatives to produce additional Gaussian wavelets. They are of
course normalized as required.

These wavelets are either symmetric (Gaussian 2, 4, 6, etc.) or anti·
symmetric (Gaussian I, 3, 5, etc.). Like the other crude wavelets they are

This is possible, of course, because we lise IHllnel;cal differentiation and are thus working in the world of Digi
tal Computers.
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suitable for a CWT but not a DWT and they do not have orthogonality, van·
ishing Ill.oments, or scaling function fllters.

As can be seen, they appeal' smooth and have good regularity. A low-number
Gaussian wavelet (Gaussian 1 01' 2-the inverted Mexican Hat) can be repre
sented by a slllall number of points and can provide good tillle resolution. A
high-number Gaussian wavelet requires more points but provides better fre
quency resolution. This flexibility makes the Gaussian family a good choice
for applications such as Music, Speech and Tomography.

MEYER WAVELETS-Named for wavelets pioneer Yves Meyer, these wav
elets are defined in the frequency domain rather than by the time domain
equations we have seen earlier in this chapter. A (non-standard) Inverse
FFT is then used to produce the filter points at equispaced time intervals.
Unlike the other (real) crude wavelets we have discussed, however, an esti
mation of the scaling function is also produced. Although theoretically infi
nite in the time domain, an effective support from -8 to +8 is used. The 256
point estimations of the Meyer wavelet function and scaling function,
mapped onto an interval from-8 to +8 are shown below in Figure 10.1-4.

256-PT ESTIMATION OF MEYER WAVELET FUNCTION
",---------------,

0.'

0 JI l'v
-0.5

-_1
1 ., 0

256·PT ESTIMATION OF MEYER SCALING FUNCTION
",---------------,

0.'

0.6

0.<

0'

0

-0.2

_o_~ ., 0

Figure 10.1-4 The 256-point estimation of the Meyer wavelet function and scaling function
are drawn here. Like the other crude wavelets the sum of the wavelet function points is zero.

IVleyer wavelets share the same properties as the other crude wavelets. Like
the l\1exican Hat, Morlet and Gaussian wavelets they are symmetrical. Also
like the other crude wavelets, they are not suitable for use in the DWTs.

The :Nleyer highpass reconstruction filter (wavelet filter) stretched to various
lengths can be used in a CWT. The CWT, however, is not concerned with
scaling function filters thus the most general use of the Meyer wavelets is,
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like the other crude wavelets, stretched filters at equispaced time intervals
that come from an explicit equation (in this case from the IFFT of a fre
quency-domain equation). We start with 32 equispaced points on the interval
-8 to +8 as shown in Figure 10.1-5.

32 EOUISPACED PONTS ON mE INTERVAL -a TO ~8

"
Normalized frequJncy (Nyq~ist == 1)

" T I,
., 'I r

-,
~ • .< < o 0.5 1.5 2

Figure 10.1-5 Meyer wavelet 32 points on the interval -8 to +8. Note the uneven fre-
quency response being nowhere near {lat in the passband.

We notice on the left that the points are symmetric but that the peak is
slightly to the left of zero. We also notice that this 32-point filter is not a good
bandpass filter. If it were a good, flat, highpass filter we could allow this as
the first of several bandpass filters, but it is not.

We will discuss these issues soon in the Discrete Meyer 'Wavelets. For now,
however, we simply stretch the filter by specifying 64 points instead of 32 on
the same interval. The first graph of Figure 10.1-6 shows this. On the 2nd
graph we see that we now have some very good bandpass filters. The 3rd
graph shows a stretching to 128 points on the same interval. Notice on the
last graph the constant Q behavior in that the center frequency and band
width are both halved while the magnitude of the peak is doubled.

_i,OO 1reqLo"l1~!I\I" II
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"
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Figure 10.1-6 Meyer wavelet filter stretched to 64 points and then to 128 points. Notice
the constant Q behavior.
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10.2

Conceptnal Wavelets in Digital Signal Processing

When used in a CWT, some software begins with as few as 17 points to rep·
resent the 1\1eye1' wavelet, however we don't get good bandpass filters till we
stretch to about 64 points. This is part of the rationale for creating a 62·point
Discrete Meyer approximation that we will lock at a little later.

Because of the outstanding frequency discrimination of IVIeyel' wavelets they
are an excellent choice to isolate events by frequency. As with all wavelets,
being limited in both the time and frequency domains, the "cost" of using
:Meyel' wavelets is a longer filter.

Another advantage of 1\lley81' wavelets is that they have real filter coeffi
cients and can be used with real signals. We will now look at SOllle complex
crude wavelets that also provide excellent frequency discrimination.

Complex Crude Wavelets

There are two reasons to learn about working with complex wavelets. The
more obvious reason is that we can then use them with complex signals. The
other, more subtle reason, is that some waveform.s mu.st be complex in order
to function at all as a wavelet. We will look first at a "complex-only" wavelet.

SHANNON ("SING") WA VELET-We discussed the familiar truncated Sinc
function as a possible wavelet (ref. Fig. 5.3-1 and 5.3-2). Although this classic
DSP waveform would be desirable as a wavelet because of its relatively sharp
frequency cutoff, it has a major problem-It is a lowpass filter, not bandpass.
For example, as we stretched the fvlexican Hat and Morlet crude wavelet fil·
tel'S (by interpolating more points), we lowered the bandpass center fre·
quency. With the Shannon "wavelet" we lowered the cutoff frequency but it
was still a lowpass flIter.

The solution here is to make the Shannon filter complex and then "end·
around" shift the filter in frequency by bandshifting. A 1vIATL.4.B statement
to produce this complex wavelet is given by (where "*,, indicates multiplica.
tion)

Shan = (FBA O.5)*sinc(FB *tlin)*exp(2*j*pi*FC*tlin»

where FB is the bandpass width, FC is the center frequency, and tlin is the
number of equispaced points in time (another reminder that the time points
used in the explicit equation for a crude wavelet are only to generate filter
values)
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For a tutorial example we start with 1/2 integer spaced points from-IO to 10
which gives us 41 time points for the tlin and then 41 corresponding values
from the explicit equation. For simplicity we let FB = 1 and Fe = O. The first
and 31'd tenllS in the above equation go to zero and we have the familial' real
Shannon wavelet

Shan = sinc(FB x tlin)

sin (It x FB x tlin) / (It x FB x tlin)

(remembering that the sine function uses radians for compatibility with most
computer software). Figure 10.2-1 shows this real wavelet in the time and
frequency domains. With the center frequency of this bandpass filter set to
zero, however, it is still really a lowpass filter and not acceptable as a wavelet
fliter.

I

ft--'-7-t~
l<-+ t-

•• , ",.i->' , , I
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+- 1+ +-

"""" , " .. ""-""--.
Figure 10.2-1 With the center frequency = 0, we have the real Shannon "wavelet". Notice
the familiar form in the first graphic, the imaginary part is zero as shown in the 2nd graphic.
The modulus or magnitude is shown in the 3rd graphic. The 41 filter points are shown overplot·
ted on the curves produced by the above equation. The frequency characteristics are shown at
right for this familial' lowpass filter. We see that the frequency bandwidth is indeed I-but only
if we count both the left and right sides of the passband (0 to 0.5 and then 1.5 to 2 with
Nyquist = 1).

If we change the center frequency from 0 to 1 we now have the sallle width
passband (1.0) but "end-around-shifted" in frequency to be centered at
Nyquist (IT radians) as seen in the last graph of Figure 10.2-2. This is of
course a highpass filter but still technically bandpass with the passband
from 0.5 to 1.5.
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Figure 10.2-2 With the same bandwidth but the center frequency moved to 1.0 (Nyquist)
we have bandshifting (circular shifting of frequency) as seen in the last graph. The magnitude 01'

modulus (3rd graphic) , remains the same as in the previous figure (ref. Fig, !0.2-1). Note the
real and imaginary values in the first 2 graphs.

Using this same equation we now stretch (dilate) the filter by adding more
interpolated points. We stretch by a factor of 2 and have points at 1/4 inte
gers from -10 to +10 giving us 81 time points and thus 81 filter values from
the equation.

Figure 10.2-3 (left) shows this wavelet in the frequency domain. The wavelet
is now complex. It also follows the constant Q criteria discussed for the Mexi
can Hat and Morlet wavelets (ref. Fig. 5.7-3 and 5.7-4). In other words, by
stretching this wavelet (filter) by a roughly a factor of 2 from 41 to 81 points
the center of the bandpass filter has changed from 1.0 to 0.5 and the height
of the bandpass filter (in the frequency domain) has changed from 2 to 4 as
shown in the figure below at left.

Further stretching from 81 to 161 points moves the passband center fre
quency from 0.5 to 0.25 and the height from 4 to 8 as shown in the figure
below at right.
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Figure 10.2-3 Interpolating from 81 to 161 points (stretching the filter) causes both the
passband width and the passband center frequency to change from 0.5 to 0.25. It also shows
constant Q behavior as the magnitude changes from 4 to 8.

If then we are willing and able to work with complex signals we can use the
Shannon (Sine) Wavelet. We have talked about ma.tching the wavelet to the
signal 01' noise. This wavelet is excellent fol' finding specific frequencies in an
event. In other words, the match is in the frequency domain.

We can better see now why the Sine wavelet is called the "dual" of the Haal'
wavelet. The 2.point Haal' wavelet ( [1-1]) is excellent for finding very short
events but has pOOl' frequency cutoff. The Sinc, as we just saw, has very
good frequency cutoff (short transition band) but requires a large number of
points and would not be well suited for short-time events. This is an example
of the Heisenberg Uncertainty Principle as applied to wavelets.

Jurgon Alert: The Heisenberg Uncertainty Principle for Quantum
Physics says you can~t know the exact position and the exact mo
mentum of a particle sinlultaneously· (AX6.P 2: h/2 where h is
Planck's Constant). In tinle/frequency analysis this principle refers
to the fact that you can~t know the exact time and the exact fre
quency of a signal simultaneously (ATAF 2: non-zero constant). We
will discuss this principle as applied to wavelets, including Heisen
berg BO;A.~es, further in the appendices.

This fundamental uncertainty ofposition often leads to graffi!j on !he Physics Lab blackboard 'hal says some
thing like "Heisenberg was pl'Obab~vhere."
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The other major difference between the Haal' and the Shannon (Sine) wav
elet is of course that the Shannon is a crude wavelet and can be used only in
a (complex) CWT while the Haar can be used in a CWT or DWT.

The applications of the Complex Sine Wavelet 8re lllany and varied. Those
familial' with DSP know that the classic (real) Sine function is a mainstay in
filtering. The ability to create a wavelet with SOllle of the powerful frequency
discrimination characteristics of the Sine function is well worth the trouble of
working with the complex numbers.

The Shannon Wavelets, like the other complex wavelets we will study, share
the salUe attributes as their real counterparts. The filter points are gener"
ated from an explicit mathematical equation, they are smooth (regular) and
symmetrical* They can be used in a (complex) CWT but not a DWT. They
have no scaling function, vanishing moments, or additional filters. They have
constant Q behavior.

The Shannon Wavelet is theoretically infinite in length and does not have
compact support per se, but can be made finite the same way we make the
real Sine function finite-either by direct truncation (boxcar window) or with
more sophisticated windows such as Hamming, Hanning, Blackman, etc.

COMPLEX FREQUENCY B-SPLINE WAVELETS-The equation fOl· the
Shannon Wavelet just studied was

Shan = (FBAO.5)x(sinc(FB x t)x exp(2 x j x Jt x FC x t»

which could be looked at as specifying the wavelet in the frequency domain.
In other words we chose the Center Frequency (FC) and the Bandwidth
(FB). Then after choosing the finite interval for time (we used t from-l0 to
+10) we had our wavelet filter.

As the name implies, the complex frequency b-spline wavelets are also speci
fied in the frequency domain. The explicit equation for this crude wavelet (in
IVL.I\TLA.B format) to generate the filter points is given by

Fbsp = (FBAO.5)*(sinc(FB* t/M) AM) * exp(2*j*pi*FC*t))

which is the sallle as for the Shannon except for the factor "1\1". If M = 1, in
fact, the equations are identical. For M = 2 we have a "sine squared" or sine
function times itself (with 1\1 also used in the denominator for normalization).

Although the real and The imaginary parts by themselves Illay not be synullellical, the magnitude or 1/Iodl/llts
is sYlllllletllcal.
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With M = 3 we would have a "sine cubed" function. Figure 10.2-4 shows the
frequ.ency domain representation of the "Fbsp" wavelets for M = 1, 2, and 3.

6.1 PTClRXFBSPWA~ FB -05,FC -05, II - 23541 PTCIIlUFBSPWIlVElfT FB~05fC:0.5.M: 1

25

15

.- -

41 PTllRXFBSPW/ljHfl F8005fCo0.5 M:3

: ---l

+--
05 1

'1

,- +-

0.5 1 1.5
t-l;rm.freq(l/!ql.lll:=l)

0.5 I I
Ibmfl\!q (rt;q.Isl =lJ

0.5 1 1.5
fl(rmKllq(»wst==l)

Figure 10.2-4 Frequency domain representation for the Complex Frequency B-Spline Wav
elets of orders 1, 2 and 3 (M = 1, 2 and 3).41 equispaced points were obtained from the above
equation on the time interval-lO to +10. Note the Boxcar, Triangle, and Gaussian shapes here
in the frequency domain.

Like the Shannon (Sine) wavelet, these Frequency B-spline wavelets are
good for isolating desired frequencies. Furthermore, by matching the wav·
elet shapes in the frequency domain to the frequency domain shapes of the
event (e.g. Gaussian noise), we can better determine its nature.

The reason for the rectangular, triangular and Gaussian shapes can found
with a short DSP review. Recall from DSP that multiplication in the tl:me do
ma.in is equivalent to convolntion in the frequency domain. In the above
equation, with M = 2, we are multiplying the sine function by itself in the
time domain. This is equivalent to convolving the boxcar shape with itself in
the frequency domain which produces a triangle shape. With M = 3 we are
convolving the triangle shape with a box which gives a Gaussian (bell-curve)
shape. The process is illustrated below in Figure 10.2-5 for a 9-point "box".
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BOX CONVOl'IED \'V1TH TRIANGLE

Figure 10.2-5 A 9-point "box" (left graph) is convolved with itself to produce the triangle
shown in the middle graph. When this "box: convolved with box" triangle is convolved with the
same box again we obtain the Gaussian as shown at right. The horizontal and vertical axes are
simply .r and)' for this figure.

Jargon. Alert: The term B-Spline means ~asic polynomials that are
connected (splines are connected functions). The first graph in Fig.
10.2-5 is a Constant B-spline. The polynonlial here is simply y = 1 on
the interval 1 s x s 9. The second graph is a Linear B-Spline-it con
nects two lineal' polynomials. We have y = x on the interval 1 s x s 9
and y = 18 - x on the interval 9 s x s 17. A reminder that these graphs
are used here in the fl"eq. domain-hence the name Frequency B
Splines.

Like the Complex Shannon wavelet, the constant Q behavior is also found as
we stretch the wavelet. For M = 1 (order 1) we saw this for the Shannon
wavelet in Fig. 10.2-3. For M = 2 we show this behavior for the original 41
points, 81 points, and 161 points in Figure 10.2-6.

I

-

" -

T

Figlll'e 10.2-6 Using the 2nd-order Frequency B-Spline (M = 2) equation with 41 points on
the interval from -10 to +10 (points 1/2 integer apart), we obtain the frequency response shown
at left. Interpolating to 81 points and then to 161 points on the same time interval (points 1/4
and then 1/8 integer apart) stretches the wavelet in the time domain and produces the constant·
Q behavior seen in the frequency domain. Notice the Center Frequency and Bandpass Frequency
are decreased by roughly factors of 2 while the height is increased by factors of 2.
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COMPLEX MORLET WA VELET-The Morlet wavelet also has a complex
version as shown below in Figure 10.2-7. In this form we can use the
modulus (right graphic) for edge detection. In other words, as the Complex
Gaussian is shifted (translated) smoothly along the signal or image, the loca
tion of a change in the signal will show up on the CWT without the "ringing"
we would get sliding the real (sinusoidal) version past the discontinuity.

Figure 10.2-7 The MorIet Wavelet in its complex forlll. The real portion at left is familial'
now as the real Morlet Wavelet. The imaginary portion is shown in the middle. Combining the
real and imaginary portions produces the Gaussian-looking modulus as shown at right.

The explicit (1vV\.TLAB) equation for the complex Morlet wavelet is given by

crnor(t)=«pi*Fb)'(-O.5»*exp(-t'2/Fb)* exp(j*2*pi*Fc*t)

where Fb is the bandwidth parameter and Fc is the center frequency.

COMPLEX GAUSSTAN WAVELETS-Like the Modet, the Gaussian wav
elets also have a complex version. The explicit equation for this crude wav
elet is given by

cgau(t) = exp(jt) x exp(-t'2)

which is the same as the equation for the real Gaussian wavelet llluitiplied
by the complex exponential. Using the Euler identity we can re·write this as

cgau(t)= cos(t) x exp(-t'2) + jsin(t) x exp(-t'2)

Figure 10.2-8 (a) shows the exp(-t"2) term (the ordinary Gaussian probabil
ity density function we saw earlier). Figs. (b) and (c) show the cosine and
sine terms, and (d) and (e) show the real and imaginary parts of the Complex
Gaussian function itself. Notice that the Cosine (b) is symmetrical about
tilne :;;; 0 and thus the real part of the complex Gaussian (d) is also symmet
rical. With the Sine (c) anti-symmetrical about time;;; 0, the imaginary part
of the Complex Gaussian Function will also be anti-symmetrical (e).
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Figure 10.2-8 The familiar Gaussian function e _t
A

2 is drawn in the first graph. The 2nd

and 3rd graphs show the cosine and sine components of e jt. Multiplying (a) by (b) gives the real
component Cd) while multiplying (a) by (c) gives the imaginary component (e).

As with the non-complex Gaussian wavelets in the last section, it is the de
I'iuitives that are wavelets (i.e. produce viable wavelet filters). Figure 10.2-9
shows the 1st and 2nd del'ivitives of the real and the imaginary portions of
the complex Gaussian function. If we look at the slope of the real portion of
the complex Gaussian (Fig. 10.2-8 (d» we see this in Figure 10.2-9 (a).
Similarly we see the slope of the imaginary portion of the complex Gaussian
(ref. Fig. 10.2~8 (e» plotted in (b) below.

(b)

"

..\t-,-,.&+_-"

(d)

.,

Figure 10.2-9 Complex Gaussian wavelets. The wavelets made from the real and imagi
nary first derivatives are shown in (a) and (b). Those made from the second derivitives are
shown in (c) and (d). The effective support of these wavelets is usually from -5 to +5.

Continuing (Figure 10.2-9), the slope of the first derivative of the real por
tion of the complex Gaussian (a) is plotted in (c). For the imaginary portions,
the slope is plotted in (d)

As with the non-complex Gaussian wavelets, taking further derivitives al
lows for better frequency resolution. In other words, the number of "cycles"
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in these wavelets is increased and they become a better match to some hid·
den sinusoidal-looking event.

Also notice that with the real and imaginary wavelets at each order 01' level
of differentiation we have a combination of symmetric and anti-symmetric
wavelets. This gives us further flexibility in matching events with symmetri·
cal and anti-sYlllmetrical components.

Jargon Alert: The nth derivative of a Gaussian Wavelet is desig
nated as order n. The wavelets in Fig. 10.2-9 are thus ;'ol'de,']" and
"ol'del' 2"

Because of this flexibility, the Complex Gaussian Wavelet is used in a variety
of applications including vibration analysis and medicine (e.g. ECG analysis).

10.3 Orthogonal Wavelets

We learned that a great deal of data can represented by a very few orthogo
nal wavelet filters just as any point in a city can be referenced by an
(orthogonal) NOl'th·East-South·West Coordinate System" (ref. Section 8.5
Orthogonal Vectors, Sinusoids, and Wavelets).

Because of this compact forIll of representation, it is possible to perform a
Discrete Wavelet Transforlll cnWT) in addition to the "Continuous" Wavelet
Transforllls (CWT) we have just discussed.

Just as the crude wavelets shared certain capabilities and characteristics, the
orthogonal wavelets also have certain properties in common. These include

• Ability to be used in a conventional DWT, UDWT, or Wavelet Packet
(Discrete) DWT due to the capability for perfect reconstruction. This al·
lows for not only identification (as we saw in the CWT) but also for com·
pression and de-noising.

• Orthogonal wavelet filters also have alias cancellation capabilities when
used in the conventional DWT. In other words they "clean up their own
mess" of aliasing caused by the downsampling in the conventional DWT.
However, we have to be careful about throwing out some alias cancella·

SalT Lake City, Utah is laid out Ihis way. To travel from "1st North, 3rd West" 10 "21st South, 131h East"
you simply travel 22 blocks South and 17 blocks Easl-in almost any sequence you desire.
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tion capability when we compress 01' de-noise using the conventional
DWT.

• These wavelets include not only a "wavelet fnnction filter" (the highpass
reconstruction fllter hi)' 01' H') but also the "scaling function filter" (the
lowpass reconstruction filter 101' 01' L') and 2 additional filters (highpass
decomposition filter hid or Hand lowpass decomposition filter lod or L).

• These basic orthogonal filters have compact support-they begin and
end.

We now examine some of the major families of orthogonal wavelets in lUore
detail.

HAAR WA VELETS-Although we have discussed Haal' wavelets before, we
can now classify them better. They are the simplest, shortest, and the first to
be used. Although a "continuous" Haar wavelet doesn't exist in the real world
of digital computers, a good estimation can be produced by ups8mpling and
lowpass filtering (interpolating) the simple H' filter ( [1-1] ) to produce 8
multiple-point (e.g. 258 points) estimation. As shown in Figure 10.3-1 they
have a support width of 1.0

WAVELET FUNCTION PSI

Discontlnullies

o.

'().5

-'O!------!OI,..5--e----!
Figure 10.3-1 A 266 point estimation of a "continuous" Haar wavelet generated from the
basic 2 points spaced 1/2 integer apart and located at 0.2 and 0.7 (shown superimposed here).

Haar wavelets (filters) have only one vanishing moment. This can be seen by
observing that the dot product of H' = [I-I] and a constant [1 IJ is (1 x 1) +
(-1 x 1) = 1- 1 = 0 while the dot product with a slope like (12) will be non
zero. Stretched versions of the Haar wavelet will of course also have one
vanishing moment (e.g. the dot product of [1 1 -1 -1] and the constant
[1 1 1 I] is also zero.
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Haal' wavelets have outright discontinuities and are thus not smooth or
regular. They are not strictly symmetric, but are anti-symmetric and they do
have linear phase. With a basic filter length of only 2 points they are excel·
lent for time resolution but pOOl' for resolution in frequency.

Haal' wavelets can be used with CWT, UDWT and DWT (Perfect Reconstruc
tion/Alias Cancellation capability). As we have demonstrated, they are good
for edge detection, for matching binary pulses, and for very short phenome
non. The humble Haal' wavelet is actually a mainstay in wavelet technology.

DAUBECHIES WAVELETS-We are also familial' with these through our
extensive study of the Db4 wavelets. The left graph of Figure 10.3-2 shows
the Db4 wavelet (768 point estimation of "continuous") with the 4 original
points superimposed 1/2 integer apart at 2/6,5/6,8/6 and 11/6. Two additional
trailing zero points are found at 14/6 and 17/6. The center graph shows the
Db6 estimation with the 6 points (and 4 end zeros) superimposed starting at
3/7 and spaced 1/2 integer apart. The 3rd graph shows the Db8 with 8 points
and 6 end zeros starting at 4/8 and spaced 1/2 integer apart,

",--------,
D~\\'al"flet

1 runc~on lIith 4

05 filler points.

" 16 ad'ditionalL
0,8 -Db8 W:i\'e-le-tDb6Warell't 4additional l'quispaced•• Function with equispmd .. Function with..

6filter points. points aleDd .. 8 filte-r points.
points at end

•• (mo ralue)
(zero ralue)..,..,

., .,-
•• ••
•• T ••
•• ..(1,8

0

Figure 10.3-2 Estimation of a continuous Db4 \vavelet on the interval 0 to 3 followed by the
Db6 wavelet on the interval 0 to 5 and then the Db8 wavelet on the interval 0 to 7. They are all
zero outside these intervals and thus have a slIpport width of 3,5, and 7, respectively.

The Haar wavelet is also a member of the Daubechies family and is some·
times referred to as a "Db2" wavelet. When mapped onto an interval from 0
to 1, we saw that the Db2 (Haar) had 2 points starting at 1/5, spaced 1/2 inte
ger apart with no end zeros.

Looking back at Figures 10.3-1 and 10.3-2 we notice that the Daubechies
wavelets are by no means smooth, however we can see the regularity in-
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creases as the "order" (N in a DbN wavelet) increases. A Db20 wavelet looks
somewhat smooth, for example (ref. Fig. 9.1-1). As expected, the longer
Daubechies wavelets provide better frequency resolution at the expense of
decreased tilUe resolution.

The number of vanishing moments in a Daubechies wavelet is N/2 (i.e. half
the number of filter points). For example, a Db8 wavelet has 4 vanishing
moments).'" The Daubechies wavelets have the most vanishing moments for
their size of any wavelet.

With the exception of the Haal', Daubechies wavelets do not have linear
phase. Figure 10.3-3 shows this for the Daubechies 8 (Db8) highpass filter.

Phase (de<>rees)

Normal<zed frequency (NyqLisl == 1)

~

~

0 ~ -......
..........--0 0.' o. 0.' DO ,

""

200

·'00

""

Magnimde

Noonahzed frequeocy (NyqUIst =: 1)

,:=tf/
0

'<

Figure 10.3-3 Magnitude and phase of a Db8 (8-point) highpass filter. Note the phase is
non·linear.

All four wavelet filters (H, H', L, and V) are orthonormal to themselves and
are orthogonal their counterparts (H with L, H' with V-ref. Fig. 8.5-6).

These wavelets (filters) are robust, fast, and adaptable. They are in wide use
for identifying signals with both time and frequency characteristics (we use
longer filters for better frequency resolution). They are especially well suited
to speech, fractals, and non-symmetrical transients. We have used the Db20
in this book to match chirp signals and chirp noise (ref. Figs. 7.1-1 and
91-1)

Being non-symmetric, Daubechies wavelets may be passed by in favor of
some symmetric wavelets we have discussed (and will discuss) for image
processing because the human eye is more tolerant of symmetric errors.

A reminder that a few authors, including the Mathworks, use the number ofvanishing moments rather than
Humber of basic filter points to describe the Daubechies wavelets. Thus the Haar is referenced in MATLAB code
as "Db 1", the 4-point Db4 is referenced as "Db2" and so on.
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However, there are instances in image processing such as edge detection
where we want to "jar" the human eye with unusual patterns and shapes.
Airport luggage screening is an example. Thus we see the Haal' and
Daubechies wavelets used in this forlll of image processing:

SYMLETS-As the name implies, Symlet Wavelets 01' "Symlets" are lUore

symmetrical than the Daubechies wavelets. As we have discussed (ref. Fig.
8.6-1) the halfband filters can be "factored" in more than one way into a de
composition filter and reconstruction filter that, when convolved, produce
the same halfband filter. For the longer halfband filters (23 points or more),
we can produce alternative filters to the Daubechies that are more syllunet
rical. For example, a 31 point highpass halfband filter can be factored into the
two 16-point Db16 filters Hand H' as shown in Figure 10.3-4.

I I 1

I *
,..,_.."""~ ...,,.

I -- 1 1

Figure 10.3-4 The convolution of the Db16 highpass decomposition filter with the Db16
highpass reconstruction filter produces the 31·point highpass haliband filter.

This same 31-point highpass halfband filter can also be factored into two
other 16 point filters that are lUore sYlUmetrical (but not perfectly so). This is
shown in Figure 10.3--5.

The Db8 wavelet was a finalist in the choice for JPEG image compression.
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Figure 10.3-5 The convolution of t.he 16 point Symlet (Sym16) highpass decomposition filter
with the Sym16 highpass reconstruction filter produces the sallle 31-point highpass halfband
filter as the highpass Db16 filters Hand H'.

The lowpass 31·point halfband filter can also be factored* into either two
Db1610wpass filters or two Sym16lowpass filters As with the Daubechies filA
tel's, we can create an estimation of a "continuous" Symlet by repeatedly up
sampling and lowpass filtering. The Symlet waveforllls are shown in Figure
10.3-6.

vIV--

Figlll'e 10.3-6 The 946-point estimation of the "continltolts"wavelet function is obtained by
repeatedly ups8mpling the I6-point Symlet highpass reconstruction filter, hirsyrn, and lowpass
filtering at each step by lorsym.. This is shown in the first graph. The 2nd graph is the same in
terpolation process starting with hidsynt and lowpass filtering by lodsynt. Note that graphs 1
and 2 are flipped similar to H' and H for the Daubechies wavelets. Graph 3 is the estimation of
the "cont£/I./tolls" scaling function obtained by interpolation of lorsym. (using lorsynt a Iso as the
lowpass filter). The last graph is flipped similar to L' and L for the Db wavelets and is obtained
with repeated dyadic upsampling of lodsym with filtering by lodsyrn at each step.

Strictly speaking, de-col/valved in the time domain.
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Being nearly sYlllmetrical, the larger Symlets (8)'11112, Sym16, etc.) have also
nearly lineal' phase. Other than the symmetry and phase, Symlets share the
same properties as the Daubechies wavelets. They become more regular
with larger N eSymN"), They have the salUe compact support as the
Daubechies for a given N, they have the same number of vanishing mo
ments as the DbN family, and they have the perfect reconstruction and alias
cancellation capability that allows them to be used in both the CWT and the
DWT.

We have discussed the perfect sYlllmetry and strict lineal' phase of the bior
thogonal wavelets earlier. At first glance, the Symlets may seem obsolete.
However, Symlets have the same orthogonality relationships as the
Daubechies family and thus they are still strong contenders.

In the natural images all around us we seldom see things with perfect sym
metry (or perfect asymmetry). This "match" of wavelet to image may be one
of the reasons, along with the orthogonality and vanishing moments, that
the Symlet is used in image processing.

Symlets are also used in applications as diverse as power load consumption
signals and composite structu.res.

C01FLETS-The Coifman Wavelets or "Coiflets" were developed by Ingrid
Daubechies at the request of wavelets pioneer Ronald Coifman to invent an
orthogonal wavelet (filter set) that had vanishing moment capabilities for
both the highpass and lowpass filters. Figure 10.3-7 shows the four basic 6
point filters interpolated (upsampled and lowpass filtered) to look like the
Coif6 waveforms found in most texts. Note: As we have seen, different texts
use different nomenclature. Wolfram calls this a C6 while 1\.1athworks calls it
a CoifI.

These Coiflets have the same orthogonality relationships as the Daubechies
and the Symlet filters. As can be seen, they also have a high degree of sym
metry and thus almost linear phase. They are suitable for use in any of the
DWTs because they have alias cancellation and perfect reconstruction capa
bilities.
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316 PT ESTIMATION OF COIF6 WAVELET FUNCTION,
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Figure lO.3-i The 316-point estimation of the "continuOlls" eoiflet wavelet. {unction (a) is ob
tained by repeatedly upsampling the Gopoint Coiflet highpass reconstruction filter and lowpass
filtering at each step by the lowpass reconstruction filter. The interpolated highpass decomposi
tion filter (b) is shown next. Note the it is flipped horizontally from the decomposition filter in
the first graph. The lowpass reconstruction filter interpolated to an estimation of the
"continuous" scaling function is shown next (c) followed by the interpolated lowpass decomposi
tion filter (d) repeatedly upsampled and lowpass filtered by the lowpass reconstruct-ion filter.

The "cost" of using Coiflets is that they have one less vanishing moment than
a comparable Daubechies or Symlet wavelet. This mayor may not be a
problem. Like the author's "fake wavelet" made by rounding off the Db4 fil·
tel' coefficients (ref. Section 9.3) the Coiflets also produce a slightly different
halfband filter than their Daubechies or Symlet counterparts:

The Coiflets are used in many of the same applications as the Daubechies
and Symlets. One interesting use is in the detection of self-similarities. Fig
ure 10.3-S shows a Von Koch curve. A CWT of this signal using an IS-point
Coiflet as the basic filter is shown at right.

The "fake" rounded-ofT wavelet filters also had the "cost" of one less vanishing moment and a slightly different
set ofhaltballd filters bUI did not produce the symmetly fOlllld in Coine's or the promise ofal least one vanish
ing momenl on the lowpass or Approximation path in the DWT.
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Figure 10.3-8 A Von Koch curve with self-similarities is shown at left. A 24-point Coiflet
Coif24 is used in a Continuous Wavelet Transform. The display, at right, shows these self
similarities.

DiSCRETE MEYER WAVELETS-Originating in the frequency domain,
the "continuous" Nleyel' wavelets produce excellent frequency characteristics
(ref. Fig. 10.1-6). Having a discrete version with Finite Impulse Response
(FIR) filters that could be used in the various DWTs would be very desirable,
thus the discrete 1\l[eyer wavelets (filters) were crafted from the crude ver
sion.

Recall that both an estimation of the "continuous" wavelet function and the
"continuous" scaling function were created in the crude version. Using
equispaced points on both functions would give us the highpass reconstruc
tion filter H' and the lowpass reconstruction filter L'. Also recall that with
orthogonal wavelets such as the Daubechies that L is the flipped version of
L' and H is the flipped version of H' (ref. Fig. 8.1-2). With these nearly
symmetrical Discrete Meyer wavelets we can thus determine Hand L from
H' and L'. Thus all we need to do is check that they pass a few "tests" such as
orthogonality and perfect reconstruction (they do!). The basic Foul' filters are
each 62-points long and are shown in Figure 10.3-9.*

Looking at the long "tails" in Fig. 13.3-9, it seems like we could "trim" these to shorter wavelets, perhaps a
31 point. We leamed earlier working with the "continuous" Meyer wavelets that 32 points did 1I0t produce a
good halfband filter (ref. Fig. 10.1-5) so dowllsampling by 2 is not an option. We could instead keep the only
the center 31 points. However, like the Sinc Wavelel we have studied, truncation in the time domain can lead
to longer transition bands in the frequenc)' domain.
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Figlll'e 10.3-9 The foul' Discrete Meyer basic wavelet fllters (H, H', L, L'). Note the high de
gree of symmetry.

The frequency response of the 62-point highpass reconstruction filter H'
(2nd graph in the above figure) is shown below in Figure 10.3-10 . Stretching
the filter by interpolating (upsampling by 2 and lowpass filtering by L') shows
the constant Q behavior.

1. 3
Nonnalized frequency (Nyq~ist == 1)

II
1· 2

~
n ,

o. 1 1

I I0 J 0
0 0.5 1 1.5 2 0 0.5 I 1.5 2 0 0.5 1 1.5 2

Figure 10.3-10 At 62 points, the discrete Meyer wavelet filter (H') is bandpass in that it
passes frequencies from about 0.5 to 1.5 Nyquist (first graph). As the filter is stretched to 184
points (about a factor of 3 with the upsampJing of H' to 123 points then lowpass filtering by the
62-point filter L' we see the constant Q behavior in the middle graph. Further stretching to 428
points produces the frequency response and further constant Q behavior shown in the right
graph.

These 62-point filters are also orthogonal (and orthonormal to themselves).
Figure 10.3-11 shows this for H' and L' and then for H' and H' as examples.
Recall that a cross-correlation is a series of dot (inner) products. We can see
in the left graph that the dot products are zero (indicating orthogonality) in
every other point. The right graph indicates, like earlier orthogonal filters we
have studied, that every other point is zero except where they align per
fectly. This is orthonormal behavior. Thus the Discrete Nleyel' wavelets sat
isfy the orthogonality conditions.
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Figure 10.3-11 Cross correlation of the discrete Meyer H' with L' (at left) shows every other
point being zero and thus orthogonality. Cross correlation of H' with itself (right graph) shows
ol'thonOl'lllality.

Another required condition for use in the DWTs is that they can achieve per
fect reconstruction. The halfband highpass filter is obtained by the convolu
tion of Hand H'. Figure 10.3-12 shows this in the time and the frequency
domain. The lowpass halfband filters also show the desired behavior. If we
add the 2 halfband filters in the time domain we have a Kronecker delta
(spike) with a time delay. Discrete rVleyer wavelet filters have the perfect re
construction capability (to within a delay and a constant of multiplication) we
have seen in the other orthogonal wavelets.

~.tI\GNITlOERESPONSE OF HIGHPASS HALFBANO FILTER

Normalized frequency (Nyquist == 1)

, ,
, .

,,
o 0.2 0.4 0.6 0.8

Figure 10.3-12 Discrete Meyer wavelet highpass halfband filter in time (left) and frequency.
The right graph shows the exact sylllllletl'y we see in halfband filters around 1/2 Nyquist and
around 112 magnitude we have seen in other halfband filters.

Notice that the first graph in figure lO.3~12Iooks like the 2nd graph in Fig.
10.3-11. This is because the filters are nearly symmetrical and the cross cor
relation of H' and H' is the same as the convolution of H' and H.
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Thus the Discrete 1\11eye1' Wavelet meets all the conditions to allow it to be
used in the various DWTs. It does not have vanishing moments, however. At
length 62 it is one of the longer basic wavelet filters, but it outperforms a 64
point Db64 filter in the frequency domain. Add to this the nearly perfect
symmetry and accompanying nearly linear phase and we have a valuable ad·
dition to the orthogonal wavelets.

Biorthogonal and Reverse Biorthogonal
Wavelets

In this chapter so far we have discussed crude wavelets (both real and com·
plex) with sYlllmetry and linear phase and how the bandpass wavelet func
tion filter (H') from the defining equations can be stretched and therefore
used in a CWT.

We also studied orthogonal wavelet filters that are close to symmetric and
that have the orthogonality andper/ecl reconstruction capabilities that allow
them to be used in a DWT as well as a CWT. The Discrete Meyer wavelet just
discussed, for example has these qualities. With long filters, no vanishing
moments and imperfect symmetry, however, the discrete Meyer wavelet
may be limited in its applications.

If we are willing to work with filters of differing lengths· (ref. Fig. 8.6-2) and
differing orthogonality relationships (ref. Figs. 8.5-6 and 8.6-5) we can
achieve perfect symmetry, vanishing moments, and the perfect reconstruc
tion with alias cancellation required for use in a DWT. The FIR filters can
also be as short as 3 points (in the 3/5 biorthogonal set).

BIORTHOGONAL WA VELETS-.I>cl previously discussed, Biorthogonal
Wavelets are in wide use in image processing because of their perfect sym
metry. We mentioned that the human eye is more tolerant of symmetrical
imperfections. Also, extending the image symmetrically to avoid edge effects
leads to better image processing. Image compression and denoising can be
accomplished efficiently using the biorthogonal filters.

These filters deserve a closer look. Here are the foul' biorthogonal basic fil
ters (H, H'. Land L') that comprise the 7/9 biorthogonal wavelet set as

. A 4/4 biorthogonal wavelet has 4 points for all the filters, but H' is anti-symmetrical
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shown in Figure 10.4--1. The original points that generated them are super
imposed on the estimation of the "continuous" waveforms.

The 10 original points were upsampled and lowpass filtered to produce these
1144·point estimations of continuous functions (H and L are lowpass filtered
by L while H' and V are lowpass filtered by V).

SOllle texts and software refer to these "continuous" estimations
(approximations) as the decomposition wavelet fnnction, reconstruction
wavelet {unction, decomposition scahng fnnction and the reconstruction
scaling function respectively. In this book we are already familial' with
"continuous" estimations of all foul' filters (e.g. ref. Fig. 8.5-6).

LOWPASS RECONSTRUCTION fLTER

"
••

"
LCM'PASS DECOMPOSITION FJLTER

"
"

"

HlGHPASS RECONSTRUCTION FLiER
",~-TT~~,

HlGHPASS DECOMPOSITION FLTER

"
"
"

..

Figure 10.4-1 H, H', L, and L'for the biorthogonal7/9 wavelet filter set. The original 7 or 9
points have leading and/or trailing zeros to make all four filters 10 points long to aid with ortho
gonality (see 3/5 example in fig. 8.6-3). Note the exact symmetry.

We discussed frequ.ency B-splines earlier in this chapter (splines in the fre
quency domain). Biorthogonal wavelets are sometimes constructed from
splines in the time domain. For example, the 3/5 biorthogonal wavelets can
be expressed as (ref. Fig. 8.6---2)

[1 -2 1]/4 and [1 2 -6 2 1]/4

Ignoring the divisors these are the coefficients of the polynomials

x 2 -2x + 1 and x 4 + 2x3 -6x2 +2x + 1*

We have mentioned the wide use of biorthogonal wavelets, particularly the
7/9 filter set for image com.pression. In fact, this was the first "Killer App"
(extremely powerful application) of wavelets. JPEG with the 7/9 filters is so
common that it is hard to find images without their JPEG-compl'essed coun-

These two polynomials call be factored ftll1her inlo (x-l)(x-I) and
(x -1)(x-I)(x2+4x+l) = (x -1)(x-I)(x+(2+sqrt(3))(x+(2-sqrt3).
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terparts. The short length and perfect symmetry of these biorthogonal filters
are still being explored in new applications.

REVERSE BIORTHOGONAL WAVELETS-In image processing we are
concerned with visual effects such as blocking, checkerboal'ding, and ringing.
Although a full discussion is beyond the mission of this book, it would be
handy to have some control over where the longer and the shorter of the fil·
tel'S should go. For example, in a 3/5 biol'thogonal set of filters the 3-point fil·
tel'S (not counting the Z8ro padding to 6 points) are Hand L'. Using a reverse
biol'thogonal set of filters we have H' and L as the 3-point filters (with Hand
L' as the 5-point filters).

For comparison purposes with the above figure, here are the 7/9 reverse
biorthogonal filters and the 1144 point estimations of the decomposition
wavelet function (H), reconstruction wavelet function (H'), decomposition
scaling fnnction (L) and the reconstruction scaling function (L') as shown in
Figure 10.4-2.

0.2 0.2_

LOWPASS RECONSTRLCTlON FLTER

0.8--+

••

LOWPASS OECOMPOSmOO FUER

...

..H1GHPASS RECONSTIlUCTIOO fiLTER

,,
"'.,
••

ttGHP.-.ss OECOM'OSIlION filTER"r'-T====::.c,

Figure 10.4-2 H, H', L, and L' for the reverse biorthogonal 7/9 wavelet filter set. Again, the
original 7 or 9 points have leading and/or trailing zeros to make all foul' fIlters 10 points long to
aid with ol'thogonality .

Notice that we still have the same filters as the regular biorthogonal on the
highpass path but that Hand H' are swapped. Also Land L' are swapped on
the lowpass path. The halfband highpass filter will be unchanged because

conv(H, H') = conv(H' I H)

Similarly, the lowpass halfband filter will remain the same. This means that
we have perfect reconstruction for both the biorthogonal and the reverse
biorthogonal filters.
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With the "wavelet filter", the highpa.ss reconstnlCtion filter or H', being the
shorter of the highpass filters, it is interesting to see the vanishing moment
capabilities on a smaller 3/5 reverse biol'thogonal set of filters. Removing the
leading and trailing zeros we have H' = [ 1 -2 1] (or a pre-divided version). It
turns out we still have 2 vanishing moments and can still obtain a dot prod·
uct of zero for a constant or a slope. As a demonstration, consider an arbi·
trary lineal' slope [-3 -4 -5]. The dot product is then

(-3 x 1) + (-4 x -2) + (-5 x 1) = -3 + 8 -5 = 0

The biorthogonal and reverse biorthogonal wavelets are available as short
fIlters like the 3/5 configuration'" and longer filters such as the 11/17. The filA
tel'S can be made purposely varied in length like the 4/20 versions. Couple
this flexibility with the innate ability of the wavelets to act as a
"Mathematical Microscope" by stretching and shifting and you have a very
versatile and powerful tool.

10.5 Summary and Table of Wavelets and their
Properties

Having gained a conceptual understanding of the major properties of wav
elets we have discussed the various types of wavelets and some of the better
known wavelets within these types.

We first reviewed the crude wavelets with real coefficients. These wavelet
filters are bandpass with constant Q behavior. This means that as the basic
"wavelet filter" is stretched by interpolation using the explicit equation to
generate more points that the passband becomes narrower, the center fre
quency becomes less, and the amplitude becomes larger. Because crude
wavelets are not orthogonal and don't have the other 3 basic filters to be
used in a DWT, they are for CWT·use only and thus are usually designed to
be symmetrical and smooth. They are theoretically infinitely long, but go to
zero outside a narrow time range ("effective support"). Wavelets of this type
include the IVIexican Hat, Mol'let, Gaussian, and the Meyer.

We next examined Complex Crude Wavelets. These are very similar to the
(real) Crude Wavelets but, because they are complex, we can bandshift

The Haar wavelet is also considered "a 2/2 bionhogonal wavelet" and is Thus technically the shortest of This
family.
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them. The Shannon (Sine) wavelet is an example of the familial' Sine Func
tion (sin(nx)/(nx) ) lowpass filter that is bandshifted to become a bandpass
filter with constant Q characteristics. The Frequency B-Spline wavelet is ac
tually a family of wavelets that appeal' as connected polynomials (Basic
Splines) in the frequency domain and thus provide additional flexibility of
use. The Complex Mol'let wavelet combines the sinusoidal real part with a
sinusoidal imaginary part to produce a Gaussian-looking modulus. Complex
Gaussian wavelets are made from both the real and the im.aginal'y parts of a
Gaussian. They thus provide symmetry and anti-symmetry. Higher order
Complex Gaussian wavelets are longer but give better frequency resolution.

We revisited the Orthogonal Wavelets. These have the foul' basic orthogonal
filters required for use in a DWT (the H' filter can also be used in a CWT of
course). They combine to form highpass and lowpass halfband filters and can
be used for alias cancellation and perfect reconstruction. These filters are
clearly finite (compact support).

The Daubechies family of orthogonal wavelets is referred to as DbN in this
book where N is the number of points in the basic filter. DbN wavelets have
N/2 vanishing moments. Beginning with the Haar wavelet-which can also
be called a "Db2"-the smoothness increases with N. The Daubechies family
does not have symmetry or linear phase (the Haar has anti-symmetry).

Symlets and Coiflets, also designed by Ingrid Daubechies, share most of the
attributes of the DbN but are more symmetrical. The Discrete Meyer Wav
elet is a version of the Crude rVleyer wavelet but with foul' basic 62-point FIR
filters. Like the Symlets and Coiflets, they are orthogonal and can be used in
the various DWTs but they do not have vanishing moments.

We looked again at the Biorthogonal wavelets. The basic foul' filters in this
family of wavelets have perfect symmetry with lineal' phase and can still be
as short as 3-points. They are usually of unequal length as indicated by their
names (3/5, 7/9, 4/20 etc.). This inequality can be used to our advantage and
we can trade the decomposition and the reconstruction fi.lters for better
processing. This is accomplished using the Reverse Biorthogonal wavelets.

Although the Biorthogonal and Reverse Biorthogonal filters have different
orthogonality relationships than their orthogonal wavelet cousins, they still
have the properties of alias cancellation, perfect reconstruction, and vanish
ing moments and thus are a popular choice for use in the various DWTs
especially in image processing.
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Table 10.5-1 summarizes the various properties for the various wavelets we
have discussed (in the order of discussion).

Table 10.~1 - AUJ'ibu,les of the v(u'iou.s Wavelet,s (filtet·s)

Crude! CWT Symmef V(111;511 Real Smooth
Orlho/ 01' and 1\101111115 01' (111(/

Bi011h DWT Lin Phs CillO/ex Reoll/ar
Mexican Hat Crude CWT Exact None Real Infinitely
Morfer Crude CWT Exact None Real Infinitely
Gaussiall Crude CWT Sym/Anti None Real Infinitely
Merer* Crude CWT Exact None Real Infinitely
S/UlllllOl1 (Sine) C.'ude CWT Exact NOlie Complex Infinitely
Comnlex Fret lie,,"!' B-SnIiUf! Crude CWT Exact None Comnlex Infinitely
Comolex Morlet Crude CWT Exact None Conmlex Infinitely
Comolex Gaussian Crude CWT Sym/Anti None Conmlex Infinitely
Haar Ol'tho2 Both AntiSym 1 Real No
D(llIbechies (DbN) Orthoo Both Not Sym NI2 Real IfN laroe
Srmlels Orthoo Both Close N/2 Real If N lar<Je
Coinels Ol'tholl Both Close N/2 -1 Real UN larl!e
D;screle Merer Ol'thOll Both Yes None Real Yes
B;or111000I/(I/ Biortho<J Both Exact ** Real IfN lar<Je
Rel'erse B;ortllOoollaf Biorthog Both Exact ** Real UN lar<Jc

* i\!leyer wavelets fIlters are from the IFFT of an exphclt equatIOn III the frequency domam
**Number of vanishing moments depends on filter length of highpass reconstruction filter (H')

This table (and this chapter) is by no means a complete list of the existing
wavelets, Additional wavelets and wavelet families include Binlets,
Brnshlets, Beamlets, .fu,thlets," Chirplets, Contourlets, Grouplets, SURE
lets, Lemierre, and Malvm' wavelets and many more. f\10re new wavelets are
also being created as time progresses-although some of these are highly
customized and not intended for general use.

Understanding and gaining intuition for the wavelets presented in this chap
ter will allow you to "hit the ground running" in understanding and using
any of these other wavelets. Remember not to indulge in the "Sport of Basis
Hunting" too much when an existing, proven, wavelet might work very well
for you. Usually changing the wavelet name in a line of software code is all
that is required to compare the performance of the various wavelets.

. Nmned after a Klingon battle sword (for Star Trek fans).

2009 Space & Signals Technologies LLC, All Rights Reserved. www.ConceptualWavelets.colll

1«< "_I '~2<>fJ]~ 1»>1



220 Conceptnal Wavelets in Digital Signal Processing

We will next look at a few new examples of the use of the wavelets pre
sented in this chapter and revisit in more detail some earlier examples of the
use of these am.azing tools.
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CHAPTER

11
Case Studies of Wavelet
Applications

Having seen the properties and some general applications of the various types of wav-
elets, we are now ready to gain a conceptual understanding of some applications to
case studies. While we will not be demonstrating all the wavelets or types discussed, we
should be able to gain some intuitive insights into wavelet use.

In addition to some new examples, we will re-visit some that have been introduced ear-
lier in the book and can now be better understood with the further knowledge and in-
sights we have since acquired.

11.1 White Noise in a Chirp Signal

We begin by adding white noise to a chirp signal. The result is shown in Fig-
ure 11.1–1 below at left. The FFT at right shows that the white noise appears
at all frequencies (hence the name “white” as in all colors) and will be diffi-
cult to remove using conventional FFT methods.
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FFT OF CHIRP SIGNAL WITH WHITE NOISE

Figure 11.1–1 A chirp signal with white noise is shown in the time and frequency domains.

Using a conventional (non-wavelet) lowpass filter to keep only the low fre-
quencies produces the time and frequency results shown in Figure 11.1–2.
The low-frequency portion is fairly well denoised, but the high-frequency
portion (most of this chirp signal) has been severely attenuated.
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Figure 11.1–2 Conventional lowpass filtering accomplishes some denoising at the start of
the signal (left graph) but destroys most of the signal as well as the noise. This is also seen in
the FFT shown at right.

If we adjust the lowpass filter to be less severe we have the denoised signal
as shown in Figure 11.1–3. More of the signal is preserved but the highest
frequencies are still lost and the beginning of the signal is not de-noised very
well.
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Figure 11.1–3 . Less severe conventional lowpass filtering keeps more of the signal (but not
all) and the high frequency noise is still present, especially at the beginning.

We use a conventional DWT to attempt to denoise this signal. The decompo-
sition is shown if Figure 11.1–4. We try first a Db6 filter because it looks like
it might “match” portions of this asymmetric signal (ref. Fig. 6.4–2) and be-
cause it is short (6 points).
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Figure 11.1–4 Display of a conventional DWT of signal using a Db6 wavelet.

The signal is 1024 points (2^10) long so we could downsample 10 times, how-
ever a 5-level DWT, as shown here, is sufficient. The original noisy chirp sig-
nal is shown in the upper left graph while a mini-CWT of the signal is shown
at upper right (every 10th scale is sufficient in this case). The 5 levels of Ap-
proximations are at left while the 5 levels of Details are shown at right.

A frequency allocation diagram for a 5-level DWT (or UDWT) is shown in
Figure 11.1–5. We now demonstrate the time/frequency manipulation capa-
bilities of wavelet technology. We will keep only some of the data within a
certain time and within a certain frequency range.

We notice in the above DWT display that different parts of the noisy chirp
signal appear in levels D1 through D5. For example, in D1 (graphic directly
beneath the mini-CWT) it appears that the “signal” portion begins at about
time = 650 and that everything before that can be attributed to noise. We
thus set the first 650 D1 values to zero to attempt to de-noise the signal.
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 Figure 11.1–5 Frequency allocation for a 5-level DWT. Notice that S = D1+A1 =
D1+D2+A2 =    = D1+D2+D3+D4+D5+A5. Note also that the filters are imperfect.

For D2 it appears that the signal portion is located between about 400 to 800.
Thus we place zeros everywhere else.* This process is shown below in Figure
11.1–6 for D1 and D2.
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 Figure 11.1–6 D1 (1st graph) and D2 (third graph) are adjusted to be zero except for the
specified times (650 to 1024 for D1 and 400 to 800 for D2).

We continue this process through D5, keeping only the signal portions. We
are now ready to add the denoised details D1 through D5 together with A5
(ref. Fig. 11.1–5) to reconstruct our signal. We are not seeking perfect recon-
struction here but instead we wish to denoise the signal. Figure 11.1–7
shows the final result with this method of denoising.

                                                
* Although this process is being done somewhat “by hand” here, the MATLAB Wavelet Toolbox has interac-
tive graphics called “interval-dependent thresholding” that allows the user to quickly discard unwanted data in
specified periods of time.
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 Figure 11.1–7 The original noisy signal is shown at left. Denoising using a 5-level DWT
with Db6 wavelet filters gives the result at right. Compare with Figs. 11.1–2 and 11.1–3.

The results are impressive, especially when compared with conventional DSP
methods. They can be possibly improved by trying other wavelets or by per-
forming the time/frequency manipulations on additional levels.

We will talk further in an upcoming chapter about “throwing out the baby
with the bathwater”—throwing away some alias cancellation capability as we
discard the noisy parts of D1 through D6. For now, we can state that in each
of the levels the noise was far less than the signal and the effect of aliasing
was minimal. We will compare this later with the results obtained using the
Undecimated DWT which has no such aliasing problems.

11.2 Binary Signal Buried in Chirp Noise

This next example is similar to the first except we have a binary signal and
the noise is in the form of a chirp.* The process is similar to that of the last
section. Figure 11.2–1 shows a Binary Phase Shift Keying, Polar Non-Return
to Zero (BPSK PNRZ) signal in both the time and frequency domains. This
example was mentioned in the overview Chapter One. We now provide more
details.

                                                
* A constant frequency jammer can be easily removed from data by conventional notch filtering using FFT
methods. A chirp jammer is more difficult because the frequency keeps changing. Wavelets work well here.
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 Figure 11.2–1 The original binary signal is shown in the time domain. Note the values al-
ternate between –1 and +1. The FFT of this signal is shown at right.

The signal is next buried in 80 dB* of chirp noise as shown in Figure 11.2–2.
The left plot shows the chirp noise values from –10,000 to +10,000. Although
we can’t see the small binary signal with this much noise added, we show a
close-up (right graphic) of the noise from –100 to +100 with the original bi-
nary signal over-plotted for comparison (the signal overplotted on the full
noise would look like a straight line). Looking at the signal in the frequency
domain does not offer much hope of finding it either (ref. Fig. 1.9–2).
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 Figure 11.2–2 Binary signal from –1 to +1 with noise from –10,000 to +10,000 added is
shown at left. A close-up is shown at right with the original binary signal overplotted (the signal
would not be visible in 80 dB of noise). Note the dimensions.

                                                
* Decibels, not Daubechies—the decibel is named for Alexander Graham Bell and is abbreviated “dB” while a
Daubechies wavelet is named for Ingrid Daubechies and is abbreviated “Db”.



Chapter 11 - Case Studies of Wavelet Applications 227

© 2009 Space & Signals Technologies LLC, All Rights Reserved. www.ConceptualWavelets.com

This is another instance where we use wavelets. We talked earlier about
matching the wavelet to the signal. In this case we might consider a Haar
wavelet because it looks like the binary signal. However, with this much
noise we wouldn’t be able to find it! Instead, we will match the wavelet to the
noise. Because the signal is 8192 points long we will use a longer Db40 wav-
elet as shown in Figure 11.2–3. This looks a lot like the chirp signal and, as
we mentioned for large Daubechies filters, is fairly smooth. Also, this longer
wavelet should provide for fairly good frequency discrimination.
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 Figure 11.2–3 4954 point estimation of the “continuous” Db40 wavelet with the 40 points
of the H’ filter that created it superimposed (along with trailing zeros).

We will use a 7-level DWT here. The results are shown in Figure 11.2–4 be-
low. We notice that the match of the wavelet to the noisy signal is excellent
and that the highest frequency portion of the chirp noise is found in right-
hand part of D1 (ref. Fig. 11.1–5). Mid-frequency portions are found in the
center of the D2 through D5 plots and the lowest frequencies are found at
the left of the D6 and D7 plots.

We can also literally see how A1 and D2 combine to make the signal (left top
graph), how A2 and D2 combine to make A1 and so on.
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Figure 11.2–4 7-level DWT of binary signal with 80 dB of noise added. Wavelet filters used
are Db40.

Looking at D2 (Details, #2) on the above display we might assume we would
be “safe” to delete the values from about 1500 to 7500 because the chirp por-
tion seems to be isolated in this area. A close-up look at D2 limiting the val-
ues to the range –2 to +2 (rather than –10000 to + 10000) tells a different
story as shown in Figure 11.2–5 (left). We see a binary pattern in the first
1000 points and perhaps a few more points at the end. Rather than plotting
close-ups and setting the chirp jammer portions to zero by hand, we can
automate this process. We use a “reverse threshold’ in which any values of
the signal greater than, say, 2 (or less than –2) are set to zero.*

                                                
* We can set up this “reverse” threshold in software or we can use median filtering to keep the binary parts.
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 Figure 11.2–5 Close-up of D2 showing remnants of the signal at left. After reverse thre-
sholding using a median filter we keep only the values less than 2 and set to zero all the large
values as shown in the right graph.

The right graph of Figure 11.2–5 above shows the result. We have only the
“scraps” left over (in this frequency bandwidth of D2). However, looking
again at the 7 Details on the above DWT display we can see that these
“scraps” will be located at different times. D1 with the chirp noise removed
gives us remnants at the beginning while D3 and D4 give us remnants in the
middle and D6 and D7 give us remnants at the end.

With the chirp portions thresholded to zero we now combine these de-noised
Details as

Sig’ = A7 + D7’ + D6’+ D5’ + D4’ + D3’ + D2’ + D1’

where the prime indicates de-noised. A close-up of the denoised signal is
shown in Figure 11.2–6 along with the original binary signal for comparison.
The denoising is not perfect, but allows us to reconstruct a recognizable bi-
nary signal. This would not have been possible using conventional DSP
methods.

This is a good example of how wavelets are useful to match either the signal
or the noise and how the time/frequency nature of wavelet processing allows
us flexibility we would not find in either the time or the frequency domains
by themselves.
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 Figure 11.2–6 Portion of signal pulled from 80 dB of noise using time-specific thresholding
with a 7-level conventional DWT is shown at top. Original binary signal. is redrawn at bottom
for comparison.

11.3 Binary Signal with White Noise

This time a binary signal has intermittent white noise added as shown in
Figure 11.3–1. The signal has 16 “chips” (binary value +1 or –1) per bit. For
example, the binary sequence [1 –1] is represented by 16 values of +1 fol-
lowed by sixteen values of –1. The “pure” signal here is 1024 chips (points)
long and represents 64 bits. The first 8 bits are [1 –1  1 –1  1  1 –1 –1].
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Figure 11.3–1 Binary signal with 16 ”chips” per bit is shown at left. Intermittent pseudo-
random noise is added as shown at right.

We can actually see part of the signal in the time domain, but not enough to
decode it. Figure 11.3–2 shows the pure binary signal and the noisy signal in
the frequency domain.
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Figure 11.3–2 FFT of the original binary signal at left and the FFT of the signal with in-
termittent noise at right.

We will encounter problems using conventional DSP lowpass filtering tech-
niques because of the amount of high frequencies that come from the
“untouched” portions of the pure binary signal (ref. Fig. 11.3–2, left). In other
words, both the signal and the noise have high frequency components.

A square wave, as most audio enthusiasts know, is made up of many fre-
quencies.* Also, we have tried to make the binary signal realistic by including
“wide” areas (e.g. sections where the bit pattern is “–1 –1 –1 –1” etc. instead
of just “1 –1  1  1 –1  1 –1” etc.). Thus having sections in the signal with the
(variable-length) square bits may actually make it harder to separate from
the sporadic noise using conventional filtering techniques.

One conventional method might be to use a series of Short Time Fourier
Transforms (STFTs) on the “clean” and noisy sections separately. However,
wavelet technology incorporates this same time/frequency capability with a
better match to the signal than the FFT sinusoids.

We have seen in the previous 2 examples methods of using the simultaneous
time/frequency capabilities of wavelets by selectively denoising the Details at

                                                
* Early Rock musicians would intentionally crank up their tube-type amplifiers to distortion. Instead of “clean”
sinusoids the tops and bottoms of the sine waves would be clipped flat and would look more like square waves
and sound to the human ear like a combination of many high-frequency harmonics and overtones. The next gen-
eration of amplifiers provided a smoother attenuation and less harmonics—which caused the old tube amplifiers
to be highly sought after by the Rock musicians! Amplifier manufacturers finally caught on and developed solid-
state units that provide flat clipping and the harmonic distortions so loved by some young musicians (and tol-
erated at best by most senior DSP professors).
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specified times and we could do that again here. However, we will show in-
stead the power of a good match of wavelet to signal.

This time we will begin by choosing a wavelet that matches the binary sig-
nal—the Haar would be a good choice. Using a conventional DWT we could
decompose up to 10 levels (1024 = 2^10) but 5 levels will adequately demon-
strate the process. First we will perform the DWT on the pure noiseless bi-
nary signal using the Haar wavelet. The display is shown in Figure 11.3–3.

We notice that the Details in levels 1 through 4 are zero. This is true for any
time interval of the binary signal. For example the “skinny” square waves at
the beginning of the pure binary signal (ref. Fig. 11.3–1 at left) as well as the
“fat” square waves closer to the middle (times roughly 200 to 500) all produce
zero values for the Details in levels 1 through 4. This means that for any bi-
nary signal similar to this test case the information is captured in the higher
levels (D5, D6, etc.) that we have learned represent the lower frequencies
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Figure 11.3–3 DWT of the original binary signal (top left) with CWT (top right).
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Specifically, we know that the pure binary signal, S, can be represented by

S = D1+A1 = D2+D1+A2 = . . . = D4+D3+D2+D1+A4

But with the Details being zero on the first 4 levels we have

S = 0 + 0 + 0 + 0 + A4 = A4

We can see this in the above DWT display as we compare the signal (top left)
to the Approximations in levels 1 through 4.

The DWT display of the binary signal with intermittent noise is shown in
Figure 11.3–4.
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Figure 11.3–4 DWT of the original binary with intermittent noise added.

We notice that there is information in all 5 levels of Approximations and De-
tails. However, we now know that for a binary signal similar to our test case
that the information in levels 1 through 4 of the Details is all noise. This
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means that the level 4 Approximations (A4) contains the signal with much of
the noise removed.

Figure 11.3–5 shows at left the partially de-noised signal found in A4. The
right graph shows the original signal for comparison. The original signal is
also superimposed on the denoised signal (dotted lines).

Figure 11.3–5 Denoised binary signal at left. For comparison, the original pure binary sig-
nal is superimposed on the left graph and presented by itself at right.

Although not perfect, we can tell which bits are positive and which are nega-
tive and thus +1 or –1. The bit pattern is thus preserved after denoising.

The CWTs we saw in the upper right corner of the DWT displays deserve a
closer look. Figure 11.3–6 shows the CWTs for the pure binary signal and the
signal with the intermittent noise added.
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Figure 11.3–6 CWT displays using Haar wavelet of pure binary signal and of noisy signal.

The displays look somewhat like a row of pipes on a pipe organ. The smaller
“pipes” indicate the “skinny” square waves as found at the left side of each of
the CWT displays (times from about 1 to 40). The larger “pipes” indicate the
“fatter” waveforms just to the left of the middle of each display (about time =
400). These displays show the magnitude of the values so –1 will appear as
bright as +1. We can, however, adjust the display so that negatives are dark
and positives are bright so we can discern the bit patterns. Notice that we
can “see past the noise” enough to discern bits in the noisy signal (right
graph).

Figure 11.3–7 (left) shows the CWT of the Haar-denoised signal. Notice how
well it agrees with the original binary signal (ref. Fig 11.3–6). We chose the
Haar wavelet because it looked like the binary signal. It is interesting to see
what would happen if we chose a wavelet that looked nothing at all like the
signal (or the noise). The right side of Fig. 11.3–7 shows the results of using a
Db20 “chirp” wavelet. The DWT (not shown) for the Db20 is also of no use.*

This is why conventional DSP falls short—especially with signals that do not
look sinusoidal and do not match the sinusoids of the Fourier Transform.

                                                
* In practice, if we are unsure about the shape of the signal we would start with a more general-purpose wavelet
such as the Db4. In this case, however, we can see portions of the binary signal and can tell up front that a Haar
wavelet would be an excellent choice but that a 20-point chirp wavelet (as used in the previous example) would
be a poor match to either the signal or the noise.
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Figure 11.3–7 CWT of Haar-denoised signal using the Haar wavelet at left clearly shows
the bits. At right, the CWT of the denoised signal using a Db20 wavelet is interesting-looking,
but gives no practical visual information.

11.4 Image Compression/De-noising

Compression and/or de-noising using wavelets are in wide use in image
processing. We saw an example of JPEG image compression earlier (ref. Fig.
1.9–4). While a full discussion of the use of wavelets in image processing is
beyond the scope of this book, we can provide a brief overview.

Image processing means two-dimensional processing. Instead of the simulta-
neous time/frequency capabilities of wavelets we are usually talking about
space/frequency or distance/frequency. In other words, a signal would have
various amplitudes as we vary the time while a monochromatic image would
have various brightness as we vary the position (space) on the image (e.g. “3
centimeters to the right and 4 centimeters down on the photo”).

To get our bearings we will look first at a simple 256-point split sine signal
and a single-level one-dimensional conventional DWT display as shown in
Figure 11.4–1 (top left graph). We will use the set of 4 Haar wavelet filters
(the H’ filter is used by itself to produce the CWT at top right). Notice that
the Details and Approximations at level 1 (D1 and A1) combine to produce
the original signal. Note also that both halves of A1 have high amplitudes
(like the original signal) while the left half of D1 has much smaller values
than the right half). This is of course because D1 represents the higher fre-
quencies while A1 represents the lower frequencies as we have discussed
(ref. Fig. 4.5–1).
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Figure 11.4–1 Single-level DWT of a split-sine signal using the Haar wavelet filters.

We next construct a 2-dimensional 256 by 256 image “test pattern” The first
128 rows will be identical copies of the above split sine signal. The image is
shown below in Figure 11.4–2 at left. Comparing with the 1-D signal we can
discern the tops of the 2 low-frequency sine waves (cycles) and the tops of
the 16 high-frequency sine waves as bright spots. We use a shorter 128 point
split sine signal with one low-frequency sine wave and 8 high-frequency sine
waves (not shown) to fill the lower half of the test pattern (right graph) by
constructing 256 identical columns each 128 points long. As with the longer
split sine test signal we can see the bright spots corresponding to the top of
the low-frequency sine wave (single cycle) and the 8 high-frequency sine
waves.

We now proceed with a single level two-dimensional conventional DWT of
this test-pattern image. Whereas the 1 level 1-D DWT would decompose the
signal into A1 and D1, the 2-D DWT converts the image into A1 (the lower-
frequency Approximation), H1 (a vertical scan yielding Horizontal compo-
nents), and V1 (a horizontal scan yielding Vertical components).*

                                                
* Some software also uses a diagonal scan and/or additional methods to further decompose the data at each level.
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Figure 11.4–2 Test Pattern produced by 128 identical rows of the 256-point split-sine sig-
nal (left image) followed by the addition of 256 columns of a shorter 128 point split-sine signal
(bottom half of complete test pattern image as shown at right).

Figure 11.4–3 shows the A1, V1 and H1 portions of the decomposed image.
The Approximation, A1, looks much like the original image (as did the 1-D A1
from Fig. 11.4–1 look much like the original signal). Just as the one-
dimensional D1 (right lower plot from Fig. 11.4–1) had very low values until
the signal changed to high frequency, the upper half of V1 (the center image
of Fig. 11.4–3 below) is dark for the first half then we can see the higher fre-
quency sine waves as vertical components from the horizontal scans.
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Figure 11.4–3 Single-level 2-D DWT of test pattern produces the lower frequency Approxi-
mation (A1 at left), the Vertical components from the horizontal scan (V1 in center) and the
Horizontal components from the vertical scan (H1 at right).
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The lower half of V1 is all dark because horizontal scans of the test pattern
in that area will produce constant values (whether bright or dark, the values
don’t change horizontally) and thus zero frequency. The vertical scans in the
rightmost graphic will also produce zero values (dark portions) until they en-
counter the high frequency portions of the shorter split-sine signal.

Similar to the 1-D cases, the image can be reconstructed by combining A1,
V1, and H1. If we do this without changing the components we will have per-
fect reconstruction. However, our goal here is to remove some noise, com-
press the signal or both.

Figure 11.4–4 shows the familiar “Barbara” image (left). We have taken a
200 x 200 pixel close-up to show the facial quality. Then we have added some
noise as shown at right. Notice particularly the “freckles” we have added
around the forehead, cheeks, and nose areas.

      

Figure 11.4–4 Classic “Barbara” image 200 x 200 close-up is shown at left. Noise is added
along with facial skin imperfections (“freckles”) to the “pure” image giving us the image at right.

We will now compress this image. Since compression often involves remov-
ing high frequency components we might expect a possible improvement in
skin quality (i.e. freckles and other skin imperfections less pronounced).
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Since this image is small (200 x 200) we will want to use a small wavelet
(filter). The 2-point Haar comes to mind. The result of a 9 to 1 compression is
shown in Figure 11.4–5 at left. Even after fine-tuning, the facial quality will
still be very poor. However, notice how the fabric of her scarf is very pro-
nounced. The Haar wavelet provides for good edge detection.

A better choice for her complexion would be a biorthogonal wavelet. We
choose the 7/9 wavelet because it is perfectly symmetrical and still short (9
points maximum filter length). The results of a 9 to 1 compression using this
biorthogonal wavelet is shown below at right. Notice her complexion has
cleared up considerably and that she now has a “softer” look.*

      

Figure 11.4–5 9 to 1 compression using a set of 2-point Haar filters is shown at left. The
same compression using a set of Biorthogonal 7/9 filters is shown at right.

We saw earlier how wavelets can be used to denoise a signal at specific time
intervals. Similarly, with wavelet image processing we can denoise specific
areas of an image. In the above example we could use heavier filtering on
the freckles areas and lighter filtering on the rest of the image.

                                                
* In the early days of Hollywood, long before Digital Image Processing, some older screen actresses would in-
sist upon a gauze “filter” stretched across the movie camera lens. This “soft” effect would hide wrinkles and age
spots. One young actress also insisted on this “soft” effect—not to hide wrinkles but to hide her freckles!
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11.5 Improved Performance using the UDWT

So far in this chapter we have successfully used the conventional DWT for
de-noising and compression. As mentioned earlier, when we remove noise
we also remove part of the alias cancellation capability of the conventional
DWT. In the examples so far this has not been a problem but in this last ex-
ample we highlight a pathological case where aliasing is problematic and
show why the Undecimated DWT (UDWT) can provide better results.

Figure 11.5–1 (left graph) shows a generalized test signal that begins with
Frequency Shift Keying (FSK) and ends with Frequency Modulation (FM).
The FFT of this signal (right graph) shows the low and high frequency por-
tions (peaks) from the FSK modulation and from the linear FM modulation
(wide portions at low frequencies).
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Figure 11.5–1 Composite demonstration signal with FSK modulation followed by FM
modulation shown in the time domain at left and in the frequency domain at right.

We next add some high-frequency noise in the form of harmon-
ics/intermodulation effects. In other words, as the modulated frequency of
the original signal changes, so does the frequency of the noise. This is shown
in Figure 11.5–2



242 Conceptual Wavelets in Digital Signal Processing

© 2009 Space & Signals Technologies LLC, All Rights Reserved. www.ConceptualWavelets.com

0 100 200 300 400 500 600
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

      
0 0.5 1 1.5 2

0

20

40

60

80

100

120

140

Figure 11.5–2 Noisy composite demonstration signal shown in the time domain at left and
in the frequency domain at right.

As can be seen by comparing the FFT of the original signal to the FFT of the
noisy signal (right graphs of Figs. 11.5–1 and 11.5–2) we cannot isolate the
noise from the signal using conventional DSP filtering techniques. We turn
again to wavelet processing.

We use a “general purpose” set of Db4 wavelet filters and perform a conven-
tional DWT and a UDWT on the noisy signal as shown below in Figure 11.5–
3. As we compare the DWT and the UDWT displays we notice differences,
especially in the higher frequency sub-bands of D1, D2, and D3. Further-
more, the UDWT looks “cleaner” in isolating the sections of the signal. The
frequency allocation is the same for both the DWT and UDWT (ref. Fig. 11.1–
5) and the wavelet is the same (Db4) causing us to ask “Why the differences
in results from using the 2 methods?”

The answer, as we will demonstrate, is non-canceled aliasing in the conven-
tional DWT while the UDWT (which uses stretched filters instead of down-
sampling) has no such problems. We note in passing that the CWT (which
also uses the stretched “H’” filter) is the same for the DWT and the UDWT
customized displays (upper right graphs in both displays).

To better see what’s going on, we look at the center part of the signal by it-
self. We would do something similar to this “isolation in time” as we exploit
the time/frequency capabilities of wavelet processing to order to impose dif-
ferent thresholds on the various time segments of the signal (interval de-
pendent thresholds) as shown earlier in this chapter (ref. Figs. 11.1–6 and
11.2–5).
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Figure 11.5–3 Db4 wavelet decomposition of the noisy composite FSK/FM signal using a
convention al DWT at left and an Undecimated DWT at right.

Figure 11.5–4 shows the center 256 points of this 512 point noisy signal. It is
composed of a 0.3 Nyquist sinusoid with a 0.75 Nyquist sinusoid as the noise.
Before proceeding, we note that this center portion of this FSK/FM noisy
signal is a stationary signal in that it does not change frequencies or ampli-
tude (envelope) over time. If the entire 512 points of the signal looked like
this we would be better off using a sinusoid as the “wavelet”—in other words
to use conventional Fourier techniques instead of wavelet processing. How-
ever, since this “sum of sines” can occur, even for a very short time,* in a
large number of ways and in a variety of signals we will proceed.

Another glance at the frequency graph from Fig. 11.5–4 below (also ref. Fig.
11.1–5) shows the frequency subband D1 to be roughly from 0.5 to 1.0
Nyquist and the subband A1 to be from roughly 0.0 to 0.5 Nyquist (with some
overlap due to the imperfect filtering of the Db4). Because the signal at 0.3
Nyquist is well-isolated from the noise at 0.75 Nyquist it appears that the
signal should be found in A1 with a minimal amount in D1 while the noise
should be found almost entirely in D1 with minimal amounts in A1. A single-
level DWT or UDWT should show this.

                                                
* Although a Short Time Fourier Transform (STFT) could be used for stationary portions of a signal, if the
time is too short we won’t achieve meaningful results. The Wavelet Transforms are a better choice here.
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Figure 11.5–4 Center 256 points of noisy 256-point signal shown in both the time and fre-
quency domains.

As a “sanity check”,* we will first look at a single-level decomposition of the
noiseless signal by itself using both the conventional (decimated) DWT and
the Undecimated DWT (UDWT). Figure 11.5–5 shows the single-level DWT
and then the UDWT displays for the noiseless signal. The signal is found al-
most entirely in A1 for the UDWT with very little in D1 (note different
scales) as expected. But the conventional DWT has much more high-
frequency components in D1. We will show that this is not due to noise, but
instead actually due to the aliasing of the noiseless signal!
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Figure 11.5–5 Results of a single-level decomposition of the pure signal with no noise using
a Db4 filter set. Conventional DWT results are compared with UDWT results.

                                                
* Some would argue that it will take more than this simple check to establish the author’s sanity—but it is a
good idea when faced with puzzling results to look at the basics and build from there.
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The block diagrams for the single-level conventional DWT and the UDWT
are drawn again in figure 11.5–6. We can see the potential for aliasing from
downsampling in the Conventional DWT here.
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Figure 11.5–6 Single-level Conventional DWT and Undecimated DWT. The 2 are identical
(for the single level case) except for the lack of downsampling (decimation) by 2 in the UDWT.

A look in the frequency domain will illustrate the problem. Figure 11.5–7
shows the noiseless signal after the single-level decomposition using a Db4
UDWT. As expected, most of the 0.3 Nyquist signal is found in A1 (left
graph). Because of imperfect filtering we have a small amount of the signal
in D1 (right graph). Note the difference in scales however with A1 contain-
ing almost 9 times the signal content of D1.
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Figure 11.5–7 Frequency domain results for the Undecimated (non-downsampled) UDWT
noiseless pure signal. A1 (left graph) contains the signal at 0.3 Nyquist with no noise as ex-
pected. D1, as shown in the right graph, contains some small aliasing due to imperfect filtering.
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We next look at frequency domain results using the same noiseless signal in
the A1 and D1 subbands produced by the conventional DWT as shown in
Figure 11.5–8. The results show aliasing present in both A1 and D1. Recall
from DSP that for a signal at 0.3 Nyquist aliasing from downsampling will
“reflect” the signal across Nyquist. Thus we see the aliasing components at
Nyquist minus 0.3 Nyquist or 0.7 Nyquist. This is not to be confused with our
earlier noise at 0.75 Nyquist—there is no noise in this sanity check! In other
words, this alias artifact will appear even in a noiseless signal.

Signal

Aliasing
100

150

0 0.5 1 1.5 2
0

50

      
0 0.5 1 1.5 2

0

10

20

30

40

Signal

Aliasing

Figure 11.5–8 Frequency domain results for the conventional (downsampled) DWT of the
noiseless pure signal. A1 (left graph) has aliasing components at (1.0 – 0.3) = 0.7 Nyquist. D1
(right graph) also has magnitude 40 aliasing components at 0.7 Nyquist .

Notice from the above figure 11.5–8 that the signal at 0.3 Nyquist has the
same components (magnitude 120 in A1 and 14 in D1) as with the UDWT
case (ref. Fig 11.5–7). Notice also the aliased components at 0,7 Nyquist
(magnitude 40) are the same size! This is important because when we add A1
to D1 in the conventional DWT these components cancel. But when we
throw away D1 to get rid of some high frequency noise (added later) we are
also throwing away the alias cancellation components and we are left not
only with the 0.3 Nyquist signal but also a substantial 0.7 Nyquist alias arti-
fact. Note: We have shown only the magnitudes of the (complex) signal here.
We will discover in the next chapter how the aliased components in A1 and
D1 are 180 degrees (π radians) out of phase and thus cancel.

Having demonstrated the superior performance of the UDWT on the noise-
less signal, we now compare the DWT and UDWT on the signal (center por-
tion of the FSK/FM) with added noise. With the signal at 0.3 Nyquist and the
noise at 0,75 Nyquist (ref. Fig. 11.5–4) we will look at the results of keeping
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A1 while discarding D1. A look at the frequency domain of the UDWT A1 and
D1 in Figure 11.5–9 below shows this to be a viable option for this particular
signal.

0 0.5 1 1.5 2
0

50

100

150
Normalized frequency (Nyquist == 1)

      
0 0.5 1 1.5 2

0

50

100

150
Normalized frequency (Nyquist == 1)

Figure 11.5–9 Frequency domain results for the UDWT noisy signal. A1 (left graph) con-
tains almost all the signal at 0.3 and very little of the noise at 0.75 Nyquist. D1 (right graph)
contains almost all the noise and very little of the signal.

However, a look at the conventional DWT A1 and D1 in the frequency do-
main indicates that this option of keeping A1 as the “de-noised” signal is not
viable because of aliasing problems caused by the downsampling. This is
shown below in Figure 11.5–10
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Figure 11.5–10 Frequency domain results for the conventional (downsampled) DWT noisy
signal. A1 (left graph) contains the signal at 0.3 Nyquist along with significant aliasing effects.
D1 shows the added noise at 0.75 Nyquist along with further aliasing effects.
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We can now compare the results of denoising using the conventional DWT
with those of the UDWT for this stationary portion of the noisy signal using a
single-level Db4 wavelet transform (keeping A1 and discarding D1). We saw
A1 in the frequency domain earlier in Figs. 11.5–7 and 11.5–8. We now take
a look in the time domain. Figure 11.5–11 shows a close-up of the original
noiseless signal and the same signal with noise added.
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Figure 11.5–11 Close-up in time domain of original and noisy signals.

Figure 11.5–12 shows a close-up of the de-noised signal using the conven-
tional DWT and the same signal denoised using the UDWT.* As can be seen,
the UDWT does an almost perfect job of de-noising even using a single-level
transform in this pathological (but very possible) case. The conventional
DWT will need additional levels, a longer wavelet, and/or further processing.

We can of course use the UDWT to denoise the rest of the 512 point FSK/FM
signal. Because the conventional (decimated) DWT is in such wide use, it
would be a good idea to better understand and utilize it correctly! Thus, we
will look in more depth at how the alias cancellation works within the con-
ventional DWT in the next chapter.

                                                
* Another reminder that the Undecimated DWT is also referred to as Redundant, Stationary, Quasi-Continuous,
Translation Invariant, Shift Invariant, and Algorithme à Trous in some texts, papers, and software.
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Figure 11.5–12 Close-up in time domain of conventional DWT de-noised signal (left) and
UDWT denoised signal (right).

Andrew P. Bradley in his landmark paper “Shift-invariance in the Discrete Wavelet
Transform” * reminds us “It should be noted that the aliasing introduced by the
DWT cancels out (only) when the inverse DWT (IDWT) is performed using all of the
wavelet coefficients, that is, when the original signal is reconstructed”. He offers
several suggestions (besides exclusive use of the UDWT) including (1) using
longer filters with better frequency resolution and (2) creating a hybrid that
uses the UDWT at some levels to prevent non-canceled aliasing and using
the conventional DWT for improved speed and storage efficiency.

11.6 Summary

In this chapter we explored and demonstrated some of the capabilities of
wavelet processing techniques using specific examples. We first added white
noise to a chirp signal and then removed the (supposedly unknown) noise
using a Db6 conventional DWT and exploiting the time/frequency capability
of wavelet processing. We employed a somewhat similar process using a
Db20 chirp wavelet to find a binary signal buried in 80 dB of noise from a
chirp jammer.

Our next case was a 16 chip per bit binary signal with intermittent pseudo-
random noise. The best match to the binary signal was a Haar wavelet. Per-
forming a 7-level conventional DWT on the noiseless signal we saw there
were no components of the noiseless signal in D1 through D4. Thus any-

                                                
* Proc. VIIth Digit. Image Comp., Dec. 2003, pp. 29–38.



250 Conceptual Wavelets in Digital Signal Processing

© 2009 Space & Signals Technologies LLC, All Rights Reserved. www.ConceptualWavelets.com

thing found in D1 through D4 would be noise and could be safely discarded.
We were thus able to re-create the original binary signal enough to discern
the binary values (+1 or –1). We also revisited the CWT for this example and
demonstrated its capability.

We demonstrated image compression on first a test pattern and then using a
subset of the “Barbara” image. We added some noise in the form of skin im-
perfections (freckles). By thresholding the levels (in two dimensions) we
were able to compress the image by almost an order of magnitude and in the
process selectively remove high frequency components. The final image had
a “soft” look that removed the skin imperfections. The wavelet filters of
choice were those of the Biorthogonal 7/9, chosen for their symmetry and
short length. We used a Haar for comparison and obtained better edge detec-
tion but far worse skin quality.

In the last example, we featured a case where de-noising using a UDWT was
superior to using a conventional DWT. In both the DWT and UDWT a Db4 set
of filters and a single level decomposition was used. The problem was shown
to be with the conventional DWT itself. In real-life Digital Signal Processing
we can get aliasing when we downsample. The (conventional downsampled
or decimated) DWT cancels aliasing, but when we throw away parts of the
decomposition (D1 for a single-level DWT) we also lose the alias cancellation.
Alternatives include (1) using the Undecimated DWT exclusively; (2) using
the UDWT for part of the decomposition; and (3) using a longer wavelet with
better frequency resolution or (4) checking first to see if the values in the
Details (for a given length of time or space) are close enough to zero that
they can be safely suppressed for that interval.

In all these cases, conventional DSP methods with filtering and/or FFT
methods would not work. A Short Time Fourier Transform might work on
some of these examples but the dynamic nature of wavelets usually make
them a better option. Also, in every case we tried to match the wavelet to ei-
ther the signal or noise for best discrimination.

With these examples under our belt we can take a closer look at the alias-
cancellation methods used in the conventional DWT and gain further concep-
tual understanding and, hopefully, increased wisdom in using the various
wavelet transforms.
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than in CWT, 109, 111
Convolution, See Correlation
Correlation

convolution same as correlation with 
PRQMF, 34-51, 126-129, 143-144, 
158, 252-253

correlation coefficients, 15, 175, A9-A12
correlation value, 11-15, 42, 252-258, 

C1-C5
correlation with unit basis vectors, 155
correlations with sinusoids, 7, 11-12, A6-

A9, C1-C2
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correlations with wavelet (filters), 1-5, 
13-59, 83-99, 122-190, A6, A9-A12, 
C3-C8

cross correlation, 34, 136, 156-178,
212-213, A10-A11. See also
Correlations with wavelets

form of comparison, 1-7, 32-36, 136, C8
matching the wavelet filter, 5, 14-16,

90-99, 169-173, 197-235, A11-A12, 
B3, C3-C4

single-point correlation, A6. See also Dot 
Product

Cost functions, 174, 185
Crude wavelets (filters), 219

crude (complex) wavelets, 194-203
crude (real) wavelets, 188-194
crude wavelets not continuous, 188
discrete points from an explicit equation, 

4-6, 83-98, 188-201
jargon alert, 4

Customized wavelets, 171, 174
Cutoff frequency, 80-83, 98, 194, 197
CWT. See Continuous wavelet transform

D
Daubechies wavelet (filters) DbN

abbreviation Db, not dB, 226
appending equispaced end zeros for

perfect fit to filters, 4-5, 115-116, 205,
287, C9

applications, 18, 111, 175-183, 207
built by upsampling and lowpass

filtering, 112-117
chirp wavelet, 206
estimation of “continuous” wavelet using 

interpolated filters, 4-6, C10
four “magic numbers” of Db4 wavelet 

filter, 111, 114, 153-154, 183-184 
285

frequency characteristics, 117-118
general description, 205-207
halfband filters from wavelet filters, 142
named for Ingrid Daubechies, 226
non-linear phase, 206

numerical integration to obtain desired 
filter length, 113-114

orthogonality relationships, 155-167, 
183, 203-204, 219, A6

producing Daubechies filters from half
band filters, 150-154

properties in table form, 219
referred to as “Db(N/2)” in MATLAB, 111
smooth (regular) for large N, 227
stretching (“scaling” or “dilation) to 

match signal, 18
support width (length) , 120, 205

Decimation by two, 24-25 59-62, 124-133, 
245, 261-263, C8. See also
Downsampling

Decomposition (Jargon Alert), 21. See also
CWT, DWT, UDWT and WPT

Deconvolution, 147, 169, 208
Delta function. See Kronecker delta function
Denoising. See also Compression

alias cancellation loss, 297
case studies, 222-240
in music, 10
simultaneously in time and frequency, 

19-23
using classical FFT, A4-A13, C7
using conventional DWT, 26-28,

131-134, C8-C9
using Haar wavelet filter, 58, 64-78
using Undecimated DWT, 43-55, 126, 

240-260, C8
with biorthogonal wavelets as basis, 

152-163, 214, 221
with orthogonal wavelets as basis, 156, 

161, 203-204
Details (as used in wavelets)

case studies, 180-181, 223-224, 228, 
232-233, 236

coefficients, 21, 44-52, 60, 127, 131, 135
definition, 21
in the conventional DWT, 70-77,

131-132, 136
in Undecimated DWT, 21-22, 44-58, 126
in the WPT, 137-138
looking like the scaling function,
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related to key equations, 296-298
shown in FFT format, A4-A5

DFT. See Discrete Fourier Transform
Digital Image Processing using wavelets. 

See also specific wavelets
symmetry, 163, 166, 206-209, 214-218
soft effect using wavelets, 240
soft effect using gauze, 240
compression, 10, 28-29, 161, 166, 236-

240, C1, C9. See also JPEG
denoising, 10, 28, 137, 161, 236-240, C1

Dilation
as either stretching or shrinking the 

wavelet, 3
by interpolation, 82-86, 106, 196
constituent wavelets, 161
dilation equation, 281-295
dyadic dilation, 19. See also DWT
in the Undecimated DWT, 125
jargon alerts, 3, 19
to match the desired event, 5, 15-16, 

170, A10-A11
Discrete Fourier Transform (DFT). See Fast 

Fourier Transform (FFT)
Discrete Meyer wavelet (filters)

can be used in both CWT and DWT, 
212-214

estimation of “continuous” wavelet using 
interpolated filters, 212

frequency characteristics, 212-213
general description, 211-214. See also 

Meyer wavelet
orthogonality relationships, 212-213
properties in table form, 219

Discrete Wavelet Transform (DWT). See 
Conventional (decimated) DWT

Doppler shift, 122. See also Kinematics
Dot product, 155-185, 204-217, 254-255, 

A6-A11. See also Correlation
Downsampling. See also Upsampling, DWT,

and Aliasing
by two. See Decimation by two
dyadic, 24, 129
in LTI systems, 259
jargon alert, 24

keeping odd or even values, 61, 124, 253
number of coefficients reduced by, 26, 70
producing artifacts, 291, 296
shift-variant, 260
shrinking the signal, 24-26

DWT. See Conventional (decimated)
Discrete Wavelet Transform

E
Effective length (effective support), 84-98, 

169, 188-202, 217
Einstein, Albert, ii, 142, 301

F
Fake wavelets, 122, 169-178. See also

Morlet wavelet (filters)
Fast Fourier Transform (FFT). See also 

Short Time Fourier Transform (STFT)
audio FFT, A12-A13. See also

Acoustic piano
basis functions, 15
better choice than wavelets for stationary

signals. See Signals, stationary
comparisons (correlations) with

“stretched” sinusoids, 7-13, A6-A9, 
C2-C3

forward and inverse FFT (FFT and 
IFFT), 7, 20, 67, 103, 297

frequency domain, 7, 10, 79-80, 198-219,
245-248, 261-271, 296-297, A3

functionally equivalent to Discrete
Fourier Transform (DFT), 1, 20,
297-298

generalized equation, 12
notch filter, 170, 225
pathological case using FFT, A1-A2
product of FFTs. See Spectral

factorization
radix two FFT, 131
relation to STFT, B3-B5
results of FFT shown in Continuous 

Wavelet Transform (CWT) format,
A3-A4

sampling at Nyquist frequency, 251
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using cosine for real values, 87
wavelet terms Approximation and

Details shown in FFT format, A4-A5
wavelets better choice than FFT for non-

stationary signals. See Signals, non-
stationary

Fast wavelet transform. See DWT
Father wavelet, 15, 292. See also

Mother wavelet
FBI fingerprints. See Biorthogonal wavelet 

(filters)
Filters. See also Wavelet filter list, 219

filter bank, 20-26, 251-259. See also 
PRQMF

finite length filters. See Compact support
highpass decomposition filter, 21, 44, 

125, 143-145, 164-165, 204-216, 271
highpass reconstruction filter, 21, 44, 

106-116, 145, 164-165, 204-219, 
271, 291-295

lowpass decomposition filter, 44, 126, 
142-145, 158-165, 204, 271

lowpass reconstruction filter, 21, 44, 
106-127, 162-164, 204, 271-296

passband, 46, 82, 96-97, 111, 193-197. 
See also Constant Q

perfect reconstruction. See PRQMF
scaling function filter. See Filters, low

pass reconstruction
stopband, 48
transition band, 48-54, 81-90, 117-120, 

197
upside down or differing by a sign, 116
wavelet function filter. See Filters, high

pass reconstruction
Frequency b-spline wavelets. See Complex 

frequency b-spline wavelets
Frequency domain. See Fast Fourier

Transform
Frequency sub-bands. See DWT, UDWT, 

and WPT (frequency allocation)
FSK/FM. See Signals
Fugal bugle, 161. See also Denoising

G
Gaussian wavelet (filters)

applications, 192
derivatives of Gaussian, 191
frequency characteristics, 199
general description, 191-192
properties in table form, 219
regular, smooth, and symmetrical, 192
theoretical “continuous”

wavelet, 6, C10
used with CWT but not DWT, 192

Gaussian wavelet. See Complex Gaussian 
wavelet

Global Positioning System (GPS), 122, 171

H
Haar wavelet (filters)

antisymmetric with linear phase, 47, 
205-206, 218

applications, 5, 170, 207-235, C10
details coefficients identical to CWT

values, 128, 136
discontinuities in, 5, 109, 172, 204
display of signals using, 235-240,

249-250
dual of the Sinc (Shannon) wavelet, 197
frequency characteristics, 110-111, 142
general description, 204-205
halfband filters from wavelet filters, 126,

146
have 2 filter points, named “Db2” in 

most literature, 106, 112-120, 160,
172, 176, 206

interpolation (stretching) by upsampling, 
lowpass filtering, 106-107

interrelationships of the four PRQMF 
filters, 143-153

mapped onto a Support width (length) of 
one, 108, 204-205

named for Alfred Haar, 90, 106
numerical integration to obtain desired 

filter length, 109-110
one vanishing moment, 204, 218-219
orthogonality relationships, 160-161
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properties in table form, 219
shortest, simplest of both Daubechies 

and biorthogonal wavelets, 5, 31, 205
step-by-step conventional DWT example 

using, 59-78
step-by-step CWT example using, 31-42
step-by-step Undecimated DWT example

using, 43-58
theoretical “continuous”

wavelet, 6, 108, C10
Halfband filters, 20-21, 46-54, 141-166 See 

also PRQMF, Phase, Orthogonal, and
Biorthogonal

Heisenberg uncertainty principle and
Heisenberg boxes, 197, B1-B5

Hubbard, Barbara B. 152, D3

I
Ideal lowpass filter, 79
Inner product. See Dot product
Integration interval (time), 8, A2-A3, B1-B4
Interpolation

adding points for lower cutoff frequency, 
82-83

stretching (dilating) filter, 98, 196-200
wavelets built by upsampling and

lowpass filtering, 4, 101-127, 177, 
204-222, 282-300

Inverse FFT, CWT, UDWT and WPT. See
FFT, CWT, UDWT and WPT

J
JPEG, 28-30, 134, 166, 207, 215, C9. See 

also Biorthogonal wavelets

K
Kinematics (orbital), 122, 171
Kronecker delta function, 146-150, 251-270

L
Lifting scheme, 174-175
Linear time invariant (LTI) system, 64, 

132, 148, 259. See also DWT and 
Downsampling

Lyons, Richard G., 152, D1, D3-D4

M
Mapping of wavelet filters to compact

support width, 109, 113-116,
157-160, 283-285

Matched filter, 169, 171. See also
Correlation, matching the wavelet

Matching pursuit. See Best basis
Mathematical Microscope, 217
MATLAB software routines

bior, 28. See also Biorthogonal wavelet 
(filters)

cmor, 201. See also Complex Morlet
wavelet (filter)

coif, 116-118. See also Coiflet wavelet 
conv, 34-37, 43, 158, 216. See also

Correlation, same as convolution with 
PRQMF

cwt, 41. See also Continuous Wavelet 
Transform

dwt, 71. See also DWT
dyaddown, 61-66. See also

Downsampling, dyadic)
dyadup, 62-64, 71. See also Upsampling,

dyadic)
fbsp, 199. See also Complex frequency

b-spline wavelet (filters)
fft, 1. See also Fast Fourier Transform
fir1, filter design using window method, 

119
firls, filter design using least squares 

method, 150-153
haar, 39, 41, 205. See also Haar wavelet 

(filters)
mexh, 4, 84-91, 189. See also Mexican 

hat wavelet (filter)
morl, 90-93. See also Morlet wavelet 

(filter)
roots, finds roots of polynomial, 152, 167
shan, 194-198 See also Shannon wavelet
swt, 134. See also Stationary Wavelet 

Transform
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wkeep, trims data, usually to original 
signal length, 35-37

xcorr, 34. See also Correlation, cross
correlation

Median filtering, 228-229
Mexican hat wavelet (filters)

applications, 189
crude wavelet used in CWT only, 219
CWT display using split-sine signal, 90
discrete points generated from equation, 

4, 85
effective support (length), 84
example of stretched crude filter, 84-87
frequency characteristics, 95-98
general description, 189
human eye experiment, 189
properties in table form, 219
sombrero shape, 84
theoretical “continuous”

wavelet , 6, C10
Meyer wavelet (filters)

discrete points generated by frequency 
domain equation, 192-194

frequency characteristics, 193
general description, 192-184
named for Yves Meyer, 192
properties in table form, 219
used in CWT to isolate events by

frequency, 194. See also Discrete 
Meyer wavelet

Millennial transform, 6-7
Morlet wavelet (filters)

applications, 190
compared to “fake” wavelet, 172-173
considered as “original wavelet”, 90
discrete points generated by continuous 

equation, 192
effective support, 91
formulated by Jean Morlet, 90
frequency characteristics, 94-98
general description, 190
infinitely regular, 172, 184
modified Gaussian, 190
properties in table form, 219
stretching of this crude filter, 90-94

symmetrical, 192
Mother wavelet, 15-18, 99--112, A11. See 

also Bandpass filters
Moving averager. See Block averager
Moving differentiator. See Block

differentiator
Multirate system, 187, 251. See also Filters,

filter bank
Multiresolution analysis, 187. See also

Filters, filter bank

N
Natural order of time and frequency, B1-B3.

See also Heisenberg
No distortion equation, 271-272. See also 

Halfband filters and Alias
cancellation

Numerical integration, differentiation,
109-120, 191. See also Haar and 
Daubechies wavelets

O
Octaves. See Sheet music
Orthogonality. See also specific wavelet

integer orthogonal, 158-159, 255
orthogonal basis, 155-156, 159
orthogonal sinusoids, 12, 156, 161, C2
orthogonal system and vectors, 155-156
orthogonal wavelets, 156-166, 203-214, 

219. See also Biorthogonal
orthonormality, 15, 158-166, 255

P
Perfect overlay of filter points on

“continuous” wavelets, 4-5, 115-116, 
205, 215-217, 283-293, C9

Perfect Reconstruction Quadrature Mirror 
Filters (PRQMF), 26, 140-144,
256-277. See also Alias cancellation

Perfect reconstruction, 21, 52-57, 63-64, 
132-133. See also PRQMF

Phase
linear in halfband filters, 47-48, 145-148
linear in symmetric wavelets, 47, 95-97
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shifting, 12, 156, 264-279. See also
Aliasing

wavelet phase properties, 219
Pianoforte. See Acoustic Piano
Planck’s Constant, 197, B3. See also

Heisenberg
PRQMF. See Perfect Reconstruction

Quadrature Mirror Filters
Pseudo frequency, 2-3, 15-16, 95

Q
Quasi-continuous wavelet transform. See 

UDWT

R
Radix two. 123, 131, 297
Reconstruction (Jargon Alert), 21. See also

CWT, DWT, UDWT and WPT
Recursion, 288
Redundant DWT. See UDWT
Regularity, 2, 168-219
Resemblance index. See Correlation

coefficients
Reverse biorthogonal wavelet (filters)

applications. See Biorthogonal wavelets
estimation of “continuous” wavelet using 

interpolated filters, 216
frequency characteristics. See

Biorthogonal wavelets
general description, 216-217
orthogonality relationships. See

Biorthogonal wavelets
properties in table form, 219

S
Scaling (stretching), 3, 10-18, 35-42, 104, 

121-136, A2-A5, A10-A12, C6. See 
also Dilation

Shannon (complex) wavelet (filters)
constant Q behavior, 198
crude wavelet used in CWT only, 198
discrete points generated by continuous 

equation, 194-196
dual of the Haar wavelet, 197

frequency characteristics, 195-197
general description, 194-198
lowpass real filter made complex

bandpass, 194, 218
properties in table form, 219
theoretical “continuous”

wavelet , 6, 195-196, C10
used in finding specific frequencies, 5, 

198, C10
Sheet music comparison with wavelet

display, 8-9, B2
Shift invariant system. See Linear time

invariant
Shift invariant wavelet transform. See 

UDWT
Shift variant transform. See Conventional 

DWT
Shifting the wavelet. See Translation
Short Time Fourier Transform (STFT). See 

also Integration interval and FFT
audio STFT, A12
case studies, 231, 243, B5
compromise between time and frequency 

information, 8
constrained to fixed Heisenberg boxes, 

B3-B4
results shown in CWT format, A2-A4

Shrinking and Stretching . See Dilation
Signals

binary, 27-28, 72-78, 170, 225-236
BPSK, 225
chirp, 121, 170, 221-223, B4-B5
city skyline, 182
embedded pulse, 11-16, 55, C1-C6
FSK/FM, 241
signal identification, 122
jargon alert, 1
non-stationary, 1, 30, 77, 297, B5
split sine, 87-95, 122, 171-173, 236-239
stationary, 1-2, 71-77, 170-174, 243-

256, A2-A6
Sinc function, 5, 79-83
Sinc wavelet. See Shannon wavelet
Single-point correlation. See Dot product



© 2009 Space & Signals Technologies LLC, All Rights Reserved. www.ConceptualWavelets.com

Skin imperfections. See Digital Image
Processing, denoising

Slew. See Kinematics
Sliding the wavelet, See Translation
Slinky toy, demonstrates stretching (scaling)

and frequency, A10
Smith, Steven W., 152, D1, D5
Smoothness. See Regularity
Spectral Factorization, 111, 152-153
Spline wavelets. See Complex frequency

b-spline wavelets
Sport of basis hunting, 174, 195, 219
Star Trek terminology, 219, A5
Stars and Stripes Forever, 8-9. See also

Integration time
Stationary wavelet transform. See UDWT
STFT. See Short Time Fourier Transform
Superfilters, C8. See also UDWT, stretching 

the wavelet
Support width, 204-205. See also Compact 

support
Symlet wavelet (filters)

applications, 209
estimation of “continuous” wavelet using 

interpolated filters, 208
general description, 207-209
nearly symmetrical, 209
orthogonality relationships, 209
properties in table form, 219

Symmetry, 5, 29, 47, 145-167, 188-222,
C9-C10

Synthesis portion of transforms. See
Reconstruction

T
Table of wavelet (filters) properties, 219
Thresholding, See also DWT, examples

case studies, 27-29, 135
for a specific time and a specific

frequency, 27, 78, 135
interval dependent thresholding, 27, 77, 

135, 224-242
jargon alert, 27
reverse thresholding, 226-230

Time-reversed filters. See PRQMF
Time/frequency analysis, 9, 197, 223-231, 

242, B1-B5, C6
Transforms. See CWT, DWT, FFT, UDWT, 

WPT and Millennial Transform
Transient signal, 1, 122, 134, 169-175, 

205. See also Signals, non-stationary
Translation (shifting)

dyadic translation, 157, 164
in conventional DWT, 130
in CWT, 5, 13-19, 32-36, 122, 201,

A9-A11, C4-C5
in Undecimated DWT, 56-57, 125, 134, 

157-161, 174
jargon alert, 6
wavelet terminology for shifting or

sliding, 6, A5
Translation Invariant Wavelet Transform. 

See UDWT
Tube-type amplifiers and clipping, 231
Two-channel Quadrature Mirror Filter 

Bank. See Conventional DWT
Two-scale difference equation (background), 

283-284. See also Dilation, equation

U
Undecimated Discrete Wavelet Transform
(UDWT)

a first glance, 19-24, C8
case studies, 241-249
comparison with conventional 

(decimated) DWT, 124, 144, 243-245
decomposition portion, 20-21, 124, 144
frequency allocation diagram, 68-74, 224
hybrid UDWT/DWT, 249
other names for, 124, 134, 248
pathological DWT case solved by UDWT,

241-249
reconstruction portion, 20, 124, 127, 

144, 149
relating UDWT to CWT, 124-140
scales and levels (terminology), 120
step-by-step walk-through using Haar 

wavelet, 43-58
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stretching the wavelet, 107, 124-129
three more basic filters than in CWT, 

144
UDWT display, 243-244

Upsampling. See also Downsampling and
Conventional (decimated) DWT

A’ Trous (“with holes”), 23, 50
jargon alert, 23
producing artifacts, 291, 296
stretching the filters , 21-25, 50-54
upsampling by two (dyadic), 18, 23, 101,

208

V
Vanishing moments, 175-176. See also

specific wavelet

W
Wavelet artifacts, 281, 290, 295-296, 299
Wavelet domain, 10, 297-298

Wavelet filters (list), 219. See also specific 
wavelet

Wavelet Packet Transform (WPT). See also
Conventional DWT

decomposition and reconstruction
portions, 138

nodes, 139
packet switching, similarities to, 139
transmultiplexers, similarities to,

139-140
Wavelets: Beyond Comparison (article by 

author), C1-C10
Windows

Blackman, 79, 198
Hamming, 79, 198
Hanning (Von Hann), 79, 198

Z
Z transform, 152-154, 183
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