
Preface 

Dear Reader, 

There are many books on digital signal processing (DSP) around these days. The 
special flavor of this book is to give a broad overview of DSP theory and appli
cations in different areas, such as telecommunications, control systems, and 
measuring and data analysis systems. Such a wide coverage would commonly 
require at least four or five different books. 

The first chapter of this book starts at the novice level with sampling, 
z-transforms and digital filters, but later chapters treat advanced topics like 
fuzzy logic, neural networks, information theory and Kalman filters. Since it 
is our sincere belief that bringing intuitive understanding of concepts and 
systems is by far the most important part of teaching, the text is somewhat 
simplified at the expense of mathematical rigor. At the end of this book, ref
erences for deeper studies of the different topics covered can be found. Some 
details might be difficult for you to grasp at once, especially if you have novice 
knowledge of DSP and its techniques; however, there is no cause for alarm. The 
most important first step in studying any subject is to grasp the overall picture 
and to understand the basics before delving into the details. 

As teaching aids, review questions and solved problems are included in 
all chapters. Exercises using MATLAB™ are also included. Furthermore, an 
accompanying web site is available where extra teaching material can be found 
(http://books.elsevier.com/companions/0750663448). 

The chapters are organized as follows: 
Chapter 1 This chapter starts with an historic overview of DSP and control. 

The main part of the chapter covers fundamentals of DSP, such as sampling, 
quantization, convolution, z-transform and transfer functions. It also deals with 
basic filter structures, finite impulse response (FIR), infinite impulse response 
(IIR) and with filter synthesis methods, e.g. Butterworth, Chebyshev, impulse 
invariance, the bilinear transform, Remez exchange algorithm, etc. At the end 
of this chapter, a brief presentation of digital closed-loop control systems can 
be found. If you have prior knowledge in DSP and control, you can probably 
disregard most of this chapter. 

Chapter 2 Most signals in real life are certainly not digital. This chapter 
deals with different types of digital-to-analog (D/A) and analog-to-digital (A/D) 
conversion techniques and hardware. 

Chapter 3 An adaptive filter is a filter which has the property of "tun
ing" itself. In this chapter, basic models for adaptive filters are presented 
together with algorithms for adaptation, for instance, the well-known least mean 
square (LMS) algorithm. Some applications are discussed, such as adaptive 
interference canceling, equalizers and adaptive beamforming. 
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Chapter 4 There are an infinite number of non-linear systems. In this chap
ter, three commonly used non-linear techniques are treated. Starting with the 
median filter, we continue with artificial neural networks, which is a crude way 
of trying to mimic the functions in the human brain. The chapter is concluded 
with a presentation of fuzzy control. 

Chapter 5 Spectral analysis and modulation is the title of this chapter. In 
the first part of this chapter, Fourier transform using fast Fourier transform 
(FFT) is presented along with correlation-based signal analysis methods, for 
instance, parametric analysis and wavelets. The second part deals with digital 
modulation, i.e. ASK, FSK, PSK, QPSK, QAM and so on. The Hilbert filter is 
also briefly presented. 

Chapter 6 This chapter presents recursive least square (RLS) estimation, the 
pseudo-inverse and the Kalman filter. The Kalman filter technique is illustrated 
by an "everyday" example. In reading this chapter, it is an advantage if you are 
used to working with vectors and matrices. 

Chapter 7 The main topic of this chapter is information theory and source 
coding. Some common data compression algorithms are studied, such as 
Huffman coding, adaptive pulse code modulation (ADPCM), linear predictive 
coding (LPC), the joint photographies expert group (JPEG), Lempel-Ziv-
Welch (LZW) and layer-3 of MPEG-1 (audio compression algorithm)(MP3). 
We deal with speech compressors and vocoders and make a quick tour through 
the land of speech and image recognition. 

Chapter 8 This chapter is about error-correcting codes and channel cod
ing. We start with a discussion of channel capacity and error probabilities and 
proceed with block codes, cyclic redundancy check (CRC) codes, convolution 
codes and Viterbi decoding. Interleaving and turbo codes are also addressed. 

Chapter 9 The last chapter of this book is dedicated to practical problems 
when working with DSP and control. Topics like hardware architecture, numeri
cal problems, execution speed, and data and computer program structures are 
discussed. We also highlight some problems inherent in the software develop
ment process that are significant in DSP environments. Practical code examples 
for FIR filters, IIR filters and state machines, written in assembly language and 
in C, are included. 

Appendix 1 In this part, you can find solutions to all the problems in the 
book. Complete calculations, MATLAB™ code and plots are supplied. 

Appendix 2 This is not a complete tutorial to MATLAB™ or Simulink™, 
but a quick guide to getting started using these common software tools. 

Finally, a Glossary is provided as an aid to the terms used within the book 
and their abbreviations. 

This is the second edition of Digital Signal Processing (Stranneby, 2001). 
The book was originally written to be used in undergraduate courses at Orebro 
University in Sweden, but has also been used for company on-site training. In 
addition to the material covered in the following chapters, practical hands-on 
projects are also an integral part of these courses. The projects consist of the 
design and implementation of signal processing algorithms on a DSP system. 

Welcome to an adventure in the world of DSP! 

Dag Stranneby and William Walker 



1 Introduction 

Background All processes and signals commonly found in the real world are "analog" by 
their nature. Sometimes it may feel a bit awkward trying to represent and process 
these signals digitally. There are, however, many advantages in digital signal 
processing (DSP). 

In this introductory chapter, we will first give a broad overview of the usage of 
digital signal processing and digital control. As you will realize, digital signal 
processing and control systems are all over the place. We will continue by 
defining digital signals and show some standard digital models and algorithms 
to process these signals. At the end of the chapter, some methods related to the 
design of digital signal processing and control applications will be presented. 

Objectives In this chapter we will discuss: 

• Analog and digital signals, sampling and quantization 
• Linearity, difference equations, state-space models, impulse response and 

convolution 
• Transfer functions using the z-transform, the frequency response of a digital 

system 
• Some filter architectures: finite impulse response (FIR), infinite impulse 

response (IIR) and lattice filters 
• Filter approximations: Butterworth, Chebyshev, Cauer and Bessel 
• Filter synthesis methods: impulse invariance, the bilinear transform, the 

Fourier method and Remez exchange algorithm 
• Digital control, proportional-integral-derivative (PID) controllers, pole 

placement controllers and dead-beat controllers. 

1.1 The history of 
digital signal 

processing 

Since the Second World War, if not earlier, technicians have speculated on 
the applicability of digital techniques to perform signal processing tasks. For 
example at the end of the 1940s, Shannon, Bode and other researchers at the 
Bell Telephone Laboratories discussed the possibility of using digital circuit 
elements to implement filter functions. At this time, there was unfortunately 
no appropriate hardware available. Hence, cost, size and reliability strongly 
favored conventional, analog implementations. 

During the middle of the 1950s, Professor Linville at Massachusetts Institute 
of Technology (MIT) discussed digital filtering at graduate seminars. By then, 
control theory, based partly on works by Hurewicz had become established 
as a discipline, and sampling and its spectral effects were well understood. 
A number of mathematical tools, such as the z-transform, which had existed 
since Laplace's time, were now used in the electronics engineering community. 
Technology at that point, however, was only able to deal with low-frequency 
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control problems or low-frequency seismic signal processing problems. While 
seismic scientists made notable use of digital filter concepts to solve problems, 
it was not until the middle of the 1960s that a more formal theory of digital 
signal processing (DSP) began to emerge. During this period, the advent of the 
silicon integrated circuit technology made complete digital systems possible, 
but still quite expensive. 

The first major contribution in the area of digital filter synthesis was made 
by Kaiser at Bell Laboratories. His work showed how to design useful filters 
using the bilinear transform (BLT). Further, in about 1965 the famous paper by 
Cooley and Turkey was published. In this paper, fast Fourier transform (FFT), 
an efficient and fast way of performing the discrete Fourier transform (DFT), 
was demonstrated. 

At this time, hardware better suited for implementing digital filters was devel
oped and affordable circuits started to be commercially available. Long finite 
impulse response (FIR) filters could now be implemented efficiently, thereby 
becoming a serious competitor to the infinite impulse response (IIR) filters, 
having better passband properties for a given number of delays. At the same 
time, new opportunities emerged. It was now possible to achieve time varying, 
adaptive and non-linear filters that could not be built using conventional ana
log techniques. One such filter is the Kalman filter named after R.E. Kalman. 
The Kalman filter is a model-based filter that filters the signal according to its 
statistical rather than its spectral properties. 

In the area of adaptive filters, B. Widrow is an important name, especially 
when talking about the least mean square (LMS) algorithm. Widrow also made 
significant contributions in the area of neural networks as early as in the 1960s 
and 1970s. 

Today, there are many commercial products around which utilize the 
advantages of digital signal processing, namely: 

• an essentially perfect reproducibility 
• a guaranteed accuracy (no individual tuning and pruning necessary) 
• well suited for large volume production. 

To conclude this section, we will give some everyday examples where digital 
signal processing is encountered in one way or another. Applications can be 
divided into two classes. The first class consists of applications that could be 
implemented using ordinary analog techniques but where the use of digital 
signal processing increases the performance considerably. The second class 
of applications are these that require the use of digital signal processing and 
cannot be built using entirely "analog" methods. 

1.1.1 Measurements and analysis 

Digital signal processing traditionally has been very useful in the areas of mea
surement and analysis in two different ways. One is to precondition the measured 
signal by rejecting the disturbing noise and interference or to help interpret the 
properties of collected data by, for instance, correlation and spectral trans
forms. In the area of medical electronic equipment, more or less sophisticated 
digital filters can be found in electrocardiograph (ECG) and electroencephalo
gram (EEG) equipment to record the weak signals in the presence of heavy 
background noise and interference. 
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As pointed out earlier, digital signal processing has historically been used in 
systems dealing with seismic signals due to the limited bandwidth of these sig
nals. Digital signal processing has also proven to be very well suited for air and 
space measuring applications, e.g. analysis of noise received from outer space 
by radio telescopes or analysis of satellite data. Using digital signal processing 
techniques for analysis of radar and sonar echoes are also of great importance 
in both civilian as well as military contexts. 

Another application is navigational systems. In global positioning system 
(GPS) receivers (RXs) today, advanced digital signal processing techniques are 
employed to enhance resolution and reliability. 

1.1.2 Telecommunications 

Digital signal processing is used in many telecommunication systems today; 
for instance, in telephone systems for dual-tone multi-frequency (DTMF) sig
naling, echo canceling of telephone lines and equalizers used in high-speed 
telephone modems. Further, error-correcting codes are used to protect digital 
signals from bit errors during transmission (or storing) and different data com
pression algorithms are utilized to reduce the number of data bits needed to 
represent a given amount of information. 

Digital signal processing is also used in many contexts in cellular telephone 
systems, for instance speech coding in groupe speciale mobile or global system 
for mobile communication (GSM) telephones, modulators and demodulators, 
voice scrambling and other cryptographic devices. It is very common to find 
five to ten microcontrollers in a low-cost cellular telephone. An application 
dealing with high frequency is the directive antenna having an electronically 
controlled beam. By using directive antennas at the base stations in a cellular 
system, the base station can "point" at the mobile at all times, thereby reducing 
the transmitter (TX) power needed. This in turn increases the capacity of a 
fixed bandwidth system in terms of the number of simultaneous users per square 
kilometer, i.e. increases the service level and the revenue for the system operator. 

The increased use of the Internet and personal computers (PCs) implies the 
use of digital processing in many layers. Not only for signal processing in 
asymmetric digital subscriber loop (ADSL) and digital subscriber loop (DSL) 
modems, but also for error correction, data compression (images and audio) 
and protocol handling. 

1.1.3 Audio and television 

In most audio and video equipment today, such as digital video disc (DVD) and 
compact disc (CD) players, digital audio tape (DAT), digital compact cassette 
(DCC) recorders and MPEG layer 3 (MP3) players, digital signal processing 
is mandatory. This is also true for most modern studio equipment as well as 
more or less advanced synthesizers used in today's music production. Digital 
signal processing has also made many new noise suppression and companding 
systems (e.g. Dolby™) attractive. 

Digital methods are not only used for producing and storing audio and video 
information, but also for distribution. This could be between studios and trans
mitters, or even directly to the enduser, such as in the digital audio broadcasting 
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(DAB) system. Digital transmission is also used for broadcasting of television 
(TV) signals. High definition television (HDTV) systems utilize many digital 
image processing techniques. Digital image processing can be regarded as a 
special branch of digital processing having many things in common with digi
tal signal processing, but dealing mainly with two-dimensional image signals. 
Digital image processing can be used for many tasks, e.g. restoring distorted or 
blurred images, morphing, data compression by image coding, identification 
and analysis of pictures and photos. 

1.1.4 Household appliances and toys 

In most modern dishwashers, dryers, washing machines, microwave ovens, 
air conditioners, toasters and so on, you are likely to find embedded micro
controllers performing miscellaneous digital processing tasks. Almost every 
type of algorithm can be found, ranging from simple timers to advanced fuzzy 
logic systems. Microprocessors executing digital signal processing algorithms 
can also be found in toys, such as talking dolls, speech recognition controlled 
gadgets and more or less advanced toy robots. 

1.1.5 Automotive 

In the automotive business, digital signal processing is often used for control 
purposes. Some examples are ignition and injection control systems, "intel
ligent" suspension systems, "anti-skid" brakes, "anti-spin" four-wheel-drive 
systems, climate control systems, "intelligent" cruise controllers and airbag 
controllers. 

There are also systems for speech recognition and speech synthesis being 
tested in automobiles. Just tell the car: "Switch on the headlights" and it will, and 
maybe it will give the answer: "The right rear parking light is not working". New 
products are also systems for background noise cancellation in cars using adap
tive digital filters, and radar assisted, more or less "smart" cruise controllers. 

To summarize: digital signal processing and control is here to stay ... 

1.2 Digital signal There are numerous good references available dealing with basic digital signal 
processing basics processing, such as Oppenheimer and Schafer (1975), Rabiner and Gold (1975), 

Mitra and Kaiser (1993), Marven and Ewers (1993), Denbigh (1998), Lynn and 
Fuerst (1998) and Smith (2003). The following sections are a brief summary 
of underlying important theories and ideas. 

1.2.1 Continuous and discrete signals 

In this book, we will mainly study systems dealing with signals that vary over 
time (temporal signals). In "reality" a signal can take on an infinite amount 
of values and time can be divided into infinitely small increments. A signal 
of this type is continuous in amplitude and continuous in time. In everyday 
language, such a signal is called an "analog" signal. 

Now, if we only present the signal at given instants of time, but still allow 
the amplitude to take on any value, we have a signal type that is continuous in 
amplitude, but discrete in time. 
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The third signal type would be a signal that is defined at all times, but only 
allowed to take on values from a given set. Such a signal would be described as 
discrete in amplitude and continuous in time. 

The fourth type of signal is only defined at given instants of time, and is only 
allowed to take on values from a given set. This signal is said to be discrete in 
amplitude and discrete in time. This type of signal is called a "digital" signal, 
and is the type of signal we will mainly deal with in this book. 

1.2.2 Sampling and reconstruction 

The process of going from a signal being continuous in time to a signal being 
discrete in time is called sampling. Sampling can be regarded as multiplying 
the time-continuous signal g(t) with a train of unit pulses p(t) (see Figure 1.1) 

+oo 
g*(t) = g(t)p(t)= £ g(nT)8(t-nT) (1.1) 

g(t) <& -> gftf) 

Pit) 

Figure 1.1 Sampling viewed as 
a multiplication process 

where g#(t) is the sampled signal. Since the unit pulses are either one or zero, 
the multiplication can be regarded as a pure switching operation. 

The time period T between the unit pulses in the pulse train is called the 
sampling period. In most cases, this period is constant, resulting in "equidistant 
sampling". There is however no theoretical demand for the sampling period to 
be constant. In some systems, many different sampling periods are used ("multi-
rate sampling") (Astrom and Wittenmark, 1984). Yet, in other applications the 
sampling period may be a stochastic variable. This results in "random sampling" 
(Papoulis and Pillai, 2001) which complicates the analysis considerably. In most 
systems today, it is common to use one or more constant sampling periods. The 
sampling period T is related to the sampling rate or sampling frequency fs 

such that 

&>s 1 (1.2) 

The process of sampling implies reduction of knowledge. For the time-
continuous signal, we know the value of the signal at every instant of time, 
but for the sampled version (the time-discrete signal) we only know the value at 
specific points in time. If we want to reconstruct the original time-continuous 
signal from the time-discrete sampled version, we therefore have to make more 
or less qualified interpolations of the values in between the sampling points. If 
our interpolated values differ from the true signal, we have introduced distortion 
in our reconstructed signal. 

Now to get an idea of our chances of making a faithful reconstruction of the 
original signal, let us study the effect of the sampling process in the frequency 
domain. First, referring to equation (1.1), the pulse train p(t) can be expanded 
in a Fourier series 

+ 0 0 

pit)- £ c„e 
jn{2n/T)t (1.3) 
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where the Fourier coefficients cn are 

-+772 1 r^1'1 1 
cn = ± p{t)e-W'TUt = V- (1.4) 

1 J-T/2 1 

Hence, the sampling equation (1.1) can now be rewritten as 

g\t)=p{t)g{t)=[X- f e^2 ' / r" g(r) (1.5) 
\ n=—00 / 

The Laplace transform of the sampled signal g#(t) is (using the 
multiplication-shift property) 

G#(s) = f Y, G[s+jn^\ (1.6) 
« = — 00 ^ ' 

To get an idea of what is happening in the frequency domain, we investigate 
equation (1.6) following the s =jco axis 

, +00 

n-

From this, we see that the effect of sampling creates an infinite number of copies 
of the spectrum of the original signal g(t). Every copy is shifted by multiples 
of the sampling frequency o)s. Figure 1.2 shows a part of the total (infinite) 
spectrum. 

The spectrum bandwidth of the original signal g(t) is determined by the 
highest-frequency component fmax of the signal. Now, two situations can occur. 
If fmax < /s/2, then the copies of the spectrum will not overlap (Figure 1.2(a)). 
Given only one spectrum copy, we have a limited, but correct knowledge of the 
original signal g(t) and can reconstruct it using an inverse Fourier transform. 
The sampling process constitutes an unambiguous mapping. 

If, on the other hand, ^ax > /s/2, the spectra will overlap (Figure 1.2(b)) 
and the too-high-frequency components will be aliased (or "folded") into the 
lower part of the next spectrum. We can no longer reconstruct the original 
signal, since aliasing distortion has occurred. Hence, it is imperative that the 
bandwidth of the original time-continuous signal being sampled is smaller 
than half the sampling frequency, also called the "Nyquist frequency". 

To avoid aliasing distortion in practical cases, the sampling device is always 
preceded by some kind of low-pass filter ("anti-aliasing" filter) to reduce the 
bandwidth of the incoming signal. This signal is often quite complicated and 
contains a large number of frequency components. Since it is impossible to 
build perfect filters, there is a risk of too-high-frequency components leaking 
into the sampler, causing aliasing distortion. We also have to be aware that high-
frequency interference may somehow enter the signal path after the low-pass fil
ter, and we may experience aliasing distortion even though the filter is adequate. 

In some literature, the concept of "relative frequency" (or "fnosq") is used 
to make calculations simpler. The relative frequency is defined as 

« = £ = - d.8a) 
/s Ms 
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Figure 1.2 Part of spectrum of sampled signal. In (a) the bandwidth of the 
signal is less than the Nyquist frequency u>s/2 and no aliasing takes place. In 
(b) the bandwidth is greater than u>s/2 and aliasing takes place, hence the 
original signal cannot be reconstructed 

Another way of defining frequency in sampled systems is to use the time 
discrete ("digital") angular frequency 

Q H 00 
In— = 2nq 

oos 

(1.8b) 

Note that oo (lower case omega) is used for "analog" angular frequency in 
radians per second, while Q (upper case omega) is used for "digital" angular 
frequency in radians per sample period. 

Hence, to avoid aliasing distortion: |<7maxl<0.5 or \Qm&x\<^ or 
I/si > 21/max I This is important! 

If the Nyquist criteria is met and hence no aliasing distortion is present, we 
can reconstruct the original bandwidth limited time-continuous signal g(t) in 
an unambiguous way. This is achieved using a low-pass reconstruction filter 
to extract only one copy of the spectrum from the sampled signal. It can be 
shown as a consequence of "Shannon's sampling theorem" or the "cardinal 
reconstruction formula" (Mitra and Kaiser, 1993) that the ideal low-pass filter 
to use for reconstruction has the impulse response of a sine function 

f / , sm(7i(t/T)) . / t \ 
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This is a non-causal filter (the present output signal depends on future input 
signals) having an infinite impulse response, and an ideally sharp cut-off at the 
frequency it/T = cos/2 radians per second, i.e. the Nyquist frequency. While of 
theoretical interest, this filter does not provide a practical way to reconstruct the 
sampled signal. A more realistic way to obtain a time-continuous signal from 
a set of samples is to hold the sample values of the signal constant between the 
sampling instants. This corresponds to a filter with an impulse response 

h(t): 
\/T if 0 < t < T 

(1.10) 
0 otherwise 

Such a reconstruction scheme is called a zero-order hold (ZOH) or boxcar 
hold that creates a "staircase" approximation of the signal. The zero-order hold 
can be thought of as an approximation of the ideal reconstruction filter. 

A more sophisticated approximation of the ideal reconstruction filter is the 
linear point connector or first-order hold (FOH), which connects sequen
tial sample values with straight-line segments. The impulse response of this 
filter is 

\(T + t)/T2 if -T <t<0 
h(t)={ 9 " (1.11) 

This filter provides a closer approximation to the ideal filter than the zero-order 
hold (Astrom and Wittenmark, 1984). 

1.2.3 Quantization 

The sampling process described above is the process of converting a continuous-
time signal into a discrete-time signal, while quantization converts a signal 
continuous in amplitude into a signal discrete in amplitude. 

Quantization can be thought of as classifying the level of the continuous-
valued signal into certain bands. In most cases, these bands are equally spaced 
over a given range and undesired non-linear band spacing may cause harmonic 
distortion. Some applications called companding systems use a non-linear band 
spacing, which is often logarithmic. 

Every band is assigned a code or numerical value. Once we have decided 
to which band the present signal level belongs, the corresponding code can be 
used to represent the signal level. 

Most systems today use the binary code, i.e. the number of quantization 
intervals TV are 

N = 2n (1.12) 

where n is the word length of the binary code. For example with n = 8 bits we 
get a resolution of TV = 256 bands, n = 12 yields TV = 4096 and n = 16 gives 
TV = 65536 bands. Obviously, the more bands we have, i.e. the longer the word 
length, the better resolution we obtain. This in turn renders a more accurate 
representation of the signal. 

Another way of looking at resolution of a quantization process is to define 
the dynamic range as the ratio between the strongest and the weakest signal 
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level that can be represented. The dynamic range is often expressed in decibels. 
Since every new bit of word length being added increases the number of bands 
by a factor of 2 the corresponding increase in dynamic range is 6 dB. Hence, 
an 8-bit system has a dynamic range of 48 dB, a 12-bit system has 72 dB, etc. 
(This of course only applies for linear band spacing.) 

Now, assuming we have N bands in our quantizer, this implies that the nor
malized width of every band is Q = 1/iV. Further, this means that a specific 
binary code will be presented for all continuous signal levels in the range of 
±Q/2 around the ideal level for the code. We hence have a random error in 
the discrete representation of the signal level of s = ± 2 / 2 . This random error, 
being a stochastic variable, is independent of the signal and has a uniformly 
distributed probability density function ("rectangular" density function) 

/>(£) = 
5 for - f < £ < § 
0 else 

(1.13) 

This stochastic error signal will be added to the "true" discrete representation 
of our signal and appear as quantization noise. The root mean square (RMS) 
amplitude of the quantization noise can be expressed as (Pohlmann, 1989) 

N / . 

+ ¥ Q 
e2p(e) de = >Tvi Vn 

(1.14) 

x(n)- /««)) -+y(n) 

Figure 1.3 A discrete-time 
linear digital signal 
processing operation, 
input x(n), output y(n) 
and transfer function f(x(n)) 

The ratio between the magnitude of the quantization noise and the maximum 
signal magnitude allowed is denoted the signal-to-error ratio. A longer word 
length gives a smaller quantization noise and hence a better signal-to-error 
ratio. 

1.2.4 Processing models for discrete-time series 

Assume that by proper sampling (at a constant sampling period T) and quanti
zation we have now obtained a "digital" signal x(ri). Our intention is to apply 
some kind of linear signal processing operation, for instance a filtering oper
ation, to the signal x(n) thereby obtaining a digital output signal y(n) (see 
Figure 1.3). 

1.2.4.1 Linear systems 

The processing model is said to be linear if the transfer function, i.e. y =/(*) , 
the function defining the relationship between the output and input signals, 
satisfies the principle of superposition, such that 

f(xi+x2)=Axi)+f(x2) (1.15) 

For clarity, let us illustrate this using a few simple examples. If k is a constant, 
the function (a perfect amplifier or attenuator) 

f(x) = he (1.16) 
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is obviously linear since 

f(xx + x2) = k(xx + x2) = kxx+kx2 = / (* i ) +f(x2) (1.17) 

Now, if we add another constant m (bias), what about this function 

f(x) = kx + m (1.18) 

It looks linear, doesn't it? Well, let us see 

f(x\ + x2) = k(x\ + x2) + m = kx\ -\-kx2 + m (1.19a) 

but 

f(x\) +f(x2) = kx\ + m + kx2 + m — kx\ + kx2 + 2m (1.19b) 

Obviously, the latter function is not linear. Now we can formulate one 
requirement on a linear function: it has to pass through the origin, i.e./(0) = 0. 

If we consider a multiplier "circuit" having two inputs y\ and y2, this can be 
expressed as a function having two variables 

f(yuy2)=y\yi (1.20) 

Let us now connect two composite signals y\ =x\ + x2 and y2 =x^ +X4 to 
each of the inputs. We now try to see if the function satisfies the principle of 
superposition (equation (1.15)), i.e. if it is linear or not 

f(x\ +X2,*3 +*4) = (*1 +X2)(X3 +X4) 

= X1X3 +X1X4 +X2Xi +X2X<\ (1.21a) 

while 

f(x\,X3) +f(X2,X4) = X1X3 +X2X4 (1.21b) 

Hence, a multiplication of two variables (composite signals) is a non-linear 
operation. For the special case, we connect the same signal to both inputs, i.e. 
y\ =y2, we get 

f(yuy2)=A 

which is obviously a non-linear function. If, on the other hand, we multiply a 
signal y\ =x\ +x2 by a constant 72 = k, we get 

f(x\ + x2, k) = (x\ + x2) k and f(x\, k) +f(x2, k) = x\k + x2k 

as in equations (1.16) and (1.17), then the operation is linear. A two input 
function that is linear in each input if the other is held constant is called a 
bilinear function. Usually we call it a product. 

The next observation we can make is that the first derivative f'{x) of the 
function/(x) is required to be a constant for the function to be linear. This also 
implies that higher-order derivatives do not exist. 
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An arbitrary function f(x) can be approximated using a Taylor or MacLaurin 
series 

2 3 

f(x) * / ( 0 ) + x / ( 0 ) + ^ /"(0) + X- / '"(0) + • • • (1.22) 

By inspection of the two first terms, we can find out if the function is linear 
or not. To be linear we demand (see above) 

/ (0) = 0 and / '(*) = * 

It might be interesting to note that many common signal processing oper
ations are indeed non-linear, e.g. rectifying, quantization, power estimation, 
modulation, demodulation, mixing signals (frequency translation), correlating, 
etc. In some cases, it is a matter of how fast the signals in question change 
over time compared to each other. Filtering a signal using a filter with fixed (or 
"slowly varying") coefficients can be regarded as linear, while using an adaptive 
filter, having variable coefficients, may be regarded as a non-linear operation. 

If the parameters of the transfer function are constant over time, the signal 
processing operation is said to be time invariant. Sometimes such an operation 
is referred to as an linear time invariant (LTI) processor (Lynn and Fuerst, 
1998; Chen, 1999). Quite often, such processors are also assumed to be causal, 
i.e. the present output signal only depends on present and past input signals, 
but not on future ones. 

The operation of a time-discrete LTI processor can be expressed using a 
number of different mathematical models, e.g. as a difference equation model, 
a state-space model, a convolution model or a transfer function model. 

1.2.4.2 The difference equation model 

The difference equation describing the behavior of a linear time-discrete system 
can be regarded as the cousin of the linear differential equation describing 
a continuous-time ("analog") system. An example difference equation of the 
order of two is 

y(n) - 0.8><* - 1) + 0.2y(n - 2) = 0.1 x(n - 1) (1.23) 

To obtain a first output value, y(0), the initial conditions y(—l) and>>(—2) 
have to be known. The difference equation can of course be solved stepwise 
by inserting the proper values of the input signal x(n). In some cases, this type 
of direct solution may be appropriate. It is however far more useful to obtain a 
closed form expression for the solution. Techniques for obtaining such closed 
forms are well described in the literature on difference equations (Spiegel, 1971; 
Mitra and Kaiser, 1993). The general form of the difference equation model is 

N M 

J2 *i y(n - 0 = £ bjx(n -j) (1.24) 
i=o y=o 

where given x(n)9 y(n) is to be found. The order of the difference equation 
equals N9 which is also the number of initial conditions needed to obtain an 
unambiguous solution. 
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When designing and analyzing digital signal processing algorithms, the dif
ference equation model is commonly not the first choice. Quite often, for 
instance, the transfer function model described below is a better tool. How
ever, when it comes down to writing the actual computer program code to 
implement the algorithm, it has to be done using a difference equation model. 

1.2.4.3 The state-space model 

The state-space model can be seen as an alternative form of the difference 
equation, making use of matrix and vector representation. For example, if we 
introduce the variables 

\y\(n)=y(n) 
and 

x\(n) = x(ri) 

x2(n) = x(n + 1) 
(1.25) 

[y2(n) = y(n + 1) 

our example difference equation (1.23) can be rewritten as 

y2(n - 1) = O.Sy2(n - 2) - Q.2yi(n - 2) + 0.1 x2(n - 2) (1.26) 

or in matrix equation form 

yi(n- 1) 

y2(n - 1) 

0 1 

-0.2 0.8 

If we introduce the vectors 

yx(n-2) 

y2(n - 2) + 
0 0 

0 0.1 

x\(n — 2) 

x2(n — 2) 

(1.27) 

Y(»): 
y\(n) 

n(n)_ 
and X(«) = 

x\(ri) 

x2(n) 

and the matrices 

A = 
0 

0.2 

1 

0.8 
and B = 

0 0 

0 0.1 

the difference equation can now be rewritten in the compact, matrix equa
tion form 

Y(/I + 1) = AY(TI) + BX(/I) (1.28) 

This is a very useful way of expressing the system. Having knowledge of the 
system state Y(n) and the input signal vector X(n) at time instant n, the new 
state of the system Y(n + 1) at instant n + 1 can be calculated. The system is 
completely specified by the transition matrix A and the input matrix B. The 
state-space model is common when dealing with control system applications 
(Astrom and Wittenmark, 1984; Chen, 1999). 



Introduction 13 

1.2.4.4 The convolution model 

The convolution model expresses the relationship between the input and output 
signals as a convolution sum (Denbigh, 1998) 

+00 

y(n) = y ^ h(k)x(n — k) = h(n) * x(n) 
&=-oo 

(1.29) 

The star symbol is an alternative way to express convolution. If we choose the 
input signal x(n) as the unit pulse 8(n) 

8(n): 
1 /i = 0 
0 « # 0 

the output from the system will be 

+00 

y(n)= ]T h(k)8(n-k) = h(n) 

(1.30) 

(1.31) 

where h{n) is denoted as the impulse response of the system. Figure 1.4 
shows the impulse response of our example system described by the differ
ence equation (1.23). If h(n) of the system is known (or obtained by applying 
a unit pulse), the output y(n) can be calculated for a given input signal x(n) 
using convolution as in equation (1.29). The basic idea of convolution is that 
an arbitrary digital input signal x(n) can be expressed as a sum of unit pulses 
with different amplitudes and delays 

x(n) = XQ 8(n) + x\ 8(n — 1) + X2 8(n — 2) + • • (1.32) 
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Figure 1.4 The impulse response of the example system 
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Now, we know that when applying a unit pulse to the input of the system, 
the output will be exactly the impulse response h(n). Hence, if we apply a 
sequence of unit impulses with different amplitude, i.e. x{n), the output should 
be a sequence of impulse responses having different amplitude. Summing up 
all these impulse responses, we obtain the total output, i.e. y(n). This is exactly 
what the convolution sum, equation (1.29), does. Thanks to the system being 
linear, this approach works. According to the principle of superposition, instead 
of calculating the total output when applying a complicated input signal, the 
input signal can be broken down into sub-parts having known output responses. 
These output responses are then added to obtain the total output signal, which 
would give the same result as calculating the total output directly when applying 
all the sub-parts of the complicated input signal simultaneously. In real world, 
causal systems, there are of course limits to the index k in equation (1.29). 

1.2.4.5 The transfer function model 

Another way of representing a digital signal processing system is to use the 
transfer function model or z-transform model. If we assume that we are 
dealing with a causal system 

h(n) = 0 and x(n) = 0 for n < 0 

or in other words, the input signal is zero for "negative time" sampling instants, 
the summation interval of equation (1.29) can be reduced to 

+00 

y(n) = J2h(k)x(n-k) (1,33) 
k=o 

Taking the z-transform (Oppenheimer and Schafer, 1975; Rabiner and Gold, 
1975; Denbigh, 1998), i.e. multiplying by z~n and summing over 0 < n < oo of 
both sides of the equation (1.33) we obtain 

+00 +00 +00 

£>(«)z-" = £ £ h(k)x(n - k)z-" 

+00 +00 

= J^h(k)z'k J^x(n - k)z~(n~k) (1.34a) 

Y(z) = H(z)X(z) (1.34b) 

where X(z) is the z-transform of the input signal, Y(z) is the transform of the 
output signal and the transform of the impulse response is 

+00 

#(z) = 5^A(Jfc)z-* (1.35) 
k=0 

Hence, the causal system can be fully characterized by the transfer function 
H(z) which in the general case is an infinite series in the polynomial z~k. 
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For many series, it is possible to find a closed form summation expression. 
Note, for a system to be stable and hence useful in practice, the series must 
converge to a finite sum as k —> oo. 

When working in the z-plane, a multiplication by z~~k is equivalent to 
a delay of k steps in the time domain. This property makes, for instance, 
z-transformation of a difference equation easy. Consider our example of the 
difference equation (1.23). If we assume that the system is causal and that 
the z-transforms X(z) and Y(z) of x(n) and y(n), respectively exists, it is 
straightforward to transform equation (1.23) as 

Y(z) - 0.87(z)z"1 + 0.27(z)z~2 = 0.1X(z)z_1 (1.36) 

Rearranging equation (1.36) we obtain 

tfM - 1 £ > - 0Az~l - 0Az n Tn 
W ~ X(z) " 1 - 0.8Z-1 + 0.2z-2 z2 _ 0.8z + 0.2 K } 

The zeros are the roots of the numerator, while the poles are the roots of the 
denominator. Hence, in equation (1.37) above, the zero is 

0.1z = 0 

having the root z\ = 0, and the poles are 

z2 - 0.8z + 0.2 = 0 

having the complex roots z\ = 0.4 +J0.2 and Z2 = 0.4 —j0.2. 
The study of the locations of the poles and zeros in the complex z-plane 

are sometimes referred to as the root locus. Figure 1.5 is a plot showing the 
location of the poles and zeros in the complex z-plane, where a pole is commonly 
marked with a cross and a zero with a ring. 

Stating only the locations of the poles and zeros is an alternative way of spec
ifying a system, containing as much information as the transfer function itself. 
The location of poles and zeros may affect the behavior of system considerably. 
This is especially true regarding the issue of stability. 

For the system described by equation (1.37) to be stable, it is required that 
the poles of the system lie within the unit circle in the complex z-plane, hence 

\zp\ < 1 for all p 

For our example system above, \z\ \ = \zi\ = \/(0.42 + 0.22)^0.45, i.e. the 
system is stable. 

There are many mathematical definitions of the term stability. A heuristic 
approach is to say that an unstable system is a system where the output signal 
tends to run out of bounds or oscillates with an increasing amplitude. Anybody 
who has experienced feedback in an audio system when bringing a microphone 
too close to a loudspeaker knows what instability is all about. It is easy to realize 
that an unstable system, "running wild", is commonly not usable. 

1.2.4.6 The frequency function model 

Under some circumstances the properties of the system in the frequency 
domain are of primary interest. These properties can be found by studying 
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Figure 1.5 A pole-zero plot showing the location of poles (x) and zeros (0) 
of the example system in the complex z-plane 

the system for a special class of input signals, which are functionally equivalent 
to a sampled sinusoid of frequency/ 

x(n) = e^flM" = QJQn = cos (tin) +y sin (tin) 

for —oo < n < +oo 

Applying equation (1.38) to equation (1.29) by convolution, we obtain 

(1.38) 

+ 0 0 + 0 0 

y(n) = J^ h(k)eJQ(n-k) = cjn" £ h(k)e~JQk 

k=—oo k=—oo 

= x(n)H(Q) (1.39) 

Thus, for this special class of inputs, we see from equation (1.39) that the output 
is identical to the input to within a complex, frequency-dependent gain factor 
H(£l), which is defined from the impulse response of the system as 

y(n) 
+ 0 0 

^ =«(«)= £ wye-*™ (1.40) 
k=—oo 

This gain factor is often referred to as the frequency response or the 
frequency function of the system. Taking the magnitude and argument of 
the frequency response, Bode-type plots, showing gain and phase shift can be 
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Figure 1.6 Bode plot of the frequency function of the example system. The 
upper plot is the gain function (log-log scaling) and the lower is the phase 
shift function (lin-log scaling) 

obtained (see Figure 1.6). The Bode plot was introduced by H.W. Bode in 1945. 
The upper diagram shows the gain function, i.e. the magnitude of the frequency 
response, A(Q) = \H(Q)\. Commonly, the gain is plotted using decibels, result
ing in a log-gain versus log-frequency scaling. The lower plot is the phase shift 
function, cp(Q) = ZH(Q) shown in linear-phase versus log-frequency scaling. 

Note that the frequency response H(£2) — H^271^^^) is essentially the 
discrete Fourier transform (DFT) (see Chapter 5) of the impulse response 
h(n). A well-known fact can be seen; that a convolution in the time domain 
corresponds to a multiplication in the frequency domain and vice versa. 

In this section, we have demonstrated a number of ways to represent math
ematically a signal processing operation (Figure 1.3). It is convenient to work 
with these models "off-line" in a powerful PC, workstation or minicomputer, 
using floating-point arithmetic. It is, however, often a challenge to migrate the 
system into a single-chip, fixed-point, digital signal processor required to per
form in real time. "Smart" algorithms and "tricks" are often needed to keep up 
processing speed and to avoid numerical truncation and overflow problems. 

1.3 Common filters 1.3.1 Filter architectures 

Since digital filters are nothing but computer program code, there are of course 
an infinite number of possible filter architectures and variations. In this section, 
however, some common filter architectures are shown. 
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Figure 1.7 Non-recursive (FIR) filter having length M with weights bj 

1.3.1.1 The non-recursive filter 

This filter (Figure 1.7) is sometimes denoted tapped delay-line filter or 
transversal filter or FIR filter since it has a finite impulse response. Using 
the convolution model, the response can be expressed as 

M 

y(n) = ^2hU)x(n-j) (1.41) 
y=0 

where M is the length of the filter. If we apply a unit pulse to the input of the 
system, i.e. x(n) = 8(n), it is straightforward to realize that the impulse response 
h(j) of the system is directly obtained from the weight (gain) of the taps of the 
filter 

Kj) = bj (1.42) 

If we prefer a z-plane representation of equation (1.41), one of the nice 
features of the FIR filter is apparent 

-M H(z) b0 + biz~l + b2z~2 + • + bMZ (1.43) 

Since the FIR filter does not have any poles, it is always guaranteed to be stable. 
Another advantage is that if the weights are chosen to be symmetrical (Lynn 
and Fuerst, 1998), the filter has a linear-phase response, i.e. all frequency 
components experience the same time delay through the filter. There is no risk of 
distortion of compound signals due to phase shift problems. Further, Imowing 
the amplitude of the input signal, x(n\ it is easy to calculate the maximum 
amplitude of the signals in different parts of the system. Hence, numerical 
overflow and truncation problems can easily be eliminated at design time (see 
Chapter 9). 

The drawback with the FIR filter is that if sharp cut-off filters are needed so is 
a high-order FIR structure, which results in long delay lines. FIR filters having 
hundreds of taps are however common today, thanks to low-cost integrated 
circuit technology and high-speed digital signal processors. 

1.3.1.2 The recursive filter 

Recursive filters, sometimes called IIR filters use a feedback structure 
(Figure 1.8), and have an infinite impulse response. Borrowing some ideas 
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Figure 1.9 The IIR filter 
seen as an FIR filter in 
a feedback loop 

from control theory, an IIR filter can be regarded as an FIR filter inserted in a 
feedback loop (Figure 1.9). Assume that the FIR filter has the transfer function 
G(z), the transfer function of the total feedback structure, i.e. the IIR filter 
is then 

H(z) = 
1 1 

1 + G(z) 1 + a\z~x + a2z~2 H + aNz~ -N (1.44) 

The IIR filter only has poles, hence it is of great importance to choose the 
weights at in such a way that the poles stay inside the unit circle to make sure 
the filter is stable. Since the impulse response is infinite, incoming samples will 
be "remembered" by the filter. For this reason, it is not easy to calculate the 
amplitude of the signals inside the filter in advance, even if the amplitude of 
the input signal is known. Numerical overflow problems may occur in practice. 

The advantage of the IIR filter is that it is quite easy to build filters with sharp 
cut-off properties, using only a few delay elements. 

Pure IIR filters are commonly used for alternating current (AC) coupling and 
smoothing (averaging) but it is more common to see combinations of FIR and 
IIR filter structures. Such a structure is the second-order combination shown in 
Figure 1.10, having the transfer function 

H(z) 
-2 bo + b\z l + b2z 

1 + a\z~l + a2z~2 (1.45) 

Of course, higher-order structures than two can be built if required by the 
passband specifications. It is however more common to combine a number of 
structures of order two in cascade or parallel to achieve advanced filters. In this 
way, it is easier to obtain numerical stability and to spot potential numerical 
problems. 

Note! If a filter has zeros canceling the poles (i.e. having the same location 
in the complex plane), the total transfer function may have only zeros. In such a 
case, the filter will have a finite impulse response (FIR), despite the fact that the 
structure may be of the recursive type and an infinite impulse response (IIR) is 
expected. Hence, a non-recursive filter (FIR filter) always has a finite impulse 
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Figure 1.10 Combined second-order FIR and IIR filter structure. Note: only 
two delay elements are needed 

response, while a recursive filter commonly has an infinite impulse response, 
but may in some cases have a finite impulse response. 

If for instance a non-recursive filter is transformed into a recursive struc
ture, the recursive filter will have the same impulse response as the original 
non-recursive filter, i.e. an FIR. Consider for example a straightforward 
non-recursive averaging filter having equal weights 

N-\ 

y(n) = jj J2x(n~^ 
i=0 

The filter has the transfer function 

w >* 1 N~l 

(1.46) 

(1.47) 

/=o 
Obviously, this filter has a finite impulse response. To transform this FIR filter 
into a recursive form, we try to find out how much of the previous output signal 
y(n — 1) that can be reused to produce the present output signal y(n) 

y(n) -y(n - 1) = - J^x(<n ~ '") " jj Ylx(n " l ~ ^ 

The corresponding recursive filter structure can hence be written 

(1.48) 

y{ri) =y(n - 1) + ^x(n) - ^x(n - N) =y(n - 1) + -(x(n)-x(n - N)) 

(1.49) 
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Figure 1.11 Example of an all-zero lattice filter consisting of two lattice 
elements 

having the transfer function 

HR(z) 
1 1 m 

X(z) N \-z - l 
(1.50) 

This is indeed a recursive filter having the same impulse response as the first 
filter and hence an FIR. Another interesting observation concerns the implemen
tation of the filter. In the first case, one multiplication and N — 1 additions are 
needed, while in the second case only one multiplication, one subtraction and 
one addition are required to perform the same task. Since digital filters are com
monly implemented as computer programs, less computational burden implies 
faster execution and shorter processing time (see Chapter 9). In this example, 
the recursive algorithm seems advantageous, but this is not generally true. 

1.3.1.3 The lattice filter 

Besides the standard filter structures discussed above, there are many special
ized ones for specific purposes. One example of such a structure is the lattice 
filter (Orfandis, 1985; Widrow and Stearns, 1985) which is commonly used 
in adaptive processing and particularly in linear prediction. An example lattice 
filter consisting of two lattice elements is shown in Figure 1.11. 

There are many variations of lattice structures. This example is an all-zero 
version, i.e. a structure having a transfer function containing only zeros (no 
poles), so it may be regarded as a lattice version of a non-recursive filter (FIR). 
The filter has one input and two outputs. The upper output signal is often 
denoted the forward prediction error, while the lower output signal is called 
the backward prediction error. The reason for this is explained below. 

The transfer function, with respect to the forward prediction error, has the 
general form 

Hf(z) 
Yf(z) A . 

(1.51) 
i = 0 
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where bo = 1 andL is the number of lattice elements in the filter. In our example 
1 = 2, hence 

7f(z) = X(z) + X(z)bxz~x +X(z)b2z-2 (1.52) 

The corresponding difference equation is 

yf(n) = x(n) + b\x(n - 1) + ^ ( " - 2) = x(n) - x(n) (1.53) 

Now, if we assume that we can find filter coefficients b\ in such a way that 
yi(n) is small or preferably equal to zero for all n, we can interpret x(n) as 
the prediction of the input signal x(n) based on x(n — 1) and x(n — 2) in this 
example. Hence, we are able to predict the input signal one step forward in 
time. Further, under these assumptions it is easy to see that yf (n) =x(n) — x(n) 
is the forward prediction error. 

In a similar way, it can be shown that the transfer function with respect to the 
backward prediction error (the lower output signal) has the general form 

# b ( z ) = | ^ = X > - , Z - ' (1.54) 

where bo — 1 and L is the number of lattice elements in the filter. In our example 
L = 2, hence 

Yh(z) =X(z)b2 +X(z)b\z~x +X(z)z~2 (1.55) 

The corresponding difference equation is 

y\y(n) = x(n — 2) + x(n)b2 + x(n — l)b\ = x(n — 2) — x(n) (1.56) 

In this case x(n) is the prediction of the input signal x(n — 2) based on 
x(n— 1) and x(n). Hence, we are able to predict the input signal one step 
backward in time andy\,(n) = x(n — 2) — x(n) is the backward prediction error. 

The procedure for determining the lattice filter coefficients (Orfandis, 1985; 
Widrow and Stearns, 1985) Kt is not entirely easy and will not be treated in this 
book. There are of course other types of filters which are able to predict signal 
sample values more than only one step ahead. There are also more advanced 
types, e.g. non-linear predictors. An important application using predictors is 
data compression (see Chapter 7). The basic idea is to use the dependency 
between present samples and future samples, thereby reducing the amount of 
information. 

1.3.2 Filter synthesis 

So far we have discussed some possible filter architectures, but how to deter
mine the numerical filter coefficients for a specific application? To start with, 
there are some basic limitations. Consider the following example: using digital 
signal processing, we would like to build the perfect software radio receiver 
(RX) having very good selectivity. Such a receiver would have a very good, 
preferably "brick-wall-type", bandpass filter to allow only signals from the 
desired transmitter (TX) with frequency fc, while strongly rejecting signals 



Introduction 23 

gain function 

CO 

E 

: : : : : 
r r r "i T 
' ! _ _ ! . _ J _ ! _ 

: : :: : : 
; y 1 1 i i 

: : : : : : 

: : : : : : : : : : : : : : : : : : 

frequency (rad/s) 

Figure 1.12 Gain function of an unrealistic "brick-wall" bandpass filter 

transmitted on nearby frequencies, outside the bandwidth B (we assume that 
B <&fc). Figure 1.12 shows the gain function of the bandpass filter of our dreams. 

For frequencies / <fc — (B/2) mdfc + (B/2)<f, i.e. the stopband, the 
filter gain is close to zero, i.e. no signals are let through, while in the passband, 
fc — (B/2) <f <fc + (B/2) the gain is equal to one. Intuitively, we realize that 
such a filter can hardly be built using analog, electronic components like capac
itors and inductors. But what about digital filters implemented as program code 
on a computer? 

By making an inverse Fourier transform of the gain function^ in Figure 1.12, 
we could obtain the impulse response h(n) of the filter. This would in turn give 
us all filter coefficients bn needed to design an FIR filter (compare to equations 
(1.40) and (1.42)). Unfortunately, we find the impulse response to be a sine 
function (compare to equation (1.9)) of the type 

h(n) = B sine r) for —oo < n < oo (1.57) 

A part of the impulse response is shown in Figure 1.13. One problem is that 
the impulse response is of IIR type, i.e. infinite. Since we cannot build an FIR 
filter with an infinite number of taps, we have to use only a limited number of 
taps, which will indeed degrade the performance of the filter. Why cannot we 
build an IIR filter then? The next problem that strikes us is the fact that we have 
a non-causal impulse response, i.e. we need to know future values of the signal 
which are not available yet. This can of course be amended by introducing 
an infinitely long delay function in the system. Since there is obviously a very 
limited market for such filters, we must conclude that the perfect bandpass filter 
can never be built. We will have to stick to approximations of the gain curve 
sketched in Figure 1.12. This is mainly what filter synthesis is all about: finding 
acceptable compromises (not easy) that can be implemented in reality and at 
a reasonable cost. (Like human life in general?) In this text we have so far 
only discussed bandpass filter functions, however, the same reasoning applies 
to low-pass, high-pass and bandstop filters. 

So, what parameters should be taken into account when making a filter 
passband approximation? There are three common aspects: the slope of the 
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Figure 1.13 Impulse response (the sine function) of the unrealistic 
bandpass filter 
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Figure 1.14 Example of a Bode plot showing a realistic bandpass filter 

passband curve, ripple in the passband and phase linearity (see the example 
Bode plot in Figure 1.14). 

In the dream filter above, the slopes of the passband curve were infinitely 
steep, which turned out to be impossible, but in many cases, we would like 
to get as steep slopes as possible. Ripple is unwanted gain variations in the 
passband. In the ideal case, the gain is exactly one everywhere in the passband. 
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Phase linearity, finally, means that the phase shift of the filter in the passband 
should ideally be proportional to the frequency, i.e. 

<Kf) = -V 0-58) 

since the group delay rg for the signal to pass through the filter is 

Inserting equation (1.58) into equation (1.59) we realize that having a phase 
function of the filter according to equation (1.58), the group delay for all 
frequencies will be the same. 

•*—s^-s <l'60) 

This is of course a desirable property of a filter, since sending a composite signal 
consisting of many frequency components through the filter, all the components 
will reach the output simultaneously, thus avoiding phase distortion. 

It is not surprising that the three good properties above cannot be achieved 
at the same time. There is always a trade-off. Below, some commonly used 
approximations for low-pass filters (bandpass filter with fc = 0) are shown. 
In the expressions below, co is the normalized, angular frequency defined in 
such a way that the gain of the filter is 1 j\fl & 0.707 or — 3 dB at co = coo = 1 • 
The parameter coo = 2jrfo called the cut-off frequency is commonly used when 
specifying filters. 

• The Butterworth approximation is also called the maximally flat approxi
mation, implying that there is no ripple in the passband or in the stopband. 
On the other hand, neither the slope of the passband curve nor the phase 
linearity is very impressive. The Butterworth approximation of the gain 
function is 

A(co) = - 7 = L = 
y/\ + C02k 

where k is the order of the filter. 
• The Chebyshev approximation has a steeper slope than the Butterworth 

type, but has ripple in the passband and poor phase linearity. The Chebyshev 
approximation of the gain function can be written as 

A(co) = 1 

^1+^qV) 

where s is a ripple constant and Ck{co) is the Chebyshev polynomial defined as 

Ck(co) = { 
cos (k arccos (co)) for \co\ < 1 

cosh (k arccosh(&>)) for \co\ > 1 
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The magnitude of the passband ripple, i.e. the variations in gain in the 
passband can be determined by (expressed in decibels) 

AA = 10 1og(l+£2)dB 

• The Cauer approximation is an extension of the Chebyshev approximation 
in the sense that ripple is allowed in the stopband also, resulting in an even 
steeper slope. The Chebyshev and Cauer approximations belong to the class 
of elliptic filters. 

• The Bessel-Thomson approximation has good phase linearity, but the slope 
of the passband is not very impressive. 

There are two main ways of synthesizing filters: the indirect method and the 
direct method. 

1.3.2.1 Indirect filter synthesis 

The idea of the indirect method is first to design an analog filter using well-
known classical methods and then transform the analog filter function into a 
digital one. The advantage is that there are many well-known design meth
ods for analog filters around and old filter designs can be reused. There are 
however a couple of drawbacks. Firstly, analog filters are traditionally imple
mented using electronic components like inductors, capacitors, resistors and 
operational amplifiers. Therefore, there are limitations to what type of analog 
transfer functions can be achieved. Typically, an analog transfer function for
mulated using the Laplace transform would have the structure of a fraction of 
polynomials 

G^ = ~vr\ = — ; ;—7~ {— ( L 6 1 ) 
X(s) #o + a\s + a2s

L H 
This means that there are only a limited number of filter types that can be 
designed using the indirect method. 

Secondly, the process of transforming the analog transfer function in the 
5-plane into a digital one in the z-plane is not without problems. Once again 
we have a compromise situation. There is no perfect transformation method, 
i.e. there is no method that transforms all the properties of an analog filter to a 
digital counterpart. Below, some common transform methods are presented. 

The impulse invariance method is based on the idea that the impulse 
response of the analog filter with transfer function G(s) should be identical 
to the impulse response of a corresponding digital filter having the transfer 
function H(z) 

h(t) = L~l[l • G(s)] = Z~\\ • H(z)] = h(n) =* H(z) = Z[2r l[G(s)]] 

(1.62) 

where the operator L~l is the inverse Laplace transform, Z _ 1 is the inverse 
z-transform and Z is the z-transform. The following are expressed in equation 
(1.62): the impulse response of the analog system is the unit impulse 1 times the 
transfer function G(s). This impulse response, expressed in the time domain, 
should be equal to the impulse response of the digital system, given by the unit 
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impulse 1 times the transfer function H{z). Solving for H(z) means first applying 
the inverse Laplace transform to 1 • G(s) and then applying the z-transform. The 
coupling between continuous time and discrete time is 

t = j (1-63) 

As an example, assume that we have an analog transfer function as in equation 
(1.61). Factorizing the function and splitting it into partial fractions, we obtain 

G(s) = - ^ — + -2— + • • • (1.64) 
S-p\ S-p2 

where p\ is the pole of polynomial / and r, is the corresponding residual, etc. 
Applying the inverse Laplace transform, every term in equation (1.64) will 
transform to 

A(0 = rie*1' + r2e*2' + --- (1.65) 

Replacing the continuous time with discrete time using equation (1.63), and 
approximating the continuous exponential function with a discrete step function 
(step width equal to the sampling period \/fs) gives 

h(n) = ^V l ( M / / s ) + lletoWM + . . . (1.66) 
fs fs 

Taking the z-transform of equation (1.66) 

H(Z) — 77 r + 77 r H (1-67) 
w 1 _ epi//gZ-l 1 _ QP2/fsZ-l V ' 

After some tedious housekeeping we finally end up with a digital transfer 
function of the type 

m^ 7 ( z ) bo + biz-l+b2Z'2 + '" n _ 
X(z) 1 + a\z l -f d2Z l H 

which can easily be implemented as a standard IIR filter as in equation 
(1.45). Note that this method only guarantees that the digital filter has the same 
impulse response as the analog "original" filter. No promises are made about, 
for instance, the frequency function. This method is used in signal processing 
applications. 

Starting from similar ideas, the step invariance method can be formulated as 

(1.69) 

In this case, the analog and digital filters have the same step response. Further, 
the ramp invariance method will be 

(1.70) 
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where the analog and digital filters will have the same ramp response. The step 
invariance and ramp invariance methods are commonly used in control system 
applications. 

A commonly used transform, both for digital signal processing and for digital 
control systems, is the bilinear transform (BLT), also called Tustin's approxi
mation. The idea behind the bilinear transform is to find a way of formulating a 
digital transfer function H(z) that resembles the analog transfer function G(s) as 
closely as possible considering the frequency response. No guarantees regard
ing, for instance, the impulse response are given. Omitting the details that can 
be found in, for instance (Denbigh, 1998), we conclude that the method of the 
bilinear transform is to replace the Laplace variable s in the analog transfer 
function by an expression in the z variable as 

1 - z - 1 z - 1 
s-^2fs-—-^=2^—-- (1.71) 

1 + z [ z +\ 

Unfortunately, the shape of the gain function of the analog filter \G{s)\ and 
the digital counterpart \H(z)\, obtained by bilinear transformation, differs. This 
is especially true for higher frequencies, approaching the Nyquist frequency 
/ s / 2 . To counteract this problem, pre-warping is used. Pre-warping means that 
when designing the initial analog filter, which will later be transformed to a 
digital one, frequencies used to specify the filter are modified according to 

A =***(*(£)) (1.72) 

where fy is the frequency in question for the final digital filter, while the cor
responding analog filter should use the pre-warped frequency f&. For small 
frequencies, the difference between^) and /A is negligible, I.Q./A ^/D, while 
for frequencies approaching the Nyquist frequency, the deviation may be con
siderable. Let us illustrate the bilinear transformation and pre-warping with an 
example. 

Assume we are asked to design a digital Butterworth filter of order two with 
cut-off frequency 250 Hz. The sampling frequency of the system is 1 kHz. First, 
we have to do frequency pre-warping. Insertingyb and/s into equation (1.72) 
we obtain 

1-103 / 250 \ _ 

This means that we need to design the analog filter to have a cut-off frequency 
of 318 Hz in order to obtain a transformed digital filter with the desired cut-off 
frequency 250 Hz. The next step is to design the analog Butterworth filter, which 
can be done using conventional methods, for instance, using MATLAB™ the 
resulting transfer function will be (see also equation (1.61)) 

G(S)= ^ b \ 2 (1-73) 
ao + a\s + a2SL 

where the coefficients are 6 0 =4-10 6 , tf0=4.106, tfi=2.83-103, 
02 = 1- Applying the bilinear transform equation (1.71) to the analog transfer 
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function (1.73) we obtain 

bo 
H(z) 

a0 + ai2fs[(z - l)/(z + 1)] + a2(2fs[(z - l)/(z + l)])2 

= b0(z + l)2 

~ a0(z + l)2 + 2fsax(z - l)(z + 1) + Affa2{z - l)2 

_ b0(z
2 + 2z + 1) 

~ a0(z
2 + 2z + 1) + 2/sai(z2 - 1) + 4/s

2«2(z
2 - 2z + 1) 

= b0(z
2 + 2z + 1) 

~ z2(a0 + 2/,ai + 4/s
2a2) + z(2a0 - 8/s

2«2) + («o - 2f,ai + Af2a2) 

_ 60(l+2z-'+z-2) 
~ (a0 + 2/sai + 4/s

2a2) + z-\2a0 - 8/s
2a2) + z"2(a0 - 2/gai + 4/s

2«2) 

bo 
(ao + 2fsai+4fs

2a2) 

( l + 2 z - ' + z - 2 ) 

' (2ao - 8/s
2a2) (op - 2/gai + 4/s

2a2) 
(a0 + 2/ s f l l+4/ s

2a2) Z (a0 + 2/,a, + 4/s
2a2) 

Inserting the filter coefficients, we obtain the final, digital transfer function 

Y(z) l+2z-l+z~2 

The filter having the transfer function (1.74) can easily be implemented as a 
standard second-order IIR filter shown in Figure 1.10 (see equation (1.45)). 

Figure 1.15(a) shows the desired gain response (solid line) of a Butterworth 
filter with cut-off frequency 250 Hz. The dotted line shows the gain function of 
the digital filter obtained using pre-warping as above. This filter is the bilinear 
transformation of an analog filter designed for cut-off frequency 318 Hz. In 
Figure 1.15(b), the dotted line is the gain function of a digital filter designed 
without pre-warping, i.e. the bilinear transform of an analog filter designed 
with cut-off frequency 250 Hz. 

Another, simpler transform is the Euler transform, sometimes used in con
trol system applications. The Euler transform consists of variable substitution 
somewhat simpler than for the bilinear transform above 

s^fs—=fs(l-z-1) (1.75) 
z 

The idea behind this transform is that s in the Laplace method represents a 
derivative, while the right side of equation corresponds to a numerical approxi
mation of a differentiation, see also Section 1.4.1. This transform works better 
the higher the sampling frequency compared to the signal frequencies. 

13.2.2 Direct filter synthesis 

In direct filter synthesis, the digital filter is designed directly from the filter 
specifications, without using any analog prototype to transform. The advantage 
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Figure 1.15 (a) Desired gain response (solid line) of a Butterworth filter with 
cut-off frequency 250 Hz. The dotted line is the response of the digital filter 
obtained using pre-warping and bilinear transformation (analog filter 
designed for cut-off frequency 318 Hz), (b) The dotted line is the response of a 
digital filter designed without pre-warping (analog filter designed with cut-off 
frequency 250 Hz) 

is that new filter types can be achieved, since we are no longer hampered by the 
limitations implied by the use of analog, electronic components. 

The first direct method presented is the Fourier method also called the 
Window method. In this method (Denbigh, 1998) one first determines a desired 
gain function^/). Since the transfer function of a filter is the Fourier transform 
of the impulse response (see equation (1.40)), the inverse Fourier transform of 
the desired gain function would give the impulse response 

h{} *-M- A(f)z j27tn(f/fs) d/ (1.76) 

Since we know that the impulse response of an FIR filter is exactly the values 
of the filter taps (equation (1.42)), implementing the filter is straightforward. 
The problem associated with this method is shown in the beginning of this 
section. Often the desired gain function results in infinite, non-causal impulse 
response. Hence, compromises must be made and filter lengths cut using some 
windowing function (see Chapter 5), implying that the resulting gain response 
will deviate somewhat from the desired one. 

A dual of the Window method, briefly presented above, is the Frequency 
sampling method. In this method, the desired frequency response H(Qk) is 
defined at crucial frequencies. Frequency points in between the specified points 
are interpolated, and the impulse response is obtained using the inverse DFT. 
The interpolation frequency points are important, since too abrupt transitions 
in the desired frequency response function may result in considerable ripple in 
the frequency response of the final implementation. 
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pole-zero map 

Figure 1.16 A pole-zero plot for a bandpass filter; poles close to the unit 
circle result in a narrow passbandfilter 

Another direct filter design method is the simulation method, in which the 
filter is simulated and poles and zeros are placed manually or automatically in 
the complex z-plane until the desired gain and/or phase function is obtained. 
The method may seem a bit ad hoc, but it is nevertheless frequently used. 
When placing the poles and zeros in the z-plane, there are some elementary 
rules: 

The frequency axis in a gain function plot corresponds to the unit circle in 
the z-plane (see equation (1.38)). Traversing the positive frequency axis in 
a gain function plot corresponds to moving counterclockwise on the upper 
arc of the unit circle (see Figure 1.16). 
All poles have to be placed inside the unit circle for stability reasons; the 
location of zeros does not matter from a stability point of view. 
The distance from a pole to a given position on the unit circle, i.e. a given 
frequency, is inversely proportional to the gain. The closer a pole is located 
to the unit circle, the higher the gain for frequencies in vicinity of the pole. 
A pole should preferably not be placed on the unit circle, since that will 
create an oscillator, or in the worst case, lead to instabilities due to numerical 
truncation effects. 
The distance from a zero to a given position on the unit circle, i.e. a given 
frequency, is proportional to the gain. The closer a zero is located to the unit 
circle, the lower the gain for frequencies in vicinity of the zero. A zero can 
be placed on the unit circle, resulting in zero gain at the given frequency. 
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• Single poles or zeros can only appear on the real axis. 
• Pairs of poles or zeros appear as complex conjugate pairs, i.e. p — x ±jy. 
• Poles or zeros at the origin do not affect the gain function, but contribute to 

the phase shift function of the filter. 
• A pole in an improper location (outside the unit circle) can be cancelled by 

placing a zero on exactly the same place, thus stabilizing the system. One 
should be aware, however, that this method is risky. If, for instance, for 
numerical truncation reasons the zero moves away just a little, we may be 
stuck with an unstable system. 

The example in Figure 1.16 shows a bandpass filter with center frequency 
Qc = 27t(fc/fs) which corresponds to the angle ±QC in the figure. The closer 
the poles are placed to the unit circle, the more narrow the passband B, i.e. the 
higher the g-factor of the filter. 

The McClellan-Parks method based on the Remez exchange algorithm 
is a common method for designing optimal linear-phase FIR filters, complying 
to the passband specification as closely as possible, while requiring as few taps 
as possible. The basic idea of this method is to approximate the desired gain 
function by a series of cosines of the form 

A(co) = 2_] b(k) cos (cok) 

An error weighting function W\(co) is defined, which governs how to penal
ize errors between the desired response A\(co) and the approximation A(co) at 
different frequencies. For frequencies where W\(co) is large, a high degree of 
conformity to the desired gain function is demanded. Using the Remez exchange 
algorithm, the cosine coefficients b(k) are found by minimizing the maximum 
error function 

\Wl(co)(Al(co)-A(co))\ = W\(coMAi(CO) - ] T b(k) cos (cok) 

From the cosine coefficients, the impulse response, i.e. the FIR filter taps, can 
be obtained using the inverse DFT and taking symmetry conditions into account 
to achieve phase linearity. The presentation above is highly simplified, since the 
details of the algorithm are quite complicated. A detailed presentation can be 
found, e.g. Cavicchi (2000). 

1.4 Digital control 
systems 

A basic, "analog" closed-loop control system is shown in the block diagram 
in Figure 1.17 (Tewari, 2002; Wilkie et al, 2002). It consists of a process (or 
plant) having transfer function G(s) (including actuators), a transducer with 
transfer function H(s) (including signal conditioning) and a controller with 
transfer function K(s\ expressed in the Laplace domain. The signals appearing 
in the block diagram are: the reference signal or set point R(s), the process 
error signal E(s), the controller output signal U(s), the process disturbance 
signal D(s), the process output signal Y(s)9 the measurement disturbance 
signal N(s) and the measured output signal Ym(s). 
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Figure 1.17 Block diagram showing a typical closed-loop control system 

For example, the closed-loop system could be an electrical heater in a room 
where a desired and constant indoor temperature is required. The desired tem
perature is presented to the system as the electric reference signal R(s) obtained 
from a temperature-setting knob on the wall. This signal is compared to the 
measured output signal Ym(s), which is the output of the temperature transducer 
measuring the actual temperature in the room. The measurement disturbance 
signal N(s) represents imperfections in the temperature transducer and in this 
example, we assume that N(s) = 0. The difference between the desired and 
the actual temperature is the process error signal E(s). The error signal is 
fed to the controller, which determines a proper controller output signal U(s). 
If, for instance, the actual temperature is lower than desired, the error sig
nal E(s) = R(s) — Ym(s) is positive. An appropriate measure of the controller 
would hence be to increase the output signal U(s) or, in other words, increase 
the current to the electrical heater, increasing the heating power. The process 
disturbance signal D(s) may represent an open window (negative sign) trying 
to lower the temperature in the room (we are up north now), or an electrical 
appliance in the room (negative sign) trying to increase the temperature. 

Now, what are the characteristics of a good closed-loop control system? Let 
us first assume that the process disturbance is negligible, i.e. D(s) = 0. The 
closed-loop transfer function of the system will be 

Y(s) = E(s)K(s)G(s) 

E(s) = R(s) - H(s)Y(s) 

Inserting equation (1.77b) into equation (1.77a) we get 

(1.77a) 

(1.77b) 

Y(s) R(s)K(s)G(s) - Y(s)H(s)K(s)G(s) 

Y(s)(l + H(s)K(s)G(s)) = R(s)K(s)G(s) 

Y(s) K(s)G(s) 

(1.78) 

GCL(S) = 
R(s) 1 + H(s)K(s)G(s) 

Equation (1.78) is the transfer function for the entire system, i.e. it shows 
how the temperature Y(s) is affected by the reference (set point) R(s) signal. 
Some desirable properties of the system are: 

• the output Y(s) should follow the input R(s) with good accuracy statically, 
i.e. the process error E(s) should be small and E(s) -» 0 as t - • oo 
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• the output Y(s) should follow the input R(s) dynamically well, i.e. a change 
in R(s) should appear as a change Y(s) in with as small a delay as possible 

• the system should be stable; since the transfer function has poles, they have to 
be located in the left half of the s-plane (inside the unit circle for the z-plane). 

Further, since the system is supposed to be linear we can set R(s) = 0 to 
investigate how process disturbance D(s) affects the output Y(s), we get 

Y(s) = E(s)K(s)G(s) + D(s) (1.79a) 

E(s) =-H(s)Y(s) (1.79b) 

Y(s) = -Y(s)H(s)K(s)G(s) + D(s) 

=> Y(s)(l + H(s)K(s)G(s)) = D(s) (1.80) 

Y(s) = 1 
D(s) 1 + H(s)K(s)G(s) 

The transfer function (1.80) shows how the temperature Y(s) is affected by the 
process disturbance D(s). A desirable property of the system is: 

• the output Y(s) should be affected as little as possible by the process 
disturbance D(s). 

Now, the process G(s) corresponds to an actuator (the heater) and some real 
world entity (the room). Commonly, the process design engineer has very lim
ited possibilities in changing the transfer function G(s). The same is true for 
the transducer system represented by H(s). So, to be able to design a closed-
loop control system having the four desired properties as above, the only thing 
we can do is to try to design the controller K(s) in as smart way as possible. 
As expected, the four demands above of course counteract each other. If, for 
instance, a system is supposed to respond quickly it is likely to be unstable. So, 
in designing good controllers, we are again in a world of compromises. 

Probably, the most important requirement of a closed-loop system is that it 
should be stable. From both equations (1.78) and (1.80) we realize that stability 
requires the denominator not to be zero, i.e. 

1 + H(s)K(s)G(s) £ 0 

The term H(s)K(s)G(s) = Go(s) is denoted the open-loop transfer function 
of the system. If we study the open-loop transfer function in the frequency 
domain s =jco we can conclude that to ensure stability the following conditions 
must be met 

|C?o(<w,-)l < 1 where ZG0(o>«) = -180° (1.81) 

That is, for the frequency cot where the phase shift of the open-loop transfer 
function is -180°, the magnitude has to be smaller than 1. This rule is often 
referred to as the simplified Nyquist criteria. Presenting the open-loop transfer 
function as a Bode plot, it is easy to find out if the system is stable and it is 
also easy to see how large the margins are. (Most real world open-loop transfer 
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functions are of low-pass filter type.) There are a number of other methods to 
check for stability. 

So far, we have only discussed "analog" systems, but the main problems 
are the same for digital control systems. An advantage of digital systems is 
that more sophisticated controllers can be designed rather than using classical, 
analog electronic components. The transfer functions and signal will of course 
be expressed using the z-transform instead of Laplace, i.e. we have: H(z), K(z), 
G(z), R(z) and so on. One detail that may cause problems is to get hold of 
the digital process function G(z), since the real world processes are commonly 
"analog" by their nature. 

Below, some controllers are discussed. 

1.4.1 Proportional-integral-derivate controllers 

The proportional-integral-derivate (PID) controller is a classical algorithm 
that can be found not only in numerous industrial applications, but also in diverse 
areas of everyday life. The analog version of the controller can be written as 

iem+U!' u(t) = K ( e(t) + - J e(r)dr + Td je{t)) (1.82a) 

or, using Laplace 

m=~~=i:\l + — +sTd) (1.82b) (1 + J-+S71) 
Finding proper values of the three constants: K, proportionality; Tu integra

tion time and T&, derivation time, to optimize the performance of the control 
system is a classical problem. Many different methods have been invented, but 
since the setting of these parameters is highly dependent on the properties of the 
plant, heuristics are common. The digital version of the PID controller can be 
found as follows. Analog integration can be approximated by digital summation 

y(t) = / x(r)dr -> y(k) = V J C ( I ) = x(k) +y(k - 1) (1.83a) 

having the z-transform 

m=m+y(k _ i) ̂  | | = - J - , = -±- d ^ 

and analog derivation can be approximated by digital differentiation 

y(t) = _ x ( 0 _+ y(k) = x(k) -X(k-l) (1.84a) 

with the z-transform 

Y& , _-i y(k) = x(k) + x(k-l)^ -±l = i-z~l (1.84b) 
X(z) 



36 Digital Signal Processing and Applications 

Using the above, the digital version of the PID controller is 

u(k) = K (*(*) + i E e® +fsTd«k) - e(k - 1)) J (1.85a) 

where/s is the sampling frequency, an alternative algorithm is 

v(k) = v(k-l) + e(k) 

1 
u(k) = K ( e(k) + ~v(k) +fsTd(e(k) - e(k - l))\ (1.85b) 

1.4.2 Advanced controllers 

The PID algorithm above is very common and sufficient for everyday applica
tions. If, however, peak performance is required in, for instance, air and space 
applications, other more elaborate control algorithms must be employed. Some 
examples are given below. 

1.4.2.1 Direct synthesis controller 

A controller designed using the direct synthesis method is obtained in the fol
lowing way. We are assumed to have good knowledge of the transfer function 
of the process G(z) and the transducer system H(z). Further, we have a good 
idea of what we would like the closed-loop transfer function to be like GCL(^)-

Starting out with the expression (1.78) modified for the z-plane, we can now 
solve for the transfer function K(z) required obtaining the desired closed-loop 
transfer function 

Y(z) K(z)G(z) 
GCLKZ) 

R(z) 1 + H(z)K(z)G(z) 

=> K(z) = r< vi ^r^] wr ^ ( L 8 6 ) 

G(z)(l - GCL(Z)H(Z)) 

However, it is not possible to obtain a stable controller for some cases. If for 
instance the process has zeros outside the unit circle, they will show up as poles 
in the transfer function of the controller, thus resulting in an unstable controller. 
Another problem arises if there is a delay in the process. In such a case, the 
transfer function of the controller turns non-causal, i.e. needs to be able to look 
into the future. There are, however, other design methods for controllers used 
with processes having delay. 

1.4.2.2 Pole placement controller 

A controller designed using the pole placement method has a somewhat different 
structure than other controllers discussed so far (see Figure 1.18). This type of 
controller commonly performs very well and is capable of handling processes 
with delay. 



Introduction 37 

R(z) 
• — f r K 

controller 

+>ff i • 
^+7 > 

1 1 
C(z) 1 

FM L 
^ W H 

[/(z) 
process 

5(z) 
r(z) 

Figure 1.18 A simplified closed-loop control system with a pole placement 
controller 

In Figure 1.18, we have assumed H(z) = 1 and that the process transfer func
tion can be expressed as a quota between two polynomials, i.e. G(z) = B(z)/A(z). 
The closed-loop transfer function of the system depicted in Figure 1.18 will be 

Y(z) KB(z) 
GCL(Z) = (1.87) 

R(z) A(z)C(z) + B(z)F(z) 

The first thing to do is to determine the placement of the poles of the closed-
loop transfer function. This is, of course, a delicate question well beyond the 
scope of this book. However, as a rule of thumb, the poles are commonly placed 
inside the unit circle (of course), not too close to the unit circle and in a sector 
ranging approximately Q = ± n/4 in the z-plane. Once the location of the poles 
is determined, the pole placement polynomial P(z) is formed having roots equal 
to the poles. The degree of this polynomial, i.e. the number of poles, is given 
by the degree of polynomial A(z) plus the degree of polynomial B(z) minus 1. 
Now, the pole placement equation is solved 

P(z)=A(z)C(z) + B(z)F(z) (1.88) 

and the polynomials C(z) and F(z) are obtained. Finally, the constant K is 
determined using 

K 
P(l) 

B(l) 

The controller is complete. 

(1.89) 

1.4.2.3 Dead-beat controller 

A dead-beat controller is a pole placement controller designed as in Section 
1.4.2.2 above, using a pole placement polynomial placing all the poles at the 
origin 

P ( z ) = ( l - 0 - z - 1 ) " = l (1.90) 

The closed-loop transfer function of a system with a dead-beat controller will 
be (compare to equation (1.87)) 

Y(z) KB(z) 
GCL(Z) 

R(z) 1 
= KB(z) (1.91) 
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An interesting feature of such a controller is that it is converges very fast to 
the correct output signal Y(z) after an abrupt change in the reference signal R(z). 
The number of samples required to perform a perfect convergence is equal to 
the degree of the polynomial B(z). A drawback with the controller is that such 
a fast control may require very large controller output signals U(z), which may 
translate to many thousands of horse powers if the system controls the rudder 
of an oil tanker. 

There are a large number of highly advanced and interesting control algo
rithms. In Chapter 6, for instance, the Kalman filter is discussed. More: control 
algorithms can be found, e.g. Astrom and Wittenmark (1984) and Wilkie et al 
(2002). 

Summary In this chapter the following main topics have been addressed: 

• Signals, discrete and continuous in amplitude and time 
• Sampling, aliasing, the Nyquist frequency 
• Quantization, resolution, dynamic range and quantization noise 
• Linearity, the principle of superposition, LTI systems, causality 
• Difference equations and state-space models 
• Impulse response and convolution 
• Transfer functions in the z-plane 
• The frequency response, the gain function and the phase shift function 
• Some filter architectures: non-recursive, recursive and lattice filters, FIR 

and IIR 
• The impossibility of designing the perfect filter 
• The Butterworth, Chebyshev, Cauer and Bessel approximations 
• Indirect and direct filter synthesis methods 
• Impulse invariance, step invariance and ramp invariance 
• The bilinear transform and pre-warping, Euler's method 
• The Fourier method, frequency sampling, simulation and McClellan-Parks/ 

Remez exchange algorithm 
• Digital control, closed- and open-loop transfer functions, stability 
• PID, direct synthesis, pole placement and dead-beat controllers. 

Review questions Rl-1 Explain the aliasing effect in a sampled system. What is the Nyquist 
frequency? How can aliasing be avoided? 

Rl-2 Explain how quantization noise, resolution and dynamic range are related 
to the word length. 

Rl-3 Why is linearity so important? What are the requirements of a function 
being linear? 

Rl-4 In what way is the impulse response of a linear system related to the 
transfer function of the system? 

Rl-5 Why is an FIR filter always stable? 
Rl-6 Why is it that a "brick-wall" type filter cannot be implemented in practice? 
Rl-7 Why is linear phase a desirable feature in a filter? 
Rl-8 Give pros and cons of the filter approximations Butterworth, 

Chebyshev and Bessel. 
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Rl-9 When designing filters using the bilinear transform, pre-warping may be 
needed. Why is it needed and under what circumstances? 

Rl-10 Which four demands are commonly placed on a closed-loop control 
system? 

Rl-11 Which three parameters are there to be set in a PID controller? 
Rl-12 What are the pros and cons of a dead-beat controller? 

Solved problems Pl-1 An analog signal is converted to a digital bitstream. If the maximum 
frequency of the signal is 10 kHz, and we need 58 dB dynamic range, what 
is the data rate of the bitstream in bits/s, assuming a perfect "brick-wall" 
anti-aliasing filter? 

Pl-2 A digital controller has a zero at z = a and poles at z = b and z = c, where 
<z, b, c are real constants. Determine the transfer function, the frequency 
function, the gain function and the phase shift function. Also, derive the 
corresponding difference equation in such a form that it could readily be 
implemented as computer program code. 

Pl-3 An FIR filter with an odd number of taps will have a linear-phase shift 
function if the tap weights are symmetrical, i.e. bn = bM-n- Show this. 

Pl-4 Make an Euler transform of the analog transfer function (1.73). Compare 
the resulting digital transfer function to equation (1.74) obtained using 
the bilinear transform. 

Pl-5 Write a MATLAB™ program to design a digital Butterworth filter and 
a Chebyshev filter. The filters should be bandpass filters of order eight 
with lower cut-off frequency 8 kHz and upper cut-off frequency 12 kHz. 
Maximum ripple in the passband is 1 dB. The sampling frequency is 
40 kHz. The program should make Bode plots, pole-zero plots and print 
the filter coefficients. 



2 The analog-digital 
interface 

Background In most systems, whether electronic, financial or social, the majority of prob
lems arise in the interface between different sub-parts. This is of course also 
true for digital signal processing (DSP) systems. Most signals in real life 
are continuous in amplitude and time, i.e. "analog", but our digital system 
is working with amplitude and time discrete signals, so-called "digital" sig
nals. Hence, the input signals entering our system need to be converted from 
analog-to-digital (A/D) form before the actual signal processing may take 
place. 

For the same reason, the output signals from our DSP device need to be 
reconverted back from digital-to-analog (D/A) form, to be used in for instance 
hydraulic valves or loudspeakers or other analog actuators. These conversion 
processes, between the analog and digital world add some problems to our 
system. These matters will be addressed in this chapter, together with a brief 
presentation of some common techniques to perform the actual conversion 
processes. 

Objectives In this chapter we will cover: 

• Encoding and modulation schemes, pulse code modulation, pulse amplitude 
modulation, pulse position modulation, pulse number modulation, pulse 
width modulation and pulse density modulation 

• Number representation, fixed-point 2's complement, offset binary, sign and 
magnitude, and floating point 

• Companding systems 
• Multiplying, integrating and bitstream D/A converters 
• Oversampling, interpolators and truncators 
• Sample-and-hold, reconstruction filters and anti-aliasing filters 
• Flash, successive approximation, counting and integrating A/D converters 
• Dither 
• Sigma-delta and bitstream A/D converters, decimation filters and comb 

filters. 

2.1.1 Encoding and modulation 

Assuming we have now converted our analog signals to numbers in the dig
ital world, there are many ways to encode the digital information into the 
shape of electrical signals. This process is called modulation (sometimes 

2.1 System 
considerations 
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Figure 2.1 Example, a byte (96H) encoded (weights in parenthesis) using 
PCM in parallel mode (parallel bus, 8 bits, eight wires) and in serial mode 
as an 8-bit pulse train (over one wire) 

"line modulation"). The most common method is probably pulse code modu
lation (PCM). There are two common ways of transmitting PCM and they are 
parallel and serial mode. In an example of the parallel case, the information 
is encoded as voltage levels on a number of wires, called a parallel bus. We 
are using binary signals, which means that only two voltage levels are used, 
+5 V corresponding to a binary " 1 " (or "true"), and 0 V meaning a binary 
"0" (or "false"). Hence, every wire carrying 0 or +5 V contributes a binary 
digit ("bit"). A parallel bus consisting of eight wires will hence carry 8 bits, 
a byte consisting of bits DO, D1-D7 (Figure 2.1). Parallel buses are able to 
transfer high information data rates, since an entire data word, i.e. a sampled 
value, is being transferred at a time. This transmission can take place between, 
for instance, an analog-to-digital converter (ADC) and a digital signal proces
sor (DSP). One drawback with parallel buses is that they require a number of 
wires, i.e. board space on a printed circuit board. Another problem is that we 
may experience skew problems, i.e. different time delays on different wires, 
meaning that all bits will not arrive at the same time in the receiver end of the 
bus, and data words will be messed up. Since this is especially true for long, 
high-speed parallel buses, this kind of bus is only suited for comparatively short 
transmission distances. Protecting long parallel buses from picking up wireless 
interference or to radiate interference may also be a formidable problem. 

The alternative way of dealing with PCM signals is to use the serial transfer 
mode. In this case, the bits are not transferred on different wires in parallel, 
but in sequence on a single wire (see Figure 2.1). First bit DO is transmitted, 
then Dl, etc. This means of course that the transmission of, for instance, a 
byte requires a longer time than in the parallel case. On the other hand, only 
one wire is needed. Board space and skew problems will be eliminated and the 
interference problem can be easier to solve. 

There are many possible modulation schemes, such as pulse amplitude 
modulation (PAM), pulse position modulation (PPM), pulse number modu
lation (PNM), pulse width modulation (PWM) and pulse density modulation 
(PDM). All these modulation types are used in serial transfer mode (see 
Figure 2.2). 
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Figure 2.2 Different modulation schemes for serial mode data 
communication, PAM, PPM, PNM, PWM and PDM 

Pulse amplitude modulation (PAM) The actual amplitude of the pulse 
represents the number being transmitted. Hence, PAM is continuous in ampli
tude but discrete in time. The output of a sampling circuit with a zero-order 
hold (ZOH) is one example of a PAM signal. 
Pulse position modulation (PPM) A pulse of fixed width and amplitude 
is used to transmit the information. The actual number is represented by the 
position in time where the pulse appears in a given time slot. 
Pulse number modulation (PNM) Related to PPM in the sense that we 
are using pulses with fixed amplitude and width. In this modulation scheme, 
however, many pulses are transmitted in every time slot, and the number of 
pulses present in the slot represents the number being transmitted. 
Pulse width modulation (PWM) Quite common modulation scheme, espe
cially in power control and power amplifier contexts. In this case, the width 
(duration) T\ of a pulse in a given time slot T represents the number being 
transmitted. If the pulse has the amplitude A\9 the transmitted number is 
represented by 

Ax 
Tx 

(2.1) 

In most applications, the amplitude A i of the pulse is fixed and uninteresting. 
Only the time ratio is used in the transmission process. If, however, the 
amplitude of the pulse is also used to represent a second signal, we are using 
a combination of PAM and PWM. In some applications, this is a simple way 
of achieving a multiplication of two signals. 
Pulse density modulation (PDM) May be viewed as a type of degenerated 
PWM, in the sense that not only the width of the pulses changes, but also the 
periodicity (frequency). The number being transmitted is represented by the 
density or "average" of the pulses. 
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A class of variations of PDM called stochastic representation of variables 
was tried in the 1960s and 1970s. The idea was to make a "stochastic com
puter", replacing the analog computer consisting of operational amplifiers and 
integrators, working directly with the analog signals. The stochastic represen
tation has two nice features. Firstly, the resolution can be traded for time, which 
implies that resolution can be improved by transmitting more pulses (longer time 
needed). Secondly, the calculations can be performed easily using only standard 
combinatorial circuits. The idea of stochastic representation has experienced a 
renaissance in the 1980s in some forms of neural network applications. 

So far we have talked about "transmission" of digital information using dif
ferent types of modulation. This discussion is of course also relevant for storing 
digital information. When it comes to optical compact disc (CD) or magnetic 
media, there are a number of special modulation methods (Pohlmann, 1989; 
Miller and Beasley, 2002) used, which will not be treated here. 

As will be seen later in this chapter, some signal converting and processing 
chips and subsystems may use different modulation methods to communicate. 
This may be due to standardization or due to the way the actual circuit works. 
One example is the so-called CODEC (coder-decoder). For instance, this is a 
chip used in telephone systems, containing both an analog-to-digital converter 
(ADC) and a digital-to-analog converter (DAC) and other necessary functions 
to implement a full two-way analog-digital interface for voice signals. Many 
such chips use a serial PCM interface. Switching devices and digital signal 
processors commonly have built-in interfaces to handle these types of signals. 

2.1.2 Number representation and companding systems 

When the analog signal is quantized, it is commonly represented by binary num
bers in the following processing steps. There are many possible representations 
of quantized amplitude values. One way is to use fixed-point formats like 2's 
complement, offset binary or sign and magnitude (Pires, 1989) Another 
way is to use some kind of floating-point format. The difference between the 
fixed-point formats can be seen in Table 2.1. 

The most common fixed-point representation is 2's complement. In the digital 
signal processing community, we often interpret the numbers as fractions rather 
than integers. This will be discussed in subsequent chapters. Other codes (Pires, 
1989) are gray code and binary-coded decimal (BCD). 

There are a number of floating-point formats around. They all rely on the 
principle of representing a number in three parts: a sign bit, an exponent and a 
mantissa. One such common format is the Institute of Electrical and Electronics 
Engineers (IEEE) Standard 754.1985 single precision 32-bit format, where 
the floating-point number is represented by one sign bit, an 8-bit exponent 
and a 23-bit mantissa. Using this method numbers between ±3.37 • 1038 and 
±8.4 • 10~37 can be represented using only 32 bits. Note however that the use of 
floating-point representation only expands the dynamic range on the expense 
of the resolution and system complexity. For instance, a 32-bit iixed-point 
system may have better resolution than a 32-bit floating-point system, since in 
the floating-point case, the resolution is determined by the word length of the 
mantissa being only 23 bits. Another problem using floating-point systems is 
the signal-to-noise ratio (SNR). Since the size of the quantization steps will 
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Table 2.1 Some fixed-point binary number formats 

Integer 

7 
6 
5 
4 
3 
2 
1 
0 

-1 
-2 
-3 
-4 
-5 
-6 
-7 
-8 

2's complement 

0111 
0110 
0101 
0100 
0011 
0010 
0001 
0000 
1111 
1110 
1101 
1100 
1011 
1010 
1001 
1000 

Offset binary 

1111 
1110 
1101 
1100 
1011 
1010 
1001 
1000 
0111 
0110 
0101 
0100 
0011 
0010 
0001 
0000 

Sign and 
magnitude 

0111 
0110 
0101 
0100 
0011 
0010 
0001 
0000 
1000 
1001 
1010 
1011 
1100 
1101 
1110 

mi 

change as the exponent changes, so will the quantization noise. Hence, there 
will be discontinuous changes in SNR at specific signal levels. In an audio 
system, audible distortion (Pohlmann, 1989) may result from the modulation 
and quantization noise created by barely audible low-frequency signals causing 
numerous exponent switches. 

From the above, we realize that fixed-point (linear) systems yield uniform 
quantization of the signal. Meanwhile floating-point systems, due to the range 
changing, provide a non-uniform quantization. Non-uniform quantization is 
often used in systems where a compromise between word length, dynamic range 
and distortion at low signal levels has to be found. By using larger quantization 
steps for larger signal levels and smaller steps for weak signals, a good dynamic 
range can be obtained without causing serious distortion at low signal levels or 
requiring unreasonable word lengths (number of quantization steps). A digital 
telephone system may serve as an example where small signal levels are the 
most probable ones, thus causing the need for good resolution at low levels 
to keep distortion low. On the other hand, sometimes stronger signals will be 
present, and distortion due to saturation is not desirable. Due to the large number 
of connections in a digital telephone switch, the word length must be kept low, 
commonly not more than 8 bits. 

Another way of accomplishing non-uniform quantization is companding 
(Pohlmann, 1989; Miller and Beasley, 2002), a method which is not "perfect", 
but easy to implement. The underlying idea is to use a system utilizing com
mon uniform quantization and reconstruction. At the input of the system a 
compressor is connected and at the output of the system an expander (hence, 
compressor-expander: "compander") is added (see Figure 2.3). 

The compressor is mainly a non-linear amplifier, often logarithmic, having a 
lower gain for stronger signals than for weaker ones. In this way, the dynamic 
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input output 

• 

compressor digital system 
uniform quantization 

expander 

Figure 2.3 A companding system consisting of a compressor, a common 
digital system using uniform quantization intervals and an expander. Note! 
The signal processing algorithms used must take compression and expansion 
into account 
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Figure 2.4 The (a) [i-law and (b) A-law transfer functions for different 
parameter values 

range of the input signal is compressed. The expander is another non-linear 
amplifier having the function of being the inverse of the compressor. Hence, the 
expander "restores" the dynamic range of the signal at the output of the system. 
The total system will now act as a system using non-uniform quantization. Note: 
the signal processing algorithms in the system must take the non-linearity of 
the compressor and expander into account. 

For speech applications, typically found in telephone systems, there are two 
common non-linearities (Pohlmann, 1989) used: the j*,-law and the ,4-law. The 
/x-law is preferred in the US and the logarithmic compression characteristic has 
the form 

y = 
= log(l±Mx) for^o 

log(l+Ai) 
(2.2) 

where y is the magnitude of the output, x the magnitude of the input and /JL a 
positive parameter defined to yield the desired compression characteristic. A 
parameter value of 0 corresponds to linear amplification, i.e. no compression 
and uniform quantization. A value of ji = 255 is often used to encode speech 
signals (see Figure 2.4). In such a system, an 8-bit implementation can achieve 
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a good SNR and a dynamic range equivalent to that of a 12-bit system using 
uniform quantization. The inverse function is used for expansion. 

The A -law is primarily used in Europe. Its compression characteristic has 
the form 

Ax „ 1 
for 0 < x < -

1 + log(A) ~ A 
(2.3) 

y = 
l+logfrfr) , 1 , 

for — < JC < 1 
1 + \og(A) A ~ 

where y is the magnitude of the output, x the magnitude of the input and A is a 
positive parameter defined to yield the desired compression characteristic. 

Figure 2.4 shows /x-law and ^4-law transfer functions for some values of /x 
and^4. Companding techniques are also used in miscellaneous noise reduction 
systems, for instance the DOLBY™ systems. 

2.2 Digital-to-analog From now on we will only discuss systems using uniform quantization inter-
COnversion vals. The task of the digital-to-analog converter (DAC) is to convert a numerical, 

commonly binary so-called "digital" value into an "analog" output signal. The 
DAC is subject to many requirements, such as offset, gain, linearity, mono-
tonicity and settling time. Assume that the output voltage of an n bit perfect 
DAC with digital input value m (shown as a dotted line in Figure 2.5) can be 
written as 

m = Am 
2n 

where KFS is the full-scale (FS) output voltage of the DAC and the constant A 
corresponds to the output voltage step size for one least significant bit (LSB). 
In this case, the output voltage v(m) of a real world DAC can be expressed as 

v(m) = Am + 8o + AmeQ + s^f{m) 

which consists of the true output voltage plus three error terms defined below. 

Offset is the analog output when the digital input calls for a zero output. This 
should of course ideally be zero. The offset error £o affects all output sig
nals with the same additive amount and in most cases it can be sufficiently 
compensated for by external circuits or by trimming the DAC. 

Gain or scale factor is the slope of the transfer curve from digital numbers to 
analog levels. Hence, the gain error EQ is the error in the slope of the transfer 
curve. This error affects all output signals by the same percentage amount, 
and can normally be (almost) eliminated by trimming the DAC or by means of 
external circuitry. 

Linearity can be sub-divided into integral linearity (relative accuracy) and 
differential linearity. Integral linearity error is the deviation of the transfer 
curve from a straight line (the output of a perfect DAC) and is commonly 
expressed in number of LSBs {e^{m))/A. This error is not possible to adjust or 
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compensate for easily, since it may change more or less randomly as a function 
of the input digital code m. 

Differential linearity measures the difference between any two adja
cent output levels minus the step size for one LSB, or in other words, 
(s^(m) — s^fim — 1)) I A expressed in LSBs. If the output level for one step 
differs from the previous step by exactly the value corresponding to one least 
significant bit (LSB) of the digital value, the differential non-linearity is zero. 
Differential linearity errors cannot be eliminated easily. 

Monotonicity implies that the analog output must increase as the digital 
input increases, and decrease as the input decreases for all values over the 
specified signal range. Non-monotonicity is a result of excess differential 
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Figure 2.5 Errors of a DAC, the dotted line shows the performance of a 
perfect converter 
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non-linearity (>1LSB). This implies that a DAC which has a differential 
non-linearity specification of maximum ±0.5 LSB is more tightly specified 
than one for which only monotonicity is guaranteed. Monotonicity is essential 
in many control applications to maintain precision and to avoid instabilities in 
feedback loops. 

Absolute accuracy error is the difference between the measured analog output 
from a DAC compared to the expected output for a given digital input. The 
absolute accuracy is the compound effect of the offset error, gain error and 
linearity errors described above. 

Settling time of a DAC is the time required for the output to approach a final 
value within the limits of an allowed error band for a step change in the digital 
input. Measuring the settling time may be difficult in practice, since some DACs 
produce glitches when switching from one level to another. These glitches, being 
considerably larger than the fraction of the 1 LSB step of interest, may saturate, 
for instance, an oscilloscope input amplifier, thereby causing significant mea
suring errors. DAC settling time is a parameter of importance mainly in high 
sampling rate applications. 

One important thing to remember is that the parameters above may be affected 
by supply voltage and temperature. In DAC data sheets, the parameters are 
only specified for certain temperatures and supply voltages, e.g. normal room 
temperature +25°C and nominal supply voltage. Considerable deviations from 
the specified figures may occur in a practical system. 

2.2.1 Multiplying digital-to-analog converters 

This is the most common form of DAC. The output is the product of an input 
current or reference voltage and an input digital code. The digital information is 
assumed to be in PCM parallel format. There are also DACs with a built-in shift 
register circuit, converting serial PCM to parallel. Hence, there are multiplying 
DACs for both parallel and serial transfer mode PCM available. Multiplying 
DACs have the advantage of being fast. 

In Figure 2.6 a generic current source multiplying DAC is shown. The bits in 
the input digital code are used to turn on a selection of current sources, which 

i Q l m A I Q 0.5mA | Q 0.25 mA |( ) 0.125 mA 

h ^ 9 h_i_^ 9 bj_^ 9 fro ^ 

1 O O ° O Q 1 O 0 0 
'out 

MSB LSB 

Figure 2.6 A generic multiplying DAC using current sources controlled by 
the bits in the digital input code 
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are then summed to obtain the output current. The output current can easily be 
converted into an output voltage using an operational amplifier. 

Another way of achieving the different current sources in Figure 2.6 would 
be to use a constant input reference voltage £/ref and a set of resistors. In this 
way, the currents for the different branches would simply be obtained by 

h = -R~bi = 2 " - i - ' i f r - , * ' ( 2-4 ) 

where Rj is the resistance of the resistor in the /-th branch being controlled by 
the /-th bit: bt being 1 or 0. The word length of the digital code is N and / = 0 is 
LSB. The total output current can then be expressed as the sum of the currents 
from the branches 

N-\ N-\ , 

,•=0 KN~l 1=0 z 

Building such a DAC in practice would however cause some problems. This 
is especially true as the word length increases. Assume for instance that we 
are to design a 14-bit DAC. If we choose the smallest resistor, i.e. the resis
tor R\s corresponding to / = TV — 1 = 13 to be 100 ohms, the resistor Ro will 
then need to be Ro = 213 • 100 = 819 200 ohms. Now, comparing the currents 
flowing in branch 0 and 13, respectively, we find: To = (C/ref/819200) A and 
/13 =(£/ref/100)A. To obtain good differential linearity, the error of current 
I\3 (corresponding to the most significant bit, MSB) must be smaller than 
the smallest current To (corresponding to the LSB). Hence the resistance of 
Ru is required to be correct within ±122 ppm (parts per million). Another 
problem is that different materials and processes may be required when mak
ing resistors having high or low resistance, respectively. This will result in 
resistors in the DAC having different aging and temperature stability prop
erties, thus making it harder to maintain specifications under all working 
conditions. 

It is possible to achieve the required precision by laser trimming, but there is 
a smarter and less expensive way to build a good DAC using an R-2R ladder 
structure. In an R-2R ladder, there are considerably more than N resistors, 
but they all have the same resistance R and are hence easier to manufacture 
and integrate on a single silicon chip. The R-2R ladder structure uses current 
division. A simple 3-bit R-2R ladder DAC is shown in Figure 2.7. 

All resistors Rl-Rl 1 have the same resistance R. As can be seen from the 
figure, it is quite common that two resistors are connected in series, e.g. R1-R2, 
R3-R4, R5-R6 and R7-R8. Each of these pairs can of course be replaced by 
a single resistor having the resistance 2R. That is why this structure is called 
R-2R ladder, it can be built simply by using two resistance values: R and 2R. 

The switches £2, &1 > &o are controlled by bits 2,1 and 0 in the digital code. If a 
bit is set to one, the corresponding switch is in its right position, i.e. switched to 
the negative input of the operational amplifier. If the bit is set to zero, the switch 
is in its left position, connecting the circuit to ground. The negative input of 
the operational amplifier is a current summation point, and due to the feedback 
amplifier having its positive input connected to ground, the negative input will 
be held at practically zero potential, i.e. ground ("virtual ground"). Hence, the 
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Figure 2.7 An example 3 bit, R-2R ladder multiplying DAC, with voltage 
output, all resistors have the same resistance, R. Input digital code: 010 

resistor ladder circuit will be loaded in the same way and the position of the 
switches does not matter. 

Now, let us examine the resistor ladder structure a bit more closely. Starting 
injunction point po we conclude that the current flowing through resistor RIO 
will be divided into the two branches R5-R6 and R7-R8, respectively. As seen 
above, both branches have the same resistance, namely 2R. This means that 
the current will be divided equally in the two branches, i.e. half of the current 
passing through RIO will pass through the switch bo. Further, if we calculate the 
total resistance of the circuit R5-R6 in parallel with R7-R8, we will find it to be 
R. If we now move to point p\ we will have a similar situation as inj^o. The total 
resistance of R5, R6, R7 and R8 is R. This combination is connected in series 
with RIO having resistance R ohms, hence the total resistance in the circuit 
passing through RIO to ground will be 2R. Since the total resistance through 
R3-R4 is also 2R, the current flowing through resistor R9 will be divided 
equally in the two branches as in the earlier case. One half of the current will 
pass through switch b\ and one half will continue down the ladder via RIO. For 
every step in the ladder, the same process is repeated. The current created by 
the reference voltage C/ref, will be divided by 2 for every step in the ladder, and 
working with binary numbers, this is exactly what we want. 

Assuming the operational amplifier to be an ideal one (zero offset voltage, 
zero bias current and infinite gain) the output voltage from the DAC can then 
be written as 

C/oi 
^ref 

2 
bt 

2N-\-i 
(2.6) 
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Figure 2.8 A generic charge redistribution DAC 

Another way of building a DAC is by utilizing charge redistribution. 
This technique is quite common in complementary metal oxide semiconductor 
(CMOS) single-chip computers and the DAC can be implemented on a silicon 
chip in the same way as, for instance, switched capacitor (SC) filters. This type 
of DAC makes use of the fact that if a fixed voltage C/ref is applied to a (variable) 
capacitor C, the charge in the capacitor will be 

Q = CUref (2.7) 

After charging the capacitor C, it is disconnected from the voltage source and 
connected to another (discharged) capacitor C\. The electric charge Q is then 
redistributed between the two capacitors and the voltage over the capacitors 
will be 

U = 
C + Ci 

= UTQf 
C + Ci 

(2.8) 

An example of a generic, charge redistribution DAC is shown in Figure 2.8. 
The DAC works in two phases: in phase 1, the reset phase, all switches that 
are connected to ground close, discharging all capacitors; in phase 2, switch 
S is opened and the remaining switches are controlled by the incoming digital 
word. If a bit b\ is one, the corresponding capacitor Q = C/21 is connected to 
C/ref, otherwise it is connected to ground. 

It is quite straightforward to see how the DAC works. In phase 2, when the 
capacitors are charged and the total capacitance Ctot as seen from the voltage 
source Uref is 

Qot = 7 +7c +-^-) 
^one T - ^ ze ro T 2A^-I / 

(2.9) 

where Cone is the total capacitance of the capacitors corresponding to the bits 
that are 1 in the digital word (these capacitors will appear to be connected in 
parallel) and CZQro is the total capacitance of the capacitors corresponding to 
the bits that are 0. Hence the total charge of the circuit will be 

Qtot — CtotUTef (2.10) 
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Now, the output voltage Uout is the voltage over the capacitors connected to 
ground 

TT 2tot _ flrefCtot n i n 

^ze ro i 2N~l) \ zero ' 2N~l / 

Inserting equation (2.9) into equation (2.11) and expressing the capacitances 
as sums, we finally obtain the output voltage of the DAC as a function of the 
bits bj in the digital code 

Uout — 
^ref ^one (^zero H~ 2N~l ) 

(Czero H" 2N-1 ) v^one H~ (^zero H" 2^-1 ) ) 

^ref^one 

Cone 4" ^zero 1 2^-1 

^ r e f C E ^ O 1 ! 

rsr"-i 1 1 c 
^ Z^/=0 2' ' 2^_ 1 

= tfrefX>2-<' (2.12) 
2JV-1 ,-=i 

There are many alternative charge-based circuits around. It is, for instance, 
possible to design a type of C-2C ladder circuit. 

2.2.2 Integrating digital-to-analog converters 

This class of DACs is also called counting DACs. These DACs are often slow 
compared to the previous type of converters. On the other hand, they may offer 
high resolution using quite simple circuit elements. No high precision resistors, 
etc., are needed. 

The basic building blocks are: an "analog accumulator" usually called an 
integrator, a voltage (or current) reference source, an analog selector, a digital 
counter and a digital comparator. Figure 2.9 shows an example of an integrating 
DAC. The incoming TV-bits PCM data (parallel transfer mode) is fed to one input 
of the digital comparator. The other input of the comparator is connected to the 
binary counter having N bits, counting pulses from a clock oscillator running 
at frequency^ 

fc>2Nfs (2.13) 

where/s is the sampling frequency of the system and N is the word length. Now, 
assume that the counter starts counting from 0. The output of the comparator 
will be zero and there will be a momentary logic one output from the comparator 
when the counter digital value equals the digital input PCM code. This pulse 
will set the bistable flip-flop circuit. The flip-flop will then be reset when the 
counter wraps around from 2N~l to 0 and a carry signal is generated. 

The output from the flip-flop controls the analog selector in such a way that 
when the flip-flop is reset, —UTQf is connected to the input of the integrator, 
and when the flip-flop is set, +£/ref is selected. Note that the output of the 
comparator is basically a PPM version of the PCM input data, and the output 
of the flip-flop is a PWM version of the same quantity. Hence, if we happen 
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Figure 2.9 An example integrating (counting) DAC. (In a real world 
implementation, additional control and synchronization circuits are 
needed.) 

to have the digital code available in PWM or PPM format instead of parallel 
PCM, the circuit can be simplified accordingly. 

The integrator simply averages the PWM signal presented to the input, thus 
producing the output voltage Uout. The precision of this DAC depends on the 
stability of the reference voltages, the performance of the integrator and the 
timing precision of the digital parts, including the analog selector. 

There are many variants of this basic circuit. In some types, the incoming 
PCM data is divided into a "high" and "low" half, controlling two separate 
voltage or current reference selectors. The reference voltage controlled by the 
"high" data bits is higher than the one controlled by the "low" data bits. This 
type of converter is often referred to as a dual slope converter. 

2.2.3 Bitstream digital-to-analog converters 

This type of DAC relies on the oversampling principle, i.e. using a con
siderably higher sampling rate than required by the Nyquist criteria. Using 
this method, sampling rate can be traded for accuracy of the analog hardware 
and the requirements of the analog reconstruction filter on the output can be 
relaxed. Oversampling reduces the problem of accurate N-bit data conversion 
to a rapid succession of, for instance, 1-bit D/A conversions. Since the latter 
operation involves only an analog switch and a reference voltage source, it can 
be performed with high accuracy and linearity. 
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Figure 2.10 A truncator with noise shaping feedback, inputN bits, 
truncated to output M bits 

The concept of oversampling is to increase a fairly low sampling frequency 
to a higher one by a factor called the oversampling ratio (OSR). Increasing the 
sampling rate implies that more samples are needed than are available in the 
original data stream. Hence, "new" sample points in between the original ones 
have to be created. This is done by means of an interpolator, also called an 
oversampling filter (Pohlmann, 1989). The simplest form of interpolator cre
ates new samples by making a linear interpolation between two "real" samples. 
In many systems, more elaborate interpolation functions are often used, imple
mented as a cascade of digital filters. As an example, an oversampling filter in a 
CD player may have 16-bit input samples at 44.1 kHz sampling frequency and 
an output of 28-bit samples at 176.4 kHz, i.e. an OSR of 4. 

The interpolator is followed by the truncator or M-bit quantizer 
(Figure 2.10). The task of the truncator is to reduce the number of N bits in the 
incoming data stream to M bits in the outgoing data stream (N > M). The trun
cation process is simply performed by taking the M most significant bits out of 
the incoming N bits. This process however creates a strong quantization noise 
in the passband of interest. This is counteracted by means of the noise shaping 
feedback loop, consisting of a delay element and an adder. The M-N least 
significant bits are fed back through the delay element and subtracted from the 
incoming data stream. Hence, the signal transfer function of the truncator equals 
1 for the signal, but constitutes a high-pass filter having the transfer function 

H(z) =l-z~ (2.14) 

for the quantization noise. The noise level in the interesting passband is atten
uated, while at higher frequencies, the noise increases. The higher-frequency 
noise components will however be attenuated by the analog reconstruction fil
ter following the DAC. To conclude our example above, the CD player may 
then have a truncator with N = 2S bits and M = 16 bits. The sampling rate of 
both the input and output data streams are 176.4 kHz. In this example we still 
have to deal with 16-bit data in the DAC, but we have simplified the analog 
reconstruction filter on the output. 

Oversampling could be used to derive yet one more advantage. Oversampling 
permits the noise shaper to transfer information in the 17th and 18th bits of 
the signal into a 16-bit output with duty cycle modulation of the 16th bit. In 
this way a 16-bit DAC can be used to convert an 18-bit digital signal. The 
18-bit capability is retained because the information in the two "surplus" bits is 
transferred in the four times oversampled signal (OSR = 4). Or, in other words, 
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Figure 2.11 A PDMbitstream 1-bitDAC, with (dither)pseudo-noise added 

the averaged (filtered) value of the quarter-length 16-bit samples is as accurate 
as that of 18-bit samples at the original sampling rate. 

Now, if the truncator is made in such a way, the output data stream is 1 
bit, i.e. M = 1; this bitstream is a PDM version of the original TV-bit wide-data 
stream. Hence, a 1 -bit DAC can be used to convert the digital signal to its analog 
counterpart (see Figure 2.11). 

To improve the resolution, a dither signal is added to the LSB. This is a 
pseudo-random sequence, a kind of noise signal. Assume that the digital over-
sampled value lies somewhere in between two quantization levels. To obtain 
an increased accuracy, smaller quantization steps, i.e. an increased word length 
(more bits) is needed. Another way of achieving improved resolution is to add 
random noise to the signal. If the signal lies halfway between two quantization 
levels, the signal plus noise will be equally probable to take on the high and 
low quantized value, respectively. The actual level of the signal will hence be 
represented in a stochastic way. Due to the averaging process in the analog 
reconstruction low-pass filter, a better estimate of the actual signal level will be 
obtained than without dither. If the signal lies closer to one quantization level 
than the other, the former quantized value will be more probable and hence, the 
average will approach this quantized level accordingly. 

Dither signals are also used in control systems including actuators like 
electrohydraulic valves. In this case, the dither signal may be a single sinus 
tone, superimposed on the actuator control signal. The goal is to prohibit the 
mechanics of the valve to "hang up" or stick. 

2.2.4 Sample-and-hold and reconstruction filters 

The output from a DAC can be regarded as a PAM representation of the digital 
signal at the sampling rate. An ideal sample represents the value of the corre
sponding analog signal in a single point in time. Hence, in an ideal case, the 
output of a DAC is a train of impulses, each having an infinitesimal width, thus 
eliminating the aperture error. The aperture error is caused by the fact that a 
sample in a practical case does occupy a certain interval of time. The narrower 
the pulse width of the sample, the less the error. Of course, ideal DACs cannot 
be built in practice. 

Another problem with real world DACs is that during the transition from one 
sample value to another, glitches, ringing and other types of interference may 
occur. To counteract this, a sample-and-hold device (S&H or S/H) is used. The 
most common type is the zero-order hold (ZOH) presented in Chapter 1. This 
device keeps the output constant until the DAC has settled on the next sample 
value. Hence, the output of the S/H is a staircase waveform approximation of 
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the sampled analog signal. In many cases, the S/H is built into the DAC itself. 
Now, the S/H having a sample pulse impulse response has a corresponding 
transfer function of the form 

H ( / ) = ^ = s i n c ( / D (2.15) 
nfT 

where T is the sampling rate, i.e. the holding time of the S/H. The function 
(2.15) represents a low-pass filter with quite mediocre passband properties. 
In Chapter 1 we concluded that the function required to ideally reconstruct the 
analog signal would be an ideal low-pass filter, having a completely flat passband 
and an extremely sharp cut-off at the Nyquist frequency. Obviously, the transfer 
function of the S/H is far from ideal. In many cases an analog reconstruction 
filter or smoothing filter (or anti-image filter) is needed in the signal path after 
the S/H to achieve a good enough reconstruction of the analog signal. Since 
the filter must be implemented using analog components, it tends to be bulky 
and expensive and it is preferably kept simple, of the order of 3 or lower. A 
good way of relaxing the requirements of the filter is to use oversampling as 
described above. There are also additional requirements on the reconstruction 
filter depending on the application. In a high-quality audio system, there may 
be requirements regarding linear-phase shift and transient response, while in a 
feedback control system time delay parameters may be crucial. 

In most cases a reconstruction filter is necessary. Even if a poorly filtered 
output signal has an acceptable quality, the presence of imaged high-frequency 
signal components may cause problems further down the signal path. For 
example, assume that an audio system has the sampling frequency 44.1 kHz 
and the sampled analog sinusoidal signal has a frequency of/i = 12 kHz, i.e. 
well below the Nyquist frequency. Further, the system has a poor reconstruc
tion filter at the output and the first high-frequency image signal component 
f2=44A-fx=44.l-l2 = 32 A kHz leaks through. Now, the 32.1 kHz signal 
is not audible and does not primarily cause any problems. If, however, there is a 
non-linearity in the signal path, for instance an analog amplifier approaching sat
uration, the signal components will be mixed. New signal components at lower 
frequencies may be created, thus causing audible distortion. For instance, a 
third-order non-linearity, quite common in bipolar semiconductor devices, will 
create the following "new" signal components due to intermodulation (mixing) 

f3 = 8.1 kHz f4 = 36.0 kHz f5 = 52.2 kHz 

f6 = 56.1 kHz fi = 76.2 kHz / 8 = 96.3 kHz 

Note that the first frequency 8.1 kHz is certainly audible and will cause dis
tortion. The high-frequency components can of course also interfere with e.g. 
bias oscillators in analog tape recorders and miscellaneous radio frequency 
equipment, causing additional problems. 

Finally, again we find an advantage using oversampling techniques. If the 
sampling frequency is considerably higher than twice the Nyquist frequency, 
the distance to the first mirrored signal spectra will be comparatively large 
(see Chapter 1). The analog filter now needs to cut-off at a higher frequency, 
hence the gain can drop-off slower with frequency and a simpler filter will be 
satisfactory. 
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2.3 Analog-to-digital 
conversion 

The task of the analog-to-digital converter (ADC) is the "inverse" ofthe digital-
to-analog converter (DAC), i.e. to convert an "analog" input signal into a 
numerical, commonly binary so-called "digital" value. The specifications for 
an ADC is similar to those for a DAC, i.e. offset, gain, linearity, missing codes, 
conversion time and so on. Since a DAC has a finite number of digital input 
codes, there are also a finite number of analog output levels. The ADC, on the 
other hand, has an infinite number of possible analog input levels, but only a 
finite number of digital output codes. For this reason, ADC errors are com
monly assumed to be the difference between the actual and the ideal analog 
input levels, causing a transition between two adjacent digital output codes. For 
a perfect n-bit ADC the width of a quantization band is 

A = 
2n 

where Fps is the full-scale input voltage ofthe ADC. Ideally, the transition level 
for each code should be situated in the center ofthe respective quantization band. 
These points are shown as a dotted line in Figure 2.12. Hence, the digital output 
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code m(v) as a function of the analog input voltage v for a perfect ADC can be 
written as 

m{v) • 
v 1 
A + 2 

where |_ J is the "floor" operator, that is the first integer less than or equal to the 
argument. Taking the errors into account, the output of a real world ADC can 
be expressed as 

m(v) = 
v 1 v 
- + - + s0 + -T£G + SN(V) 

The error terms will be explained below. 

Offset error £o is the difference between the analog input level which causes a 
first bit transition to occur and the level corresponding to 1/2 LSB. This should 
of course ideally be zero, i.e. the first bit transition should take place at a level 
representing exactly 1/2 LSB. The offset error affects all output codes with the 
same additive amount and can in most cases be sufficiently compensated for by 
adding an analog DC level to the input signal and/or by adding a fixed constant 
to the digital output. 

Gain or scale factor is the slope of the transfer curve from analog levels to 
digital numbers. Hence, the gain error £G is the error in the slope of the transfer 
curve. It affects all output codes by the same percentage amount, and can 
normally be counteracted by amplification or attenuation of the analog input 
signal. Compensation can also be done by multiplying the digital number with 
a fixed gain calibration constant. 

As pointed out above, offset and gain errors can, to a large extent, be com
pensated for by preconditioning the analog input signal or by processing the 
digital output code. The first method requires extra analog hardware, but has 
the advantage of utilizing the ADC at its best. The digital compensation is often 
easier to implement in software, but cannot fully eliminate the occurrence of 
unused quantization levels and/or overloading the ADC. 

Linearity can be sub-divided into integral linearity (relative accuracy) and 
differential linearity. 

Integral linearity error is the deviation of code mid-points of the transfer curve 
from a straight line, and is defined as (SN(V))/A expressed in LSBs. This error 
is not possible to adjust or compensate for easily. 

Differential linearity measures the difference between input levels corre
sponding to any two adjacent digital codes, (eN(vk) — £N(vk-\))/A, where 
m(vk) = m(vk-1) + 1. If the input level for one step differs from the previous step 
by exactly the value corresponding to one least significant bit (LSB), the dif
ferential non-linearity is zero. Differential linearity errors cannot be eliminated 
easily. 

Monotonicity implies that increasing the analog input level never results in 
a decrease of the digital output code. Non-monotonicity may cause stability 
problems in feedback controls systems. 
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Missing codes in an ADC means that some digital codes can never be gen
erated. It indicates that differential non-linearity is larger than 1 LSB. The 
problem of missing codes is generally caused by a non-monotonic behavior of 
the internal DAC. As will be shown in later sections, some types of ADCs use a 
built-in DAC. 

Absolute accuracy error is the difference between the actual analog input to 
an ADC compared to the expected input level for a given digital output. The 
absolute accuracy is the compound effect of the offset error, gain error and 
linearity errors described above. 

Conversion time of an ADC is the time required by the ADC to perform a 
complete conversion process. The conversion is commonly started by a "strobe" 
or synchronization signal, controlling the sampling rate. 

As for DACs, it is important to remember that the parameters above may be 
affected by supply voltage and temperature. Data sheets only specify the param
eters for certain temperatures and supply voltages. Significant deviations from 
the specified figures may hence occur in a practical system. 

2.3.1 Anti-aliasing filters and sample-and-hold 

As pointed out in Chapter 1, the process of sampling the analog time-continuous 
signal requires an efficient anti-aliasing filter to obtain an unambiguous digital, 
time-discrete representation of the signal. Ideally, a low-pass filter having a flat 
passband and extremely sharp cut-off at the Nyquist frequency is required. Of 
course, building such a filter in practice is impossible and approximations and 
compromises thus have to be made. The problem is quite similar to building 
the "perfect" reconstruction filter. 

The first signal processing block of a digital signal processing system is likely 
to be an analog low-pass anti-aliasing filter. Depending on the application, dif
ferent requirements of the filter may be stated. In audio systems, linear-phase 
response may, for instance, be an important parameter, while in a digital DC-
voltmeter instrument, a low offset voltage may be imperative. Designing proper 
anti-aliasing filters is generally not a trivial task, especially if practical limita
tions, such as circuit board space and cost, also have to be taken into account. 

Anti-aliasing filters are commonly implemented as active filters using feed
back operational amplifiers or as SC filters. One way to relax the requirements 
of the analog anti-aliasing filter is to use oversampling techniques (see also 
reconstruction filters for DAC above). In this case, the signal is sampled with a 
considerably higher rate than required to fulfill the Nyquist criteria. Hence, the 
distance to the first mirrored signal spectra on the frequency axis will be much 
longer than if sampling were performed at only twice the Nyquist frequency. 
Figure 2.13 shows an example of an oversampled system. This could for instance 
be an audio system, where the highest audio frequency of interest would be 
about 20 kHz. The sampling rate for such a system could be/ s = 48 kHz. With
out oversampling, the analog anti-aliasing filter should hence have a gain of 
about 1 at 20 kHz and an attenuation of, say, 30 dB at 24 kHz. This corresponds 
to a slope of roughly 150 dB/octave, a quite impressive filter and very hard to 
implement using analog components. 
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Figure 2.13 D times oversampling ADC relaxing demands on the analog 
anti-aliasing filter 

Now, assume that we sample the analog input signal using Dfs = 16 • 48 = 
768 kHz, i.e. using an OSR of D = 16. To avoid aliasing distortion in this case, 
the analog anti-aliasing filter has quite relaxed requirements: gain of 1 at 20 kHz 
(as before) and attenuation of 30 dB at 384 kHz, which corresponds to a slope 
of 1.6 dB/octave. Such a filter is very easy to realize using a simple passive RC 
network. 

Following the ADC, there is another anti-aliasing filter having the same tough 
requirements as stated at first. On the other hand, this filter is a digital one, 
being implemented using digital hardware or as software in a DSP. Designing 
a digital filter having the required passband characteristics is not very difficult. 
Preferably, a finite impulse response (FIR) filter structure may be used, having 
a linear-phase response. 

At last, following the digital anti-aliasing filter is a decimator or downsam-
pler. To perform the downsampling (Pohlmann, 1989), the device only passes 
every D-th sample from input to output and ignores the others, hence 

y(n)=x(Dn) (2.16) 

In our example the decimator only takes every 16th sample and passes it on, 
i.e. the sampling rate is now brought back to/ s = 48 kHz. 

Another detail that needs to be taken care of when performing analog-to-
digital conversion is the actual sampling of the analog signal. An ideal sampling 
implies measuring the analog signal level during an infinitely short period of 
time (the "aperture"). Further, the ADC requires a certain time to perform 
the conversion and during this process the analog level must not change or 
conversion errors may occur. This problem is solved by feeding the analog 
signal to a sample and hold (S/H) device before it reaches the ADC. The S/H 
will take a quick snapshot sample and hold it constant during the conversion 
process. Many ADCs have a built-in S/H device. 

2.3.2 Flash analog-to-digital converters 

Flash type (or parallel) ADCs are the fastest due to the short conversion time and 
can hence be used for high sampling rates. Hundreds of megahertz is common 
today. On the other hand, these converters are quite complex, they have limited 
word length and hence resolution (10 bits or less), they are quite expensive and 
often suffer from considerable power dissipation. 

The block diagram of a simple 2-bit flash ADC is shown in Figure 2.14. 
The analog input is passed to a number of analog level comparators in paral
lel (i.e. a bank of fast operational amplifiers with high gain and low offset). 



62 Digital Signal Processing and Applications 

U-m analog 
input 

0.5 U 

digital 
output 

0.25 U 

Figure 2.14 An example 2-bit flash ADC 

If the analog input level U-m on the positive input of a comparator is greater 
than the level of the negative input, the output will be a digital "one". Oth
erwise, the comparator outputs a digital "zero". Now, a reference voltage 
t/ref is fed to the voltage divider chain, thus obtaining a number of reference 
levels 

Uk = ^ ^ r e f (2.17) 

where k is the quantization threshold number and N is the word length of 
the ADC. The analog input voltage will hence be compared to all possible 
quantization levels at the same time, rendering a "thermometer" output of digital 
ones and zeros from the comparators. These ones and zeros are then used by 
a digital decoder circuit to generate digital parallel PCM data on the output of 
the ADC. 

As pointed out above, this type of ADC is fast, but is difficult to build for large 
word lengths. The resistors in the voltage divider chain have to be manufactured 
with high precision and the number of comparators and the complexity of the 
decoder circuit grows fast as the number of bits is increased. 

2.3.3 Successive approximation analog-to-digital converters 

These ADCs, also called successive approximation register (SAR), converters 
are the most common ones today. They are quite fast, but not as fast as flash 
converters. On the other hand, they are easy to build and inexpensive, even for 
larger word lengths. 



The analog-digital interface 63 

analog 
input 

analog comparator 

Uj DAC 

control logic 

register 
digital 
output 

Figure 2.15 An example SAR ADC (simplified block diagram) 

The main parts of the ADC are: an analog comparator, a digital register, a 
DAC and some digital control logic (see Figure 2.15). Using the analog com
parator, the unknown input voltage U[n is compared to a voltage £/DAC created 
by a DAC, being a part of the ADC. If the input voltage is greater than the 
voltage coming from the DAC, the output of the comparator is a logic "one", 
otherwise a logic "zero". The DAC is fed an input digital code from the register, 
which is in turn controlled by the control logic. Now, the principle of successive 
approximation works as follows. 

Assume that the register contains all zeros to start with, hence, the output of 
the DAC is £/DAC = 0. Now, the control logic will start to toggle the MSB to a 
one, and the analog voltage coming from the DAC will be half of the maximum 
possible output voltage. The control logic circuitry samples the signal coming 
from the comparator. If this is a one, the control logic knows that the input 
voltage is still larger than the voltage coming from the DAC and the "one" in 
the MSB will be left as is. If, on the other hand, the output of the comparator has 
turned zero, the output from the DAC is larger than the input voltage. Obviously, 
toggling the MSB to a one was just too much, and the bit is toggled back to 
zero. Now, the process is repeated for the second most significant bit and so 
on until all bits in the register have been toggled and set to a one or zero, see 
Figure 2.16. 

Hence, the SAR ADC always has a constant conversion time. It requires n 
approximation cycles, where n is the word length, i.e. the number of bits in the 
digital code. SAR-type converters of today may be used for sampling rates up 
to some megahertz. 

An alternative way of looking at the converter is to see it as a DAC + register 
put in a control feedback loop. We try to "tune" the register to match the 
analog input signal by observing the error signal from the comparator. Note 
that the DAC can of course be built in a variety of ways (see previous sections). 



64 Digital Signal Processing and Applications 

u-m 4 

0 1 1 1 0 1 

1 u DAC 

J^TTT1_ 

_| 1 1 1 , 1 1 ^ 

approximation step 

Figure 2.16 Operation of a SAR converter 
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Figure 2.17 Operation of a counting ADC 

Today, charge redistribution-based devices are quite common, since they are 
straightforward to implement using CMOS technology. 

2.3.4 Counting analog-to-digital converters 

An alternative, somewhat simpler ADC type is the counting ADC. The con
verter is mainly built in the same way as the SAR converter (Figure 2.15), but 
the control logic and register is simply a binary counter. The counter is reset 
to all zeros at the start of a conversion cycle, and is then incremented step by 
step. Hence, the output of the DAC is a staircase ramp function. The counting 
maintains until the comparator output switches to a zero and the counting is 
stopped (see Figure 2.17). 

The conversion time of this type of ADC depends on the input voltage, the 
higher the level, the longer the conversion time (counting is assumed to take 
place at a constant rate). The interesting thing about this converter is that the 
output signal of the comparator is a PWM representation of the analog input 
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signal. Further, by connecting an edge-triggered, monostable flip-flop to the 
comparator output, a PPM representation can also be obtained. 

This type of converter is not very common. Using only a DAC and a com
parator, the digital part can easily be implemented as software, such as a 
microcontroller. SAR-type converters can of course also be implemented in 
the same way as well as "tracking" type converters. 

Tracking type converters can be seen as a special case of the generic counting 
converter. The tracking converter assumes that the change in the input signal 
level between consecutive samples is small. The counter is not restarted from 
zero at every conversion cycle, but starts from the previous state. If the output 
from the comparator is one, the counter is incremented until the comparator 
output toggles. If the output is zero when conversion is initiated, the counter is 
decremented until the output of the comparator toggles. 

2.3.5 Integrating analog-to-digital converters 

Integrating ADCs (sometimes also called counting converters) are often quite 
slow, but inexpensive and accurate. A common application is digital multimeters 
and similar equipment, in which precision and cost are more important than 
speed. 

There are many different variations of the integrating ADC, but the main 
idea is that the unknown analog voltage (or current) is fed to the input of an 
analog integrator with a well-known integration time constant r = RC. The 
slope of the ramp on the output of the integrator is measured by taking the time 
between the output level passing two or more fixed reference threshold levels. 
The time needed for the ramp to go from one threshold to the other is measured 
by starting and stopping a binary counter running at a constant speed. The 
output of the counter is hence a measure of the slope of the integrator output, 
which in turn is proportional to the analog input signal level. Since this type 
of ADC commonly has a quite long conversion time, i.e. integration time, the 
input signal is required to be stable or only slowly varying. On the other hand, 
the integration process will act as a low-pass filter, averaging the input signal 
and hence suppressing interference superimposed on the analog input signal to 
a certain extent. 

Figure 2.18 shows a diagram of a simplified integrating ADC. The basic 
function (ramp method) works as follows. Initially, the input switch is connected 
to ground in order to reset the analog integrator. The switch then connects the 
unknown analog input voltage —Um to the input of the integrator. The output 
level of the integrator will then start to change as 

U(t) = U0 + uj-j£ + e'-j^- (2.18) 

where UQ is the initial output signal from the integrator at time to and s is 
an error term representing the effect of offset voltage, leak currents and other 
shortcomings of a practical integrator. In practice, this term causes the output 
level of the integrator to drift slowly away from the starting level, even if the 
input voltage is held at zero. 
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Figure 2.18 A simplified integrating ADC (assuming Uo = 0) 

Now, when the input signal is applied, the output level of the integrator 
starts to increase, and at time t\ it is larger than the fixed threshold level UA 
and a "start" signal will be generated. The binary counter (that has been reset 
to zero) starts counting at a fixed rate, determined by the stable clock pulse 
frequency The output level of the integrator continues to increase until, at time 
ti, it is larger than the upper threshold £/B, and a "stop" signal results. The 
binary counter stops and the binary PCM counter value now represents the time 
difference ti —1\ and hence the analog input voltage 

U(t\) = UA start signal at time t\ 

U(t2) = UB stop signal at time ti 

UA = U(h) = Uo + Uin
t-^ + st-l-to 

= U0 + (C/in + e) 

RC 
h - tp 

RC 

RC 

(2.19) 

which can be rewritten as (assuming UQ = 0) 

rr R C 

h-to = UA Uin + S 

and in a similar way, we obtain 

RC 
t2-t0 = UB Uin + S 

Now, expressing the time difference measured by the counter we get 

RC 
t2-tl=t2-to-h+to = (UB - UA.) 

Uin + S 

(2.20) 

(2.21) 

(2.22) 
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Rearranging equation (2.22) yields 

RC K 
Um + e = (UB - UA)- = (2.23) 

t2 — t\ t2 — t\ 

As can be seen from equation (2.23) the unknown analog input voltage can 
easily be determined from the time difference recorded by the binary counter. 
Unfortunately, the error term will also be present. To obtain good precision in 
the ADC, we hence need to design the circuitry carefully to reduce leak current, 
etc. to a minimum. This is a problem associated with this type of ADC, and is 
one of the reasons this basic conversion method is seldom used. 

One way to eliminate the error term is to use a dual slope method. The term 
"dual slope" refers to various methods in the literature, however, here only 
one method will be presented. Using this method, the timing measurement is 
performed in two phases. Phase 1 works as the simple ramp method described 
above. As soon as the output level of the integrator reaches the upper threshold, 
i.e. U(t2) = UB, phase 2 is initiated. During this phase, the polarity of the input 
signal is reversed and +U-m is fed to the input of the integrator. The output level 
of the integrator will now start to decrease and at time t3, the lower threshold 
is reached again, i.e. U(ti)=UA which completes the conversion process. 
We now have two time differences: t2 — h and t3 — t2 which can be used to 
express the analog input voltage with the error term eliminated. At time £3 
we have 

UA = U(tj) = U(t2) - uJ-~^ + st^^ 

= t / B - ( t / i n - £ ) ^ ~ (2.24) 

Rewriting equation (2.24) we get 

RC K 
-Uin + s = -(UB - UA)- = (2.25) 

t3 — t2 '3 — h 

Subtracting equation (2.25) from equation (2.23) and dividing by 2 we obtain 
an expression for the analog input voltage without the error term 

„ _ Uin + £-(-Uin+e) 

1 / RC RC \ 
= T((UB- UA)- + (C/B - UA)- -

= - ( l + ——) = K h~h 

2 \t2 -h t3-t2) 2 (t2 - ti)(t3 - t2) 

K h-t\ 
(2.26) 

An extension of the circuit in Figure 2.18 can be made in such a way that the 
system is astable and continuously generates a square wave output having the 
period t3 —1\. During t2 —1\ the square wave is low and during t3 —12 it is high. 
A quite simple microcontroller can be used to calculate the value of the analog 
input voltage according to expression (2.26) above. An impressive resolution 
can be obtained using low-cost analog components. 
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2.3.6 Dither 

Earlier we discussed the use of dither techniques and oversampling to improve 
resolution of a DAC. Dither can be used in a similar way to improve the 
resolution of an ADC and hence reduce the effect of quantization distortion. 

In the case of an ADC, analog noise with amplitude of typically 1/3 LSB is 
added to the input signal before quantization takes place. If the analog input 
signal level is between two quantization thresholds, the added noise will make 
the compound input signal cross the closest quantization level now and then. The 
closer to the threshold the original signal level, the more frequent the threshold 
will be crossed. Hence, there will be a stochastic modulation of the binary PCM 
code from the ADC containing additional information about the input signal. 
Averaging the PCM samples, resolution below the LSB can be achieved. 

Dither is common in high-quality digital audio systems (Pohlmann, 1989) 
nowadays, but has been used in video applications since 1950 and before that, 
to counteract gear backlash problems in early radar servo mechanisms. 

2.3.7 Sigma-delta analog-to-digital converters 

The sigma-delta ADC, sometimes also called bitstream ADC utilizes the 
technique of oversampling, discussed earlier. The sigma-delta modulator was 
first introduced in 1962, but until recent developments in digital very large 
scale integration (VLSI) technology it was difficult to manufacture with high 
resolution and good noise characteristics at competitive prices. 

One of the major advantages of the sigma-delta ADC using oversampling is 
that it is able to use digital filtering and relaxes the demands on the analog anti
aliasing filter. This also implies that about 90% of the die area is purely digital, 
cutting production costs. Another advantage of using oversampling is that the 
quantization noise power is spread evenly over a larger frequency spectrum 
than the frequency band of interest. Hence, the quantization noise power in 
the signal band is lower than in the case of traditional sampling based on the 
Nyquist criteria. 

Now, let us take a look at a simple 1 -bit sigma-delta ADC. The converter uses 
a method that was derived from the delta modulation technique. This is based on 
quantizing the difference between successive samples, rather the quantizing the 
absolute value of the samples themselves. Figure 2.19 shows a delta modulator 
and demodulator with the modulator working as follows. From the analog input 
signal x(t) a locally generated estimate x(t) is subtracted. The difference e(t) 
between the two is fed to a 1-bit quantizer. In this simplified case, the quantizer 
may simply be the sign function, i.e. when e(t) > 0 y(n) = 1, else y(n) = 0. The 
quantizer is working at the oversampling frequency, i.e. considerably faster than 
required by the signal bandwidth. Hence, the 1-bit digital output y(n) can be 
interpreted as a kind of digital error signal: 

y(n) = 1: estimated input signal level too small, increase level 

y(n) = 0: estimated input signal level too large, decrease level 

Now, the analog integrator situated in the feedback loop of the delta mod
ulator (DM) is designed to function in exactly this way. Hence, if the analog 
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Figure 2.19 A simplified (a) delta modulator and (b) demodulator 

input signal x(t) is held at a constant level, the digital output y(n) will (after 
convergence) be a symmetrical square wave (0101 ...), i.e. decrease, increase, 
decrease, increase . . . a kind of stable limit oscillation. 

The delta demodulator is shown in the lower portion of Figure 2.19. The 
function is straightforward. Using the digital 1-bit "increase/decrease" signal, 
the estimated input level x(t) can be created using an analog integrator of the 
same type as in the modulator. The output low-pass filter will suppress the ripple 
caused by the increase/decrease process. 

Since integration is a linear process, the integrator in the demodulator can 
be moved to the input of the modulator. Hence, the demodulator will now 
only consist of the low-pass filter. We now have similar integrators on both 
inputs of the summation point in the modulator. For linearity reasons, these 
two integrators can be replaced by one integrator having e(t) connected to its 
input, and the output connected to the input of the 1-bit quantizer. The delta 
modulator has now become a sigma-delta modulator. The name is derived from 
the summation point (sigma) followed by the delta modulator. 

If we now combine the oversampled 1-bit sigma-delta modulator with a 
digital decimation filter (rate reduction filter) we obtain a basic sigma-delta 
ADC (see Figure 2.20). The task of the decimation filter is threefold: to reduce 
the sampling frequency, to increase the word length from 1 bit to N bits and to 
reduce any noise pushed back into the frequency range of interest by the crude 
1-bit modulator. A simple illustration of a decimation filter, decimating by a 
factor 5, would be an averaging process as shown in Table 2.2. 

The decimation filter is commonly built using a decimator and a comb filter 
(Marven and Ewers, 1993; Lynn and Fuerst, 1998). The comb filter belongs to 
the class of frequency sampling filters, and has the advantage of being easy to 
implement in silicon or in a DSP, using only additions and subtractions. A comb 
filter typically has 2k zeros on the unit circle in the z-plane, resulting in zero 



70 Digital Signal Processing and Applications 

analog 
input 

1 k 1 1-bit 
quantizer 

1-bit 

—w 

decimation 
filter 

digital 
output 

—^ 

Ybits 

Figure 2.20 A simplified, oversampled bitstream sigma-delta ADC 

Table 2.2 Decimation filter example 

Input 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 1 1 

Averaging process 
Output 

3 x 0 ; 2 x 1 2 x 0 ; 3 x 1 
0 1 

1 x 0; 4 x 1 2 x 0; 3 x 1 3 x 0; 2 x 1 
1 1 0 

x(n) 
z-* 

- 1 

N l^ >fi^ -r 

N 
i J y 

z- 1 
^ 

Figure 2.21 Block diagram of an example comb filter. Note! Only additions, 
subtractions and delays are used 

gain at the frequencies ± ( / s A), ±2(Js/k), ±3(/ s /*), • • •, (/s/2). The transfer 
function of a common type of comb filter can be written as 

H(Z): 
1 

1 - z - l 
(2.27) 

The corresponding block diagram is shown in Figure 2.21. Note that the delay 
z~k can, of course, be implemented as a cascade of & standard z _ 1 delays. 

Summary In this chapter the following topics have been treated: 

• PCM, PAM, PPM, PNM, PWM and PDM 
• Fixed-point 2's complement, offset binary, sign and magnitude and 

floating-point 
• Companding systems 
• Multiplying, Integrating and Bitstream D/A converters 
• Oversampling, interpolators, truncators and dither 
• Sample and hold reconstruction filters and anti-aliasing filters 
• Flash, Successive approximation, Counting and Integrating A/D converters 
• Sigma-delta and Bitstream A/D converters, Decimation filters, Comb filters. 
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Review questions R2-1 What is PCM, PAM, PPM, PNM, PWM and PDM? 
R2-2 Explain the following terms: fixed-point 2's complement and floating 

point. 
R2-3 Why are companders used? What are the pros and cons? 
R2-4 Draw a block diagram of a R-2R multiplying DAC and explain how it 

works. What is the advantage of using only R and 2R resistors? 
R2-5 Draw a block diagram of a flash ADC and explain how it works. What is 

the great advantage of a flash converter? Are there any disadvantages? 
R2-6 Draw a block diagram of a SAR ADC and explain how it works. 
R2-7 Why is oversampling used in DACs? Why is it used in ADCs? 

Solved problems P2-1 Show that the /z-law turns into a linear function if the parameter is chosen 
as [i = 0. 

P2-2 A 14-bit ADC has a full-scale input voltage of 5 V Disregarding all errors 
except the offset error, we get an erroneous reading from the ADC by 3 
LSB. What is the approximate offset error expressed in mV? 

P2-3 Write a MATLAB™ program to obtain a plot of the poles and zeros of 
the comb filter in equation (2.27), assume k = 9. Are there any numeric 
risks? 

P2-4 Write a MATLAB™ program to obtain a Bode plot of the comb filter in 
equation (2.27), assume k = 9. 



3 Adaptive digital systems 

Background In Chapter 1, digital filters were presented. In the simple case, we assumed a 
good knowledge of the input signal (for instance, a desired signal plus interfer
ence) and the output signal (only the desired signal). Hence, a filter specification 
was easy to formulate, from which filter structure and filter parameters could 
be obtained using proper filter synthesis methods. 

In some cases, the situation may, however, be harder. We may, for instance, 
not have a good knowledge of the properties of the input and output signal, or 
the signal properties may change randomly over time. Another problem might 
be that there are no proper synthesis methods available. In such situations, an 
adaptive filter may be the solution. Given a performance measure, an adap
tive filter is able to find good filter parameters by itself in an iterative way. 
The filter can also "track" and readjust if the properties of the input signal 
changes. 

In this chapter, the theory of adaptive filters and related systems is discussed. 
Example applications are also included like interference canceling, equalizers 
and beam-forming systems. Adaptive filters are common in telecommunication 
applications like high-speed modems and cell phones. 

Objectives In this chapter we will discuss: 

• The structure of a generic closed-loop adaptive system 
• The linear combiner and variations 
• The mean square error (MSE) performance function of an adaptive system 
• Some common adaptation algorithms, steepest descent, Newton and least 

mean square (LMS) 
• Example applications, adaptive interference canceling, equalizers and 

beamforming. 

3.1 Introduction An adaptive signal processing system is a system which has the ability to change 
its processing behavior in a way to maximize a given performance measure. 
An adaptive system is self-adjusting and is, by its nature, a time varying 
and non-linear system. Hence, when using classical mathematical models and 
tools assuming linearity for the analysis of adaptive systems, care must be 
exercised. 

A simple example of an adaptive system is the automatic gain control (AGC) 
in a radio receiver (RX). When the input antenna signal is strong, the AGC 
circuitry reduces the amplification in the RX to avoid distortion caused by 
saturation of the amplifying circuits. At weak input signals, the amplification 
is increased to make the signal readable. 
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Adaptive systems should, however, not be confused with pure feedback con
trol systems. An electric heater controlled by a thermostat is, for instance, a 
feedback control system and not an adaptive system, since the control function 
is not changed (e.g. the thermostat always switches off the heater at 22°C). 

The idea of self-adjusting systems (partly "self-designing" systems) is not 
new. Building such systems using "analog" signals and components is, how
ever, very hard, except in some simple cases. The advent of very large scale 
integration (VLSI) digital signal processing (DSP) and computing devices has 
made digital adaptive systems possible in practice. 

In this chapter, we will discuss a class of adaptive digital systems based 
on closed-loop (feedback) adaptation. Some common systems and algorithms 
will be addressed. There are, however, many variations possible (Widrow 
and Stearns, 1985). The theory of adaptive systems is on the border line of 
optimization theory and neural network technology (treated in Chapter 4). 

3.1.1 System structure 

Figure 3.1 shows a generic adaptive signal processing system. The system con
sists of three parts: the processor, the performance function and the adaptation 
algorithm. 

The processor is the part of the system that is responsible for the actual pro
cessing of the input signal x, thus generating the output signal^. The processor 
can, for instance, be a digital finite impulse response (FIR) filter. 

The performance function takes the signals x, y as inputs as well as "other 
data" d, that may affect the performance of the entire system from x to y. The 
performance function is a quality measure of the adaptive system. In optimiza
tion theory, this function corresponds to the "objective function" and in control 
theory it corresponds to the "cost function". The output s from the performance 
function is a "quality signal" illustrating the processor at its present state and 
indicating whether it is performing well, taking into account the input signals, 
output signals and other relevant parameters. 
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Figure 3.1 A generic closed-loop adaptive system 
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The quality signal e is finally fed to the adaptation algorithm. The task of 
the adaptation algorithm is to change the parameters of the processor in such 
a way that the performance is maximized. In the example of an FIR filter, this 
would imply changing the tap weights. 

Closed-loop adaptation has the advantage of being usable in many situations 
in which no analytic synthesis procedure either exists or is known and/or when 
the characteristics of the input signal vary considerably. Further, in cases where 
physical system component values are variable or inaccurately known, closed-
loop adaptation will find the best choice of parameters. In the event of partial 
system failure, the adaptation mechanism may even be able to readjust the pro
cessor in such a way that the system will still achieve an acceptable performance. 
System reliability can often be improved using performance feedback. 

There are, however, some inherent problems as well. The processor model 
and the way the adjustable parameters of the processor model is chosen affect 
the possibilities of building a good adaptive system. We must be sure that 
the desired response of the processor can really be achieved by adjusting the 
parameters within the allowed ranges. Using a too complicated processor model 
would, on the other hand, make analytic analysis of the system cumbersome or 
even impossible. 

The performance function also has to be chosen carefully. If the performance 
function does not have a unique extremum, the behavior of the adaptation pro
cess may be uncertain. Further, in many cases it is desirable (but not necessary) 
that the performance function is differentiable. Choosing "other data" carefully 
may also affect the usefulness of the performance function of the system. 

Finally, the adaptation algorithm must be able to adjust the parameters of 
the processor in such a way as to improve the performance as fast as possible 
and eventually to converge to the optimum solution (in the sense of the per
formance function). A too "fast" adaptation algorithm may, however, result in 
instability or undesired oscillatory behavior. These problems are well known 
from optimization and control theory. 

3.2 The processor and In this section, a common processor model, the adaptive linear combiner, 
the performance and a common performance function, the mean square error (MSE) will be 

function presented. Throughout this text, vector notation will be used, where all vectors 
are assumed to be column vectors and are usually indicated as a transpose of a 
row vector, unless otherwise stated. 

3.2.1 The adaptive linear combiner 

One of the most common processor models is the so-called adaptive linear 
combiner (Widrow and Stearns, 1985), shown in Figure 3.2. In the most general 
form, the combiner is assumed to have L + 1 inputs denoted 

Xk = [xok xik ••• xLk]
T (3.1) 

where the subscript k is used as the time index. Similarly, the gains or weights 
of the different branches are denoted 

Wit = [wok w\k • • • wLk]
T (3.2) 
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Figure 3.2 The general form of adaptive linear combiner with multiple 
inputs 

Since we are now dealing with an adaptive system, the weights will also 
vary in time and hence have a time subscript k. The output y of the adaptive 
multiple-input linear combiner can be expressed as 

L 

yk = ^2wikxik (3.3) 
/=o 

As can be seen from equation (3.3) this is nothing else but a dot product 
between the input vector and the weight vector, hence 

yk = XJ
kWk wjx, (3.4) 

The adaptive linear combiner can also take another form working in the 
temporal domain, with only a single input (see Figure 3.3). This is the general 
form of the adaptive linear combiner shown in Figure 3.2, extended with a delay 
line. In this case, the output is given by the convolution sum 

yk = X I WlkXk-l 
1=0 

(3.5) 

which is the expression for the well-known FIR filter or transversal filter. Now, 
if the input vector is defined as 

X* = [xk Xk-\ *k-L] (3.6) 

equation (3.4) still holds. 
It is possible to use other types of structure, e.g. infinite impulse response 

(IIR) filters or lattice filters as a processor in an adaptive system. The adap
tive linear combiner is, however, by far the most common since it is quite 
straightforward to analyze and design. It is much harder to find good adaptation 
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Figure 3.3 A temporal version of an adaptive linear combiner with a single 
input - an adaptive transversal filter (FIR filter or tapped delay-line filter) 

algorithms for IIR filters, since the weights are not permitted to vary arbitrarily 
or instability and oscillations may occur. 

3.2.2 The performance function 

The performance function can be designed in a variety of ways. In this text, we 
will concentrate on the quite common mean square error (MSE) measure. To be 
able to derive the following expressions, we will assume that "other data" dk will 
be the desired output from our system, sometimes called "training signal" or 
"desired response" (see Figure 3.4). One could argue: why employ an adaptive 
system at all if the desired response is known in advance? However, presently 
we shall assume the availability of such a signal. Later, we will discuss its 
derivation in more detail. Considerable ingenuity is, however, needed in most 
cases to find suitable "training signals". 

In this case, the performance function will be based on the error signal Sk 

ek = dk-yk = dk- XjW = dk- WTXk (3.7) 

In this discussion, we assume that the adaptation process is slow compared to 
the variations in time of the input signal. Hence, the time subscript on the weight 
vector has been dropped. From equation (3.7), we will now derive the perfor
mance function as the mean square error (MSE). We then have to minimize the 
MSE (the power of the error signal) in order to maximize the performance of 
the corresponding adaptive system. Now, take the square of equation (3.7) 

4 = (dk - WTX*)(4 - Xj\V) = d\ + WTX*XjW - 24XJW (3.8) 

Assume that Sk, dk and X^ are statistically stationary (Papoulis and Pillai, 2001), 
and take the expected value of equation (3.8) over k to obtain the MSE 

§ = E[4 ] = E[d2
k] + WTE[X*Xj]W - 2E[4Xj]W 

= E[d%] + WTRW - 2PTW (3.9) 
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Figure 3.4 Adaptive linear combiner with desired response ("other data ") 
and error signals 

where the matrix R is the square input correlation matrix. The main diagonal 
terms are the mean squares of the input components, i.e. the variance and the 
power of the signals. The matrix is symmetric. If the single input form of the 
linear combiner is used, this matrix constitutes the auto-correlation matrix of 
the input signal. In the latter case, all elements on the diagonal will be equal. 

The matrix R looks like 

R = E[X^Xj] = E 

r x2 

x0k 

X\kXQk 

XQk*\k 

X2 

xlk 

XLk*0k *LkX\k 

X0k*Lk 

X\kXLk 

KLk J 

(3.10) 

The vector P is the cross-correlation between the desired response and the 
input components 

P = E[4x0£ dkx\k ••• dkxLk]T (3.11) 

Since the signals <4 and jt# are generally not statistically independent, 
the expected value of the product rf^Xj cannot be rewritten as a product of 
expected values. Ifdk and all JC# are indeed statistically independent, they will 
also be uncorrelated and P = 0. It can easily be seen from equation (3.9) that 
in this case, minimum MSE would occur when setting W = 0, i.e. setting all 
weights equal to 0, or in other words switching off the processor completely. It 
does not matter what the adaptive system tries to do using the input signals; the 
MSE cannot be reduced using any input signal or combination thereof. In this 
case, we have probably made a poor choice of dk or X#, or the processor model 
is not relevant. 

From equation (3.9) we can see that the MSE is a quadratic function of 
the components of the weight vector. This implies that the surface of the 
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Figure 3.5 Two-dimensional paraboloid performance surface. The MSE as a 
function of two weight components wo and w\. Minimum error, i.e. optimum 
is found at the bottom of the bowl, i.e. at W*, the Wiener weight vector 

performance function will be bowl shaped and form a hyperparaboloid in 
the general case, which only has one global minimum. Figure 3.5 shows an 
example of a two-dimensional (paraboloid) quadratic performance surface. The 
minimum MSE point, i.e. the optimum combination of weights, can be found 
at the bottom of the bowl. This set of weights is sometimes called the Wiener 
weight vector W*. The optimum solution, i.e. the Wiener weight vector can be 
found by finding the point where the gradient of the performance function is 
zero. 

Differentiating equation (3.9), we obtain the gradient 

V(£) = aw •[ 3. 
dwo 

dwL_ 

-|T 

= 2RW - 2P (3.12) 

The optimum weight vector is found where the gradient is zero, hence 

V(|) = 0 = 2RW* - 2P (3.13) 

Assuming that R is non-singular the Wiener-Hopf equation in matrix form is 

W* = R - ' P (3.14) 

From this, we realize that adaptation (optimization), i.e. finding the optimum 
weight vector, is an iterative method of finding the inverse (or pseudoinverse) 
of the input correlation matrix. 

The minimum mean square error (at optimum) is now obtained by substituting 
W* from equation (3.14) for W in equation (3.9) and using the symmetry of 
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the input correlation matrix, i.e. RT = R and (R ! ) T = R l 

fenin = E[d2
k] + W*TRW* - 2PTW* 

= E[4] + (R^P) 1 RR_1P - 2 P T R 1 P 

= E[4] - ?TRl? = E[4] - PTW* (3.15) 

Finally, a useful and important statistical condition exists between the error 
signal Sk and the components of the input signal vector X* when W = W*. 
Multiplying equation (3.7) by X# from the left, we obtain 

skXk = dkXk -ykXk = dkXk - XkX
T

kW (3.16) 

Taking the expected value of equation (3.16) yields 

E[^X*] = E[dkXk] - E[XkX
T

k]\V = P - RW (3.17) 

Inserting equation (3.14) into equation (3.17) yields 

E h x *] w =w* = P ~ RR"lp = P " P = ° (3-18> 
This result corresponds to the result of Wiener-filter theory. When the 

impulse response (weights) of a filter is optimized, the error signal is uncor
rected (orthogonal) to the input signals. 

3.3 Adaptation From the above, we have realized that the mean square error (MSE) performance 
algorithms surface for the linear combiner is a quadratic function of the weights (input sig

nal and desired response statistically stationary). The task of the adaptation 
algorithm is to locate the optimum setting W* of the weights, hence obtaining 
the best performance from the adaptive system. Since the parameters of the 
performance surface may be unknown and analytical descriptions are not avail
able, the adaptation process is an iterative process, searching for the optimum 
point. 

Many different adaptation schemes have been proposed. In this text a few 
common generic types will be discussed. The ideal adaptation algorithm con
verges quickly, but without oscillatory behavior, to the optimum solution. Once 
settled at the optimum, the ideal algorithm should track the solution, if the 
shape of the performance surface changes over time. The adaptation algorithm 
should preferably also be easy to implement, and not be excessively demanding 
with regards to the computations. 

The shape of the learning curve, i.e. a plot of the MSE & as a function of 
the iteration number /, is in many cases a good source of information about the 
properties of an adaptation algorithm. Note! For every iteration period / there 
is commonly a large number of sample instants k, since £ is the average over k 
(time). 

3.3.1 The method of steepest descent 

The idea of the steepest descent method is as follows: starting in an arbitrary 
point Wo of the performance surface, estimate the gradient and change the 
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weights in the negative direction of the gradient Vo. In this way, the weight vector 
point will proceed "downhill" until reaching the bottom of the performance 
surface "bowl" and the optimum point. The steepest descent algorithm can be 
expressed as the following 

W / + i = W ; + /x(-V0 (3.19) 

where /x is the step size at each iteration. The larger the step size, the faster 
the convergence. An excessively large step size would, on the other hand, cause 
instability and oscillatory problems in the solution. This problem is common 
to all closed-loop control systems. Finding a good compromise on /x may, 
therefore, be a problem. 

Another problem is obtaining the gradient V*. Since the gradient is normally 
not known in advance, it has to be estimated by adjusting the weights one by 
one by a small increment ±8 and measuring the MSE §. Hence, the gradient is 
expressed as 

KSf aw 
_9|_ _a§_ _aj_ 
3 wo dw\ 8WL 

where the respective derivatives can be estimated by 

9g ^i-(wn + 8)-i-(wn-8) 

dwn 28 

(3.20) 

(3.21) 

One has to remember that the performance surface is a "noisy" surface in 
the general case. To obtain an MSE with a small variance, many samples are 
required. There will be two perturbation points for each dimension of the weight 
vector, 2L averaged measurements, each consisting of a number of samples are 
needed. There is, of course, a trade-off. The larger the number of averaged 
points, i.e. the longer the estimation time, the less noise there will be in the 
gradient estimate. A noisy gradient estimate will result in an erratic adaptation 
process. 

Disregarding the noise, it should also be noted that the steepest descent 
"path" is not necessarily the straightest route to the optimum point in the 
general case. An example is shown in Figure 3.6(a). Looking down into the 
bowl-shaped performance function of Figure 3.5, the movement of the weight 
vector during the iterations is shown. Starting at a random point, the change of 
the weight vector is always in the direction of the negative gradient (steepest 
descent). 

3.3.2 Newton's method 

Newton's method may be seen as an improved version of the steepest descent 
method discussed above. In this method, the steepest descent route is not used, 
but the weight vector moves "directly" towards the optimum point. This is 
achieved by adding information about the shape of the surface to the iterative 
adaptation algorithm 

W f + ^ W f + MR'k-V,-) (3.22) 



82 Digital Signal Processing and Applications 

(a) w\ (b) 

(c) 

Figure 3.6 Looking down into the performance "bowl" (see Figure 3.5), 
iteration of the weight vector towards optimum at W* for (a) steepest 
descent, (b) Newton s method and (c) LMS 

The extra information is introduced into equation (3.22) by including R_ 1 , 
the inverse of the input correlation matrix. When the gradient is multiplied by 
this matrix, the resulting move of the weight vector will not be in the nega
tive direction of the gradient, but rather in the direction towards the optimum 
point. 

Due to the additional matrix multiplication, Newton's method requires more 
computational power than the method of steepest descent. In addition, knowl
edge of the inverse of the input correlation matrix is required, which in turn 
requires averaging of a number of samples. 

The advantage of this method is that it often finds the optimum point in 
very few iterations. It is easy to show that if we have perfect knowledge of the 
gradient and the inverse of the input correlation matrix, Newton's method will 
find the optimum solution in only one iteration. Setting /z = 0.5 in equation 
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(3.22) and inserting equation (3.13) we obtain 

W,-+i = Wz-O.SR"1^ 

= W; - 0.5R-1(2RW; - 2P) 

= R _ 1 P = W* (3.23) 

where the last equality is given by equation (3.14). Hence, it does not matter 
where we start on the performance surface; if the gradient and input signal 
inverse correlation matrix are known, the optimum point will be reached in only 
one iteration (see Figure 3.6(b)). In practice, this is not possible in the general 
case, since the gradient estimate and the elements of the input correlation matrix 
will be noisy. 

3.3.3 The least mean square algorithm 

The methods presented above, the method of steepest descent and Newton's 
method, both require an estimation of the gradient at each iteration. In this 
section, the least mean square (LMS) algorithm will be discussed. The LMS 
algorithm uses a special estimate of the gradient that is valid for the adaptive 
linear combiner. Thus, the LMS algorithm is more restricted in its use than the 
other methods. 

On the other hand, the LMS algorithm is important because of its ease of 
computation, and because it does not require the repetitive gradient estimation. 
The LMS algorithm is quite often the best choice for many different adaptive 
signal processing applications. Starting from equation (3.7) we recall that 

£k = dk-yk = dk •XjW (3.24) 

In the previous methods, we would estimate the gradient using § = E [ ^ ] , 
but the LMS algorithm uses e | itself as an estimate of £. This is the main point 
of the LMS algorithm. At each iteration in the adaptive process, we have a 
gradient estimate of the form 

V* 

\dA~ 

\dA 
= 2ek 

~ dsk~ 

dwo 

dw\ 

dSk_ 

= -2ekXk (3.25) 

where the derivatives of sk follow from equation (3.24). Using this simplified 
gradient estimate, we can now formulate a steepest descent type algorithm 

WA+I = W* - /iVt = Wit + 2nekXk (3.26) 

This is the LMS algorithm. The gain constant \i governs the speed and stability 
of the adaptation process. The weight change at each iteration is based on 
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imperfect, noisy gradient estimates, which implies that the adaptation process 
does not follow the true line of steepest descent on the performance surface 
(see Figure 3.6(c)). The noise in the gradient estimate is, however, attenuated 
with time by the adaptation process, which acts as a low-pass filter. 

The LMS algorithm is elegant in its simplicity and efficiency. It can be imple
mented without squaring, averaging or differentiation. Each component of the 
gradient estimate is obtained from a single data sample input; no perturbations 
are needed. 

The LMS algorithm takes advantage of prior information regarding the 
quadratic shape of the performance surface. This gives the LMS algorithm 
considerable advantage over the previous adaptation algorithms when it comes 
to adaptation time. The LMS algorithm converges to a solution much faster than 
the steepest descent method, particularly when the number of weights is large. 

3.4 Applications In this section some example applications of adaptive system will be briefly 
presented. The presentation is somewhat simplified, and some practical details 
have been omitted thus simplifying the understanding of the system's main 
feature. 

3.4.1 Adaptive interference canceling 

Adaptive interference canceling devices can be used in many situations where 
a desired signal is disturbed by additive background noise. This could be, for 
instance, the signal from the headset microphone used by the pilot in an aircraft. 
In this case, the speech signal is disturbed by the background noise created 
by motors, propellers and air flow. It could also be the weak signal coming 
from electrocardiographic (ECG) electrodes, being disturbed by 50 or 60 Hz 
interference caused by nearby power lines and appliances. 

The idea behind the interference canceling technique is quite simple. Assume 
that our desired signal s is disturbed by additive background noise no. The 
available signal is 

x = s -{-no (3.27) 

If we could only obtain the noise signal no, it could easily be subtracted from 
the available signal and the noise would be canceled completely. In most cases, 
the noise signal no is not available, but if a correlated noise signal n\ can be 
obtained, no may be created by filtering n\. Since the filter function needed is 
not known in most cases, this is a perfect job for an adaptive filter. An adaptive 
noise-canceling circuit is shown in Figure 3.7. As can be seen from the figure, 
the output signal is fed back as an error signal e to the adaptation algorithm of 
the adaptive filter. Assume that s, no, n\ and>> are statistically stationary and 
have zero means. Further, assume that s is uncorrelated with no and n\, and that 
n\ is correlated with no, then 

e = s + no-y (3.28) 

Squaring equation (3.28) gives 

e2 = s2 + (n0 - y)2 + 2s(n0 - y) (3.29) 
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Figure 3.7 4̂« adaptive noise-canceling circuit, using an adaptive filter 

Taking expectations of both sides and making use of the fact that s is 
uncorrelated with no and y, we get 

E[e2] = E[s2] + E[(/!0 - 7 ) 2 ] + 2E[s(n0 -y)] 

= E[s2] + E[(n0-y)2] (3.30) 

From this equation it can be seen that adapting the filter by minimizing the 
mean square error E[e2], i.e. the output signal power, is done by minimizing 
the term E[(«o - y)2], since the input signal power E[s2] cannot be affected 
by the filter. Minimizing the term E[(no — y)2] implies that the output y of the 
filter is a best least squares estimate of unknown noise term no, which is needed 
to cancel the noise in the input signal. Hence, from equation (3.28) we realize 
that minimizing E[(«o — y)2] implies that E[(e — s)2] is also minimized and the 
noise power of the output signal is minimized. 

Let us pursue the previous example of canceling the background noise no 
picked up by the pilot's headset microphone. In a practical situation, we would 
set up a second microphone on the flight deck in such a way that it only picks 
up the background noise n\. Using a device like in Figure 3.7, the background 
noise no disturbing the speech signal s could be suppressed. The same technique 
has been adopted for cellular telephones as well, using an extra microphone to 
pick up background noise. 

Other areas where adaptive interference canceling systems are used is for 
echo cancellation (Widrow and Stearns, 1985) in telephone lines where echo 
may occur as a result of unbalanced hybrids and for interference suppression 
in radio systems. 

The performance of the adaptive noise-canceling system depends on three 
factors. First, there must be a fair correlation between the noise n\ picked up 
by the "reference microphone" and the disturbing background noise «o- If they 
are completely uncorrelated, the adaptive filter will set all its weights to zero 
(i.e. "switch-off") and will have no effect (no benefit or damage). 

Second, the filter must be able to adapt to such a filter function such that no 
can be well created from n\. This implies that the processor model used in the 
filter is relevant and that the adaptation algorithm is satisfactory. Note that we 
have not assumed that the adaptive filter necessarily converges to a linear filter. 
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Third, it is preferable that there may not be any correlation between the signal 
n\ picked up by the reference microphone, and the desired signal s. If there is 
a correlation, the system will also try to cancel the desired signal, i.e. reducing 
E[s2]. Hence, we have to choose the reference noise signal carefully. 

3.4.2 Equalizers 

Equalizers or adaptive inverse filters are frequently used in many telecommu
nication applications, where a transmitted signal is being distorted by some 
filtering function inherent in the transmission process. One example is the 
limited bandwidth of a telephone line (filter effect) that will tend to distort 
high-speed data transmissions. Now, if the transfer function H(co) from trans
mitter (TX) to receiver (RX) of the telephone line is known, we can build a 
filter having the inverse transfer function, G(co) = H~l(co) a so-called inverse 
filter or zero-forcing filter. If the received signal is fed to the inverse filter, 
the filtering effect of the telephone line can be neutralized, such that 

H(co) G((Q) = H(co)H-\o)) = 1 (3.31) 

The transfer function of a communication channel (e.g. telephone line) can 
be modeled as a channel filter H(co). Usually, the transfer function is not known 
in advance and/or varies over time. This implies that a good fixed inverse filter 
cannot be designed, but an adaptive inverse filter would be usable. This is what 
an equalizer is, an adaptive inverse filter that tries to neutralize the effect of the 
channel filter at all times in some optimum way. Today's high-speed telephone 
modems would not be possible without the use of equalizers. 

Figure 3.8 shows a block diagram of a transmission system with a channel 
filter having transfer function H(z) and an equalizer made up of an adaptive 
filter used as inverse filter having transfer function G(z). The signal Sk entering 
the transmission channel is distorted by the transfer function of the channel 
filter, but on top of this, additive noise n^ is disturbing the transmission, hence 
the received signal is 

n =$k *h(k) + nk (3.32) 
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Figure 3.8 A transmission situation with channel filter, additive noise and 
an equalizer implemented by means of an adaptive filter 
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In the channel model above, * denotes convolution and h(k) is the impulse 
response corresponding to the channel filter transfer function H(z). In order to 
make the adaptive filter converge resulting in a good inverse transfer function, a 
desired signal dk is needed. If the transmitted signal Sk is used as the desired sig
nal, the adaptive filter will converge in a way to minimize the mean square error 

E[e2
k] = E[(sk-yk)

2] (3.33) 

implying that the output^ will resemble the input Sk as closely as possible in the 
least square sense, and the adaptive filter has converged to a good inverse G(z) 
of the channel filter transfer function H(z). The inverse filter will eventually 
also track variations in the channel filter. 

Finding a desired signal dk is not entirely easy at all times. In the present 
example, we have used the transmitted signal Sk, which is not known in the 
general case at the receiving site. A common method is to transmit known 
"training signals" now and then, to be used for adaptation of the inverse filter. 
There are also other ways of defining the error signal. For instance, in a digital 
transmission system (where Sk is "digital"), the error signal can be defined as 

£k=h~yk (3.34) 

where Sk is the digital estimate of the transmitted (digital) signal Sk and Sk is the 
output of the non-linear detector using the analog signal^ as input. In this case, 
the detector simply consists of an analog comparator. Hence, the estimate of the 
transmitted signal is used as the desired signal instead of the transmitted signal 
itself (see Figure 3.9). As the equalizer converges, the analog signal^ will be 
forced stronger and stronger when 5̂  = 1, and weaker and weaker for Sk = 0. 

There are two problems associated with equalizers. First, since the zeros in 
the channel filter transfer function will be reflected as poles in the inverse filter, 
we may not be able to find a stable inverse filter for all channel filters. Second, 
assume that there is a deep notch in the channel filter function at a specific 
frequency. This notch will be counteracted by a sharp peak, having a high gain 
at the same frequency in the transfer function of the inverse filter. The additive 
noise, possibly being stronger than the desired signal at this specific frequency, 
will then be heavily amplified. This may cause a very poor signal-to-noise ratio 
(SNR), rendering the equalized output signal unreadable. 
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Figure 3.9 An equalizer using the estimated transmitted signal as 
desired signal 
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Equalizers are sometimes also used in high performance audio systems to 
counteract the transfer function caused by room acoustics and to avoid feedback 
problems. In this situation, however, the transmitted signal is "precompensated" 
before being sent to the loudspeakers. Hence, the order of the inverse filter and 
the channel filter is reversed when compared with Figure 3.8. 

For equalizing telephone lines and room acoustics, equalizers using a simple 
adaptive linear inverse filter will often do well. When it comes to equalizers for 
data transmission over radio links, more complex equalizers are often required to 
achieve acceptable performance. Different types of decision-feedback equal
izers are common in digital radio transmission systems (Proakis, 1989; Ahlin 
and Zander, 1998). 

In a radio link (Ahlin and Zander, 1998), the signal traveling from the trans
mitter to the receiver antenna will be propagated over many different paths 
simultaneously, with all the paths having different lengths. The multitude of 
received signal components compounded in the receiver antenna will hence be 
delayed by different amounts of time, which will give the components different 
phase shifts. This in turn results in a filtering effect of the transmitted sig
nal (the channel filter). The phenomenon is denoted multipath propagation 
or Rayleigh fading, causing frequency selective fading. Due to the trans
fer function of the channel filter, the short data bits will be "smeared" out, 
causing interference in the following data bit time slots. This is called inter-
symbol interference (ISI), and can be counteracted by including an equalizer in 
the receiver. 

Figure 3.10 shows an example of a decision-feedback equalizer. This is 
mainly the same equalizer as in Figure 3.9, but extended with a feedback 
loop consisting of another adaptive filter. The latter filter "remembers" the 
past detected digital symbols, and counteracts the residuals of the intersymbol 
interference. Both filters are adapted synchronously using a common adaptation 
algorithm. 

Figure 3.10 A decision-feedback equalizer (channel filter and additive noise 
not shown) 
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This type of non-linear equalizer works well for combating intersymbol inter
ference present in highly time-dispersive radio channels. If we assume that both 
filters are adaptive FIR filters, the output of the equalizer will be 

L J 

/=0 7=0 

where w/# are the weights of the first filter, and v# the weight of the feedback 
filter at time instant k. 

3.4.3 Adaptive beamforming 

So far, we have only discussed the use of adaptive systems in the time and 
frequency domains, in the single input processor model, according to equations 
(3.5) and (3.6). In this section, applications using the more general multiple-
input linear combiner model will be addressed and signal conditioning in the 
spatial domain will be treated. 

The underlying signal processing problem is common to the reception of 
many different types of signals, such as electromagnetic, acoustic or seis
mic. In this signal processing oriented discussion, the difference between 
these situations is simply the choice of sensors: radio antennas, microphones, 
hydrophones, seismometers, geophones, etc. Without sacrificing generality, 
we will use the reception of electromagnetic signals by radio antennas as an 
example in the following discussion. 

Assume that we are interested in receiving a fairly weak signal in the presence 
of a strong interfering signal. The desired signal and the interfering signal 
originate from different locations and at the receiving site, the signals have 
different angles of arrival. A good way of dealing with this problem is to design a 
directive antenna, an antenna having a maximum sensitivity in one direction (the 
"beam" or "lobe") and a minimum sensitivity in other directions. The antenna 
is directed in such a way that the maximum sensitivity direction coincides with 
the direction of the location of the desired signal, and minimum sensitivity 
("notch") angle in the direction of the interferer (see Figure 3.11). 

There are, however, some problems. The physical size of a directive antenna 
depends on the wavelength of the signal. Hence, for low-frequency signals, the 
wavelength may be so long that the resulting directive antenna would be huge 
and not possible to build in practice. Another problem occurs if the desired 
signal source or the interferer or both are mobile, i.e. (fast) moving. In such a 
case, the directive antenna may need to be redirected continuously (for instance, 
radar antennas). If the directive antenna structure needs to be moved (quickly), 
this may create challenging mechanical problems. 

An alternative way of building a directive antenna is to use a number of 
omnidirectional, fixed antennas mounted in an antenna array. The output of 
the antennas is fed to a signal processing device, and the resulting directivity 
pattern of all the antennas in unison is created "electronically" by the signal 
processing device. Hence, the shape and direction of the lobes and notches can 
be changed quickly, without having to move any part of the physical antenna 
system. The antenna system may, however, still be large for low frequencies, 
but for many cases easier to build in practice than in the previous case. 
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Figure 3.11 Enhancing the desired signal and attenuating the interference 
using a directive antenna (the directivity plot is a polar diagram showing the 
relative sensitivity of the antenna as a function of the angle) 

The drawback of the "electronic" directive antenna is the cost and complexity. 
The advent of fast and inexpensive digital signal processing components has, 
however, made the approach known as beamforming (Widrow and Stearns, 
1985) more attractive during the past few years. The steady increase in process
ing speed of digital signal processing devices has also made it possible to use 
this technology for high-frequency signal applications, which was otherwise an 
impossible task a few years back. 

The following simplified example (see Figure 3.12) illustrates the use of a 
multiple-input, adaptive linear combiner in a beam-forming "electronic" direc
tive antenna system. Assume that we are using two omnidirectional antennas 
A\ and^2. The distance between the two antennas is /. We are trying to receive 
a weak desired narrow-band signal s cos(otf) but unfortunately we are disturbed 
by a strong narrow-band, jamming signal of the same frequency u cos(otf)- The 
desired signal is coming from a direction perpendicular to the normal of the 
antenna array plane, which implies that the phase front of the signal is parallel 
to the antenna array plane. This means that the received desired signal in the 
two antennas will have the same phase. 

The undesired jamming signal is coming from another direction, with the 
angle a relative to the normal of the antenna array plane. In this case, the 
jamming signal will reach the antennas at different times, and there will be a 
phase shift between the jamming signal received by antenna A\ compared to 
the signal received by A%. It is easily shown that the difference in phase between 
the two will be 

27z7sin(a0 a>/sin(a) 
0 = = (3.36) 

X c 
where c is the propagation speed of the signal, in this case equal to the speed 
of light, and co is the angular frequency. Hence, the compound signals received 
by antennas A\ and A2, respectively, can be expressed as 

x\ = s cos(cot) + u cos(cot) (3.37) 
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Figure 3.12 An example simplified narrow-band directive antenna array, 
using two antennas and a multiple-input adaptive linear combiner and 
quadrature filters 

X2 = S COS((Dt) + U C0S(0)t — 0 ) (3.38) 

The signal processing system consists of a four input adaptive linear com
biner, having the weights w\ through W4. The signal coming from each antenna 
is branched, and passed directly to the combiner in one branch and via a quadra
ture filter (a Hilbert transform) in the other. The quadrature filter is an all-pass 
filter, introducing a — | radian phase shift of the signal, but not changing the 
amplitude. The quadrature filter will be further discussed in Chapter 5. The 
output of the combiner can now be written as 

y = W\ (S COS((Ot) + U COS((Ot)) 

-\-W2ySCOs(o)t — — J + UCOs((Ot — — J 1 

+ wi(s cos(cot) + u cos(cot — 0)) 

+ W4(sCOs(cot — —J +UCOs((Dt - (j) - —J J 

(3.39) 

Using the fact that cos(/? - (n/2)) = sin(^) and rearranging the terms we 
obtain 

y = s((w\ + w?) cos(ct>0 + (H>2 + W4) sin(cot)) + u(w\ cos(cot) 

+ W3 cos(cot — 0) + W2 $m(o)t) + W4 sm{oot — 0)) (3.40) 

Now, the objective is to cancel the jamming signal w, i.e. creating a 
notch in the directivity pattern of the antenna array in the direction of 
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the jammer. Hence, we want the jamming signal term of equation (3.40) to be 
zero, i.e. 

u(w\ cos(cot) + M>3 cos(cot - 0) + H>2 sm(a)t) + W4 sin (cot — 0)) == 0 

(3.41) 

Using the well-known trigonometric relations: cos(/3 — y)= cos(/3) cos(y) + 
sin(#) sin(y) and s i n ( ^ - y ) = sin (ft) cos(y) - cos(^) sin(y), equation (3.41) 
can be rewritten as 

u(w\ + w>3 cos(0) — W4 sin(0)) cos(cot) 

+ u(w2 + W3 sin(0) + W4 cos(0)) sin(&tf) = 0 (3.42) 

In this case, solutions, i.e. the optimum weights W*, can be found by 
inspection. There are many possible solutions 

w\ = —w>3 cos(0) + W4 sin(0) (3.43a) 

W2 = — W3 sin(0) — W4 cos(0) (3.43b) 

We choose a solution that is simple from a practical point of view, by setting 

w\ = 1 and w| = 0 

Hence, two weights and one quadrature filter can be omitted from the structure 
shown in Figure 3.12. Antenna A \ is simply connected directly to the summing 
point and the hardware (software) that constitutes the weights w\ and W2 and 
the upper quadrature filter can be removed. 

Using equations (3.43a) and (3.43b) the components of one optimum weight 
vector W* can be calculated 

w\ = 1 

w| = 0 

M>3 = —COS(0) 

W4 = sin(0) 

Inserting W* in equation (3.40) the output will be 

y = s((l — cos(0)) cos(cot) + sin(0) sm(cot)) 

= s(cos(cot) - cos(cot + 0)) (3.44) 

The result is not surprising. The jamming signal is canceled and the output 
is a sum of two components, the original signal received by antenna A\ and 
a phase-shifted version of the signal received at antenna A2. As expected, the 
phase shift is exactly the shift needed to cancel the jamming signal. 

Now, in this case it was quite easy to find a solution analytically. In a more 
complex system, having, for instance, 30 or even more antennas and a number 
of interfering, jamming signals coming from different directions, there is no 
guarantee that an analytical solution can be found. In such a case, an adaptive 
system can iteratively find an optimum solution in the mean square sense, using, 
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for instance, some kind of LMS-based adaptation algorithm. Further, if the 
signal sources are moving, an adaptive system would be required. 

Working with wide-band signals, the input circuits of the linear combiner may 
consist of not only quadrature filters, but more elaborate filters, e.g. adaptive 
FIR filters. 

In this chapter only a few applications of adaptive digital processing systems 
have been discussed. There are numerous areas (Widrow and Stearns, 1985), for 
instance in process identification, modeling and control theory, where adaptive 
processing is successfully utilized. 

Summary In this chapter the following main topics have been addressed: 

• The structure of a generic closed-loop adaptive system 
• Basic processor structures, the linear combiner and the FIR filter 
• The theory behind performance functions 
• Different iterative methods of finding the optimum weights: steepest descent, 

Newton and LMS 
• Some applications: adaptive interference canceling, the equalizer and 

adaptive beamforming. 

Review questions R3-1 Draw a block diagram of a generic closed-loop adaptive system showing 
signals and function blocks. Explain the function briefly. 

R3-2 Draw the block diagram of a linear combiner and explain the associated 
equations. 

R3-3 What is the performance function and what is it used for? 
R3-4 If you find the cross-correlation vector P in a proposed adaptive filter to 

be zero, what is the problem? 
R3-5 Three adaptation algorithms are discussed in this chapter: steepest 

descent, Newton and LMS. What path does the weight vector travel 
towards optimum when using the different algorithms? 

R3-6 What are the pros and cons of LMS? 
R3-7 What is an equalizer good for? 
R3-8 Why is the error signal uncorrelated to the input signals when the 

adaptation is completed and the Wiener vector is found? 

Solved problems P3-1 Assume we are designing an adaptive interference canceling system as 
in Figure 3.7. The interference component is «o£ = sin(jr(£/7)) and the 
reference noise n\k = cos(7t(k/7)). The transfer function of the adaptive 
filter is H(z) = w>o + w\z~l. Find an expression for the MSE performance 
surface § as a function of the filter weights. 

P3-2 Formulate the LMS algorithm for the system in P3-1 as two separate 
functions showing how to iterate the weights. 

P3-3 Using the LMS algorithm and the adaptive interference canceling system 
in P3-1 above, write a MATLAB™ program to simulate the adaptive 
filter and to plotj^, the output of the interference canceling system ££, 
the weights wok and wu and the MSE learning curve £ as a function of 
the time index k. Use /x = 0.05 and 0 initial conditions for the weights. 

P3-4 For the system in P3-1, calculate the Wiener-vector solution for the filter 
weights. Compare to the results obtained in P3-3 above. 



4 Non-linear applications 

Background There are an infinite number of non-linear signal processing applications. In this 
chapter, a few examples, such as the median filter, artificial neural networks 
(ANN) and fuzzy logic will be discussed. Some of these examples are devices 
or algorithms that are quite easy to implement using digital signal processing 
techniques, but could be very difficult or almost impossible to build in practice 
using classical "analog" methods. 

Objectives In this chapter we will discuss: 

• The median filter and threshold decomposition 
• Feedforward neural networks 
• Training algorithms for neural networks 
• Feedback neural networks and simulated annealing 
• Fuzzy control systems. 

4.1 The median filter 4.1.1 Basics 

A median filter is a non-linear filter used for signal smoothing. It is particularly 
good for removing impulsive type noise from a signal. There are a number of 
variations of this filter, and a two-dimensional variant is often used in digital 
image processing systems to remove noise and speckles from images. The 
non-linear function of the median filter can be expressed as 

y{ri) = med[x(n - &), x(n - k + 1), . . . ,x(n), . 

x(n + k- 1), x(n + k)] (4.1) 

where y(ri) is the output and x(n) is the input signals. The filter "collects" a 
window containing N — 2k + 1 samples of the input signal and then performs 
the median operator on this set of samples. Taking the median means, sort the 
samples by magnitude and then select the mid-value sample (the median). For 
this reason, N is commonly an odd number. If for some reason an even number 
of samples must be used in the window, the median is defined as shown below. 
Assuming the samples are sorted in such a way that x\ is the smallest and *2£+i 
the largest value 

med[jci,jC2,.. . ,*JV] = 
**+i for N = 2k+l 

\{xk + **+i) for N = 2k 
(4.2) 
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Different methods have been proposed to analyze and characterize median fil
ters. The technique of root signal analysis (Mitra and Kaiser, 1993) deals with 
signals that are invariant to median filtering and defines the "passband" for 
median filters. A root signal of a median filter of length TV = 2k + 1 is a sig
nal that passes through the filter unaltered; this signal satisfies the following 
equation 

x(n) = med[x(n - k), x(n - k + 1) , . . . , 

x(n), ...,x(n + k-l),x(n + k)] (4.3) 

The median filter itself is simple, and in the standard form there is only one 
design parameter, namely the filter length N = 2k + 1. There are some terms 
used which pertain to root signals (Gallagher Jr. and Wise, 1981). 

A constant neighborhood is a region of at least k + 1 consecutive, identically 
valued points. 

An edge is a monotonically rising or falling set of points surrounded on both 
sides by constant neighborhoods. 

An impulse is a set of at least one but less than k + 1 points whose values 
are different from the surrounding regions and whose surrounding regions are 
identically valued constant neighborhoods. 

So, in essence, a root signal is a signal consisting of only constant neigh
borhoods and edges. This definition implies that a signal which is a root signal 
to a median filter of length N is also a root signal of any median filter whose 
length is less than N. 

It is also interesting to note that a median filter preserves edges, both positive 
and negative, provided they are separated by a constant neighborhood. The 
longer the filter length, the farther apart the edges have to be, but the actual 
magnitude of the slopes is irrelevant. This means that a median filter filters out 
impulses and oscillations, but preserves edges. This will be demonstrated below. 

4.1.2 Threshold decomposition 

Analyzing combinations of linear filters by using the principle of superposition 
is in many cases easier than analyzing combinations of non-linear devices like 
the median filter. However, by using a method called threshold decomposition, 
we divide the analysis problem of the median filter into smaller parts. 

Threshold decomposition of an integer M-valued signal x(n), where 
0<x(n)<M means decomposing it into M— 1 binary signals xl(n), 
x2(n\...,xM-\n) 

f 1 if x(n) > m ,A ^ 

* » = | o else < 4 4 ) 

Note! The upper index is only an index, and does not imply "raised to". Our 
original M-valued signal can easily be reconstructed from the binary signal by 
adding them together 

M-\ 

x(n) = Y, xm(") (4-5) 
m=\ 
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Now, a very interesting property of a median filter (Fitch et al., 1984) is that 
instead of filtering the original M-valued signal, we can decompose it into M — 1 
"channels" (equation (4.4)), each containing a binary median filter. Then we 
can add the outputs of all the filters (equation (4.5)) to obtain an M-valued 
output signal (see Figure 4.1). 

The threshold decomposition method is not only good for analyzing purposes, 
but it is also of great interest for implementing median filters. A binary median 
filter is easy to implement, since the median operation can be replaced by a 
simple vote of majority. If there are more "ones" than "zeros", the filter output 
should be "one". This can be implemented in many different ways. For example, 
a binary median filter of length N = 3 can be implemented using simple Boolean 
functions 

y(n) = x(n - 1) H x(n) U x(n - 1 ) 0 x(n + 1) U x(n) 0 x(n + 1) (4.6) 

where x(n) and y(n) are binary variables and the Boolean operations D is AND 
and U is OR. For large filter lengths, this method may result in complex Boolean 
calculations, and a simple counter can be used as an alternative. The pseudo
code below shows one implementation example: 

binmed: coun te r := 0 
for i : = l t o N do 

if x[i] then counter++ 
else counter--

if counter>0 then y[n]:=l 
else y [n] :=0 

Now, one may argue that if there are a large number of thresholds M, there are 
going to be a large number of binary filters as well. This is of course true, but 
if the filter is implemented as software for a digital signal processor (DSP), the 
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Figure 4.1 Median filtering of a three-valued signal by threshold 
decomposition, N = 3 
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same piece of computer code can be reused in all binary filters (as a function or 
subroutine). Hence, the problem deals with the processing speed. Depending 
both on the kind of signals being filtered and the features of the output signal 
of primary interest, we may not need to process all thresholds or/and non-
equidistant thresholds may be used. 

The technique of threshold decomposition and using binary, Boolean filters 
has led to a new class of filters, the so-called stacked filters. 

4.1.3 Performance 

If a median filter is compared to a conventional linear mean filter, implemented 
as a finite impulse response (FIR) filter having constant tap weights (moving 
average, MA), the virtues of the median filter (running median) become appar
ent. Consider the following example, where we compare the output of a moving 
average filter of length N = 9, and a median filter of the same length. The mean 
filter with constant weights (a linear smoothing filter) can be expressed as 

y\(n) = J2gx(n + i-5) (4-7a) 
i=l 

and the median filter (a non-linear smoothing filter) 

y2(n) = mQd[x(n - 4 ) , . . . ,x(n),... 9x(n + 4)] (4.7b) 

Assume that the input signal is a square wave signal that is to be used for 
synchronization purposes, i.e. the edges of the signal are of primary interest, 
rather than the absolute level. Unfortunately, the signal is distorted by additive 
Gaussian noise, and impulsive type noise transients, typically generated by arcs 
and other abrupt discharge phenomena (see Figure 4.2). 

As can be seen from Figure 4.2, when comparing the outputs of the two 
filters, the median filter performs quite well preserving the edges of the signal 
but suppressing the noise transients. The standard linear mean filter, however, 
suffers from two basic problems. First, when a quite large transient occurs in 
the filtering window, it will affect the output as long as it is in the averaging 
window. This means that a narrow but strong peak will be "smeared" out and 
basically create a new pulse that can be mistaken for a valid square wave signal. 
Due to the long time constant of the linear FIR filter, the edges of the desired 
signal will also be degraded. This may be a significant problem if timing is 
crucial, e.g. when the signal is used for synchronization purposes. Using a 
hard limiter-type device to "sharpen up" the edges again is of course possible. 
However, the slope of the edges does not only depend on the response time of 
the mean filter, but also on the actual (varying) amplitude of the input signal. 
This will again result in uncertainty of the true timing. 

The uncertainty of the edges in the median filter case is mainly due to the 
additive noise, which will be suppressed by the filter. The signal form is quite 
similar to the input signal with the addition of noise. For a square wave without 
noise, the median filter will present a "perfect" edge. 
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Figure 4.2 (a) Input signal filtered by (b) linear running average filter and 
(c) non-linear running median filter, filter length N = 9m both cases 

4.1.4 Applications 

If the median filter is implemented as software on a digital computer, any 
standard sorting algorithm like "bubblesort" or "quick sort", etc. (Wirth, 1976) 
can be used to sort the values (if a stacked filter approach is not taken). When 
calculating the expected sorting time, it should be noted that we do not need 
to sort all the values in the filter window of the median filter. We only need to 
continue sorting until we have found the mid-valued sample. 

The use of median filters was first suggested for smoothing statistical data. 
This filter type has, however, found most of its applications in the area of 
digital image processing. An edge preserving filter like the median filter can 
remove noise and speckles without blurring the picture. Removing artifacts from 
imperfect data acquisition, for instance horizontal stripes sometimes produced 
by optical scanners, is done successfully using median filters. Median filters 
are also used in radiographic systems in many commercial tomographic scan 
systems and for processing electroencephalogram (EEG) signals and blood 
pressure recordings. This type of filter is also likely to be found in commercial 
digital television sets in the future because of the very good cost-to-performance 
ratio. 
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4.2 Artificial neural 4.2.1 Background 
networks 

"Neural networks" is a somewhat ambiguous term for a large class of mas
sively parallel computing models. The terminology in this area is quite confused 
in that scientific well-defined terms are sometimes mixed with trademarks 
and sales bull. A few examples are: "connectionist's net", "artificial neural 
systems (ANS)", "parallel distributed systems (PDS)", "dynamical functional 
systems", "neuromorphic systems", "adaptive associative networks", "neuron 
computers", etc. 

4.2.2 The models 

In general, the models consist of a large number of typically non-linear com
puting nodes, interconnected with each other via an even larger number of 
adaptive links (weights). Using more or less crude models, the underlying idea 
is to mimic the function of neurons and nerves in a biological brain. 

Studying neural networks may have two major purposes: either we are inter
ested in modeling the behavior of biological nerve systems, or we want to 
find smart algorithms to build computing devices for technical use. There are 
many interesting texts dealing with neural networks from the point of percep
tion, cognition and psychology (Hinton and Anderson, 1981; McClelland and 
Rumelhart, 1986; Grossberg, 1987a, b; Rumelhart and McClelland, 1987). In 
this book, however, only the "technical" use of neural network models will be 
treated, hence the term "artificial neural networks (ANN)" will be used from 
here on. 

"Computers" that are built using artificial neural network models have many 
nice features: 

• The "programming" can set the weights to appropriate values. This can 
be done adaptively by "training" (in a similar way to teaching humans). 
No procedural programming language is needed. The system will learn by 
examples. 

• The system will be able to generalize. If an earlier unknown condition occurs, 
the system will respond in the most sensible way based on earlier knowledge. 
A "conventional" computer would simply "hang" or exhibit some irrelevant 
action in the same situation. 

• The system can handle incomplete input data and "soft" data. A conventional 
computer is mainly a number cruncher, requiring well-defined input figures. 

• The system is massively parallel and can easily be implemented on parallel 
hardware, thus obtaining high processing capacity. 

• The system will contain a certain amount of redundancy. If parts of the system 
are damaged, the system may still work, but with degraded performance 
("graceful descent"). A 1-bit error in a conventional computer will in many 
cases "crash". 

Systems of the type outlined above have been built for many different pur
poses and in many different sizes during the past 50 years. Some examples are 
systems for classification, pattern-recognition, content addressable memories 
(CAM), adaptive control, forecasting, optimization and signal processing. Since 
appropriate hardware is still not available, most of the systems have been imple
mented in software on conventional sequential computers. This unfortunately 
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implies that the true potential of the inherently, parallel artificial neural network 
algorithms has not been very well exploited. The systems built so far have been 
rather slow and small, typically of the size of 104-106 nodes having 10x-102 

links each. Taking into account that the human brain has some 1010—1011 nodes 
with 103-106 links each, it is easy to realize that the artificial systems of today 
are indeed small. In terms of complexity, they are comparable to the brain 
of a fly. 

4.2.3 Some historical notes 

The history of artificial neural networks can be traced early in twentieth cen
tury history. The first formal model was published by W.S. McCulloch and W. 
Pitts in 1943. A simple node type was used and the network structures were 
very small. However, it was possible to show that the network could actually 
perform meaningful computations. The problem was finding a good way of 
"training" (i.e. "adapting" or "programming") the network. In 1949, D. Hebb 
published The Organization of Behavior, where he presented an early version 
of a correlation-based algorithm to train networks. This algorithm later came 
to be known as Hebb's rule. In the original paper, the algorithm was not well 
analyzed or proved, so it came to be regarded as an unproved hypothesis until 
1951. In the same year, M. Minsky and D. Edmonds built a "learning machine", 
consisting of 300 electron tubes and miscellaneous surplus equipment from old 
bombers, which illustrated a practical example. 

It is worth noting that the artificial neural network ideas are as old as the 
digital computer (e.g. electronic numerical integrator and computer (ENIAC) 
in 1944). The digital computer was however developed faster, mainly because 
it was easier to implement and analyze. 

In the late 1950s and early 1960s, B. Widrow and M.E. Hoff introduced a new 
training algorithm called the delta rule or the Widrow-Hoff algorithm. This 
algorithm is related to the least mean square (LMS) algorithm used in adaptive 
digital filters. Widrow also contributed a new network node type called the 
adaptive linear neuron (ADALINE) (Widrow and Lehr, 1990). At about the 
same time, F. Rosenblatt worked extensively with a family of artificial neural 
networks called perceptrons. Rosenblatt was one of the first researchers to 
simulate artificial neural networks on conventional digital computers instead 
of building them using analog hardware. He formulated "the perceptron 
convergence theorem" and published his Principles of hemodynamics in 1962. 

M. Minsky and S.A. Papert also investigated the perceptron, but they were 
not as enthusiastic as Rosenblatt. In 1969 they published the book Perceptrons 
(Minsky and Papert, 1969), which was a pessimistic and may be somewhat 
unfair presentation, focusing on the shortcomings of the perceptrons. Unfortu
nately, this book had a depressing impact on the entire artificial neural network 
research society. Funding drained, and for the next decade only a few researchers 
continued working in this area. One of them was S. Grossberg, working with 
"competitive learning". In general, however, not very much happened in the 
area of artificial neural networks during the 1970s. Conventional digital von 
Neumann-based computers and symbol-oriented artificial intelligence (AI) 
research dominated. 

In the beginning of the 1980s, a renaissance took place. The artificial neu
ral network was "reinvented" and a number of new and old research groups 
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started working on the problems again; this time armed with powerful digital 
computers. In 1980, "feature maps" was presented by T. Kohonen (Finland) 
and in 1982, J. Hopfield published a couple of papers on his Hopfield Net. Per
haps too well marketed, this network was able to find solutions to some famous 
non-polynomial (NP)-complete optimization problems. In 1983, S. Kirkpatrick 
et al. introduced "simulated annealing", a way of increasing the chances to 
find a global optimum when using artificial neural networks in optimization 
applications. 

In 1984, P. Smolensky presented "harmony theory", a network using prob
abilistic node functions. In the same year, K. Fukushima demonstrated his 
"neocognitron", a network able to identify complex handwritten characters, 
e.g. Chinese symbols. 

The network training method "back-propagation" had been around in 
different versions since the late 1960s, but was further pursued by D. Rumelhart 
et al. in 1985. This year, the "Boltzmann machine", a probabilistic type 
network, was also presented by G.E. Hinton and T.J. Sejnowski. 

In the following years, many new variants of artificial neural network sys
tems and new areas of application occurred. Today, the area of artificial neural 
networks, an extremely interdisciplinary technology, is used for instance in 
(Lippmann, 1987; Chichocki and Unbehauen, 1993) signal processing, opti
mization, identification, estimation, prediction, control, robotics, databases, 
medical diagnostics, biological classification (e.g. blood and genes), chemistry 
and economy. However, there are not very many "new" ideas presented today, 
rather extensions and enhancements of old theories. Unfortunately, we still lack 
the ideal hardware. Extensive work in the area of application specific integrated 
circuit (ASIC) is in progress, but there are some basic problems hard to over
come when trying to build larger networks. Many of these problems have to 
do with the large number of weights (links). For example, how should all the 
weights be stored and loaded into a chip? How to find the settings, in other words, 
how to perform the training? How should these examples be chosen since a large 
number of weights will require an even larger number of training examples? 

4.2.4 Feedforward networks 

The class of feedforward networks is characterized by having separate inputs 
and outputs and no internal feedback signal paths. Hence, there are no stability 
problems. The nodes of the network are often arranged in one or more discrete 
layers and are commonly easy to implement. If the nodes do not possess any 
dynamics like integration or differentiation, the entire network mainly performs 
a non-linear mapping from one vector space to another. After the training of the 
net is completed, meaning that the weights are determined, no iteration process 
is needed. A given input vector results in an output vector in a one-step process. 

4.2.4.1 Nodes 

The nodey in a feedforward artificial neural network has a basic node function 
of the type 
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where Xj is the output ofnodey and cpj is the bias of nodey. The N inputs to node 
j are denoted xt where / = 1,2, ...,N and the weights (links) are Wy from input 
i to node./. For pure feedforward networks wu = 0. The function/() is the acti
vation function sometimes also called the "squashing function". This function 
can be chosen in a variety of ways, often depending on the ease of implementa
tion. The function should, however, be monotonically non-decreasing to avoid 
unambiguous behavior. Some training methods will also require the activation 
function to be differentiable. The activation function is commonly a non-linear 
function, since a linear function will result in a trivial network. Some examples 
of common activation functions are as follows: 

• Hardlimiter 

{ a x > 0 
A " n ( 4 9 ) 

b x < 0 
where a and b are constants. If a = 1 and b = —l, equation (4.9) turns into 
the sign function. 

• Softlimiter 

x > a 

b<x<a (4.10) 

x < b 

The function is linear in the range a- • -b, where a and b are constants. The 
function saturates upwards at a and downwards at b. 

• Sigmoid ("logistic function") 

In this expression, the parameter T is referred to as the "computational 
temperature". For small temperatures, the function "freezes" and the shape 
of equation (4.11) approaches the shape of a hard limiter as equation (4.9). 
Sometimes the function/(x) = tanh(x/r) or similar is also used. 

Finally, the output function g() may be an integration or summation or alike 
if the node is supposed to have some kind of memory. In most feedforward 
networks, however, the nodes are without memory, hence a common output 
function is 

g(x)=x (4.12) 

4.2.4.2 Network topology 

When dealing with networks consisting of a number of nodes N9 matrix algebra 
seems to be handy in general. All weights Wy in a network can, for instance, 

/M = 
a 

x 

b 
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be collected into a weight matrix W (N x N), and all signals into a vector 
X (N x 1). Theyth column vector W7 of matrix W hence represents the weights 
of nodey. Now, it is straightforward to see that a node basically performs a non
linear scalar product between the corresponding weight vector and the signal 
vector (assuming output function as in equation (4.12)) 

Xj=f(XTWj + <pj) (4.13) 

Using a weight matrix in this way allows arbitrary couplings between all nodes 
in the network. Unfortunately, the size of the matrix grows quickly as the number 
of elements increases as N2. When dealing with feedforward-type networks, 
this problem is counteracted by building the network in layers, thereby reducing 
the number of allowed couplings. A layered network is commonly divided into 
three (or more) layers denoted as the input layer, the hidden layer(s) and the 
output layer. Figure 4.3 shows a simple three-layer feedforward network. In this 
structure, the input signals (input vector) enter the network at the input layer. 
The signals are then only allowed to proceed in one direction to the hidden layer 
and then finally to the output layer, where the signals (output vector) exit the 
network. In this way, the weight matrix can be divided into three considerably 
smaller ones, since the nodes in each layer only need to have access to a limited 
number of the signal components in the total signal vector X. Questions arise 
with regards to the number of layers and the number of nodes in each of these 
layers that should be used. While the number of nodes per layer is hard to 
determine, the number of layers can be calculated with the following method. 

Using a layered structure, impose some restrictions on the possible mappings 
from the input vector space to the output vector space. Consider the following 
example. Assume that we have a two-dimensional input vector and require a 
scalar output. We use two signal levels " 1 " and "0". The output should be " 1 " 
if one of the two input vector components is " 1 " . The output should be "0" 

input hidden output 
layer layer layer 

Figure 4.3 A simple three-layer feedforward network 
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otherwise. This is a basic exclusive OR function (XOR or modulo 2 addition 
or "parity function"). The task of the artificial neural network is to divide the 
two-dimensional input vector space into two decision regions. Depending on 
in which decision region the input vector is located, a " 1 " or a "0" should be 
presented at the output. 

Starting out with the simplest possible one-layer network, consisting of one 
node with a hard limiter-type activation function, we can express the input-
output function as 

/ A \ f l Wi3*l + W23X2 + (ft > 0 
* 3 = / 2 > , 3 * l + * 3 = n ^ ^ n (4-14) 

where we assume that W33 = 0 and that the hard limiter has the function 

f 1 x>0 

/(*)= L " (4-15) 
I 0 x < 0 

Table 4.1 7htf/i faWe The desired response is shown in the truth table (see Table 4.1). 
for XOR function Now, the task is to find the weights and the bias needed to implement the 

desired function. It is possible to implement an AND or OR function, but an 
XOR function cannot be achieved. The reason is that a node of this type is only 
able to divide the input vector space with a (hyper)plane. In our example (from 
equation (4.14)) the borderline is 

X2 = xi (4.16) 

X\ 

0 
0 
1 
1 

X2 

0 
1 
0 
1 

*3 

0 
1 
1 
0 

In other words, we cannot achieve the required shape of the decision regions, 
since the XOR function requires two disjunct areas like A and A (see Figure 4.4). 
Since many more complex decision tasks can be traced back to the XOR func
tion, this function has a fundamental importance in computation. The basic 
perceptron presented by Rosenblatt was mainly a one-layer network of the type 
presented in the example above. The main criticism presented in the book Per-
ceptrons by Minsky and Papert (Minsky and Papert, 1969) was concerned with 
the inability of the perceptron to solve the basic XOR problem. This was a bit 
unfair, since the perceptron can easily be modified to handle the XOR problem 
too. This can be done by adding a second layer of nodes to our system. With 
respect to the example above it means adding another two nodes, and obtaining 
a two-layer artificial neural network. The network contains two nodes in the 
input layer, no hidden layers and one node in the output layer. The nodes are 
of the same simple type as in the example above. Now, each of the two nodes 
in the input layer can divide the input vector space with hyperplanes. In our 
two-dimensional example, this is two straight lines as in equation (4.16). If one 
node has its decision line to the left of the two desired areas A (see Figure 4.4), 
the output of the node will be " 1 " when an input vector corresponding to A is 
present. The other node has its line to the right of the desired decision region 
and gives a " 1 " output signal for A. The desired response can now be obtained 
by "ANDing" the output of the two nodes. AND and OR functions can easily 
be achieved using a single node, so the node in the output layer of our example 
network will do the "ANDing" of the outputs from the nodes in the input layer. 
Hence, the XOR problem is solved. 
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XOR problem most general shapes 

single layer 
half-plane bounded 
by hyperplane 

two layers 
convex regions, 
"ANDing" 
hyperplanes 

Figure 4.4 Possible decision region shapes for different numbers of layers 

Figure 4.5 shows a proposed solution to the XOR problem. Since the input 
signals have the indices 1 and 2, respectively, the nodes are numbered as 3 and 4 
in the input layer and 5 in the output layer. The weights and biases of the nodes 
may be chosen as 

node 3: W13 = 1 W23 = 1 ^3 = —0.5 
node 4: wu = — 1 W24 = — 1 (P4 = 1.5 
node 5: W35 = 1 W45 = 1 cps = —1.5 

Note! There are many possible solutions, try it yourself. 
Going back to Figure 4.4 again, we can now draw some general conclusions 

about the possible shapes of decision regions as a function of the number of lay
ers. A one-layer network can only split the input vector space with hyperplanes. 
Using a second layer, having the outputs of the first layer as inputs, a number of 
hyperplanes can be "ANDed" together and convex decision regions can now be 
formed. The number of nodes in each layer determines the number and com
plexity of the regions. Finally, incorporating a third layer, a number of convex 
regions, created by the preceding second layer, can now be "ORed" together 
and arbitrary complex decision regions can be obtained. So, from theoretical 
point of view, there is no need for more than three layers in a layered feedfor
ward artificial neural network. When implementing these nets, however, more 

three layers 

arbitrary regions, 
"ORing" two-layer 
regions 
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output 
layer 

Figure 4.5 Example of a two-layer feedforward ANN ofperceptron type, 
capable of solving the XOR problem 

layers may sometimes be used. This may facilitate reuse of some intermediate 
computing results and reduce the total number of nodes in the network and/or 
simplify the training, i.e. the process of determining the weights and biases in 
the nodes. 

Returning to the XOR example, there is another way of solving the problem 
. using only one perceptron-type node. The underlying principle is the way in 
which the input signals or "features" are chosen. This is a very important, often 
forgotten topic in many cases. Choosing "bad" input signals may make it impos
sible even for an advanced artificial neural network to perform a simple task, 
while choosing "smart" input signals may solve complex problems using fairly 
simple networks. If we put a non-linear "preprocessor" in front of the inputs of 
our original single-layer network, creating for instance the two input signals 

y\ = x\ + x2 

yi = (x\ + x2} 
2 (4.17) 

the XOR problem can now be solved using the original single-perceptron node 
(index 3) with the weights and bias 

node 3: w\?> = 2 W23 = — 1 (P3 = —0.5 

Note that 72 represents a circular area, i.e. a convex region. 
The importance of a wise selection of input signals or features for a given 

problem and network cannot be overemphasized. 

4.2.4.3 Training and adaptation 

Training or adaptation is used to determine the weights and biases of an artificial 
neural network, i.e. to determine the function of the network. By means of a 
number of algorithms, this can be done in a number of ways. Before going into 
a more detailed discussion, some general problems should be addressed. 

Training by examples is of course a nice way of "programming" the network, 
however, the more weights and biases that need to be determined, the more input 
data examples will be needed (and the more training time will be required). 
Adaptive systems like this "eat" input data. Once used as an example, the data 
is normally not good for any further training. 

Secondly, finding a significant subset of all possible input data suitable 
for training is not easy in the general case. Using a "bad" training set, the 
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network may "learn" the wrong mappings and poor performance may result 
(like teenagers?). Normally, training is performed using a training set of input 
data, while performance testing uses another set of input data. If the same input 
data set is used for both testing and training, we can only be sure that the net
work has learnt how to handle the known data set properly. If this is the primary 
task of the system, it would probably be better to use a look-up table (LUT) 
algorithm than an artificial neural network. 

One of the main advantages of an artificial neural network is that it is able 
to generalize, i.e. if earlier unknown input data is presented, the network can 
still give a "reasonable" answer. A "conventional" computing system would in 
many cases present a useless error message in the same situation. The network 
can in this respect be viewed as a huge lookup table, where only a fraction of all 
the possible entries have been initialized (by the training data set). The network 
itself will then "interpolate" all the non-initialized table entries. Hence, a proper 
choice of training data is crucial to achieve the desired function. 

Training methods can be divided into two groups, unsupervised and super
vised. In both cases, the network being trained is presented with training data. 
In the unsupervised (Rumelhart and McClelland, 1987) case, the network itself 
is allowed to determine a proper output. The rule for this is built into the net
work. In many cases, this makes the network behavior hard to predict. This type 
of network is known as "clustering" devices. The problem with unsupervised 
learning is that the result of the training is somewhat uncertain. Sometimes the 
network may come up with training results that are almost incomprehensible. 
Another problem is that the order in which the training data is presented may 
affect the final training result. 

In the case of supervised training, not only is the training data presented 
to the network, but also the corresponding desired output. There are many 
different supervised training algorithms around, but most of them stem from a 
few classical ones, which will be presented below. The bias term <p of a node can 
be treated as a weight connected to an input signal with a constant value of 1. 

The oldest training algorithm is probably Hebb's rule. This training algo
rithm can only be used for single-layer networks. There are many extensions to 
this rule of how to update the weights, but in its basic form it can be expressed 
as the following 

Wfj(n + 1) = wtjin) + fjLXi(ri)Xj(ri) (4.18) 

where /x is the "learning rate", X( is the output of node /, which is also one of 
the inputs to nodey and Xj is the output of node j . The underlying idea of the 
Hebbian rule is that if both nodes / andy are "active" (positive output) or "inac
tive" (negative output) the weight in between them, w,y, should be increased, 
otherwise it should be decreased. In a one-layer network, Xj is a component in 
the training input data vector and Xj corresponds to the desired output. 

This simple rule has two advantages, it is local, i.e. it only needs local 
information JC,- and Xj, and it does not require the non-linearity/() of the node 
to be differentiable. A drawback is that to obtain good training results, the input 
vectors in the training set need to be orthogonal. This is because all the training 
input vectors are added to the weight vectors of the active nodes, hence two or 
more nodes may obtain almost the same weight vectors if they become "active" 
often. Further, the magnitude of the weight vectors may grow very large. This 
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will result in "cross-talk" and erroneous outputs. If on the other hand, the input 
data vectors are orthogonal, it is very unlikely that two nodes will be active 
about equally often and hence obtain similar weight vectors. 

The Widrow-Hoff rule or delta rule is closely related to the LMS algorithm 
discussed in Chapter 3. This training algorithm can only be used for single-layer 
networks. 

In this algorithm, an error signal Sj is calculated as (for node j) 

ej = dj - Uj = dj-^jT wtjXi - <pj (4.19) 

Note that Uj is what comes out of the summation stage in the node and goes 
into the activation function/(). The term dj is the desired output signal when 
the training data vector consisting ofxi, *2, . . . ,*# is applied. The weights are 
then updated using 

Wij(n + 1) = Wij(n) + fiXi(n) 8j{n) (4.20) 

In this case, the input vectors in the training set do not need to be orthogonal. 
The difference between the actual output and the desired output, i.e. the error 
signal Ej, is used to control the addition of the input data vector to the weight 
vector. This rule is also local and it does not require the non-linearity / ( ) of 
the node to be differentiable. 

The perceptron learning rule is a variation of the delta rule described above. 
This training algorithm can, in its standard form, only be used for single-layer 
networks. The idea is to adjust the weights in the network in such a way that 
minimizes the total sum of square errors; the total error for the network is 

£ = E<£ = !>;-*/) =£Uj-f IS*'"** (4-21) 

A simple steepest descent approach is now to take the derivative of the error 
with respect to the weight wg. From this, we can tell in which direction to 
change this particular weight to reduce the total square error for the network. 
This procedure is repeated for all weights, hence we calculate the gradient of 
the weight vector on the quadratic error hypersurface. For Wy we obtain 

dE _ , s dXj dxj duj 

dwij y dwtj J duj dwtj J J 

As can be seen, this algorithm requires the activation function/() of the node 
to be differentiable. This is the delta rule, but we have now also included the 
activation function. The weights are now updated as 

Wij(n + 1) = Wij(n) + iixi(n) ej(n)f(uj(n)) (4.23) 

where (as before) 

UJ = ^wijxi + (Pj (4.24) 
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So far, we have only discussed training algorithms for single-layer feedfor
ward artificial neural networks. Training multi-layer networks is harder, since 
in normal cases, we lack desired output signals for all nodes that are not in the 
output layer. 

For training multi-layer feedforward networks, there is an algorithm called 
the generalized perceptron learning rule, sometimes denoted the back-
propagation algorithm. This algorithm is a generalization of the perceptron 
learning rule discussed above. 

The idea is to start training the output layer. Since we do have access to 
desired output values <4, this can be done by using the standard perceptron 
learning rule as outlined above. Now, we go backwards in the layer and start 
training the first layer preceding the output layer. Here we have to calculate the 
errors on the outputs of the hidden nodes by propagating the errors on the output 
through the output layer. This is where "back-propagation" becomes useful. 

Assume that there are M nodes in the output layer, and that we are to adjust 
the weights of node j in the layer just below the output layer. Firstly, the error 
on the output of node y will contribute to the errors of all output nodes. Let us 
calculate this coupling first by taking the derivative of the total output squared 
error E with respect to the output of node7 

— - V ^L^t - _? V (d - }dXk dUk 

dxj~tudukdxJ~ hi k XkdukdxJ 
= -2 J2 (* - Xk)f{uk)wjk (4.25) 

keM 

When this link between the error on the output and the error of the output of 
node j is known, we can find the derivative of the total error with respect to the 
weights we are to update in nodey (see also equation (4.22) above) 

dE _ dE dxj _ dE dxj duj _ dE 

dWfj dxj dwij dxj duj Bwy dxj 

= -2f\uj)xi ] T ekf(uk)wjk (4.26) 
keM 

The weights can now be updated using the standard form (see also equation 
(4.23) above) 

Wij(n + 1) = Wij(ri) + fixi(n)ff(uj(n)) ]jT sk(n)f(uk(n))wjk (A21) 
keM 

This procedure is repeated for the next layer and so on, until the weights of the 
nodes in the input layer have been updated. 

4.2.4.4 Applications 

Feedforward artificial neural networks are typically used in applications like 
pattern recognition (see Chapter 7), pattern restoration and classific
ation. The "patterns" are the input vectors, where the components are "features" 
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relevant in the application. If we are, for instance, dealing with a speech recog
nition system, e.g. the features can represent signal power in different frequency 
bands of a speech signal. The features can also be pixel values in an artificial 
neural network-based image processing system for optical character reading 
(OCR). Other areas are processing of radar and sonar echo signals, matching 
fingerprints, correcting transmission errors in digital communication systems, 
classifying blood samples, genes and electrocardiograph (ECG) signals in bio
logical and medical applications, troubleshooting of electronic systems, etc. In 
most cases, the applications belong to some basic system types as detailed below. 

Pattern associator: In this system type, the network mainly performs a 
mapping from the input vector space to the output vector space. The mechanism 
here is to map (or "translate") an input vector to an output vector in a way that the 
network has been trained. If the desired mapping is simple and can be expressed 
algebraically, no artificial neural network is normally needed. If, on the other 
hand, the mapping cannot be easily formulated, and/or only samples of input 
and output vectors are available, training an artificial neural network is possible. 

Networks of this type have, for instance, been tried for weather forecasting 
(Hu, 1963). Since the coupling between temperature, humidity, air pressure, 
wind speed and direction in different places affects the weather in a very compli
cated way, it is easier to train a network than to formulate mathematical relations. 

Auto-associator or content addressable memory (CAM): This system type 
can be viewed as a special case of the pattern associator above, in the sense 
that the input vector is mapped back on itself. The system acts as a content 
addressable memory, where the previously trained patterns are stored in the 
weights. If an incomplete or distorted version of an earlier known pattern is 
presented to the network, it will respond with a restored, error-free pattern. 

The human memory works as a content addressable memory. Once we get 
some "clues", or parts of the requested set of information, the rest of this 
information will be recalled by associations. Networks of this type have been 
tried for database search and for error correction of distorted digital signals in 
telecommunications systems. 

Classifier, identifiers: This system type can also be regarded as a special 
case of the pattern associator above. In this situation, our aim is to categorize 
the input pattern and to identify to which class of patterns it belongs. This type 
of network typically has few outputs and in some cases also a special type of 
output layer having "lateral feedback" (treated below) that assures that only one 
output (class) at a time can be active. 

Examples of this type of networks are systems for classifying ECG sig
nals (Specht, 1964), and sonar and radar echo signals. The outputs may be 
"healthy/unhealthy", "submarine/no submarine" and so on. 

Regularity detectors: This system type can be viewed as a variant of the 
classifier above, but in this case there is no a priori set of categories into which 
the input patterns are to be classified. The network is trained using unsupervised 
training, i.e. the system must develop its own featured representation of the 
input patterns. In this way, the system is used to explore statistically salient 
features of the population of input patterns. "Competitive learning" (Rumelhart 
and McClelland, 1987) is an algorithm well suited for regularity detectors. 
Examples of applications in this area are finding significant parameters in a 
large set of data or finding good data compression and error-correction coding 
schemes. 
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4.2.5 Feedback networks 

Feedback networks, also known as recurrent networks, have all outputs inter
nally fed back to the inputs in the general case. Hence, a network of this type 
commonly does not have dedicated inputs and outputs. Besides the non-linear 
activation function, nodes in such a network also have some kind of dynamics 
built in, for instance, as in an integrator or accumulator. 

The main idea of this class of networks is iteration. The input vector to this 
system is applied as initial states of the node outputs and/or as bias values. 
After these initial conditions are set, the network is iterated until convergence, 
when the components of the output vector can be found on the node outputs. 
To achieve convergence and to avoid stability problems, the weights, i.e. the 
feedback parameters, have to be chosen carefully. It is very common that the 
weights are constant, set a priori in feedback networks, hence this type of 
networks is not "trained" in the same way as feedforward-type networks. 

Common networks of this type are the Hopfield net, The Boltzmann 
machine and Kohonen's feature maps. 

4.2.5.1 Nodes 

The node functions in a feedback network have many similarities to the node 
functions used in feedforward networks. An important difference, however, 
is that in the feedback network case, the node functions include dynamics or 
memory, e.g. an integrator. This is necessary, as the network will be iterated to 
obtain the final output. (In the feedforward case, obtaining the output is a one-
step process.) A common node model used by, e.g. Hopfield, has the differential 
equation 

-T7 = X I WiJXi + VJ ~ UJ = Yl wvf^ + <PJ ~ UJ (4-28) 
i i 

where / ( ) is the activation function. As can be seen, we have taken the node 
function (4.8) and inserted an integrator in between the summation point and 
the non-linear activation function. Hence, the feedback network is but a system 
of N non-linear differential equations, which can be expressed in a compact 
matrix form 

— = WTX + 0 - U = WTF(U) + 0 - U (4.29) 
At 

where 

U = [U\ U2 • • • UN] 

F(U) = [Am) f(u2) ••• f(uN)]T = x 

0 = [<p\ <P2 • • • <PN]T 

Now, it is straightforward to realize that when iterating the network it will 
converge to a stable state when equation (4.29) is equal to the zero vector 
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If we assume that the weight matrix W is symmetric, i.e. wg = wjt and that we 
integrate equation (4.29), we can define the computational "energy" function 
for the network 

1 N rxJ 
H(X) = —XTWTX - X T 0 + Y / f~l(x)dx (4.30) 

2 UJo 

Now, if the activation function is a sigmoid equation (4.11), the inverse function 
will be 

u =f~\x) = -Tin (- - 1 J (4.31) 

If we, like Hopfield, use the hard limiter activation function, this corresponds 
to a sigmoid with a low computational temperature T, implying that the third 
term of equation (4.30) will be small. Hence, it can be neglected and equation 
(4.30) can be simplified to 

H(X) = - -XTWTX - X T 0 (4.32) 

Hence, when the network settles to a stable state (equation (4.30)) all derivatives, 
i.e. the gradient of the energy function (4.32), is zero. This means that the stable 
states of the network and the output patterns correspond to the local minimum of 
the energy function. To "program" the network means formulating the problem 
to be solved by the network in terms of an energy function of the form (4.32). 
When this energy function has been defined, it is straightforward to identify the 
weights and biases of the nodes in the feedback artificial neural network. 

A more general way to design a feedback network is of course to start by 
defining an energy function and obtaining the node functions by taking the 
derivatives of the energy function. This method is, in the general case, much 
harder since node functions may turn out to be complicated and convergence 
problems may occur. The energy function must be a Lyapunov (Astrom and 
Wittenmark, 1984) type function, i.e. it should be monotonically decreasing in 
time. Further, Hopfield has shown that the weight matrix W must be symmet
ric, in other words Wy = Wjt and have vanishing diagonal elements wu = 0 to 
guarantee stability. 

4.2.5.2 Network topology 

In the general case, all nodes are connected with all other nodes in a feedback 
network (see Figure 4.6). There are however some special cases; one such case 
is lateral feedback (Lippmann, 1987; Stranneby, 1990). This type of feedback 
is commonly used within a layer of a feedforward network. An example is the 
MAXNET. This lateral feedback-type network assures that one and only one 
output of a layer is active, and that the active node is the one having the largest 
magnitude of the input signal of all nodes in the layer. The MAXNET is hence 
a device to find the maximum value within all elements in a vector. Quite often, 
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>x2 

- •JCj 

Figure 4.6 Example of a small, general feedback ANN 

2i structure like this is used on the output of a classifying feedforward-type 
artificial neural network, to guarantee that only one class is selected. 

4.2.5.3 Local and global minimum 

As was seen in the previous section, when the feedback artificial neural network 
is iterated, it will finally settle in one of the minimum points of the energy 
function of the type as equation (4.32); which minimum point depends on the 
initial state of the network, i.e. the input vector. The network will simply "fall 
down" in the "closest" minimum after iteration is started. In some applications 
this is a desired property, in others it is not. 

If we like the network to find the global minimum, in other words the "best" 
solution in some sense, we need to include some extra mechanism to assure that 
the iteration is not trapped in the closest local minimum. One network having 
such a mechanism is the Boltzmann machine. 

In this type of feedback artificial neural network, stochastic node functions 
are used. Every node is fed additive zero-mean-independent (uncorrelated) 
noise. This noise has the effect of making the node outputs noisy, thus "boiling" 
the hypersurface of the energy function. In this way, if the state of the network 
happens to "fall down" in a local minimum, there is a certain probability that 
it will "jump up" again and fall down in another minimum. The trick is then 
gradually to decrease the effect of the noise, making the network finally end in 
the "deepest" minimum, i.e. the global one. This can be performed by slowly 
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decreasing the "temperature" T in the sigmoid activation function in the network 
nodes. 

The trick of decreasing the "temperature" or cooling the network until it 
"freezes" to a solution is called simulated annealing. The challenge here is 
to find the smartest annealing scheme that will bring the network to the global 
minimum with a high probability in as short a time as possible. Quite often 
networks using simulated annealing converge very slowly. 

The term "annealing" is borrowed from crystallography. At high tempera
tures, the atoms of a metal lose the solid-state phase, and the particles position 
themselves randomly according to statistical mechanics. The particles of the 
molten metal tend toward the minimum energy state, but the high thermal energy 
prevents this. The minimum energy state means a highly ordered state such as a 
defect-free crystal lattice. To achieve defect-free crystals, the metal is annealed, 
i.e. it is first heated to a temperature above the melting point and then slowly 
cooled. The slow cooling is necessary to prevent dislocations and other crystal 
lattice disruptions. 

4.2.5.4 Applications 

Artificial neural networks have traditionally been implemented in two ways, 
either by using analog electronic circuits, or as software on traditional digital 
computers. In the latter case, which is relevant for DSP applications, we of 
course have to use the discrete time equivalents of the continuous-time expres
sions present in this chapter. In the case of feedforward artificial neural net
works, the conversion to discrete time is trivial. For feedback networks having 
node dynamics, standard numerical methods like Runge-Kutta may be used. 

Feedback artificial neural networks are used in content addressable memories 
(CAM) and for solving miscellaneous optimization problems. 

In CAM, each minimum in the energy function corresponds to a memo
rized pattern. Hence, in this case, "falling" in the closest local minimum is a 
desirable property. Given an incomplete version of a known pattern, the net
work can accomplish pattern completion. Unfortunately, the packing density 
of patterns in a given network is not very impressive. Research is in progress 
in an attempt to find better energy functions that are able to harbor more and 
"narrow" minimums, but still result in stable networks. 

Solving optimization problems is probably the main application of feedback 
artificial neural networks. In this case, the energy function is derived from the 
objective function of the underlying optimization problem. The global minimum 
is of primary interest, hence simulated annealing and similar procedures are 
often used. For some hard optimization problems and/or problems with real
time requirements (e.g. in control systems), a local minimum, i.e. sub-optimum 
solution found in a reasonable time, may be satisfactory. 

Many classical NP-complete optimization problems, e.g. "The traveling 
salesman" (Hopfield and Tanks, 1986) and "The 8-queens problem" (Holmes, 
1989), have been solved using feedback artificial neural networks. 

It is also possible to solve optimization problems using a feedforward artificial 
neural network with an external feedback path. This method has been pro
posed for transmitter (TX) power and frequency assignment in radio networks 
(Stranneby, 1996). 
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Figure 4.7 Example of a telecommunications system using PAMpulse 
trains and a neural nework-based RX 

4.2.6 An example application 

4.2.6.1 The problem 

Suppose we have an application as in Figure 4.7. The transmitter (TX) is 
sending random sequences of the three commands: STOP, START and SYNCH. 

These commands are coded as pulse amplitude modulation (PAM) pulse trains 
representing five bipolar (±1) symbols as in the figure. Unfortunately, the 
transmission conditions are poor, so the pulse trains reaching the receiver (RX) 
are weak, distorted and noisy. The task of the neural network-based RX is to 
determine which command was most probably transmitted. Since the distor
tion mechanism changes from time to time, the RX needs to be adaptive, i.e. 
it needs to be "trained" at regular intervals to learn how to interpret the noisy 
received pulses. The training is accomplished by the TX sending a predeter
mined, known sequence of commands. This system is of course simplified, 
since the main purpose of this example is to demonstrate a neural network 
application. Digital transmission systems are covered in Chapter 8. 

4.2.6.2 The Hamming net 

There are many possible solutions of how to design the receiver in Figure 
4.7. In this example, a hybrid type of neural network called a Hamming net 
(Lippmann, 1987; Stranneby, 1990) will be used. The input layer is a one-layer, 
adaptive feedforward network, while the second layer is a lateral feedback 
network having fixed weights (see Figure 4.8). The latter part is sometimes 
referred to as the MAXNET 

The input pulse train is sampled at five instants of time, corresponding to 
the five bipolar symbols. At the transmitting site, these symbols are of course 
clean and benign, having only the levels ±1 (see Figure 4.7). At the receiver, 
however, almost any pulse amplitudes can be found due to the distortion and 
noise introduced in the transmission process. The five sampled input values are 
denoted (from left to right) x\, X2, *3, *4, *5 and referred to as the input vector. 

The first network layer (left) in Figure 4.8, nodes 6-8, is a feedforward 
network performing a cross-correlation operation between the incoming input 
vector and the "learnt" prototype vectors (expected pulse trains) corresponding 
to the three commands. Hence, the output of node 6, i.e. xe9 is the degree of 
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Figure 4.8 Architecture of the Hamming net used in the example 

correlation between the input vector and the expected vector for the command 
STOP. Node 7, with output x-j corresponds to START, and node 8, output x% to 
the SYNCH command. To be able to determine which symbol is being received, 
we finally need to find the input node having maximum output. This task is 
accomplished in the second layer (right) of the network in Figure 4.8. This 
layer is a feedback network, consisting of nodes 9-11. The feedback network 
nodes are initialized to the output values of the first layer, and are thereafter 
iterated. As the iteration is completed, only one of the nodes 9-11 will have 
a non-zero output signal, which will indicate which command was received. 
Obviously, node 9, output x$ corresponds to STOP, node 10, X\Q to START and 
node 11, x\\ to the SYNCH command. There are, of course, easier ways to find 
the maximum output of three outputs, but in this example our purpose is to 
demonstrate a feedback network. 

4.2.6.3 The feedforward input layer 

The input layer consists of nodes as depicted in Figure 4.9, having the node 
function (compare to equation (4.8)) as 

xj =f(Mj) =ffrwijxi + <i>j\ for y = 6,7,8 (4.33) 
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Figure 4.9 An input-layer feedforward node with delta rule adaptation 

where the bias is </>j = 0 and the activation function is 

x x > 0 
0 x < 0 

(4.34) 

which is basically the soft limiter (equation (4.10)) with b = 0 and a --» oo. 
The node is trained using the Widrow-Hoff rule (delta rule) as in equations 

(4.19) and (4.20). Inserting equation (4.33) we obtain 

Wij(n + 1) = WijQi) + ^Xi(n)6j(n) = Wy(n) + fiXi(n)(dj(n) - uj(n)) 

= Wij(n) + jK*/(w) I dj(n) - J^ mj(n)xi(n) (4.35) 

where dj(n) is the desired output Uj(n) (input to the non-linear activation func
tion) when the input vector x\(n),X2(n),X3(n),X4(n\xs(n) is presented. In most 
cases, the value of the learning rate /x must be determined heuristically. It is easy 
to see that this type of training is the same as that taking place in an adaptive 
filter using the LMS algorithm (see Chapter 3). 
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Figure 4.10 shows a typical training sequence. The figure shows how the 
weight values of node 6 converge. In this example, all the weights were initial
ized to 0.5 ("cold start") and /x was set conservatively to 0.1. As can be seen, 
after approximately 20 training runs, the weights are settled. It is possible to 
increase /x and achieve a faster training, but since the input vector is subject to 
noise, a too fast training may result in poor weights. Often, a longer training 
time means less impact of the input signal noise on the final weight values. 

When the network is run under "normal" conditions, i.e. not training, the 
weights are fixed to the values obtained during the training phase. The weights 
are not changed until a new training sequence starts. In most cases, the following 
training sequences will be faster since the starting values of the weights are 
already quite good. 

4.2.6.4 The feedback layer, MAXNET 

The output layer consists of nodes 9-11 as shown in Figure 4.11. The nodes 
have partly the same node function as in the input layer, but also have a delay 
(memory) to achieve a dynamic process when iterating 

Xj(m + 1) =flXj(m) + J2wiMm) 1 for J = 9> 1 0 > n (4-36) 

where the fixed weights are set to 
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Figure 4.10 Weights of node 6 during a training sequence 
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and a is an iteration constant, for stability set to a < 1 /M where M is the num
ber of nodes in the feedback network, in our case equal to 3. Before iteration is 
started, the network nodes are initialized to x${Q) = xe,*io(0) = xj,x\\ (0) = x%. 
Figure 4.12 shows the iteration of the feedback network. Note that the pro
cess continues until all outputs but one are "dead" (zero). The "surviving" 
output belongs to the node initialized by the largest starting level, i.e. the 
largest output of *6, *7, *8- In this simulation a = 0.1 is used for demonstration 
purposes. 

Simulating the entire network, it can be shown to recognize the correct 
pulse trains in most cases, even when considerable random background noise 
is present. This example, a non-linear correlation receiver, is probably not 

Figure 4.11 An output-layer feedback node with one sample delay 
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Figure 4.12 Iteration of the MAXNETfeedback network, all outputs (<die' 
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the optimum implementation for the stated problem, but merely meant as 
an example. Further ideas on digital transmission systems can be found in 
Chapter 8. 

4.3 Fuzzy logic 4.3.1 General 

A fuzzy logic or fuzzy control (Palm et al, 1996; Passino and Yurkovich, 1998) 
system performs a static, non-linear mapping between input and output signals. 
It can in some respects be viewed as a special class of feedforward artificial 
neural networks. The idea was originally proposed in 1965 by Professor Lofti 
Zadeh at the University of California, but has not been used very much until the 
past decade. In ordinary logic, only false or true is considered, but in a fuzzy 
system we can also deal with intermediate levels, e.g. one statement can be 
43% true and another one 89% false. 

Another interesting property is that the behavior of a fuzzy system is not 
described using algorithms and formulas, but rather as a set of rules that may be 
expressed in natural language. Hence, this kind of system is well suited in situa
tions where no mathematical models can be formulated or when only heuristics 
are available. Using this approach, practical experience can be converted into 
a systematic, mathematical form, in, for instance, a control system. 

A simple fuzzy logic system is shown in Figure 4.13. The fuzzifier uses 
membership functions to convert the input signals to a form that the inference 
engine can handle. The inference engine works as an "expert", interpreting the 
input data and making decisions based on the rules stored in the rule database. 
The rule database can be viewed as a set of "If-Then" rules. These rules can 
be linguistic descriptions, formulated in a way similar to the knowledge of a 
human expert. Finally, the defuzzifier converts the conclusions made by the 
inference engine into output signals. 

As an example, assume we are to build a smart radar-assisted cruise control 
for a car. The input signals to our simplified system are the speed of our car and 
the distance to the next car in front of us. (The distance is measured using radar 
equipment mounted on the front bumper.) The continuous output control signals 
are accelerate and brake. The task of the fuzzy controller is to keep the car at a 
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Figure 4.13 Example of a simple fuzzy logic system 
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constant speed, but to avoid crashing into the next car in a traffic jam, Further, 
to get a smooth ride, the accelerator and brake should be operated gently. 

4.3.2 Membership functions 

The outputs of the fuzzifler are called linguistic variables. In the above example, 
we could introduce two such variables SPEED and DISTANCE. The linguistic 
value of such a variable is described using adjectives like slow, fast, very fast, 
etc. The task of a membership function is to interpret the value of the continuous 
input signal to degree of membership with respect to a given linguistic value. 
The degree of membership can be any number between zero and one, and it 
can be regarded as a measure of to what extent the input signal has the property 
represented by the linguistic value. It is common to use 3, 5 or 7 linguistic 
values for every linguistic variable, hence the same number of membership 
functions are required. Figure 4.14 shows the membership functions for our 
example given above. Here we have used three linguistic values for SPEED -
slow, medium &n&fast and three values for DISTANCE - close, ok and far. 

From the figure it can be seen that the set of membership functions converts 
the value of the continuous input signal to degree of membership for every 
linguistic value. In this example, the membership functions overlap, so the 
SPEED can, for instance, be both medium and fast but with different degrees of 
membership. Further, we have chosen to "saturate" the outermost membership 
functions; for instance, if the distance goes to infinity or zero it is regarded as 
far and close, respectively. There are many possible shapes for a membership 
function; the simplest and most common one is a symmetric triangle, which 
we have used in our example. Other common shapes are trapezoid, Gciussian or 
similar "bell-shaped" functions, peak shapes and skewed triangles. If a purely 
rectangular shape is used, the degree of membership can only be one or zero and 
nothing in between. In such a case, we are said to have a crisp set representation 
rather than a fuzzy set representation. 
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4.3.3 Fuzzy rules and inference 

The input to the inference engine is the linguistic variables produced by the 
membership functions in the fuzzifier (the fuzzy set). The output linguistic 
variables of the inference engine are called the conclusions (the implied fuzzy 
set). The mapping between the input and output variables is specified in natural 
language by rules having the form 

If premise Then consequent (4.38) 

The rules can be formulated in many forms. Of these forms, two are com
monly standard, multi-input single-output (MISO) and multi-input multi-output 
(MIMO). In this text, we will deal with MISO rules only. (An MIMO rule is 
equivalent to a number of MISO rules.) The premise of a rule is in the multi-
input case a "logic" combination of conditions. Two common "logic" operators 
are AND and OR. Two simple examples of rules containing three conditions are 

If conditioni AND conditio^ AND conditions Then consequent (4.39a) 

If conditioni OR conditio^ OR conditions Then consequent (4.39b) 

Now, if we had been using Boolean variables (one or zero), the definition of the 
operators AND and OR would be obvious. In this case, however, the conditions 
are represented by degree of membership, i.e. any real number between zero 
and one. Hence, we need an extended definition of the operators. There are dif
ferent ways to define AND and OR in fuzzy logic systems. The most common 
way to define the AND operation between two membership values, /jiy and /x /̂, 
is by using the minimum 

fiij AND fiu = minf/Xy, fiu] (4.40) 

where jiy means the membership value of function y of the linguistic variable 
i. For example, 0.5 AND 0.7 = 0.5. The most common way to define the OR 
operation is by using the maximum 

fiij OR [xk\ = max{/x,7, /*#} (4.41) 

For example, 0.5 OR 0.7 = 0.7. An alternative way of defining the operators is 
to use algebraic methods 

tiij AND nki = tiffin (4.42) 

ILij OR nu = fly + [LH - fiijiiu (4.43) 

An interesting question is how many rules are needed in the rule database? 
Assuming we have n linguistic variables (inputs to the inference engine) and 
that the number of membership functions for variable / is Nj9 then the total 
number of rules will be 

n 

NSL = Y\NI=N1-N2 N„ (4.44) 
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Assuming this, we need to consider all possible combinations of input signals. 
Further, if MISO rules are used, A/R rules may be needed for every output 
linguistic variable in the worst case. From equation (4.44) it is easy to see 
that the rule database and the computational burden grow quickly if too many 
variables and membership functions are used. Hence, the selection of good 
input signals and an appropriate number of linguistic values is crucial to system 
performance. 

To pursue our example, we need to define output linguistic variables, val
ues and membership functions for the conclusions produced by the inference 
engine. Let us introduce two output variables. Firstly, ACCELERATE having 
three values, release, maintain and press (for the accelerator pedal). Secondly, 
BRAKE with values, release, press mdpress hard (for the brake pedal). We are 
assuming automatic transmission and are ignoring "kick-down" features and so 
on. The associated membership functions used are triangular (see Figure 4.15). 
In this case, "saturating" functions cannot be used since infinite motor power 
and accelerating brakes are not physically possible. From Figure 4.15 we can 
also see that the center of a membership function corresponds to a given value 
of thrust or braking force. 

ACCELERATE: release 
maintain 
press 

- 2 5 % thrust 
+25% thrust 
+75% thrust 

BRAKE: release 0% braking force 
press 25% braking force 
press hard 75% braking force 

(braking using motor) 
(to counteract air drag) 
(to accelerate) 

(gentle stopping) 
(panic!) 

The next step is to formulate the rules. According to equation (4.44) we will 
need 3 x 3 = 9 rules for every output (using MISO rules) if all combinations 
are considered. The following rules are suggested. 
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If SPEED is slow AND DISTANCE is close Then ACCELERATE 
is release (4.45a) 

If SPEED is slow AND DISTANCE is ok Then ACCELERATE 
is press (4.45b) 

If SPEED is slow AND DISTANCE is far Then ACCELERATE 
is press (4.45c) 

If SPEED is medium AND DISTANCE is close Then ACCELERATE 
is release (4.45d) 

If SPEED is medium AND DISTANCE is ok Then ACCELERATE 
is maintain (4.45e) 

If SPEED is medium AND DISTANCE is far Then ACCELERATE 
is maintain (4.45f) 

If SPEED is fast AND DISTANCE is close Then ACCELERATE 
is release (4.45g) 

If SPEED is fast AND DISTANCE is ok Then ACCELERATE 
is release (4.45h) 

If SPEED is fast AND DISTANCE is far Then ACCELERATE 
is release (4.45i) 

If SPEED is slow AND DISTANCE is close Then BRAKE 
is press (4.46a) 

If SPEED is slow AND DISTANCE is ok Then BRAKE 
is release (4.46b) 

If SPEED is slow AND DISTANCE is far Then BRAKE 
is release (4.46c) 

If SPEED is medium AND DISTANCE is close Then BRAKE 
is press (4.46d) 

If SPEED is medium AND DISTANCE is ok Then BRAKE 
is release (4.46e) 

If SPEED is medium AND DISTANCE is far Then BRAKE 
is release (4.46f) 

If SPEED is fast AND DISTANCE is close Then BRAKE 

is press hard (4.46g) 

If SPEED is fast AND DISTANCE is ok Then BRAKE is press (4.46h) 

If SPEED is fast AND DISTANCE is far Then BRAKE 
is release (4.46i) 

Having defined all the rules needed, we may now be able to find simplifications 
to reduce the number of rules. For instance, it is possible to reduce the rules 
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(4.45g)-(4.45i) to just one rule, since the value of DISTANCE does not matter, 
and in all cases ACCELERATE should be release if SPEED is fast. The reduced 
rule is 

If SPEED is fast Then ACCELERATE is release (4.47a) 

Reasoning in the same way, rules (4.45a) and (4.45d) can be reduced 

If DISTANCE is close Then ACCELERATE is release (4.47b) 

Combining rules (4.47a) and (4.47b) we obtain 

If SPEED is fast OR DISTANCE is close Then ACCELERATE 
is release (4.47c) 

Keeping rules (4.45b), (4.45c), (4.45e) and (4.45f) as is, we are now left with 
five rules for ACCELERATE. Trying some reduction for the rules generating 
BRAKE, one solution is to join rules (4.46c), (4.46f) and (4.46i) to 

If DISTANCE is far Then BRAKE is release (4.48) 

Leaving the other rules for BRAKE as is, we now have seven rules, so the 
total database will contain 12 rules (MISO). Further reductions are possible 
for both ACCELERATE and BRAKE, but they will result in complex rules 
and will probably not reduce the computational demands. Finally, the rules are 
rewritten in "mathematical" form and stored in the rule database. If we adopt 
the following notations 

/xii membership value for SPEED, slow 
IJL\2 membersh ip value for SPEED, medium 
{i 13 membersh ip value for SPEED, fast 
/X21 membersh ip value for D I S T A N C E , close 
[i2i membersh ip value for D I S T A N C E , ok 
fi23 membership value for DISTANCE, far 

For conclusion (implied fuzzy set) about thrust 

rj3i implied membership value for ACCELERATE, by rule / 
bit position of peak of recommended membership function in 

ACCELERATE, by rule/ 

For conclusion (implied fuzzy set) about braking force 

r]4j implied membership value for BRAKE, by ruley 
bfy position of peak of recommended membership function 

in BRAKE, by rulej 

We can now formulate our reduced set of rules above in a mathematical form. 
For ACCELERATE we get 

(4.47c): 7731 =max{/xi3,/x2i} for b?>\ = -0.25 (4.49a) 

(4.45b): 7732=min{/zii,A622} for Z>32 = 0.75 (4.49b) 

(4.45c): ?733=min{/zii,/X23} for 633 =0.75 (4.49c) 
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(4.45e): 

(4.45f): 

^34 = min{/xi2,M22} 

y;35=min{/xi2,/X23} 

and for BRAKE we get 

(4.48): 

(4.46a): 

(4.46b): 

(4.46d): 

(4.46e): 

(4.46g): 

(4.46h): 

*?4i =M23 

y?42 = min{/xii,jLt2i} 

^43=min{/xn,/X22} 

^44 = min{/xi2,/X2i} 

y/45=min{/xi2,M22} 

r/46 = min{/xi3,M2i} 

y;47=min{/xi3,/X22} 

for Z?34 = 0.25 

for Z>35 = 0.25 

for Z?4i = 0 

for Z>42 = 0.25 

for Z?43 = 0 

for £44 = 0.25 

for 645 = 0 

for 646 = 0.75 

for 647 = 0.25 

(4.49d) 

(4.49e) 

(4.50a) 

(4.50b) 

(4.50c) 

(4.50d) 

(4.50e) 

(4.50f) 

(4.50g) 

4.3.4 Defuzzification 

The output conclusions from the inference engine must now be combined in a 
proper way to obtain a useful, continuous output signal. This is what takes place 
in the defuzzification interface (going from a fuzzy set to a crisp set). There are 
different ways of combining the outputs from the different rules. The implied 
membership value rjy could be interpreted as the degree of certainty that the 
output should be by as stated in the rule database. 

The most common method is the center of maximum (CoM). This method 
mainly takes the weighted mean of the output membership function peak 
position with respect to the implied membership value produced by M 
rules, i.e. 

* = ^u B (4-51) 

where yt is the output signal, a continuous signal that can take any value between 
the smallest and largest output membership function peak positions. Another 
defuzzification method is center of area (CoA) also known as the center 
of gravity (CoG). In this case, the respective output membership function is 
"chopped-off" at the level equal to the implied membership value rjy. In this 
case, the area of the "chopped-off" (Figure 4.16) membership function^ is 
used as a weighting coefficient 

yt = ' • (4.52) 
2-j/=l Aij 

Yet another method of defuzzification is mean of maximum (MoM). In this 
method, the output is chosen to be the one corresponding to the highest mem
bership value, i.e. the by corresponding to the largest rjy. MoM is often used 
in managerial decision-making systems and not very often in signal processing 
and control systems. CoG requires more computational power than CoM, hence 
CoG is rarely used while CoM is common. 
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Figure 4.16 Defuzzification using CoG 

Let us use CoM to complete our example. There are two continuous output 
signals from our cruise control, accelerate and brake. Assume accelerate is 
denoted as 73 and brake as 74. Using equation (4.51) it is straightfoi'ward to 
derive the defuzzification process 

B 
E?=i mj 

-0.25y/3i + 0.75^2 + 0.75^3 + 0.25r?34 + 0.25^5 

7̂31 + mi + 7?33 + *?34 + 7̂35 

0.75(^2 + 7733) + 0.25(7734 + ^35 - mi) 

m\ + m2 + *?33 + 7̂34 + ??35 
(4.53) 

E/=l ^ 

_ 0̂ 741 + 0.25?H2 + Qyy43 + 0.25^4 + Qy?45 + 0.75ry46 + 0.25r/47 

T]4\ + mi + 7̂43 + 7/44 + *?45 + ??46 + *?47 

0.75yy46 + 0-25(y?42 + ?/44 + mi) 

m\ + *?42 + mi + *?44 + ms + ?̂46 + mi 
(4.54) 

In Figure 4.17 plots of ̂ 3 and>>4 are shown. It should be remembered, how
ever, that this example is simplified and that there are many alternative ways of 
designing fuzzy systems. 

4.3.5 Applications 

Fuzzy logic is used in some signal and image processing systems and in image 
identification and classifying systems. Most fuzzy systems today are, how
ever, control systems. Fuzzy regulators are suitable for applications where 
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Figure 4.17 Output signals accelerate and brake as functions of input 
signals speed and distance 

mathematical models are hard or impossible to formulate. The process sub
ject to control may be time varying or strongly non-linear, requiring elaborate 
theoretical work to be understood. Another suitable situation arises when there 
is an abundant amount of practical knowledge from manual control such that 
experience can be formulated in natural language rather than mathematical algo
rithms. It is common that people having limited knowledge in control theory 
find fuzzy control systems easier to understand than traditional control systems. 

One drawback that exists is that there are no mathematical models available, 
and no computer simulations can be done. Numerous tests have to be performed 
in practice to prove performance and stability of a fuzzy control system under all 
conditions. A second drawback is that the rule database has a tendency to grow 
large, requiring fast processing hardware to be able to perform in real time. 

Fuzzy controllers can be found not only in space ships but also in air 
conditioners, refrigerators, microwave ovens, automatic gearboxes, cameras 
(auto-focus), washing machines, copying machines, distilling equipment, 
industrial baking processes and many other everyday applications. 

Summary In this chapter the following main topics have been addressed: 

• The median filter and threshold decomposition 
• Neural network architectures: feedforward, layered networks, feedback and 

lateral feedback 
• Neural network node models, hard limiter, soft limiter and sigmoid 
• Unsupervised and supervised learning: Hebb's rule, the Widrof-Hoff rule, 

the perceptron learning rule and back-propagation 
• Applications: pattern recognition, classification, pattern associator, content 

addressable memory regularity detectors and optimization 
• The Boltzmann machine computational temperature and simulated annealing 
• Fuzzy control systems. 

Review questions R4-1 What are the main advantages of a median filter? 
R4-2 What are the main features of feedforward and feedback neural networks? 
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R4-3 Draw a block diagram of a feedforward neural network node and explain 
the terms: weight, bias, activation function, hard limiter, soft limiter and 
sigmoid. 

R4-4 Why are many feedforward neural networks partitioned into layers? What 
limitations does the layer structure have on the shape of the decision 
regions? 

R4-5 Give a brief description of the training algorithms: Hebb's rale, the 
Widrow-Hoff rule, the perceptron learning rule and the back-propagation 
algorithm. In what type of networks are the respective algorithms usable? 

R4-6 For feedback neural networks used in optimization, local minimum in the 
energy function may present a problem. Explain why. How can simulated 
annealing ease this problem? What is the drawback? 

R4-7 Draw a block diagram of a simple fuzzy logic system. What are the 
tasks of the four blocks? Explain the terms: linguistic variable, linguistic 
value, membership function, degree of membership, crisp set, center of 
maximum, center of area and mean of maximum. 

R4-8 In which applications can fuzzy systems be used? Pros and cons? 

Solved problems P4-1 Write a program in MATLAB™ implementing a median filter and plot 
the input X and output Y vectors for filter lengths TV = 3, 5, 7. Use the 
input signal 

X= [0 0 0 0 1 2 3 4 4 4 3 -8 1 0 0 1 1 0 0 0 
1 1 1 0 0 0 0]. 

Explain the obtained results. 
P4-2 In the text in Section 4.2.4.2, it is claimed that the XOR problem can 

be solved with only one feedforward neural network node using proper 
preprocessing of the input signals (see equation (4.17)). Draw a diagram 
of such a node, and make a truth table to prove that it really works. 

P4-3 For Hopfield networks the energy function (4.30) can be approximated by 
equation (4.32), since the network uses a hard limiter activation iiinction. 
Show that the sigmoid function actually can be approximated by a hard 
limiter for small computational temperatures. What are the parameters a 
and b in such a case? 



5 Spectral analysis and 
modulation 

Background In many cases when analyzing signals or trying to find features of signals, 
transformation to the frequency plane is advantageous, i.e. dealing with, for 
instance, kilohertz and megahertz rather than milliseconds and microseconds. 
In this chapter, some common methods for spectral analysis of temporal signals 
will be presented. 

Another topic addressed in this chapter is modulation. Quite often in analog 
and digital telecommunication systems, the information signals cannot be trans
mitted as is. They have to be encoded (modulated) onto a carrier signal, suited 
for the transmission media in question. Some common modulation methods are 
demonstrated. 

Objectives In this chapter we will discuss: 

• Discrete Fourier transform (DFT) and fast Fourier transform (FFT) 
• Windowing techniques, spectrum estimation and periodogram averaging 
• Auto-correlation, cross-correlation, auto-covariance and cross-covariance 
• Parametric spectrum analysis, auto-regressive (AR), moving average (MA) 

and auto-regressive moving average (ARMA) models 
• Wavelet analysis 
• Amplitude shift keying (ASK), frequency shift keying (FSK) and phase shift 

keying (PSK) 
• Phasors, complex modulation and in phase/quadrature phase (I/Q)-

modulators 
• The Hilbert transform. 

5.1 Discrete Fourier The discrete Fourier transform (DFT) (Burrus and Parks, 1985) from the time 
transform and fast domain to the frequency domain representation, is derived from the time DFT 
Fourier transform +00 

X(co)= J^ x{n)Q-j27T^Mn (5.1) 

The spectrum produced using this transform is periodic with the sampling fre
quency cos and for real input signals x(n), the spectrum always has "even" 
symmetry along the real axis and "odd" symmetry on the imaginary axis. In 
practice, we cannot calculate this sum, since it contains an infinite number of 
samples. This problem is only solved by taking a section of N samples of the 
sequence x(n). To achieve this, x(n) is multiplied by a windowing sequence 
ty(n) obtaining the windowed input signal xx(n). Since multiplication in the 
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time domain corresponds to convolution in the frequency domain, the time 
DFT of the windowed sequence will be 

XN(CD)=X(CD)*V(CO) (5.2) 

where *!>(&>) is the spectrum of the windowing sequence ty(n) and * denotes 
convolution. The ideal windowing sequence would have a rectangular spec
trum, distorting the desired spectrum as little as possible and avoiding 
spectral "leakage". Unfortunately, a rectangular frequency response is prac
tically impossible to achieve, therefore we must settle for some compro
mise. For example, commonly used windowing sequences are Rectangular, 
Bartlett, Harming, Hamming and Kaiser-Bessel windows (Oppenheimer and 
Schafer, 1975). 

Now, let us assume we have chosen an appropriate windowing sequence. Next 
we must determine how many frequency points should be used for calculation 
of the transform in order to maintain a reasonable accuracy. There is no simple 
answer, but in most cases good results are obtained using as many equally 
spaced frequency points as the number of samples in the windowed input signal, 
i.e. N. Hence the spacing between the frequency points will be cos/N. Now, 
inserting this into equation (5.1), the DFT in its most common forrn can be 
derived 

^ (kjt) = E **(»> e~J2n(kn/N) = E *"<»> < (5-3> 
n=0 n=0 

where the twiddle factor is 

WN = Q-JVKW (5.4) 

Unfortunately, the number of complex computations needed to perform the 
DFT is proportional to TV2. The acronym FFT (fast Fourier transform), refers 
to a group of algorithms, all very similar, which uses fewer computational steps 
to efficiently compute the DFT. The number of steps are typically proportional to 
N lb(A0, where lb(x) = log2(x) is the logarithm base 2. Reducing the number of 
computational steps is of course important if the transform has to be computed 
in a real-time system. Fewer steps implies faster processing time, hence higher 
sampling rates are possible. Now, there are essentially two tricks employed to 
obtain this "sped-up version" of DFT: 

(1) When calculating the sum (equation (5.3)) for k = 0 ,1 ,2 , . . . , N, many 
complex multiplications are repeated. By doing the calculations in a 
"smarter" order, many calculated complex products can be stored and 
reused. 

(2) Further, the twiddle factor (5.4) is periodic, and only N factors need to 
be computed. This can, of course, be done in advance and the values can 
be stored in a table. 

Let us illustrate the ideas behind the FFT algorithm by using a simple: example 
having N = 4. If we use the original DFT transform as in equation (5.3), the 
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following computations are needed 

k = 0: X4(0) = x4(0)W4 +x4(l)^4° + x4(2)W4 + *4(3)< 

k = 1: X4(l) = x4(0)W$ +x4(l)Wl + x4{2)W} +x4(3)W* 

k = 2: X4{2) = x4(0)W$ +x4(\)W]; +x4(2)W* + x4(3)W$ 

k = 3: X4(3) = x4(0)W° +x4{\)WJ +x4(2)W$ + x4{3)W9
A 

(5.5) 

(5.6) 

As can be seen from equation (5.5), 16 complex multiplications and 12complex 
additions are needed. Now, let us see how these numbers may be reduced. Firstly, 
if we put the odd and even numbered terms in two groups and divide the odd 
terms by W\, equation (5.5) can be rewritten as 

X4(0) = (x4((W4° + * 4 ( 2 ) < ) + W°(x4(l)+X4(3)) 

X4(l) = {x4(0)W$ +x4(2W%) + W}(x4(l) +*4(3)^4
2) 

X4{2) = (x 4 (0)< +x4(2)^4
4) + W^(x4(l) +X4(3)<) 

X4(3) = (x4(0)W!> + x4(2)W%) + ^4
3(x4(l) +x4(3)^4

6) 

Secondly, we use the periodicity of the twiddle factor (5.4) 

w\ = w%9 wl = w\ 

further, we know that W® = \. Inserting this into equation (5.6), we obtain 

X4(0) = (x4(0) + x4(2)) + (x4(l) + X4(3)) = A + C 

X4{\) = (x4(0) + x4(2)^2) + W\(x4(\) +x4(})Wl) =B+ WlD 

X4(2) = (x4(0) + X4(2)) + ^4
2(*4(1) + X4(3)) = A + W\C 

X4(3) = (x4(0) + x4(2)PF2) + ^4
3(x4(l) + x4(3)^2) = B + W\D 

From equation (5.7) we can now see that our computations can be executed in 
two steps. In step one we calculate the terms A-D9 and in the second step, we 
calculate the transform values X4(k), hence step 1 

A = x4(0) + x4(2) 

B = x4(0) + JC4(2)JT2 = JC4(0) - JC4(2) 
(5.8) 

C=x 4 ( l )+ ;c 4 (3) 

D = x 4 ( l ) + x 4 ( 3 ) J F 2 = x 4 ( l ) - x 4 ( 3 ) 

This step requires two complex additions and two complex subtractions. If all 
input signals are real, we only need real additions and subtractions 

(5.9) 

X4(0) 

X4(l) : 

X4(2) : 

X4(3) : 

= A + C 

= B + W\D 

= A + W*C = 

= B + W\D = 

= A-

= B-

-C 

-W\D 
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Figure 5.1 FFT Butterfly signal flow diagram, showing the example 
having N = 4 

Two complex multiplications, two complex additions and two subtrac tions are 
needed. In total, we now have two complex multiplications and eight complex 
additions (subtractions). This is a considerable savings compared to the: 16 mul
tiplications and 12 additions required for computing the DFT in its original form. 

The steps of the FFT, in our example (equations (5.8) and (5.9)), are often 
described in signal flow chart form, denoted "FFT butterflies" (see Figure 5.1). 
For the general case, the FFT strategy can be expressed as 

N-\ TO-i 

n=0 n=0 

(N/2)-\ 

+ » # E XN(2n+l)Wfr/2 (5.10) 

and 

Wfr = W^JN) where j = 1, 2, . . . (5.11) 

5.2 Spectral analysis Spectral analysis, by estimation of the power spectrum or spectral power 
density of a deterministic or random signal, involves performing a squaring 
function. Obtaining a good estimate of the spectrum, i.e. the signal power 
contents as a function of the frequency, is not entirely easy in practice. The 
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main problem is that in most cases we only have access to a limited set of 
samples of the signal; in another situation, we are forced to limit the number 
of samples in order to be able to perform the calculations in a reasonable time. 
These limitations introduce errors in the estimate. If the signal is a random-
type signal, we may also obtain large fluctuations in power estimates based on 
samples from different populations. Hence, in the general case there is no way 
to obtain the true power spectrum of a signal unless we are allowed to observe 
it infinitely. This is why the term estimation is frequently used in this context. 

5.2.1 Discrete Fourier transform and fast Fourier transform approaches 

Spectral analysis using the Fourier transform, a non-parametric method, was 
originally proposed in 1807 by the French mathematician and Baron J.B.J. 
Fourier. The discrete version of this transform, commonly used today in digi
tal signal processing (DSP) applications, is called discrete Fourier transform 
(DFT). A smart algorithm for calculating the DFT, causing less computational 
load for a digital computer, is the fast Fourier transform (FFT). From a purely 
mathematical point of view, DFT and FFT do the same job as shown above. 
Considering a sampled signal x(n) for — oo < n < oo further, assume that the 
signal has finite energy, i.e. 

£ x2(n) < oo (5.12) 

As seen above, the DFT of the signal can then be expressed as 
00 

X(a>)= £ x(n)e-J2n^M" (5.13) 
n=—oo 

where cos is the sampling frequency. By Parseval's relation, the energy of the 
signal can then be expressed as 

T \x(n)\2 = -L r \X(co)\2 dco = -?- / " Sxx(co)dco (5.14) 

where Sxx(co) is referred to as the spectral density of the signal x(n). The 
spectral density is hence the squared magnitude of the Fourier transform of 
the signal. As mentioned above, in most cases the signal is not defined for 
—oo < n < oo, or we may not be able to handle an infinite length sequence in a 
practical application. In such a case, the signal is assumed to be non-zero only 
for n = 0 , 1 , . . . , N — 1 and assumed to be zero otherwise. The spectral density 
is then written as 

i2 

Sxx(co) = \X(co)\2 = 
N-\ 

J2x(n)e~j27t(a)Mn 

n=0 

(5.15) 

The power of the signal as a function of the frequency is called a 
periodogram, which A. Schuster defined in 1898 as 

P(0))=-Sxx(a)) (5.16) 
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In the case that the signal x(n) exists over the entire interval (—oc, oo) and 
its energy is infinite (e.g. sinusoidal or other periodic signals), it is convenient 
to define the spectral density as (Mitra and Kaiser, 1993) 

<M<*>) = lim 
N-+00 IN + 1 

N 

]T x{n)^2n^^n (5.17) 
\n=-N 

Now, in many practical cases, to use an FFT algorithm, N is chosen to be 
a power of 2 (e.g. 64, 128, 256,...). This means that the spectral density can 
only be calculated at N discrete points, which in many cases turns out to be too 
sparse. Quite often, we need a finer frequency spacing, i.e. we need to know the 
spectrum at L points where L>N. This can be accomplished by zero padding, 
so that the data sequence consisting of N samples is extended by adding L — N 
zero value samples to the end of the sequence. The "new" L point sequence is 
then transformed using DFT or FFT. The effective frequency spacing is now 

2n In 

Lo)s No)s 

It is important to remember that zero padding does not increase the true 
resolution in frequency, it merely interpolates the spectrum at more points. 
However, for many applications, this is sufficient. So far, we have assumed that 
the signal x(n) has been identical to zero outside the interval n = 0,1,..., iV — 1. 
This is equivalent to multiplying the sequence x(n) with a rectangular window 
sequence 

s(n)=x(n)w(n) (5.19) 

where the rectangular window can be expressed as 

"(*)={<> d s e ( 5 ' 2 0 ) 

We recall from basic signal theory that a multiplication in the time domain 
like equation (5.19) corresponds to a convolution in the frequency domain as 
in equation (5.2). Therefore, the result of the windowing process has the "true" 
spectrum of the signal convoluted with the Fourier transform of the window 
sequence. What we obtain is not the spectrum of the signal, but rather the spec
trum of the signal x(n) distorted by the transform of the window sequence. 
This distortion results in "smearing" of the spectrum, which implies that nar
row spectral peaks can neither be detected nor distinguished from each other 
(Mitra and Kasier, 1993; Lynn and Fuerst, 1998). This "leakage" is an inher
ent limitation when using conventional Fourier techniques for spectral analysis. 
The only way to reduce this effect is to observe the signal for a longer duration, 
i.e. gather more samples. The quality of the spectral estimate can, however, 
be somewhat improved by using a more "smooth" window sequence than the 
quite "crude" rectangular window. Some examples of windows with different 
distortion properties (Oppenheimer and Schafer, 1975; Mitra and Kaiser, 1993) 
are given below: 

• The Bartlett window (triangular window) 

w{n)-\2-(2n/(N-l)) (N-l)/2<n<N P * 2 1 ) 
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• The Hann window 

w(n) = -(l - c o s / " - ^ - ^ 0 < n < N (5.22) 

• The Hamming window 

/ 2nn \ 
w(n) = 0.54 - 0.46 cos( — — J 0 < n < N (5.23) 

• The Blackman window 

w(n) = 0.42 - 0 . 5 cos ( T T ^ T ) + 0.08 cos( — ^ - J 0<n <N 

5.2.2 Using the auto-correlation function 

In the previous section, we concluded that a spectral power estimate could be 
obtained by taking the square of the magnitude of the Fourier transform (5.15) of 
the signal x(ri). There is an alternative way of achieving the same result by using 
the auto-correlation function of the signal x(n). Let us start this section by a 
brief discussion on correlation functions (Schwartz and Shaw 1975; Denbigh 
1998; Papoulis and Pillai 2001) of time discrete signals. Assume that the mean 
of the two complex signal sequences x(n) andjy(«) ar^ z e r o 

E[x(«)] = rjx — 0 and E|>(«)] = rjy = 0 

The cross-correlation between these signals are then defined as 

Rxyin, m) = E[x(n) y*(m)] (5.25) 

where * denotes complex conjugate and E[ ] is the expected mean operator 
(ensemble average). If the mean of the signals is not zero, the cross-
covariance is 

Cxy(n, m) = Rxy(n, m) - r]x(n) rfy(m) (5.26) 

Note! If the mean is zero, the cross-correlation and cross-covariance are 
equal. If the signal is correlated by itself, auto-correlation results 

Rxx(n, m) = E[x(n)x*(m)] (5.27) 

As a consequence of above, the auto-covariance is defined as 

Cxx(n, m) = Rxx(n, m) - rjx(n) rj*(m) (5.28) 

If the signal x(n) has zero mean and the auto-correlation only depends on the 
difference k — m — n, not on the actual values of n or m themselves, the signal 
x(n) is said to be wide-sense stationary from a statistical point of view. This 
basically means that regardless of which point in the sequence the statistical 
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properties of the signal is studied, they all turn out to be similar. For a stationary 
signal (which is a common assumption with signals), the auto-correlation 
function is then defined as 

Rxx(k) = E[x(n)x*(n + k)] (5.29) 

Note in particular that ̂ ( 0 ) = a1 is the variance of the signal and represents 
the power of the signal. Now, starting from equation (5.17), we study the square 
magnitude of the Fourier-transformed signal sequence x(n) as N -> oo 

J^ x(n)Q-J2nM(0M 
=—oo I 

= ( ] T x(n)e-j2n^/a>s)n J j ] T x(n)Q-J2nM<0s)n 

\n=—oo / \n=—oo / 

00 00 

= £ £ x(n)x*(m)e~J2n<-(0/<0^m-") 

n=—oo m=—oo 

00 00 

= 12 J2 x(n)x*(n + k)Q-J2n((oMk 

H=-00 £ = - 0 0 

0 0 

= £ Rxx(k)e-J2n^Mk (5.30) 
A:=-oo 

Hence, we now realize that the spectral density can be obtained in an 
alternative way, namely by taking the DFT of the auto-correlation function 

oo 

*»(*>)= £ ^«e -^«* (5.31) 
k=—OO 

This relationship is known as the Wiener-Khintchine theorem. 

5.2.3 Periodogram averaging 

When trying to obtain spectral power estimates of stochastic signals using a 
limited number of samples, quite poor estimates often result. This is especially 
true near the ends of the sample window, where the calculations are based 
on few samples of the signal x(n). These poor estimates cause wild fluctua
tions in the periodogram. This trend was already observed by A. Schuster in 
1898. To get smoother power spectral density estimates, many independent 
periodograms have to be averaged. This was first studied by M.S. Bartlett and 
later by P.D. Welch. 

Assume that x(n) is a stochastic signal being observed in L points, i.e. for 
n = 0 ,1 , . . . ,Z—1. This is the same as multiplying the signal x(n) by a rectangu
lar window w(n), being non-zero for n = 0 , 1 , . . . , L - 1 (see equation (5.20)). 
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Using the DFT (5.13) in this product we obtain 

L-\ 

S(co) = J2 *(") w(") Q-J2n(0)/C0s)n (5.32) 

We now consider an estimate of the power spectral density (Mitra and Kaiser, 
1993) given by 

Ixx(o>)=-j^j\S(co)\2 (5.33) 

where U is a normalizing factor to remove any bias caused by the window w(n) 

L-\ 
I 

U: 
I, 

n=0 

1 L~X 

= z £ > ( « ) | 2 (5.34) 

The entity Ixx(co) is denoted as a periodogram if the window used is the rect
angular window, otherwise it is called a modified periodogram. Now, Welch's 
method computes periodograms of overlapping segments of data and averages 
(Mitra and Kaiser, 1993) them. Assume that we have the access to Q contiguous 
samples of x(n) and that Q>L. We divide the data set into P segments o f ! 
samples each. Let S be the shift between successive segments, then 

Q = (P-\)S + L (5.35) 

Hence, the "windowed" segment/? is then expressed as 

s<P\n) = w(n)x(n +pS) (5.36) 

for 0 < n < L and 0 <p < P. Inserting equation (5.35) into equation (5.32) we 
obtain the DFT of segment/? 

L-\ 

&P\aJ) = J2 siP)(n) Q~J27T(a)Mn (5.37) 

Using equation (5.33), the periodogram of segment/? can be calculated 

l(P\co) = - J - \S(P\CO)2 

LU 
(5.38) 

Finally, the Welch estimate is the average of all the periodograms over all 
segments p as above 

p=0 

For the Welch estimate, the bias and variance asymptotically approach zero 
as Q increases. For a given Q, we should choose L as large as possible to obtain 
the best resolution, but on the other hand, to obtain a smooth estimate, P should 
be large, implying L to be small (equation (5.35)). Hence, there is a trade-off 
between high resolution in frequency (large L) and smooth spectral density 
estimate (small L). Increasing Q is of course always good, but requires longer 
data acquisition time and more computational power. 



140 Digital Signal Processing and Applications 

The Bartlett periodogram is a special case of Welch's method as described 
above. In Bartlett's method, the segments are non-overlapping, i.e. S=L in 
equation (5.35). The same trade-off described above for Welch's method also 
applies to Bartlett's method. In terms of variance in the estimate, Welch's method 
often performs better than Bartlett's method. Implementing Bartlett's method 
may however in some cases be somewhat easier in practice. 

5.2.4 Parametric spectrum analysis 

Non-parametric spectral density estimation methods like the Fourier analysis 
described above are well studied and established. Unfortunately, this class of 
methods has some drawbacks. When the available set ofN samples is small, 
resolution in frequency is severely limited. Also auto-correlation outside the 
sample set is considered to be zero, i.e. Rxx(k) = 0fork>N, which may be an 
unrealistic assumption in many cases. 

Fourier-based methods assume that data outside the observed window is 
either periodic or zero. The estimate is not only an estimate of the observed N 
data samples, but also an estimate of the "unknown" data samples outside the 
windows, under the assumptions above. Alternative estimation methods can be 
found in the class of model-based, parametric spectrum analysis methods 
(Mitra and Kaiser, 1993). Some of the most common methods will be presented 
briefly below. 

The underlying idea of assuming the signal to be analyzed can be generated 
using a model filter. The filter has the causal transfer function H(z) and a 
white noise input signal e{n), with mean value zero and variance al. In this 
case, the output signal x(ri) from the filter is a wide-sense stationary signal with 
power density 

*xx(o>) = <Z>Q(co)\H(co)\2 = a2
e\H(co)\2 (5.40) 

Hence, the power density can be obtained if the model filter transfer function 
H(z) is known, i.e. if the model type and its associated filter parameters are 
known. The parametric spectrum analysis can be divided into three steps: 

• Selecting an appropriate model and selecting the order of H(z). There are 
often many different possibilities 

• Estimating the filter coefficients, i.e. the parameters from the TV data samples 
x(n) where « = 0 , 1 , . . . ,iV — 1 

• Evaluating the power density, as in equation (5.40) above. 

Selecting a model is often easier if some prior knowledge of the signal is 
available. Different models may give more or less accurate results, but may 
also be more or less computationally demanding. A common model type is the 
auto-regressive moving average (ARMA) model 

where h(n) is the impulse response of the filter and the denominator polynomial 
A(z) has all its roots inside the unit circle, for the filter to be stable. The ARMA 
model may be simplified. If q = 0, then B(z) = 1 and an all-pole filter results, 
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yielding the auto-regressive (AR) model 

or, if p = 0, then A(z)= 1 and a filter having only zeros results, a so-called 
moving average (MA) model 

q 

H(z) = J2bkZ~k (5.43) 

Note, these models are mainly infinite impulse response (IIR) and finite 
impulse response (FIR) filters (see also Chapter 1). Once a reasonable model 
is chosen, the next measure is estimating the filter parameters based on the 
available data samples. This can be done in a number of ways. One way is by 
using the auto-correlation properties of the data sequence x(n). Assuming an 
ARMA model as in equation (5.41), the corresponding difference equation (see 
Chapter 1) can be written as 

p q 

x(n) = - ^2 ak x(n - *) + J Z ^k e(n ~ *) (5-44) 
k=\ k=o 

where e(n) is the white noise input sequence. Multiplying equation (5.44) by 
x*(n + m) and taking the expected value we obtain 

p q 

Rxx(m) = ~J2akRxx(m - k) + J ]b k R e x (m - k) (5.45) 
k=\ k=o 

where the auto-correlation of x(n) is 

Rxx(m) = B[x(n)x*(n + m)] (5.46) 

and the cross-correlation between x(n) and e(n) is 

Rex(m) = E[e(n)x*(n + m)] (5.47) 

Since x(n) is the convolution of h(n) by e(n), x*(n + m) can be expressed as 

oo 

x*(n + w) = ^ h*(k) e(n + m- k) (5.48) 

Inserting into equation (5.47), the cross-correlation can hence be rewritten as 

Rex(m) = E e(n) ^ h*(k) e(n + m- k) 

k=o 

= ] T h\k) E[e(n) e(n + m- k)] = ae
2A*(-m) (5.49) 

k=o 

where we have used the facts that e(ri) is a white noise signal, and h(n) is causal, 
i.e. zero for n < 0. We can now express the auto-correlation values for the signal 
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originating from the ARMA model, in terms of the model parameters 

p 

Rxxim) = 

for m > q -J2 akRxx(m-k) 
k=\ 

p q-m 
- £ akRxx{rn -k) + a2 £ h*(k)bk+m for 0 < m < q 

for m < 0 Kx(-m) 

(5.50) 

The auto-correlation values Rxx(m) for \m\ > q are extrapolated by the filter 
parameters and the values of Rxx(m) for m = 0 , 1 , . . . , q. Now, for the sake of 
simplicity, assume that we are using an AR model, i.e. q = 0. Then equation 
(5.50) simplifies to 

Rxx{m) = 

- £ akRxx(m-k) for m > 0 

-J2 ak RXx{m -k) + ol for 0 = m 
k=\ 

[R* (-m) for m < 0 

(5.51) 

Thus, if the auto-correlation values 7^(0), Rxx(l), • • -,Rxx(p) are known, the 
filter parameters can be found by solving p linear equations corresponding to 
m = 0 , 1 , . . . ,p. Note that we only need to know/? + 1 correlation values to be 
able to determine all the parameters. From equation (5.51), setting m — 0 we 
can also obtain the variance 

ore
2=^x(0) + J2akRxx(-k) (5.52) 

k=\ 

Combining equations (5.51) and (5.52), we thus have to solve the following 
equations to obtain the parameters. These equations are known as the Yule-
Walker equations 

Rxx(0) + a{Rxx(-l) + • • • + apRxx(-p) = a\ 

(5.53) 

Rxx(p) + aiRjodp - 1) + • • • + apRxx(0) = 0 

For the ARMA model, the modified Yule-Walker equations can be used to 
determine the filter parameters. The Yule-Walker equations can be solved using 
standard techniques, for instance Gauss elimination, which requires a number 
of operations proportional to p3. There are however recursive, smarter algo
rithms that make use of the regular structure of the Yule-Walker equations, and 
hence require fewer operations. One such algorithm is the Levinson-Durbin 
algorithm (Mitra and Kaiser, 1993), requiring a number of operations propor
tional top2 only. There are also other ways to obtain the parameters. One such 
way is adaptive modeling using adaptive filters (Widrow and Steams, 1985) 
(see Chapter 3). 



Spectral analysis and modulation 143 

Finally, when the filter parameters are estimated, the last step is to evaluate 
the spectral density. This may be achieved by inserting 

z = e-J2*(<°/<°s) (5.54) 

into the transfer function H(z) of the model, e.g. equation (5.41) and then, 
using the relation (5.40), evaluate the spectral density. It should however be 
pointed out that the calculations needed may be tiring, and that considerable 
error between the estimated and the true spectral density may occur. One has 
to remember that the spectral density is an approximation, based on the model 
used. Choosing an improper model for a specific signal may hence result in a 
poor spectral estimate. 

The parametric analysis methods have other interesting features. In some 
applications, the parameters themselves are sufficient information about the 
signal. In speech-coding equipment, for instance, the parameters are transmitted 
to the receiver (RX) instead of the speech signal itself. Using a model filter and 
a noise source at the receiving site, the speech signal can be recreated. This 
technique is a type of data compression algorithm (see also Chapter 7), since 
transmitting the filter parameters requires less capacity then transmitting the 
signal itself. 

5.2.5 Wavelet analysis 

Wavelet analysis, also called wavelet theory, or just wavelets (Lee and 
Yamamoto, 1994; Bergh et al, 1999), has attracted much attention recently. 
It has been used in transient analysis, image analysis and communication sys
tems, and has been shown to be very useful for processing non-stationary 
signals. 

Wavelet analysis deals with expansion of functions in terms of a set of basis 
functions, like Fourier analysis. Instead of trigonometric functions being used 
in Fourier analysis, wavelets are used. The objective of wavelet analysis is 
to define these wavelet basis functions. It can be shown that every applica
tion using the FFT can be reformulated using wavelets. In the latter case, 
more localized temporal and frequency information can be provided. Thus, 
instead of a conventional frequency spectrum, a "wavelet spectrum" may be 
obtained. 

Wavelets are created by translations and dilations of a fixed function called 
the mother wavelet. Assume that ty(t) is a complex function. If this function 
satisfies the following two conditions, it may be used as a mother wavelet 

f |vl>(0l2d;<oo (5.55) 

This expression implies finite energy of the function, the second condition is 

Cvi/ = 2n f da) < oo (5.56) 
J-OO 00 

where *!>(&>) is the Fourier transform of W(t). This condition implies that if 
ty(co) is smooth, then *I>(0) = 0. One example of a mother wavelet is the 
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Haar wavelet, which is historically the original and simplest wavelet 

'\ f o r 0 < f < l / 2 

*( ' ) = - 1 for 1/2 <t< 1 
0 else 

(5.57) 

Other examples of smooth wavelets having better frequency localization 
properties are the Meyer Wavelet, the Morlet Wavelet and the Dauibechies 
Wavelet (Lee and Yamamoto, 1994; Bergh et ai, 1999). Figure 5.2 shows an 
example of a Morlet wavelet. The wavelets are obtained by translations and 
dilations of the mother wavelet 

**,*(*) = a~l/2 •(?) (5.58) 

which means rescaling the mother wavelet by a and shifting in time by b, where 
a > 0 and —oo < b < oo. 

The wavelet transform of the real signal x(t) is the scalar product 
r»00 

(5.59) 
/

OO 

*lb(t)x(t)dt 
-OO 

where * denotes the complex conjugate. There is also an inverse transform 

^°° '°° dadb 1 f°° f°° dadb 
x(t)=— / X(b,a)Vaj,(t)—— 

C^f J-oo JO a 

(5.60) 

where cy is obtained from equation (5.56). For the discrete wavelet transform, 
equations (5.58)-(5.60) are replaced by equations (5.61)—(5.63), respectively 

^m,n\J) — ^o 
•m/2 

<•?) (5.61) 

where m and n are integers and ao and bo are constants. Quite often ao is 
chosen as 

ao 21/v 

where v is an integer and v pieces of ^w,«(0 are processed as one group called 
a voice 

/

oo 

-00 
<f)df (5.62) 

Figure 5.2 Real and imaginary part of a Morlet wavelet 
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x(t) = k*J2 Y.Xm<" *m'"(r) (5-63) 

m n 

Graphical representation of the complex functions obtained from equations 
(5.63) and (5.66) is not always entirely easy. Commonly, three-dimensional 
graphics, or gray-scale graphics showing the magnitude and phase as a function 
of a, are used. One example is Figure 5.3, showing the magnitude of a wavelet 
transform (Morlet) of a sinusoid with linearly decreasing frequency. Figure 5.4 

Figure 5.3 Magnitude of a wavelet transform (Morlet) of a sinusoid with 
linearly decreasing frequency 

Figure 5.4 A signal comprising of two sinusoids with different frequencies, 
where one frequency component is switched on with a time delay 
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shows a signal comprising of two sinusoids with different frequencies, where 
one frequency component is switched on with a time delay. 

5.3 Modulation In many communication systems, especially in radio systems, the information 
("digital" or "analog"), or the baseband signal to be transmitted is modulated, 
i.e. "encoded" onto a carrier signal. The carrier is chosen depending on the 
type of media available for the transmission, for instance, a limited band in the 
radio frequency spectrum, or an appropriate frequency for transmission over 
cables or fibers. If we assume that the carrier signal is a plain cosine signal 
there are three parameters of the carrier that can be modulated and used for 
information transfer. These parameters are the amplitude a(t), the frequency 
fit) and the phase c/)(t). The modulated carrier is then 

s(t) = a(t)cosiln f f(f)dr + 0(0 j (5.64) 

The corresponding modulation types are denoted amplitude modulation 
(AM), frequency modulation (FM) and phase modulation (PM). FM and 
PM are also referred to as angular modulation and are related in that the fre
quency is the phase changing speed; in other words, the derivative of the phase 
function is the frequency. Hence, frequency modulation can be achieved by first 
integrating the baseband signal and then feeding it into a phase moduteitor. This 
method is called Armstrong's indirect FM (Miller and Beasley, 2002). 

In a digital radio communication system, it is common to modulate either 
by changing fit) between a number of discrete frequencies, frequency shift 
keying (FSK) or by changing 0(0 between a number of discrete phases, phase 
shift keying (PSK). In some systems, the amplitude is also changed between 
discrete levels, amplitude shift keying (ASK). So, if we are to design a modu
lation scheme which is able to transmit M different discrete symbols (for binary 
signals, M = 2), we hence have to define M unique combinations of amplitude, 
frequency and/or phase values of the carrier signal. The trick is to define these 
signal points, anit), fit) or 0„(O, where n e {0,... ,M — 1}, in a way that 
communication speed can be high, influence of interference low, spectral occu
pancy low, and modulation and demodulation equipment can be made fairly 
simple. 

5.3.1 Amplitude shift keying (ASK) 

The concept of ASK is rather straightforward. Using this modulation method, 
the amplitude of the carrier can be one out of M given baseband amplitude 
functions an it), corresponding to the M information symbols used in the system. 

Snit) = anit) COSilTtft + 0) (5.65) 

The carrier frequency fit) =fc and the phase shift 0(0 = 0 are constant. 
The amplitude functions anit) are defined over a finite period of time, i.e. 
*o < t < to + T9 where T is the symbol time. A simple example would be a sys
tem using binary symbols, i.e. M = 2 and square pulses for amplitude iiinctions 
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Figure 5.5 Baseband signal and modulated signal for ASK, M = 2 

according to the below (see Figure 5.5) 

symbol "0": 

ao(0 
1 t0<t <t0 + T 

0 else 

=» s0(t) = 
cos(2nfct + 0) to <t < to + T 

0 else 
(5.66a) 

symbol " 1 " : 

a\(t) = 
2 t0 < t < t0 + T 

0 else 

sx(t) = 
2 cos (2nfct + 0) to < t < to + T 

0 else 
(5.66b) 

The above can be regarded as a kind of pulse amplitude modulation (PAM) 
system. The data transfer capacity D of such a system is determined by 
equation (5.67) 

D=- lb(M) = R lb(M) bits/s (5.67) 

where lb(x) = log2(x) is the logarithm base 2 and R is the symbol rate. In 
the example above binary symbols were used, i.e. M = 2 which implies that 
lb(2) = 1, and that the data transfer capacity becomes D=l/T = R. In other 
words, the symbol time equals the bit time. So one obvious recipe for achieving 
high data transfer capacity is to use a high bit rate R, i.e. a short bit (symbol) 
time T. Unfortunately, in a real world application, we also have to take the 
background noise and interference into account. Using a too short symbol time 
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implies that the energy in each symbol will be small compared to the energy 
in the background noise. This, in turn, means that the receiver (demodulator), 
retrieving the encoded information, will be disturbed by the background noise 
in such a way that it makes frequent misinterpretations of the received signal. 
In other words, errors in the transmission will be common. 

From equation (5.67) we find that another way of increasing the data transfer 
capacity is to increase the number of symbols M. In all real world applications, 
we only have a limited transmitter power (or voltage) available. Increasing 
the number of levels M means that the voltage (or power) difference between 
adjacent levels will decrease. Taking the background noise into account again, 
the probability of errors in the receiving process will thus increase:. Hence, 
there is a limit to how many symbols M can be used in a transmission system, 
depending on the level of the background noise. These issues will be elaborated 
on further in Chapter 8. 

Another problem with the amplitude functions in the example above is the 
shape of the waveform. A square pulse like this will have a quite wide-frequency 
spectrum, increasing the risk of causing interference to other users in adjacent 
frequency bands. For this reason, smoother waveforms than square pulses are 
commonly used. 

5.3.2 Frequency shift keying (FSK) 

In this case, the frequency of the signal is controlled by the baseband signal, i.e. 

s(t) = acos^TT f fn(r)dr + 0J (5.68) 

The amplitude a(t) = a and the phase shift (j){t) = 0 are constant. The frequency 
functions^(0 are defined over a finite period of time, i.e. to < t < to + T7, where 
T is the symbol time, in a similar way to ASK above. A simple example would be 
a system using binary symbols, i.e. M = 2 and square pulses for frequency func
tions according to the below (see Figure 5.6). An FSK modulation scheme with 
M = 2 is sometimes referred to as a binary frequency shift keying (BF'SK) sys
tem. Commonly, the shape of the frequency functions is chosen to be smoother 
than square pulses, for the spectral occupancy reasons mentioned above 

symbol "0": 

Mt) = 

symbol" 1": 

/ i ( 0 = 

/o t0<t <t0 + T 

0 else 

\acos(27Tf0t + 0) t0 < t < t0 + T 
>so(t)=L d s e (5.69a) 

h to < t < to + T 

0 else 

\acos(2rcfit + 0) *0 < t < t0 + T 

* * l ( H o else ( 5 " 6 9 b ) 
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Figure 5.6 Baseband signal and modulated signal for FSK, M = 2 

For the receiver to determine what symbol was transmitted, the frequency of 
the carrier sn(t) needs to be determined. This can be accomplished in two ways: 
non-coherent and coherent detection. 

In non-coherent detection, the input signal enters a bank of bandpass filters, 
where there is a filter for each frequency used, or in other words, one filter for 
each symbol used in the system. The outputs of the filters are compared to each 
other, and the received symbol is supposed to be the one that corresponds to the 
filter having the strongest output signal magnitude. The phase of the received 
signal in relation to the phase of the transmitted signal does not matter; the 
method is non-coherent. This approach is straightforward and quite easy to 
implement. 

In the coherent detection system, the phase of the signal does matter. Hence, 
phase synchronization between transmitter and receiver is needed, which com
plicates the system. On the other hand, a coherent system has a greater resistance 
against noise and interference than a non-coherent system. In a coherent sys
tem, detection (demodulation) is performed using a cross-correlation technique 
(see Figure 5.7). The received signal is cross-correlated with locally generated 
prototype signals s'n(i) corresponding to all the M symbols used in the system. 
Since coherence is needed, the phase ofs'n{i) and the received signal sn(t) have 
to agree. The prototype signals for our example above would be 

symbol "0": 

s'0(t) = 

symbol"!": 

cos(27tf0t + 0) to <t <t0 + T 

0 else 

*i(0 = { cos(2nfit + (/>) 

0 

to < t < t o + T 

else 

(5.70a) 

(5.70b) 
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Figure 5.7 Coherent detection ofFSK signals using cross-correlation 

The cross-correlation is performed as RSniS'n(r) = f0 sn(t)s
f
n(t + r) ck where 

r is the delay, i.e. phase shift between sn(t) and s'n(t). Since we have a coherent 
system, the phase shift between the two signals should ideally be equal to 
zero, i.e. the delay should be an integer number of periods. Therefore, in this 
application our main interest is the variable RSntS'(0) where we expect to find 
maximum correlation. For clarity, the correlation operation in this application 
will be written as 

R(sn, sf
n) = f 

Jo 
sn(t)s'n(t)dt (5.71) 

The complete demodulator works as follows: the input signal enters a bank 
of cross-correlators. The outputs of these correlators are compared to each 
other, and the received symbol is supposed to be the one that corresponds to 
the correlator having the strongest output signal. 

We have been discussing a frequency shift system. One question that needs 
to be answered is how large the shift in frequency A/ preferably should be. 
Obviously, the larger the shift, the more spectrum bandwidth will be occupied, 
which is commonly a bad thing, but how small can the shift be for the system to 
work well? We may argue like this: if the received signal is sn(t)9 the correlation 
to sr

n (t) should be as large as possible, while the (undesired) correlations between 
s„(t) and sf

m(t) where m^n should be at a minimum. Using the binary example 
above the situation can be formulated as 

\R(SQ9 S'0)\ = max, \R(s\, S[)\ = max, R(SQ9 S\) = R(s\9 sf
0) = 0 
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From the last condition above, we can find the minimum frequency shift required 

R(s0, s[)= / so(t)s[(t)dt = a cos(2nf0t)cos(27r/it)dt = 0 
Jo Jo 

(5.72) 

where we have assumed 0 = 0. Solving equation (5.72) (Proakis, 1989) above, 
we find that the frequency shift \fo —/i I = A / needs to be 

A / = 2 ^ ' * = 1 > 2 ' 3 ' - - - <5-73) 

If we set k = 1 the minimum frequency shift is obtained Af = 1/2T. An FSK 
system using this frequency shift is called a minimum shift keying (MSK) 
system. 

If two signals sn(t) and sm(t), where m^n, has the property 

R(sn(t)9sm(t)) = 09 

the signals are said to be orthogonal. If all signals representing different 
symbols in a modulation scheme are orthogonal to each other, the risk of 
misinterpretation and transmission errors is minimized. 

In the calculations above, continuous-time signals have been assumed, since 
integrals have been used. If dealing with a "digital" discrete-time system, the 
integrals can of course be approximated by summations, i.e. 

fg(t)dtK(l/fB)^g(£) 

5.3.3 Phase shift keying (PSK) 

In a PSK system, the phase shift of the signal is controlled by the baseband 
signal, i.e. 

sn(t) = a cos(27tfct + (j)n(t)) (5.74) 

The carrier frequency f(t) =fc and the amplitude a(t) = a are constant. The 
phase functions <pn(t) are defined over a finite period of time, i.e. to < t < to + 7, 
where T is the symbol time as before. A simple example would be a system using 
binary symbols, i.e. M = 2 and square pulses for phase functions according to 
the below (see Figure 5.8). Commonly, the shape of the phase functions is 
chosen to be smoother than square pulses, for spectral occupancy reasons 

symbol "0": 

[0 to<t<to + T 
* ( ' ) = | 0 else 

jflcos(27r/c0 t0<t<t0 + T 
So(t)= 0 else ( 5 ' 7 5 a ) 
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Figure 5.8 Baseband signal and modulated signal for PSK, M = 2 

symbol" 1": 

01 (0 = 
n t0 <t < t0 + T 

0 else 

• * i ( 0 = 
a cos(2nfct + jt) t0 < t < t0 + T 

0 else 
(5.75b) 

Often, the use of phasors (Denbigh, 1998) can be beneficial when describing 
modulation processes. Starting out with a general cosine signal of a given 
frequency f„, amplitude an and phase shift 0„ we have 

Sn(t) = <*n COS(27tfnt + </>„) (5.76) 

using Euler's formula, equation (5.76) can be rewritten as 

sn(t) = an cos(27tfnt + 0„) 

= Re[an(cos(27r/w^ + </>n) +j sva(2nfnt + 4>n))] 

= Re[an eiWnt+M^ = R e | ^ QJ4>n Qj2nfnt^ = ^ ^ eJ2nfntj ( 5 ? ? ) 

where the complex number zn is denoted the phasor of the signal. If the carrier 
frequency fn =fc is given and constant, the phasor will represent the signal 
without any ambiguity, since 

0/i = ^zn 

(5.78a) 

(5.78b) 

Further, the phasor, being a complex number, can be drawn as a vector starting 
from the origin and having magnitude an and angle 0n in a complex xy-plane. 
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Figure 5.9 Signal constellations, (a) BPSK M = 2,(b) QPSK M = 4and 
(c)8PSKM = 8 

Phasors are a handy tool, used in many applications, not only in signal theory. 
However, a caution should be issued: when dealing with signals and modulation 
the magnitude of the phasor, denoted an, commonly refers to the amplitude of 
the signal, i.e. the peak value of the cosine signal. In literature dealing with 
electrical power applications the magnitude of the phasor may refer to the RMS 
value of the cosine (Denbigh, 1998). 

Now, when using phasors in a PSK context, the phasors for all M symbols in 
the system can be drawn in a polar diagram, but for clarity, only the endpoint of 
the vectors (phasors) are drawn as a dot. The diagram thus obtained is sometimes 
called a signal constellation. 

In Figure 5.9 some signal constellations are shown. Our PSK example in 
equations (5.75a) and (5.75b) above is shown as example in Figure 5.9(a). Since 
M = 2, i.e. that we have a binary system, this modulation type is called binary 
phase shift keying (BPSK) or 2PSK. In Figure 5.9(b), we have used M = 4, 
giving four signal points and a system called quadruple phase shift keying 
(QPSK) or 4PSK. In Figure 5.9(c) M = 8, i.e. the signal constellation 8PSK, 
etc. Note that in all cases, the signal points are situated on a circle with radius 
an, since we are only changing the phase shift of the signal, not the amplitude. 
An obvious question in this situation is how many symbols, i.e. how large, 
can M be? We can conclude that the larger number of symbols we are using, 
the smaller the difference in phase shift. Considering the background noise 
and interference, the smaller the phase difference between adjacent symbols, 
the larger the risk for misinterpretations and transmission errors. A good rule 
of thumb is that the larger the distance between the signal points, the more 
resistance against noise and interference is obtained. Hence, given a limited 
transmitter power and background noise level, a BSPK system performs better 
than a QPSK system regarding transmission errors. On the other hand, the 
QPSK system has the potential of being twice as fast as the BPSK system. As 
expected, designing optimum modulation methods is a matter of compromises. 

Obviously, demodulation of PSK signals can only be carried out coherently. 
The receiver needs to have some synchronized reference of the phase in order to 
be able to determine the phase shift </>„ of the received signals. This problem can 
however be circumvented by using a differential phase shift keying (DPSK) 
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method. In such a system, the absolute phase shift is not of interest, but rather 
the difference in phase shift between successive symbols. 

5.3.4 Complex modulation 

A good approach when working with modulation is to utilize the concept of 
complex modulation, a general method being able to achieve all the modulation 
types mentioned above. Assume that the bandwidth of the baseband signal, the 
information modulated onto the carrier, is small relative to the frequency of 
the carrier signal. This implies that the modulated carrier, the signal being 
transmitted over the communications media, can be regarded as a narrow
band passband signal, or simply a bandpass signal (Proakis, 1989; Ahlin and 
Zander, 1998) 

s(t) = a(t) cos(2nfct + 0(0) 

= a(t) cos(0(O) cos(2jtfct) — a(t) sin(^)(t)) sin(27tfct) 

= x(t) cos(27r/c0 - y(i) sm(27tfct) (5.79) 

where x(t) andy(t) are the quadrature components of the signal s(t), defined as 

x(t) = a(t) cos(0(O) is the in phase or / component (5.80a) 

and 

y(t) = a(t) sin((j)(t)) is the quadrature phase or Q component (5.80b) 

The two components above can be assembled into one handy entity by defining 
the complex envelope 

z(t) = x(t) +jy(t) = a(t) cos(0(O) +ja(t) sin(0(O) = a(t) em) (5.81) 

Hence, the modulated carrier can now be written (see also equation (5.79)) as 

s(t) = Re\z(t)eJ2nfct] (5.82) 

(compare to the phasor concept in equation (5.77)). The modulation process is 
performed by simply making a complex multiplication of the carrier and the 
complex envelope. This can be shown on component level 

s(t) = x(t) cos(27r/c0 - y{t) sin(2jr/c0 (5.83) 

Figure 5.10 shows a simple, digital quadrature modulator, implementing 
expression (equation (5.83)) above. The M-ary symbol sequence to be trans
mitted enters the symbol mapper. This device determines the quadrature 
components x(t) and y(t) according to the modulation scheme in use. 

For example, let us assume that the incoming data stream A(n) consists of 
binary digits (BITs), i.e. ones and zeros. We have decided to use a QPSK, in 
other words, we are using M = 4 symbols represented by four equally spaced 
phase shifts of the carrier signal. So, two binary digits A(n) and A(n — 1) are 
transmitted simultaneously. If we assume that a(t) = 1 (constant amplitude), the 
mapper then implements a table like Table 5.1 (many schemes exist). 
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Figure 5.10 Simple M-ary quadrature modulator 

Table 5.1 Example, I and Q components and phase angle 
as a function of input bits 

An) A(n - 1) <P(t) x(t) y(t) 

0 

0 

1 

1 

0 

1 

0 

1 

45° 

135° 

- 4 5 ° 

-135° 

l 
V2 
- 1 
V2 
1 

V2 
- 1 
v/2 

1 
•Jl 
1 

V2 
- 1 
V2 
- 1 
V2 

The quadrature components coming from the mapper, having half the data 
rate of the binary symbols, is then multiplied by the carrier and a —90° phase-
shifted version (the quadrature channel) of the carrier, since cos(o? — 90) = 
sin(a). The / and Q channels are finally added and the modulated carrier s(t) 
is obtained. 

Demodulation of the signal at the receiving site can easily be done in a similar 
way, by performing a complex multiplication 

z(t) = s(t)Q-J2nfct (5.84) 

and removing high-frequency components using low-pass filters. From the 
received estimate z(t) the quadrature components can be obtained and from 
these, the information symbols. In practice, the situation is more complicated, 
because the received signal is not s(t), but rather a distorted version with noise 
and interference added (see Chapter 8). 
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Figure 5.11 An example signal 
constellation for QAM 

An advantage with this kind of modulator is that almost any modulation type 
can be achieved. From equations (5.80a) and (5.80b) we realize that 

«(<) = JxHl)+yt(t) (5.85a) 

(5.85b) 

Since we are free to chose the / channel signal x(t) and the Q channel signal 
y(t) as we please, we can obviously perform amplitude modulation (or ASK) 
and phase modulation (or PSK) simultaneously. This implies that we can locate 
our signal points arbitrary in the complex plane. We are not limited to locating 
the signal points on a circle as in, for instance, the case of QPSK. In Fig
ure 5.11 the signal points are placed in an array which can serve as an example 
of quadrature amplitude modulation (QAM). 

Another way of viewing QAM is to make a cross-correlation analysis (equa
tion (5.71)) of the carriers used: cos(2jrfct) and sm(27tfct). Such an analysis 
shows that the carriers are orthogonal, i.e. ideally there is no "cross-talk" in 
between them. This means that the / and Q channels can be viewed as two 
independent amplitude modulated transmission channels. Therefore, in some 
systems, different information is transmitted over these channels. 

Yet, another possibility is to achieve frequency modulation (or FSK), since 
indirect frequency modulation (Armstrong modulation) can be performed by 
integrating the baseband signal and feeding it to a phase modulator (Miller and 
Beasley, 2002). An example of such a system is the cellular mobile telephone 
system GSM, using Gaussian minimum shift keying (GMSK). To obtain 
good spectral properties, the baseband signal is first processed by a low-pass 
filter having an approximation of a Gaussian impulse response (equation (5.86)) 
before entering the integrator and the quadrature modulator 

w* l I nil » t-(T/2)\ nil ft ' + (r/2)' (5.86) 
2T\~\ "/2M2) / ~\" "/2W2J// 

where Bb is the bandwidth of the filter, T is the bit time and Q(t) is the £Lfunction 

Q(t) 
JtV: V2 

-*2/2dx 

5.3.5 The Hilbert transformer 

A special kind of "ideal" filter is the quadrature filter. Since this filter is 
non-causal, only approximations (Mitra and Kaiser, 1993) of the filter can be 
implemented in practice. This filter model is often used when dealing with 
single sideband (SSB) signals. The ideal frequency response is 

H(a>) = { 
-j co > 0 
0 co = 0 

Q)<0 

(5.87) 

J 
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This can be interpreted as an all-pass filter, providing a phase shift of n/2 
radians at all frequencies. Hence, if the input signal is cos(a)t), the output will 
be cos(cot — 90) = sin(cot). 

The corresponding impulse response is 

h(t) = — for t^ 0 (5.88) 
7tt 

The response of the quadrature filter to a real input signal is denoted the 
Hilbert transform and can be expressed as the convolution of the input signal 
x(t) and the impulse response of the filter 

1 C°° x(r) 
y(t) = x(t) * h(t) = - / - - ^ - dr (5.89) 

where * denotes convolution. Now, the complex analytic signal z(t) associated 
with x(t) can be formed as 

z(t) = x(t) +jy(t) = x(t) +jx(t) * h{t) (5.90) 

It is clear that z(t) above is the response of the system 

G(co) = 1 +jH(co) (5.91) 

The frequency response above implies attenuation of "negative" frequency 
components while passing "positive" frequency components. In an SSB situa
tion, this relates to the lower and upper sideband (Proakis, 1989), respectively 

f 1 +K~j) = 2 for co>0 

Hence, if we want to transmit the analog signal x(t) using SSB modula
tion, equation (5.90) replaces equation (5.81). Further, the symbol mapper in 
Figure 5.10 is replaced by a direct connection of x(t) to the / channel and a 
connection via a quadrature filter (Hilbert transformer) to the Q channel. (The 
phase shifter connected to the carrier generator in Figure 5.10 can, of course 
also, be implemented as a Hilbert transformer.) 

When dealing with discrete-time systems, the impulse response (equa
tion (5.88)) is replaced by 

lf . (1/7Z72 for odd n 
h(n) = {' ~ (5.93) v ' [0 for even n v y 

This function can, for instance, be approximated by an FIR filter. There 
are different ways of approximating the time-discrete Hilbert transformer 
(Proakis, 1989). 

Summary In this chapter the following topics have been treated: 

• DFT, FFT, twiddle factors and zero padding 
• Windowing techniques, spectrum estimation, Welch's and Bartlett's methods 
• Correlation and covariance, the Wiener-Khintchine theorem 
• AR, MA and ARMA models, the Yule-Walker equations 
• Wavelets 
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• ASK, FSK, PSK, BPSK, QPSK, MSK, GMSK and QAM 
• Phasors, the quadrature modulator, Armstrong's indirect FM method and the 

Hilbert transform. 

Review questions R5-1 What is the relation between DFT and FFT? What tricks are typically 
used by FFT? 

R5-2 Why are windowing techniques used? Pros and cons? 
R5-3 Explain how auto-correlation, auto-covariance, cross-correlation and 

cross-covariance are related. 
R5-4 What is the basic idea behind parametric spectrum analysis? What do 

AR, MA and ARMA stand for? 
R5-5 Under what circumstances is wavelet analysis better than using the Fourier 

transform? 
R5-6 What is the trade-off when determining the number of symbols M in a 

modulator? 
R5-7 What is Armstrong's indirect FM method? How can it be used in practice? 
R5-8 What are the properties of the Hilbert transformer? Give an application 

example. 

Solved problems P5-1 Draw a block diagram of a quadrature modulator and demodulator, 
including proper signal names and equations. 

P5-2 Show that equations (5.85a) and (5.85b) can be obtained from equations 
(5.80a) and (5.80b). 

P5-3 Solve equation (5.72) and prove that equation (5.73) is the solution for 
Af in an MSK system. 

P5-4 Write a MATLAB™ program making an FFT and plotting the magnitude 
of the spectrum of the digital AM signal s(n) = (1 + cos(£2/«)) cos(£2c«), 
where Q( = 0.01, Qc = 2 and Af = 1024. Try the rectangular window and 
the Hamming window. What conclusions can be made? 



6 Introduction to Kalman 
filters 

Background In earlier chapters, we have mainly been dealing with deterministic signals 
having fairly simple frequency spectra. Such signals can often be processed 
successfully using classical filters. When it comes to filtering of stochastic (ran
dom) signals, things get worse. Since the frequency spectra of a stochastic signal 
commonly is quite complex, it will be difficult to extract or reject the desired 
parts of the spectra to obtain the required filtering action. In such a situation, 
a Kalman filter may come in handy. Using a Kalman filter, signals are filtered 
according to their statistical properties, rather than their frequency contents. 

The Kalman filter has other interesting properties. The filter contains a signal 
model, a type of "simulator" that produces the output signal. When the quality 
of the input signal is good (for instance, a small amount of noise or interference), 
the signal is used to generate the output signal and the internal model is adjusted 
to follow the input signal. When, on the other hand, the input signal is poor, it is 
ignored and the output signal from the filter is mainly produced by the model. 
In this way, the filter can produce a reasonable output signal even during drop 
out of the input signal. Further, once the model has converged well to the input 
signal, the filter can be used to simulate future output signals, i.e. the filter can 
be used for prediction. 

Kalman filters are often used to condition transducer signals and in control 
systems for satellites, aircraft and missiles. The filter is also used in appli
cations dealing with examples, such as economics, medicine, chemistry and 
sociology. 

Objectives In this chapter we will discuss: 

• Recursive least square (RLS) estimation and the underlying idea of Kalman 
filters 

• The pseudo-inverse and how it is related to RLS and Kalman filters 
• The signal model, a dynamic system as a state-space model 
• The measurement-update equations and the time-update equations 
• The innovation, the Kalman gain matrix and the Riccatti equation 
• A simple example application, estimating position and velocity while cruis

ing down main street 
• Properties of Kalman filters. 

6.1 An intuitive 
approach 

Filters were originally viewed as systems or algorithms with frequency selec
tive properties. They could discriminate between unwanted and desired signals 
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found in different frequency bands. Hence, by using a filter, these unwanted 
signals could be rejected. 

In the 1940s, theoretical work was performed by N. Wiener and 
N.A. Kolomogorov on statistical approaches to filtering. In these cases, sig
nals could be filtered according to their statistical properties, rather than their 
frequency contents. At this time, the Wiener and Kolomogorov theory required 
the signals to be stationary, which means that the statistical properties of the 
signals were not allowed to change with time. 

In late 1950s and early 1960s a new theory was developed capable of coping 
with non-stationary signals as well. This theory came to be known as the 
Kalman filter theory, named after R.E. Kalman. 

The Kalman filter is a discrete-time, linear filter and it is also an optimal 
filter under conditions that shall be described later in the text. The underlying 
theory is quite advanced and is based on statistical results and estimation theory. 
This presentation of the Kalman filter (Anderson and Moore, 1979; Astrom 
and Wittenmark, 1984; Bozic, 1994) will begin with a brief discussion of 
estimation. 

6.1.1 Recursive least square estimation 

Let us start with a simple example to illustrate the idea of recursive least 
square (RLS) estimation. Assume that we would like to measure a constant 
signal level (DC level) x. Unfortunately, our measurements z(n) are disturbed 
by noise v(n). Hence, based on the observations 

z(w) = JC + v(«) (6.1) 

Our task is to filter out the noise and make the best possible estimation of 
x. This estimate is called x. Our quality criteria is finding the estimate x that 
minimizes the least square criteria 

N 

J(x) = J > ( r c ) - x ) 2 (6.2) 

The minimum of equation (6.2) can be found by setting the first derivative to 0 

^ = f ;2(Jc-z(n) ) = 0 (6.3) 

Solving for x(N), i.e. the estimate x used during N observations of z(n), we 
obtain 

N N 

X > = EZ(") (6-4) 
n=\ n=\ 

where 

N N 

^ jc = Nx(N) = Y^<n) (6-5) 
n=\ w=l 
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Hence, the best way to filter our observations in the sense of minimizing our 
criteria (6.2) is 

1 N 

^(N)=-J2Z^ (6*6) 

n=\ 

That is, taking the average of N observations. Now, we do not want to wait for N 
observations before obtaining an estimate. We want to have an estimate almost 
at once, when starting to measure. Of course, this estimate will be quite poor, 
but we expect it to grow better and better as more observations are gathered. In 
other words, we require a recursive estimation (filtering) method. This can be 
achieved in the following way. 

From equation (6.5) we can express the estimate after N + 1 observations 

JV+1 JV+l 

(N + l)x(N + 1) = J2 * = E *(*) <6-7) 
n=\ n=\ 

Now, we want to know how the estimate changes from TV to N + 1 obser
vations, in order to find a recursive algorithm. Taking equation (6.7) minus 
equation (6.5) gives 

tf+l N 

(N + l)x(N + 1) - Nx(N) = J^ z(n) ~ E z ( * ) = Z^N + !) (6*8) 

«=1 n=\ 

Rearranging in a way that x(N +1) (the "new" estimate) is expressed in terms 
of x(N) (the "old" estimate), from equation (6.8) we get 

*(N + l) = ^T\(z(N + 1 } + m ( N ) ) 

= ]vTT ( z ( i v r + 1 } + (N + l)i(N) ~ * m 

= ^ ^ + T^~[(z(N + 1 } " *(A0) ( 6 9 ) 

where we assume the initial condition x(0) = 0. The filter can be drawn as 
in Figure 6.1. Note that the filter now contains a model (the delay z _ 1 or 
"memory") of the signal x. Presently, the model now holds the best estimate 
x(N) which is compared to the new measured value z(N +1). The difference 
z(N + l)—x(N)9 sometimes called the innovation, is amplified by the gain 
factor 1/(N+ 1) before it is used to update our estimate, i.e. our model to 
x(N+l). 

Two facts need to be noted. Firstly, if our estimate x(N) is close to the mea
sured quantity z(N + 1), our model is not adjusted significantly and the output 
is quite good as is. Secondly, the gain factor l/(iV+ 1) will grow smaller 
and smaller as time goes by. The filter will hence pay less and less atten
tion to the measured noisy values, making the output level stabilize to a fixed 
value of x. 
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z(N+l)+ ^ 

A 

1 
N+ 1 

»tf^ 
A 

1 1 • JC(N+ 1) 

z"1 i(AO 
w 

Figure 6.1 An example of an RLS estimator 

In the discussion above, we have assumed that the impact of the noise has 
been constant. The "quality" of the observed variable z(n) has been the same 
for all n. If, on the other hand, we know that the noise is very strong ait certain 
times, or even experience a disruption in the measuring process, then we should, 
of course, pay less attention to the input signal z(n). One way to solve this is 
to implement a kind of quality weight q(n). For instance, this weight could be 
related to the magnitude of the noise as 

q(n) oc 
1 

v20) 
(6.10) 

Inserting this into equation (6.2), we obtain a weighted least square criteria 

N 

J(*) = £>(n)(z(n)-*)2 (6.11) 
n=\ 

Using equation (6.11) and going through the same calculations as before, 
equations (6.3)-(6.9) we obtain the expression for the gain factor in this case 
(compare to equation (6.9)) 

x(N + 1) = x(N) + 
q(N+l) 

(z(N+l)-x(N)) 

= x(N) + Q(N + l)(z(JV + 1) - x(N)) (6.12) 

It can be shown that the gain factor Q(N + l) can also be calculated 
recursively 

Q(N+l) = 
q(N+l) 

q(N + l) _ Q(N)q(N+l) 

q(N) + Q(N)q(N+l) 
(6.13) 

where the starting conditions are: q(0) = 0 and Q(0) = 1. We can now draw 
some interesting conclusions about the behavior of the filter. If the input signal 
quality is extremely low (or if no input signal is available) q(n) -*• 0 implies that 
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Q(n +1) -> 0 and the output from the filter equation (6.12) is 

x(N+l)=x(N) (6.14) 

In other words, we are running "dead reckoning" using the model in the 
filter only. If, on the other hand, the input signal quality is excellent (no noise 
present), q(n) -> oo and Q(n + 1) -> 1 then 

x(N+\) = z(N+l) (6.15) 

In this case, the input signal is fed directly to the output, and the model in the 
filter is updated. 

For intermediate quality levels of the input signal, a mix of measured sig
nal and modeled signal is presented at the output of the filter. This mix thus 
represents the best estimate of x, according to the weighted least square criteria. 

So far, we have assumed x to be a constant. If x(n) is allowed to change over 
time, but considerably slower than the noise, we must introduce a "forgetting 
factor" into equation (6.2), or else all "old" values of x(n) will counteract 
changes of x(n). The forgetting factor w(n) should have the following property 

w(n) > w(n — 1) > • • • > w(l) (6.16) 

In other words, the "oldest" values should be forgotten the most. One 
example is 

w(n) = aN-n (6.17) 

where 0 < a < 1. Inserting equation (6.17) into equation (6.2) and going through 
the calculations equations (6.3)-(6.9) again, we obtain 

x(N + 1) = x(N) + N+l
l
 N+l_n(z(N + 1) ~ x(N)) 

= x(N) + P(N + l)(z(N + 1) - x(N)) (6.18) 

The gain factor P(n) can be calculated recursively by 

P(N) p(N+l)=^m (6-19) 
Note, the gain factors can be calculated off-line, in advance. 

6.1.2 The pseudo-inverse 

If we now generalize the scalar measurement problem outlined above and go into 
a multidimensional problem, we can reformulate equation (6.1) using vector 
notation 

z(n) = HT(n)x + \(n) (6.20) 

where the dimensions of the entities are 

z(w): (K x 1) H(w): (L x K) 

x: (L x 1) v(/i): (K x 1) 
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In a simple case, where there is no noise present, i.e. \(n) = 0 (or when 
the noise is known) solving x from equation (6.20) could be done simply by 
inverting the matrix H(n) 

x = (H 1 ^))" 1 (z(w) - v(w)) (6.21) 

This corresponds to solving a system of L equations. Inverting the matrix H(w) 
may not be possible in all cases for two reasons, either the inverse does not 
exist or we do not have access to a sufficient amount of information. The 
latter is the case after each observation of z(n) when noise v(n) is present 
or if K< L, i.e. we have too few observations. Hence, a straightforward matrix 
inversion is not possible. In such a case, where the inverse of the matrix cannot be 
found, a pseudo-inverse (Anderson and Moore, 1979; Astrdm and Wittenmark, 
1984), also called the Moore-Penrose inverse, may be used instead. Using the 
pseudo-inverse, equation (6.21) can be solved "approximately". 

For a true inverse: (HT)_ 1HT = I, where I is the identity matrix. In a similar 
way, using the pseudo-inverse H# we try to make the matrix product (HT)# HT 

as close to the identity matrix as possible in a least squares sense. Note, this is 
similar to fitting a straight line to a number of measured and plotted points in a 
diagram using the least square method. 

The pseudo-inverse of H(«) can be expressed as 

H# = (H T Hr 1 H T (6.22) 

Now, finding the pseudo-inverse corresponds to minimizing the criteria 
(compare to equation (6.2)) 

AT 

J(x) = J2 II zO) - H T ( " ) * II2 (6-23) 
n=\ 

where the Euclidean matrix norm is used, i.e. 

ii AII2 = E E 4 
' j 

Minimizing the above is finding the vector estimate x that results in the 
least square error. Taking the derivative of equation (6.23) for all compo
nents, we obtain the gradient. Similar to equations (6.3)-(6.5) we solve for 
x as the gradient is set equal to 0, thus obtaining the following (compare to 
equation (6.6)) 

( N \~l N 

J2 H(») HT(rc) J 2 H ^ ZW (6'24) 

n=\ I n=\ 
Note, the sums above constitute the pseudo-inverse. In the same way as 

before, we like to find a recursive expression for the best estimate. This can 
be achieved by going through calculations similar to equations (6.7) amd (6.8), 
but using vector and matrix algebra. These calculations will yield the result 
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(compare to equation (6.9)) 

/N+l \~l 

x(N + 1) = Z(N) + I J2 H(w) H T 0 ) I H ( ^ + l)(z(N + !) 

-HT(N+l)x(N)) 

= i(N) + r(N + i) n(N + i)(z(A^ +1) - nT(N +1) £(AO) 
(6.25) 

where P(«) is the gain factor as before. Reasoning in a similar way to the cal
culations of equation (6.13), we find that this gain factor can also be calculated 
recursively 

P(JV + 1) = P(#) - Jf(N) U(N + 1) 

(I + RT(N + 1) P(A0 U(N + 1))_1 UT(N + 1) P(A0 

(6.26) 

The equations (6.25) and (6.26) are a recursive method of obtaining the 
pseudo-inverse H# using a filter model as in Figure 6.1. The ideas presented 
above constitute the underlying ideas of Kalman filters. 

6.2 The Kalman filter 6.2.1 The signal model 

The signal model, sometimes also called the process model or the plant, 
is a model of the "reality" which we would like to measure. This "reality" 
also generates the signals we are observing. In this context, dynamic systems 
are commonly described using a state-space model (see Chapter 1). A simple 
example may be the following. 

Assume that our friend Bill is cruising down Main Street in his brand new 
Corvette. Main Street can be approximated by a straight line, and since Bill 
has engaged the cruise control, we can assume that he is traveling at a constant 
speed (no traffic lights). Using a simple radar device, we try to measure Bill's 
position along Main Street (starting from the Burger King) at every second. 

Now, let us formulate a discrete-time, state-space model. Let Bill's position 
at time n be represented by the discrete-time variable x\(n) and his speed by 
X2(n). Expressing this in terms of a recursive scheme we can write 

x\(n + 1) = x\(n) + X2(n) 

x2(n + 1) = x2(n) (6.27) 

The second equation simply tells us that the speed is constant. The equations 
above can also be written using vector notation by defining a state vector x(n) 
and a transition matrix F(«), as 

lW=[«w] md F W = ^ !i <628) 
0 1 



166 Digital Signal Processing and Applications 

The equations (6.27) representing the system can now be nicely formulated 
as a simple state-space model 

x(n+l) = F(n)x(n) (6.29) 

This is, of course, a quite trivial situation and an ideal model, but Bill is certainly 
not. Now and then, he brakes a little when there is something interesting at 
the sidewalk. This repeated braking and putting the cruise control back into 
gear, changes the speed of the car. If we assume that the braking positions are 
randomly distributed along Main Street, we can hence take this into account by 
adding a white Gaussian noise signal w(n) to the speed variable in our model 

x(n + 1) = F(») x(n) + G(n) w(n) (6.30) 

where 

The noise, sometimes called "process noise" is supposed to be scalar in this 
example, having the variance: Q = cr^ and a mean equal to 0. Note, x(n) is now 
a stochastic vector. 

So far, we have not considered the errors of the measuring equipment. What 
entities in the process (Bill and Corvette) can we observe using our simple radar 
equipment? To start with, since the equipment is old and not of Doppler type, 
it will only give a number representing the distance. Speed is not measured. 
Hence, we can only get information about the state variable x\(n). This is rep
resented by the observation matrix H(«). Further, there are, of course, random 
errors present in the distance measurements obtained. On some occasions, no 
sensible readings are obtained, when cars are crossing the street. This uncer
tainty can be modeled by adding another white Gaussian noise signal v(n). This 
so-called "measurement noise" is scalar in this example, and is assumed to 
have zero mean and a variance R = a^;. Hence, the measured signal z(ji) can be 
expressed as 

z(n) = UT(n)x(n) + v(n) (6.31) 

Equations (6.30) and (6.31) now constitute our basic signal model, which can 
be drawn as in Figure 6.2. 

w(n) 
• G(«) >ti 

\ 
j 

x(n + 1) 

ft • 
V 

z"1 

F(/i) 

x(n) 
HT(«) *(A 2\«"> 

-+y— 
v( •0 

Figure 6.2 Basic signal model as expressed by equations (6.30) and (6.31) 
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6.2.2 The filter 

The task of the filter, given the observed signal z(n) (a vector in the general 
case), is to find the best possible estimate of the state vector x(n) in the sense of 
the criteria given below. We should however remember, x(n) is now a stochastic 
signal rather than a constant, as in the previous section. 

For our convenience, we will introduce the following notation: the estimate 
of x(n) at time n, based on the n — 1 observations z(0), z(l), ..., z(n — 1), will 
be denoted as x(n | n — 1) and the set of observations z(0), z(l), ..., z(n — 1) 
itself will be denoted Z(n — 1). 

Our quality criteria is finding the estimate that minimizes the conditional 
error covariance matrix (Anderson and Moore, 1979) 

C(n | n - 1) = E [(x(n) - x(n \ n - l))(x(n) -x(n\n- 1))T | Z(n - 1)] 

(6.32) 

This is a minimum variance criteria and can be regarded as a kind of "stochastic 
version" of the least square criteria used in the previous section. Finding the 
minimum is a bit more complicated in this case than in the previous section. The 
best estimate, according to our criteria, is found using the conditional mean 
(Anderson and Moore, 1979), i.e. 

x(n | n) = E[x(n) \ Z(n)] (6.33) 

The underlying idea is as follows: x(n) and z(n) are both random vector 
variables of which x(n) can be viewed as being a "part" of z(n) (see equation 
(6.31)). The statistical properties of x(n) will be "buried" in the statistical prop
erties of z(n). For instance, if we now want to have a better knowledge of the 
mean of x(n), uncertainty can be reduced by considering the actual values of 
the measurements Z(n). This is called conditioning. Hence, equation (6.33) 
the conditional mean of x(n) is the most probable mean of x(n), given the 
measured values Z(n). 

We will show how this conditional mean equation (6.33) can be calculated 
recursively, which is exactly what the Kalman filter does. (Later we shall return 
to the example of Bill and his Corvette.) 

Since we are going for a recursive procedure, let us start at time n = 0. When 
there are no measurements made, we have from equation (6.32) 

C(0 | - 1 ) = E[x(0)xT(0) | Z(-1)] = P(0) (6.34) 

It can be shown (Anderson and Moore, 1979), that the conditional mean 
of x(0) can be obtained from the cross-covariance of x(0) and z(0), the auto-
covariance and the mean of z(0) and the measured value z(0) itself 

x(0 | 0) = E[x(0)] + CXZ(0) C~l(0)(z(0) - E[z(0)]) (6.35) 

The covariance matrix at time «, based on n observations is denoted C(n \ n). 
It can be obtained from (for n = 0) 

C(0 | 0) = Cxx(0) - Cxz(0) C-^O) Czx(0) (6.36) 
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Next, we need to find the mean vectors and covariance matrices to plug into 
equations (6.35) and (6.36). Both the process noise and the measurement noise 
are Gaussian, and we assume that they are uncorrelated. 

The mean of x(0) is denoted E[x(0)]. Using equation (6.31), the mean of 
z(0) is 

E[z(0)] = E[HT(0) x(0) + v(0)] = HT(0) E[x(0)] (6.37) 

where, we have used the fact that the mean of the measurement noise v(0) is 0. 
The auto-covariance of x(0) 

C„(0) = E[x(0) xT(0)] = P(0) (6.38) 

Using equation (6.31), the auto-covariance of z(0) can be expressed as 

Czz(0) = E[z(0)zT(0)] 

= E[(HT(0) x(0) + v(0))(HT(0) x(0) + v(0))T] 

= E [HT(0) x(0) xT(0) H(0) + HT(0) x(0) vT(0) 

+ v(0)xT(0)H(0) + v(0)vT(0)] 

= HT(0)E[x(0)xT(0)] H(0) + E[v(0) vT(0)] 

= HT(0) P(0) H(0) + R(0) (6.39) 

where the cross-covariance between x(0) and v(0) is 0, since the measurement 
noise was assumed to be uncorrelated to the process noise. R(0) is the auto
correlation matrix of the measurement noise v(0). In a similar way, the cross-
covariance between x(0) and z(0) can be expressed as 

Q,(0) = E[z(0)xT(0)] 

= E[(HT(0)x(0) + v(0))xT(0)] 

= E[HT(0) x(0) xT(0) + v(0) xT(0)] 

= HT(0) E[x(0) xT(0)] = HT(0) P(0) (6.40) 

and 

C«(0) = E[x(0) zT(0)] = P(0) H(0) (6.41) 

Inserting these results into equations (6.35) and (6.36), respectively, we obtain 
the conditioned mean and the covariance 

x(01 0) = E[x(0)] + P(0) H(0)(HT(0) P(0) H(0) + R(O))"1 

(z(0)-HT(0)E[x(0)]) (6.42) 

C(010) = P(0) - P(0) H(0)(HT(0) P(0) H(0) + R(O))-1 HT(0) P(0) 

(6.43) 
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Let us now take a step forward in time, i.e. for n = 1, before we have taken the 
measurement z(l) into account, from equation (6.30) and various independence 
assumptions (Anderson and Moore, 1979) we have the mean 

x( l |0) = F(0)x(0|0) (6.44) 

and the covariance 

C(l | 0) = F(0) C(0 | 0) FT(0) + G(0) Q(0) GT(0) (6.45) 

where Q(0) is the auto-correlation matrix of the process noise w(0). We are now 
back in the situation where we started for n = 0, but now with n = 1. The calcu
lations starting with equation (6.35) can be repeated to take the measurement 
z(l) into account, i.e. to do the conditioning. For convenience, only the last two 
equations in the sequel will be shown (compare to equations (6.42) and (6.43)) 

x(l | 1) = x(l |0) + C(1 |0)H(1)(HT(1)C(1 |0)H(1) + R(1))"1 

( z ( l ) - H T ( l ) x ( l | 0 ) ) (6.46) 

C(l | 1) = C(l | 0) - C(l | 0)H(1)(HT(1)C(11 0)H(1) + R(l))-1 

HT(1)C(1|0) (6.47) 

Repeating the steps as outlined above, we can now formulate a general, 
recursive algorithm that constitutes the Kalman filter equations in their 
basic form. These equations are commonly divided into two groups, the 
measurement-update equations and the time-update equations. 

Measurement-update equations 

x(n |n) = x(n \n - 1) + C(n \ n - 1)U(n)(RT(n)C(n\n- l)H(n) 

+ R(n))-\z(n) - HT(n)x(n \n-l)) (6.48) 

C(« | n) = C(/i | n - 1) - C(w | n - 1) R(n)(UT(n) C(n\n- 1) H(/i) 

+ R(n))~l HT(«) C(n\n- 1) (6.49) 

Time-update equations 

i(7i + l | « ) = F(/i)i(n|/i) (6.50) 

C(/i + 11 n) = ¥(n)C(n \ n)¥T(n) + G(n)Q(n)GT(n) (6.51) 

The equations above are straightforward to implement in software. An alter
native way of writing them, making it easier to draw the filter in diagram form, is 

x(n + 1 | n) = F(/i) x(n \ n - 1) + K(n)(z(w) - RT(n) x(n \ n - 1)) (6.52) 

where K(n) is the Kalman gain matrix 

K(/i) = F(w)C(/i |n - 1)H(«)(HT(«)C(n\n- 1)H(n) + R(«))_1 (6.53) 



> x(n\n — 1) 

Figure 6.3 A basic Kalman filter. Note the copy of the signal model in the 
dotted area 

and the conditional error covariance matrix is given recursively by a discrete-
time Riccati equation 

C(n + 117i) = F(/i)(C(n | n - 1) - C(n \ n - 1) H(w) 

(HT(«) C(n\n- 1) H(n) + RO))"1 H1 

C(w | n - 1)) FT(rc) + GO*) Q(n) GT(n) (6.54) 

The structure of the corresponding Kalman Filter is shown in Figure 6.3. 
The filter can be regarded as a copy of the signal model (see Figure 6.2) put 
in a feedback loop. The input to the model is the difference between the actual 
measured signal z(«) and our estimate of the measured signal HT(«) x(n \ n — 1) 
multiplied by the Kalman gain K(n). This is mainly the same approach as the 
recursive least square estimator in Figure 6.1. The difference 

z(n) = z(n) -W(n)x(n\n - 1) (6.55) 

is sometimes referred to as the innovation. 
Now, to conclude this somewhat simplified presentation of the Kalman filter, 

let us go back to Bill and the Corvette. As an example, we will design a Kalman 
filter to estimate Bill's speed and position from the not-too-good measurements 
available from the radar equipment. 

We have earlier defined the signal model, i.e. we know x(«), F and G. We 
are now writing the matrices without indices, since they are constants. Further, 
we recall that the process noise is a Gaussian random variable w(n), which in 
this example is a scalar resulting in the auto-correlation matrix Q turning into 
a scalar as well. This is simply the variance Q = a^ which is assumed to be 
constant over time. 
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Regarding the measurement procedure, since we can only measure posi
tion and not speed, the observation matrix H (constant) will be (see also 
equation (6.31)) 

H (6.56) 

Since the measured signal z(n) is a scalar in this example, the measurement 
noise v(n) will also be a scalar, and the auto-correlation matrix R will simply 
consist of the constant variance R = &1. Now, all the details regarding the signal 
model are determined, but we also need some vectors and matrices to implement 
the Kalman filter. 

First, we need vectors for the estimates of x(n) 

x(n | n — 1) = 
x\(n\n- 1) 

x2(n | n - 1) 

Then, we will need matrices for the error covariance 

C(n | n - 1) = 
C i i ( f i | / ! - l ) Cl2(n\n-\) 

C2i(n\n-l) C22(n\n-l) 

If we insert all the known facts above into equations (6.48)—(6.51), 
the Kalman filter for this example is defined. From equation (6.48), the 
measurement-update yields 

\(n | n) = x(n | n — 1) + 
Cn(n\n-\) 

C2l(n\n-l) 

z(n) —x\(n \n — 1) 

Cn(n\n- \) + R 
(6.57) 

which can be expressed in component form 

Cn{n\n-\){z(n)-xx(n\n-\)) 
x\{n\n) =x\{n\n - 1) + 

x2(n | n) = x2(n \ n - 1) + 

C n ( n | » - 1 ) + J? 

C2i(n\n-l)(z(n)-xi(n\n-\)) 

Cn(n\n-l) + R 

Using equation (6.49) the covariance can be updated 

(6.58a) 

(6.58b) 

C(n | n) = C(n \ n - 1) 

"Cn(n |n - l)Cii(« |n - 1) Cn(n \ n - l)Cl2(n \n-\) 

_C2i(n |n - 1)Cn(n |n - 1) C21(n \n - 1)Cl2(n \n-\) 

1 

C n ( n | « - l ) + i ? 
(6.59) 
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or expressed in component form 

C\\(n\n) = C\\(n\n- 1) 

C\2(n\ri) = C\2(n\n- 1) 

C2i(n\n) = C2i(n\n-l)-

C22(n\n) = C22(n\n-l)-
C\\(n\n- l) + R 

and then, the time-update equations, starting with equation (6.50) 

C\\{n\n-

Cu(n\n-

Cu(n 

C2\(n\n-

Cn(n 

Cz\{n\n-

\) + R 

\)Cn(n\n-

\n-\) + R 

l ) C n ( « | « -
\n-l) + R 

\)Cn(n\n-

-1) 

-1) 

1) 

x(« + 1 I n) = 
x\(n\n)+X2(n\n) 

x2(n | n) 

(6.60a) 

(6.60b) 

(6.60c) 

(6.60d) 

(6.61) 

This can be compared to the basic state-space signal model (6.27). If equation 
(6.61) is expressed in component form, we get 

x\(n+ 1 \n) =x\(n \n)+X2(n\n) 

X2(n + 11 n) — X2(n \ n) 

Finally, equation (6.51) gives 

C(n + 1 | n) 

(6.62a) 

(6.62b) 

rCii(«l«) + C2\ (n | n) + Cl2(n I n) + C22(n | n) Cl2(, 
Cn{n\ri) + C22{n\n) 

n\n) + C22(n \ «)1 
C22(n | ri) J 

(6.63) 

In component form 

Cii(» + 1 | n) = Cn(n I n) + C2l(n \ n) + Cl2(n \ n) + C22(n \ n) (6.64a) 

CX2(n + 1 | n) = Cn(n \ n) + C22(n \ n) (6.64b) 

C2l(n + l\n) = C2\(n\n) + C22(n \ n) (6.64c) 

C22(n + 1 |n) = C22(n \n) + Q (6.64d) 

Hence, the Kalman filter for estimating Bill's position and speed is read
ily implemented by repetitively calculating the 12 equations (6.58a), (6.58b), 
(6.60a)-(6.60d), (6.62a), (6.62b) and (6.64a)-(6.64d) above. 

For this example, Figure 6.4 shows the true velocity and position of the car 
and the noisy, measured position, i.e. the input to the Kalman filter. Figure 6.5 
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Figure 6.4 True velocity, position and noisy measured position 

shows the output from the filter, the estimated velocity and position. An overshot 
can be seen in the beginning of the filtering process, before the filter is tracking. 
Figure 6.6 shows the two components of the decreasing Kalman gain as a 
function of time. 

6.2.3 Kalman filter properties 

At first, it should be stressed that the brief presentation of the Kalman filter in 
the previous section is simplified. For instance, the assumption about Gaussian 
noise is not necessary in the general case (Anderson and Moore, 1979). Nor is 
the assumption that the process and measurement noise is uncorrelated. There 
are also a number of extensions (Anderson and Moore, 1979) of the Kalman 
filter which have not been described here. Below, we will however discuss some 
interesting properties of the general Kalman filter. 

The Kalman filter is linear. This is obvious from the preceding calculations. 
The filter is also a discrete-time system and has finite dimensionality. 

The Kalman filter is an optimal filter in the sense of achieving minimum 
variance estimates. It can be shown that in Gaussian noise situations, the Kalman 
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Figure 6.5 Estimated velocity and position 

K(2) 

100 
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Figure 6.6 Kalman gain as a function of time 

filter is the best possible filter, and in non-Gaussian cases, the best linear filter. 
The optimal filter in the latter case is non-linear and may therefore be very hard 
to find and analyze in the general case. 

The gain matrix K(n) can be calculated off-line, in advance, before the 
Kalman filter is actually run. The output x(n \ n - 1) of the filter is obviously 
dependent on the input z(«), but the covariance matrix C(n \ n — 1) and hence 
the Kalman gain K(«) is not. K(n) can be regarded as the smartest way of taking 
the measurements into account given the signal model and statistical properties. 
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From the above, we can also conclude that since C(n \ n — 1) is independent 
of the measurements z(n), no one set of measurements helps more than any 
other to eliminate the uncertainty about x(n). 

Another conclusion that can be drawn is that the filter is only optimal given 
the signal model and statistical assumptions made at design time. If there is 
a poor match between the real world signals and the assumed signals of the 
model, the filter will, of course, not perform optimally in reality. This problem 
is, however, common to all filters. 

Further, even if the signal model is time invariant and the noise processes 
are stationary, i.e. F(«), G(«), H(«), Q(n) and R(n) are constant, in general 
C(n | n — 1) and hence K(n) will not be constant. This implies that in the general 
case, the Kalman filter will be time varying. 

The Kalman filter contains a model, which tracks the true system we are 
observing. So, from the model, we can obtain estimates of state variables that 
we are only measuring in an indirect way. We could, for instance, get an estimate 
of the speed of Bill's Corvette in our example above, despite only measuring 
the position of the car. 

Another useful property of the built-in model is that in case of missing mea
surements during a limited period of time, the filter can "interpolate" the state 
variables. In some applications, when the filter model has "stabilized", it can 
be "sped up" and even be used for prediction. 

Viewing the Kalman filter in the frequency domain, it can be regarded as a 
low-pass filter with varying cut-off frequency (Bozic, 1994). Take for instance 
a scalar version of the Kalman filter, e.g. the RLS algorithm equation (6.9), 
repeated here for convenience 

x(N + 1) = x(N) + ^ y ( ^ + 1) " %N)) (6.65) 

To avoid confusion we shall rename the variables so that u(n) is the input 
signal and v(n) is the output signal of the filter, resulting in 

v(N + 1) = v(N) + -— - (u(N + 1) - v(A0) (6.66) 

Denoting the gain factor k = 1/(N + 1) and taking the z-transform of equation 
(6.66) we get 

zV(z) = V(z) + k(zU(z) - V(z)) (6.67) 

Of course, the z in equation (6.67) is the z-transform parameter, while in 
equation (6.65) it is the input signal to the filter. They are certainly not the same 
entity. Rewriting equation (6.67) we obtain the transfer function of the filter 

TT/ x V(z) kz 

Now, when the filter is just started, and TV = 0 we get k = 1 and the transfer 
function will be 

H(z) = - = 1 (6.69) 
z 
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In this case, the filter has a pole and a zero in the center of the unit circle in 
the z-plane and the magnitude of the amplitude function is unity. This is nothing 
but an all-pass filter with gain one. 

Later, when the filter has been running for a while and N -> oo, k -» 0, the 
transfer function (6.68) turns into 

0-z 
H{z) = (6.70) 

Z — L 

This is a low-pass filter with a pole on the unit circle and a gain tending towards 
zero. Due to the placement of the pole, we are now dealing with a highly 
narrow-band low-pass filter, actually a pure digital integrator. 

6.2.4 Applications 

The Kalman filter is a very useful device that has found many applications in 
diverse areas. Since the filter is a discrete-time system, the advent of powerful 
and not too costly digital signal processing (DSP) circuits has been crucial to 
the possibilities of using Kalman filters in commercial applications. 

The Kalman filter is used for filtering and smoothing measured! signals, 
not only in electronic applications, but also in processing of data in the areas, 
e.g. economy, medicine, chemistry and sociology. Kalman filters are also to 
some extent used in digital image processing, when enhancing the quality of 
digitized pictures. Further detection of signals in radar and sonar systems and in 
telecommunication systems often requires filters for equalization. The Kalman 
filter, belonging to the class of adaptive filters, performs well in such contexts 
(see Chapter 3). 

Other areas where Kalman filters are used are process identification, mod
eling and control. Much of the early developments of the Kalman filter theory 
came from applications in the aerospace industry. One control system exam
ple is keeping satellites or missiles on a desired trajectory. This task is often 
solved using some optimal control algorithm, taking estimated state variables 
as inputs. The estimation is, of course, done with a Kalman filter. The estimated 
state vector may be of dimension 12 (or more) consisting of position (x, y9 z), 
yaw, roll, pitch and the first derivatives of these, i.e. speed (x, y, z) and speed of 
yaw, roll and pitch movements. Designing such a system requires a considerable 
amount of computer simulations. 

An example of process modeling using Kalman filters is to analyze the behav
ior of the stock market, and/or to find parameters for a model of the underlying 
economic processes. Modeling of meteorological and hydrological processes 
as well as chemical reactions in the manufacturing industry are other examples. 

Kalman filters can also be used for forecasting, for such as prediction of air 
pollution levels, air traffic congestion, etc. 

Summary In this chapter we have covered: 

• Recursive least square (RLS) estimation 
• The pseudo-inverse and how to obtain it in an iterative way 
• The measurement-update equations and the time-update equations of the 

Kalman filter 
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• The innovation, the Kalman gain matrix and the Riccatti equation 
• Properties and applications of the Kalman filter. 

Review questions R6-1 The gas tank gauge of a car is sampled every second by an analog-to-
digtal (A/D) converter and an embedded computer. Unfortunately, the 
transducer signal is very noisy, resulting in a fluctuating reading on the 
digital display. To "clean" the transducer signal and obtain a stable read
ing, a suggestion is to employ an RLS algorithm as in equation (6.9). 
Why is this not a good idea? How could the algorithm be modified to 
perform better? 

R6-2 What is the pseudo-inverse? When is it used? 
R6-3 Draw a block diagram of a basic Kalman filter. Explain the functioning 

of the different blocks and state the signal names (compare to Figure 6.3). 
R6-4 In the "Bill and Corvette example", we have assumed an almost constant 

speed and the small variations were represented by the process noise. If 
we extend the state-space model assuming a constant acceleration x?>(n) 
(Bill has got a gas turbine for his car?), how will this be reflected in the 
state vector and the transition matrix? 

R6-5 Explain briefly how a Kalman filter can be used for prediction of a future 
signal. Which are the dangers? 

Solved problems P6-1 Examine the measurement-update and time-update equations (6.48)-
(6.51), and explain the significance of the different terms in the equations. 
How will the filter perform if the signal quality is perfect (no mea
surement noise)? What happens if the quality is extremely bad? Try 
setting the measurement noise to zero and infinity, respectively, in the 
measurement-update and time-update equations and explain the behavior 
of the filter. 

P6-2 Derive the Kalman filter function (6.52), the Kalman gain equation (6.53) 
and the Riccatti equation (6.54) starting from the measurement-update 
and time-update equations. What happens to the Kalman gain and the 
Riccatti equation if the signal quality is perfect (no measurement noise)? 
What happens if the quality is extremely bad? 

P6-3 Write a MATLAB™ program to simulate Bill and his Corvette. The 
program should calculate and plot the true velocity, position and the 
measured position as in Figure 6.4. Use the MATLAB™ expressions 
w = o. i5*randn to generate the process noise and v = io*randn for the 
measurement noise. Further, assume the following starting conditions (at 
time 0): position equal to 0 and speed equal to 1. 

P6-4 Write a MATLAB™ program implementing the Kalman filter as used in 
the "Bill and Corvette example". The program should use the measured 
position generated by the program in P6-3 above as the input signal and 
plot the estimated speed and estimated position as in Figure 6.5. Assume 
the variance of the process noise to be 0.2 and the variance of the mea
surement noise to be equal to 4. Start the Kalman gain vector and the 
covariance matrix with all ones. 



7 Data compression 

Background What is information? Certainly a relevant question, but is there a unique answer? 
If you ask a journalist, a politician or an engineer, you will probably get quite 
different answers. For people working in the telecommunications and com
puting businesses, however, the answer is simple. Transporting and storing 
information is money. 

In this chapter, we will look deeper into the nature of information, and we will 
do it from a mathematical and statistical point of view. We will also consider the 
problem of data compression, i.e. different ways of minimizing the amount of 
digital data symbols, e.g. bits, need to represent a given amount of information 
in, for instance, a computer file. Fewer bits to store per file means more files 
and more users on a hard disk. Fewer bits to transport means faster communi
cations, better transmission capacity and more customers in our networks and 
communication satellite links. Hence, data compression is a good business. 

Objectives In this chapter we will deal with: 

• General ideas of information theory, how to quantize information, the "bit" 
• Mutual information, entropy and redundancy, source coding 
• Huffman algorithm and prefix-free variable length codes 
• Different versions of delta modulation and differential pulse code modulation 

(PCM) algorithms 
• Speech coding techniques and vocoders 
• Image coding, joint photographies expert group (JPEG) and moving pictures 

expert group (MPEG) 
• Other common data compression methods, layer-3 of MPEG-1 (MP3) and 

Lempel-Ziv-Welch (LZW). 

7.1 An information 
theory primer 

7.1.1 Historic notes 

The concept of information theory (Cover and Thomas, 1991) in a strict math
ematical sense was born in 1948, when C.E. Shannon published his celebrated 
work "A Mathematical Theory of Communication", later published using the 
title "The Mathematical Theory of Communication". Obviously, Shannon was 
ahead of his time and many of his contemporary communication specialists did 
not understand his results. Gradually it became apparent, however, that Shannon 
had indeed created a new scientific discipline. 

Besides finding a way of quantizing information in a mathematical sense, 
Shannon formulated three important fundamental theorems: the source coding 
theorem, the channel coding theorem and the rate distortion theorem. In this 
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chapter, we will concentrate on the source coding theorem, while implications 
of the channel coding theorem will be discussed in Chapter 8. 

The works of Shannon are an important foundation of modern information 
theory. It has proven useful not only in circuit design, computer design and com
munications technology, but it is also being applied to biology and psychology, 
to phonetics and even to semantics and literature. 

7.1.2 Information and entropy 

There are many different definitions of the term "information"; however, in this 
case we will define it as receiving information implies a reduction of uncer
tainty about a certain condition. Now, if we assume that this condition or 
variable can take a finite number of values or states, these states can be 
represented using a finite set of symbols, an "alphabet". 

Consider the following example: in a group of 10 persons, we need to know in 
which country in Scandinavia each person is born. There are three possibilities; 
Denmark, Norway and Sweden. We decide to use a subset of the digits 0, 1, 
2 , . . . , 9 as our symbol alphabet as follows 

1 = Denmark, 2 = Norway, 3 = Sweden 

The complete message will be a 10 digit long string of symbols, where each 
digit represents the birthplace of a person. Assuming that the probability of 
being born in any of the three countries is equal, p\ = 1/3 (born in Denmark), 
p2 = 1/3 (born in Norway) and pi = l/3 (born in Sweden), the total uncertainty 
about the group (in this respect) before the message is received in one out of 
310 = 59 049 (the number of possible combinations). For every symbol of the 
message we receive, the uncertainty is reduced by a factor of three, and when 
the entire message is received, there is only one possible combination left. Our 
uncertainty has hence been reduced and the information has been received. 

Extending our example above, we now need to know in which country in 
Europe the persons are born. We realize that our symbol alphabet must be mod
ified, since there are 34 countries in Europe today (changes rather quickly these 
days). We extend our alphabet in the following way. First we use 0, 1. 2, . . . , 9 
as before, and after that we continue using the normal letters, A, B, C, . . . , 
Z. This will give us an alphabet consisting of 10 + 26 = 36 different possible 
symbols, out of which we use 34. If all the countries are equally probable birth
places, the uncertainty before we get the message is one out of 3410 ^2.06 • 1015 

possible combinations. Every symbol reduces the information by a factor of 34 
and when the entire 10 symbols string is received, no uncertainty exists. 

From the above example, we draw the conclusion that in the latter case, the 
message contained a larger amount of information than in the first case. This is 
because of the fact that in the latter case there were more countries to choose 
from than in the former. The uncertainty of "which country in Europe?" is of 
course larger than the uncertainty of "which country in Scandinavia?". If we 
know in advance that there are only persons born in Scandinavia in the group, 
this represents a certain amount of information that we already have: and that 
need not be included in the message. From this discussion, we are now aware of 
the fact that when dealing with information measures, a very relevant question 
is "information about what?". 
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In the latter case above, dealing with extending the alphabet, we could have 
chosen another approach. Instead of using one character per symbol, we could 
have used two characters, e.g. 01, 02, 03, . . . , 33, 34. In this way, only the 
digits 0, 1, 2, 3, . . . , 9 would have been used as in the earlier case, but on 
the other hand, the message would have been twice as long, i.e. 20 characters. 
Actually, we could have used any set of characters to define our alphabet. There 
is, however, a trade-off in that the smaller the set of characters, the longer the 
message. The number of characters per symbol L needed can be expressed as 

L = 
log(JVs) 
log(ATc) 

= r iog^s) ! (7.i) 

where TVs is the number of symbols needed, in other words, the number of dis
crete states, NQ is the number of different characters used and f 1 is the "ceiling" 
operator (the first integer greater or equal to the argument). For instance, if we 
use the popular binary digits (BITs for short) 0 and 1, this implies that NQ = 2. 
Using binary digits in our examples above implies 

"Scandinavia": Ns = 3 L = riog2(3)l = [lb(3)l = 11.581 

= 2 char/symbol 

"Europe": Ns = 34 L = flb(34)l = [5.091 = 6 char/symbol 

From above, it can be seen that lb() means logarithm base 2, i.e. log2(). 
A binary message for the "Scandinavia" example would be 20-bit long, while 

for the "Europe" example 60 bits. It is important to realize that the "shorter" 
version (using many different characters) of the respective strings contains the 
same amount of information as the "longer", binary version. 

Now in an information theory context, we can see that the choice of characters 
or the preferred entries used to represent a certain amount of information does 
not matter. Using a smaller set of characters would, however, result in longer 
messages for a given amount of information. Quite often, the choice of character 
set is made upon the way a system is implemented. When analyzing commu
nication systems, binary characters (bits) are often assumed for convenience, 
even if another representation is used in the actual implementation. 

Let us look at another situation and assume that we also want to know the 
gender of the persons in the group. We choose to use symbols consisting of 
normal letters. The two symbols will be the abbreviations "fe" for female and 
"ma" for male. Hence, information about the entire group with respect to sex 
will be a 20 characters long string, e.g. 

fefemafemamamafefema 

Taking a closer look at this string of information, we realize that if every second 
letter is removed, we can still obtain all the information we need 

ffmfmmmffm 

or 

eeaeaaaeea 
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would be OK. In this case, the longer string obviously contains "unnecessary 
information" or so-called redundant information, i.e. information that could 
be deducted from other parts of the message and thus not reduce our uncertainty 
(no "news"). If the redundant information is removed, we can still reduce the 
uncertainty to a desired level and obtain the required information. In this simple 
example, the redundancy in the longer string is due to the dependency between 
the characters. If we receive, for instance, the character "f", we can be 100% 
sure that the next character will be "e", so there is no uncertainty The shorter 
versions of the string cannot be made any more shorter, because there is no 
dependency between the characters. The sex of a person is independent of the 
sex of another person. The appearance of the characters "f" and "m" seems 
to be completely random. In this case, no redundancy is present. The example 
above is of course a very simple and obvious one. Redundancy is in many cases 
"hidden" in more sophisticated ways. 

Removing redundancy is mainly what data compression is all about. A very 
interesting question in this context is how much information is left in a message 
when all redundancy is removed? What maximum data compression factor is 
possible? This question is answered by the source coding theorem of Shannon. 
Unfortunately, the theorem does not tell us the smartest way of finding this 
maximum data compression method; it only tells us that there is a minimum 
message size that contains exactly all the information we need. 

A drawback when removing redundancy is that our message becomes more 
vulnerable to errors. In the example above, assume that the letters are written 
by hand in haste, and we find a distorted character looking like an "o". Since we 
have only defined "e" for female and "a" for male, this leads to an uncertainty. 
If we had used the system with redundant characters, we would have seen either 
"fo" or "mo", giving us a chance to resolve the ambiguity. This is the basic idea 
behind error-correcting codes, dealt with in Chapter 8. 

Now, let us be a bit more formal about the above. To start with, we shall 
define the concept of mutual information. Assuming that we want to gain 
information about an event A by observing the event B, the mutual information 
is defined as 

where we have assumed that the probability of the event A is non-zero, i.e. 
P(A)^0 and that P ( £ ) # 0 . P(A\B) is the conditional probability, i.e. the 
probability of A given that B is observed. The unit will be "bits" if logarithm base 
2 (lb()) is used (b = 2) and "nats" if the natural logarithm (ln()) is used (b = e). 

Using Bayes' theorem (Papoulis and Pillai, 2001) it is straightforward to 
show that I {A, B) is symmetric with respect to A and B 

(7.3) 

Hence, it does not matter if B is observed to gain information about A, or vice 
versa. The same amount of information is obtained. This is why I {A, B) is called 
the mutual information between the events A and B. 
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If we now assume that the events A and B are completely independent, there 
is no "coupling" in between them what-so-ever. In this case, P(A \B) = P(A) and 
the knowledge of A is not increased by the fact that B is observed. The mutual 
information in this case is 

I(A,B) = l ° g ( ^ ) = log(l) = 0 (7.4) 

On the other hand, if there is a complete dependence between A and B or, in 
other words, if when observing B we are 100% sure that ̂ 4 has happened, then 
P(A\B)= land 

I(A,B) = l ° g ( p ^ ) = - l o g ( ^ ) ) (7-5) 

The 100% dependence assumed above is equivalent to observing A itself instead 
of B, hence 

I(A,A) = -log(P(A)) (7.6) 

which represents the maximum information we can obtain about the events or, 
in other words, the maximum amount of information inherent in A. 

So far we have discussed single events, but if we now turn to the case of 
having a discrete random variable X that can take one of the values x\ ,#2 , . . . , 
XK, we can define the K events as A( whenX = JC/. Using equation (7.6) above 
and taking the average of the information for all events, the entropy of the 
stochastic, discrete variable X can be calculated as 

K 

H(X) = E[I(Ai9Ai)] = " £ fxixd log(fx(xi)) (7.7) 
1=1 

wherefx(xt) is the probability thatX =Xj9 i.e. that events, has happened. 
The entropy can be regarded as the information inherent in the variable X. As 

stated in the source coding theorem, this is the minimum amount of information 
we must keep to be able to reconstruct the behavior of X without errors. In other 
words, this is the redundancy-free amount of information that should preferably 
be produced by an ideal data compression algorithm. 

An interesting thing about the entropy is that the maximum information 
(entropy) is obtained when all the outcomes, i.e. all the possible values x;, are 
equally probable. In other words, the signalX is completely random. This seems 
intuitively right, since when all the alternatives are equally probable the uncer
tainty is the greatest. 

Going back to our examples in the beginning of this section, let us calculate 
the entropy. For the case of "birthplace in Scandinavia" the entropy is (assuming 
equal probabilities) 

3 1 3 / 1 \ 
H(X) = -J2fx(xi)lb(fx(xi)) = - - ^ l b - ) = 1.58 bits/person 

Hence, the minimum amount of information for 10 independent persons 
is 15.8 bits (we used 20 bits in our message). Data compression is therefore 
possible. We only have to find the "smartest" way. 



184 Digital Signal Processing and Applications 

For the "birthplace in Europe" example, the entropy can be calculated in a 
similar way 

34 1 34 / 1 \ 
H(X) = -J2fx(*i)Mfx(xi)) = - - X > ( - J = 5.09 bits/person 

The minimum amount of information for 10 independent persons is 50.9 bits 
and we used 60 bits in our message. Data compression is possible in thi s case too. 

7.1.2.1 Some concluding remarks about the concept of entropy 

The term entropy is commonly used in thermodynamics, where it refers to the 
disorder of molecules. In a gas, molecules move around in random patterns, 
while in a crystal lattice (solid state) they are lined up in a very ordered way; 
in other words, there is a certain degree of dependency. The gas is said to 
have higher entropy than the crystal state. Now, this has a direct coupling to 
the information concept. If we had to describe the position of a number of 
molecules, it would require more information for the gas than for the crystal. 
For the molecules in the gas we would have to give three coordinates (x, y, z) 
in space for every molecule. For the crystal, the positions could be represented 
by giving the coordinates for the reference corner of the lattice and the spacing 
of the lattice in JC, y and z directions. 

If you take, for instance, water and turn it into ice (a crystal with lower 
entropy), you have to put the water in the freezer and add energy. Hence, reduc
tion of entropy requires energy. This is also why you become exhausted by 
cleaning your room (reduction of entropy), while the "messing up" process 
seems to be quite relaxing. In an information theory context, freezing or clean
ing translates into getting rid of information, i.e. "forgetting" requires energy. 

7.2 Source coding In the previous section, we concluded that getting rid of redundancy was the 
task of data compression. This process is also called source coding. The under
lying idea is based on the fact that we have an information source generating 
information (discrete or continuous) at a rate of H bits/s (the entropy). If we 
need to store this information, we want to use as small storage as possible per 
time unit. If we are required to transmit the information, it is desirable to use 
as low data rate R as possible. From the source coding theorem, we however 
know that R > H to avoid loss of information. 

There are numerous examples of information sources, such as a keyboard 
(+human) generating text, a microphone generating a speech signal, a television 
camera, an image scanner, transducers in a measurement logging system, etc. 

The output information flow (signals) from these sources is commonly the 
subject of source coding (data compression) performed using general purpose 
digital computers or digital signal processors (DSPs). There are two classes 
of data compression methods. In the first class, we find general data com
pression algorithms, i.e. methods that work fairly well for any type of input 
data (text, images and speech signals). These methods are commonly able to 
"decompress", in other words, restore the original information data sequence 



Data compression 185 

without any errors ("lossless"). File compression programs for computers (e.g. 
"double space", "pkzip" and "arc") are typical examples. This class of data 
compression methods therefore adhere to the source coding theorem. 

In the other class of data compression methods, we find specialized algo
rithms, for instance, speech coding algorithms in cellular mobile telephone 
systems. This kind of data compression algorithms makes use of prior infor
mation about the data sequences and may, for instance, contain a model of 
the information source. For a special type of information, these specialized 
methods are more efficient than the general type of algorithms. On the other 
hand, since they are specialized, they may exhibit poor performance if used with 
other types of input data. A speech coding device designed for Nordic language 
speech signals may, for instance, be unusable for Arabian users. Another com
mon property of the algorithms in this class is the inability to restore exactly 
the original information ("lossy"). They can only restore it "sufficiently" well. 
Examples are speech coding systems (your mother almost sounds like your girl
friend) or image compression algorithms, producing more or less crude pictures 
with poor resolution and a very limited number of color shades. 

7.2.1 Huffman algorithm 

In the following discussion, we will mainly use binary digits, i.e. 0 and 1. Other 
character sets can, of course, be used. The basic idea of the Huffman coding 
algorithm is to use variable length, prefix-free symbols and to minimize the 
average length of the symbols (in number of characters), taking the statistics of 
the symbols into account. This algorithm belongs to the class of general data 
compression algorithms. 

Variable length means that a certain symbol can be one, two, three and so on 
characters long, e.g. 0, 10, 1111, etc. To be able to decode a string of variable 
length symbols, no symbol is, however, allowed to be a prefix of a longer 
symbol. We must be able to identify the symbol as soon as the last character of 
the symbol is received. The code must be prefix free. A simple example of a 
prefix-free code is a code consisting of the symbols 

0,10,11 

while the code using the symbols 

1,11,101 

is not prefix free. If we, for instance, receive "111011" we cannot tell if it is 
" 1 " , " 1 " , "101", " 1 " or "11", "101", " 1 " or . . .? 

The average length of a symbol can be expressed as 

K 

E[L] = J2liMud (7.8) 
i=\ 

where /,- is the number of characters (the length) of symbol wz and/c/(w;) is 
the probability of symbol w,-. The way to minimize the average symbol length 
(equation (7.8)) is obviously to assign the most probable symbols the shortest 
codes and the least probable symbols the longest codes. This idea is not new. It 
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is, for instance, used in telegraphy in form of the Morse code (Carron, 1991), 
invented by Samuel Morse in the 1840s. The most probable letters like "e" and 
"t" have the shortest Morse codes, only one dot or one dash, respectively, while 
uncommon characters like question mark are coded as long sequences of dots 
and dashes. 

Designing a code having the desired properties can be done using Huffman 
algorithm, which is a tree algorithm. It will be demonstrated for bimiry codes, 
which result in binary trees, i.e. trees that branch into two branches, 0 and 1. 
Huffman algorithm can be expressed using "pseudo-code" in the following way: 

huffman: assign every symbol a node 
assign every node the probabi l i ty of the symbol 
make a l l the nodes ac t ive . 

while (active nodes lef t ) do 
{ 

take the two least probable active nodes 
join these nodes into a binary tree 
deactivate the nodes 
add the probabilities of the nodes 
assign the root node this probability 
activate the root node. 

} 

The following example will be used to illustrate the way the algorithm 
works. Assume that we have five symbols from our information source with the 
following probabilities 

u\ /c/(m) = 0.40 

^2 fu(ui) — 0.20 

m /tf(«3) = 0.18 
W4 fu(U4) = 0.\7 

us fu(u5) = 0.05 

The resulting Huffman tree is shown in Figure 7.1 (there are many possi
bilities). Probabilities are shown in parentheses. 

0.40 

Figure 7.1 A tree diagram used to find the optimum binary Huffman code of 
the example 
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Building the tree is as follows. Firstly, we take the symbols having the smallest 
probability, i.e. us and 1/4. These two symbols now constitute the first little sub
tree down to the right. The sum of the probabilities is 0.05 + 0.17 = 0.22. This 
probability is assigned to the root node of this first little sub-tree. The nodes us 
and 1/4 are now deactivated, i.e. dismissed from the further process, but the root 
node is activated. 

Looking at our table of active symbols, we now realize that the two small
est active nodes (symbols) are W2 and W3. We form another binary sub-tree 
above the first one in a similar way. The total probability of this sub-tree is 
0.20 + 0.18 = 0.38, which is assigned to the root node. 

During the next iteration of our algorithm, we find that the two active root 
nodes of the sub-trees are those possessing the smallest probabilities, 0.22 and 
0.38, respectively. These root nodes are hence combined into a new sub-tree, 
having the total probability of 0.22 + 0.38 = 0.60. 

Finally, there are only two active nodes left, the root node of the sub-tree just 
formed and the symbol node u\. These two nodes are joined by a last binary sub
tree and the tree diagram for the optimum Huffman code is completed. Using 
the definition that "up-going" (from left to right) branches are represented by 
a binary " 1 " and "down-going" branches by a "0" (this can, of course, be done 
in other ways as well), we can now write down the binary, variable length, 
prefix-free codes for the respective symbols 

U\ 1 

u2 011 
w3 010 
u4 001 
u5 000 

Using equation (7.8) the average symbol length can be calculated as E[L] = 
2.2 bits/symbol. The entropy can be found to be H = 2.09 bits/symbol using 
equation (7.7). As can be seen, we are quite close to the maximum data com
pression possible. Using fixed length, binary coding would have resulted in 
E[Z] = 3 bits/symbol. 

Using this algorithm in the "born in Scandinavia" example, an average sym
bol length of E[L] = 1.67 bits/symbol can be achieved. The entropy is H = 1.58 
bits/symbol. For the "born in Europe" example the corresponding figures are 
E[L] = 5.11 bits/symbol and H = 5.09 bits/symbol. 

The coding efficiency can be defined as 

H(X) 

" = W (7-9) 

and the redundancy can be calculated using 

, H(x) r = l - w = l — (7.10) 
' E[L] V ; 

If the efficiency is equal to one, the redundancy is zero and we have found 
the most compact, "lossless" way of coding the information. For our examples 
above, we can calculate the efficiency and the redundancy 

1.58 
"Born in Scandinavia": n = = 0.946 => r = 1 - 0.946 = 0.054 

1.67 
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5.09 
'Born m Europe": rj = = 0.996 r = 1 - 0.996 = 0.004 

In principle, the Huffman algorithm assumes that the information source is 
"without memory", which means that there is no dependency between succes
sive source symbols. The algorithm can, however, be used even for information 
sources with "memory", but better algorithms can often be found for these 
cases. One such case is the coding of facsimile signals, described at the end of 
this chapter. 

7.2.2 Delta modulation, adaptive delta modulation and continuously 
variable slope delta modulation 

Delta modulation (DM) was briefly discussed in Chapter 2 in conjunction with 
sigma-delta analog-to-digital (A/D) converters. The delta modulation tech
nique can also be viewed as a data compression method. In this case, redundancy 
caused by dependency between successive samples in, for instance, a pulse code 
modulation (PCM) data stream can be removed. The idea behind delta modu
lation is to use the difference between two successive data samples, rather than 
the samples themselves. Hopefully, the difference will be small and can be rep
resented by fewer bits than the value of the samples themselves. In the simplest 
form of delta modulation, the difference is fixed to only ±1 PCM step and can 
hence be represented by 1 bit. Assuming the PCM word has a word length ofN 
bits, and that it is transmitted using a bit rate of R bits/s, the transmission rate 
of a DM signal would be only R/N bits/s. Figure 7.2 shows a block diagram of 
a simple delta modulator (data compressing algorithm) and delta demodulator 
("decompressing" algorithm). 

Starting with the modulator, the incoming data sequence x(ri) is com
pared to a predicted value x{n), based on earlier samples. The difference 
d(n) = x(n)—x(n) ("prediction error") is fed to a 1-bit quantizer, in this case 
basically a sign detector. The output from this detector is s(n) 

s(n)-. 
+8 if d(n) > 0 

-8 if d(n) < 0 
(7.11) 

x{n) +/-] 

^q 
i 

jx*,,) 

5c(n) 

quantizer 

predictor - 3 

<>\ 

ft 
y 

s{n) (j 

A 

ft 

Kn) predictor 

y(n)^ 

<— 

Figure 7.2 A generic delta modulator and demodulator 
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where 8 is referred to as the step size, in this generic system 8=1. Further, in 
this basic-type delta modulation system, the predictor is a first-order predictor, 
basically an accumulator, in other words, a one sample delay (memory), hence 

j c ( / i ) = j c ( / i - l ) + j ( / i - l ) (7.12) 

The signal x(n) is reconstructed in the demodulator using a predictor similar 
to the one used in the modulator. The demodulator is fed the delta-modulated 
signal s(n), which is a sequence of ±8 values. The reconstructed output signal 
is denoted y(n) in Figure 7.2 

y(n) = y(n) + s(n) = y(n - 1) + s(n) (7.13) 

A simple DM system like above, using a fixed step size <5, is called a linear delta 
modulation (LDM) system. There are two problems associated with this type of 
system, slope overload and granularity. The system is only capable of tracking 
a signal with a derivative (slope) smaller than ±81 x where r is the time between 
two consecutive samples, i.e. the sampling period. If the slope of the signal is too 
steep, slope overload will occur. This can, of course, be cured by increasing the 
sampling rate (for instance, oversampling which is used in the sigma-delta A/D 
converter, see Chapter 2) or increasing the step size. By increasing the sampling 
rate, the perceived advantage using delta modulation may be lost. If the step 
size is increased, the LDM system may exhibit poor signal-to-noise ratio (SNR) 
performance when a weak input signal is present, due to the ripple caused by 
the relatively large step size. This is referred to as the granularity error. 

Choosing a value of the step size 8 is hence crucial to the performance of an 
LDM system. This kind of data compression algorithm works best for slowly 
varying signals having a moderate dynamic range. LDM is often inappropriate 
for speech signals, since in these signals there are large variations in amplitude 
between silent sounds (e.g. "ph" or "sh") and loud sounds (like "t" or "a"). 

A way to reduce the impact of the problems above is to use adaptive delta 
modulation (ADM). In the ADM system, the step size is adapted as a function 
of the output signal s(n). If, for instance, s(n) has been -\-8 for a certain number 
of consecutive samples, the step size is increased. This simple approach may 
improve the DM system quite a bit. However, a new problem is now present. 
If there are errors when transmitting the data sequence s(n), the modulator and 
demodulator may disagree about the present step size. This may cause consid
erable errors that will be present for a large number of succeeding samples. 
A way to recover from these errors is to introduce "leakage" into the step size 
adaptation algorithm. Such a system is the continuously variable slope delta 
(CVSD) modulation system. 

In CVSD, the step size 8(n) depends on the two previous values of the output 
s(n). If there has been consecutive runs of ones or zeros, there is a risk for slope 
overload and the step size is increased to be able to "track" the signal faster. If, 
on the other hand, the previous values of s(n) have been alternating, the signal 
is obviously not changing very fast, and the step size should be reduced (by 
"leakage") to minimize the granulation noise. The step size in a CVSD system 
is adapted as 

f y8(n - 1) + C2 if s(n) = s(n - 1) = s(n - 2) 
8(n)=\ (7.14) 

y8(n-l) + Ci else v ' 
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where 0 < y < 1 is the "leakage" constant and C^ > C\ > 0. The constants C\ 
and C2 are used to define the minimum and maximum step size as 

-^<8(n)<-^ (7.15) 
\-y \-y 

Still, the system may suffer from slope overload and granularity problems. 
CVSD, e.g. being less sensitive to transmission errors than ADM, was however 
widely popular until the advent of adaptive differential pulse code modula
tion (ADPCM) algorithms (see below) standardized by the Comite Consultatif 
International Telegraphique et Telephonique (CCITT). 

7.2.3 Differential pulse code modulation and adaptive differential 
pulse code modulation 

The differential pulse code modulation (DPCM) scheme can be viewed as 
an extension of delta modulation presented above. The same block diagram 
Figure 7.2 applies, but in the DPCM case, we have a quantizer using p values, 
not a 1-bit quantizer as in the former case, but rather an lb(p)-bit quantizer. 
Further, the predictor in this case is commonly of higher order, and can be 
described by its impulse response h(n), hence 

N 

x(n) = J^ Kk)(x(n -k) + s(n - k)) (7.16) 
k=i 

Note, if h(\) = 1 and h(k) = 0 for k > 1, then we are back in the first-order 
predictor used by the delta modulation algorithm (7.12). The predictor is com
monly implemented as a finite impulse response (FIR) filter (see Chapter 1) 
which can be readily implemented using a DSP. The length of the filter is often 
quite moderate, N = 2 up to N = 6 is common. 

The advantage of DPCM over straightforward PCM (see Chapter 2) is of 
course the data compression achieved by utilizing the dependency between 
samples in, for instance, an analog speech signal. If data compression is not 
the primary goal, DPCM also offers the possibility of enhancing the SNR. 
As DPCM is only quantizing the difference between consecutive samples and 
not the sample values themselves, a DPCM system has less quantization error 
and noise than a pure PCM system using the same word length. 

To be able to find good parameters h(n) for the predictor and a proper number 
of quantization levels/?, knowledge of the signal statistics is necessary. In many 
cases, although the long-term statistics is known, the signal may depart signif
icantly from these during shorter periods of time. In such applications, an 
adaptive algorithm may be advantageous. 

Adaptive differential pulse code modulation (ADPCM) is a term used for 
two different methods, namely adaptation of the quantizer and adaptation of 
the predictor (Marwen and Ewers, 1993). Adaptation of the quantizer involves 
estimation of the step size, based on the level of the input signal. This estimation 
can be done in two ways, forward estimation (DPCM-AQF) and backward 
estimation (DPCM-AQB) (see Figure 7.3). In the forward case AQF, a number 
of input samples are first buffered in the modulator and used to estimate the 
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Figure 7.3 Forward estimation (DPCM-AQF) and backward estimation 
(DPCM-AQB) 

signal level. This level information is sent to the demodulator, together with the 
normal DPCM data stream. The need to send the level information is a drawback 
of AQF and for this reason, AQB is more common. Another drawback of AQF 
is the delay introduced by the buffering process. This delay may render AQF 
unusable in certain applications. AQF, however, has the potential of performing 
better than AQB. 

In backward level estimation AQB, estimation is based on the out-going 
DPCM data stream. A similar estimation is made in the demodulator, using the 
incoming DPCM data. This scheme has some resemblance to CVSD, discussed 
above. Adaptive quantizers commonly offer an improvement in SNR of roughly 
3-7 dB compared to fixed quantizers. The quality of the adaptation depends to 
a large extent on the quality of the level estimator. There is of course a trade-off 
between the complexity and the cost of a real world implementation. 

When using the acronym ADPCM, adaptation of the predictor or adaptation 
of both the predictor and the quantizer is often assumed. The predictor is com
monly adapted using methods based on gradient descent type algorithms used 
in adaptive filters (see Chapter 3). Adaptive predictors can increase the SNR of 
the system significantly compared to fixed predictors. 

As an example, in the standard CCITT G.721, the input is a CCITT standard 
64-kbits/s PCM-coded speech signal and the output is a 32-kbits/s ADPCM data 
stream. In this standard, feedback adaptation of both the quantizer and predictor 
is used. In a typical CCITT G.721 application (Marwen and Ewers, 1993), the 
adaptive quantizer uses 4 bits and the predictor is made up of a sixth-order FIR 
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Figure 7.4 Encoder for adaptive, predictive coding of speech signals. The 
decoder is mainly a mirrored version of the encoder 

filter and a second-order infinite impulse response (IIR) filter. A "transcoder" of 
this kind can be implemented as a mask programmed DSP at a competitive cost. 

7.2.4 Speech coding, adaptive predictive coding and sub-band coding 

Adaptive predictive coding (APC) is a technique used for speech coding, 
i.e. data compression of speech signals. APC assumes that the input speech 
signal is repetitive with a period significantly longer than the average frequency 
content. Two predictors are used in APC. The high-frequency components (up 
to 4 kHz) are estimated using a "spectral" or "formant" predictor, and the low-
frequency components (50-200 Hz) by a "pitch" or "fine structure" predictor 
(see Figure 7.4). The spectral estimator may be of order 1-4, and the pitch 
estimator about order 10. The low-frequency components of the speech signal 
are due to the movement of the tongue, chin and lips. The high-frequency com
ponents originate from the vocal cords and the noise-like sounds (like in "s") 
produced in the front of the mouth. 

The output signaly(n) together with the predictor parameters, obtained adap-
tively in the encoder, are transmitted to the decoder where the speech signal 
is reconstructed. The decoder has the same structure as the encoder, but the 
predictors are not adaptive and are invoked in the reverse order. The prediction 
parameters are adapted for blocks of data corresponding to, for instance, 20 ms 
time periods. 

APC is used for coding speech at 9.6 and 16 kbits/s. The algorithm works well 
in noisy environments, but unfortunately the quality of the processed speech 
is not as good as for other methods like code excited linear prediction (CELP) 
described below. 

Another coding method is sub-band coding (SBC) (see Figure 7.5) which 
belongs to the class of waveform coding methods, in which the frequency 
domain properties of the input signal are utilized to achieve data compression. 

The basic idea is that the input speech signal is split into sub-bands using 
band-pass filters. The sub-band signals are then encoded using ADPCM or 
other techniques. In this way, the available data transmission capacity can be 
allocated between bands according to perceptual criteria, enhancing the speech 
quality as perceived by listeners. A sub-band that is more "important" from a 
human listening point of view can be allocated more bits in the data stream, 
while less important sub-bands will use fewer bits. 

A typical setup for a sub-band coder would be a bank ofN (digital) band
pass (BP) filters followed by decimators, encoders (for instance ADPCM) and 
a multiplexer combining the data bits coming from the sub-band channels. The 
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Figure 7.5 An example of a sub-band coding system 

output of the multiplexer is then transmitted to the sub-band decoder having a 
demultiplexer splitting the multiplexed data stream back into N sub-band chan
nels. Every sub-band channel has a decoder (for instance ADPCM), followed 
by an interpolator and a band-pass filter. Finally, the outputs of the band-pass 
filters are summed and result in a reconstructed output signal. 

Sub-band coding is commonly used at bit rates between 9.6 and 32 kbits/s 
and performs quite well. The complexity of the system may, however, be con
siderable if the number of sub-bands is large. The design of the band-pass filters 
is also a critical topic working with sub-band coding systems. 

7.2.5 Vocoders and linear predictive coding 

In the methods described above, APC, SBC and ADPCM, speech signal appli
cations have been used as examples. Modifying the structure and parameters 
of the predictors and filters, the algorithms may as well be used for other signal 
types. The main objective was to achieve a reproduction that was as faithful 
as possible to the original signal. Data compression was possible by removing 
redundancy in the time or frequency domain. 
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The class of vocoders (also called source coders) is a special class of data 
compression devices aimed only for speech signals. The input signal is analy
zed and described in terms of speech model parameters. These parameters are 
then used to synthesize a voice pattern having an acceptable level of perceptual 
quality. Hence, waveform accuracy is not the main goal as it was in the previous 
methods discussed. 

The first vocoder was designed by H. Dudley in the 1930s and demonstrated 
at the "New York Fair" in 1939. Vocoders have become popular as they achieve 
reasonably good speech quality at low data rates, from 2.4 to 9.6 kbits/s. There 
are many types of vocoders (Marven and Ewers, 1993), and some of the most 
common techniques will be briefly presented below. 

Most vocoders rely on a few basic principles. Firstly, the characteristics of 
the speech signal is assumed to be fairly constant over a time of approximately 
20 ms, hence most signal processing is performed on (overlapping) data blocks 
of 20-40 ms length. Secondly, the speech model consists of a time varying filter 
corresponding to the acoustic properties of the mouth and an excitation signal. 
The excitation signal is either a periodic waveform, as being created by the 
vocal cords, or a random noise signal for production of "unvoiced" sounds, e.g. 
"s" and "f". The filter parameters and excitation parameters are assumed to be 
independent of each other and are commonly coded separately. 

Linear predictive coding (LPC) is a popular method, which has, however, 
been replaced by newer approaches in many applications. LPC works exce
edingly well at low-bit rates and the LPC parameters contain sufficient infor
mation of the speech signal to be used in speech recognition applications. The 
LPC model is shown in Figure 7.6. 

LPC is basically an auto-regressive model (see Chapter 5) and the vocal 
tract is modeled as a time varying all-pole filter (IIR filter) having the transfer 
function H(z) 

H(z) = 
1 

i + H=i«**_* 
(7.17) 

where p is the order of the filter. The excitation signal e(n), being either noise or 
a periodic waveform, is fed to the filter via a variable gain factor G. The output 
signal can be expressed in the time domain as 

y(n) = Ge(n) - a\y(n - 1) - a2y(n - 2) apy(n-p) (7.18) 
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The output sample at time n is a linear combination of/? previous samples and 
the excitation signal (linear predictive coding). The filter coefficients ak are 
time varying. 

The model above describes how to synthesize the speech given the pitch 
information (if noise or periodic excitation should be used), the gain and the 
filter parameters. These parameters must be determined by the encoder or the 
analyzer, taking the original speech signal x{n) as input. 

The analyzer windows the speech signal in blocks of 20-40 ms, usually with 
a Hamming window (see Chapter 5). These blocks or "frames" are repeated 
every 10-30 ms, hence there is a certain overlap in time. Every frame is then 
analyzed with respect to the parameters mentioned above. 

Firstly, the pitch frequency is determined. This also tells if we are dealing 
with a voiced or unvoiced speech signal. This is a crucial part of the system, 
and many pitch detection algorithms have been proposed. If the segment of the 
speech signal is voiced and has a clear periodicity or if it is unvoiced and not 
periodic, things are quite easy. Segments having properties in between these 
two extremes are difficult to analyze. No algorithm has been found thus far i.e. 
"perfect" for all listeners. 

Now, the second step of the analyzer is to determine the gain and the filter 
parameters. This is done by estimating the speech signal using an adaptive 
predictor. The predictor has the same structure and order as the filter in the 
synthesizer. Hence, the output of the predictor is 

x(n) = —a\x(n — 1) — a2x(n — 2) — • • • — apx(n — p) (7.19) 

where x(n) is the predicted input speech signal andx(«) is the actual input signal. 
The filter coefficients ak are determined by minimizing the square error 

£ ( x ( n ) - x ( n ) ) 2 = £ r 2 ( n ) (7.20) 
n n 

This can be done in different ways, either by calculating the auto-correlation 
coefficients and solving the Yule-Walker equations (see Chapter 5) or by using 
some recursive, adaptive filter approach (see Chapter 3). 

So, for every frame, all the parameters above are determined and transmitted 
to the synthesizer, where a synthetic copy of the speech is generated. 

An improved version of LPC is residual excited linear prediction (RELP). 
Let us take a closer look of the error or residual signal r(n) resulting from the 
prediction in the analyzer equation (7.19). The residual signal (we are trying to 
minimize) can be expressed 

r(n) = x(n) — x(n) = x(n) + a\x(n - 1) + aixin - 2) H h apx(n — p) 

(7.21) 

From this it is straightforward to find out that the corresponding expression 
using the z-transforms is 

m = ^j\=X(z)H-\z) (7.22) 
H(z) 

Hence, the predictor can be regarded as an "inverse" filter to the LPC model 
filter. If we now pass this residual signal to the synthesizer and use it to excite 
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the LPC filter, i.e. E(z) = R(z) instead of using the noise or periodic waveform 
sources, we get 

Y(z) = E(z)H(z) = R(z)H(z) = X(z)H~\z)H(z) = X(z) (7.23) 

In the ideal case, we would hence get the original speech signal back. When 
minimizing the variance of the residual signal (7.20), we gathered as much 
information about the speech signal as possible using this model in the filter 
coefficients a^. The residual signal contains the remaining information. If the 
model is well suited for the signal type (speech signal), the residual signal is 
close to white noise, having a flat spectrum. In such a case, we can get away with 
coding only a small range of frequencies, for instance 0-1 kHz of the residual 
signal. At the synthesizer, this baseband is then repeated to generate higher 
frequencies. This signal is used to excite the LPC filter. 

Vocoders using RELP are used with transmission rates of 9.6kbits/s. The 
advantage of RELP is better speech quality compared to LPC for the same bit 
rate. However, the implementation is more computationally demanding. 

Another possible extension of the original LPC approach is to use multipulse 
excited linear predictive coding (MLPC). This extension is an attempt to make 
the synthesized speech less "mechanical" by using a number of different pitches 
of the excitation pulses rather than only the two (periodic and noise) used by 
standard LPC. 

The MLPC algorithm sequentially detects k pitches in a speech signal. As 
soon as one pitch is found it is subtracted from the signal and detection starts 
over again, looking for the next pitch. Pitch information detection is a hard task 
and the complexity of the required algorithms is often considerable. However, 
MLPC offers better speech quality than LPC for a given bit rate, and is used in 
systems working with 4.8-9.6 kbits/s. 

Yet another extension of LPC is the code excited linear prediction (CELP). 
The main feature of the CELP compared to LPC is the way in which the filter 
coefficients are handled. Assume that we have a standard LPC system, with a fil
ter of the orderp. If every coefficient a^ requires N bits, we need to transmit TV -p 
bits per frame for the filter parameters only. This approach is all right if all com
binations of filter coefficients are equally probable. However, this is not the case. 
Some combinations of coefficients are very probable, while others may never 
occur. In CELP, the coefficient combinations are represented by ̂ -dimensional 
vectors. Using vector quantization techniques, the most probable vectors are 
determined. Each of these vectors is assigned an index and stored in a code 
book. Both the analyzer and synthesizer of course have identical copies of the 
code book, typically containing 256-512 vectors. Hence, instead of transmitting 
N -p bits per frame for the filter parameters, only 8-9 bits are needed. 

This method offers high-quality speech at low-bit rates but requires consider
able computing power to be able to store and match the incoming speech to the 
"standard" sounds stored in the code book. This is, of course, especially true if 
the code book is large. Speech quality degrades as the code book size decreases. 

Most CELP systems do not perform well with respect to higher-frequency 
components of the speech signal at low-bit rates. This is counteracted in newer 
systems using a combination of CELP and MLPC. 

There is also a variant of CELP called vector sum excited linear predic
tion (VSELP). The main difference between CELP and VSELP is the way 
the code book is organized. Further, since VSELP uses fixed-point arithmetic 
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algorithms, it is possible to implement using cheaper DSP chips than CELP, 
which commonly requires floating-point arithmetics. 

7.2.6 Image coding, joint photographies expert group (JPEG), moving 
pictures expert group (MPEG) 

Digitized images consist of large amounts of picture elements (pixels), hence 
transmitting or storing images often involving large amounts of data. For this 
reason, data compression of image data, or image coding, is a highly interesting 
topic. 

The same general fundamental idea for data compression applies in that there 
is a reduction of redundancy-utilizing statistical properties of the data set, such 
as dependencies between pixels. In the case of image compression, many of the 
algorithms turn two dimensional, unless, for instance, compression is applied 
to a scanned signal. One such application is telefax (facsimile) systems, i.e. 
systems for transmission (or storage) of black-and-white drawings or maps, 
etc. In the simplest case, there are only two levels to transmit, black and white, 
which may be represented by binary " 1 " and "0," respectively, coming from the 
scanning photoelectric device. 

Studying the string of binary digits (symbols) coming from the scanning 
device (the information source), it is easy to see that ones and zeros often come 
in long bursts, and not in a "random" fashion. For instance, 30 zeros, followed 
by 10 ones, followed by 80 zeros and so on may be common. There is hence a 
considerable dependency between successive pixels. In this case, a run length 
code will be efficient. The underlying idea is not to transmit every single bit, but 
rather a number telling how many consecutive ones or zeros there are in a burst. 

For facsimile applications, CCITT has standardized a number of run length 
codes. A simple code is the modified Huffman code (MHC). Black-and-white 
burst of length 0-63 pixels are assigned their own code words according to the 
Huffman algorithm outlined earlier in this chapter. If a burst is 64 pixels or 
longer, the code word is preceded by a prefix code word, telling how many 
multiples of 64 pixels there are in the burst. The fact that long white bursts are 
more probable than long black bursts is also taken into account when assign
ing code words. Since the letters are "hollow", a typical page of text contains 
approximately 10% black and 90% white areas. 

During the scanning process, every scan line is assumed to start with a white 
pixel, otherwise the code word for white burst length zero is transmitted. Every 
scanned line is ended by a special "end-of-line" code word to reduce the impact 
of possible transmission errors. Compression factors between 6 and 16 times 
can be observed (i.e. 0.06-0.17 bits/pixel), depending on the appearance of the 
scanned document. A more elaborate run length code is the modified Read code 
(MRC) (Hunter and Robinson, 1980) which is capable of higher compression 
factors. 

Image compression algorithms of the type briefly described above are often 
denoted lossless compression techniques, since they make a faithful reproduc
tion of the image after decompression, i.e. no information is lost. If we can 
accept a certain degradation of, for instance, resolution or contrast in a picture, 
different schemes of predictive compression and transform compression can 
be used. 
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Predictive compression techniques work in similar ways as DPCM and 
ADPCM as described earlier. The predictors may, however, be more elaborate, 
working in two dimensions, utilizing dependencies in both the x and> direction 
of an image. For moving pictures, predictors may also consider dependencies in 
the z-axis, between consecutive picture frames. This is sometimes called three-
dimensional prediction. For slowly moving objects in a picture, the correlation 
between picture frames may be considerable, offering great possibilities for 
data compression. One such example is the videophone. The most common 
image in such a system is a more or less static face of a human. 

The basic idea of transform compression (Gonzales and Woods, 2002) is 
to extract appropriate statistical properties, for instance Fourier coefficients, of 
an image and let the most significant of these properties represent the image. 
The image is then reconstructed (decompressed) using an inverse transform. 

A picture can be Fourier transformed in a similar way to a temporal one-
dimensional signal, and a spectrum can be calculated. When dealing with 
images, we however have two dimensions and hence two frequencies, one in 
the x direction and one in the y direction. Further, we are now dealing with 
spatial frequencies. For instance, a coarse chessboard pattern would have a 
lower spatial frequency than a fine pattern. We are now talking about cycles per 
length unit, not cycles per time unit. 

Often it is convenient to express the transform coefficients as a matrix. In 
doing this, it is commonly found that the high-frequency components have 
smaller amplitude than lower frequency components. Hence, only a subset of 
the coefficients needs to be used to reproduce a recognizable image, but fine 
structure details will be lost. Transform compression methods are commonly 
not lossless. 

It has been found that the standard two-dimensional fast Fourier transform 
(FFT) is not the best choice for image compression. Alternative transforms, 
such as Walsh, Hadamard and Karhunen-Loeve have been devised. One 
of the most popular is, however, the two-dimensional discrete cosine trans
form (DCT) 

. N-\ N-l 

x=0 y=0 

andforw,v = 1,2, .. .,N — 1 

- N-\ N-\ 

x=0 ^=0 

(7.24b) 

where C(w,v) is the two-dimensional transform coefficients ("spectrum") 
and C(0,0) is the "DC" component. f(x,y) is the pixel value. The inverse 
transform is 

. N-\ N-\ 

f(x,y) = -C(0 ,0 ) + ^ 2 ] 1 ] C(w, v)cos((2x + 1)UTT)cos((2y + 1)VTT) 
u=\ v=l 

(7.25) 
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One nice feature of DCT is that the transform is real, unlike FFT which is a 
complex transform. Another advantage is that DCT is separable, implying that 
it can be implemented as two successive applications of a one-dimensional DCT 
algorithm. 

A common technique is to split a picture into 8 x 8 pixel blocks and apply 
DCT. High-amplitude, low-frequency coefficients are transmitted first. In this 
way, a "rough" picture is first obtained with an increasing resolution as higher-
frequency coefficients arrive. Transform coding can offer a data compression 
ratio of approximately 10 times. 

The CCITT H.261 standard covers a class of image compression algorithms 
for transmission bit rates from 64kbits/s to 2Mbits/s. The lowest bit rate 
can be used for videophones on narrow-band integrated services digital net
work (ISDN) lines. The H.261 is a hybrid DPCM/DCT system with motion 
compensation. The luminance (black-and-white brightness) signal is sampled 
at 6.75 MHz, and the chrominance (color information) signal is sampled at 
3.375 MHz. The difference between the present frame and the previous one is 
calculated and split into 8 x 8 pixel blocks. These blocks are transformed using 
DCT, and the resulting coefficients are coded using Huffman coding. 

The motion detection algorithm takes each 8 x 8 pixel block of the present 
frame and searches the previous frame by moving the block ±15 pixels in 
the JC and y directions. The best match is represented by a displacement vec
tor. The DCT coefficients and the displacement vector are transmitted to the 
decompressor, where the reverse action takes place. 

There are commercial video conferencing systems today using the H.261 
standard. The algorithms used are, however, very computationally demanding. 
Floating-point or multiple fixed-point DSPs are required. 

The joint photographies expert group (JPEG) is a proposed standard for 
compression of still pictures. The color signals red, green and blue are sampled 
and each color component is transformed by DCT in 8 x 8 pixel blocks. The 
DCT coefficients are quantized and encoded in a way that the more important 
lower frequency components are represented by more bits than the higher-
frequency coefficients. The coefficients are reordered by reading the DCT 
coefficient matrix in a zigzag fashion (Marven and Ewers, 1993), and the data 
stream is Huffman coded (the "DC" components are differentially encoded with 
the previous frame, if there are any). 

The JPEG compressor is simpler than in the H.261 system. There is, for 
instance, no motion compensation, but many other elements are quite similar. 
The JPEG decompressor is, however, more complicated in JPEG than in H.261. 

The moving pictures expert group (MPEG) proposed standard (MPEG-1) 
is aimed for compression of full-motion pictures on digital storage media, for 
instance CD-ROM and digital video disc (DVD), with a bit transfer rate of about 
1.5 Mbits/s. It is to some extent similar to both H.261 and JPEG but does not 
have the motion compensation found in JPEG. 

A sampled frame is split into blocks and transformed using DCT in the 
same way as for JPEG. The coefficients are then coded with either forward or 
backward prediction or a combination of both. The output from the predictive 
coding is then quantized using a matrix of quantization steps. Since MPEG is 
more complicated than JPEG it requires even more computing power. 

The area of image and video compression algorithms is constantly evolv
ing and there are many new methods and novel, dedicated signal processing 
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application specific integrated circuits (ASICs) and DSPs to come. As of today, 
we have seen many new standards, e.g. JPEG 2000 (using wavelet techniques), 
MPEG-2 (ISO/IEC-13818) and MPEG-4 (ISO/IEC-14496). Information on 
current standards can be found on the World Wide Web. 

7.2.7 The layer-3 of MPEG-1 algorithm (MP3) 

The MPEG-1 standard, discussed in Section 7.2.6 above, does not only specify 
methods for image compression, but also for audio compression. One very 
popular audio compression method today is layer-3 of MPEG-1, known as MP3. 
It was originally developed and patented by the Fraunhofer Institute in Germany 
in 1989. The algorithm is very commonly used for compressing music files to be 
exchanged over the Internet. Typically, a compression ratio of 10:1 is achieved, 
implying that 1 min of stereophonic music will produce about 1 Mbyte of data, 
rather than approximately 11 Mbyte needed for 1 min standard "CD quality" 
hi-fi music. Better compression algorithms are available today, but one of the 
reasons for the success of MP3 is the relatively open nature of the format. 

The MP3 algorithm is "lossy" and exploits the weaknesses of the human ear 
in order to "cheat" in a non-audible way, i.e. the music still sounds ok, despite 
the fact that most of the original information is lost and cannot be retrieved. 
The most important mechanism utilized is the concept of auditory masking. 
Masking occurs in the human ear and means that if a strong signal appears 
in a given frequency band, the ear cannot hear weaker signals below a given 
threshold in the same band at the same time. An example of this could be a loud 
orchestra masking the sound of a single instrument playing softly. 

The ear has a different resolution for different frequency bands (typically 
lOOHz^kHz bandwidth), depending on the amplitude of the signal in the 
respective bands. This can, of course, be used for audio compression by not 
using more resolution, i.e. data bits, than the ear can perceive in the different 
frequency bands at a given time. In other words, at every time instant, the algor
ithm discards information that the ear cannot hear, thus achieving compression. 

Figure 7.7 shows a simplified block diagram of an MP3 encoder. Tie under
lying principle is a smart adaptive, sub-band compression algorithm utilizing 
the auditory masking. The digital input data enters the filter bank consisting of 
32 polyphase sub-band (SB) filters. The filter bank is followed by a modified 
discrete cosine transform (MDCT), giving totally 384 sub-bands. Since there 
is commonly a large correlation between the information in the left and right 
channels of stereophonic music, some initial data compression takes place at 
this stage. The joint stereo encoder is governed by the perceptual model. This 
model analyzes the input signal and, using the masking properties of the human 
ear, generates control signals for the encoder and the quantizer. 

Further, the quantizer and scaling module operates on blocks consisting 
of 36 samples, and determines scale factors and allocation of bits for the 
blocks belonging to the different sub-bands. Each sub-band is allocated as 
few bits as possible, by the rule that the quantization noise should be below the 
threshold of the human ear. (Masking thresholds are obtained from the percep
tual model). Taking the masking effect into account, considerable qu;intization 
noise (i.e. low resolution and few bits) can be accepted for some sub-bands, 
since the ear will not be able to hear it. 
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Figure 7.7 A simplified block diagram of an MP 3 encoder 

Finally, data compression using the Huffman algorithm is employed. Since 
optimum compression is a trade-off between allocation of bits and the statis
tics of the data, there is a feed back loop from the Huffman encoder to the 
quantizer. In this way, a good compromise can be found by iteration. 

In the concluding multiplexer, the encoded sample data are merged with 
information about scale factors and resolution for the sample blocks. 

7.2.8 The Lempel-Ziv algorithm 

There are a number of data compression algorithms based on the Lempel-
Ziv (LZ) method, named after A. Lempel and J. Ziv. The original ideas were 
published in 1977 and 1978, but later modified by Terry A. Welch, resulting 
in the Lempel-Ziv-Welch (LZW) algorithm (Smith, 2003). Only the basic 
method will be briefly described below. 

The LZ data compression algorithm is a called a "universal" algorithm since it 
does not need any prior information about the input data statistics. Commonly, 
it works on a byte basis and is best suited for compression e.g. Amercian 
standard code for information interchange (ASCII) information. The algorithm 
creates a table or "dictionary" of frequently seen strings of bytes. When a string 
appears in the input data set, it is substituted by the index of a matching string 
in the dictionary. This dictionary-type algorithm is also referred to as a macro-
replacement algorithm, because it replaces a string with a token. Decompression 
will simply be a table-lookup and string replacement operation. It is imperative, 
however, that no transmission errors occur, since these may add errors in the 
dictionary and jeopardize the entire decompression operation. 

Let us illustrate the algorithm with a simple example. Assume that we are 
using an 8-bit ASCII code and want to transmit the following string 

the_theme_theorem_theses 



202 Digital Signal Processing and Applications 

Since a space _ also represents an ASCII character, we have to transmit 24 
characters, i.e. a total of 24 x 8 = 192 bits. 

Now, let us use a simple version of the LZ method and limit the size of the 
dictionary to 16 entries, so that any entry in the dictionary can be pointed to by 
a 4-bit index. The compression and dictionary handling rule works like this: 

lzcomp: clear dictionary-
start from beginning of string 
while (string not traversed) 

{ 
find the longest substring matching an entry 

in dictionary 
get the index of the entry in the dictionary 
get the next character in the string following 

the substring 
transmit index and next character 
append the substring + next character to 

the dictionary 
continue after next character in string 

} 

The corresponding decompression and dictionary handling rule is: 

lzdecomp: clear dictionary 
clear buffer for decompressed string 
while (compressed characters received) 

{ 
ge t index and next c h a r a c t e r from compressor 
use index t o f e t c h s u b s t r i n g from d i c t i o n a r y 
append s u b s t r i n g t o b u f f e r 
append next c h a r a c t e r t o b u f f e r 
append t h e s u b s t r i n g + next c h a r a c t e r t o 

t h e d i c t i o n a r y 
} 

Below, the string, dictionary and transmitted symbols are shown. The indices 
are represented by the hexadecimal digits: 0, 1, . . . , E, F. 

The uncompressed string: 

the_theme_theorem_theses 

When the algorithm is started, the dictionary (Table 7.1) is empty. The first 
entry will be "nothing" which will be given index 0. The first substring in the 
input string, simply the letter "t", cannot be found in the dictionary. However, 
"nothing" can be found, hence we concatenate "nothing" and "t" (we do not 
include "nothing" in the dictionary from now on, since it is so small) and add 
it to the dictionary. The index of this new entry will be 1. We also submit the 
hexadecimal substring index 0 ("nothing") and the letter "t" to the output. These 
steps are repeated and the dictionary grows. Nothing interesting happens until 
we find the substring "t" for the second time (in "theme"). Since the substring 
"t" is already in the dictionary, it can be replaced by its index 1. So, following 
the rules, we send the index 1 and the next character "h", then we add the new 
substring "th" to the dictionary. This process is further repeated until the end of 
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Table 7.1 Example LZ, 16-entry dictionary 

Index Dictionary Compressed 
output 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

nothing 
t 
h 
e 

th 
em 
e_ 
the 
0 

r 
em_ 
thes 
es 

Ot 
Oh 
Oe 
0 
lh 
3m 
3_ 
5e 
Oo 
Or 
6_ 
8s 
3s 

the uncompressed input string is reached. The total output of the compressed 
string will be: 

0t0h0e0_lh3m3_5e0o0r6_8s3s 

where every second character is an index (4 bits) and an ASCII character (8 
bits), respectively. The total length of the compressed string will be: 13 x 
4 + 1 3 x 8 = 156 bits, implying a compression factor of 156/192 = 0.81. 

The decompressor receives the compressed string above and starts building 
the decompressed string and the dictionary in a similar way. To start with, "noth
ing" is assumed in position 0 of the dictionary. The first compressed information 
is index 0, corresponding to "nothing" in the dictionary and the character "t". 
Hence, "nothing" and "t" are placed in the first position of the decompressed 
string and the same information is added to the dictionary at position 1. The 
process is then repeated until the end of the compressed string. Now, the decom
pressed string is an exact copy of the uncompressed string and the dictionary 
is an exact copy of the dictionary used at compression time. It is worth noting 
that there are also many variations on this popular data compression algorithm. 

7.3 Recognition 7.3.1 A general problem formulation 
techniques 

In many applications, there is a need to recognize a given set of entities. In this 
book, without loss of generality, we will concentrate on situations where iden
tification of a given sound or image fragment is required. In a way, recognition 
can be viewed as a kind of data compression technique. If we, for instance, 
can recognize the photo of a known person, we can transmit his or her name, 
typically a 100 bytes rather than the entire image of, say, 1 Mbyte. The receiver, 
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database recognition -> output 

feature 
extraction 

input 

Figure 7.8 A simplified block diagram of the recognition process 

of course, has to have a "standard" photo of the person in question to be able to 
decompress the message (i.e. translate the name back to an image). Obviously, 
this compression method is lossy, since there is no guarantee that the photo used 
by the transmitter and receiver is identical; they are, however, assumed to be 
photos of the same person for the system to work properly. Similar code book 
methods are used in speech coding systems, for instance, the CELP algorithm 
described in Section 7.2.5 above. 

Recognition of speech or images can be regarded as a two-step operation 
(see Figure 7.8). The first stage is commonly a more or less complicated map
ping function, transforming the input data (an image or a speech signal) into 
a number of significant features. These features are represented by a set of 
numbers, for instance, vectors or matrices. Stage two, is a pattern-recognition 
algorithm. The task of this algorithm is to compare the set of features received 
from the input to all known prototypes or templates in the database and to find 
the best match. There are many good pattern-recognition algorithms around, 
such as neural networks and fuzzy logic (see Chapter 4) and a number of sta
tistical correlation-based methods, for instance, principal component analysis 
(PCA) (Esbensen et al.9 1994). 

The main problem when designing an image or speech recognition system is 
that, commonly, there are considerable variations between individual samples 
of the given entity that we are expected to recognize. For instance, designing a 
system able to recognize photos of females would probably be quite difficult. 

Two factors are very important for the system to work well. First, the map
ping function or transformation mechanism producing the features needs to be 
designed carefully. It does not matter how good the pattern-recognition algo
rithm we are using is, if the features do not contain significant information about 
the input image or speech sample. So extracting relevant features is important. 
Second, the content of the database is also critical. It is important that the 
stored prototypes are good representatives, i.e. are "typical" (average) samples 
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of the entities that should be recognized. For this reason, it is common that the 
database is adaptive and is updated every time a new set of features is received. 
In this way, the system "learns" good prototypes and improves its performance 
gradually. This is a common approach in neural network-based algorithms. 

7.3.2 Speech recognition 

Speech recognition research has been pursued for over 30 years, and the prob
lems to be solved are difficult. Commonly, the aim of an automatic speech 
recognition (ASR) system is to be able to automatically produce written text 
from a spoken message. Many commercial products are on the market today, 
but the "perfect" solution has yet to come. 

The feature extraction part commonly relies on some spectral analysis 
method, e.g. cepstrum analysis (Becchetti and Ricotti, 1999). The cepstrum 
of a digital speech signal x(n) is obtained by first applying a discrete Fourier 
transform (DFT) (see Chapter 5) to get a complex frequency spectrum X{co). 
The logarithm of the magnitude of the frequency spectrum is then processed 
by an inverse discrete Fourier transform (IDFT) to obtain the real part of the 
cepstrum xr(n) 

xr(n) = ^ { l o g \X(co)\] = S^flog | %{x(n)}\} (7.26) 

This algorithm belongs to the class of Homomorphic filters. From the cepstrum 
data, features are extracted. The features may be different "phonemes", i.e. 
sound fragments of spoken words, such as "th", "ye", "n" and so on. Using 
a pattern-recognition algorithm, groups of features (phonemes) are used to 
recognize the English prototype words stored in the database. 

It all sounds quite straightforward, but there are many pitfalls on the way. 
One problem is that different persons pronounce words in different ways depend
ing on dialect, emotional status, pitch of the voice and other physiological 
differences. The incoming speech signal is also affected by background noise, 
room acoustics and technical properties of the microphone. For this reason, an 
ASR system must be "trained" to a specific speaker before it can be used. During 
the training phase, the prototype database is updated to fit the specific speaker. 

Another problem is that the speaker may use new, complicated words not 
found in the database. In such a case, either the system can present the closest 
match, resulting in rubbish, or it can mark the word as unknown. Yet another 
complication is the fact that some words, or parts of words, may be pronounced 
differently depending on the context and the position in a sentence. Hence, the 
recognition algorithm also needs to consider grammatical language rules. 

To summarize, designing a reliable ASR system capable of understanding 
an arbitrary speaker is certainly not a simple task. Needless to say, every langu
age has its own set of phonemes and grammatical rules. 

7.3.3 Image recognition 

In Section 7.3.2 above, we were dealing with speech signals (audio) being 
digitized as one-dimensional temporal information. When processing images 
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it is about digital two-dimensional spatial information, often represented by a 
matrix of pixel values. 

Image recognition can be used in different situations. One application is to 
find the best match of an entire image to a reference image, for instance, to find 
matching fingerprints in a register to determine the identity of a person. Another 
application may be to detect the presence of a specific object in an image or 
to determine the position (and velocity) of an object. The latter application is 
often referred to as "computer vision". A common example from the electronics 
manufacturing industry is the inspection of populated printed circuit boards. A 
video camera is used to obtain an image of the circuit board, and using image 
recognition algorithms, a computer will check the image to make sure that all 
electronic components are present and mounted in the right places. In both 
applications above there are some common problems, namely: illumination, 
contrast, shadows and imperfections in the camera, such as distortion introdu
ced by lens limitations, etc. 

In the first application above, an important issue is to make sure that all images 
are precisely aligned regarding translation in the x- and y-axes, and regarding 
rotation and scaling. If these conditions are met, a simple two-dimensional 
cross-correlation algorithm may perform well. The second application requires 
analysis of the image and conforms to the general recognition model outlined 
in Section 7.3.1 above. The features in such a system typically are contours, 
edges, corners and so on. A common way to find these features in an image is 
to use two-dimensional, discrete convolution. 

R(x,y) = £ £ / ( * - l>y -•/> *fr-/> <7-27) 

i J 

The pixel matrix/(*,>>) of the image is convoluted with a convolution kernel, 
mask, template or operator h(x,y). There are a number of operators to find gra
dients, do averaging or smoothing and to detect different features, such as an 
edge. For the x and y positions in the image where R(x,y) shows a local maxi
mum, we are likely to find a feature according to the operator used. Figure 7.9 
shows an example operator, the 3 x 3 Prewitt operator to estimate the horizontal 
(x) gradient. This can be used to find vertical edges in an image (Nalwa, 1993). 

In this way, we are able to find the location of different features in an image. 
These features are fed to the recognition unit, which can identify and position 
the objects stored in the database. For example, a square box can be represented 
by the features, four corners and four edges positioned in a given configuration 
relative to each other. 

Describing more complicated objects take more features and have a tendency 
to become difficult, especially taking the perspective effect into account when 
objects are moved in the z-axis and may also be rotated. Advanced image recog
nition in the sense of computer vision often requires very powerful computers. 

Summary In this chapter the following issues have been addressed: 

• Basic information theory, mutual information, entropy and redundancy 
• Lossless and lossy data compression 
• Huffman algorithm and prefix-free variable length codes 

- 1 

- 1 

- 1 

0 
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1 

Figure 7.9 The 3 X 3 Prewitt 
operator to estimate the 
horizontal (x) gradient 
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• Delta modulation (DM), ADM and CVSD 
• DPCM and ADPCM, DPCM-AQF and DPCM-AQB 
• APC, SBC, LPC, MLPC, CELP, VSELP and vocoders 
• Image coding, run length code, MHC, the DCT transform, JPEG and MPEG 
• Other data compression methods, MP3 and LZW. 

Review questions R7-1 
R7-2 

R7-3 

R7-4 

R7-5 

R7-6 

R7-7 

Explain the terms entropy and redundancy. 
What is the difference between "lossy" and "lossless" data compression 
algorithms? Give at least one example of an algorithm of each type. 
Explain the term prefix-free variable length code. What is the basic idea 
of the Huffman code algorithm? 
The algorithms DM, ADM, CVSD, DPCM, ADPCM and APC use some 
kind of predictor. What is the idea using a predictor? Give an example of 
how to implement a simple predictor. What problems can be anticipated 
using predictors? How can these be overcome? 
Sub-band coding (SBC) is used in, for instance, the MP3 algorithm. What 
is the basic idea of sub-band coding? 
What is the main idea behind the algorithms APC, LPC, MLPC, CELP 
and VSELP? 
Give a brief presentation of DCT used in, for instance, JPEG and MPEG. 

Solved problems P7-1 Decompress the string Otoh0e0_ih3m3_5e0o0r6_8s3s which was used 
as an example presenting the Lempel-Ziv algorithm in Section 7.2.8. 
Show that the original message can be recovered without any ambiguities. 

P7-2 Make a binary Huffman code for a system using an alphabet of eight 
characters having the probabilities shown below 

(1) pi =0.512 
(2)/72 = 0.128 
(3) p3 =0.128 
(4) p4 = 0.032 
(5) p5 =0.128 
(6) p6 = 0.032 
(7) Pl = 0.032 
(8) ps = 0.008 

P7-3 

P7-4 

For the system in P7-2 above, calculate the entropy, the average symbol 
length, the coding efficiency and the redundancy. 
Write a MATLAB program to simulate the delta modulator and demod
ulator as described by equations (7.11), (7.12) and (7.13). Generate an 
input signal using x(«) —A cos(£2«). Initially use amplitude equal to one, 
£2 = 7iJ100 and step size 0.08. Plot the input to the modulator and the out
put of the demodulator. Change the amplitude and frequency of the input 
signal and the step size of the modulator to demonstrate the problems of 
"slope overload" and "granularity". How are these problems related to 
the parameters above? 



8 Error-correcting codes 

Background All known communication mechanisms today employ some kind of signal. 
A signal is a detectable change of properties of some entity, a "carrier". The 
signal can consist of modulated light or radio waves, varying air pressure 
(sound) or changes in current or voltage levels and so on. Disregarding the 
type of carrier, a maximum communication speed determined by the chan
nel capacity, is always imposed. The reason for this is the presence of noise 
and interference disturbing our signals and causing random misinterpreta
tions, i.e. communication errors. If there were no such disturbing factors, we 
would in theory be able to communicate with an infinite speed. This in turn 
would imply that all known information in the universe would be accessible 
instantly, everywhere ... I am not sure that this would be an entirely good 
situation? 

In any case, in this chapter we will look into the background of the chan
nel capacity and we will explore a number of methods and algorithms which 
enable communication to be as close to the maximum information transfer rate 
as possible. The issue is to find smart methods to minimize the probability 
of communication errors, without slowing the communication process. Such 
methods are called error-correcting codes or error-control codes (ECC). 

Objectives In this chapter we will cover: 

• The binary symmetric channel (BSC) model 
• Bit error probability and mutual information 
• The additive white Gaussian noise channel (AWGN) and channel capacity 
• Hamming distance, error detection and correction 
• Linear block codes, matrix representation and syndromes 
• Cyclic codes and Bose, Chaudhuri, Hocquenghem (BCH) codes and poly

nomial representation 
• Convolution codes and the Viterbi decoder 
• Interleaving, concatenated codes and turbo codes. 

8.1 Channel coding In Chapter 7, the source coding theorem by Shannon was briefly presented. 
In this chapter, some implications of his channel coding theorem will be 
discussed. The idea of source coding or data compression is to find a "min
imum form" in which to represent a certain amount of information thus 
making transmission faster and/or data storing more compact. Data com
pression is based on removing redundancy, i.e. "excess" information. The 
problem, however, arises that the redundancy-free pieces of information will 
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be extremely vulnerable. One example of this is the data compression algo
rithms used to "compress" data files on magnetic discs. If one single binary 
digit (BIT) in the "wrong" place happens to be corrupt, the entire disc (maybe 
several gigabytes) may be completely unreadable and almost all information 
is lost. 

The same problem is even more likely to appear when transmitting data 
over wires or radio links. In such applications, transmission errors are com
mon. Hence, to be able to transmit information error free, we must include 
mechanisms capable of detecting and preferably correcting transmission (or 
storage) errors. This requires adding redundancy. When adding redundancy, 
i.e. making a compressed piece of data large again, we take the properties of 
the transmission (or storage) process into account. If we know what kinds of 
errors are the most probable, for instance in a radio link, we can add redun
dant information tailored to correct these errors. Channel coding is mainly to 
"vaccinate" the information against expected transmission errors. If unexpected 
errors occur, we will of course be in trouble. If we, however, design our channel 
code properly, this will rarely occur. 

As mentioned above, adding this "error-correcting" redundancy will increase 
the amount of data involved. Hence, we are making a trade-off between trans
mission time or storage space for reliability. 

8.1.1 The channel model 

In the following text, we will denote both a data transmission (in space) and 
a data storing (transmission in time) mechanism called a "channel". This 
is hence an abstract entity and will not necessarily relate to any physical 
media, device or system. It will only be used as a model, i.e. a description 
of how the received (or retrieved) data is related to the transmitted (or stored) 
data. 

In Chapter 7, the concept of mutual information I(A,B) was introduced 
(equation (7.2)) 

where P(A) is the probability that events, generated by an information source, 
takes place. P(A | B) is the conditional probability of A taking place given we 
have observed another event B. Now, in the channel context, the event A corre
sponds to the transmitted data symbol and event B to the received symbol, in 
other words what we observe is probably caused by A. 

Now, for a simple example, let us assume that the binary digits 1 and 0 are 
used to communicate over a channel and that the input symbols of the channel 
are denotedX and the output symbols 7. Event At implies thatX = */ aind event 
Bj implies that Y=yj. We can rewrite equation (8.1) as 

I(X = Xu Y = yj) = log( j (8.2) 
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We now define the average mutual information 

I(X, Y) = EV(A„Bj)] = £ £ fxrixuyj) togf^M) 

\-p 

1=1 y = l 

A" I A" 
= J2 Yl fxYi^yj) log(fx\r(xi \yj)) - J2 Mxi) log(/H*i)) 

i= l y = l i = l 

= -H(X\Y) + H(X) (8.3) 

where H(X) is the entropy as defined in the previous chapter (equation (7.7)) 
or the "input information". Further, we have defined the conditional entropy 
H(X | 7) in a similar way, which can be viewed as the "uncertainty" caused by 

X X Y the channel. 
In Figure 8.1a simple but useful model is shown called the binary symmet

ric channel (BSC). The symbol 1 or 0 is inputted from the left, and outputted to 
the right. The BSC is "memoryless", which means that there is no dependency 
between successive symbols. The numbers on the branches are the correspond-

Figure 8.1 The BSC, error ing transition probabilities, i.e. the conditional probabilities P(Y \X) which 
probability p in this case can be expressed in terms of the error probability/? 

P(Y=\\X=\) = (l-p) 

P(Y = l\X = 0)=p 

P(Y = 0\X= \)=p 

P(Y = 0\X = 0) = (l-p) 

As shown in equation (7.3) the mutual information is symmetric with respect 
to X and 7, hence using Bayes' theorem equation (8.3) can be rewritten as 

I(X9 Y) = E[I(Ai9Bj)] = E[I(Bj,Ai)] 

L K L 

= 2 £ fxrixuyj) log(fr\x(yj I */)) - Yl •#(#) log(/rOj)) 
7=1 i= l 7=1 

L K 

= J2J2 fy\x(yj I Xi)fx(xi) iog(fY\X(yj I *,•)) 

7=1 i = l 

L 

-Y,fr<yj)iog(fYW) 
7=1 

= -H(Y\X) + H(Y) (8.4) 
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where the probabilities 

K 

fy(yj) = ^2fY\x(yj\xi)fx(xi). 
1=1 

Assume that the inputs x\ = 0 and X2 = 1 are equally probable, i.e. 
fx(0) —fxiX) = 0.5. This implies an entropy (equation (7.7)) of (using logarithm 
base 2) 

2 

H(X) = - £ fxixdWxixt)) = -l- l b Q ) - ^ l b Q ) = 1 bit/symbol 

Not very surprisingly, this is the maximum entropy we can get from one binary 
symbol (a bit). For instance, if JCI = 0 is more probable than xi = 1 or vice versa, 
then//(X) < 1 bit. For a "perfect" channel, i.e. a channel that does not introduce 
any errors or the error probability: p = 0. This implies that 

P(Y =l\X=l)=\ 

P(Y=l\X = 0) = 0 

P(Y = 0\X= 1) = 0 

P(Y = 0\X = 0)= 1 

Inserting the conditional probabilities into equation (8.4) we obtain 

I(X, Y) = H(Y) -H(Y\X) = H(Y) = 1 bit/symbol (8.5) 

The conditional entropy, or in other words the uncertainty of the channel 
H(Y\X) = 0 and all the "input entropy" ("information"), is obtained on the 
output of the channel. By observing Y we know everything about X. 

If a BSC has an error probability of ^ = 0.1, on the average 10% of the 
bits are erroneous, which corresponds to 10% of the bits being inverted. The 
transition probabilities can readily be calculated as 

P(Y= \\X= 1) = 0.9 

P(Y= 1|X = 0) = 0.1 

P(Y = 0\X = 1) = 0.1 

P(Y = 0\X = 0) = 0.9 

Again, using equation (8.4) the resulting average mutual information will be 

I(X, Y) = H(Y)-H(Y\X)=\- 0.469 = 0.531 bit/symbol (8.6) 

In this case, we only gain 0.531 bits of information about X by receiving the 
symbols Y. The uncertainty in the channel has "diluted" the information about 
the input symbols X. Finally, for the worst channel possible, the error probability 
isp = 0.5. On the average we get errors half of the time. This is the worst case, 
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since if/? is larger than 0.5, i.e. the channel inverts more than half the number of 
transmitted bits, we could simply invert Y and thus reduce the error probability. 
The transition probabilities are 

P(Y = l\X = 1) = 0.5 

P(Y = 1|X = 0) = 0.5 

P(Y = 0\X= 1) = 0.5 

P(7 = 0 |X = 0) = 0.5 

Inserting into equation (8.4) we get 

/(X, Y) = H(Y) -H(Y\X)=l-l=0 bit/symbol (8.7) 

Such a result can be interpreted as if no information about X progresses 
through the channel. This is due to the great uncertainty in the channel itself. 
In other words, whether we obtain our data sequence Y from a random generator 
or from the output of the channel it does not matter. We would obtain equal 
amounts of knowledge about the input dataX in both cases. 

The BSC is a simple channel; however, in a realistic case more complicated 
models often have to be used. These models may be non-symmetric and use M 
number of symbols rather than only 2 (0 and 1). An "analog" channel (contin
uous in amplitude) can be regarded as having an infinite number of symbols. 
Further, channel models can possess memory, introducing dependency between 
successive symbols. 

8.1.2 The channel capacity 

From the above discussion it is clear that every channel has a limited ability to 
transfer information (average mutual information), and that this limit depends 
on the transition probabilities, i.e. the error probability. The maximum aver
age mutual information possible for a channel is called the channel capacity. 
For the discrete, memoryless channel, the channel capacity is defined as the 
following 

C = sup I(X, Y) (8.8) 
fx(x) 

By changing the probability density distribution fx(x) of the symbols trans
mitted over the channel or by finding a proper channel code, the average mutual 
information can be maximized. This maximum value, the channel capacity, is 
a property of the channel and cannot be exceeded if we want to transmit infor
mation with arbitrarily low error rate. This is mainly what the channel coding 
theorem is about. 

It is important to note that regardless of the complexity of the devices and 
algorithms, if we try to exceed the channel capacity by transmitting more infor
mation per time unit (per symbol) than the channel capacity allows, we will 
never be able to transmit the information error free. Hence, the channel capacity 
can be regarded as a universal "speed limit". If we try to exceed this informa
tion transfer limit, we will be "fined" in terms of errors, and the net amount of 
transmitted error-free information will never exceed the channel capacity. 
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Unfortunately, the channel coding theorem does not give any hint on how to 
design the optimum channel code needed to obtain the maximum information 
transfer capacity, i.e. the channel capacity. The theorem only implies that at 
least one such channel code exists. The search for the most effective channel 
codes has been pursued during the last 40 years, and some of these results will 
be presented later in this chapter. 

Calculating the channel capacity for channels in "reality" is in many cases 
very hard or even impossible. Two simple, common, standard channels should, 
however, be mentioned: the BSC and the additive white Gaussian noise 
(AWGN). 

Firstly, the BSC channel capacity can be represented as follows (Figure 8.1) 

C = 1 +p\b(p) + (l-p)lb(l -p)bit/symbol (8.9) 

Secondly, the common memoryless channel model for "analog" (continuous) 
signals is the additive white Gaussian noise channel (AWGN) shown in Figure 
8.2, which is slightly more elaborate. The analog input signal isX and the output 
signal is Y. N is a white Gaussian noise signal, added to the input signal. The 
term "white" is used in the sense that the noise has equal spectral density at all 
frequencies, similarly to white light, which has an equal power at all wavelengths 
in the visible spectrum (contains equal amounts of all colors). 

In the context of AWGN, the signal-to-noise ratio (SNR) is commonly used, 
which is simply the ratio between the signal power and the noise power (Ahlin 
and Zander, 1998) 

S N R = - (8.10) 
N 

The SNR is often expressed in decibels (dB) 

SNRdB = lOlg(SNR) (8.11) 

where lg() is the logarithm base 10. Thus, the channel capacity of the AWGN 
can be shown to be (Cover and Thomas, 1991) 

C = Wlb(l + SNR) = Wlb(l + ^ J 

= Wlbl 1 + — | bit/symbol (8.12) 
V WN0J 

where W is the bandwidth and No is the spectral density of the noise in W/Hz. 
An interesting example is a common telephone subscriber loop. If we assume 

x K-H >Y 

N 

Figure 8.2 The AWGN channel 
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a bandwidth of W = 4 kHz and SNR = 45 dB, the resulting channel capacity is 
therefore (approximately) C = 60 kbit/symbol. Hence, the 57 600 baud dial up 
modems used today is approaching the theoretical upper limit. Some subscriber 
loops may of course have other bandwidth and SNR characteristics, which will 
affect the channel capacity. 

Finally, to conclude this section, assume we have an information source with 
entropy H bit/symbol. In the previous chapter, the source coding theorem stated 
that to be able to reconstruct the information without errors, we must use an 
information rate R of 

R > H bit/symbol 

This is, therefore a data compression limit. In this chapter, the channel coding 
theorem implies that to be able to transmit information error free at information 
ratei? 

C > R bit/symbol 

This is a communication speed limit. 

8,2 Error-correcting There are a number of different error-correcting codes. These codes can be 
codes divided into classes, depending on their properties. A rough classification is to 

divide the codes into two groups: block codes and convolution codes. 
In this section, we will first discuss coding and properties of codes in gen

eral, followed by a presentation of some common block and convolution code 
algorithms. 

8.2.1 Hamming distance and error correction 

We shall begin with a brief illustration of a crude, yet simple repetition code. 
Assume that we need to transmit information about a binary variable U. 

The probabilities of u = 0 and u = 1 are equal, which means fu(u = 0) = 
fu(u= 1) = 0.5. When transmitting this sequence of ones and zeros over a 
BSC with an error probability of p = 0.1, having a channel capacity C = 0.531 
bit/symbol (equation (8.6)), we will get 10%-bit errors on the average. 

By adding redundancy such that if we intend to transmit a " 1 " , we repeat it 
twice. In other words, we transmit "111" and if we want to send a zero, we send 
the channel code word "000". If we get an error in 1 bit of a code word, we 
can still correct the error by making a majority vote when receiving the code. If 
there are more ones than zeros in a received code word, the information symbol 
sent was probably u = 1, and if there are more zeros than ones, u — 0 is the 
most likely alternative. This is simply called the maximum likelihood (ML) 
principle. The code word X is structured as 

X = \x\ x2 x3] = [u pi p2] (8.13) 

where u is the information bit, and/?i and/>2 are denoted parity bits or check 
bits. If a code word is structured in such a way that the parity bits and information 



216 Digital Signal Processing and Applications 

bits are in separate groups rather than a mixed order, the code word iis said to 
have a systematic form. The coding process in this example will be very easy 

x\ = u 

*2 =p\ — u (8.14) 

*3 = Pi = U 

The decoding process will also be easy, a pure majority vote as outlined 
above. The length of the code word is often denoted by n and the number of 
information bits k, hence in our example above n = 3 and k = 1. Now, the code 
rate or code speed is obtained from 

k 
R=- (8.15) 

n 
This can be seen as a "mix" ratio between the numbers of necessary information 
bits and the total number of bits in the code word (information bits + parity 
bits). In the first case above, transmitting U directly, without using amy code, 
implies a rate of 

j ? = I = 1 > C = 0.531 

In this case, we have violated the channel coding theorem and consequently 
the length of the strings of symbols we send does not matter, as n -> oo we will 
still not be able to reduce the average error rate below 10%. 

In the latter case, using the repetition code we have introduced redundancy 
and for this case 

R=- =0.333 < C = 0.531 
3 

It can be shown that for longer code words, i.e. as n -> oo the average error 
rate will tend to zero. Let us take a closer look at the underlying processes. 
Table 8.1 shows the eight possible cases for code word transmission and the 
associated transition probabilities expressed in terms of the error probability^ 

Table 8.1 Transmission of simple 3-bit repetition code 

(a) 
(b) 
(c) 
(d) 

(e) 
(f) 
(g) 
(h) 

X Y 

111- j . l l l 
111 -> 110,101,011 
111-> 001,010,100 
111 - • 000 

0 0 0 ^ 0 0 0 
000-> 001,010,100 
000-> 110,101,011 
000-» 111 

Probability 

(1 -P? 
3(1 -pfp 
3(1 -p)p2 

P3 

(1 -P)3 

3(1 -pfp 
3(1 -p)p2 

P3 

No errors 
1-bit errors 
2-bit errors 
3-bit error 

No errors 
1-bit errors 
2-bit errors; 
3-bit error 



Error-correcting codes 217 

of the BSC. From Table 8.1, in case (a) we intended to transmit u=\ 
which was coded as 111. No errors occurred which has the probability of 
(1 — pf = (1 — 0.1)3 = 0.729 and 111 was received. This received code word 
was decoded using a majority vote, and found to be u = 1. In case (b) a single 
bit error occurred and hence, 1 bit in the received code word is corrupt. This 
can happen in three ways. In case (c) 2-bit errors occur, which can also hit the 
code word in three different ways, and so on. 

The interesting question which arises deals with the amount of cases in which 
this coding scheme will be able to correct the bit errors. In other words, how 
many cases can decode the right symbol in spite of the corrupt code word 
bits? From Table 8.1 it is clear to conclude that correct transmission will be 
achieved, i.e. u = u in cases: (a), (b), (e) and (f). In all other cases, the majority 
vote decoder will make errors and will not be able to correct the bit errors in the 
code word. Due to the majority decoding and the fact that we only transmit the 
code words 111 and 000, respectively, it is clear that errors will occur if there 
are more than t = 1 bit errors in the code word, hence we can define t as 

= L§J (8.16) 

where |_ J is the "floor" operator, i.e. the first integer less than or equal to 
the argument. The total probability of erroneous transmission can now be 
expressed as 

^ r = £ ( • )p^ ~P)^ = (*)<>.12(1 - 0.1) + (\ ) o . l 3 

= 3 • 0.01 • 0.9 + 0.001 = 0.028 (8.17) 

where 

(?) (n - i)\i\ 

is the binomial coefficients, in other words, the number of ways / elements can 
be selected out of a set of n elements. As n -> oo in equation (8.17), PQXX -» 0, 
in accordance to the channel coding theorem. 

Intuitively from the above discussion, the greater the "difference" between 
the transmitted code words, the more bit errors can be tolerated, i.e. before a 
corrupt version of one code word seems to resemble another (erroneous) code 
word. For instance, assume that the code uses the two code words 101 and 
001 instead of 111 and 000. In this case, one single bit error is enough for the 
decoder to make an erroneous decision. 

The "difference" in coding context is denoted as the Hamming distance d. 
It is defined as the number of positions in which two code words differ. For 
example, the code words we used, 111 and 000 differ in three positions, hence 
the Hamming distance is d — 3. The two code words 101 and 001 have d=l. 
It can be shown that a code having a minimum Hamming distance d between 
code words can correct 

d-\ 
bit errors in a code word (8.18) 
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Further, the same code can detect (but not correct) 

y = d — 1 bit errors in a code word (8.19) 

If there are d-h\t errors, we end up in another error-free code word and the 
error can never be detected. Techniques for detection of transmission errors are 
commonly used in automatic repeat request (ARQ) systems, where a detected 
error gives rise to a negative acknowledge signal, initiating a retransmission 
of the data. In some communication systems, the receiving equipment does 
not only output ones and zeros to the decoder. For instance, if a signal having 
poor strength is received, a third symbol, the erasure symbol, can be used. This 
is a "don't care" symbol saying the signal was too weak and cannot determine 
if the received signal was a 1 or a 0. In this case, the decoding algorithm can 
fill in the most probable missing bits 

p = d — 1 erasures in a code word (8.20) 

Finally when classifying a code, the triplet consists of code word length 
«, number of information bits k and minimum Hamming distance d and is 
commonly stated as 

(w, k, d) 

The number of parity bits is of course n — k. Using the minimum Hamming 
distance d and equation (8.18) we can figure out how many bit errors t (per 
code word) the code can handle. The example repetition code above is hence 
denoted (3, 1, 3). 

It is worth noting that if there are more than t-bit errors in a code word, 
the coding will add even more errors and only make things worse. In such a 
case, a better code must be used. It might even be advantageous not to use any 
error-correcting code at all. 

8.2.2 Linear block codes 

For a general block code, we are free to select our code words arbitrarily, which 
for large blocks may result in extremely complicated encoders and decoders. If 
we demand the code to be linear, things become somewhat easier. The definition 
of a linear code is that the sum of the two code words x, and xj is also a code 
word. The addition of code words is performed component wise 

X,- + Xj = [xn X(2 • • • *,-„] + [Xj\ Xj2 • • • Xjn] 

= [Xi\ + Xj\ X[2 + Xj2 ' • • Xin + Xjn] 

= [Xm\ Xm2 • • • Xmn] = *m (8.21) 

Here the addition is performed according to the algebraic rules of the number 
system used. For the binary case,"+" means binary addition, i.e. addition mod
ulo 2 or exclusive OR (XOR). Thus, 0 + 0 = 0, 1 + 0 = 0 + 1 = 1 and 1 + 1 = 0 . 
For other number systems, similar rules shall apply. This algebraic topic is 
related to as the Galois fields (GF(p)) theory. In this chapter, we will however 
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remain faithful to the binary number system. If an interest in this particular 
subject is not very high, then Galois is a trivial issue. 

A linear code has the helpful property that the vicinity of all code words in 
the ^-dimensional "code space" looks the same. Hence, when decoding, we 
can apply the same algorithm for all code words and there are many standard 
mathematical tools available for our help. When analyzing codes, it is common 
to assume that the zero code word (all zeros) has been sent. The zero code word 
is present in all binary linear block codes, since by adding a code word to itself, 
using equation (8.21) 

X,- + X; = [xn + Xi\ Xi2 + Xi2 ' ' ' Xin + Xin] = [0 0 • • • 0] = 0 (8.22) 

The coding process in a linear block code can be readily expressed as a 
matrix multiplication. The information word u (dim 1 x k) is multiplied by the 
generator matrix G (dim k x n), thus obtaining the code word x (dim I xn) 

Xi = u/G = u,-[l : P] (8.23) 

The generator matrix G defines the coding operation and can be partitioned 
into an identity matrix I (dim k x k) and a matrix P (dim k x n — k). In this 
way, the code will have a systematic form. The identity matrix simply "copies" 
the information bits u\ into the code word, while the P matrix performs the 
calculations needed to determine the parity bits/7/ (compare to equation (8.14)). 

During the transmission, the code word x will be subject to interference, 
causing bit errors. These bit errors are represented by the error vector e (dim 
1 x n). The received code word y (dim I xn) can be expressed as 

y = x + e (8.24) 

(Remember we are still dealing with binary addition). 
Finally, when decoding a linear block code, a syndrome-based decoding 

algorithm is commonly used. This algorithm calculates a syndrome vector s 
(dim 1 x &) by multiplying the received code word y by the parity matrix H 
(dim k x n). The parity matrix can be partitioned into an identity matrix I (dim 
kxk) and the matrix Q (dim n — kxk) 

s = yHT = y[Q \ l ] T (8.25) 

For the binary case, if we set Q = PT, the syndrome vector will be equal to the 
zero vector (all-zero elements), i.e. s = 0 if there are no errors in the received 
code word that this particular code is able to detect. This can be shown by 

s = yHT = (uG + e)HT = uGHT = u[l : P] 
QT 

I 

= u(QT + P) = 0 (8.26) 

where, of course, e = 0 since there are no errors. If we have detectable errors, 
s ^ 0 and the syndrome vector will be used as an index in a decoding table. 
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This decoding table shows the error vectors that are able to generate a spe
cific syndrome vector. Commonly it is assumed that few bit errors in a code 
word is more likely than many errors. Hence, the suggested error vector e 
(dim l x n ) having the smallest number of ones (i.e. bit errors) is assumed to 
be equal to the true error vector e. By adding the assumed error vector to the 
received code word including errors, a corrected code word x (dim 1 x n) can be 
obtained 

x = y + e (8.27) 

From this corrected code word x, only simple bit manipulations are needed to 
extract the received information word ii (dim 1 x k). 

Let us conclude this discussion on linear block codes with an example. 
Assume we have designed a linear block code LC(6, 3, 3), having n — 6, k = 3 
and d = 3. The code words are in systematic form and look like 

X = [x\ X2 X3 X4 X5 X^\ = [u\ Ui U3 p\ P2 ^3] 

where the parity bits are calculated using the following expressions 

(8.28) 

p\ = u\ + u2 

p2 = U2+ W3 

P3 = U\ + U2 + W3 

(8.29) 

Using this information, it is straightforward to write down the generator matrix 
for this code 

G = [I!P] = 
1 0 0 1 0 1 
0 1 0 1 1 1 
0 0 1 0 1 1 

(8.30) 

In a similar way, the parity matrix can also be formed 

H = [PT ; 1] = 
1 1 0 1 0 0 
0 1 1 0 1 0 
1 1 1 0 0 1 

(8.31) 

Now, assume we want to transmit the information word 010, i.e. u =: [0 1 0]. 
The encoder will transmit the corresponding code word on the channel 

x = uG = [0 1 0] 
1 0 0 1 0 1 
0 1 0 1 1 1 
0 0 1 0 1 1 

= [ 0 1 0 1 1 1 ] (8.32) 

This time we are lucky, the channel is in a good mode, and no errors occur, 
i.e. e = 0, thus 

y = x + e = x = [0 1 0 1 1 1] (8.33) 
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In the decoder, the syndrome vector is first calculated as 

s = yHT = [0 1 0 1 1 1] 

ri 
l 
0 
I 
0 
0 

0 
1 
1 
0 
1 
0 

n 
l 
l 
0 
0 
1. 

[0 0 0] = 0 (8.34) 

Since the syndrome vector is equal to the zero vector, the decoder cannot 
detect any errors and no error correction is needed, i = y. The transmitted 
information is simply extracted from the received code word by 

x[l : 0]T = [0 1 0 1 1 1] 

1 0 0-
0 1 0 
0 0 1 
0 0 0 
0 0 0 
0 0 0 

= [0 1 0 ] (8.35) 

Now, assume we try to send the same information again over the channel; 
this time, however, we are not as lucky as before, and a bit error occurs in W3. 
This is caused by the error vector 

e = [0 0 1 0 0 0] (8.36) 

Hence, the received code word is 

y = x + e = [0 1 0 1 1 1] + [0 0 1 0 0 0] = [0 1 1 1 1 1] (8.37) 

The syndrome calculation gives 

s = y H ' = [ 0 1 1 1 1 1] 

ri 
1 
0 
1 
0 
0 

0 
1 
1 
0 
1 
0 

n 
1 
1 
0 
0 
IJ 

= [0 1 1 ] (8.38) 

Using a decoding table (Table 8.2), we find that the eight proposed error 
vectors on line 4 may cause the syndrome vector obtained above. 

Using the maximum likelihood argument, we argue that a single-bit error is 
more probable than a multi-bit error in our system. For this reason, we assume 
that the error vector in the first column to the left (containing only 1 bit) is the 
most probable error, hence 

e = [0 0 1 0 0 0] (8.39) 

The received code word is now successfully corrected (equation (8.27)) 

i = y + e = [0 1 1 1 1 l] + [0 0 1 0 0 0] 

= [0 1 0 1 1 1] = x (8.40) 
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Table 8.2 Decoding table for the code LC(6,3,3) in the example 

Syndrome 

000 
101 
111 
Oil 
100 
010 
001 
110 

000000 
100000 
010000 
001000 
000100 
000010 
000001 
101000 

100101 
000101 
110101 
101101 
100001 
100111 
100100 
001101 

Possible error vectors 

010111 
110111 
000111 
011111 
010011 
010101 
010110 
111111 

001011 
101011 
011011 
000011 
001111 
001001 
001010 
100011 

110010 
010010 
100010 
111010 
110110 
110000 
110011 
011010 

011100 
111100 
001100 
010100 
011000 
011110 
011101 
110100 

101110 
001110 
111110 
100110 
101010 
101100 
101111 
000110 

111001 
011001 
101001 
110001 
111101 
111011 
111000 
010001 

Table 8.3 Hamming distance between all possible error-free code words of the code 
LC(6,3,3) in the example 

000000 100101 010111 001011 110010 011100 101110 111001 

000000 
100101 
010111 
001011 
110010 
011100 
101110 
111001 

0 
3 
4 
3 
3 
3 
4 
4 

3 
0 
3 
4 
4 
4 
3 
3 

4 
3 
0 
3 
3 
3 
4 
4 

3 
4 
3 
0 
4 
4 
3 
3 

3 
4 
3 
4 
0 
4 
3 
3 

3 
4 
3 
4 
4 
0 
3 
3 

4 
3 
4 
3 
3 
3 
0 
4 

4 
3 
4 
3 
3 
3 
4 
0 

and the transmitted information can be extracted in the same way as in 
equation (8.35). 

The example code above has a minimum Hamming distance between code 
words of d = 3. Using equation (8.18) we find that the code is only able to correct 
t=l, i.e. single-bit errors. As pointed out earlier in this text, if there are more 
bit errors in a code word than t, the coding scheme will not be able to correct 
any errors, and it may in fact aggravate the situation. This can be illustrated 
by the following example. If we transmit u = [0 0 1], the code word will be 
x = [0 0 1 0 1 1]. If a double-bit error situation occurs, e = [0 1 0 1 0 0] 
we will receive y = x + e = [ 0 1 1 1 1 1 ] , i.e. the same code word as in the 
example above. This code word will be "corrected" and as above, we will obtain 
u = [0 1 0 ] ^ u . 

When calculating the error-correction performance t of a code using equation 
(8.18), we have been assuming that d is the minimum Hamming distance 
between code words. A deeper, but not too surprising analysis shows that the 
Hamming distance between all possible error-free code words in a given code 
vary. An example is the code LC(6,3,3) used above, as shown in Table 8.3. In 
this particular example, it does not matter, because equation (8.18) gives the 
same result for both d = 3 and d = 4, but it is important to remember that the 
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minimum Hamming distance should be used in equation (8.18). An alternative 
way of finding the minimum Hamming distance of a code is to find the smallest 
number of column vectors in the parity matrix H (equation (8.31)) that need to 
be added to obtain the zero vector. 

There are many ways to design the error correcting code. The main objective, 
however, is to find a code that can correct as many errors as possible, while 
requiring as few parity bits as possible. The code should also be easy to decode. 
One criteria, to be met when designing an effective code, is to choose the code 
words in such a way that the Hamming distances to the closest neighbors (i.e. the 
minimum Hamming distance) are the same for all code words. A code having 
this property is called a "perfect code". An example of a perfect code is the 
classical family of Hamming Codes (Haykin, 2001). This type of codes has 
been used since about 1948 and was initially used for error correction in long 
distance telephony systems. The parameters of these codes are 

Block length: n = 2m - 1 
Number of information bits: k = 2m — m — 1 
Hamming distance: d = 3 

form = 2,3,4, . . . 
From the above, it is obvious that all Hamming codes can correct single-bit 

errors only, disregarding the block length. 

8.2.3 Cyclic codes, Bose, Chaudhuri, Hocquenghem codes 

The class of cyclic codes is a sub-class of linear block codes. Instead of the 
linearity property where the sum of two code words yields another code word, 
a cyclic shift ("rotate") of the bit pattern is performed instead. This shift results 
in another code word. For example, if 111001 is a code word, then 110011 
should also be a code word and so on. 

Cyclic codes are often expressed using code polynomials. In these poly
nomials, a formal parameter* is used. Note! This formal parameter x is some
thing completely different from the code word bits x; discussed earlier. 
The formal parameter x is only a means of numbering and administrating the 
different bits in a cyclic code polynomial. The data bits of interest are the 
coefficients of these polynomials. 

A code word c = [co c\ ••• cn-\] can hence be expressed as a code 
polynomial 

c(x) = co + c\x + C2X2 + C3X3 H h cn-\x
n~l (8.41) 

An m step cyclic shift of an n — 1 bit code word is accomplished by a 
multiplication 

xmc(x) mod (xn - 1) (8.42) 

which is performed modulo xn — 1, i.e. after the polynomial multiplication by 
xm a polynomial division by (xn — 1) should take place to keep the order of 
the resulting polynomial to n — 1 or below. In bit pattern words, this operation 
can be explained as the multiplication performs the "bit shifting", while the 
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division makes the "bit rotating" (higher-order bits are rotated back as low-
order bits). 

Using this polynomial way of expressing vectors, a k-bit information vector 
can be written as a polynomial in the formal parameter x in a similar way to 
equation (8.41) 

u(x) = wo + u\x + U2X2 + W3X3 H h Uk-\xk~l (8.43) 

where «o, wi , . . . , w*_i are the bits of the corresponding information vector 
(but the numbering is slightly different from the vector notation discussed ear
lier). Still remaining with binary numbers, modulo 2 addition applies. Instead 
of using a generator matrix to define the code, we now use a generator poly
nomial g(x), and the coding process consists of a multiplication of polynomials 

c(x) = u(x)g(x) (8.44) 

where c(x) is the code word polynomial, corresponding to the code vector being 
transmitted over the channel. Unfortunately, this straightforward approach does 
not result in code words having systematic form. This can be accomplished by 
first shifting the information polynomial and then dividing this product by the 
generator polynomial 

xn~ku(x) , x r(x) ,n Aim x 

where q(x) is the quota and r(x) the remainder. Rewriting equation (8.45a) 
we get 

xn~hu(x) = q(x)g(x) + r(x) = c(x) + r(x) 

=» cix) = xn~ku(x) - r(x) (8.45b) 

The code word travels the channel as before and errors, represented by the 
error polynomial e(x), may occur. The received data vector is represented by 
the polynomial v(x) 

v(x) = c(x) + e(x) (8.46) 

When decoding the received word expressed as v(x), calculation of the syn
drome polynomial s(x), used for error detection and correction, simply consists 
of division by the generator polynomial g(x) or multiplication by the parity 
polynomial h(x), where 

h(x) = ^ f i (8.47) 

The syndrome polynomial is obtained as the remainder when performing the 
division 

It is easy to show that the syndrome will depend on the error polynomial only, 
and if no errors are present, the syndrome polynomial will be 0. Using equations 
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(8.45), (8.46) and (8.48) we obtain 

v(x) = c(x) + e(x) = q(x)g{x) + e(x) = Q(x)g(x) + s(x) 

=» e(x) = (Q(x) - q(x))g(x) + s(x) (8.49) 

This relation shows that the syndrome s(x) is the remainder when dividing 
e(x) by g(x). Hence, we can calculate the syndromes for all possible error 
polynomials in advance. All unique syndromes can then successfully be used 
to identify the corresponding error polynomial e(x) and error correction of v(x) 
can be performed as (in the binary case) 

v(x) = v(x) + e(x) (8.50) 

where v(x) is the corrected message (hopefully) from which the information 
u(x) can be extracted. Once again, an example will illustrate the ideas and 
algorithms of binary, cyclic block codes. Assume we are using a cyclic code, 
CC(7,4,3), i.e. a code having n = 7, k = 4 and d = 3. Using equation (8.18) 
we find that this code can correct single-bit errors, t = 1. Further, the code is 
defined by its code polynomial g(x) = 1 + x + x3. In this example, we want to 
transmit the information 0010. This is expressed as an information polynomial 

u(x)=x2 (8.51) 

Multiplying this information polynomial by the generator polynomial, the code 
polynomial is obtained 

c(x) = u(x)g(x) = x2(l + x + x3) = x2 + x3 + x5 (8.52) 

The corresponding bit sequence 0011010 is transmitted over the channel and 
this first time no errors occur, i.e. e(x) = 0 and 

v(x) = c(x) + e(x) = c(x) = j 2 + x 3 - f x 5 (8.53) 

At the decoder, we start by calculating the syndrome polynomial 

^ = X-^^=X* + ^ - = X > + ^ L - (8.54) 
g(x) x 3 + x + l x 3 + x + l J C 3 + X + 1 

Since the remainder or the syndrome is zero, there are no errors and the received 
information is u{x) =x2 = u(x). Now, we try this again, but this time a single-
bit error occurs, having the corresponding error polynomial: e(x)=x5, starting 
over from equation (8.53) we get (using binary addition) 

V(JC) = c(x) + e(x) = x2 + x3 + x5 + x5 = x2 + x3 (8.55) 

The syndrome calculation yields 

v(x) x 3 + x 2 ^ x 2 + x + l , s(x) 

-H = 1 7 = l + "I 7 = l + i * (8-56) 
g(x) x 3 + x + l x 3 + x + l x 3 + x + l v ' 

Hence, this time the syndrome polynomial is s(x) = x2 + x + 1. Using equation 
(8.48) and assuming the zero code polynomial c(x) = 0 (OK, since the code is 
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linear, all code words have the same "vicinity"), we find it is easier to make a 
decoding table in advance. 

S{x) e(x) 

0 
1 
x 
x2 

x + 1 
x2 + x 
x 2 + x + l 
x2 + l 

From this table, we can see that with the given syndrome s(x)=x2 -fx + 1, 
the corresponding single-bit error polynomial is e(x)=x5. Error correction 
yields 

V(JC) = V(JC) + e(x) = x2 + x3 + x5 (8.57) 

From this, the information w(x) =x2 can be obtained as before. In most cases, 
coding and decoding is not performed in the simple way outlined above, since 
there are smarter ways to implement the algorithms. 

Shift registers and logic circuits have traditionally been used to implement 
cyclic code algorithms. Nowadays, these functions can readily be implemented 
as digital signal processor (DSP) software, using shift, rotate and Boolean 
computer instructions. Below, the basic ideas will be briefly presented. The 
underlying idea is that multiplication and division of polynomes can be: viewed 
as filtering operations, and can be achieved using shift registers in structures 
resembling digital finite impulse response (FIR) and infinite impulse response 
(IIR) filters. 

If we have a generator polynomial, g(x) = go + g i * + gix2 + • • • + gn-k*n~k, 
an information polynomial as in equation (8.43) and we want to perform the 
polynomial multiplication as in equation (8.44) to obtain a code vector as in 
equation (8.41) we get 

c(x) = co + c\x + c2x
2 H h cn-\x

n~x = w(x)g(x) 

= uogo + (u\go + u0g\)x + (u2go + u\g\ + uog2)x2 H (8.58) 

From the above expression it can be seen that the coefficients ci can be obtained 
by a convolution of the coefficients of the information polynomial u(x) and the 
coefficients of the generator polynomial g(x) 

a = J2sfuH (8"59) 

7=0 

This operation is performed by an FIR filter (see Chapter 1), hence "filter
ing" the data bit sequence ut using a binary FIR filter with tap weights gj will 

0 
1 
x 
X2 

X 3 

X4 

X5 

X6 
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perform the polynomial multiplication, otherwise known as "the coding 
operation" (equation (8.44)). 

The syndrome calculation, division by g(x) as in equation (8.48), can also be 
performed in a similar way. Consider the z-transform of the sequences ut and gj, 
respectively, denoted U(z) and G(z) (see Chapter 1). Since equation (8.59) is 
a convolution, this is equivalent to a multiplication in the z-transform domain, 
hence the z-transform of the code polynomial coefficients C(z) can easily be 
obtained as 

C(z)=U(z)G(z) (8.60) 

If we now require the generator polynomial to have go = 1 and gn-k = 1 it 
can be rewritten as 

G(Z) = go + g\Z~l + g2Z~2 + • • • + gn-kZ~n+k 

= 1 + g i z " ! +g2z~2 + • • • +z-»+k = 1 + G\z) (8.61) 

From Chapter 1 we recall that if an FIR filter having, for instance, the 
z-transform G'(z)9 is put in a feedback loop, we have created an IIR filter 
with the transfer function 

H® = y±r«\ = 7^ ( 8 ' 6 2 ) 

1 + G\z) G(z) 
This indicates that by feeding the data corresponding to v(x) into a circuit con
sisting of a shift register in a feedback loop, we effectively achieve a polynomial 
division. The tap weights corresponding to G\z) are simply g(x) but with go = 0. 
A closer analysis shows that during the first n shifts, the quota q(x) (equation 
(8.45 a)) of the polynomial division is obtained at the output of the shift register. 
After these shifts, the remainder, i.e. the syndrome coefficients of six), can be 
found in the delay line of the shift register. The syndrome can hence be read 
out in parallel and used as an index in a syndrome look-up table (LUT). Using 
information in this table, errors can be corrected. A special class of syndrome-
based error-correcting decoders using the method above are known as Meggit 
decoders. 

Figure 8.3 shows an encoder and channel (upper part) and decoder (lower 
part) for the cyclic code g(x) = 1 + x + x3 in the previous example. The encoder 
and decoder consist of shift registers as outlined in the text above. It is an instruc
tive exercise to mentally "step through" the coding and syndrome calculating 
processes. The syndrome is obtained after n — 1 steps. 

There are a number of standardized cyclic codes, commonly denoted cyclic 
redundancy check (CRC) codes, some of them are 

g(x)= 1 + x + x4 CRC-4: 

CRC-5: g ( x ) = l + x 2 + x 4 + x 5 

CRC-6: g(x)= l + x + x6 

CRC-12: g(x) = 1 + x + x 2 + x 3 + jc n +x 1 2 

CRC-16: g(x) = 1 + x 2 +x 1 5 +x 1 6 

CRC-CCITT: g(x) = 1 + x5 + x12 + x16 
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Figure 8.3 Encoder and channel (upper) and decoder (lower) for a cyclic 
code having the generator polynomial g(x) = 1 + x + x3. Encoder and 
syndrome calculating decoder built using shift register elements 

A special and important class of cyclic codes are the BCH codes, named 
after Bose, Chaudhuri and Hocquenghem. This class consists of a number of 
effective codes with moderate block length n. The parameters of these codes are 

Block length: n = 2m - 1 
Number of information bits: k >n — mt 
Minimum Hamming distance: d > It + 1 

form = 3,4 ,5 , . . . 
Reed-Solomon (RS) codes belong to a special type of BCH codes, working 

with groups of bits, in other words m-ary symbols rather than bits. The RS codes 
are very efficient and have the greatest possible minimum Hamming distance 
for a given number of check symbols and a given block length. The block length 
must be kept small in practice. Nevertheless, it is an important and popular type 
of code and is often used together with some other coding scheme, resulting in 
a concatenated coding system. 
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BCH and Reed-Solomon codes are, for instance, used in cellular radio sys
tems, CD player systems and satellite communication systems, dating back to 
the 1970s. 

8.2.4 Convolution codes 

In the previous sections, we have discussed block codes, i.e. codes working 
with a structure of fixed length, consisting of information and parity bits. Con
volution codes work in continuous "stream" fashion and "inserts" parity bits 
within the information bits according to certain rules. The convolution process 
is mainly a filtering process and is commonly implemented as some kind of 
shift register device (may be software). 

A convolution encoder algorithm can be viewed as n binary FIR filters, having 
m steps long delay lines. The information bit sequence u\ to be coded is input 
to the filters. Each filter y has its own binary impulse response g\ and hence, 
the output of each filter can be expressed as a convolution sum. The output of 
filter y is 

m 
c? = 2>FV«+i /= 1,2,... ,1 (8.63) 

i = l 

where U\,U2,...,UL are the information bits and g\J theyth generator, i.e. 
the impulse response of filter j . Note! The superscript is only an index, not 
an exponentiation operation. The code word bits cj will be arranged in the 
following way when transmitted over the channel 

Cj ,Cj , . . . , C j , c 2 , c 2 , . . . , c 2 , • . -^L+m^L+m'- '>LL+m 

Thus, there will be (L + m)n bits in the code word, and the rate of the code 
can be calculated by 

R = n l ^ <8'64) 
(L + m)n 

Further, the constraint length of the code, in other words the number of bits 
that may be affected by a given information bit is obtained from 

ns = (m + l)w (8.65) 

The practical algorithm (or hardware) operates as follows. Since the n delay 
lines will run in parallel, having the same input, only one delay line is needed. 
This line is shared by all the n filters. Initially, all the m elements in the delay 
line are set to zero. The first information symbol u\ is fed to the delay line, 
and the outputs c\J) of all filters are calculated and sent to the output. Then, the 
delay line is shifted one step and the next input bit ui enters the circuit. The 
filter outputs c2 are calculated and transferred to the output as before. 

This scheme is repeated until the last information bit WL is reached. After 
that point, only zeros are entered into the delay line for another m steps, thus 
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Figure 8.4 Encoder for a simple convolution code. Parameters: n = 2, k = 7, 
m = 2 and generators, gW = (1,0,1), g® = (1,1,1) 

clearing the entire delay line. During this period, the tail of the code is generated 
and transmitted through the channel. 

Figure 8.4 shows an example of a convolution encoder for the code 
0 , k, m) = (2,1,2), with generators g(1) = (1,0,1) and g(2) = (1,1,1). Assum
ing an input information bit sequence w/ is (0,1,0,1) which will result in the 
code word sequence c]J (including tail) (00,11,01,00,01,11). 

The example convolution code shown here is a simple one. Convolution-type 
codes have been used for space and satellite communications since the early 
1960s. During the Voyager missions to Mars, Jupiter and Saturn during the 
1970s, a couple of different convolution codes were used to ensure good data 
communication. Two of these codes that became NASA standards are 

• The Jet Propulsion Lab convolution code (2,1,6), with generators 

gM = (1,1,0,1,1,0,1) 

g<2> = (1,0,0,1,1,1,1) 

• The Linkabit (3,1,6) convolution code, with generators 

gW = (1,1,0,1,1,0,1) 

g<2> = (1,0,0,1,1,1,1) 

g<3> = (1,0,1,0,1,1,1) 

8.2.5 Viterbi decoding 

There are many ways to decode convolution-coded data. One of the most com
mon methods is to use a Viterbi decoder, named after A. Viterbi. The idea of 
Viterbi decoding is to decode an entire sequence of information symbols and 
parity symbols at a time, rather than every single group (or block) of information 
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and parity bits. Let us assume that the transmitted sequence of bits entering a 
channel is 

c - fc, C9 c,+ ) - (c(l) c{2) c(n) c(1) c(n) ] 
C — ^ L i , t 2 , . . . ,<~L+m) — y-\ >L\ J • • • > c i » c 2 » * ' ' >cL+mJ 

as above, and c,- = (c- , c,- , . . . , c) ) is the zth block. The received sequence, 

coming out of the channel is expressed in a similar way 

v = (v i ,v 2 , . . . ,v I + m ) = \vx ,vx 9...9vx ,v2 , . . . , v L + m J 

From the discussion on channels, we remember that for a communication chan
nel, there is a set of transition probabilities. These probabilities are denoted 

P\v)J | c\ \ and are the conditional probabilities of receiving bit v/7 when 

transmitting c\J . If the bit error probability is independent for all bits, then the 
conditional probability of receiving block v, when block c,- is transmitted is 

n 

p(v/ico=np(v^i^0 )) <8-66a) 
7=1 

In a similar way, the conditional probability of receiving the entire sequence v, 
given that bit sequence c (including tail) is transmitted, is 

L+m 

P ( v | c ) = n ^ ( v « | c , - ) (8.67a) 
i = i 

Now, the task of a maximum likelihood (ML) decoder is to maximize (equation 
(8.67a)). Taking the logarithm of equations (8.66a) and (8.67a), respectively, 
we obtain 

n 

L(yu Ci) = log(P(v; I c/)) = J2 l°g(^(v,0) I c ^ ) ) (8.66b) 

7=1 

L+m 

L(v, c) = log(/>(v | c)) = J2 log(P(V/1 C/)) (8.67b) 
i = i 

Hence, given the received bit sequence v, the ML decoder should find the bit 
sequence c that maximizes L(\, c) as in equation (8.67b). If we assume a binary 
symmetric channel (BSC) with error probability/?, equation (8.66b) above can 
be written 

L(\t | a) = dH(vu*i)\og(p) + (n - </j7(v,-,C|))log(l -p) 

= dH(yi9Ci)log(^^—\ +/ilog(l -p) (8.68) 

where J#(v/, c/) is the Hamming distance between the received binary sequence 
\i and the transmitted sequence c/. The last term n log(l - p) can be neglected, 
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since it is a constant. Further, for error probability 0 <p < 1/2, the constant 
factor log(^/(l -/?)) < 0. Hence, we define 

Li = -dH(vi,ci) (8.69) 

and 

L+m L+m 

1=1 1=1 

From this we draw the conclusion, that finding the maximum likelihood 
sequence in the case of BSC is equivalent to finding the minimum sum of 
Hamming distances for the blocks. This fact is utilized in the Viterbi decoding 
algorithm. To be able to calculate the Hamming distances at the decoder, we of 
course need access to the received data v; and the transmitted data c,-. Unfortu
nately, Cf is not known at the receiving site (this is why we put up the channel in 
the first place). Hence, using our knowledge of the operation of the encoder, we 
create a local copy of expected data £/ for our calculations. As long as c* = c/ 
we are doing just fine, and the correct message is obtained. 

To demonstrate the steps needed when designing a Viterbi decoder, we will 
use the previous convolution code example shown in Figure 8.4. First, we draw a 
state transition diagram of the encoder. The contents of the memory elements 
are regarded as the states of the device. Figure 8.5 shows the state transition 
diagram. The digits on the branches show in parenthesis the input symbol u\ 

and following that, the output code block c/ = (cj , c\ M. 

Starting in state 00 (all memory elements cleared) and assuming an input 
information bit sequence u = (0,1,0,1), it is straightforward to perform the 
encoding process using the state transition diagram below. 

(1)11 

( 0 ) 0 0 / " 

| (1)10 

(0) 11 / 

(1)01 

(0)10 

Figure 8.5 State transition diagram for the convolution encoder shown in 
Figure 8.4. Digits in the nodes are the state numbers, i.e. the contents of the 
memory elements. The digits over the branches are the input information 
symbol \i\ (in parenthesis) and the output code bits c{ and cj 
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Input State Output code 

0 00 00 
1 00 11 
0 10 01 
1 01 00 
0 10 01 
0 01 11 

00 

From the above table, the resulting code word sequence (including tail) is 
c = (00,11,01,00,01,11). Now, this state transition diagram can be drawn as 
a code trellis, a diagram showing all possible transitions (y-axis) as a function 
of the step number / (x-axis) (see Figure 8.6). Since we know the initial state 
00, the diagram will start to fan out from one state to the left to all the possible 
four states. We also know, that after the Z-steps, there will be the m-steps of 
zeros, constituting the tail, and ensuring that we end up in state 00 again. This 
is why we have the fan in at the right end of the trellis. 

If we assume that our transmitted code sequence c suffers 3-bit 
errors being exposed to an error vector e = (01,10,00,10,00), we receive 
v = (01,01,01,10,01,11). Using the trellis of Figure 8.6 and the expression 
(8.70), we will illustrate the Viterbi decoding algorithm. 

states 

00 

01 

10 

11 

v 01 01 01 10 01 11 

u 0 1 0 1 0 0 

Figure 8.6 Viterbi decoding algorithm for the example in the text, illustrated 
by a code Trellis. States on y-axis, steps on x-axis, numbers in italics are the 
negative accumulated Hamming distances, numbers in parenthesis are the 
estimated information symbols, numbers on branches are the expected code 
blocks 

tail 
tail 
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Starting from the left, we know we are in the state 00. During the first step, 
the received block is vi = (0,1), which can be seen from the line under the 
trellis. Sitting in state 00 we know, from the state transition diagram in Figure 
8.5, that at coding time, the encoder had two choices depending on the input 
information symbol. If u\ = 1 the encoder could have moved to state 10 and 
generated the output code ci = (1,1), otherwise it would have stayed in state 
00 and generated ci = (0,0). We have received vi = (0,1), so when calculating 
L\ using equation (8.69) we find the negative Hamming distance to be —1 
in both cases. These figures are found above the respective node points in 
italics. 

We move to the next step. Here we received V2 = (0,1). We calculate the 
accumulated Hamming distances for all the possible transitions. For instance, 
if we assume state 10 and transition to 11, this implies U2 = 1 and c> =(1,0). 
The negative Hamming distance is —2, and since we already had — 1 in state 
10, it "costs" total —3 to reach state 11. 

Starting in the third step we realize that there are two ways to reach the states. 
We simply proceed as before, but choose the "cheapest" way to a node in terms 
of accumulated Hamming distance. The more expensive way is crossed out. If 
both ways are equally expensive, either of them is crossed and represents a cut 
branch. For example, if we are looking for costs to reach state 01, there are two 
possibilities, either from state 10, cost —2 or from state 11, cost —5. We choose 
the former and cross-out the latter. 

This process is repeated until we reach the end node to the right of the trellis. 
If we now backtrack through the trellis, there should be only one path back to the 
start node to the left. While backtracking, we can easily obtain the estimated 
information symbols u, found at the bottom of Figure 8.6. In this particular 
case, we managed to correct all the errors, hence u = u. 

This was of course, a fairly simple example, but illustrated the basics of 
Viterbi decoding. A similar procedure is sometimes used in equalizers to coun
teract intersymbol interference (ISI) in, for instance, radio links (for instance 
cellular phones) caused by frequency selective fading (Proakis, 1989). 

8.2.6 Interleaving 

All the codes discussed above have the common property that only a limited 
number t of erroneous bits per block (or over the constraint length) can be 
corrected. If there are more bit errors, the coding process will most certainly 
make things worse, i.e. add even more errors. 

Unfortunately, for some channels such as the radio channel, bit errors appear 
in bursts due to the fading phenomenon, and not randomly as assumed by 
the AWGN model. Hence, the probability of more than t consecutive errors 
to appear in a burst may be considerable. Commonly, the distance: between 
bursts is long and the problem may be solved using, for instance, long block 
codes having large n, i.e. being able to correct a large number of bit errors. 
Unfortunately, the delay in the system increases with n and the complexity of 
most decoding algorithms increases approximately as n3. For these reasons, 
long block codes are not desirable. A trick to make block codes of moderate 
length perform well even in burst error situations is to use interleaving (Ahlin 
and Zander, 1998). 
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Interleaving is a method of spreading the bit errors in a burst over a larger 
number of code blocks. In this way, the number of bit errors per block can be 
brought down to a level that can be handled by the fairly short code in use. 
Figure 8.7 shows the principle. We are using a block code of moderate length 
n, having k information bits. The incoming information symbols are encoded 
as before and the code words are stored row by row in the interleaving matrix. 
The matrix has / rows, which results in an interleaving depth /. 

After storing / code words, the matrix is full. In Figure 8.7, u)j) the informa
tion bit / is in the code wordy and in a similar way pm the parity bit m is in 
the code word j . The nl bits are output to the channel, but this time column by 
column, as 

(1) (2) (0 (1) (2) 
i i , Uj , Uy , v{l) 

' > Pn-k 

At the decoder site, the reverse action takes place. The bits arriving from the 
channel are stored column by column, and then read out to the decoder row by 
row. Decoding and error correction is performed in a standard manner. What 

input from 
encoder 

output to channel 

«,(») 

"l ( 2 ) 

1 

" 1 ( 0 

u2m 
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Figure 8.7 Interleaving matrix, the encoder stores the code words row by 
row. The bits are then transmitted over the channel column by column. In the 
decoder, the reverse action takes place. Figure shows the systematic block 
code (n, k) 
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we have achieved using this scheme is that a burst of TV consecutive bit errors 
are spread out on / code words, where every code word contains 

t\ = — bit errors per block (8.71) 

If ti < t for the code in use, the errors will be corrected. If t is the number of 
bits per block the code can correct, hence we can correct a burst of length 

N = tl bits (8.72) 

This can be viewed as: given a block code (n, k) we have created a code (nl, kl). 
There are smarter ways of achieving interleaving, for instance, convolution 

interleaving, which has a shorter delay. 

8.2.7 Concatenated codes and turbo codes 

A general problem with the traditional way of designing codes, like block 
codes and convolution codes relying on algebraic structures, is the block or 
constraint length required to approach the channel capacity. Long blocks imply 
transmission delays and complex decoders as pointed out above. Two ways to 
boost performance while avoiding too long blocks are the use of concatenated 
codes or turbo codes. 

Concatenated coding rely on the old concept of "divide and conquer", and 
was first proposed by Forney in the 1970s. Instead of using one long and com
plex code, two smaller ones are used in "cascade" (see Figure 8.8). First, the 
information is processed by an "outer encoder", using, for instance, a Reed-
Solomon code. The outer encoder is followed by interleaving and an "inner 
encoder" employing, e.g. a convolution code. At the receiving end a corre
sponding arrangement can be found, an inner decoder, a de-interleaver and an 
outer decoder. The critical issue in such a system is to find a good combination 
of inner code and outer code. For example, if the inner code is not powerful 
enough but lets too many errors through, the outer code may be useless and 

encoder 

u 

1 

outer encoder ^ inter leaver inner encoder — channel • 

decoder 

V 
1 • inner decoder ^ de-interleaver • outer aecoaer 

^ 

Figure 8.8 Example of a system using concatenated coding 



Error-correcting codes 237 

the total performance will be poor. For example, concatenated codes and turbo 
codes are used in space communication applications and in cellular telephone 
system (e.g. GSM). 

Turbo codes (Haykin, 2001) has a little bit of the same flavor as concatenated 
codes and can be viewed as a "parallel" way of doing concatenated coding. 
Another way of viewing turbo codes is as a mix between block codes and 
convolution codes. A simplified turbo system is shown in Figure 8.9. 

The turbo encoder consists of two constituent encoders, an interleaver and a 
multiplexer. The incoming data u follows three paths; one direct to the multi
plexer, one to the first encoder and one to the second encoder via an interleaver. 
Commonly, but not necessarily, the same error-correcting code is used by both 
encoders, typically a recursive systematic convolutional (RSC) code (Haykin, 
2001) having short constraint length. The interleaver scrambles the data bits 
in a pseudo-random fashion. The idea is that errors that are likely to occur in 
the parity generated by one encoder should be very unlikely to appear in the 
other and vice versa. Data u and parity bits/?i and/?2 from the encoders are 
multiplexed and transmitted over the communications channel. 

turbo encoder 

• encoder 1 

interleaver — • encoder 2 

u 

p\ 

Pi 
w 

multiplexer 

turbo decoder 

J • de-multiplexer 

U 

Px 

— • 

* 

Pi 

decoder 1 interleaver 

^ 
decoder 2 — • de-interleaver 

Figure 8.9 A simplified turbo coding system, the upper part shows the turbo 
encoder and the lower part the turbo decoder 
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At the receiving side, a demultiplexer separates the paths, noisy data U 
and noisy parity Pi and P2. The rest of the turbo decoder consists of two 
decoders, an interleaver and a de-interleaver. The decoders are of maximum a 
posteriori probability (MAP) type. Such a decoder generates the output symbol 
i.e. the most probable given the present input signal. Commonly the decoders 
are implemented using BCJR algorithm (Haykin, 2001), invented by Bahl, 
Cocke, Jelinke and Raviv. The BCJR algorithm is a more elaborate cousin to 
the Viterbi algorithm presented earlier. As can be seen from the figure, the 
turbo decoder has a feedback path and works iteratively. First, noisy data U 
and noisy parity symbols P\ from the first encoder, is fed to the first decoder. 
The output of the first decoder is the best estimate of the transmitted data u 
taking the parity symbols Pi into account. This estimate is passed through 
the interleaver, being of the same type as the interleaver in the turbo encoder. 
After the interleaving, the estimate of the first decoder is "in phase" with the 
received parity symbols P2 originating from the second encoder. Using the 
parity symbols P2, the transmitted data u is re-estimated by the second decoder. 
Finally, using a de-interleaver (doing the reverse action of the interleaver) a 
good estimate of the transmitted data u is obtained. This estimate is fed back 
to the first decoder again, and a re-estimation is taking place. This process is 
iterated until some given condition (e.g. a certain number of iterations) is met 
and a final estimate is produced. 

This iterative process has actually given name to the turbo coding system, 
since the decoder circulates estimates in the same way as air in a turbo engine. 
In a turbo engine, the exhaust gas flow drives a turbine, driving a compressor to 
feed air into the intake manifold of the engine. Thus, the more revolutions per 
minute (RPM) you get, the more intake of air, which in turn gives more engine 
power, resulting in increasing RPM and so on. 

Turbo coding is used in code division multiple access (CDMA) radio systems 
and performs well even in low SNR situations. 

Summary In this chapter we have presented: 

• Basic communications theory, BSC, bit error probability and mutual 
information, AWGN and channel capacity 

• Channel coding, Hamming distance, error detection and correction 
• Linear block codes, Cyclic codes and BCH codes and Meggit decoders 
• Convolution codes and the Viterbi decoder 
• Interleaving, concatenated codes and turbo codes. 

Review questions R8-1 Draw the model for the BSC and identify the transitions probabilities. 
R8-2 Explain the concept of channel capacity and its consequences. What is 

the expression for channel capacity in the AWGN case? 
R8-3 Explain the following terms, Hamming distance, parity bits, systematic 

form, code rate, error correction and error detection. 
R8-4 Why is decoding and analysis of linear block codes easier than for non

linear block codes? 
R8-5 What special property does a cyclic code have compared to any linear 

block code? 
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R8-6 Explain the structure of a code word generated by a convolution encoder, 
then explain the idea with the tail. 

R8-7 Explain the algorithm for the Viterbi decoder. 
R8-8 When and why is interleaving used? 

Solved problems P8-1 Assume we have a BSC with bit error probability p = 0.05. If we intro
duce a repetition code with parameters n = 5, k = 1 calculate: 

(a) The code rate 
(b) The number of parity bits 
(c) The maximum Hamming distance of the code 
(d) The error-correction capacity 
(e) The error-detection capacity 
(f) The symbol error probability using error correction by majority vote 

decoding. 

P8-2 If we transmit a byte 10110101, answer the following questions regarding 
the convolution code Jet Propulsion Lab (2, 1,6): 

(a) How many states are there in the encoder? 
(b) What is the length of the tail? 
(c) Calculate the constraint length. 
(d) Calculate the code rate. 
(e) Draw a block diagram of the convolution encoder. 
(f) What is the code word on the output of the encoder? 

P8-3 Write a MATLAB™ program to plot the channel capacity of a BSC 
according to equation (8.9). 

P8-4 Assume that the channel capacity of a system can be expressed as in 
equation (8.12). For the noise power density No = 4-10~21 W/Hz, write 
a MATLAB™ program that generates a three-dimensional plot show
ing how the channel capacity depends on the bandwidth and the signal 
power in the range 1 kHz-1 MHz and 10~18-10~9 W, respectively. Use 
logarithmic scaling. 



9 Digital signal processors 

Background The acronym DSP is used for two terms, digital signal processing and digi
tal signal processor. Digital signal processing is to perform signal processing 
using digital techniques with the aid of digital hardware and/or some kind 
of computing device. (Signal processing can, of course, be analog as well.) 
A specially designed digital computer or processor dedicated to signal process
ing applications is called a digital signal processor. 

In this chapter, we will focus on hardware issues associated with digital 
signal processor chips, and we will compare the characteristics of a DSP to 
a conventional, general-purpose microprocessor. (The reader is assumed to 
be familiar with the structure and operation of a standard microprocessor.) 
Furthermore, software issues and some common algorithms will be discussed. 

Objectives In this chapter we will discuss: 

• System types, on-line, off-line, batch systems and real-time systems 
• The multiply add accumulate operation, processing speed, architectures, 

microprocessors, DSP, field programmable gate arrays (FPGA) and appli
cation specific integrated circuits (ASIC) 

• Fixed and floating-point format, numerical problems, truncation and 
rounding 

• The DSP software development process 
• Program and data structures, addressing modes, instruction repertoire and 

the state machine 
• Implementation examples, finite impulse response and infinite impulse 

response filters. 

9.1.1 Applications and requirements 

Signal processing systems can be divided into many different classes, depending 
on the demands. One way of classifying systems is to divide them into off-line 
or batch systems and on-line or real-time systems. In an off-line system, 
there is no particular demand on the data processing speed of the system, aside 
from the patience of the user. An example could be a data analysis system for 
long-term trends in thickness of the arctic ice cap. Data is collected and then 
stored on a data disc, for instance, and the data is then analyzed at a relatively 
slow pace. In a real-time system, on the other hand, the available processing 
time is highly limited and must be processed quickly, in synchronism with 
some external process. Typical examples are digital filtering of sampled analog 
signals, where the filtering algorithm must be completed within the sampling 
period ts. Further, in many cases no significant delay between the input signal 

9.1 System 
considerations 
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Figure 9.1 Stream processing and block processing 

and the output signal will be allowed. This is especially true in digital control 
systems, where delays may cause instability of the entire control loop (which 
may include heavy machinery). Most applications discussed in this book belong 
to the class of real-time systems, hence processing speed is crucial. 

Another way of classifying signal processing systems is to distinguish 
between stream data systems and block data systems (see Figure 9.1). In 
a stream data system, a continuous flow of input data is processed, resulting in 
a continuous flow of output data. The digital filtering system mentioned above 
is a typical stream data system. At every sampling instance, data is fed to the 
system and after the required processing time tv < ts has completed, output data 
will be presented. 

Examples of block data systems are spectrum analyzers based on fast Fourier 
transform (FFT) or channel decoders. In these cases, a block of data must first 
be inputted into the system before any computation can take place. After the 
processing is completed, a block of output data is obtained. A signal pro
cessing block data system often requires larger data memory than a stream 
data system. The most demanding applications can probably be found in the 
area of digital video processing. Such systems are real memory hoggers and/or 
require extremely high computational power. Quite often digital image process
ing systems are multiprocessor systems, and consist of a number of processors, 
dedicated subsystems and hardware. In this book, we will not consider the 
implementation problems associated with digital image processing systems. 

Another way of classifying systems relates to the numerical resolution and 
the dynamic range, for instance, systems that use fixed-point or floating-point 
arithmetics. A floating-point system often makes life easier for the designer, 
since the need to analyze algorithms and input data in terms of numerical 
truncation and overflow problems does not exist as in a fixed-point design. 
Floating-point arithmetics may make things easier, but as pointed out in Chap
ter 2, it is worth noting that a 32-bit fixed-point system, for instance, can have 
a higher resolution than a 32-bit floating-point system. Another point is that 
most systems dealing with real world signals often have some analog and/or 
mechanical interfacing parts. These devices have a dynamic range ami/or reso
lution being only fractions of what a floating-point signal processing system can 
achieve. Hence, in most practical cases, floating-point systems are "overkill". 
Today, fixed-point digital processors are still less expensive and execute faster 
than floating-point processors. 
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If we try to identify the most common arithmetic operation in digital signal 
processing (DSP) algorithms, we will find it to be the sequential calculation of 
a "scalar vector product" or a convolution sum 

b b-\ 

y(n) = ^2 Kk)x(n -k) = J2 Kk)x(n -k) + h(b)x(n - b) (9.1) 
k=a k=a 

Hence, the typical operation is a repeated "multiply add accumulate (MAC)" 
sequence, often denoted MAC. This is found in, for instance, finite impulse 
response (FIR) and infinite impulse response (IIR) filter structures, where the 
input stream of samples x(n) is convoluted with the impulse response coeffi
cients h(n) of the filter. The same situation can be found in a neural network 
node, where the coefficients are the weights wy or in an FFT algorithm. In 
the latter case, the coefficients are the "twiddle factors" W^1 (see Chapter 5). 
In correlators, modulators and adaptive filters, the input data sequence x(n) 
is convoluted with another signal sequence instead of constant coefficients, 
otherwise the structure is the same. Further, vector and matrix multiplication, 
common in block coders and decoders, require the same kind of calculations. 

To summarize the demands: in many digital signal processing applications we 
are dealing with real-time systems. Hence, computational speed, i.e. "number 
crunching" capacity is imperative. In particular, algorithms using the MAC-like 
operations should execute fast and numerical resolution and dynamic range need 
to be under control. Further, the power consumption of the hardware should 
preferably be low. Early DSP chips were impossible to use in battery-operated 
equipment, for instance mobile telephones. Besides draining the batteries in no 
time, the dissipated power called for large heat sinks to keep the temperature 
within reasonable limits. On top of this, the common "commercial" system 
requirements apply: the hardware must be reliable and easy to manufacture at 
low cost. 

9.1.2 Hardware implementation 

There are mainly four different ways of implementing the required hardware: 

• conventional microprocessor 
• DSP chip 
• bitslice or wordslice approach 
• dedicated hardware, field programmable gate array (FPGA), application 

specific integrated circuit (ASIC). 

Comparing different hardware solutions in terms of processing speed on a 
general level is not a trivial issue. It is not only the clock speed or instruction 
cycle time of a processor that determines the total processing time needed for a 
certain signal processing function. The bus architecture, instruction repertoire, 
input/output (I/O) hardware, the real-time operating system and most of all, the 
software algorithm used will affect the processing time to a large extent. Hence, 
only considering million instructions per second (MIPS) or million floating
point operations per second (MFLOPS) can be very misleading. When trying 
to compare different hardware solutions in terms of speed, this should preferably 
be done using the actual application. If this is not possible, benchmark tests may 
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be a solution. The ways these benchmark tests are designed and selected can of 
course always be subjects of discussion. 

In this book, the aim is not to give exact figures of processing times, nor to 
promote any particular chip manufacturer. ("Exact" figures would be obsolete 
within a few years, anyhow.) The goal is simply to give some approximate, typ
ical figures of processing times for some implementation models. In this kind 
of real-time system, processing time translates to the maximum sampling speed 
and hence the maximum bandwidth of the system. In this text, we have used a 
simple straightforward 10-tap FIR filter for benchmark discussion purposes 

9 

y(n) = J2hx(n-k) (9.2) 
k=o 

The first alternative is a conventional microprocessor system, for instance 
an IBM-PC Pentium-type system or some single-chip microcontroller board. 
By using such a system, development costs are minimum and numerous inex
pensive system development tools are available. On the other hand, reliability, 
physical size, power consumption and cooling requirements may, however, 
present problems in certain applications. Another problem in such a sys
tem would be the operating system. General-purpose operating systems, for 
instance Windows™ (Microsoft) are not, due to their many unpredictable inter
rupt sources, well suited for signal processing tasks. A specialized real-time 
operating system should preferably be used. In some applications, no explicit 
operating system at all may be a good solution. 

Implementing the FIR filter (equation (9.2)) using a standard general-purpose 
processor as above (no operating system overhead included) would result in a 
processing time of approximately 1 < tv < 5 |xs, which translates to a maxi
mum sampling frequency i.e./s = 1/4 < lAp of around 200kHz-l MHz. This 
in turn implies a 100-500 kHz bandwidth of the system (using the Nyquist 
criterion to its limit). The 10-tap FIR filter used for benchmarking is a very 
simple application. Hence, when using complicated algorithms, this kind of 
hardware approach is only useful for systems having quite low sampling fre
quencies. Typical applications could be low-frequency signal processing and 
systems used for temperature and/or humidity control, in other words, slow 
control applications. 

The next alternative is a DSP chip. DSP chips are microprocessors optimized 
for signal processing algorithms. They have special instructions and built-in 
hardware to perform the MAC operation and have architecture based on multiple 
buses. DSPs of today are manufactured using complementary metal oxide semi
conductor (CMOS) low voltage technology, yielding low power consumption, 
well below 1 W. Some chips also have specially designed interfaces for exter
nal analog-to-digital (A/D) and digital-to-analog (D/A) converters. Using DSP 
chips requires moderate hardware design efforts. The availability of develop
ment tools is quite good, even if these tools are commonly more expensive than 
in the case above. Using a DSP chip, the 10-tap FIR filter (equation (9.2)) would 
require a processing time of approximately tp ^ 0.5 |xs, implying a maximum 
sampling frequency fs = 2 MHz, or a maximum bandwidth of 1 MHz. More 
elaborate signal processing applications would probably use sampling frequen
cies of around 50 kHz, a typical sampling speed of many digital audio systems 
today. Hence, DSP chips are common in digital audio and telecommunication 
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applications. They are also found in more advanced digital control systems in, 
for instance, aerospace and missile control equipment. 

The third alternative is using bitslice or wordslice chips. In this case, we buy 
sub-parts of the processor, such as multipliers, sequencers, adders, shifters, 
address generators, etc., in chip form and design our own processor. In this 
way, we have full control over internal bus and memory architecture and we 
can define our own instruction repertoire. We, therefore, have to do all the 
microcoding ourselves. Building hardware this way requires great effort and is 
costly. A typical bitslice solution would execute our benchmark 10-tap FIR filter 
in about tp ^ 200 ns. The resulting maximum sampling frequency is/s = 5 MHz 
and the bandwidth 2.5 MHz. The speed improvement over DSP chips is not very 
exciting in this particular case, but the bitslice technique offers other advantages. 
For example, we are free to select the bus width of our choice and to define 
special instructions for special-purpose algorithms. This type of hardware is 
used in systems for special purposes, where power consumption, size and cost 
are not important factors. 

The fourth alternative is to build our own system from gate level on silicon, 
using one or more application specific integrated circuit (ASIC) or field pro
grammable gate array (FPGA). In this case, we can design our own adders, 
multipliers, sequencers and so on. We are also free to use mainly any com
putational structure we want. However, quite often no conventional processor 
model is used. The processing algorithm is simply "hardwired" into the sili
con. Hence, the resulting circuit cannot perform any other function. Building 
hardware in this way may be very costly and time consuming, depending on 
the development tools, skill of the designer and turn-around time of the sil
icon manufacturing and prototyping processes. Commonly, design tools are 
based on very high-speed integrated circuit hardware description language 
(VHDL) (Zwolinski, 2004) or the like. This simplifies the process of import
ing and reusing standard software defined hardware function blocks. Further, 
good simulation tools are available to aid the design and verification of the chip 
before it is actually implemented in silicon. This kind of software tools may cut 
design and verification times considerably, but many tools are expensive. 

Using the ASIC approach, the silicon chip including prototypes must be pro
duced by a chip manufacturer. This is a complicated process and may take weeks 
or months, which increases the development time. The FPGA on the other hand 
is a standard silicon chip that can be programmed in minutes by the designer, 
using quite simple equipment. The drawback of the FPGA is that it contains 
fewer circuit elements (gates) than an ASIC, which limits the complexity of the 
signal processing algorithm. On the other hand, more advanced FPGA chips 
are constantly released on the market. For instance, FPGAs containing not only 
matrices of programmable circuit elements, but also a number of DSP kernels 
are available today. Hence, the difference in complexity between FPGAs and 
ASICs is reduced. However, FPGAs are commonly not very well suited for 
large volume production, due to the programming time required. 

There are mainly only two reasons for choosing the ASIC implementation 
method. Either we need the maximum processing speed, or we need the final 
product to be manufactured in very large numbers. In the latter case, the devel
opment cost per manufactured unit will be lower than if standard chips would 
have been used. An ASIC, specially designed to run the 10-tap benchmark 
FIR filter is likely to reach a processing speed (today's technology) in the 
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vicinity of tv ^ 2 ns, yielding a sampling rate of fs = 500 MHz and a band
width of 250 MHz. Now we are approaching speeds required by radar and 
advanced video processing systems. Needless to say, when building such hard
ware in practice, many additional problems occur since we are dealing with 
fairly high-frequency signals. 

If yet higher processing capacity is required, it is common to connect a num
ber of processors, working in parallel in a larger system. This can be: done in 
different ways, either in a single instruction multiple data (SIMD) or in a mul
tiple instruction multiple data (MIMD) structure. In an SIMD structure, all 
the processors are executing the same instruction but on different data streams. 
Such systems are sometimes also called vector processors. In an MIMD system, 
the processors may be executing different instructions. Common for all proces
sor structures is however the demand for communication and synchronization 
between the processors. As the number of processors grows, the communication 
demands grow even faster. 

Large multiprocessor systems ("super computers") of this kind are of course 
very expensive and rare. They are commonly used for advanced digital image 
processing for solving hard optimization problems and for running large 
neural networks. One classical example of such a machine is the "connection 
machine" (CM-1) (Hillis, 1987). The CM-1 consists of 65 536 quite sim
ple processors, connected by a packet-switched network. The machine is fed 
instructions from a conventional-type host computer and a specially designed 
computer language is used. The CM-1 has an I/O capacity of 500 Mbits/s and is 
capable of executing about 1000 MIPS. The machine is air cooled and dissipates 
about 12 kW. (One begins to think of the old electronic numerical integrator 
and computer (ENIAC), using electron tubes . . . ) . 

An interesting thing is that this machine is only good at executing an appropri
ate type of algorithms, i.e. algorithms that can be divided into a large number 
of parallel activities. Consider our simple benchmark example, the 10-tap 
FIR filter. The algorithm can only be divided into 10 multiplications that can 
be performed simultaneously and four steps of addition (a tree of 5 groups + 
2 groups + 1 group + 1 group) which has to be performed in a sequence. Hence, 
we will need one instruction cycle for executing the 10 multiplications (using 10 
processors) and four cycles to perform the additions, thus a total of five cycles. 
Now, if the machine consists of 65 536 processors, each processor only has a 
capacity of 109/65 536 = 0.015 MIPS, which is not very impressive. If we dis
regard communication delays, etc., we can conclude that running the 10-tap FIR 
filter on this super computer results in 65 526 processors out of 65 536 which 
are idling. The processing time will be in the range of 300 |xs, in other words, 
considerably slower than a standard (cheaper) personal computer (PC). Our 
benchmark problem is obviously too simple for this machine. This also illus
trates the importance of "matching" the algorithm to the hardware architecture, 
and that MIPS alone may not be an appropriate performance measure. 

9.2 Digital signal 9.2.1 Conventional microprocessors 
processors versus 

conventional 9.2.1.1 Architecture 
microprocessors 

A conventional microprocessor commonly uses a von Neumann architecture, 
which means that there is only one common system bus used for transfer of both 
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Figure 9.2 von Neumann architecture, program code and data share memory 

instructions and data between the external memory chips and the processor (see 
Figure 9.2). The system bus consists of the three sub-buses: the data bus, the 
address bus and the control bus. In many cases, the same system bus is also 
used for I/O operations. In signal processing applications, this single bus is a 
bottleneck. Execution of the 10-tap FIR filter (equation (9.2)) will, for instance, 
require at least 60 bus cycles for instruction fetches and 40 bus cycles for data 
and coefficient transfers, a total of approximately 100 bus cycles. Hence, even if 
we are using a fast processor, the speed of the bus cycle will be a limiting factor. 

One way to ease this problem is the introduction of pipelining techniques, 
which means that an execution unit (EU) and a bus unit (BU) on the processor 
chip work simultaneously. While one instruction is being executed in the EU the 
next instruction is fetched from memory by the BU and put into an instruction 
queue, feeding the instruction decoder. In this way, idle bus cycles are elimi
nated. If a jump instruction occurs in the program, a restart of the instruction 
queue has however to be performed, causing a delay. 

Yet another improvement is to add a cache memory on the processor chip. 
A limited block (some thousand words) of the program code is read into the fast 
internal cache memory. In this way, instructions can be fetched from the internal 
cache memory at the same time as data is transferred over the external system 
bus. This approach may be very efficient in signal processing applications, since 
in many cases the entire program may fit in the cache, and no reloading is needed. 

The execution unit in a conventional microprocessor may consist of an arith
metic logic unit (ALU), a multiplier, a shifter, a floating-point unit (FPU) 
and some data and flag registers. The ALU commonly handles 2's comple
ment arithmetics (see Chapter 2), and the FPU uses some standard Institute of 
Electrical and Electronics Engineers (IEEE) floating-point formats. The binary 
fractions format discussed later in this chapter is often used in signal processing 
applications but is not supported by general-purpose microprocessors. 

Besides program counter (PC) and stack pointer (SP), the address unit 
(AU) of a conventional microprocessor may contain a number of address and 
segment registers. There may also be an ALU for calculating addresses used 
in complicated addressing modes and/or handling virtual memory functions. 

9.2.1.2 Instruction repertoire 

The instruction repertoire of many general-purpose microprocessors supports 
quite exotic addressing modes which are seldom used in signal processing 
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algorithms. On the other hand, instructions for handling such things like delay 
lines or circular buffers in an efficient manner are rare. The MAC operation 
often requires a number of computer instructions, and loop counters have to be 
implemented in software, using general-purpose data registers. 

Further, instructions aimed for operating systems and multi-task handling 
may be found among "higher end" processors. These instructions often are of 
very limited interest in signal processing applications. 

Most of the common processors today are of the complex instruction set 
computer (CISC) type, i.e. instructions may occupy more than one mem
ory word and hence require more than 1 bus cycle to fetch. Further, these 
instructions often require more than 1 machine cycle to execute. In many cases, 
reduced instruction set computers (RlSC)-type processors may perform bet
ter in signal processing applications. In an RISC processor, no instruction 
occupies more than one memory word; it can be fetched in 1 bus cycle and 
executes in 1 machine cycle. On the other hand, many RISC instructions may 
be needed to perform the same function as one CISC-type instruction, but in 
the RISC case, you can get the required complexity only when needed. 

9.2.1.3 Interface 

Getting analog signals into and out of a general-purpose microprocessor often 
requires a lot of external hardware. Some microcontrollers have built-in A/D 
and D/A converters, but in most cases, these converters only have 8- or 
12-bit resolution, which is not sufficient in many applications. Sometimes 
these converters are also quite slow. Even if there are good built-in converters, 
there is always need for external sample-and-hold (S/H) circuits, and (analog) 
anti-aliasing and reconstruction filters. 

Some microprocessors have built-in high-speed serial communication cir
cuitry, serial peripheral interface (SPI) or I2C™. In such cases we still need 
to have external converters, but the interface will be easier than using the tra
ditional approach, i.e. to connect the converters in parallel to the system bus. 
Parallel communication will of course be faster, but the circuits needed will 
be more complicated and we will be stealing capacity from a common, single 
system bus. 

The interrupt facilities found on many general-purpose processors are in 
many cases "overkill" for signal processing systems. In this kind of real-time 
application, timing is crucial and synchronous programming is preferred. The 
number of asynchronous events, e.g. interrupts, is kept to a minimum. Digital 
signal processing systems using more than a few interrupt sources are rare. One 
single interrupt source (be it timing or sample rate) or none is common. 

9.2.2 Digital signal processors 

9.2.2.1 Architecture 

DSP chips often have a Harvard-type architecture (see Figure 9.3) or some 
modified version of Harvard architecture. This type of system architecture 
implies that there are at least two system buses, one for instruction transfers 
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and one for data. Quite often, three system buses can be found on DSPs, one for 
instructions, one for data (including I/O) and one for transferring coefficients 
from a separate memory area or chip. 

In this way, when running an FIR filter algorithm like in equation (9.2) 
instructions can be fetched at the same time as data from the delay line x(n — k) 
is fetched and as filter coefficients bk are fetched from coefficient memory. 
Hence, using a DSP for the 10-tap FIR filter, only 12 bus cycles will be needed 
including instruction and data transfers. 

Many DSP chips also have internal memory areas that can be allocated as 
data memory, coefficient memory and/or instruction memory, or combina
tions of these. Pipelining is used in most DSP chips. 

A warning should however be issued! Some DSP chips execute instructions 
in the pipeline in a parallel, "smart" fashion to increase speed. The result 
will in some cases be that instructions will not be executed in the same order 
as written in the program code. This may of course lead to strange behavior 
and cumbersome troubleshooting. One way to avoid this is to insert "dummy" 
instructions (for instance, no operation (NOP)) in the program code in the 
critical parts (consult the data sheet of the DSP chip to find out about pipeline 
latency). This will of course increase the execution time. 

The execution unit consists of at least one (often two) arithmetic logic unit 
(ALU), a multiplier, a shifter, accumulators, and data and flag registers. The 
unit is designed with a high degree of parallelism in mind, hence all the ALUs, 
multipliers, etc., can be run simultaneously. Further, ALUs, the multiplier 
and accumulators are organized so that the MAC operation can be performed 
as efficiently as possible with the use of a minimum amount of internal data 
movements. Fixed-point DSPs handle 2's complement arithmetics and binary 
fractions format. Floating-point DSPs use floating-point formats that can be 
IEEE standard or some other non-standard format. In many cases, the ALUs 
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can also handle both wrap-around and saturation arithmetics which will be 
discussed later in this chapter. 

Many DSPs also have ready-made look-up tables (LUT) in memory (read 
only memory (ROM)). These tables may be ̂ 4-law and/or /z-law for companding 
systems and/or sine/cosine tables for FFT or modulation purposes. 

Unlike conventional processors having 16-, 32- or 64-bit bus widths, DSPs 
may have uncommon bus widths like 24, 48 or 56 bits, etc. The width of the 
instruction bus is chosen such that an RISC-like system can be achieved, i.e. 
every instruction only occupies one memory word and can hence be fetched in 
1 bus cycle. The data buses are given a bus width that can handle a word of 
appropriate resolution, at the same time as extra high bits are present to keep 
overflow problems under control. 

The address unit is complicated since it may be expected to run three address 
buses in parallel. There is of course a program counter and a stack pointer as in 
a conventional processor, but we are also likely to find a number of index and 
pointer registers used to generate data memory addresses. Quite often there is 
also one or two ALUs for calculating addresses when accessing delay lines (vec
tors in data memory) and coefficient tables. These pointer registers can often be 
incremented or decremented in a modulo fashion, which for instance simpli
fies building circular buffers. The AU may also be able to generate the specific 
bit reverse operations used when addressing butterflies in FFT algorithms. 

Further, in some DSPs, the stack is implemented as a separate last in first out 
(LIFO) register file in silicon ("hardware stack"). Using this approach, pushing 
and popping on the stack will be faster, and no address bus will be used. 

9.2.2.2 Instruction repertoire 

The special multiply add accumulate (MAC) instruction is almost mandatory 
in the instruction repertoire of a DSP. This single instruction performs one step 
in the summation of equation (9.2), i.e. multiplies a delayed signal sample by 
the corresponding coefficient and adds the product to the accumulator holding 
the sum. Special instructions for rounding numbers are also common. On some 
chips, even special instructions for executing the Viterbi decoding algorithms 
are implemented. 

There are also a number of instructions that can be executed in parallel to use 
the hardware parallelism to its full extent. Further, special prefixes or postfixes 
can be added to achieve repetition of an instruction. This is accomplished 
using a special loop counter implemented in hardware as a special loop register. 
Using this register in loops, instruction fetching can be completely unnecessary 
in some cases. 

9.2.2.3 Interface 

It is common to find built-in high-speed serial communication circuitry in DSP 
chips. These serial ports are designed to be directly connected to coder-decoders 
(CODECs) and/or A/D and D/A converter chips for instance. Of course, parallel 
I/O can also be achieved using one of the buses. 

The interrupt facilities found on DSP chips are often quite simple, with a 
fairly small number of interrupt inputs and priority levels. 
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9.3 Programming 9.3.1 The development process 
digital signal 

processors Implementing a signal processing function as DSP software often requires 
considerable design and verification efforts. If we assume that the system spec
ification is established and the choice of suitable hardware is made, designing 
and implementing the actual DSP program remains. 

As an example, the passband specifications for a filtering application may be 
determined, the filter type chosen and a transfer function F(z) formulated using 
the z-transform. Now, starting from the transfer function, the remaining work 
can be described by the following checklist: 

• Designing the actual algorithm, i.e. the method to calculate the difference 
equations corresponding to the transfer function 

• Simulating and verifying the algorithm, using a general-purpose computer; 
this is often done on a non-real-time basis, using floating-point numbers and 
high-level programming language, for instance C++, C or Pascal 

• Simulating and verifying the algorithm as above, but now using the same 
number format as will be used by the target DSP, e.g. fixed-point arithmetics 

• "Translating" the algorithm computer code to the target program language 
applicable for the DSP, commonly C or assembly program code 

• Simulating the target DSP program code, using a software simulator 
• Verifying the function of the target DSP program code, using the "high-level" 

simulations as a reference 
• Porting the DSP program code on the target hardware, using, e.g. an emulator 
• Verifying and debugging the target system using the final hardware config

uration, verifying real-time performance. 

The steps above may have to be iterated a number of times to achieve a 
system having the desired performance. If unlucky, it may even turn out that 
the hardware configuration has to be changed to satisfy the system requirements. 

When initially designing the algorithm, many alternative solutions may be 
evaluated to find the one that executes the best, using the selected hardware. k 

Processor architecture, arithmetic performance and addressing possibilities, 
together with memory demands and I/O options will affect the algorithm design 
process. 

To accomplish the "high-level" simulations using floating-point and for 
instance C++, C, Pascal or FORTRAN, it is also common to use some 
standard computational program packages like, MATLAB™ (MathWorks), 
Mathematica™ (Wolfram Research) or MathCad™ (MathSoft). General-
purpose spreadsheet programs like EXCEL™ (Microsoft) has also proven to 
be handy in some situations. Input to the simulations may be data generated by 
a model or real measured and stored data. 

During the "high-level" simulations, using the same number format as the 
target system, the aim is to pinpoint numerical, truncation and overflow prob
lems. As an example, when working with integer arithmetics and limited word 
length, the two expressions a(b - c) and ab - ac being equivalent from a strict 
mathematical point of view, may give different results. Quite often, algorithms 
have to be repartitioned to overcome such problems. If the target system uses 
floating-point format, these simulations will in most cases be less cumbersome 
than in the case of fixed-point formats. Fixed-point DSPs are however common 
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(today), since they are less expensive and run faster than floating-point chips. 
Further, the numerical performance is not only a matter of number format, in that 
other arithmetic aspects like using 2's complement or signed integer or binary 
fractions, etc. may also come into play. The results from these simulations will 
be used later in the development process as reference data. 

"Translating" the algorithm into a program for the target DSP can be quite 
easy if the "high-level" simulations use the same language as the target system. 
One such example is using the program language C, which is available for a 
great number of computing platforms and for most DSP chips. It is however 
not uncommon that some macro language or pure assembly code is needed 
to program the target DSP. In the latter case, the program hence needs to be 
rewritten, commonly in assembly code. Even if high-level languages such as C 
are becoming more common for DSPs, assembly language is the only choice if 
peak performance is required. 

The next step is to run the DSP program code on a host computer using a 
software simulator. The purpose of this step is to verify the basic operation of 
the software. 

After having debugged the DSP program code, it has to be verified and 
the function has to be compared to the "high-level" simulations made earlier. 
"Every bit" must be the same. If there are any deviations, the reason for this 
must be found. 

Finally, the DSP program code is moved to the intended hardware system 
using an emulator, programmable read only memory (PROM) simulator or 
erasable programmable read only memory (EPROM). The software is now 
executed using the dedicated hardware. 

The last step is to verify the complete system including hardware and the 
DSP software. In this case, the entire function is tested in real time. It should be 
noted that some emulators do not execute at the same speed as a real processor. 
There may also be timing differences regarding, for instance, interrupt cycles. 
Hence, when verifying the system in real time, using the real processor is often 
preferred to an emulator. 

9.3.2 Digital signal processing programming languages 

As mentioned above, even if there are a number of C cross-compilers around 
today, it is still common to program DSPs using assembly language. Most 
human programmers are smarter than compilers. Hence, tedious assembly lan
guage programming has the potential of resulting in more compact and faster 
code. The development time will, however, be considerably longer compared to 
using C. For many DSPs, cross-compilers for C++ and JAVA are also available. 
It is not easy to see that C++ or JAVA is better choice for signal processing 
software than pure C language. 

The DSP assembly instruction repertoire differs somewhat from one DSP 
to another. Commonly, the assembly instruction can, however, be divided into 
four typical groups. 

(1) Arithmetic and logical instructions: In this group, we find instructions 
for adding, subtracting, multiplying and dividing numbers as v/ell as the 
MAC instruction discussed earlier. There are also instructions for rounding, 
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shifting, rotating, comparing and obtaining absolute values, etc. Many 
instructions may come in different versions, depending on the number for
mat used. There may be for instance multiplication of signed or unsigned 
numbers, and multiplication of integers or binary fractions. In this group 
we can also find the standard logical, bitwise AND, OR, NOT and XOR 
functions. 

(2) Bit manipulation instructions: This group consists of instructions for 
setting, resetting and testing the state of single bits in registers, memory 
locations and I/O-ports. These instructions are handy for manipulating 
flags, polling external switches and controlling external indicators light 
emitting diodes (LEDs), etc. 

(3) Data transfer instructions: Data transfer instructions are commonly 
MOVE, LOAD, STORE and so on, used to copy data to and from memory 
locations, registers and I/O-ports. In many cases, the source and destina
tion may have different word lengths hence care must be exercised to make 
sure that significant data is transferred and that sign bits, etc. are properly 
set. Stack handling instructions also belong to this group. 

(4) Loop and program control instructions: Typical instructions in this 
group are unconditional and conditional jump, branch and skip operations. 
The conditional instructions are in most cases linked to the state of the 
status bits in the flag register and occur in many different versions. Sub
routine jumps and returns also belong to this group. Further, we can find 
instructions for manipulating the hardware loop counter and for software 
interrupts (traps) as well as STOP, RESET and no operation (NOP). 

9.3.3 The program structure 

If the functions available in a proper real-time operating system are not consid
ered, the main structure of a typical DSP program is commonly a timed loop or 
an idling loop and one or more interrupt service routines. In both cases, the 
purpose is to get the processing synchronized to the sampling rate. The timed 
loop approach can be illustrated by the following pseudo-code: 

reset: initializing stuff 
start timer // sampling rate 

t_loop: do 

{ 
if(timer not ready) 

{ 
background processing 

} 
else 
{ // timed sequence 

restart timer 
get input 
process 
send result to output 

} 
[forever 
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The execution time tv of the timed program sequence above must of course 
not exceed the sampling period ts. The approach using an idling loop and 
interrupt routines assumes that interrupts are generated at sampling rate, by 
for instance external circuitry like A/D converters, etc. This approach is shown 
below: 

reset: initializing stuff 

idle: do 

{ 
background processing 

} forever 

irq: // timed sequence 
acknowledge interrupt 
get input 
process 
send result to output 
return from interrupt 

In this case, the interrupt service routine must of course be executed within the 
sampling period ts, i.e. between successive interrupt signals. The latter approach 
is a bit more flexible and can easily be expanded using more interrupt sources 
and more interrupt service routines. This can be the case in multi-rate sampled 
systems. One has to remember, however, that the more asynchronous events 
like interrupt and direct memory access (DMA) there are in a system, the harder 
it is to debug the system and to guarantee and verify real-time performance. 

The most common DSP program has a constant inflow and outflow (stream 
system) of data and consists of "simple" sequences of operations. One of the 
most common operations is the MAC operation discussed earlier. There are 
typically very few data-dependent conditional jumps. Further, in most cases 
only basic addressing modes and simple data structures are used to keep up 
execution speed. 

9.3.4 Arithmetic issues 

The 2's complement (see Chapter 2) is the most common fixed-point representa
tion. In the digital signal processing community, we often interpret the numbers 
as fractions (fractional) rather than integers. This means that we introduce a 
binary point (not decimal point) and stay to the "right" of the point instead of 
to the "left", as in the case of integers. Hence, the weights of the binary bits 
representing fractions will be 2 _ 1 , 2 - 2 , . . . 

Table 9.1 shows a comparison between fractional and integer interpretation 
of some binary 2's complement numbers. 

Fractional and integer multiplication differs by a 1-bit left shift of the 
result. Hence, if for instance trying fractional multiplication using a standard 
microprocessor, or using a DSP that does not support fractions, the result 
must be adjusted by one step left shift, to obtain the correct result. This is 
because the standard multiplication rule assumes multiplication of integers. 
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Table 9.1 Interpreting binary 2 s complement 
as integer versus fraction 

2's complement 

0111 
0110 
0101 
0100 
0011 
0010 
0001 
0000 
1111 
1110 
1101 
1100 
1011 
1010 
1001 
1000 

Integer 

7 
6 
5 
4 
3 
2 
1 
0 

- 1 
- 2 
- 3 
- 4 
- 5 
- 6 
- 7 
- 8 

Fraction 

0.875 
0.750 
0.625 
0.500 
0.375 
0.250 
0.125 
0.000 

-0.125 
-0.250 
-0.375 
-0.500 
-0.625 
-0.750 
-0.875 
-1.00 

For example, multiplying 0.5 times 0.5 using the standard binary multiplication 
rule yields. 

Binary 

0100 
x 0100 

0000 
0000 

0100 
0000 
0010000 = 

F r a c t i o n 

X 

0 . 5 0 0 
0 . 5 0 0 
0 . 2 5 0 

0 . 1 2 5 

I n t e g 

4 
x 4 

16 

16 

1 bit left shift yields 

0100000 = 0.250 

Most digital signal processors can handle fractional as well as integer multi
plication. Some DSPs have a flag to set depending on if integer or fractional 
rules apply, whereas other DSPs have separate instructions for the two kinds 
of multiplication. Yet, other DSPs have special devices and/or instructions to 
perform one step shift left. 

A virtue of 2's complement is that when adding a sequence of numbers whose 
sum you know is within bounds, all overflows and carries "on the way" can be 
ignored. You will still come up with the correct result. This is very handy, since 
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in most DSP algorithms coefficients can be scaled to guarantee that the output 
should be OK, thus overflows and carries can be ignored. For example 

Fraction 

.625 
+ .750 
+ .375 
+ .625 
- .875 
-.625 

Binary 

0101 
+ 0110 
+ 0011 
+ 0101 
+ 1001 
+ 1011 

Partial sums 

(1) 

(1) 

0101 
1011 
1110 
0011 
1100 
0111 

= . 8 7 5 = . 8 7 5 

We assume that the adder "wraps around". This will, of course, not work if 
the processor is using saturating arithmetic, i.e. it does not wrap around. 
Many DSPs can support both standard (wrap around) arithmetic and saturating 
arithmetic by setting flags, etc. If we have very large variations in, for instance, 
an input signal and over or underflow conditions cannot be eliminated, using 
saturating arithmetic we will be able to preserve the sign information and have 
a fair chance to recover. Saturating arithmetic basically works as a soft limiter 
(see Chapter 4) and can be useful in neural network algorithms. 

Multiplication of two binary numbers, N-bit wide, yields a result being 
IN—bit wide. This is why accumulators in DSPs are at least 2iV-bit wide, 
to be able to harbor results and accumulated results. At some point though, one 
must truncate or round back down to N-b\t wide numbers again. 

Assume that we have an M-bits 2's complement fractional number 
bo, b-\,b-2,..., b-M+i having the weights - 2 ° , 2 _ 1 , 2 ~ 2 , . . . , 2~M_hl where 
the leftmost bit is the sign bit. If we truncate this word down to a width of 
2?-bits, we simply cut away all bits to the right of bit number B—l, i.e. the 
truncated word will be (assuming M > E) bo, b-\, b-2, • . . , bs+\ • 

In this case, the error caused by the truncation operation will be 

0 < s < 2~B+X (9.3) 

The mean error will be 

m£ = 2~B (9.4) 

The variance of the error, or in other words the "error noise power" will be 

2 -2(5- l ) 

• ? - - I T - <"-5> 
The other possibility to reduce the word length is rounding. Preferably the 
method of "convergent rounding", also called round-to-nearest (even) number, 
should be used. This method works as follows: 

(a) i fb-s , 6-5-1,...,&-M+1 < l , 0 , . . . , 0 t h e n 
truncate as before 
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(b) if6_5, Z ? _ 5 - i , . . . , £ - M + I > l ,0 , . . . ,Othen 
add b-B+\ = 1 and truncate as before 

(c) if b-B, b-s-u • • •, 6 - M + I = 1,0,..., 0 and b-B+\ = 0 then 
truncate as before 

(d) if b-B, b-s-u • • • > 6-M+i = 1,0,..., 0 and b-B+\ = 1 then 
add b-B+1 = 1 and truncate as before 

Most DSPs have some kind of rounding function, but not all support 
"convergent rounding". The error caused by the rounding operation will be 

-2~B <8<2~B (9.6) 

The mean error in this case will be 

m£ = 0 (9.7) 

The variance of the error, or in other words the "error noise power" will be the 
same as for pure truncation, i.e. as equation (9.5) above. Rounding is preferred 
to truncation in most cases. Truncation is easier to implement and can be per
formed simply using standard bit masking techniques, if a truncation program 
instruction is not available. 

9.3.5 Data structures and addressing modes 

In most cases, quite simple data structures are used in DSP software. In a typical 
case, there is a data vector and a coefficient vector, or two or more data vectors. 
In some cases, matrices are used, but since most DSP chips do not support 
matrix operations directly, matrices are broken down to row or column vectors 
and processed as a set of vectors. 

To access vector structures, most DSP chips have a number of pointer reg
isters. These registers are used for indirect addressing, i.e. the content of the 
register is used as an address to point to a word in the data memory. Further, 
the register can be auto-incremented, which means that the contents of the 
register is incremented by 1, every time the register is used to point into the 
data memory. This can be done in two ways, using pre-increment, the register 
is first incremented and then used as a pointer, whereas if post-increment is 
used, the increment and pointing operations take place in the reverse order. 
There are of course also the corresponding operations for auto-decrement, i.e. 
decrementing the register by one. 

Another addressing mode that is common is indexed addressing. In this 
case, the effective address, in other words the address pointed to in the data 
memory, is the sum of a base register and the offset which may be the contents 
of an offset register. In this way, the base register can be used to point to 
the starting element of a vector or table, and the offset register is used for 
the actual addressing. Now, the same piece of software can easily be used to 
process another table or vector and only the contents of the base register has to 
be replaced. 

The addressing modes described above can be found in most conven
tional general-purpose microprocessors as well. In DSP chips, there are also 
some "specialized" addressing modes. One such mode is auto-increment or 
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auto-decrement using an offset other than 1. A pointer register can, for instance, 
be auto-incremented by 5 or some other constant stored in a register. 

Quite often, one or more of the data vectors in a DSP program are also used as 
a delay line in, for instance, FIR filters. This means that a vector in data memory 
of length M data words are used to store the present value of our sampled signal 
x(n) and the M — 1 "old" sampled values x(n — 1), x(n — 2 ) , . . . , x(n — M + 1): 

0000+ M - 1 

0002 
0001 
0000 

x(n-M+\) 

x(n — 2) 
x(n - 1) 

x(n) 

where we have assumed that the delay-line vector starts at address 0000, in 
other words, the base address is 0000. Now, for every time the sampling clock 
ticks, a new sampled value will arrive and the entire delay line must be updated. 
This can be done in two ways. Either we are using a straightforward static list 
method, or a somewhat more complicated dynamical list method. The static 
list method is based on moving the contents of all the memory cells in the vector 
one step "upwards", except the oldest element at address 0000 + M + 1 that will 
be dropped. The new element will then be stored at the bottom of the vector in 
address 0000. This method is easy to implement and understand. The drawback 
is, however, that for every new sample, we have to make M — 1 "extra" data 
moves, thus consuming time. 

A smarter approach is the dynamical list method. In this case, a circular 
buffer and a start-of-list pointer are used. The logical start of the vector 
is pointed to by the start-of-list pointer and can be any address in the memory 
block, not only address 0000 as above. As soon as a new sample arrives, we only 
need to move the start-of-list pointer "downwards" one step. At this address, the 
oldest sample can be found, since we are now dealing with a circular list. The 
new sample is stored at this position, thus overwriting the oldest sample. In this 
way, no shuffling of data is needed like in the static list method. Only the start-of-
list pointer needs to be decremented. To handle a circular buffer, pointers need 
to "wrap around" when reaching the top or bottom of the memory area allocated 
for the vector. This calls for modular addressing, supported by many DSPs. 
General-purpose processors do not support this type of addressing, hence extra 
program instructions are required to test the pointers and "wrap around" when 
needed. If the size of the buffer is 2k, where A: is a positive integer, modular 
addressing can be achieved by simply ANDing the address pointer with an 
appropriate bit mask. Many DSP chips have specialized addressing hardware, 
supporting almost any buffer length, e.g. 17 or 38, etc. 

Dealing with, for instance, some FFT algorithms, using "butterfly"-type 
computing strategies, bit reverse addressing, supported by many DSPs is 
handy. The DSP (as with most other digital computers) performs the calcu
lations sequentially. Equations (5.7) and (5.8) describe a four point FFT. It is 
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very simple, but can serve as an example to demonstrate the ideas behind bit 
reverse addressing. Looking at equation (5.7), describing the computational 
"butterflies", we find that we need to access the input elements x(0),x(l), 
The smartest way (in terms of calculation order) to access these elements is not 
in the "normal" sequence 0, 1, 2, 3 but in the bit reversed order 0, 2, 1, 3. If the 
transform has more than four input values, the gain in calculation time will of 
course be greater. So, bit reverse addressing is a way of calculating the pointer 
values so that an FFT algorithm accesses the elements of the input vector in 
the "smartest" order. The bit reverse addressing is obtained by "mirroring" the 
address word, so that the most significant bit becomes the least significant bit and 
vice versa. Table 9.2 shows a 3-bit normal and bit reverse addressing scheme. 

9.3.6 The state machine 

The state machine model is a common algorithm of designing stable software 
which is easy to modify and verify. The model is used in many different real
time application areas, and is certainly also usable in digital signal processing 
systems. In this section, a simple state machine implementation will be shown 
as an example. 

Assume we would like to design a piece of software to receive Huffman-
coded, variable length messages, as in the example in Figure 7.1. There are five 
possible messages having their own meaning as shown in Table 9.3. 

Table 9.2 "Normal" order addressing 
versus bit reverse-order addressing 

Normal order 

0 000 
1 001 
2 010 
3 011 
4 100 
5 101 
6 110 
7 111 

Bit reverse order 

000 0 
100 4 
010 2 
110 6 
001 1 
101 5 
011 3 
111 7 

Table 9.3 The five possible Huffman-coded 
messages in the state machine example 

Name 

U\ 

U2 

111 

U4 

Us 

Code 

1 
011 
010 
001 
000 

Command 

Stop 
Forward 
Reverse 
Starboard 
Port 
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Every time a complete message code is received, the corresponding com
mand should be presented on a display. A real world system must also have a 
time-out function to take care of corrupt messages and lost bits. This function 
will, however, be omitted in this example for simplicity. 

First, we identify the possible events. There are three possible events, namely: 
(1) no input symbol received, (2) a zero symbol input received and (3) a one 
symbol input received. The respective events are assigned with the numbers 
in parentheses. Second, we determine the different states of our system and 
the actions supposed to be taken in the respective state. The present state of 
the system is determined by a state variable. Assume we need the nine states 
presented below in our system: 

State 1: wait for the first data bit of the coded message to arrive 
State 2: print stop on the display 
State 3: wait for the second data bit to arrive, given the first one was zero 
State 4: wait for the third data bit to arrive, given the second one was one 
State 5: wait for the third data bit to arrive, given the second one was zero 
State 6: print forward on the display 
State 7: print reverse on the display 
State 8: print starboard on the display 
State 9: print port on the display 

Every state is typically implemented as a separate program segment, a function 
or a subroutine. The behavior of the entire program is then determined by the 
rules governing the execution order of the segments. These rules are commonly 
logical combinations of events. For our example, the rules are shown as a 
transition diagram (see Figure 9.4). A transition diagram is a very effective 

Figure 9.4 Transition diagram for state machine example 
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way of planning and documenting a computer program (and other activities as 
well). It is quite easy to make sure that you have really been thinking of every 
possible event, and that the software performs predictably in all situations. 

The rings represent states and the arrows in between them are transitions 
taking place when the event, or combination of events, printed above the arrow 
occur. When the system is initialized, the state variable is set to 1 and the system 
starts in state 1. There are many different ways of implementing the system in 
software. In this example, three different approaches will be shown. They are 
all written using the programming language C/C++, but the method can, of 
course, be used with basically any computing language. If you are not fluent in 
C/C++, there are many good books on the market, for instance Heller (1997). 

All of the program code examples shown below are built starting from a main 
(timed) loop, as in Section 9.3.3. The first version (example 1) is quite straight
forward and uses the switch statement to control the program flow. The name 
of the state variable is s ta tevar and the event variable is named eventvar. 
Since we do not have any live input signals available, inputs are simulated using 
the keyboard by means of the get char () function. This part of the code is, of 
course, different in a real world application. The state transitions, i.e. changes 
of the value of the state variable, take place directly in the code segment for 
the respective state. All variables are global. This programming style can be 
used for smaller applications and in systems where no major code changes are 
anticipated. Since no advanced pointer or addressing operations are involved, 
the code can easily be converted to rudimentary programming languages like 
assembly code. Note, one advantage of all state machine programming models 
is that good debugging help can easily be obtained by including, for instance, a 
pr in t f (" %c", statevar) statement in the main loop, printing the state vari
able for every iteration. The printout can then be compared to the transition 
diagram, to spot malfunctions: 

void main(void) { 
char statevar=l, eventvar; 

char c; 

// example 1 
// state and event variables 

// temporary input (dummy) 

while(1==1) { 
eventvar=l; 
c=getchar(); 
if(c=='0') eventvar=2; 
else if(c=='l') eventvar=3; 
switch(statevar) { 

case 1: 
if(eventvar==2) statevar=3; 
else if(eventvar==3) statevar=2; 
break; 
case 2: 
puts("STOP"); statevar=l; 
break; 
case 3: 
if(eventvar==2) statevar=5; 
else if(eventvar==3) statevar=4; 
break; 

// main loop 
// get input 
// from keyboard (dummy) 
// determine event 

// branch to code for current state 
// state 1 

// state 2 

// state 3 
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case 4: 
if(eventvar==2) statevar=7; 
else if(eventvar==3) statevar=6; 
break; 
case 5: 
if(eventvar==2) statevar=9; 
else if(eventvar==3) statevar=8; 
break; 
case 6: 
puts("FORWARD"); statevar=l; 
break; 
case 7: 
puts("REVERSE"); statevar=l; 
break; 

case 8: 
puts("STARBOARD"); statevar=l; 
break; 

case 9: 
puts("PORT"); statevar=l; 
break; 

default: 
statevar=l; 

// state 4 

// state 5 

// state 6 

// state 7 

// state 8 

// state 9 

// error, restart 

In the next code example (example 2), some programming features which make 
the code easier to expand and maintain have been introduced. One such feature 
is assigning names to the states. In this example, quite meaningless names 
have been used like s t i for state number 1, etc. In a real world applica
tion more descriptive names could preferably be used, like await_f i r s t _ b i t 
for state number 1, and so on. Another feature is that the code has been broken 
down into separate functions, being called from the switch structure. Further, 
values are passed to functions using formal parameters, and the use of global 
variables is avoided. One advantage of this programming style is that the code 
for the different functions need not necessarily be stored in the same source 
code file, but can reside in different program modules, developed by different 
programmers. This is, of course, valuable when designing larger systems, and 
in applications where reuse of software modules is desirable: 

enum statestl = l,st2,st3,st4,st5,st6f st7,st8f st9 

statevar=stl; 
enum eventnil=l,zero,one; 

event getevent(void) { 
char c; c=getchar(); 
if(c=='0') return zero; 
if(c=='l') return one; return nil; 

} 

state code_l(event ev, state oldst) { 
if(ev==zero) return st3 ; 
if(ev==one) return st2; return oldst; 

// state names 
// state variable 
// event names 

// get input 
// from keyboard (dummy) 
// determine event 

// state 1 
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s t a t e code_2(void) { 
puts ("STOP") ; r e t u r n s t l ; 

} 

s t a t e code_3(event ev, s t a t e o l d s t ) { 
i f ( e v = = z e r o ) r e t u r n s t 5 ; 
e l s e if(ev==one) r e t u r n s t 4 ; r e t u r n o l d s t ; 

} 

state code_4(event ev, state oldst) { 
if(ev==zero) return st7; 
else if(ev==one)return st6; return oldst; 

} 

state code_5(event ev, state oldst) { 
if(ev==zero) return st9; 
else if(ev==one) return st8; return oldst; 

// state 2 

// state 3 

// state 4 

// state 5 

} 

state code_6(void) { 

puts("FORWARD"); return stl; 

} 

state code_7(void) { 

puts("REVERSE"); return stl; 

} 

state code_8(void) { 

puts("STARBOARD"); return stl; 

} 

state code_9(void) { 

puts("PORT"); return stl; 
} 

// state 6 

// state 7 

// state 8 

// state 9 

void main(void) 
while(1==1) 
switch(statevar) { 

case stl: statevar=code_l(getevent(), statevar) 
break; 

case st2: statevar=code_2(); break; 
case st3: statevar=code_3(getevent(), statevar) 

break; 
case st4: statevar=code_4(getevent(), statevar) 

break; 
case st5: statevar=code_5(getevent(), statevar) 

break; 
case st6 
case st7 
case st8 
case st9 

statevar=code_6(); break 
statevar=code_7(); break 
statevar=code_8(); break 
statevar=code_9(); break 

// example 2 
// main loop 
// branch to code for current 

state 

default: statevar=stl; // error, restart 
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Table 9.4 Transition table for the state machine example, indices are event 
number and old state number values in the table are new state numbers 

Event 

1 
2 
3 

1 

1 
3 
2 

2 

1 
1 
1 

3 

3 
5 
4 

4 

4 
7 
6 

Old state 

5 

5 
9 
8 

6 

1 
1 
1 

7 

1 
1 
1 

8 

1 
1 
1 

9 

1 
1 
1 

The third approach, resulting in a quite complex program code, relies on 
tables. The transition diagram in Figure 9.4, governing the behavior of the 
program, can be expressed as a transition table, where the indices are the values 
of the event variable and the old state variable. The value found in the table is 
the new (next) value of the state variable (see Table 9.4). 

Hence, by "calling" the transition table with the event number and the old 
state number, the new state number is obtained. The transition table in program 
code (example 3) below is denoted t rans [] [], and the "call" to the table is 
performed in the main loop. Note that this procedure has a conceptual resem
blance to the state-space approach used, for instance, in the signal model of the 
Kalman filter in Section 6.2.1. A great advantage with this programming style 
is that the entire program flow is governed by the contents of the transition table. 
This gives a very good overview of the program structure and behavior. Further, 
alternative transition tables can be stored in different header files. By replacing 
the header file and recompiling the source code, a program performing a new 
task can be obtained, without changing a single character in the source code file. 

The program code for the different states is partitioned in functions, as in 
example 2. In this way, functions from different separately compiled program 
modules can be handled. This is, of course, valuable when designing larger 
systems. Pointers to the starting address of the different functions are stored 
in the process table, denoted *proctab[]. This table gives the connection 
between the state number and the starting address of the corresponding function, 
containing the necessary program code. The process table is accessed in line 
two of the main loop, and a vectorized function call is accomplished. Note that 
the main loop only contains two lines of code. 

Yet another feature of the program code in example 3 is the message table 
*mess [], containing the message strings to be printed on the display. This 
table could be stored in a separate header file. By replacing this table, display 
messages in foreign languages can be produced. There can, for instance, be 
different header files for messages in English, German, Spanish, and so on: 

enum state{stl=l,st2,st3,st4,st5,st6,st7,st8,st9,MST} // state names 
statevar=stl; // state variable 

enum event{nil=l,zero,one,MEV}; // events 
enum command{ST,FOR,REV,STAR,POR}; // commands 

state trans[MEV-1][MST-1] = { 
{stl, stl, st3, st4, st5, stl, stl, stl, stl}, 
jst3, stl, st5, st7, st9, stl, stl, stl, stl}, 
{st2, stl, st4, st6, st8, stl, stl, stl, stl}}; 

// transition table 
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char *mess[] = { 
"STOP","FORWARD","REVERSE","STARBOARD","PORT"}; 

event getevent(void) { 
char c; c=getchar(); 
if(c=='0') return zero; 
if (c=='l/) return one; return nil; 

} 

// messages 

void 
void 
void 
void 
void 
void 
void 
void 
void 

code_l(void) 
code_2(void) 
code_3(void) 
code_4(void) 
code_5(void) 
code_6(void) 
code_7(void) 
code_8(void) 
code_9(void) 

{}; 
{puts 

{}; 
{}; 
{}; 
{puts 
{puts 
{puts 
{puts 

(mess[ST]);} 

(mess[FOR]);} 
(mess[REV]);} 
(mess[STAR]);} 
(mess[POR]);} 

/ / 
/ / 
/ / 

/ / 
/ / 
/ / 
/ / 
/ / 
/ / 
/ / 
/ / 
/ / 

get input 
from keyboard (dummy) 
determine 

state 
state 
state 
state 
state 
state 
state 
state 
state 

1 
2 
3 
4 
5 
6 
7 
8 
9 

event 

void (*proctab[MST-1]) 0 = { // process table 
code_l, code_2,code_3,code_4,code_5,code_6,code_7,code_8,code_9}; 

void main(void) { 
while(1==1) { 

statevar=trans[getevent()-1][statevar-1]; 
(*proctab[statevar-1]) (); 

// example 3 
// main loop 
// get new state 
// execute code for state 

} 

As can be seen from the above program code examples, there are many ways 
to implement a state machine in software. Further, the programming language 
C/C++ is very flexible (but you can also produce marvelous errors). 

9.4 Implementation 
examples 

9.4.1 Finite impulse response-type filter 

We will use a simple third-order low-pass FIR filter (see Chapter 1) as an 
example. The filter specification is 0 dB attenuation in the passband 0 < q < 0.2 
and an attenuation of at least 20 dB in the stopband 0.4 < q < 0.5, where the 
frequencies are given in "fhosq", i.e. relative frequency (see Chapter 1, equation 
(1.8a)). Using a standard filter design program packet, the resulting filter has 
the transfer function 

H(z) = b0 + biz~l + b2z~2 + b3z~3 (9.8) 

where the filter coefficients are 

fe0 = 1.000000 
6i =0.2763932 
b2 = 0.6381966 
b3=bi= 0.2763932 

The corresponding difference equation, i.e. the filter algorithm, can easily be 
obtained from the transfer function (9.8) 

y(n) = b0x(n) + b\x(n - 1) + b2x(n - 2) + b3x{n - 3) (9.9) 
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The first thing to investigate is the risk of overflow during some steps in the 
calculation. Fortunately, this task is very simple for FIR filters. We can easily 
calculate the maximum gain of the filter. Since it is a straightforward low-pass 
filter, maximum gain will be found at frequency q = 0, or in other words "DC". 

If we assume a constant DC input, i.e. x(n)=x(n — l)=x(n — 2 )= 1, the 
gain of the filter is simply the sum of the coefficients 

G(0) = Y^bt = 1.000000 + 0.2763932 + 0.6381966 + 0.2763932 = 2.2 

(9.10) 

i=0 

If we, for instance, assume that the maximum word length of the input signal 
is 24 bits, and the coefficients are 24 bits, this yields 48 bits out from the 
multiplier. Further, if we assume that the accumulators are 56-bit wide, we 
have a margin of 8 bits, corresponding to a multiplication (i.e. gain) of 256 
times. Since the maximum gain of the filter is roughly 2, we will never use 
more than 49 bits out of the 56 bits in the accumulators, hence no overflow 
problem will occur. If we would have suspected overflow problems, we could 
have scaled all the filter coefficients by a proper scaling constant to prevent 
overflow in the accumulator. 

Now, our first algorithm will use a simple straightforward static list approach. 
The memory usage can be seen in Figure 9.5. There are three address spaces, 
the Y data memory address space, the X data memory address space and the P 
program memory address space. The corresponding letters are put in front of 
the hexadecimal addresses for clarity. We are using memory mapped I/O and the 

> 

Y:FFFF 

Y.FFFE 

Y:0003 

Y:0002 

Y:0001 

/ address space 

output 

Input 

h 

h 

* i 

y(n) 

x(n) 

> 

X:0003 

X:0002 

X:0001 

X:0000 

< address space 

x(n - 3) 

x(n - 2) 

x(n - 1) 

x(n) 

program address sp 

P:0042 

P:0041 

P:0040 

Figure 9.5 Memory usage for the static list, third-order FIR filter example 
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ports are mapped into the Y address space, where also the coefficient memory 
is located. The input port has address Y:FFFE and the output port Y:FFFF. 
The filter coefficients b\, 62 and 63 are stored at locations Y:0001, Y0002 and 
Y0003, respectively. Since bo = 1, it has been omitted. 

The delay line is mapped in the X data memory according to Figure 9.5, 
and the program code is of course stored in the program memory, mapped into 
P address space. The program starts at address P:0040. The algorithm can be 
described by the following pseudo-code: 

init: reset pointers 
load filter coefficients into Y memory-
clear delay line in X memory 

loop: do 

{ 
get input data into delay line 
restart pointers 
clear accumulator A 
for 3 loops 

get x value from delay line 
point to next x value 
get coefficient 
point to next coefficient 
multiply and accumulate in A 
move x element one step in delay line 

add x(n) since this coefficient is 1 
round to 24 bits 
send to output 
forever 

} 

As an example, assume we make an assembly program for the Motorola DSP 
56001 digital signal processor chip ("DSP56000/56001 Digital Signal Proces
sor User's Manual", 1989). The R0 register will be used as pointer to X memory. 
The Rl register will point to Y memory and the offset register NO will hold 
the fixed one step offset used when moving elements in the delay-line one step. 
The first part of the algorithm is only initializations and will only be run once, 
after a reset. The actual filtering action takes place in the filter loop. This loop 
would normally be timed in some way, to be synchronized to the sampling rate. 
This detail has been omitted in this example, and we are running the loop at 
maximum speed. The actual assembly code for the program is shown below: 

; initializing 

; init pointers 
P:0040 init: MOVE #$3,R0 
P:0041 MOVE #$1,R1 
P:0042 MOVE #$1,N0 

pointer for X data 
pointer for Y data 
offset, X pointer 

; load filter coefficients into Y memory 
P:0043 MOVE #.2763932,XI ; load bi 
P:0045 MOVE X1,Y:(R1)+ ; to Y(l), increment pointer 



268 Digital Signal Processing and Applications 

P:0046 
P:0048 
P:0049 
P.-004B 

P:004C 
P:004D 
P:004E 
P:004F 

P:0050 
P:0052 

P:0053 
P:0054 

P:0055 

P:0056 
P:0058 
P:0059 
P:005A 

P:005B 
P:005C 

P:005D 

P:005E 
P.-005F 
P:0060 

MOVE #.6381966,XI ; load b2 

MOVE X1,Y:(R1)+ ; to Y(2), 
MOVE #.2763932,XI ; load b3 

MOVE X1,Y:(R1) ; to Y(3) 
clear delay line vector in X memory 

MOVE #$0,X1 
MOVE X1,X:(R0)- ; X(n-3)=( 
MOVE X1,X:(R0)- ; X(n-2)=( 
MOVE X1,X:(R0) ; X(n-1)=( 

the actual filter loop 
get input data 

increment poir.ter 

decrement pointer 
decrement pointer 

floop: MOVE Y:$FFFE,X1 
MOVE XI,X:$0000 

restart pointers 
MOVE #$3,R0 
MOVE #$3,R1 

clear accumulator 
CLR A 

the convolution process 
DO #$3,$005D 

MOVE X:(R0)-,X0 
MOVE Y:(R1)-,Y0 
MAC X0,Y0,A 

from memory mapped port 
to X(n) 

pointer to X mem, 
pointer to Y mem, 

delay line 
coefficients 

hw loop 3 times, exit to $005D 
get data, decrement pointer 
get coeff, decrement pointer 
the MAC operation 

the data shuffling in the delay line 
MOVE X:(R0) ,X0 
MOVE X0,X:(R0+N0) 

get element 
move one step "upwards" 

END ; end of loop 
ADD X0,A ; add x(n) since k>o = l 

; round result back to 24 bits and send to output 
RND A ; convergent rounding 
MOVE A1,Y:$FFFF ; result in Al to output 
JMP $0050 ; get next sample 

The first part of this software is the initialization of pointers and memory, 
which requires 16 words of program memory. The # character denotes an imme
diate constant and the expression MOVE X I , Y : ( R I ) + means copy data from 
register XI to Y memory at the address pointed to by Rl, and post-increment 
of Rl. This initialization part requires 36 machine cycles to execute. Using a 
20MHz clock, the cycle time is 100ns, hence the initialization takes 3.6 |xs. 
Maybe it is possible to find a smarter way of writing this piece of software, but 
it is not worth the effort, since this code is only executed once following a reset. 
It is better to concentrate on making the actual filter loop faster if possible, 
because the execution time of this loop is the upper limit sampling rate of the 
system. 

In the filter loop, input data is first retrieved from the input port and sent to 
x(n) in the delay line in X memory. The pointers for X memory (delay line) and 
Y memory (coefficients) are restarted to point to the oldest element x(n — 3) 
and the coefficient £3, respectively. Since we will use accumulator A in the 
summation process, the accumulator is cleared. 

The inner loop, performing the convolution in a sequential fashion, is imple
mented as a hardware loop, meaning that we use the internal hardware loop 
counter on the chip. This loop starts with DO and ends with END. After DO follow 
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Table 9.5 The sequential calculation of the difference equation in which 
every line is an iteration of the inner loop 

X:0000 

x(n) 
x(n) 

x(n) 
x(n) 

x(n) 

X:0001 

x(n — 1) 
x(n - 1) 
x(n — 1) 
x(n) 

x(n) 

X:0002 

x(n — 2) 
x(n-2) 

x(n— 1) 
x(n-l) 

x(n — 1) 

X:0003 

x(n - 3) 
x(n — 2) 
x(n — 2) 
x(n — 2) 

x(n — 2) 

A 

0 
x(n - 3)Z?3 

x(n — 3)^3 + x(n — 2) 
x(n — 3)^3 +x(n — 2)i 
+x(n — l)b\ 
x(n — 3)Z?3 +x(n — 2)i 
+x(n — \)b\ -\-x(n)bo 

the number of repetitions and the exit address, where execution continues after 
the loop is finished. Inside the inner loop, first an x value from the delay line 
is fetched as well as the corresponding filter coefficient. The heart of the algo
rithm is the MAC operation, i.e. multiplying the x value (in register XO) by 
the filter coefficient (in register YO) and adding this product to the contents of 
accumulator A. 

After the MAC operation follows the data shuffling needed to update the 
delay line. The present x value is moved "upwards" in the list, thus "aging" 
one sample time. After the inner loop has been processed three times, the 
calculation of the difference function (9.9) is almost finished. Only the term 
x(n)bo is missing. Since bo = 1, we simply addx(w) to the accumulator A. The 
result is then rounded back from 56 to 24 bits using convergent rounding and 
then finally sent to the memory mapped output parallel port. The filter loop is 
now ready to fetch the next input sample. The sequential calculation of function 
(9.9) is shown in Table 9.5. 

The filter loop code requires 18 words of program memory and executes in 
96 machine cycles, corresponding to 9.6 |xs at 20 MHz clock speed. This means 
that the maximum sampling rate using this software is 104 kHz. It is important 
to note that we have not used the possibilities of parallel data moves inherent in 
the chip. The DSP 56001 can do better, which we will be demonstrated in the 
next example. 

We will now show a more sophisticated way of implementing the same fil
ter (equation (9.9)) as above, using a dynamic list approach and a modular 
programming style. The dynamic list approach implies that we do not need 
to shuffle the delay-line data around. Instead, we implement the delay line as 
a circular buffer, using modulo addressing, and with the use of a start-of-list 
pointer. Thus, by moving the start-of-list pointer one step, the entire delay-line 
"ages" in a jiffy. The memory usage is shown in Figure 9.6. The main difference 
compared to the previous example is that we have added the coefficient bo to 
the Y memory vector to make the program more general. We cannot expect 
bo = 1 in the general case. Further, since we are now using a delay line in the 
form of a circular buffer, the position of the x values having different delays 
will vary; e.g. there is no fixed place for x(n - 2) in the buffer. It will change 
continuously according to the start-of-list pointer. 
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Y address space X address space program address space 

Y:FFFF 

Y:FFFE 

output 

input 

y(n) 

x{n) 

Y:0003 

Y:0002 

Y:0001 

Y:0000 

h 

h 
b\ 

h 

X:0003 

X:0002 

X:0001 

X:0000 

x() 

x() 

x() 

x() 

P:0070 

P:0050 

P:0040 

main prog 

subroutines 

constants 

Figure 9.6 Memory usage for the dynamic list, third-order FIR filter example 

Another improvement is a more structured use of program memory. Starting 
from address P:0040 there is a block of constants, followed by an area of 
subroutine code from P:0050 and at address P:0070, the main program code 
can be found. Hence, this address is also the entry point of the system. The 
constant area contains the filter coefficients. In this example, we are not using 
immediate-type program instructions to load coefficients. In many cases, it is 
advantageous not to "embed" constants in the code. It is better to collect all 
constants in an easily found block in program memory. This is especially true 
if we need to change the constants frequently and/or if the constants are used 
in many different places of the program. The algorithm can be described by the 
following pseudo-code: 

init: reset pointers 
load coefficients into Y memory from program memory-
clear delay line in X memory 
return 

filter: get input data into delay line 
clear accumulator A 
for 4 loops 

{ 
get x value from delay line 
point to next x value 
get coefficient 
point to next coefficient 
multiply and accumulate in A 
move x element one step in delay line 
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round to 24 bits 
send to output 
return 

main: init 

do 

{ 
filter 

} forever 

In the assembly code, register R4 will be used to point to coefficients in Y 
memory and RO will point to x values in the delay-line vector in X memory. 
Since we will now be working with circular buffers, modulo addressing will be 
needed. For this reason, the modulo registers M4 and MO will be loaded with 4. 
Further, since we always go through the entire delay line from oldest to newest 
x value once every sample period, we do not need an explicit start-of-list pointer. 
We automatically know where the list starts. 

Further, in this example, we will use the parallel execution feature which 
makes the entire "inner" loop only one instruction long. For this reason, we 
will use the REP (repeat) function instead of the DO END hardware loop. The 
assembly program is shown below: 

P:0040 
P:0041 
P:0042 
P:0043 

coefficients 
DC 
DC 
DC 
DC 

.9999999 

.2763932 

.6381966 

.2763932 

bo 
b i 

b 2 

b 3 

P : 0 0 5 0 

P : 0 0 5 1 

P : 0 0 5 2 

P : 0 0 5 3 

P : 0 0 5 4 

P : 0 0 5 5 

P : 0 0 5 6 

P : 0 0 5 8 

P : 0 0 5 9 

P:005A 

; initializing 
; init pointers and modulo registers 
init: MOVE #$0043,Rl 

MOVE #$0003,114 
MOVE #$0000,R0 
MOVE #$0003,M0 
MOVE M0,M4 

temporary pointer 
pointer for Y memory-
pointer for X memory 
modulo 4, circ addressing X 
modulo 4, circ addressing Y 

load coefficients to Y and clear delay line in X 

DO 

END 

MOVE #$0,X0 
#$4,$005A 

MOVE P:(R1)-,Y0 
MOVE X0,X:(R0)+ Y0,Y:(R4)-

RTS 

set X0=0 
hw loop 4 times, exit to $005A 
get coeff from program memory 

clear X, increment pointer 
store coeff, decrement pointer 

return from subroutine 
the filter 

P:0060 

P:0061 
P:0062 
P:0063 

P:0046 

filter: MOVEP Y:FFFE,X: (R0) - ; get input, store in delay line 
; clear accumulator get x value to X0 and coeff to Y0 

CLR A X:(R0)-,X0 Y:(R4)-,Y0 
REP #$3 ; repeat next instr 3 times 

MAC X0,Y0,A X:(R0)-,X0 Y:(R4)-,YO 
MAC operation 

MACR X0,Y0,A 

get next x value 
get next coeff 
MAC operation and rounding 
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P:0047 
P:0048 

P:0070 
P:0071 
P:0072 

; send to output 
MOVEP Al, 
RTS 

; main program 
main: JSR $0050 

JSR $0060 
JMP $0071 

,Y: :$FFFF ; to output 
; return from subroutine 

; run init 
; run filter 
; forever 

This software makes use of the possibilities of parallel execution in which up to 
three instructions can be executed simultaneously under certain circumstances. 
These instructions are written on the same line. For instance, MOVE xo,x : 

(RO ) + YO , Y : (R4) - means copy contents of X0 to X memory address pointed 
to by R0 and post-increment R0 and copy contents of Y0 to Y memory address 
pointed to by R4 and post-decrement R4. 

Another example is CLR A X:(RO)-,XO Y: (R4) - ,YO which means clear 
accumulator A and copy contents of X memory address pointed to by R0 to X0 
and post-decrement R0 and copy contents of Y memory address pointed to by 
R4 to Y0 and post-decrement R4. 

Yet another (the best one ofthem all) MAC XO,YO,A X:(RO)- ,XO Y:(R4)-YO 

which means multiply contents of X0 (x value) by contents of Y0 (coefficient) 
and add to contents of accumulator A store in A and copy contents of X memory 
address pointed to by R0 to X0 and post-decrement R0 and copy contents of Y 
memory address pointed to by R4 to Y0 and post-decrement R4. 

Making a table of the same type as Table 9.5 this example is left as an exercise 
to the reader. The program occupies a total of 25 words, or program memory of 
which four words are constants, 11 words are used by the init routine and seven 
by the filter routine and three by the main program. The init function executes 
in 62 machine cycles, i.e. 6.2 |xs and the filter in 64 cycles, or in other words 
6.4 |xs. This means that the maximum sampling rate is 156 kHz. 

9.4.2 Infinite impulse response-type filter 

In this example a second-order low-pass IIR filter (see Chapter 1) will be used. 
The filter specification is 0 dB attenuation in the passband 0 < q < 0.1 and an 
attenuation of at least 30 dB in the stopband 0.4 < q < 0.5, where the frequencies 
are given in "fnosq", i.e. relative frequency (see Chapter 1, equation (1.8a)). 
Using a standard filter design program packet, the resulting filter has the transfer 
function 

b0 + biz'1 + b2z~2 

1 — a\z v — a2z
 L 

where the filter coefficients are 

6o = 1.000000 
ft! = 1.79941 
b2 = 1.000000 
ax = -0.299624 
a2 = 0.195021 

(9.11) 
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This is a "combined" IIR and FIR filter (see Chapter 1, Figure 1.10) and the 
corresponding difference equation is 

y{n) = box(n) + b\x(n - 1) + Z>2*(" - 2) + ai>>(n - 1) + a2y{n — 2) 

(9.12) 

A standard method is to divide this expression into two equations representing 
the FIR and IIR portions to simplify the implementation. Starting out from 
equation (9.11) we can separate the IIR and FIR parts 

Y(z) E(z)Y(z) bo + blZ-i+b2Z-2 
H(Z) = W)= W)W)=mG(Z) = l - f l i z - ' -a* - 2 

1 i , (9.13) 
j(b0 + bxz- l+b2z~2) 1 — a\z~x — a2z
 2 

The IIR part F(z) has the difference equation 

e(n) = x(n) + axe(n - 1) + a2e(n - 2) (9.14) 

and the FIR part G(z) 

y(n) = b0e(n) + b\e(n - 1) + b2e(n - 2) (9.15) 

Hence, we do not put x(n),x(n — 1) , . . . in the delay line, as it is smarter to put 
the intermediate signal e(n) into the delay line, i.e. e(n), e(n — 1) , . . . , where 
e(n) is the output from the IIR part of the filter (see also Figure 1.10, Chapter 1). 

Since we are now dealing with an IIR filter, having poles in the transfer 
function, we must make sure the filter is stable, in other words, that the poles are 
within the unit circle in the complex z plane. There are many standard methods to 
check stability, but even if the filter is stable, it may have an oscillatory impulse 
response and some resonant peak with a very high gain. Two problems arise: 
firstly, the high gain may amplify weak round-off and truncation noise in the 
filter to considerable output levels ("phantom" output) and secondly, overflow 
problems are likely to appear. In many cases it is harder to determine good 
scaling factors for IIR filters than for FIR filters, where the magnitude of the 
signals in the filter are easier to calculate. For these reasons, IIR structures often 
have low orders, typically two or three. If a higher-order IIR filter is needed, 
a number of cascaded second-order filters are used. The same program code 
can be used (subroutine) for all the cascaded filters with only separate delay 
lines and coefficient vectors needed. Note, considering the round-off noise, 
reordering the cascaded IIR filters may change the noise level. 

Simulating the algorithm is probably the best way to pinpoint noise and 
overflow problems in IIR-type filters. Running such a simulation of equations 
(9.14) and (9.15) the maximum expected gain is found to be about 3.5 times. 
The filter is well damped, and no significant "ringing" can be seen. Hence, 
no problems are expected inside the filter itself. There are, however, external 
subsystems to consider as well. If our input signals originate from an A/D 
converter and the output is connected to a D/A converter, this "extra" gain may 
cause problems. To avoid overflow in the D/A converter, we decide to reduce 
the maximum gain of the filter by a factor 2. This is done by scaling the filter 
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Figure 9.7 Memory usage for the second-order IIR filter example 

coefficients bo, b\ and b2 of the FIR part with a scaling factor 0.5. The scaled 
filter coefficients are 

0.5fc0 = 0.500000 

0.5ii = 0.89970 

0.5*2 = 0.500000 

ax = -0.299624 

a2 = 0.195021 

In this last example, a non-standard "smarf'-type algorithm using a circular 
buffer approach for the coefficients and two registers X0 and XI for the delay 
line will be described. This algorithm is not very "neat" from a programming 
point of view, but it is quick and compact. The memory usage can be seen 
in Figure 9.7. The two accumulators A and B are used to store intermediate 
results. The assembly code for the algorithm is shown below: 

; initializing 
; init pointer for coefficients 

P:0040 init: MOVE #$0,R4 
P:0041 MOVE #$4,M4 

; load coefficients into Y memory 
P:0042 MOVE #-.299624,X0 
P:0044 MOVE X0,Y:(R4)+ 
P:0045 MOVE #.195021,X0 
P:0047 MOVE X0/Y:(R4)+ 
P:0048 MOVE #.500000,X0 
P:004A MOVE X0/Y:(R4) + 

; pointer for Y memory 

; modulo 5 addressing in Y mem 

; load ai 

; load a2 

; load 0.5bo 
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P:004B MOVE #.29970,XI 
P:004D MOVE X1,Y:(R4)+ 
P:004E MOVE X0,Y:(R4)+ 

; clear delay line 
P:004F 
P:0050 

; the filter 
P:0051 filter: 
P:0052 

P:0053 
P:0054 

P:0055 

P:0056 
P:0057 

P:0058 

P:0059 

P:0060 
P:0061 
P:0062 

; l o a d 0 . 5 b i 

l o a d 0 .5b2 = 0 .5bo 

MOVE #$0,X0 
MOVE X0,X1 

CLR A 
CLR B Y:(R4) +,Y0 

MOVEP Y:$FFFE,A1 
MAC X0,Y0,A Y:(R4) + 

i 

i 

Y0 

MACR XI,Y0,A Y:(R4)+/Y0 

MOVE A1,Y1 
MAC Y0,Y1,B Y:(R4) + 

MAC X0,Y0,B Y:(R4) + 

MACR X1,Y0,B X0,X1 

MOVE A1,X0 
MOVEP B1,Y:$FFFF 
JMP $0051 

Y0 

Y0 

e(n-l) = 0 
e(n-2) = 0 

clear accumulator A 
clear accumulator B 
get ai to register Y0 
get input to accumulator A 
x(n) +aie (n-1) to A 
get a2 to register Y0 
x(n)+aie (n-1) + a2e(n-2) to A 
round to 24 bits 
get 0.5bo to register Y0 
e(n) to register Yl 
0.5boe(n) to B 
get 0.5bi to register Y0 
0.5b0e(n)+0.5bie(n-l) to B 
get 0.5b2 to register Y0 
0.5boe(n)+ 0 . 5k>ie (n-1) + 
+0.5b2e(n-2)to B 
e(n-l) to XI (time passes by) 
e(n) to X0 
output 
next sample 

The program occupies 29 words of program memory, of which 17 words are 
for the initialization procedure, and 12 for the filter. Initialization executes in 
3.6 |xs and the filtering function in 6.2 |xs assuming 20 MHz clock speed. Hence 
160 kHz sampling rate is maximum. 

9.5 Future systems 
and chips 

The above, simplified program code segments are only intended as examples, 
and the classical but elegant DSP chip used is one out of many. It is not very 
risky to predict that coming DSP chips will be faster, more complex and cheaper. 
In some respects, there is also a merging of conventional microprocessor chip 
technology, DSPs and FPGA structures taking place. FPGAs with a number 
of DSP kernels on-chip are on the market today, and there are more to come. 
Applications implemented using FPGAs will probably become more common. 
There have also been general-purpose microprocessor chips around for a while, 
having MAC instructions and other typical DSP features. New, improved sim
ulators, compilers and other development tools are constantly being launched 
on the market, making life easier for the designer. 

DSP chips are used in many embedded systems today in large volume con
sumer products like cellular mobile telephones. As the processing speed of the 
DSPs increases, new applications will develop continuously. One interesting 
area is radio technology. An average cellular mobile telephone today contains 
a number of DSP chips. Classical radio electronics circuitry occupies only a 
small fraction of the total printed circuit board area. As DSP chips get faster, 
more of the radio electronics circuits will disappear and typical radio func
tions like filtering, mixing, oscillating, modulation and demodulation will be 
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implemented as DSP software rather than hardware. This is true for radios in 
general, not only cellular mobile telephones. For instance, radio systems based 
on wideband code division multiple access (WCDMA) and ultra wideband 
(UWB) will depend heavily on DSP technology. The technology of software 
defined radio (SDR) is not yet mature, but will grow in importance as; the DSP 
chips get faster. 

DSPs will improve but still the programming of DSPs will be more com
plex and demanding. Not only are good programming skills required, but also 
considerable knowledge in signal theory, numeric methods, algorithm design 
and mathematics. 

Summary In this chapter the following issues have been treated: 

• System types, processing speed, hardware architectures and hardware types 
• Fixed and floating-point format, numerical problems, truncation and 

rounding 
• The DSP software development process 
• Program and data structures, the state machine 
• Implementation examples. 

Review questions R9-1 What are the properties and requirements of a stream process and a batch 
process considering execution speed and memory demand? 

R9-2 Explain the MAC operation. Why is it so important? 
R9-3 What are the pros and cons of general-purpose microprocessors, DSP 

chips, FPGA circuits and ASICs from a digital signal processing point 
of view? 

R9-4 Explain the von Neumann and Harvard computer architectures. State 
some pros and cons?. 

R9-5 Explain the terms "wrap-around" and "saturating" arithmetics. 
R9-6 What is bit reverse addressing? When is it used? 
R9-7 Explain the data structures "static list" and "dynamic list". 
R9-8 What is the difference between "truncation" and "rounding"? 

Solved problems P9-1 Assume that you are given the task of writing the software for a digital 
averaging filter having the transfer function H(z)= J2k=o bkz~k, where 
the filter coefficients are given by bk = l/N. The DSP available has an 
input bus width of 16 bits and the accumulator has 24 bits. What is 
the maximum length N of the filter to avoid overflow, without applying 
scaling? 

P9-2 The sampling rate is 200 kHz for the input of the filter in P9-1 above. 
Determine the maximum allowed execution time of the main loop. How 
much data memory (in bytes) is required for the filter? 

P9-3 Assume, for simplicity, that we are using a processor with 4-bit data 
width. Further, 2's complement fractional representation is used, as 
in Table 9.1. Our idea is to build a simple digital filter expressed by 
the difference equation y(n) = c(ax(n) + bx(n — 1)), where a = 0.225, 
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Z? = —0.125 and c = 4. The first implementation of the filter is made 
directly from the difference equation as above. What is the output 
of the filter if x(n) = 1 for all nl We are not satisfied with the per
formance of the filter so we change the order of the calculations to 
y(n) = cax(n) + cbx(n — 1). What is the output of the filter using this 
implementation? What would the ideal output of the filter be? What is 
going on? 

P9-4 Using the state machine approach, draw a state transition diagram and 
determine the corresponding state transition table for a system able to 
decode the Morse code for the letters "a", "e", "n" and "t". The Morse 
codes are "a" = dot-dash, "e" = dot, "n" = dash-dot, "t" = dash. Each 
transmitted letter is followed by silence for 1 s. The length of a dot is 
0.1 s and a dash is 0.3 s. 



Appendix 1 Solutions to 
problems 

Chapter 1 Pl-1 

From Section 1.2.3, we know that a word length of n = 9 bits corresponds to 
9 • 6 = 54 dB dynamic range, and that n = 10 bits gives 10 • 6 = 60 dB. Hence, 
we choose n = 10 bits word length per sample. 

Further, from Section 1.2.2, we know that the sampling frequency has to 
be/ s > 2fmax, and since the maximum frequency of the analog input signal is 
10 kHz, we get/s > 20 kHz, i.e. 20 000 samples per second. Since each sample 
is 10 bits, we get a bit rate R > 10 • 20 000 = 200 kbits/s. 

Pl-2 

The transfer function will be 

Y(z) z — a z — a 
H(z) = 

X(z) (z - b)(z -c) z1- z(b + c) + bc 

(ALU) 
z-l-az~2 

1 -z~l(b + c)+z-2bc 

The frequency function is obtained by settingz = QJQ
9 where £2 = 2nf/fS9 and 

by inserting into equation (A 1.1.1) and using Euler's formula e-7^ = cos (0) + 
j sin (0), we get 

1 - Q~JQ(b + c) + Q-J'2Qbc 

cos (ft) —j sin (ft) — a cos (2ft) +ja sin (2ft) 
~ 1 - (b + c) cos (ft) +j(b + c) sin (ft) + 6c cos (2ft) -jbc sin (2ft) 

_ (cos (£2) - a cos (2ft)) -y'( sin (ft) + a sin (2ft)) 
~~ (1 - (b + c) cos (ft) + be cos (2ft)) + j((b + c) sin (ft) - be sin (2ft)) 

(Al.1.2) 

The gain function is A(Q) = |//(ft)|, and inserting equation (Al.1.2) gives 

_ 7 ( c o s (G) ~ a c o s (2^))2 + (sin (ft) + a sin (2ft))2 

V(l - (Z> + c) cos (ft) + be cos (2ft))2 + ((6 + c) sin (ft) - be sin (2ft))2 
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y/\+2a- 2a( cos (ft) cos (2£2) - sin (ft) sin (2ft)) 

y/\ + (6 + c)2 + b2c2 - 2(6 + c) cos (ft) + 2bc cos (2ft) + 2(6 + c)( cos (ft) cos (2ft) - sin (ft) sin (2ft)) 

, / l H-2a-2acos(3ft) 

v/l + (b + c)2 + b2c2 - 2(6 + c) cos (ft) + 26c cos (2ft) + 2(6 + c) cos (3ft) 

/ 1 + 2 ^ ( 1 - c o s (3 ft)) 

y 1 + (6 + c)2 + b2c2 - 2(6 + c)( cos (ft) - cos (3ft)) + 26c cos (2ft) 

where we have used the identities 

cos2 (0) + sin2 (0) = 1 and 

cos (a) cos (ft) — sin (a) sin (p) = cos (a + f$) 

The phase shift function is 0(ft) = Z#(ft), and inserting equation (Al.1.2) 
yields 

0 -(sin(ft) + asin(2ft))>i 

</>(ft) = arctan — TZTZZ~ 

V cos (ft) -a cos (2ft) / 

(6 + c) sin (ft) - be sin (2ft) \ 
• arctan I I 

1 - (6 + c) cos (ft) + 6c cos (2ft)/ 

Finally, the difference equation can be obtained by taking the inverse 
z-transform of the transfer function (A 1.1.1) 

X(z) ~ 1 -z-l(b + c) + z~2bc 

=» Y(z) = X(z)z~1 - aX(z)z~2 +(b + c)Y(z)z~l - bcY(z)z~2 

=>• y(n) = x(n - 1) - ax{n - 2) + (b + c)y(n - 1) - bcyin - 2) 

Pl-3 

The transfer function of the FIR filter is equation (1.43) 

H(z) = b0 + bxz~x + b2z~2 + ••• + bMz~M (Al.1.3) 

Let M be even for the total number of taps to be odd. Rewrite equation 
(Al.1.3) as 

H(z) = z-WM (b^'2 + M M / 2 M + • • • 
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Setting z = ejQ and using the symmetry bn = bM-n we get 

H(z) = e-WWQ ( ^ W 2 ) " + bleWV-m + ... + bM/2 + ". 

+ bie-MM/2)+m+ boe-KM/2)Q^ 

= e-j(M/2)Q U Lm 12)0. + e-j(M/2)Sl\ 

+ bl (eMMM-m + e-MM/2)+i)^ + . . . + bM/2^ 

Using the identity eja + c~Ja = 2 cos (a), we get 

H(z) = e~*M/2)Q ^ 2 i 0 c o s ^ y o \ + 2bi cos f fy - ]\a\ + • • • + bM/2\ 

Since the function F(Q) is real, it does not contribute to the phase shift and 
the phase shift function of the filter will be linear (see also equation (1.58)) 

M 

Pl-4 

Starting with equation (1.73) and substituting equation (1.75), s ->/ s(l ~z~l), 
gives 

bo 
G(s)--

H(z) = 

ao + a\s + ci2S2 

bo 
ao + aiMl-z-l) + a2f?(l-

bo 
ao + aifs(l-z-1) + a2/?(\-

bo 
ao + a\fs + a2f

2 - z~x(a\ fs -

bo 
ao + aifs + a2fl 

1 

i - - i " i / s + 2a 2 / s
2 

-Z- l )2 

- 2 Z - 1 - ; 

f2a2/ s2) 

7-2 

z-2) 

- Z - 2 

ajJl_ 

"2f2 

ao + a\ fs + a2fs
2 a0 + a\fs + a2fs

2 

Finally, inserting the numerical values we get 

1 
H(z) = 0.511 

i-o.oiiz-l+o.mz-2 
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Pl-5 

There are many ways to write the program; one simple approach is presented 
below: 

% problem 1-5 

Fs=40e3; 

W= [8e3, 12e3]/(Fs/2) ; 

[b,a]=butter(4,W,'z"); 

[d,c]=chebyl(4,l,W/' z') 

figure(1) 

freqz (b,a, 60,Fs) 
hold on 
freqz(d,c,60,Fs) 

figure(2) 
pzmap(b,a) 

figure(3) 
pzmap(d, c) 

% sampling frequency 

% passband spec 

% design Butterworth 
% note the order is 2*4=8 
% design Chebyshev 

% make Bode plots 
% Butterworth in 60 points 
% both in the same diagram 
% Chebyshev 

% make pole/zero plot 
% for Butterworth 

% make pole/zero plot 
% for Chebyshev 

The Bode plots of the two filters are shown in Figure Al. 1, the solid line is the 
Butterworth filter, while the dotted one is the Chebyshev filter. In Figure A 1.2 
the pole-zero plot for the Butterworth filter is shown. Finally, Figure A 1.3 
shows the pole-zero plot for the Chebyshev filter. 

Chapter 2 P2-1 

The /^-law equation (2.2) is given by ^ = (log(l+/xx))/(log(l+/x)), 
setting fi = 0 means that we need to solve a limit problem. Approximate the 
denominator and the numerator using Maclaurin expansions (1.22) 

numerator: log (1 + fix) & 0 4-

denominator: log(l + /x) ^ 0 + 

1 

1 +/xx 

1 
1+/X 

(higher-order terms can be ignored, since they will tend to zero even faster) 
Inserting the approximations yields (for small //) 

y-
log(l+/zx) x ( l+ /x) 

log( l+/x) \+[ix 

Setting /x = 0 we obtain^ ^ (x(\ + p))/(\ + ^x) =x9 i.e. a linear function. 
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bode diagram 
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Figure Al.l Bode plot of the Butterworth filter (solid line) and the 
Chebyshev filter (dotted line) 
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Figure A1.2 Pole-zero plot of the Butterworth filter 
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Figure A1.3 Pole-zero plot of the Chebyshev filter 

P2-2 

A 14-bit ADC having 5 V FS has a LSB step of FS/2" = 5/214 V An offset of 
3 LSB is hence 

3 ^ = 0 . 1 8 m V . 

P2-3 

There are many ways to write the program; one simple approach is presented 
below: 

% problem 2-3 
% comb filter, k=9 

% transfer function 
b=[l, 0, 0, 0, 0, 0, 0, 0, 0, 1]; 
a= [1, 1, 0, 0, 0, 0, 0, 0, 0, 0] ; 

SYS=TF(b,a,-1) ; 
pzmap (SYS) 

% numerator 
% denominator 

% convert model 
% plot poles and zeros 

Figure Al .4 shows the pole-zero plot. At z = -1 there is a pole located right 
on the unit circle. The pole is cancelled by a zero; however, the pole or zero 
may drift away slightly due to numerical truncation problems. A pole outside 
the unit circle means an unstable system, and pole (not cancelled) on the unit 
circle represents an oscillator (resonator). 
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Figure A1.4 Pole-zero plot of the comb filter with k = 9 

P2-4 

There are many ways to write the program; one simple approach is presented 
below: 

% problem 2-4 
% comb filter, k=9 

% transfer function 
b=[l, 0, 0, 0, 0, 0, 0, 0, 0, 1] 
a=[l, 1, 0, 0, 0, 0, 0, 0, 0, 0] 
freqz(b,a) 

% numerator 
% denominator 
% plot Bode diagram 

Figure A 1.5 shows the Bode plot of the comb filter. 

Chapter 3 P3-1 

For the cancellation to work perfectly we require dk = wo£- Since the system is 
linear we can assume _?* = 0. The MSE can be found from equation (3.9) 

§ = E[d%] + WTRW - 2PTW 

= E[d2
k] + WTE[X*Xj]W - 2E[dkXk]W 
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Figure A1.5 Bode plot of the comb filter with k = 9 

where the mean square of the desired signal is 

E[4] = E [sin2 ( * * ) ] = I E [ l - cos {in^j 

1 1 1 ^ /„ k\ 1 
= > cos In- = -

2 2N£^ V 7 / 2 

and the input correlation matrix is obtained by 

E[X*XT1 = \E[xkXk] ^M-rt 1 = R 

E[xkxk] = E [cos2 h r - j l = -E M + cos (In-\ 

= - H / cos In- = -
2 2N f^\ V 7/ 2 

Efexi_i] = E[xk-ixk] = E cos I n- J cos ( n — — J 

= - E COSITT- I + C O S I T T ^ — II 
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1 / 1\ l l f / 2*+l\ 1 / 1\ 
= - COS 7 T - + - — > COS 71 = - COS 7 T -

E[**-i**-i] = E cos2 ( n — y - ) 

k=\ 

= 2 E 1 +COS (-¥): 
1 l i f (^ k-\\ l 

= ~ + ~ 77 / c o s 2 7 T — - — = -
2 IN £ ^ V 7 / 2 

R = 

Jfc=i 

1 cos(^)n 

COS (?) 1 

The cross-correlation vector is 

EMtX*] 

E[tf*X]t] = E 

E [ 4 ^ ] 

E[dkxk-i] 
= P 

sin | ( ^ ) cos (**)] = ifi [sin ( ^ 

= > sin n— = 0 
2Nti \ n> 

E[4*i- i ] = E sin In- J cos \n—j- J 

11 A . / 2 t - l \ 1 . / 1\ 1 . ,n\ 

P = 
1 0 
2h(y)J 

which finally gives the MSE function 

£ = E[J|] + WTRW - 2PTW 

= 2 + 2^W° " ^ 
^ cos(7)' cos(f) ! . 

["wol 
|wij 

-4[o ,„(=)] W 0 

Wi 
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1 1 
= 2 + 2 \ ° v ° + Wl c o s ("7// + Wl v ° c o s ("7/ + v ) 

- wi sin y-J = - + -(w§ + w\) + w0wi cos ( - j - wi sin ( - j 

P3-2 

The LMS algorithm 

W*+1 = W* + 2fi6kXk =Wk + 2/x(4 - XT
kWk)Xk 

WOk 

xk 

\*k-\ 

w0k + 2fM (xk sin ( - j - x2
kWQk - xkXk-\w\k) 

w\k + 2/x (xk-\ sin ( - J - Jfjt-i^woit - *£_i w u j J 

Hence 

wok+i = w0k + 2/x (cos (7T- j sin (-) - cos2 ( ; r - jw0* 

{ k\ ( k-\\ \ 
- COS I 7 T - ICOSI 7 T — — \W\k I 

wu+i = w i* + 2M ( c o s ( ^ " y - ) s i n (7) 

/ * - l \ / * \ 2( k-\\ \ 
— cos I n—-— 1 cos I n- IM>O£ — cos I re—-— \w\±: 1 

P3-3 

A suggested MATLAB™ program, running the filter, plotting the MSE and 
updating the weights using LMS, is shown below: 

% adap.m 
% parameters and variables 

N=1000; 
k=l:N; 

mu=0.05; 
dk=sin(pi*k/7); 
X=[cos(pi*k/7); cos(pi*(k-1)/7)] 

% number of steps 
% initialize time index 

% training constant 
% desired signal 
% input to combiner 
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W=zeros(2,N); 
ksi=zeros(1,N); 
y=zeros(1,N); 

R=[1 cos(pi/7) ; cos(pi/7)1] 
P=[0; sin(pi/7)]; 
Edk=0.5; 

% main loop 
for k=l:N 
% run filter 
y(k)=X(l:2,k)'*W(l:2,k) ; 

% find MSE 
ksi(k)=Edk+W(l:2,k)'*R*W(l:2,k)-2*P•*W(1:2,k); 

% run LMS 
W(l:2, (k+1) )=W(l:2,k)+2*mu*(dk(k)-y(k) )*X(l:2,k); 

end 

% plot result 
figure(1) 
subplot(2,1,1) 
plot(y) 
Title('y(k), output from filter') 

% weight vectors 
% MSE 
% filter output 

% auto-correlation matrix 
% cross-correlation vector 
% mean square of desired signal 

subplot(2,1,2) 
plot(y-dk) 
Title('eps(k), output after cancellation') 

figure(2) 
subplot(2,1,1) 
plot(W(1,1:N)) 
Title('weight wO') 
subplot(2,1,2) 
plot(W(2,1:N)) 
Title('weight wl') 

figure(3) 
plot(ksi) 
Title('MSE, learning curve') 

% output from filter 

% output after cancellation 

% weight wO 

% weight wl 

% MSE 

Figure Al .6 shows the output y(ri) from the filter (upper plot) and the output 
after cancellationy(n) — dk(ri) (lower plot). Figure A1.7 shows convergence of 
the two weights wo (upper plot) and w\ (lower plot). Figure A1.8 shows the 
"learning curve", i.e. the minimum square error (MSE). 

P3-4 

The Wiener solution is given by 

W * = R - 1 P 
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y(k), output from filter 

1000 

eps(/r), output after cancellation 

1000 

Figure A1.6 Interference cancellation system, output from the filter (upper 
plot) and the output after cancellation (lower plot) 

This expression can be evaluated easily using the MATLAB™ command: 

R\P 
a n s 

- 2 . 0 7 6 5 
2 . 3 0 4 8 

which corresponds well to the final values of the weights obtained in P3-3. 

Chapter 4 P4-1 

The program may look like (for TV = 3) below: 

% p r 4 1 . m 

% t e s t v e c t o r 
X= [0 0 0 0 1 2 3 4 4 4 3 -8 1 0 0 1 1 0 0 0 1 1 1 0 0 0 0 ] ; 
N=3; % f i l t e r l e n g t h 
Y = z e r o s ( s i z e ( X ) ) ; % o u t p u t v e c t o r 
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Figure A1.7 Convergence of the filter weights, wo (upper plot) andw\ 
(lower plot) 

MSE, learning curve 

0 200 400 600 800 1000 

Figure A1.8 MSE as a function of iteration, the "learning curve" 
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input X 
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Figure A1.9 The input (upper plot) and output (lower plot) of the median 
filter with filter length N = 3 

for i=l:(length(X)-N) 
Y(i)=median (X(i:(i+(N-l)))); 

end 

subplot(2,1,1) 
stem(X) 
axis([0 length(X)-10 10]) 

subplot(2,1,2) 
stem(Y) 
axis([0 length(X)-10 10]) 

% filter 

% plot input 

% plot output 

Figure A1.9 shows the input (upper plot) and output (lower plot) of the median 
filter for N = 3. The short one-sample transient pulse is removed, since one 
sample out of three in the filtering window is regarded as an impulse. The rest 
of the signal is untouched. Figure ALIO is input and output for N = 5 and 
the two-sample pulse is removed since with this filter length it is an impulse. 
Finally, in Figure Al. 11 the filter length is N — 7 and the three-sample pulse is 
also removed. 
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input X 
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Figure ALIO Median filter, length N = 5 
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Figure ALU Median filter, length N = 7 
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P4-2 

Equation (4.17) gives the required preprocessing of the input signals 

y\=x\+ x2 

yi = (x\ + x2)
2 

and the node parameters are given by 

W13 = 2 W23 = - 1 <P3 = - 0 . 5 

where we assume that the node number is 3. Figure A1.12 shows the preprocess
ing and the feedforward node, which is assumed to use a hard limiter activation 
function. The extended truth table is shown in Table ALL 

P4-3 

The sigmoid function (4.11) is 

/(*) = 
1 

1 + e~*/r 

If x < 0 =» -x/T -» oc when T -> 0 =* e°° -* oo =>/(*) -^ 0 but, on the 
other hand, if x > 0 =* - J C / J -^ -oo when 71 -> 0 ̂  e - 0 0 -> 0 =>f(x) -> 1 
hence, this compares to a = 1 and 6 = 0 in the hard limiter equation (4.9). 

preprocessors input layer 

Figure A1.12 Single feedforward node and preprocessors to solve the XOR 
problem 

Table Al. l Extended truth table for XOR function 

Xl 

0 
0 
1 
1 

Xl 

0 
1 
0 
1 

y\ 

0 
l 
l 
2 

yi 

0 
l 
l 
4 

"3 

-0.5 
0.5 
0.5 

-0.5 

*3 

0 
1 
1 
0 
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Chapter 5 P5-1 

See Figure Al. 13. 

P5-2 

Starting out from equations (5.80a) and (5.80b), x(t) = a(t) cos (0(0) ana" 
y(t) = a(t) sin (0(0)- From equation (5.85a) 

y/x2(t)+y2(t) = ^a2(t) cos2 (<p(t)) + «2(0 sin2 (cp(t)) 

= a(0>/cos2 ((p(t)) + sin2 (cp(t)) = a(f) 

where we have used the identity cos2(o?) + sin2(a)= 1, further, having 
equation (5.85b) in mind 

y(t) = a(t) sin (cpjt)) 

x(t) a(t) cos (<p(0) 
= tan (<p(0) ^ <K0 — arctan \x(t)J 

P5-3 

Starting from equation (5.72) 

R(so,s[)= I so(t)s[(t) dt = a I cos (2n fot) cos (In f\t) At 
Jo Jo 

-'-C 
2 Jo 

(COS(2JT(/I - / o W + cos(2ffC/i +/o)0)d/ 

modulator demodulator 

I channel 
x(t) K X 

-xo-

cos(2jtft) 

carrier 
generator 

phase 
shifter 

sin(2tf/f) 

Q channel -KX 

s(t) 

s(t) <x> I channel 

COS(2;r/j) 

carrier 
generator 

phase 
shifter 

sm(2jtft) 

s(t) MX 

-+*(0 

Q channel -At) 

Figure A1.13 I/Q-modulator and demodulator 
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a / s i 
= 4 ^ V 

sin(27r(/i-/0)Q sin(2^C/i + / o ) Q ] r 

2 * ( / i - / 0 ) 27T(/i+/0) Jo 

s in(2^C/ i - / 0 ) r ) s in (2^C/ i+ / 0 ) r ) \ 

C/1-/0) C/1+/0) / 

(Al.5.1) 

7 - ( ^ ( / i , / o ) + / ;i(/i,/o)) = 0 

Setting Af=\f\ -fo\ in equation (Al.5.1) and realizing that since the 
denominator f\ +/o » / i - / o , the second t e r m i ^ / i , ^ ) «FA(f\,fo)l hence, 
for high frequencies (compared to the "modulation frequency" l/T) Fs(f\, ^b) 
can be neglected and equation (Al.5.1) can be approximated as 

k 
=> 2TTA/T = £TT =• A / 7 = it =» A/ = — 

where &=1, 2, 3, ...and equation (5.73) is derived. (Commonly, &=1 is 
chosen.) 

P5-4 

A suggested MATLAB™ program is shown below: 

% pr54.m 

N=1024; 
n=l:N; 

omi=0.01; 
omc=2; 

% 1024 samples 

% intelligence frequency 
% carrier frequency 

s=(1+cos(omi*n)).*cos(omc*n); % AM modulation 

w=(hamming(N)'); % Hamming window vector 

figure(1) 
X=fft(s,N); 
M=abs (X); 
plot(M(300:350)) 

figure(2) 
x=w*s; 
X=fft(x,N); 
M=abs(X); 
plot(M(300:350)) 

% plot FFT with rectangular window 
% FFT 
% get magnitude 
% plot interesting part of spectrum 

% plot FFT with Hamming window 
% windowing operation 
% FFT 
% get magnitude 
% plot interesting part of spectrum 

Figure A 1.14 shows the spectrum using a rectangular windowing function 
(i.e. no windowing, just a sample vector of limited length). All three signal 
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Figure A1.14 FFT using rectangular windowing function, all frequency 
components visible 
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Figure A1.15 FFT using Hamming windowing function, frequency resolution 
too coarse 

components are visible. Figure A1.15 shows the spectrum obtained using 
Hamming windowing of the sampled sequence. Due to the wider lobes of 
the Hamming spectrum, the weak frequency components are "drowned" in the 
main lobe from the strong component. We cannot see that there are actually 
three frequencies involved. 
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Chapter 6 P6-1 

Measurement-update equation (6.48) updates the estimate of the state vector 
variable using the latest incoming measured data 

x(n | n) = x(n | n - 1) + C(n \ n - 1) H(«)(HT(«) C(n\n- 1) H(/i) 

+ R(«))"1(z(«) - UT(n)x(n \n-l)) (6.48) 

This equation calculates the estimate of the state vector x at time n based 
on all available measurements at time n. The equation works recursively, i.e. 
the new estimate is obtained by taking the previous one x(n \ n — 1) based on 
measurements up to time n — 1, i.e. all measurements except the last one just 
received. The actual measured data is z(n) from which the expected measured 
value is subtracted. The observation matrix H(«) governs the coupling between 
measured values and the state vector variable. The result from the subtraction 
is called the innovation: z(n) — HT(«) x(n | n — 1). The innovation is multiplied 
by a "gain constant" C(n\n- 1) H(rc)(HT(«) C(n\n- 1) U(n) + R(« ))_1 and 
used to update the estimate. The "gain constant" consists of the observation 
matrix, the measurement noise vector R(n) (model of the noise inherent in the 
measurement process) and the error covariance matrix C(n \ n — 1). The error 
covariance matrix is a quality measure of the estimate. 

The error covariance matrix is also updated recursively, using equation (6.49). 

C(n | n) = C(n | n - 1) - C(n | n - 1) R(n)(RT(n) C(n\n- 1) H(w) 

+ R(n)ylRT(n) C(n\n- 1) (6.49) 

Note! The measured value itself is not used in this equation. Hence, if the 
measurement noise is predetermined, the error covariance matrix can be calcu
lated for all instants of time in advance, and stored as a table to speed up the 
execution of time critical software. 

There are two time-update equations, such as equations (6.50) and (6.51). 

i ( / i + l | / ! ) = F(/!)i(w|/i) (6.50) 

C(n + 1 | n) = F(n) C(n | n) FT(«) + G(n) Q(w) GT(n) (6.51) 

In equation (6.50) the estimate is updated recursively one step at a time, 
using the model of the process (of which we are estimating the state vector 
variable). The model is represented by the state transition matrix F(n). So 
far, no measurements are taken into account in that we are only updating by 
"dead reckoning" using the process model. Equation (6.51) updates the error 
covariance matrix using the model and taking the process noise into account. 
Q(n) is the model of the process noise, while the matrix G(n) makes the coupling 
between the process noise and the state vector variable. 

Case 1: excellent measurement signal quality, R(n) = 0 
Equation (6.48) turns into 

x(n | n) = x(n \ n - 1) + C(/i | n - 1) H(«)(HT(«) C(n\n- 1) 

R(n))-\z(n) - RT(n)x(n \ n - 1)) 
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= i(n | n - 1) + C(n | n - 1 ) H ( « ) ( H ( M ) ) - 1 ( C ( « | n - 1))_1 

( H T ( I I ) ) - 1 ( Z ( » ) - H T ( « ) X ( » I | « - 1 ) ) 

= i(» | n - 1) + (HT(«))-1(z(«) - HT(«)i(n | n - 1)) 

= (UT(n))-lz(n) 

From this, we see that the estimate is calculated directly from the measurement 
signal. 

Equation (6.49) turns into 

C(w | n) = C(#i | n - 1) - C(n \ n - 1) H(«)(HT(«) C(n\n- 1) 

H w r ^ ^ q / i i w - i ) 
= C(w I n - 1) - C(w | n - ^ H ^ X H ^ ) ) " 1 ^ ^ |« - 1))_1 

( H ^ r ^ ^ w J C C / i l n - l ) 

= C(n\n- l)-C(n\n- 1) = 0 

which is not surprising, since our measurements are noise free and perfect, with 
no estimation error. 

Equation (6.50) is not affected, since it does not deal with R(«). This is also 
true for equation (6.51). The internal process (signal) model of the filter is 
updated. 

So, in short, the output of the filter will rely solely on the input signal and 
the internal model in the filter is updated. 

Case 2: extremely bad measurement signal quality, R(n) -> oo 
Equation (6.48) turns into 

x(n \ri) = x(n \n — 1) 

That is, as we do not pay any attention at all to the incoming measurements 
(since the quality is so poor), the estimate is not updated. 

Equation (6.49) turns into 

C(n\n) = C{n\n- 1) 

which means that the error covariance is not changed, i.e. the quality of the 
estimate is not increased, since no useful measured data is available. 

Equation (6.50) updates the estimate according to the internal signal model, 
and equation (6.51) updates the error covariance matrix in a way predicted by 
the process model. 

So, in short, the output of the filter will rely solely on the internal signal 
model and the incoming measured data will be ignored. 

P6-2 

Inserting equation (6.48) into equation (6.50) we get 

%n + 11 n) = F(n) i(n \ n - 1) + F(w) C(n \ n - 1) H(n)(HT(n) 

C(n\n- l)H(/i) + R(n)yl(z(n) - UT(n)x(n \n-l)) 

(A.l.6.1) 



300 Digital Signal Processing and Applications 

By defining K(n) = F(«) C(n\n- 1) H(n)(HT(«) C(n | n - 1) H(n) + R(n))~\ 
equation (Al .6.1) can be rewritten as 

i(» + 11») = F(») i(n | n - 1) + K(«)(z(n) - HT(n) x(n\n- 1)) 

(A. 1.6.2) 

Equations (6.52) and (6.53) follow. 
In a similar way, equation (6.49) is inserted into equation (6.51) to obtain the 

Riccatti equation (6.54) 

C(« + 11 n) = F(«)(C(« | n - 1) - C(n | n - l)H(n)(HT(«) C(« |» - 1) 

H(») + R(«))-'HT(«) C(n \ n - l))FT(n) 

+ G(w)Q(n)GT(«) 

Case 1: excellent measurement signal quality, R(n) = 0 
The Kalman gain equation (6.53) will turn into 

K(n) = F(«) C(n | n - 1) H(n)(HT(«) C(« | n - 1) H(n)) -1 

and the output will be equation (6.52) 

x ( n + l | n ) = F ( « ) x ( n | » - l ) 

= F(n) x(n | n - 1) + F(«) C(n\n- 1) H(«)(HT(«) C(« | n - 1) 

H(«))_1(z(») - HT(n)x(n | n - 1)) 

= F(n)x(« | n - 1) + F(M)C(« | n - 1)H(«XH(»))_1 

(C(« | n - l))-1(HT(«))"1(z(n) - HT(n)x(n | n - 1)) 

= F(n)x(n |« - 1) + F(«)(HT(n))-1(z(n) - HT(n)x(n |« - 1)) 

= F ^ X H 1 ^ ) ) - 1 ^ ) 

The Riccatti equation (6.54) will be 

C(« + 11 n) 

= F(«)(C(« | H - 1) - C(« | H - l)H(«)(HT(«)C(n | n - 1) 

H C n ) ) - 1 ^ ^ ) C(» |» - l))FT(n) + G(«) Q(n) GT(«) 

= F(«XC(n |» - 1) - C(» | B - l)H(»XH(n))-1(C(ii | n - l ) ) - 1 

(HT(«))_1HT(«) C(« | n — 1))FT(«) + G(») Q(«) GT(«) 

= G(«)Q(«)GT(«) 

In this case, as in P6-1, the output of the filter will be based completely on the 
measured input signal. The error covariance will be equal to the impact of the 
process noise on the "reality", making it deviate from the expected "perfect" 
model. 

Case 2: extremely bad measurement signal quality, R(«) ->• oo 
The Kalman gain equation (6.53) will turn into 

K(») = 0 
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i.e. the innovation is completely disconnected from the filter (see Figure 6.3). 
The output equation (6.52) will be 

i ( / ! + l | 7 ! ) = F ( « ) i ( H | / l - 1) 

i.e. the output signal is only based on the internal process model (compare to 
P6-1). Finally, the Riccatti equation (6.54) 

C(n + 1 | n) = F(/i)(C(n | n - 1) ¥T(n) + G(n) Q(») GT(n) 

The error covariance will be updated according to what could be expected 
taking the process model into account, and added to this is the uncertainty of 
the process due to the process noise. 

In this case, as in P6-1, the output of the filter will be the based completely 
on the internal model. 

P6-3 

The program may look something like the below: 

% pr63.m 

% signal model 
F=[l 1; 0 1] ; 
G=[0; 1] ; 
H=[l; 0] ; 
w=0.15; 
v=10; 
X=[0; 1] ; 

% transition matrix 
% drive vector 
% observation vector 
% amplitude process noise 
% amplitude measurement noise 
% state vector, reality 

% simulation params 
N=100; 
xl=zeros(N); 
x2=zeros(N); 
z=zeros(N); 

% sim length 
% plot vector 
% plot vector 
% measurement vector 

% reality 
for k=l:N 
x=F*x+G*w*randn; 

z(k)=H'*x+v*randn; 
xl(k)=x(l); 
x2(k)=x(2); 

end 

% update state vector 
% measurement 

%plot 
elf reset; 
subplot(3,1,1); 
plot(x2); 
axis( [1 N 0 10]) ; 
title('velocity') 
subplot(3,1,2); 
plot(xl); 
axis([1 N 0 200]); 
title ( 'position') 

% clear graph 
% plot velocity 

% plot position 
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subplot(3,1,3); 
plot(z); 
axis([1 N 0 200]) 
title('measured') 

% plot measurement 

The plots should look the same as in Figure 6.4. The output of the program 
is the vector z, containing all the measured data. 

P6-4 

The program may look something like the below. Note! The program used 
in P6-3 above must be run first in order to obtain the measurement: data in 
vector z: 

% pr64.m 

% signal model 
F=[l 1; 0 1] ; 
G=[0; 1] ; 
H=[l; 0] ; 

% transition matrix 
% drive vector 
% observation vector 

% filter 
Q=0.2; 
R=4; 
xhat=[0; 0]; 
C=[l 1; 1 1] ; 
Kalm=[l; 1] ; 

% simulation params 
N=100; 
xl=zeros(N); 
x2=zeros(N); 

% variance, process noise 
% variance, measurement noise 
% estimated state vector 
% covariance matrix 
% Kalman gain matrix 

% sim length 
% plot vector 
% plot vector 

% filter 
for k=l:N 

% Riccati equation 
C=F*(C-C*H*inv(H'*C*H+R)*H'*C)*F+G*Q*G'; 

% Kalman gain 
Kalm=F*C*H*inv(H'*C*H+R); 

% estimation 
xhat=F*xhat+Kalm*(z(k)-H1*xhat); 

xl(k)=xhat(l); 
x2(k)=xhat(2); 

end 

figure; 
subplot(3,1,1); 
plot(x2) ; 
axis([1 N 0 10]); 
title('estimated velocity'! 
subplot(3,1,2); 

% plot estimated velocity 

% plot estimated position 
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plot(xl); 
axis([1 N 0 200]); 
title('estimated position') 

The plots should look the same as in Figure 6.5. 

Chapter 7 P7-1 

Decompressing the string Otoh0eo_ih3m3_5e0o0r6_8s3s (start with an 
empty dictionary) yields 

Dictionary 

0 nothing 
1 t 
2 h 
3 e 
4 
5 th 
6 em 
7 e_ 
8 the 
9 o 
A r 
B em_ 
C thes 
D es 
E 
F 

Decompressed string 

the_theme_theorem_theses 

P7-2 

There are alternative solutions; one is presented in Figure Al. 16. The Huffman 
code thus obtained is 

1 
2 
3 
4 
5 
6 
7 
8 

1 
Oil 
010 
00011 
001 
00010 
00001 
00000 

P7-3 

The entropy is calculated by H = - £ ? = 1 Pi Vofa) = 2.1658 bits/symbol. The 
average symbol length is obtained by L = ]jr?=1 /?,-/,• = 2.1840 bits/symbol. The 
coding efficiency is rj=H/L = 2.1658/2.1840 = 0.992 and the redundancy, 
R = 1 - (H/L) =l-rj = l - (2.1658/2.1840) = 0.008 bits/symbol. 
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0.128 

1.000 

0.512 

0.032 

0.032 

Figure A1.16 Binary tree for Huffman code (there are other possible 
solutions) 

P7-4 

The program may look something like the below: 

% pr74.m 

% simulate delta modulator 

n=l:500; 

omega=pi/100; 
A=l; 

% source 
x=A*cos(omega*n); 

% encoder 
delta=.08; 
s=zeros(1,length(x)+1); 
xhat=zeros(1,length(x)+1); 

xhat(1)=0; 
S(1)=0; 
for i=2:length(x) 
xhat(i)=xhat(i-1)+s(i-1) 
d=x(i)-xhat(i); 
if d>=0 

s(i)=delta; 
else 

% sample number 

% angular frequency 
% amplitude 

% signal 

% output 
% predicted x 

% initialize 

% prediction 
% quantization 
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Figure A1.17 Output of properly working delta modulator 

s ( i ) = - d e l t a ; 
end 

end 

% decoder 
y = z e r o s ( 1 , l e n g t h ( x ) + 1 ) ; % decoded ou tpu t y 
y ( l ) = 0 ; % i n i t i a l i z e 
for i = 2 : l e n g t h ( x ) 

y ( i ) = y ( i - l ) + s ( i - l ) ; 
end 
p l o t ( y ) % p l o t ou tpu t 

Running the system with initial settings as in the code example above, every
thing works fine. The output is shown in Figure A1.17. If the amplitude is 
increased to A = 5, slope overload occurs (see Figure A1.18). The problem is 
that the stepwise approximation produced by the delta modulator cannot keep 
up with the slope of the input signal. The same problem occurs if the fre
quency of the input signal increases. The remedy is to use a larger step size. In 
Figure A 1.19, granularity error is shown. In this case, the amplitude of the 
signal is small, A = 0.1, and the too-large step size causes excessive ripple. 

Chapter 8 P8-1 

(a) The code rate R = k/n=l/5 = 0.2 
(b) The number of parity bits n — k = 5 — 1 = 4 
(c) The maximum Hamming distance, since k = 1 there are only two code 

words 00000 and 11111, hence only one Hamming distance, d = 5 
(d) Error-correction capacity t=[(d - 1)/2J = |_2J = 2 bits/code word 
(e) Error-detection capacity y — d - 1 = 5 — 1 = 4 bits/code word 

T i i r 

J I I I I 



306 Digital Signal Processing and Applications 

600 

Figure A1.18 Slope overload, step too small, amplitude and/or signal 
frequency too high and the delta modulator cannot keep up with the 
sinus signal 

600 

Figure A1.19 Granularity error, step size too large or signal amplitude 
too small 

(f) The symbol error probability, i.e. the probability of transmission error 
when using error correction by majority vote decoding 

n / ^ 
n-i) 

I=H-I ^ ' 
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Figure Al.20 Block diagram, convolution encoder for Jet Propulsion 
Lab (2,1,6) 

= 10 • 0.053 • 0.952 + 5 • 0.054 • 0.95 + 1 • 0.055 

= 1.16- 10~3 

P8-2 

The notation for convolution codes is (n,k,m) = (291,6) where n = 2 is the 
number of generators, k=\ the number of data bits and m = 6 the number of 
delay elements in the encoder. 

(a) Since there are m = 6 delay elements the number of states is 26 = 64 states 
(b) The length of the tail (on the output) is equal to the number of delay 

elements multiplied by the number of generators, i.e. m-n = 6-2= 12 bits 
(corresponding to 6 bits on the input) 

(c) The constraint length is given by ns = (m + \)n = (6 + 1) • 2 = 14 bits 
(d) The code rate is given by R = L/((L + m)n) = 8/((8 + 6) • 2) = 0.286 where 

L — 8 bits, since we are transmitting a byte 
(e) See Figure A 1.20 
(f) Using a diagram of the encoder as in (e), the output sequence can be 

determined given the input sequence 10110101. The generators are (see 
Section 8.2.4) 

gW = (1,1,0,1,1,0,1) g& = (1,0,0,1,1,1,1) 

The output sequence will be (including tail): 
1110111001010101110010000111 

P8-3 

A suggested MATLAB™ program is found below: 

% pr83 

p=0:0.01:1; % error probability vector 

% calculate capacity 
c=l+(p.*log(p)+(l-p).*log(l-p))/log(2); 
plot(p,c) % plot 
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Figure A1.21 Channel capacity of the BSC as a function of bit error 
probability 

The resulting plot is shown in Figure A 1.21. It is interesting to note that if 
the error probability is 0, the channel, of course, works fine. But if the error 
probability is 1, i.e. all bits are wrong (inverted), it works as well. The worst 
case is for the error probability to be equal to 0.5 when no information passes 
through the channel. One could continue guessing. 

P8-4 

We have C = Wlb(l +X/W) since N0 = l, the MATLAB™ program is found 
below: 

% pr84 

x=logspace(-18,-9); 
w=logspace(3,6); 

N0=4e-21; 

[X,W] = MESHGRID(x,w); 
z=W*log(l+X./(W*N0))/ log(2); 
s u r f 1 ( x , w , z ) ; 
co lo rmap(g ray ) ; 

% power 
% bandwidth 

% noise density 

% prepare input values 
% calculate capacity 
% plot 

The plot is shown in Figure Al .22. 
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Figure A1.22 Channel capacity of the Gaussian channel, capacity (C) versus 
bandwidth (W) and signal power (X) 

Chapter 9 P9-1 

From the transfer function H(z) = J^k=o bkz~k with bk = l/N the difference 
equation can easily be obtained 

=• Y(z) = i (x(z) + X(z)z~x +X{z)z-2 + • • • + X(z)z^~1) 

=*y(n) = —(x(n)+x(n- 1) +x(n - 2) + • • • +x(n - N + 1)) 

(Al.9.1) 

Assiune the worst case, i.e. every incoming sample x(n) has maximum pos
itive amplitude. Considering that the input bus width is 16 bits, the maximum 
positive amplitude would be 216 - 1, i.e. all ones. We have to add all the N 
samples in the accumulator before dividing the sum by N. Doing it the other 
way, i.e. dividing the samples before adding in the accumulator is not a good 
idea. Small sample values may be truncated (i.e. approximated to zero, due to 
the limited resolution), implying that a series of small sample values may result 
in an erroneous output signal. 

Since the accumulator consisting of 24 bits has a maximum value of 224 — 1, 
we realize that 

iV(216 - 1) < (224 - ! ) = > # < ^ | « ^ = 28 = 256 
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Now, the analysis above is very pessimistic. Firstly, it is probably not very likely 
that all incoming samples will have maximum positive amplitude. Secondly, if 
the DSP in use has wraparound arithmetic, and we know that the output average 
values should be within the given range, overflow in the accumulator does not 
matter. 

Applying scaling to the input samples may be risky for the truncation reasons 
given above. 

P9-2 

If we assume that the filter length in P9-1 is N = 256 and that bk == \/N it 
is obvious that using the MAC instruction is overkill, since we do not need 
to multiply by one. If there is a simpler type of instruction, like "add-and-
accumulate" in the instruction repertoire of the DSP, it should preferably be used. 
Anyway, since the sampling frequency is 200 kHz, the sampling time is /s = 5 |xs 
which is also the maximum loop time since tv < ts. The loop typically contains 
instructions for: reading the input, adding and accumulating, increasing (or 
decreasing) and testing a loop counter and branching. Doing this in 5 u.s should 
not be a problem using a DSP chip. It would probably also be possible to use a 
fast standard microprocessor chip. 

No data memory, except for processor registers, is needed if the filter is 
implemented for batch mode operation as outlined above. That is, 256 input 
samples are collected and the average is calculated. If, however, a running 
average is required, we have another situation. In such a case an output value 
should be delivered at every sampling instant, based on the past 256 samples. 
This means that we need to store the past 256 samples in a delay-line type list 
in the memory, hence requiring 256 • 2 = 512 bytes of memory. This is no big 
problem, but the allowed execution time is certainly a problem. The allowed 
processing time for the loop is now approximately tp = (5 • 10_6)/256 = 19 ns 
which is definitely not possible, even if using a top speed DSP of today. This 
would probably require a parallel hardware implementation, for instance using 
fast ASICs or FPGAs. 

In this particular case, however, a trick can be used. Rewriting the origi
nal difference equation (Al.9.1) into a recursive form (see Chapter 1, Section 
1.3.12) yields 

y(n)-y(n - 1) = -(x(n)+x(n - l)+x(n - 2) + • • • +x(n -N + 1)) 

(x(n - l)+x(n - 2) +x(n - 3) + • • • + x(n - N)) 

= ±-(x(n)-x(n-N)) 

which can be rewritten as (see also equation (1.49)) 

y(n) = y(n - 1) + ±(x(n) - x(n - N)) (Al.9.2) 

This is a comb-type filter (see Chapter 2, Section 2.3.7) and is quite simple to 
implement. In this case, we need to make one subtraction, one multiplication 
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Table A1.2 Transition table for the simplified Morse code 
receiver, indices are event numbers and old state numbers, 
values in the table are new state numbers 

Event 

1 
2 
3 

1 

2 
5 
1 

2 

1 
4 
3 

3 

1 
1 
1 

Old state 

4 

1 
1 
1 

5 

7 
1 
6 

6 

1 
1 
1 

7 

1 
1 
1 

Figure A1.23 State transition diagram for the simplified Morse code receiver 

and one addition and accumulation for each run through the loop, which should 
not be any problem to perform in 5 |xs. The memory requirement would be 
512 bytes, as above. 

Conclusion: finding efficient and smart algorithms is important! 

P9-3 

From Table 9.1 we get a = 0.225=* 0001 and Z> = -0.125 =* 1111, which gives 
the sum 0000 and multiplied by c = 4 gives 0000 => 0. Doing the calculations the 
other way yields: ca = 0.900 =* 0111 and cb = -0.5 => 1100, summing gives 
0111 + 1100 = 0011 => 0.375. The "true" answer is 0.400. 

Obviously, the last method gives a better result. In the first case, the limited 
resolution caused a cancellation, since the difference was smaller than 1 LSB. 
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A potential problem with the latter method is of course the risk of overflow. 
Working with scaling and limited resolution is a delicate task. 

P9-4 

We have the following seven states: 

State 1: wait for signal to arrive 
State 2: wait for second part of letter or time out, i.e 
State 3: print "e", symbol complete 
State 4: print "a", symbol complete 
State 5: wait for second part of letter or time out, i.e 
State 6: print "t", symbol complete 
State 7: print "n", symbol complete 

Further, we can identify three events: 

Event 1: dot received 
Event 2: dash received 
Event 3: time out, i.e. no signal received within 1 s, i.e. symbol complete 

The state transition can be summarized by Table Al .2, and the transition state 
diagram is depicted in Figure A 1.23. 

symbol complete 

symbol complete 



Appendix 2 AMATLAB™/ 
Simulink™ 
primer 

A2.1 Introduction This primer is not intended to be a complete tutorial, but only a quick way of 
getting started with MATLAB™ if you are not an experienced user. There are 
many good books around on this particular topic (Buck et al, 2002; Pratap, 
2002). It is also quite common that an introductory chapter in many signal 
processing books deal with MATLAB™, for instance Denbigh (1998) and 
Tewari (2002). Anyway, here comes yet another introductory text to this well-
known and versatile software package. 

A2.1.1 The software 

MATLAB™ is a software package for numerical computation and visualization 
and is a product of The MathWorks Inc., www.mathworks.com. The acronym 
MATLAB™ stands for MATrix LABoratory, since the basic data type in the 
system is the matrix. MATLAB™ not only has powerful built-in functions for 
basic matrix algebra and graphics, but also for many types of highly advanced 
scientific and technical computations. Further, the user can easily write his own 
functions in the MATLAB™ language. There are also a vast number of optional 
"toolboxes", i.e. collections of functions for special applications available. Such 
applications could be image processing, filter design, neural networks, fuzzy 
logic, spline, etc. In this text we assume that you have the basic software package 
and the signal processing and control system toolboxes. 

Simulink™ is an extension of MATLAB™ and is a tool for modeling, ana
lyzing, and simulating physical and mathematical dynamic systems. We will 
give a brief presentation and some examples using Simulink™ you can try as 
well, provided you have that extension installed on your computer. 

A2.2 Basics MATLAB™ is a command-based, interactive system, awaiting for you to type 
a proper command after the prompt >>. One of the most useful commands is 
help. Try typing this command and you will get a list of all the available built-in 
functions and commands in your system. For example: 

>> help 

HELP topics: 

matlab\general - General purpose commands. 
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matlab\ops 
matlab\lang 
matlab\elmat 

matlab\elfun 
matlab\specfun 
matlab\matfun 

matlab\datafun 

matlab\audio 
matlab\polyfun 
matlab\funfun 
matlab\sparfun 
matlab\graph2d 
matlab\graph3d 
matlab\specgraph 
matlab\graphics 
matlab\uitools 
matlab\strfun 
matlab\iofun 
matlab\timefun 
matlab\datatypes 
matlab\verctrl 
matlab\winfun 

winfun\comcli 
matlab\demos 
toolbox\local 
s imulink\s imulink 
simulink\blocks 
s imulink\component s 
simulink\fixedandfloat 
s imulink\s imdemos 

simdemos\simfeatures 

simdemos\simgeneral 

simulink\dee 

simulink\dastudio 
asap2\asap2 
asap2\user 
toolbox\compiler 
control\control 
control\ctrlguis 

control\ctrlobsolete 

control\ctrlutil 
control\ctrldemos 
toolbox\sb2sl 

signal\signal 
signal\sigtools 

signal\sptoolgui 

Operators and special characters. 
Programming language constructs. 
Elementary matrices and matrix 
manipulation. 
Elementary math functions. 
Specialized math functions. 
Matrix functions - numerical linear 
algebra. 
Data analysis and Fourier 
transforms. 
Audio support. 
Interpolation and polynomials. 
Function functions and ODE solvers. 
Sparse matrices. 
Two-dimensional graphs. 
Three-dimensional graphs. 
Specialized graphs. 
Handle graphics. 
Graphical user interface tools. 
Character strings. 
File input/output. 
Time and dates. 
Data types and structures. 
Version control. 
Windows operating system interface 
files (DDE/COM). 
No table of contents file. 
Examples and demonstrations. 
Preferences. 
Simulink. 
Simulink block library. 
Simulink components. 
No table of contents file. 
Simulink 4 demonstrations and 
samples. 
Simulink: feature demonstrations 
and samples. 
Simulink: general model demon
strations and samples. 
Differential equation editor. 
No table of contents file. 
No table of contents file. 
No table of contents file. 
MATLAB compiler. 
Control system toolbox. 
Control system toolbox - GUI support 
functions. 
Control system toolbox - obsolete 
commands. 
No table of contents file. 
Control system toolbox - demos. 
SB2SL (converts systembuild to 
Simulink). 
Signal processing toolbox. 
Filter design and analysis tool 
(GUI). 
Signal processing toolbox GUI. 
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signal\sigdemos - Signal processing toolbox 
demonstrations. 

For more help on directory/topic, type "help topic". 
For command syntax information, type "help syntax". 

>> 

If you type help followed by a function or command, you will obtain more 
information about that particular function. Try, for instance, help abs which 
will give you the help text for the abs function (giving the absolute value of the 
argument): 

>> he lp abs 

ABS Absolute value. 
ABS(X) is the absolute value of the elements of X. When 
X is complex, ABS(X) is the complex modulus (magnitude) of 
the elements of X. 

See also SIGN, ANGLE, UNWRAP. 

Overloaded methods 
help iddata/abs.m 
help sym/abs.m 

>> 

Another useful command is demo. Try that for yourself. 

A2.2.1 Some simple math 

The easiest way of using MATLAB™ is as an interactive calculator. Try the 
following basic calculations and always end your command lines by pressing 
the "return" key: 

>> 5*7 

ans = 

35 

>> pi/2 

ans = 

1.5708 

>> (45+7)*9/(12-3-90) 

ans = 

-5.7778 

>> 2~4 

ans = 

16 

>> 
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Table A2.1 Some common MATLAB™ functions 

Common math 

e* 
ln(x) 
log(x) 
lb(x) 
y/x 

sin(x) 
cos(x) 
tan(x) 
arcsin(x) 
arccos(x) 
arctan(x) 
x\ 

MATLAB™ 

exp (x) 
log(x) 
loglO(x) 
log2(x) 
s q r t ( x ) 
s i n (x ) 
cos(x) 
t an (x ) 
a s i n ( x ) 
acos(x) 
atari (x) 
f a c t o r i a l ( x ) 

Comment 

Natural logarithm 
Logarithm base 10 
Logarithm base 2 

x in radians 
x in radians 
x in radians 
Gives radians 
Gives radians 
Gives radians, see also atan2(x) 

As you can see, the result is assigned to a variable called ans. Further, the 
constant n is, not surprisingly, denoted pi. Further, the operand ~ corresponds 
to "raised to". All calculations in MATLAB™ are done in double precision, i.e. 
with 15 digit resolution. Using the command format you can, however, switch 
between different display formats. Try, for instance: 

>> format long 
>> pi/2 

1.57079632679490 

>> format 
>> p i / 2 

ans = 

1.5708 

Default is five digits and is obtained by typing format only. Try help 
format to find out what other display options are available. Table A2.1 shows 
some common mathematical functions in MATLAB™, however, there are many 
more. Remember that you can always use help to obtain more information about 
a particular function. 

A2.2.2 Variables, scalars, vectors and matrices 

A2.2.2.1 Scalars 

The basic data type in MATLAB™ is the matrix. A row vector can be viewed as 
[I xN] matrix and column vector as matrix with dimensions [N x 1]. A scalar 
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is of course a matrix [ l x l ] . Variable names can be up to 19 characters. The first 
character must be a letter, but the remainder can be letters, digits or underscores. 
MATLAB™ is case sensitive, i.e. it distinguishes between small and capital 
letters. Assigning a number to a variable is straightforward: 

>> A_variable=19 

A_variable = 

19 

>> another_variable=-4; 
>> 

Note that the value of a variable is printed immediately after the command is 
given, while if the command is ended with a semicolon, no message is printed. 
As soon as the variable name is typed, the value will be printed. The variables 
can, of course, be parts of equations, for instance: 

>> 3*A_variable/another_variable 

ans = 

-14.2500 

>> 

A2.2.2.2 Vectors and matrices 

Above, we have assigned values to two scalar variables. Assigning values to a 
row vector x = [1 2 3] would look like: 

>> x = [ 1 , 2 , 3 ] ; 
>> 

where the commas can be omitted. A column vector y: 

by typing: 

can be assigned 

> > y = [ 4 ; 5] 
>> 

where we note that semicolons, in matrices, are used to mark the end of a row. 
~10 11 12] 

13 14 15 
Finally, let us define a matrix B = 

>> B = [ 1 0 , 1 1 , 1 2 ; 1 3 , 1 4 , 1 5 ] ; 
>> 

All the variables (scalars, vectors and matrices) defined so far are stored in 
the memory, called the workspace of MATLAB™. They are global and will 
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stay in the workspace until MATLAB™ is shut down. One way to keep track 
of your variables is to use the command who or whos: 

>> who 

Your variables are: 

A_variable another_variable x 
B ans y 

>> whos 
Name Size Bytes Class 

A_variable lx l 8 double array 
B 2x3 48 double array 
another_variable lx l 8 double array 
ans lx l 8 double array 
x 1x3 24 double array 
y 2x1 16 double array 

Grand t o t a l i s 14 elements using 112 bytes 

As you can see from the above, who only gives the names of your active 
variables, while whos gives a more detailed description. As mentioned before, 
once assigned, these variables will stay in the workspace. There is, however, a 
way to delete a variable, for instance, the vector x, by typing: 

>> clear x 
>> 

Check this using who. Typing clear a l l will delete all variables in the 
workspace. To continue our experiments, we assume that you have restored your 
variables as they were, before we started fooling around with the c lear com
mand above. You can use the up-arrow and down-arrow keys on your keyboard 
to find and reissue old commands given. This certainly saves time. 

A2.2.2.3 Vector and matrix computations 

Doing calculations with vectors and matrices is a little bit more complicated 
than dealing with scalars, since we need to keep track of the dimensions Further, 
the dimensions have to agree and in some algebraic operations, for instance, 
division is not defined for matrices. We must also remember that matrix calcula
tions are not commutative in the general case, i.e. it does matter in which order, 
for instance, chain multiplication is computed. Let us do some experiments. 
For example, if you try to add vector x to vector y an error message will result, 
since the vectors do not have the same dimensions: 

>> x+y 
??? Error using ==> + 
Matrix dimensions must agree. 
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Define a new row vector z = 2x which will have the same dimension as x, 
hence it should be possible to add z + x: 

>> Z=2*x; 
>> z+x 

a n s = 

3 6 9 

>> 

Let us now change the row vector z [1x3] into a column vector 
w = zT[3 x 1]. Obtaining the transpose is done using the ' operator: 

>> w=z' 

w = 

2 
4 
6 

>> 

If we now multiply the two vectors, xw we should expect the dimensions of 
the product matrix to be [1 x 3][3 x 1] = [1 x 1]: 

>> x*w 

a n s = 

28 

>> 

This is basically a dot product or "inner product" between the two vectors x 
and w, i.e. x • w = |x| |w| cos (a), where a is the angle between the vectors x and 
w. Now let us change the order of the vector multiplication to wx. In this case, 
computing the "outer product", we expect to obtain a matrix with dimensions 
[3x 1][1 x 3] = [3x3] . Let us try: 

>> w*x 

a n s = 

2 4 6 
4 8 12 
6 12 18 

>> 

So now the general rule is that if we type the operators *, ~, + or -, the actual 
action taken will depend on the type of the variables involved. For instance, if 
a and b are scalars the expression a*b will simply be a common multiplication, 
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while typing w*x will result in a matrix since two vectors were involved (as 
above). The operator / requires special explanation. For scalars, this is nothing 
but a simple division, but division is not defined for matrices. Nevertheless, the 
/ can actually be used with matrices in MATLAB™ but means multiplication 
from the right by the inverse of the second matrix, i.e. A/B = AB_ 1 ; note that 
this is a definition in MATLAB™ and not proper mathematics notation. There 
is indeed an alternative as well, using a backslash A\B = A_ 1B. By the way, 
taking the inverse of a matrix E in MATLAB™ is written inv ( E ). Anybody who 
has inverted matrices by hand or with a calculator agrees that this MATLAB™ 
command is extremely valuable. It saves lots of tedious work. 

Sometimes, one wishes to make operations between vectors or matrices on 
an element-to-element basis. For example, we would like to multiply the first 
element of vector x with the first element of vector z, the second element of 
x with the second element of z and so on. In this case the * operator cannot 
be used since vector multiplication would be assumed, and that is not what we 
want to do. It is not even possible with x and z, considering the dimensions. 
So, for this purpose, there are a number of special symbols in MATLAB™, 
starting with a dot, namely: .*, . / , . ~ and so on. For example: 

>> x*z 
??? Error using ==> * 
Inner matrix dimensions must agree. 

but 

>> X.*Z 

ans = 

2 8 18 

>> 

The first case did not work for the reasons given above, while the second one 
accomplished multiplication element by element, which was what we wanted. 
Note, even skilled MATLAB™ programmers forget the dots now and then. If 
you get mysterious error messages about dimensions where you do not expect 
any such problems, check your dots. 

A2.2.2.4 Addressing vectors and matrices 

So far we have been working with vectors and matrices as a whole, but some
times there is a need to pick out a specific element of a vector or matrix, or 
maybe even a given set of elements. Hence, we need to be able to address a spe
cific element. This is easily accomplished using parentheses as below. Assume 
that we want the second element of vector x or the third element in the second 
row of matrix B: 

> x ( 2 ) 

a n s = 

2 
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>> B ( 2 , 3 ) 

a n s = 

15 

>> 

Note, unlike other computer languages as, for instance, C++, the first ele
ment in a vector or matrix in MATLAB™, has the index number 1. There is no 
element number 0. If we need to address a given set of elements, we may need 
to create a sequence of integers. For example, assume that we have a vector d 
consisting of 1027 elements, and we need to get a hold of elements 827-835. In 
this case, it would, of course, be quite simple to use the method outlined above, 
but a smarter way is to define a sequence of integers: 827,828,... , 835 and use 
the sequence to point into the vector. Creating a sequence in MATLAB™ is 
easy: 

>> 827:835 

ans = 

827 828 829 830 831 832 833 834 835 

>> 

Getting the desired elements of vector d would look like 

>> d(827:835) 

ans = 

Columns 1 through 8 

0.7439 0.8068 0.6376 0.2513 0.1443 0.6516 0.9461 0.8159 

Column 9 

0.9302 

>> 

A2.2.2.5 Sequences 

In Section A2.2.2.4, a simple example of a sequence was shown. We needed a 
sequence of integers between two given limits. This was adequate for addressing 
a vector, since only integers are accepted as index. In other situations, however, 
other types of sequences are needed. An example could be to get a proper axis 
for a plot. The first alternative sequence is an extension of what was shown 
above. Suppose we need a linear sequence t with a non-integer step size, for 
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instance a time scale from 0 to 2 s, in increments of 0.25 s: 

>> t=0:0.25:2 

t = 

Columns 1 through 8 

0 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 

Column 9 

2.0000 

>> 

An alternative could be the MATLAB™ function l inspace (xi, X2, N), 
giving a sequence starting with xi, ending with X2 and consisting of N steps: 

>> linspace(0,2, 9) 

ans = 

Columns 1 through 8 

0 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 

Column 9 

2.0000 

>> 

In certain applications a logarithmic sequence is required; in such cases, use 
the function logspace (xi, X2, N) . It generates a sequence between decades 
i(Txi and io~x2 in N steps: 

>> logspace(1, 3, 8) 

ans = 

1.0e+003 * 

0.0100 0.0193 0.0373 0.0720 0.1389 0.2683 0.5179 1.0000 

>> 

For some situations in which an all 0 or all 1 vector (sequence) is needed, try 
the commands: 

>> z e r o s ( 1 , 6) 

ans = 

0 0 0 0 0 0 
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>> o n e s ( 1 , 8) 

ans = 

1 1 1 1 1 1 1 1 

>> 

In these examples, vectors were created. Generating matrices is equally as 
easy, by simply replacing the initial parameter l with the number of rows in the 
desired matrix. 

A2.2.3 Basic input/output and graphics 

A2.2.3.1 Input 

To input values or strings from the keyboard, the input statement can be used. 
First it prompts the user and then awaits a numerical value, a defined variable 
or a string (see help input): 

>> r= inpu t ( ' how o ld a r e you? ' ) 
how o ld a r e you? 19 

r = 

19 

>> 

To read data from files, there are a number of functions depending on the 
type of file. Reading, for instance, a simple binary file, the commands fopen 
and f read can be used. These functions resemble much of the same commands 
used in C++: 

>> filhand=fopen('test.dat'); 
>> data=fread(filhand); 
>> data 

data = 

1 
2 
3 

>> fclose(filhand); 
>> 

The code above first opens a binary file named t e s t . dat . A file handle is 
assigned to the variable f i lhand. The file handle is from here on used to identify 
this particular file, in case more than one file is open at the same time. The file is 
opened for reading data only (default); for more information see help fopen. 
The actual reading takes place on the second line, where the data read from 
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the file using f read (f ilhand) is assigned to the vector variable data. Finally, 
calling this variable, we see the contents of the read data file, the three numbers: 
1 2 3. After reading the file it should be closed, using f close (f i lhand). For 
more information about reading files, consult help f i leformats and help 
iof un. There are functions for reading a number of common file types, for 
instance, a special function for reading audio files (.wav) wavread, making it 
easy to read and manipulate sound files. 

A2.2.3.2 Numerical and character output 

Printing the value of a variable on the computer screen is quite straightforward 
by typing the name of the variable as above. If we need to include a given text, 
the function disp can be used: 

>> d i sp ( ' t he values in the variable data a r e ' ) / disp(data) 
the values in the var iable data are 

1 
2 
3 

>> 

Another feature of MATLAB™ is demonstrated above; more than one com
mand can be put on the same line, provided they are separated by a comma 
or semicolon. The first disp displays the given string, while the second disp 
prints the values of the variable data. Note, the name of the variable is not 
shown, as would have been the case typing data only. 

Printing to files can be performed by using the functions f open and f write: 

>> file_id=fopen(•test2.bin','w'); 
>> fwrite(file_id,x); 
>> fclose(file_id); 
>> 

First we open the file t e s t 2 . bin for writing (»w •). The file handle in this 
example is called f i le_id. On the second line, the actual writing of vector x 
takes place, and finally the file is closed. There are lots of alternative commands 
and arguments for these functions, so please consult the help texts. 

A2.2.3.3 Graphic output 

One of the great things with MATLAB™ is that it is easy to obtain nice plots in 
two or three dimensions and in color and so on. Here, we only demonstrate some 
basic types, but try the demo and help functions to obtain more information. 
Let us start by a simple example of plotting the function y(t) = 2 sin(atf) for the 
frequency 5 kHz, where co = 2nf = lit • 5 • 103. Note that a comment, i.e. text 
not being processed by MATLAB™, is preceded by a % sign: 

>> f=5e3; % frequency 5kHz 
>> t=0:le-6:le-3; % time sequence, 0-1 ms in 1 us step 
>> y=2*sin(2*pi*f*t); % the function itself 
>> plot(t#y) % plot y versus t 
>> 
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Figure A2.1 An example of a simple two-dimensional, interpolated, 
continuous-time plot 

The resulting plot is shown in Figure A2.1. In this case we have not deter
mined the scaling of the axes. It is made automatically. Nor have we assigned 
any labels to the axes of the plot. There are lots of functions for taking care of 
these issues, use help plot . 

In the example above, we have approximated a continuous function in 1000 
discrete points. The plot function interpolates in between the sample points, so 
the resulting plot looks continuous. Assume that we would like to instead plot a 
"digital" sequence, without interpolating. Then, the function stem can be used: 

>> f=5e3; 
>> fs=le5; 
>> n=0:50; 
>> y=2*sin(2*pi*f*n/fs) 
>> stem(n,y) 

% frequency 5 kHz 
% sampling frequency 100 kHz 
% sample points 0-50 
% the function itself 
% discrete plot 

In this case we are using a sampling frequency of 100 kHz (f s ) and we choose 
to plot the first 51 sample points. Figure A2.2 shows the result. 

Making three-dimensional plots is a bit tricky, but gives excellent possibili
ties to visualize complicated mathematical functions. As in the previous cases 
above, we just give some simple examples, and there are numerous extensions 
and variations available. In this experiment we will make a three-dimensional 
plot of the function f(x, y) = cos(27or) cos(2jty) over the range -0.5 < x < 0.5 
and -0.5 <y< 0.5: 

>> [X,Y]=meshgrid(-.5:0.05:0.5,-0.5:0.05:0.5); 
% create a matrix with all 
% possible pairs of X and Y 

>> f=cos(2*pi.*X).*cos(2*pi.*Y); % compute the function f in 
% all these points 
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Figure A2.2 A discrete-time plot obtained using the function stem 
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Figure A2.3 A gray-scale three-dimensional plot 

» surfl(X,Y,f) 

>> colormap(gray) 

% plot a three-dimensional 
% surface 
% keep to gray scale to 
% avoid printing problems 

Note the use of dot operators to obtain elementwise computations. The final 
three-dimensional plot is shown in Figure A2.3. There are lots of possibilities 
using colors, shading, changing the viewing angle, etc. 



Appendix 2 A MATLAB™/Simulink™ primer 327 

A2.2.4 Other programming structures 

In all programming languages there are instructions and functions for con
trolling the execution flow, as is the case in MATLAB™. Thanks to the 
simple handling of matrices and vectors, however, the need for loop struc
tures is less than when using a general programming language such as, for 
instance, C++. 

A2.2.4.1 Conditional execution 

The basic conditional structure consists of the keywords if, e lse i f , e lse 
and end. Below, we have used these keywords to implement a soft limiter as in 
equation (4.10), repeated here for convenience: 

/ ( * ) ' 
a x > a 
x b<x<a (4.10) 
b x < b 

The corresponding MATLAB™ code may look something like given below: 

>> if x>a 
f=a; 

elseif x<b 
f=b; 

else 
f=x; 

end 

This type of structure does not need to have either e l se i f or e lse clauses, if 
not called for by the application. Note that the relational operator for equality is 
denoted == as in C++; the compatibility with C or C++ is, however, not total. 
Another structure with a strong resemblance to C++ is the switch structure. 
Below is an example testing the value of the variable x: 

switch x 
case 1 
disp('one'); 

case 2 
disp('two'); 

case 3 
disp('too much'); 

otherwise 
disp('something else1); 

end 

Note that unlike C or C++, only the statements between the valid case 
and the next case (or otherwise or end) are executed. Program flow does not 
fall-through and hence, break statements are not necessary. The otherwise 
statement above is optional. 
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A2.2.4.2 Loop structures 

Loops are in many cases not needed in MATLAB™, since vectors and sequences 
can often do the same job. However, in some cases loops are needed. The code 
example below will perform the same function as the vector-oriented approach 
in Section A2.2.3.3 above (i.e. this is an "unnecessary" loop application): 

>> f=5e3; 
>> fs=le5; 
>> y=zeros(1,51); 
>>for n=l:51 

y(n)=2*sin (2*pi*f*n/fs); 
end 
>> 

% frequency 5 kHz 
% sampling frequency 100 kHz 
% assign space for vector y 
% sample points 1-51 
% the function itself 

The keywords here are for and end. There are two things that differ from the 
previous implementation of this task in Section A2.2.3.3. Firstly, we need to 
allocate memory space for the vector y in advance, unlike in the example in Sec
tion A2.2.3.3. This is accomplished by defining a zero vector y = zeros ( l , 51). 
Secondly, we must now use the sampling index i -5 i , rather than o-50, since 0 
is not a valid addressing index for the y vector. 

Another loop structure is the while to end model. The above code can be 
rewritten using this method: 

>> f=5e3; 
>> fs=le5; 
>> y=zeros(1,51); 
>> n=l; 
>>while n<=51 

y(n)=2*sin(2*pi*f*n/fs); 
n=n+l; 
end 

% frequency 5 kHz 
% sampling frequency 100 kHz 
% assign space for vectoi: y 
% initialize loop index 
% loop unit point 52 
% the function itself 
% increment pointer 

In this case we are responsible for initializing and incrementing the loop index 
n. Sometimes this approach is superior, if complicated conditions for exiting 
the loop exist. On the other hand, failing to update the loop counter properly 
may result in an infinite loop. (In some applications infinite loops are created 
deliberately.) 

To skip out of an infinite loop, press ctrl-c on your keyboard. 

A2.3 Workspace, 
scripts and 

functions 

A2.3.1 The workspace 

In MATLAB™, the workspace is the memory where all of your active variables 
are stored. The workspace can be saved to disk, and later be restored. There are 
two ways of saving your workspace: 

>> save 
>> 

or 

>> save ( 'my_space .ma t ' ] 
>> 
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In the first case, the workspace is saved to the default file "matlab.mat". In 
the second case, you can give the workspace file a specific name, in case you 
need to work with a number of different workspaces for different purposes. 

To restore the workspace use: 

>> l o a d 
>> 

or 

>> load('my_space.mat'); 
>> 

As before, if no file name is given, the default file "matlab.mat" is used. If 
no file extension is given, .mat is assumed. 

To navigate around your files and directories, many old Microsoft DOS com
mands apply such as d i r for showing the files in the current directory and cd 
for changing directory and so on. The default start directory for MATLAB™ 
(where your workspace is stored) is named work. 

A2.3.2 Scripts and m-files 

Since MATLAB™ code consists of pure American standard code for infor
mation interchange (ASCII) characters, program code can easily be transferred 
between different operating system environments and different computers with
out any problems. Further, MATLAB™ program code can be written and edited 
in most text editors like Notepad™, Word™, Wordpad™ or the like. The code 
is saved as a text file. Such a saved code segment is called a script. If a script is 
saved as a text file with file suffix .m (so-called m-file), in the current directory, 
MATLAB™ will use this script as a new command having the same name as 
the file name (except the suffix). Let us have an example. First we write a script 
called conus as below and save it using the file name "conus.m": 

% conus-a f a n t a s t i c s c r i p t fo r computing the cos ine and s i n e 
% inpu t v a r i a b l e i s : q (angle in r ad i ans ) 

d i s p ( ' c o s i n e i s : ' ) , d i s p ( c o s ( q ) ) 
d i s p ( ' s i n e i s : ' ) , d i s p ( s i n ( q ) ) 

If we now type the following at the MATLAB™ prompt, the new command 
(m-file) will be directly invoked: 

>> q=pi/2; 
>> conus 
cosine is: 
6.1232e-017 

sine is: 
1 

>> 
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As you can see, MATLAB™ now has been equipped with yet another com
mand, conus. You may wonder why we have put all the comments over the 
script? Well, try the help command and you will understand: 

>> he lp conus 

conus - a fantastic script for computing the cosine and sine 
input variable is: q (angle in radians) 

>> 

A drawback with scripts is that all variables are global. This means that if you 
are using a variable called, for instance, t e s t (a very original name...?) in your 
current workspace and you run a script in which the very uncommon variable 
name t e s t is also used, but for another purpose, problems may occur. The 
variable t e s t in the script will overwrite the variable t e s t of your workspace, 
which may not be what you want. On the other hand, the same mechanism is 
deliberately used to transfer data into and out of a script. This is a limitation 
with scripts. There is no way of transferring data into the script without using 
global variables. 

A2.3.3 Functions 

Functions are cousins to scripts, but now the problem with global variables 
has been solved, since functions have their own "private" workspace and hence 
private variables. Therefore, there is no risk that variables, which happen to 
have the same name as variables in the workspace, interfere with each other. 
To be able to transfer data into a function, we now need a formal variable 
transfer mechanism. The example below shows an example function VAT, which 
computes the VAT for a given amount. This code is stored as a text file with 
name VAT.m, as for m-flles: 

% VAT(am, trate) 
% computes total amount including VAT 
% am is amount without tax, trate is tax rate in % 

function tot = VAT(am, trate) 
tot=am+am*trate/100 ; 

Running the function is now very simple. Assume we have sold digital filters 
for $120 and that the tax rate is 12%. Unfortunately, it has been 2 years since 
we used this function last, so we do not remember how to call it. Therefore, we 
first try the help command, before actually using the function: 

>> help VAT 

VAT(am, trate) 
computes total amount including VAT 
am is amount without tax, trate is tax rate in % 

>> VAT(120, 12) 



Appendix 2 A MATLAB™/Simulink™ primer 331 

ans = 

134.4000 

>> 

A2.4 Some useful 
functions 

A2.4.1 Linear systems 

There are four different model types within MATLAB™ to represent linear time 
invariant systems (LTI): these are transfer function (TF), zero-pole gain (ZPK), 

state-space (ss) and frequency response data (FRD). In MATLAB™ there are 
many functions to analyze and design linear systems. Some of these functions 
require the model to be of a specific type. For this reason, there are functions 
for converting one model type to another: 

>>s=tf(s); % converts model s to TF type 
>>s=zpk(s); % converts model s to ZPK type 
>>s=ss(s); % converts model s to SS type 
>>s=frd(s,freq); % converts model s to FRD type 

% freq is a frequency vector 

Note that FRD models cannot be converted to other types, and that conversion 
to FRD requires a frequency vector as input. Once the model has been converted 
to the desired type a number of useful functions are available. Some functions 
require the TF to be expressed as two vectors containing the coefficients of the 
numerator and denominator polynomials, e.g. B for numerator coefficients and 
A for denominator coefficients. If needed, these vectors can be converted to a 
TF model, e.g.: 

>> B=[0, 1, 1]; 
>> A=[l, 3, 1] ; 
>> H=tf(B,A) 

Transfer function: 
s + 1 

s~2 + 3 s + 1 

>> 

In this section we will present some functions that are extra useful when working 
with digital signal processing and control. In this text we have assumed that 
you have the toolboxes signal processing and control systems installed. By 
installing more toolboxes, many new functions can be obtained. There are, for 
instance, special toolboxes for interactive filter design, neural networks, image 
processing, fuzzy logic and wavelets. 
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For example, suppose we want a Bode plot of the TF H{s) — (s-\-\)/ 
(s2 + 3s1 + 1). First let us generate a TF model as above or by using the method 
shown below, and after that we make a Bode plot: 

>> s = tf('s'); H = (s+l)/(s~2+3*s+l) 

Transfer function: 
s + 1 

s 2 + 3 s + 1 

>> Bode(H) 
>> 

The obtained Bode plot is shown in Figure A2.4. 
An alternative function to plot the gain and phase shift versus frequency is 

freqs. In this case we need the coefficients of the numerator and denomina
tor polynomials expressed as two vectors. Further, we need a vector stating 
frequencies for which the TF is to be plotted. Starting with the numerator 
coefficients, we have B(s) = b\s + bo=s+l, =$>b\ = l,bo = l and these coef
ficients are stored in a row vector, starting with the coefficient corresponding to 
the highest order of s, B = [Z?2 b\ bo] = [0 1 1]. For the denominator we have 

0 

_ -10 
CO 

a> 
"§ -20 
c 
CO 
CO 
E 

-30 

bode diagram 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L_ _ 1 J 1 L.J 1 i J 

-

_ 1 _.,, 1 1 I..J J_JLSI 

CO 
0 

T3 

10-

— I 1 1 — I — I — I I I I T 1 1 1—I I I I I 

_J I I I I I I I.I, I I I I I 11 I I I I I I I 11 1 1 _ 

10 10° 
frequency (rad/s) 

Figure A2.4 Bode plot, in which the upper plot is the gain function and the 
lower plot is the phase shift function 
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A(s) = ci2S2 + a\s + ao = s1 + 3.9 + 1, =>a2 = l,a\=3,ao = l and the result
ing vector will be A = [#2 #i 0o] = [l 3 1]. Note that it is recommended that 
these two vectors have the same dimensions, to avoid mixing up the order of 
the coefficients. That is why we added a seemingly "useless" coefficient £2 = 0 
in the vector representing the numerator polynomial. Finally, we need to deter
mine a frequency vector, therefore we choose to use a logarithmic scale from 
lOOtolOOOOrad/s: 

>> B=[0, 1, 1 ] ; % numerator c o e f f i c i e n t s 
>> A=[l , 3, 1 ] ; % denominator c o e f f i c i e n t s 
>> W=logspace(2 ,4) ; % l o g a r i t h m i c frequency v e c t o r 
>> freqs(B,A,W) % p l o t ga in and phase s h i f t f unc t i ons 

Suppose we need the pole-zero map of the TF above. That could easily be 
obtained by using the following: 

>> pzmap(H) 

The pole-zero map is shown in Figure A2.5. 
If we are working in the z-plane, rather than the Laplace domain, a corre

sponding function f reqz is available. The arguments are basically the same, but 
the frequency vector can be expressed in Hz. Further, the sampling frequency 
has to be stated. The f reqz function can handle a variety of input arguments, 
see help f reqz. An example using f reqz could be as follows. Assume we 
have a comb filter (see Chapter 2) with TF H(z) = (l - z _ 5 ) / ( l - z - 1 ) , the 
sampling frequency is 44 kHz and we are interested in the frequency response 
in the range 0-15 kHz. Plot the gain and phase shift functions: 

>> B= [1 0 0 0 0 -1] ; % numerator coefficients 
>> A=[l -1 0 0 0 0]; % denominator coefficients 
>> F=0:0.5e3:15e3; % linear frequency vector, Hz 
>> freqz(B,A,F,44e3) % plot gain and phase, sampling 

% frequency 44 kHz 

Try this yourself and use help f reqz to try other features of this function. 
Note that if the sampling frequency is not given, the frequency is given as 
fractions in the range 0-1 of the Nyquist frequency, i.e. half the sampling 
frequency. That is, 0 corresponds to 0 Hz while 1 corresponds tof=fs/2 or 
Q = norq= 1/2. 

A2.4.2 Filter design 

A2.4.2.1 Analog filter design 

There are a number of functions available for designing analog low-pass, high-
pass, bandpass and bandstop filters, using different filter approximations (see 
Chapter 1). The outputs of these functions are, for instance, two vectors con
taining the polynomial coefficients of the numerator and denominator of the 



334 Digital Signal Processing and Applications 
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Figure A2.5 An example of a pole-zero map 

TF. For example, we would like to design a Butterworth low-pass filter of order 
5, with a cut-off frequency of 1 kHz: 

>> [ B , A ] = b u t t e r ( 5 , 2 * p i * l e 3 , ' s ' ] 

>> W=logspace(2,4)*2*pi; 

>> freqs(B,A,W) 
>> 

% design low-pass 
% Butterworth filter 
% determine plot frequency 
% range 
% p l o t g a i n and phase 

where the vector B contains the polynomial coefficients of the numerator and 
A contains the polynomial coefficients of the denominator. If a high-pass filter 
is needed, the first line is changed: 

>> [ B , A ] = b u t t e r ( 5 , 2 * p i * l e 3 , ' h i g h ' , ' s ' ] 

>> W=logspace(2 ,4)*2*pi ; 

>> freqs(B,A,W) 

% des ign h i g h - p a s s 
% Bu t t e rwor th f i l t e r 
% de te rmine p l o t 
% frequency range 
% p l o t g a i n and phase 

For a bandpass filter an upper and a lower cut-off frequency is required. 
These frequencies are combined in a row vector. Suppose we want a bandpass 
filter of Butterworth type with lower cut-off frequency 700 Hz and upper cut
off frequency 1300 Hz. The filter should be of order 6. Then we would type as 
follows: 

>> F=2*pi*[700, 1300]; % cut-off frequencies 
>> [B,A]=butter(3,F,'s'); % design bandpass Butterworth 

% filter 
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>> W=logspace(2 ,4)*2*pi ; % de te rmine p l o t frequency range 
>> freqs(B,A,W) % p l o t ga in and phase 
>> 

Note that the order of the filter will be 6, i.e. 2 times the parameter 3 stated 
in the but te r function call. This goes for bandstop filters as well. Finally, a 
bandstop filter of Butterworth type is obtained if changing the first line above. 
We assume the same order and cut-off frequencies: 

>> F=2*pi*[700 / 1300] ; % c u t - o f f f r e q u e n c i e s 
>> [ B , A ] = b u t t e r ( 3 , F , ' s t o p ' , ' s ' ) ; % des ign bands top 

% Bu t t e rwor th f i l t e r 
>> W=logspace(2 ,4)*2*pi ; % de termine p l o t f requency 

% range 
>> freqs(B,A,W) % p l o t ga in and phase 
>> 

In a similar way, Chebyshev filters can be designed. In this case we also have 
to state the allowed ripple. There are two functions for designing Chebyshev 
filters, one that gives ripple in the passband chebyi and one that gives ripple in 
the stopband, cheby2. The ripple specification is given in terms of peak-to-peak 
ripple expressed in dB. As an example, we need a Chebyshev bandstop filter 
of order 8, with cut-off frequencies 1.0 and 5.25 MHz, and max peak-to-peak 
ripple in the passband is 1 dB: 

>> F=2*pi*[ l , 5 . 2 5 ] * l e 6 ; % c u t - o f f f r equenc i e s 
>> [ B , A ] = c h e b y l ( 4 , 1 , F , ' s t o p ' , ' s ' ) ; % des ign bands top 

% Chebyshev f i l t e r 1 dB 
% r i p p l e 

>> W=2*pi*logspace(5 ,7) ; % de termine p l o t frequency 
% range 

>> freqs(B,A,W) % p l o t ga in and phase 
>> 

There are also functions for designing elliptic filters (Cauer filters) el l i p 
having ripple both in the passband and in the stopband and Bessel filters having 
linear-phase shift, besself. 

A2.4.2.2 Transformations 

As shown in Chapter 1, analog filters can be transformed into digi
tal ones using transform techniques. In this section we will demonstrate 
MATLAB™ functions for doing impulse invariance and bilinear (Tustin) 
transformations. 

The impulse invariance transform is performed using the function 
impinvar. Assume that we have designed an analog filter using, for instance, 
the function but te r as above. The analog filter, specified by the coefficient 
vectors B and A, is then converted into a digital version having a TF of the 
type G(z) = (b0 + b\z~x + b2z~2 + • • • )/(a0 + axz~x + a2z~2 +•••)> which 
is expressed as the two coefficient vectors Bz and Az. To do the actual trans
formation, we also need to specify the sampling frequency, say, 10 kHz in this 
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example. The last line is used to plot the gain and phase shift function of the 
resulting digital filter: 

> > [ B , A ] = b u t t e r ( 5 , 2 * p i * l e 3 / ' s ' ) ; % des ign an ana log low-pass 
% Bu t t e rwor th f i l t e r 

>> [Bz,Az] =impinvar (B,A, 10e3) ; % conver t u s i n g impulse 
% i n v a r i a n c e 

>> freqz(Bz,Az) % p l o t ga in and phase 
>> 

Now, let us repeat the same procedure but using the bilinear transform 
(BLT). The corresponding MATLAB™ function is named b i l inear . We first 
design an analog filter, transform it using the BLT and plot gain and phase. As 
in the previous example we are using the sampling frequency 10 kHz, but as 
can be seen below, there is a fourth argument of the function b i l inear . The 
last parameter, 2 kHz, is the frequency at which pre-warping is done. If no 
frequency is given, no pre-warping takes place: 

>> [ B , A ] = b u t t e r ( 3 , 2 * p i * 4 0 0 , ' s 1 ) ; % des ign a n o t h e r 
% ana log f i l t e r 

>> [Bz,Az] = b i l i n e a r ( B , A , 1 0 e 3 , 2 e 3 ) ; % conver t u s i n g BLT 
% and p re -warp ing 

>> freqz(Bz /Az) % p l o t ga in and phase 
>> 

A2.4.2.3 Digital filter design 

Digital filters can be designed directly, not taking the path via analog filters. 
The MATLAB™ functions, bu t te r , chebyl, cheby2 and el l ip , can be used 
to design digital niters directly. The only thing needed is to omit the parameter 
"s" when calling the functions and to remember that frequencies now are given 
in the interval 0-1, where 1 corresponds t o / =fs/2 (see Section A2.4.1 above). 
An example is shown below where we are designing a digital Butterworth filter, 
order 4 with cut-off frequency 0.4, i.e.fc — 0.4/s/2: 

>> [Bz ,Az]=bu t t e r (4 ,0 .4 ) ; % d i r e c t d i g i t a l f i l t e r des ign 
>> freqz(Bz,Az) % p l o t ga in and phase 
>> 

There are many other methods for direct design of digital niters. A common 
method is the Parks-McClellan optimal equiripple FIR filter design, using 
the Remez exchange algorithm (see Chapter 1). There is a special function 
in MATLAB™ implementing this method. The function is denoted remez. 
Since this method is used for designing FIR filters only, the corresponding TF 
does not have a denominator polynomial. Hence, only the coefficient vector Bz 
for the numerator is generated. The designed filter has linear-phase response 
(symmetric, real weights) and, being a FIR filter, it is always stable. The input 
parameters to remez are the length of the filter and the desired gain inunction. 
The gain function is defined by two vectors A and F. Vector F defines the edges 
(in pair) between a set of frequency bands in the range 0-1, and vector A defines 
the desired gain in these frequency bands. For example, we need a low-pass 
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filter with the gain specification ("wish list") 

A = 
1 0 <f < 0 . 4 -

2 
f f 

0 0.5-f<-
2 2 

The undefined frequency region between 0.4(/s/2) < / < 0.5(/s/2) is a tran
sition band, for the gain to drop from 1 to 0 (ideally). For execution time reasons, 
the length of the filter cannot be longer than 20 taps. The MATLAB™ code 
needed is shown below: 

>> F=[0, 0.4, 0.5, 1]; % define frequency band edges 
>> A=[l, 1, 0, 0]; % desired gain in the bands 
>> Bz=remez(19,F,A); % design filter, length 20 
>> freqz(Bz,l) % plot gain and phase 

Note that the order 19 given as the first parameter of remez corresponds to 
filter length 20. Please consult help remez for more information. 

Using a special variation of this function, Hilbert transformers can be 
designed (see Chapter 5). The only modification needed is to add the parameter 
1 h i l b e r t ' in the remez function call: 

>> Bz=remez(19,F,A,'hilbert') % design a Hilbert filter 

A2.4.3 Fast Fourier transform and convolution 

Performing fast Fourier transform (FFT) using MATLAB™ is very convenient. 
Assume we have a vector X containing time domain samples. The FFT is done 
by simply calling the function f f t : 

>> n=l:500; % sample points 
>> X=cos(2*pi*0.l*n); % create a signal vector 
>> F=fft(X); % FFT 
>> plot(n,abs(F)) % plot the magnitude 
>> 

Since the output vector F of the FFT is a complex vector, we need to use the 
abs function to be able to plot the magnitude of the elements of F. 

In the case above, we have implicitly used a rectangular windowing func
tion. The input data simply begins and starts according to the length of the 
vector X. If we need to use other windowing functions, there are a number of 
windowing functions defined in MATLAB™, for instance, Blackman, Ham
ming, Hanning, Kaiser, Hahn, etc. Below, an example using the Hamming 
window is shown: 

>> n = l : 5 0 0 ; % s a m p l e p o i n t s 
>> X = c o s ( 2 * p i * 0 . l * n ) ; % c r e a t e a s i g n a l v e c t o r 
>> X = X . * ( h a m m i n g ( 5 0 0 ) ) ' ; % Hamming w i n d o w i n g 
>> F = f f t ( X ) ; % FFT 
>> plot(n,abs(F)) % plot the magnitude 
>> 
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Note that the window sequence produced is a column vector, while X is a 
row vector, hence transpose of the window vector is needed. 

Making an inverse FFT is also straightforward, using the function if ft. As 
an example, let us use the inverse FFT to restore the X vector from the vector F: 

>> n=l:500; % sample points 
>> X=cos(2*pi*0.1*n); % create a signal vector 
>> F=fft(X); % FFT 
>> Xhat=ifft(F); % inverse FFT 
>> plot(n,real(Xhat)) % plot restored Xhat (real part) 

In the general case, the inverse FFT gives a complex output vector. The function 
real is used to plot only the real part. Since the original signal X was real, the 
imaginary parts found in Xhat are negligible and a result of rounding errors 
during the computations. 

Yet another useful function is conv, used for convolution of signal vectors 
(see Chapter 1). For example, define two vectors x and h and evaluate the 
convolution sum. Plot the resulting vector y: 

> > x = [ 1 . 2 , - 3 . 4 , 2 . 3 , 2 . 3 , 5 . 6 , - 3 . 4 ] ; % a n e x a m p l e v e c t o r 
>> h = [ 2 , 1 , - 1 ] ; % a n o t h e r e x a m p l e 
>> y = c o n v ( x , h ) ; % c o n v o l u t i o n of t h e 

% v e c t o r s 
>> s t e m ( y ) % p l o t 

A2.5 Simulink™ Simulink™ (an extension to MATLAB™) is a tool for making simulations 
of dynamical systems, e.g. closed-loop control system. The user interface 
of Simulink™ is graphical and programming means putting block diagrams 
together. Working with Simulink™ is quite easy, so this presentation need not 
be long. "Learning by doing" is a good method of getting to know Simulink™. 

Simulink™ can be started from the MATLAB™ prompt simply by typing 
simulink. After starting Simulink™ a library browser window will etppear. A 
number of sub-groups will be presented: continuous, discrete, look-up table, 
etc. Open a new window by clicking the menu file/new/model. A new, blank 
window will appear. In this window, you can create your model by "drag-and-
dropping" components from the library. 

We will now simulate a simple closed-loop control system and analyze the 
step response as an example. 

(1) From the sub-group sources, drag-and-drop a step to your new blank win
dow. By means of this component, we will generate a step function as the 
reference signal to the closed-loop control system. 

(2) From math operations, get gain. This will be used as an inverter. 
(3) From math operations, get sum. This device will create the error signal by 

subtracting the measured output signal from the reference signal. 
(4) From sinks, get scope. The scope is used to examine the output signal from 

the process. 
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Figure A2.6 A Simulink™ model of a simple, closed-loop control system 

(5) Open new sub-groups by clicking Simulink extras/additional linear. From 
this sub-group get proportional-integral-derivative (PID) controller. This 
is a basic PID controller. 

(6) Open new sub-groups by clicking Simulink extras/additional discrete. 
From this sub-group get discrete transfer Fen (with initial outputs). This 
function will be used to simulate the process we would like to control. 

(7) Move the components around so that your model looks something like 
Figure A2.6. The gain can be rotated by right clicking on it and choosing 
format/rotate block. 

(8) Connect the blocks to each other as in Figure A2.6. Move the cursor 
to an input or an output. The shape of the cursor will change from an 
arrow to a cross. Press and hold the left mouse button while moving the 
cursor to the destination point (an input or output of another component). 
Release the mouse button and you should have a connection. A dashed line 
indicates that one of the ends is not properly connected. You can adjust 
your wiring by grabbing (press and hold the mouse button while moving) 
a wire and moving it. You can also move components and the wires will 
follow ("rubber banding"). 

(9) Double click on gain, a parameter window will open. Set the gain to — 1, 
and click OK. 

(10) Double click on scope, an oscilloscope-type window will open. Keep it 
open. 

(11) Start the simulation by selecting simulation/start in your model window. 
You should get a graph on the oscilloscope, probably an oscillatory and 
unstable output signal. 

(12) Double click on the PID controller, a parameter window for the controller 
will open. Try new setting of the proportional, integral and derivative 
parameters. Rerun the simulation to see if the output signal looks better. 
Repeat this procedure until you are happy with the output of the system, for 
an input step reference signal. (Be careful with the derivative parameter.) 
You can also experiment with changing the process model. Double click 
on the discrete transfer Fen to open the corresponding parameter window. 

As you have seen from the simple experiment above, Simulink™ is easy to 
use for simulations and experiments. Yet another interesting property is that 
Simulink can work in concert with MATLAB™. You can, for instance, send a 
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signal to and from the workspace of MATLAB™, or to and from files. Try the 
following: 

(13) In the sub-group sinks, get to workspace. 
(14) Connect the to workspace component to the output of the process, i.e. to 

the same signal as shown on the scope. 
(15) Double click on to workspace and in the parameter window, give the 

variable a desired name, the default is simout. Also, select array in the 
save format menu. 

(16) Run the simulation as before. Go to the MATLAB™ window. Type whos, 
you will now find an array with the name you have chosen (default simout). 
The array contains the output signal from the simulation, i.e. the same sig
nal that is shown in the scope window. Having the output signal as an array 
in the workspace, further analysis can be performed using MATLAB™ 
functions. 

The demonstration above is just an example of the features of Simulink™. 
There is, for instance, a component from workspace in the sources sub-group 
which makes it possible to input signals from the MATLAB™ workspace to 
your model. 

If you save your model, it will be stored as a file in the current directory with 
the file suffix .mdl. 
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Glossary 

A brief overview of some common abbreviations and buzz-words: 

2PSK 
4PSK 
8PSK 
AC 
A/D 
ADALINE 
ADC 
ADM 
ADPCM 
ADSL 
AGC 
AI 
A-\aw 
ALU 
AM 
AND 
ANN 
ANS 
APC 
AR 
ARMA 
ARQ 
ASCII 
ASIC 
ASK 
ASR 
AU 
AWGN 
BCD 
BCH 

BCJR 
BFSK 
BIT 
BLT 
BP 
BPSK 
BSC 
BU 
C 

2-ary phase shift keying (see BPSK) 
4-ary phase shift keying (see QPSK) 
8-ary phase shift keying 
Alternating current 
Analog-to-digital 
Adaptive linear neuron 
Analog-to-digital converter 
Adaptive delta modulation 
Adaptive differential pulse code modulation 
Asymmetric digital subscriber loop 
Automatic gain control 
Artificial intelligence 
Signal companding standard used in Europe (see \i-law) 
Arithmetic logic unit 
Amplitude modulation 
Boolean function 
Artificial neural network 
Artificial neural system 
Adaptive predictive coding 
Auto regressive 
Auto-regressive moving average 
Automatic repeat request 
American standard code for information interchange 
Application specific integrated circuit 
Amplitude shift keying 
Automatic speech recognition 
Address unit 
Additive white Gaussian noise 
Binary-coded decimal 
Bose, Chaudhuri, Hocquenghem 

(class of error correcting codes) 
Bahl, Cocke, Jelinke, Raviv 
Binary frequency shift keying 
Binary digit 
Bilinear transform 
Band-pass 
Binary phase shift keying 
Binary symmetric channel 
Bus unit 
computer programming language (see C++) 
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C++ 
CAM 
CCITT 

CD 
CDMA 
CD-ROM 
CELP 
CISC 
CM 
CMOS 
CODEC 
CoA 
CoG 
CoM 
Compander 
CRC 
CVSD 
D/A 
DAB 
DAC 
DAT 
DC 
DCC 
DCT 
DFT 
DM 
DMA 
DPCM 
DPCM-AQB 

DPCM-AQF 

DPSK 
DSL 
DSP 
DSP 
DTMF 
DVB 
DVD 
ECC 
ECG 
EEG 
ENIAC 
EPROM 
EU 
EXCEL™ 
FFT 
FIFO 
FIR 

computer programming language (extension ofC) 
Content addressable memory 
Comite Consultatif International Telegraphique et 

Telephonique 
Compact disc 
Code division multiple access 
Compact disc read only memory 
Code excited linear prediction 
Complex instruction set computer 
Connection machine 
Complementary metal oxide semiconductor 
Coder-decoder 
Center of area 
Center of gravity 
Center of maximum 
Compressor-expander 
Cyclic redundancy check 
Continuously variable slope delta modulator 
Digital-to-analog 
Digital audio broadcasting 
Digital-to-analog converter 
Digital audio tape 
Direct current {sometimes interpreted as a constant bias) 
Digital compact cassette 
Discrete cosine transform 
Discrete Fourier transform 
Delta modulator 
Direct memory access 
Differential pulse code modulation 
Differential pulse code modulation adaptive 

quantization - backwards 
Differential pulse code modulation adaptive 

quantization - forward 
Differential phase shift keying 
Digital subscriber loop 
Digital signal processing 
Digital signal processor 
Dual-tone multi-frequency 
Digital video broadcasting 
Digital video disc 
Error-control code or error-correcting code 
Electrocardiograph 
Electroencephalogram 
Electronic numerical integrator and computer 
Erasable programmable read only memory 
Execution unit 
Spreadsheet type calculation software by Microsoft 
Fast Fourier transform 
First in first out {a queue) 
Finite impulse response 
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FM 
FOH 
FORTRAN 

FPGA 
FPU 
FRD 
FS 
FSK 
GMSK 
GPS 
GSM 

HDTV 
IDFT 
IEEE 
! 2 C T M 

IIR 
I/O 
I/Q 
ISDN 
ISI 
JAVA 
JPEG 
LDM 
LED 
LIFO 
LMS 
LPC 
LSB 
LTI 
LUT 
LZ 
LZW 
MA 
MAC 
MAP 
MathCad™ 
Mathematica™ 
MATLAB™ 
MDCT 
MFLOPS 
MHC 
MIMD 
MIMO 
MIPS 
MISO 
MIT 
ML 

Frequency modulation 
First-order hold 
Formula translation 

{old computer programming language) 
Field programmable gate array 
Floating point unit 
Frequency response data 
Full scale 
Frequency shift keying 
Gaussian minimum shift keying 
Global positioning system 
Groupe speciale mobile or global system for 

mobile communication 
High definition television 
Inverse discrete Fourier transform 
The Institute of Electrical and Electronics Engineers 
(IIC) Inter IC {simple bidirectional 2-wire bus standard 

developed by Philips) 
Infinite impulse response 
Input/output 
In phase/quadrature phase 
Integrated services digital network 
Intersymbol interference 
Computer programming language (subset of C++) 
Joint photographies expert group 
Linear delta modulation 
Light emitting diode 
Last in first out {a stack) 
Least mean square 
Linear predictive coding 
Least significant bit 
Linear time invariant {commonly also implies causal) 
Look-up table 
Lempel-Ziv 
Lempel-Ziv-Welch 
Moving average 
Multiply add accumulate 
Maximum a posteriori probability 
Calculation software by MathSoft 
Calculation software by Wolfram Research 
Calculation software by Math Works 
Modified discrete cosine transform 
Million floating-point operations per second 
Modified Huffman code 
Multiple instruction multiple data 
Multi-input multi-output 
Million instructions per second 
Multi-input single-output 
Massachusetts Institute of Technology 
Maximum likelihood 
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MLPC 
MoM 
MP3 
MPEG 
MRC 
MSB 
MSE 
MSK 
/t-law 
NOP 
NOT 
NP 
OCR 
OR 
OSR 
PAM 
Pascal 
PC 
PC 
PCA 
PCM 
PDM 
PDS 
PID 
PM 
PNM 
PPM 
ppm 
PROM 
PSK 
PWM 
QAM 
QPSK 
RELP 
RISC 
RLS 
RMS 
ROM 
RPM 
RS 
RSC 
RX 
SAR 
SBC 
SC 
SDR 
S&H 
S/H 
SIMD 
SNR 

Multipulse excited linear predictive coding 
Mean of maximum 
Layer-3 of MPEG-1 {audio compression algorithm) 
The moving pictures expert group 
Modified Read code 
Most significant bit 
Minimum square error 
Minimum shift keying 
Signal companding standard used in USA (see A-law) 
No operation 
Boolean function 
Non-polynomial 
Optical character reading 
Boolean function 
Oversampling ratio 
Pulse amplitude modulation 
Computer programming language 
Personal computer 
Program counter 
Principal component analysis 
Pulse code modulation 
Pulse density modulation 
Parallel distributed system 
Proportional-integral-derivative 
Phase modulation 
Pulse number modulation 
Pulse position modulation 
Parts per million 
Programmable read only memory 
Phase shift keying 
Pulse width modulation 
Quadrature amplitude modulation 
Quadrature phase shift keying 
Residual excited linear prediction 
Reduced instruction set computer 
Recursive least square 
Root mean square 
Read only memory 
Revolutions per minute 
Reed-Solomon (code) 
Recursive systematic convolutional 
Receiver 
Succesive approximation register 
Sub-band coding 
Switched capacitor 
Software defined radio 
Sample-and-hold 
Sample-and-hold 
Single instruction multiple data 
Signal-to-noise ratio 



SP 
SPI 

ss 
SSB 
TF 
TX 
UWB 
VHDL 

VLSI 
VSELP 
WCDMA 
XOR 
ZOH 
ZPK 

Stack pointer 
Serial peripheral interface 
State-space 
Single sideband 
Transfer function 
Transmitter 
Ultra wideband 
Very high-speed integrated circuit hardware 

description language 
Very large scale integration 
Vector sum excited linear prediction 
Wideband code division multiple access 
Exclusive OR, Boolean function 
Zero-order hold 
Zero-pole gain 



Index 

2's complement 44-45, 254 
2PSK153 
4PSK153 
8PSK153 

Absolute accuracy error 49, 60 
Activation function 103 
ADALINE 101 
Adaptation algorithm 75, 80-84 
Adaptive associative networks 100 
Adaptive beamforming 89-93 
Adaptive delta modulation (ADM) 189 
Adaptive differential pulse code 

modulation (ADPCM) 190-191 
Adaptive linear combiner 75-77 
Adaptive interference cancelling 84-86 
Adaptive modelling 142 
Adaptive predictive coding (APC) 

192-193 
Additive white Gaussian noise (AWGN) 

214 
Addressing modes 257-259 
Address unit (AU) 247 
ADSL 3 
A-law 46-A1 
Aliasing distortion 7 
All-pass filter 157, 176 
Alphabet 180 
Amplitude modulation (AM) 146 
Amplitude shift keying (ASK) 146-148 
Analog to digital converter (ADC) 58-70 
Analytic signal 157 
Antenna array 89 
Anti-aliasing filter 6, 60 
Anti-image filter 57 
Aperture error 56 
Application specific integrated circuit 

(ASIC) 245 
Armstrong's indirect FM 146 
Arithmetic and logical instructions 

252-253 
Arithmetic logic unit (ALU) 247 
Artificial neural network (ANN) 100-121 
Artificial neural system (ANS) 100 
Assembly language 252 
Asynchronous events 248 
Auditory masking 200 
Auto-associator 111 
Auto-correlation function 137-138 

Auto-correlation matrix 78 
Auto-covariance 137 
Auto-decrement 257 
Auto-increment 257 
Automatic gain control (AGC) 73 
Automatic speech recognition (ASR) 205 
Auto regressive model (AR) 141, 194 
Auto regressive moving average model 

(ARMA) 140-142 
Average mutual information 211 
Averaging filter 20 

Back-propagation 102, 110 
Backward prediction error 21 
Bandpass signal 154 
Bartlett periodogram 140 
Bartlett window 132, 136 
Baseband signal 146 
Base register 257 
Basis functions 143 
Batch system 241 
Bayes'theorem 182,211 
Bahl, Cocke, Jelinke, Raviv (BCJR) 

algorithm 238 
Beamforming 90 
Bessel-Thomson approximation 26 
Bilinear function 10 
Bilinear transform (BLT) 28 
Binary coded decimal (BCD) 44 
Binary digit (BIT) 181 
Binary fractions 247, 254-255 
Binary frequency shift keying (BFSK) 

148 
Binary phase shift keying (BPSK) 153 
Binary point 254 
Binary symmetric channel (BSC) 

211-213 
Bit manipulation instructions 253 
Bit reverse addressing 250, 258-259 
Bitslice 245 
Bitstream D/A converter 54-56 
Blackman window 137 
Block code 215 
Block data system 242 
Bode plot 16-17 
Boltzmann machine 102, 112, 114 
Boolean filter 98 
Bose, Chaudhuri, Hocquenghem (BCH) 

code 223, 228 



Boxcar hold 8 
Bubblesort 99 
Bursts 197, 234 
Bus 42 
Bus unit (BU) 247 
Butterworth approximation 25 

C 251, 252, 261 
C++251, 252, 261 
Cache memory 247 
Cancelling poles 19 
Cardinal reconstruction formula 7 
Carrier 146 
Cascaded filters 273 
Cauer approximation 26 
Causal system 11 
C cross compiler 252 
Center of area (CoA) 127 
Center of gravity (CoG) 127 
Center of maximum (CoM) 127 
Cepstrum 205 
Channel capacity 213-215 
Channel code 213 
Channel coding 209-215 
Channel coding theorem 179, 209 
Channel filter 86-87 
Channel model 87, 210-213 
Charge redistribution D/A converter 

52-53 
Chebyshev approximation 25 
Check bits 215 
Circular buffer 248, 258 
Classifier 111 
Closed-loop transfer function 33 
Coefficient memory 249 
Codebook 196 
CODEC 44 
Code division multiple access (CDMA) 

238 
Code excited linear prediction (CELP) 

196-197 
Coding efficiency 187 
Code rate 216 
Code speed 216 
Code trellis 233 
Coherent detection 149 
Comb filter 69-70 
Compact Disc (CD) 3, 44, 55 
Compander 3, 4 5 ^ 7 
Complex envelope 154 
Complex instruction set computer 

(CISC) 248 
Complex modulation 154-156 
Compressor 4 5 ^ 7 
Computational temperature 103, 115 
Computer vision 206 
Concatenated coding 228, 236-238 

Conclusions (in Fuzzy logic) 123 
Conditional entropy 212 
Conditional mean 167 
Conditional probability 182 
Conditioning 167 
Connectionist's net 100 
Connection machine (CM) 246 
Constant neighborhood 96 
Constraint length 229 
Content addressable memory (CAM) 

100,111,115 
Continuous signals 4 
Continuously variable slope delta 

modulator (CVSD) 189-190 
Control 176 
Controller 32 
Controller output signal 32 
Convergent rounding 256-257 
Conversion time 60 
Convolution 13-14 
Convolution kernel 206 
Convolution sum 13 
Convolution code 215, 229-230 
Convolution interleaving 236 
Correlation matrix 78 
Counting A/D converter 64-65 
Cross-correlation 78, 137 
Cross-covariance 137 
Cyclic codes 223-229 
Cyclic redundancy check (CRC) 227 
Cyclic shift 223 

Data compression 179-206 
Data memory 249 
Data transfer instructions 253 
Daubechies wavelet 144 
Dead-beat controller 37 
Debugging 261 
Decimator 61 
Decimation filter 69-70 
Decision-feedback equalizer 88-89 
Decision region 105 
Decoding table 219-220, 222 
Denazification 127-128 
Defuzzifier 121 
Degree of membership 122 
Delay line 248, 258 
Delta modulator (DM) 68, 188-189 
Delta rule 101, 109 
Dependency 182 
Desired response 77 
Difference equation 11 
Differential linearity 48, 59 
Differential phase shift keying (DPSK) 

153 
Differential pulse code modulation 

(DPCM) 190 
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Differential pulse code modulation 
adaptive quantization - backwards 
(DPCM-AQB) 190-191 

Differential pulse code modulation 
adaptive quantization - forward 
(DPCM-AQF) 190-191 

Digital audio broadcasting (DAB) 3 
Digital audio tape (DAT) 3 
Digital to analog converter (DAC) 47-57 
Digital compact cassette (DCC) 3 
Digital control systems 32-38 
Digital image processing 4, 176 
Digital signal processing (DSP) 241 
Digital signal processor (DSP) 241 
Dilation 143 
Direct memory access (DMA) 254 
Direct synthesis controller 36 
Discrete cosine transform (DCT) 

198-199 
Discrete Fourier transform (DFT) 2, 

131-132, 135 
Discrete signals 4 
Discrete wavelet transform 144-145 
Dither 56, 68 
Dolby™ 3, 47 
Downsampler 61 
DSL 3 
DSP chip 244-245 
Dual slope converter 54, 67 
Dual Tone Multi Frequency (DTMF) 3 
Dynamical functional systems 100 
Dynamical list 258, 269-270 
Dynamic range 8-9, 44 

Edge 96 
Effective address 257 
Electroencephalogram (EEG) 2 
Electrocardiogram (ECG) 2, 84 
Elliptic filter 26 
Entropy 183-184 
Equalizers 86-89 
Erasure symbol 218 
Error-control codes 215-238 
Error-correcting codes 215-238 
Error polynomial 224 
Error vector 219 
Estimate 87, 160 
Estimation 135, 160 
Euclidean matrix norm 164 
Euler transform 29 
Events 260 
Execution unit (EU) 247 
Expander 4 5 ^ 7 

Fast Fourier transform (FFT) 2, 131-135 
Features 204 
Feature maps 102, 112 

Feedback networks 112-115 
Feedforward networks 102-111 
FFT butterfly 134, 250, 259 
Field programmable gate array (FPGA) 

245 
Finite impulse response (FIR) 18 
FIR filter 2, 18,265-272 
First order hold (FOH) 8 
First order predictor 189 
Fixed point 44, 242 
Flash A/D converter 61-62 
Floating point format 44, 242 
Floating point unit (FPU) 247 
Fnosq 6 
Forecasting 176 
Forward prediction error 21 
Fourier method 30 
Fractions 254-255 
Frequency domain 15 
Frequency function 16 
Frequency modulation (FM) 146 
Frequency response 16-17 
Frequency sampling 30 
Frequency selective fading 88 
Frequency shift keying (FSK) 146, 

148-151 
Fuzzifier 121 
Fuzzy control 121 
Fuzzy logic 121-129 
Fuzzy rules 123-124 

Gain error 47, 58-59 
Gain factor 161 
Gain function 17 
Gaussian minimum shift keying (GMSK) 

156 
Generalized perceptron learning rule 110 
Generator (convolution code) 230 
Generator matrix 219 
Generator polynomial 224 
Global positioning system (GPS) 3 
Global system for mobile 

communication (GSM) 3, 156 
Granularity 189 
Gray code 44 
Groupe Speciale Mobile (GSM) 3, 156 

Haar wavelet 144 
Hamming codes 223 
Hamming distance 217 
Hamming net 116 
Hamming window 132, 137 
Hann window 137 
Hanning window 132 
Hard limiter 103 
Hardware stack 250 
Harmony theory 102 



Harvard architecture 248-249 
Hebb's rule 101, 108 
High definition television (HDTV) 4 
Hilbert transform 91, 156-157 
Homomorphic filter 205 
Hopfieldnet 102, 112-113 
Huffman's algorithm 185-187 

I2C bus (Inter IC) 248 
Identifiers 111 
Idling loop 253 
IIR filter 2, 18-21,272-275 
Image coding 197-200 
Image recognition 205-206 
Implied fuzzy set 121, 123, 126 
Impulse invariance method 26 
Impulse response 13 
Impulsive type noise 95 
Indexed addressing 257 
Indirect addressing 257 
Indirect filter synthesis 26-29 
Inference 123 
Inference engine 12 
Infinite impulse response (IIR) 18 
Information 180 
Information source 184 
Information theory 179-184 
Innovation 161, 170 
In phase 154 
In phase/Quadrature phase modulator 

(I/Q) 154 
Input/Output (I/O) 247, 249, 250, 251 
Instruction memory 249 
Integral linearity error 47, 59 
Integrating A/D converter 65-67 
Integrating D/A converter 53-54 
Interleaving 234-236 
Interleaving depth 235 
Interpolate 175 
Interpolator 55 
Intersymbol interference (ISI) 88 
Interrupts 248 
Interrupt service routine 253 
Inverse discrete Fourier transform 

(IDFT) 205 
Inverse filter 86 

Jet propulsion lab convolution code 230 
Joint Photographies Expert Group 

(JPEG) 199 

Kaiser-Bessel window 132 
Kalman filter 2, 159-176 
Kalman filter equations 169 
Kalman filter theory 160 
Kalman gain 169 
Karhunen-Loeve transform 198 
Kohonen's feature maps 112 

Layered networks 102-107 
Layer 3 of MPEG-1200 
Last in first out (LIFO) 250 
Lateral feedback 113,116-117 
Lattice filter 21-22 
Least mean square (LMS) 2, 83-84, 

109 
Learning machine 101 
Lempel-Ziv algorithm (LZ) 201-203 
Lempel-Ziv-Welch algorithm (LZW) 201 
Levinson-Durbin algorithm 142 
Linear block codes 218-223 
Linear delta modulation (LDM) 189 
Linearity error 47, 59 
Linear point connector 8 
Linear predictive coding (LPC) 194-195 
Linear systems 9-11 
Linear time invariant (LIT) processor 11 
Linguistic variables 122 
Linguistic value 122 
Linkabit convolution code 230 
Look-Up Table (LUT) 108, 250 
Loop and program control instructions 

253 
Loop counter 250 
Lossless data compression 185 
Lossy data compression 185 
Lyapunov function 113 

MacLaurin series 11 
Mapping function 204 
MATLAB™ 313-338 
Maximum likelihood (ML) 215 
MAXNET113 
McClellan-Parks method 32 
Mean of maximum (MoM) 127 
Mean square error (MSE) 75 
Measured output signal 32 
Measurement disturbance signal 32 
Measurement noise 166 
Measurement-update equations 169 
Median filter 95-99 
Meggit decoders 227 
Membership functions 122 
Message 180 
Message table 264 
Meyer wavelet 144 
M-files (in MATLAB™) 328 
Million floating point operations per 

second (MFLOPS) 243 
Million instructions per second (MIPS) 

243 
Minimum shift keying (MSK) 151 
Minimum variance 167 
/n-law 46-41 
Missing codes 60 
Model filter 140 
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Modeling 176 
Modified discrete cosine transform 

(MDCT) 200 
Modified Huffman code (MHC) 197 
Modified periodogram 139 
Modified Read code (MRC) 197 
Modular addressing 258 
Modular programming 269 
Monotonicity 48, 59 
Moore-Penrose-inverse 164 
Morlet wavelet 144 
Morse code 186 
Mother wavelet 143 
Moving average model (MA) 141 
Moving Pictures Expert Group (MPEG) 

199-200 
MP3, 200-201 
Multi-input multi-output (MIMO) 123 
Multi-input single-output (MISO) 123 
Multi-path propagation 88 
Multiple instruction multiple data 

(MIMD) 246 
Multiply add accumulate instruction 

(MAC) 243, 250, 254, 269 
Multiplying D/A converter 49-53 
Multipulse excited linear predictive 

coding (MLPC) 196 
Multi-rate sampled systems 254 
Mutual information 182, 210 

Narrowband passband signal 154 
Neocognitron 102 
Neural network 2, 100 
Neuromorphic systems 100 
Neuron computers 100 
Newton's method 81-83 
Noise shaping feedback loop 55 
Non-casual filter 8 
Non-coherent detection 149 
Non-recursive filter 18 
Non-uniform quantization 45 
Nyquist frequency 6 

Observation matrix 166 
Off-line system 241 
Offset 257 
Offset binary 44-45 
Offset error 47, 59 
Offset register 257 
On-line system 241 
Open-loop transfer function 34 
Optimization 115 
Orthogonal 108, 151 
Overflow 251 
Oversampling 54, 60 
Oversampling filter 55 
Oversampling ratio (OSR) 55 

Parallel A/D converter 61-62 
Parallel distributed system (PDS) 100 
Parallel execution 272 
Parallel mode PCM 42 
Parametric spectrum analysis 140-143 
Parity bits 215 
Parity matrix 219 
Parity polynomial 224 
Parseval's relation 135 
Passband 23 
Pattern associator 111 
Pattern classification 110 
Pattern completion 115 
Pattern recognition 110, 204 
Pattern restoration 110 
Perceptron 101 
Perceptron learning rule 109-110 
Performance function 74, 77-80 
Periodogram 135 
Periodogram averaging 138-140 
Phantom output 273 
Phase linearity 24 
Phase modulation (PM) 146 
Phase shift function 17 
Phase shift keying (PSK) 146, 151-154 
Phasors 152 
Phonemes 205 
Pipe-lining 247, 249 
Plant 32, 165 
Poles 15 
Pole placement controller 36 
Pole-zero plot 16 
Polyphase sub-band (SB) filter 200 
Postincrement 257 
Power spectrum 134 
Prediction 175 
Predictor 188-189, 191 
Predictive compression 198 
Prefix free code 185 
Preincrement 257 
Pre-warping 28 
Prewitt operator 206 
Principal component analysis (PCA) 204 
Principle of superposition 9 
Process 32 
Process disturbance signal 32 
Process error signal 32 
Process identification 176 
Process model 165 
Process noise 166 
Processor 74 
Process output signal 32 
Process table 264 
Program counter (PC) 247 
Proportional-integral-derivative (PID) 

controller 35-36 
Pseudoinverse 163-164 



Pulse amplitude modulation (PAM) 43 
Pulse code modulation (PCM) 42 
Pulse density modulation (PDM) 43^4 
Pulse number modulation (PNM) 43 
Pulse position modulation (PPM) 43 
Pulse width modulation (PWM) 43 

Quadrature amplitude modulation 
(QAM) 156 

Quadrature components 154 
Quadrature filter 91, 156 
Quadrature phase 154 
Quadruple phase shift keying (QPSK) 

153 
Quantization 8 
Quantization noise 9 
Quantizer 55 
Quick sort 99 

R-2R ladder 50-51 
Radio technology 275 
Ramp invariance method 27 
Rate distortion theorem 179 
Real time system 241 
Reconstruction 5 
Reconstruction filter 7, 57 
Rectangular window 132, 136 
Recurrent network 112 
Recursive filter 18-21 
Recursive least square (RLS) 160-163 
Recursive systematic convolutional 

(RSC) code 237 
Reduced instruction set computer (RISC) 

248 
Redundancy 182, 187 
Redundant information 182 
Reference signal 32 
Regularity detector 111 
Relative frequency 6 
Remez exchange algorithm 32 
Repetition code 215-217 
Residual excited linear prediction 

(RELP) 195 
Resolution 8 
Resonant peak 273 
Riccatti equation 170 
Ripple 24 
Root locus 15 
Root signal 96 
Rounding 256 
Rule data base 121 
Run length code 197 

Sample and hold (S/H) 56, 60 
Sampling 5-8 
Sampling frequency 5 
Sampling period 5 
Sampling rate 5 

Saturation arithmetic 250, 256 
Scripts (in MATLAB™) 329 
Serial peripheral interface (SPI) 248 
Serial mode PCM 42 
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