
Preface

Dear Reader,

There are many books on digital signal processing (DSP) around these days. The
special flavor of this book is to give a broad overview of DSP theory and appli­
cations in different areas, such as telecommunications, control systems, and
measuring and data analysis systems. Such a wide coverage would commonly
require at least four or five different books.

The first chapter of this book starts at the novice level with sampling,
z-transforms and digital filters, but later chapters treat advanced topics like
fuzzy logic, neural networks, information theory and Kalman filters. Since it
is our sincere belief that bringing intuitive understanding of concepts and
systems is by far the most important part of teaching, the text is somewhat
simplified at the expense of mathematical rigor. At the end of this book, ref­
erences for deeper studies of the different topics covered can be found. Some
details might be difficult for you to grasp at once, especially if you have novice
knowledge of DSP and its techniques; however, there is no cause for alarm. The
most important first step in studying any subject is to grasp the overall picture
and to understand the basics before delving into the details.

As teaching aids, review questions and solved problems are included in
all chapters. Exercises using MATLAB™ are also included. Furthermore, an
accompanying web site is available where extra teaching material can be found
(http://books.elsevier.com/companions/0750663448).

The chapters are organized as follows:
Chapter 1 This chapter starts with an historic overview of DSP and control.

The main part of the chapter covers fundamentals of DSP, such as sampling,
quantization, convolution, z-transform and transfer functions. It also deals with
basic filter structures, finite impulse response (FIR), infinite impulse response
(IIR) and with filter synthesis methods, e.g. Butterworth, Chebyshev, impulse
invariance, the bilinear transform, Remez exchange algorithm, etc. At the end
of this chapter, a brief presentation of digital closed-loop control systems can
be found. If you have prior knowledge in DSP and control, you can probably
disregard most of this chapter.

Chapter 2 Most signals in real life are certainly not digital. This chapter
deals with different types of digital-to-analog (D/A) and analog-to-digital (A/D)
conversion techniques and hardware.

Chapter 3 An adaptive filter is a filter which has the property of "tun­
ing" itself. In this chapter, basic models for adaptive filters are presented
together with algorithms for adaptation, for instance, the well-known least mean
square (LMS) algorithm. Some applications are discussed, such as adaptive
interference canceling, equalizers and adaptive beamforming.

x Digital Signal Processing

Chapter 4 There are an infinite number of non-linear systems. In this chap­
ter, three commonly used non-linear techniques are treated. Starting with the
median filter, we continue with artificial neural networks, which is a crude way
of trying to mimic the functions in the human brain. The chapter is concluded
with a presentation of fuzzy control.

Chapter 5 Spectral analysis and modulation is the title of this chapter. In
the first part of this chapter, Fourier transform using fast Fourier transform
(FFT) is presented along with correlation-based signal analysis methods, for
instance, parametric analysis and wavelets. The second part deals with digital
modulation, i.e. ASK, FSK, PSK, QPSK, QAM and so on. The Hilbert filter is
also briefly presented.

Chapter 6 This chapter presents recursive least square (RLS) estimation, the
pseudo-inverse and the Kalman filter. The Kalman filter technique is illustrated
by an "everyday" example. In reading this chapter, it is an advantage if you are
used to working with vectors and matrices.

Chapter 7 The main topic of this chapter is information theory and source
coding. Some common data compression algorithms are studied, such as
Huffman coding, adaptive pulse code modulation (ADPCM), linear predictive
coding (LPC), the joint photographies expert group (JPEG), Lempel-Ziv-
Welch (LZW) and layer-3 of MPEG-1 (audio compression algorithm)(MP3).
We deal with speech compressors and vocoders and make a quick tour through
the land of speech and image recognition.

Chapter 8 This chapter is about error-correcting codes and channel cod­
ing. We start with a discussion of channel capacity and error probabilities and
proceed with block codes, cyclic redundancy check (CRC) codes, convolution
codes and Viterbi decoding. Interleaving and turbo codes are also addressed.

Chapter 9 The last chapter of this book is dedicated to practical problems
when working with DSP and control. Topics like hardware architecture, numeri­
cal problems, execution speed, and data and computer program structures are
discussed. We also highlight some problems inherent in the software develop­
ment process that are significant in DSP environments. Practical code examples
for FIR filters, IIR filters and state machines, written in assembly language and
in C, are included.

Appendix 1 In this part, you can find solutions to all the problems in the
book. Complete calculations, MATLAB™ code and plots are supplied.

Appendix 2 This is not a complete tutorial to MATLAB™ or Simulink™,
but a quick guide to getting started using these common software tools.

Finally, a Glossary is provided as an aid to the terms used within the book
and their abbreviations.

This is the second edition of Digital Signal Processing (Stranneby, 2001).
The book was originally written to be used in undergraduate courses at Orebro
University in Sweden, but has also been used for company on-site training. In
addition to the material covered in the following chapters, practical hands-on
projects are also an integral part of these courses. The projects consist of the
design and implementation of signal processing algorithms on a DSP system.

Welcome to an adventure in the world of DSP!

Dag Stranneby and William Walker

1 Introduction

Background All processes and signals commonly found in the real world are "analog" by
their nature. Sometimes it may feel a bit awkward trying to represent and process
these signals digitally. There are, however, many advantages in digital signal
processing (DSP).

In this introductory chapter, we will first give a broad overview of the usage of
digital signal processing and digital control. As you will realize, digital signal
processing and control systems are all over the place. We will continue by
defining digital signals and show some standard digital models and algorithms
to process these signals. At the end of the chapter, some methods related to the
design of digital signal processing and control applications will be presented.

Objectives In this chapter we will discuss:

• Analog and digital signals, sampling and quantization
• Linearity, difference equations, state-space models, impulse response and

convolution
• Transfer functions using the z-transform, the frequency response of a digital

system
• Some filter architectures: finite impulse response (FIR), infinite impulse

response (IIR) and lattice filters
• Filter approximations: Butterworth, Chebyshev, Cauer and Bessel
• Filter synthesis methods: impulse invariance, the bilinear transform, the

Fourier method and Remez exchange algorithm
• Digital control, proportional-integral-derivative (PID) controllers, pole

placement controllers and dead-beat controllers.

1.1 The history of
digital signal

processing

Since the Second World War, if not earlier, technicians have speculated on
the applicability of digital techniques to perform signal processing tasks. For
example at the end of the 1940s, Shannon, Bode and other researchers at the
Bell Telephone Laboratories discussed the possibility of using digital circuit
elements to implement filter functions. At this time, there was unfortunately
no appropriate hardware available. Hence, cost, size and reliability strongly
favored conventional, analog implementations.

During the middle of the 1950s, Professor Linville at Massachusetts Institute
of Technology (MIT) discussed digital filtering at graduate seminars. By then,
control theory, based partly on works by Hurewicz had become established
as a discipline, and sampling and its spectral effects were well understood.
A number of mathematical tools, such as the z-transform, which had existed
since Laplace's time, were now used in the electronics engineering community.
Technology at that point, however, was only able to deal with low-frequency

2 Digital Signal Processing and Applications

control problems or low-frequency seismic signal processing problems. While
seismic scientists made notable use of digital filter concepts to solve problems,
it was not until the middle of the 1960s that a more formal theory of digital
signal processing (DSP) began to emerge. During this period, the advent of the
silicon integrated circuit technology made complete digital systems possible,
but still quite expensive.

The first major contribution in the area of digital filter synthesis was made
by Kaiser at Bell Laboratories. His work showed how to design useful filters
using the bilinear transform (BLT). Further, in about 1965 the famous paper by
Cooley and Turkey was published. In this paper, fast Fourier transform (FFT),
an efficient and fast way of performing the discrete Fourier transform (DFT),
was demonstrated.

At this time, hardware better suited for implementing digital filters was devel­
oped and affordable circuits started to be commercially available. Long finite
impulse response (FIR) filters could now be implemented efficiently, thereby
becoming a serious competitor to the infinite impulse response (IIR) filters,
having better passband properties for a given number of delays. At the same
time, new opportunities emerged. It was now possible to achieve time varying,
adaptive and non-linear filters that could not be built using conventional ana­
log techniques. One such filter is the Kalman filter named after R.E. Kalman.
The Kalman filter is a model-based filter that filters the signal according to its
statistical rather than its spectral properties.

In the area of adaptive filters, B. Widrow is an important name, especially
when talking about the least mean square (LMS) algorithm. Widrow also made
significant contributions in the area of neural networks as early as in the 1960s
and 1970s.

Today, there are many commercial products around which utilize the
advantages of digital signal processing, namely:

• an essentially perfect reproducibility
• a guaranteed accuracy (no individual tuning and pruning necessary)
• well suited for large volume production.

To conclude this section, we will give some everyday examples where digital
signal processing is encountered in one way or another. Applications can be
divided into two classes. The first class consists of applications that could be
implemented using ordinary analog techniques but where the use of digital
signal processing increases the performance considerably. The second class
of applications are these that require the use of digital signal processing and
cannot be built using entirely "analog" methods.

1.1.1 Measurements and analysis

Digital signal processing traditionally has been very useful in the areas of mea­
surement and analysis in two different ways. One is to precondition the measured
signal by rejecting the disturbing noise and interference or to help interpret the
properties of collected data by, for instance, correlation and spectral trans­
forms. In the area of medical electronic equipment, more or less sophisticated
digital filters can be found in electrocardiograph (ECG) and electroencephalo­
gram (EEG) equipment to record the weak signals in the presence of heavy
background noise and interference.

Introduction 3

As pointed out earlier, digital signal processing has historically been used in
systems dealing with seismic signals due to the limited bandwidth of these sig­
nals. Digital signal processing has also proven to be very well suited for air and
space measuring applications, e.g. analysis of noise received from outer space
by radio telescopes or analysis of satellite data. Using digital signal processing
techniques for analysis of radar and sonar echoes are also of great importance
in both civilian as well as military contexts.

Another application is navigational systems. In global positioning system
(GPS) receivers (RXs) today, advanced digital signal processing techniques are
employed to enhance resolution and reliability.

1.1.2 Telecommunications

Digital signal processing is used in many telecommunication systems today;
for instance, in telephone systems for dual-tone multi-frequency (DTMF) sig­
naling, echo canceling of telephone lines and equalizers used in high-speed
telephone modems. Further, error-correcting codes are used to protect digital
signals from bit errors during transmission (or storing) and different data com­
pression algorithms are utilized to reduce the number of data bits needed to
represent a given amount of information.

Digital signal processing is also used in many contexts in cellular telephone
systems, for instance speech coding in groupe speciale mobile or global system
for mobile communication (GSM) telephones, modulators and demodulators,
voice scrambling and other cryptographic devices. It is very common to find
five to ten microcontrollers in a low-cost cellular telephone. An application
dealing with high frequency is the directive antenna having an electronically
controlled beam. By using directive antennas at the base stations in a cellular
system, the base station can "point" at the mobile at all times, thereby reducing
the transmitter (TX) power needed. This in turn increases the capacity of a
fixed bandwidth system in terms of the number of simultaneous users per square
kilometer, i.e. increases the service level and the revenue for the system operator.

The increased use of the Internet and personal computers (PCs) implies the
use of digital processing in many layers. Not only for signal processing in
asymmetric digital subscriber loop (ADSL) and digital subscriber loop (DSL)
modems, but also for error correction, data compression (images and audio)
and protocol handling.

1.1.3 Audio and television

In most audio and video equipment today, such as digital video disc (DVD) and
compact disc (CD) players, digital audio tape (DAT), digital compact cassette
(DCC) recorders and MPEG layer 3 (MP3) players, digital signal processing
is mandatory. This is also true for most modern studio equipment as well as
more or less advanced synthesizers used in today's music production. Digital
signal processing has also made many new noise suppression and companding
systems (e.g. Dolby™) attractive.

Digital methods are not only used for producing and storing audio and video
information, but also for distribution. This could be between studios and trans­
mitters, or even directly to the enduser, such as in the digital audio broadcasting

4 Digital Signal Processing and Applications

(DAB) system. Digital transmission is also used for broadcasting of television
(TV) signals. High definition television (HDTV) systems utilize many digital
image processing techniques. Digital image processing can be regarded as a
special branch of digital processing having many things in common with digi­
tal signal processing, but dealing mainly with two-dimensional image signals.
Digital image processing can be used for many tasks, e.g. restoring distorted or
blurred images, morphing, data compression by image coding, identification
and analysis of pictures and photos.

1.1.4 Household appliances and toys

In most modern dishwashers, dryers, washing machines, microwave ovens,
air conditioners, toasters and so on, you are likely to find embedded micro­
controllers performing miscellaneous digital processing tasks. Almost every
type of algorithm can be found, ranging from simple timers to advanced fuzzy
logic systems. Microprocessors executing digital signal processing algorithms
can also be found in toys, such as talking dolls, speech recognition controlled
gadgets and more or less advanced toy robots.

1.1.5 Automotive

In the automotive business, digital signal processing is often used for control
purposes. Some examples are ignition and injection control systems, "intel­
ligent" suspension systems, "anti-skid" brakes, "anti-spin" four-wheel-drive
systems, climate control systems, "intelligent" cruise controllers and airbag
controllers.

There are also systems for speech recognition and speech synthesis being
tested in automobiles. Just tell the car: "Switch on the headlights" and it will, and
maybe it will give the answer: "The right rear parking light is not working". New
products are also systems for background noise cancellation in cars using adap­
tive digital filters, and radar assisted, more or less "smart" cruise controllers.

To summarize: digital signal processing and control is here to stay ...

1.2 Digital signal There are numerous good references available dealing with basic digital signal
processing basics processing, such as Oppenheimer and Schafer (1975), Rabiner and Gold (1975),

Mitra and Kaiser (1993), Marven and Ewers (1993), Denbigh (1998), Lynn and
Fuerst (1998) and Smith (2003). The following sections are a brief summary
of underlying important theories and ideas.

1.2.1 Continuous and discrete signals

In this book, we will mainly study systems dealing with signals that vary over
time (temporal signals). In "reality" a signal can take on an infinite amount
of values and time can be divided into infinitely small increments. A signal
of this type is continuous in amplitude and continuous in time. In everyday
language, such a signal is called an "analog" signal.

Now, if we only present the signal at given instants of time, but still allow
the amplitude to take on any value, we have a signal type that is continuous in
amplitude, but discrete in time.

Introduction 5

The third signal type would be a signal that is defined at all times, but only
allowed to take on values from a given set. Such a signal would be described as
discrete in amplitude and continuous in time.

The fourth type of signal is only defined at given instants of time, and is only
allowed to take on values from a given set. This signal is said to be discrete in
amplitude and discrete in time. This type of signal is called a "digital" signal,
and is the type of signal we will mainly deal with in this book.

1.2.2 Sampling and reconstruction

The process of going from a signal being continuous in time to a signal being
discrete in time is called sampling. Sampling can be regarded as multiplying
the time-continuous signal g(t) with a train of unit pulses p(t) (see Figure 1.1)

+oo
g*(t) = g(t)p(t)= £ g(nT)8(t-nT) (1.1)

g(t) <& -> gftf)

Pit)

Figure 1.1 Sampling viewed as
a multiplication process

where g#(t) is the sampled signal. Since the unit pulses are either one or zero,
the multiplication can be regarded as a pure switching operation.

The time period T between the unit pulses in the pulse train is called the
sampling period. In most cases, this period is constant, resulting in "equidistant
sampling". There is however no theoretical demand for the sampling period to
be constant. In some systems, many different sampling periods are used ("multi-
rate sampling") (Astrom and Wittenmark, 1984). Yet, in other applications the
sampling period may be a stochastic variable. This results in "random sampling"
(Papoulis and Pillai, 2001) which complicates the analysis considerably. In most
systems today, it is common to use one or more constant sampling periods. The
sampling period T is related to the sampling rate or sampling frequency fs

such that

&>s 1 (1.2)

The process of sampling implies reduction of knowledge. For the time-
continuous signal, we know the value of the signal at every instant of time,
but for the sampled version (the time-discrete signal) we only know the value at
specific points in time. If we want to reconstruct the original time-continuous
signal from the time-discrete sampled version, we therefore have to make more
or less qualified interpolations of the values in between the sampling points. If
our interpolated values differ from the true signal, we have introduced distortion
in our reconstructed signal.

Now to get an idea of our chances of making a faithful reconstruction of the
original signal, let us study the effect of the sampling process in the frequency
domain. First, referring to equation (1.1), the pulse train p(t) can be expanded
in a Fourier series

+ 0 0

pit)- £ c„e
jn{2n/T)t (1.3)

6 Digital Signal Processing and Applications

where the Fourier coefficients cn are

-+772 1 r^1'1 1
cn = ± p{t)e-W'TUt = V- (1.4)

1 J-T/2 1

Hence, the sampling equation (1.1) can now be rewritten as

g\t)=p{t)g{t)=[X- f e^2 ' / r" g(r) (1.5)
\ n=—00 /

The Laplace transform of the sampled signal g#(t) is (using the
multiplication-shift property)

G#(s) = f Y, G[s+jn^\ (1.6)
« = — 00 ^ '

To get an idea of what is happening in the frequency domain, we investigate
equation (1.6) following the s =jco axis

, +00

n-

From this, we see that the effect of sampling creates an infinite number of copies
of the spectrum of the original signal g(t). Every copy is shifted by multiples
of the sampling frequency o)s. Figure 1.2 shows a part of the total (infinite)
spectrum.

The spectrum bandwidth of the original signal g(t) is determined by the
highest-frequency component fmax of the signal. Now, two situations can occur.
If fmax < /s/2, then the copies of the spectrum will not overlap (Figure 1.2(a)).
Given only one spectrum copy, we have a limited, but correct knowledge of the
original signal g(t) and can reconstruct it using an inverse Fourier transform.
The sampling process constitutes an unambiguous mapping.

If, on the other hand, ^ax > /s/2, the spectra will overlap (Figure 1.2(b))
and the too-high-frequency components will be aliased (or "folded") into the
lower part of the next spectrum. We can no longer reconstruct the original
signal, since aliasing distortion has occurred. Hence, it is imperative that the
bandwidth of the original time-continuous signal being sampled is smaller
than half the sampling frequency, also called the "Nyquist frequency".

To avoid aliasing distortion in practical cases, the sampling device is always
preceded by some kind of low-pass filter ("anti-aliasing" filter) to reduce the
bandwidth of the incoming signal. This signal is often quite complicated and
contains a large number of frequency components. Since it is impossible to
build perfect filters, there is a risk of too-high-frequency components leaking
into the sampler, causing aliasing distortion. We also have to be aware that high-
frequency interference may somehow enter the signal path after the low-pass fil­
ter, and we may experience aliasing distortion even though the filter is adequate.

In some literature, the concept of "relative frequency" (or "fnosq") is used
to make calculations simpler. The relative frequency is defined as

« = £ = - d.8a)
/s Ms

Introduction 1

\G#{jo

>(0

\G#(j'o>)\

-+C0

(b) 2 2

Figure 1.2 Part of spectrum of sampled signal. In (a) the bandwidth of the
signal is less than the Nyquist frequency u>s/2 and no aliasing takes place. In
(b) the bandwidth is greater than u>s/2 and aliasing takes place, hence the
original signal cannot be reconstructed

Another way of defining frequency in sampled systems is to use the time
discrete ("digital") angular frequency

Q H 00
In— = 2nq

oos

(1.8b)

Note that oo (lower case omega) is used for "analog" angular frequency in
radians per second, while Q (upper case omega) is used for "digital" angular
frequency in radians per sample period.

Hence, to avoid aliasing distortion: |<7maxl<0.5 or \Qm&x\<^ or
I/si > 21/max I This is important!

If the Nyquist criteria is met and hence no aliasing distortion is present, we
can reconstruct the original bandwidth limited time-continuous signal g(t) in
an unambiguous way. This is achieved using a low-pass reconstruction filter
to extract only one copy of the spectrum from the sampled signal. It can be
shown as a consequence of "Shannon's sampling theorem" or the "cardinal
reconstruction formula" (Mitra and Kaiser, 1993) that the ideal low-pass filter
to use for reconstruction has the impulse response of a sine function

f / , sm(7i(t/T)) . / t \

8 Digital Signal Processing and Applications

This is a non-causal filter (the present output signal depends on future input
signals) having an infinite impulse response, and an ideally sharp cut-off at the
frequency it/T = cos/2 radians per second, i.e. the Nyquist frequency. While of
theoretical interest, this filter does not provide a practical way to reconstruct the
sampled signal. A more realistic way to obtain a time-continuous signal from
a set of samples is to hold the sample values of the signal constant between the
sampling instants. This corresponds to a filter with an impulse response

h(t):
\/T if 0 < t < T

(1.10)
0 otherwise

Such a reconstruction scheme is called a zero-order hold (ZOH) or boxcar
hold that creates a "staircase" approximation of the signal. The zero-order hold
can be thought of as an approximation of the ideal reconstruction filter.

A more sophisticated approximation of the ideal reconstruction filter is the
linear point connector or first-order hold (FOH), which connects sequen­
tial sample values with straight-line segments. The impulse response of this
filter is

\(T + t)/T2 if -T <t<0
h(t)={ 9 " (1.11)

This filter provides a closer approximation to the ideal filter than the zero-order
hold (Astrom and Wittenmark, 1984).

1.2.3 Quantization

The sampling process described above is the process of converting a continuous-
time signal into a discrete-time signal, while quantization converts a signal
continuous in amplitude into a signal discrete in amplitude.

Quantization can be thought of as classifying the level of the continuous-
valued signal into certain bands. In most cases, these bands are equally spaced
over a given range and undesired non-linear band spacing may cause harmonic
distortion. Some applications called companding systems use a non-linear band
spacing, which is often logarithmic.

Every band is assigned a code or numerical value. Once we have decided
to which band the present signal level belongs, the corresponding code can be
used to represent the signal level.

Most systems today use the binary code, i.e. the number of quantization
intervals TV are

N = 2n (1.12)

where n is the word length of the binary code. For example with n = 8 bits we
get a resolution of TV = 256 bands, n = 12 yields TV = 4096 and n = 16 gives
TV = 65536 bands. Obviously, the more bands we have, i.e. the longer the word
length, the better resolution we obtain. This in turn renders a more accurate
representation of the signal.

Another way of looking at resolution of a quantization process is to define
the dynamic range as the ratio between the strongest and the weakest signal

Introduction 9

level that can be represented. The dynamic range is often expressed in decibels.
Since every new bit of word length being added increases the number of bands
by a factor of 2 the corresponding increase in dynamic range is 6 dB. Hence,
an 8-bit system has a dynamic range of 48 dB, a 12-bit system has 72 dB, etc.
(This of course only applies for linear band spacing.)

Now, assuming we have N bands in our quantizer, this implies that the nor­
malized width of every band is Q = 1/iV. Further, this means that a specific
binary code will be presented for all continuous signal levels in the range of
±Q/2 around the ideal level for the code. We hence have a random error in
the discrete representation of the signal level of s = ± 2 / 2 . This random error,
being a stochastic variable, is independent of the signal and has a uniformly
distributed probability density function ("rectangular" density function)

/>(£) =
5 for - f < £ < §
0 else

(1.13)

This stochastic error signal will be added to the "true" discrete representation
of our signal and appear as quantization noise. The root mean square (RMS)
amplitude of the quantization noise can be expressed as (Pohlmann, 1989)

N / .

+ ¥ Q
e2p(e) de = >Tvi Vn

(1.14)

x(n)- /««)) -+y(n)

Figure 1.3 A discrete-time
linear digital signal
processing operation,
input x(n), output y(n)
and transfer function f(x(n))

The ratio between the magnitude of the quantization noise and the maximum
signal magnitude allowed is denoted the signal-to-error ratio. A longer word
length gives a smaller quantization noise and hence a better signal-to-error
ratio.

1.2.4 Processing models for discrete-time series

Assume that by proper sampling (at a constant sampling period T) and quanti­
zation we have now obtained a "digital" signal x(ri). Our intention is to apply
some kind of linear signal processing operation, for instance a filtering oper­
ation, to the signal x(n) thereby obtaining a digital output signal y(n) (see
Figure 1.3).

1.2.4.1 Linear systems

The processing model is said to be linear if the transfer function, i.e. y =/(*) ,
the function defining the relationship between the output and input signals,
satisfies the principle of superposition, such that

f(xi+x2)=Axi)+f(x2) (1.15)

For clarity, let us illustrate this using a few simple examples. If k is a constant,
the function (a perfect amplifier or attenuator)

f(x) = he (1.16)

10 Digital Signal Processing and Applications

is obviously linear since

f(xx + x2) = k(xx + x2) = kxx+kx2 = / (* i) +f(x2) (1.17)

Now, if we add another constant m (bias), what about this function

f(x) = kx + m (1.18)

It looks linear, doesn't it? Well, let us see

f(x\ + x2) = k(x\ + x2) + m = kx\ -\-kx2 + m (1.19a)

but

f(x\) +f(x2) = kx\ + m + kx2 + m — kx\ + kx2 + 2m (1.19b)

Obviously, the latter function is not linear. Now we can formulate one
requirement on a linear function: it has to pass through the origin, i.e./(0) = 0.

If we consider a multiplier "circuit" having two inputs y\ and y2, this can be
expressed as a function having two variables

f(yuy2)=y\yi (1.20)

Let us now connect two composite signals y\ =x\ + x2 and y2 =x^ +X4 to
each of the inputs. We now try to see if the function satisfies the principle of
superposition (equation (1.15)), i.e. if it is linear or not

f(x\ +X2,*3 +*4) = (*1 +X2)(X3 +X4)

= X1X3 +X1X4 +X2Xi +X2X<\ (1.21a)

while

f(x\,X3) +f(X2,X4) = X1X3 +X2X4 (1.21b)

Hence, a multiplication of two variables (composite signals) is a non-linear
operation. For the special case, we connect the same signal to both inputs, i.e.
y\ =y2, we get

f(yuy2)=A

which is obviously a non-linear function. If, on the other hand, we multiply a
signal y\ =x\ +x2 by a constant 72 = k, we get

f(x\ + x2, k) = (x\ + x2) k and f(x\, k) +f(x2, k) = x\k + x2k

as in equations (1.16) and (1.17), then the operation is linear. A two input
function that is linear in each input if the other is held constant is called a
bilinear function. Usually we call it a product.

The next observation we can make is that the first derivative f'{x) of the
function/(x) is required to be a constant for the function to be linear. This also
implies that higher-order derivatives do not exist.

Introduction 11

An arbitrary function f(x) can be approximated using a Taylor or MacLaurin
series

2 3

f(x) * / (0) + x / (0) + ^ /"(0) + X- / '"(0) + • • • (1.22)

By inspection of the two first terms, we can find out if the function is linear
or not. To be linear we demand (see above)

/ (0) = 0 and / '(*) = *

It might be interesting to note that many common signal processing oper­
ations are indeed non-linear, e.g. rectifying, quantization, power estimation,
modulation, demodulation, mixing signals (frequency translation), correlating,
etc. In some cases, it is a matter of how fast the signals in question change
over time compared to each other. Filtering a signal using a filter with fixed (or
"slowly varying") coefficients can be regarded as linear, while using an adaptive
filter, having variable coefficients, may be regarded as a non-linear operation.

If the parameters of the transfer function are constant over time, the signal
processing operation is said to be time invariant. Sometimes such an operation
is referred to as an linear time invariant (LTI) processor (Lynn and Fuerst,
1998; Chen, 1999). Quite often, such processors are also assumed to be causal,
i.e. the present output signal only depends on present and past input signals,
but not on future ones.

The operation of a time-discrete LTI processor can be expressed using a
number of different mathematical models, e.g. as a difference equation model,
a state-space model, a convolution model or a transfer function model.

1.2.4.2 The difference equation model

The difference equation describing the behavior of a linear time-discrete system
can be regarded as the cousin of the linear differential equation describing
a continuous-time ("analog") system. An example difference equation of the
order of two is

y(n) - 0.8><* - 1) + 0.2y(n - 2) = 0.1 x(n - 1) (1.23)

To obtain a first output value, y(0), the initial conditions y(—l) and>>(—2)
have to be known. The difference equation can of course be solved stepwise
by inserting the proper values of the input signal x(n). In some cases, this type
of direct solution may be appropriate. It is however far more useful to obtain a
closed form expression for the solution. Techniques for obtaining such closed
forms are well described in the literature on difference equations (Spiegel, 1971;
Mitra and Kaiser, 1993). The general form of the difference equation model is

N M

J2 *i y(n - 0 = £ bjx(n -j) (1.24)
i=o y=o

where given x(n)9 y(n) is to be found. The order of the difference equation
equals N9 which is also the number of initial conditions needed to obtain an
unambiguous solution.

12 Digital Signal Processing and Applications

When designing and analyzing digital signal processing algorithms, the dif­
ference equation model is commonly not the first choice. Quite often, for
instance, the transfer function model described below is a better tool. How­
ever, when it comes down to writing the actual computer program code to
implement the algorithm, it has to be done using a difference equation model.

1.2.4.3 The state-space model

The state-space model can be seen as an alternative form of the difference
equation, making use of matrix and vector representation. For example, if we
introduce the variables

\y\(n)=y(n)
and

x\(n) = x(ri)

x2(n) = x(n + 1)
(1.25)

[y2(n) = y(n + 1)

our example difference equation (1.23) can be rewritten as

y2(n - 1) = O.Sy2(n - 2) - Q.2yi(n - 2) + 0.1 x2(n - 2) (1.26)

or in matrix equation form

yi(n- 1)

y2(n - 1)

0 1

-0.2 0.8

If we introduce the vectors

yx(n-2)

y2(n - 2) +
0 0

0 0.1

x\(n — 2)

x2(n — 2)

(1.27)

Y(»):
y\(n)

n(n)_
and X(«) =

x\(ri)

x2(n)

and the matrices

A =
0

0.2

1

0.8
and B =

0 0

0 0.1

the difference equation can now be rewritten in the compact, matrix equa­
tion form

Y(/I + 1) = AY(TI) + BX(/I) (1.28)

This is a very useful way of expressing the system. Having knowledge of the
system state Y(n) and the input signal vector X(n) at time instant n, the new
state of the system Y(n + 1) at instant n + 1 can be calculated. The system is
completely specified by the transition matrix A and the input matrix B. The
state-space model is common when dealing with control system applications
(Astrom and Wittenmark, 1984; Chen, 1999).

Introduction 13

1.2.4.4 The convolution model

The convolution model expresses the relationship between the input and output
signals as a convolution sum (Denbigh, 1998)

+00

y(n) = y ^ h(k)x(n — k) = h(n) * x(n)
&=-oo

(1.29)

The star symbol is an alternative way to express convolution. If we choose the
input signal x(n) as the unit pulse 8(n)

8(n):
1 /i = 0
0 « # 0

the output from the system will be

+00

y(n)=]T h(k)8(n-k) = h(n)

(1.30)

(1.31)

where h{n) is denoted as the impulse response of the system. Figure 1.4
shows the impulse response of our example system described by the differ­
ence equation (1.23). If h(n) of the system is known (or obtained by applying
a unit pulse), the output y(n) can be calculated for a given input signal x(n)
using convolution as in equation (1.29). The basic idea of convolution is that
an arbitrary digital input signal x(n) can be expressed as a sum of unit pulses
with different amplitudes and delays

x(n) = XQ 8(n) + x\ 8(n — 1) + X2 8(n — 2) + • • (1.32)

0.1

0.08

0.06

0.04

0.02

0(

n no

r ()

()

<j p

()

1 1 i , i

10
n

0 5

Figure 1.4 The impulse response of the example system

15 20

Now, we know that when applying a unit pulse to the input of the system,
the output will be exactly the impulse response h(n). Hence, if we apply a
sequence of unit impulses with different amplitude, i.e. x{n), the output should
be a sequence of impulse responses having different amplitude. Summing up
all these impulse responses, we obtain the total output, i.e. y(n). This is exactly
what the convolution sum, equation (1.29), does. Thanks to the system being
linear, this approach works. According to the principle of superposition, instead
of calculating the total output when applying a complicated input signal, the
input signal can be broken down into sub-parts having known output responses.
These output responses are then added to obtain the total output signal, which
would give the same result as calculating the total output directly when applying
all the sub-parts of the complicated input signal simultaneously. In real world,
causal systems, there are of course limits to the index k in equation (1.29).

1.2.4.5 The transfer function model

Another way of representing a digital signal processing system is to use the
transfer function model or z-transform model. If we assume that we are
dealing with a causal system

h(n) = 0 and x(n) = 0 for n < 0

or in other words, the input signal is zero for "negative time" sampling instants,
the summation interval of equation (1.29) can be reduced to

+00

y(n) = J2h(k)x(n-k) (1,33)
k=o

Taking the z-transform (Oppenheimer and Schafer, 1975; Rabiner and Gold,
1975; Denbigh, 1998), i.e. multiplying by z~n and summing over 0 < n < oo of
both sides of the equation (1.33) we obtain

+00 +00 +00

£>(«)z-" = £ £ h(k)x(n - k)z-"

+00 +00

= J^h(k)z'k J^x(n - k)z~(n~k) (1.34a)

Y(z) = H(z)X(z) (1.34b)

where X(z) is the z-transform of the input signal, Y(z) is the transform of the
output signal and the transform of the impulse response is

+00

#(z) = 5^A(Jfc)z-* (1.35)
k=0

Hence, the causal system can be fully characterized by the transfer function
H(z) which in the general case is an infinite series in the polynomial z~k.

Introduction 15

For many series, it is possible to find a closed form summation expression.
Note, for a system to be stable and hence useful in practice, the series must
converge to a finite sum as k —> oo.

When working in the z-plane, a multiplication by z~~k is equivalent to
a delay of k steps in the time domain. This property makes, for instance,
z-transformation of a difference equation easy. Consider our example of the
difference equation (1.23). If we assume that the system is causal and that
the z-transforms X(z) and Y(z) of x(n) and y(n), respectively exists, it is
straightforward to transform equation (1.23) as

Y(z) - 0.87(z)z"1 + 0.27(z)z~2 = 0.1X(z)z_1 (1.36)

Rearranging equation (1.36) we obtain

tfM - 1 £ > - 0Az~l - 0Az n Tn
W ~ X(z) " 1 - 0.8Z-1 + 0.2z-2 z2 _ 0.8z + 0.2 K }

The zeros are the roots of the numerator, while the poles are the roots of the
denominator. Hence, in equation (1.37) above, the zero is

0.1z = 0

having the root z\ = 0, and the poles are

z2 - 0.8z + 0.2 = 0

having the complex roots z\ = 0.4 +J0.2 and Z2 = 0.4 —j0.2.
The study of the locations of the poles and zeros in the complex z-plane

are sometimes referred to as the root locus. Figure 1.5 is a plot showing the
location of the poles and zeros in the complex z-plane, where a pole is commonly
marked with a cross and a zero with a ring.

Stating only the locations of the poles and zeros is an alternative way of spec­
ifying a system, containing as much information as the transfer function itself.
The location of poles and zeros may affect the behavior of system considerably.
This is especially true regarding the issue of stability.

For the system described by equation (1.37) to be stable, it is required that
the poles of the system lie within the unit circle in the complex z-plane, hence

\zp\ < 1 for all p

For our example system above, \z\ \ = \zi\ = \/(0.42 + 0.22)^0.45, i.e. the
system is stable.

There are many mathematical definitions of the term stability. A heuristic
approach is to say that an unstable system is a system where the output signal
tends to run out of bounds or oscillates with an increasing amplitude. Anybody
who has experienced feedback in an audio system when bringing a microphone
too close to a loudspeaker knows what instability is all about. It is easy to realize
that an unstable system, "running wild", is commonly not usable.

1.2.4.6 The frequency function model

Under some circumstances the properties of the system in the frequency
domain are of primary interest. These properties can be found by studying

16 Digital Signal Processing and Applications

1

0.8

0.6

0.4

0.2

co 0 c

to

.1 -0.2

-0.4

-0.6

-0.8

pole-zero map

-1
-1

-**" I *****

\i i x *J
1 ' >
I I i

6 1
p ' 1

ft ! x #1

I i **~ i "*'* i I

-0.5 0
real axis

0.5

Figure 1.5 A pole-zero plot showing the location of poles (x) and zeros (0)
of the example system in the complex z-plane

the system for a special class of input signals, which are functionally equivalent
to a sampled sinusoid of frequency/

x(n) = e^flM" = QJQn = cos (tin) +y sin (tin)

for —oo < n < +oo

Applying equation (1.38) to equation (1.29) by convolution, we obtain

(1.38)

+ 0 0 + 0 0

y(n) = J^ h(k)eJQ(n-k) = cjn" £ h(k)e~JQk

k=—oo k=—oo

= x(n)H(Q) (1.39)

Thus, for this special class of inputs, we see from equation (1.39) that the output
is identical to the input to within a complex, frequency-dependent gain factor
H(£l), which is defined from the impulse response of the system as

y(n)
+ 0 0

^ =«(«)= £ wye-*™ (1.40)
k=—oo

This gain factor is often referred to as the frequency response or the
frequency function of the system. Taking the magnitude and argument of
the frequency response, Bode-type plots, showing gain and phase shift can be

Introduction 17

bode diagram

CO

o
ZJ

*c
CO

-12

-14

-16

-18

-20

-??

— - p - -

— • —

i — ^ 1 r—i
i ^ ^ ^ ^ ^ ^ ^ '

_ _•_ _ i _ i. . J _ I i_ j i i_ _

— i — i - f - i - i r- i r- — • —

• • i l i i i I I

i i i i i i i I I
i i I I

i i i i i i i I I
i i i i i i i I I

i i i i i i 1 i L.

r—i—i—i i
• i i i

U . U . I .

- "i - r " ^ i - — - - •

- -i - i. .i _ i _ _ _ .V. .

i i i i

0
•o

CO

Q .

-45

-90

-135

10" 10-1

frequency (rad/s)

10°

Figure 1.6 Bode plot of the frequency function of the example system. The
upper plot is the gain function (log-log scaling) and the lower is the phase
shift function (lin-log scaling)

obtained (see Figure 1.6). The Bode plot was introduced by H.W. Bode in 1945.
The upper diagram shows the gain function, i.e. the magnitude of the frequency
response, A(Q) = \H(Q)\. Commonly, the gain is plotted using decibels, result­
ing in a log-gain versus log-frequency scaling. The lower plot is the phase shift
function, cp(Q) = ZH(Q) shown in linear-phase versus log-frequency scaling.

Note that the frequency response H(£2) — H^271^^^) is essentially the
discrete Fourier transform (DFT) (see Chapter 5) of the impulse response
h(n). A well-known fact can be seen; that a convolution in the time domain
corresponds to a multiplication in the frequency domain and vice versa.

In this section, we have demonstrated a number of ways to represent math­
ematically a signal processing operation (Figure 1.3). It is convenient to work
with these models "off-line" in a powerful PC, workstation or minicomputer,
using floating-point arithmetic. It is, however, often a challenge to migrate the
system into a single-chip, fixed-point, digital signal processor required to per­
form in real time. "Smart" algorithms and "tricks" are often needed to keep up
processing speed and to avoid numerical truncation and overflow problems.

1.3 Common filters 1.3.1 Filter architectures

Since digital filters are nothing but computer program code, there are of course
an infinite number of possible filter architectures and variations. In this section,
however, some common filter architectures are shown.

18 Digital Signal Processing and Applications

x(n) x(n - 1) x(n - 2) x(n - M)

4y •®-

°M

4y
An)

Figure 1.7 Non-recursive (FIR) filter having length M with weights bj

1.3.1.1 The non-recursive filter

This filter (Figure 1.7) is sometimes denoted tapped delay-line filter or
transversal filter or FIR filter since it has a finite impulse response. Using
the convolution model, the response can be expressed as

M

y(n) = ^2hU)x(n-j) (1.41)
y=0

where M is the length of the filter. If we apply a unit pulse to the input of the
system, i.e. x(n) = 8(n), it is straightforward to realize that the impulse response
h(j) of the system is directly obtained from the weight (gain) of the taps of the
filter

Kj) = bj (1.42)

If we prefer a z-plane representation of equation (1.41), one of the nice
features of the FIR filter is apparent

-M H(z) b0 + biz~l + b2z~2 + • + bMZ (1.43)

Since the FIR filter does not have any poles, it is always guaranteed to be stable.
Another advantage is that if the weights are chosen to be symmetrical (Lynn
and Fuerst, 1998), the filter has a linear-phase response, i.e. all frequency
components experience the same time delay through the filter. There is no risk of
distortion of compound signals due to phase shift problems. Further, Imowing
the amplitude of the input signal, x(n\ it is easy to calculate the maximum
amplitude of the signals in different parts of the system. Hence, numerical
overflow and truncation problems can easily be eliminated at design time (see
Chapter 9).

The drawback with the FIR filter is that if sharp cut-off filters are needed so is
a high-order FIR structure, which results in long delay lines. FIR filters having
hundreds of taps are however common today, thanks to low-cost integrated
circuit technology and high-speed digital signal processors.

1.3.1.2 The recursive filter

Recursive filters, sometimes called IIR filters use a feedback structure
(Figure 1.8), and have an infinite impulse response. Borrowing some ideas

Introduction 19

yin)
— •

x(n) +
+®

yin - l) yin - 2)
* - i r - l

«1 «2

K ^

y(n-N)

aN

4>

Figure 1.8 Recursive (IIR) filter having length N with weights ai

*(w).

K&

GM

- •

Figure 1.9 The IIR filter
seen as an FIR filter in
a feedback loop

from control theory, an IIR filter can be regarded as an FIR filter inserted in a
feedback loop (Figure 1.9). Assume that the FIR filter has the transfer function
G(z), the transfer function of the total feedback structure, i.e. the IIR filter
is then

H(z) =
1 1

1 + G(z) 1 + a\z~x + a2z~2 H + aNz~ -N (1.44)

The IIR filter only has poles, hence it is of great importance to choose the
weights at in such a way that the poles stay inside the unit circle to make sure
the filter is stable. Since the impulse response is infinite, incoming samples will
be "remembered" by the filter. For this reason, it is not easy to calculate the
amplitude of the signals inside the filter in advance, even if the amplitude of
the input signal is known. Numerical overflow problems may occur in practice.

The advantage of the IIR filter is that it is quite easy to build filters with sharp
cut-off properties, using only a few delay elements.

Pure IIR filters are commonly used for alternating current (AC) coupling and
smoothing (averaging) but it is more common to see combinations of FIR and
IIR filter structures. Such a structure is the second-order combination shown in
Figure 1.10, having the transfer function

H(z)
-2 bo + b\z l + b2z

1 + a\z~l + a2z~2 (1.45)

Of course, higher-order structures than two can be built if required by the
passband specifications. It is however more common to combine a number of
structures of order two in cascade or parallel to achieve advanced filters. In this
way, it is easier to obtain numerical stability and to spot potential numerical
problems.

Note! If a filter has zeros canceling the poles (i.e. having the same location
in the complex plane), the total transfer function may have only zeros. In such a
case, the filter will have a finite impulse response (FIR), despite the fact that the
structure may be of the recursive type and an infinite impulse response (IIR) is
expected. Hence, a non-recursive filter (FIR filter) always has a finite impulse

20 Digital Signal Processing and Applications

• $ - • $ -

x(n) +
< $ -

y(n)

b2

ax a2

4>

Figure 1.10 Combined second-order FIR and IIR filter structure. Note: only
two delay elements are needed

response, while a recursive filter commonly has an infinite impulse response,
but may in some cases have a finite impulse response.

If for instance a non-recursive filter is transformed into a recursive struc­
ture, the recursive filter will have the same impulse response as the original
non-recursive filter, i.e. an FIR. Consider for example a straightforward
non-recursive averaging filter having equal weights

N-\

y(n) = jj J2x(n~^
i=0

The filter has the transfer function

w >* 1 N~l

(1.46)

(1.47)

/=o
Obviously, this filter has a finite impulse response. To transform this FIR filter
into a recursive form, we try to find out how much of the previous output signal
y(n — 1) that can be reused to produce the present output signal y(n)

y(n) -y(n - 1) = - J^x(<n ~ '") " jj Ylx(n " l ~ ^

The corresponding recursive filter structure can hence be written

(1.48)

y{ri) =y(n - 1) + ^x(n) - ^x(n - N) =y(n - 1) + -(x(n)-x(n - N))

(1.49)

Introduction 21

Figure 1.11 Example of an all-zero lattice filter consisting of two lattice
elements

having the transfer function

HR(z)
1 1 m

X(z) N \-z - l
(1.50)

This is indeed a recursive filter having the same impulse response as the first
filter and hence an FIR. Another interesting observation concerns the implemen­
tation of the filter. In the first case, one multiplication and N — 1 additions are
needed, while in the second case only one multiplication, one subtraction and
one addition are required to perform the same task. Since digital filters are com­
monly implemented as computer programs, less computational burden implies
faster execution and shorter processing time (see Chapter 9). In this example,
the recursive algorithm seems advantageous, but this is not generally true.

1.3.1.3 The lattice filter

Besides the standard filter structures discussed above, there are many special­
ized ones for specific purposes. One example of such a structure is the lattice
filter (Orfandis, 1985; Widrow and Stearns, 1985) which is commonly used
in adaptive processing and particularly in linear prediction. An example lattice
filter consisting of two lattice elements is shown in Figure 1.11.

There are many variations of lattice structures. This example is an all-zero
version, i.e. a structure having a transfer function containing only zeros (no
poles), so it may be regarded as a lattice version of a non-recursive filter (FIR).
The filter has one input and two outputs. The upper output signal is often
denoted the forward prediction error, while the lower output signal is called
the backward prediction error. The reason for this is explained below.

The transfer function, with respect to the forward prediction error, has the
general form

Hf(z)
Yf(z) A .

(1.51)
i = 0

22 Digital Signal Processing and Applications

where bo = 1 andL is the number of lattice elements in the filter. In our example
1 = 2, hence

7f(z) = X(z) + X(z)bxz~x +X(z)b2z-2 (1.52)

The corresponding difference equation is

yf(n) = x(n) + b\x(n - 1) + ^ (" - 2) = x(n) - x(n) (1.53)

Now, if we assume that we can find filter coefficients b\ in such a way that
yi(n) is small or preferably equal to zero for all n, we can interpret x(n) as
the prediction of the input signal x(n) based on x(n — 1) and x(n — 2) in this
example. Hence, we are able to predict the input signal one step forward in
time. Further, under these assumptions it is easy to see that yf (n) =x(n) — x(n)
is the forward prediction error.

In a similar way, it can be shown that the transfer function with respect to the
backward prediction error (the lower output signal) has the general form

b (z) = | ^ = X > - , Z - ' (1.54)

where bo — 1 and L is the number of lattice elements in the filter. In our example
L = 2, hence

Yh(z) =X(z)b2 +X(z)b\z~x +X(z)z~2 (1.55)

The corresponding difference equation is

y\y(n) = x(n — 2) + x(n)b2 + x(n — l)b\ = x(n — 2) — x(n) (1.56)

In this case x(n) is the prediction of the input signal x(n — 2) based on
x(n— 1) and x(n). Hence, we are able to predict the input signal one step
backward in time andy\,(n) = x(n — 2) — x(n) is the backward prediction error.

The procedure for determining the lattice filter coefficients (Orfandis, 1985;
Widrow and Stearns, 1985) Kt is not entirely easy and will not be treated in this
book. There are of course other types of filters which are able to predict signal
sample values more than only one step ahead. There are also more advanced
types, e.g. non-linear predictors. An important application using predictors is
data compression (see Chapter 7). The basic idea is to use the dependency
between present samples and future samples, thereby reducing the amount of
information.

1.3.2 Filter synthesis

So far we have discussed some possible filter architectures, but how to deter­
mine the numerical filter coefficients for a specific application? To start with,
there are some basic limitations. Consider the following example: using digital
signal processing, we would like to build the perfect software radio receiver
(RX) having very good selectivity. Such a receiver would have a very good,
preferably "brick-wall-type", bandpass filter to allow only signals from the
desired transmitter (TX) with frequency fc, while strongly rejecting signals

Introduction 23

gain function

CO

E

: : : : :
r r r "i T
' ! _ _ ! . _ J _ ! _

: : :: : :
; y 1 1 i i

: : : : : :

: : : : : : : : : : : : : : : : : :

frequency (rad/s)

Figure 1.12 Gain function of an unrealistic "brick-wall" bandpass filter

transmitted on nearby frequencies, outside the bandwidth B (we assume that
B <&fc). Figure 1.12 shows the gain function of the bandpass filter of our dreams.

For frequencies / <fc — (B/2) mdfc + (B/2)<f, i.e. the stopband, the
filter gain is close to zero, i.e. no signals are let through, while in the passband,
fc — (B/2) <f <fc + (B/2) the gain is equal to one. Intuitively, we realize that
such a filter can hardly be built using analog, electronic components like capac­
itors and inductors. But what about digital filters implemented as program code
on a computer?

By making an inverse Fourier transform of the gain function^ in Figure 1.12,
we could obtain the impulse response h(n) of the filter. This would in turn give
us all filter coefficients bn needed to design an FIR filter (compare to equations
(1.40) and (1.42)). Unfortunately, we find the impulse response to be a sine
function (compare to equation (1.9)) of the type

h(n) = B sine r) for —oo < n < oo (1.57)

A part of the impulse response is shown in Figure 1.13. One problem is that
the impulse response is of IIR type, i.e. infinite. Since we cannot build an FIR
filter with an infinite number of taps, we have to use only a limited number of
taps, which will indeed degrade the performance of the filter. Why cannot we
build an IIR filter then? The next problem that strikes us is the fact that we have
a non-causal impulse response, i.e. we need to know future values of the signal
which are not available yet. This can of course be amended by introducing
an infinitely long delay function in the system. Since there is obviously a very
limited market for such filters, we must conclude that the perfect bandpass filter
can never be built. We will have to stick to approximations of the gain curve
sketched in Figure 1.12. This is mainly what filter synthesis is all about: finding
acceptable compromises (not easy) that can be implemented in reality and at
a reasonable cost. (Like human life in general?) In this text we have so far
only discussed bandpass filter functions, however, the same reasoning applies
to low-pass, high-pass and bandstop filters.

So, what parameters should be taken into account when making a filter
passband approximation? There are three common aspects: the slope of the

24 Digital Signal Processing and Applications

1

0.8

0.6

^ 0.4

0.2

0

-0.2

- n A

•

I

I lllllll
..nun. .illlllli lllllll

'HI'1 Illlllli

I I I I

i — i — i — i — i

I

1 Illlllli
IIII .iiii,

1 1 'IIIIIII'

I I I I

-

-

-

-

-

.iiiiin,

-

-50 -40 - 3 0 - 2 0 - 1 0 0 10 20 30 40 50
n

Figure 1.13 Impulse response (the sine function) of the unrealistic
bandpass filter

ripple

slope

bode diagram

•o

CD

c
CO

£

D)
CD 2,
CD
CO
CO
JC
Q.

1 1]

[]

\ i ^^^—\
vr ^Y~""

^Ni

phase
linearity

frequency (rad/s)

Figure 1.14 Example of a Bode plot showing a realistic bandpass filter

passband curve, ripple in the passband and phase linearity (see the example
Bode plot in Figure 1.14).

In the dream filter above, the slopes of the passband curve were infinitely
steep, which turned out to be impossible, but in many cases, we would like
to get as steep slopes as possible. Ripple is unwanted gain variations in the
passband. In the ideal case, the gain is exactly one everywhere in the passband.

Introduction 25

Phase linearity, finally, means that the phase shift of the filter in the passband
should ideally be proportional to the frequency, i.e.

<Kf) = -V 0-58)

since the group delay rg for the signal to pass through the filter is

Inserting equation (1.58) into equation (1.59) we realize that having a phase
function of the filter according to equation (1.58), the group delay for all
frequencies will be the same.

•*—s^-s <l'60)

This is of course a desirable property of a filter, since sending a composite signal
consisting of many frequency components through the filter, all the components
will reach the output simultaneously, thus avoiding phase distortion.

It is not surprising that the three good properties above cannot be achieved
at the same time. There is always a trade-off. Below, some commonly used
approximations for low-pass filters (bandpass filter with fc = 0) are shown.
In the expressions below, co is the normalized, angular frequency defined in
such a way that the gain of the filter is 1 j\fl & 0.707 or — 3 dB at co = coo = 1 •
The parameter coo = 2jrfo called the cut-off frequency is commonly used when
specifying filters.

• The Butterworth approximation is also called the maximally flat approxi­
mation, implying that there is no ripple in the passband or in the stopband.
On the other hand, neither the slope of the passband curve nor the phase
linearity is very impressive. The Butterworth approximation of the gain
function is

A(co) = - 7 = L =
y/\ + C02k

where k is the order of the filter.
• The Chebyshev approximation has a steeper slope than the Butterworth

type, but has ripple in the passband and poor phase linearity. The Chebyshev
approximation of the gain function can be written as

A(co) = 1

^1+^qV)

where s is a ripple constant and Ck{co) is the Chebyshev polynomial defined as

Ck(co) = {
cos (k arccos (co)) for \co\ < 1

cosh (k arccosh(&>)) for \co\ > 1

26 Digital Signal Processing and Applications

The magnitude of the passband ripple, i.e. the variations in gain in the
passband can be determined by (expressed in decibels)

AA = 10 1og(l+£2)dB

• The Cauer approximation is an extension of the Chebyshev approximation
in the sense that ripple is allowed in the stopband also, resulting in an even
steeper slope. The Chebyshev and Cauer approximations belong to the class
of elliptic filters.

• The Bessel-Thomson approximation has good phase linearity, but the slope
of the passband is not very impressive.

There are two main ways of synthesizing filters: the indirect method and the
direct method.

1.3.2.1 Indirect filter synthesis

The idea of the indirect method is first to design an analog filter using well-
known classical methods and then transform the analog filter function into a
digital one. The advantage is that there are many well-known design meth­
ods for analog filters around and old filter designs can be reused. There are
however a couple of drawbacks. Firstly, analog filters are traditionally imple­
mented using electronic components like inductors, capacitors, resistors and
operational amplifiers. Therefore, there are limitations to what type of analog
transfer functions can be achieved. Typically, an analog transfer function for­
mulated using the Laplace transform would have the structure of a fraction of
polynomials

G^ = ~vr\ = — ; ;—7~ {— (L 6 1)
X(s) #o + a\s + a2s

L H
This means that there are only a limited number of filter types that can be
designed using the indirect method.

Secondly, the process of transforming the analog transfer function in the
5-plane into a digital one in the z-plane is not without problems. Once again
we have a compromise situation. There is no perfect transformation method,
i.e. there is no method that transforms all the properties of an analog filter to a
digital counterpart. Below, some common transform methods are presented.

The impulse invariance method is based on the idea that the impulse
response of the analog filter with transfer function G(s) should be identical
to the impulse response of a corresponding digital filter having the transfer
function H(z)

h(t) = L~l[l • G(s)] = Z~\\ • H(z)] = h(n) =* H(z) = Z[2r l[G(s)]]

(1.62)

where the operator L~l is the inverse Laplace transform, Z _ 1 is the inverse
z-transform and Z is the z-transform. The following are expressed in equation
(1.62): the impulse response of the analog system is the unit impulse 1 times the
transfer function G(s). This impulse response, expressed in the time domain,
should be equal to the impulse response of the digital system, given by the unit

Introduction 27

impulse 1 times the transfer function H{z). Solving for H(z) means first applying
the inverse Laplace transform to 1 • G(s) and then applying the z-transform. The
coupling between continuous time and discrete time is

t = j (1-63)

As an example, assume that we have an analog transfer function as in equation
(1.61). Factorizing the function and splitting it into partial fractions, we obtain

G(s) = - ^ — + -2— + • • • (1.64)
S-p\ S-p2

where p\ is the pole of polynomial / and r, is the corresponding residual, etc.
Applying the inverse Laplace transform, every term in equation (1.64) will
transform to

A(0 = rie*1' + r2e*2' + --- (1.65)

Replacing the continuous time with discrete time using equation (1.63), and
approximating the continuous exponential function with a discrete step function
(step width equal to the sampling period \/fs) gives

h(n) = ^V l (M / / s) + lletoWM + . . . (1.66)
fs fs

Taking the z-transform of equation (1.66)

H(Z) — 77 r + 77 r H (1-67)
w 1 _ epi//gZ-l 1 _ QP2/fsZ-l V '

After some tedious housekeeping we finally end up with a digital transfer
function of the type

m^ 7 (z) bo + biz-l+b2Z'2 + '" n _
X(z) 1 + a\z l -f d2Z l H

which can easily be implemented as a standard IIR filter as in equation
(1.45). Note that this method only guarantees that the digital filter has the same
impulse response as the analog "original" filter. No promises are made about,
for instance, the frequency function. This method is used in signal processing
applications.

Starting from similar ideas, the step invariance method can be formulated as

(1.69)

In this case, the analog and digital filters have the same step response. Further,
the ramp invariance method will be

(1.70)

28 Digital Signal Processing and Applications

where the analog and digital filters will have the same ramp response. The step
invariance and ramp invariance methods are commonly used in control system
applications.

A commonly used transform, both for digital signal processing and for digital
control systems, is the bilinear transform (BLT), also called Tustin's approxi­
mation. The idea behind the bilinear transform is to find a way of formulating a
digital transfer function H(z) that resembles the analog transfer function G(s) as
closely as possible considering the frequency response. No guarantees regard­
ing, for instance, the impulse response are given. Omitting the details that can
be found in, for instance (Denbigh, 1998), we conclude that the method of the
bilinear transform is to replace the Laplace variable s in the analog transfer
function by an expression in the z variable as

1 - z - 1 z - 1
s-^2fs-—-^=2^—-- (1.71)

1 + z [z +\

Unfortunately, the shape of the gain function of the analog filter \G{s)\ and
the digital counterpart \H(z)\, obtained by bilinear transformation, differs. This
is especially true for higher frequencies, approaching the Nyquist frequency
/ s / 2 . To counteract this problem, pre-warping is used. Pre-warping means that
when designing the initial analog filter, which will later be transformed to a
digital one, frequencies used to specify the filter are modified according to

A =***(*(£)) (1.72)

where fy is the frequency in question for the final digital filter, while the cor­
responding analog filter should use the pre-warped frequency f&. For small
frequencies, the difference between^) and /A is negligible, I.Q./A ^/D, while
for frequencies approaching the Nyquist frequency, the deviation may be con­
siderable. Let us illustrate the bilinear transformation and pre-warping with an
example.

Assume we are asked to design a digital Butterworth filter of order two with
cut-off frequency 250 Hz. The sampling frequency of the system is 1 kHz. First,
we have to do frequency pre-warping. Insertingyb and/s into equation (1.72)
we obtain

1-103 / 250 \ _

This means that we need to design the analog filter to have a cut-off frequency
of 318 Hz in order to obtain a transformed digital filter with the desired cut-off
frequency 250 Hz. The next step is to design the analog Butterworth filter, which
can be done using conventional methods, for instance, using MATLAB™ the
resulting transfer function will be (see also equation (1.61))

G(S)= ^ b \ 2 (1-73)
ao + a\s + a2SL

where the coefficients are 6 0 =4-10 6 , tf0=4.106, tfi=2.83-103,
02 = 1- Applying the bilinear transform equation (1.71) to the analog transfer

Introduction 29

function (1.73) we obtain

bo
H(z)

a0 + ai2fs[(z - l)/(z + 1)] + a2(2fs[(z - l)/(z + l)])2

= b0(z + l)2

~ a0(z + l)2 + 2fsax(z - l)(z + 1) + Affa2{z - l)2

_ b0(z
2 + 2z + 1)

~ a0(z
2 + 2z + 1) + 2/sai(z2 - 1) + 4/s

2«2(z
2 - 2z + 1)

= b0(z
2 + 2z + 1)

~ z2(a0 + 2/,ai + 4/s
2a2) + z(2a0 - 8/s

2«2) + («o - 2f,ai + Af2a2)

_ 60(l+2z-'+z-2)
~ (a0 + 2/sai + 4/s

2a2) + z-\2a0 - 8/s
2a2) + z"2(a0 - 2/gai + 4/s

2«2)

bo
(ao + 2fsai+4fs

2a2)

(l + 2 z - ' + z - 2)

' (2ao - 8/s
2a2) (op - 2/gai + 4/s

2a2)
(a0 + 2/ s f l l+4/ s

2a2) Z (a0 + 2/,a, + 4/s
2a2)

Inserting the filter coefficients, we obtain the final, digital transfer function

Y(z) l+2z-l+z~2

The filter having the transfer function (1.74) can easily be implemented as a
standard second-order IIR filter shown in Figure 1.10 (see equation (1.45)).

Figure 1.15(a) shows the desired gain response (solid line) of a Butterworth
filter with cut-off frequency 250 Hz. The dotted line shows the gain function of
the digital filter obtained using pre-warping as above. This filter is the bilinear
transformation of an analog filter designed for cut-off frequency 318 Hz. In
Figure 1.15(b), the dotted line is the gain function of a digital filter designed
without pre-warping, i.e. the bilinear transform of an analog filter designed
with cut-off frequency 250 Hz.

Another, simpler transform is the Euler transform, sometimes used in con­
trol system applications. The Euler transform consists of variable substitution
somewhat simpler than for the bilinear transform above

s^fs—=fs(l-z-1) (1.75)
z

The idea behind this transform is that s in the Laplace method represents a
derivative, while the right side of equation corresponds to a numerical approxi­
mation of a differentiation, see also Section 1.4.1. This transform works better
the higher the sampling frequency compared to the signal frequencies.

13.2.2 Direct filter synthesis

In direct filter synthesis, the digital filter is designed directly from the filter
specifications, without using any analog prototype to transform. The advantage

30 Digital Signal Processing and Applications

0

-1

co

•D

C
D)
CO

E

I . T ^ * ^ _ - * i ^ L L

' ^^"^^^ '
, r -^r - x r
I I > > v X '
i i \ N i
i i > ^ i

l l V ^
l l * X
L »- * \ - V

! I ' * x
i i i \ X
1 ' ' x x
, r r % X J
I I I \ I

I I ' \ I
I I ' x I
1 I I M

! i ! \\

0

-1

GO

a? — 3
•D

E

- 6

, ^ s r -*v<^- r

i L S i _ X

L j. ;.__ -\---f N̂
i i x > I
• i \ i I

r-—- -f — - \ - i j
• • v I

! ! 1^ I
10: ,2.1 10*

(a)

|2.2 1Q2.3

frequency
10: ,2.4 10: i2.1

(b)

10: i2.2 102-3

frequency
10: ,2.4

Figure 1.15 (a) Desired gain response (solid line) of a Butterworth filter with
cut-off frequency 250 Hz. The dotted line is the response of the digital filter
obtained using pre-warping and bilinear transformation (analog filter
designed for cut-off frequency 318 Hz), (b) The dotted line is the response of a
digital filter designed without pre-warping (analog filter designed with cut-off
frequency 250 Hz)

is that new filter types can be achieved, since we are no longer hampered by the
limitations implied by the use of analog, electronic components.

The first direct method presented is the Fourier method also called the
Window method. In this method (Denbigh, 1998) one first determines a desired
gain function^/). Since the transfer function of a filter is the Fourier transform
of the impulse response (see equation (1.40)), the inverse Fourier transform of
the desired gain function would give the impulse response

h{} *-M- A(f)z j27tn(f/fs) d/ (1.76)

Since we know that the impulse response of an FIR filter is exactly the values
of the filter taps (equation (1.42)), implementing the filter is straightforward.
The problem associated with this method is shown in the beginning of this
section. Often the desired gain function results in infinite, non-causal impulse
response. Hence, compromises must be made and filter lengths cut using some
windowing function (see Chapter 5), implying that the resulting gain response
will deviate somewhat from the desired one.

A dual of the Window method, briefly presented above, is the Frequency
sampling method. In this method, the desired frequency response H(Qk) is
defined at crucial frequencies. Frequency points in between the specified points
are interpolated, and the impulse response is obtained using the inverse DFT.
The interpolation frequency points are important, since too abrupt transitions
in the desired frequency response function may result in considerable ripple in
the frequency response of the final implementation.

Introduction 31

pole-zero map

Figure 1.16 A pole-zero plot for a bandpass filter; poles close to the unit
circle result in a narrow passbandfilter

Another direct filter design method is the simulation method, in which the
filter is simulated and poles and zeros are placed manually or automatically in
the complex z-plane until the desired gain and/or phase function is obtained.
The method may seem a bit ad hoc, but it is nevertheless frequently used.
When placing the poles and zeros in the z-plane, there are some elementary
rules:

The frequency axis in a gain function plot corresponds to the unit circle in
the z-plane (see equation (1.38)). Traversing the positive frequency axis in
a gain function plot corresponds to moving counterclockwise on the upper
arc of the unit circle (see Figure 1.16).
All poles have to be placed inside the unit circle for stability reasons; the
location of zeros does not matter from a stability point of view.
The distance from a pole to a given position on the unit circle, i.e. a given
frequency, is inversely proportional to the gain. The closer a pole is located
to the unit circle, the higher the gain for frequencies in vicinity of the pole.
A pole should preferably not be placed on the unit circle, since that will
create an oscillator, or in the worst case, lead to instabilities due to numerical
truncation effects.
The distance from a zero to a given position on the unit circle, i.e. a given
frequency, is proportional to the gain. The closer a zero is located to the unit
circle, the lower the gain for frequencies in vicinity of the zero. A zero can
be placed on the unit circle, resulting in zero gain at the given frequency.

32 Digital Signal Processing and Applications

• Single poles or zeros can only appear on the real axis.
• Pairs of poles or zeros appear as complex conjugate pairs, i.e. p — x ±jy.
• Poles or zeros at the origin do not affect the gain function, but contribute to

the phase shift function of the filter.
• A pole in an improper location (outside the unit circle) can be cancelled by

placing a zero on exactly the same place, thus stabilizing the system. One
should be aware, however, that this method is risky. If, for instance, for
numerical truncation reasons the zero moves away just a little, we may be
stuck with an unstable system.

The example in Figure 1.16 shows a bandpass filter with center frequency
Qc = 27t(fc/fs) which corresponds to the angle ±QC in the figure. The closer
the poles are placed to the unit circle, the more narrow the passband B, i.e. the
higher the g-factor of the filter.

The McClellan-Parks method based on the Remez exchange algorithm
is a common method for designing optimal linear-phase FIR filters, complying
to the passband specification as closely as possible, while requiring as few taps
as possible. The basic idea of this method is to approximate the desired gain
function by a series of cosines of the form

A(co) = 2_] b(k) cos (cok)

An error weighting function W\(co) is defined, which governs how to penal­
ize errors between the desired response A\(co) and the approximation A(co) at
different frequencies. For frequencies where W\(co) is large, a high degree of
conformity to the desired gain function is demanded. Using the Remez exchange
algorithm, the cosine coefficients b(k) are found by minimizing the maximum
error function

\Wl(co)(Al(co)-A(co))\ = W\(coMAi(CO) -] T b(k) cos (cok)

From the cosine coefficients, the impulse response, i.e. the FIR filter taps, can
be obtained using the inverse DFT and taking symmetry conditions into account
to achieve phase linearity. The presentation above is highly simplified, since the
details of the algorithm are quite complicated. A detailed presentation can be
found, e.g. Cavicchi (2000).

1.4 Digital control
systems

A basic, "analog" closed-loop control system is shown in the block diagram
in Figure 1.17 (Tewari, 2002; Wilkie et al, 2002). It consists of a process (or
plant) having transfer function G(s) (including actuators), a transducer with
transfer function H(s) (including signal conditioning) and a controller with
transfer function K(s\ expressed in the Laplace domain. The signals appearing
in the block diagram are: the reference signal or set point R(s), the process
error signal E(s), the controller output signal U(s), the process disturbance
signal D(s), the process output signal Y(s)9 the measurement disturbance
signal N(s) and the measured output signal Ym(s).

Introduction 33

D(s),

R(s) + _ E(s)

• • & • m
U(s)

G(s) +&
Y(s)

Ym(s)

&
N(s)\

H(s)

Figure 1.17 Block diagram showing a typical closed-loop control system

For example, the closed-loop system could be an electrical heater in a room
where a desired and constant indoor temperature is required. The desired tem­
perature is presented to the system as the electric reference signal R(s) obtained
from a temperature-setting knob on the wall. This signal is compared to the
measured output signal Ym(s), which is the output of the temperature transducer
measuring the actual temperature in the room. The measurement disturbance
signal N(s) represents imperfections in the temperature transducer and in this
example, we assume that N(s) = 0. The difference between the desired and
the actual temperature is the process error signal E(s). The error signal is
fed to the controller, which determines a proper controller output signal U(s).
If, for instance, the actual temperature is lower than desired, the error sig­
nal E(s) = R(s) — Ym(s) is positive. An appropriate measure of the controller
would hence be to increase the output signal U(s) or, in other words, increase
the current to the electrical heater, increasing the heating power. The process
disturbance signal D(s) may represent an open window (negative sign) trying
to lower the temperature in the room (we are up north now), or an electrical
appliance in the room (negative sign) trying to increase the temperature.

Now, what are the characteristics of a good closed-loop control system? Let
us first assume that the process disturbance is negligible, i.e. D(s) = 0. The
closed-loop transfer function of the system will be

Y(s) = E(s)K(s)G(s)

E(s) = R(s) - H(s)Y(s)

Inserting equation (1.77b) into equation (1.77a) we get

(1.77a)

(1.77b)

Y(s) R(s)K(s)G(s) - Y(s)H(s)K(s)G(s)

Y(s)(l + H(s)K(s)G(s)) = R(s)K(s)G(s)

Y(s) K(s)G(s)

(1.78)

GCL(S) =
R(s) 1 + H(s)K(s)G(s)

Equation (1.78) is the transfer function for the entire system, i.e. it shows
how the temperature Y(s) is affected by the reference (set point) R(s) signal.
Some desirable properties of the system are:

• the output Y(s) should follow the input R(s) with good accuracy statically,
i.e. the process error E(s) should be small and E(s) -» 0 as t - • oo

34 Digital Signal Processing and Applications

• the output Y(s) should follow the input R(s) dynamically well, i.e. a change
in R(s) should appear as a change Y(s) in with as small a delay as possible

• the system should be stable; since the transfer function has poles, they have to
be located in the left half of the s-plane (inside the unit circle for the z-plane).

Further, since the system is supposed to be linear we can set R(s) = 0 to
investigate how process disturbance D(s) affects the output Y(s), we get

Y(s) = E(s)K(s)G(s) + D(s) (1.79a)

E(s) =-H(s)Y(s) (1.79b)

Y(s) = -Y(s)H(s)K(s)G(s) + D(s)

=> Y(s)(l + H(s)K(s)G(s)) = D(s) (1.80)

Y(s) = 1
D(s) 1 + H(s)K(s)G(s)

The transfer function (1.80) shows how the temperature Y(s) is affected by the
process disturbance D(s). A desirable property of the system is:

• the output Y(s) should be affected as little as possible by the process
disturbance D(s).

Now, the process G(s) corresponds to an actuator (the heater) and some real
world entity (the room). Commonly, the process design engineer has very lim­
ited possibilities in changing the transfer function G(s). The same is true for
the transducer system represented by H(s). So, to be able to design a closed-
loop control system having the four desired properties as above, the only thing
we can do is to try to design the controller K(s) in as smart way as possible.
As expected, the four demands above of course counteract each other. If, for
instance, a system is supposed to respond quickly it is likely to be unstable. So,
in designing good controllers, we are again in a world of compromises.

Probably, the most important requirement of a closed-loop system is that it
should be stable. From both equations (1.78) and (1.80) we realize that stability
requires the denominator not to be zero, i.e.

1 + H(s)K(s)G(s) £ 0

The term H(s)K(s)G(s) = Go(s) is denoted the open-loop transfer function
of the system. If we study the open-loop transfer function in the frequency
domain s =jco we can conclude that to ensure stability the following conditions
must be met

|C?o(<w,-)l < 1 where ZG0(o>«) = -180° (1.81)

That is, for the frequency cot where the phase shift of the open-loop transfer
function is -180°, the magnitude has to be smaller than 1. This rule is often
referred to as the simplified Nyquist criteria. Presenting the open-loop transfer
function as a Bode plot, it is easy to find out if the system is stable and it is
also easy to see how large the margins are. (Most real world open-loop transfer

Introduction 35

functions are of low-pass filter type.) There are a number of other methods to
check for stability.

So far, we have only discussed "analog" systems, but the main problems
are the same for digital control systems. An advantage of digital systems is
that more sophisticated controllers can be designed rather than using classical,
analog electronic components. The transfer functions and signal will of course
be expressed using the z-transform instead of Laplace, i.e. we have: H(z), K(z),
G(z), R(z) and so on. One detail that may cause problems is to get hold of
the digital process function G(z), since the real world processes are commonly
"analog" by their nature.

Below, some controllers are discussed.

1.4.1 Proportional-integral-derivate controllers

The proportional-integral-derivate (PID) controller is a classical algorithm
that can be found not only in numerous industrial applications, but also in diverse
areas of everyday life. The analog version of the controller can be written as

iem+U!' u(t) = K (e(t) + - J e(r)dr + Td je{t)) (1.82a)

or, using Laplace

m=~~=i:\l + — +sTd) (1.82b) (1 + J-+S71)
Finding proper values of the three constants: K, proportionality; Tu integra­

tion time and T&, derivation time, to optimize the performance of the control
system is a classical problem. Many different methods have been invented, but
since the setting of these parameters is highly dependent on the properties of the
plant, heuristics are common. The digital version of the PID controller can be
found as follows. Analog integration can be approximated by digital summation

y(t) = / x(r)dr -> y(k) = V J C (I) = x(k) +y(k - 1) (1.83a)

having the z-transform

m=m+y(k _ i) ̂ | | = - J - , = -±- d ^

and analog derivation can be approximated by digital differentiation

y(t) = _ x (0 _+ y(k) = x(k) -X(k-l) (1.84a)

with the z-transform

Y& , _-i y(k) = x(k) + x(k-l)^ -±l = i-z~l (1.84b)
X(z)

36 Digital Signal Processing and Applications

Using the above, the digital version of the PID controller is

u(k) = K (*(*) + i E e® +fsTd«k) - e(k - 1)) J (1.85a)

where/s is the sampling frequency, an alternative algorithm is

v(k) = v(k-l) + e(k)

1
u(k) = K (e(k) + ~v(k) +fsTd(e(k) - e(k - l))\ (1.85b)

1.4.2 Advanced controllers

The PID algorithm above is very common and sufficient for everyday applica­
tions. If, however, peak performance is required in, for instance, air and space
applications, other more elaborate control algorithms must be employed. Some
examples are given below.

1.4.2.1 Direct synthesis controller

A controller designed using the direct synthesis method is obtained in the fol­
lowing way. We are assumed to have good knowledge of the transfer function
of the process G(z) and the transducer system H(z). Further, we have a good
idea of what we would like the closed-loop transfer function to be like GCL(^)-

Starting out with the expression (1.78) modified for the z-plane, we can now
solve for the transfer function K(z) required obtaining the desired closed-loop
transfer function

Y(z) K(z)G(z)
GCLKZ)

R(z) 1 + H(z)K(z)G(z)

=> K(z) = r< vi ^r^] wr ^ (L 8 6)

G(z)(l - GCL(Z)H(Z))

However, it is not possible to obtain a stable controller for some cases. If for
instance the process has zeros outside the unit circle, they will show up as poles
in the transfer function of the controller, thus resulting in an unstable controller.
Another problem arises if there is a delay in the process. In such a case, the
transfer function of the controller turns non-causal, i.e. needs to be able to look
into the future. There are, however, other design methods for controllers used
with processes having delay.

1.4.2.2 Pole placement controller

A controller designed using the pole placement method has a somewhat different
structure than other controllers discussed so far (see Figure 1.18). This type of
controller commonly performs very well and is capable of handling processes
with delay.

Introduction 37

R(z)
• — f r K

controller

+>ff i •
^+7 >

1 1
C(z) 1

FM L
^ W H

[/(z)
process

5(z)
r(z)

Figure 1.18 A simplified closed-loop control system with a pole placement
controller

In Figure 1.18, we have assumed H(z) = 1 and that the process transfer func­
tion can be expressed as a quota between two polynomials, i.e. G(z) = B(z)/A(z).
The closed-loop transfer function of the system depicted in Figure 1.18 will be

Y(z) KB(z)
GCL(Z) = (1.87)

R(z) A(z)C(z) + B(z)F(z)

The first thing to do is to determine the placement of the poles of the closed-
loop transfer function. This is, of course, a delicate question well beyond the
scope of this book. However, as a rule of thumb, the poles are commonly placed
inside the unit circle (of course), not too close to the unit circle and in a sector
ranging approximately Q = ± n/4 in the z-plane. Once the location of the poles
is determined, the pole placement polynomial P(z) is formed having roots equal
to the poles. The degree of this polynomial, i.e. the number of poles, is given
by the degree of polynomial A(z) plus the degree of polynomial B(z) minus 1.
Now, the pole placement equation is solved

P(z)=A(z)C(z) + B(z)F(z) (1.88)

and the polynomials C(z) and F(z) are obtained. Finally, the constant K is
determined using

K
P(l)

B(l)

The controller is complete.

(1.89)

1.4.2.3 Dead-beat controller

A dead-beat controller is a pole placement controller designed as in Section
1.4.2.2 above, using a pole placement polynomial placing all the poles at the
origin

P (z) = (l - 0 - z - 1) " = l (1.90)

The closed-loop transfer function of a system with a dead-beat controller will
be (compare to equation (1.87))

Y(z) KB(z)
GCL(Z)

R(z) 1
= KB(z) (1.91)

3 8 Digital Signal Processing and Applications

An interesting feature of such a controller is that it is converges very fast to
the correct output signal Y(z) after an abrupt change in the reference signal R(z).
The number of samples required to perform a perfect convergence is equal to
the degree of the polynomial B(z). A drawback with the controller is that such
a fast control may require very large controller output signals U(z), which may
translate to many thousands of horse powers if the system controls the rudder
of an oil tanker.

There are a large number of highly advanced and interesting control algo­
rithms. In Chapter 6, for instance, the Kalman filter is discussed. More: control
algorithms can be found, e.g. Astrom and Wittenmark (1984) and Wilkie et al
(2002).

Summary In this chapter the following main topics have been addressed:

• Signals, discrete and continuous in amplitude and time
• Sampling, aliasing, the Nyquist frequency
• Quantization, resolution, dynamic range and quantization noise
• Linearity, the principle of superposition, LTI systems, causality
• Difference equations and state-space models
• Impulse response and convolution
• Transfer functions in the z-plane
• The frequency response, the gain function and the phase shift function
• Some filter architectures: non-recursive, recursive and lattice filters, FIR

and IIR
• The impossibility of designing the perfect filter
• The Butterworth, Chebyshev, Cauer and Bessel approximations
• Indirect and direct filter synthesis methods
• Impulse invariance, step invariance and ramp invariance
• The bilinear transform and pre-warping, Euler's method
• The Fourier method, frequency sampling, simulation and McClellan-Parks/

Remez exchange algorithm
• Digital control, closed- and open-loop transfer functions, stability
• PID, direct synthesis, pole placement and dead-beat controllers.

Review questions Rl-1 Explain the aliasing effect in a sampled system. What is the Nyquist
frequency? How can aliasing be avoided?

Rl-2 Explain how quantization noise, resolution and dynamic range are related
to the word length.

Rl-3 Why is linearity so important? What are the requirements of a function
being linear?

Rl-4 In what way is the impulse response of a linear system related to the
transfer function of the system?

Rl-5 Why is an FIR filter always stable?
Rl-6 Why is it that a "brick-wall" type filter cannot be implemented in practice?
Rl-7 Why is linear phase a desirable feature in a filter?
Rl-8 Give pros and cons of the filter approximations Butterworth,

Chebyshev and Bessel.

Introduction 39

Rl-9 When designing filters using the bilinear transform, pre-warping may be
needed. Why is it needed and under what circumstances?

Rl-10 Which four demands are commonly placed on a closed-loop control
system?

Rl-11 Which three parameters are there to be set in a PID controller?
Rl-12 What are the pros and cons of a dead-beat controller?

Solved problems Pl-1 An analog signal is converted to a digital bitstream. If the maximum
frequency of the signal is 10 kHz, and we need 58 dB dynamic range, what
is the data rate of the bitstream in bits/s, assuming a perfect "brick-wall"
anti-aliasing filter?

Pl-2 A digital controller has a zero at z = a and poles at z = b and z = c, where
<z, b, c are real constants. Determine the transfer function, the frequency
function, the gain function and the phase shift function. Also, derive the
corresponding difference equation in such a form that it could readily be
implemented as computer program code.

Pl-3 An FIR filter with an odd number of taps will have a linear-phase shift
function if the tap weights are symmetrical, i.e. bn = bM-n- Show this.

Pl-4 Make an Euler transform of the analog transfer function (1.73). Compare
the resulting digital transfer function to equation (1.74) obtained using
the bilinear transform.

Pl-5 Write a MATLAB™ program to design a digital Butterworth filter and
a Chebyshev filter. The filters should be bandpass filters of order eight
with lower cut-off frequency 8 kHz and upper cut-off frequency 12 kHz.
Maximum ripple in the passband is 1 dB. The sampling frequency is
40 kHz. The program should make Bode plots, pole-zero plots and print
the filter coefficients.

2 The analog-digital
interface

Background In most systems, whether electronic, financial or social, the majority of prob­
lems arise in the interface between different sub-parts. This is of course also
true for digital signal processing (DSP) systems. Most signals in real life
are continuous in amplitude and time, i.e. "analog", but our digital system
is working with amplitude and time discrete signals, so-called "digital" sig­
nals. Hence, the input signals entering our system need to be converted from
analog-to-digital (A/D) form before the actual signal processing may take
place.

For the same reason, the output signals from our DSP device need to be
reconverted back from digital-to-analog (D/A) form, to be used in for instance
hydraulic valves or loudspeakers or other analog actuators. These conversion
processes, between the analog and digital world add some problems to our
system. These matters will be addressed in this chapter, together with a brief
presentation of some common techniques to perform the actual conversion
processes.

Objectives In this chapter we will cover:

• Encoding and modulation schemes, pulse code modulation, pulse amplitude
modulation, pulse position modulation, pulse number modulation, pulse
width modulation and pulse density modulation

• Number representation, fixed-point 2's complement, offset binary, sign and
magnitude, and floating point

• Companding systems
• Multiplying, integrating and bitstream D/A converters
• Oversampling, interpolators and truncators
• Sample-and-hold, reconstruction filters and anti-aliasing filters
• Flash, successive approximation, counting and integrating A/D converters
• Dither
• Sigma-delta and bitstream A/D converters, decimation filters and comb

filters.

2.1.1 Encoding and modulation

Assuming we have now converted our analog signals to numbers in the dig­
ital world, there are many ways to encode the digital information into the
shape of electrical signals. This process is called modulation (sometimes

2.1 System
considerations

42 Digital Signal Processing and Applications

DO

D1

D2

D3

D4

D5

D6

D7

0

1

1

0

1

0

0

1

(1)

(2)

(4)

(8)

(16)

(32)

(64)

(128)

DO D1 D2 D3 D4 D5 D6 D7

1 1 0 1

Figure 2.1 Example, a byte (96H) encoded (weights in parenthesis) using
PCM in parallel mode (parallel bus, 8 bits, eight wires) and in serial mode
as an 8-bit pulse train (over one wire)

"line modulation"). The most common method is probably pulse code modu­
lation (PCM). There are two common ways of transmitting PCM and they are
parallel and serial mode. In an example of the parallel case, the information
is encoded as voltage levels on a number of wires, called a parallel bus. We
are using binary signals, which means that only two voltage levels are used,
+5 V corresponding to a binary " 1 " (or "true"), and 0 V meaning a binary
"0" (or "false"). Hence, every wire carrying 0 or +5 V contributes a binary
digit ("bit"). A parallel bus consisting of eight wires will hence carry 8 bits,
a byte consisting of bits DO, D1-D7 (Figure 2.1). Parallel buses are able to
transfer high information data rates, since an entire data word, i.e. a sampled
value, is being transferred at a time. This transmission can take place between,
for instance, an analog-to-digital converter (ADC) and a digital signal proces­
sor (DSP). One drawback with parallel buses is that they require a number of
wires, i.e. board space on a printed circuit board. Another problem is that we
may experience skew problems, i.e. different time delays on different wires,
meaning that all bits will not arrive at the same time in the receiver end of the
bus, and data words will be messed up. Since this is especially true for long,
high-speed parallel buses, this kind of bus is only suited for comparatively short
transmission distances. Protecting long parallel buses from picking up wireless
interference or to radiate interference may also be a formidable problem.

The alternative way of dealing with PCM signals is to use the serial transfer
mode. In this case, the bits are not transferred on different wires in parallel,
but in sequence on a single wire (see Figure 2.1). First bit DO is transmitted,
then Dl, etc. This means of course that the transmission of, for instance, a
byte requires a longer time than in the parallel case. On the other hand, only
one wire is needed. Board space and skew problems will be eliminated and the
interference problem can be easier to solve.

There are many possible modulation schemes, such as pulse amplitude
modulation (PAM), pulse position modulation (PPM), pulse number modu­
lation (PNM), pulse width modulation (PWM) and pulse density modulation
(PDM). All these modulation types are used in serial transfer mode (see
Figure 2.2).

The analog-digital interface 43

I ' ' I ' ' I 1 ' M
PAM

-f 1 L ¥ — * t
PPM

f 1 " " " " l"" • t

PNM
Y 4^ H-L-^f

PWM

+ t
PDM

Figure 2.2 Different modulation schemes for serial mode data
communication, PAM, PPM, PNM, PWM and PDM

Pulse amplitude modulation (PAM) The actual amplitude of the pulse
represents the number being transmitted. Hence, PAM is continuous in ampli­
tude but discrete in time. The output of a sampling circuit with a zero-order
hold (ZOH) is one example of a PAM signal.
Pulse position modulation (PPM) A pulse of fixed width and amplitude
is used to transmit the information. The actual number is represented by the
position in time where the pulse appears in a given time slot.
Pulse number modulation (PNM) Related to PPM in the sense that we
are using pulses with fixed amplitude and width. In this modulation scheme,
however, many pulses are transmitted in every time slot, and the number of
pulses present in the slot represents the number being transmitted.
Pulse width modulation (PWM) Quite common modulation scheme, espe­
cially in power control and power amplifier contexts. In this case, the width
(duration) T\ of a pulse in a given time slot T represents the number being
transmitted. If the pulse has the amplitude A\9 the transmitted number is
represented by

Ax
Tx

(2.1)

In most applications, the amplitude A i of the pulse is fixed and uninteresting.
Only the time ratio is used in the transmission process. If, however, the
amplitude of the pulse is also used to represent a second signal, we are using
a combination of PAM and PWM. In some applications, this is a simple way
of achieving a multiplication of two signals.
Pulse density modulation (PDM) May be viewed as a type of degenerated
PWM, in the sense that not only the width of the pulses changes, but also the
periodicity (frequency). The number being transmitted is represented by the
density or "average" of the pulses.

44 Digital Signal Processing and Applications

A class of variations of PDM called stochastic representation of variables
was tried in the 1960s and 1970s. The idea was to make a "stochastic com­
puter", replacing the analog computer consisting of operational amplifiers and
integrators, working directly with the analog signals. The stochastic represen­
tation has two nice features. Firstly, the resolution can be traded for time, which
implies that resolution can be improved by transmitting more pulses (longer time
needed). Secondly, the calculations can be performed easily using only standard
combinatorial circuits. The idea of stochastic representation has experienced a
renaissance in the 1980s in some forms of neural network applications.

So far we have talked about "transmission" of digital information using dif­
ferent types of modulation. This discussion is of course also relevant for storing
digital information. When it comes to optical compact disc (CD) or magnetic
media, there are a number of special modulation methods (Pohlmann, 1989;
Miller and Beasley, 2002) used, which will not be treated here.

As will be seen later in this chapter, some signal converting and processing
chips and subsystems may use different modulation methods to communicate.
This may be due to standardization or due to the way the actual circuit works.
One example is the so-called CODEC (coder-decoder). For instance, this is a
chip used in telephone systems, containing both an analog-to-digital converter
(ADC) and a digital-to-analog converter (DAC) and other necessary functions
to implement a full two-way analog-digital interface for voice signals. Many
such chips use a serial PCM interface. Switching devices and digital signal
processors commonly have built-in interfaces to handle these types of signals.

2.1.2 Number representation and companding systems

When the analog signal is quantized, it is commonly represented by binary num­
bers in the following processing steps. There are many possible representations
of quantized amplitude values. One way is to use fixed-point formats like 2's
complement, offset binary or sign and magnitude (Pires, 1989) Another
way is to use some kind of floating-point format. The difference between the
fixed-point formats can be seen in Table 2.1.

The most common fixed-point representation is 2's complement. In the digital
signal processing community, we often interpret the numbers as fractions rather
than integers. This will be discussed in subsequent chapters. Other codes (Pires,
1989) are gray code and binary-coded decimal (BCD).

There are a number of floating-point formats around. They all rely on the
principle of representing a number in three parts: a sign bit, an exponent and a
mantissa. One such common format is the Institute of Electrical and Electronics
Engineers (IEEE) Standard 754.1985 single precision 32-bit format, where
the floating-point number is represented by one sign bit, an 8-bit exponent
and a 23-bit mantissa. Using this method numbers between ±3.37 • 1038 and
±8.4 • 10~37 can be represented using only 32 bits. Note however that the use of
floating-point representation only expands the dynamic range on the expense
of the resolution and system complexity. For instance, a 32-bit iixed-point
system may have better resolution than a 32-bit floating-point system, since in
the floating-point case, the resolution is determined by the word length of the
mantissa being only 23 bits. Another problem using floating-point systems is
the signal-to-noise ratio (SNR). Since the size of the quantization steps will

The analog-digital interface 45

Table 2.1 Some fixed-point binary number formats

Integer

7
6
5
4
3
2
1
0

-1
-2
-3
-4
-5
-6
-7
-8

2's complement

0111
0110
0101
0100
0011
0010
0001
0000
1111
1110
1101
1100
1011
1010
1001
1000

Offset binary

1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

Sign and
magnitude

0111
0110
0101
0100
0011
0010
0001
0000
1000
1001
1010
1011
1100
1101
1110

mi

change as the exponent changes, so will the quantization noise. Hence, there
will be discontinuous changes in SNR at specific signal levels. In an audio
system, audible distortion (Pohlmann, 1989) may result from the modulation
and quantization noise created by barely audible low-frequency signals causing
numerous exponent switches.

From the above, we realize that fixed-point (linear) systems yield uniform
quantization of the signal. Meanwhile floating-point systems, due to the range
changing, provide a non-uniform quantization. Non-uniform quantization is
often used in systems where a compromise between word length, dynamic range
and distortion at low signal levels has to be found. By using larger quantization
steps for larger signal levels and smaller steps for weak signals, a good dynamic
range can be obtained without causing serious distortion at low signal levels or
requiring unreasonable word lengths (number of quantization steps). A digital
telephone system may serve as an example where small signal levels are the
most probable ones, thus causing the need for good resolution at low levels
to keep distortion low. On the other hand, sometimes stronger signals will be
present, and distortion due to saturation is not desirable. Due to the large number
of connections in a digital telephone switch, the word length must be kept low,
commonly not more than 8 bits.

Another way of accomplishing non-uniform quantization is companding
(Pohlmann, 1989; Miller and Beasley, 2002), a method which is not "perfect",
but easy to implement. The underlying idea is to use a system utilizing com­
mon uniform quantization and reconstruction. At the input of the system a
compressor is connected and at the output of the system an expander (hence,
compressor-expander: "compander") is added (see Figure 2.3).

The compressor is mainly a non-linear amplifier, often logarithmic, having a
lower gain for stronger signals than for weaker ones. In this way, the dynamic

46 Digital Signal Processing and Applications

input output

•

compressor digital system
uniform quantization

expander

Figure 2.3 A companding system consisting of a compressor, a common
digital system using uniform quantization intervals and an expander. Note!
The signal processing algorithms used must take compression and expansion
into account

1

0.9

0.8

0.7

0.6

B- 0.5
O

0.4

0.3

0.2

0.1

<&
y/. ; #

/*
^

4 /
4 -

-
•

0.9

0.8

0.7

0.6
3

B- 0.5
D

o
0.4

0.3

0.2

0.1

<&
// ' / I,

V
v#
/ //
\-

*
/

/ 4

/
/ \ / // \>

-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(a) input (b) input

Figure 2.4 The (a) [i-law and (b) A-law transfer functions for different
parameter values

range of the input signal is compressed. The expander is another non-linear
amplifier having the function of being the inverse of the compressor. Hence, the
expander "restores" the dynamic range of the signal at the output of the system.
The total system will now act as a system using non-uniform quantization. Note:
the signal processing algorithms in the system must take the non-linearity of
the compressor and expander into account.

For speech applications, typically found in telephone systems, there are two
common non-linearities (Pohlmann, 1989) used: the j*,-law and the ,4-law. The
/x-law is preferred in the US and the logarithmic compression characteristic has
the form

y =
= log(l±Mx) for^o

log(l+Ai)
(2.2)

where y is the magnitude of the output, x the magnitude of the input and /JL a
positive parameter defined to yield the desired compression characteristic. A
parameter value of 0 corresponds to linear amplification, i.e. no compression
and uniform quantization. A value of ji = 255 is often used to encode speech
signals (see Figure 2.4). In such a system, an 8-bit implementation can achieve

The analog-digital interface 47

a good SNR and a dynamic range equivalent to that of a 12-bit system using
uniform quantization. The inverse function is used for expansion.

The A -law is primarily used in Europe. Its compression characteristic has
the form

Ax „ 1
for 0 < x < -

1 + log(A) ~ A
(2.3)

y =
l+logfrfr) , 1 ,

for — < JC < 1
1 + \og(A) A ~

where y is the magnitude of the output, x the magnitude of the input and A is a
positive parameter defined to yield the desired compression characteristic.

Figure 2.4 shows /x-law and ^4-law transfer functions for some values of /x
and^4. Companding techniques are also used in miscellaneous noise reduction
systems, for instance the DOLBY™ systems.

2.2 Digital-to-analog From now on we will only discuss systems using uniform quantization inter-
COnversion vals. The task of the digital-to-analog converter (DAC) is to convert a numerical,

commonly binary so-called "digital" value into an "analog" output signal. The
DAC is subject to many requirements, such as offset, gain, linearity, mono-
tonicity and settling time. Assume that the output voltage of an n bit perfect
DAC with digital input value m (shown as a dotted line in Figure 2.5) can be
written as

m = Am
2n

where KFS is the full-scale (FS) output voltage of the DAC and the constant A
corresponds to the output voltage step size for one least significant bit (LSB).
In this case, the output voltage v(m) of a real world DAC can be expressed as

v(m) = Am + 8o + AmeQ + s^f{m)

which consists of the true output voltage plus three error terms defined below.

Offset is the analog output when the digital input calls for a zero output. This
should of course ideally be zero. The offset error £o affects all output sig­
nals with the same additive amount and in most cases it can be sufficiently
compensated for by external circuits or by trimming the DAC.

Gain or scale factor is the slope of the transfer curve from digital numbers to
analog levels. Hence, the gain error EQ is the error in the slope of the transfer
curve. This error affects all output signals by the same percentage amount,
and can normally be (almost) eliminated by trimming the DAC or by means of
external circuitry.

Linearity can be sub-divided into integral linearity (relative accuracy) and
differential linearity. Integral linearity error is the deviation of the transfer
curve from a straight line (the output of a perfect DAC) and is commonly
expressed in number of LSBs {e^{m))/A. This error is not possible to adjust or

48 Digital Signal Processing and Applications

compensate for easily, since it may change more or less randomly as a function
of the input digital code m.

Differential linearity measures the difference between any two adja­
cent output levels minus the step size for one LSB, or in other words,
(s^(m) — s^fim — 1)) I A expressed in LSBs. If the output level for one step
differs from the previous step by exactly the value corresponding to one least
significant bit (LSB) of the digital value, the differential non-linearity is zero.
Differential linearity errors cannot be eliminated easily.

Monotonicity implies that the analog output must increase as the digital
input increases, and decrease as the input decreases for all values over the
specified signal range. Non-monotonicity is a result of excess differential

offset error gain error

v(mY

ou
tp

ut

1
1

1
1

an
al

og

k

/

^ - i — i —

/

- i — i —

/

i — i — i — \ -

/'

— i — i — \ -

/ /

/

— i — i — i — i fc. I I I I I I I I I I I I I I I

digital input

linearity error

v(m)t

I I I I I I I I I I I I I I I •

digital input m

Figure 2.5 Errors of a DAC, the dotted line shows the performance of a
perfect converter

The analog-digital interface 49

non-linearity (>1LSB). This implies that a DAC which has a differential
non-linearity specification of maximum ±0.5 LSB is more tightly specified
than one for which only monotonicity is guaranteed. Monotonicity is essential
in many control applications to maintain precision and to avoid instabilities in
feedback loops.

Absolute accuracy error is the difference between the measured analog output
from a DAC compared to the expected output for a given digital input. The
absolute accuracy is the compound effect of the offset error, gain error and
linearity errors described above.

Settling time of a DAC is the time required for the output to approach a final
value within the limits of an allowed error band for a step change in the digital
input. Measuring the settling time may be difficult in practice, since some DACs
produce glitches when switching from one level to another. These glitches, being
considerably larger than the fraction of the 1 LSB step of interest, may saturate,
for instance, an oscilloscope input amplifier, thereby causing significant mea­
suring errors. DAC settling time is a parameter of importance mainly in high
sampling rate applications.

One important thing to remember is that the parameters above may be affected
by supply voltage and temperature. In DAC data sheets, the parameters are
only specified for certain temperatures and supply voltages, e.g. normal room
temperature +25°C and nominal supply voltage. Considerable deviations from
the specified figures may occur in a practical system.

2.2.1 Multiplying digital-to-analog converters

This is the most common form of DAC. The output is the product of an input
current or reference voltage and an input digital code. The digital information is
assumed to be in PCM parallel format. There are also DACs with a built-in shift
register circuit, converting serial PCM to parallel. Hence, there are multiplying
DACs for both parallel and serial transfer mode PCM available. Multiplying
DACs have the advantage of being fast.

In Figure 2.6 a generic current source multiplying DAC is shown. The bits in
the input digital code are used to turn on a selection of current sources, which

i Q l m A I Q 0.5mA | Q 0.25 mA |() 0.125 mA

h ^ 9 h_i_^ 9 bj_^ 9 fro ^

1 O O ° O Q 1 O 0 0
'out

MSB LSB

Figure 2.6 A generic multiplying DAC using current sources controlled by
the bits in the digital input code

50 Digital Signal Processing and Applications

are then summed to obtain the output current. The output current can easily be
converted into an output voltage using an operational amplifier.

Another way of achieving the different current sources in Figure 2.6 would
be to use a constant input reference voltage £/ref and a set of resistors. In this
way, the currents for the different branches would simply be obtained by

h = -R~bi = 2 " - i - ' i f r - , * ' (2-4)

where Rj is the resistance of the resistor in the /-th branch being controlled by
the /-th bit: bt being 1 or 0. The word length of the digital code is N and / = 0 is
LSB. The total output current can then be expressed as the sum of the currents
from the branches

N-\ N-\ ,

,•=0 KN~l 1=0 z

Building such a DAC in practice would however cause some problems. This
is especially true as the word length increases. Assume for instance that we
are to design a 14-bit DAC. If we choose the smallest resistor, i.e. the resis­
tor R\s corresponding to / = TV — 1 = 13 to be 100 ohms, the resistor Ro will
then need to be Ro = 213 • 100 = 819 200 ohms. Now, comparing the currents
flowing in branch 0 and 13, respectively, we find: To = (C/ref/819200) A and
/13 =(£/ref/100)A. To obtain good differential linearity, the error of current
I\3 (corresponding to the most significant bit, MSB) must be smaller than
the smallest current To (corresponding to the LSB). Hence the resistance of
Ru is required to be correct within ±122 ppm (parts per million). Another
problem is that different materials and processes may be required when mak­
ing resistors having high or low resistance, respectively. This will result in
resistors in the DAC having different aging and temperature stability prop­
erties, thus making it harder to maintain specifications under all working
conditions.

It is possible to achieve the required precision by laser trimming, but there is
a smarter and less expensive way to build a good DAC using an R-2R ladder
structure. In an R-2R ladder, there are considerably more than N resistors,
but they all have the same resistance R and are hence easier to manufacture
and integrate on a single silicon chip. The R-2R ladder structure uses current
division. A simple 3-bit R-2R ladder DAC is shown in Figure 2.7.

All resistors Rl-Rl 1 have the same resistance R. As can be seen from the
figure, it is quite common that two resistors are connected in series, e.g. R1-R2,
R3-R4, R5-R6 and R7-R8. Each of these pairs can of course be replaced by
a single resistor having the resistance 2R. That is why this structure is called
R-2R ladder, it can be built simply by using two resistance values: R and 2R.

The switches £2, &1 > &o are controlled by bits 2,1 and 0 in the digital code. If a
bit is set to one, the corresponding switch is in its right position, i.e. switched to
the negative input of the operational amplifier. If the bit is set to zero, the switch
is in its left position, connecting the circuit to ground. The negative input of
the operational amplifier is a current summation point, and due to the feedback
amplifier having its positive input connected to ground, the negative input will
be held at practically zero potential, i.e. ground ("virtual ground"). Hence, the

The analog-digital interface 51

Figure 2.7 An example 3 bit, R-2R ladder multiplying DAC, with voltage
output, all resistors have the same resistance, R. Input digital code: 010

resistor ladder circuit will be loaded in the same way and the position of the
switches does not matter.

Now, let us examine the resistor ladder structure a bit more closely. Starting
injunction point po we conclude that the current flowing through resistor RIO
will be divided into the two branches R5-R6 and R7-R8, respectively. As seen
above, both branches have the same resistance, namely 2R. This means that
the current will be divided equally in the two branches, i.e. half of the current
passing through RIO will pass through the switch bo. Further, if we calculate the
total resistance of the circuit R5-R6 in parallel with R7-R8, we will find it to be
R. If we now move to point p\ we will have a similar situation as inj^o. The total
resistance of R5, R6, R7 and R8 is R. This combination is connected in series
with RIO having resistance R ohms, hence the total resistance in the circuit
passing through RIO to ground will be 2R. Since the total resistance through
R3-R4 is also 2R, the current flowing through resistor R9 will be divided
equally in the two branches as in the earlier case. One half of the current will
pass through switch b\ and one half will continue down the ladder via RIO. For
every step in the ladder, the same process is repeated. The current created by
the reference voltage C/ref, will be divided by 2 for every step in the ladder, and
working with binary numbers, this is exactly what we want.

Assuming the operational amplifier to be an ideal one (zero offset voltage,
zero bias current and infinite gain) the output voltage from the DAC can then
be written as

C/oi
^ref

2
bt

2N-\-i
(2.6)

52 Digital Signal Processing and Applications

C
2N-\

u„

ur ref

MSB L S B

Figure 2.8 A generic charge redistribution DAC

Another way of building a DAC is by utilizing charge redistribution.
This technique is quite common in complementary metal oxide semiconductor
(CMOS) single-chip computers and the DAC can be implemented on a silicon
chip in the same way as, for instance, switched capacitor (SC) filters. This type
of DAC makes use of the fact that if a fixed voltage C/ref is applied to a (variable)
capacitor C, the charge in the capacitor will be

Q = CUref (2.7)

After charging the capacitor C, it is disconnected from the voltage source and
connected to another (discharged) capacitor C\. The electric charge Q is then
redistributed between the two capacitors and the voltage over the capacitors
will be

U =
C + Ci

= UTQf
C + Ci

(2.8)

An example of a generic, charge redistribution DAC is shown in Figure 2.8.
The DAC works in two phases: in phase 1, the reset phase, all switches that
are connected to ground close, discharging all capacitors; in phase 2, switch
S is opened and the remaining switches are controlled by the incoming digital
word. If a bit b\ is one, the corresponding capacitor Q = C/21 is connected to
C/ref, otherwise it is connected to ground.

It is quite straightforward to see how the DAC works. In phase 2, when the
capacitors are charged and the total capacitance Ctot as seen from the voltage
source Uref is

Qot = 7 +7c +-^-)
^one T - ^ ze ro T 2A^-I /

(2.9)

where Cone is the total capacitance of the capacitors corresponding to the bits
that are 1 in the digital word (these capacitors will appear to be connected in
parallel) and CZQro is the total capacitance of the capacitors corresponding to
the bits that are 0. Hence the total charge of the circuit will be

Qtot — CtotUTef (2.10)

The analog-digital interface 53

Now, the output voltage Uout is the voltage over the capacitors connected to
ground

TT 2tot _ flrefCtot n i n

^ze ro i 2N~l) \ zero ' 2N~l /

Inserting equation (2.9) into equation (2.11) and expressing the capacitances
as sums, we finally obtain the output voltage of the DAC as a function of the
bits bj in the digital code

Uout —
^ref ^one (^zero H~ 2N~l)

(Czero H" 2N-1) v^one H~ (^zero H" 2^-1))

^ref^one

Cone 4" ^zero 1 2^-1

^ r e f C E ^ O 1 !

rsr"-i 1 1 c
^ Z^/=0 2' ' 2^_ 1

= tfrefX>2-<' (2.12)
2JV-1 ,-=i

There are many alternative charge-based circuits around. It is, for instance,
possible to design a type of C-2C ladder circuit.

2.2.2 Integrating digital-to-analog converters

This class of DACs is also called counting DACs. These DACs are often slow
compared to the previous type of converters. On the other hand, they may offer
high resolution using quite simple circuit elements. No high precision resistors,
etc., are needed.

The basic building blocks are: an "analog accumulator" usually called an
integrator, a voltage (or current) reference source, an analog selector, a digital
counter and a digital comparator. Figure 2.9 shows an example of an integrating
DAC. The incoming TV-bits PCM data (parallel transfer mode) is fed to one input
of the digital comparator. The other input of the comparator is connected to the
binary counter having N bits, counting pulses from a clock oscillator running
at frequency^

fc>2Nfs (2.13)

where/s is the sampling frequency of the system and N is the word length. Now,
assume that the counter starts counting from 0. The output of the comparator
will be zero and there will be a momentary logic one output from the comparator
when the counter digital value equals the digital input PCM code. This pulse
will set the bistable flip-flop circuit. The flip-flop will then be reset when the
counter wraps around from 2N~l to 0 and a carry signal is generated.

The output from the flip-flop controls the analog selector in such a way that
when the flip-flop is reset, —UTQf is connected to the input of the integrator,
and when the flip-flop is set, +£/ref is selected. Note that the output of the
comparator is basically a PPM version of the PCM input data, and the output
of the flip-flop is a PWM version of the same quantity. Hence, if we happen

54 Digital Signal Processing and Applications

analog selector

-u. ref

o<°
+Ur ref

flip-flop

PWM integrator

carry

equality pulse PPM

digital input code PCM

Figure 2.9 An example integrating (counting) DAC. (In a real world
implementation, additional control and synchronization circuits are
needed.)

to have the digital code available in PWM or PPM format instead of parallel
PCM, the circuit can be simplified accordingly.

The integrator simply averages the PWM signal presented to the input, thus
producing the output voltage Uout. The precision of this DAC depends on the
stability of the reference voltages, the performance of the integrator and the
timing precision of the digital parts, including the analog selector.

There are many variants of this basic circuit. In some types, the incoming
PCM data is divided into a "high" and "low" half, controlling two separate
voltage or current reference selectors. The reference voltage controlled by the
"high" data bits is higher than the one controlled by the "low" data bits. This
type of converter is often referred to as a dual slope converter.

2.2.3 Bitstream digital-to-analog converters

This type of DAC relies on the oversampling principle, i.e. using a con­
siderably higher sampling rate than required by the Nyquist criteria. Using
this method, sampling rate can be traded for accuracy of the analog hardware
and the requirements of the analog reconstruction filter on the output can be
relaxed. Oversampling reduces the problem of accurate N-bit data conversion
to a rapid succession of, for instance, 1-bit D/A conversions. Since the latter
operation involves only an analog switch and a reference voltage source, it can
be performed with high accuracy and linearity.

The analog-digital interface 55

Figure 2.10 A truncator with noise shaping feedback, inputN bits,
truncated to output M bits

The concept of oversampling is to increase a fairly low sampling frequency
to a higher one by a factor called the oversampling ratio (OSR). Increasing the
sampling rate implies that more samples are needed than are available in the
original data stream. Hence, "new" sample points in between the original ones
have to be created. This is done by means of an interpolator, also called an
oversampling filter (Pohlmann, 1989). The simplest form of interpolator cre­
ates new samples by making a linear interpolation between two "real" samples.
In many systems, more elaborate interpolation functions are often used, imple­
mented as a cascade of digital filters. As an example, an oversampling filter in a
CD player may have 16-bit input samples at 44.1 kHz sampling frequency and
an output of 28-bit samples at 176.4 kHz, i.e. an OSR of 4.

The interpolator is followed by the truncator or M-bit quantizer
(Figure 2.10). The task of the truncator is to reduce the number of N bits in the
incoming data stream to M bits in the outgoing data stream (N > M). The trun­
cation process is simply performed by taking the M most significant bits out of
the incoming N bits. This process however creates a strong quantization noise
in the passband of interest. This is counteracted by means of the noise shaping
feedback loop, consisting of a delay element and an adder. The M-N least
significant bits are fed back through the delay element and subtracted from the
incoming data stream. Hence, the signal transfer function of the truncator equals
1 for the signal, but constitutes a high-pass filter having the transfer function

H(z) =l-z~ (2.14)

for the quantization noise. The noise level in the interesting passband is atten­
uated, while at higher frequencies, the noise increases. The higher-frequency
noise components will however be attenuated by the analog reconstruction fil­
ter following the DAC. To conclude our example above, the CD player may
then have a truncator with N = 2S bits and M = 16 bits. The sampling rate of
both the input and output data streams are 176.4 kHz. In this example we still
have to deal with 16-bit data in the DAC, but we have simplified the analog
reconstruction filter on the output.

Oversampling could be used to derive yet one more advantage. Oversampling
permits the noise shaper to transfer information in the 17th and 18th bits of
the signal into a 16-bit output with duty cycle modulation of the 16th bit. In
this way a 16-bit DAC can be used to convert an 18-bit digital signal. The
18-bit capability is retained because the information in the two "surplus" bits is
transferred in the four times oversampled signal (OSR = 4). Or, in other words,

56 Digital Signal Processing and Applications

^ oversampling
filter truncator 1-bitDAC •

analog low
pass filter •

digital analog
input dither ' PDM output

Figure 2.11 A PDMbitstream 1-bitDAC, with (dither)pseudo-noise added

the averaged (filtered) value of the quarter-length 16-bit samples is as accurate
as that of 18-bit samples at the original sampling rate.

Now, if the truncator is made in such a way, the output data stream is 1
bit, i.e. M = 1; this bitstream is a PDM version of the original TV-bit wide-data
stream. Hence, a 1 -bit DAC can be used to convert the digital signal to its analog
counterpart (see Figure 2.11).

To improve the resolution, a dither signal is added to the LSB. This is a
pseudo-random sequence, a kind of noise signal. Assume that the digital over-
sampled value lies somewhere in between two quantization levels. To obtain
an increased accuracy, smaller quantization steps, i.e. an increased word length
(more bits) is needed. Another way of achieving improved resolution is to add
random noise to the signal. If the signal lies halfway between two quantization
levels, the signal plus noise will be equally probable to take on the high and
low quantized value, respectively. The actual level of the signal will hence be
represented in a stochastic way. Due to the averaging process in the analog
reconstruction low-pass filter, a better estimate of the actual signal level will be
obtained than without dither. If the signal lies closer to one quantization level
than the other, the former quantized value will be more probable and hence, the
average will approach this quantized level accordingly.

Dither signals are also used in control systems including actuators like
electrohydraulic valves. In this case, the dither signal may be a single sinus
tone, superimposed on the actuator control signal. The goal is to prohibit the
mechanics of the valve to "hang up" or stick.

2.2.4 Sample-and-hold and reconstruction filters

The output from a DAC can be regarded as a PAM representation of the digital
signal at the sampling rate. An ideal sample represents the value of the corre­
sponding analog signal in a single point in time. Hence, in an ideal case, the
output of a DAC is a train of impulses, each having an infinitesimal width, thus
eliminating the aperture error. The aperture error is caused by the fact that a
sample in a practical case does occupy a certain interval of time. The narrower
the pulse width of the sample, the less the error. Of course, ideal DACs cannot
be built in practice.

Another problem with real world DACs is that during the transition from one
sample value to another, glitches, ringing and other types of interference may
occur. To counteract this, a sample-and-hold device (S&H or S/H) is used. The
most common type is the zero-order hold (ZOH) presented in Chapter 1. This
device keeps the output constant until the DAC has settled on the next sample
value. Hence, the output of the S/H is a staircase waveform approximation of

The analog-digital interface 57

the sampled analog signal. In many cases, the S/H is built into the DAC itself.
Now, the S/H having a sample pulse impulse response has a corresponding
transfer function of the form

H (/) = ^ = s i n c (/ D (2.15)
nfT

where T is the sampling rate, i.e. the holding time of the S/H. The function
(2.15) represents a low-pass filter with quite mediocre passband properties.
In Chapter 1 we concluded that the function required to ideally reconstruct the
analog signal would be an ideal low-pass filter, having a completely flat passband
and an extremely sharp cut-off at the Nyquist frequency. Obviously, the transfer
function of the S/H is far from ideal. In many cases an analog reconstruction
filter or smoothing filter (or anti-image filter) is needed in the signal path after
the S/H to achieve a good enough reconstruction of the analog signal. Since
the filter must be implemented using analog components, it tends to be bulky
and expensive and it is preferably kept simple, of the order of 3 or lower. A
good way of relaxing the requirements of the filter is to use oversampling as
described above. There are also additional requirements on the reconstruction
filter depending on the application. In a high-quality audio system, there may
be requirements regarding linear-phase shift and transient response, while in a
feedback control system time delay parameters may be crucial.

In most cases a reconstruction filter is necessary. Even if a poorly filtered
output signal has an acceptable quality, the presence of imaged high-frequency
signal components may cause problems further down the signal path. For
example, assume that an audio system has the sampling frequency 44.1 kHz
and the sampled analog sinusoidal signal has a frequency of/i = 12 kHz, i.e.
well below the Nyquist frequency. Further, the system has a poor reconstruc­
tion filter at the output and the first high-frequency image signal component
f2=44A-fx=44.l-l2 = 32 A kHz leaks through. Now, the 32.1 kHz signal
is not audible and does not primarily cause any problems. If, however, there is a
non-linearity in the signal path, for instance an analog amplifier approaching sat­
uration, the signal components will be mixed. New signal components at lower
frequencies may be created, thus causing audible distortion. For instance, a
third-order non-linearity, quite common in bipolar semiconductor devices, will
create the following "new" signal components due to intermodulation (mixing)

f3 = 8.1 kHz f4 = 36.0 kHz f5 = 52.2 kHz

f6 = 56.1 kHz fi = 76.2 kHz / 8 = 96.3 kHz

Note that the first frequency 8.1 kHz is certainly audible and will cause dis­
tortion. The high-frequency components can of course also interfere with e.g.
bias oscillators in analog tape recorders and miscellaneous radio frequency
equipment, causing additional problems.

Finally, again we find an advantage using oversampling techniques. If the
sampling frequency is considerably higher than twice the Nyquist frequency,
the distance to the first mirrored signal spectra will be comparatively large
(see Chapter 1). The analog filter now needs to cut-off at a higher frequency,
hence the gain can drop-off slower with frequency and a simpler filter will be
satisfactory.

58 Digital Signal Processing and Applications

2.3 Analog-to-digital
conversion

The task of the analog-to-digital converter (ADC) is the "inverse" ofthe digital-
to-analog converter (DAC), i.e. to convert an "analog" input signal into a
numerical, commonly binary so-called "digital" value. The specifications for
an ADC is similar to those for a DAC, i.e. offset, gain, linearity, missing codes,
conversion time and so on. Since a DAC has a finite number of digital input
codes, there are also a finite number of analog output levels. The ADC, on the
other hand, has an infinite number of possible analog input levels, but only a
finite number of digital output codes. For this reason, ADC errors are com­
monly assumed to be the difference between the actual and the ideal analog
input levels, causing a transition between two adjacent digital output codes. For
a perfect n-bit ADC the width of a quantization band is

A =
2n

where Fps is the full-scale input voltage ofthe ADC. Ideally, the transition level
for each code should be situated in the center ofthe respective quantization band.
These points are shown as a dotted line in Figure 2.12. Hence, the digital output

(v) i

di
gi

ta
l
ou

tp
ut

otts
i.

et error

•

m(v) k

ou
tp

ut

1
1

1

1

1

1

di
gi

ta
l

.

i

i

i

i

i

i

i

/

— •

analog input analog input

Figure 2.12 Errors
of an ADC, the
dotted line shows the
ideal placement
ofthe transition
levels

m(v) '

di
gi

ta
l
ou

tp
ut

inearity error
t

•

analog input

The analog-digital interface 59

code m(v) as a function of the analog input voltage v for a perfect ADC can be
written as

m{v) •
v 1
A + 2

where |_ J is the "floor" operator, that is the first integer less than or equal to the
argument. Taking the errors into account, the output of a real world ADC can
be expressed as

m(v) =
v 1 v
- + - + s0 + -T£G + SN(V)

The error terms will be explained below.

Offset error £o is the difference between the analog input level which causes a
first bit transition to occur and the level corresponding to 1/2 LSB. This should
of course ideally be zero, i.e. the first bit transition should take place at a level
representing exactly 1/2 LSB. The offset error affects all output codes with the
same additive amount and can in most cases be sufficiently compensated for by
adding an analog DC level to the input signal and/or by adding a fixed constant
to the digital output.

Gain or scale factor is the slope of the transfer curve from analog levels to
digital numbers. Hence, the gain error £G is the error in the slope of the transfer
curve. It affects all output codes by the same percentage amount, and can
normally be counteracted by amplification or attenuation of the analog input
signal. Compensation can also be done by multiplying the digital number with
a fixed gain calibration constant.

As pointed out above, offset and gain errors can, to a large extent, be com­
pensated for by preconditioning the analog input signal or by processing the
digital output code. The first method requires extra analog hardware, but has
the advantage of utilizing the ADC at its best. The digital compensation is often
easier to implement in software, but cannot fully eliminate the occurrence of
unused quantization levels and/or overloading the ADC.

Linearity can be sub-divided into integral linearity (relative accuracy) and
differential linearity.

Integral linearity error is the deviation of code mid-points of the transfer curve
from a straight line, and is defined as (SN(V))/A expressed in LSBs. This error
is not possible to adjust or compensate for easily.

Differential linearity measures the difference between input levels corre­
sponding to any two adjacent digital codes, (eN(vk) — £N(vk-\))/A, where
m(vk) = m(vk-1) + 1. If the input level for one step differs from the previous step
by exactly the value corresponding to one least significant bit (LSB), the dif­
ferential non-linearity is zero. Differential linearity errors cannot be eliminated
easily.

Monotonicity implies that increasing the analog input level never results in
a decrease of the digital output code. Non-monotonicity may cause stability
problems in feedback controls systems.

60 Digital Signal Processing and Applications

Missing codes in an ADC means that some digital codes can never be gen­
erated. It indicates that differential non-linearity is larger than 1 LSB. The
problem of missing codes is generally caused by a non-monotonic behavior of
the internal DAC. As will be shown in later sections, some types of ADCs use a
built-in DAC.

Absolute accuracy error is the difference between the actual analog input to
an ADC compared to the expected input level for a given digital output. The
absolute accuracy is the compound effect of the offset error, gain error and
linearity errors described above.

Conversion time of an ADC is the time required by the ADC to perform a
complete conversion process. The conversion is commonly started by a "strobe"
or synchronization signal, controlling the sampling rate.

As for DACs, it is important to remember that the parameters above may be
affected by supply voltage and temperature. Data sheets only specify the param­
eters for certain temperatures and supply voltages. Significant deviations from
the specified figures may hence occur in a practical system.

2.3.1 Anti-aliasing filters and sample-and-hold

As pointed out in Chapter 1, the process of sampling the analog time-continuous
signal requires an efficient anti-aliasing filter to obtain an unambiguous digital,
time-discrete representation of the signal. Ideally, a low-pass filter having a flat
passband and extremely sharp cut-off at the Nyquist frequency is required. Of
course, building such a filter in practice is impossible and approximations and
compromises thus have to be made. The problem is quite similar to building
the "perfect" reconstruction filter.

The first signal processing block of a digital signal processing system is likely
to be an analog low-pass anti-aliasing filter. Depending on the application, dif­
ferent requirements of the filter may be stated. In audio systems, linear-phase
response may, for instance, be an important parameter, while in a digital DC-
voltmeter instrument, a low offset voltage may be imperative. Designing proper
anti-aliasing filters is generally not a trivial task, especially if practical limita­
tions, such as circuit board space and cost, also have to be taken into account.

Anti-aliasing filters are commonly implemented as active filters using feed­
back operational amplifiers or as SC filters. One way to relax the requirements
of the analog anti-aliasing filter is to use oversampling techniques (see also
reconstruction filters for DAC above). In this case, the signal is sampled with a
considerably higher rate than required to fulfill the Nyquist criteria. Hence, the
distance to the first mirrored signal spectra on the frequency axis will be much
longer than if sampling were performed at only twice the Nyquist frequency.
Figure 2.13 shows an example of an oversampled system. This could for instance
be an audio system, where the highest audio frequency of interest would be
about 20 kHz. The sampling rate for such a system could be/ s = 48 kHz. With­
out oversampling, the analog anti-aliasing filter should hence have a gain of
about 1 at 20 kHz and an attenuation of, say, 30 dB at 24 kHz. This corresponds
to a slope of roughly 150 dB/octave, a quite impressive filter and very hard to
implement using analog components.

The analog-digital interface 61

input

•
analog anti­
aliasing filter • ADC

digital anti­
aliasing filter

decimator

output

sampling rate Dfs sampling rate/s

Figure 2.13 D times oversampling ADC relaxing demands on the analog
anti-aliasing filter

Now, assume that we sample the analog input signal using Dfs = 16 • 48 =
768 kHz, i.e. using an OSR of D = 16. To avoid aliasing distortion in this case,
the analog anti-aliasing filter has quite relaxed requirements: gain of 1 at 20 kHz
(as before) and attenuation of 30 dB at 384 kHz, which corresponds to a slope
of 1.6 dB/octave. Such a filter is very easy to realize using a simple passive RC
network.

Following the ADC, there is another anti-aliasing filter having the same tough
requirements as stated at first. On the other hand, this filter is a digital one,
being implemented using digital hardware or as software in a DSP. Designing
a digital filter having the required passband characteristics is not very difficult.
Preferably, a finite impulse response (FIR) filter structure may be used, having
a linear-phase response.

At last, following the digital anti-aliasing filter is a decimator or downsam-
pler. To perform the downsampling (Pohlmann, 1989), the device only passes
every D-th sample from input to output and ignores the others, hence

y(n)=x(Dn) (2.16)

In our example the decimator only takes every 16th sample and passes it on,
i.e. the sampling rate is now brought back to/ s = 48 kHz.

Another detail that needs to be taken care of when performing analog-to-
digital conversion is the actual sampling of the analog signal. An ideal sampling
implies measuring the analog signal level during an infinitely short period of
time (the "aperture"). Further, the ADC requires a certain time to perform
the conversion and during this process the analog level must not change or
conversion errors may occur. This problem is solved by feeding the analog
signal to a sample and hold (S/H) device before it reaches the ADC. The S/H
will take a quick snapshot sample and hold it constant during the conversion
process. Many ADCs have a built-in S/H device.

2.3.2 Flash analog-to-digital converters

Flash type (or parallel) ADCs are the fastest due to the short conversion time and
can hence be used for high sampling rates. Hundreds of megahertz is common
today. On the other hand, these converters are quite complex, they have limited
word length and hence resolution (10 bits or less), they are quite expensive and
often suffer from considerable power dissipation.

The block diagram of a simple 2-bit flash ADC is shown in Figure 2.14.
The analog input is passed to a number of analog level comparators in paral­
lel (i.e. a bank of fast operational amplifiers with high gain and low offset).

62 Digital Signal Processing and Applications

U-m analog
input

0.5 U

digital
output

0.25 U

Figure 2.14 An example 2-bit flash ADC

If the analog input level U-m on the positive input of a comparator is greater
than the level of the negative input, the output will be a digital "one". Oth­
erwise, the comparator outputs a digital "zero". Now, a reference voltage
t/ref is fed to the voltage divider chain, thus obtaining a number of reference
levels

Uk = ^ ^ r e f (2.17)

where k is the quantization threshold number and N is the word length of
the ADC. The analog input voltage will hence be compared to all possible
quantization levels at the same time, rendering a "thermometer" output of digital
ones and zeros from the comparators. These ones and zeros are then used by
a digital decoder circuit to generate digital parallel PCM data on the output of
the ADC.

As pointed out above, this type of ADC is fast, but is difficult to build for large
word lengths. The resistors in the voltage divider chain have to be manufactured
with high precision and the number of comparators and the complexity of the
decoder circuit grows fast as the number of bits is increased.

2.3.3 Successive approximation analog-to-digital converters

These ADCs, also called successive approximation register (SAR), converters
are the most common ones today. They are quite fast, but not as fast as flash
converters. On the other hand, they are easy to build and inexpensive, even for
larger word lengths.

The analog-digital interface 63

analog
input

analog comparator

Uj DAC

control logic

register
digital
output

Figure 2.15 An example SAR ADC (simplified block diagram)

The main parts of the ADC are: an analog comparator, a digital register, a
DAC and some digital control logic (see Figure 2.15). Using the analog com­
parator, the unknown input voltage U[n is compared to a voltage £/DAC created
by a DAC, being a part of the ADC. If the input voltage is greater than the
voltage coming from the DAC, the output of the comparator is a logic "one",
otherwise a logic "zero". The DAC is fed an input digital code from the register,
which is in turn controlled by the control logic. Now, the principle of successive
approximation works as follows.

Assume that the register contains all zeros to start with, hence, the output of
the DAC is £/DAC = 0. Now, the control logic will start to toggle the MSB to a
one, and the analog voltage coming from the DAC will be half of the maximum
possible output voltage. The control logic circuitry samples the signal coming
from the comparator. If this is a one, the control logic knows that the input
voltage is still larger than the voltage coming from the DAC and the "one" in
the MSB will be left as is. If, on the other hand, the output of the comparator has
turned zero, the output from the DAC is larger than the input voltage. Obviously,
toggling the MSB to a one was just too much, and the bit is toggled back to
zero. Now, the process is repeated for the second most significant bit and so
on until all bits in the register have been toggled and set to a one or zero, see
Figure 2.16.

Hence, the SAR ADC always has a constant conversion time. It requires n
approximation cycles, where n is the word length, i.e. the number of bits in the
digital code. SAR-type converters of today may be used for sampling rates up
to some megahertz.

An alternative way of looking at the converter is to see it as a DAC + register
put in a control feedback loop. We try to "tune" the register to match the
analog input signal by observing the error signal from the comparator. Note
that the DAC can of course be built in a variety of ways (see previous sections).

64 Digital Signal Processing and Applications

u-m 4

0 1 1 1 0 1

1 u DAC

J^TTT1_

_| 1 1 1 , 1 1 ^

approximation step

Figure 2.16 Operation of a SAR converter

Uin 4

Uj DAC

approximation step

Figure 2.17 Operation of a counting ADC

Today, charge redistribution-based devices are quite common, since they are
straightforward to implement using CMOS technology.

2.3.4 Counting analog-to-digital converters

An alternative, somewhat simpler ADC type is the counting ADC. The con­
verter is mainly built in the same way as the SAR converter (Figure 2.15), but
the control logic and register is simply a binary counter. The counter is reset
to all zeros at the start of a conversion cycle, and is then incremented step by
step. Hence, the output of the DAC is a staircase ramp function. The counting
maintains until the comparator output switches to a zero and the counting is
stopped (see Figure 2.17).

The conversion time of this type of ADC depends on the input voltage, the
higher the level, the longer the conversion time (counting is assumed to take
place at a constant rate). The interesting thing about this converter is that the
output signal of the comparator is a PWM representation of the analog input

The analog-digital interface 65

signal. Further, by connecting an edge-triggered, monostable flip-flop to the
comparator output, a PPM representation can also be obtained.

This type of converter is not very common. Using only a DAC and a com­
parator, the digital part can easily be implemented as software, such as a
microcontroller. SAR-type converters can of course also be implemented in
the same way as well as "tracking" type converters.

Tracking type converters can be seen as a special case of the generic counting
converter. The tracking converter assumes that the change in the input signal
level between consecutive samples is small. The counter is not restarted from
zero at every conversion cycle, but starts from the previous state. If the output
from the comparator is one, the counter is incremented until the comparator
output toggles. If the output is zero when conversion is initiated, the counter is
decremented until the output of the comparator toggles.

2.3.5 Integrating analog-to-digital converters

Integrating ADCs (sometimes also called counting converters) are often quite
slow, but inexpensive and accurate. A common application is digital multimeters
and similar equipment, in which precision and cost are more important than
speed.

There are many different variations of the integrating ADC, but the main
idea is that the unknown analog voltage (or current) is fed to the input of an
analog integrator with a well-known integration time constant r = RC. The
slope of the ramp on the output of the integrator is measured by taking the time
between the output level passing two or more fixed reference threshold levels.
The time needed for the ramp to go from one threshold to the other is measured
by starting and stopping a binary counter running at a constant speed. The
output of the counter is hence a measure of the slope of the integrator output,
which in turn is proportional to the analog input signal level. Since this type
of ADC commonly has a quite long conversion time, i.e. integration time, the
input signal is required to be stable or only slowly varying. On the other hand,
the integration process will act as a low-pass filter, averaging the input signal
and hence suppressing interference superimposed on the analog input signal to
a certain extent.

Figure 2.18 shows a diagram of a simplified integrating ADC. The basic
function (ramp method) works as follows. Initially, the input switch is connected
to ground in order to reset the analog integrator. The switch then connects the
unknown analog input voltage —Um to the input of the integrator. The output
level of the integrator will then start to change as

U(t) = U0 + uj-j£ + e'-j^- (2.18)

where UQ is the initial output signal from the integrator at time to and s is
an error term representing the effect of offset voltage, leak currents and other
shortcomings of a practical integrator. In practice, this term causes the output
level of the integrator to drift slowly away from the starting level, even if the
input voltage is held at zero.

66 Digital Signal Processing and Applications

start

stop

b
in

ar
y

co
u

n
te

r

clock

digil
outp

Figure 2.18 A simplified integrating ADC (assuming Uo = 0)

Now, when the input signal is applied, the output level of the integrator
starts to increase, and at time t\ it is larger than the fixed threshold level UA
and a "start" signal will be generated. The binary counter (that has been reset
to zero) starts counting at a fixed rate, determined by the stable clock pulse
frequency The output level of the integrator continues to increase until, at time
ti, it is larger than the upper threshold £/B, and a "stop" signal results. The
binary counter stops and the binary PCM counter value now represents the time
difference ti —1\ and hence the analog input voltage

U(t\) = UA start signal at time t\

U(t2) = UB stop signal at time ti

UA = U(h) = Uo + Uin
t-^ + st-l-to

= U0 + (C/in + e)

RC
h - tp

RC

RC

(2.19)

which can be rewritten as (assuming UQ = 0)

rr R C

h-to = UA Uin + S

and in a similar way, we obtain

RC
t2-t0 = UB Uin + S

Now, expressing the time difference measured by the counter we get

RC
t2-tl=t2-to-h+to = (UB - UA.)

Uin + S

(2.20)

(2.21)

(2.22)

The analog-digital interface 61

Rearranging equation (2.22) yields

RC K
Um + e = (UB - UA)- = (2.23)

t2 — t\ t2 — t\

As can be seen from equation (2.23) the unknown analog input voltage can
easily be determined from the time difference recorded by the binary counter.
Unfortunately, the error term will also be present. To obtain good precision in
the ADC, we hence need to design the circuitry carefully to reduce leak current,
etc. to a minimum. This is a problem associated with this type of ADC, and is
one of the reasons this basic conversion method is seldom used.

One way to eliminate the error term is to use a dual slope method. The term
"dual slope" refers to various methods in the literature, however, here only
one method will be presented. Using this method, the timing measurement is
performed in two phases. Phase 1 works as the simple ramp method described
above. As soon as the output level of the integrator reaches the upper threshold,
i.e. U(t2) = UB, phase 2 is initiated. During this phase, the polarity of the input
signal is reversed and +U-m is fed to the input of the integrator. The output level
of the integrator will now start to decrease and at time t3, the lower threshold
is reached again, i.e. U(ti)=UA which completes the conversion process.
We now have two time differences: t2 — h and t3 — t2 which can be used to
express the analog input voltage with the error term eliminated. At time £3
we have

UA = U(tj) = U(t2) - uJ-~^ + st^^

= t / B - (t / i n - £) ^ ~ (2.24)

Rewriting equation (2.24) we get

RC K
-Uin + s = -(UB - UA)- = (2.25)

t3 — t2 '3 — h

Subtracting equation (2.25) from equation (2.23) and dividing by 2 we obtain
an expression for the analog input voltage without the error term

„ _ Uin + £-(-Uin+e)

1 / RC RC \
= T((UB- UA)- + (C/B - UA)- -

= - (l + ——) = K h~h

2 \t2 -h t3-t2) 2 (t2 - ti)(t3 - t2)

K h-t\
(2.26)

An extension of the circuit in Figure 2.18 can be made in such a way that the
system is astable and continuously generates a square wave output having the
period t3 —1\. During t2 —1\ the square wave is low and during t3 —12 it is high.
A quite simple microcontroller can be used to calculate the value of the analog
input voltage according to expression (2.26) above. An impressive resolution
can be obtained using low-cost analog components.

68 Digital Signal Processing and Applications

2.3.6 Dither

Earlier we discussed the use of dither techniques and oversampling to improve
resolution of a DAC. Dither can be used in a similar way to improve the
resolution of an ADC and hence reduce the effect of quantization distortion.

In the case of an ADC, analog noise with amplitude of typically 1/3 LSB is
added to the input signal before quantization takes place. If the analog input
signal level is between two quantization thresholds, the added noise will make
the compound input signal cross the closest quantization level now and then. The
closer to the threshold the original signal level, the more frequent the threshold
will be crossed. Hence, there will be a stochastic modulation of the binary PCM
code from the ADC containing additional information about the input signal.
Averaging the PCM samples, resolution below the LSB can be achieved.

Dither is common in high-quality digital audio systems (Pohlmann, 1989)
nowadays, but has been used in video applications since 1950 and before that,
to counteract gear backlash problems in early radar servo mechanisms.

2.3.7 Sigma-delta analog-to-digital converters

The sigma-delta ADC, sometimes also called bitstream ADC utilizes the
technique of oversampling, discussed earlier. The sigma-delta modulator was
first introduced in 1962, but until recent developments in digital very large
scale integration (VLSI) technology it was difficult to manufacture with high
resolution and good noise characteristics at competitive prices.

One of the major advantages of the sigma-delta ADC using oversampling is
that it is able to use digital filtering and relaxes the demands on the analog anti­
aliasing filter. This also implies that about 90% of the die area is purely digital,
cutting production costs. Another advantage of using oversampling is that the
quantization noise power is spread evenly over a larger frequency spectrum
than the frequency band of interest. Hence, the quantization noise power in
the signal band is lower than in the case of traditional sampling based on the
Nyquist criteria.

Now, let us take a look at a simple 1 -bit sigma-delta ADC. The converter uses
a method that was derived from the delta modulation technique. This is based on
quantizing the difference between successive samples, rather the quantizing the
absolute value of the samples themselves. Figure 2.19 shows a delta modulator
and demodulator with the modulator working as follows. From the analog input
signal x(t) a locally generated estimate x(t) is subtracted. The difference e(t)
between the two is fed to a 1-bit quantizer. In this simplified case, the quantizer
may simply be the sign function, i.e. when e(t) > 0 y(n) = 1, else y(n) = 0. The
quantizer is working at the oversampling frequency, i.e. considerably faster than
required by the signal bandwidth. Hence, the 1-bit digital output y(n) can be
interpreted as a kind of digital error signal:

y(n) = 1: estimated input signal level too small, increase level

y(n) = 0: estimated input signal level too large, decrease level

Now, the analog integrator situated in the feedback loop of the delta mod­
ulator (DM) is designed to function in exactly this way. Hence, if the analog

The analog-digital interface 69

(a)

analog r

input ^ ^ e(f)

x(t) + \

x(t)

1-bit I
quantizer |

| J ^

digital
output

y(n)

digital
input

y(n) rn x(t)

low pass
filter

analog
output

x(t) *
(b)

Figure 2.19 A simplified (a) delta modulator and (b) demodulator

input signal x(t) is held at a constant level, the digital output y(n) will (after
convergence) be a symmetrical square wave (0101 ...), i.e. decrease, increase,
decrease, increase . . . a kind of stable limit oscillation.

The delta demodulator is shown in the lower portion of Figure 2.19. The
function is straightforward. Using the digital 1-bit "increase/decrease" signal,
the estimated input level x(t) can be created using an analog integrator of the
same type as in the modulator. The output low-pass filter will suppress the ripple
caused by the increase/decrease process.

Since integration is a linear process, the integrator in the demodulator can
be moved to the input of the modulator. Hence, the demodulator will now
only consist of the low-pass filter. We now have similar integrators on both
inputs of the summation point in the modulator. For linearity reasons, these
two integrators can be replaced by one integrator having e(t) connected to its
input, and the output connected to the input of the 1-bit quantizer. The delta
modulator has now become a sigma-delta modulator. The name is derived from
the summation point (sigma) followed by the delta modulator.

If we now combine the oversampled 1-bit sigma-delta modulator with a
digital decimation filter (rate reduction filter) we obtain a basic sigma-delta
ADC (see Figure 2.20). The task of the decimation filter is threefold: to reduce
the sampling frequency, to increase the word length from 1 bit to N bits and to
reduce any noise pushed back into the frequency range of interest by the crude
1-bit modulator. A simple illustration of a decimation filter, decimating by a
factor 5, would be an averaging process as shown in Table 2.2.

The decimation filter is commonly built using a decimator and a comb filter
(Marven and Ewers, 1993; Lynn and Fuerst, 1998). The comb filter belongs to
the class of frequency sampling filters, and has the advantage of being easy to
implement in silicon or in a DSP, using only additions and subtractions. A comb
filter typically has 2k zeros on the unit circle in the z-plane, resulting in zero

70 Digital Signal Processing and Applications

analog
input

1 k 1 1-bit
quantizer

1-bit

—w

decimation
filter

digital
output

—^

Ybits

Figure 2.20 A simplified, oversampled bitstream sigma-delta ADC

Table 2.2 Decimation filter example

Input 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 1 1

Averaging process
Output

3 x 0 ; 2 x 1 2 x 0 ; 3 x 1
0 1

1 x 0; 4 x 1 2 x 0; 3 x 1 3 x 0; 2 x 1
1 1 0

x(n)
z-*

- 1

N l^ >fi^ -r

N
i J y

z- 1
^

Figure 2.21 Block diagram of an example comb filter. Note! Only additions,
subtractions and delays are used

gain at the frequencies ± (/ s A), ±2(Js/k), ±3(/ s /*), • • •, (/s/2). The transfer
function of a common type of comb filter can be written as

H(Z):
1

1 - z - l
(2.27)

The corresponding block diagram is shown in Figure 2.21. Note that the delay
z~k can, of course, be implemented as a cascade of & standard z _ 1 delays.

Summary In this chapter the following topics have been treated:

• PCM, PAM, PPM, PNM, PWM and PDM
• Fixed-point 2's complement, offset binary, sign and magnitude and

floating-point
• Companding systems
• Multiplying, Integrating and Bitstream D/A converters
• Oversampling, interpolators, truncators and dither
• Sample and hold reconstruction filters and anti-aliasing filters
• Flash, Successive approximation, Counting and Integrating A/D converters
• Sigma-delta and Bitstream A/D converters, Decimation filters, Comb filters.

The analog-digital interface 71

Review questions R2-1 What is PCM, PAM, PPM, PNM, PWM and PDM?
R2-2 Explain the following terms: fixed-point 2's complement and floating

point.
R2-3 Why are companders used? What are the pros and cons?
R2-4 Draw a block diagram of a R-2R multiplying DAC and explain how it

works. What is the advantage of using only R and 2R resistors?
R2-5 Draw a block diagram of a flash ADC and explain how it works. What is

the great advantage of a flash converter? Are there any disadvantages?
R2-6 Draw a block diagram of a SAR ADC and explain how it works.
R2-7 Why is oversampling used in DACs? Why is it used in ADCs?

Solved problems P2-1 Show that the /z-law turns into a linear function if the parameter is chosen
as [i = 0.

P2-2 A 14-bit ADC has a full-scale input voltage of 5 V Disregarding all errors
except the offset error, we get an erroneous reading from the ADC by 3
LSB. What is the approximate offset error expressed in mV?

P2-3 Write a MATLAB™ program to obtain a plot of the poles and zeros of
the comb filter in equation (2.27), assume k = 9. Are there any numeric
risks?

P2-4 Write a MATLAB™ program to obtain a Bode plot of the comb filter in
equation (2.27), assume k = 9.

3 Adaptive digital systems

Background In Chapter 1, digital filters were presented. In the simple case, we assumed a
good knowledge of the input signal (for instance, a desired signal plus interfer­
ence) and the output signal (only the desired signal). Hence, a filter specification
was easy to formulate, from which filter structure and filter parameters could
be obtained using proper filter synthesis methods.

In some cases, the situation may, however, be harder. We may, for instance,
not have a good knowledge of the properties of the input and output signal, or
the signal properties may change randomly over time. Another problem might
be that there are no proper synthesis methods available. In such situations, an
adaptive filter may be the solution. Given a performance measure, an adap­
tive filter is able to find good filter parameters by itself in an iterative way.
The filter can also "track" and readjust if the properties of the input signal
changes.

In this chapter, the theory of adaptive filters and related systems is discussed.
Example applications are also included like interference canceling, equalizers
and beam-forming systems. Adaptive filters are common in telecommunication
applications like high-speed modems and cell phones.

Objectives In this chapter we will discuss:

• The structure of a generic closed-loop adaptive system
• The linear combiner and variations
• The mean square error (MSE) performance function of an adaptive system
• Some common adaptation algorithms, steepest descent, Newton and least

mean square (LMS)
• Example applications, adaptive interference canceling, equalizers and

beamforming.

3.1 Introduction An adaptive signal processing system is a system which has the ability to change
its processing behavior in a way to maximize a given performance measure.
An adaptive system is self-adjusting and is, by its nature, a time varying
and non-linear system. Hence, when using classical mathematical models and
tools assuming linearity for the analysis of adaptive systems, care must be
exercised.

A simple example of an adaptive system is the automatic gain control (AGC)
in a radio receiver (RX). When the input antenna signal is strong, the AGC
circuitry reduces the amplification in the RX to avoid distortion caused by
saturation of the amplifying circuits. At weak input signals, the amplification
is increased to make the signal readable.

74 Digital Signal Processing and Applications

Adaptive systems should, however, not be confused with pure feedback con­
trol systems. An electric heater controlled by a thermostat is, for instance, a
feedback control system and not an adaptive system, since the control function
is not changed (e.g. the thermostat always switches off the heater at 22°C).

The idea of self-adjusting systems (partly "self-designing" systems) is not
new. Building such systems using "analog" signals and components is, how­
ever, very hard, except in some simple cases. The advent of very large scale
integration (VLSI) digital signal processing (DSP) and computing devices has
made digital adaptive systems possible in practice.

In this chapter, we will discuss a class of adaptive digital systems based
on closed-loop (feedback) adaptation. Some common systems and algorithms
will be addressed. There are, however, many variations possible (Widrow
and Stearns, 1985). The theory of adaptive systems is on the border line of
optimization theory and neural network technology (treated in Chapter 4).

3.1.1 System structure

Figure 3.1 shows a generic adaptive signal processing system. The system con­
sists of three parts: the processor, the performance function and the adaptation
algorithm.

The processor is the part of the system that is responsible for the actual pro­
cessing of the input signal x, thus generating the output signal^. The processor
can, for instance, be a digital finite impulse response (FIR) filter.

The performance function takes the signals x, y as inputs as well as "other
data" d, that may affect the performance of the entire system from x to y. The
performance function is a quality measure of the adaptive system. In optimiza­
tion theory, this function corresponds to the "objective function" and in control
theory it corresponds to the "cost function". The output s from the performance
function is a "quality signal" illustrating the processor at its present state and
indicating whether it is performing well, taking into account the input signals,
output signals and other relevant parameters.

JC

input

— • prouessur

/

adaptation
algorithm

i

£

performance
function

<—

output

y

"other data'

J
u

Figure 3.1 A generic closed-loop adaptive system

Adaptive digital systems 75

The quality signal e is finally fed to the adaptation algorithm. The task of
the adaptation algorithm is to change the parameters of the processor in such
a way that the performance is maximized. In the example of an FIR filter, this
would imply changing the tap weights.

Closed-loop adaptation has the advantage of being usable in many situations
in which no analytic synthesis procedure either exists or is known and/or when
the characteristics of the input signal vary considerably. Further, in cases where
physical system component values are variable or inaccurately known, closed-
loop adaptation will find the best choice of parameters. In the event of partial
system failure, the adaptation mechanism may even be able to readjust the pro­
cessor in such a way that the system will still achieve an acceptable performance.
System reliability can often be improved using performance feedback.

There are, however, some inherent problems as well. The processor model
and the way the adjustable parameters of the processor model is chosen affect
the possibilities of building a good adaptive system. We must be sure that
the desired response of the processor can really be achieved by adjusting the
parameters within the allowed ranges. Using a too complicated processor model
would, on the other hand, make analytic analysis of the system cumbersome or
even impossible.

The performance function also has to be chosen carefully. If the performance
function does not have a unique extremum, the behavior of the adaptation pro­
cess may be uncertain. Further, in many cases it is desirable (but not necessary)
that the performance function is differentiable. Choosing "other data" carefully
may also affect the usefulness of the performance function of the system.

Finally, the adaptation algorithm must be able to adjust the parameters of
the processor in such a way as to improve the performance as fast as possible
and eventually to converge to the optimum solution (in the sense of the per­
formance function). A too "fast" adaptation algorithm may, however, result in
instability or undesired oscillatory behavior. These problems are well known
from optimization and control theory.

3.2 The processor and In this section, a common processor model, the adaptive linear combiner,
the performance and a common performance function, the mean square error (MSE) will be

function presented. Throughout this text, vector notation will be used, where all vectors
are assumed to be column vectors and are usually indicated as a transpose of a
row vector, unless otherwise stated.

3.2.1 The adaptive linear combiner

One of the most common processor models is the so-called adaptive linear
combiner (Widrow and Stearns, 1985), shown in Figure 3.2. In the most general
form, the combiner is assumed to have L + 1 inputs denoted

Xk = [xok xik ••• xLk]
T (3.1)

where the subscript k is used as the time index. Similarly, the gains or weights
of the different branches are denoted

Wit = [wok w\k • • • wLk]
T (3.2)

76 Digital Signal Processing and Applications

Figure 3.2 The general form of adaptive linear combiner with multiple
inputs

Since we are now dealing with an adaptive system, the weights will also
vary in time and hence have a time subscript k. The output y of the adaptive
multiple-input linear combiner can be expressed as

L

yk = ^2wikxik (3.3)
/=o

As can be seen from equation (3.3) this is nothing else but a dot product
between the input vector and the weight vector, hence

yk = XJ
kWk wjx, (3.4)

The adaptive linear combiner can also take another form working in the
temporal domain, with only a single input (see Figure 3.3). This is the general
form of the adaptive linear combiner shown in Figure 3.2, extended with a delay
line. In this case, the output is given by the convolution sum

yk = X I WlkXk-l
1=0

(3.5)

which is the expression for the well-known FIR filter or transversal filter. Now,
if the input vector is defined as

X* = [xk Xk-\ *k-L] (3.6)

equation (3.4) still holds.
It is possible to use other types of structure, e.g. infinite impulse response

(IIR) filters or lattice filters as a processor in an adaptive system. The adap­
tive linear combiner is, however, by far the most common since it is quite
straightforward to analyze and design. It is much harder to find good adaptation

Adaptive digital systems 11

xk-\
T-l

Ak-2 Ak-L

(xy-wok (xy-X V - w i * X>— W* x > — W ^

^

Figure 3.3 A temporal version of an adaptive linear combiner with a single
input - an adaptive transversal filter (FIR filter or tapped delay-line filter)

algorithms for IIR filters, since the weights are not permitted to vary arbitrarily
or instability and oscillations may occur.

3.2.2 The performance function

The performance function can be designed in a variety of ways. In this text, we
will concentrate on the quite common mean square error (MSE) measure. To be
able to derive the following expressions, we will assume that "other data" dk will
be the desired output from our system, sometimes called "training signal" or
"desired response" (see Figure 3.4). One could argue: why employ an adaptive
system at all if the desired response is known in advance? However, presently
we shall assume the availability of such a signal. Later, we will discuss its
derivation in more detail. Considerable ingenuity is, however, needed in most
cases to find suitable "training signals".

In this case, the performance function will be based on the error signal Sk

ek = dk-yk = dk- XjW = dk- WTXk (3.7)

In this discussion, we assume that the adaptation process is slow compared to
the variations in time of the input signal. Hence, the time subscript on the weight
vector has been dropped. From equation (3.7), we will now derive the perfor­
mance function as the mean square error (MSE). We then have to minimize the
MSE (the power of the error signal) in order to maximize the performance of
the corresponding adaptive system. Now, take the square of equation (3.7)

4 = (dk - WTX*)(4 - Xj\V) = d\ + WTX*XjW - 24XJW (3.8)

Assume that Sk, dk and X^ are statistically stationary (Papoulis and Pillai, 2001),
and take the expected value of equation (3.8) over k to obtain the MSE

§ = E[4] = E[d2
k] + WTE[X*Xj]W - 2E[4Xj]W

= E[d%] + WTRW - 2PTW (3.9)

78 Digital Signal Processing and Applications

desired
response

output

error

Figure 3.4 Adaptive linear combiner with desired response ("other data ")
and error signals

where the matrix R is the square input correlation matrix. The main diagonal
terms are the mean squares of the input components, i.e. the variance and the
power of the signals. The matrix is symmetric. If the single input form of the
linear combiner is used, this matrix constitutes the auto-correlation matrix of
the input signal. In the latter case, all elements on the diagonal will be equal.

The matrix R looks like

R = E[X^Xj] = E

r x2

x0k

X\kXQk

XQk*\k

X2

xlk

XLk*0k *LkX\k

X0k*Lk

X\kXLk

KLk J

(3.10)

The vector P is the cross-correlation between the desired response and the
input components

P = E[4x0£ dkx\k ••• dkxLk]T (3.11)

Since the signals <4 and jt# are generally not statistically independent,
the expected value of the product rf^Xj cannot be rewritten as a product of
expected values. Ifdk and all JC# are indeed statistically independent, they will
also be uncorrelated and P = 0. It can easily be seen from equation (3.9) that
in this case, minimum MSE would occur when setting W = 0, i.e. setting all
weights equal to 0, or in other words switching off the processor completely. It
does not matter what the adaptive system tries to do using the input signals; the
MSE cannot be reduced using any input signal or combination thereof. In this
case, we have probably made a poor choice of dk or X#, or the processor model
is not relevant.

From equation (3.9) we can see that the MSE is a quadratic function of
the components of the weight vector. This implies that the surface of the

Adaptive digital systems 79

LU
CO

2

Figure 3.5 Two-dimensional paraboloid performance surface. The MSE as a
function of two weight components wo and w\. Minimum error, i.e. optimum
is found at the bottom of the bowl, i.e. at W*, the Wiener weight vector

performance function will be bowl shaped and form a hyperparaboloid in
the general case, which only has one global minimum. Figure 3.5 shows an
example of a two-dimensional (paraboloid) quadratic performance surface. The
minimum MSE point, i.e. the optimum combination of weights, can be found
at the bottom of the bowl. This set of weights is sometimes called the Wiener
weight vector W*. The optimum solution, i.e. the Wiener weight vector can be
found by finding the point where the gradient of the performance function is
zero.

Differentiating equation (3.9), we obtain the gradient

V(£) = aw •[3.
dwo

dwL_

-|T

= 2RW - 2P (3.12)

The optimum weight vector is found where the gradient is zero, hence

V(|) = 0 = 2RW* - 2P (3.13)

Assuming that R is non-singular the Wiener-Hopf equation in matrix form is

W* = R - ' P (3.14)

From this, we realize that adaptation (optimization), i.e. finding the optimum
weight vector, is an iterative method of finding the inverse (or pseudoinverse)
of the input correlation matrix.

The minimum mean square error (at optimum) is now obtained by substituting
W* from equation (3.14) for W in equation (3.9) and using the symmetry of

80 Digital Signal Processing and Applications

the input correlation matrix, i.e. RT = R and (R !) T = R l

fenin = E[d2
k] + W*TRW* - 2PTW*

= E[4] + (R^P) 1 RR_1P - 2 P T R 1 P

= E[4] - ?TRl? = E[4] - PTW* (3.15)

Finally, a useful and important statistical condition exists between the error
signal Sk and the components of the input signal vector X* when W = W*.
Multiplying equation (3.7) by X# from the left, we obtain

skXk = dkXk -ykXk = dkXk - XkX
T

kW (3.16)

Taking the expected value of equation (3.16) yields

E[^X*] = E[dkXk] - E[XkX
T

k]\V = P - RW (3.17)

Inserting equation (3.14) into equation (3.17) yields

E h x *] w =w* = P ~ RR"lp = P " P = ° (3-18>
This result corresponds to the result of Wiener-filter theory. When the

impulse response (weights) of a filter is optimized, the error signal is uncor­
rected (orthogonal) to the input signals.

3.3 Adaptation From the above, we have realized that the mean square error (MSE) performance
algorithms surface for the linear combiner is a quadratic function of the weights (input sig­

nal and desired response statistically stationary). The task of the adaptation
algorithm is to locate the optimum setting W* of the weights, hence obtaining
the best performance from the adaptive system. Since the parameters of the
performance surface may be unknown and analytical descriptions are not avail­
able, the adaptation process is an iterative process, searching for the optimum
point.

Many different adaptation schemes have been proposed. In this text a few
common generic types will be discussed. The ideal adaptation algorithm con­
verges quickly, but without oscillatory behavior, to the optimum solution. Once
settled at the optimum, the ideal algorithm should track the solution, if the
shape of the performance surface changes over time. The adaptation algorithm
should preferably also be easy to implement, and not be excessively demanding
with regards to the computations.

The shape of the learning curve, i.e. a plot of the MSE & as a function of
the iteration number /, is in many cases a good source of information about the
properties of an adaptation algorithm. Note! For every iteration period / there
is commonly a large number of sample instants k, since £ is the average over k
(time).

3.3.1 The method of steepest descent

The idea of the steepest descent method is as follows: starting in an arbitrary
point Wo of the performance surface, estimate the gradient and change the

Adaptive digital systems 81

weights in the negative direction of the gradient Vo. In this way, the weight vector
point will proceed "downhill" until reaching the bottom of the performance
surface "bowl" and the optimum point. The steepest descent algorithm can be
expressed as the following

W / + i = W ; + /x(-V0 (3.19)

where /x is the step size at each iteration. The larger the step size, the faster
the convergence. An excessively large step size would, on the other hand, cause
instability and oscillatory problems in the solution. This problem is common
to all closed-loop control systems. Finding a good compromise on /x may,
therefore, be a problem.

Another problem is obtaining the gradient V*. Since the gradient is normally
not known in advance, it has to be estimated by adjusting the weights one by
one by a small increment ±8 and measuring the MSE §. Hence, the gradient is
expressed as

KSf aw
9| _a§_ _aj_
3 wo dw\ 8WL

where the respective derivatives can be estimated by

9g ^i-(wn + 8)-i-(wn-8)

dwn 28

(3.20)

(3.21)

One has to remember that the performance surface is a "noisy" surface in
the general case. To obtain an MSE with a small variance, many samples are
required. There will be two perturbation points for each dimension of the weight
vector, 2L averaged measurements, each consisting of a number of samples are
needed. There is, of course, a trade-off. The larger the number of averaged
points, i.e. the longer the estimation time, the less noise there will be in the
gradient estimate. A noisy gradient estimate will result in an erratic adaptation
process.

Disregarding the noise, it should also be noted that the steepest descent
"path" is not necessarily the straightest route to the optimum point in the
general case. An example is shown in Figure 3.6(a). Looking down into the
bowl-shaped performance function of Figure 3.5, the movement of the weight
vector during the iterations is shown. Starting at a random point, the change of
the weight vector is always in the direction of the negative gradient (steepest
descent).

3.3.2 Newton's method

Newton's method may be seen as an improved version of the steepest descent
method discussed above. In this method, the steepest descent route is not used,
but the weight vector moves "directly" towards the optimum point. This is
achieved by adding information about the shape of the surface to the iterative
adaptation algorithm

W f + ^ W f + MR'k-V,-) (3.22)

82 Digital Signal Processing and Applications

(a) w\ (b)

(c)

Figure 3.6 Looking down into the performance "bowl" (see Figure 3.5),
iteration of the weight vector towards optimum at W* for (a) steepest
descent, (b) Newton s method and (c) LMS

The extra information is introduced into equation (3.22) by including R_ 1 ,
the inverse of the input correlation matrix. When the gradient is multiplied by
this matrix, the resulting move of the weight vector will not be in the nega­
tive direction of the gradient, but rather in the direction towards the optimum
point.

Due to the additional matrix multiplication, Newton's method requires more
computational power than the method of steepest descent. In addition, knowl­
edge of the inverse of the input correlation matrix is required, which in turn
requires averaging of a number of samples.

The advantage of this method is that it often finds the optimum point in
very few iterations. It is easy to show that if we have perfect knowledge of the
gradient and the inverse of the input correlation matrix, Newton's method will
find the optimum solution in only one iteration. Setting /z = 0.5 in equation

Adaptive digital systems 83

(3.22) and inserting equation (3.13) we obtain

W,-+i = Wz-O.SR"1^

= W; - 0.5R-1(2RW; - 2P)

= R _ 1 P = W* (3.23)

where the last equality is given by equation (3.14). Hence, it does not matter
where we start on the performance surface; if the gradient and input signal
inverse correlation matrix are known, the optimum point will be reached in only
one iteration (see Figure 3.6(b)). In practice, this is not possible in the general
case, since the gradient estimate and the elements of the input correlation matrix
will be noisy.

3.3.3 The least mean square algorithm

The methods presented above, the method of steepest descent and Newton's
method, both require an estimation of the gradient at each iteration. In this
section, the least mean square (LMS) algorithm will be discussed. The LMS
algorithm uses a special estimate of the gradient that is valid for the adaptive
linear combiner. Thus, the LMS algorithm is more restricted in its use than the
other methods.

On the other hand, the LMS algorithm is important because of its ease of
computation, and because it does not require the repetitive gradient estimation.
The LMS algorithm is quite often the best choice for many different adaptive
signal processing applications. Starting from equation (3.7) we recall that

£k = dk-yk = dk •XjW (3.24)

In the previous methods, we would estimate the gradient using § = E [^] ,
but the LMS algorithm uses e | itself as an estimate of £. This is the main point
of the LMS algorithm. At each iteration in the adaptive process, we have a
gradient estimate of the form

V*

\dA~

\dA
= 2ek

~ dsk~

dwo

dw\

dSk_

= -2ekXk (3.25)

where the derivatives of sk follow from equation (3.24). Using this simplified
gradient estimate, we can now formulate a steepest descent type algorithm

WA+I = W* - /iVt = Wit + 2nekXk (3.26)

This is the LMS algorithm. The gain constant \i governs the speed and stability
of the adaptation process. The weight change at each iteration is based on

84 Digital Signal Processing and Applications

imperfect, noisy gradient estimates, which implies that the adaptation process
does not follow the true line of steepest descent on the performance surface
(see Figure 3.6(c)). The noise in the gradient estimate is, however, attenuated
with time by the adaptation process, which acts as a low-pass filter.

The LMS algorithm is elegant in its simplicity and efficiency. It can be imple­
mented without squaring, averaging or differentiation. Each component of the
gradient estimate is obtained from a single data sample input; no perturbations
are needed.

The LMS algorithm takes advantage of prior information regarding the
quadratic shape of the performance surface. This gives the LMS algorithm
considerable advantage over the previous adaptation algorithms when it comes
to adaptation time. The LMS algorithm converges to a solution much faster than
the steepest descent method, particularly when the number of weights is large.

3.4 Applications In this section some example applications of adaptive system will be briefly
presented. The presentation is somewhat simplified, and some practical details
have been omitted thus simplifying the understanding of the system's main
feature.

3.4.1 Adaptive interference canceling

Adaptive interference canceling devices can be used in many situations where
a desired signal is disturbed by additive background noise. This could be, for
instance, the signal from the headset microphone used by the pilot in an aircraft.
In this case, the speech signal is disturbed by the background noise created
by motors, propellers and air flow. It could also be the weak signal coming
from electrocardiographic (ECG) electrodes, being disturbed by 50 or 60 Hz
interference caused by nearby power lines and appliances.

The idea behind the interference canceling technique is quite simple. Assume
that our desired signal s is disturbed by additive background noise no. The
available signal is

x = s -{-no (3.27)

If we could only obtain the noise signal no, it could easily be subtracted from
the available signal and the noise would be canceled completely. In most cases,
the noise signal no is not available, but if a correlated noise signal n\ can be
obtained, no may be created by filtering n\. Since the filter function needed is
not known in most cases, this is a perfect job for an adaptive filter. An adaptive
noise-canceling circuit is shown in Figure 3.7. As can be seen from the figure,
the output signal is fed back as an error signal e to the adaptation algorithm of
the adaptive filter. Assume that s, no, n\ and>> are statistically stationary and
have zero means. Further, assume that s is uncorrelated with no and n\, and that
n\ is correlated with no, then

e = s + no-y (3.28)

Squaring equation (3.28) gives

e2 = s2 + (n0 - y)2 + 2s(n0 - y) (3.29)

Adaptive digital systems 85

signal
source

noise
source

•rJ
5H

• r i —
• q

i + n0

" l

/

adaptive
filter

/

+ >fr
i k. £*

Figure 3.7 4̂« adaptive noise-canceling circuit, using an adaptive filter

Taking expectations of both sides and making use of the fact that s is
uncorrelated with no and y, we get

E[e2] = E[s2] + E[(/!0 - 7) 2] + 2E[s(n0 -y)]

= E[s2] + E[(n0-y)2] (3.30)

From this equation it can be seen that adapting the filter by minimizing the
mean square error E[e2], i.e. the output signal power, is done by minimizing
the term E[(«o - y)2], since the input signal power E[s2] cannot be affected
by the filter. Minimizing the term E[(no — y)2] implies that the output y of the
filter is a best least squares estimate of unknown noise term no, which is needed
to cancel the noise in the input signal. Hence, from equation (3.28) we realize
that minimizing E[(«o — y)2] implies that E[(e — s)2] is also minimized and the
noise power of the output signal is minimized.

Let us pursue the previous example of canceling the background noise no
picked up by the pilot's headset microphone. In a practical situation, we would
set up a second microphone on the flight deck in such a way that it only picks
up the background noise n\. Using a device like in Figure 3.7, the background
noise no disturbing the speech signal s could be suppressed. The same technique
has been adopted for cellular telephones as well, using an extra microphone to
pick up background noise.

Other areas where adaptive interference canceling systems are used is for
echo cancellation (Widrow and Stearns, 1985) in telephone lines where echo
may occur as a result of unbalanced hybrids and for interference suppression
in radio systems.

The performance of the adaptive noise-canceling system depends on three
factors. First, there must be a fair correlation between the noise n\ picked up
by the "reference microphone" and the disturbing background noise «o- If they
are completely uncorrelated, the adaptive filter will set all its weights to zero
(i.e. "switch-off") and will have no effect (no benefit or damage).

Second, the filter must be able to adapt to such a filter function such that no
can be well created from n\. This implies that the processor model used in the
filter is relevant and that the adaptation algorithm is satisfactory. Note that we
have not assumed that the adaptive filter necessarily converges to a linear filter.

86 Digital Signal Processing and Applications

Third, it is preferable that there may not be any correlation between the signal
n\ picked up by the reference microphone, and the desired signal s. If there is
a correlation, the system will also try to cancel the desired signal, i.e. reducing
E[s2]. Hence, we have to choose the reference noise signal carefully.

3.4.2 Equalizers

Equalizers or adaptive inverse filters are frequently used in many telecommu­
nication applications, where a transmitted signal is being distorted by some
filtering function inherent in the transmission process. One example is the
limited bandwidth of a telephone line (filter effect) that will tend to distort
high-speed data transmissions. Now, if the transfer function H(co) from trans­
mitter (TX) to receiver (RX) of the telephone line is known, we can build a
filter having the inverse transfer function, G(co) = H~l(co) a so-called inverse
filter or zero-forcing filter. If the received signal is fed to the inverse filter,
the filtering effect of the telephone line can be neutralized, such that

H(co) G((Q) = H(co)H-\o)) = 1 (3.31)

The transfer function of a communication channel (e.g. telephone line) can
be modeled as a channel filter H(co). Usually, the transfer function is not known
in advance and/or varies over time. This implies that a good fixed inverse filter
cannot be designed, but an adaptive inverse filter would be usable. This is what
an equalizer is, an adaptive inverse filter that tries to neutralize the effect of the
channel filter at all times in some optimum way. Today's high-speed telephone
modems would not be possible without the use of equalizers.

Figure 3.8 shows a block diagram of a transmission system with a channel
filter having transfer function H(z) and an equalizer made up of an adaptive
filter used as inverse filter having transfer function G(z). The signal Sk entering
the transmission channel is distorted by the transfer function of the channel
filter, but on top of this, additive noise n^ is disturbing the transmission, hence
the received signal is

n =$k *h(k) + nk (3.32)

sk

w

' w

input

delay

H(z)

channel
filter

r h

7 ir

^

G(z) f

adaptive
filter

/

dk +A
_ A

yk

iV-i
V

h

outpu

Figure 3.8 A transmission situation with channel filter, additive noise and
an equalizer implemented by means of an adaptive filter

Adaptive digital systems 87

In the channel model above, * denotes convolution and h(k) is the impulse
response corresponding to the channel filter transfer function H(z). In order to
make the adaptive filter converge resulting in a good inverse transfer function, a
desired signal dk is needed. If the transmitted signal Sk is used as the desired sig­
nal, the adaptive filter will converge in a way to minimize the mean square error

E[e2
k] = E[(sk-yk)

2] (3.33)

implying that the output^ will resemble the input Sk as closely as possible in the
least square sense, and the adaptive filter has converged to a good inverse G(z)
of the channel filter transfer function H(z). The inverse filter will eventually
also track variations in the channel filter.

Finding a desired signal dk is not entirely easy at all times. In the present
example, we have used the transmitted signal Sk, which is not known in the
general case at the receiving site. A common method is to transmit known
"training signals" now and then, to be used for adaptation of the inverse filter.
There are also other ways of defining the error signal. For instance, in a digital
transmission system (where Sk is "digital"), the error signal can be defined as

£k=h~yk (3.34)

where Sk is the digital estimate of the transmitted (digital) signal Sk and Sk is the
output of the non-linear detector using the analog signal^ as input. In this case,
the detector simply consists of an analog comparator. Hence, the estimate of the
transmitted signal is used as the desired signal instead of the transmitted signal
itself (see Figure 3.9). As the equalizer converges, the analog signal^ will be
forced stronger and stronger when 5̂ = 1, and weaker and weaker for Sk = 0.

There are two problems associated with equalizers. First, since the zeros in
the channel filter transfer function will be reflected as poles in the inverse filter,
we may not be able to find a stable inverse filter for all channel filters. Second,
assume that there is a deep notch in the channel filter function at a specific
frequency. This notch will be counteracted by a sharp peak, having a high gain
at the same frequency in the transfer function of the inverse filter. The additive
noise, possibly being stronger than the desired signal at this specific frequency,
will then be heavily amplified. This may cause a very poor signal-to-noise ratio
(SNR), rendering the equalized output signal unreadable.

input

H(z)

channel
filter

r h

*K1J '

G(z) yi

adaptive
filter

/

H

Is
__i

yk
' w detector

h
output

Figure 3.9 An equalizer using the estimated transmitted signal as
desired signal

88 Digital Signal Processing and Applications

Equalizers are sometimes also used in high performance audio systems to
counteract the transfer function caused by room acoustics and to avoid feedback
problems. In this situation, however, the transmitted signal is "precompensated"
before being sent to the loudspeakers. Hence, the order of the inverse filter and
the channel filter is reversed when compared with Figure 3.8.

For equalizing telephone lines and room acoustics, equalizers using a simple
adaptive linear inverse filter will often do well. When it comes to equalizers for
data transmission over radio links, more complex equalizers are often required to
achieve acceptable performance. Different types of decision-feedback equal­
izers are common in digital radio transmission systems (Proakis, 1989; Ahlin
and Zander, 1998).

In a radio link (Ahlin and Zander, 1998), the signal traveling from the trans­
mitter to the receiver antenna will be propagated over many different paths
simultaneously, with all the paths having different lengths. The multitude of
received signal components compounded in the receiver antenna will hence be
delayed by different amounts of time, which will give the components different
phase shifts. This in turn results in a filtering effect of the transmitted sig­
nal (the channel filter). The phenomenon is denoted multipath propagation
or Rayleigh fading, causing frequency selective fading. Due to the trans­
fer function of the channel filter, the short data bits will be "smeared" out,
causing interference in the following data bit time slots. This is called inter-
symbol interference (ISI), and can be counteracted by including an equalizer in
the receiver.

Figure 3.10 shows an example of a decision-feedback equalizer. This is
mainly the same equalizer as in Figure 3.9, but extended with a feedback
loop consisting of another adaptive filter. The latter filter "remembers" the
past detected digital symbols, and counteracts the residuals of the intersymbol
interference. Both filters are adapted synchronously using a common adaptation
algorithm.

Figure 3.10 A decision-feedback equalizer (channel filter and additive noise
not shown)

Adaptive digital systems 89

This type of non-linear equalizer works well for combating intersymbol inter­
ference present in highly time-dispersive radio channels. If we assume that both
filters are adaptive FIR filters, the output of the equalizer will be

L J

/=0 7=0

where w/# are the weights of the first filter, and v# the weight of the feedback
filter at time instant k.

3.4.3 Adaptive beamforming

So far, we have only discussed the use of adaptive systems in the time and
frequency domains, in the single input processor model, according to equations
(3.5) and (3.6). In this section, applications using the more general multiple-
input linear combiner model will be addressed and signal conditioning in the
spatial domain will be treated.

The underlying signal processing problem is common to the reception of
many different types of signals, such as electromagnetic, acoustic or seis­
mic. In this signal processing oriented discussion, the difference between
these situations is simply the choice of sensors: radio antennas, microphones,
hydrophones, seismometers, geophones, etc. Without sacrificing generality,
we will use the reception of electromagnetic signals by radio antennas as an
example in the following discussion.

Assume that we are interested in receiving a fairly weak signal in the presence
of a strong interfering signal. The desired signal and the interfering signal
originate from different locations and at the receiving site, the signals have
different angles of arrival. A good way of dealing with this problem is to design a
directive antenna, an antenna having a maximum sensitivity in one direction (the
"beam" or "lobe") and a minimum sensitivity in other directions. The antenna
is directed in such a way that the maximum sensitivity direction coincides with
the direction of the location of the desired signal, and minimum sensitivity
("notch") angle in the direction of the interferer (see Figure 3.11).

There are, however, some problems. The physical size of a directive antenna
depends on the wavelength of the signal. Hence, for low-frequency signals, the
wavelength may be so long that the resulting directive antenna would be huge
and not possible to build in practice. Another problem occurs if the desired
signal source or the interferer or both are mobile, i.e. (fast) moving. In such a
case, the directive antenna may need to be redirected continuously (for instance,
radar antennas). If the directive antenna structure needs to be moved (quickly),
this may create challenging mechanical problems.

An alternative way of building a directive antenna is to use a number of
omnidirectional, fixed antennas mounted in an antenna array. The output of
the antennas is fed to a signal processing device, and the resulting directivity
pattern of all the antennas in unison is created "electronically" by the signal
processing device. Hence, the shape and direction of the lobes and notches can
be changed quickly, without having to move any part of the physical antenna
system. The antenna system may, however, still be large for low frequencies,
but for many cases easier to build in practice than in the previous case.

90 Digital Signal Processing and Applications

interfering A
signal source *

desired
signal source

minimum sensitivity
direction, "notch"

* * +A \ polar directivity
maximum sensitivity * * , \ P ' o * ^ ^
direction, main lobe * * * \ _ A ^"^

directive receiving
antenna

Figure 3.11 Enhancing the desired signal and attenuating the interference
using a directive antenna (the directivity plot is a polar diagram showing the
relative sensitivity of the antenna as a function of the angle)

The drawback of the "electronic" directive antenna is the cost and complexity.
The advent of fast and inexpensive digital signal processing components has,
however, made the approach known as beamforming (Widrow and Stearns,
1985) more attractive during the past few years. The steady increase in process­
ing speed of digital signal processing devices has also made it possible to use
this technology for high-frequency signal applications, which was otherwise an
impossible task a few years back.

The following simplified example (see Figure 3.12) illustrates the use of a
multiple-input, adaptive linear combiner in a beam-forming "electronic" direc­
tive antenna system. Assume that we are using two omnidirectional antennas
A\ and^2. The distance between the two antennas is /. We are trying to receive
a weak desired narrow-band signal s cos(otf) but unfortunately we are disturbed
by a strong narrow-band, jamming signal of the same frequency u cos(otf)- The
desired signal is coming from a direction perpendicular to the normal of the
antenna array plane, which implies that the phase front of the signal is parallel
to the antenna array plane. This means that the received desired signal in the
two antennas will have the same phase.

The undesired jamming signal is coming from another direction, with the
angle a relative to the normal of the antenna array plane. In this case, the
jamming signal will reach the antennas at different times, and there will be a
phase shift between the jamming signal received by antenna A\ compared to
the signal received by A%. It is easily shown that the difference in phase between
the two will be

27z7sin(a0 a>/sin(a)
0 = = (3.36)

X c
where c is the propagation speed of the signal, in this case equal to the speed
of light, and co is the angular frequency. Hence, the compound signals received
by antennas A\ and A2, respectively, can be expressed as

x\ = s cos(cot) + u cos(cot) (3.37)

Adaptive digital systems 91

jamming
I signal

desired
signal

i::-.-.

Figure 3.12 An example simplified narrow-band directive antenna array,
using two antennas and a multiple-input adaptive linear combiner and
quadrature filters

X2 = S COS((Dt) + U C0S(0)t — 0) (3.38)

The signal processing system consists of a four input adaptive linear com­
biner, having the weights w\ through W4. The signal coming from each antenna
is branched, and passed directly to the combiner in one branch and via a quadra­
ture filter (a Hilbert transform) in the other. The quadrature filter is an all-pass
filter, introducing a — | radian phase shift of the signal, but not changing the
amplitude. The quadrature filter will be further discussed in Chapter 5. The
output of the combiner can now be written as

y = W\ (S COS((Ot) + U COS((Ot))

-\-W2ySCOs(o)t — — J + UCOs((Ot — — J 1

+ wi(s cos(cot) + u cos(cot — 0))

+ W4(sCOs(cot — —J +UCOs((Dt - (j) - —J J

(3.39)

Using the fact that cos(/? - (n/2)) = sin(^) and rearranging the terms we
obtain

y = s((w\ + w?) cos(ct>0 + (H>2 + W4) sin(cot)) + u(w\ cos(cot)

+ W3 cos(cot — 0) + W2 $m(o)t) + W4 sm{oot — 0)) (3.40)

Now, the objective is to cancel the jamming signal w, i.e. creating a
notch in the directivity pattern of the antenna array in the direction of

92 Digital Signal Processing and Applications

the jammer. Hence, we want the jamming signal term of equation (3.40) to be
zero, i.e.

u(w\ cos(cot) + M>3 cos(cot - 0) + H>2 sm(a)t) + W4 sin (cot — 0)) == 0

(3.41)

Using the well-known trigonometric relations: cos(/3 — y)= cos(/3) cos(y) +
sin(#) sin(y) and s i n (^ - y) = sin (ft) cos(y) - cos(^) sin(y), equation (3.41)
can be rewritten as

u(w\ + w>3 cos(0) — W4 sin(0)) cos(cot)

+ u(w2 + W3 sin(0) + W4 cos(0)) sin(&tf) = 0 (3.42)

In this case, solutions, i.e. the optimum weights W*, can be found by
inspection. There are many possible solutions

w\ = —w>3 cos(0) + W4 sin(0) (3.43a)

W2 = — W3 sin(0) — W4 cos(0) (3.43b)

We choose a solution that is simple from a practical point of view, by setting

w\ = 1 and w| = 0

Hence, two weights and one quadrature filter can be omitted from the structure
shown in Figure 3.12. Antenna A \ is simply connected directly to the summing
point and the hardware (software) that constitutes the weights w\ and W2 and
the upper quadrature filter can be removed.

Using equations (3.43a) and (3.43b) the components of one optimum weight
vector W* can be calculated

w\ = 1

w| = 0

M>3 = —COS(0)

W4 = sin(0)

Inserting W* in equation (3.40) the output will be

y = s((l — cos(0)) cos(cot) + sin(0) sm(cot))

= s(cos(cot) - cos(cot + 0)) (3.44)

The result is not surprising. The jamming signal is canceled and the output
is a sum of two components, the original signal received by antenna A\ and
a phase-shifted version of the signal received at antenna A2. As expected, the
phase shift is exactly the shift needed to cancel the jamming signal.

Now, in this case it was quite easy to find a solution analytically. In a more
complex system, having, for instance, 30 or even more antennas and a number
of interfering, jamming signals coming from different directions, there is no
guarantee that an analytical solution can be found. In such a case, an adaptive
system can iteratively find an optimum solution in the mean square sense, using,

Adaptive digital systems 93

for instance, some kind of LMS-based adaptation algorithm. Further, if the
signal sources are moving, an adaptive system would be required.

Working with wide-band signals, the input circuits of the linear combiner may
consist of not only quadrature filters, but more elaborate filters, e.g. adaptive
FIR filters.

In this chapter only a few applications of adaptive digital processing systems
have been discussed. There are numerous areas (Widrow and Stearns, 1985), for
instance in process identification, modeling and control theory, where adaptive
processing is successfully utilized.

Summary In this chapter the following main topics have been addressed:

• The structure of a generic closed-loop adaptive system
• Basic processor structures, the linear combiner and the FIR filter
• The theory behind performance functions
• Different iterative methods of finding the optimum weights: steepest descent,

Newton and LMS
• Some applications: adaptive interference canceling, the equalizer and

adaptive beamforming.

Review questions R3-1 Draw a block diagram of a generic closed-loop adaptive system showing
signals and function blocks. Explain the function briefly.

R3-2 Draw the block diagram of a linear combiner and explain the associated
equations.

R3-3 What is the performance function and what is it used for?
R3-4 If you find the cross-correlation vector P in a proposed adaptive filter to

be zero, what is the problem?
R3-5 Three adaptation algorithms are discussed in this chapter: steepest

descent, Newton and LMS. What path does the weight vector travel
towards optimum when using the different algorithms?

R3-6 What are the pros and cons of LMS?
R3-7 What is an equalizer good for?
R3-8 Why is the error signal uncorrelated to the input signals when the

adaptation is completed and the Wiener vector is found?

Solved problems P3-1 Assume we are designing an adaptive interference canceling system as
in Figure 3.7. The interference component is «o£ = sin(jr(£/7)) and the
reference noise n\k = cos(7t(k/7)). The transfer function of the adaptive
filter is H(z) = w>o + w\z~l. Find an expression for the MSE performance
surface § as a function of the filter weights.

P3-2 Formulate the LMS algorithm for the system in P3-1 as two separate
functions showing how to iterate the weights.

P3-3 Using the LMS algorithm and the adaptive interference canceling system
in P3-1 above, write a MATLAB™ program to simulate the adaptive
filter and to plotj^, the output of the interference canceling system ££,
the weights wok and wu and the MSE learning curve £ as a function of
the time index k. Use /x = 0.05 and 0 initial conditions for the weights.

P3-4 For the system in P3-1, calculate the Wiener-vector solution for the filter
weights. Compare to the results obtained in P3-3 above.

4 Non-linear applications

Background There are an infinite number of non-linear signal processing applications. In this
chapter, a few examples, such as the median filter, artificial neural networks
(ANN) and fuzzy logic will be discussed. Some of these examples are devices
or algorithms that are quite easy to implement using digital signal processing
techniques, but could be very difficult or almost impossible to build in practice
using classical "analog" methods.

Objectives In this chapter we will discuss:

• The median filter and threshold decomposition
• Feedforward neural networks
• Training algorithms for neural networks
• Feedback neural networks and simulated annealing
• Fuzzy control systems.

4.1 The median filter 4.1.1 Basics

A median filter is a non-linear filter used for signal smoothing. It is particularly
good for removing impulsive type noise from a signal. There are a number of
variations of this filter, and a two-dimensional variant is often used in digital
image processing systems to remove noise and speckles from images. The
non-linear function of the median filter can be expressed as

y{ri) = med[x(n - &), x(n - k + 1), . . . ,x(n), .

x(n + k- 1), x(n + k)] (4.1)

where y(ri) is the output and x(n) is the input signals. The filter "collects" a
window containing N — 2k + 1 samples of the input signal and then performs
the median operator on this set of samples. Taking the median means, sort the
samples by magnitude and then select the mid-value sample (the median). For
this reason, N is commonly an odd number. If for some reason an even number
of samples must be used in the window, the median is defined as shown below.
Assuming the samples are sorted in such a way that x\ is the smallest and *2£+i
the largest value

med[jci,jC2,.. . ,*JV] =
**+i for N = 2k+l

\{xk + **+i) for N = 2k
(4.2)

96 Digital Signal Processing and Applications

Different methods have been proposed to analyze and characterize median fil­
ters. The technique of root signal analysis (Mitra and Kaiser, 1993) deals with
signals that are invariant to median filtering and defines the "passband" for
median filters. A root signal of a median filter of length TV = 2k + 1 is a sig­
nal that passes through the filter unaltered; this signal satisfies the following
equation

x(n) = med[x(n - k), x(n - k + 1) , . . . ,

x(n), ...,x(n + k-l),x(n + k)] (4.3)

The median filter itself is simple, and in the standard form there is only one
design parameter, namely the filter length N = 2k + 1. There are some terms
used which pertain to root signals (Gallagher Jr. and Wise, 1981).

A constant neighborhood is a region of at least k + 1 consecutive, identically
valued points.

An edge is a monotonically rising or falling set of points surrounded on both
sides by constant neighborhoods.

An impulse is a set of at least one but less than k + 1 points whose values
are different from the surrounding regions and whose surrounding regions are
identically valued constant neighborhoods.

So, in essence, a root signal is a signal consisting of only constant neigh­
borhoods and edges. This definition implies that a signal which is a root signal
to a median filter of length N is also a root signal of any median filter whose
length is less than N.

It is also interesting to note that a median filter preserves edges, both positive
and negative, provided they are separated by a constant neighborhood. The
longer the filter length, the farther apart the edges have to be, but the actual
magnitude of the slopes is irrelevant. This means that a median filter filters out
impulses and oscillations, but preserves edges. This will be demonstrated below.

4.1.2 Threshold decomposition

Analyzing combinations of linear filters by using the principle of superposition
is in many cases easier than analyzing combinations of non-linear devices like
the median filter. However, by using a method called threshold decomposition,
we divide the analysis problem of the median filter into smaller parts.

Threshold decomposition of an integer M-valued signal x(n), where
0<x(n)<M means decomposing it into M— 1 binary signals xl(n),
x2(n\...,xM-\n)

f 1 if x(n) > m ,A ^

* » = | o else < 4 4)

Note! The upper index is only an index, and does not imply "raised to". Our
original M-valued signal can easily be reconstructed from the binary signal by
adding them together

M-\

x(n) = Y, xm(") (4-5)
m=\

Non-linear applications 97

Now, a very interesting property of a median filter (Fitch et al., 1984) is that
instead of filtering the original M-valued signal, we can decompose it into M — 1
"channels" (equation (4.4)), each containing a binary median filter. Then we
can add the outputs of all the filters (equation (4.5)) to obtain an M-valued
output signal (see Figure 4.1).

The threshold decomposition method is not only good for analyzing purposes,
but it is also of great interest for implementing median filters. A binary median
filter is easy to implement, since the median operation can be replaced by a
simple vote of majority. If there are more "ones" than "zeros", the filter output
should be "one". This can be implemented in many different ways. For example,
a binary median filter of length N = 3 can be implemented using simple Boolean
functions

y(n) = x(n - 1) H x(n) U x(n - 1) 0 x(n + 1) U x(n) 0 x(n + 1) (4.6)

where x(n) and y(n) are binary variables and the Boolean operations D is AND
and U is OR. For large filter lengths, this method may result in complex Boolean
calculations, and a simple counter can be used as an alternative. The pseudo­
code below shows one implementation example:

binmed: coun te r := 0
for i : = l t o N do

if x[i] then counter++
else counter--

if counter>0 then y[n]:=l
else y [n] :=0

Now, one may argue that if there are a large number of thresholds M, there are
going to be a large number of binary filters as well. This is of course true, but
if the filter is implemented as software for a digital signal processor (DSP), the

..0 122 02 0.. three-valued
median filter

...0 1222 00...

c
.2

o
Q.

• E -
o

. o
•o

.011101 0.. binary
median filter

...0 1 11100..

..0 0 1 1010... binary
median filter

...0 0 1 1100..

Figure 4.1 Median filtering of a three-valued signal by threshold
decomposition, N = 3

98 Digital Signal Processing and Applications

same piece of computer code can be reused in all binary filters (as a function or
subroutine). Hence, the problem deals with the processing speed. Depending
both on the kind of signals being filtered and the features of the output signal
of primary interest, we may not need to process all thresholds or/and non-
equidistant thresholds may be used.

The technique of threshold decomposition and using binary, Boolean filters
has led to a new class of filters, the so-called stacked filters.

4.1.3 Performance

If a median filter is compared to a conventional linear mean filter, implemented
as a finite impulse response (FIR) filter having constant tap weights (moving
average, MA), the virtues of the median filter (running median) become appar­
ent. Consider the following example, where we compare the output of a moving
average filter of length N = 9, and a median filter of the same length. The mean
filter with constant weights (a linear smoothing filter) can be expressed as

y\(n) = J2gx(n + i-5) (4-7a)
i=l

and the median filter (a non-linear smoothing filter)

y2(n) = mQd[x(n - 4) , . . . ,x(n),... 9x(n + 4)] (4.7b)

Assume that the input signal is a square wave signal that is to be used for
synchronization purposes, i.e. the edges of the signal are of primary interest,
rather than the absolute level. Unfortunately, the signal is distorted by additive
Gaussian noise, and impulsive type noise transients, typically generated by arcs
and other abrupt discharge phenomena (see Figure 4.2).

As can be seen from Figure 4.2, when comparing the outputs of the two
filters, the median filter performs quite well preserving the edges of the signal
but suppressing the noise transients. The standard linear mean filter, however,
suffers from two basic problems. First, when a quite large transient occurs in
the filtering window, it will affect the output as long as it is in the averaging
window. This means that a narrow but strong peak will be "smeared" out and
basically create a new pulse that can be mistaken for a valid square wave signal.
Due to the long time constant of the linear FIR filter, the edges of the desired
signal will also be degraded. This may be a significant problem if timing is
crucial, e.g. when the signal is used for synchronization purposes. Using a
hard limiter-type device to "sharpen up" the edges again is of course possible.
However, the slope of the edges does not only depend on the response time of
the mean filter, but also on the actual (varying) amplitude of the input signal.
This will again result in uncertainty of the true timing.

The uncertainty of the edges in the median filter case is mainly due to the
additive noise, which will be suppressed by the filter. The signal form is quite
similar to the input signal with the addition of noise. For a square wave without
noise, the median filter will present a "perfect" edge.

Non-linear applications 99

input signal x{ri) square wave with
additive noise and impulsive noise

*v /ww transients

5
4
3
2 +
1
0

- 1
-2}

(b)-3±

/ T K - / T N ^ , ^ < ~ 7 N
output signal y\(ri) from linear mean
filter, transients and edges are
"smeared" out

5
4
3 +
2
1 \
0

-1
-2

(C)~3

J_ :u output signal ^ W f rom non-linear
median filter

Figure 4.2 (a) Input signal filtered by (b) linear running average filter and
(c) non-linear running median filter, filter length N = 9m both cases

4.1.4 Applications

If the median filter is implemented as software on a digital computer, any
standard sorting algorithm like "bubblesort" or "quick sort", etc. (Wirth, 1976)
can be used to sort the values (if a stacked filter approach is not taken). When
calculating the expected sorting time, it should be noted that we do not need
to sort all the values in the filter window of the median filter. We only need to
continue sorting until we have found the mid-valued sample.

The use of median filters was first suggested for smoothing statistical data.
This filter type has, however, found most of its applications in the area of
digital image processing. An edge preserving filter like the median filter can
remove noise and speckles without blurring the picture. Removing artifacts from
imperfect data acquisition, for instance horizontal stripes sometimes produced
by optical scanners, is done successfully using median filters. Median filters
are also used in radiographic systems in many commercial tomographic scan
systems and for processing electroencephalogram (EEG) signals and blood
pressure recordings. This type of filter is also likely to be found in commercial
digital television sets in the future because of the very good cost-to-performance
ratio.

100 Digital Signal Processing and Applications

4.2 Artificial neural 4.2.1 Background
networks

"Neural networks" is a somewhat ambiguous term for a large class of mas­
sively parallel computing models. The terminology in this area is quite confused
in that scientific well-defined terms are sometimes mixed with trademarks
and sales bull. A few examples are: "connectionist's net", "artificial neural
systems (ANS)", "parallel distributed systems (PDS)", "dynamical functional
systems", "neuromorphic systems", "adaptive associative networks", "neuron
computers", etc.

4.2.2 The models

In general, the models consist of a large number of typically non-linear com­
puting nodes, interconnected with each other via an even larger number of
adaptive links (weights). Using more or less crude models, the underlying idea
is to mimic the function of neurons and nerves in a biological brain.

Studying neural networks may have two major purposes: either we are inter­
ested in modeling the behavior of biological nerve systems, or we want to
find smart algorithms to build computing devices for technical use. There are
many interesting texts dealing with neural networks from the point of percep­
tion, cognition and psychology (Hinton and Anderson, 1981; McClelland and
Rumelhart, 1986; Grossberg, 1987a, b; Rumelhart and McClelland, 1987). In
this book, however, only the "technical" use of neural network models will be
treated, hence the term "artificial neural networks (ANN)" will be used from
here on.

"Computers" that are built using artificial neural network models have many
nice features:

• The "programming" can set the weights to appropriate values. This can
be done adaptively by "training" (in a similar way to teaching humans).
No procedural programming language is needed. The system will learn by
examples.

• The system will be able to generalize. If an earlier unknown condition occurs,
the system will respond in the most sensible way based on earlier knowledge.
A "conventional" computer would simply "hang" or exhibit some irrelevant
action in the same situation.

• The system can handle incomplete input data and "soft" data. A conventional
computer is mainly a number cruncher, requiring well-defined input figures.

• The system is massively parallel and can easily be implemented on parallel
hardware, thus obtaining high processing capacity.

• The system will contain a certain amount of redundancy. If parts of the system
are damaged, the system may still work, but with degraded performance
("graceful descent"). A 1-bit error in a conventional computer will in many
cases "crash".

Systems of the type outlined above have been built for many different pur­
poses and in many different sizes during the past 50 years. Some examples are
systems for classification, pattern-recognition, content addressable memories
(CAM), adaptive control, forecasting, optimization and signal processing. Since
appropriate hardware is still not available, most of the systems have been imple­
mented in software on conventional sequential computers. This unfortunately

Non-linear applications 101

implies that the true potential of the inherently, parallel artificial neural network
algorithms has not been very well exploited. The systems built so far have been
rather slow and small, typically of the size of 104-106 nodes having 10x-102

links each. Taking into account that the human brain has some 1010—1011 nodes
with 103-106 links each, it is easy to realize that the artificial systems of today
are indeed small. In terms of complexity, they are comparable to the brain
of a fly.

4.2.3 Some historical notes

The history of artificial neural networks can be traced early in twentieth cen­
tury history. The first formal model was published by W.S. McCulloch and W.
Pitts in 1943. A simple node type was used and the network structures were
very small. However, it was possible to show that the network could actually
perform meaningful computations. The problem was finding a good way of
"training" (i.e. "adapting" or "programming") the network. In 1949, D. Hebb
published The Organization of Behavior, where he presented an early version
of a correlation-based algorithm to train networks. This algorithm later came
to be known as Hebb's rule. In the original paper, the algorithm was not well
analyzed or proved, so it came to be regarded as an unproved hypothesis until
1951. In the same year, M. Minsky and D. Edmonds built a "learning machine",
consisting of 300 electron tubes and miscellaneous surplus equipment from old
bombers, which illustrated a practical example.

It is worth noting that the artificial neural network ideas are as old as the
digital computer (e.g. electronic numerical integrator and computer (ENIAC)
in 1944). The digital computer was however developed faster, mainly because
it was easier to implement and analyze.

In the late 1950s and early 1960s, B. Widrow and M.E. Hoff introduced a new
training algorithm called the delta rule or the Widrow-Hoff algorithm. This
algorithm is related to the least mean square (LMS) algorithm used in adaptive
digital filters. Widrow also contributed a new network node type called the
adaptive linear neuron (ADALINE) (Widrow and Lehr, 1990). At about the
same time, F. Rosenblatt worked extensively with a family of artificial neural
networks called perceptrons. Rosenblatt was one of the first researchers to
simulate artificial neural networks on conventional digital computers instead
of building them using analog hardware. He formulated "the perceptron
convergence theorem" and published his Principles of hemodynamics in 1962.

M. Minsky and S.A. Papert also investigated the perceptron, but they were
not as enthusiastic as Rosenblatt. In 1969 they published the book Perceptrons
(Minsky and Papert, 1969), which was a pessimistic and may be somewhat
unfair presentation, focusing on the shortcomings of the perceptrons. Unfortu­
nately, this book had a depressing impact on the entire artificial neural network
research society. Funding drained, and for the next decade only a few researchers
continued working in this area. One of them was S. Grossberg, working with
"competitive learning". In general, however, not very much happened in the
area of artificial neural networks during the 1970s. Conventional digital von
Neumann-based computers and symbol-oriented artificial intelligence (AI)
research dominated.

In the beginning of the 1980s, a renaissance took place. The artificial neu­
ral network was "reinvented" and a number of new and old research groups

102 Digital Signal Processing and Applications

started working on the problems again; this time armed with powerful digital
computers. In 1980, "feature maps" was presented by T. Kohonen (Finland)
and in 1982, J. Hopfield published a couple of papers on his Hopfield Net. Per­
haps too well marketed, this network was able to find solutions to some famous
non-polynomial (NP)-complete optimization problems. In 1983, S. Kirkpatrick
et al. introduced "simulated annealing", a way of increasing the chances to
find a global optimum when using artificial neural networks in optimization
applications.

In 1984, P. Smolensky presented "harmony theory", a network using prob­
abilistic node functions. In the same year, K. Fukushima demonstrated his
"neocognitron", a network able to identify complex handwritten characters,
e.g. Chinese symbols.

The network training method "back-propagation" had been around in
different versions since the late 1960s, but was further pursued by D. Rumelhart
et al. in 1985. This year, the "Boltzmann machine", a probabilistic type
network, was also presented by G.E. Hinton and T.J. Sejnowski.

In the following years, many new variants of artificial neural network sys­
tems and new areas of application occurred. Today, the area of artificial neural
networks, an extremely interdisciplinary technology, is used for instance in
(Lippmann, 1987; Chichocki and Unbehauen, 1993) signal processing, opti­
mization, identification, estimation, prediction, control, robotics, databases,
medical diagnostics, biological classification (e.g. blood and genes), chemistry
and economy. However, there are not very many "new" ideas presented today,
rather extensions and enhancements of old theories. Unfortunately, we still lack
the ideal hardware. Extensive work in the area of application specific integrated
circuit (ASIC) is in progress, but there are some basic problems hard to over­
come when trying to build larger networks. Many of these problems have to
do with the large number of weights (links). For example, how should all the
weights be stored and loaded into a chip? How to find the settings, in other words,
how to perform the training? How should these examples be chosen since a large
number of weights will require an even larger number of training examples?

4.2.4 Feedforward networks

The class of feedforward networks is characterized by having separate inputs
and outputs and no internal feedback signal paths. Hence, there are no stability
problems. The nodes of the network are often arranged in one or more discrete
layers and are commonly easy to implement. If the nodes do not possess any
dynamics like integration or differentiation, the entire network mainly performs
a non-linear mapping from one vector space to another. After the training of the
net is completed, meaning that the weights are determined, no iteration process
is needed. A given input vector results in an output vector in a one-step process.

4.2.4.1 Nodes

The nodey in a feedforward artificial neural network has a basic node function
of the type

Non-linear applications 103

where Xj is the output ofnodey and cpj is the bias of nodey. The N inputs to node
j are denoted xt where / = 1,2, ...,N and the weights (links) are Wy from input
i to node./. For pure feedforward networks wu = 0. The function/() is the acti­
vation function sometimes also called the "squashing function". This function
can be chosen in a variety of ways, often depending on the ease of implementa­
tion. The function should, however, be monotonically non-decreasing to avoid
unambiguous behavior. Some training methods will also require the activation
function to be differentiable. The activation function is commonly a non-linear
function, since a linear function will result in a trivial network. Some examples
of common activation functions are as follows:

• Hardlimiter

{ a x > 0
A " n (4 9)

b x < 0
where a and b are constants. If a = 1 and b = —l, equation (4.9) turns into
the sign function.

• Softlimiter

x > a

b<x<a (4.10)

x < b

The function is linear in the range a- • -b, where a and b are constants. The
function saturates upwards at a and downwards at b.

• Sigmoid ("logistic function")

In this expression, the parameter T is referred to as the "computational
temperature". For small temperatures, the function "freezes" and the shape
of equation (4.11) approaches the shape of a hard limiter as equation (4.9).
Sometimes the function/(x) = tanh(x/r) or similar is also used.

Finally, the output function g() may be an integration or summation or alike
if the node is supposed to have some kind of memory. In most feedforward
networks, however, the nodes are without memory, hence a common output
function is

g(x)=x (4.12)

4.2.4.2 Network topology

When dealing with networks consisting of a number of nodes N9 matrix algebra
seems to be handy in general. All weights Wy in a network can, for instance,

/M =
a

x

b

104 Digital Signal Processing and Applications

be collected into a weight matrix W (N x N), and all signals into a vector
X (N x 1). Theyth column vector W7 of matrix W hence represents the weights
of nodey. Now, it is straightforward to see that a node basically performs a non­
linear scalar product between the corresponding weight vector and the signal
vector (assuming output function as in equation (4.12))

Xj=f(XTWj + <pj) (4.13)

Using a weight matrix in this way allows arbitrary couplings between all nodes
in the network. Unfortunately, the size of the matrix grows quickly as the number
of elements increases as N2. When dealing with feedforward-type networks,
this problem is counteracted by building the network in layers, thereby reducing
the number of allowed couplings. A layered network is commonly divided into
three (or more) layers denoted as the input layer, the hidden layer(s) and the
output layer. Figure 4.3 shows a simple three-layer feedforward network. In this
structure, the input signals (input vector) enter the network at the input layer.
The signals are then only allowed to proceed in one direction to the hidden layer
and then finally to the output layer, where the signals (output vector) exit the
network. In this way, the weight matrix can be divided into three considerably
smaller ones, since the nodes in each layer only need to have access to a limited
number of the signal components in the total signal vector X. Questions arise
with regards to the number of layers and the number of nodes in each of these
layers that should be used. While the number of nodes per layer is hard to
determine, the number of layers can be calculated with the following method.

Using a layered structure, impose some restrictions on the possible mappings
from the input vector space to the output vector space. Consider the following
example. Assume that we have a two-dimensional input vector and require a
scalar output. We use two signal levels " 1 " and "0". The output should be " 1 "
if one of the two input vector components is " 1 " . The output should be "0"

input hidden output
layer layer layer

Figure 4.3 A simple three-layer feedforward network

Non-linear applications 105

otherwise. This is a basic exclusive OR function (XOR or modulo 2 addition
or "parity function"). The task of the artificial neural network is to divide the
two-dimensional input vector space into two decision regions. Depending on
in which decision region the input vector is located, a " 1 " or a "0" should be
presented at the output.

Starting out with the simplest possible one-layer network, consisting of one
node with a hard limiter-type activation function, we can express the input-
output function as

/ A \ f l Wi3*l + W23X2 + (ft > 0
* 3 = / 2 > , 3 * l + * 3 = n ^ ^ n (4-14)

where we assume that W33 = 0 and that the hard limiter has the function

f 1 x>0

/(*)= L " (4-15)
I 0 x < 0

Table 4.1 7htf/i faWe The desired response is shown in the truth table (see Table 4.1).
for XOR function Now, the task is to find the weights and the bias needed to implement the

desired function. It is possible to implement an AND or OR function, but an
XOR function cannot be achieved. The reason is that a node of this type is only
able to divide the input vector space with a (hyper)plane. In our example (from
equation (4.14)) the borderline is

X2 = xi (4.16)

X\

0
0
1
1

X2

0
1
0
1

*3

0
1
1
0

In other words, we cannot achieve the required shape of the decision regions,
since the XOR function requires two disjunct areas like A and A (see Figure 4.4).
Since many more complex decision tasks can be traced back to the XOR func­
tion, this function has a fundamental importance in computation. The basic
perceptron presented by Rosenblatt was mainly a one-layer network of the type
presented in the example above. The main criticism presented in the book Per-
ceptrons by Minsky and Papert (Minsky and Papert, 1969) was concerned with
the inability of the perceptron to solve the basic XOR problem. This was a bit
unfair, since the perceptron can easily be modified to handle the XOR problem
too. This can be done by adding a second layer of nodes to our system. With
respect to the example above it means adding another two nodes, and obtaining
a two-layer artificial neural network. The network contains two nodes in the
input layer, no hidden layers and one node in the output layer. The nodes are
of the same simple type as in the example above. Now, each of the two nodes
in the input layer can divide the input vector space with hyperplanes. In our
two-dimensional example, this is two straight lines as in equation (4.16). If one
node has its decision line to the left of the two desired areas A (see Figure 4.4),
the output of the node will be " 1 " when an input vector corresponding to A is
present. The other node has its line to the right of the desired decision region
and gives a " 1 " output signal for A. The desired response can now be obtained
by "ANDing" the output of the two nodes. AND and OR functions can easily
be achieved using a single node, so the node in the output layer of our example
network will do the "ANDing" of the outputs from the nodes in the input layer.
Hence, the XOR problem is solved.

106 Digital Signal Processing and Applications

XOR problem most general shapes

single layer
half-plane bounded
by hyperplane

two layers
convex regions,
"ANDing"
hyperplanes

Figure 4.4 Possible decision region shapes for different numbers of layers

Figure 4.5 shows a proposed solution to the XOR problem. Since the input
signals have the indices 1 and 2, respectively, the nodes are numbered as 3 and 4
in the input layer and 5 in the output layer. The weights and biases of the nodes
may be chosen as

node 3: W13 = 1 W23 = 1 ^3 = —0.5
node 4: wu = — 1 W24 = — 1 (P4 = 1.5
node 5: W35 = 1 W45 = 1 cps = —1.5

Note! There are many possible solutions, try it yourself.
Going back to Figure 4.4 again, we can now draw some general conclusions

about the possible shapes of decision regions as a function of the number of lay­
ers. A one-layer network can only split the input vector space with hyperplanes.
Using a second layer, having the outputs of the first layer as inputs, a number of
hyperplanes can be "ANDed" together and convex decision regions can now be
formed. The number of nodes in each layer determines the number and com­
plexity of the regions. Finally, incorporating a third layer, a number of convex
regions, created by the preceding second layer, can now be "ORed" together
and arbitrary complex decision regions can be obtained. So, from theoretical
point of view, there is no need for more than three layers in a layered feedfor­
ward artificial neural network. When implementing these nets, however, more

three layers

arbitrary regions,
"ORing" two-layer
regions

Non-linear applications 107

output
layer

Figure 4.5 Example of a two-layer feedforward ANN ofperceptron type,
capable of solving the XOR problem

layers may sometimes be used. This may facilitate reuse of some intermediate
computing results and reduce the total number of nodes in the network and/or
simplify the training, i.e. the process of determining the weights and biases in
the nodes.

Returning to the XOR example, there is another way of solving the problem
. using only one perceptron-type node. The underlying principle is the way in
which the input signals or "features" are chosen. This is a very important, often
forgotten topic in many cases. Choosing "bad" input signals may make it impos­
sible even for an advanced artificial neural network to perform a simple task,
while choosing "smart" input signals may solve complex problems using fairly
simple networks. If we put a non-linear "preprocessor" in front of the inputs of
our original single-layer network, creating for instance the two input signals

y\ = x\ + x2

yi = (x\ + x2}
2 (4.17)

the XOR problem can now be solved using the original single-perceptron node
(index 3) with the weights and bias

node 3: w\?> = 2 W23 = — 1 (P3 = —0.5

Note that 72 represents a circular area, i.e. a convex region.
The importance of a wise selection of input signals or features for a given

problem and network cannot be overemphasized.

4.2.4.3 Training and adaptation

Training or adaptation is used to determine the weights and biases of an artificial
neural network, i.e. to determine the function of the network. By means of a
number of algorithms, this can be done in a number of ways. Before going into
a more detailed discussion, some general problems should be addressed.

Training by examples is of course a nice way of "programming" the network,
however, the more weights and biases that need to be determined, the more input
data examples will be needed (and the more training time will be required).
Adaptive systems like this "eat" input data. Once used as an example, the data
is normally not good for any further training.

Secondly, finding a significant subset of all possible input data suitable
for training is not easy in the general case. Using a "bad" training set, the

108 Digital Signal Processing and Applications

network may "learn" the wrong mappings and poor performance may result
(like teenagers?). Normally, training is performed using a training set of input
data, while performance testing uses another set of input data. If the same input
data set is used for both testing and training, we can only be sure that the net­
work has learnt how to handle the known data set properly. If this is the primary
task of the system, it would probably be better to use a look-up table (LUT)
algorithm than an artificial neural network.

One of the main advantages of an artificial neural network is that it is able
to generalize, i.e. if earlier unknown input data is presented, the network can
still give a "reasonable" answer. A "conventional" computing system would in
many cases present a useless error message in the same situation. The network
can in this respect be viewed as a huge lookup table, where only a fraction of all
the possible entries have been initialized (by the training data set). The network
itself will then "interpolate" all the non-initialized table entries. Hence, a proper
choice of training data is crucial to achieve the desired function.

Training methods can be divided into two groups, unsupervised and super­
vised. In both cases, the network being trained is presented with training data.
In the unsupervised (Rumelhart and McClelland, 1987) case, the network itself
is allowed to determine a proper output. The rule for this is built into the net­
work. In many cases, this makes the network behavior hard to predict. This type
of network is known as "clustering" devices. The problem with unsupervised
learning is that the result of the training is somewhat uncertain. Sometimes the
network may come up with training results that are almost incomprehensible.
Another problem is that the order in which the training data is presented may
affect the final training result.

In the case of supervised training, not only is the training data presented
to the network, but also the corresponding desired output. There are many
different supervised training algorithms around, but most of them stem from a
few classical ones, which will be presented below. The bias term <p of a node can
be treated as a weight connected to an input signal with a constant value of 1.

The oldest training algorithm is probably Hebb's rule. This training algo­
rithm can only be used for single-layer networks. There are many extensions to
this rule of how to update the weights, but in its basic form it can be expressed
as the following

Wfj(n + 1) = wtjin) + fjLXi(ri)Xj(ri) (4.18)

where /x is the "learning rate", X(is the output of node /, which is also one of
the inputs to nodey and Xj is the output of node j . The underlying idea of the
Hebbian rule is that if both nodes / andy are "active" (positive output) or "inac­
tive" (negative output) the weight in between them, w,y, should be increased,
otherwise it should be decreased. In a one-layer network, Xj is a component in
the training input data vector and Xj corresponds to the desired output.

This simple rule has two advantages, it is local, i.e. it only needs local
information JC,- and Xj, and it does not require the non-linearity/() of the node
to be differentiable. A drawback is that to obtain good training results, the input
vectors in the training set need to be orthogonal. This is because all the training
input vectors are added to the weight vectors of the active nodes, hence two or
more nodes may obtain almost the same weight vectors if they become "active"
often. Further, the magnitude of the weight vectors may grow very large. This

Non-linear applications 109

will result in "cross-talk" and erroneous outputs. If on the other hand, the input
data vectors are orthogonal, it is very unlikely that two nodes will be active
about equally often and hence obtain similar weight vectors.

The Widrow-Hoff rule or delta rule is closely related to the LMS algorithm
discussed in Chapter 3. This training algorithm can only be used for single-layer
networks.

In this algorithm, an error signal Sj is calculated as (for node j)

ej = dj - Uj = dj-^jT wtjXi - <pj (4.19)

Note that Uj is what comes out of the summation stage in the node and goes
into the activation function/(). The term dj is the desired output signal when
the training data vector consisting ofxi, *2, . . . ,*# is applied. The weights are
then updated using

Wij(n + 1) = Wij(n) + fiXi(n) 8j{n) (4.20)

In this case, the input vectors in the training set do not need to be orthogonal.
The difference between the actual output and the desired output, i.e. the error
signal Ej, is used to control the addition of the input data vector to the weight
vector. This rule is also local and it does not require the non-linearity / () of
the node to be differentiable.

The perceptron learning rule is a variation of the delta rule described above.
This training algorithm can, in its standard form, only be used for single-layer
networks. The idea is to adjust the weights in the network in such a way that
minimizes the total sum of square errors; the total error for the network is

£ = E<£ = !>;-*/) =£Uj-f IS*'"** (4-21)

A simple steepest descent approach is now to take the derivative of the error
with respect to the weight wg. From this, we can tell in which direction to
change this particular weight to reduce the total square error for the network.
This procedure is repeated for all weights, hence we calculate the gradient of
the weight vector on the quadratic error hypersurface. For Wy we obtain

dE _ , s dXj dxj duj

dwij y dwtj J duj dwtj J J

As can be seen, this algorithm requires the activation function/() of the node
to be differentiable. This is the delta rule, but we have now also included the
activation function. The weights are now updated as

Wij(n + 1) = Wij(n) + iixi(n) ej(n)f(uj(n)) (4.23)

where (as before)

UJ = ^wijxi + (Pj (4.24)

110 Digital Signal Processing and Applications

So far, we have only discussed training algorithms for single-layer feedfor­
ward artificial neural networks. Training multi-layer networks is harder, since
in normal cases, we lack desired output signals for all nodes that are not in the
output layer.

For training multi-layer feedforward networks, there is an algorithm called
the generalized perceptron learning rule, sometimes denoted the back-
propagation algorithm. This algorithm is a generalization of the perceptron
learning rule discussed above.

The idea is to start training the output layer. Since we do have access to
desired output values <4, this can be done by using the standard perceptron
learning rule as outlined above. Now, we go backwards in the layer and start
training the first layer preceding the output layer. Here we have to calculate the
errors on the outputs of the hidden nodes by propagating the errors on the output
through the output layer. This is where "back-propagation" becomes useful.

Assume that there are M nodes in the output layer, and that we are to adjust
the weights of node j in the layer just below the output layer. Firstly, the error
on the output of node y will contribute to the errors of all output nodes. Let us
calculate this coupling first by taking the derivative of the total output squared
error E with respect to the output of node7

— - V ^L^t - _? V (d - }dXk dUk

dxj~tudukdxJ~ hi k XkdukdxJ
= -2 J2 (* - Xk)f{uk)wjk (4.25)

keM

When this link between the error on the output and the error of the output of
node j is known, we can find the derivative of the total error with respect to the
weights we are to update in nodey (see also equation (4.22) above)

dE _ dE dxj _ dE dxj duj _ dE

dWfj dxj dwij dxj duj Bwy dxj

= -2f\uj)xi] T ekf(uk)wjk (4.26)
keM

The weights can now be updated using the standard form (see also equation
(4.23) above)

Wij(n + 1) = Wij(ri) + fixi(n)ff(uj(n))]jT sk(n)f(uk(n))wjk (A21)
keM

This procedure is repeated for the next layer and so on, until the weights of the
nodes in the input layer have been updated.

4.2.4.4 Applications

Feedforward artificial neural networks are typically used in applications like
pattern recognition (see Chapter 7), pattern restoration and classific­
ation. The "patterns" are the input vectors, where the components are "features"

Non-linear applications 111

relevant in the application. If we are, for instance, dealing with a speech recog­
nition system, e.g. the features can represent signal power in different frequency
bands of a speech signal. The features can also be pixel values in an artificial
neural network-based image processing system for optical character reading
(OCR). Other areas are processing of radar and sonar echo signals, matching
fingerprints, correcting transmission errors in digital communication systems,
classifying blood samples, genes and electrocardiograph (ECG) signals in bio­
logical and medical applications, troubleshooting of electronic systems, etc. In
most cases, the applications belong to some basic system types as detailed below.

Pattern associator: In this system type, the network mainly performs a
mapping from the input vector space to the output vector space. The mechanism
here is to map (or "translate") an input vector to an output vector in a way that the
network has been trained. If the desired mapping is simple and can be expressed
algebraically, no artificial neural network is normally needed. If, on the other
hand, the mapping cannot be easily formulated, and/or only samples of input
and output vectors are available, training an artificial neural network is possible.

Networks of this type have, for instance, been tried for weather forecasting
(Hu, 1963). Since the coupling between temperature, humidity, air pressure,
wind speed and direction in different places affects the weather in a very compli­
cated way, it is easier to train a network than to formulate mathematical relations.

Auto-associator or content addressable memory (CAM): This system type
can be viewed as a special case of the pattern associator above, in the sense
that the input vector is mapped back on itself. The system acts as a content
addressable memory, where the previously trained patterns are stored in the
weights. If an incomplete or distorted version of an earlier known pattern is
presented to the network, it will respond with a restored, error-free pattern.

The human memory works as a content addressable memory. Once we get
some "clues", or parts of the requested set of information, the rest of this
information will be recalled by associations. Networks of this type have been
tried for database search and for error correction of distorted digital signals in
telecommunications systems.

Classifier, identifiers: This system type can also be regarded as a special
case of the pattern associator above. In this situation, our aim is to categorize
the input pattern and to identify to which class of patterns it belongs. This type
of network typically has few outputs and in some cases also a special type of
output layer having "lateral feedback" (treated below) that assures that only one
output (class) at a time can be active.

Examples of this type of networks are systems for classifying ECG sig­
nals (Specht, 1964), and sonar and radar echo signals. The outputs may be
"healthy/unhealthy", "submarine/no submarine" and so on.

Regularity detectors: This system type can be viewed as a variant of the
classifier above, but in this case there is no a priori set of categories into which
the input patterns are to be classified. The network is trained using unsupervised
training, i.e. the system must develop its own featured representation of the
input patterns. In this way, the system is used to explore statistically salient
features of the population of input patterns. "Competitive learning" (Rumelhart
and McClelland, 1987) is an algorithm well suited for regularity detectors.
Examples of applications in this area are finding significant parameters in a
large set of data or finding good data compression and error-correction coding
schemes.

112 Digital Signal Processing and Applications

4.2.5 Feedback networks

Feedback networks, also known as recurrent networks, have all outputs inter­
nally fed back to the inputs in the general case. Hence, a network of this type
commonly does not have dedicated inputs and outputs. Besides the non-linear
activation function, nodes in such a network also have some kind of dynamics
built in, for instance, as in an integrator or accumulator.

The main idea of this class of networks is iteration. The input vector to this
system is applied as initial states of the node outputs and/or as bias values.
After these initial conditions are set, the network is iterated until convergence,
when the components of the output vector can be found on the node outputs.
To achieve convergence and to avoid stability problems, the weights, i.e. the
feedback parameters, have to be chosen carefully. It is very common that the
weights are constant, set a priori in feedback networks, hence this type of
networks is not "trained" in the same way as feedforward-type networks.

Common networks of this type are the Hopfield net, The Boltzmann
machine and Kohonen's feature maps.

4.2.5.1 Nodes

The node functions in a feedback network have many similarities to the node
functions used in feedforward networks. An important difference, however,
is that in the feedback network case, the node functions include dynamics or
memory, e.g. an integrator. This is necessary, as the network will be iterated to
obtain the final output. (In the feedforward case, obtaining the output is a one-
step process.) A common node model used by, e.g. Hopfield, has the differential
equation

-T7 = X I WiJXi + VJ ~ UJ = Yl wvf^ + <PJ ~ UJ (4-28)
i i

where / () is the activation function. As can be seen, we have taken the node
function (4.8) and inserted an integrator in between the summation point and
the non-linear activation function. Hence, the feedback network is but a system
of N non-linear differential equations, which can be expressed in a compact
matrix form

— = WTX + 0 - U = WTF(U) + 0 - U (4.29)
At

where

U = [U\ U2 • • • UN]

F(U) = [Am) f(u2) ••• f(uN)]T = x

0 = [<p\ <P2 • • • <PN]T

Now, it is straightforward to realize that when iterating the network it will
converge to a stable state when equation (4.29) is equal to the zero vector

Non-linear applications 113

If we assume that the weight matrix W is symmetric, i.e. wg = wjt and that we
integrate equation (4.29), we can define the computational "energy" function
for the network

1 N rxJ
H(X) = —XTWTX - X T 0 + Y / f~l(x)dx (4.30)

2 UJo

Now, if the activation function is a sigmoid equation (4.11), the inverse function
will be

u =f~\x) = -Tin (- - 1 J (4.31)

If we, like Hopfield, use the hard limiter activation function, this corresponds
to a sigmoid with a low computational temperature T, implying that the third
term of equation (4.30) will be small. Hence, it can be neglected and equation
(4.30) can be simplified to

H(X) = - -XTWTX - X T 0 (4.32)

Hence, when the network settles to a stable state (equation (4.30)) all derivatives,
i.e. the gradient of the energy function (4.32), is zero. This means that the stable
states of the network and the output patterns correspond to the local minimum of
the energy function. To "program" the network means formulating the problem
to be solved by the network in terms of an energy function of the form (4.32).
When this energy function has been defined, it is straightforward to identify the
weights and biases of the nodes in the feedback artificial neural network.

A more general way to design a feedback network is of course to start by
defining an energy function and obtaining the node functions by taking the
derivatives of the energy function. This method is, in the general case, much
harder since node functions may turn out to be complicated and convergence
problems may occur. The energy function must be a Lyapunov (Astrom and
Wittenmark, 1984) type function, i.e. it should be monotonically decreasing in
time. Further, Hopfield has shown that the weight matrix W must be symmet­
ric, in other words Wy = Wjt and have vanishing diagonal elements wu = 0 to
guarantee stability.

4.2.5.2 Network topology

In the general case, all nodes are connected with all other nodes in a feedback
network (see Figure 4.6). There are however some special cases; one such case
is lateral feedback (Lippmann, 1987; Stranneby, 1990). This type of feedback
is commonly used within a layer of a feedforward network. An example is the
MAXNET. This lateral feedback-type network assures that one and only one
output of a layer is active, and that the active node is the one having the largest
magnitude of the input signal of all nodes in the layer. The MAXNET is hence
a device to find the maximum value within all elements in a vector. Quite often,

114 Digital Signal Processing and Applications

>x2

- •JCj

Figure 4.6 Example of a small, general feedback ANN

2i structure like this is used on the output of a classifying feedforward-type
artificial neural network, to guarantee that only one class is selected.

4.2.5.3 Local and global minimum

As was seen in the previous section, when the feedback artificial neural network
is iterated, it will finally settle in one of the minimum points of the energy
function of the type as equation (4.32); which minimum point depends on the
initial state of the network, i.e. the input vector. The network will simply "fall
down" in the "closest" minimum after iteration is started. In some applications
this is a desired property, in others it is not.

If we like the network to find the global minimum, in other words the "best"
solution in some sense, we need to include some extra mechanism to assure that
the iteration is not trapped in the closest local minimum. One network having
such a mechanism is the Boltzmann machine.

In this type of feedback artificial neural network, stochastic node functions
are used. Every node is fed additive zero-mean-independent (uncorrelated)
noise. This noise has the effect of making the node outputs noisy, thus "boiling"
the hypersurface of the energy function. In this way, if the state of the network
happens to "fall down" in a local minimum, there is a certain probability that
it will "jump up" again and fall down in another minimum. The trick is then
gradually to decrease the effect of the noise, making the network finally end in
the "deepest" minimum, i.e. the global one. This can be performed by slowly

Non-linear applications 115

decreasing the "temperature" T in the sigmoid activation function in the network
nodes.

The trick of decreasing the "temperature" or cooling the network until it
"freezes" to a solution is called simulated annealing. The challenge here is
to find the smartest annealing scheme that will bring the network to the global
minimum with a high probability in as short a time as possible. Quite often
networks using simulated annealing converge very slowly.

The term "annealing" is borrowed from crystallography. At high tempera­
tures, the atoms of a metal lose the solid-state phase, and the particles position
themselves randomly according to statistical mechanics. The particles of the
molten metal tend toward the minimum energy state, but the high thermal energy
prevents this. The minimum energy state means a highly ordered state such as a
defect-free crystal lattice. To achieve defect-free crystals, the metal is annealed,
i.e. it is first heated to a temperature above the melting point and then slowly
cooled. The slow cooling is necessary to prevent dislocations and other crystal
lattice disruptions.

4.2.5.4 Applications

Artificial neural networks have traditionally been implemented in two ways,
either by using analog electronic circuits, or as software on traditional digital
computers. In the latter case, which is relevant for DSP applications, we of
course have to use the discrete time equivalents of the continuous-time expres­
sions present in this chapter. In the case of feedforward artificial neural net­
works, the conversion to discrete time is trivial. For feedback networks having
node dynamics, standard numerical methods like Runge-Kutta may be used.

Feedback artificial neural networks are used in content addressable memories
(CAM) and for solving miscellaneous optimization problems.

In CAM, each minimum in the energy function corresponds to a memo­
rized pattern. Hence, in this case, "falling" in the closest local minimum is a
desirable property. Given an incomplete version of a known pattern, the net­
work can accomplish pattern completion. Unfortunately, the packing density
of patterns in a given network is not very impressive. Research is in progress
in an attempt to find better energy functions that are able to harbor more and
"narrow" minimums, but still result in stable networks.

Solving optimization problems is probably the main application of feedback
artificial neural networks. In this case, the energy function is derived from the
objective function of the underlying optimization problem. The global minimum
is of primary interest, hence simulated annealing and similar procedures are
often used. For some hard optimization problems and/or problems with real­
time requirements (e.g. in control systems), a local minimum, i.e. sub-optimum
solution found in a reasonable time, may be satisfactory.

Many classical NP-complete optimization problems, e.g. "The traveling
salesman" (Hopfield and Tanks, 1986) and "The 8-queens problem" (Holmes,
1989), have been solved using feedback artificial neural networks.

It is also possible to solve optimization problems using a feedforward artificial
neural network with an external feedback path. This method has been pro­
posed for transmitter (TX) power and frequency assignment in radio networks
(Stranneby, 1996).

116 Digital Signal Processing and Applications

+1+1-1+1+1

STOP H

START H

SYNCH

TX

-1+1+1+1-1

"u u
+1-1+1-1+1

J W 1

distortion
and noise

i^L^i
neural

network

- • • S T O P

- • • S T A R T

- • • S Y N C H

Figure 4.7 Example of a telecommunications system using PAMpulse
trains and a neural nework-based RX

4.2.6 An example application

4.2.6.1 The problem

Suppose we have an application as in Figure 4.7. The transmitter (TX) is
sending random sequences of the three commands: STOP, START and SYNCH.

These commands are coded as pulse amplitude modulation (PAM) pulse trains
representing five bipolar (±1) symbols as in the figure. Unfortunately, the
transmission conditions are poor, so the pulse trains reaching the receiver (RX)
are weak, distorted and noisy. The task of the neural network-based RX is to
determine which command was most probably transmitted. Since the distor­
tion mechanism changes from time to time, the RX needs to be adaptive, i.e.
it needs to be "trained" at regular intervals to learn how to interpret the noisy
received pulses. The training is accomplished by the TX sending a predeter­
mined, known sequence of commands. This system is of course simplified,
since the main purpose of this example is to demonstrate a neural network
application. Digital transmission systems are covered in Chapter 8.

4.2.6.2 The Hamming net

There are many possible solutions of how to design the receiver in Figure
4.7. In this example, a hybrid type of neural network called a Hamming net
(Lippmann, 1987; Stranneby, 1990) will be used. The input layer is a one-layer,
adaptive feedforward network, while the second layer is a lateral feedback
network having fixed weights (see Figure 4.8). The latter part is sometimes
referred to as the MAXNET

The input pulse train is sampled at five instants of time, corresponding to
the five bipolar symbols. At the transmitting site, these symbols are of course
clean and benign, having only the levels ±1 (see Figure 4.7). At the receiver,
however, almost any pulse amplitudes can be found due to the distortion and
noise introduced in the transmission process. The five sampled input values are
denoted (from left to right) x\, X2, *3, *4, *5 and referred to as the input vector.

The first network layer (left) in Figure 4.8, nodes 6-8, is a feedforward
network performing a cross-correlation operation between the incoming input
vector and the "learnt" prototype vectors (expected pulse trains) corresponding
to the three commands. Hence, the output of node 6, i.e. xe9 is the degree of

Non-linear applications 111

Figure 4.8 Architecture of the Hamming net used in the example

correlation between the input vector and the expected vector for the command
STOP. Node 7, with output x-j corresponds to START, and node 8, output x% to
the SYNCH command. To be able to determine which symbol is being received,
we finally need to find the input node having maximum output. This task is
accomplished in the second layer (right) of the network in Figure 4.8. This
layer is a feedback network, consisting of nodes 9-11. The feedback network
nodes are initialized to the output values of the first layer, and are thereafter
iterated. As the iteration is completed, only one of the nodes 9-11 will have
a non-zero output signal, which will indicate which command was received.
Obviously, node 9, output x$ corresponds to STOP, node 10, X\Q to START and
node 11, x\\ to the SYNCH command. There are, of course, easier ways to find
the maximum output of three outputs, but in this example our purpose is to
demonstrate a feedback network.

4.2.6.3 The feedforward input layer

The input layer consists of nodes as depicted in Figure 4.9, having the node
function (compare to equation (4.8)) as

xj =f(Mj) =ffrwijxi + <i>j\ for y = 6,7,8 (4.33)

118 Digital Signal Processing and Applications

Figure 4.9 An input-layer feedforward node with delta rule adaptation

where the bias is </>j = 0 and the activation function is

x x > 0
0 x < 0

(4.34)

which is basically the soft limiter (equation (4.10)) with b = 0 and a --» oo.
The node is trained using the Widrow-Hoff rule (delta rule) as in equations

(4.19) and (4.20). Inserting equation (4.33) we obtain

Wij(n + 1) = WijQi) + ^Xi(n)6j(n) = Wy(n) + fiXi(n)(dj(n) - uj(n))

= Wij(n) + jK*/(w) I dj(n) - J^ mj(n)xi(n) (4.35)

where dj(n) is the desired output Uj(n) (input to the non-linear activation func­
tion) when the input vector x\(n),X2(n),X3(n),X4(n\xs(n) is presented. In most
cases, the value of the learning rate /x must be determined heuristically. It is easy
to see that this type of training is the same as that taking place in an adaptive
filter using the LMS algorithm (see Chapter 3).

Non-linear applications 119

Figure 4.10 shows a typical training sequence. The figure shows how the
weight values of node 6 converge. In this example, all the weights were initial­
ized to 0.5 ("cold start") and /x was set conservatively to 0.1. As can be seen,
after approximately 20 training runs, the weights are settled. It is possible to
increase /x and achieve a faster training, but since the input vector is subject to
noise, a too fast training may result in poor weights. Often, a longer training
time means less impact of the input signal noise on the final weight values.

When the network is run under "normal" conditions, i.e. not training, the
weights are fixed to the values obtained during the training phase. The weights
are not changed until a new training sequence starts. In most cases, the following
training sequences will be faster since the starting values of the weights are
already quite good.

4.2.6.4 The feedback layer, MAXNET

The output layer consists of nodes 9-11 as shown in Figure 4.11. The nodes
have partly the same node function as in the input layer, but also have a delay
(memory) to achieve a dynamic process when iterating

Xj(m + 1) =flXj(m) + J2wiMm) 1 for J = 9> 1 0 > n (4-36)

where the fixed weights are set to

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0 2 4 6 8 10 12 14 16 18 20
n

Figure 4.10 Weights of node 6 during a training sequence

J''

f

1 1 1 1

W26 ™46

y - ! ! W36 "56

— ^ ^ ^

120 Digital Signal Processing and Applications

and a is an iteration constant, for stability set to a < 1 /M where M is the num­
ber of nodes in the feedback network, in our case equal to 3. Before iteration is
started, the network nodes are initialized to x${Q) = xe,*io(0) = xj,x\\ (0) = x%.
Figure 4.12 shows the iteration of the feedback network. Note that the pro­
cess continues until all outputs but one are "dead" (zero). The "surviving"
output belongs to the node initialized by the largest starting level, i.e. the
largest output of *6, *7, *8- In this simulation a = 0.1 is used for demonstration
purposes.

Simulating the entire network, it can be shown to recognize the correct
pulse trains in most cases, even when considerable random background noise
is present. This example, a non-linear correlation receiver, is probably not

Figure 4.11 An output-layer feedback node with one sample delay

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 2 4 6 8 10 12 14 16 18 20
m

Figure 4.12 Iteration of the MAXNETfeedback network, all outputs (<die'
except for one

1 1 1 1

\
it

\ l l

\xx

\ \ »x

w \ V\
\ x *
\ \ .

L \ \ \
\ ' » ' x -

L \ N *v • \ s
\ N

\ s

1 \ Ns^ll(^)
x9(m)\

1 \ - 1 SJ

— i r • — r - r r1 i

: H

x\o(m) J

• . i i 1 1

Non-linear applications 121

the optimum implementation for the stated problem, but merely meant as
an example. Further ideas on digital transmission systems can be found in
Chapter 8.

4.3 Fuzzy logic 4.3.1 General

A fuzzy logic or fuzzy control (Palm et al, 1996; Passino and Yurkovich, 1998)
system performs a static, non-linear mapping between input and output signals.
It can in some respects be viewed as a special class of feedforward artificial
neural networks. The idea was originally proposed in 1965 by Professor Lofti
Zadeh at the University of California, but has not been used very much until the
past decade. In ordinary logic, only false or true is considered, but in a fuzzy
system we can also deal with intermediate levels, e.g. one statement can be
43% true and another one 89% false.

Another interesting property is that the behavior of a fuzzy system is not
described using algorithms and formulas, but rather as a set of rules that may be
expressed in natural language. Hence, this kind of system is well suited in situa­
tions where no mathematical models can be formulated or when only heuristics
are available. Using this approach, practical experience can be converted into
a systematic, mathematical form, in, for instance, a control system.

A simple fuzzy logic system is shown in Figure 4.13. The fuzzifier uses
membership functions to convert the input signals to a form that the inference
engine can handle. The inference engine works as an "expert", interpreting the
input data and making decisions based on the rules stored in the rule database.
The rule database can be viewed as a set of "If-Then" rules. These rules can
be linguistic descriptions, formulated in a way similar to the knowledge of a
human expert. Finally, the defuzzifier converts the conclusions made by the
inference engine into output signals.

As an example, assume we are to build a smart radar-assisted cruise control
for a car. The input signals to our simplified system are the speed of our car and
the distance to the next car in front of us. (The distance is measured using radar
equipment mounted on the front bumper.) The continuous output control signals
are accelerate and brake. The task of the fuzzy controller is to keep the car at a

fuzzified inputs fuzzy conclusions
(crisp inputs) (fuzzy set) (implied fuzzy set) (crisp outputs)

^
•
V

•

fu
zz

ifi
er

•

•

^
inference
engine

I fuzzy ru

^
t

w

:es

de
fu

zz
ifi

er
 ^

^

rule
database

Figure 4.13 Example of a simple fuzzy logic system

122 Digital Signal Processing and Applications

constant speed, but to avoid crashing into the next car in a traffic jam, Further,
to get a smooth ride, the accelerator and brake should be operated gently.

4.3.2 Membership functions

The outputs of the fuzzifler are called linguistic variables. In the above example,
we could introduce two such variables SPEED and DISTANCE. The linguistic
value of such a variable is described using adjectives like slow, fast, very fast,
etc. The task of a membership function is to interpret the value of the continuous
input signal to degree of membership with respect to a given linguistic value.
The degree of membership can be any number between zero and one, and it
can be regarded as a measure of to what extent the input signal has the property
represented by the linguistic value. It is common to use 3, 5 or 7 linguistic
values for every linguistic variable, hence the same number of membership
functions are required. Figure 4.14 shows the membership functions for our
example given above. Here we have used three linguistic values for SPEED -
slow, medium &n&fast and three values for DISTANCE - close, ok and far.

From the figure it can be seen that the set of membership functions converts
the value of the continuous input signal to degree of membership for every
linguistic value. In this example, the membership functions overlap, so the
SPEED can, for instance, be both medium and fast but with different degrees of
membership. Further, we have chosen to "saturate" the outermost membership
functions; for instance, if the distance goes to infinity or zero it is regarded as
far and close, respectively. There are many possible shapes for a membership
function; the simplest and most common one is a symmetric triangle, which
we have used in our example. Other common shapes are trapezoid, Gciussian or
similar "bell-shaped" functions, peak shapes and skewed triangles. If a purely
rectangular shape is used, the degree of membership can only be one or zero and
nothing in between. In such a case, we are said to have a crisp set representation
rather than a fuzzy set representation.

1.4

1.2

1

0.8

0.6

0.4

0.2

SPEED

-

A«n

\

slow medium

Al2\

fast

/ ^ 1 3

V

1.4

1.2

1

0.8

0.6

0.4

0.2

0

DISTANCE

close

H\ \

)

\ 1

ok

A
AA

y

far

/ t*23

1 .

\ _
50 0 10 20 30 40 50 60 70 80

speed (mph)

Figure 4.14 Input signal membership functions used in the example

100 150 200 250 300

distance (ft)

Non-linear applications 123

4.3.3 Fuzzy rules and inference

The input to the inference engine is the linguistic variables produced by the
membership functions in the fuzzifier (the fuzzy set). The output linguistic
variables of the inference engine are called the conclusions (the implied fuzzy
set). The mapping between the input and output variables is specified in natural
language by rules having the form

If premise Then consequent (4.38)

The rules can be formulated in many forms. Of these forms, two are com­
monly standard, multi-input single-output (MISO) and multi-input multi-output
(MIMO). In this text, we will deal with MISO rules only. (An MIMO rule is
equivalent to a number of MISO rules.) The premise of a rule is in the multi-
input case a "logic" combination of conditions. Two common "logic" operators
are AND and OR. Two simple examples of rules containing three conditions are

If conditioni AND conditio^ AND conditions Then consequent (4.39a)

If conditioni OR conditio^ OR conditions Then consequent (4.39b)

Now, if we had been using Boolean variables (one or zero), the definition of the
operators AND and OR would be obvious. In this case, however, the conditions
are represented by degree of membership, i.e. any real number between zero
and one. Hence, we need an extended definition of the operators. There are dif­
ferent ways to define AND and OR in fuzzy logic systems. The most common
way to define the AND operation between two membership values, /jiy and /x /̂,
is by using the minimum

fiij AND fiu = minf/Xy, fiu] (4.40)

where jiy means the membership value of function y of the linguistic variable
i. For example, 0.5 AND 0.7 = 0.5. The most common way to define the OR
operation is by using the maximum

fiij OR [xk\ = max{/x,7, /*#} (4.41)

For example, 0.5 OR 0.7 = 0.7. An alternative way of defining the operators is
to use algebraic methods

tiij AND nki = tiffin (4.42)

ILij OR nu = fly + [LH - fiijiiu (4.43)

An interesting question is how many rules are needed in the rule database?
Assuming we have n linguistic variables (inputs to the inference engine) and
that the number of membership functions for variable / is Nj9 then the total
number of rules will be

n

NSL = Y\NI=N1-N2 N„ (4.44)

124 Digital Signal Processing and Applications

Assuming this, we need to consider all possible combinations of input signals.
Further, if MISO rules are used, A/R rules may be needed for every output
linguistic variable in the worst case. From equation (4.44) it is easy to see
that the rule database and the computational burden grow quickly if too many
variables and membership functions are used. Hence, the selection of good
input signals and an appropriate number of linguistic values is crucial to system
performance.

To pursue our example, we need to define output linguistic variables, val­
ues and membership functions for the conclusions produced by the inference
engine. Let us introduce two output variables. Firstly, ACCELERATE having
three values, release, maintain and press (for the accelerator pedal). Secondly,
BRAKE with values, release, press mdpress hard (for the brake pedal). We are
assuming automatic transmission and are ignoring "kick-down" features and so
on. The associated membership functions used are triangular (see Figure 4.15).
In this case, "saturating" functions cannot be used since infinite motor power
and accelerating brakes are not physically possible. From Figure 4.15 we can
also see that the center of a membership function corresponds to a given value
of thrust or braking force.

ACCELERATE: release
maintain
press

- 2 5 % thrust
+25% thrust
+75% thrust

BRAKE: release 0% braking force
press 25% braking force
press hard 75% braking force

(braking using motor)
(to counteract air drag)
(to accelerate)

(gentle stopping)
(panic!)

The next step is to formulate the rules. According to equation (4.44) we will
need 3 x 3 = 9 rules for every output (using MISO rules) if all combinations
are considered. The following rules are suggested.

release

-25

1.4

1.2

1

\ 0.8

\0.6

Q.4

0.2

ACCELERATE

maintain press

0 25 50
accelerate (%)

75 100 -25

1.4
BRAKE

1.2
release press

1

0.8 J

0.6

0.4

0.2

—0-

press hard

0 25 50
brake (%)

75 100

Figure 4.15 Output signals and associated membership functions used
in the example

Non-linear applications 125

If SPEED is slow AND DISTANCE is close Then ACCELERATE
is release (4.45a)

If SPEED is slow AND DISTANCE is ok Then ACCELERATE
is press (4.45b)

If SPEED is slow AND DISTANCE is far Then ACCELERATE
is press (4.45c)

If SPEED is medium AND DISTANCE is close Then ACCELERATE
is release (4.45d)

If SPEED is medium AND DISTANCE is ok Then ACCELERATE
is maintain (4.45e)

If SPEED is medium AND DISTANCE is far Then ACCELERATE
is maintain (4.45f)

If SPEED is fast AND DISTANCE is close Then ACCELERATE
is release (4.45g)

If SPEED is fast AND DISTANCE is ok Then ACCELERATE
is release (4.45h)

If SPEED is fast AND DISTANCE is far Then ACCELERATE
is release (4.45i)

If SPEED is slow AND DISTANCE is close Then BRAKE
is press (4.46a)

If SPEED is slow AND DISTANCE is ok Then BRAKE
is release (4.46b)

If SPEED is slow AND DISTANCE is far Then BRAKE
is release (4.46c)

If SPEED is medium AND DISTANCE is close Then BRAKE
is press (4.46d)

If SPEED is medium AND DISTANCE is ok Then BRAKE
is release (4.46e)

If SPEED is medium AND DISTANCE is far Then BRAKE
is release (4.46f)

If SPEED is fast AND DISTANCE is close Then BRAKE

is press hard (4.46g)

If SPEED is fast AND DISTANCE is ok Then BRAKE is press (4.46h)

If SPEED is fast AND DISTANCE is far Then BRAKE
is release (4.46i)

Having defined all the rules needed, we may now be able to find simplifications
to reduce the number of rules. For instance, it is possible to reduce the rules

126 Digital Signal Processing and Applications

(4.45g)-(4.45i) to just one rule, since the value of DISTANCE does not matter,
and in all cases ACCELERATE should be release if SPEED is fast. The reduced
rule is

If SPEED is fast Then ACCELERATE is release (4.47a)

Reasoning in the same way, rules (4.45a) and (4.45d) can be reduced

If DISTANCE is close Then ACCELERATE is release (4.47b)

Combining rules (4.47a) and (4.47b) we obtain

If SPEED is fast OR DISTANCE is close Then ACCELERATE
is release (4.47c)

Keeping rules (4.45b), (4.45c), (4.45e) and (4.45f) as is, we are now left with
five rules for ACCELERATE. Trying some reduction for the rules generating
BRAKE, one solution is to join rules (4.46c), (4.46f) and (4.46i) to

If DISTANCE is far Then BRAKE is release (4.48)

Leaving the other rules for BRAKE as is, we now have seven rules, so the
total database will contain 12 rules (MISO). Further reductions are possible
for both ACCELERATE and BRAKE, but they will result in complex rules
and will probably not reduce the computational demands. Finally, the rules are
rewritten in "mathematical" form and stored in the rule database. If we adopt
the following notations

/xii membership value for SPEED, slow
IJL\2 membersh ip value for SPEED, medium
{i 13 membersh ip value for SPEED, fast
/X21 membersh ip value for D I S T A N C E , close
[i2i membersh ip value for D I S T A N C E , ok
fi23 membership value for DISTANCE, far

For conclusion (implied fuzzy set) about thrust

rj3i implied membership value for ACCELERATE, by rule /
bit position of peak of recommended membership function in

ACCELERATE, by rule/

For conclusion (implied fuzzy set) about braking force

r]4j implied membership value for BRAKE, by ruley
bfy position of peak of recommended membership function

in BRAKE, by rulej

We can now formulate our reduced set of rules above in a mathematical form.
For ACCELERATE we get

(4.47c): 7731 =max{/xi3,/x2i} for b?>\ = -0.25 (4.49a)

(4.45b): 7732=min{/zii,A622} for Z>32 = 0.75 (4.49b)

(4.45c): ?733=min{/zii,/X23} for 633 =0.75 (4.49c)

Non-linear applications 127

(4.45e):

(4.45f):

^34 = min{/xi2,M22}

y;35=min{/xi2,/X23}

and for BRAKE we get

(4.48):

(4.46a):

(4.46b):

(4.46d):

(4.46e):

(4.46g):

(4.46h):

*?4i =M23

y?42 = min{/xii,jLt2i}

^43=min{/xn,/X22}

^44 = min{/xi2,/X2i}

y/45=min{/xi2,M22}

r/46 = min{/xi3,M2i}

y;47=min{/xi3,/X22}

for Z?34 = 0.25

for Z>35 = 0.25

for Z?4i = 0

for Z>42 = 0.25

for Z?43 = 0

for £44 = 0.25

for 645 = 0

for 646 = 0.75

for 647 = 0.25

(4.49d)

(4.49e)

(4.50a)

(4.50b)

(4.50c)

(4.50d)

(4.50e)

(4.50f)

(4.50g)

4.3.4 Defuzzification

The output conclusions from the inference engine must now be combined in a
proper way to obtain a useful, continuous output signal. This is what takes place
in the defuzzification interface (going from a fuzzy set to a crisp set). There are
different ways of combining the outputs from the different rules. The implied
membership value rjy could be interpreted as the degree of certainty that the
output should be by as stated in the rule database.

The most common method is the center of maximum (CoM). This method
mainly takes the weighted mean of the output membership function peak
position with respect to the implied membership value produced by M
rules, i.e.

* = ^u B (4-51)

where yt is the output signal, a continuous signal that can take any value between
the smallest and largest output membership function peak positions. Another
defuzzification method is center of area (CoA) also known as the center
of gravity (CoG). In this case, the respective output membership function is
"chopped-off" at the level equal to the implied membership value rjy. In this
case, the area of the "chopped-off" (Figure 4.16) membership function^ is
used as a weighting coefficient

yt = ' • (4.52)
2-j/=l Aij

Yet another method of defuzzification is mean of maximum (MoM). In this
method, the output is chosen to be the one corresponding to the highest mem­
bership value, i.e. the by corresponding to the largest rjy. MoM is often used
in managerial decision-making systems and not very often in signal processing
and control systems. CoG requires more computational power than CoM, hence
CoG is rarely used while CoM is common.

128 Digital Signal Processing and Applications

9n N
medium ^ ^

J\2

CoG

Figure 4.16 Defuzzification using CoG

Let us use CoM to complete our example. There are two continuous output
signals from our cruise control, accelerate and brake. Assume accelerate is
denoted as 73 and brake as 74. Using equation (4.51) it is straightfoi'ward to
derive the defuzzification process

B
E?=i mj

-0.25y/3i + 0.75^2 + 0.75^3 + 0.25r?34 + 0.25^5

7̂31 + mi + 7?33 + *?34 + 7̂35

0.75(^2 + 7733) + 0.25(7734 + ^35 - mi)

m\ + m2 + *?33 + 7̂34 + ??35
(4.53)

E/=l ^

_ 0̂ 741 + 0.25?H2 + Qyy43 + 0.25^4 + Qy?45 + 0.75ry46 + 0.25r/47

T]4\ + mi + 7̂43 + 7/44 + *?45 + ??46 + *?47

0.75yy46 + 0-25(y?42 + ?/44 + mi)

m\ + *?42 + mi + *?44 + ms + ?̂46 + mi
(4.54)

In Figure 4.17 plots of ̂ 3 and>>4 are shown. It should be remembered, how­
ever, that this example is simplified and that there are many alternative ways of
designing fuzzy systems.

4.3.5 Applications

Fuzzy logic is used in some signal and image processing systems and in image
identification and classifying systems. Most fuzzy systems today are, how­
ever, control systems. Fuzzy regulators are suitable for applications where

Non-linear applications 129

Figure 4.17 Output signals accelerate and brake as functions of input
signals speed and distance

mathematical models are hard or impossible to formulate. The process sub­
ject to control may be time varying or strongly non-linear, requiring elaborate
theoretical work to be understood. Another suitable situation arises when there
is an abundant amount of practical knowledge from manual control such that
experience can be formulated in natural language rather than mathematical algo­
rithms. It is common that people having limited knowledge in control theory
find fuzzy control systems easier to understand than traditional control systems.

One drawback that exists is that there are no mathematical models available,
and no computer simulations can be done. Numerous tests have to be performed
in practice to prove performance and stability of a fuzzy control system under all
conditions. A second drawback is that the rule database has a tendency to grow
large, requiring fast processing hardware to be able to perform in real time.

Fuzzy controllers can be found not only in space ships but also in air
conditioners, refrigerators, microwave ovens, automatic gearboxes, cameras
(auto-focus), washing machines, copying machines, distilling equipment,
industrial baking processes and many other everyday applications.

Summary In this chapter the following main topics have been addressed:

• The median filter and threshold decomposition
• Neural network architectures: feedforward, layered networks, feedback and

lateral feedback
• Neural network node models, hard limiter, soft limiter and sigmoid
• Unsupervised and supervised learning: Hebb's rule, the Widrof-Hoff rule,

the perceptron learning rule and back-propagation
• Applications: pattern recognition, classification, pattern associator, content

addressable memory regularity detectors and optimization
• The Boltzmann machine computational temperature and simulated annealing
• Fuzzy control systems.

Review questions R4-1 What are the main advantages of a median filter?
R4-2 What are the main features of feedforward and feedback neural networks?

130 Digital Signal Processing and Applications

R4-3 Draw a block diagram of a feedforward neural network node and explain
the terms: weight, bias, activation function, hard limiter, soft limiter and
sigmoid.

R4-4 Why are many feedforward neural networks partitioned into layers? What
limitations does the layer structure have on the shape of the decision
regions?

R4-5 Give a brief description of the training algorithms: Hebb's rale, the
Widrow-Hoff rule, the perceptron learning rule and the back-propagation
algorithm. In what type of networks are the respective algorithms usable?

R4-6 For feedback neural networks used in optimization, local minimum in the
energy function may present a problem. Explain why. How can simulated
annealing ease this problem? What is the drawback?

R4-7 Draw a block diagram of a simple fuzzy logic system. What are the
tasks of the four blocks? Explain the terms: linguistic variable, linguistic
value, membership function, degree of membership, crisp set, center of
maximum, center of area and mean of maximum.

R4-8 In which applications can fuzzy systems be used? Pros and cons?

Solved problems P4-1 Write a program in MATLAB™ implementing a median filter and plot
the input X and output Y vectors for filter lengths TV = 3, 5, 7. Use the
input signal

X= [0 0 0 0 1 2 3 4 4 4 3 -8 1 0 0 1 1 0 0 0
1 1 1 0 0 0 0].

Explain the obtained results.
P4-2 In the text in Section 4.2.4.2, it is claimed that the XOR problem can

be solved with only one feedforward neural network node using proper
preprocessing of the input signals (see equation (4.17)). Draw a diagram
of such a node, and make a truth table to prove that it really works.

P4-3 For Hopfield networks the energy function (4.30) can be approximated by
equation (4.32), since the network uses a hard limiter activation iiinction.
Show that the sigmoid function actually can be approximated by a hard
limiter for small computational temperatures. What are the parameters a
and b in such a case?

5 Spectral analysis and
modulation

Background In many cases when analyzing signals or trying to find features of signals,
transformation to the frequency plane is advantageous, i.e. dealing with, for
instance, kilohertz and megahertz rather than milliseconds and microseconds.
In this chapter, some common methods for spectral analysis of temporal signals
will be presented.

Another topic addressed in this chapter is modulation. Quite often in analog
and digital telecommunication systems, the information signals cannot be trans­
mitted as is. They have to be encoded (modulated) onto a carrier signal, suited
for the transmission media in question. Some common modulation methods are
demonstrated.

Objectives In this chapter we will discuss:

• Discrete Fourier transform (DFT) and fast Fourier transform (FFT)
• Windowing techniques, spectrum estimation and periodogram averaging
• Auto-correlation, cross-correlation, auto-covariance and cross-covariance
• Parametric spectrum analysis, auto-regressive (AR), moving average (MA)

and auto-regressive moving average (ARMA) models
• Wavelet analysis
• Amplitude shift keying (ASK), frequency shift keying (FSK) and phase shift

keying (PSK)
• Phasors, complex modulation and in phase/quadrature phase (I/Q)-

modulators
• The Hilbert transform.

5.1 Discrete Fourier The discrete Fourier transform (DFT) (Burrus and Parks, 1985) from the time
transform and fast domain to the frequency domain representation, is derived from the time DFT
Fourier transform +00

X(co)= J^ x{n)Q-j27T^Mn (5.1)

The spectrum produced using this transform is periodic with the sampling fre­
quency cos and for real input signals x(n), the spectrum always has "even"
symmetry along the real axis and "odd" symmetry on the imaginary axis. In
practice, we cannot calculate this sum, since it contains an infinite number of
samples. This problem is only solved by taking a section of N samples of the
sequence x(n). To achieve this, x(n) is multiplied by a windowing sequence
ty(n) obtaining the windowed input signal xx(n). Since multiplication in the

132 Digital Signal Processing and Applications

time domain corresponds to convolution in the frequency domain, the time
DFT of the windowed sequence will be

XN(CD)=X(CD)*V(CO) (5.2)

where *!>(&>) is the spectrum of the windowing sequence ty(n) and * denotes
convolution. The ideal windowing sequence would have a rectangular spec­
trum, distorting the desired spectrum as little as possible and avoiding
spectral "leakage". Unfortunately, a rectangular frequency response is prac­
tically impossible to achieve, therefore we must settle for some compro­
mise. For example, commonly used windowing sequences are Rectangular,
Bartlett, Harming, Hamming and Kaiser-Bessel windows (Oppenheimer and
Schafer, 1975).

Now, let us assume we have chosen an appropriate windowing sequence. Next
we must determine how many frequency points should be used for calculation
of the transform in order to maintain a reasonable accuracy. There is no simple
answer, but in most cases good results are obtained using as many equally
spaced frequency points as the number of samples in the windowed input signal,
i.e. N. Hence the spacing between the frequency points will be cos/N. Now,
inserting this into equation (5.1), the DFT in its most common forrn can be
derived

^ (kjt) = E **(»> e~J2n(kn/N) = E *"<»> < (5-3>
n=0 n=0

where the twiddle factor is

WN = Q-JVKW (5.4)

Unfortunately, the number of complex computations needed to perform the
DFT is proportional to TV2. The acronym FFT (fast Fourier transform), refers
to a group of algorithms, all very similar, which uses fewer computational steps
to efficiently compute the DFT. The number of steps are typically proportional to
N lb(A0, where lb(x) = log2(x) is the logarithm base 2. Reducing the number of
computational steps is of course important if the transform has to be computed
in a real-time system. Fewer steps implies faster processing time, hence higher
sampling rates are possible. Now, there are essentially two tricks employed to
obtain this "sped-up version" of DFT:

(1) When calculating the sum (equation (5.3)) for k = 0 ,1 ,2 , . . . , N, many
complex multiplications are repeated. By doing the calculations in a
"smarter" order, many calculated complex products can be stored and
reused.

(2) Further, the twiddle factor (5.4) is periodic, and only N factors need to
be computed. This can, of course, be done in advance and the values can
be stored in a table.

Let us illustrate the ideas behind the FFT algorithm by using a simple: example
having N = 4. If we use the original DFT transform as in equation (5.3), the

Spectral analysis and modulation 133

following computations are needed

k = 0: X4(0) = x4(0)W4 +x4(l)^4° + x4(2)W4 + *4(3)<

k = 1: X4(l) = x4(0)W$ +x4(l)Wl + x4{2)W} +x4(3)W*

k = 2: X4{2) = x4(0)W$ +x4(\)W]; +x4(2)W* + x4(3)W$

k = 3: X4(3) = x4(0)W° +x4{\)WJ +x4(2)W$ + x4{3)W9
A

(5.5)

(5.6)

As can be seen from equation (5.5), 16 complex multiplications and 12complex
additions are needed. Now, let us see how these numbers may be reduced. Firstly,
if we put the odd and even numbered terms in two groups and divide the odd
terms by W\, equation (5.5) can be rewritten as

X4(0) = (x4((W4° + * 4 (2) <) + W°(x4(l)+X4(3))

X4(l) = {x4(0)W$ +x4(2W%) + W}(x4(l) +*4(3)^4
2)

X4{2) = (x 4 (0)< +x4(2)^4
4) + W^(x4(l) +X4(3)<)

X4(3) = (x4(0)W!> + x4(2)W%) + ^4
3(x4(l) +x4(3)^4

6)

Secondly, we use the periodicity of the twiddle factor (5.4)

w\ = w%9 wl = w\

further, we know that W® = \. Inserting this into equation (5.6), we obtain

X4(0) = (x4(0) + x4(2)) + (x4(l) + X4(3)) = A + C

X4{\) = (x4(0) + x4(2)^2) + W\(x4(\) +x4(})Wl) =B+ WlD

X4(2) = (x4(0) + X4(2)) + ^4
2(*4(1) + X4(3)) = A + W\C

X4(3) = (x4(0) + x4(2)PF2) + ^4
3(x4(l) + x4(3)^2) = B + W\D

From equation (5.7) we can now see that our computations can be executed in
two steps. In step one we calculate the terms A-D9 and in the second step, we
calculate the transform values X4(k), hence step 1

A = x4(0) + x4(2)

B = x4(0) + JC4(2)JT2 = JC4(0) - JC4(2)
(5.8)

C=x 4 (l)+ ;c 4 (3)

D = x 4 (l) + x 4 (3) J F 2 = x 4 (l) - x 4 (3)

This step requires two complex additions and two complex subtractions. If all
input signals are real, we only need real additions and subtractions

(5.9)

X4(0)

X4(l) :

X4(2) :

X4(3) :

= A + C

= B + W\D

= A + W*C =

= B + W\D =

= A-

= B-

-C

-W\D

134 Digital Signal Processing and Applications

Figure 5.1 FFT Butterfly signal flow diagram, showing the example
having N = 4

Two complex multiplications, two complex additions and two subtrac tions are
needed. In total, we now have two complex multiplications and eight complex
additions (subtractions). This is a considerable savings compared to the: 16 mul­
tiplications and 12 additions required for computing the DFT in its original form.

The steps of the FFT, in our example (equations (5.8) and (5.9)), are often
described in signal flow chart form, denoted "FFT butterflies" (see Figure 5.1).
For the general case, the FFT strategy can be expressed as

N-\ TO-i

n=0 n=0

(N/2)-\

+ » # E XN(2n+l)Wfr/2 (5.10)

and

Wfr = W^JN) where j = 1, 2, . . . (5.11)

5.2 Spectral analysis Spectral analysis, by estimation of the power spectrum or spectral power
density of a deterministic or random signal, involves performing a squaring
function. Obtaining a good estimate of the spectrum, i.e. the signal power
contents as a function of the frequency, is not entirely easy in practice. The

Spectral analysis and modulation 135

main problem is that in most cases we only have access to a limited set of
samples of the signal; in another situation, we are forced to limit the number
of samples in order to be able to perform the calculations in a reasonable time.
These limitations introduce errors in the estimate. If the signal is a random-
type signal, we may also obtain large fluctuations in power estimates based on
samples from different populations. Hence, in the general case there is no way
to obtain the true power spectrum of a signal unless we are allowed to observe
it infinitely. This is why the term estimation is frequently used in this context.

5.2.1 Discrete Fourier transform and fast Fourier transform approaches

Spectral analysis using the Fourier transform, a non-parametric method, was
originally proposed in 1807 by the French mathematician and Baron J.B.J.
Fourier. The discrete version of this transform, commonly used today in digi­
tal signal processing (DSP) applications, is called discrete Fourier transform
(DFT). A smart algorithm for calculating the DFT, causing less computational
load for a digital computer, is the fast Fourier transform (FFT). From a purely
mathematical point of view, DFT and FFT do the same job as shown above.
Considering a sampled signal x(n) for — oo < n < oo further, assume that the
signal has finite energy, i.e.

£ x2(n) < oo (5.12)

As seen above, the DFT of the signal can then be expressed as
00

X(a>)= £ x(n)e-J2n^M" (5.13)
n=—oo

where cos is the sampling frequency. By Parseval's relation, the energy of the
signal can then be expressed as

T \x(n)\2 = -L r \X(co)\2 dco = -?- / " Sxx(co)dco (5.14)

where Sxx(co) is referred to as the spectral density of the signal x(n). The
spectral density is hence the squared magnitude of the Fourier transform of
the signal. As mentioned above, in most cases the signal is not defined for
—oo < n < oo, or we may not be able to handle an infinite length sequence in a
practical application. In such a case, the signal is assumed to be non-zero only
for n = 0 , 1 , . . . , N — 1 and assumed to be zero otherwise. The spectral density
is then written as

i2

Sxx(co) = \X(co)\2 =
N-\

J2x(n)e~j27t(a)Mn

n=0

(5.15)

The power of the signal as a function of the frequency is called a
periodogram, which A. Schuster defined in 1898 as

P(0))=-Sxx(a)) (5.16)

136 Digital Signal Processing and Applications

In the case that the signal x(n) exists over the entire interval (—oc, oo) and
its energy is infinite (e.g. sinusoidal or other periodic signals), it is convenient
to define the spectral density as (Mitra and Kaiser, 1993)

<M<*>) = lim
N-+00 IN + 1

N

]T x{n)^2n^^n (5.17)
\n=-N

Now, in many practical cases, to use an FFT algorithm, N is chosen to be
a power of 2 (e.g. 64, 128, 256,...). This means that the spectral density can
only be calculated at N discrete points, which in many cases turns out to be too
sparse. Quite often, we need a finer frequency spacing, i.e. we need to know the
spectrum at L points where L>N. This can be accomplished by zero padding,
so that the data sequence consisting of N samples is extended by adding L — N
zero value samples to the end of the sequence. The "new" L point sequence is
then transformed using DFT or FFT. The effective frequency spacing is now

2n In

Lo)s No)s

It is important to remember that zero padding does not increase the true
resolution in frequency, it merely interpolates the spectrum at more points.
However, for many applications, this is sufficient. So far, we have assumed that
the signal x(n) has been identical to zero outside the interval n = 0,1,..., iV — 1.
This is equivalent to multiplying the sequence x(n) with a rectangular window
sequence

s(n)=x(n)w(n) (5.19)

where the rectangular window can be expressed as

"(*)={<> d s e (5 ' 2 0)

We recall from basic signal theory that a multiplication in the time domain
like equation (5.19) corresponds to a convolution in the frequency domain as
in equation (5.2). Therefore, the result of the windowing process has the "true"
spectrum of the signal convoluted with the Fourier transform of the window
sequence. What we obtain is not the spectrum of the signal, but rather the spec­
trum of the signal x(n) distorted by the transform of the window sequence.
This distortion results in "smearing" of the spectrum, which implies that nar­
row spectral peaks can neither be detected nor distinguished from each other
(Mitra and Kasier, 1993; Lynn and Fuerst, 1998). This "leakage" is an inher­
ent limitation when using conventional Fourier techniques for spectral analysis.
The only way to reduce this effect is to observe the signal for a longer duration,
i.e. gather more samples. The quality of the spectral estimate can, however,
be somewhat improved by using a more "smooth" window sequence than the
quite "crude" rectangular window. Some examples of windows with different
distortion properties (Oppenheimer and Schafer, 1975; Mitra and Kaiser, 1993)
are given below:

• The Bartlett window (triangular window)

w{n)-\2-(2n/(N-l)) (N-l)/2<n<N P * 2 1)

Spectral analysis and modulation 137

• The Hann window

w(n) = -(l - c o s / " - ^ - ^ 0 < n < N (5.22)

• The Hamming window

/ 2nn \
w(n) = 0.54 - 0.46 cos(— — J 0 < n < N (5.23)

• The Blackman window

w(n) = 0.42 - 0 . 5 cos (T T ^ T) + 0.08 cos(— ^ - J 0<n <N

5.2.2 Using the auto-correlation function

In the previous section, we concluded that a spectral power estimate could be
obtained by taking the square of the magnitude of the Fourier transform (5.15) of
the signal x(ri). There is an alternative way of achieving the same result by using
the auto-correlation function of the signal x(n). Let us start this section by a
brief discussion on correlation functions (Schwartz and Shaw 1975; Denbigh
1998; Papoulis and Pillai 2001) of time discrete signals. Assume that the mean
of the two complex signal sequences x(n) andjy(«) ar^ z e r o

E[x(«)] = rjx — 0 and E|>(«)] = rjy = 0

The cross-correlation between these signals are then defined as

Rxyin, m) = E[x(n) y*(m)] (5.25)

where * denotes complex conjugate and E[] is the expected mean operator
(ensemble average). If the mean of the signals is not zero, the cross-
covariance is

Cxy(n, m) = Rxy(n, m) - r]x(n) rfy(m) (5.26)

Note! If the mean is zero, the cross-correlation and cross-covariance are
equal. If the signal is correlated by itself, auto-correlation results

Rxx(n, m) = E[x(n)x*(m)] (5.27)

As a consequence of above, the auto-covariance is defined as

Cxx(n, m) = Rxx(n, m) - rjx(n) rj*(m) (5.28)

If the signal x(n) has zero mean and the auto-correlation only depends on the
difference k — m — n, not on the actual values of n or m themselves, the signal
x(n) is said to be wide-sense stationary from a statistical point of view. This
basically means that regardless of which point in the sequence the statistical

138 Digital Signal Processing and Applications

properties of the signal is studied, they all turn out to be similar. For a stationary
signal (which is a common assumption with signals), the auto-correlation
function is then defined as

Rxx(k) = E[x(n)x*(n + k)] (5.29)

Note in particular that ̂ (0) = a1 is the variance of the signal and represents
the power of the signal. Now, starting from equation (5.17), we study the square
magnitude of the Fourier-transformed signal sequence x(n) as N -> oo

J^ x(n)Q-J2nM(0M
=—oo I

= (] T x(n)e-j2n^/a>s)n J j] T x(n)Q-J2nM<0s)n

\n=—oo / \n=—oo /

00 00

= £ £ x(n)x*(m)e~J2n<-(0/<0^m-")

n=—oo m=—oo

00 00

= 12 J2 x(n)x*(n + k)Q-J2n((oMk

H=-00 £ = - 0 0

0 0

= £ Rxx(k)e-J2n^Mk (5.30)
A:=-oo

Hence, we now realize that the spectral density can be obtained in an
alternative way, namely by taking the DFT of the auto-correlation function

oo

»(>)= £ ^«e -^«* (5.31)
k=—OO

This relationship is known as the Wiener-Khintchine theorem.

5.2.3 Periodogram averaging

When trying to obtain spectral power estimates of stochastic signals using a
limited number of samples, quite poor estimates often result. This is especially
true near the ends of the sample window, where the calculations are based
on few samples of the signal x(n). These poor estimates cause wild fluctua­
tions in the periodogram. This trend was already observed by A. Schuster in
1898. To get smoother power spectral density estimates, many independent
periodograms have to be averaged. This was first studied by M.S. Bartlett and
later by P.D. Welch.

Assume that x(n) is a stochastic signal being observed in L points, i.e. for
n = 0 ,1 , . . . ,Z—1. This is the same as multiplying the signal x(n) by a rectangu­
lar window w(n), being non-zero for n = 0 , 1 , . . . , L - 1 (see equation (5.20)).

Spectral analysis and modulation 139

Using the DFT (5.13) in this product we obtain

L-\

S(co) = J2 *(") w(") Q-J2n(0)/C0s)n (5.32)

We now consider an estimate of the power spectral density (Mitra and Kaiser,
1993) given by

Ixx(o>)=-j^j\S(co)\2 (5.33)

where U is a normalizing factor to remove any bias caused by the window w(n)

L-\
I

U:
I,

n=0

1 L~X

= z £ > («) | 2 (5.34)

The entity Ixx(co) is denoted as a periodogram if the window used is the rect­
angular window, otherwise it is called a modified periodogram. Now, Welch's
method computes periodograms of overlapping segments of data and averages
(Mitra and Kaiser, 1993) them. Assume that we have the access to Q contiguous
samples of x(n) and that Q>L. We divide the data set into P segments o f !
samples each. Let S be the shift between successive segments, then

Q = (P-\)S + L (5.35)

Hence, the "windowed" segment/? is then expressed as

s<P\n) = w(n)x(n +pS) (5.36)

for 0 < n < L and 0 <p < P. Inserting equation (5.35) into equation (5.32) we
obtain the DFT of segment/?

L-\

&P\aJ) = J2 siP)(n) Q~J27T(a)Mn (5.37)

Using equation (5.33), the periodogram of segment/? can be calculated

l(P\co) = - J - \S(P\CO)2

LU
(5.38)

Finally, the Welch estimate is the average of all the periodograms over all
segments p as above

p=0

For the Welch estimate, the bias and variance asymptotically approach zero
as Q increases. For a given Q, we should choose L as large as possible to obtain
the best resolution, but on the other hand, to obtain a smooth estimate, P should
be large, implying L to be small (equation (5.35)). Hence, there is a trade-off
between high resolution in frequency (large L) and smooth spectral density
estimate (small L). Increasing Q is of course always good, but requires longer
data acquisition time and more computational power.

140 Digital Signal Processing and Applications

The Bartlett periodogram is a special case of Welch's method as described
above. In Bartlett's method, the segments are non-overlapping, i.e. S=L in
equation (5.35). The same trade-off described above for Welch's method also
applies to Bartlett's method. In terms of variance in the estimate, Welch's method
often performs better than Bartlett's method. Implementing Bartlett's method
may however in some cases be somewhat easier in practice.

5.2.4 Parametric spectrum analysis

Non-parametric spectral density estimation methods like the Fourier analysis
described above are well studied and established. Unfortunately, this class of
methods has some drawbacks. When the available set ofN samples is small,
resolution in frequency is severely limited. Also auto-correlation outside the
sample set is considered to be zero, i.e. Rxx(k) = 0fork>N, which may be an
unrealistic assumption in many cases.

Fourier-based methods assume that data outside the observed window is
either periodic or zero. The estimate is not only an estimate of the observed N
data samples, but also an estimate of the "unknown" data samples outside the
windows, under the assumptions above. Alternative estimation methods can be
found in the class of model-based, parametric spectrum analysis methods
(Mitra and Kaiser, 1993). Some of the most common methods will be presented
briefly below.

The underlying idea of assuming the signal to be analyzed can be generated
using a model filter. The filter has the causal transfer function H(z) and a
white noise input signal e{n), with mean value zero and variance al. In this
case, the output signal x(ri) from the filter is a wide-sense stationary signal with
power density

*xx(o>) = <Z>Q(co)\H(co)\2 = a2
e\H(co)\2 (5.40)

Hence, the power density can be obtained if the model filter transfer function
H(z) is known, i.e. if the model type and its associated filter parameters are
known. The parametric spectrum analysis can be divided into three steps:

• Selecting an appropriate model and selecting the order of H(z). There are
often many different possibilities

• Estimating the filter coefficients, i.e. the parameters from the TV data samples
x(n) where « = 0 , 1 , . . . ,iV — 1

• Evaluating the power density, as in equation (5.40) above.

Selecting a model is often easier if some prior knowledge of the signal is
available. Different models may give more or less accurate results, but may
also be more or less computationally demanding. A common model type is the
auto-regressive moving average (ARMA) model

where h(n) is the impulse response of the filter and the denominator polynomial
A(z) has all its roots inside the unit circle, for the filter to be stable. The ARMA
model may be simplified. If q = 0, then B(z) = 1 and an all-pole filter results,

Spectral analysis and modulation 141

yielding the auto-regressive (AR) model

or, if p = 0, then A(z)= 1 and a filter having only zeros results, a so-called
moving average (MA) model

q

H(z) = J2bkZ~k (5.43)

Note, these models are mainly infinite impulse response (IIR) and finite
impulse response (FIR) filters (see also Chapter 1). Once a reasonable model
is chosen, the next measure is estimating the filter parameters based on the
available data samples. This can be done in a number of ways. One way is by
using the auto-correlation properties of the data sequence x(n). Assuming an
ARMA model as in equation (5.41), the corresponding difference equation (see
Chapter 1) can be written as

p q

x(n) = - ^2 ak x(n - *) + J Z ^k e(n ~ *) (5-44)
k=\ k=o

where e(n) is the white noise input sequence. Multiplying equation (5.44) by
x*(n + m) and taking the expected value we obtain

p q

Rxx(m) = ~J2akRxx(m - k) + J]b k R e x (m - k) (5.45)
k=\ k=o

where the auto-correlation of x(n) is

Rxx(m) = B[x(n)x*(n + m)] (5.46)

and the cross-correlation between x(n) and e(n) is

Rex(m) = E[e(n)x*(n + m)] (5.47)

Since x(n) is the convolution of h(n) by e(n), x*(n + m) can be expressed as

oo

x*(n + w) = ^ h*(k) e(n + m- k) (5.48)

Inserting into equation (5.47), the cross-correlation can hence be rewritten as

Rex(m) = E e(n) ^ h*(k) e(n + m- k)

k=o

=] T h\k) E[e(n) e(n + m- k)] = ae
2A*(-m) (5.49)

k=o

where we have used the facts that e(ri) is a white noise signal, and h(n) is causal,
i.e. zero for n < 0. We can now express the auto-correlation values for the signal

142 Digital Signal Processing and Applications

originating from the ARMA model, in terms of the model parameters

p

Rxxim) =

for m > q -J2 akRxx(m-k)
k=\

p q-m
- £ akRxx{rn -k) + a2 £ h*(k)bk+m for 0 < m < q

for m < 0 Kx(-m)

(5.50)

The auto-correlation values Rxx(m) for \m\ > q are extrapolated by the filter
parameters and the values of Rxx(m) for m = 0 , 1 , . . . , q. Now, for the sake of
simplicity, assume that we are using an AR model, i.e. q = 0. Then equation
(5.50) simplifies to

Rxx{m) =

- £ akRxx(m-k) for m > 0

-J2 ak RXx{m -k) + ol for 0 = m
k=\

[R* (-m) for m < 0

(5.51)

Thus, if the auto-correlation values 7^(0), Rxx(l), • • -,Rxx(p) are known, the
filter parameters can be found by solving p linear equations corresponding to
m = 0 , 1 , . . . ,p. Note that we only need to know/? + 1 correlation values to be
able to determine all the parameters. From equation (5.51), setting m — 0 we
can also obtain the variance

ore
2=^x(0) + J2akRxx(-k) (5.52)

k=\

Combining equations (5.51) and (5.52), we thus have to solve the following
equations to obtain the parameters. These equations are known as the Yule-
Walker equations

Rxx(0) + a{Rxx(-l) + • • • + apRxx(-p) = a\

(5.53)

Rxx(p) + aiRjodp - 1) + • • • + apRxx(0) = 0

For the ARMA model, the modified Yule-Walker equations can be used to
determine the filter parameters. The Yule-Walker equations can be solved using
standard techniques, for instance Gauss elimination, which requires a number
of operations proportional to p3. There are however recursive, smarter algo­
rithms that make use of the regular structure of the Yule-Walker equations, and
hence require fewer operations. One such algorithm is the Levinson-Durbin
algorithm (Mitra and Kaiser, 1993), requiring a number of operations propor­
tional top2 only. There are also other ways to obtain the parameters. One such
way is adaptive modeling using adaptive filters (Widrow and Steams, 1985)
(see Chapter 3).

Spectral analysis and modulation 143

Finally, when the filter parameters are estimated, the last step is to evaluate
the spectral density. This may be achieved by inserting

z = e-J2*(<°/<°s) (5.54)

into the transfer function H(z) of the model, e.g. equation (5.41) and then,
using the relation (5.40), evaluate the spectral density. It should however be
pointed out that the calculations needed may be tiring, and that considerable
error between the estimated and the true spectral density may occur. One has
to remember that the spectral density is an approximation, based on the model
used. Choosing an improper model for a specific signal may hence result in a
poor spectral estimate.

The parametric analysis methods have other interesting features. In some
applications, the parameters themselves are sufficient information about the
signal. In speech-coding equipment, for instance, the parameters are transmitted
to the receiver (RX) instead of the speech signal itself. Using a model filter and
a noise source at the receiving site, the speech signal can be recreated. This
technique is a type of data compression algorithm (see also Chapter 7), since
transmitting the filter parameters requires less capacity then transmitting the
signal itself.

5.2.5 Wavelet analysis

Wavelet analysis, also called wavelet theory, or just wavelets (Lee and
Yamamoto, 1994; Bergh et al, 1999), has attracted much attention recently.
It has been used in transient analysis, image analysis and communication sys­
tems, and has been shown to be very useful for processing non-stationary
signals.

Wavelet analysis deals with expansion of functions in terms of a set of basis
functions, like Fourier analysis. Instead of trigonometric functions being used
in Fourier analysis, wavelets are used. The objective of wavelet analysis is
to define these wavelet basis functions. It can be shown that every applica­
tion using the FFT can be reformulated using wavelets. In the latter case,
more localized temporal and frequency information can be provided. Thus,
instead of a conventional frequency spectrum, a "wavelet spectrum" may be
obtained.

Wavelets are created by translations and dilations of a fixed function called
the mother wavelet. Assume that ty(t) is a complex function. If this function
satisfies the following two conditions, it may be used as a mother wavelet

f |vl>(0l2d;<oo (5.55)

This expression implies finite energy of the function, the second condition is

Cvi/ = 2n f da) < oo (5.56)
J-OO 00

where *!>(&>) is the Fourier transform of W(t). This condition implies that if
ty(co) is smooth, then *I>(0) = 0. One example of a mother wavelet is the

144 Digital Signal Processing and Applications

Haar wavelet, which is historically the original and simplest wavelet

'\ f o r 0 < f < l / 2

*(') = - 1 for 1/2 <t< 1
0 else

(5.57)

Other examples of smooth wavelets having better frequency localization
properties are the Meyer Wavelet, the Morlet Wavelet and the Dauibechies
Wavelet (Lee and Yamamoto, 1994; Bergh et ai, 1999). Figure 5.2 shows an
example of a Morlet wavelet. The wavelets are obtained by translations and
dilations of the mother wavelet

**,*(*) = a~l/2 •(?) (5.58)

which means rescaling the mother wavelet by a and shifting in time by b, where
a > 0 and —oo < b < oo.

The wavelet transform of the real signal x(t) is the scalar product
r»00

(5.59)
/

OO

*lb(t)x(t)dt
-OO

where * denotes the complex conjugate. There is also an inverse transform

^°° '°° dadb 1 f°° f°° dadb
x(t)=— / X(b,a)Vaj,(t)——

C^f J-oo JO a

(5.60)

where cy is obtained from equation (5.56). For the discrete wavelet transform,
equations (5.58)-(5.60) are replaced by equations (5.61)—(5.63), respectively

^m,n\J) — ^o
•m/2

<•?) (5.61)

where m and n are integers and ao and bo are constants. Quite often ao is
chosen as

ao 21/v

where v is an integer and v pieces of ^w,«(0 are processed as one group called
a voice

/

oo

-00
<f)df (5.62)

Figure 5.2 Real and imaginary part of a Morlet wavelet

Spectral analysis and modulation 145

x(t) = k*J2 Y.Xm<" *m'"(r) (5-63)

m n

Graphical representation of the complex functions obtained from equations
(5.63) and (5.66) is not always entirely easy. Commonly, three-dimensional
graphics, or gray-scale graphics showing the magnitude and phase as a function
of a, are used. One example is Figure 5.3, showing the magnitude of a wavelet
transform (Morlet) of a sinusoid with linearly decreasing frequency. Figure 5.4

Figure 5.3 Magnitude of a wavelet transform (Morlet) of a sinusoid with
linearly decreasing frequency

Figure 5.4 A signal comprising of two sinusoids with different frequencies,
where one frequency component is switched on with a time delay

146 Digital Signal Processing and Applications

shows a signal comprising of two sinusoids with different frequencies, where
one frequency component is switched on with a time delay.

5.3 Modulation In many communication systems, especially in radio systems, the information
("digital" or "analog"), or the baseband signal to be transmitted is modulated,
i.e. "encoded" onto a carrier signal. The carrier is chosen depending on the
type of media available for the transmission, for instance, a limited band in the
radio frequency spectrum, or an appropriate frequency for transmission over
cables or fibers. If we assume that the carrier signal is a plain cosine signal
there are three parameters of the carrier that can be modulated and used for
information transfer. These parameters are the amplitude a(t), the frequency
fit) and the phase c/)(t). The modulated carrier is then

s(t) = a(t)cosiln f f(f)dr + 0(0 j (5.64)

The corresponding modulation types are denoted amplitude modulation
(AM), frequency modulation (FM) and phase modulation (PM). FM and
PM are also referred to as angular modulation and are related in that the fre­
quency is the phase changing speed; in other words, the derivative of the phase
function is the frequency. Hence, frequency modulation can be achieved by first
integrating the baseband signal and then feeding it into a phase moduteitor. This
method is called Armstrong's indirect FM (Miller and Beasley, 2002).

In a digital radio communication system, it is common to modulate either
by changing fit) between a number of discrete frequencies, frequency shift
keying (FSK) or by changing 0(0 between a number of discrete phases, phase
shift keying (PSK). In some systems, the amplitude is also changed between
discrete levels, amplitude shift keying (ASK). So, if we are to design a modu­
lation scheme which is able to transmit M different discrete symbols (for binary
signals, M = 2), we hence have to define M unique combinations of amplitude,
frequency and/or phase values of the carrier signal. The trick is to define these
signal points, anit), fit) or 0„(O, where n e {0,... ,M — 1}, in a way that
communication speed can be high, influence of interference low, spectral occu­
pancy low, and modulation and demodulation equipment can be made fairly
simple.

5.3.1 Amplitude shift keying (ASK)

The concept of ASK is rather straightforward. Using this modulation method,
the amplitude of the carrier can be one out of M given baseband amplitude
functions an it), corresponding to the M information symbols used in the system.

Snit) = anit) COSilTtft + 0) (5.65)

The carrier frequency fit) =fc and the phase shift 0(0 = 0 are constant.
The amplitude functions anit) are defined over a finite period of time, i.e.
*o < t < to + T9 where T is the symbol time. A simple example would be a sys­
tem using binary symbols, i.e. M = 2 and square pulses for amplitude iiinctions

Spectral analysis and modulation 147

a0(t) s0(t)

->t

-+t

fli(0.

-*t

Figure 5.5 Baseband signal and modulated signal for ASK, M = 2

according to the below (see Figure 5.5)

symbol "0":

ao(0
1 t0<t <t0 + T

0 else

=» s0(t) =
cos(2nfct + 0) to <t < to + T

0 else
(5.66a)

symbol " 1 " :

a\(t) =
2 t0 < t < t0 + T

0 else

sx(t) =
2 cos (2nfct + 0) to < t < to + T

0 else
(5.66b)

The above can be regarded as a kind of pulse amplitude modulation (PAM)
system. The data transfer capacity D of such a system is determined by
equation (5.67)

D=- lb(M) = R lb(M) bits/s (5.67)

where lb(x) = log2(x) is the logarithm base 2 and R is the symbol rate. In
the example above binary symbols were used, i.e. M = 2 which implies that
lb(2) = 1, and that the data transfer capacity becomes D=l/T = R. In other
words, the symbol time equals the bit time. So one obvious recipe for achieving
high data transfer capacity is to use a high bit rate R, i.e. a short bit (symbol)
time T. Unfortunately, in a real world application, we also have to take the
background noise and interference into account. Using a too short symbol time

148 Digital Signal Processing and Applications

implies that the energy in each symbol will be small compared to the energy
in the background noise. This, in turn, means that the receiver (demodulator),
retrieving the encoded information, will be disturbed by the background noise
in such a way that it makes frequent misinterpretations of the received signal.
In other words, errors in the transmission will be common.

From equation (5.67) we find that another way of increasing the data transfer
capacity is to increase the number of symbols M. In all real world applications,
we only have a limited transmitter power (or voltage) available. Increasing
the number of levels M means that the voltage (or power) difference between
adjacent levels will decrease. Taking the background noise into account again,
the probability of errors in the receiving process will thus increase:. Hence,
there is a limit to how many symbols M can be used in a transmission system,
depending on the level of the background noise. These issues will be elaborated
on further in Chapter 8.

Another problem with the amplitude functions in the example above is the
shape of the waveform. A square pulse like this will have a quite wide-frequency
spectrum, increasing the risk of causing interference to other users in adjacent
frequency bands. For this reason, smoother waveforms than square pulses are
commonly used.

5.3.2 Frequency shift keying (FSK)

In this case, the frequency of the signal is controlled by the baseband signal, i.e.

s(t) = acos^TT f fn(r)dr + 0J (5.68)

The amplitude a(t) = a and the phase shift (j){t) = 0 are constant. The frequency
functions^(0 are defined over a finite period of time, i.e. to < t < to + T7, where
T is the symbol time, in a similar way to ASK above. A simple example would be
a system using binary symbols, i.e. M = 2 and square pulses for frequency func­
tions according to the below (see Figure 5.6). An FSK modulation scheme with
M = 2 is sometimes referred to as a binary frequency shift keying (BF'SK) sys­
tem. Commonly, the shape of the frequency functions is chosen to be smoother
than square pulses, for the spectral occupancy reasons mentioned above

symbol "0":

Mt) =

symbol" 1":

/ i (0 =

/o t0<t <t0 + T

0 else

\acos(27Tf0t + 0) t0 < t < t0 + T
>so(t)=L d s e (5.69a)

h to < t < to + T

0 else

\acos(2rcfit + 0) *0 < t < t0 + T

* * l (H o else (5 " 6 9 b)

Spectral analysis and modulation 149

/o(0.

/o

-+t

/ i (0 4

/ l

J i (0 4

-**

Figure 5.6 Baseband signal and modulated signal for FSK, M = 2

For the receiver to determine what symbol was transmitted, the frequency of
the carrier sn(t) needs to be determined. This can be accomplished in two ways:
non-coherent and coherent detection.

In non-coherent detection, the input signal enters a bank of bandpass filters,
where there is a filter for each frequency used, or in other words, one filter for
each symbol used in the system. The outputs of the filters are compared to each
other, and the received symbol is supposed to be the one that corresponds to the
filter having the strongest output signal magnitude. The phase of the received
signal in relation to the phase of the transmitted signal does not matter; the
method is non-coherent. This approach is straightforward and quite easy to
implement.

In the coherent detection system, the phase of the signal does matter. Hence,
phase synchronization between transmitter and receiver is needed, which com­
plicates the system. On the other hand, a coherent system has a greater resistance
against noise and interference than a non-coherent system. In a coherent sys­
tem, detection (demodulation) is performed using a cross-correlation technique
(see Figure 5.7). The received signal is cross-correlated with locally generated
prototype signals s'n(i) corresponding to all the M symbols used in the system.
Since coherence is needed, the phase ofs'n{i) and the received signal sn(t) have
to agree. The prototype signals for our example above would be

symbol "0":

s'0(t) =

symbol"!":

cos(27tf0t + 0) to <t <t0 + T

0 else

*i(0 = { cos(2nfit + (/>)

0

to < t < t o + T

else

(5.70a)

(5.70b)

150 Digital Signal Processing and Applications

*„(') •

Hx H

*m

-*R(s«,®

Xx •*>R(s„,s[)

s[(t)

<x> +%v.)

J M - 1 (0

Figure 5.7 Coherent detection ofFSK signals using cross-correlation

The cross-correlation is performed as RSniS'n(r) = f0 sn(t)s
f
n(t + r) ck where

r is the delay, i.e. phase shift between sn(t) and s'n(t). Since we have a coherent
system, the phase shift between the two signals should ideally be equal to
zero, i.e. the delay should be an integer number of periods. Therefore, in this
application our main interest is the variable RSntS'(0) where we expect to find
maximum correlation. For clarity, the correlation operation in this application
will be written as

R(sn, sf
n) = f

Jo
sn(t)s'n(t)dt (5.71)

The complete demodulator works as follows: the input signal enters a bank
of cross-correlators. The outputs of these correlators are compared to each
other, and the received symbol is supposed to be the one that corresponds to
the correlator having the strongest output signal.

We have been discussing a frequency shift system. One question that needs
to be answered is how large the shift in frequency A/ preferably should be.
Obviously, the larger the shift, the more spectrum bandwidth will be occupied,
which is commonly a bad thing, but how small can the shift be for the system to
work well? We may argue like this: if the received signal is sn(t)9 the correlation
to sr

n (t) should be as large as possible, while the (undesired) correlations between
s„(t) and sf

m(t) where m^n should be at a minimum. Using the binary example
above the situation can be formulated as

\R(SQ9 S'0)\ = max, \R(s\, S[)\ = max, R(SQ9 S\) = R(s\9 sf
0) = 0

Spectral analysis and modulation 151

From the last condition above, we can find the minimum frequency shift required

R(s0, s[)= / so(t)s[(t)dt = a cos(2nf0t)cos(27r/it)dt = 0
Jo Jo

(5.72)

where we have assumed 0 = 0. Solving equation (5.72) (Proakis, 1989) above,
we find that the frequency shift \fo —/i I = A / needs to be

A / = 2 ^ ' * = 1 > 2 ' 3 ' - - - <5-73)

If we set k = 1 the minimum frequency shift is obtained Af = 1/2T. An FSK
system using this frequency shift is called a minimum shift keying (MSK)
system.

If two signals sn(t) and sm(t), where m^n, has the property

R(sn(t)9sm(t)) = 09

the signals are said to be orthogonal. If all signals representing different
symbols in a modulation scheme are orthogonal to each other, the risk of
misinterpretation and transmission errors is minimized.

In the calculations above, continuous-time signals have been assumed, since
integrals have been used. If dealing with a "digital" discrete-time system, the
integrals can of course be approximated by summations, i.e.

fg(t)dtK(l/fB)^g(£)

5.3.3 Phase shift keying (PSK)

In a PSK system, the phase shift of the signal is controlled by the baseband
signal, i.e.

sn(t) = a cos(27tfct + (j)n(t)) (5.74)

The carrier frequency f(t) =fc and the amplitude a(t) = a are constant. The
phase functions <pn(t) are defined over a finite period of time, i.e. to < t < to + 7,
where T is the symbol time as before. A simple example would be a system using
binary symbols, i.e. M = 2 and square pulses for phase functions according to
the below (see Figure 5.8). Commonly, the shape of the phase functions is
chosen to be smoother than square pulses, for spectral occupancy reasons

symbol "0":

[0 to<t<to + T
* (') = | 0 else

jflcos(27r/c0 t0<t<t0 + T
So(t)= 0 else (5 ' 7 5 a)

152 Digital Signal Processing and Applications

0OWA

0I(OA

-W

-+t

Figure 5.8 Baseband signal and modulated signal for PSK, M = 2

symbol" 1":

01 (0 =
n t0 <t < t0 + T

0 else

• * i (0 =
a cos(2nfct + jt) t0 < t < t0 + T

0 else
(5.75b)

Often, the use of phasors (Denbigh, 1998) can be beneficial when describing
modulation processes. Starting out with a general cosine signal of a given
frequency f„, amplitude an and phase shift 0„ we have

Sn(t) = <*n COS(27tfnt + </>„) (5.76)

using Euler's formula, equation (5.76) can be rewritten as

sn(t) = an cos(27tfnt + 0„)

= Re[an(cos(27r/w^ + </>n) +j sva(2nfnt + 4>n))]

= Re[an eiWnt+M^ = R e | ^ QJ4>n Qj2nfnt^ = ^ ^ eJ2nfntj (5 ? ?)

where the complex number zn is denoted the phasor of the signal. If the carrier
frequency fn =fc is given and constant, the phasor will represent the signal
without any ambiguity, since

0/i = ^zn

(5.78a)

(5.78b)

Further, the phasor, being a complex number, can be drawn as a vector starting
from the origin and having magnitude an and angle 0n in a complex xy-plane.

Spectral analysis and modulation 153

- # — • / ->/ #- •+-*1

(a) (b) (c)

Figure 5.9 Signal constellations, (a) BPSK M = 2,(b) QPSK M = 4and
(c)8PSKM = 8

Phasors are a handy tool, used in many applications, not only in signal theory.
However, a caution should be issued: when dealing with signals and modulation
the magnitude of the phasor, denoted an, commonly refers to the amplitude of
the signal, i.e. the peak value of the cosine signal. In literature dealing with
electrical power applications the magnitude of the phasor may refer to the RMS
value of the cosine (Denbigh, 1998).

Now, when using phasors in a PSK context, the phasors for all M symbols in
the system can be drawn in a polar diagram, but for clarity, only the endpoint of
the vectors (phasors) are drawn as a dot. The diagram thus obtained is sometimes
called a signal constellation.

In Figure 5.9 some signal constellations are shown. Our PSK example in
equations (5.75a) and (5.75b) above is shown as example in Figure 5.9(a). Since
M = 2, i.e. that we have a binary system, this modulation type is called binary
phase shift keying (BPSK) or 2PSK. In Figure 5.9(b), we have used M = 4,
giving four signal points and a system called quadruple phase shift keying
(QPSK) or 4PSK. In Figure 5.9(c) M = 8, i.e. the signal constellation 8PSK,
etc. Note that in all cases, the signal points are situated on a circle with radius
an, since we are only changing the phase shift of the signal, not the amplitude.
An obvious question in this situation is how many symbols, i.e. how large,
can M be? We can conclude that the larger number of symbols we are using,
the smaller the difference in phase shift. Considering the background noise
and interference, the smaller the phase difference between adjacent symbols,
the larger the risk for misinterpretations and transmission errors. A good rule
of thumb is that the larger the distance between the signal points, the more
resistance against noise and interference is obtained. Hence, given a limited
transmitter power and background noise level, a BSPK system performs better
than a QPSK system regarding transmission errors. On the other hand, the
QPSK system has the potential of being twice as fast as the BPSK system. As
expected, designing optimum modulation methods is a matter of compromises.

Obviously, demodulation of PSK signals can only be carried out coherently.
The receiver needs to have some synchronized reference of the phase in order to
be able to determine the phase shift </>„ of the received signals. This problem can
however be circumvented by using a differential phase shift keying (DPSK)

154 Digital Signal Processing and Applications

method. In such a system, the absolute phase shift is not of interest, but rather
the difference in phase shift between successive symbols.

5.3.4 Complex modulation

A good approach when working with modulation is to utilize the concept of
complex modulation, a general method being able to achieve all the modulation
types mentioned above. Assume that the bandwidth of the baseband signal, the
information modulated onto the carrier, is small relative to the frequency of
the carrier signal. This implies that the modulated carrier, the signal being
transmitted over the communications media, can be regarded as a narrow­
band passband signal, or simply a bandpass signal (Proakis, 1989; Ahlin and
Zander, 1998)

s(t) = a(t) cos(2nfct + 0(0)

= a(t) cos(0(O) cos(2jtfct) — a(t) sin(^)(t)) sin(27tfct)

= x(t) cos(27r/c0 - y(i) sm(27tfct) (5.79)

where x(t) andy(t) are the quadrature components of the signal s(t), defined as

x(t) = a(t) cos(0(O) is the in phase or / component (5.80a)

and

y(t) = a(t) sin((j)(t)) is the quadrature phase or Q component (5.80b)

The two components above can be assembled into one handy entity by defining
the complex envelope

z(t) = x(t) +jy(t) = a(t) cos(0(O) +ja(t) sin(0(O) = a(t) em) (5.81)

Hence, the modulated carrier can now be written (see also equation (5.79)) as

s(t) = Re\z(t)eJ2nfct] (5.82)

(compare to the phasor concept in equation (5.77)). The modulation process is
performed by simply making a complex multiplication of the carrier and the
complex envelope. This can be shown on component level

s(t) = x(t) cos(27r/c0 - y{t) sin(2jr/c0 (5.83)

Figure 5.10 shows a simple, digital quadrature modulator, implementing
expression (equation (5.83)) above. The M-ary symbol sequence to be trans­
mitted enters the symbol mapper. This device determines the quadrature
components x(t) and y(t) according to the modulation scheme in use.

For example, let us assume that the incoming data stream A(n) consists of
binary digits (BITs), i.e. ones and zeros. We have decided to use a QPSK, in
other words, we are using M = 4 symbols represented by four equally spaced
phase shifts of the carrier signal. So, two binary digits A(n) and A(n — 1) are
transmitted simultaneously. If we assume that a(t) = 1 (constant amplitude), the
mapper then implements a table like Table 5.1 (many schemes exist).

Spectral analysis and modulation 155

I channel

x(t)

A(n) symbol
mapper

-A0

-Ax
COS(2JT/C0

carrier
generator

phase
shifter

sin(2jr/c0

Ax

•£

&
s(t)

Q channel

Figure 5.10 Simple M-ary quadrature modulator

Table 5.1 Example, I and Q components and phase angle
as a function of input bits

An) A(n - 1) <P(t) x(t) y(t)

0

0

1

1

0

1

0

1

45°

135°

- 4 5 °

-135°

l
V2
- 1
V2
1

V2
- 1
v/2

1
•Jl
1

V2
- 1
V2
- 1
V2

The quadrature components coming from the mapper, having half the data
rate of the binary symbols, is then multiplied by the carrier and a —90° phase-
shifted version (the quadrature channel) of the carrier, since cos(o? — 90) =
sin(a). The / and Q channels are finally added and the modulated carrier s(t)
is obtained.

Demodulation of the signal at the receiving site can easily be done in a similar
way, by performing a complex multiplication

z(t) = s(t)Q-J2nfct (5.84)

and removing high-frequency components using low-pass filters. From the
received estimate z(t) the quadrature components can be obtained and from
these, the information symbols. In practice, the situation is more complicated,
because the received signal is not s(t), but rather a distorted version with noise
and interference added (see Chapter 8).

156 Digital Signal Processing and Applications

- W

Figure 5.11 An example signal
constellation for QAM

An advantage with this kind of modulator is that almost any modulation type
can be achieved. From equations (5.80a) and (5.80b) we realize that

«(<) = JxHl)+yt(t) (5.85a)

(5.85b)

Since we are free to chose the / channel signal x(t) and the Q channel signal
y(t) as we please, we can obviously perform amplitude modulation (or ASK)
and phase modulation (or PSK) simultaneously. This implies that we can locate
our signal points arbitrary in the complex plane. We are not limited to locating
the signal points on a circle as in, for instance, the case of QPSK. In Fig­
ure 5.11 the signal points are placed in an array which can serve as an example
of quadrature amplitude modulation (QAM).

Another way of viewing QAM is to make a cross-correlation analysis (equa­
tion (5.71)) of the carriers used: cos(2jrfct) and sm(27tfct). Such an analysis
shows that the carriers are orthogonal, i.e. ideally there is no "cross-talk" in
between them. This means that the / and Q channels can be viewed as two
independent amplitude modulated transmission channels. Therefore, in some
systems, different information is transmitted over these channels.

Yet, another possibility is to achieve frequency modulation (or FSK), since
indirect frequency modulation (Armstrong modulation) can be performed by
integrating the baseband signal and feeding it to a phase modulator (Miller and
Beasley, 2002). An example of such a system is the cellular mobile telephone
system GSM, using Gaussian minimum shift keying (GMSK). To obtain
good spectral properties, the baseband signal is first processed by a low-pass
filter having an approximation of a Gaussian impulse response (equation (5.86))
before entering the integrator and the quadrature modulator

w* l I nil » t-(T/2)\ nil ft ' + (r/2)' (5.86)
2T\~\ "/2M2) / ~\" "/2W2J//

where Bb is the bandwidth of the filter, T is the bit time and Q(t) is the £Lfunction

Q(t)
JtV: V2

-*2/2dx

5.3.5 The Hilbert transformer

A special kind of "ideal" filter is the quadrature filter. Since this filter is
non-causal, only approximations (Mitra and Kaiser, 1993) of the filter can be
implemented in practice. This filter model is often used when dealing with
single sideband (SSB) signals. The ideal frequency response is

H(a>) = {
-j co > 0
0 co = 0

Q)<0

(5.87)

J

Spectral analysis and modulation 157

This can be interpreted as an all-pass filter, providing a phase shift of n/2
radians at all frequencies. Hence, if the input signal is cos(a)t), the output will
be cos(cot — 90) = sin(cot).

The corresponding impulse response is

h(t) = — for t^ 0 (5.88)
7tt

The response of the quadrature filter to a real input signal is denoted the
Hilbert transform and can be expressed as the convolution of the input signal
x(t) and the impulse response of the filter

1 C°° x(r)
y(t) = x(t) * h(t) = - / - - ^ - dr (5.89)

where * denotes convolution. Now, the complex analytic signal z(t) associated
with x(t) can be formed as

z(t) = x(t) +jy(t) = x(t) +jx(t) * h{t) (5.90)

It is clear that z(t) above is the response of the system

G(co) = 1 +jH(co) (5.91)

The frequency response above implies attenuation of "negative" frequency
components while passing "positive" frequency components. In an SSB situa­
tion, this relates to the lower and upper sideband (Proakis, 1989), respectively

f 1 +K~j) = 2 for co>0

Hence, if we want to transmit the analog signal x(t) using SSB modula­
tion, equation (5.90) replaces equation (5.81). Further, the symbol mapper in
Figure 5.10 is replaced by a direct connection of x(t) to the / channel and a
connection via a quadrature filter (Hilbert transformer) to the Q channel. (The
phase shifter connected to the carrier generator in Figure 5.10 can, of course
also, be implemented as a Hilbert transformer.)

When dealing with discrete-time systems, the impulse response (equa­
tion (5.88)) is replaced by

lf . (1/7Z72 for odd n
h(n) = {' ~ (5.93) v ' [0 for even n v y

This function can, for instance, be approximated by an FIR filter. There
are different ways of approximating the time-discrete Hilbert transformer
(Proakis, 1989).

Summary In this chapter the following topics have been treated:

• DFT, FFT, twiddle factors and zero padding
• Windowing techniques, spectrum estimation, Welch's and Bartlett's methods
• Correlation and covariance, the Wiener-Khintchine theorem
• AR, MA and ARMA models, the Yule-Walker equations
• Wavelets

158 Digital Signal Processing and Applications

• ASK, FSK, PSK, BPSK, QPSK, MSK, GMSK and QAM
• Phasors, the quadrature modulator, Armstrong's indirect FM method and the

Hilbert transform.

Review questions R5-1 What is the relation between DFT and FFT? What tricks are typically
used by FFT?

R5-2 Why are windowing techniques used? Pros and cons?
R5-3 Explain how auto-correlation, auto-covariance, cross-correlation and

cross-covariance are related.
R5-4 What is the basic idea behind parametric spectrum analysis? What do

AR, MA and ARMA stand for?
R5-5 Under what circumstances is wavelet analysis better than using the Fourier

transform?
R5-6 What is the trade-off when determining the number of symbols M in a

modulator?
R5-7 What is Armstrong's indirect FM method? How can it be used in practice?
R5-8 What are the properties of the Hilbert transformer? Give an application

example.

Solved problems P5-1 Draw a block diagram of a quadrature modulator and demodulator,
including proper signal names and equations.

P5-2 Show that equations (5.85a) and (5.85b) can be obtained from equations
(5.80a) and (5.80b).

P5-3 Solve equation (5.72) and prove that equation (5.73) is the solution for
Af in an MSK system.

P5-4 Write a MATLAB™ program making an FFT and plotting the magnitude
of the spectrum of the digital AM signal s(n) = (1 + cos(£2/«)) cos(£2c«),
where Q(= 0.01, Qc = 2 and Af = 1024. Try the rectangular window and
the Hamming window. What conclusions can be made?

6 Introduction to Kalman
filters

Background In earlier chapters, we have mainly been dealing with deterministic signals
having fairly simple frequency spectra. Such signals can often be processed
successfully using classical filters. When it comes to filtering of stochastic (ran­
dom) signals, things get worse. Since the frequency spectra of a stochastic signal
commonly is quite complex, it will be difficult to extract or reject the desired
parts of the spectra to obtain the required filtering action. In such a situation,
a Kalman filter may come in handy. Using a Kalman filter, signals are filtered
according to their statistical properties, rather than their frequency contents.

The Kalman filter has other interesting properties. The filter contains a signal
model, a type of "simulator" that produces the output signal. When the quality
of the input signal is good (for instance, a small amount of noise or interference),
the signal is used to generate the output signal and the internal model is adjusted
to follow the input signal. When, on the other hand, the input signal is poor, it is
ignored and the output signal from the filter is mainly produced by the model.
In this way, the filter can produce a reasonable output signal even during drop
out of the input signal. Further, once the model has converged well to the input
signal, the filter can be used to simulate future output signals, i.e. the filter can
be used for prediction.

Kalman filters are often used to condition transducer signals and in control
systems for satellites, aircraft and missiles. The filter is also used in appli­
cations dealing with examples, such as economics, medicine, chemistry and
sociology.

Objectives In this chapter we will discuss:

• Recursive least square (RLS) estimation and the underlying idea of Kalman
filters

• The pseudo-inverse and how it is related to RLS and Kalman filters
• The signal model, a dynamic system as a state-space model
• The measurement-update equations and the time-update equations
• The innovation, the Kalman gain matrix and the Riccatti equation
• A simple example application, estimating position and velocity while cruis­

ing down main street
• Properties of Kalman filters.

6.1 An intuitive
approach

Filters were originally viewed as systems or algorithms with frequency selec­
tive properties. They could discriminate between unwanted and desired signals

160 Digital Signal Processing and Applications

found in different frequency bands. Hence, by using a filter, these unwanted
signals could be rejected.

In the 1940s, theoretical work was performed by N. Wiener and
N.A. Kolomogorov on statistical approaches to filtering. In these cases, sig­
nals could be filtered according to their statistical properties, rather than their
frequency contents. At this time, the Wiener and Kolomogorov theory required
the signals to be stationary, which means that the statistical properties of the
signals were not allowed to change with time.

In late 1950s and early 1960s a new theory was developed capable of coping
with non-stationary signals as well. This theory came to be known as the
Kalman filter theory, named after R.E. Kalman.

The Kalman filter is a discrete-time, linear filter and it is also an optimal
filter under conditions that shall be described later in the text. The underlying
theory is quite advanced and is based on statistical results and estimation theory.
This presentation of the Kalman filter (Anderson and Moore, 1979; Astrom
and Wittenmark, 1984; Bozic, 1994) will begin with a brief discussion of
estimation.

6.1.1 Recursive least square estimation

Let us start with a simple example to illustrate the idea of recursive least
square (RLS) estimation. Assume that we would like to measure a constant
signal level (DC level) x. Unfortunately, our measurements z(n) are disturbed
by noise v(n). Hence, based on the observations

z(w) = JC + v(«) (6.1)

Our task is to filter out the noise and make the best possible estimation of
x. This estimate is called x. Our quality criteria is finding the estimate x that
minimizes the least square criteria

N

J(x) = J > (r c) - x) 2 (6.2)

The minimum of equation (6.2) can be found by setting the first derivative to 0

^ = f ;2(Jc-z(n)) = 0 (6.3)

Solving for x(N), i.e. the estimate x used during N observations of z(n), we
obtain

N N

X > = EZ(") (6-4)
n=\ n=\

where

N N

^ jc = Nx(N) = Y^<n) (6-5)
n=\ w=l

Introduction to Kalman filters 161

Hence, the best way to filter our observations in the sense of minimizing our
criteria (6.2) is

1 N

^(N)=-J2Z^ (6*6)

n=\

That is, taking the average of N observations. Now, we do not want to wait for N
observations before obtaining an estimate. We want to have an estimate almost
at once, when starting to measure. Of course, this estimate will be quite poor,
but we expect it to grow better and better as more observations are gathered. In
other words, we require a recursive estimation (filtering) method. This can be
achieved in the following way.

From equation (6.5) we can express the estimate after N + 1 observations

JV+1 JV+l

(N + l)x(N + 1) = J2 * = E *(*) <6-7)
n=\ n=\

Now, we want to know how the estimate changes from TV to N + 1 obser­
vations, in order to find a recursive algorithm. Taking equation (6.7) minus
equation (6.5) gives

tf+l N

(N + l)x(N + 1) - Nx(N) = J^ z(n) ~ E z (*) = Z^N + !) (6*8)

«=1 n=\

Rearranging in a way that x(N +1) (the "new" estimate) is expressed in terms
of x(N) (the "old" estimate), from equation (6.8) we get

*(N + l) = ^T\(z(N + 1 } + m (N))

=]vTT (z (i v r + 1 } + (N + l)i(N) ~ * m

= ^ ^ + T^~[(z(N + 1 } " *(A0) (6 9)

where we assume the initial condition x(0) = 0. The filter can be drawn as
in Figure 6.1. Note that the filter now contains a model (the delay z _ 1 or
"memory") of the signal x. Presently, the model now holds the best estimate
x(N) which is compared to the new measured value z(N +1). The difference
z(N + l)—x(N)9 sometimes called the innovation, is amplified by the gain
factor 1/(N+ 1) before it is used to update our estimate, i.e. our model to
x(N+l).

Two facts need to be noted. Firstly, if our estimate x(N) is close to the mea­
sured quantity z(N + 1), our model is not adjusted significantly and the output
is quite good as is. Secondly, the gain factor l/(iV+ 1) will grow smaller
and smaller as time goes by. The filter will hence pay less and less atten­
tion to the measured noisy values, making the output level stabilize to a fixed
value of x.

162 Digital Signal Processing and Applications

z(N+l)+ ^

A

1
N+ 1

»tf^
A

1 1 • JC(N+ 1)

z"1 i(AO
w

Figure 6.1 An example of an RLS estimator

In the discussion above, we have assumed that the impact of the noise has
been constant. The "quality" of the observed variable z(n) has been the same
for all n. If, on the other hand, we know that the noise is very strong ait certain
times, or even experience a disruption in the measuring process, then we should,
of course, pay less attention to the input signal z(n). One way to solve this is
to implement a kind of quality weight q(n). For instance, this weight could be
related to the magnitude of the noise as

q(n) oc
1

v20)
(6.10)

Inserting this into equation (6.2), we obtain a weighted least square criteria

N

J(*) = £>(n)(z(n)-*)2 (6.11)
n=\

Using equation (6.11) and going through the same calculations as before,
equations (6.3)-(6.9) we obtain the expression for the gain factor in this case
(compare to equation (6.9))

x(N + 1) = x(N) +
q(N+l)

(z(N+l)-x(N))

= x(N) + Q(N + l)(z(JV + 1) - x(N)) (6.12)

It can be shown that the gain factor Q(N + l) can also be calculated
recursively

Q(N+l) =
q(N+l)

q(N + l) _ Q(N)q(N+l)

q(N) + Q(N)q(N+l)
(6.13)

where the starting conditions are: q(0) = 0 and Q(0) = 1. We can now draw
some interesting conclusions about the behavior of the filter. If the input signal
quality is extremely low (or if no input signal is available) q(n) -*• 0 implies that

Introduction to Kalman filters 163

Q(n +1) -> 0 and the output from the filter equation (6.12) is

x(N+l)=x(N) (6.14)

In other words, we are running "dead reckoning" using the model in the
filter only. If, on the other hand, the input signal quality is excellent (no noise
present), q(n) -> oo and Q(n + 1) -> 1 then

x(N+\) = z(N+l) (6.15)

In this case, the input signal is fed directly to the output, and the model in the
filter is updated.

For intermediate quality levels of the input signal, a mix of measured sig­
nal and modeled signal is presented at the output of the filter. This mix thus
represents the best estimate of x, according to the weighted least square criteria.

So far, we have assumed x to be a constant. If x(n) is allowed to change over
time, but considerably slower than the noise, we must introduce a "forgetting
factor" into equation (6.2), or else all "old" values of x(n) will counteract
changes of x(n). The forgetting factor w(n) should have the following property

w(n) > w(n — 1) > • • • > w(l) (6.16)

In other words, the "oldest" values should be forgotten the most. One
example is

w(n) = aN-n (6.17)

where 0 < a < 1. Inserting equation (6.17) into equation (6.2) and going through
the calculations equations (6.3)-(6.9) again, we obtain

x(N + 1) = x(N) + N+l
l
 N+l_n(z(N + 1) ~ x(N))

= x(N) + P(N + l)(z(N + 1) - x(N)) (6.18)

The gain factor P(n) can be calculated recursively by

P(N) p(N+l)=^m (6-19)
Note, the gain factors can be calculated off-line, in advance.

6.1.2 The pseudo-inverse

If we now generalize the scalar measurement problem outlined above and go into
a multidimensional problem, we can reformulate equation (6.1) using vector
notation

z(n) = HT(n)x + \(n) (6.20)

where the dimensions of the entities are

z(w): (K x 1) H(w): (L x K)

x: (L x 1) v(/i): (K x 1)

164 Digital Signal Processing and Applications

In a simple case, where there is no noise present, i.e. \(n) = 0 (or when
the noise is known) solving x from equation (6.20) could be done simply by
inverting the matrix H(n)

x = (H 1 ^))" 1 (z(w) - v(w)) (6.21)

This corresponds to solving a system of L equations. Inverting the matrix H(w)
may not be possible in all cases for two reasons, either the inverse does not
exist or we do not have access to a sufficient amount of information. The
latter is the case after each observation of z(n) when noise v(n) is present
or if K< L, i.e. we have too few observations. Hence, a straightforward matrix
inversion is not possible. In such a case, where the inverse of the matrix cannot be
found, a pseudo-inverse (Anderson and Moore, 1979; Astrdm and Wittenmark,
1984), also called the Moore-Penrose inverse, may be used instead. Using the
pseudo-inverse, equation (6.21) can be solved "approximately".

For a true inverse: (HT)_ 1HT = I, where I is the identity matrix. In a similar
way, using the pseudo-inverse H# we try to make the matrix product (HT)# HT

as close to the identity matrix as possible in a least squares sense. Note, this is
similar to fitting a straight line to a number of measured and plotted points in a
diagram using the least square method.

The pseudo-inverse of H(«) can be expressed as

H# = (H T Hr 1 H T (6.22)

Now, finding the pseudo-inverse corresponds to minimizing the criteria
(compare to equation (6.2))

AT

J(x) = J2 II zO) - H T (") * II2 (6-23)
n=\

where the Euclidean matrix norm is used, i.e.

ii AII2 = E E 4
' j

Minimizing the above is finding the vector estimate x that results in the
least square error. Taking the derivative of equation (6.23) for all compo­
nents, we obtain the gradient. Similar to equations (6.3)-(6.5) we solve for
x as the gradient is set equal to 0, thus obtaining the following (compare to
equation (6.6))

(N \~l N

J2 H(») HT(rc) J 2 H ^ ZW (6'24)

n=\ I n=\
Note, the sums above constitute the pseudo-inverse. In the same way as

before, we like to find a recursive expression for the best estimate. This can
be achieved by going through calculations similar to equations (6.7) amd (6.8),
but using vector and matrix algebra. These calculations will yield the result

Introduction to Kalman filters 165

(compare to equation (6.9))

/N+l \~l

x(N + 1) = Z(N) + I J2 H(w) H T 0) I H (^ + l)(z(N + !)

-HT(N+l)x(N))

= i(N) + r(N + i) n(N + i)(z(A^ +1) - nT(N +1) £(AO)
(6.25)

where P(«) is the gain factor as before. Reasoning in a similar way to the cal­
culations of equation (6.13), we find that this gain factor can also be calculated
recursively

P(JV + 1) = P(#) - Jf(N) U(N + 1)

(I + RT(N + 1) P(A0 U(N + 1))_1 UT(N + 1) P(A0

(6.26)

The equations (6.25) and (6.26) are a recursive method of obtaining the
pseudo-inverse H# using a filter model as in Figure 6.1. The ideas presented
above constitute the underlying ideas of Kalman filters.

6.2 The Kalman filter 6.2.1 The signal model

The signal model, sometimes also called the process model or the plant,
is a model of the "reality" which we would like to measure. This "reality"
also generates the signals we are observing. In this context, dynamic systems
are commonly described using a state-space model (see Chapter 1). A simple
example may be the following.

Assume that our friend Bill is cruising down Main Street in his brand new
Corvette. Main Street can be approximated by a straight line, and since Bill
has engaged the cruise control, we can assume that he is traveling at a constant
speed (no traffic lights). Using a simple radar device, we try to measure Bill's
position along Main Street (starting from the Burger King) at every second.

Now, let us formulate a discrete-time, state-space model. Let Bill's position
at time n be represented by the discrete-time variable x\(n) and his speed by
X2(n). Expressing this in terms of a recursive scheme we can write

x\(n + 1) = x\(n) + X2(n)

x2(n + 1) = x2(n) (6.27)

The second equation simply tells us that the speed is constant. The equations
above can also be written using vector notation by defining a state vector x(n)
and a transition matrix F(«), as

lW=[«w] md F W = ^ !i <628)
0 1

166 Digital Signal Processing and Applications

The equations (6.27) representing the system can now be nicely formulated
as a simple state-space model

x(n+l) = F(n)x(n) (6.29)

This is, of course, a quite trivial situation and an ideal model, but Bill is certainly
not. Now and then, he brakes a little when there is something interesting at
the sidewalk. This repeated braking and putting the cruise control back into
gear, changes the speed of the car. If we assume that the braking positions are
randomly distributed along Main Street, we can hence take this into account by
adding a white Gaussian noise signal w(n) to the speed variable in our model

x(n + 1) = F(») x(n) + G(n) w(n) (6.30)

where

The noise, sometimes called "process noise" is supposed to be scalar in this
example, having the variance: Q = cr^ and a mean equal to 0. Note, x(n) is now
a stochastic vector.

So far, we have not considered the errors of the measuring equipment. What
entities in the process (Bill and Corvette) can we observe using our simple radar
equipment? To start with, since the equipment is old and not of Doppler type,
it will only give a number representing the distance. Speed is not measured.
Hence, we can only get information about the state variable x\(n). This is rep­
resented by the observation matrix H(«). Further, there are, of course, random
errors present in the distance measurements obtained. On some occasions, no
sensible readings are obtained, when cars are crossing the street. This uncer­
tainty can be modeled by adding another white Gaussian noise signal v(n). This
so-called "measurement noise" is scalar in this example, and is assumed to
have zero mean and a variance R = a^;. Hence, the measured signal z(ji) can be
expressed as

z(n) = UT(n)x(n) + v(n) (6.31)

Equations (6.30) and (6.31) now constitute our basic signal model, which can
be drawn as in Figure 6.2.

w(n)
• G(«) >ti

\
j

x(n + 1)

ft •
V

z"1

F(/i)

x(n)
HT(«) *(A 2\«">

-+y—
v(•0

Figure 6.2 Basic signal model as expressed by equations (6.30) and (6.31)

Introduction to Kalman filters 167

6.2.2 The filter

The task of the filter, given the observed signal z(n) (a vector in the general
case), is to find the best possible estimate of the state vector x(n) in the sense of
the criteria given below. We should however remember, x(n) is now a stochastic
signal rather than a constant, as in the previous section.

For our convenience, we will introduce the following notation: the estimate
of x(n) at time n, based on the n — 1 observations z(0), z(l), ..., z(n — 1), will
be denoted as x(n | n — 1) and the set of observations z(0), z(l), ..., z(n — 1)
itself will be denoted Z(n — 1).

Our quality criteria is finding the estimate that minimizes the conditional
error covariance matrix (Anderson and Moore, 1979)

C(n | n - 1) = E [(x(n) - x(n \ n - l))(x(n) -x(n\n- 1))T | Z(n - 1)]

(6.32)

This is a minimum variance criteria and can be regarded as a kind of "stochastic
version" of the least square criteria used in the previous section. Finding the
minimum is a bit more complicated in this case than in the previous section. The
best estimate, according to our criteria, is found using the conditional mean
(Anderson and Moore, 1979), i.e.

x(n | n) = E[x(n) \ Z(n)] (6.33)

The underlying idea is as follows: x(n) and z(n) are both random vector
variables of which x(n) can be viewed as being a "part" of z(n) (see equation
(6.31)). The statistical properties of x(n) will be "buried" in the statistical prop­
erties of z(n). For instance, if we now want to have a better knowledge of the
mean of x(n), uncertainty can be reduced by considering the actual values of
the measurements Z(n). This is called conditioning. Hence, equation (6.33)
the conditional mean of x(n) is the most probable mean of x(n), given the
measured values Z(n).

We will show how this conditional mean equation (6.33) can be calculated
recursively, which is exactly what the Kalman filter does. (Later we shall return
to the example of Bill and his Corvette.)

Since we are going for a recursive procedure, let us start at time n = 0. When
there are no measurements made, we have from equation (6.32)

C(0 | - 1) = E[x(0)xT(0) | Z(-1)] = P(0) (6.34)

It can be shown (Anderson and Moore, 1979), that the conditional mean
of x(0) can be obtained from the cross-covariance of x(0) and z(0), the auto-
covariance and the mean of z(0) and the measured value z(0) itself

x(0 | 0) = E[x(0)] + CXZ(0) C~l(0)(z(0) - E[z(0)]) (6.35)

The covariance matrix at time «, based on n observations is denoted C(n \ n).
It can be obtained from (for n = 0)

C(0 | 0) = Cxx(0) - Cxz(0) C-^O) Czx(0) (6.36)

168 Digital Signal Processing and Applications

Next, we need to find the mean vectors and covariance matrices to plug into
equations (6.35) and (6.36). Both the process noise and the measurement noise
are Gaussian, and we assume that they are uncorrelated.

The mean of x(0) is denoted E[x(0)]. Using equation (6.31), the mean of
z(0) is

E[z(0)] = E[HT(0) x(0) + v(0)] = HT(0) E[x(0)] (6.37)

where, we have used the fact that the mean of the measurement noise v(0) is 0.
The auto-covariance of x(0)

C„(0) = E[x(0) xT(0)] = P(0) (6.38)

Using equation (6.31), the auto-covariance of z(0) can be expressed as

Czz(0) = E[z(0)zT(0)]

= E[(HT(0) x(0) + v(0))(HT(0) x(0) + v(0))T]

= E [HT(0) x(0) xT(0) H(0) + HT(0) x(0) vT(0)

+ v(0)xT(0)H(0) + v(0)vT(0)]

= HT(0)E[x(0)xT(0)] H(0) + E[v(0) vT(0)]

= HT(0) P(0) H(0) + R(0) (6.39)

where the cross-covariance between x(0) and v(0) is 0, since the measurement
noise was assumed to be uncorrelated to the process noise. R(0) is the auto­
correlation matrix of the measurement noise v(0). In a similar way, the cross-
covariance between x(0) and z(0) can be expressed as

Q,(0) = E[z(0)xT(0)]

= E[(HT(0)x(0) + v(0))xT(0)]

= E[HT(0) x(0) xT(0) + v(0) xT(0)]

= HT(0) E[x(0) xT(0)] = HT(0) P(0) (6.40)

and

C«(0) = E[x(0) zT(0)] = P(0) H(0) (6.41)

Inserting these results into equations (6.35) and (6.36), respectively, we obtain
the conditioned mean and the covariance

x(01 0) = E[x(0)] + P(0) H(0)(HT(0) P(0) H(0) + R(O))"1

(z(0)-HT(0)E[x(0)]) (6.42)

C(010) = P(0) - P(0) H(0)(HT(0) P(0) H(0) + R(O))-1 HT(0) P(0)

(6.43)

Introduction to Kalman filters 169

Let us now take a step forward in time, i.e. for n = 1, before we have taken the
measurement z(l) into account, from equation (6.30) and various independence
assumptions (Anderson and Moore, 1979) we have the mean

x(l |0) = F(0)x(0|0) (6.44)

and the covariance

C(l | 0) = F(0) C(0 | 0) FT(0) + G(0) Q(0) GT(0) (6.45)

where Q(0) is the auto-correlation matrix of the process noise w(0). We are now
back in the situation where we started for n = 0, but now with n = 1. The calcu­
lations starting with equation (6.35) can be repeated to take the measurement
z(l) into account, i.e. to do the conditioning. For convenience, only the last two
equations in the sequel will be shown (compare to equations (6.42) and (6.43))

x(l | 1) = x(l |0) + C(1 |0)H(1)(HT(1)C(1 |0)H(1) + R(1))"1

(z (l) - H T (l) x (l | 0)) (6.46)

C(l | 1) = C(l | 0) - C(l | 0)H(1)(HT(1)C(11 0)H(1) + R(l))-1

HT(1)C(1|0) (6.47)

Repeating the steps as outlined above, we can now formulate a general,
recursive algorithm that constitutes the Kalman filter equations in their
basic form. These equations are commonly divided into two groups, the
measurement-update equations and the time-update equations.

Measurement-update equations

x(n |n) = x(n \n - 1) + C(n \ n - 1)U(n)(RT(n)C(n\n- l)H(n)

+ R(n))-\z(n) - HT(n)x(n \n-l)) (6.48)

C(« | n) = C(/i | n - 1) - C(w | n - 1) R(n)(UT(n) C(n\n- 1) H(/i)

+ R(n))~l HT(«) C(n\n- 1) (6.49)

Time-update equations

i(7i + l | «) = F(/i)i(n|/i) (6.50)

C(/i + 11 n) = ¥(n)C(n \ n)¥T(n) + G(n)Q(n)GT(n) (6.51)

The equations above are straightforward to implement in software. An alter­
native way of writing them, making it easier to draw the filter in diagram form, is

x(n + 1 | n) = F(/i) x(n \ n - 1) + K(n)(z(w) - RT(n) x(n \ n - 1)) (6.52)

where K(n) is the Kalman gain matrix

K(/i) = F(w)C(/i |n - 1)H(«)(HT(«)C(n\n- 1)H(n) + R(«))_1 (6.53)

> x(n\n — 1)

Figure 6.3 A basic Kalman filter. Note the copy of the signal model in the
dotted area

and the conditional error covariance matrix is given recursively by a discrete-
time Riccati equation

C(n + 117i) = F(/i)(C(n | n - 1) - C(n \ n - 1) H(w)

(HT(«) C(n\n- 1) H(n) + RO))"1 H1

C(w | n - 1)) FT(rc) + GO*) Q(n) GT(n) (6.54)

The structure of the corresponding Kalman Filter is shown in Figure 6.3.
The filter can be regarded as a copy of the signal model (see Figure 6.2) put
in a feedback loop. The input to the model is the difference between the actual
measured signal z(«) and our estimate of the measured signal HT(«) x(n \ n — 1)
multiplied by the Kalman gain K(n). This is mainly the same approach as the
recursive least square estimator in Figure 6.1. The difference

z(n) = z(n) -W(n)x(n\n - 1) (6.55)

is sometimes referred to as the innovation.
Now, to conclude this somewhat simplified presentation of the Kalman filter,

let us go back to Bill and the Corvette. As an example, we will design a Kalman
filter to estimate Bill's speed and position from the not-too-good measurements
available from the radar equipment.

We have earlier defined the signal model, i.e. we know x(«), F and G. We
are now writing the matrices without indices, since they are constants. Further,
we recall that the process noise is a Gaussian random variable w(n), which in
this example is a scalar resulting in the auto-correlation matrix Q turning into
a scalar as well. This is simply the variance Q = a^ which is assumed to be
constant over time.

Introduction to Kalman filters 171

Regarding the measurement procedure, since we can only measure posi­
tion and not speed, the observation matrix H (constant) will be (see also
equation (6.31))

H (6.56)

Since the measured signal z(n) is a scalar in this example, the measurement
noise v(n) will also be a scalar, and the auto-correlation matrix R will simply
consist of the constant variance R = &1. Now, all the details regarding the signal
model are determined, but we also need some vectors and matrices to implement
the Kalman filter.

First, we need vectors for the estimates of x(n)

x(n | n — 1) =
x\(n\n- 1)

x2(n | n - 1)

Then, we will need matrices for the error covariance

C(n | n - 1) =
C i i (f i | / ! - l) Cl2(n\n-\)

C2i(n\n-l) C22(n\n-l)

If we insert all the known facts above into equations (6.48)—(6.51),
the Kalman filter for this example is defined. From equation (6.48), the
measurement-update yields

\(n | n) = x(n | n — 1) +
Cn(n\n-\)

C2l(n\n-l)

z(n) —x\(n \n — 1)

Cn(n\n- \) + R
(6.57)

which can be expressed in component form

Cn{n\n-\){z(n)-xx(n\n-\))
x\{n\n) =x\{n\n - 1) +

x2(n | n) = x2(n \ n - 1) +

C n (n | » - 1) + J?

C2i(n\n-l)(z(n)-xi(n\n-\))

Cn(n\n-l) + R

Using equation (6.49) the covariance can be updated

(6.58a)

(6.58b)

C(n | n) = C(n \ n - 1)

"Cn(n |n - l)Cii(« |n - 1) Cn(n \ n - l)Cl2(n \n-\)

_C2i(n |n - 1)Cn(n |n - 1) C21(n \n - 1)Cl2(n \n-\)

1

C n (n | « - l) + i ?
(6.59)

172 Digital Signal Processing and Applications

or expressed in component form

C\\(n\n) = C\\(n\n- 1)

C\2(n\ri) = C\2(n\n- 1)

C2i(n\n) = C2i(n\n-l)-

C22(n\n) = C22(n\n-l)-
C\\(n\n- l) + R

and then, the time-update equations, starting with equation (6.50)

C\\{n\n-

Cu(n\n-

Cu(n

C2\(n\n-

Cn(n

Cz\{n\n-

\) + R

\)Cn(n\n-

\n-\) + R

l) C n (« | « -
\n-l) + R

\)Cn(n\n-

-1)

-1)

1)

x(« + 1 I n) =
x\(n\n)+X2(n\n)

x2(n | n)

(6.60a)

(6.60b)

(6.60c)

(6.60d)

(6.61)

This can be compared to the basic state-space signal model (6.27). If equation
(6.61) is expressed in component form, we get

x\(n+ 1 \n) =x\(n \n)+X2(n\n)

X2(n + 11 n) — X2(n \ n)

Finally, equation (6.51) gives

C(n + 1 | n)

(6.62a)

(6.62b)

rCii(«l«) + C2\ (n | n) + Cl2(n I n) + C22(n | n) Cl2(,
Cn{n\ri) + C22{n\n)

n\n) + C22(n \ «)1
C22(n | ri) J

(6.63)

In component form

Cii(» + 1 | n) = Cn(n I n) + C2l(n \ n) + Cl2(n \ n) + C22(n \ n) (6.64a)

CX2(n + 1 | n) = Cn(n \ n) + C22(n \ n) (6.64b)

C2l(n + l\n) = C2\(n\n) + C22(n \ n) (6.64c)

C22(n + 1 |n) = C22(n \n) + Q (6.64d)

Hence, the Kalman filter for estimating Bill's position and speed is read­
ily implemented by repetitively calculating the 12 equations (6.58a), (6.58b),
(6.60a)-(6.60d), (6.62a), (6.62b) and (6.64a)-(6.64d) above.

For this example, Figure 6.4 shows the true velocity and position of the car
and the noisy, measured position, i.e. the input to the Kalman filter. Figure 6.5

Introduction to Kalman filters 173

10 20 30 40 50 60

position

70 80 90 100

measured

10 20 30 40 50 60 70 80 90

Figure 6.4 True velocity, position and noisy measured position

shows the output from the filter, the estimated velocity and position. An overshot
can be seen in the beginning of the filtering process, before the filter is tracking.
Figure 6.6 shows the two components of the decreasing Kalman gain as a
function of time.

6.2.3 Kalman filter properties

At first, it should be stressed that the brief presentation of the Kalman filter in
the previous section is simplified. For instance, the assumption about Gaussian
noise is not necessary in the general case (Anderson and Moore, 1979). Nor is
the assumption that the process and measurement noise is uncorrelated. There
are also a number of extensions (Anderson and Moore, 1979) of the Kalman
filter which have not been described here. Below, we will however discuss some
interesting properties of the general Kalman filter.

The Kalman filter is linear. This is obvious from the preceding calculations.
The filter is also a discrete-time system and has finite dimensionality.

The Kalman filter is an optimal filter in the sense of achieving minimum
variance estimates. It can be shown that in Gaussian noise situations, the Kalman

174 Digital Signal Processing and Applications

estimated velocity

40 50 60

estimated position

100

10 20 30 40 50 60

Figure 6.5 Estimated velocity and position

K(2)

100

5 10 15 20 25

Figure 6.6 Kalman gain as a function of time

filter is the best possible filter, and in non-Gaussian cases, the best linear filter.
The optimal filter in the latter case is non-linear and may therefore be very hard
to find and analyze in the general case.

The gain matrix K(n) can be calculated off-line, in advance, before the
Kalman filter is actually run. The output x(n \ n - 1) of the filter is obviously
dependent on the input z(«), but the covariance matrix C(n \ n — 1) and hence
the Kalman gain K(«) is not. K(n) can be regarded as the smartest way of taking
the measurements into account given the signal model and statistical properties.

Introduction to Kalman filters 175

From the above, we can also conclude that since C(n \ n — 1) is independent
of the measurements z(n), no one set of measurements helps more than any
other to eliminate the uncertainty about x(n).

Another conclusion that can be drawn is that the filter is only optimal given
the signal model and statistical assumptions made at design time. If there is
a poor match between the real world signals and the assumed signals of the
model, the filter will, of course, not perform optimally in reality. This problem
is, however, common to all filters.

Further, even if the signal model is time invariant and the noise processes
are stationary, i.e. F(«), G(«), H(«), Q(n) and R(n) are constant, in general
C(n | n — 1) and hence K(n) will not be constant. This implies that in the general
case, the Kalman filter will be time varying.

The Kalman filter contains a model, which tracks the true system we are
observing. So, from the model, we can obtain estimates of state variables that
we are only measuring in an indirect way. We could, for instance, get an estimate
of the speed of Bill's Corvette in our example above, despite only measuring
the position of the car.

Another useful property of the built-in model is that in case of missing mea­
surements during a limited period of time, the filter can "interpolate" the state
variables. In some applications, when the filter model has "stabilized", it can
be "sped up" and even be used for prediction.

Viewing the Kalman filter in the frequency domain, it can be regarded as a
low-pass filter with varying cut-off frequency (Bozic, 1994). Take for instance
a scalar version of the Kalman filter, e.g. the RLS algorithm equation (6.9),
repeated here for convenience

x(N + 1) = x(N) + ^ y (^ + 1) " %N)) (6.65)

To avoid confusion we shall rename the variables so that u(n) is the input
signal and v(n) is the output signal of the filter, resulting in

v(N + 1) = v(N) + -— - (u(N + 1) - v(A0) (6.66)

Denoting the gain factor k = 1/(N + 1) and taking the z-transform of equation
(6.66) we get

zV(z) = V(z) + k(zU(z) - V(z)) (6.67)

Of course, the z in equation (6.67) is the z-transform parameter, while in
equation (6.65) it is the input signal to the filter. They are certainly not the same
entity. Rewriting equation (6.67) we obtain the transfer function of the filter

TT/ x V(z) kz

Now, when the filter is just started, and TV = 0 we get k = 1 and the transfer
function will be

H(z) = - = 1 (6.69)
z

176 Digital Signal Processing and Applications

In this case, the filter has a pole and a zero in the center of the unit circle in
the z-plane and the magnitude of the amplitude function is unity. This is nothing
but an all-pass filter with gain one.

Later, when the filter has been running for a while and N -> oo, k -» 0, the
transfer function (6.68) turns into

0-z
H{z) = (6.70)

Z — L

This is a low-pass filter with a pole on the unit circle and a gain tending towards
zero. Due to the placement of the pole, we are now dealing with a highly
narrow-band low-pass filter, actually a pure digital integrator.

6.2.4 Applications

The Kalman filter is a very useful device that has found many applications in
diverse areas. Since the filter is a discrete-time system, the advent of powerful
and not too costly digital signal processing (DSP) circuits has been crucial to
the possibilities of using Kalman filters in commercial applications.

The Kalman filter is used for filtering and smoothing measured! signals,
not only in electronic applications, but also in processing of data in the areas,
e.g. economy, medicine, chemistry and sociology. Kalman filters are also to
some extent used in digital image processing, when enhancing the quality of
digitized pictures. Further detection of signals in radar and sonar systems and in
telecommunication systems often requires filters for equalization. The Kalman
filter, belonging to the class of adaptive filters, performs well in such contexts
(see Chapter 3).

Other areas where Kalman filters are used are process identification, mod­
eling and control. Much of the early developments of the Kalman filter theory
came from applications in the aerospace industry. One control system exam­
ple is keeping satellites or missiles on a desired trajectory. This task is often
solved using some optimal control algorithm, taking estimated state variables
as inputs. The estimation is, of course, done with a Kalman filter. The estimated
state vector may be of dimension 12 (or more) consisting of position (x, y9 z),
yaw, roll, pitch and the first derivatives of these, i.e. speed (x, y, z) and speed of
yaw, roll and pitch movements. Designing such a system requires a considerable
amount of computer simulations.

An example of process modeling using Kalman filters is to analyze the behav­
ior of the stock market, and/or to find parameters for a model of the underlying
economic processes. Modeling of meteorological and hydrological processes
as well as chemical reactions in the manufacturing industry are other examples.

Kalman filters can also be used for forecasting, for such as prediction of air
pollution levels, air traffic congestion, etc.

Summary In this chapter we have covered:

• Recursive least square (RLS) estimation
• The pseudo-inverse and how to obtain it in an iterative way
• The measurement-update equations and the time-update equations of the

Kalman filter

Introduction to Kalmanfilters 111

• The innovation, the Kalman gain matrix and the Riccatti equation
• Properties and applications of the Kalman filter.

Review questions R6-1 The gas tank gauge of a car is sampled every second by an analog-to-
digtal (A/D) converter and an embedded computer. Unfortunately, the
transducer signal is very noisy, resulting in a fluctuating reading on the
digital display. To "clean" the transducer signal and obtain a stable read­
ing, a suggestion is to employ an RLS algorithm as in equation (6.9).
Why is this not a good idea? How could the algorithm be modified to
perform better?

R6-2 What is the pseudo-inverse? When is it used?
R6-3 Draw a block diagram of a basic Kalman filter. Explain the functioning

of the different blocks and state the signal names (compare to Figure 6.3).
R6-4 In the "Bill and Corvette example", we have assumed an almost constant

speed and the small variations were represented by the process noise. If
we extend the state-space model assuming a constant acceleration x?>(n)
(Bill has got a gas turbine for his car?), how will this be reflected in the
state vector and the transition matrix?

R6-5 Explain briefly how a Kalman filter can be used for prediction of a future
signal. Which are the dangers?

Solved problems P6-1 Examine the measurement-update and time-update equations (6.48)-
(6.51), and explain the significance of the different terms in the equations.
How will the filter perform if the signal quality is perfect (no mea­
surement noise)? What happens if the quality is extremely bad? Try
setting the measurement noise to zero and infinity, respectively, in the
measurement-update and time-update equations and explain the behavior
of the filter.

P6-2 Derive the Kalman filter function (6.52), the Kalman gain equation (6.53)
and the Riccatti equation (6.54) starting from the measurement-update
and time-update equations. What happens to the Kalman gain and the
Riccatti equation if the signal quality is perfect (no measurement noise)?
What happens if the quality is extremely bad?

P6-3 Write a MATLAB™ program to simulate Bill and his Corvette. The
program should calculate and plot the true velocity, position and the
measured position as in Figure 6.4. Use the MATLAB™ expressions
w = o. i5*randn to generate the process noise and v = io*randn for the
measurement noise. Further, assume the following starting conditions (at
time 0): position equal to 0 and speed equal to 1.

P6-4 Write a MATLAB™ program implementing the Kalman filter as used in
the "Bill and Corvette example". The program should use the measured
position generated by the program in P6-3 above as the input signal and
plot the estimated speed and estimated position as in Figure 6.5. Assume
the variance of the process noise to be 0.2 and the variance of the mea­
surement noise to be equal to 4. Start the Kalman gain vector and the
covariance matrix with all ones.

7 Data compression

Background What is information? Certainly a relevant question, but is there a unique answer?
If you ask a journalist, a politician or an engineer, you will probably get quite
different answers. For people working in the telecommunications and com­
puting businesses, however, the answer is simple. Transporting and storing
information is money.

In this chapter, we will look deeper into the nature of information, and we will
do it from a mathematical and statistical point of view. We will also consider the
problem of data compression, i.e. different ways of minimizing the amount of
digital data symbols, e.g. bits, need to represent a given amount of information
in, for instance, a computer file. Fewer bits to store per file means more files
and more users on a hard disk. Fewer bits to transport means faster communi­
cations, better transmission capacity and more customers in our networks and
communication satellite links. Hence, data compression is a good business.

Objectives In this chapter we will deal with:

• General ideas of information theory, how to quantize information, the "bit"
• Mutual information, entropy and redundancy, source coding
• Huffman algorithm and prefix-free variable length codes
• Different versions of delta modulation and differential pulse code modulation

(PCM) algorithms
• Speech coding techniques and vocoders
• Image coding, joint photographies expert group (JPEG) and moving pictures

expert group (MPEG)
• Other common data compression methods, layer-3 of MPEG-1 (MP3) and

Lempel-Ziv-Welch (LZW).

7.1 An information
theory primer

7.1.1 Historic notes

The concept of information theory (Cover and Thomas, 1991) in a strict math­
ematical sense was born in 1948, when C.E. Shannon published his celebrated
work "A Mathematical Theory of Communication", later published using the
title "The Mathematical Theory of Communication". Obviously, Shannon was
ahead of his time and many of his contemporary communication specialists did
not understand his results. Gradually it became apparent, however, that Shannon
had indeed created a new scientific discipline.

Besides finding a way of quantizing information in a mathematical sense,
Shannon formulated three important fundamental theorems: the source coding
theorem, the channel coding theorem and the rate distortion theorem. In this

180 Digital Signal Processing and Applications

chapter, we will concentrate on the source coding theorem, while implications
of the channel coding theorem will be discussed in Chapter 8.

The works of Shannon are an important foundation of modern information
theory. It has proven useful not only in circuit design, computer design and com­
munications technology, but it is also being applied to biology and psychology,
to phonetics and even to semantics and literature.

7.1.2 Information and entropy

There are many different definitions of the term "information"; however, in this
case we will define it as receiving information implies a reduction of uncer­
tainty about a certain condition. Now, if we assume that this condition or
variable can take a finite number of values or states, these states can be
represented using a finite set of symbols, an "alphabet".

Consider the following example: in a group of 10 persons, we need to know in
which country in Scandinavia each person is born. There are three possibilities;
Denmark, Norway and Sweden. We decide to use a subset of the digits 0, 1,
2 , . . . , 9 as our symbol alphabet as follows

1 = Denmark, 2 = Norway, 3 = Sweden

The complete message will be a 10 digit long string of symbols, where each
digit represents the birthplace of a person. Assuming that the probability of
being born in any of the three countries is equal, p\ = 1/3 (born in Denmark),
p2 = 1/3 (born in Norway) and pi = l/3 (born in Sweden), the total uncertainty
about the group (in this respect) before the message is received in one out of
310 = 59 049 (the number of possible combinations). For every symbol of the
message we receive, the uncertainty is reduced by a factor of three, and when
the entire message is received, there is only one possible combination left. Our
uncertainty has hence been reduced and the information has been received.

Extending our example above, we now need to know in which country in
Europe the persons are born. We realize that our symbol alphabet must be mod­
ified, since there are 34 countries in Europe today (changes rather quickly these
days). We extend our alphabet in the following way. First we use 0, 1. 2, . . . , 9
as before, and after that we continue using the normal letters, A, B, C, . . . ,
Z. This will give us an alphabet consisting of 10 + 26 = 36 different possible
symbols, out of which we use 34. If all the countries are equally probable birth­
places, the uncertainty before we get the message is one out of 3410 ^2.06 • 1015

possible combinations. Every symbol reduces the information by a factor of 34
and when the entire 10 symbols string is received, no uncertainty exists.

From the above example, we draw the conclusion that in the latter case, the
message contained a larger amount of information than in the first case. This is
because of the fact that in the latter case there were more countries to choose
from than in the former. The uncertainty of "which country in Europe?" is of
course larger than the uncertainty of "which country in Scandinavia?". If we
know in advance that there are only persons born in Scandinavia in the group,
this represents a certain amount of information that we already have: and that
need not be included in the message. From this discussion, we are now aware of
the fact that when dealing with information measures, a very relevant question
is "information about what?".

Data compression 181

In the latter case above, dealing with extending the alphabet, we could have
chosen another approach. Instead of using one character per symbol, we could
have used two characters, e.g. 01, 02, 03, . . . , 33, 34. In this way, only the
digits 0, 1, 2, 3, . . . , 9 would have been used as in the earlier case, but on
the other hand, the message would have been twice as long, i.e. 20 characters.
Actually, we could have used any set of characters to define our alphabet. There
is, however, a trade-off in that the smaller the set of characters, the longer the
message. The number of characters per symbol L needed can be expressed as

L =
log(JVs)
log(ATc)

= r iog^s) ! (7.i)

where TVs is the number of symbols needed, in other words, the number of dis­
crete states, NQ is the number of different characters used and f 1 is the "ceiling"
operator (the first integer greater or equal to the argument). For instance, if we
use the popular binary digits (BITs for short) 0 and 1, this implies that NQ = 2.
Using binary digits in our examples above implies

"Scandinavia": Ns = 3 L = riog2(3)l = [lb(3)l = 11.581

= 2 char/symbol

"Europe": Ns = 34 L = flb(34)l = [5.091 = 6 char/symbol

From above, it can be seen that lb() means logarithm base 2, i.e. log2().
A binary message for the "Scandinavia" example would be 20-bit long, while

for the "Europe" example 60 bits. It is important to realize that the "shorter"
version (using many different characters) of the respective strings contains the
same amount of information as the "longer", binary version.

Now in an information theory context, we can see that the choice of characters
or the preferred entries used to represent a certain amount of information does
not matter. Using a smaller set of characters would, however, result in longer
messages for a given amount of information. Quite often, the choice of character
set is made upon the way a system is implemented. When analyzing commu­
nication systems, binary characters (bits) are often assumed for convenience,
even if another representation is used in the actual implementation.

Let us look at another situation and assume that we also want to know the
gender of the persons in the group. We choose to use symbols consisting of
normal letters. The two symbols will be the abbreviations "fe" for female and
"ma" for male. Hence, information about the entire group with respect to sex
will be a 20 characters long string, e.g.

fefemafemamamafefema

Taking a closer look at this string of information, we realize that if every second
letter is removed, we can still obtain all the information we need

ffmfmmmffm

or

eeaeaaaeea

182 Digital Signal Processing and Applications

would be OK. In this case, the longer string obviously contains "unnecessary
information" or so-called redundant information, i.e. information that could
be deducted from other parts of the message and thus not reduce our uncertainty
(no "news"). If the redundant information is removed, we can still reduce the
uncertainty to a desired level and obtain the required information. In this simple
example, the redundancy in the longer string is due to the dependency between
the characters. If we receive, for instance, the character "f", we can be 100%
sure that the next character will be "e", so there is no uncertainty The shorter
versions of the string cannot be made any more shorter, because there is no
dependency between the characters. The sex of a person is independent of the
sex of another person. The appearance of the characters "f" and "m" seems
to be completely random. In this case, no redundancy is present. The example
above is of course a very simple and obvious one. Redundancy is in many cases
"hidden" in more sophisticated ways.

Removing redundancy is mainly what data compression is all about. A very
interesting question in this context is how much information is left in a message
when all redundancy is removed? What maximum data compression factor is
possible? This question is answered by the source coding theorem of Shannon.
Unfortunately, the theorem does not tell us the smartest way of finding this
maximum data compression method; it only tells us that there is a minimum
message size that contains exactly all the information we need.

A drawback when removing redundancy is that our message becomes more
vulnerable to errors. In the example above, assume that the letters are written
by hand in haste, and we find a distorted character looking like an "o". Since we
have only defined "e" for female and "a" for male, this leads to an uncertainty.
If we had used the system with redundant characters, we would have seen either
"fo" or "mo", giving us a chance to resolve the ambiguity. This is the basic idea
behind error-correcting codes, dealt with in Chapter 8.

Now, let us be a bit more formal about the above. To start with, we shall
define the concept of mutual information. Assuming that we want to gain
information about an event A by observing the event B, the mutual information
is defined as

where we have assumed that the probability of the event A is non-zero, i.e.
P(A)^0 and that P (£) # 0 . P(A\B) is the conditional probability, i.e. the
probability of A given that B is observed. The unit will be "bits" if logarithm base
2 (lb()) is used (b = 2) and "nats" if the natural logarithm (ln()) is used (b = e).

Using Bayes' theorem (Papoulis and Pillai, 2001) it is straightforward to
show that I {A, B) is symmetric with respect to A and B

(7.3)

Hence, it does not matter if B is observed to gain information about A, or vice
versa. The same amount of information is obtained. This is why I {A, B) is called
the mutual information between the events A and B.

Data compression 183

If we now assume that the events A and B are completely independent, there
is no "coupling" in between them what-so-ever. In this case, P(A \B) = P(A) and
the knowledge of A is not increased by the fact that B is observed. The mutual
information in this case is

I(A,B) = l ° g (^) = log(l) = 0 (7.4)

On the other hand, if there is a complete dependence between A and B or, in
other words, if when observing B we are 100% sure that ̂ 4 has happened, then
P(A\B)= land

I(A,B) = l ° g (p ^) = - l o g (^)) (7-5)

The 100% dependence assumed above is equivalent to observing A itself instead
of B, hence

I(A,A) = -log(P(A)) (7.6)

which represents the maximum information we can obtain about the events or,
in other words, the maximum amount of information inherent in A.

So far we have discussed single events, but if we now turn to the case of
having a discrete random variable X that can take one of the values x\ ,#2 , . . . ,
XK, we can define the K events as A(whenX = JC/. Using equation (7.6) above
and taking the average of the information for all events, the entropy of the
stochastic, discrete variable X can be calculated as

K

H(X) = E[I(Ai9Ai)] = " £ fxixd log(fx(xi)) (7.7)
1=1

wherefx(xt) is the probability thatX =Xj9 i.e. that events, has happened.
The entropy can be regarded as the information inherent in the variable X. As

stated in the source coding theorem, this is the minimum amount of information
we must keep to be able to reconstruct the behavior of X without errors. In other
words, this is the redundancy-free amount of information that should preferably
be produced by an ideal data compression algorithm.

An interesting thing about the entropy is that the maximum information
(entropy) is obtained when all the outcomes, i.e. all the possible values x;, are
equally probable. In other words, the signalX is completely random. This seems
intuitively right, since when all the alternatives are equally probable the uncer­
tainty is the greatest.

Going back to our examples in the beginning of this section, let us calculate
the entropy. For the case of "birthplace in Scandinavia" the entropy is (assuming
equal probabilities)

3 1 3 / 1 \
H(X) = -J2fx(xi)lb(fx(xi)) = - - ^ l b -) = 1.58 bits/person

Hence, the minimum amount of information for 10 independent persons
is 15.8 bits (we used 20 bits in our message). Data compression is therefore
possible. We only have to find the "smartest" way.

184 Digital Signal Processing and Applications

For the "birthplace in Europe" example, the entropy can be calculated in a
similar way

34 1 34 / 1 \
H(X) = -J2fx(*i)Mfx(xi)) = - - X > (- J = 5.09 bits/person

The minimum amount of information for 10 independent persons is 50.9 bits
and we used 60 bits in our message. Data compression is possible in thi s case too.

7.1.2.1 Some concluding remarks about the concept of entropy

The term entropy is commonly used in thermodynamics, where it refers to the
disorder of molecules. In a gas, molecules move around in random patterns,
while in a crystal lattice (solid state) they are lined up in a very ordered way;
in other words, there is a certain degree of dependency. The gas is said to
have higher entropy than the crystal state. Now, this has a direct coupling to
the information concept. If we had to describe the position of a number of
molecules, it would require more information for the gas than for the crystal.
For the molecules in the gas we would have to give three coordinates (x, y, z)
in space for every molecule. For the crystal, the positions could be represented
by giving the coordinates for the reference corner of the lattice and the spacing
of the lattice in JC, y and z directions.

If you take, for instance, water and turn it into ice (a crystal with lower
entropy), you have to put the water in the freezer and add energy. Hence, reduc­
tion of entropy requires energy. This is also why you become exhausted by
cleaning your room (reduction of entropy), while the "messing up" process
seems to be quite relaxing. In an information theory context, freezing or clean­
ing translates into getting rid of information, i.e. "forgetting" requires energy.

7.2 Source coding In the previous section, we concluded that getting rid of redundancy was the
task of data compression. This process is also called source coding. The under­
lying idea is based on the fact that we have an information source generating
information (discrete or continuous) at a rate of H bits/s (the entropy). If we
need to store this information, we want to use as small storage as possible per
time unit. If we are required to transmit the information, it is desirable to use
as low data rate R as possible. From the source coding theorem, we however
know that R > H to avoid loss of information.

There are numerous examples of information sources, such as a keyboard
(+human) generating text, a microphone generating a speech signal, a television
camera, an image scanner, transducers in a measurement logging system, etc.

The output information flow (signals) from these sources is commonly the
subject of source coding (data compression) performed using general purpose
digital computers or digital signal processors (DSPs). There are two classes
of data compression methods. In the first class, we find general data com­
pression algorithms, i.e. methods that work fairly well for any type of input
data (text, images and speech signals). These methods are commonly able to
"decompress", in other words, restore the original information data sequence

Data compression 185

without any errors ("lossless"). File compression programs for computers (e.g.
"double space", "pkzip" and "arc") are typical examples. This class of data
compression methods therefore adhere to the source coding theorem.

In the other class of data compression methods, we find specialized algo­
rithms, for instance, speech coding algorithms in cellular mobile telephone
systems. This kind of data compression algorithms makes use of prior infor­
mation about the data sequences and may, for instance, contain a model of
the information source. For a special type of information, these specialized
methods are more efficient than the general type of algorithms. On the other
hand, since they are specialized, they may exhibit poor performance if used with
other types of input data. A speech coding device designed for Nordic language
speech signals may, for instance, be unusable for Arabian users. Another com­
mon property of the algorithms in this class is the inability to restore exactly
the original information ("lossy"). They can only restore it "sufficiently" well.
Examples are speech coding systems (your mother almost sounds like your girl­
friend) or image compression algorithms, producing more or less crude pictures
with poor resolution and a very limited number of color shades.

7.2.1 Huffman algorithm

In the following discussion, we will mainly use binary digits, i.e. 0 and 1. Other
character sets can, of course, be used. The basic idea of the Huffman coding
algorithm is to use variable length, prefix-free symbols and to minimize the
average length of the symbols (in number of characters), taking the statistics of
the symbols into account. This algorithm belongs to the class of general data
compression algorithms.

Variable length means that a certain symbol can be one, two, three and so on
characters long, e.g. 0, 10, 1111, etc. To be able to decode a string of variable
length symbols, no symbol is, however, allowed to be a prefix of a longer
symbol. We must be able to identify the symbol as soon as the last character of
the symbol is received. The code must be prefix free. A simple example of a
prefix-free code is a code consisting of the symbols

0,10,11

while the code using the symbols

1,11,101

is not prefix free. If we, for instance, receive "111011" we cannot tell if it is
" 1 " , " 1 " , "101", " 1 " or "11", "101", " 1 " or . . .?

The average length of a symbol can be expressed as

K

E[L] = J2liMud (7.8)
i=\

where /,- is the number of characters (the length) of symbol wz and/c/(w;) is
the probability of symbol w,-. The way to minimize the average symbol length
(equation (7.8)) is obviously to assign the most probable symbols the shortest
codes and the least probable symbols the longest codes. This idea is not new. It

186 Digital Signal Processing and Applications

is, for instance, used in telegraphy in form of the Morse code (Carron, 1991),
invented by Samuel Morse in the 1840s. The most probable letters like "e" and
"t" have the shortest Morse codes, only one dot or one dash, respectively, while
uncommon characters like question mark are coded as long sequences of dots
and dashes.

Designing a code having the desired properties can be done using Huffman
algorithm, which is a tree algorithm. It will be demonstrated for bimiry codes,
which result in binary trees, i.e. trees that branch into two branches, 0 and 1.
Huffman algorithm can be expressed using "pseudo-code" in the following way:

huffman: assign every symbol a node
assign every node the probabi l i ty of the symbol
make a l l the nodes ac t ive .

while (active nodes lef t) do
{

take the two least probable active nodes
join these nodes into a binary tree
deactivate the nodes
add the probabilities of the nodes
assign the root node this probability
activate the root node.

}

The following example will be used to illustrate the way the algorithm
works. Assume that we have five symbols from our information source with the
following probabilities

u\ /c/(m) = 0.40

^2 fu(ui) — 0.20

m /tf(«3) = 0.18
W4 fu(U4) = 0.\7

us fu(u5) = 0.05

The resulting Huffman tree is shown in Figure 7.1 (there are many possi­
bilities). Probabilities are shown in parentheses.

0.40

Figure 7.1 A tree diagram used to find the optimum binary Huffman code of
the example

Data compression 187

Building the tree is as follows. Firstly, we take the symbols having the smallest
probability, i.e. us and 1/4. These two symbols now constitute the first little sub­
tree down to the right. The sum of the probabilities is 0.05 + 0.17 = 0.22. This
probability is assigned to the root node of this first little sub-tree. The nodes us
and 1/4 are now deactivated, i.e. dismissed from the further process, but the root
node is activated.

Looking at our table of active symbols, we now realize that the two small­
est active nodes (symbols) are W2 and W3. We form another binary sub-tree
above the first one in a similar way. The total probability of this sub-tree is
0.20 + 0.18 = 0.38, which is assigned to the root node.

During the next iteration of our algorithm, we find that the two active root
nodes of the sub-trees are those possessing the smallest probabilities, 0.22 and
0.38, respectively. These root nodes are hence combined into a new sub-tree,
having the total probability of 0.22 + 0.38 = 0.60.

Finally, there are only two active nodes left, the root node of the sub-tree just
formed and the symbol node u\. These two nodes are joined by a last binary sub­
tree and the tree diagram for the optimum Huffman code is completed. Using
the definition that "up-going" (from left to right) branches are represented by
a binary " 1 " and "down-going" branches by a "0" (this can, of course, be done
in other ways as well), we can now write down the binary, variable length,
prefix-free codes for the respective symbols

U\ 1

u2 011
w3 010
u4 001
u5 000

Using equation (7.8) the average symbol length can be calculated as E[L] =
2.2 bits/symbol. The entropy can be found to be H = 2.09 bits/symbol using
equation (7.7). As can be seen, we are quite close to the maximum data com­
pression possible. Using fixed length, binary coding would have resulted in
E[Z] = 3 bits/symbol.

Using this algorithm in the "born in Scandinavia" example, an average sym­
bol length of E[L] = 1.67 bits/symbol can be achieved. The entropy is H = 1.58
bits/symbol. For the "born in Europe" example the corresponding figures are
E[L] = 5.11 bits/symbol and H = 5.09 bits/symbol.

The coding efficiency can be defined as

H(X)

" = W (7-9)

and the redundancy can be calculated using

, H(x) r = l - w = l — (7.10)
' E[L] V ;

If the efficiency is equal to one, the redundancy is zero and we have found
the most compact, "lossless" way of coding the information. For our examples
above, we can calculate the efficiency and the redundancy

1.58
"Born in Scandinavia": n = = 0.946 => r = 1 - 0.946 = 0.054

1.67

188 Digital Signal Processing and Applications

5.09
'Born m Europe": rj = = 0.996 r = 1 - 0.996 = 0.004

In principle, the Huffman algorithm assumes that the information source is
"without memory", which means that there is no dependency between succes­
sive source symbols. The algorithm can, however, be used even for information
sources with "memory", but better algorithms can often be found for these
cases. One such case is the coding of facsimile signals, described at the end of
this chapter.

7.2.2 Delta modulation, adaptive delta modulation and continuously
variable slope delta modulation

Delta modulation (DM) was briefly discussed in Chapter 2 in conjunction with
sigma-delta analog-to-digital (A/D) converters. The delta modulation tech­
nique can also be viewed as a data compression method. In this case, redundancy
caused by dependency between successive samples in, for instance, a pulse code
modulation (PCM) data stream can be removed. The idea behind delta modu­
lation is to use the difference between two successive data samples, rather than
the samples themselves. Hopefully, the difference will be small and can be rep­
resented by fewer bits than the value of the samples themselves. In the simplest
form of delta modulation, the difference is fixed to only ±1 PCM step and can
hence be represented by 1 bit. Assuming the PCM word has a word length ofN
bits, and that it is transmitted using a bit rate of R bits/s, the transmission rate
of a DM signal would be only R/N bits/s. Figure 7.2 shows a block diagram of
a simple delta modulator (data compressing algorithm) and delta demodulator
("decompressing" algorithm).

Starting with the modulator, the incoming data sequence x(ri) is com­
pared to a predicted value x{n), based on earlier samples. The difference
d(n) = x(n)—x(n) ("prediction error") is fed to a 1-bit quantizer, in this case
basically a sign detector. The output from this detector is s(n)

s(n)-.
+8 if d(n) > 0

-8 if d(n) < 0
(7.11)

x{n) +/-]

^q
i

jx*,,)

5c(n)

quantizer

predictor - 3

<>\

ft
y

s{n) (j

A

ft

Kn) predictor

y(n)^

<—

Figure 7.2 A generic delta modulator and demodulator

Data compression 189

where 8 is referred to as the step size, in this generic system 8=1. Further, in
this basic-type delta modulation system, the predictor is a first-order predictor,
basically an accumulator, in other words, a one sample delay (memory), hence

j c (/ i) = j c (/ i - l) + j (/ i - l) (7.12)

The signal x(n) is reconstructed in the demodulator using a predictor similar
to the one used in the modulator. The demodulator is fed the delta-modulated
signal s(n), which is a sequence of ±8 values. The reconstructed output signal
is denoted y(n) in Figure 7.2

y(n) = y(n) + s(n) = y(n - 1) + s(n) (7.13)

A simple DM system like above, using a fixed step size <5, is called a linear delta
modulation (LDM) system. There are two problems associated with this type of
system, slope overload and granularity. The system is only capable of tracking
a signal with a derivative (slope) smaller than ±81 x where r is the time between
two consecutive samples, i.e. the sampling period. If the slope of the signal is too
steep, slope overload will occur. This can, of course, be cured by increasing the
sampling rate (for instance, oversampling which is used in the sigma-delta A/D
converter, see Chapter 2) or increasing the step size. By increasing the sampling
rate, the perceived advantage using delta modulation may be lost. If the step
size is increased, the LDM system may exhibit poor signal-to-noise ratio (SNR)
performance when a weak input signal is present, due to the ripple caused by
the relatively large step size. This is referred to as the granularity error.

Choosing a value of the step size 8 is hence crucial to the performance of an
LDM system. This kind of data compression algorithm works best for slowly
varying signals having a moderate dynamic range. LDM is often inappropriate
for speech signals, since in these signals there are large variations in amplitude
between silent sounds (e.g. "ph" or "sh") and loud sounds (like "t" or "a").

A way to reduce the impact of the problems above is to use adaptive delta
modulation (ADM). In the ADM system, the step size is adapted as a function
of the output signal s(n). If, for instance, s(n) has been -\-8 for a certain number
of consecutive samples, the step size is increased. This simple approach may
improve the DM system quite a bit. However, a new problem is now present.
If there are errors when transmitting the data sequence s(n), the modulator and
demodulator may disagree about the present step size. This may cause consid­
erable errors that will be present for a large number of succeeding samples.
A way to recover from these errors is to introduce "leakage" into the step size
adaptation algorithm. Such a system is the continuously variable slope delta
(CVSD) modulation system.

In CVSD, the step size 8(n) depends on the two previous values of the output
s(n). If there has been consecutive runs of ones or zeros, there is a risk for slope
overload and the step size is increased to be able to "track" the signal faster. If,
on the other hand, the previous values of s(n) have been alternating, the signal
is obviously not changing very fast, and the step size should be reduced (by
"leakage") to minimize the granulation noise. The step size in a CVSD system
is adapted as

f y8(n - 1) + C2 if s(n) = s(n - 1) = s(n - 2)
8(n)=\ (7.14)

y8(n-l) + Ci else v '

190 Digital Signal Processing and Applications

where 0 < y < 1 is the "leakage" constant and C^ > C\ > 0. The constants C\
and C2 are used to define the minimum and maximum step size as

-^<8(n)<-^ (7.15)
\-y \-y

Still, the system may suffer from slope overload and granularity problems.
CVSD, e.g. being less sensitive to transmission errors than ADM, was however
widely popular until the advent of adaptive differential pulse code modula­
tion (ADPCM) algorithms (see below) standardized by the Comite Consultatif
International Telegraphique et Telephonique (CCITT).

7.2.3 Differential pulse code modulation and adaptive differential
pulse code modulation

The differential pulse code modulation (DPCM) scheme can be viewed as
an extension of delta modulation presented above. The same block diagram
Figure 7.2 applies, but in the DPCM case, we have a quantizer using p values,
not a 1-bit quantizer as in the former case, but rather an lb(p)-bit quantizer.
Further, the predictor in this case is commonly of higher order, and can be
described by its impulse response h(n), hence

N

x(n) = J^ Kk)(x(n -k) + s(n - k)) (7.16)
k=i

Note, if h(\) = 1 and h(k) = 0 for k > 1, then we are back in the first-order
predictor used by the delta modulation algorithm (7.12). The predictor is com­
monly implemented as a finite impulse response (FIR) filter (see Chapter 1)
which can be readily implemented using a DSP. The length of the filter is often
quite moderate, N = 2 up to N = 6 is common.

The advantage of DPCM over straightforward PCM (see Chapter 2) is of
course the data compression achieved by utilizing the dependency between
samples in, for instance, an analog speech signal. If data compression is not
the primary goal, DPCM also offers the possibility of enhancing the SNR.
As DPCM is only quantizing the difference between consecutive samples and
not the sample values themselves, a DPCM system has less quantization error
and noise than a pure PCM system using the same word length.

To be able to find good parameters h(n) for the predictor and a proper number
of quantization levels/?, knowledge of the signal statistics is necessary. In many
cases, although the long-term statistics is known, the signal may depart signif­
icantly from these during shorter periods of time. In such applications, an
adaptive algorithm may be advantageous.

Adaptive differential pulse code modulation (ADPCM) is a term used for
two different methods, namely adaptation of the quantizer and adaptation of
the predictor (Marwen and Ewers, 1993). Adaptation of the quantizer involves
estimation of the step size, based on the level of the input signal. This estimation
can be done in two ways, forward estimation (DPCM-AQF) and backward
estimation (DPCM-AQB) (see Figure 7.3). In the forward case AQF, a number
of input samples are first buffered in the modulator and used to estimate the

Data compression 191

AQF

x(n)

AQB

x(n)

buffer

•

level
estimator

encoder

i k

level
estinr lator

encoder [

i k

4 1

r Udld

P Gala

1 *

leve
inform*

>l
ition

decoder

A

level
estimator

decoder

•

level
control

An)

yin)

Figure 7.3 Forward estimation (DPCM-AQF) and backward estimation
(DPCM-AQB)

signal level. This level information is sent to the demodulator, together with the
normal DPCM data stream. The need to send the level information is a drawback
of AQF and for this reason, AQB is more common. Another drawback of AQF
is the delay introduced by the buffering process. This delay may render AQF
unusable in certain applications. AQF, however, has the potential of performing
better than AQB.

In backward level estimation AQB, estimation is based on the out-going
DPCM data stream. A similar estimation is made in the demodulator, using the
incoming DPCM data. This scheme has some resemblance to CVSD, discussed
above. Adaptive quantizers commonly offer an improvement in SNR of roughly
3-7 dB compared to fixed quantizers. The quality of the adaptation depends to
a large extent on the quality of the level estimator. There is of course a trade-off
between the complexity and the cost of a real world implementation.

When using the acronym ADPCM, adaptation of the predictor or adaptation
of both the predictor and the quantizer is often assumed. The predictor is com­
monly adapted using methods based on gradient descent type algorithms used
in adaptive filters (see Chapter 3). Adaptive predictors can increase the SNR of
the system significantly compared to fixed predictors.

As an example, in the standard CCITT G.721, the input is a CCITT standard
64-kbits/s PCM-coded speech signal and the output is a 32-kbits/s ADPCM data
stream. In this standard, feedback adaptation of both the quantizer and predictor
is used. In a typical CCITT G.721 application (Marwen and Ewers, 1993), the
adaptive quantizer uses 4 bits and the predictor is made up of a sixth-order FIR

192 Digital Signal Processing and Applications

*(«) f
spectral envelope,

formants

predictor

• $ -

pitch,
fine structure y(n)

predictor

Figure 7.4 Encoder for adaptive, predictive coding of speech signals. The
decoder is mainly a mirrored version of the encoder

filter and a second-order infinite impulse response (IIR) filter. A "transcoder" of
this kind can be implemented as a mask programmed DSP at a competitive cost.

7.2.4 Speech coding, adaptive predictive coding and sub-band coding

Adaptive predictive coding (APC) is a technique used for speech coding,
i.e. data compression of speech signals. APC assumes that the input speech
signal is repetitive with a period significantly longer than the average frequency
content. Two predictors are used in APC. The high-frequency components (up
to 4 kHz) are estimated using a "spectral" or "formant" predictor, and the low-
frequency components (50-200 Hz) by a "pitch" or "fine structure" predictor
(see Figure 7.4). The spectral estimator may be of order 1-4, and the pitch
estimator about order 10. The low-frequency components of the speech signal
are due to the movement of the tongue, chin and lips. The high-frequency com­
ponents originate from the vocal cords and the noise-like sounds (like in "s")
produced in the front of the mouth.

The output signaly(n) together with the predictor parameters, obtained adap-
tively in the encoder, are transmitted to the decoder where the speech signal
is reconstructed. The decoder has the same structure as the encoder, but the
predictors are not adaptive and are invoked in the reverse order. The prediction
parameters are adapted for blocks of data corresponding to, for instance, 20 ms
time periods.

APC is used for coding speech at 9.6 and 16 kbits/s. The algorithm works well
in noisy environments, but unfortunately the quality of the processed speech
is not as good as for other methods like code excited linear prediction (CELP)
described below.

Another coding method is sub-band coding (SBC) (see Figure 7.5) which
belongs to the class of waveform coding methods, in which the frequency
domain properties of the input signal are utilized to achieve data compression.

The basic idea is that the input speech signal is split into sub-bands using
band-pass filters. The sub-band signals are then encoded using ADPCM or
other techniques. In this way, the available data transmission capacity can be
allocated between bands according to perceptual criteria, enhancing the speech
quality as perceived by listeners. A sub-band that is more "important" from a
human listening point of view can be allocated more bits in the data stream,
while less important sub-bands will use fewer bits.

A typical setup for a sub-band coder would be a bank ofN (digital) band­
pass (BP) filters followed by decimators, encoders (for instance ADPCM) and
a multiplexer combining the data bits coming from the sub-band channels. The

Data compression 193

x(ri)

.... —̂

•

1 •

BP filter

BP filter

R D f i l ter
•" ' • •

decimator

decimator

encoder

encoder

^

^
5(»)

*(«) Q.

3
E
CD

•o

.... ^

• •

decoder

decoder

decoder

interpolator

interpolator

interpolator

BP filter

BP filter

BP filter

Figure 7.5 An example of a sub-band coding system

output of the multiplexer is then transmitted to the sub-band decoder having a
demultiplexer splitting the multiplexed data stream back into N sub-band chan­
nels. Every sub-band channel has a decoder (for instance ADPCM), followed
by an interpolator and a band-pass filter. Finally, the outputs of the band-pass
filters are summed and result in a reconstructed output signal.

Sub-band coding is commonly used at bit rates between 9.6 and 32 kbits/s
and performs quite well. The complexity of the system may, however, be con­
siderable if the number of sub-bands is large. The design of the band-pass filters
is also a critical topic working with sub-band coding systems.

7.2.5 Vocoders and linear predictive coding

In the methods described above, APC, SBC and ADPCM, speech signal appli­
cations have been used as examples. Modifying the structure and parameters
of the predictors and filters, the algorithms may as well be used for other signal
types. The main objective was to achieve a reproduction that was as faithful
as possible to the original signal. Data compression was possible by removing
redundancy in the time or frequency domain.

194 Digital Signal Processing and Applications

pitch
•

periodic
excitation

noise

t
^ >

/

m
/

j G ava2,....,ap

voiced/unvoiced

y(n)^

synthetic
speech

Figure 7.6 The IPC model

The class of vocoders (also called source coders) is a special class of data
compression devices aimed only for speech signals. The input signal is analy­
zed and described in terms of speech model parameters. These parameters are
then used to synthesize a voice pattern having an acceptable level of perceptual
quality. Hence, waveform accuracy is not the main goal as it was in the previous
methods discussed.

The first vocoder was designed by H. Dudley in the 1930s and demonstrated
at the "New York Fair" in 1939. Vocoders have become popular as they achieve
reasonably good speech quality at low data rates, from 2.4 to 9.6 kbits/s. There
are many types of vocoders (Marven and Ewers, 1993), and some of the most
common techniques will be briefly presented below.

Most vocoders rely on a few basic principles. Firstly, the characteristics of
the speech signal is assumed to be fairly constant over a time of approximately
20 ms, hence most signal processing is performed on (overlapping) data blocks
of 20-40 ms length. Secondly, the speech model consists of a time varying filter
corresponding to the acoustic properties of the mouth and an excitation signal.
The excitation signal is either a periodic waveform, as being created by the
vocal cords, or a random noise signal for production of "unvoiced" sounds, e.g.
"s" and "f". The filter parameters and excitation parameters are assumed to be
independent of each other and are commonly coded separately.

Linear predictive coding (LPC) is a popular method, which has, however,
been replaced by newer approaches in many applications. LPC works exce­
edingly well at low-bit rates and the LPC parameters contain sufficient infor­
mation of the speech signal to be used in speech recognition applications. The
LPC model is shown in Figure 7.6.

LPC is basically an auto-regressive model (see Chapter 5) and the vocal
tract is modeled as a time varying all-pole filter (IIR filter) having the transfer
function H(z)

H(z) =
1

i + H=i«**_*
(7.17)

where p is the order of the filter. The excitation signal e(n), being either noise or
a periodic waveform, is fed to the filter via a variable gain factor G. The output
signal can be expressed in the time domain as

y(n) = Ge(n) - a\y(n - 1) - a2y(n - 2) apy(n-p) (7.18)

Data compression 195

The output sample at time n is a linear combination of/? previous samples and
the excitation signal (linear predictive coding). The filter coefficients ak are
time varying.

The model above describes how to synthesize the speech given the pitch
information (if noise or periodic excitation should be used), the gain and the
filter parameters. These parameters must be determined by the encoder or the
analyzer, taking the original speech signal x{n) as input.

The analyzer windows the speech signal in blocks of 20-40 ms, usually with
a Hamming window (see Chapter 5). These blocks or "frames" are repeated
every 10-30 ms, hence there is a certain overlap in time. Every frame is then
analyzed with respect to the parameters mentioned above.

Firstly, the pitch frequency is determined. This also tells if we are dealing
with a voiced or unvoiced speech signal. This is a crucial part of the system,
and many pitch detection algorithms have been proposed. If the segment of the
speech signal is voiced and has a clear periodicity or if it is unvoiced and not
periodic, things are quite easy. Segments having properties in between these
two extremes are difficult to analyze. No algorithm has been found thus far i.e.
"perfect" for all listeners.

Now, the second step of the analyzer is to determine the gain and the filter
parameters. This is done by estimating the speech signal using an adaptive
predictor. The predictor has the same structure and order as the filter in the
synthesizer. Hence, the output of the predictor is

x(n) = —a\x(n — 1) — a2x(n — 2) — • • • — apx(n — p) (7.19)

where x(n) is the predicted input speech signal andx(«) is the actual input signal.
The filter coefficients ak are determined by minimizing the square error

£ (x (n) - x (n)) 2 = £ r 2 (n) (7.20)
n n

This can be done in different ways, either by calculating the auto-correlation
coefficients and solving the Yule-Walker equations (see Chapter 5) or by using
some recursive, adaptive filter approach (see Chapter 3).

So, for every frame, all the parameters above are determined and transmitted
to the synthesizer, where a synthetic copy of the speech is generated.

An improved version of LPC is residual excited linear prediction (RELP).
Let us take a closer look of the error or residual signal r(n) resulting from the
prediction in the analyzer equation (7.19). The residual signal (we are trying to
minimize) can be expressed

r(n) = x(n) — x(n) = x(n) + a\x(n - 1) + aixin - 2) H h apx(n — p)

(7.21)

From this it is straightforward to find out that the corresponding expression
using the z-transforms is

m = ^j\=X(z)H-\z) (7.22)
H(z)

Hence, the predictor can be regarded as an "inverse" filter to the LPC model
filter. If we now pass this residual signal to the synthesizer and use it to excite

196 Digital Signal Processing and Applications

the LPC filter, i.e. E(z) = R(z) instead of using the noise or periodic waveform
sources, we get

Y(z) = E(z)H(z) = R(z)H(z) = X(z)H~\z)H(z) = X(z) (7.23)

In the ideal case, we would hence get the original speech signal back. When
minimizing the variance of the residual signal (7.20), we gathered as much
information about the speech signal as possible using this model in the filter
coefficients a^. The residual signal contains the remaining information. If the
model is well suited for the signal type (speech signal), the residual signal is
close to white noise, having a flat spectrum. In such a case, we can get away with
coding only a small range of frequencies, for instance 0-1 kHz of the residual
signal. At the synthesizer, this baseband is then repeated to generate higher
frequencies. This signal is used to excite the LPC filter.

Vocoders using RELP are used with transmission rates of 9.6kbits/s. The
advantage of RELP is better speech quality compared to LPC for the same bit
rate. However, the implementation is more computationally demanding.

Another possible extension of the original LPC approach is to use multipulse
excited linear predictive coding (MLPC). This extension is an attempt to make
the synthesized speech less "mechanical" by using a number of different pitches
of the excitation pulses rather than only the two (periodic and noise) used by
standard LPC.

The MLPC algorithm sequentially detects k pitches in a speech signal. As
soon as one pitch is found it is subtracted from the signal and detection starts
over again, looking for the next pitch. Pitch information detection is a hard task
and the complexity of the required algorithms is often considerable. However,
MLPC offers better speech quality than LPC for a given bit rate, and is used in
systems working with 4.8-9.6 kbits/s.

Yet another extension of LPC is the code excited linear prediction (CELP).
The main feature of the CELP compared to LPC is the way in which the filter
coefficients are handled. Assume that we have a standard LPC system, with a fil­
ter of the orderp. If every coefficient a^ requires N bits, we need to transmit TV -p
bits per frame for the filter parameters only. This approach is all right if all com­
binations of filter coefficients are equally probable. However, this is not the case.
Some combinations of coefficients are very probable, while others may never
occur. In CELP, the coefficient combinations are represented by ̂ -dimensional
vectors. Using vector quantization techniques, the most probable vectors are
determined. Each of these vectors is assigned an index and stored in a code
book. Both the analyzer and synthesizer of course have identical copies of the
code book, typically containing 256-512 vectors. Hence, instead of transmitting
N -p bits per frame for the filter parameters, only 8-9 bits are needed.

This method offers high-quality speech at low-bit rates but requires consider­
able computing power to be able to store and match the incoming speech to the
"standard" sounds stored in the code book. This is, of course, especially true if
the code book is large. Speech quality degrades as the code book size decreases.

Most CELP systems do not perform well with respect to higher-frequency
components of the speech signal at low-bit rates. This is counteracted in newer
systems using a combination of CELP and MLPC.

There is also a variant of CELP called vector sum excited linear predic­
tion (VSELP). The main difference between CELP and VSELP is the way
the code book is organized. Further, since VSELP uses fixed-point arithmetic

Data compression 197

algorithms, it is possible to implement using cheaper DSP chips than CELP,
which commonly requires floating-point arithmetics.

7.2.6 Image coding, joint photographies expert group (JPEG), moving
pictures expert group (MPEG)

Digitized images consist of large amounts of picture elements (pixels), hence
transmitting or storing images often involving large amounts of data. For this
reason, data compression of image data, or image coding, is a highly interesting
topic.

The same general fundamental idea for data compression applies in that there
is a reduction of redundancy-utilizing statistical properties of the data set, such
as dependencies between pixels. In the case of image compression, many of the
algorithms turn two dimensional, unless, for instance, compression is applied
to a scanned signal. One such application is telefax (facsimile) systems, i.e.
systems for transmission (or storage) of black-and-white drawings or maps,
etc. In the simplest case, there are only two levels to transmit, black and white,
which may be represented by binary " 1 " and "0," respectively, coming from the
scanning photoelectric device.

Studying the string of binary digits (symbols) coming from the scanning
device (the information source), it is easy to see that ones and zeros often come
in long bursts, and not in a "random" fashion. For instance, 30 zeros, followed
by 10 ones, followed by 80 zeros and so on may be common. There is hence a
considerable dependency between successive pixels. In this case, a run length
code will be efficient. The underlying idea is not to transmit every single bit, but
rather a number telling how many consecutive ones or zeros there are in a burst.

For facsimile applications, CCITT has standardized a number of run length
codes. A simple code is the modified Huffman code (MHC). Black-and-white
burst of length 0-63 pixels are assigned their own code words according to the
Huffman algorithm outlined earlier in this chapter. If a burst is 64 pixels or
longer, the code word is preceded by a prefix code word, telling how many
multiples of 64 pixels there are in the burst. The fact that long white bursts are
more probable than long black bursts is also taken into account when assign­
ing code words. Since the letters are "hollow", a typical page of text contains
approximately 10% black and 90% white areas.

During the scanning process, every scan line is assumed to start with a white
pixel, otherwise the code word for white burst length zero is transmitted. Every
scanned line is ended by a special "end-of-line" code word to reduce the impact
of possible transmission errors. Compression factors between 6 and 16 times
can be observed (i.e. 0.06-0.17 bits/pixel), depending on the appearance of the
scanned document. A more elaborate run length code is the modified Read code
(MRC) (Hunter and Robinson, 1980) which is capable of higher compression
factors.

Image compression algorithms of the type briefly described above are often
denoted lossless compression techniques, since they make a faithful reproduc­
tion of the image after decompression, i.e. no information is lost. If we can
accept a certain degradation of, for instance, resolution or contrast in a picture,
different schemes of predictive compression and transform compression can
be used.

198 Digital Signal Processing and Applications

Predictive compression techniques work in similar ways as DPCM and
ADPCM as described earlier. The predictors may, however, be more elaborate,
working in two dimensions, utilizing dependencies in both the x and> direction
of an image. For moving pictures, predictors may also consider dependencies in
the z-axis, between consecutive picture frames. This is sometimes called three-
dimensional prediction. For slowly moving objects in a picture, the correlation
between picture frames may be considerable, offering great possibilities for
data compression. One such example is the videophone. The most common
image in such a system is a more or less static face of a human.

The basic idea of transform compression (Gonzales and Woods, 2002) is
to extract appropriate statistical properties, for instance Fourier coefficients, of
an image and let the most significant of these properties represent the image.
The image is then reconstructed (decompressed) using an inverse transform.

A picture can be Fourier transformed in a similar way to a temporal one-
dimensional signal, and a spectrum can be calculated. When dealing with
images, we however have two dimensions and hence two frequencies, one in
the x direction and one in the y direction. Further, we are now dealing with
spatial frequencies. For instance, a coarse chessboard pattern would have a
lower spatial frequency than a fine pattern. We are now talking about cycles per
length unit, not cycles per time unit.

Often it is convenient to express the transform coefficients as a matrix. In
doing this, it is commonly found that the high-frequency components have
smaller amplitude than lower frequency components. Hence, only a subset of
the coefficients needs to be used to reproduce a recognizable image, but fine
structure details will be lost. Transform compression methods are commonly
not lossless.

It has been found that the standard two-dimensional fast Fourier transform
(FFT) is not the best choice for image compression. Alternative transforms,
such as Walsh, Hadamard and Karhunen-Loeve have been devised. One
of the most popular is, however, the two-dimensional discrete cosine trans­
form (DCT)

. N-\ N-l

x=0 y=0

andforw,v = 1,2, .. .,N — 1

- N-\ N-\

x=0 ^=0

(7.24b)

where C(w,v) is the two-dimensional transform coefficients ("spectrum")
and C(0,0) is the "DC" component. f(x,y) is the pixel value. The inverse
transform is

. N-\ N-\

f(x,y) = -C(0 ,0) + ^ 2] 1] C(w, v)cos((2x + 1)UTT)cos((2y + 1)VTT)
u=\ v=l

(7.25)

Data compression 199

One nice feature of DCT is that the transform is real, unlike FFT which is a
complex transform. Another advantage is that DCT is separable, implying that
it can be implemented as two successive applications of a one-dimensional DCT
algorithm.

A common technique is to split a picture into 8 x 8 pixel blocks and apply
DCT. High-amplitude, low-frequency coefficients are transmitted first. In this
way, a "rough" picture is first obtained with an increasing resolution as higher-
frequency coefficients arrive. Transform coding can offer a data compression
ratio of approximately 10 times.

The CCITT H.261 standard covers a class of image compression algorithms
for transmission bit rates from 64kbits/s to 2Mbits/s. The lowest bit rate
can be used for videophones on narrow-band integrated services digital net­
work (ISDN) lines. The H.261 is a hybrid DPCM/DCT system with motion
compensation. The luminance (black-and-white brightness) signal is sampled
at 6.75 MHz, and the chrominance (color information) signal is sampled at
3.375 MHz. The difference between the present frame and the previous one is
calculated and split into 8 x 8 pixel blocks. These blocks are transformed using
DCT, and the resulting coefficients are coded using Huffman coding.

The motion detection algorithm takes each 8 x 8 pixel block of the present
frame and searches the previous frame by moving the block ±15 pixels in
the JC and y directions. The best match is represented by a displacement vec­
tor. The DCT coefficients and the displacement vector are transmitted to the
decompressor, where the reverse action takes place.

There are commercial video conferencing systems today using the H.261
standard. The algorithms used are, however, very computationally demanding.
Floating-point or multiple fixed-point DSPs are required.

The joint photographies expert group (JPEG) is a proposed standard for
compression of still pictures. The color signals red, green and blue are sampled
and each color component is transformed by DCT in 8 x 8 pixel blocks. The
DCT coefficients are quantized and encoded in a way that the more important
lower frequency components are represented by more bits than the higher-
frequency coefficients. The coefficients are reordered by reading the DCT
coefficient matrix in a zigzag fashion (Marven and Ewers, 1993), and the data
stream is Huffman coded (the "DC" components are differentially encoded with
the previous frame, if there are any).

The JPEG compressor is simpler than in the H.261 system. There is, for
instance, no motion compensation, but many other elements are quite similar.
The JPEG decompressor is, however, more complicated in JPEG than in H.261.

The moving pictures expert group (MPEG) proposed standard (MPEG-1)
is aimed for compression of full-motion pictures on digital storage media, for
instance CD-ROM and digital video disc (DVD), with a bit transfer rate of about
1.5 Mbits/s. It is to some extent similar to both H.261 and JPEG but does not
have the motion compensation found in JPEG.

A sampled frame is split into blocks and transformed using DCT in the
same way as for JPEG. The coefficients are then coded with either forward or
backward prediction or a combination of both. The output from the predictive
coding is then quantized using a matrix of quantization steps. Since MPEG is
more complicated than JPEG it requires even more computing power.

The area of image and video compression algorithms is constantly evolv­
ing and there are many new methods and novel, dedicated signal processing

200 Digital Signal Processing and Applications

application specific integrated circuits (ASICs) and DSPs to come. As of today,
we have seen many new standards, e.g. JPEG 2000 (using wavelet techniques),
MPEG-2 (ISO/IEC-13818) and MPEG-4 (ISO/IEC-14496). Information on
current standards can be found on the World Wide Web.

7.2.7 The layer-3 of MPEG-1 algorithm (MP3)

The MPEG-1 standard, discussed in Section 7.2.6 above, does not only specify
methods for image compression, but also for audio compression. One very
popular audio compression method today is layer-3 of MPEG-1, known as MP3.
It was originally developed and patented by the Fraunhofer Institute in Germany
in 1989. The algorithm is very commonly used for compressing music files to be
exchanged over the Internet. Typically, a compression ratio of 10:1 is achieved,
implying that 1 min of stereophonic music will produce about 1 Mbyte of data,
rather than approximately 11 Mbyte needed for 1 min standard "CD quality"
hi-fi music. Better compression algorithms are available today, but one of the
reasons for the success of MP3 is the relatively open nature of the format.

The MP3 algorithm is "lossy" and exploits the weaknesses of the human ear
in order to "cheat" in a non-audible way, i.e. the music still sounds ok, despite
the fact that most of the original information is lost and cannot be retrieved.
The most important mechanism utilized is the concept of auditory masking.
Masking occurs in the human ear and means that if a strong signal appears
in a given frequency band, the ear cannot hear weaker signals below a given
threshold in the same band at the same time. An example of this could be a loud
orchestra masking the sound of a single instrument playing softly.

The ear has a different resolution for different frequency bands (typically
lOOHz^kHz bandwidth), depending on the amplitude of the signal in the
respective bands. This can, of course, be used for audio compression by not
using more resolution, i.e. data bits, than the ear can perceive in the different
frequency bands at a given time. In other words, at every time instant, the algor­
ithm discards information that the ear cannot hear, thus achieving compression.

Figure 7.7 shows a simplified block diagram of an MP3 encoder. Tie under­
lying principle is a smart adaptive, sub-band compression algorithm utilizing
the auditory masking. The digital input data enters the filter bank consisting of
32 polyphase sub-band (SB) filters. The filter bank is followed by a modified
discrete cosine transform (MDCT), giving totally 384 sub-bands. Since there
is commonly a large correlation between the information in the left and right
channels of stereophonic music, some initial data compression takes place at
this stage. The joint stereo encoder is governed by the perceptual model. This
model analyzes the input signal and, using the masking properties of the human
ear, generates control signals for the encoder and the quantizer.

Further, the quantizer and scaling module operates on blocks consisting
of 36 samples, and determines scale factors and allocation of bits for the
blocks belonging to the different sub-bands. Each sub-band is allocated as
few bits as possible, by the rule that the quantization noise should be below the
threshold of the human ear. (Masking thresholds are obtained from the percep­
tual model). Taking the masking effect into account, considerable qu;intization
noise (i.e. low resolution and few bits) can be accepted for some sub-bands,
since the ear will not be able to hear it.

Data compression 201

Figure 7.7 A simplified block diagram of an MP 3 encoder

Finally, data compression using the Huffman algorithm is employed. Since
optimum compression is a trade-off between allocation of bits and the statis­
tics of the data, there is a feed back loop from the Huffman encoder to the
quantizer. In this way, a good compromise can be found by iteration.

In the concluding multiplexer, the encoded sample data are merged with
information about scale factors and resolution for the sample blocks.

7.2.8 The Lempel-Ziv algorithm

There are a number of data compression algorithms based on the Lempel-
Ziv (LZ) method, named after A. Lempel and J. Ziv. The original ideas were
published in 1977 and 1978, but later modified by Terry A. Welch, resulting
in the Lempel-Ziv-Welch (LZW) algorithm (Smith, 2003). Only the basic
method will be briefly described below.

The LZ data compression algorithm is a called a "universal" algorithm since it
does not need any prior information about the input data statistics. Commonly,
it works on a byte basis and is best suited for compression e.g. Amercian
standard code for information interchange (ASCII) information. The algorithm
creates a table or "dictionary" of frequently seen strings of bytes. When a string
appears in the input data set, it is substituted by the index of a matching string
in the dictionary. This dictionary-type algorithm is also referred to as a macro-
replacement algorithm, because it replaces a string with a token. Decompression
will simply be a table-lookup and string replacement operation. It is imperative,
however, that no transmission errors occur, since these may add errors in the
dictionary and jeopardize the entire decompression operation.

Let us illustrate the algorithm with a simple example. Assume that we are
using an 8-bit ASCII code and want to transmit the following string

the_theme_theorem_theses

202 Digital Signal Processing and Applications

Since a space _ also represents an ASCII character, we have to transmit 24
characters, i.e. a total of 24 x 8 = 192 bits.

Now, let us use a simple version of the LZ method and limit the size of the
dictionary to 16 entries, so that any entry in the dictionary can be pointed to by
a 4-bit index. The compression and dictionary handling rule works like this:

lzcomp: clear dictionary-
start from beginning of string
while (string not traversed)

{
find the longest substring matching an entry

in dictionary
get the index of the entry in the dictionary
get the next character in the string following

the substring
transmit index and next character
append the substring + next character to

the dictionary
continue after next character in string

}

The corresponding decompression and dictionary handling rule is:

lzdecomp: clear dictionary
clear buffer for decompressed string
while (compressed characters received)

{
ge t index and next c h a r a c t e r from compressor
use index t o f e t c h s u b s t r i n g from d i c t i o n a r y
append s u b s t r i n g t o b u f f e r
append next c h a r a c t e r t o b u f f e r
append t h e s u b s t r i n g + next c h a r a c t e r t o

t h e d i c t i o n a r y
}

Below, the string, dictionary and transmitted symbols are shown. The indices
are represented by the hexadecimal digits: 0, 1, . . . , E, F.

The uncompressed string:

the_theme_theorem_theses

When the algorithm is started, the dictionary (Table 7.1) is empty. The first
entry will be "nothing" which will be given index 0. The first substring in the
input string, simply the letter "t", cannot be found in the dictionary. However,
"nothing" can be found, hence we concatenate "nothing" and "t" (we do not
include "nothing" in the dictionary from now on, since it is so small) and add
it to the dictionary. The index of this new entry will be 1. We also submit the
hexadecimal substring index 0 ("nothing") and the letter "t" to the output. These
steps are repeated and the dictionary grows. Nothing interesting happens until
we find the substring "t" for the second time (in "theme"). Since the substring
"t" is already in the dictionary, it can be replaced by its index 1. So, following
the rules, we send the index 1 and the next character "h", then we add the new
substring "th" to the dictionary. This process is further repeated until the end of

Data compression 203

Table 7.1 Example LZ, 16-entry dictionary

Index Dictionary Compressed
output

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

nothing
t
h
e

th
em
e_
the
0

r
em_
thes
es

Ot
Oh
Oe
0
lh
3m
3_
5e
Oo
Or
6_
8s
3s

the uncompressed input string is reached. The total output of the compressed
string will be:

0t0h0e0_lh3m3_5e0o0r6_8s3s

where every second character is an index (4 bits) and an ASCII character (8
bits), respectively. The total length of the compressed string will be: 13 x
4 + 1 3 x 8 = 156 bits, implying a compression factor of 156/192 = 0.81.

The decompressor receives the compressed string above and starts building
the decompressed string and the dictionary in a similar way. To start with, "noth­
ing" is assumed in position 0 of the dictionary. The first compressed information
is index 0, corresponding to "nothing" in the dictionary and the character "t".
Hence, "nothing" and "t" are placed in the first position of the decompressed
string and the same information is added to the dictionary at position 1. The
process is then repeated until the end of the compressed string. Now, the decom­
pressed string is an exact copy of the uncompressed string and the dictionary
is an exact copy of the dictionary used at compression time. It is worth noting
that there are also many variations on this popular data compression algorithm.

7.3 Recognition 7.3.1 A general problem formulation
techniques

In many applications, there is a need to recognize a given set of entities. In this
book, without loss of generality, we will concentrate on situations where iden­
tification of a given sound or image fragment is required. In a way, recognition
can be viewed as a kind of data compression technique. If we, for instance,
can recognize the photo of a known person, we can transmit his or her name,
typically a 100 bytes rather than the entire image of, say, 1 Mbyte. The receiver,

204 Digital Signal Processing and Applications

database recognition -> output

feature
extraction

input

Figure 7.8 A simplified block diagram of the recognition process

of course, has to have a "standard" photo of the person in question to be able to
decompress the message (i.e. translate the name back to an image). Obviously,
this compression method is lossy, since there is no guarantee that the photo used
by the transmitter and receiver is identical; they are, however, assumed to be
photos of the same person for the system to work properly. Similar code book
methods are used in speech coding systems, for instance, the CELP algorithm
described in Section 7.2.5 above.

Recognition of speech or images can be regarded as a two-step operation
(see Figure 7.8). The first stage is commonly a more or less complicated map­
ping function, transforming the input data (an image or a speech signal) into
a number of significant features. These features are represented by a set of
numbers, for instance, vectors or matrices. Stage two, is a pattern-recognition
algorithm. The task of this algorithm is to compare the set of features received
from the input to all known prototypes or templates in the database and to find
the best match. There are many good pattern-recognition algorithms around,
such as neural networks and fuzzy logic (see Chapter 4) and a number of sta­
tistical correlation-based methods, for instance, principal component analysis
(PCA) (Esbensen et al.9 1994).

The main problem when designing an image or speech recognition system is
that, commonly, there are considerable variations between individual samples
of the given entity that we are expected to recognize. For instance, designing a
system able to recognize photos of females would probably be quite difficult.

Two factors are very important for the system to work well. First, the map­
ping function or transformation mechanism producing the features needs to be
designed carefully. It does not matter how good the pattern-recognition algo­
rithm we are using is, if the features do not contain significant information about
the input image or speech sample. So extracting relevant features is important.
Second, the content of the database is also critical. It is important that the
stored prototypes are good representatives, i.e. are "typical" (average) samples

Data compression 205

of the entities that should be recognized. For this reason, it is common that the
database is adaptive and is updated every time a new set of features is received.
In this way, the system "learns" good prototypes and improves its performance
gradually. This is a common approach in neural network-based algorithms.

7.3.2 Speech recognition

Speech recognition research has been pursued for over 30 years, and the prob­
lems to be solved are difficult. Commonly, the aim of an automatic speech
recognition (ASR) system is to be able to automatically produce written text
from a spoken message. Many commercial products are on the market today,
but the "perfect" solution has yet to come.

The feature extraction part commonly relies on some spectral analysis
method, e.g. cepstrum analysis (Becchetti and Ricotti, 1999). The cepstrum
of a digital speech signal x(n) is obtained by first applying a discrete Fourier
transform (DFT) (see Chapter 5) to get a complex frequency spectrum X{co).
The logarithm of the magnitude of the frequency spectrum is then processed
by an inverse discrete Fourier transform (IDFT) to obtain the real part of the
cepstrum xr(n)

xr(n) = ^ { l o g \X(co)\] = S^flog | %{x(n)}\} (7.26)

This algorithm belongs to the class of Homomorphic filters. From the cepstrum
data, features are extracted. The features may be different "phonemes", i.e.
sound fragments of spoken words, such as "th", "ye", "n" and so on. Using
a pattern-recognition algorithm, groups of features (phonemes) are used to
recognize the English prototype words stored in the database.

It all sounds quite straightforward, but there are many pitfalls on the way.
One problem is that different persons pronounce words in different ways depend­
ing on dialect, emotional status, pitch of the voice and other physiological
differences. The incoming speech signal is also affected by background noise,
room acoustics and technical properties of the microphone. For this reason, an
ASR system must be "trained" to a specific speaker before it can be used. During
the training phase, the prototype database is updated to fit the specific speaker.

Another problem is that the speaker may use new, complicated words not
found in the database. In such a case, either the system can present the closest
match, resulting in rubbish, or it can mark the word as unknown. Yet another
complication is the fact that some words, or parts of words, may be pronounced
differently depending on the context and the position in a sentence. Hence, the
recognition algorithm also needs to consider grammatical language rules.

To summarize, designing a reliable ASR system capable of understanding
an arbitrary speaker is certainly not a simple task. Needless to say, every langu­
age has its own set of phonemes and grammatical rules.

7.3.3 Image recognition

In Section 7.3.2 above, we were dealing with speech signals (audio) being
digitized as one-dimensional temporal information. When processing images

206 Digital Signal Processing and Applications

it is about digital two-dimensional spatial information, often represented by a
matrix of pixel values.

Image recognition can be used in different situations. One application is to
find the best match of an entire image to a reference image, for instance, to find
matching fingerprints in a register to determine the identity of a person. Another
application may be to detect the presence of a specific object in an image or
to determine the position (and velocity) of an object. The latter application is
often referred to as "computer vision". A common example from the electronics
manufacturing industry is the inspection of populated printed circuit boards. A
video camera is used to obtain an image of the circuit board, and using image
recognition algorithms, a computer will check the image to make sure that all
electronic components are present and mounted in the right places. In both
applications above there are some common problems, namely: illumination,
contrast, shadows and imperfections in the camera, such as distortion introdu­
ced by lens limitations, etc.

In the first application above, an important issue is to make sure that all images
are precisely aligned regarding translation in the x- and y-axes, and regarding
rotation and scaling. If these conditions are met, a simple two-dimensional
cross-correlation algorithm may perform well. The second application requires
analysis of the image and conforms to the general recognition model outlined
in Section 7.3.1 above. The features in such a system typically are contours,
edges, corners and so on. A common way to find these features in an image is
to use two-dimensional, discrete convolution.

R(x,y) = £ £ / (* - l>y -•/> *fr-/> <7-27)

i J

The pixel matrix/(*,>>) of the image is convoluted with a convolution kernel,
mask, template or operator h(x,y). There are a number of operators to find gra­
dients, do averaging or smoothing and to detect different features, such as an
edge. For the x and y positions in the image where R(x,y) shows a local maxi­
mum, we are likely to find a feature according to the operator used. Figure 7.9
shows an example operator, the 3 x 3 Prewitt operator to estimate the horizontal
(x) gradient. This can be used to find vertical edges in an image (Nalwa, 1993).

In this way, we are able to find the location of different features in an image.
These features are fed to the recognition unit, which can identify and position
the objects stored in the database. For example, a square box can be represented
by the features, four corners and four edges positioned in a given configuration
relative to each other.

Describing more complicated objects take more features and have a tendency
to become difficult, especially taking the perspective effect into account when
objects are moved in the z-axis and may also be rotated. Advanced image recog­
nition in the sense of computer vision often requires very powerful computers.

Summary In this chapter the following issues have been addressed:

• Basic information theory, mutual information, entropy and redundancy
• Lossless and lossy data compression
• Huffman algorithm and prefix-free variable length codes

- 1

- 1

- 1

0

0

0

1

1

1

Figure 7.9 The 3 X 3 Prewitt
operator to estimate the
horizontal (x) gradient

Data compression 207

• Delta modulation (DM), ADM and CVSD
• DPCM and ADPCM, DPCM-AQF and DPCM-AQB
• APC, SBC, LPC, MLPC, CELP, VSELP and vocoders
• Image coding, run length code, MHC, the DCT transform, JPEG and MPEG
• Other data compression methods, MP3 and LZW.

Review questions R7-1
R7-2

R7-3

R7-4

R7-5

R7-6

R7-7

Explain the terms entropy and redundancy.
What is the difference between "lossy" and "lossless" data compression
algorithms? Give at least one example of an algorithm of each type.
Explain the term prefix-free variable length code. What is the basic idea
of the Huffman code algorithm?
The algorithms DM, ADM, CVSD, DPCM, ADPCM and APC use some
kind of predictor. What is the idea using a predictor? Give an example of
how to implement a simple predictor. What problems can be anticipated
using predictors? How can these be overcome?
Sub-band coding (SBC) is used in, for instance, the MP3 algorithm. What
is the basic idea of sub-band coding?
What is the main idea behind the algorithms APC, LPC, MLPC, CELP
and VSELP?
Give a brief presentation of DCT used in, for instance, JPEG and MPEG.

Solved problems P7-1 Decompress the string Otoh0e0_ih3m3_5e0o0r6_8s3s which was used
as an example presenting the Lempel-Ziv algorithm in Section 7.2.8.
Show that the original message can be recovered without any ambiguities.

P7-2 Make a binary Huffman code for a system using an alphabet of eight
characters having the probabilities shown below

(1) pi =0.512
(2)/72 = 0.128
(3) p3 =0.128
(4) p4 = 0.032
(5) p5 =0.128
(6) p6 = 0.032
(7) Pl = 0.032
(8) ps = 0.008

P7-3

P7-4

For the system in P7-2 above, calculate the entropy, the average symbol
length, the coding efficiency and the redundancy.
Write a MATLAB program to simulate the delta modulator and demod­
ulator as described by equations (7.11), (7.12) and (7.13). Generate an
input signal using x(«) —A cos(£2«). Initially use amplitude equal to one,
£2 = 7iJ100 and step size 0.08. Plot the input to the modulator and the out­
put of the demodulator. Change the amplitude and frequency of the input
signal and the step size of the modulator to demonstrate the problems of
"slope overload" and "granularity". How are these problems related to
the parameters above?

8 Error-correcting codes

Background All known communication mechanisms today employ some kind of signal.
A signal is a detectable change of properties of some entity, a "carrier". The
signal can consist of modulated light or radio waves, varying air pressure
(sound) or changes in current or voltage levels and so on. Disregarding the
type of carrier, a maximum communication speed determined by the chan­
nel capacity, is always imposed. The reason for this is the presence of noise
and interference disturbing our signals and causing random misinterpreta­
tions, i.e. communication errors. If there were no such disturbing factors, we
would in theory be able to communicate with an infinite speed. This in turn
would imply that all known information in the universe would be accessible
instantly, everywhere ... I am not sure that this would be an entirely good
situation?

In any case, in this chapter we will look into the background of the chan­
nel capacity and we will explore a number of methods and algorithms which
enable communication to be as close to the maximum information transfer rate
as possible. The issue is to find smart methods to minimize the probability
of communication errors, without slowing the communication process. Such
methods are called error-correcting codes or error-control codes (ECC).

Objectives In this chapter we will cover:

• The binary symmetric channel (BSC) model
• Bit error probability and mutual information
• The additive white Gaussian noise channel (AWGN) and channel capacity
• Hamming distance, error detection and correction
• Linear block codes, matrix representation and syndromes
• Cyclic codes and Bose, Chaudhuri, Hocquenghem (BCH) codes and poly­

nomial representation
• Convolution codes and the Viterbi decoder
• Interleaving, concatenated codes and turbo codes.

8.1 Channel coding In Chapter 7, the source coding theorem by Shannon was briefly presented.
In this chapter, some implications of his channel coding theorem will be
discussed. The idea of source coding or data compression is to find a "min­
imum form" in which to represent a certain amount of information thus
making transmission faster and/or data storing more compact. Data com­
pression is based on removing redundancy, i.e. "excess" information. The
problem, however, arises that the redundancy-free pieces of information will

210 Digital Signal Processing and Applications

be extremely vulnerable. One example of this is the data compression algo­
rithms used to "compress" data files on magnetic discs. If one single binary
digit (BIT) in the "wrong" place happens to be corrupt, the entire disc (maybe
several gigabytes) may be completely unreadable and almost all information
is lost.

The same problem is even more likely to appear when transmitting data
over wires or radio links. In such applications, transmission errors are com­
mon. Hence, to be able to transmit information error free, we must include
mechanisms capable of detecting and preferably correcting transmission (or
storage) errors. This requires adding redundancy. When adding redundancy,
i.e. making a compressed piece of data large again, we take the properties of
the transmission (or storage) process into account. If we know what kinds of
errors are the most probable, for instance in a radio link, we can add redun­
dant information tailored to correct these errors. Channel coding is mainly to
"vaccinate" the information against expected transmission errors. If unexpected
errors occur, we will of course be in trouble. If we, however, design our channel
code properly, this will rarely occur.

As mentioned above, adding this "error-correcting" redundancy will increase
the amount of data involved. Hence, we are making a trade-off between trans­
mission time or storage space for reliability.

8.1.1 The channel model

In the following text, we will denote both a data transmission (in space) and
a data storing (transmission in time) mechanism called a "channel". This
is hence an abstract entity and will not necessarily relate to any physical
media, device or system. It will only be used as a model, i.e. a description
of how the received (or retrieved) data is related to the transmitted (or stored)
data.

In Chapter 7, the concept of mutual information I(A,B) was introduced
(equation (7.2))

where P(A) is the probability that events, generated by an information source,
takes place. P(A | B) is the conditional probability of A taking place given we
have observed another event B. Now, in the channel context, the event A corre­
sponds to the transmitted data symbol and event B to the received symbol, in
other words what we observe is probably caused by A.

Now, for a simple example, let us assume that the binary digits 1 and 0 are
used to communicate over a channel and that the input symbols of the channel
are denotedX and the output symbols 7. Event At implies thatX = */ aind event
Bj implies that Y=yj. We can rewrite equation (8.1) as

I(X = Xu Y = yj) = log(j (8.2)

Error-correcting codes 211

We now define the average mutual information

I(X, Y) = EV(A„Bj)] = £ £ fxrixuyj) togf^M)

\-p

1=1 y = l

A" I A"
= J2 Yl fxYi^yj) log(fx\r(xi \yj)) - J2 Mxi) log(/H*i))

i= l y = l i = l

= -H(X\Y) + H(X) (8.3)

where H(X) is the entropy as defined in the previous chapter (equation (7.7))
or the "input information". Further, we have defined the conditional entropy
H(X | 7) in a similar way, which can be viewed as the "uncertainty" caused by

X X Y the channel.
In Figure 8.1a simple but useful model is shown called the binary symmet­

ric channel (BSC). The symbol 1 or 0 is inputted from the left, and outputted to
the right. The BSC is "memoryless", which means that there is no dependency
between successive symbols. The numbers on the branches are the correspond-

Figure 8.1 The BSC, error ing transition probabilities, i.e. the conditional probabilities P(Y \X) which
probability p in this case can be expressed in terms of the error probability/?

P(Y=\\X=\) = (l-p)

P(Y = l\X = 0)=p

P(Y = 0\X= \)=p

P(Y = 0\X = 0) = (l-p)

As shown in equation (7.3) the mutual information is symmetric with respect
to X and 7, hence using Bayes' theorem equation (8.3) can be rewritten as

I(X9 Y) = E[I(Ai9Bj)] = E[I(Bj,Ai)]

L K L

= 2 £ fxrixuyj) log(fr\x(yj I */)) - Yl •#(#) log(/rOj))
7=1 i= l 7=1

L K

= J2J2 fy\x(yj I Xi)fx(xi) iog(fY\X(yj I *,•))

7=1 i = l

L

-Y,fr<yj)iog(fYW)
7=1

= -H(Y\X) + H(Y) (8.4)

212 Digital Signal Processing and Applications

where the probabilities

K

fy(yj) = ^2fY\x(yj\xi)fx(xi).
1=1

Assume that the inputs x\ = 0 and X2 = 1 are equally probable, i.e.
fx(0) —fxiX) = 0.5. This implies an entropy (equation (7.7)) of (using logarithm
base 2)

2

H(X) = - £ fxixdWxixt)) = -l- l b Q) - ^ l b Q) = 1 bit/symbol

Not very surprisingly, this is the maximum entropy we can get from one binary
symbol (a bit). For instance, if JCI = 0 is more probable than xi = 1 or vice versa,
then//(X) < 1 bit. For a "perfect" channel, i.e. a channel that does not introduce
any errors or the error probability: p = 0. This implies that

P(Y =l\X=l)=\

P(Y=l\X = 0) = 0

P(Y = 0\X= 1) = 0

P(Y = 0\X = 0)= 1

Inserting the conditional probabilities into equation (8.4) we obtain

I(X, Y) = H(Y) -H(Y\X) = H(Y) = 1 bit/symbol (8.5)

The conditional entropy, or in other words the uncertainty of the channel
H(Y\X) = 0 and all the "input entropy" ("information"), is obtained on the
output of the channel. By observing Y we know everything about X.

If a BSC has an error probability of ^ = 0.1, on the average 10% of the
bits are erroneous, which corresponds to 10% of the bits being inverted. The
transition probabilities can readily be calculated as

P(Y= \\X= 1) = 0.9

P(Y= 1|X = 0) = 0.1

P(Y = 0\X = 1) = 0.1

P(Y = 0\X = 0) = 0.9

Again, using equation (8.4) the resulting average mutual information will be

I(X, Y) = H(Y)-H(Y\X)=\- 0.469 = 0.531 bit/symbol (8.6)

In this case, we only gain 0.531 bits of information about X by receiving the
symbols Y. The uncertainty in the channel has "diluted" the information about
the input symbols X. Finally, for the worst channel possible, the error probability
isp = 0.5. On the average we get errors half of the time. This is the worst case,

Error-correcting codes 213

since if/? is larger than 0.5, i.e. the channel inverts more than half the number of
transmitted bits, we could simply invert Y and thus reduce the error probability.
The transition probabilities are

P(Y = l\X = 1) = 0.5

P(Y = 1|X = 0) = 0.5

P(Y = 0\X= 1) = 0.5

P(7 = 0 |X = 0) = 0.5

Inserting into equation (8.4) we get

/(X, Y) = H(Y) -H(Y\X)=l-l=0 bit/symbol (8.7)

Such a result can be interpreted as if no information about X progresses
through the channel. This is due to the great uncertainty in the channel itself.
In other words, whether we obtain our data sequence Y from a random generator
or from the output of the channel it does not matter. We would obtain equal
amounts of knowledge about the input dataX in both cases.

The BSC is a simple channel; however, in a realistic case more complicated
models often have to be used. These models may be non-symmetric and use M
number of symbols rather than only 2 (0 and 1). An "analog" channel (contin­
uous in amplitude) can be regarded as having an infinite number of symbols.
Further, channel models can possess memory, introducing dependency between
successive symbols.

8.1.2 The channel capacity

From the above discussion it is clear that every channel has a limited ability to
transfer information (average mutual information), and that this limit depends
on the transition probabilities, i.e. the error probability. The maximum aver­
age mutual information possible for a channel is called the channel capacity.
For the discrete, memoryless channel, the channel capacity is defined as the
following

C = sup I(X, Y) (8.8)
fx(x)

By changing the probability density distribution fx(x) of the symbols trans­
mitted over the channel or by finding a proper channel code, the average mutual
information can be maximized. This maximum value, the channel capacity, is
a property of the channel and cannot be exceeded if we want to transmit infor­
mation with arbitrarily low error rate. This is mainly what the channel coding
theorem is about.

It is important to note that regardless of the complexity of the devices and
algorithms, if we try to exceed the channel capacity by transmitting more infor­
mation per time unit (per symbol) than the channel capacity allows, we will
never be able to transmit the information error free. Hence, the channel capacity
can be regarded as a universal "speed limit". If we try to exceed this informa­
tion transfer limit, we will be "fined" in terms of errors, and the net amount of
transmitted error-free information will never exceed the channel capacity.

214 Digital Signal Processing and Applications

Unfortunately, the channel coding theorem does not give any hint on how to
design the optimum channel code needed to obtain the maximum information
transfer capacity, i.e. the channel capacity. The theorem only implies that at
least one such channel code exists. The search for the most effective channel
codes has been pursued during the last 40 years, and some of these results will
be presented later in this chapter.

Calculating the channel capacity for channels in "reality" is in many cases
very hard or even impossible. Two simple, common, standard channels should,
however, be mentioned: the BSC and the additive white Gaussian noise
(AWGN).

Firstly, the BSC channel capacity can be represented as follows (Figure 8.1)

C = 1 +p\b(p) + (l-p)lb(l -p)bit/symbol (8.9)

Secondly, the common memoryless channel model for "analog" (continuous)
signals is the additive white Gaussian noise channel (AWGN) shown in Figure
8.2, which is slightly more elaborate. The analog input signal isX and the output
signal is Y. N is a white Gaussian noise signal, added to the input signal. The
term "white" is used in the sense that the noise has equal spectral density at all
frequencies, similarly to white light, which has an equal power at all wavelengths
in the visible spectrum (contains equal amounts of all colors).

In the context of AWGN, the signal-to-noise ratio (SNR) is commonly used,
which is simply the ratio between the signal power and the noise power (Ahlin
and Zander, 1998)

S N R = - (8.10)
N

The SNR is often expressed in decibels (dB)

SNRdB = lOlg(SNR) (8.11)

where lg() is the logarithm base 10. Thus, the channel capacity of the AWGN
can be shown to be (Cover and Thomas, 1991)

C = Wlb(l + SNR) = Wlb(l + ^ J

= Wlbl 1 + — | bit/symbol (8.12)
V WN0J

where W is the bandwidth and No is the spectral density of the noise in W/Hz.
An interesting example is a common telephone subscriber loop. If we assume

x K-H >Y

N

Figure 8.2 The AWGN channel

Error-correcting codes 215

a bandwidth of W = 4 kHz and SNR = 45 dB, the resulting channel capacity is
therefore (approximately) C = 60 kbit/symbol. Hence, the 57 600 baud dial up
modems used today is approaching the theoretical upper limit. Some subscriber
loops may of course have other bandwidth and SNR characteristics, which will
affect the channel capacity.

Finally, to conclude this section, assume we have an information source with
entropy H bit/symbol. In the previous chapter, the source coding theorem stated
that to be able to reconstruct the information without errors, we must use an
information rate R of

R > H bit/symbol

This is, therefore a data compression limit. In this chapter, the channel coding
theorem implies that to be able to transmit information error free at information
ratei?

C > R bit/symbol

This is a communication speed limit.

8,2 Error-correcting There are a number of different error-correcting codes. These codes can be
codes divided into classes, depending on their properties. A rough classification is to

divide the codes into two groups: block codes and convolution codes.
In this section, we will first discuss coding and properties of codes in gen­

eral, followed by a presentation of some common block and convolution code
algorithms.

8.2.1 Hamming distance and error correction

We shall begin with a brief illustration of a crude, yet simple repetition code.
Assume that we need to transmit information about a binary variable U.

The probabilities of u = 0 and u = 1 are equal, which means fu(u = 0) =
fu(u= 1) = 0.5. When transmitting this sequence of ones and zeros over a
BSC with an error probability of p = 0.1, having a channel capacity C = 0.531
bit/symbol (equation (8.6)), we will get 10%-bit errors on the average.

By adding redundancy such that if we intend to transmit a " 1 " , we repeat it
twice. In other words, we transmit "111" and if we want to send a zero, we send
the channel code word "000". If we get an error in 1 bit of a code word, we
can still correct the error by making a majority vote when receiving the code. If
there are more ones than zeros in a received code word, the information symbol
sent was probably u = 1, and if there are more zeros than ones, u — 0 is the
most likely alternative. This is simply called the maximum likelihood (ML)
principle. The code word X is structured as

X = \x\ x2 x3] = [u pi p2] (8.13)

where u is the information bit, and/?i and/>2 are denoted parity bits or check
bits. If a code word is structured in such a way that the parity bits and information

216 Digital Signal Processing and Applications

bits are in separate groups rather than a mixed order, the code word iis said to
have a systematic form. The coding process in this example will be very easy

x\ = u

*2 =p\ — u (8.14)

*3 = Pi = U

The decoding process will also be easy, a pure majority vote as outlined
above. The length of the code word is often denoted by n and the number of
information bits k, hence in our example above n = 3 and k = 1. Now, the code
rate or code speed is obtained from

k
R=- (8.15)

n
This can be seen as a "mix" ratio between the numbers of necessary information
bits and the total number of bits in the code word (information bits + parity
bits). In the first case above, transmitting U directly, without using amy code,
implies a rate of

j ? = I = 1 > C = 0.531

In this case, we have violated the channel coding theorem and consequently
the length of the strings of symbols we send does not matter, as n -> oo we will
still not be able to reduce the average error rate below 10%.

In the latter case, using the repetition code we have introduced redundancy
and for this case

R=- =0.333 < C = 0.531
3

It can be shown that for longer code words, i.e. as n -> oo the average error
rate will tend to zero. Let us take a closer look at the underlying processes.
Table 8.1 shows the eight possible cases for code word transmission and the
associated transition probabilities expressed in terms of the error probability^

Table 8.1 Transmission of simple 3-bit repetition code

(a)
(b)
(c)
(d)

(e)
(f)
(g)
(h)

X Y

111- j . l l l
111 -> 110,101,011
111-> 001,010,100
111 - • 000

0 0 0 ^ 0 0 0
000-> 001,010,100
000-> 110,101,011
000-» 111

Probability

(1 -P?
3(1 -pfp
3(1 -p)p2

P3

(1 -P)3

3(1 -pfp
3(1 -p)p2

P3

No errors
1-bit errors
2-bit errors
3-bit error

No errors
1-bit errors
2-bit errors;
3-bit error

Error-correcting codes 217

of the BSC. From Table 8.1, in case (a) we intended to transmit u=\
which was coded as 111. No errors occurred which has the probability of
(1 — pf = (1 — 0.1)3 = 0.729 and 111 was received. This received code word
was decoded using a majority vote, and found to be u = 1. In case (b) a single
bit error occurred and hence, 1 bit in the received code word is corrupt. This
can happen in three ways. In case (c) 2-bit errors occur, which can also hit the
code word in three different ways, and so on.

The interesting question which arises deals with the amount of cases in which
this coding scheme will be able to correct the bit errors. In other words, how
many cases can decode the right symbol in spite of the corrupt code word
bits? From Table 8.1 it is clear to conclude that correct transmission will be
achieved, i.e. u = u in cases: (a), (b), (e) and (f). In all other cases, the majority
vote decoder will make errors and will not be able to correct the bit errors in the
code word. Due to the majority decoding and the fact that we only transmit the
code words 111 and 000, respectively, it is clear that errors will occur if there
are more than t = 1 bit errors in the code word, hence we can define t as

= L§J (8.16)

where |_ J is the "floor" operator, i.e. the first integer less than or equal to
the argument. The total probability of erroneous transmission can now be
expressed as

^ r = £ (•)p^ ~P)^ = (*)<>.12(1 - 0.1) + (\) o . l 3

= 3 • 0.01 • 0.9 + 0.001 = 0.028 (8.17)

where

(?) (n - i)\i\

is the binomial coefficients, in other words, the number of ways / elements can
be selected out of a set of n elements. As n -> oo in equation (8.17), PQXX -» 0,
in accordance to the channel coding theorem.

Intuitively from the above discussion, the greater the "difference" between
the transmitted code words, the more bit errors can be tolerated, i.e. before a
corrupt version of one code word seems to resemble another (erroneous) code
word. For instance, assume that the code uses the two code words 101 and
001 instead of 111 and 000. In this case, one single bit error is enough for the
decoder to make an erroneous decision.

The "difference" in coding context is denoted as the Hamming distance d.
It is defined as the number of positions in which two code words differ. For
example, the code words we used, 111 and 000 differ in three positions, hence
the Hamming distance is d — 3. The two code words 101 and 001 have d=l.
It can be shown that a code having a minimum Hamming distance d between
code words can correct

d-\
bit errors in a code word (8.18)

218 Digital Signal Processing and Applications

Further, the same code can detect (but not correct)

y = d — 1 bit errors in a code word (8.19)

If there are d-h\t errors, we end up in another error-free code word and the
error can never be detected. Techniques for detection of transmission errors are
commonly used in automatic repeat request (ARQ) systems, where a detected
error gives rise to a negative acknowledge signal, initiating a retransmission
of the data. In some communication systems, the receiving equipment does
not only output ones and zeros to the decoder. For instance, if a signal having
poor strength is received, a third symbol, the erasure symbol, can be used. This
is a "don't care" symbol saying the signal was too weak and cannot determine
if the received signal was a 1 or a 0. In this case, the decoding algorithm can
fill in the most probable missing bits

p = d — 1 erasures in a code word (8.20)

Finally when classifying a code, the triplet consists of code word length
«, number of information bits k and minimum Hamming distance d and is
commonly stated as

(w, k, d)

The number of parity bits is of course n — k. Using the minimum Hamming
distance d and equation (8.18) we can figure out how many bit errors t (per
code word) the code can handle. The example repetition code above is hence
denoted (3, 1, 3).

It is worth noting that if there are more than t-bit errors in a code word,
the coding will add even more errors and only make things worse. In such a
case, a better code must be used. It might even be advantageous not to use any
error-correcting code at all.

8.2.2 Linear block codes

For a general block code, we are free to select our code words arbitrarily, which
for large blocks may result in extremely complicated encoders and decoders. If
we demand the code to be linear, things become somewhat easier. The definition
of a linear code is that the sum of the two code words x, and xj is also a code
word. The addition of code words is performed component wise

X,- + Xj = [xn X(2 • • • *,-„] + [Xj\ Xj2 • • • Xjn]

= [Xi\ + Xj\ X[2 + Xj2 ' • • Xin + Xjn]

= [Xm\ Xm2 • • • Xmn] = *m (8.21)

Here the addition is performed according to the algebraic rules of the number
system used. For the binary case,"+" means binary addition, i.e. addition mod­
ulo 2 or exclusive OR (XOR). Thus, 0 + 0 = 0, 1 + 0 = 0 + 1 = 1 and 1 + 1 = 0 .
For other number systems, similar rules shall apply. This algebraic topic is
related to as the Galois fields (GF(p)) theory. In this chapter, we will however

Error-correcting codes 219

remain faithful to the binary number system. If an interest in this particular
subject is not very high, then Galois is a trivial issue.

A linear code has the helpful property that the vicinity of all code words in
the ^-dimensional "code space" looks the same. Hence, when decoding, we
can apply the same algorithm for all code words and there are many standard
mathematical tools available for our help. When analyzing codes, it is common
to assume that the zero code word (all zeros) has been sent. The zero code word
is present in all binary linear block codes, since by adding a code word to itself,
using equation (8.21)

X,- + X; = [xn + Xi\ Xi2 + Xi2 ' ' ' Xin + Xin] = [0 0 • • • 0] = 0 (8.22)

The coding process in a linear block code can be readily expressed as a
matrix multiplication. The information word u (dim 1 x k) is multiplied by the
generator matrix G (dim k x n), thus obtaining the code word x (dim I xn)

Xi = u/G = u,-[l : P] (8.23)

The generator matrix G defines the coding operation and can be partitioned
into an identity matrix I (dim k x k) and a matrix P (dim k x n — k). In this
way, the code will have a systematic form. The identity matrix simply "copies"
the information bits u\ into the code word, while the P matrix performs the
calculations needed to determine the parity bits/7/ (compare to equation (8.14)).

During the transmission, the code word x will be subject to interference,
causing bit errors. These bit errors are represented by the error vector e (dim
1 x n). The received code word y (dim I xn) can be expressed as

y = x + e (8.24)

(Remember we are still dealing with binary addition).
Finally, when decoding a linear block code, a syndrome-based decoding

algorithm is commonly used. This algorithm calculates a syndrome vector s
(dim 1 x &) by multiplying the received code word y by the parity matrix H
(dim k x n). The parity matrix can be partitioned into an identity matrix I (dim
kxk) and the matrix Q (dim n — kxk)

s = yHT = y[Q \ l] T (8.25)

For the binary case, if we set Q = PT, the syndrome vector will be equal to the
zero vector (all-zero elements), i.e. s = 0 if there are no errors in the received
code word that this particular code is able to detect. This can be shown by

s = yHT = (uG + e)HT = uGHT = u[l : P]
QT

I

= u(QT + P) = 0 (8.26)

where, of course, e = 0 since there are no errors. If we have detectable errors,
s ^ 0 and the syndrome vector will be used as an index in a decoding table.

220 Digital Signal Processing and Applications

This decoding table shows the error vectors that are able to generate a spe­
cific syndrome vector. Commonly it is assumed that few bit errors in a code
word is more likely than many errors. Hence, the suggested error vector e
(dim l x n) having the smallest number of ones (i.e. bit errors) is assumed to
be equal to the true error vector e. By adding the assumed error vector to the
received code word including errors, a corrected code word x (dim 1 x n) can be
obtained

x = y + e (8.27)

From this corrected code word x, only simple bit manipulations are needed to
extract the received information word ii (dim 1 x k).

Let us conclude this discussion on linear block codes with an example.
Assume we have designed a linear block code LC(6, 3, 3), having n — 6, k = 3
and d = 3. The code words are in systematic form and look like

X = [x\ X2 X3 X4 X5 X^\ = [u\ Ui U3 p\ P2 ^3]

where the parity bits are calculated using the following expressions

(8.28)

p\ = u\ + u2

p2 = U2+ W3

P3 = U\ + U2 + W3

(8.29)

Using this information, it is straightforward to write down the generator matrix
for this code

G = [I!P] =
1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

(8.30)

In a similar way, the parity matrix can also be formed

H = [PT ; 1] =
1 1 0 1 0 0
0 1 1 0 1 0
1 1 1 0 0 1

(8.31)

Now, assume we want to transmit the information word 010, i.e. u =: [0 1 0].
The encoder will transmit the corresponding code word on the channel

x = uG = [0 1 0]
1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1

= [0 1 0 1 1 1] (8.32)

This time we are lucky, the channel is in a good mode, and no errors occur,
i.e. e = 0, thus

y = x + e = x = [0 1 0 1 1 1] (8.33)

Error-correcting codes 221

In the decoder, the syndrome vector is first calculated as

s = yHT = [0 1 0 1 1 1]

ri
l
0
I
0
0

0
1
1
0
1
0

n
l
l
0
0
1.

[0 0 0] = 0 (8.34)

Since the syndrome vector is equal to the zero vector, the decoder cannot
detect any errors and no error correction is needed, i = y. The transmitted
information is simply extracted from the received code word by

x[l : 0]T = [0 1 0 1 1 1]

1 0 0-
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0

= [0 1 0] (8.35)

Now, assume we try to send the same information again over the channel;
this time, however, we are not as lucky as before, and a bit error occurs in W3.
This is caused by the error vector

e = [0 0 1 0 0 0] (8.36)

Hence, the received code word is

y = x + e = [0 1 0 1 1 1] + [0 0 1 0 0 0] = [0 1 1 1 1 1] (8.37)

The syndrome calculation gives

s = y H ' = [0 1 1 1 1 1]

ri
1
0
1
0
0

0
1
1
0
1
0

n
1
1
0
0
IJ

= [0 1 1] (8.38)

Using a decoding table (Table 8.2), we find that the eight proposed error
vectors on line 4 may cause the syndrome vector obtained above.

Using the maximum likelihood argument, we argue that a single-bit error is
more probable than a multi-bit error in our system. For this reason, we assume
that the error vector in the first column to the left (containing only 1 bit) is the
most probable error, hence

e = [0 0 1 0 0 0] (8.39)

The received code word is now successfully corrected (equation (8.27))

i = y + e = [0 1 1 1 1 l] + [0 0 1 0 0 0]

= [0 1 0 1 1 1] = x (8.40)

222 Digital Signal Processing and Applications

Table 8.2 Decoding table for the code LC(6,3,3) in the example

Syndrome

000
101
111
Oil
100
010
001
110

000000
100000
010000
001000
000100
000010
000001
101000

100101
000101
110101
101101
100001
100111
100100
001101

Possible error vectors

010111
110111
000111
011111
010011
010101
010110
111111

001011
101011
011011
000011
001111
001001
001010
100011

110010
010010
100010
111010
110110
110000
110011
011010

011100
111100
001100
010100
011000
011110
011101
110100

101110
001110
111110
100110
101010
101100
101111
000110

111001
011001
101001
110001
111101
111011
111000
010001

Table 8.3 Hamming distance between all possible error-free code words of the code
LC(6,3,3) in the example

000000 100101 010111 001011 110010 011100 101110 111001

000000
100101
010111
001011
110010
011100
101110
111001

0
3
4
3
3
3
4
4

3
0
3
4
4
4
3
3

4
3
0
3
3
3
4
4

3
4
3
0
4
4
3
3

3
4
3
4
0
4
3
3

3
4
3
4
4
0
3
3

4
3
4
3
3
3
0
4

4
3
4
3
3
3
4
0

and the transmitted information can be extracted in the same way as in
equation (8.35).

The example code above has a minimum Hamming distance between code
words of d = 3. Using equation (8.18) we find that the code is only able to correct
t=l, i.e. single-bit errors. As pointed out earlier in this text, if there are more
bit errors in a code word than t, the coding scheme will not be able to correct
any errors, and it may in fact aggravate the situation. This can be illustrated
by the following example. If we transmit u = [0 0 1], the code word will be
x = [0 0 1 0 1 1]. If a double-bit error situation occurs, e = [0 1 0 1 0 0]
we will receive y = x + e = [0 1 1 1 1 1] , i.e. the same code word as in the
example above. This code word will be "corrected" and as above, we will obtain
u = [0 1 0] ^ u .

When calculating the error-correction performance t of a code using equation
(8.18), we have been assuming that d is the minimum Hamming distance
between code words. A deeper, but not too surprising analysis shows that the
Hamming distance between all possible error-free code words in a given code
vary. An example is the code LC(6,3,3) used above, as shown in Table 8.3. In
this particular example, it does not matter, because equation (8.18) gives the
same result for both d = 3 and d = 4, but it is important to remember that the

Error-correcting codes 223

minimum Hamming distance should be used in equation (8.18). An alternative
way of finding the minimum Hamming distance of a code is to find the smallest
number of column vectors in the parity matrix H (equation (8.31)) that need to
be added to obtain the zero vector.

There are many ways to design the error correcting code. The main objective,
however, is to find a code that can correct as many errors as possible, while
requiring as few parity bits as possible. The code should also be easy to decode.
One criteria, to be met when designing an effective code, is to choose the code
words in such a way that the Hamming distances to the closest neighbors (i.e. the
minimum Hamming distance) are the same for all code words. A code having
this property is called a "perfect code". An example of a perfect code is the
classical family of Hamming Codes (Haykin, 2001). This type of codes has
been used since about 1948 and was initially used for error correction in long
distance telephony systems. The parameters of these codes are

Block length: n = 2m - 1
Number of information bits: k = 2m — m — 1
Hamming distance: d = 3

form = 2,3,4, . . .
From the above, it is obvious that all Hamming codes can correct single-bit

errors only, disregarding the block length.

8.2.3 Cyclic codes, Bose, Chaudhuri, Hocquenghem codes

The class of cyclic codes is a sub-class of linear block codes. Instead of the
linearity property where the sum of two code words yields another code word,
a cyclic shift ("rotate") of the bit pattern is performed instead. This shift results
in another code word. For example, if 111001 is a code word, then 110011
should also be a code word and so on.

Cyclic codes are often expressed using code polynomials. In these poly­
nomials, a formal parameter* is used. Note! This formal parameter x is some­
thing completely different from the code word bits x; discussed earlier.
The formal parameter x is only a means of numbering and administrating the
different bits in a cyclic code polynomial. The data bits of interest are the
coefficients of these polynomials.

A code word c = [co c\ ••• cn-\] can hence be expressed as a code
polynomial

c(x) = co + c\x + C2X2 + C3X3 H h cn-\x
n~l (8.41)

An m step cyclic shift of an n — 1 bit code word is accomplished by a
multiplication

xmc(x) mod (xn - 1) (8.42)

which is performed modulo xn — 1, i.e. after the polynomial multiplication by
xm a polynomial division by (xn — 1) should take place to keep the order of
the resulting polynomial to n — 1 or below. In bit pattern words, this operation
can be explained as the multiplication performs the "bit shifting", while the

224 Digital Signal Processing and Applications

division makes the "bit rotating" (higher-order bits are rotated back as low-
order bits).

Using this polynomial way of expressing vectors, a k-bit information vector
can be written as a polynomial in the formal parameter x in a similar way to
equation (8.41)

u(x) = wo + u\x + U2X2 + W3X3 H h Uk-\xk~l (8.43)

where «o, wi , . . . , w*_i are the bits of the corresponding information vector
(but the numbering is slightly different from the vector notation discussed ear­
lier). Still remaining with binary numbers, modulo 2 addition applies. Instead
of using a generator matrix to define the code, we now use a generator poly­
nomial g(x), and the coding process consists of a multiplication of polynomials

c(x) = u(x)g(x) (8.44)

where c(x) is the code word polynomial, corresponding to the code vector being
transmitted over the channel. Unfortunately, this straightforward approach does
not result in code words having systematic form. This can be accomplished by
first shifting the information polynomial and then dividing this product by the
generator polynomial

xn~ku(x) , x r(x) ,n Aim x

where q(x) is the quota and r(x) the remainder. Rewriting equation (8.45a)
we get

xn~hu(x) = q(x)g(x) + r(x) = c(x) + r(x)

=» cix) = xn~ku(x) - r(x) (8.45b)

The code word travels the channel as before and errors, represented by the
error polynomial e(x), may occur. The received data vector is represented by
the polynomial v(x)

v(x) = c(x) + e(x) (8.46)

When decoding the received word expressed as v(x), calculation of the syn­
drome polynomial s(x), used for error detection and correction, simply consists
of division by the generator polynomial g(x) or multiplication by the parity
polynomial h(x), where

h(x) = ^ f i (8.47)

The syndrome polynomial is obtained as the remainder when performing the
division

It is easy to show that the syndrome will depend on the error polynomial only,
and if no errors are present, the syndrome polynomial will be 0. Using equations

Error-correcting codes 225

(8.45), (8.46) and (8.48) we obtain

v(x) = c(x) + e(x) = q(x)g{x) + e(x) = Q(x)g(x) + s(x)

=» e(x) = (Q(x) - q(x))g(x) + s(x) (8.49)

This relation shows that the syndrome s(x) is the remainder when dividing
e(x) by g(x). Hence, we can calculate the syndromes for all possible error
polynomials in advance. All unique syndromes can then successfully be used
to identify the corresponding error polynomial e(x) and error correction of v(x)
can be performed as (in the binary case)

v(x) = v(x) + e(x) (8.50)

where v(x) is the corrected message (hopefully) from which the information
u(x) can be extracted. Once again, an example will illustrate the ideas and
algorithms of binary, cyclic block codes. Assume we are using a cyclic code,
CC(7,4,3), i.e. a code having n = 7, k = 4 and d = 3. Using equation (8.18)
we find that this code can correct single-bit errors, t = 1. Further, the code is
defined by its code polynomial g(x) = 1 + x + x3. In this example, we want to
transmit the information 0010. This is expressed as an information polynomial

u(x)=x2 (8.51)

Multiplying this information polynomial by the generator polynomial, the code
polynomial is obtained

c(x) = u(x)g(x) = x2(l + x + x3) = x2 + x3 + x5 (8.52)

The corresponding bit sequence 0011010 is transmitted over the channel and
this first time no errors occur, i.e. e(x) = 0 and

v(x) = c(x) + e(x) = c(x) = j 2 + x 3 - f x 5 (8.53)

At the decoder, we start by calculating the syndrome polynomial

^ = X-^^=X* + ^ - = X > + ^ L - (8.54)
g(x) x 3 + x + l x 3 + x + l J C 3 + X + 1

Since the remainder or the syndrome is zero, there are no errors and the received
information is u{x) =x2 = u(x). Now, we try this again, but this time a single-
bit error occurs, having the corresponding error polynomial: e(x)=x5, starting
over from equation (8.53) we get (using binary addition)

V(JC) = c(x) + e(x) = x2 + x3 + x5 + x5 = x2 + x3 (8.55)

The syndrome calculation yields

v(x) x 3 + x 2 ^ x 2 + x + l , s(x)

-H = 1 7 = l + "I 7 = l + i * (8-56)
g(x) x 3 + x + l x 3 + x + l x 3 + x + l v '

Hence, this time the syndrome polynomial is s(x) = x2 + x + 1. Using equation
(8.48) and assuming the zero code polynomial c(x) = 0 (OK, since the code is

226 Digital Signal Processing and Applications

linear, all code words have the same "vicinity"), we find it is easier to make a
decoding table in advance.

S{x) e(x)

0
1
x
x2

x + 1
x2 + x
x 2 + x + l
x2 + l

From this table, we can see that with the given syndrome s(x)=x2 -fx + 1,
the corresponding single-bit error polynomial is e(x)=x5. Error correction
yields

V(JC) = V(JC) + e(x) = x2 + x3 + x5 (8.57)

From this, the information w(x) =x2 can be obtained as before. In most cases,
coding and decoding is not performed in the simple way outlined above, since
there are smarter ways to implement the algorithms.

Shift registers and logic circuits have traditionally been used to implement
cyclic code algorithms. Nowadays, these functions can readily be implemented
as digital signal processor (DSP) software, using shift, rotate and Boolean
computer instructions. Below, the basic ideas will be briefly presented. The
underlying idea is that multiplication and division of polynomes can be: viewed
as filtering operations, and can be achieved using shift registers in structures
resembling digital finite impulse response (FIR) and infinite impulse response
(IIR) filters.

If we have a generator polynomial, g(x) = go + g i * + gix2 + • • • + gn-k*n~k,
an information polynomial as in equation (8.43) and we want to perform the
polynomial multiplication as in equation (8.44) to obtain a code vector as in
equation (8.41) we get

c(x) = co + c\x + c2x
2 H h cn-\x

n~x = w(x)g(x)

= uogo + (u\go + u0g\)x + (u2go + u\g\ + uog2)x2 H (8.58)

From the above expression it can be seen that the coefficients ci can be obtained
by a convolution of the coefficients of the information polynomial u(x) and the
coefficients of the generator polynomial g(x)

a = J2sfuH (8"59)

7=0

This operation is performed by an FIR filter (see Chapter 1), hence "filter­
ing" the data bit sequence ut using a binary FIR filter with tap weights gj will

0
1
x
X2

X 3

X4

X5

X6

Error-correcting codes 227

perform the polynomial multiplication, otherwise known as "the coding
operation" (equation (8.44)).

The syndrome calculation, division by g(x) as in equation (8.48), can also be
performed in a similar way. Consider the z-transform of the sequences ut and gj,
respectively, denoted U(z) and G(z) (see Chapter 1). Since equation (8.59) is
a convolution, this is equivalent to a multiplication in the z-transform domain,
hence the z-transform of the code polynomial coefficients C(z) can easily be
obtained as

C(z)=U(z)G(z) (8.60)

If we now require the generator polynomial to have go = 1 and gn-k = 1 it
can be rewritten as

G(Z) = go + g\Z~l + g2Z~2 + • • • + gn-kZ~n+k

= 1 + g i z " ! +g2z~2 + • • • +z-»+k = 1 + G\z) (8.61)

From Chapter 1 we recall that if an FIR filter having, for instance, the
z-transform G'(z)9 is put in a feedback loop, we have created an IIR filter
with the transfer function

H® = y±r«\ = 7^ (8 ' 6 2)

1 + G\z) G(z)
This indicates that by feeding the data corresponding to v(x) into a circuit con­
sisting of a shift register in a feedback loop, we effectively achieve a polynomial
division. The tap weights corresponding to G\z) are simply g(x) but with go = 0.
A closer analysis shows that during the first n shifts, the quota q(x) (equation
(8.45 a)) of the polynomial division is obtained at the output of the shift register.
After these shifts, the remainder, i.e. the syndrome coefficients of six), can be
found in the delay line of the shift register. The syndrome can hence be read
out in parallel and used as an index in a syndrome look-up table (LUT). Using
information in this table, errors can be corrected. A special class of syndrome-
based error-correcting decoders using the method above are known as Meggit
decoders.

Figure 8.3 shows an encoder and channel (upper part) and decoder (lower
part) for the cyclic code g(x) = 1 + x + x3 in the previous example. The encoder
and decoder consist of shift registers as outlined in the text above. It is an instruc­
tive exercise to mentally "step through" the coding and syndrome calculating
processes. The syndrome is obtained after n — 1 steps.

There are a number of standardized cyclic codes, commonly denoted cyclic
redundancy check (CRC) codes, some of them are

g(x)= 1 + x + x4 CRC-4:

CRC-5: g (x) = l + x 2 + x 4 + x 5

CRC-6: g(x)= l + x + x6

CRC-12: g(x) = 1 + x + x 2 + x 3 + jc n +x 1 2

CRC-16: g(x) = 1 + x 2 +x 1 5 +x 1 6

CRC-CCITT: g(x) = 1 + x5 + x12 + x16

228 Digital Signal Processing and Applications

encoder channel

decoder +

> $ -

Sl Si

<J>

Figure 8.3 Encoder and channel (upper) and decoder (lower) for a cyclic
code having the generator polynomial g(x) = 1 + x + x3. Encoder and
syndrome calculating decoder built using shift register elements

A special and important class of cyclic codes are the BCH codes, named
after Bose, Chaudhuri and Hocquenghem. This class consists of a number of
effective codes with moderate block length n. The parameters of these codes are

Block length: n = 2m - 1
Number of information bits: k >n — mt
Minimum Hamming distance: d > It + 1

form = 3,4 ,5 , . . .
Reed-Solomon (RS) codes belong to a special type of BCH codes, working

with groups of bits, in other words m-ary symbols rather than bits. The RS codes
are very efficient and have the greatest possible minimum Hamming distance
for a given number of check symbols and a given block length. The block length
must be kept small in practice. Nevertheless, it is an important and popular type
of code and is often used together with some other coding scheme, resulting in
a concatenated coding system.

Error-correcting codes 229

BCH and Reed-Solomon codes are, for instance, used in cellular radio sys­
tems, CD player systems and satellite communication systems, dating back to
the 1970s.

8.2.4 Convolution codes

In the previous sections, we have discussed block codes, i.e. codes working
with a structure of fixed length, consisting of information and parity bits. Con­
volution codes work in continuous "stream" fashion and "inserts" parity bits
within the information bits according to certain rules. The convolution process
is mainly a filtering process and is commonly implemented as some kind of
shift register device (may be software).

A convolution encoder algorithm can be viewed as n binary FIR filters, having
m steps long delay lines. The information bit sequence u\ to be coded is input
to the filters. Each filter y has its own binary impulse response g\ and hence,
the output of each filter can be expressed as a convolution sum. The output of
filter y is

m
c? = 2>FV«+i /= 1,2,... ,1 (8.63)

i = l

where U\,U2,...,UL are the information bits and g\J theyth generator, i.e.
the impulse response of filter j . Note! The superscript is only an index, not
an exponentiation operation. The code word bits cj will be arranged in the
following way when transmitted over the channel

Cj ,Cj , . . . , C j , c 2 , c 2 , . . . , c 2 , • . -^L+m^L+m'- '>LL+m

Thus, there will be (L + m)n bits in the code word, and the rate of the code
can be calculated by

R = n l ^ <8'64)
(L + m)n

Further, the constraint length of the code, in other words the number of bits
that may be affected by a given information bit is obtained from

ns = (m + l)w (8.65)

The practical algorithm (or hardware) operates as follows. Since the n delay
lines will run in parallel, having the same input, only one delay line is needed.
This line is shared by all the n filters. Initially, all the m elements in the delay
line are set to zero. The first information symbol u\ is fed to the delay line,
and the outputs c\J) of all filters are calculated and sent to the output. Then, the
delay line is shifted one step and the next input bit ui enters the circuit. The
filter outputs c2 are calculated and transferred to the output as before.

This scheme is repeated until the last information bit WL is reached. After
that point, only zeros are entered into the delay line for another m steps, thus

230 Digital Signal Processing and Applications

Si
(1)

€>"

\ei
(i)

I c/»

" I - 1

g\ (2)

, - 1
«/-2

ft' (2)

" - - * .
*U)

O

S3
(2)

«©-
c / »

&

Figure 8.4 Encoder for a simple convolution code. Parameters: n = 2, k = 7,
m = 2 and generators, gW = (1,0,1), g® = (1,1,1)

clearing the entire delay line. During this period, the tail of the code is generated
and transmitted through the channel.

Figure 8.4 shows an example of a convolution encoder for the code
0 , k, m) = (2,1,2), with generators g(1) = (1,0,1) and g(2) = (1,1,1). Assum­
ing an input information bit sequence w/ is (0,1,0,1) which will result in the
code word sequence c]J (including tail) (00,11,01,00,01,11).

The example convolution code shown here is a simple one. Convolution-type
codes have been used for space and satellite communications since the early
1960s. During the Voyager missions to Mars, Jupiter and Saturn during the
1970s, a couple of different convolution codes were used to ensure good data
communication. Two of these codes that became NASA standards are

• The Jet Propulsion Lab convolution code (2,1,6), with generators

gM = (1,1,0,1,1,0,1)

g<2> = (1,0,0,1,1,1,1)

• The Linkabit (3,1,6) convolution code, with generators

gW = (1,1,0,1,1,0,1)

g<2> = (1,0,0,1,1,1,1)

g<3> = (1,0,1,0,1,1,1)

8.2.5 Viterbi decoding

There are many ways to decode convolution-coded data. One of the most com­
mon methods is to use a Viterbi decoder, named after A. Viterbi. The idea of
Viterbi decoding is to decode an entire sequence of information symbols and
parity symbols at a time, rather than every single group (or block) of information

Error-correcting codes 231

and parity bits. Let us assume that the transmitted sequence of bits entering a
channel is

c - fc, C9 c,+) - (c(l) c{2) c(n) c(1) c(n)]
C — ^ L i , t 2 , . . . ,<~L+m) — y-\ >L\ J • • • > c i » c 2 » * ' ' >cL+mJ

as above, and c,- = (c- , c,- , . . . , c)) is the zth block. The received sequence,

coming out of the channel is expressed in a similar way

v = (v i ,v 2 , . . . ,v I + m) = \vx ,vx 9...9vx ,v2 , . . . , v L + m J

From the discussion on channels, we remember that for a communication chan­
nel, there is a set of transition probabilities. These probabilities are denoted

P\v)J | c\ \ and are the conditional probabilities of receiving bit v/7 when

transmitting c\J . If the bit error probability is independent for all bits, then the
conditional probability of receiving block v, when block c,- is transmitted is

n

p(v/ico=np(v^i^0)) <8-66a)
7=1

In a similar way, the conditional probability of receiving the entire sequence v,
given that bit sequence c (including tail) is transmitted, is

L+m

P (v | c) = n ^ (v « | c , -) (8.67a)
i = i

Now, the task of a maximum likelihood (ML) decoder is to maximize (equation
(8.67a)). Taking the logarithm of equations (8.66a) and (8.67a), respectively,
we obtain

n

L(yu Ci) = log(P(v; I c/)) = J2 l°g(^(v,0) I c ^)) (8.66b)

7=1

L+m

L(v, c) = log(/>(v | c)) = J2 log(P(V/1 C/)) (8.67b)
i = i

Hence, given the received bit sequence v, the ML decoder should find the bit
sequence c that maximizes L(\, c) as in equation (8.67b). If we assume a binary
symmetric channel (BSC) with error probability/?, equation (8.66b) above can
be written

L(\t | a) = dH(vu*i)\og(p) + (n - </j7(v,-,C|))log(l -p)

= dH(yi9Ci)log(^^—\ +/ilog(l -p) (8.68)

where J#(v/, c/) is the Hamming distance between the received binary sequence
\i and the transmitted sequence c/. The last term n log(l - p) can be neglected,

232 Digital Signal Processing and Applications

since it is a constant. Further, for error probability 0 <p < 1/2, the constant
factor log(^/(l -/?)) < 0. Hence, we define

Li = -dH(vi,ci) (8.69)

and

L+m L+m

1=1 1=1

From this we draw the conclusion, that finding the maximum likelihood
sequence in the case of BSC is equivalent to finding the minimum sum of
Hamming distances for the blocks. This fact is utilized in the Viterbi decoding
algorithm. To be able to calculate the Hamming distances at the decoder, we of
course need access to the received data v; and the transmitted data c,-. Unfortu­
nately, Cf is not known at the receiving site (this is why we put up the channel in
the first place). Hence, using our knowledge of the operation of the encoder, we
create a local copy of expected data £/ for our calculations. As long as c* = c/
we are doing just fine, and the correct message is obtained.

To demonstrate the steps needed when designing a Viterbi decoder, we will
use the previous convolution code example shown in Figure 8.4. First, we draw a
state transition diagram of the encoder. The contents of the memory elements
are regarded as the states of the device. Figure 8.5 shows the state transition
diagram. The digits on the branches show in parenthesis the input symbol u\

and following that, the output code block c/ = (cj , c\ M.

Starting in state 00 (all memory elements cleared) and assuming an input
information bit sequence u = (0,1,0,1), it is straightforward to perform the
encoding process using the state transition diagram below.

(1)11

(0) 0 0 / "

| (1)10

(0) 11 /

(1)01

(0)10

Figure 8.5 State transition diagram for the convolution encoder shown in
Figure 8.4. Digits in the nodes are the state numbers, i.e. the contents of the
memory elements. The digits over the branches are the input information
symbol \i\ (in parenthesis) and the output code bits c{ and cj

Error-correcting codes 233

Input State Output code

0 00 00
1 00 11
0 10 01
1 01 00
0 10 01
0 01 11

00

From the above table, the resulting code word sequence (including tail) is
c = (00,11,01,00,01,11). Now, this state transition diagram can be drawn as
a code trellis, a diagram showing all possible transitions (y-axis) as a function
of the step number / (x-axis) (see Figure 8.6). Since we know the initial state
00, the diagram will start to fan out from one state to the left to all the possible
four states. We also know, that after the Z-steps, there will be the m-steps of
zeros, constituting the tail, and ensuring that we end up in state 00 again. This
is why we have the fan in at the right end of the trellis.

If we assume that our transmitted code sequence c suffers 3-bit
errors being exposed to an error vector e = (01,10,00,10,00), we receive
v = (01,01,01,10,01,11). Using the trellis of Figure 8.6 and the expression
(8.70), we will illustrate the Viterbi decoding algorithm.

states

00

01

10

11

v 01 01 01 10 01 11

u 0 1 0 1 0 0

Figure 8.6 Viterbi decoding algorithm for the example in the text, illustrated
by a code Trellis. States on y-axis, steps on x-axis, numbers in italics are the
negative accumulated Hamming distances, numbers in parenthesis are the
estimated information symbols, numbers on branches are the expected code
blocks

tail
tail

234 Digital Signal Processing and Applications

Starting from the left, we know we are in the state 00. During the first step,
the received block is vi = (0,1), which can be seen from the line under the
trellis. Sitting in state 00 we know, from the state transition diagram in Figure
8.5, that at coding time, the encoder had two choices depending on the input
information symbol. If u\ = 1 the encoder could have moved to state 10 and
generated the output code ci = (1,1), otherwise it would have stayed in state
00 and generated ci = (0,0). We have received vi = (0,1), so when calculating
L\ using equation (8.69) we find the negative Hamming distance to be —1
in both cases. These figures are found above the respective node points in
italics.

We move to the next step. Here we received V2 = (0,1). We calculate the
accumulated Hamming distances for all the possible transitions. For instance,
if we assume state 10 and transition to 11, this implies U2 = 1 and c> =(1,0).
The negative Hamming distance is —2, and since we already had — 1 in state
10, it "costs" total —3 to reach state 11.

Starting in the third step we realize that there are two ways to reach the states.
We simply proceed as before, but choose the "cheapest" way to a node in terms
of accumulated Hamming distance. The more expensive way is crossed out. If
both ways are equally expensive, either of them is crossed and represents a cut
branch. For example, if we are looking for costs to reach state 01, there are two
possibilities, either from state 10, cost —2 or from state 11, cost —5. We choose
the former and cross-out the latter.

This process is repeated until we reach the end node to the right of the trellis.
If we now backtrack through the trellis, there should be only one path back to the
start node to the left. While backtracking, we can easily obtain the estimated
information symbols u, found at the bottom of Figure 8.6. In this particular
case, we managed to correct all the errors, hence u = u.

This was of course, a fairly simple example, but illustrated the basics of
Viterbi decoding. A similar procedure is sometimes used in equalizers to coun­
teract intersymbol interference (ISI) in, for instance, radio links (for instance
cellular phones) caused by frequency selective fading (Proakis, 1989).

8.2.6 Interleaving

All the codes discussed above have the common property that only a limited
number t of erroneous bits per block (or over the constraint length) can be
corrected. If there are more bit errors, the coding process will most certainly
make things worse, i.e. add even more errors.

Unfortunately, for some channels such as the radio channel, bit errors appear
in bursts due to the fading phenomenon, and not randomly as assumed by
the AWGN model. Hence, the probability of more than t consecutive errors
to appear in a burst may be considerable. Commonly, the distance: between
bursts is long and the problem may be solved using, for instance, long block
codes having large n, i.e. being able to correct a large number of bit errors.
Unfortunately, the delay in the system increases with n and the complexity of
most decoding algorithms increases approximately as n3. For these reasons,
long block codes are not desirable. A trick to make block codes of moderate
length perform well even in burst error situations is to use interleaving (Ahlin
and Zander, 1998).

Error-correcting codes 235

Interleaving is a method of spreading the bit errors in a burst over a larger
number of code blocks. In this way, the number of bit errors per block can be
brought down to a level that can be handled by the fairly short code in use.
Figure 8.7 shows the principle. We are using a block code of moderate length
n, having k information bits. The incoming information symbols are encoded
as before and the code words are stored row by row in the interleaving matrix.
The matrix has / rows, which results in an interleaving depth /.

After storing / code words, the matrix is full. In Figure 8.7, u)j) the informa­
tion bit / is in the code wordy and in a similar way pm the parity bit m is in
the code word j . The nl bits are output to the channel, but this time column by
column, as

(1) (2) (0 (1) (2)
i i , Uj , Uy , v{l)

' > Pn-k

At the decoder site, the reverse action takes place. The bits arriving from the
channel are stored column by column, and then read out to the decoder row by
row. Decoding and error correction is performed in a standard manner. What

input from
encoder

output to channel

«,(»)

"l (2)

1

" 1 (0

u2m

«2(2)

•

«2o

K 3 «

«3(2)

«3»

|

"*(1)

up

•

«4<o

P l (»

Plv>

\

Plv>

p2m

p2(»

\

P2U

p3W

„3<2)

"

, 3 ©

\

/ &

P%

Pf-k

A

\

Figure 8.7 Interleaving matrix, the encoder stores the code words row by
row. The bits are then transmitted over the channel column by column. In the
decoder, the reverse action takes place. Figure shows the systematic block
code (n, k)

236 Digital Signal Processing and Applications

we have achieved using this scheme is that a burst of TV consecutive bit errors
are spread out on / code words, where every code word contains

t\ = — bit errors per block (8.71)

If ti < t for the code in use, the errors will be corrected. If t is the number of
bits per block the code can correct, hence we can correct a burst of length

N = tl bits (8.72)

This can be viewed as: given a block code (n, k) we have created a code (nl, kl).
There are smarter ways of achieving interleaving, for instance, convolution

interleaving, which has a shorter delay.

8.2.7 Concatenated codes and turbo codes

A general problem with the traditional way of designing codes, like block
codes and convolution codes relying on algebraic structures, is the block or
constraint length required to approach the channel capacity. Long blocks imply
transmission delays and complex decoders as pointed out above. Two ways to
boost performance while avoiding too long blocks are the use of concatenated
codes or turbo codes.

Concatenated coding rely on the old concept of "divide and conquer", and
was first proposed by Forney in the 1970s. Instead of using one long and com­
plex code, two smaller ones are used in "cascade" (see Figure 8.8). First, the
information is processed by an "outer encoder", using, for instance, a Reed-
Solomon code. The outer encoder is followed by interleaving and an "inner
encoder" employing, e.g. a convolution code. At the receiving end a corre­
sponding arrangement can be found, an inner decoder, a de-interleaver and an
outer decoder. The critical issue in such a system is to find a good combination
of inner code and outer code. For example, if the inner code is not powerful
enough but lets too many errors through, the outer code may be useless and

encoder

u

1

outer encoder ^ inter leaver inner encoder — channel •

decoder

V
1 • inner decoder ^ de-interleaver • outer aecoaer

^

Figure 8.8 Example of a system using concatenated coding

Error-correcting codes 237

the total performance will be poor. For example, concatenated codes and turbo
codes are used in space communication applications and in cellular telephone
system (e.g. GSM).

Turbo codes (Haykin, 2001) has a little bit of the same flavor as concatenated
codes and can be viewed as a "parallel" way of doing concatenated coding.
Another way of viewing turbo codes is as a mix between block codes and
convolution codes. A simplified turbo system is shown in Figure 8.9.

The turbo encoder consists of two constituent encoders, an interleaver and a
multiplexer. The incoming data u follows three paths; one direct to the multi­
plexer, one to the first encoder and one to the second encoder via an interleaver.
Commonly, but not necessarily, the same error-correcting code is used by both
encoders, typically a recursive systematic convolutional (RSC) code (Haykin,
2001) having short constraint length. The interleaver scrambles the data bits
in a pseudo-random fashion. The idea is that errors that are likely to occur in
the parity generated by one encoder should be very unlikely to appear in the
other and vice versa. Data u and parity bits/?i and/?2 from the encoders are
multiplexed and transmitted over the communications channel.

turbo encoder

• encoder 1

interleaver — • encoder 2

u

p\

Pi
w

multiplexer

turbo decoder

J • de-multiplexer

U

Px

— •

*

Pi

decoder 1 interleaver

^
decoder 2 — • de-interleaver

Figure 8.9 A simplified turbo coding system, the upper part shows the turbo
encoder and the lower part the turbo decoder

23 8 Digital Signal Processing and Applications

At the receiving side, a demultiplexer separates the paths, noisy data U
and noisy parity Pi and P2. The rest of the turbo decoder consists of two
decoders, an interleaver and a de-interleaver. The decoders are of maximum a
posteriori probability (MAP) type. Such a decoder generates the output symbol
i.e. the most probable given the present input signal. Commonly the decoders
are implemented using BCJR algorithm (Haykin, 2001), invented by Bahl,
Cocke, Jelinke and Raviv. The BCJR algorithm is a more elaborate cousin to
the Viterbi algorithm presented earlier. As can be seen from the figure, the
turbo decoder has a feedback path and works iteratively. First, noisy data U
and noisy parity symbols P\ from the first encoder, is fed to the first decoder.
The output of the first decoder is the best estimate of the transmitted data u
taking the parity symbols Pi into account. This estimate is passed through
the interleaver, being of the same type as the interleaver in the turbo encoder.
After the interleaving, the estimate of the first decoder is "in phase" with the
received parity symbols P2 originating from the second encoder. Using the
parity symbols P2, the transmitted data u is re-estimated by the second decoder.
Finally, using a de-interleaver (doing the reverse action of the interleaver) a
good estimate of the transmitted data u is obtained. This estimate is fed back
to the first decoder again, and a re-estimation is taking place. This process is
iterated until some given condition (e.g. a certain number of iterations) is met
and a final estimate is produced.

This iterative process has actually given name to the turbo coding system,
since the decoder circulates estimates in the same way as air in a turbo engine.
In a turbo engine, the exhaust gas flow drives a turbine, driving a compressor to
feed air into the intake manifold of the engine. Thus, the more revolutions per
minute (RPM) you get, the more intake of air, which in turn gives more engine
power, resulting in increasing RPM and so on.

Turbo coding is used in code division multiple access (CDMA) radio systems
and performs well even in low SNR situations.

Summary In this chapter we have presented:

• Basic communications theory, BSC, bit error probability and mutual
information, AWGN and channel capacity

• Channel coding, Hamming distance, error detection and correction
• Linear block codes, Cyclic codes and BCH codes and Meggit decoders
• Convolution codes and the Viterbi decoder
• Interleaving, concatenated codes and turbo codes.

Review questions R8-1 Draw the model for the BSC and identify the transitions probabilities.
R8-2 Explain the concept of channel capacity and its consequences. What is

the expression for channel capacity in the AWGN case?
R8-3 Explain the following terms, Hamming distance, parity bits, systematic

form, code rate, error correction and error detection.
R8-4 Why is decoding and analysis of linear block codes easier than for non­

linear block codes?
R8-5 What special property does a cyclic code have compared to any linear

block code?

Error-correcting codes 239

R8-6 Explain the structure of a code word generated by a convolution encoder,
then explain the idea with the tail.

R8-7 Explain the algorithm for the Viterbi decoder.
R8-8 When and why is interleaving used?

Solved problems P8-1 Assume we have a BSC with bit error probability p = 0.05. If we intro­
duce a repetition code with parameters n = 5, k = 1 calculate:

(a) The code rate
(b) The number of parity bits
(c) The maximum Hamming distance of the code
(d) The error-correction capacity
(e) The error-detection capacity
(f) The symbol error probability using error correction by majority vote

decoding.

P8-2 If we transmit a byte 10110101, answer the following questions regarding
the convolution code Jet Propulsion Lab (2, 1,6):

(a) How many states are there in the encoder?
(b) What is the length of the tail?
(c) Calculate the constraint length.
(d) Calculate the code rate.
(e) Draw a block diagram of the convolution encoder.
(f) What is the code word on the output of the encoder?

P8-3 Write a MATLAB™ program to plot the channel capacity of a BSC
according to equation (8.9).

P8-4 Assume that the channel capacity of a system can be expressed as in
equation (8.12). For the noise power density No = 4-10~21 W/Hz, write
a MATLAB™ program that generates a three-dimensional plot show­
ing how the channel capacity depends on the bandwidth and the signal
power in the range 1 kHz-1 MHz and 10~18-10~9 W, respectively. Use
logarithmic scaling.

9 Digital signal processors

Background The acronym DSP is used for two terms, digital signal processing and digi­
tal signal processor. Digital signal processing is to perform signal processing
using digital techniques with the aid of digital hardware and/or some kind
of computing device. (Signal processing can, of course, be analog as well.)
A specially designed digital computer or processor dedicated to signal process­
ing applications is called a digital signal processor.

In this chapter, we will focus on hardware issues associated with digital
signal processor chips, and we will compare the characteristics of a DSP to
a conventional, general-purpose microprocessor. (The reader is assumed to
be familiar with the structure and operation of a standard microprocessor.)
Furthermore, software issues and some common algorithms will be discussed.

Objectives In this chapter we will discuss:

• System types, on-line, off-line, batch systems and real-time systems
• The multiply add accumulate operation, processing speed, architectures,

microprocessors, DSP, field programmable gate arrays (FPGA) and appli­
cation specific integrated circuits (ASIC)

• Fixed and floating-point format, numerical problems, truncation and
rounding

• The DSP software development process
• Program and data structures, addressing modes, instruction repertoire and

the state machine
• Implementation examples, finite impulse response and infinite impulse

response filters.

9.1.1 Applications and requirements

Signal processing systems can be divided into many different classes, depending
on the demands. One way of classifying systems is to divide them into off-line
or batch systems and on-line or real-time systems. In an off-line system,
there is no particular demand on the data processing speed of the system, aside
from the patience of the user. An example could be a data analysis system for
long-term trends in thickness of the arctic ice cap. Data is collected and then
stored on a data disc, for instance, and the data is then analyzed at a relatively
slow pace. In a real-time system, on the other hand, the available processing
time is highly limited and must be processed quickly, in synchronism with
some external process. Typical examples are digital filtering of sampled analog
signals, where the filtering algorithm must be completed within the sampling
period ts. Further, in many cases no significant delay between the input signal

9.1 System
considerations

242 Digital Signal Processing and Applications

stream processing block processing

input
processing

output
•

input
uuner

r jiuuesbiMi 1

output

Figure 9.1 Stream processing and block processing

and the output signal will be allowed. This is especially true in digital control
systems, where delays may cause instability of the entire control loop (which
may include heavy machinery). Most applications discussed in this book belong
to the class of real-time systems, hence processing speed is crucial.

Another way of classifying signal processing systems is to distinguish
between stream data systems and block data systems (see Figure 9.1). In
a stream data system, a continuous flow of input data is processed, resulting in
a continuous flow of output data. The digital filtering system mentioned above
is a typical stream data system. At every sampling instance, data is fed to the
system and after the required processing time tv < ts has completed, output data
will be presented.

Examples of block data systems are spectrum analyzers based on fast Fourier
transform (FFT) or channel decoders. In these cases, a block of data must first
be inputted into the system before any computation can take place. After the
processing is completed, a block of output data is obtained. A signal pro­
cessing block data system often requires larger data memory than a stream
data system. The most demanding applications can probably be found in the
area of digital video processing. Such systems are real memory hoggers and/or
require extremely high computational power. Quite often digital image process­
ing systems are multiprocessor systems, and consist of a number of processors,
dedicated subsystems and hardware. In this book, we will not consider the
implementation problems associated with digital image processing systems.

Another way of classifying systems relates to the numerical resolution and
the dynamic range, for instance, systems that use fixed-point or floating-point
arithmetics. A floating-point system often makes life easier for the designer,
since the need to analyze algorithms and input data in terms of numerical
truncation and overflow problems does not exist as in a fixed-point design.
Floating-point arithmetics may make things easier, but as pointed out in Chap­
ter 2, it is worth noting that a 32-bit fixed-point system, for instance, can have
a higher resolution than a 32-bit floating-point system. Another point is that
most systems dealing with real world signals often have some analog and/or
mechanical interfacing parts. These devices have a dynamic range ami/or reso­
lution being only fractions of what a floating-point signal processing system can
achieve. Hence, in most practical cases, floating-point systems are "overkill".
Today, fixed-point digital processors are still less expensive and execute faster
than floating-point processors.

Digital signal processors 243

If we try to identify the most common arithmetic operation in digital signal
processing (DSP) algorithms, we will find it to be the sequential calculation of
a "scalar vector product" or a convolution sum

b b-\

y(n) = ^2 Kk)x(n -k) = J2 Kk)x(n -k) + h(b)x(n - b) (9.1)
k=a k=a

Hence, the typical operation is a repeated "multiply add accumulate (MAC)"
sequence, often denoted MAC. This is found in, for instance, finite impulse
response (FIR) and infinite impulse response (IIR) filter structures, where the
input stream of samples x(n) is convoluted with the impulse response coeffi­
cients h(n) of the filter. The same situation can be found in a neural network
node, where the coefficients are the weights wy or in an FFT algorithm. In
the latter case, the coefficients are the "twiddle factors" W^1 (see Chapter 5).
In correlators, modulators and adaptive filters, the input data sequence x(n)
is convoluted with another signal sequence instead of constant coefficients,
otherwise the structure is the same. Further, vector and matrix multiplication,
common in block coders and decoders, require the same kind of calculations.

To summarize the demands: in many digital signal processing applications we
are dealing with real-time systems. Hence, computational speed, i.e. "number
crunching" capacity is imperative. In particular, algorithms using the MAC-like
operations should execute fast and numerical resolution and dynamic range need
to be under control. Further, the power consumption of the hardware should
preferably be low. Early DSP chips were impossible to use in battery-operated
equipment, for instance mobile telephones. Besides draining the batteries in no
time, the dissipated power called for large heat sinks to keep the temperature
within reasonable limits. On top of this, the common "commercial" system
requirements apply: the hardware must be reliable and easy to manufacture at
low cost.

9.1.2 Hardware implementation

There are mainly four different ways of implementing the required hardware:

• conventional microprocessor
• DSP chip
• bitslice or wordslice approach
• dedicated hardware, field programmable gate array (FPGA), application

specific integrated circuit (ASIC).

Comparing different hardware solutions in terms of processing speed on a
general level is not a trivial issue. It is not only the clock speed or instruction
cycle time of a processor that determines the total processing time needed for a
certain signal processing function. The bus architecture, instruction repertoire,
input/output (I/O) hardware, the real-time operating system and most of all, the
software algorithm used will affect the processing time to a large extent. Hence,
only considering million instructions per second (MIPS) or million floating­
point operations per second (MFLOPS) can be very misleading. When trying
to compare different hardware solutions in terms of speed, this should preferably
be done using the actual application. If this is not possible, benchmark tests may

244 Digital Signal Processing and Applications

be a solution. The ways these benchmark tests are designed and selected can of
course always be subjects of discussion.

In this book, the aim is not to give exact figures of processing times, nor to
promote any particular chip manufacturer. ("Exact" figures would be obsolete
within a few years, anyhow.) The goal is simply to give some approximate, typ­
ical figures of processing times for some implementation models. In this kind
of real-time system, processing time translates to the maximum sampling speed
and hence the maximum bandwidth of the system. In this text, we have used a
simple straightforward 10-tap FIR filter for benchmark discussion purposes

9

y(n) = J2hx(n-k) (9.2)
k=o

The first alternative is a conventional microprocessor system, for instance
an IBM-PC Pentium-type system or some single-chip microcontroller board.
By using such a system, development costs are minimum and numerous inex­
pensive system development tools are available. On the other hand, reliability,
physical size, power consumption and cooling requirements may, however,
present problems in certain applications. Another problem in such a sys­
tem would be the operating system. General-purpose operating systems, for
instance Windows™ (Microsoft) are not, due to their many unpredictable inter­
rupt sources, well suited for signal processing tasks. A specialized real-time
operating system should preferably be used. In some applications, no explicit
operating system at all may be a good solution.

Implementing the FIR filter (equation (9.2)) using a standard general-purpose
processor as above (no operating system overhead included) would result in a
processing time of approximately 1 < tv < 5 |xs, which translates to a maxi­
mum sampling frequency i.e./s = 1/4 < lAp of around 200kHz-l MHz. This
in turn implies a 100-500 kHz bandwidth of the system (using the Nyquist
criterion to its limit). The 10-tap FIR filter used for benchmarking is a very
simple application. Hence, when using complicated algorithms, this kind of
hardware approach is only useful for systems having quite low sampling fre­
quencies. Typical applications could be low-frequency signal processing and
systems used for temperature and/or humidity control, in other words, slow
control applications.

The next alternative is a DSP chip. DSP chips are microprocessors optimized
for signal processing algorithms. They have special instructions and built-in
hardware to perform the MAC operation and have architecture based on multiple
buses. DSPs of today are manufactured using complementary metal oxide semi­
conductor (CMOS) low voltage technology, yielding low power consumption,
well below 1 W. Some chips also have specially designed interfaces for exter­
nal analog-to-digital (A/D) and digital-to-analog (D/A) converters. Using DSP
chips requires moderate hardware design efforts. The availability of develop­
ment tools is quite good, even if these tools are commonly more expensive than
in the case above. Using a DSP chip, the 10-tap FIR filter (equation (9.2)) would
require a processing time of approximately tp ^ 0.5 |xs, implying a maximum
sampling frequency fs = 2 MHz, or a maximum bandwidth of 1 MHz. More
elaborate signal processing applications would probably use sampling frequen­
cies of around 50 kHz, a typical sampling speed of many digital audio systems
today. Hence, DSP chips are common in digital audio and telecommunication

Digital signal processors 245

applications. They are also found in more advanced digital control systems in,
for instance, aerospace and missile control equipment.

The third alternative is using bitslice or wordslice chips. In this case, we buy
sub-parts of the processor, such as multipliers, sequencers, adders, shifters,
address generators, etc., in chip form and design our own processor. In this
way, we have full control over internal bus and memory architecture and we
can define our own instruction repertoire. We, therefore, have to do all the
microcoding ourselves. Building hardware this way requires great effort and is
costly. A typical bitslice solution would execute our benchmark 10-tap FIR filter
in about tp ^ 200 ns. The resulting maximum sampling frequency is/s = 5 MHz
and the bandwidth 2.5 MHz. The speed improvement over DSP chips is not very
exciting in this particular case, but the bitslice technique offers other advantages.
For example, we are free to select the bus width of our choice and to define
special instructions for special-purpose algorithms. This type of hardware is
used in systems for special purposes, where power consumption, size and cost
are not important factors.

The fourth alternative is to build our own system from gate level on silicon,
using one or more application specific integrated circuit (ASIC) or field pro­
grammable gate array (FPGA). In this case, we can design our own adders,
multipliers, sequencers and so on. We are also free to use mainly any com­
putational structure we want. However, quite often no conventional processor
model is used. The processing algorithm is simply "hardwired" into the sili­
con. Hence, the resulting circuit cannot perform any other function. Building
hardware in this way may be very costly and time consuming, depending on
the development tools, skill of the designer and turn-around time of the sil­
icon manufacturing and prototyping processes. Commonly, design tools are
based on very high-speed integrated circuit hardware description language
(VHDL) (Zwolinski, 2004) or the like. This simplifies the process of import­
ing and reusing standard software defined hardware function blocks. Further,
good simulation tools are available to aid the design and verification of the chip
before it is actually implemented in silicon. This kind of software tools may cut
design and verification times considerably, but many tools are expensive.

Using the ASIC approach, the silicon chip including prototypes must be pro­
duced by a chip manufacturer. This is a complicated process and may take weeks
or months, which increases the development time. The FPGA on the other hand
is a standard silicon chip that can be programmed in minutes by the designer,
using quite simple equipment. The drawback of the FPGA is that it contains
fewer circuit elements (gates) than an ASIC, which limits the complexity of the
signal processing algorithm. On the other hand, more advanced FPGA chips
are constantly released on the market. For instance, FPGAs containing not only
matrices of programmable circuit elements, but also a number of DSP kernels
are available today. Hence, the difference in complexity between FPGAs and
ASICs is reduced. However, FPGAs are commonly not very well suited for
large volume production, due to the programming time required.

There are mainly only two reasons for choosing the ASIC implementation
method. Either we need the maximum processing speed, or we need the final
product to be manufactured in very large numbers. In the latter case, the devel­
opment cost per manufactured unit will be lower than if standard chips would
have been used. An ASIC, specially designed to run the 10-tap benchmark
FIR filter is likely to reach a processing speed (today's technology) in the

246 Digital Signal Processing and Applications

vicinity of tv ^ 2 ns, yielding a sampling rate of fs = 500 MHz and a band­
width of 250 MHz. Now we are approaching speeds required by radar and
advanced video processing systems. Needless to say, when building such hard­
ware in practice, many additional problems occur since we are dealing with
fairly high-frequency signals.

If yet higher processing capacity is required, it is common to connect a num­
ber of processors, working in parallel in a larger system. This can be: done in
different ways, either in a single instruction multiple data (SIMD) or in a mul­
tiple instruction multiple data (MIMD) structure. In an SIMD structure, all
the processors are executing the same instruction but on different data streams.
Such systems are sometimes also called vector processors. In an MIMD system,
the processors may be executing different instructions. Common for all proces­
sor structures is however the demand for communication and synchronization
between the processors. As the number of processors grows, the communication
demands grow even faster.

Large multiprocessor systems ("super computers") of this kind are of course
very expensive and rare. They are commonly used for advanced digital image
processing for solving hard optimization problems and for running large
neural networks. One classical example of such a machine is the "connection
machine" (CM-1) (Hillis, 1987). The CM-1 consists of 65 536 quite sim­
ple processors, connected by a packet-switched network. The machine is fed
instructions from a conventional-type host computer and a specially designed
computer language is used. The CM-1 has an I/O capacity of 500 Mbits/s and is
capable of executing about 1000 MIPS. The machine is air cooled and dissipates
about 12 kW. (One begins to think of the old electronic numerical integrator
and computer (ENIAC), using electron tubes . . .) .

An interesting thing is that this machine is only good at executing an appropri­
ate type of algorithms, i.e. algorithms that can be divided into a large number
of parallel activities. Consider our simple benchmark example, the 10-tap
FIR filter. The algorithm can only be divided into 10 multiplications that can
be performed simultaneously and four steps of addition (a tree of 5 groups +
2 groups + 1 group + 1 group) which has to be performed in a sequence. Hence,
we will need one instruction cycle for executing the 10 multiplications (using 10
processors) and four cycles to perform the additions, thus a total of five cycles.
Now, if the machine consists of 65 536 processors, each processor only has a
capacity of 109/65 536 = 0.015 MIPS, which is not very impressive. If we dis­
regard communication delays, etc., we can conclude that running the 10-tap FIR
filter on this super computer results in 65 526 processors out of 65 536 which
are idling. The processing time will be in the range of 300 |xs, in other words,
considerably slower than a standard (cheaper) personal computer (PC). Our
benchmark problem is obviously too simple for this machine. This also illus­
trates the importance of "matching" the algorithm to the hardware architecture,
and that MIPS alone may not be an appropriate performance measure.

9.2 Digital signal 9.2.1 Conventional microprocessors
processors versus

conventional 9.2.1.1 Architecture
microprocessors

A conventional microprocessor commonly uses a von Neumann architecture,
which means that there is only one common system bus used for transfer of both

Digital signal processors 247

•:.';.:'; d a t a y. ;:•;•'•'.• I •

p rogram
c o d e

memory processor I/O

Figure 9.2 von Neumann architecture, program code and data share memory

instructions and data between the external memory chips and the processor (see
Figure 9.2). The system bus consists of the three sub-buses: the data bus, the
address bus and the control bus. In many cases, the same system bus is also
used for I/O operations. In signal processing applications, this single bus is a
bottleneck. Execution of the 10-tap FIR filter (equation (9.2)) will, for instance,
require at least 60 bus cycles for instruction fetches and 40 bus cycles for data
and coefficient transfers, a total of approximately 100 bus cycles. Hence, even if
we are using a fast processor, the speed of the bus cycle will be a limiting factor.

One way to ease this problem is the introduction of pipelining techniques,
which means that an execution unit (EU) and a bus unit (BU) on the processor
chip work simultaneously. While one instruction is being executed in the EU the
next instruction is fetched from memory by the BU and put into an instruction
queue, feeding the instruction decoder. In this way, idle bus cycles are elimi­
nated. If a jump instruction occurs in the program, a restart of the instruction
queue has however to be performed, causing a delay.

Yet another improvement is to add a cache memory on the processor chip.
A limited block (some thousand words) of the program code is read into the fast
internal cache memory. In this way, instructions can be fetched from the internal
cache memory at the same time as data is transferred over the external system
bus. This approach may be very efficient in signal processing applications, since
in many cases the entire program may fit in the cache, and no reloading is needed.

The execution unit in a conventional microprocessor may consist of an arith­
metic logic unit (ALU), a multiplier, a shifter, a floating-point unit (FPU)
and some data and flag registers. The ALU commonly handles 2's comple­
ment arithmetics (see Chapter 2), and the FPU uses some standard Institute of
Electrical and Electronics Engineers (IEEE) floating-point formats. The binary
fractions format discussed later in this chapter is often used in signal processing
applications but is not supported by general-purpose microprocessors.

Besides program counter (PC) and stack pointer (SP), the address unit
(AU) of a conventional microprocessor may contain a number of address and
segment registers. There may also be an ALU for calculating addresses used
in complicated addressing modes and/or handling virtual memory functions.

9.2.1.2 Instruction repertoire

The instruction repertoire of many general-purpose microprocessors supports
quite exotic addressing modes which are seldom used in signal processing

248 Digital Signal Processing and Applications

algorithms. On the other hand, instructions for handling such things like delay
lines or circular buffers in an efficient manner are rare. The MAC operation
often requires a number of computer instructions, and loop counters have to be
implemented in software, using general-purpose data registers.

Further, instructions aimed for operating systems and multi-task handling
may be found among "higher end" processors. These instructions often are of
very limited interest in signal processing applications.

Most of the common processors today are of the complex instruction set
computer (CISC) type, i.e. instructions may occupy more than one mem­
ory word and hence require more than 1 bus cycle to fetch. Further, these
instructions often require more than 1 machine cycle to execute. In many cases,
reduced instruction set computers (RlSC)-type processors may perform bet­
ter in signal processing applications. In an RISC processor, no instruction
occupies more than one memory word; it can be fetched in 1 bus cycle and
executes in 1 machine cycle. On the other hand, many RISC instructions may
be needed to perform the same function as one CISC-type instruction, but in
the RISC case, you can get the required complexity only when needed.

9.2.1.3 Interface

Getting analog signals into and out of a general-purpose microprocessor often
requires a lot of external hardware. Some microcontrollers have built-in A/D
and D/A converters, but in most cases, these converters only have 8- or
12-bit resolution, which is not sufficient in many applications. Sometimes
these converters are also quite slow. Even if there are good built-in converters,
there is always need for external sample-and-hold (S/H) circuits, and (analog)
anti-aliasing and reconstruction filters.

Some microprocessors have built-in high-speed serial communication cir­
cuitry, serial peripheral interface (SPI) or I2C™. In such cases we still need
to have external converters, but the interface will be easier than using the tra­
ditional approach, i.e. to connect the converters in parallel to the system bus.
Parallel communication will of course be faster, but the circuits needed will
be more complicated and we will be stealing capacity from a common, single
system bus.

The interrupt facilities found on many general-purpose processors are in
many cases "overkill" for signal processing systems. In this kind of real-time
application, timing is crucial and synchronous programming is preferred. The
number of asynchronous events, e.g. interrupts, is kept to a minimum. Digital
signal processing systems using more than a few interrupt sources are rare. One
single interrupt source (be it timing or sample rate) or none is common.

9.2.2 Digital signal processors

9.2.2.1 Architecture

DSP chips often have a Harvard-type architecture (see Figure 9.3) or some
modified version of Harvard architecture. This type of system architecture
implies that there are at least two system buses, one for instruction transfers

Digital signal processors 249

instruction
memory

program
code 4*

processor

44

data memory

data

Figure 9.3 Harvard architecture, separate buses and memories. I/O,
data and instructions can be accessed simultaneously

and one for data. Quite often, three system buses can be found on DSPs, one for
instructions, one for data (including I/O) and one for transferring coefficients
from a separate memory area or chip.

In this way, when running an FIR filter algorithm like in equation (9.2)
instructions can be fetched at the same time as data from the delay line x(n — k)
is fetched and as filter coefficients bk are fetched from coefficient memory.
Hence, using a DSP for the 10-tap FIR filter, only 12 bus cycles will be needed
including instruction and data transfers.

Many DSP chips also have internal memory areas that can be allocated as
data memory, coefficient memory and/or instruction memory, or combina­
tions of these. Pipelining is used in most DSP chips.

A warning should however be issued! Some DSP chips execute instructions
in the pipeline in a parallel, "smart" fashion to increase speed. The result
will in some cases be that instructions will not be executed in the same order
as written in the program code. This may of course lead to strange behavior
and cumbersome troubleshooting. One way to avoid this is to insert "dummy"
instructions (for instance, no operation (NOP)) in the program code in the
critical parts (consult the data sheet of the DSP chip to find out about pipeline
latency). This will of course increase the execution time.

The execution unit consists of at least one (often two) arithmetic logic unit
(ALU), a multiplier, a shifter, accumulators, and data and flag registers. The
unit is designed with a high degree of parallelism in mind, hence all the ALUs,
multipliers, etc., can be run simultaneously. Further, ALUs, the multiplier
and accumulators are organized so that the MAC operation can be performed
as efficiently as possible with the use of a minimum amount of internal data
movements. Fixed-point DSPs handle 2's complement arithmetics and binary
fractions format. Floating-point DSPs use floating-point formats that can be
IEEE standard or some other non-standard format. In many cases, the ALUs

250 Digital Signal Processing and Applications

can also handle both wrap-around and saturation arithmetics which will be
discussed later in this chapter.

Many DSPs also have ready-made look-up tables (LUT) in memory (read
only memory (ROM)). These tables may be ̂ 4-law and/or /z-law for companding
systems and/or sine/cosine tables for FFT or modulation purposes.

Unlike conventional processors having 16-, 32- or 64-bit bus widths, DSPs
may have uncommon bus widths like 24, 48 or 56 bits, etc. The width of the
instruction bus is chosen such that an RISC-like system can be achieved, i.e.
every instruction only occupies one memory word and can hence be fetched in
1 bus cycle. The data buses are given a bus width that can handle a word of
appropriate resolution, at the same time as extra high bits are present to keep
overflow problems under control.

The address unit is complicated since it may be expected to run three address
buses in parallel. There is of course a program counter and a stack pointer as in
a conventional processor, but we are also likely to find a number of index and
pointer registers used to generate data memory addresses. Quite often there is
also one or two ALUs for calculating addresses when accessing delay lines (vec­
tors in data memory) and coefficient tables. These pointer registers can often be
incremented or decremented in a modulo fashion, which for instance simpli­
fies building circular buffers. The AU may also be able to generate the specific
bit reverse operations used when addressing butterflies in FFT algorithms.

Further, in some DSPs, the stack is implemented as a separate last in first out
(LIFO) register file in silicon ("hardware stack"). Using this approach, pushing
and popping on the stack will be faster, and no address bus will be used.

9.2.2.2 Instruction repertoire

The special multiply add accumulate (MAC) instruction is almost mandatory
in the instruction repertoire of a DSP. This single instruction performs one step
in the summation of equation (9.2), i.e. multiplies a delayed signal sample by
the corresponding coefficient and adds the product to the accumulator holding
the sum. Special instructions for rounding numbers are also common. On some
chips, even special instructions for executing the Viterbi decoding algorithms
are implemented.

There are also a number of instructions that can be executed in parallel to use
the hardware parallelism to its full extent. Further, special prefixes or postfixes
can be added to achieve repetition of an instruction. This is accomplished
using a special loop counter implemented in hardware as a special loop register.
Using this register in loops, instruction fetching can be completely unnecessary
in some cases.

9.2.2.3 Interface

It is common to find built-in high-speed serial communication circuitry in DSP
chips. These serial ports are designed to be directly connected to coder-decoders
(CODECs) and/or A/D and D/A converter chips for instance. Of course, parallel
I/O can also be achieved using one of the buses.

The interrupt facilities found on DSP chips are often quite simple, with a
fairly small number of interrupt inputs and priority levels.

Digital signal processors 251

9.3 Programming 9.3.1 The development process
digital signal

processors Implementing a signal processing function as DSP software often requires
considerable design and verification efforts. If we assume that the system spec­
ification is established and the choice of suitable hardware is made, designing
and implementing the actual DSP program remains.

As an example, the passband specifications for a filtering application may be
determined, the filter type chosen and a transfer function F(z) formulated using
the z-transform. Now, starting from the transfer function, the remaining work
can be described by the following checklist:

• Designing the actual algorithm, i.e. the method to calculate the difference
equations corresponding to the transfer function

• Simulating and verifying the algorithm, using a general-purpose computer;
this is often done on a non-real-time basis, using floating-point numbers and
high-level programming language, for instance C++, C or Pascal

• Simulating and verifying the algorithm as above, but now using the same
number format as will be used by the target DSP, e.g. fixed-point arithmetics

• "Translating" the algorithm computer code to the target program language
applicable for the DSP, commonly C or assembly program code

• Simulating the target DSP program code, using a software simulator
• Verifying the function of the target DSP program code, using the "high-level"

simulations as a reference
• Porting the DSP program code on the target hardware, using, e.g. an emulator
• Verifying and debugging the target system using the final hardware config­

uration, verifying real-time performance.

The steps above may have to be iterated a number of times to achieve a
system having the desired performance. If unlucky, it may even turn out that
the hardware configuration has to be changed to satisfy the system requirements.

When initially designing the algorithm, many alternative solutions may be
evaluated to find the one that executes the best, using the selected hardware. k

Processor architecture, arithmetic performance and addressing possibilities,
together with memory demands and I/O options will affect the algorithm design
process.

To accomplish the "high-level" simulations using floating-point and for
instance C++, C, Pascal or FORTRAN, it is also common to use some
standard computational program packages like, MATLAB™ (MathWorks),
Mathematica™ (Wolfram Research) or MathCad™ (MathSoft). General-
purpose spreadsheet programs like EXCEL™ (Microsoft) has also proven to
be handy in some situations. Input to the simulations may be data generated by
a model or real measured and stored data.

During the "high-level" simulations, using the same number format as the
target system, the aim is to pinpoint numerical, truncation and overflow prob­
lems. As an example, when working with integer arithmetics and limited word
length, the two expressions a(b - c) and ab - ac being equivalent from a strict
mathematical point of view, may give different results. Quite often, algorithms
have to be repartitioned to overcome such problems. If the target system uses
floating-point format, these simulations will in most cases be less cumbersome
than in the case of fixed-point formats. Fixed-point DSPs are however common

252 Digital Signal Processing and Applications

(today), since they are less expensive and run faster than floating-point chips.
Further, the numerical performance is not only a matter of number format, in that
other arithmetic aspects like using 2's complement or signed integer or binary
fractions, etc. may also come into play. The results from these simulations will
be used later in the development process as reference data.

"Translating" the algorithm into a program for the target DSP can be quite
easy if the "high-level" simulations use the same language as the target system.
One such example is using the program language C, which is available for a
great number of computing platforms and for most DSP chips. It is however
not uncommon that some macro language or pure assembly code is needed
to program the target DSP. In the latter case, the program hence needs to be
rewritten, commonly in assembly code. Even if high-level languages such as C
are becoming more common for DSPs, assembly language is the only choice if
peak performance is required.

The next step is to run the DSP program code on a host computer using a
software simulator. The purpose of this step is to verify the basic operation of
the software.

After having debugged the DSP program code, it has to be verified and
the function has to be compared to the "high-level" simulations made earlier.
"Every bit" must be the same. If there are any deviations, the reason for this
must be found.

Finally, the DSP program code is moved to the intended hardware system
using an emulator, programmable read only memory (PROM) simulator or
erasable programmable read only memory (EPROM). The software is now
executed using the dedicated hardware.

The last step is to verify the complete system including hardware and the
DSP software. In this case, the entire function is tested in real time. It should be
noted that some emulators do not execute at the same speed as a real processor.
There may also be timing differences regarding, for instance, interrupt cycles.
Hence, when verifying the system in real time, using the real processor is often
preferred to an emulator.

9.3.2 Digital signal processing programming languages

As mentioned above, even if there are a number of C cross-compilers around
today, it is still common to program DSPs using assembly language. Most
human programmers are smarter than compilers. Hence, tedious assembly lan­
guage programming has the potential of resulting in more compact and faster
code. The development time will, however, be considerably longer compared to
using C. For many DSPs, cross-compilers for C++ and JAVA are also available.
It is not easy to see that C++ or JAVA is better choice for signal processing
software than pure C language.

The DSP assembly instruction repertoire differs somewhat from one DSP
to another. Commonly, the assembly instruction can, however, be divided into
four typical groups.

(1) Arithmetic and logical instructions: In this group, we find instructions
for adding, subtracting, multiplying and dividing numbers as v/ell as the
MAC instruction discussed earlier. There are also instructions for rounding,

Digital signal processors 253

shifting, rotating, comparing and obtaining absolute values, etc. Many
instructions may come in different versions, depending on the number for­
mat used. There may be for instance multiplication of signed or unsigned
numbers, and multiplication of integers or binary fractions. In this group
we can also find the standard logical, bitwise AND, OR, NOT and XOR
functions.

(2) Bit manipulation instructions: This group consists of instructions for
setting, resetting and testing the state of single bits in registers, memory
locations and I/O-ports. These instructions are handy for manipulating
flags, polling external switches and controlling external indicators light
emitting diodes (LEDs), etc.

(3) Data transfer instructions: Data transfer instructions are commonly
MOVE, LOAD, STORE and so on, used to copy data to and from memory
locations, registers and I/O-ports. In many cases, the source and destina­
tion may have different word lengths hence care must be exercised to make
sure that significant data is transferred and that sign bits, etc. are properly
set. Stack handling instructions also belong to this group.

(4) Loop and program control instructions: Typical instructions in this
group are unconditional and conditional jump, branch and skip operations.
The conditional instructions are in most cases linked to the state of the
status bits in the flag register and occur in many different versions. Sub­
routine jumps and returns also belong to this group. Further, we can find
instructions for manipulating the hardware loop counter and for software
interrupts (traps) as well as STOP, RESET and no operation (NOP).

9.3.3 The program structure

If the functions available in a proper real-time operating system are not consid­
ered, the main structure of a typical DSP program is commonly a timed loop or
an idling loop and one or more interrupt service routines. In both cases, the
purpose is to get the processing synchronized to the sampling rate. The timed
loop approach can be illustrated by the following pseudo-code:

reset: initializing stuff
start timer // sampling rate

t_loop: do

{
if(timer not ready)

{
background processing

}
else
{ // timed sequence

restart timer
get input
process
send result to output

}
[forever

254 Digital Signal Processing and Applications

The execution time tv of the timed program sequence above must of course
not exceed the sampling period ts. The approach using an idling loop and
interrupt routines assumes that interrupts are generated at sampling rate, by
for instance external circuitry like A/D converters, etc. This approach is shown
below:

reset: initializing stuff

idle: do

{
background processing

} forever

irq: // timed sequence
acknowledge interrupt
get input
process
send result to output
return from interrupt

In this case, the interrupt service routine must of course be executed within the
sampling period ts, i.e. between successive interrupt signals. The latter approach
is a bit more flexible and can easily be expanded using more interrupt sources
and more interrupt service routines. This can be the case in multi-rate sampled
systems. One has to remember, however, that the more asynchronous events
like interrupt and direct memory access (DMA) there are in a system, the harder
it is to debug the system and to guarantee and verify real-time performance.

The most common DSP program has a constant inflow and outflow (stream
system) of data and consists of "simple" sequences of operations. One of the
most common operations is the MAC operation discussed earlier. There are
typically very few data-dependent conditional jumps. Further, in most cases
only basic addressing modes and simple data structures are used to keep up
execution speed.

9.3.4 Arithmetic issues

The 2's complement (see Chapter 2) is the most common fixed-point representa­
tion. In the digital signal processing community, we often interpret the numbers
as fractions (fractional) rather than integers. This means that we introduce a
binary point (not decimal point) and stay to the "right" of the point instead of
to the "left", as in the case of integers. Hence, the weights of the binary bits
representing fractions will be 2 _ 1 , 2 - 2 , . . .

Table 9.1 shows a comparison between fractional and integer interpretation
of some binary 2's complement numbers.

Fractional and integer multiplication differs by a 1-bit left shift of the
result. Hence, if for instance trying fractional multiplication using a standard
microprocessor, or using a DSP that does not support fractions, the result
must be adjusted by one step left shift, to obtain the correct result. This is
because the standard multiplication rule assumes multiplication of integers.

Digital signal processors 255

Table 9.1 Interpreting binary 2 s complement
as integer versus fraction

2's complement

0111
0110
0101
0100
0011
0010
0001
0000
1111
1110
1101
1100
1011
1010
1001
1000

Integer

7
6
5
4
3
2
1
0

- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8

Fraction

0.875
0.750
0.625
0.500
0.375
0.250
0.125
0.000

-0.125
-0.250
-0.375
-0.500
-0.625
-0.750
-0.875
-1.00

For example, multiplying 0.5 times 0.5 using the standard binary multiplication
rule yields.

Binary

0100
x 0100

0000
0000

0100
0000
0010000 =

F r a c t i o n

X

0 . 5 0 0
0 . 5 0 0
0 . 2 5 0

0 . 1 2 5

I n t e g

4
x 4

16

16

1 bit left shift yields

0100000 = 0.250

Most digital signal processors can handle fractional as well as integer multi­
plication. Some DSPs have a flag to set depending on if integer or fractional
rules apply, whereas other DSPs have separate instructions for the two kinds
of multiplication. Yet, other DSPs have special devices and/or instructions to
perform one step shift left.

A virtue of 2's complement is that when adding a sequence of numbers whose
sum you know is within bounds, all overflows and carries "on the way" can be
ignored. You will still come up with the correct result. This is very handy, since

256 Digital Signal Processing and Applications

in most DSP algorithms coefficients can be scaled to guarantee that the output
should be OK, thus overflows and carries can be ignored. For example

Fraction

.625
+ .750
+ .375
+ .625
- .875
-.625

Binary

0101
+ 0110
+ 0011
+ 0101
+ 1001
+ 1011

Partial sums

(1)

(1)

0101
1011
1110
0011
1100
0111

= . 8 7 5 = . 8 7 5

We assume that the adder "wraps around". This will, of course, not work if
the processor is using saturating arithmetic, i.e. it does not wrap around.
Many DSPs can support both standard (wrap around) arithmetic and saturating
arithmetic by setting flags, etc. If we have very large variations in, for instance,
an input signal and over or underflow conditions cannot be eliminated, using
saturating arithmetic we will be able to preserve the sign information and have
a fair chance to recover. Saturating arithmetic basically works as a soft limiter
(see Chapter 4) and can be useful in neural network algorithms.

Multiplication of two binary numbers, N-bit wide, yields a result being
IN—bit wide. This is why accumulators in DSPs are at least 2iV-bit wide,
to be able to harbor results and accumulated results. At some point though, one
must truncate or round back down to N-b\t wide numbers again.

Assume that we have an M-bits 2's complement fractional number
bo, b-\,b-2,..., b-M+i having the weights - 2 ° , 2 _ 1 , 2 ~ 2 , . . . , 2~M_hl where
the leftmost bit is the sign bit. If we truncate this word down to a width of
2?-bits, we simply cut away all bits to the right of bit number B—l, i.e. the
truncated word will be (assuming M > E) bo, b-\, b-2, • . . , bs+\ •

In this case, the error caused by the truncation operation will be

0 < s < 2~B+X (9.3)

The mean error will be

m£ = 2~B (9.4)

The variance of the error, or in other words the "error noise power" will be

2 -2(5- l)

• ? - - I T - <"-5>
The other possibility to reduce the word length is rounding. Preferably the
method of "convergent rounding", also called round-to-nearest (even) number,
should be used. This method works as follows:

(a) i fb-s , 6-5-1,...,&-M+1 < l , 0 , . . . , 0 t h e n
truncate as before

Digital signal processors 257

(b) if6_5, Z ? _ 5 - i , . . . , £ - M + I > l ,0 , . . . ,Othen
add b-B+\ = 1 and truncate as before

(c) if b-B, b-s-u • • •, 6 - M + I = 1,0,..., 0 and b-B+\ = 0 then
truncate as before

(d) if b-B, b-s-u • • • > 6-M+i = 1,0,..., 0 and b-B+\ = 1 then
add b-B+1 = 1 and truncate as before

Most DSPs have some kind of rounding function, but not all support
"convergent rounding". The error caused by the rounding operation will be

-2~B <8<2~B (9.6)

The mean error in this case will be

m£ = 0 (9.7)

The variance of the error, or in other words the "error noise power" will be the
same as for pure truncation, i.e. as equation (9.5) above. Rounding is preferred
to truncation in most cases. Truncation is easier to implement and can be per­
formed simply using standard bit masking techniques, if a truncation program
instruction is not available.

9.3.5 Data structures and addressing modes

In most cases, quite simple data structures are used in DSP software. In a typical
case, there is a data vector and a coefficient vector, or two or more data vectors.
In some cases, matrices are used, but since most DSP chips do not support
matrix operations directly, matrices are broken down to row or column vectors
and processed as a set of vectors.

To access vector structures, most DSP chips have a number of pointer reg­
isters. These registers are used for indirect addressing, i.e. the content of the
register is used as an address to point to a word in the data memory. Further,
the register can be auto-incremented, which means that the contents of the
register is incremented by 1, every time the register is used to point into the
data memory. This can be done in two ways, using pre-increment, the register
is first incremented and then used as a pointer, whereas if post-increment is
used, the increment and pointing operations take place in the reverse order.
There are of course also the corresponding operations for auto-decrement, i.e.
decrementing the register by one.

Another addressing mode that is common is indexed addressing. In this
case, the effective address, in other words the address pointed to in the data
memory, is the sum of a base register and the offset which may be the contents
of an offset register. In this way, the base register can be used to point to
the starting element of a vector or table, and the offset register is used for
the actual addressing. Now, the same piece of software can easily be used to
process another table or vector and only the contents of the base register has to
be replaced.

The addressing modes described above can be found in most conven­
tional general-purpose microprocessors as well. In DSP chips, there are also
some "specialized" addressing modes. One such mode is auto-increment or

258 Digital Signal Processing and Applications

auto-decrement using an offset other than 1. A pointer register can, for instance,
be auto-incremented by 5 or some other constant stored in a register.

Quite often, one or more of the data vectors in a DSP program are also used as
a delay line in, for instance, FIR filters. This means that a vector in data memory
of length M data words are used to store the present value of our sampled signal
x(n) and the M — 1 "old" sampled values x(n — 1), x(n — 2) , . . . , x(n — M + 1):

0000+ M - 1

0002
0001
0000

x(n-M+\)

x(n — 2)
x(n - 1)

x(n)

where we have assumed that the delay-line vector starts at address 0000, in
other words, the base address is 0000. Now, for every time the sampling clock
ticks, a new sampled value will arrive and the entire delay line must be updated.
This can be done in two ways. Either we are using a straightforward static list
method, or a somewhat more complicated dynamical list method. The static
list method is based on moving the contents of all the memory cells in the vector
one step "upwards", except the oldest element at address 0000 + M + 1 that will
be dropped. The new element will then be stored at the bottom of the vector in
address 0000. This method is easy to implement and understand. The drawback
is, however, that for every new sample, we have to make M — 1 "extra" data
moves, thus consuming time.

A smarter approach is the dynamical list method. In this case, a circular
buffer and a start-of-list pointer are used. The logical start of the vector
is pointed to by the start-of-list pointer and can be any address in the memory
block, not only address 0000 as above. As soon as a new sample arrives, we only
need to move the start-of-list pointer "downwards" one step. At this address, the
oldest sample can be found, since we are now dealing with a circular list. The
new sample is stored at this position, thus overwriting the oldest sample. In this
way, no shuffling of data is needed like in the static list method. Only the start-of-
list pointer needs to be decremented. To handle a circular buffer, pointers need
to "wrap around" when reaching the top or bottom of the memory area allocated
for the vector. This calls for modular addressing, supported by many DSPs.
General-purpose processors do not support this type of addressing, hence extra
program instructions are required to test the pointers and "wrap around" when
needed. If the size of the buffer is 2k, where A: is a positive integer, modular
addressing can be achieved by simply ANDing the address pointer with an
appropriate bit mask. Many DSP chips have specialized addressing hardware,
supporting almost any buffer length, e.g. 17 or 38, etc.

Dealing with, for instance, some FFT algorithms, using "butterfly"-type
computing strategies, bit reverse addressing, supported by many DSPs is
handy. The DSP (as with most other digital computers) performs the calcu­
lations sequentially. Equations (5.7) and (5.8) describe a four point FFT. It is

Digital signal processors 259

very simple, but can serve as an example to demonstrate the ideas behind bit
reverse addressing. Looking at equation (5.7), describing the computational
"butterflies", we find that we need to access the input elements x(0),x(l),
The smartest way (in terms of calculation order) to access these elements is not
in the "normal" sequence 0, 1, 2, 3 but in the bit reversed order 0, 2, 1, 3. If the
transform has more than four input values, the gain in calculation time will of
course be greater. So, bit reverse addressing is a way of calculating the pointer
values so that an FFT algorithm accesses the elements of the input vector in
the "smartest" order. The bit reverse addressing is obtained by "mirroring" the
address word, so that the most significant bit becomes the least significant bit and
vice versa. Table 9.2 shows a 3-bit normal and bit reverse addressing scheme.

9.3.6 The state machine

The state machine model is a common algorithm of designing stable software
which is easy to modify and verify. The model is used in many different real­
time application areas, and is certainly also usable in digital signal processing
systems. In this section, a simple state machine implementation will be shown
as an example.

Assume we would like to design a piece of software to receive Huffman-
coded, variable length messages, as in the example in Figure 7.1. There are five
possible messages having their own meaning as shown in Table 9.3.

Table 9.2 "Normal" order addressing
versus bit reverse-order addressing

Normal order

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Bit reverse order

000 0
100 4
010 2
110 6
001 1
101 5
011 3
111 7

Table 9.3 The five possible Huffman-coded
messages in the state machine example

Name

U\

U2

111

U4

Us

Code

1
011
010
001
000

Command

Stop
Forward
Reverse
Starboard
Port

260 Digital Signal Processing and Applications

Every time a complete message code is received, the corresponding com­
mand should be presented on a display. A real world system must also have a
time-out function to take care of corrupt messages and lost bits. This function
will, however, be omitted in this example for simplicity.

First, we identify the possible events. There are three possible events, namely:
(1) no input symbol received, (2) a zero symbol input received and (3) a one
symbol input received. The respective events are assigned with the numbers
in parentheses. Second, we determine the different states of our system and
the actions supposed to be taken in the respective state. The present state of
the system is determined by a state variable. Assume we need the nine states
presented below in our system:

State 1: wait for the first data bit of the coded message to arrive
State 2: print stop on the display
State 3: wait for the second data bit to arrive, given the first one was zero
State 4: wait for the third data bit to arrive, given the second one was one
State 5: wait for the third data bit to arrive, given the second one was zero
State 6: print forward on the display
State 7: print reverse on the display
State 8: print starboard on the display
State 9: print port on the display

Every state is typically implemented as a separate program segment, a function
or a subroutine. The behavior of the entire program is then determined by the
rules governing the execution order of the segments. These rules are commonly
logical combinations of events. For our example, the rules are shown as a
transition diagram (see Figure 9.4). A transition diagram is a very effective

Figure 9.4 Transition diagram for state machine example

Digital signal processors 261

way of planning and documenting a computer program (and other activities as
well). It is quite easy to make sure that you have really been thinking of every
possible event, and that the software performs predictably in all situations.

The rings represent states and the arrows in between them are transitions
taking place when the event, or combination of events, printed above the arrow
occur. When the system is initialized, the state variable is set to 1 and the system
starts in state 1. There are many different ways of implementing the system in
software. In this example, three different approaches will be shown. They are
all written using the programming language C/C++, but the method can, of
course, be used with basically any computing language. If you are not fluent in
C/C++, there are many good books on the market, for instance Heller (1997).

All of the program code examples shown below are built starting from a main
(timed) loop, as in Section 9.3.3. The first version (example 1) is quite straight­
forward and uses the switch statement to control the program flow. The name
of the state variable is s ta tevar and the event variable is named eventvar.
Since we do not have any live input signals available, inputs are simulated using
the keyboard by means of the get char () function. This part of the code is, of
course, different in a real world application. The state transitions, i.e. changes
of the value of the state variable, take place directly in the code segment for
the respective state. All variables are global. This programming style can be
used for smaller applications and in systems where no major code changes are
anticipated. Since no advanced pointer or addressing operations are involved,
the code can easily be converted to rudimentary programming languages like
assembly code. Note, one advantage of all state machine programming models
is that good debugging help can easily be obtained by including, for instance, a
pr in t f (" %c", statevar) statement in the main loop, printing the state vari­
able for every iteration. The printout can then be compared to the transition
diagram, to spot malfunctions:

void main(void) {
char statevar=l, eventvar;

char c;

// example 1
// state and event variables

// temporary input (dummy)

while(1==1) {
eventvar=l;
c=getchar();
if(c=='0') eventvar=2;
else if(c=='l') eventvar=3;
switch(statevar) {

case 1:
if(eventvar==2) statevar=3;
else if(eventvar==3) statevar=2;
break;
case 2:
puts("STOP"); statevar=l;
break;
case 3:
if(eventvar==2) statevar=5;
else if(eventvar==3) statevar=4;
break;

// main loop
// get input
// from keyboard (dummy)
// determine event

// branch to code for current state
// state 1

// state 2

// state 3

262 Digital Signal Processing and Applications

case 4:
if(eventvar==2) statevar=7;
else if(eventvar==3) statevar=6;
break;
case 5:
if(eventvar==2) statevar=9;
else if(eventvar==3) statevar=8;
break;
case 6:
puts("FORWARD"); statevar=l;
break;
case 7:
puts("REVERSE"); statevar=l;
break;

case 8:
puts("STARBOARD"); statevar=l;
break;

case 9:
puts("PORT"); statevar=l;
break;

default:
statevar=l;

// state 4

// state 5

// state 6

// state 7

// state 8

// state 9

// error, restart

In the next code example (example 2), some programming features which make
the code easier to expand and maintain have been introduced. One such feature
is assigning names to the states. In this example, quite meaningless names
have been used like s t i for state number 1, etc. In a real world applica­
tion more descriptive names could preferably be used, like await_f i r s t _ b i t
for state number 1, and so on. Another feature is that the code has been broken
down into separate functions, being called from the switch structure. Further,
values are passed to functions using formal parameters, and the use of global
variables is avoided. One advantage of this programming style is that the code
for the different functions need not necessarily be stored in the same source
code file, but can reside in different program modules, developed by different
programmers. This is, of course, valuable when designing larger systems, and
in applications where reuse of software modules is desirable:

enum statestl = l,st2,st3,st4,st5,st6f st7,st8f st9

statevar=stl;
enum eventnil=l,zero,one;

event getevent(void) {
char c; c=getchar();
if(c=='0') return zero;
if(c=='l') return one; return nil;

}

state code_l(event ev, state oldst) {
if(ev==zero) return st3 ;
if(ev==one) return st2; return oldst;

// state names
// state variable
// event names

// get input
// from keyboard (dummy)
// determine event

// state 1

Digital signal processors 263

s t a t e code_2(void) {
puts ("STOP") ; r e t u r n s t l ;

}

s t a t e code_3(event ev, s t a t e o l d s t) {
i f (e v = = z e r o) r e t u r n s t 5 ;
e l s e if(ev==one) r e t u r n s t 4 ; r e t u r n o l d s t ;

}

state code_4(event ev, state oldst) {
if(ev==zero) return st7;
else if(ev==one)return st6; return oldst;

}

state code_5(event ev, state oldst) {
if(ev==zero) return st9;
else if(ev==one) return st8; return oldst;

// state 2

// state 3

// state 4

// state 5

}

state code_6(void) {

puts("FORWARD"); return stl;

}

state code_7(void) {

puts("REVERSE"); return stl;

}

state code_8(void) {

puts("STARBOARD"); return stl;

}

state code_9(void) {

puts("PORT"); return stl;
}

// state 6

// state 7

// state 8

// state 9

void main(void)
while(1==1)
switch(statevar) {

case stl: statevar=code_l(getevent(), statevar)
break;

case st2: statevar=code_2(); break;
case st3: statevar=code_3(getevent(), statevar)

break;
case st4: statevar=code_4(getevent(), statevar)

break;
case st5: statevar=code_5(getevent(), statevar)

break;
case st6
case st7
case st8
case st9

statevar=code_6(); break
statevar=code_7(); break
statevar=code_8(); break
statevar=code_9(); break

// example 2
// main loop
// branch to code for current

state

default: statevar=stl; // error, restart

264 Digital Signal Processing and Applications

Table 9.4 Transition table for the state machine example, indices are event
number and old state number values in the table are new state numbers

Event

1
2
3

1

1
3
2

2

1
1
1

3

3
5
4

4

4
7
6

Old state

5

5
9
8

6

1
1
1

7

1
1
1

8

1
1
1

9

1
1
1

The third approach, resulting in a quite complex program code, relies on
tables. The transition diagram in Figure 9.4, governing the behavior of the
program, can be expressed as a transition table, where the indices are the values
of the event variable and the old state variable. The value found in the table is
the new (next) value of the state variable (see Table 9.4).

Hence, by "calling" the transition table with the event number and the old
state number, the new state number is obtained. The transition table in program
code (example 3) below is denoted t rans [] [], and the "call" to the table is
performed in the main loop. Note that this procedure has a conceptual resem­
blance to the state-space approach used, for instance, in the signal model of the
Kalman filter in Section 6.2.1. A great advantage with this programming style
is that the entire program flow is governed by the contents of the transition table.
This gives a very good overview of the program structure and behavior. Further,
alternative transition tables can be stored in different header files. By replacing
the header file and recompiling the source code, a program performing a new
task can be obtained, without changing a single character in the source code file.

The program code for the different states is partitioned in functions, as in
example 2. In this way, functions from different separately compiled program
modules can be handled. This is, of course, valuable when designing larger
systems. Pointers to the starting address of the different functions are stored
in the process table, denoted *proctab[]. This table gives the connection
between the state number and the starting address of the corresponding function,
containing the necessary program code. The process table is accessed in line
two of the main loop, and a vectorized function call is accomplished. Note that
the main loop only contains two lines of code.

Yet another feature of the program code in example 3 is the message table
*mess [], containing the message strings to be printed on the display. This
table could be stored in a separate header file. By replacing this table, display
messages in foreign languages can be produced. There can, for instance, be
different header files for messages in English, German, Spanish, and so on:

enum state{stl=l,st2,st3,st4,st5,st6,st7,st8,st9,MST} // state names
statevar=stl; // state variable

enum event{nil=l,zero,one,MEV}; // events
enum command{ST,FOR,REV,STAR,POR}; // commands

state trans[MEV-1][MST-1] = {
{stl, stl, st3, st4, st5, stl, stl, stl, stl},
jst3, stl, st5, st7, st9, stl, stl, stl, stl},
{st2, stl, st4, st6, st8, stl, stl, stl, stl}};

// transition table

Digital signal processors 265

char *mess[] = {
"STOP","FORWARD","REVERSE","STARBOARD","PORT"};

event getevent(void) {
char c; c=getchar();
if(c=='0') return zero;
if (c=='l/) return one; return nil;

}

// messages

void
void
void
void
void
void
void
void
void

code_l(void)
code_2(void)
code_3(void)
code_4(void)
code_5(void)
code_6(void)
code_7(void)
code_8(void)
code_9(void)

{};
{puts

{};
{};
{};
{puts
{puts
{puts
{puts

(mess[ST]);}

(mess[FOR]);}
(mess[REV]);}
(mess[STAR]);}
(mess[POR]);}

/ /
/ /
/ /

/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /

get input
from keyboard (dummy)
determine

state
state
state
state
state
state
state
state
state

1
2
3
4
5
6
7
8
9

event

void (*proctab[MST-1]) 0 = { // process table
code_l, code_2,code_3,code_4,code_5,code_6,code_7,code_8,code_9};

void main(void) {
while(1==1) {

statevar=trans[getevent()-1][statevar-1];
(*proctab[statevar-1]) ();

// example 3
// main loop
// get new state
// execute code for state

}

As can be seen from the above program code examples, there are many ways
to implement a state machine in software. Further, the programming language
C/C++ is very flexible (but you can also produce marvelous errors).

9.4 Implementation
examples

9.4.1 Finite impulse response-type filter

We will use a simple third-order low-pass FIR filter (see Chapter 1) as an
example. The filter specification is 0 dB attenuation in the passband 0 < q < 0.2
and an attenuation of at least 20 dB in the stopband 0.4 < q < 0.5, where the
frequencies are given in "fhosq", i.e. relative frequency (see Chapter 1, equation
(1.8a)). Using a standard filter design program packet, the resulting filter has
the transfer function

H(z) = b0 + biz~l + b2z~2 + b3z~3 (9.8)

where the filter coefficients are

fe0 = 1.000000
6i =0.2763932
b2 = 0.6381966
b3=bi= 0.2763932

The corresponding difference equation, i.e. the filter algorithm, can easily be
obtained from the transfer function (9.8)

y(n) = b0x(n) + b\x(n - 1) + b2x(n - 2) + b3x{n - 3) (9.9)

266 Digital Signal Processing and Applications

The first thing to investigate is the risk of overflow during some steps in the
calculation. Fortunately, this task is very simple for FIR filters. We can easily
calculate the maximum gain of the filter. Since it is a straightforward low-pass
filter, maximum gain will be found at frequency q = 0, or in other words "DC".

If we assume a constant DC input, i.e. x(n)=x(n — l)=x(n — 2)= 1, the
gain of the filter is simply the sum of the coefficients

G(0) = Y^bt = 1.000000 + 0.2763932 + 0.6381966 + 0.2763932 = 2.2

(9.10)

i=0

If we, for instance, assume that the maximum word length of the input signal
is 24 bits, and the coefficients are 24 bits, this yields 48 bits out from the
multiplier. Further, if we assume that the accumulators are 56-bit wide, we
have a margin of 8 bits, corresponding to a multiplication (i.e. gain) of 256
times. Since the maximum gain of the filter is roughly 2, we will never use
more than 49 bits out of the 56 bits in the accumulators, hence no overflow
problem will occur. If we would have suspected overflow problems, we could
have scaled all the filter coefficients by a proper scaling constant to prevent
overflow in the accumulator.

Now, our first algorithm will use a simple straightforward static list approach.
The memory usage can be seen in Figure 9.5. There are three address spaces,
the Y data memory address space, the X data memory address space and the P
program memory address space. The corresponding letters are put in front of
the hexadecimal addresses for clarity. We are using memory mapped I/O and the

>

Y:FFFF

Y.FFFE

Y:0003

Y:0002

Y:0001

/ address space

output

Input

h

h

* i

y(n)

x(n)

>

X:0003

X:0002

X:0001

X:0000

< address space

x(n - 3)

x(n - 2)

x(n - 1)

x(n)

program address sp

P:0042

P:0041

P:0040

Figure 9.5 Memory usage for the static list, third-order FIR filter example

Digital signal processors 267

ports are mapped into the Y address space, where also the coefficient memory
is located. The input port has address Y:FFFE and the output port Y:FFFF.
The filter coefficients b\, 62 and 63 are stored at locations Y:0001, Y0002 and
Y0003, respectively. Since bo = 1, it has been omitted.

The delay line is mapped in the X data memory according to Figure 9.5,
and the program code is of course stored in the program memory, mapped into
P address space. The program starts at address P:0040. The algorithm can be
described by the following pseudo-code:

init: reset pointers
load filter coefficients into Y memory-
clear delay line in X memory

loop: do

{
get input data into delay line
restart pointers
clear accumulator A
for 3 loops

get x value from delay line
point to next x value
get coefficient
point to next coefficient
multiply and accumulate in A
move x element one step in delay line

add x(n) since this coefficient is 1
round to 24 bits
send to output
forever

}

As an example, assume we make an assembly program for the Motorola DSP
56001 digital signal processor chip ("DSP56000/56001 Digital Signal Proces­
sor User's Manual", 1989). The R0 register will be used as pointer to X memory.
The Rl register will point to Y memory and the offset register NO will hold
the fixed one step offset used when moving elements in the delay-line one step.
The first part of the algorithm is only initializations and will only be run once,
after a reset. The actual filtering action takes place in the filter loop. This loop
would normally be timed in some way, to be synchronized to the sampling rate.
This detail has been omitted in this example, and we are running the loop at
maximum speed. The actual assembly code for the program is shown below:

; initializing

; init pointers
P:0040 init: MOVE #$3,R0
P:0041 MOVE #$1,R1
P:0042 MOVE #$1,N0

pointer for X data
pointer for Y data
offset, X pointer

; load filter coefficients into Y memory
P:0043 MOVE #.2763932,XI ; load bi
P:0045 MOVE X1,Y:(R1)+ ; to Y(l), increment pointer

268 Digital Signal Processing and Applications

P:0046
P:0048
P:0049
P.-004B

P:004C
P:004D
P:004E
P:004F

P:0050
P:0052

P:0053
P:0054

P:0055

P:0056
P:0058
P:0059
P:005A

P:005B
P:005C

P:005D

P:005E
P.-005F
P:0060

MOVE #.6381966,XI ; load b2

MOVE X1,Y:(R1)+ ; to Y(2),
MOVE #.2763932,XI ; load b3

MOVE X1,Y:(R1) ; to Y(3)
clear delay line vector in X memory

MOVE #$0,X1
MOVE X1,X:(R0)- ; X(n-3)=(
MOVE X1,X:(R0)- ; X(n-2)=(
MOVE X1,X:(R0) ; X(n-1)=(

the actual filter loop
get input data

increment poir.ter

decrement pointer
decrement pointer

floop: MOVE Y:$FFFE,X1
MOVE XI,X:$0000

restart pointers
MOVE #$3,R0
MOVE #$3,R1

clear accumulator
CLR A

the convolution process
DO #$3,$005D

MOVE X:(R0)-,X0
MOVE Y:(R1)-,Y0
MAC X0,Y0,A

from memory mapped port
to X(n)

pointer to X mem,
pointer to Y mem,

delay line
coefficients

hw loop 3 times, exit to $005D
get data, decrement pointer
get coeff, decrement pointer
the MAC operation

the data shuffling in the delay line
MOVE X:(R0) ,X0
MOVE X0,X:(R0+N0)

get element
move one step "upwards"

END ; end of loop
ADD X0,A ; add x(n) since k>o = l

; round result back to 24 bits and send to output
RND A ; convergent rounding
MOVE A1,Y:$FFFF ; result in Al to output
JMP $0050 ; get next sample

The first part of this software is the initialization of pointers and memory,
which requires 16 words of program memory. The # character denotes an imme­
diate constant and the expression MOVE X I , Y : (R I) + means copy data from
register XI to Y memory at the address pointed to by Rl, and post-increment
of Rl. This initialization part requires 36 machine cycles to execute. Using a
20MHz clock, the cycle time is 100ns, hence the initialization takes 3.6 |xs.
Maybe it is possible to find a smarter way of writing this piece of software, but
it is not worth the effort, since this code is only executed once following a reset.
It is better to concentrate on making the actual filter loop faster if possible,
because the execution time of this loop is the upper limit sampling rate of the
system.

In the filter loop, input data is first retrieved from the input port and sent to
x(n) in the delay line in X memory. The pointers for X memory (delay line) and
Y memory (coefficients) are restarted to point to the oldest element x(n — 3)
and the coefficient £3, respectively. Since we will use accumulator A in the
summation process, the accumulator is cleared.

The inner loop, performing the convolution in a sequential fashion, is imple­
mented as a hardware loop, meaning that we use the internal hardware loop
counter on the chip. This loop starts with DO and ends with END. After DO follow

Digital signal processors 269

Table 9.5 The sequential calculation of the difference equation in which
every line is an iteration of the inner loop

X:0000

x(n)
x(n)

x(n)
x(n)

x(n)

X:0001

x(n — 1)
x(n - 1)
x(n — 1)
x(n)

x(n)

X:0002

x(n — 2)
x(n-2)

x(n— 1)
x(n-l)

x(n — 1)

X:0003

x(n - 3)
x(n — 2)
x(n — 2)
x(n — 2)

x(n — 2)

A

0
x(n - 3)Z?3

x(n — 3)^3 + x(n — 2)
x(n — 3)^3 +x(n — 2)i
+x(n — l)b\
x(n — 3)Z?3 +x(n — 2)i
+x(n — \)b\ -\-x(n)bo

the number of repetitions and the exit address, where execution continues after
the loop is finished. Inside the inner loop, first an x value from the delay line
is fetched as well as the corresponding filter coefficient. The heart of the algo­
rithm is the MAC operation, i.e. multiplying the x value (in register XO) by
the filter coefficient (in register YO) and adding this product to the contents of
accumulator A.

After the MAC operation follows the data shuffling needed to update the
delay line. The present x value is moved "upwards" in the list, thus "aging"
one sample time. After the inner loop has been processed three times, the
calculation of the difference function (9.9) is almost finished. Only the term
x(n)bo is missing. Since bo = 1, we simply addx(w) to the accumulator A. The
result is then rounded back from 56 to 24 bits using convergent rounding and
then finally sent to the memory mapped output parallel port. The filter loop is
now ready to fetch the next input sample. The sequential calculation of function
(9.9) is shown in Table 9.5.

The filter loop code requires 18 words of program memory and executes in
96 machine cycles, corresponding to 9.6 |xs at 20 MHz clock speed. This means
that the maximum sampling rate using this software is 104 kHz. It is important
to note that we have not used the possibilities of parallel data moves inherent in
the chip. The DSP 56001 can do better, which we will be demonstrated in the
next example.

We will now show a more sophisticated way of implementing the same fil­
ter (equation (9.9)) as above, using a dynamic list approach and a modular
programming style. The dynamic list approach implies that we do not need
to shuffle the delay-line data around. Instead, we implement the delay line as
a circular buffer, using modulo addressing, and with the use of a start-of-list
pointer. Thus, by moving the start-of-list pointer one step, the entire delay-line
"ages" in a jiffy. The memory usage is shown in Figure 9.6. The main difference
compared to the previous example is that we have added the coefficient bo to
the Y memory vector to make the program more general. We cannot expect
bo = 1 in the general case. Further, since we are now using a delay line in the
form of a circular buffer, the position of the x values having different delays
will vary; e.g. there is no fixed place for x(n - 2) in the buffer. It will change
continuously according to the start-of-list pointer.

270 Digital Signal Processing and Applications

Y address space X address space program address space

Y:FFFF

Y:FFFE

output

input

y(n)

x{n)

Y:0003

Y:0002

Y:0001

Y:0000

h

h
b\

h

X:0003

X:0002

X:0001

X:0000

x()

x()

x()

x()

P:0070

P:0050

P:0040

main prog

subroutines

constants

Figure 9.6 Memory usage for the dynamic list, third-order FIR filter example

Another improvement is a more structured use of program memory. Starting
from address P:0040 there is a block of constants, followed by an area of
subroutine code from P:0050 and at address P:0070, the main program code
can be found. Hence, this address is also the entry point of the system. The
constant area contains the filter coefficients. In this example, we are not using
immediate-type program instructions to load coefficients. In many cases, it is
advantageous not to "embed" constants in the code. It is better to collect all
constants in an easily found block in program memory. This is especially true
if we need to change the constants frequently and/or if the constants are used
in many different places of the program. The algorithm can be described by the
following pseudo-code:

init: reset pointers
load coefficients into Y memory from program memory-
clear delay line in X memory
return

filter: get input data into delay line
clear accumulator A
for 4 loops

{
get x value from delay line
point to next x value
get coefficient
point to next coefficient
multiply and accumulate in A
move x element one step in delay line

Digital signal processors 271

round to 24 bits
send to output
return

main: init

do

{
filter

} forever

In the assembly code, register R4 will be used to point to coefficients in Y
memory and RO will point to x values in the delay-line vector in X memory.
Since we will now be working with circular buffers, modulo addressing will be
needed. For this reason, the modulo registers M4 and MO will be loaded with 4.
Further, since we always go through the entire delay line from oldest to newest
x value once every sample period, we do not need an explicit start-of-list pointer.
We automatically know where the list starts.

Further, in this example, we will use the parallel execution feature which
makes the entire "inner" loop only one instruction long. For this reason, we
will use the REP (repeat) function instead of the DO END hardware loop. The
assembly program is shown below:

P:0040
P:0041
P:0042
P:0043

coefficients
DC
DC
DC
DC

.9999999

.2763932

.6381966

.2763932

bo
b i

b 2

b 3

P : 0 0 5 0

P : 0 0 5 1

P : 0 0 5 2

P : 0 0 5 3

P : 0 0 5 4

P : 0 0 5 5

P : 0 0 5 6

P : 0 0 5 8

P : 0 0 5 9

P:005A

; initializing
; init pointers and modulo registers
init: MOVE #$0043,Rl

MOVE #$0003,114
MOVE #$0000,R0
MOVE #$0003,M0
MOVE M0,M4

temporary pointer
pointer for Y memory-
pointer for X memory
modulo 4, circ addressing X
modulo 4, circ addressing Y

load coefficients to Y and clear delay line in X

DO

END

MOVE #$0,X0
#$4,$005A

MOVE P:(R1)-,Y0
MOVE X0,X:(R0)+ Y0,Y:(R4)-

RTS

set X0=0
hw loop 4 times, exit to $005A
get coeff from program memory

clear X, increment pointer
store coeff, decrement pointer

return from subroutine
the filter

P:0060

P:0061
P:0062
P:0063

P:0046

filter: MOVEP Y:FFFE,X: (R0) - ; get input, store in delay line
; clear accumulator get x value to X0 and coeff to Y0

CLR A X:(R0)-,X0 Y:(R4)-,Y0
REP #$3 ; repeat next instr 3 times

MAC X0,Y0,A X:(R0)-,X0 Y:(R4)-,YO
MAC operation

MACR X0,Y0,A

get next x value
get next coeff
MAC operation and rounding

272 Digital Signal Processing and Applications

P:0047
P:0048

P:0070
P:0071
P:0072

; send to output
MOVEP Al,
RTS

; main program
main: JSR $0050

JSR $0060
JMP $0071

,Y: :$FFFF ; to output
; return from subroutine

; run init
; run filter
; forever

This software makes use of the possibilities of parallel execution in which up to
three instructions can be executed simultaneously under certain circumstances.
These instructions are written on the same line. For instance, MOVE xo,x :

(RO) + YO , Y : (R4) - means copy contents of X0 to X memory address pointed
to by R0 and post-increment R0 and copy contents of Y0 to Y memory address
pointed to by R4 and post-decrement R4.

Another example is CLR A X:(RO)-,XO Y: (R4) - ,YO which means clear
accumulator A and copy contents of X memory address pointed to by R0 to X0
and post-decrement R0 and copy contents of Y memory address pointed to by
R4 to Y0 and post-decrement R4.

Yet another (the best one ofthem all) MAC XO,YO,A X:(RO)- ,XO Y:(R4)-YO

which means multiply contents of X0 (x value) by contents of Y0 (coefficient)
and add to contents of accumulator A store in A and copy contents of X memory
address pointed to by R0 to X0 and post-decrement R0 and copy contents of Y
memory address pointed to by R4 to Y0 and post-decrement R4.

Making a table of the same type as Table 9.5 this example is left as an exercise
to the reader. The program occupies a total of 25 words, or program memory of
which four words are constants, 11 words are used by the init routine and seven
by the filter routine and three by the main program. The init function executes
in 62 machine cycles, i.e. 6.2 |xs and the filter in 64 cycles, or in other words
6.4 |xs. This means that the maximum sampling rate is 156 kHz.

9.4.2 Infinite impulse response-type filter

In this example a second-order low-pass IIR filter (see Chapter 1) will be used.
The filter specification is 0 dB attenuation in the passband 0 < q < 0.1 and an
attenuation of at least 30 dB in the stopband 0.4 < q < 0.5, where the frequencies
are given in "fnosq", i.e. relative frequency (see Chapter 1, equation (1.8a)).
Using a standard filter design program packet, the resulting filter has the transfer
function

b0 + biz'1 + b2z~2

1 — a\z v — a2z
 L

where the filter coefficients are

6o = 1.000000
ft! = 1.79941
b2 = 1.000000
ax = -0.299624
a2 = 0.195021

(9.11)

Digital signal processors 273

This is a "combined" IIR and FIR filter (see Chapter 1, Figure 1.10) and the
corresponding difference equation is

y{n) = box(n) + b\x(n - 1) + Z>2*(" - 2) + ai>>(n - 1) + a2y{n — 2)

(9.12)

A standard method is to divide this expression into two equations representing
the FIR and IIR portions to simplify the implementation. Starting out from
equation (9.11) we can separate the IIR and FIR parts

Y(z) E(z)Y(z) bo + blZ-i+b2Z-2
H(Z) = W)= W)W)=mG(Z) = l - f l i z - ' -a* - 2

1 i , (9.13)
j(b0 + bxz- l+b2z~2) 1 — a\z~x — a2z
 2

The IIR part F(z) has the difference equation

e(n) = x(n) + axe(n - 1) + a2e(n - 2) (9.14)

and the FIR part G(z)

y(n) = b0e(n) + b\e(n - 1) + b2e(n - 2) (9.15)

Hence, we do not put x(n),x(n — 1) , . . . in the delay line, as it is smarter to put
the intermediate signal e(n) into the delay line, i.e. e(n), e(n — 1) , . . . , where
e(n) is the output from the IIR part of the filter (see also Figure 1.10, Chapter 1).

Since we are now dealing with an IIR filter, having poles in the transfer
function, we must make sure the filter is stable, in other words, that the poles are
within the unit circle in the complex z plane. There are many standard methods to
check stability, but even if the filter is stable, it may have an oscillatory impulse
response and some resonant peak with a very high gain. Two problems arise:
firstly, the high gain may amplify weak round-off and truncation noise in the
filter to considerable output levels ("phantom" output) and secondly, overflow
problems are likely to appear. In many cases it is harder to determine good
scaling factors for IIR filters than for FIR filters, where the magnitude of the
signals in the filter are easier to calculate. For these reasons, IIR structures often
have low orders, typically two or three. If a higher-order IIR filter is needed,
a number of cascaded second-order filters are used. The same program code
can be used (subroutine) for all the cascaded filters with only separate delay
lines and coefficient vectors needed. Note, considering the round-off noise,
reordering the cascaded IIR filters may change the noise level.

Simulating the algorithm is probably the best way to pinpoint noise and
overflow problems in IIR-type filters. Running such a simulation of equations
(9.14) and (9.15) the maximum expected gain is found to be about 3.5 times.
The filter is well damped, and no significant "ringing" can be seen. Hence,
no problems are expected inside the filter itself. There are, however, external
subsystems to consider as well. If our input signals originate from an A/D
converter and the output is connected to a D/A converter, this "extra" gain may
cause problems. To avoid overflow in the D/A converter, we decide to reduce
the maximum gain of the filter by a factor 2. This is done by scaling the filter

274 Digital Signal Processing and Applications

Y address space registers program address space

Y:FFFF

Y:FFFE

Y:0004

Y:0003

Y:0002

Y:0001

Y:0000

output

input

0.5Z>2

0.5^

0.5Z>0

a2

a\

An)

x(n)

P:0051

P:0040

filter

init

X1

xo

e(/i - 2)

Q(n - 1)

Figure 9.7 Memory usage for the second-order IIR filter example

coefficients bo, b\ and b2 of the FIR part with a scaling factor 0.5. The scaled
filter coefficients are

0.5fc0 = 0.500000

0.5ii = 0.89970

0.5*2 = 0.500000

ax = -0.299624

a2 = 0.195021

In this last example, a non-standard "smarf'-type algorithm using a circular
buffer approach for the coefficients and two registers X0 and XI for the delay
line will be described. This algorithm is not very "neat" from a programming
point of view, but it is quick and compact. The memory usage can be seen
in Figure 9.7. The two accumulators A and B are used to store intermediate
results. The assembly code for the algorithm is shown below:

; initializing
; init pointer for coefficients

P:0040 init: MOVE #$0,R4
P:0041 MOVE #$4,M4

; load coefficients into Y memory
P:0042 MOVE #-.299624,X0
P:0044 MOVE X0,Y:(R4)+
P:0045 MOVE #.195021,X0
P:0047 MOVE X0/Y:(R4)+
P:0048 MOVE #.500000,X0
P:004A MOVE X0/Y:(R4) +

; pointer for Y memory

; modulo 5 addressing in Y mem

; load ai

; load a2

; load 0.5bo

Digital signal processors 275

P:004B MOVE #.29970,XI
P:004D MOVE X1,Y:(R4)+
P:004E MOVE X0,Y:(R4)+

; clear delay line
P:004F
P:0050

; the filter
P:0051 filter:
P:0052

P:0053
P:0054

P:0055

P:0056
P:0057

P:0058

P:0059

P:0060
P:0061
P:0062

; l o a d 0 . 5 b i

l o a d 0 .5b2 = 0 .5bo

MOVE #$0,X0
MOVE X0,X1

CLR A
CLR B Y:(R4) +,Y0

MOVEP Y:$FFFE,A1
MAC X0,Y0,A Y:(R4) +

i

i

Y0

MACR XI,Y0,A Y:(R4)+/Y0

MOVE A1,Y1
MAC Y0,Y1,B Y:(R4) +

MAC X0,Y0,B Y:(R4) +

MACR X1,Y0,B X0,X1

MOVE A1,X0
MOVEP B1,Y:$FFFF
JMP $0051

Y0

Y0

e(n-l) = 0
e(n-2) = 0

clear accumulator A
clear accumulator B
get ai to register Y0
get input to accumulator A
x(n) +aie (n-1) to A
get a2 to register Y0
x(n)+aie (n-1) + a2e(n-2) to A
round to 24 bits
get 0.5bo to register Y0
e(n) to register Yl
0.5boe(n) to B
get 0.5bi to register Y0
0.5b0e(n)+0.5bie(n-l) to B
get 0.5b2 to register Y0
0.5boe(n)+ 0 . 5k>ie (n-1) +
+0.5b2e(n-2)to B
e(n-l) to XI (time passes by)
e(n) to X0
output
next sample

The program occupies 29 words of program memory, of which 17 words are
for the initialization procedure, and 12 for the filter. Initialization executes in
3.6 |xs and the filtering function in 6.2 |xs assuming 20 MHz clock speed. Hence
160 kHz sampling rate is maximum.

9.5 Future systems
and chips

The above, simplified program code segments are only intended as examples,
and the classical but elegant DSP chip used is one out of many. It is not very
risky to predict that coming DSP chips will be faster, more complex and cheaper.
In some respects, there is also a merging of conventional microprocessor chip
technology, DSPs and FPGA structures taking place. FPGAs with a number
of DSP kernels on-chip are on the market today, and there are more to come.
Applications implemented using FPGAs will probably become more common.
There have also been general-purpose microprocessor chips around for a while,
having MAC instructions and other typical DSP features. New, improved sim­
ulators, compilers and other development tools are constantly being launched
on the market, making life easier for the designer.

DSP chips are used in many embedded systems today in large volume con­
sumer products like cellular mobile telephones. As the processing speed of the
DSPs increases, new applications will develop continuously. One interesting
area is radio technology. An average cellular mobile telephone today contains
a number of DSP chips. Classical radio electronics circuitry occupies only a
small fraction of the total printed circuit board area. As DSP chips get faster,
more of the radio electronics circuits will disappear and typical radio func­
tions like filtering, mixing, oscillating, modulation and demodulation will be

276 Digital Signal Processing and Applications

implemented as DSP software rather than hardware. This is true for radios in
general, not only cellular mobile telephones. For instance, radio systems based
on wideband code division multiple access (WCDMA) and ultra wideband
(UWB) will depend heavily on DSP technology. The technology of software
defined radio (SDR) is not yet mature, but will grow in importance as; the DSP
chips get faster.

DSPs will improve but still the programming of DSPs will be more com­
plex and demanding. Not only are good programming skills required, but also
considerable knowledge in signal theory, numeric methods, algorithm design
and mathematics.

Summary In this chapter the following issues have been treated:

• System types, processing speed, hardware architectures and hardware types
• Fixed and floating-point format, numerical problems, truncation and

rounding
• The DSP software development process
• Program and data structures, the state machine
• Implementation examples.

Review questions R9-1 What are the properties and requirements of a stream process and a batch
process considering execution speed and memory demand?

R9-2 Explain the MAC operation. Why is it so important?
R9-3 What are the pros and cons of general-purpose microprocessors, DSP

chips, FPGA circuits and ASICs from a digital signal processing point
of view?

R9-4 Explain the von Neumann and Harvard computer architectures. State
some pros and cons?.

R9-5 Explain the terms "wrap-around" and "saturating" arithmetics.
R9-6 What is bit reverse addressing? When is it used?
R9-7 Explain the data structures "static list" and "dynamic list".
R9-8 What is the difference between "truncation" and "rounding"?

Solved problems P9-1 Assume that you are given the task of writing the software for a digital
averaging filter having the transfer function H(z)= J2k=o bkz~k, where
the filter coefficients are given by bk = l/N. The DSP available has an
input bus width of 16 bits and the accumulator has 24 bits. What is
the maximum length N of the filter to avoid overflow, without applying
scaling?

P9-2 The sampling rate is 200 kHz for the input of the filter in P9-1 above.
Determine the maximum allowed execution time of the main loop. How
much data memory (in bytes) is required for the filter?

P9-3 Assume, for simplicity, that we are using a processor with 4-bit data
width. Further, 2's complement fractional representation is used, as
in Table 9.1. Our idea is to build a simple digital filter expressed by
the difference equation y(n) = c(ax(n) + bx(n — 1)), where a = 0.225,

Digital signal processors 277

Z? = —0.125 and c = 4. The first implementation of the filter is made
directly from the difference equation as above. What is the output
of the filter if x(n) = 1 for all nl We are not satisfied with the per­
formance of the filter so we change the order of the calculations to
y(n) = cax(n) + cbx(n — 1). What is the output of the filter using this
implementation? What would the ideal output of the filter be? What is
going on?

P9-4 Using the state machine approach, draw a state transition diagram and
determine the corresponding state transition table for a system able to
decode the Morse code for the letters "a", "e", "n" and "t". The Morse
codes are "a" = dot-dash, "e" = dot, "n" = dash-dot, "t" = dash. Each
transmitted letter is followed by silence for 1 s. The length of a dot is
0.1 s and a dash is 0.3 s.

Appendix 1 Solutions to
problems

Chapter 1 Pl-1

From Section 1.2.3, we know that a word length of n = 9 bits corresponds to
9 • 6 = 54 dB dynamic range, and that n = 10 bits gives 10 • 6 = 60 dB. Hence,
we choose n = 10 bits word length per sample.

Further, from Section 1.2.2, we know that the sampling frequency has to
be/ s > 2fmax, and since the maximum frequency of the analog input signal is
10 kHz, we get/s > 20 kHz, i.e. 20 000 samples per second. Since each sample
is 10 bits, we get a bit rate R > 10 • 20 000 = 200 kbits/s.

Pl-2

The transfer function will be

Y(z) z — a z — a
H(z) =

X(z) (z - b)(z -c) z1- z(b + c) + bc

(ALU)
z-l-az~2

1 -z~l(b + c)+z-2bc

The frequency function is obtained by settingz = QJQ
9 where £2 = 2nf/fS9 and

by inserting into equation (A 1.1.1) and using Euler's formula e-7^ = cos (0) +
j sin (0), we get

1 - Q~JQ(b + c) + Q-J'2Qbc

cos (ft) —j sin (ft) — a cos (2ft) +ja sin (2ft)
~ 1 - (b + c) cos (ft) +j(b + c) sin (ft) + 6c cos (2ft) -jbc sin (2ft)

_ (cos (£2) - a cos (2ft)) -y'(sin (ft) + a sin (2ft))
~~ (1 - (b + c) cos (ft) + be cos (2ft)) + j((b + c) sin (ft) - be sin (2ft))

(Al.1.2)

The gain function is A(Q) = |//(ft)|, and inserting equation (Al.1.2) gives

_ 7 (c o s (G) ~ a c o s (2^))2 + (sin (ft) + a sin (2ft))2

V(l - (Z> + c) cos (ft) + be cos (2ft))2 + ((6 + c) sin (ft) - be sin (2ft))2

280 Digital Signal Processing and Applications

y/\+2a- 2a(cos (ft) cos (2£2) - sin (ft) sin (2ft))

y/\ + (6 + c)2 + b2c2 - 2(6 + c) cos (ft) + 2bc cos (2ft) + 2(6 + c)(cos (ft) cos (2ft) - sin (ft) sin (2ft))

, / l H-2a-2acos(3ft)

v/l + (b + c)2 + b2c2 - 2(6 + c) cos (ft) + 26c cos (2ft) + 2(6 + c) cos (3ft)

/ 1 + 2 ^ (1 - c o s (3 ft))

y 1 + (6 + c)2 + b2c2 - 2(6 + c)(cos (ft) - cos (3ft)) + 26c cos (2ft)

where we have used the identities

cos2 (0) + sin2 (0) = 1 and

cos (a) cos (ft) — sin (a) sin (p) = cos (a + f$)

The phase shift function is 0(ft) = Z#(ft), and inserting equation (Al.1.2)
yields

0 -(sin(ft) + asin(2ft))>i

</>(ft) = arctan — TZTZZ~

V cos (ft) -a cos (2ft) /

(6 + c) sin (ft) - be sin (2ft) \
• arctan I I

1 - (6 + c) cos (ft) + 6c cos (2ft)/

Finally, the difference equation can be obtained by taking the inverse
z-transform of the transfer function (A 1.1.1)

X(z) ~ 1 -z-l(b + c) + z~2bc

=» Y(z) = X(z)z~1 - aX(z)z~2 +(b + c)Y(z)z~l - bcY(z)z~2

=>• y(n) = x(n - 1) - ax{n - 2) + (b + c)y(n - 1) - bcyin - 2)

Pl-3

The transfer function of the FIR filter is equation (1.43)

H(z) = b0 + bxz~x + b2z~2 + ••• + bMz~M (Al.1.3)

Let M be even for the total number of taps to be odd. Rewrite equation
(Al.1.3) as

H(z) = z-WM (b^'2 + M M / 2 M + • • •

Appendix 1 Solutions to problems 281

Setting z = ejQ and using the symmetry bn = bM-n we get

H(z) = e-WWQ (^ W 2) " + bleWV-m + ... + bM/2 + ".

+ bie-MM/2)+m+ boe-KM/2)Q^

= e-j(M/2)Q U Lm 12)0. + e-j(M/2)Sl\

+ bl (eMMM-m + e-MM/2)+i)^ + . . . + bM/2^

Using the identity eja + c~Ja = 2 cos (a), we get

H(z) = e~*M/2)Q ^ 2 i 0 c o s ^ y o \ + 2bi cos f fy -]\a\ + • • • + bM/2\

Since the function F(Q) is real, it does not contribute to the phase shift and
the phase shift function of the filter will be linear (see also equation (1.58))

M

Pl-4

Starting with equation (1.73) and substituting equation (1.75), s ->/ s(l ~z~l),
gives

bo
G(s)--

H(z) =

ao + a\s + ci2S2

bo
ao + aiMl-z-l) + a2f?(l-

bo
ao + aifs(l-z-1) + a2/?(\-

bo
ao + a\fs + a2f

2 - z~x(a\ fs -

bo
ao + aifs + a2fl

1

i - - i " i / s + 2a 2 / s
2

-Z- l)2

- 2 Z - 1 - ;

f2a2/ s2)

7-2

z-2)

- Z - 2

ajJl_

"2f2

ao + a\ fs + a2fs
2 a0 + a\fs + a2fs

2

Finally, inserting the numerical values we get

1
H(z) = 0.511

i-o.oiiz-l+o.mz-2

282 Digital Signal Processing and Applications

Pl-5

There are many ways to write the program; one simple approach is presented
below:

% problem 1-5

Fs=40e3;

W= [8e3, 12e3]/(Fs/2) ;

[b,a]=butter(4,W,'z");

[d,c]=chebyl(4,l,W/' z')

figure(1)

freqz (b,a, 60,Fs)
hold on
freqz(d,c,60,Fs)

figure(2)
pzmap(b,a)

figure(3)
pzmap(d, c)

% sampling frequency

% passband spec

% design Butterworth
% note the order is 2*4=8
% design Chebyshev

% make Bode plots
% Butterworth in 60 points
% both in the same diagram
% Chebyshev

% make pole/zero plot
% for Butterworth

% make pole/zero plot
% for Chebyshev

The Bode plots of the two filters are shown in Figure Al. 1, the solid line is the
Butterworth filter, while the dotted one is the Chebyshev filter. In Figure A 1.2
the pole-zero plot for the Butterworth filter is shown. Finally, Figure A 1.3
shows the pole-zero plot for the Chebyshev filter.

Chapter 2 P2-1

The /^-law equation (2.2) is given by ^ = (log(l+/xx))/(log(l+/x)),
setting fi = 0 means that we need to solve a limit problem. Approximate the
denominator and the numerator using Maclaurin expansions (1.22)

numerator: log (1 + fix) & 0 4-

denominator: log(l + /x) ^ 0 +

1

1 +/xx

1
1+/X

(higher-order terms can be ignored, since they will tend to zero even faster)
Inserting the approximations yields (for small //)

y-
log(l+/zx) x (l+ /x)

log(l+/x) \+[ix

Setting /x = 0 we obtain^ ^ (x(\ + p))/(\ + ^x) =x9 i.e. a linear function.

Appendix 1 Solutions to problems 283

bode diagram

m

-o

O) -
CO

E

0)

2,
CD
CO
CO

.n
Q.

-200

-400

-600

-800.
0.5 1

frequency (Hz)

1.5

Figure Al.l Bode plot of the Butterworth filter (solid line) and the
Chebyshev filter (dotted line)

x 104

2

X104

1

0.8 [

0.6

0.4

x 0.2
co

g 0\
'5)
E "0.2 I

-0.4

-0.6

-0.8

pole-zero plot

- 1
-1.5

L X i X J
X J X |

[• -G- - i- -O A

x ! x
I x ! x 1

-0.5 0 0.5

real axis

1.5

Figure A1.2 Pole-zero plot of the Butterworth filter

284 Digital Signal Processing and Applications

pole-zero plot

0.5

CO

c
D)
CO

E

-0.5

-o-

x ; x

-1.5 -1 -0.5 0 0.5

real axis

1.5

Figure A1.3 Pole-zero plot of the Chebyshev filter

P2-2

A 14-bit ADC having 5 V FS has a LSB step of FS/2" = 5/214 V An offset of
3 LSB is hence

3 ^ = 0 . 1 8 m V .

P2-3

There are many ways to write the program; one simple approach is presented
below:

% problem 2-3
% comb filter, k=9

% transfer function
b=[l, 0, 0, 0, 0, 0, 0, 0, 0, 1];
a= [1, 1, 0, 0, 0, 0, 0, 0, 0, 0] ;

SYS=TF(b,a,-1) ;
pzmap (SYS)

% numerator
% denominator

% convert model
% plot poles and zeros

Figure Al .4 shows the pole-zero plot. At z = -1 there is a pole located right
on the unit circle. The pole is cancelled by a zero; however, the pole or zero
may drift away slightly due to numerical truncation problems. A pole outside
the unit circle means an unstable system, and pole (not cancelled) on the unit
circle represents an oscillator (resonator).

Appendix 1 Solutions to problems 285

1

0.8

0.6

0.4 I-

-g 0.2|/
CO

| 0$
CO

•- ~0-2 f\

-0.4 h

-0.6

-0.8

-1
-1

pole-zero plot

O

*t

^~n_

^Os

.<->'

-0.5 0
real axis

0.5

6

O

Figure A1.4 Pole-zero plot of the comb filter with k = 9

P2-4

There are many ways to write the program; one simple approach is presented
below:

% problem 2-4
% comb filter, k=9

% transfer function
b=[l, 0, 0, 0, 0, 0, 0, 0, 0, 1]
a=[l, 1, 0, 0, 0, 0, 0, 0, 0, 0]
freqz(b,a)

% numerator
% denominator
% plot Bode diagram

Figure A 1.5 shows the Bode plot of the comb filter.

Chapter 3 P3-1

For the cancellation to work perfectly we require dk = wo£- Since the system is
linear we can assume _?* = 0. The MSE can be found from equation (3.9)

§ = E[d%] + WTRW - 2PTW

= E[d2
k] + WTE[X*Xj]W - 2E[dkXk]W

286 Digital Signal Processing and Applications

200

o> 100 h

0 </>
03 .c
Q.

-100

1 i_ _ 2\. 1 1 -Sk_ — I — i Jv_ _l-J JN

0.2 0.4 0.6

normalized frequency (XTT rad/sample)

0.8

Figure A1.5 Bode plot of the comb filter with k = 9

where the mean square of the desired signal is

E[4] = E [sin2 (* *)] = I E [l - cos {in^j

1 1 1 ^ /„ k\ 1
= > cos In- = -

2 2N£^ V 7 / 2

and the input correlation matrix is obtained by

E[X*XT1 = \E[xkXk] ^M-rt 1 = R

E[xkxk] = E [cos2 h r - j l = -E M + cos (In-\

= - H / cos In- = -
2 2N f^\ V 7/ 2

Efexi_i] = E[xk-ixk] = E cos I n- J cos (n — — J

= - E COSITT- I + C O S I T T ^ — II

Appendix 1 Solutions to problems 287

1 / 1\ l l f / 2*+l\ 1 / 1\
= - COS 7 T - + - — > COS 71 = - COS 7 T -

E[**-i**-i] = E cos2 (n — y -)

k=\

= 2 E 1 +COS (-¥):
1 l i f (^ k-\\ l

= ~ + ~ 77 / c o s 2 7 T — - — = -
2 IN £ ^ V 7 / 2

R =

Jfc=i

1 cos(^)n

COS (?) 1

The cross-correlation vector is

EMtX*]

E[tf*X]t] = E

E [4 ^]

E[dkxk-i]
= P

sin | (^) cos (**)] = ifi [sin (^

= > sin n— = 0
2Nti \ n>

E[4*i- i] = E sin In- J cos \n—j- J

11 A . / 2 t - l \ 1 . / 1\ 1 . ,n\

P =
1 0
2h(y)J

which finally gives the MSE function

£ = E[J|] + WTRW - 2PTW

= 2 + 2^W° " ^
^ cos(7)' cos(f) ! .

["wol
|wij

-4[o ,„(=)] W 0

Wi

288 Digital Signal Processing and Applications

1 1
= 2 + 2 \ ° v ° + Wl c o s ("7// + Wl v ° c o s ("7/ + v)

- wi sin y-J = - + -(w§ + w\) + w0wi cos (- j - wi sin (- j

P3-2

The LMS algorithm

W*+1 = W* + 2fi6kXk =Wk + 2/x(4 - XT
kWk)Xk

WOk

xk

*k-\

w0k + 2fM (xk sin (- j - x2
kWQk - xkXk-\w\k)

w\k + 2/x (xk-\ sin (- J - Jfjt-i^woit - *£_i w u j J

Hence

wok+i = w0k + 2/x (cos (7T- j sin (-) - cos2 (; r - jw0*

{ k\ (k-\\ \
- COS I 7 T - ICOSI 7 T — — \W\k I

wu+i = w i* + 2M (c o s (^ " y -) s i n (7)

/ * - l \ / * \ 2(k-\\ \
— cos I n—-— 1 cos I n- IM>O£ — cos I re—-— \w\±: 1

P3-3

A suggested MATLAB™ program, running the filter, plotting the MSE and
updating the weights using LMS, is shown below:

% adap.m
% parameters and variables

N=1000;
k=l:N;

mu=0.05;
dk=sin(pi*k/7);
X=[cos(pi*k/7); cos(pi*(k-1)/7)]

% number of steps
% initialize time index

% training constant
% desired signal
% input to combiner

Appendix 1 Solutions to problems 289

W=zeros(2,N);
ksi=zeros(1,N);
y=zeros(1,N);

R=[1 cos(pi/7) ; cos(pi/7)1]
P=[0; sin(pi/7)];
Edk=0.5;

% main loop
for k=l:N
% run filter
y(k)=X(l:2,k)'*W(l:2,k) ;

% find MSE
ksi(k)=Edk+W(l:2,k)'*R*W(l:2,k)-2*P•*W(1:2,k);

% run LMS
W(l:2, (k+1))=W(l:2,k)+2*mu*(dk(k)-y(k))*X(l:2,k);

end

% plot result
figure(1)
subplot(2,1,1)
plot(y)
Title('y(k), output from filter')

% weight vectors
% MSE
% filter output

% auto-correlation matrix
% cross-correlation vector
% mean square of desired signal

subplot(2,1,2)
plot(y-dk)
Title('eps(k), output after cancellation')

figure(2)
subplot(2,1,1)
plot(W(1,1:N))
Title('weight wO')
subplot(2,1,2)
plot(W(2,1:N))
Title('weight wl')

figure(3)
plot(ksi)
Title('MSE, learning curve')

% output from filter

% output after cancellation

% weight wO

% weight wl

% MSE

Figure Al .6 shows the output y(ri) from the filter (upper plot) and the output
after cancellationy(n) — dk(ri) (lower plot). Figure A1.7 shows convergence of
the two weights wo (upper plot) and w\ (lower plot). Figure A1.8 shows the
"learning curve", i.e. the minimum square error (MSE).

P3-4

The Wiener solution is given by

W * = R - 1 P

290 Digital Signal Processing and Applications

y(k), output from filter

1000

eps(/r), output after cancellation

1000

Figure A1.6 Interference cancellation system, output from the filter (upper
plot) and the output after cancellation (lower plot)

This expression can be evaluated easily using the MATLAB™ command:

R\P
a n s

- 2 . 0 7 6 5
2 . 3 0 4 8

which corresponds well to the final values of the weights obtained in P3-3.

Chapter 4 P4-1

The program may look like (for TV = 3) below:

% p r 4 1 . m

% t e s t v e c t o r
X= [0 0 0 0 1 2 3 4 4 4 3 -8 1 0 0 1 1 0 0 0 1 1 1 0 0 0 0] ;
N=3; % f i l t e r l e n g t h
Y = z e r o s (s i z e (X)) ; % o u t p u t v e c t o r

Appendix 1 Solutions to problems 291

weight wQ

200 400 600

1000

800 1000

Figure A1.7 Convergence of the filter weights, wo (upper plot) andw\
(lower plot)

MSE, learning curve

0 200 400 600 800 1000

Figure A1.8 MSE as a function of iteration, the "learning curve"

292 Digital Signal Processing and Applications

input X
10 i

5I-

0 0 0 0 0 sd lllll ^ o o ^ o o o ^ ^ o o o i)

- 1 0 '

c

101

5

0

- 5

—101

10 15

output X

20 25

O O O si mi ^ o o o ^ o o o ^ ^ o o o o i

10 15 20 25

Figure A1.9 The input (upper plot) and output (lower plot) of the median
filter with filter length N = 3

for i=l:(length(X)-N)
Y(i)=median (X(i:(i+(N-l))));

end

subplot(2,1,1)
stem(X)
axis([0 length(X)-10 10])

subplot(2,1,2)
stem(Y)
axis([0 length(X)-10 10])

% filter

% plot input

% plot output

Figure A1.9 shows the input (upper plot) and output (lower plot) of the median
filter for N = 3. The short one-sample transient pulse is removed, since one
sample out of three in the filtering window is regarded as an impulse. The rest
of the signal is untouched. Figure ALIO is input and output for N = 5 and
the two-sample pulse is removed since with this filter length it is an impulse.
Finally, in Figure Al. 11 the filter length is N — 7 and the three-sample pulse is
also removed.

Appendix 1 Solutions to problems 293

input X

10

5

0

n 1 1 r

o o o o ±1 mi 9 0 0 9 9 0 0 0 ^ 9 9 o o T T o o o T T T o o o q)

0 5 10 15 20 25

Figure ALIO Median filter, length N = 5

input X

5

0

- 5

-10

Q T T T T T T Q Q Q _^£ o o o o ^ ^ o o o o o o o o o c b

l l - I l_

10 15 20 25

Figure ALU Median filter, length N = 7

294 Digital Signal Processing and Applications

P4-2

Equation (4.17) gives the required preprocessing of the input signals

y\=x\+ x2

yi = (x\ + x2)
2

and the node parameters are given by

W13 = 2 W23 = - 1 <P3 = - 0 . 5

where we assume that the node number is 3. Figure A1.12 shows the preprocess­
ing and the feedforward node, which is assumed to use a hard limiter activation
function. The extended truth table is shown in Table ALL

P4-3

The sigmoid function (4.11) is

/(*) =
1

1 + e~*/r

If x < 0 =» -x/T -» oc when T -> 0 =* e°° -* oo =>/(*) -^ 0 but, on the
other hand, if x > 0 =* - J C / J -^ -oo when 71 -> 0 ̂ e - 0 0 -> 0 =>f(x) -> 1
hence, this compares to a = 1 and 6 = 0 in the hard limiter equation (4.9).

preprocessors input layer

Figure A1.12 Single feedforward node and preprocessors to solve the XOR
problem

Table Al. l Extended truth table for XOR function

Xl

0
0
1
1

Xl

0
1
0
1

y\

0
l
l
2

yi

0
l
l
4

"3

-0.5
0.5
0.5

-0.5

*3

0
1
1
0

Appendix 1 Solutions to problems 295

Chapter 5 P5-1

See Figure Al. 13.

P5-2

Starting out from equations (5.80a) and (5.80b), x(t) = a(t) cos (0(0) ana"
y(t) = a(t) sin (0(0)- From equation (5.85a)

y/x2(t)+y2(t) = ^a2(t) cos2 (<p(t)) + «2(0 sin2 (cp(t))

= a(0>/cos2 ((p(t)) + sin2 (cp(t)) = a(f)

where we have used the identity cos2(o?) + sin2(a)= 1, further, having
equation (5.85b) in mind

y(t) = a(t) sin (cpjt))

x(t) a(t) cos (<p(0)
= tan (<p(0) ^ <K0 — arctan \x(t)J

P5-3

Starting from equation (5.72)

R(so,s[)= I so(t)s[(t) dt = a I cos (2n fot) cos (In f\t) At
Jo Jo

-'-C
2 Jo

(COS(2JT(/I - / o W + cos(2ffC/i +/o)0)d/

modulator demodulator

I channel
x(t) K X

-xo-

cos(2jtft)

carrier
generator

phase
shifter

sin(2tf/f)

Q channel -KX

s(t)

s(t) <x> I channel

COS(2;r/j)

carrier
generator

phase
shifter

sm(2jtft)

s(t) MX

-+*(0

Q channel -At)

Figure A1.13 I/Q-modulator and demodulator

296 Digital Signal Processing and Applications

a / s i
= 4 ^ V

sin(27r(/i-/0)Q sin(2^C/i + / o) Q] r

2 * (/ i - / 0) 27T(/i+/0) Jo

s in(2^C/ i - / 0) r) s in (2^C/ i+ / 0) r) \

C/1-/0) C/1+/0) /

(Al.5.1)

7 - (^ (/ i , / o) + / ;i(/i,/o)) = 0

Setting Af=\f\ -fo\ in equation (Al.5.1) and realizing that since the
denominator f\ +/o » / i - / o , the second t e r m i ^ / i , ^) «FA(f\,fo)l hence,
for high frequencies (compared to the "modulation frequency" l/T) Fs(f\, ^b)
can be neglected and equation (Al.5.1) can be approximated as

k
=> 2TTA/T = £TT =• A / 7 = it =» A/ = —

where &=1, 2, 3, ...and equation (5.73) is derived. (Commonly, &=1 is
chosen.)

P5-4

A suggested MATLAB™ program is shown below:

% pr54.m

N=1024;
n=l:N;

omi=0.01;
omc=2;

% 1024 samples

% intelligence frequency
% carrier frequency

s=(1+cos(omi*n)).*cos(omc*n); % AM modulation

w=(hamming(N)'); % Hamming window vector

figure(1)
X=fft(s,N);
M=abs (X);
plot(M(300:350))

figure(2)
x=w*s;
X=fft(x,N);
M=abs(X);
plot(M(300:350))

% plot FFT with rectangular window
% FFT
% get magnitude
% plot interesting part of spectrum

% plot FFT with Hamming window
% windowing operation
% FFT
% get magnitude
% plot interesting part of spectrum

Figure A 1.14 shows the spectrum using a rectangular windowing function
(i.e. no windowing, just a sample vector of limited length). All three signal

Appendix 1 Solutions to problems 297

500

450

400

350

300

250

200

150

100

50

0 10 20 30 40 50 60

Figure A1.14 FFT using rectangular windowing function, all frequency
components visible

300

250

200

150

100

50

0 10 20 30 40 50 60

Figure A1.15 FFT using Hamming windowing function, frequency resolution
too coarse

components are visible. Figure A1.15 shows the spectrum obtained using
Hamming windowing of the sampled sequence. Due to the wider lobes of
the Hamming spectrum, the weak frequency components are "drowned" in the
main lobe from the strong component. We cannot see that there are actually
three frequencies involved.

T (_. _ (T (

i i -I -I - • x '

[ate
T 1 / r -V T 1

•

298 Digital Signal Processing and Applications

Chapter 6 P6-1

Measurement-update equation (6.48) updates the estimate of the state vector
variable using the latest incoming measured data

x(n | n) = x(n | n - 1) + C(n \ n - 1) H(«)(HT(«) C(n\n- 1) H(/i)

+ R(«))"1(z(«) - UT(n)x(n \n-l)) (6.48)

This equation calculates the estimate of the state vector x at time n based
on all available measurements at time n. The equation works recursively, i.e.
the new estimate is obtained by taking the previous one x(n \ n — 1) based on
measurements up to time n — 1, i.e. all measurements except the last one just
received. The actual measured data is z(n) from which the expected measured
value is subtracted. The observation matrix H(«) governs the coupling between
measured values and the state vector variable. The result from the subtraction
is called the innovation: z(n) — HT(«) x(n | n — 1). The innovation is multiplied
by a "gain constant" C(n\n- 1) H(rc)(HT(«) C(n\n- 1) U(n) + R(«))_1 and
used to update the estimate. The "gain constant" consists of the observation
matrix, the measurement noise vector R(n) (model of the noise inherent in the
measurement process) and the error covariance matrix C(n \ n — 1). The error
covariance matrix is a quality measure of the estimate.

The error covariance matrix is also updated recursively, using equation (6.49).

C(n | n) = C(n | n - 1) - C(n | n - 1) R(n)(RT(n) C(n\n- 1) H(w)

+ R(n)ylRT(n) C(n\n- 1) (6.49)

Note! The measured value itself is not used in this equation. Hence, if the
measurement noise is predetermined, the error covariance matrix can be calcu­
lated for all instants of time in advance, and stored as a table to speed up the
execution of time critical software.

There are two time-update equations, such as equations (6.50) and (6.51).

i (/ i + l | / !) = F(/!)i(w|/i) (6.50)

C(n + 1 | n) = F(n) C(n | n) FT(«) + G(n) Q(w) GT(n) (6.51)

In equation (6.50) the estimate is updated recursively one step at a time,
using the model of the process (of which we are estimating the state vector
variable). The model is represented by the state transition matrix F(n). So
far, no measurements are taken into account in that we are only updating by
"dead reckoning" using the process model. Equation (6.51) updates the error
covariance matrix using the model and taking the process noise into account.
Q(n) is the model of the process noise, while the matrix G(n) makes the coupling
between the process noise and the state vector variable.

Case 1: excellent measurement signal quality, R(n) = 0
Equation (6.48) turns into

x(n | n) = x(n \ n - 1) + C(/i | n - 1) H(«)(HT(«) C(n\n- 1)

R(n))-\z(n) - RT(n)x(n \ n - 1))

Appendix! Solutions to problems 299

= i(n | n - 1) + C(n | n - 1) H («) (H (M)) - 1 (C (« | n - 1))_1

(H T (I I)) - 1 (Z (») - H T («) X (» I | « - 1))

= i(» | n - 1) + (HT(«))-1(z(«) - HT(«)i(n | n - 1))

= (UT(n))-lz(n)

From this, we see that the estimate is calculated directly from the measurement
signal.

Equation (6.49) turns into

C(w | n) = C(#i | n - 1) - C(n \ n - 1) H(«)(HT(«) C(n\n- 1)

H w r ^ ^ q / i i w - i)
= C(w I n - 1) - C(w | n - ^ H ^ X H ^)) " 1 ^ ^ |« - 1))_1

(H ^ r ^ ^ w J C C / i l n - l)

= C(n\n- l)-C(n\n- 1) = 0

which is not surprising, since our measurements are noise free and perfect, with
no estimation error.

Equation (6.50) is not affected, since it does not deal with R(«). This is also
true for equation (6.51). The internal process (signal) model of the filter is
updated.

So, in short, the output of the filter will rely solely on the input signal and
the internal model in the filter is updated.

Case 2: extremely bad measurement signal quality, R(n) -> oo
Equation (6.48) turns into

x(n \ri) = x(n \n — 1)

That is, as we do not pay any attention at all to the incoming measurements
(since the quality is so poor), the estimate is not updated.

Equation (6.49) turns into

C(n\n) = C{n\n- 1)

which means that the error covariance is not changed, i.e. the quality of the
estimate is not increased, since no useful measured data is available.

Equation (6.50) updates the estimate according to the internal signal model,
and equation (6.51) updates the error covariance matrix in a way predicted by
the process model.

So, in short, the output of the filter will rely solely on the internal signal
model and the incoming measured data will be ignored.

P6-2

Inserting equation (6.48) into equation (6.50) we get

%n + 11 n) = F(n) i(n \ n - 1) + F(w) C(n \ n - 1) H(n)(HT(n)

C(n\n- l)H(/i) + R(n)yl(z(n) - UT(n)x(n \n-l))

(A.l.6.1)

300 Digital Signal Processing and Applications

By defining K(n) = F(«) C(n\n- 1) H(n)(HT(«) C(n | n - 1) H(n) + R(n))~\
equation (Al .6.1) can be rewritten as

i(» + 11») = F(») i(n | n - 1) + K(«)(z(n) - HT(n) x(n\n- 1))

(A. 1.6.2)

Equations (6.52) and (6.53) follow.
In a similar way, equation (6.49) is inserted into equation (6.51) to obtain the

Riccatti equation (6.54)

C(« + 11 n) = F(«)(C(« | n - 1) - C(n | n - l)H(n)(HT(«) C(« |» - 1)

H(») + R(«))-'HT(«) C(n \ n - l))FT(n)

+ G(w)Q(n)GT(«)

Case 1: excellent measurement signal quality, R(n) = 0
The Kalman gain equation (6.53) will turn into

K(n) = F(«) C(n | n - 1) H(n)(HT(«) C(« | n - 1) H(n)) -1

and the output will be equation (6.52)

x (n + l | n) = F («) x (n | » - l)

= F(n) x(n | n - 1) + F(«) C(n\n- 1) H(«)(HT(«) C(« | n - 1)

H(«))_1(z(») - HT(n)x(n | n - 1))

= F(n)x(« | n - 1) + F(M)C(« | n - 1)H(«XH(»))_1

(C(« | n - l))-1(HT(«))"1(z(n) - HT(n)x(n | n - 1))

= F(n)x(n |« - 1) + F(«)(HT(n))-1(z(n) - HT(n)x(n |« - 1))

= F ^ X H 1 ^)) - 1 ^)

The Riccatti equation (6.54) will be

C(« + 11 n)

= F(«)(C(« | H - 1) - C(« | H - l)H(«)(HT(«)C(n | n - 1)

H C n)) - 1 ^ ^) C(» |» - l))FT(n) + G(«) Q(n) GT(«)

= F(«XC(n |» - 1) - C(» | B - l)H(»XH(n))-1(C(ii | n - l)) - 1

(HT(«))_1HT(«) C(« | n — 1))FT(«) + G(») Q(«) GT(«)

= G(«)Q(«)GT(«)

In this case, as in P6-1, the output of the filter will be based completely on the
measured input signal. The error covariance will be equal to the impact of the
process noise on the "reality", making it deviate from the expected "perfect"
model.

Case 2: extremely bad measurement signal quality, R(«) ->• oo
The Kalman gain equation (6.53) will turn into

K(») = 0

Appendix 1 Solutions to problems 301

i.e. the innovation is completely disconnected from the filter (see Figure 6.3).
The output equation (6.52) will be

i (/ ! + l | 7 !) = F («) i (H | / l - 1)

i.e. the output signal is only based on the internal process model (compare to
P6-1). Finally, the Riccatti equation (6.54)

C(n + 1 | n) = F(/i)(C(n | n - 1) ¥T(n) + G(n) Q(») GT(n)

The error covariance will be updated according to what could be expected
taking the process model into account, and added to this is the uncertainty of
the process due to the process noise.

In this case, as in P6-1, the output of the filter will be the based completely
on the internal model.

P6-3

The program may look something like the below:

% pr63.m

% signal model
F=[l 1; 0 1] ;
G=[0; 1] ;
H=[l; 0] ;
w=0.15;
v=10;
X=[0; 1] ;

% transition matrix
% drive vector
% observation vector
% amplitude process noise
% amplitude measurement noise
% state vector, reality

% simulation params
N=100;
xl=zeros(N);
x2=zeros(N);
z=zeros(N);

% sim length
% plot vector
% plot vector
% measurement vector

% reality
for k=l:N
x=F*x+G*w*randn;

z(k)=H'*x+v*randn;
xl(k)=x(l);
x2(k)=x(2);

end

% update state vector
% measurement

%plot
elf reset;
subplot(3,1,1);
plot(x2);
axis([1 N 0 10]) ;
title('velocity')
subplot(3,1,2);
plot(xl);
axis([1 N 0 200]);
title ('position')

% clear graph
% plot velocity

% plot position

302 Digital Signal Processing and Applications

subplot(3,1,3);
plot(z);
axis([1 N 0 200])
title('measured')

% plot measurement

The plots should look the same as in Figure 6.4. The output of the program
is the vector z, containing all the measured data.

P6-4

The program may look something like the below. Note! The program used
in P6-3 above must be run first in order to obtain the measurement: data in
vector z:

% pr64.m

% signal model
F=[l 1; 0 1] ;
G=[0; 1] ;
H=[l; 0] ;

% transition matrix
% drive vector
% observation vector

% filter
Q=0.2;
R=4;
xhat=[0; 0];
C=[l 1; 1 1] ;
Kalm=[l; 1] ;

% simulation params
N=100;
xl=zeros(N);
x2=zeros(N);

% variance, process noise
% variance, measurement noise
% estimated state vector
% covariance matrix
% Kalman gain matrix

% sim length
% plot vector
% plot vector

% filter
for k=l:N

% Riccati equation
C=F*(C-C*H*inv(H'*C*H+R)*H'*C)*F+G*Q*G';

% Kalman gain
Kalm=F*C*H*inv(H'*C*H+R);

% estimation
xhat=F*xhat+Kalm*(z(k)-H1*xhat);

xl(k)=xhat(l);
x2(k)=xhat(2);

end

figure;
subplot(3,1,1);
plot(x2) ;
axis([1 N 0 10]);
title('estimated velocity'!
subplot(3,1,2);

% plot estimated velocity

% plot estimated position

Appendix 1 Solutions to problems 303

plot(xl);
axis([1 N 0 200]);
title('estimated position')

The plots should look the same as in Figure 6.5.

Chapter 7 P7-1

Decompressing the string Otoh0eo_ih3m3_5e0o0r6_8s3s (start with an
empty dictionary) yields

Dictionary

0 nothing
1 t
2 h
3 e
4
5 th
6 em
7 e_
8 the
9 o
A r
B em_
C thes
D es
E
F

Decompressed string

the_theme_theorem_theses

P7-2

There are alternative solutions; one is presented in Figure Al. 16. The Huffman
code thus obtained is

1
2
3
4
5
6
7
8

1
Oil
010
00011
001
00010
00001
00000

P7-3

The entropy is calculated by H = - £ ? = 1 Pi Vofa) = 2.1658 bits/symbol. The
average symbol length is obtained by L =]jr?=1 /?,-/,• = 2.1840 bits/symbol. The
coding efficiency is rj=H/L = 2.1658/2.1840 = 0.992 and the redundancy,
R = 1 - (H/L) =l-rj = l - (2.1658/2.1840) = 0.008 bits/symbol.

304 Digital Signal Processing and Applications

0.128

1.000

0.512

0.032

0.032

Figure A1.16 Binary tree for Huffman code (there are other possible
solutions)

P7-4

The program may look something like the below:

% pr74.m

% simulate delta modulator

n=l:500;

omega=pi/100;
A=l;

% source
x=A*cos(omega*n);

% encoder
delta=.08;
s=zeros(1,length(x)+1);
xhat=zeros(1,length(x)+1);

xhat(1)=0;
S(1)=0;
for i=2:length(x)
xhat(i)=xhat(i-1)+s(i-1)
d=x(i)-xhat(i);
if d>=0

s(i)=delta;
else

% sample number

% angular frequency
% amplitude

% signal

% output
% predicted x

% initialize

% prediction
% quantization

Appendix 1 Solutions to problems 305

1.5

1

0.5

0

-0.5

-1

-1.5
0 100 200 300 400 500 600

Figure A1.17 Output of properly working delta modulator

s (i) = - d e l t a ;
end

end

% decoder
y = z e r o s (1 , l e n g t h (x) + 1) ; % decoded ou tpu t y
y (l) = 0 ; % i n i t i a l i z e
for i = 2 : l e n g t h (x)

y (i) = y (i - l) + s (i - l) ;
end
p l o t (y) % p l o t ou tpu t

Running the system with initial settings as in the code example above, every­
thing works fine. The output is shown in Figure A1.17. If the amplitude is
increased to A = 5, slope overload occurs (see Figure A1.18). The problem is
that the stepwise approximation produced by the delta modulator cannot keep
up with the slope of the input signal. The same problem occurs if the fre­
quency of the input signal increases. The remedy is to use a larger step size. In
Figure A 1.19, granularity error is shown. In this case, the amplitude of the
signal is small, A = 0.1, and the too-large step size causes excessive ripple.

Chapter 8 P8-1

(a) The code rate R = k/n=l/5 = 0.2
(b) The number of parity bits n — k = 5 — 1 = 4
(c) The maximum Hamming distance, since k = 1 there are only two code

words 00000 and 11111, hence only one Hamming distance, d = 5
(d) Error-correction capacity t=[(d - 1)/2J = |_2J = 2 bits/code word
(e) Error-detection capacity y — d - 1 = 5 — 1 = 4 bits/code word

T i i r

J I I I I

306 Digital Signal Processing and Applications

600

Figure A1.18 Slope overload, step too small, amplitude and/or signal
frequency too high and the delta modulator cannot keep up with the
sinus signal

600

Figure A1.19 Granularity error, step size too large or signal amplitude
too small

(f) The symbol error probability, i.e. the probability of transmission error
when using error correction by majority vote decoding

n / ^
n-i)

I=H-I ^ '

Appendix 1 Solutions to problems 307

><$-

Si
(i)

* 2
(1)

" / - l u,_2

>©-

«4'
(1)

M ; -3

•€>-

*5
(1)

*€>-

*v d)
.0)

"/-6 ^
c,«

Si
(2) 8* (2)

•©- >4
.(2) ,(2) # ,<2)

I c/2>

•©" • © -

Figure Al.20 Block diagram, convolution encoder for Jet Propulsion
Lab (2,1,6)

= 10 • 0.053 • 0.952 + 5 • 0.054 • 0.95 + 1 • 0.055

= 1.16- 10~3

P8-2

The notation for convolution codes is (n,k,m) = (291,6) where n = 2 is the
number of generators, k=\ the number of data bits and m = 6 the number of
delay elements in the encoder.

(a) Since there are m = 6 delay elements the number of states is 26 = 64 states
(b) The length of the tail (on the output) is equal to the number of delay

elements multiplied by the number of generators, i.e. m-n = 6-2= 12 bits
(corresponding to 6 bits on the input)

(c) The constraint length is given by ns = (m + \)n = (6 + 1) • 2 = 14 bits
(d) The code rate is given by R = L/((L + m)n) = 8/((8 + 6) • 2) = 0.286 where

L — 8 bits, since we are transmitting a byte
(e) See Figure A 1.20
(f) Using a diagram of the encoder as in (e), the output sequence can be

determined given the input sequence 10110101. The generators are (see
Section 8.2.4)

gW = (1,1,0,1,1,0,1) g& = (1,0,0,1,1,1,1)

The output sequence will be (including tail):
1110111001010101110010000111

P8-3

A suggested MATLAB™ program is found below:

% pr83

p=0:0.01:1; % error probability vector

% calculate capacity
c=l+(p.*log(p)+(l-p).*log(l-p))/log(2);
plot(p,c) % plot

308 Digital Signal Processing and Applications

Figure A1.21 Channel capacity of the BSC as a function of bit error
probability

The resulting plot is shown in Figure A 1.21. It is interesting to note that if
the error probability is 0, the channel, of course, works fine. But if the error
probability is 1, i.e. all bits are wrong (inverted), it works as well. The worst
case is for the error probability to be equal to 0.5 when no information passes
through the channel. One could continue guessing.

P8-4

We have C = Wlb(l +X/W) since N0 = l, the MATLAB™ program is found
below:

% pr84

x=logspace(-18,-9);
w=logspace(3,6);

N0=4e-21;

[X,W] = MESHGRID(x,w);
z=W*log(l+X./(W*N0))/ log(2);
s u r f 1 (x , w , z) ;
co lo rmap(g ray) ;

% power
% bandwidth

% noise density

% prepare input values
% calculate capacity
% plot

The plot is shown in Figure Al .22.

Appendix 1 Solutions to problems 309

Figure A1.22 Channel capacity of the Gaussian channel, capacity (C) versus
bandwidth (W) and signal power (X)

Chapter 9 P9-1

From the transfer function H(z) = J^k=o bkz~k with bk = l/N the difference
equation can easily be obtained

=• Y(z) = i (x(z) + X(z)z~x +X{z)z-2 + • • • + X(z)z^~1)

=*y(n) = —(x(n)+x(n- 1) +x(n - 2) + • • • +x(n - N + 1))

(Al.9.1)

Assiune the worst case, i.e. every incoming sample x(n) has maximum pos­
itive amplitude. Considering that the input bus width is 16 bits, the maximum
positive amplitude would be 216 - 1, i.e. all ones. We have to add all the N
samples in the accumulator before dividing the sum by N. Doing it the other
way, i.e. dividing the samples before adding in the accumulator is not a good
idea. Small sample values may be truncated (i.e. approximated to zero, due to
the limited resolution), implying that a series of small sample values may result
in an erroneous output signal.

Since the accumulator consisting of 24 bits has a maximum value of 224 — 1,
we realize that

iV(216 - 1) < (224 - !) = > # < ^ | « ^ = 28 = 256

310 Digital Signal Processing and Applications

Now, the analysis above is very pessimistic. Firstly, it is probably not very likely
that all incoming samples will have maximum positive amplitude. Secondly, if
the DSP in use has wraparound arithmetic, and we know that the output average
values should be within the given range, overflow in the accumulator does not
matter.

Applying scaling to the input samples may be risky for the truncation reasons
given above.

P9-2

If we assume that the filter length in P9-1 is N = 256 and that bk == \/N it
is obvious that using the MAC instruction is overkill, since we do not need
to multiply by one. If there is a simpler type of instruction, like "add-and-
accumulate" in the instruction repertoire of the DSP, it should preferably be used.
Anyway, since the sampling frequency is 200 kHz, the sampling time is /s = 5 |xs
which is also the maximum loop time since tv < ts. The loop typically contains
instructions for: reading the input, adding and accumulating, increasing (or
decreasing) and testing a loop counter and branching. Doing this in 5 u.s should
not be a problem using a DSP chip. It would probably also be possible to use a
fast standard microprocessor chip.

No data memory, except for processor registers, is needed if the filter is
implemented for batch mode operation as outlined above. That is, 256 input
samples are collected and the average is calculated. If, however, a running
average is required, we have another situation. In such a case an output value
should be delivered at every sampling instant, based on the past 256 samples.
This means that we need to store the past 256 samples in a delay-line type list
in the memory, hence requiring 256 • 2 = 512 bytes of memory. This is no big
problem, but the allowed execution time is certainly a problem. The allowed
processing time for the loop is now approximately tp = (5 • 10_6)/256 = 19 ns
which is definitely not possible, even if using a top speed DSP of today. This
would probably require a parallel hardware implementation, for instance using
fast ASICs or FPGAs.

In this particular case, however, a trick can be used. Rewriting the origi­
nal difference equation (Al.9.1) into a recursive form (see Chapter 1, Section
1.3.12) yields

y(n)-y(n - 1) = -(x(n)+x(n - l)+x(n - 2) + • • • +x(n -N + 1))

(x(n - l)+x(n - 2) +x(n - 3) + • • • + x(n - N))

= ±-(x(n)-x(n-N))

which can be rewritten as (see also equation (1.49))

y(n) = y(n - 1) + ±(x(n) - x(n - N)) (Al.9.2)

This is a comb-type filter (see Chapter 2, Section 2.3.7) and is quite simple to
implement. In this case, we need to make one subtraction, one multiplication

Appendix 1 Solutions to problems 311

Table A1.2 Transition table for the simplified Morse code
receiver, indices are event numbers and old state numbers,
values in the table are new state numbers

Event

1
2
3

1

2
5
1

2

1
4
3

3

1
1
1

Old state

4

1
1
1

5

7
1
6

6

1
1
1

7

1
1
1

Figure A1.23 State transition diagram for the simplified Morse code receiver

and one addition and accumulation for each run through the loop, which should
not be any problem to perform in 5 |xs. The memory requirement would be
512 bytes, as above.

Conclusion: finding efficient and smart algorithms is important!

P9-3

From Table 9.1 we get a = 0.225=* 0001 and Z> = -0.125 =* 1111, which gives
the sum 0000 and multiplied by c = 4 gives 0000 => 0. Doing the calculations the
other way yields: ca = 0.900 =* 0111 and cb = -0.5 => 1100, summing gives
0111 + 1100 = 0011 => 0.375. The "true" answer is 0.400.

Obviously, the last method gives a better result. In the first case, the limited
resolution caused a cancellation, since the difference was smaller than 1 LSB.

312 Digital Signal Processing and Applications

A potential problem with the latter method is of course the risk of overflow.
Working with scaling and limited resolution is a delicate task.

P9-4

We have the following seven states:

State 1: wait for signal to arrive
State 2: wait for second part of letter or time out, i.e
State 3: print "e", symbol complete
State 4: print "a", symbol complete
State 5: wait for second part of letter or time out, i.e
State 6: print "t", symbol complete
State 7: print "n", symbol complete

Further, we can identify three events:

Event 1: dot received
Event 2: dash received
Event 3: time out, i.e. no signal received within 1 s, i.e. symbol complete

The state transition can be summarized by Table Al .2, and the transition state
diagram is depicted in Figure A 1.23.

symbol complete

symbol complete

Appendix 2 AMATLAB™/
Simulink™
primer

A2.1 Introduction This primer is not intended to be a complete tutorial, but only a quick way of
getting started with MATLAB™ if you are not an experienced user. There are
many good books around on this particular topic (Buck et al, 2002; Pratap,
2002). It is also quite common that an introductory chapter in many signal
processing books deal with MATLAB™, for instance Denbigh (1998) and
Tewari (2002). Anyway, here comes yet another introductory text to this well-
known and versatile software package.

A2.1.1 The software

MATLAB™ is a software package for numerical computation and visualization
and is a product of The MathWorks Inc., www.mathworks.com. The acronym
MATLAB™ stands for MATrix LABoratory, since the basic data type in the
system is the matrix. MATLAB™ not only has powerful built-in functions for
basic matrix algebra and graphics, but also for many types of highly advanced
scientific and technical computations. Further, the user can easily write his own
functions in the MATLAB™ language. There are also a vast number of optional
"toolboxes", i.e. collections of functions for special applications available. Such
applications could be image processing, filter design, neural networks, fuzzy
logic, spline, etc. In this text we assume that you have the basic software package
and the signal processing and control system toolboxes.

Simulink™ is an extension of MATLAB™ and is a tool for modeling, ana­
lyzing, and simulating physical and mathematical dynamic systems. We will
give a brief presentation and some examples using Simulink™ you can try as
well, provided you have that extension installed on your computer.

A2.2 Basics MATLAB™ is a command-based, interactive system, awaiting for you to type
a proper command after the prompt >>. One of the most useful commands is
help. Try typing this command and you will get a list of all the available built-in
functions and commands in your system. For example:

>> help

HELP topics:

matlab\general - General purpose commands.

314 Digital Signal Processing and Applications

matlab\ops
matlab\lang
matlab\elmat

matlab\elfun
matlab\specfun
matlab\matfun

matlab\datafun

matlab\audio
matlab\polyfun
matlab\funfun
matlab\sparfun
matlab\graph2d
matlab\graph3d
matlab\specgraph
matlab\graphics
matlab\uitools
matlab\strfun
matlab\iofun
matlab\timefun
matlab\datatypes
matlab\verctrl
matlab\winfun

winfun\comcli
matlab\demos
toolbox\local
s imulink\s imulink
simulink\blocks
s imulink\component s
simulink\fixedandfloat
s imulink\s imdemos

simdemos\simfeatures

simdemos\simgeneral

simulink\dee

simulink\dastudio
asap2\asap2
asap2\user
toolbox\compiler
control\control
control\ctrlguis

control\ctrlobsolete

control\ctrlutil
control\ctrldemos
toolbox\sb2sl

signal\signal
signal\sigtools

signal\sptoolgui

Operators and special characters.
Programming language constructs.
Elementary matrices and matrix
manipulation.
Elementary math functions.
Specialized math functions.
Matrix functions - numerical linear
algebra.
Data analysis and Fourier
transforms.
Audio support.
Interpolation and polynomials.
Function functions and ODE solvers.
Sparse matrices.
Two-dimensional graphs.
Three-dimensional graphs.
Specialized graphs.
Handle graphics.
Graphical user interface tools.
Character strings.
File input/output.
Time and dates.
Data types and structures.
Version control.
Windows operating system interface
files (DDE/COM).
No table of contents file.
Examples and demonstrations.
Preferences.
Simulink.
Simulink block library.
Simulink components.
No table of contents file.
Simulink 4 demonstrations and
samples.
Simulink: feature demonstrations
and samples.
Simulink: general model demon­
strations and samples.
Differential equation editor.
No table of contents file.
No table of contents file.
No table of contents file.
MATLAB compiler.
Control system toolbox.
Control system toolbox - GUI support
functions.
Control system toolbox - obsolete
commands.
No table of contents file.
Control system toolbox - demos.
SB2SL (converts systembuild to
Simulink).
Signal processing toolbox.
Filter design and analysis tool
(GUI).
Signal processing toolbox GUI.

Appendix 2 A MATLAB™/Simulink™ primer 315

signal\sigdemos - Signal processing toolbox
demonstrations.

For more help on directory/topic, type "help topic".
For command syntax information, type "help syntax".

>>

If you type help followed by a function or command, you will obtain more
information about that particular function. Try, for instance, help abs which
will give you the help text for the abs function (giving the absolute value of the
argument):

>> he lp abs

ABS Absolute value.
ABS(X) is the absolute value of the elements of X. When
X is complex, ABS(X) is the complex modulus (magnitude) of
the elements of X.

See also SIGN, ANGLE, UNWRAP.

Overloaded methods
help iddata/abs.m
help sym/abs.m

>>

Another useful command is demo. Try that for yourself.

A2.2.1 Some simple math

The easiest way of using MATLAB™ is as an interactive calculator. Try the
following basic calculations and always end your command lines by pressing
the "return" key:

>> 5*7

ans =

35

>> pi/2

ans =

1.5708

>> (45+7)*9/(12-3-90)

ans =

-5.7778

>> 2~4

ans =

16

>>

316 Digital Signal Processing and Applications

Table A2.1 Some common MATLAB™ functions

Common math

e*
ln(x)
log(x)
lb(x)
y/x

sin(x)
cos(x)
tan(x)
arcsin(x)
arccos(x)
arctan(x)
x\

MATLAB™

exp (x)
log(x)
loglO(x)
log2(x)
s q r t (x)
s i n (x)
cos(x)
t an (x)
a s i n (x)
acos(x)
atari (x)
f a c t o r i a l (x)

Comment

Natural logarithm
Logarithm base 10
Logarithm base 2

x in radians
x in radians
x in radians
Gives radians
Gives radians
Gives radians, see also atan2(x)

As you can see, the result is assigned to a variable called ans. Further, the
constant n is, not surprisingly, denoted pi. Further, the operand ~ corresponds
to "raised to". All calculations in MATLAB™ are done in double precision, i.e.
with 15 digit resolution. Using the command format you can, however, switch
between different display formats. Try, for instance:

>> format long
>> pi/2

1.57079632679490

>> format
>> p i / 2

ans =

1.5708

Default is five digits and is obtained by typing format only. Try help
format to find out what other display options are available. Table A2.1 shows
some common mathematical functions in MATLAB™, however, there are many
more. Remember that you can always use help to obtain more information about
a particular function.

A2.2.2 Variables, scalars, vectors and matrices

A2.2.2.1 Scalars

The basic data type in MATLAB™ is the matrix. A row vector can be viewed as
[I xN] matrix and column vector as matrix with dimensions [N x 1]. A scalar

Appendix 2 A MATLAB™/Simulink™ primer 317

is of course a matrix [l x l] . Variable names can be up to 19 characters. The first
character must be a letter, but the remainder can be letters, digits or underscores.
MATLAB™ is case sensitive, i.e. it distinguishes between small and capital
letters. Assigning a number to a variable is straightforward:

>> A_variable=19

A_variable =

19

>> another_variable=-4;
>>

Note that the value of a variable is printed immediately after the command is
given, while if the command is ended with a semicolon, no message is printed.
As soon as the variable name is typed, the value will be printed. The variables
can, of course, be parts of equations, for instance:

>> 3*A_variable/another_variable

ans =

-14.2500

>>

A2.2.2.2 Vectors and matrices

Above, we have assigned values to two scalar variables. Assigning values to a
row vector x = [1 2 3] would look like:

>> x = [1 , 2 , 3] ;
>>

where the commas can be omitted. A column vector y:

by typing:

can be assigned

> > y = [4 ; 5]
>>

where we note that semicolons, in matrices, are used to mark the end of a row.
~10 11 12]

13 14 15
Finally, let us define a matrix B =

>> B = [1 0 , 1 1 , 1 2 ; 1 3 , 1 4 , 1 5] ;
>>

All the variables (scalars, vectors and matrices) defined so far are stored in
the memory, called the workspace of MATLAB™. They are global and will

318 Digital Signal Processing and Applications

stay in the workspace until MATLAB™ is shut down. One way to keep track
of your variables is to use the command who or whos:

>> who

Your variables are:

A_variable another_variable x
B ans y

>> whos
Name Size Bytes Class

A_variable lx l 8 double array
B 2x3 48 double array
another_variable lx l 8 double array
ans lx l 8 double array
x 1x3 24 double array
y 2x1 16 double array

Grand t o t a l i s 14 elements using 112 bytes

As you can see from the above, who only gives the names of your active
variables, while whos gives a more detailed description. As mentioned before,
once assigned, these variables will stay in the workspace. There is, however, a
way to delete a variable, for instance, the vector x, by typing:

>> clear x
>>

Check this using who. Typing clear a l l will delete all variables in the
workspace. To continue our experiments, we assume that you have restored your
variables as they were, before we started fooling around with the c lear com­
mand above. You can use the up-arrow and down-arrow keys on your keyboard
to find and reissue old commands given. This certainly saves time.

A2.2.2.3 Vector and matrix computations

Doing calculations with vectors and matrices is a little bit more complicated
than dealing with scalars, since we need to keep track of the dimensions Further,
the dimensions have to agree and in some algebraic operations, for instance,
division is not defined for matrices. We must also remember that matrix calcula­
tions are not commutative in the general case, i.e. it does matter in which order,
for instance, chain multiplication is computed. Let us do some experiments.
For example, if you try to add vector x to vector y an error message will result,
since the vectors do not have the same dimensions:

>> x+y
??? Error using ==> +
Matrix dimensions must agree.

Appendix 2 A MATLAB™/Simulink™ primer 319

Define a new row vector z = 2x which will have the same dimension as x,
hence it should be possible to add z + x:

>> Z=2*x;
>> z+x

a n s =

3 6 9

>>

Let us now change the row vector z [1x3] into a column vector
w = zT[3 x 1]. Obtaining the transpose is done using the ' operator:

>> w=z'

w =

2
4
6

>>

If we now multiply the two vectors, xw we should expect the dimensions of
the product matrix to be [1 x 3][3 x 1] = [1 x 1]:

>> x*w

a n s =

28

>>

This is basically a dot product or "inner product" between the two vectors x
and w, i.e. x • w = |x| |w| cos (a), where a is the angle between the vectors x and
w. Now let us change the order of the vector multiplication to wx. In this case,
computing the "outer product", we expect to obtain a matrix with dimensions
[3x 1][1 x 3] = [3x3] . Let us try:

>> w*x

a n s =

2 4 6
4 8 12
6 12 18

>>

So now the general rule is that if we type the operators *, ~, + or -, the actual
action taken will depend on the type of the variables involved. For instance, if
a and b are scalars the expression a*b will simply be a common multiplication,

320 Digital Signal Processing and Applications

while typing w*x will result in a matrix since two vectors were involved (as
above). The operator / requires special explanation. For scalars, this is nothing
but a simple division, but division is not defined for matrices. Nevertheless, the
/ can actually be used with matrices in MATLAB™ but means multiplication
from the right by the inverse of the second matrix, i.e. A/B = AB_ 1 ; note that
this is a definition in MATLAB™ and not proper mathematics notation. There
is indeed an alternative as well, using a backslash A\B = A_ 1B. By the way,
taking the inverse of a matrix E in MATLAB™ is written inv (E). Anybody who
has inverted matrices by hand or with a calculator agrees that this MATLAB™
command is extremely valuable. It saves lots of tedious work.

Sometimes, one wishes to make operations between vectors or matrices on
an element-to-element basis. For example, we would like to multiply the first
element of vector x with the first element of vector z, the second element of
x with the second element of z and so on. In this case the * operator cannot
be used since vector multiplication would be assumed, and that is not what we
want to do. It is not even possible with x and z, considering the dimensions.
So, for this purpose, there are a number of special symbols in MATLAB™,
starting with a dot, namely: .*, . / , . ~ and so on. For example:

>> x*z
??? Error using ==> *
Inner matrix dimensions must agree.

but

>> X.*Z

ans =

2 8 18

>>

The first case did not work for the reasons given above, while the second one
accomplished multiplication element by element, which was what we wanted.
Note, even skilled MATLAB™ programmers forget the dots now and then. If
you get mysterious error messages about dimensions where you do not expect
any such problems, check your dots.

A2.2.2.4 Addressing vectors and matrices

So far we have been working with vectors and matrices as a whole, but some­
times there is a need to pick out a specific element of a vector or matrix, or
maybe even a given set of elements. Hence, we need to be able to address a spe­
cific element. This is easily accomplished using parentheses as below. Assume
that we want the second element of vector x or the third element in the second
row of matrix B:

> x (2)

a n s =

2

Appendix 2 A MATLAB™/Simulink™ primer 321

>> B (2 , 3)

a n s =

15

>>

Note, unlike other computer languages as, for instance, C++, the first ele­
ment in a vector or matrix in MATLAB™, has the index number 1. There is no
element number 0. If we need to address a given set of elements, we may need
to create a sequence of integers. For example, assume that we have a vector d
consisting of 1027 elements, and we need to get a hold of elements 827-835. In
this case, it would, of course, be quite simple to use the method outlined above,
but a smarter way is to define a sequence of integers: 827,828,... , 835 and use
the sequence to point into the vector. Creating a sequence in MATLAB™ is
easy:

>> 827:835

ans =

827 828 829 830 831 832 833 834 835

>>

Getting the desired elements of vector d would look like

>> d(827:835)

ans =

Columns 1 through 8

0.7439 0.8068 0.6376 0.2513 0.1443 0.6516 0.9461 0.8159

Column 9

0.9302

>>

A2.2.2.5 Sequences

In Section A2.2.2.4, a simple example of a sequence was shown. We needed a
sequence of integers between two given limits. This was adequate for addressing
a vector, since only integers are accepted as index. In other situations, however,
other types of sequences are needed. An example could be to get a proper axis
for a plot. The first alternative sequence is an extension of what was shown
above. Suppose we need a linear sequence t with a non-integer step size, for

322 Digital Signal Processing and Applications

instance a time scale from 0 to 2 s, in increments of 0.25 s:

>> t=0:0.25:2

t =

Columns 1 through 8

0 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500

Column 9

2.0000

>>

An alternative could be the MATLAB™ function l inspace (xi, X2, N),
giving a sequence starting with xi, ending with X2 and consisting of N steps:

>> linspace(0,2, 9)

ans =

Columns 1 through 8

0 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500

Column 9

2.0000

>>

In certain applications a logarithmic sequence is required; in such cases, use
the function logspace (xi, X2, N) . It generates a sequence between decades
i(Txi and io~x2 in N steps:

>> logspace(1, 3, 8)

ans =

1.0e+003 *

0.0100 0.0193 0.0373 0.0720 0.1389 0.2683 0.5179 1.0000

>>

For some situations in which an all 0 or all 1 vector (sequence) is needed, try
the commands:

>> z e r o s (1 , 6)

ans =

0 0 0 0 0 0

Appendix 2 A MATLAB™/Simulink™ primer 323

>> o n e s (1 , 8)

ans =

1 1 1 1 1 1 1 1

>>

In these examples, vectors were created. Generating matrices is equally as
easy, by simply replacing the initial parameter l with the number of rows in the
desired matrix.

A2.2.3 Basic input/output and graphics

A2.2.3.1 Input

To input values or strings from the keyboard, the input statement can be used.
First it prompts the user and then awaits a numerical value, a defined variable
or a string (see help input):

>> r= inpu t (' how o ld a r e you? ')
how o ld a r e you? 19

r =

19

>>

To read data from files, there are a number of functions depending on the
type of file. Reading, for instance, a simple binary file, the commands fopen
and f read can be used. These functions resemble much of the same commands
used in C++:

>> filhand=fopen('test.dat');
>> data=fread(filhand);
>> data

data =

1
2
3

>> fclose(filhand);
>>

The code above first opens a binary file named t e s t . dat . A file handle is
assigned to the variable f i lhand. The file handle is from here on used to identify
this particular file, in case more than one file is open at the same time. The file is
opened for reading data only (default); for more information see help fopen.
The actual reading takes place on the second line, where the data read from

324 Digital Signal Processing and Applications

the file using f read (f ilhand) is assigned to the vector variable data. Finally,
calling this variable, we see the contents of the read data file, the three numbers:
1 2 3. After reading the file it should be closed, using f close (f i lhand). For
more information about reading files, consult help f i leformats and help
iof un. There are functions for reading a number of common file types, for
instance, a special function for reading audio files (.wav) wavread, making it
easy to read and manipulate sound files.

A2.2.3.2 Numerical and character output

Printing the value of a variable on the computer screen is quite straightforward
by typing the name of the variable as above. If we need to include a given text,
the function disp can be used:

>> d i sp (' t he values in the variable data a r e ') / disp(data)
the values in the var iable data are

1
2
3

>>

Another feature of MATLAB™ is demonstrated above; more than one com­
mand can be put on the same line, provided they are separated by a comma
or semicolon. The first disp displays the given string, while the second disp
prints the values of the variable data. Note, the name of the variable is not
shown, as would have been the case typing data only.

Printing to files can be performed by using the functions f open and f write:

>> file_id=fopen(•test2.bin','w');
>> fwrite(file_id,x);
>> fclose(file_id);
>>

First we open the file t e s t 2 . bin for writing (»w •). The file handle in this
example is called f i le_id. On the second line, the actual writing of vector x
takes place, and finally the file is closed. There are lots of alternative commands
and arguments for these functions, so please consult the help texts.

A2.2.3.3 Graphic output

One of the great things with MATLAB™ is that it is easy to obtain nice plots in
two or three dimensions and in color and so on. Here, we only demonstrate some
basic types, but try the demo and help functions to obtain more information.
Let us start by a simple example of plotting the function y(t) = 2 sin(atf) for the
frequency 5 kHz, where co = 2nf = lit • 5 • 103. Note that a comment, i.e. text
not being processed by MATLAB™, is preceded by a % sign:

>> f=5e3; % frequency 5kHz
>> t=0:le-6:le-3; % time sequence, 0-1 ms in 1 us step
>> y=2*sin(2*pi*f*t); % the function itself
>> plot(t#y) % plot y versus t
>>

Appendix 2 A MATLAB™/Simulink™ primer 325

Figure A2.1 An example of a simple two-dimensional, interpolated,
continuous-time plot

The resulting plot is shown in Figure A2.1. In this case we have not deter­
mined the scaling of the axes. It is made automatically. Nor have we assigned
any labels to the axes of the plot. There are lots of functions for taking care of
these issues, use help plot .

In the example above, we have approximated a continuous function in 1000
discrete points. The plot function interpolates in between the sample points, so
the resulting plot looks continuous. Assume that we would like to instead plot a
"digital" sequence, without interpolating. Then, the function stem can be used:

>> f=5e3;
>> fs=le5;
>> n=0:50;
>> y=2*sin(2*pi*f*n/fs)
>> stem(n,y)

% frequency 5 kHz
% sampling frequency 100 kHz
% sample points 0-50
% the function itself
% discrete plot

In this case we are using a sampling frequency of 100 kHz (f s) and we choose
to plot the first 51 sample points. Figure A2.2 shows the result.

Making three-dimensional plots is a bit tricky, but gives excellent possibili­
ties to visualize complicated mathematical functions. As in the previous cases
above, we just give some simple examples, and there are numerous extensions
and variations available. In this experiment we will make a three-dimensional
plot of the function f(x, y) = cos(27or) cos(2jty) over the range -0.5 < x < 0.5
and -0.5 <y< 0.5:

>> [X,Y]=meshgrid(-.5:0.05:0.5,-0.5:0.05:0.5);
% create a matrix with all
% possible pairs of X and Y

>> f=cos(2*pi.*X).*cos(2*pi.*Y); % compute the function f in
% all these points

326 Digital Signal Processing and Applications

2

1.5

1

0.5

0

-0.5

-1

-1.5

~ 2 0 10 20 30 " 40 50

Figure A2.2 A discrete-time plot obtained using the function stem

I 0 1 1 0 1 1 © 1
(pTQ QTQ QTQ

L 9 9 9 9 T i l l ? J

9 9 9 9 9 9

L9 9 ?l I I I I I I? 9 ?J

l l l l l l l l l l C D g > l l l l l l l l l < 5 > € > l l l l l l l l -Lq>

I ® r* 1

I 1
I . m . . *i* i I

Figure A2.3 A gray-scale three-dimensional plot

» surfl(X,Y,f)

>> colormap(gray)

% plot a three-dimensional
% surface
% keep to gray scale to
% avoid printing problems

Note the use of dot operators to obtain elementwise computations. The final
three-dimensional plot is shown in Figure A2.3. There are lots of possibilities
using colors, shading, changing the viewing angle, etc.

Appendix 2 A MATLAB™/Simulink™ primer 327

A2.2.4 Other programming structures

In all programming languages there are instructions and functions for con­
trolling the execution flow, as is the case in MATLAB™. Thanks to the
simple handling of matrices and vectors, however, the need for loop struc­
tures is less than when using a general programming language such as, for
instance, C++.

A2.2.4.1 Conditional execution

The basic conditional structure consists of the keywords if, e lse i f , e lse
and end. Below, we have used these keywords to implement a soft limiter as in
equation (4.10), repeated here for convenience:

/ (*) '
a x > a
x b<x<a (4.10)
b x < b

The corresponding MATLAB™ code may look something like given below:

>> if x>a
f=a;

elseif x<b
f=b;

else
f=x;

end

This type of structure does not need to have either e l se i f or e lse clauses, if
not called for by the application. Note that the relational operator for equality is
denoted == as in C++; the compatibility with C or C++ is, however, not total.
Another structure with a strong resemblance to C++ is the switch structure.
Below is an example testing the value of the variable x:

switch x
case 1
disp('one');

case 2
disp('two');

case 3
disp('too much');

otherwise
disp('something else1);

end

Note that unlike C or C++, only the statements between the valid case
and the next case (or otherwise or end) are executed. Program flow does not
fall-through and hence, break statements are not necessary. The otherwise
statement above is optional.

328 Digital Signal Processing and Applications

A2.2.4.2 Loop structures

Loops are in many cases not needed in MATLAB™, since vectors and sequences
can often do the same job. However, in some cases loops are needed. The code
example below will perform the same function as the vector-oriented approach
in Section A2.2.3.3 above (i.e. this is an "unnecessary" loop application):

>> f=5e3;
>> fs=le5;
>> y=zeros(1,51);
>>for n=l:51

y(n)=2*sin (2*pi*f*n/fs);
end
>>

% frequency 5 kHz
% sampling frequency 100 kHz
% assign space for vector y
% sample points 1-51
% the function itself

The keywords here are for and end. There are two things that differ from the
previous implementation of this task in Section A2.2.3.3. Firstly, we need to
allocate memory space for the vector y in advance, unlike in the example in Sec­
tion A2.2.3.3. This is accomplished by defining a zero vector y = zeros (l , 51).
Secondly, we must now use the sampling index i -5 i , rather than o-50, since 0
is not a valid addressing index for the y vector.

Another loop structure is the while to end model. The above code can be
rewritten using this method:

>> f=5e3;
>> fs=le5;
>> y=zeros(1,51);
>> n=l;
>>while n<=51

y(n)=2*sin(2*pi*f*n/fs);
n=n+l;
end

% frequency 5 kHz
% sampling frequency 100 kHz
% assign space for vectoi: y
% initialize loop index
% loop unit point 52
% the function itself
% increment pointer

In this case we are responsible for initializing and incrementing the loop index
n. Sometimes this approach is superior, if complicated conditions for exiting
the loop exist. On the other hand, failing to update the loop counter properly
may result in an infinite loop. (In some applications infinite loops are created
deliberately.)

To skip out of an infinite loop, press ctrl-c on your keyboard.

A2.3 Workspace,
scripts and

functions

A2.3.1 The workspace

In MATLAB™, the workspace is the memory where all of your active variables
are stored. The workspace can be saved to disk, and later be restored. There are
two ways of saving your workspace:

>> save
>>

or

>> save ('my_space .ma t ']
>>

Appendix 2 A MATLAB™/Simulink™ primer 329

In the first case, the workspace is saved to the default file "matlab.mat". In
the second case, you can give the workspace file a specific name, in case you
need to work with a number of different workspaces for different purposes.

To restore the workspace use:

>> l o a d
>>

or

>> load('my_space.mat');
>>

As before, if no file name is given, the default file "matlab.mat" is used. If
no file extension is given, .mat is assumed.

To navigate around your files and directories, many old Microsoft DOS com­
mands apply such as d i r for showing the files in the current directory and cd
for changing directory and so on. The default start directory for MATLAB™
(where your workspace is stored) is named work.

A2.3.2 Scripts and m-files

Since MATLAB™ code consists of pure American standard code for infor­
mation interchange (ASCII) characters, program code can easily be transferred
between different operating system environments and different computers with­
out any problems. Further, MATLAB™ program code can be written and edited
in most text editors like Notepad™, Word™, Wordpad™ or the like. The code
is saved as a text file. Such a saved code segment is called a script. If a script is
saved as a text file with file suffix .m (so-called m-file), in the current directory,
MATLAB™ will use this script as a new command having the same name as
the file name (except the suffix). Let us have an example. First we write a script
called conus as below and save it using the file name "conus.m":

% conus-a f a n t a s t i c s c r i p t fo r computing the cos ine and s i n e
% inpu t v a r i a b l e i s : q (angle in r ad i ans)

d i s p (' c o s i n e i s : ') , d i s p (c o s (q))
d i s p (' s i n e i s : ') , d i s p (s i n (q))

If we now type the following at the MATLAB™ prompt, the new command
(m-file) will be directly invoked:

>> q=pi/2;
>> conus
cosine is:
6.1232e-017

sine is:
1

>>

330 Digital Signal Processing and Applications

As you can see, MATLAB™ now has been equipped with yet another com­
mand, conus. You may wonder why we have put all the comments over the
script? Well, try the help command and you will understand:

>> he lp conus

conus - a fantastic script for computing the cosine and sine
input variable is: q (angle in radians)

>>

A drawback with scripts is that all variables are global. This means that if you
are using a variable called, for instance, t e s t (a very original name...?) in your
current workspace and you run a script in which the very uncommon variable
name t e s t is also used, but for another purpose, problems may occur. The
variable t e s t in the script will overwrite the variable t e s t of your workspace,
which may not be what you want. On the other hand, the same mechanism is
deliberately used to transfer data into and out of a script. This is a limitation
with scripts. There is no way of transferring data into the script without using
global variables.

A2.3.3 Functions

Functions are cousins to scripts, but now the problem with global variables
has been solved, since functions have their own "private" workspace and hence
private variables. Therefore, there is no risk that variables, which happen to
have the same name as variables in the workspace, interfere with each other.
To be able to transfer data into a function, we now need a formal variable
transfer mechanism. The example below shows an example function VAT, which
computes the VAT for a given amount. This code is stored as a text file with
name VAT.m, as for m-flles:

% VAT(am, trate)
% computes total amount including VAT
% am is amount without tax, trate is tax rate in %

function tot = VAT(am, trate)
tot=am+am*trate/100 ;

Running the function is now very simple. Assume we have sold digital filters
for $120 and that the tax rate is 12%. Unfortunately, it has been 2 years since
we used this function last, so we do not remember how to call it. Therefore, we
first try the help command, before actually using the function:

>> help VAT

VAT(am, trate)
computes total amount including VAT
am is amount without tax, trate is tax rate in %

>> VAT(120, 12)

Appendix 2 A MATLAB™/Simulink™ primer 331

ans =

134.4000

>>

A2.4 Some useful
functions

A2.4.1 Linear systems

There are four different model types within MATLAB™ to represent linear time
invariant systems (LTI): these are transfer function (TF), zero-pole gain (ZPK),

state-space (ss) and frequency response data (FRD). In MATLAB™ there are
many functions to analyze and design linear systems. Some of these functions
require the model to be of a specific type. For this reason, there are functions
for converting one model type to another:

>>s=tf(s); % converts model s to TF type
>>s=zpk(s); % converts model s to ZPK type
>>s=ss(s); % converts model s to SS type
>>s=frd(s,freq); % converts model s to FRD type

% freq is a frequency vector

Note that FRD models cannot be converted to other types, and that conversion
to FRD requires a frequency vector as input. Once the model has been converted
to the desired type a number of useful functions are available. Some functions
require the TF to be expressed as two vectors containing the coefficients of the
numerator and denominator polynomials, e.g. B for numerator coefficients and
A for denominator coefficients. If needed, these vectors can be converted to a
TF model, e.g.:

>> B=[0, 1, 1];
>> A=[l, 3, 1] ;
>> H=tf(B,A)

Transfer function:
s + 1

s~2 + 3 s + 1

>>

In this section we will present some functions that are extra useful when working
with digital signal processing and control. In this text we have assumed that
you have the toolboxes signal processing and control systems installed. By
installing more toolboxes, many new functions can be obtained. There are, for
instance, special toolboxes for interactive filter design, neural networks, image
processing, fuzzy logic and wavelets.

332 Digital Signal Processing and Applications

For example, suppose we want a Bode plot of the TF H{s) — (s-\-\)/
(s2 + 3s1 + 1). First let us generate a TF model as above or by using the method
shown below, and after that we make a Bode plot:

>> s = tf('s'); H = (s+l)/(s~2+3*s+l)

Transfer function:
s + 1

s 2 + 3 s + 1

>> Bode(H)
>>

The obtained Bode plot is shown in Figure A2.4.
An alternative function to plot the gain and phase shift versus frequency is

freqs. In this case we need the coefficients of the numerator and denomina­
tor polynomials expressed as two vectors. Further, we need a vector stating
frequencies for which the TF is to be plotted. Starting with the numerator
coefficients, we have B(s) = b\s + bo=s+l, =$>b\ = l,bo = l and these coef­
ficients are stored in a row vector, starting with the coefficient corresponding to
the highest order of s, B = [Z?2 b\ bo] = [0 1 1]. For the denominator we have

0

_ -10
CO

a>
"§ -20
c
CO
CO
E

-30

bode diagram

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 L_ _ 1 J 1 L.J 1 i J

-

_ 1 _.,, 1 1 I..J J_JLSI

CO
0

T3

10-

— I 1 1 — I — I — I I I I T 1 1 1—I I I I I

_J I I I I I I I.I, I I I I I 11 I I I I I I I 11 1 1 _

10 10°
frequency (rad/s)

Figure A2.4 Bode plot, in which the upper plot is the gain function and the
lower plot is the phase shift function

Appendix 2 A MATLAB™/Simulink™primer 333

A(s) = ci2S2 + a\s + ao = s1 + 3.9 + 1, =>a2 = l,a\=3,ao = l and the result­
ing vector will be A = [#2 #i 0o] = [l 3 1]. Note that it is recommended that
these two vectors have the same dimensions, to avoid mixing up the order of
the coefficients. That is why we added a seemingly "useless" coefficient £2 = 0
in the vector representing the numerator polynomial. Finally, we need to deter­
mine a frequency vector, therefore we choose to use a logarithmic scale from
lOOtolOOOOrad/s:

>> B=[0, 1, 1] ; % numerator c o e f f i c i e n t s
>> A=[l , 3, 1] ; % denominator c o e f f i c i e n t s
>> W=logspace(2 ,4) ; % l o g a r i t h m i c frequency v e c t o r
>> freqs(B,A,W) % p l o t ga in and phase s h i f t f unc t i ons

Suppose we need the pole-zero map of the TF above. That could easily be
obtained by using the following:

>> pzmap(H)

The pole-zero map is shown in Figure A2.5.
If we are working in the z-plane, rather than the Laplace domain, a corre­

sponding function f reqz is available. The arguments are basically the same, but
the frequency vector can be expressed in Hz. Further, the sampling frequency
has to be stated. The f reqz function can handle a variety of input arguments,
see help f reqz. An example using f reqz could be as follows. Assume we
have a comb filter (see Chapter 2) with TF H(z) = (l - z _ 5) / (l - z - 1) , the
sampling frequency is 44 kHz and we are interested in the frequency response
in the range 0-15 kHz. Plot the gain and phase shift functions:

>> B= [1 0 0 0 0 -1] ; % numerator coefficients
>> A=[l -1 0 0 0 0]; % denominator coefficients
>> F=0:0.5e3:15e3; % linear frequency vector, Hz
>> freqz(B,A,F,44e3) % plot gain and phase, sampling

% frequency 44 kHz

Try this yourself and use help f reqz to try other features of this function.
Note that if the sampling frequency is not given, the frequency is given as
fractions in the range 0-1 of the Nyquist frequency, i.e. half the sampling
frequency. That is, 0 corresponds to 0 Hz while 1 corresponds tof=fs/2 or
Q = norq= 1/2.

A2.4.2 Filter design

A2.4.2.1 Analog filter design

There are a number of functions available for designing analog low-pass, high-
pass, bandpass and bandstop filters, using different filter approximations (see
Chapter 1). The outputs of these functions are, for instance, two vectors con­
taining the polynomial coefficients of the numerator and denominator of the

334 Digital Signal Processing and Applications

pole-zero map

CO

CO

c
D)
CO

E

Figure A2.5 An example of a pole-zero map

TF. For example, we would like to design a Butterworth low-pass filter of order
5, with a cut-off frequency of 1 kHz:

>> [B , A] = b u t t e r (5 , 2 * p i * l e 3 , ' s ']

>> W=logspace(2,4)*2*pi;

>> freqs(B,A,W)
>>

% design low-pass
% Butterworth filter
% determine plot frequency
% range
% p l o t g a i n and phase

where the vector B contains the polynomial coefficients of the numerator and
A contains the polynomial coefficients of the denominator. If a high-pass filter
is needed, the first line is changed:

>> [B , A] = b u t t e r (5 , 2 * p i * l e 3 , ' h i g h ' , ' s ']

>> W=logspace(2 ,4)*2*pi ;

>> freqs(B,A,W)

% des ign h i g h - p a s s
% Bu t t e rwor th f i l t e r
% de te rmine p l o t
% frequency range
% p l o t g a i n and phase

For a bandpass filter an upper and a lower cut-off frequency is required.
These frequencies are combined in a row vector. Suppose we want a bandpass
filter of Butterworth type with lower cut-off frequency 700 Hz and upper cut­
off frequency 1300 Hz. The filter should be of order 6. Then we would type as
follows:

>> F=2*pi*[700, 1300]; % cut-off frequencies
>> [B,A]=butter(3,F,'s'); % design bandpass Butterworth

% filter

Appendix 2 A MATLAB™/Simulink™ primer 335

>> W=logspace(2 ,4)*2*pi ; % de te rmine p l o t frequency range
>> freqs(B,A,W) % p l o t ga in and phase
>>

Note that the order of the filter will be 6, i.e. 2 times the parameter 3 stated
in the but te r function call. This goes for bandstop filters as well. Finally, a
bandstop filter of Butterworth type is obtained if changing the first line above.
We assume the same order and cut-off frequencies:

>> F=2*pi*[700 / 1300] ; % c u t - o f f f r e q u e n c i e s
>> [B , A] = b u t t e r (3 , F , ' s t o p ' , ' s ') ; % des ign bands top

% Bu t t e rwor th f i l t e r
>> W=logspace(2 ,4)*2*pi ; % de termine p l o t f requency

% range
>> freqs(B,A,W) % p l o t ga in and phase
>>

In a similar way, Chebyshev filters can be designed. In this case we also have
to state the allowed ripple. There are two functions for designing Chebyshev
filters, one that gives ripple in the passband chebyi and one that gives ripple in
the stopband, cheby2. The ripple specification is given in terms of peak-to-peak
ripple expressed in dB. As an example, we need a Chebyshev bandstop filter
of order 8, with cut-off frequencies 1.0 and 5.25 MHz, and max peak-to-peak
ripple in the passband is 1 dB:

>> F=2*pi*[l , 5 . 2 5] * l e 6 ; % c u t - o f f f r equenc i e s
>> [B , A] = c h e b y l (4 , 1 , F , ' s t o p ' , ' s ') ; % des ign bands top

% Chebyshev f i l t e r 1 dB
% r i p p l e

>> W=2*pi*logspace(5 ,7) ; % de termine p l o t frequency
% range

>> freqs(B,A,W) % p l o t ga in and phase
>>

There are also functions for designing elliptic filters (Cauer filters) el l i p
having ripple both in the passband and in the stopband and Bessel filters having
linear-phase shift, besself.

A2.4.2.2 Transformations

As shown in Chapter 1, analog filters can be transformed into digi­
tal ones using transform techniques. In this section we will demonstrate
MATLAB™ functions for doing impulse invariance and bilinear (Tustin)
transformations.

The impulse invariance transform is performed using the function
impinvar. Assume that we have designed an analog filter using, for instance,
the function but te r as above. The analog filter, specified by the coefficient
vectors B and A, is then converted into a digital version having a TF of the
type G(z) = (b0 + b\z~x + b2z~2 + • • •)/(a0 + axz~x + a2z~2 +•••)> which
is expressed as the two coefficient vectors Bz and Az. To do the actual trans­
formation, we also need to specify the sampling frequency, say, 10 kHz in this

336 Digital Signal Processing and Applications

example. The last line is used to plot the gain and phase shift function of the
resulting digital filter:

> > [B , A] = b u t t e r (5 , 2 * p i * l e 3 / ' s ') ; % des ign an ana log low-pass
% Bu t t e rwor th f i l t e r

>> [Bz,Az] =impinvar (B,A, 10e3) ; % conver t u s i n g impulse
% i n v a r i a n c e

>> freqz(Bz,Az) % p l o t ga in and phase
>>

Now, let us repeat the same procedure but using the bilinear transform
(BLT). The corresponding MATLAB™ function is named b i l inear . We first
design an analog filter, transform it using the BLT and plot gain and phase. As
in the previous example we are using the sampling frequency 10 kHz, but as
can be seen below, there is a fourth argument of the function b i l inear . The
last parameter, 2 kHz, is the frequency at which pre-warping is done. If no
frequency is given, no pre-warping takes place:

>> [B , A] = b u t t e r (3 , 2 * p i * 4 0 0 , ' s 1) ; % des ign a n o t h e r
% ana log f i l t e r

>> [Bz,Az] = b i l i n e a r (B , A , 1 0 e 3 , 2 e 3) ; % conver t u s i n g BLT
% and p re -warp ing

>> freqz(Bz /Az) % p l o t ga in and phase
>>

A2.4.2.3 Digital filter design

Digital filters can be designed directly, not taking the path via analog filters.
The MATLAB™ functions, bu t te r , chebyl, cheby2 and el l ip , can be used
to design digital niters directly. The only thing needed is to omit the parameter
"s" when calling the functions and to remember that frequencies now are given
in the interval 0-1, where 1 corresponds t o / =fs/2 (see Section A2.4.1 above).
An example is shown below where we are designing a digital Butterworth filter,
order 4 with cut-off frequency 0.4, i.e.fc — 0.4/s/2:

>> [Bz ,Az]=bu t t e r (4 ,0 .4) ; % d i r e c t d i g i t a l f i l t e r des ign
>> freqz(Bz,Az) % p l o t ga in and phase
>>

There are many other methods for direct design of digital niters. A common
method is the Parks-McClellan optimal equiripple FIR filter design, using
the Remez exchange algorithm (see Chapter 1). There is a special function
in MATLAB™ implementing this method. The function is denoted remez.
Since this method is used for designing FIR filters only, the corresponding TF
does not have a denominator polynomial. Hence, only the coefficient vector Bz
for the numerator is generated. The designed filter has linear-phase response
(symmetric, real weights) and, being a FIR filter, it is always stable. The input
parameters to remez are the length of the filter and the desired gain inunction.
The gain function is defined by two vectors A and F. Vector F defines the edges
(in pair) between a set of frequency bands in the range 0-1, and vector A defines
the desired gain in these frequency bands. For example, we need a low-pass

Appendix 2 A MATLAB™/Simulink™ primer 337

filter with the gain specification ("wish list")

A =
1 0 <f < 0 . 4 -

2
f f

0 0.5-f<-
2 2

The undefined frequency region between 0.4(/s/2) < / < 0.5(/s/2) is a tran­
sition band, for the gain to drop from 1 to 0 (ideally). For execution time reasons,
the length of the filter cannot be longer than 20 taps. The MATLAB™ code
needed is shown below:

>> F=[0, 0.4, 0.5, 1]; % define frequency band edges
>> A=[l, 1, 0, 0]; % desired gain in the bands
>> Bz=remez(19,F,A); % design filter, length 20
>> freqz(Bz,l) % plot gain and phase

Note that the order 19 given as the first parameter of remez corresponds to
filter length 20. Please consult help remez for more information.

Using a special variation of this function, Hilbert transformers can be
designed (see Chapter 5). The only modification needed is to add the parameter
1 h i l b e r t ' in the remez function call:

>> Bz=remez(19,F,A,'hilbert') % design a Hilbert filter

A2.4.3 Fast Fourier transform and convolution

Performing fast Fourier transform (FFT) using MATLAB™ is very convenient.
Assume we have a vector X containing time domain samples. The FFT is done
by simply calling the function f f t :

>> n=l:500; % sample points
>> X=cos(2*pi*0.l*n); % create a signal vector
>> F=fft(X); % FFT
>> plot(n,abs(F)) % plot the magnitude
>>

Since the output vector F of the FFT is a complex vector, we need to use the
abs function to be able to plot the magnitude of the elements of F.

In the case above, we have implicitly used a rectangular windowing func­
tion. The input data simply begins and starts according to the length of the
vector X. If we need to use other windowing functions, there are a number of
windowing functions defined in MATLAB™, for instance, Blackman, Ham­
ming, Hanning, Kaiser, Hahn, etc. Below, an example using the Hamming
window is shown:

>> n = l : 5 0 0 ; % s a m p l e p o i n t s
>> X = c o s (2 * p i * 0 . l * n) ; % c r e a t e a s i g n a l v e c t o r
>> X = X . * (h a m m i n g (5 0 0)) ' ; % Hamming w i n d o w i n g
>> F = f f t (X) ; % FFT
>> plot(n,abs(F)) % plot the magnitude
>>

338 Digital Signal Processing and Applications

Note that the window sequence produced is a column vector, while X is a
row vector, hence transpose of the window vector is needed.

Making an inverse FFT is also straightforward, using the function if ft. As
an example, let us use the inverse FFT to restore the X vector from the vector F:

>> n=l:500; % sample points
>> X=cos(2*pi*0.1*n); % create a signal vector
>> F=fft(X); % FFT
>> Xhat=ifft(F); % inverse FFT
>> plot(n,real(Xhat)) % plot restored Xhat (real part)

In the general case, the inverse FFT gives a complex output vector. The function
real is used to plot only the real part. Since the original signal X was real, the
imaginary parts found in Xhat are negligible and a result of rounding errors
during the computations.

Yet another useful function is conv, used for convolution of signal vectors
(see Chapter 1). For example, define two vectors x and h and evaluate the
convolution sum. Plot the resulting vector y:

> > x = [1 . 2 , - 3 . 4 , 2 . 3 , 2 . 3 , 5 . 6 , - 3 . 4] ; % a n e x a m p l e v e c t o r
>> h = [2 , 1 , - 1] ; % a n o t h e r e x a m p l e
>> y = c o n v (x , h) ; % c o n v o l u t i o n of t h e

% v e c t o r s
>> s t e m (y) % p l o t

A2.5 Simulink™ Simulink™ (an extension to MATLAB™) is a tool for making simulations
of dynamical systems, e.g. closed-loop control system. The user interface
of Simulink™ is graphical and programming means putting block diagrams
together. Working with Simulink™ is quite easy, so this presentation need not
be long. "Learning by doing" is a good method of getting to know Simulink™.

Simulink™ can be started from the MATLAB™ prompt simply by typing
simulink. After starting Simulink™ a library browser window will etppear. A
number of sub-groups will be presented: continuous, discrete, look-up table,
etc. Open a new window by clicking the menu file/new/model. A new, blank
window will appear. In this window, you can create your model by "drag-and-
dropping" components from the library.

We will now simulate a simple closed-loop control system and analyze the
step response as an example.

(1) From the sub-group sources, drag-and-drop a step to your new blank win­
dow. By means of this component, we will generate a step function as the
reference signal to the closed-loop control system.

(2) From math operations, get gain. This will be used as an inverter.
(3) From math operations, get sum. This device will create the error signal by

subtracting the measured output signal from the reference signal.
(4) From sinks, get scope. The scope is used to examine the output signal from

the process.

Appendix 2 A MATLAB™/Simulink™ primer 339

x£>
step

PID

PID controller

1
—H —

| z + 0.5 |

discrete
transfer Fen

(with initial outputs)

L A gam

scope

simout

to workspace

Figure A2.6 A Simulink™ model of a simple, closed-loop control system

(5) Open new sub-groups by clicking Simulink extras/additional linear. From
this sub-group get proportional-integral-derivative (PID) controller. This
is a basic PID controller.

(6) Open new sub-groups by clicking Simulink extras/additional discrete.
From this sub-group get discrete transfer Fen (with initial outputs). This
function will be used to simulate the process we would like to control.

(7) Move the components around so that your model looks something like
Figure A2.6. The gain can be rotated by right clicking on it and choosing
format/rotate block.

(8) Connect the blocks to each other as in Figure A2.6. Move the cursor
to an input or an output. The shape of the cursor will change from an
arrow to a cross. Press and hold the left mouse button while moving the
cursor to the destination point (an input or output of another component).
Release the mouse button and you should have a connection. A dashed line
indicates that one of the ends is not properly connected. You can adjust
your wiring by grabbing (press and hold the mouse button while moving)
a wire and moving it. You can also move components and the wires will
follow ("rubber banding").

(9) Double click on gain, a parameter window will open. Set the gain to — 1,
and click OK.

(10) Double click on scope, an oscilloscope-type window will open. Keep it
open.

(11) Start the simulation by selecting simulation/start in your model window.
You should get a graph on the oscilloscope, probably an oscillatory and
unstable output signal.

(12) Double click on the PID controller, a parameter window for the controller
will open. Try new setting of the proportional, integral and derivative
parameters. Rerun the simulation to see if the output signal looks better.
Repeat this procedure until you are happy with the output of the system, for
an input step reference signal. (Be careful with the derivative parameter.)
You can also experiment with changing the process model. Double click
on the discrete transfer Fen to open the corresponding parameter window.

As you have seen from the simple experiment above, Simulink™ is easy to
use for simulations and experiments. Yet another interesting property is that
Simulink can work in concert with MATLAB™. You can, for instance, send a

340 Digital Signal Processing and Applications

signal to and from the workspace of MATLAB™, or to and from files. Try the
following:

(13) In the sub-group sinks, get to workspace.
(14) Connect the to workspace component to the output of the process, i.e. to

the same signal as shown on the scope.
(15) Double click on to workspace and in the parameter window, give the

variable a desired name, the default is simout. Also, select array in the
save format menu.

(16) Run the simulation as before. Go to the MATLAB™ window. Type whos,
you will now find an array with the name you have chosen (default simout).
The array contains the output signal from the simulation, i.e. the same sig­
nal that is shown in the scope window. Having the output signal as an array
in the workspace, further analysis can be performed using MATLAB™
functions.

The demonstration above is just an example of the features of Simulink™.
There is, for instance, a component from workspace in the sources sub-group
which makes it possible to input signals from the MATLAB™ workspace to
your model.

If you save your model, it will be stored as a file in the current directory with
the file suffix .mdl.

References

Ahlin, L., Zander, J. (1998). Principles of Wireless Communications. Studentlitteratur.
ISBN 91-44-00762-0.

Anderson, B.D.O., Moore, J.B. (1979). Optimal Filtering. Prentice-Hall. ISBN 0-13-
638122-7.

Astrom, K.J., Wittenmark, B. (1984). Computer Controlled Systems, Theory and Design.
Prentice-Hall. ISBN 0-13-164319-3.

Becchetti, C , Ricotti, L.P. (1999). Speech Recognition. Wiley. ISBN 0-471-97730-6.
Bergh, J., Ekstedt, R, Lindberg, M. (1999). Wavelets. Studentlitteratur. ISBN 91-44-

00938-0.
Bozic, S.M. (1994). Digital and Kalman Filtering. Edward Arnold. ISBN 0-340-

61057-3.
Buck, J.R., Daniel, M.M., Singer, A.C. (2002). Computer Explorations in Signals and

Systems Using MATLAB. Prentice-Hall. ISBN 0-13-042155-3.
Burrus, C.S., Parks, T.W. (1985). DFT/FFT and Convolution Algorithms. Wiley. ISBN

0-471-81932-8.
Carron Jr, L.P. (1991). Morse Code: The Essential Language. The American Relay

League Inc. ISBN 0-87259-035-6.
Cavicchi, T.J. (2000). Digital Signal Processing. Wiley. ISBN 0-471-12472-9.
Chen, C.-T. (1999). Linear System Theory and Design. Oxford University Press Inc.

ISBN 0-19-511777-8.
Chichocki, A., Unbehauen, R. (1993). Neural Networks for Optimization and Signal

Processing. Wiley. ISBN 0-471-93010-5.
Cover, T.M., Thomas, J.A. (1991). Elements of Information Theory. Wiley. ISBN 0-471-

06259-6.
Denbigh, P. (1998). System Analysis & Signal Processing. Addison-Wesley. ISBN

0-201-17860-5.
DSP56000/56001 Digital Signal Processor Users Manual (1989). Motorola literature

distribution, Arizona. DSP56000UM/AD.
Esbensen, K., et al. (1994). Multivariate Analysis - In Practice. Computer-aided

modelling AS, Norway. ISBN 82-993330-0-8.
Fitch, J.P, Doyle, E.J., Gallagher Jr, N.C. (1984). Median filtering by threshold

decomposition. IEEE Trans. Acoust. Speech, Signal Process. 32: 1183-1188.
Gallagher Jr, N.C, Wise, G.L. (1981). A theoretical analysis of the properties of median

filters. IEEE Trans. Acoust. Speech, Signal Process. 29: 1136-1141.
Gonzales, R.C., Woods, R.E. (2002). Digital Image Processing. Addison-Wesley

ISBN 0-201-18075-8.
Grossberg, S. (1987a). The Adaptive Brain I. Elsevier. ISBN 0-444-70413-2.
Grossberg, S. (1987b). The Adaptive Brain II. Elsevier. ISBN 0-444-70414-0.
Haykin, S. (2001). Communication Systems. Wiley. ISBN 0-471-17869-1.
Heller, S. (1997). Introduction to C++. Academic Press. ISBN 0-123-39099-0.
Hillis, WD. (1987). The Connection Machine. MIT Press. ISBN 0-262-08157-1.
Hinton, G.E., Anderson, J.A. (1981). Parallel Models of Associative Memory. Lawrence

Erlbaum. ISBN 0-89859-105-8.

342 Digital Signal Processing and Applications

Holmes, P.D. (1989). The 8-Queens Problem and Task-Scheduling - A Neural Net
Approach. FOA, Linkoping, March 1989. FOA Report D 30526-3.4.

Hopfield, J.J., Tanks, D.W. (1986). Computing with neural circuits: a model Science.
253: 625-633.

Hu, M.J.C. (1963). A Trainable Weather-Forecasting System. Stanford Electronics Lab­
oratory, Stanford University, June 1963. Report No. ASD-TDR-63-636, Technical
Report No. 6759-1.

Hunter, R., Robinson, H. (1980). International digital facsimile coding standards. Proc.
IEEE, July 1980.

Lee, D.T.L., Yamamoto, A. (1994). Wavelet Analysis: Theory and Application. Hewlett-
Packard J., December 1994.

Lippmann, R.R (1987). An introduction to computing with neural nets. IEEE ASSP
Mag. April 1987.

Lynn, P.A., Fuerst, W. (1998). Digital Signal Processing with Computer Applications.
Wiley. ISBN 0-471-97631-8.

Marven, C , Ewers, G. (1993). A Simple Approach to Digital Signal Processing. Alden
Press. ISBN 0-904-047-00-8.

McClelland, J.L., Rumelhart, D.E. (1986). Parallel Distributed Processing, Part 2. MIT
Press. ISBN 0-262-13218-4.

Miller, G.M., Beasley, IS. (2002). Modern Electronic Communication. Prentice-Hall.
ISBN 0-13-016762-2.

Minsky, M.L., Papert, S.A. (1969). Perceptrons (expanded edition 1988). MIT Press.
ISBN 0-262-63111-3.

Mitra, S.K., Kaiser, L.F. (1993). Handbook for Digital Signal Processing. Wiley. ISBN
0-471-61995-7.

Nalwa, VS. (1993). A Guided Tour of Computer Vision. Addison-Wesley. ISBN 1-201-
54853-4.

Oppenheimer, A.V, Schafer, R.W. (1975). Digital Signal Processing. Prentice-Hall.
ISBN 0-13-214635-5.

Orfandis, S.J. (1985). Optimum Signal Processing. Macmillan. ISBN 0-02-949860-0.
Palm, R., Driankov, D., Hellendorrn, H. (1996). Model Based Fuzzy Control. Springer.

ISBN 3-540-61471-0.
Papoulis, A., Pillai, S.U. (2001). Probability, Random Variables and Stochastic

Processes. McGraw-Hill. ISBN 0-07-281725-9.
Passino, K.M., Yurkovich, S. (1998). Fuzzy Control. Addison-Wesley. ISBN 0-201-

18074-X.
Pires, J. de Sousa (1989). Electronics Handbook. Studentlitteratur. ISBN 91 -44-21021 -3.
Pohlmann, K.C. (1989). Principles of Digital Audio. Howard W Sams, Hayden Books.

ISBN 0-672-22634-0.
Pratap, R. (2002). Getting Started with MATLAB. Oxford University Press. ISBN 0-19-

515014-7.
Proakis, J.G. (1989). Digital Communications. McGraw-Hill. ISBN 0-07-100269-3.
Rabiner, L.R., Gold, B. (1975). Theory and Application of Digital Signal Processing.

Prentice-Hall. ISBN 0-13-914101-4.
Rumelhart, D.E., McClelland, J.L. (1987). Parallel Distributed Processing, Part I. MIT

Press. ISBN 0-262-18120-7.
Schwartz, M., Shaw, L. (1975). Signal Processing: Discrete Spectral Analysis,

Detection, and Estimation. McGraw-Hill. ISBN 0-07-055662-8.
Smith, S.W (2003). Digital Signal Processing. Newnes. ISBN 0-750674-44-X.
Specht, D.F. (1964). Vectorcardiographic Diagnosis Utilizing Adaptive Pattern-

Recognition Techniques. Stanford Electronics Laboratory, Stanford University, June
1964. Technical Report No. 6763-1.

References 343

Spiegel, M.R. (1971). Calculus of Finite Differences and Difference Equations.
McGraw-Hill ISBN 0-07-060218-2.

Stranneby, D. (1990). Error Correction of Corrupted Binary Coded Data, Using Neural
Networks. KTH, Stockholm, 1990. Report No. TRITA-TTT9008.

Stranneby, D. (1996). Power and Frequency Assignment in HF Radio Networks. Radio
Communication Systems Laboratory, KTH, Stockholm, April 1996. TRITA-S3-
RTS-9605, ISSN 1400-9137.

Stranneby, D. (2001). Digital Signal Processing: DSP & Applications. Newnes. ISBN
0-7506-48112.

Tewari, A. (2002). Modern Control Design with MATLAB andSIMULINK. Wiley. ISBN
0-471-496790.

Widrow, B., Lehr, M.A. (1990). 30 years of adaptive neural networks: perceptron,
madaline and backpropagation. Proc. IEEE, 78(9).

Widrow, B., Stearns, S.D. (1985). Adaptive Signal Processing. Prentice-Hall. ISBN
0-13-004029-0.

Wilkie, J., Johnson, M., Katebi, R. (2002). Control Engineering an Introductory Course.
Palgrave. ISBN 0-333-77129-X.

Wirth, N. (1976). Algorithms + Data Structures = Programs. Prentice-Hall. ISBN
0-13-022418-9.

Zwolinski, M. (2004). Digital System Design with VHDL. Prentice-Hall. ISBN 0-130-
39985-X.

Glossary

A brief overview of some common abbreviations and buzz-words:

2PSK
4PSK
8PSK
AC
A/D
ADALINE
ADC
ADM
ADPCM
ADSL
AGC
AI
A-\aw
ALU
AM
AND
ANN
ANS
APC
AR
ARMA
ARQ
ASCII
ASIC
ASK
ASR
AU
AWGN
BCD
BCH

BCJR
BFSK
BIT
BLT
BP
BPSK
BSC
BU
C

2-ary phase shift keying (see BPSK)
4-ary phase shift keying (see QPSK)
8-ary phase shift keying
Alternating current
Analog-to-digital
Adaptive linear neuron
Analog-to-digital converter
Adaptive delta modulation
Adaptive differential pulse code modulation
Asymmetric digital subscriber loop
Automatic gain control
Artificial intelligence
Signal companding standard used in Europe (see \i-law)
Arithmetic logic unit
Amplitude modulation
Boolean function
Artificial neural network
Artificial neural system
Adaptive predictive coding
Auto regressive
Auto-regressive moving average
Automatic repeat request
American standard code for information interchange
Application specific integrated circuit
Amplitude shift keying
Automatic speech recognition
Address unit
Additive white Gaussian noise
Binary-coded decimal
Bose, Chaudhuri, Hocquenghem

(class of error correcting codes)
Bahl, Cocke, Jelinke, Raviv
Binary frequency shift keying
Binary digit
Bilinear transform
Band-pass
Binary phase shift keying
Binary symmetric channel
Bus unit
computer programming language (see C++)

346 Digital Signal Processing and Applications

C++
CAM
CCITT

CD
CDMA
CD-ROM
CELP
CISC
CM
CMOS
CODEC
CoA
CoG
CoM
Compander
CRC
CVSD
D/A
DAB
DAC
DAT
DC
DCC
DCT
DFT
DM
DMA
DPCM
DPCM-AQB

DPCM-AQF

DPSK
DSL
DSP
DSP
DTMF
DVB
DVD
ECC
ECG
EEG
ENIAC
EPROM
EU
EXCEL™
FFT
FIFO
FIR

computer programming language (extension ofC)
Content addressable memory
Comite Consultatif International Telegraphique et

Telephonique
Compact disc
Code division multiple access
Compact disc read only memory
Code excited linear prediction
Complex instruction set computer
Connection machine
Complementary metal oxide semiconductor
Coder-decoder
Center of area
Center of gravity
Center of maximum
Compressor-expander
Cyclic redundancy check
Continuously variable slope delta modulator
Digital-to-analog
Digital audio broadcasting
Digital-to-analog converter
Digital audio tape
Direct current {sometimes interpreted as a constant bias)
Digital compact cassette
Discrete cosine transform
Discrete Fourier transform
Delta modulator
Direct memory access
Differential pulse code modulation
Differential pulse code modulation adaptive

quantization - backwards
Differential pulse code modulation adaptive

quantization - forward
Differential phase shift keying
Digital subscriber loop
Digital signal processing
Digital signal processor
Dual-tone multi-frequency
Digital video broadcasting
Digital video disc
Error-control code or error-correcting code
Electrocardiograph
Electroencephalogram
Electronic numerical integrator and computer
Erasable programmable read only memory
Execution unit
Spreadsheet type calculation software by Microsoft
Fast Fourier transform
First in first out {a queue)
Finite impulse response

Glossary 347

FM
FOH
FORTRAN

FPGA
FPU
FRD
FS
FSK
GMSK
GPS
GSM

HDTV
IDFT
IEEE
! 2 C T M

IIR
I/O
I/Q
ISDN
ISI
JAVA
JPEG
LDM
LED
LIFO
LMS
LPC
LSB
LTI
LUT
LZ
LZW
MA
MAC
MAP
MathCad™
Mathematica™
MATLAB™
MDCT
MFLOPS
MHC
MIMD
MIMO
MIPS
MISO
MIT
ML

Frequency modulation
First-order hold
Formula translation

{old computer programming language)
Field programmable gate array
Floating point unit
Frequency response data
Full scale
Frequency shift keying
Gaussian minimum shift keying
Global positioning system
Groupe speciale mobile or global system for

mobile communication
High definition television
Inverse discrete Fourier transform
The Institute of Electrical and Electronics Engineers
(IIC) Inter IC {simple bidirectional 2-wire bus standard

developed by Philips)
Infinite impulse response
Input/output
In phase/quadrature phase
Integrated services digital network
Intersymbol interference
Computer programming language (subset of C++)
Joint photographies expert group
Linear delta modulation
Light emitting diode
Last in first out {a stack)
Least mean square
Linear predictive coding
Least significant bit
Linear time invariant {commonly also implies causal)
Look-up table
Lempel-Ziv
Lempel-Ziv-Welch
Moving average
Multiply add accumulate
Maximum a posteriori probability
Calculation software by MathSoft
Calculation software by Wolfram Research
Calculation software by Math Works
Modified discrete cosine transform
Million floating-point operations per second
Modified Huffman code
Multiple instruction multiple data
Multi-input multi-output
Million instructions per second
Multi-input single-output
Massachusetts Institute of Technology
Maximum likelihood

348 Digital Signal Processing and Applications

MLPC
MoM
MP3
MPEG
MRC
MSB
MSE
MSK
/t-law
NOP
NOT
NP
OCR
OR
OSR
PAM
Pascal
PC
PC
PCA
PCM
PDM
PDS
PID
PM
PNM
PPM
ppm
PROM
PSK
PWM
QAM
QPSK
RELP
RISC
RLS
RMS
ROM
RPM
RS
RSC
RX
SAR
SBC
SC
SDR
S&H
S/H
SIMD
SNR

Multipulse excited linear predictive coding
Mean of maximum
Layer-3 of MPEG-1 {audio compression algorithm)
The moving pictures expert group
Modified Read code
Most significant bit
Minimum square error
Minimum shift keying
Signal companding standard used in USA (see A-law)
No operation
Boolean function
Non-polynomial
Optical character reading
Boolean function
Oversampling ratio
Pulse amplitude modulation
Computer programming language
Personal computer
Program counter
Principal component analysis
Pulse code modulation
Pulse density modulation
Parallel distributed system
Proportional-integral-derivative
Phase modulation
Pulse number modulation
Pulse position modulation
Parts per million
Programmable read only memory
Phase shift keying
Pulse width modulation
Quadrature amplitude modulation
Quadrature phase shift keying
Residual excited linear prediction
Reduced instruction set computer
Recursive least square
Root mean square
Read only memory
Revolutions per minute
Reed-Solomon (code)
Recursive systematic convolutional
Receiver
Succesive approximation register
Sub-band coding
Switched capacitor
Software defined radio
Sample-and-hold
Sample-and-hold
Single instruction multiple data
Signal-to-noise ratio

SP
SPI

ss
SSB
TF
TX
UWB
VHDL

VLSI
VSELP
WCDMA
XOR
ZOH
ZPK

Stack pointer
Serial peripheral interface
State-space
Single sideband
Transfer function
Transmitter
Ultra wideband
Very high-speed integrated circuit hardware

description language
Very large scale integration
Vector sum excited linear prediction
Wideband code division multiple access
Exclusive OR, Boolean function
Zero-order hold
Zero-pole gain

Index

2's complement 44-45, 254
2PSK153
4PSK153
8PSK153

Absolute accuracy error 49, 60
Activation function 103
ADALINE 101
Adaptation algorithm 75, 80-84
Adaptive associative networks 100
Adaptive beamforming 89-93
Adaptive delta modulation (ADM) 189
Adaptive differential pulse code

modulation (ADPCM) 190-191
Adaptive linear combiner 75-77
Adaptive interference cancelling 84-86
Adaptive modelling 142
Adaptive predictive coding (APC)

192-193
Additive white Gaussian noise (AWGN)

214
Addressing modes 257-259
Address unit (AU) 247
ADSL 3
A-law 46-A1
Aliasing distortion 7
All-pass filter 157, 176
Alphabet 180
Amplitude modulation (AM) 146
Amplitude shift keying (ASK) 146-148
Analog to digital converter (ADC) 58-70
Analytic signal 157
Antenna array 89
Anti-aliasing filter 6, 60
Anti-image filter 57
Aperture error 56
Application specific integrated circuit

(ASIC) 245
Armstrong's indirect FM 146
Arithmetic and logical instructions

252-253
Arithmetic logic unit (ALU) 247
Artificial neural network (ANN) 100-121
Artificial neural system (ANS) 100
Assembly language 252
Asynchronous events 248
Auditory masking 200
Auto-associator 111
Auto-correlation function 137-138

Auto-correlation matrix 78
Auto-covariance 137
Auto-decrement 257
Auto-increment 257
Automatic gain control (AGC) 73
Automatic speech recognition (ASR) 205
Auto regressive model (AR) 141, 194
Auto regressive moving average model

(ARMA) 140-142
Average mutual information 211
Averaging filter 20

Back-propagation 102, 110
Backward prediction error 21
Bandpass signal 154
Bartlett periodogram 140
Bartlett window 132, 136
Baseband signal 146
Base register 257
Basis functions 143
Batch system 241
Bayes'theorem 182,211
Bahl, Cocke, Jelinke, Raviv (BCJR)

algorithm 238
Beamforming 90
Bessel-Thomson approximation 26
Bilinear function 10
Bilinear transform (BLT) 28
Binary coded decimal (BCD) 44
Binary digit (BIT) 181
Binary fractions 247, 254-255
Binary frequency shift keying (BFSK)

148
Binary phase shift keying (BPSK) 153
Binary point 254
Binary symmetric channel (BSC)

211-213
Bit manipulation instructions 253
Bit reverse addressing 250, 258-259
Bitslice 245
Bitstream D/A converter 54-56
Blackman window 137
Block code 215
Block data system 242
Bode plot 16-17
Boltzmann machine 102, 112, 114
Boolean filter 98
Bose, Chaudhuri, Hocquenghem (BCH)

code 223, 228

Boxcar hold 8
Bubblesort 99
Bursts 197, 234
Bus 42
Bus unit (BU) 247
Butterworth approximation 25

C 251, 252, 261
C++251, 252, 261
Cache memory 247
Cancelling poles 19
Cardinal reconstruction formula 7
Carrier 146
Cascaded filters 273
Cauer approximation 26
Causal system 11
C cross compiler 252
Center of area (CoA) 127
Center of gravity (CoG) 127
Center of maximum (CoM) 127
Cepstrum 205
Channel capacity 213-215
Channel code 213
Channel coding 209-215
Channel coding theorem 179, 209
Channel filter 86-87
Channel model 87, 210-213
Charge redistribution D/A converter

52-53
Chebyshev approximation 25
Check bits 215
Circular buffer 248, 258
Classifier 111
Closed-loop transfer function 33
Coefficient memory 249
Codebook 196
CODEC 44
Code division multiple access (CDMA)

238
Code excited linear prediction (CELP)

196-197
Coding efficiency 187
Code rate 216
Code speed 216
Code trellis 233
Coherent detection 149
Comb filter 69-70
Compact Disc (CD) 3, 44, 55
Compander 3, 4 5 ^ 7
Complex envelope 154
Complex instruction set computer

(CISC) 248
Complex modulation 154-156
Compressor 4 5 ^ 7
Computational temperature 103, 115
Computer vision 206
Concatenated coding 228, 236-238

Conclusions (in Fuzzy logic) 123
Conditional entropy 212
Conditional mean 167
Conditional probability 182
Conditioning 167
Connectionist's net 100
Connection machine (CM) 246
Constant neighborhood 96
Constraint length 229
Content addressable memory (CAM)

100,111,115
Continuous signals 4
Continuously variable slope delta

modulator (CVSD) 189-190
Control 176
Controller 32
Controller output signal 32
Convergent rounding 256-257
Conversion time 60
Convolution 13-14
Convolution kernel 206
Convolution sum 13
Convolution code 215, 229-230
Convolution interleaving 236
Correlation matrix 78
Counting A/D converter 64-65
Cross-correlation 78, 137
Cross-covariance 137
Cyclic codes 223-229
Cyclic redundancy check (CRC) 227
Cyclic shift 223

Data compression 179-206
Data memory 249
Data transfer instructions 253
Daubechies wavelet 144
Dead-beat controller 37
Debugging 261
Decimator 61
Decimation filter 69-70
Decision-feedback equalizer 88-89
Decision region 105
Decoding table 219-220, 222
Denazification 127-128
Defuzzifier 121
Degree of membership 122
Delay line 248, 258
Delta modulator (DM) 68, 188-189
Delta rule 101, 109
Dependency 182
Desired response 77
Difference equation 11
Differential linearity 48, 59
Differential phase shift keying (DPSK)

153
Differential pulse code modulation

(DPCM) 190

Index 353

Differential pulse code modulation
adaptive quantization - backwards
(DPCM-AQB) 190-191

Differential pulse code modulation
adaptive quantization - forward
(DPCM-AQF) 190-191

Digital audio broadcasting (DAB) 3
Digital audio tape (DAT) 3
Digital to analog converter (DAC) 47-57
Digital compact cassette (DCC) 3
Digital control systems 32-38
Digital image processing 4, 176
Digital signal processing (DSP) 241
Digital signal processor (DSP) 241
Dilation 143
Direct memory access (DMA) 254
Direct synthesis controller 36
Discrete cosine transform (DCT)

198-199
Discrete Fourier transform (DFT) 2,

131-132, 135
Discrete signals 4
Discrete wavelet transform 144-145
Dither 56, 68
Dolby™ 3, 47
Downsampler 61
DSL 3
DSP chip 244-245
Dual slope converter 54, 67
Dual Tone Multi Frequency (DTMF) 3
Dynamical functional systems 100
Dynamical list 258, 269-270
Dynamic range 8-9, 44

Edge 96
Effective address 257
Electroencephalogram (EEG) 2
Electrocardiogram (ECG) 2, 84
Elliptic filter 26
Entropy 183-184
Equalizers 86-89
Erasure symbol 218
Error-control codes 215-238
Error-correcting codes 215-238
Error polynomial 224
Error vector 219
Estimate 87, 160
Estimation 135, 160
Euclidean matrix norm 164
Euler transform 29
Events 260
Execution unit (EU) 247
Expander 4 5 ^ 7

Fast Fourier transform (FFT) 2, 131-135
Features 204
Feature maps 102, 112

Feedback networks 112-115
Feedforward networks 102-111
FFT butterfly 134, 250, 259
Field programmable gate array (FPGA)

245
Finite impulse response (FIR) 18
FIR filter 2, 18,265-272
First order hold (FOH) 8
First order predictor 189
Fixed point 44, 242
Flash A/D converter 61-62
Floating point format 44, 242
Floating point unit (FPU) 247
Fnosq 6
Forecasting 176
Forward prediction error 21
Fourier method 30
Fractions 254-255
Frequency domain 15
Frequency function 16
Frequency modulation (FM) 146
Frequency response 16-17
Frequency sampling 30
Frequency selective fading 88
Frequency shift keying (FSK) 146,

148-151
Fuzzifier 121
Fuzzy control 121
Fuzzy logic 121-129
Fuzzy rules 123-124

Gain error 47, 58-59
Gain factor 161
Gain function 17
Gaussian minimum shift keying (GMSK)

156
Generalized perceptron learning rule 110
Generator (convolution code) 230
Generator matrix 219
Generator polynomial 224
Global positioning system (GPS) 3
Global system for mobile

communication (GSM) 3, 156
Granularity 189
Gray code 44
Groupe Speciale Mobile (GSM) 3, 156

Haar wavelet 144
Hamming codes 223
Hamming distance 217
Hamming net 116
Hamming window 132, 137
Hann window 137
Hanning window 132
Hard limiter 103
Hardware stack 250
Harmony theory 102

Harvard architecture 248-249
Hebb's rule 101, 108
High definition television (HDTV) 4
Hilbert transform 91, 156-157
Homomorphic filter 205
Hopfieldnet 102, 112-113
Huffman's algorithm 185-187

I2C bus (Inter IC) 248
Identifiers 111
Idling loop 253
IIR filter 2, 18-21,272-275
Image coding 197-200
Image recognition 205-206
Implied fuzzy set 121, 123, 126
Impulse invariance method 26
Impulse response 13
Impulsive type noise 95
Indexed addressing 257
Indirect addressing 257
Indirect filter synthesis 26-29
Inference 123
Inference engine 12
Infinite impulse response (IIR) 18
Information 180
Information source 184
Information theory 179-184
Innovation 161, 170
In phase 154
In phase/Quadrature phase modulator

(I/Q) 154
Input/Output (I/O) 247, 249, 250, 251
Instruction memory 249
Integral linearity error 47, 59
Integrating A/D converter 65-67
Integrating D/A converter 53-54
Interleaving 234-236
Interleaving depth 235
Interpolate 175
Interpolator 55
Intersymbol interference (ISI) 88
Interrupts 248
Interrupt service routine 253
Inverse discrete Fourier transform

(IDFT) 205
Inverse filter 86

Jet propulsion lab convolution code 230
Joint Photographies Expert Group

(JPEG) 199

Kaiser-Bessel window 132
Kalman filter 2, 159-176
Kalman filter equations 169
Kalman filter theory 160
Kalman gain 169
Karhunen-Loeve transform 198
Kohonen's feature maps 112

Layered networks 102-107
Layer 3 of MPEG-1200
Last in first out (LIFO) 250
Lateral feedback 113,116-117
Lattice filter 21-22
Least mean square (LMS) 2, 83-84,

109
Learning machine 101
Lempel-Ziv algorithm (LZ) 201-203
Lempel-Ziv-Welch algorithm (LZW) 201
Levinson-Durbin algorithm 142
Linear block codes 218-223
Linear delta modulation (LDM) 189
Linearity error 47, 59
Linear point connector 8
Linear predictive coding (LPC) 194-195
Linear systems 9-11
Linear time invariant (LIT) processor 11
Linguistic variables 122
Linguistic value 122
Linkabit convolution code 230
Look-Up Table (LUT) 108, 250
Loop and program control instructions

253
Loop counter 250
Lossless data compression 185
Lossy data compression 185
Lyapunov function 113

MacLaurin series 11
Mapping function 204
MATLAB™ 313-338
Maximum likelihood (ML) 215
MAXNET113
McClellan-Parks method 32
Mean of maximum (MoM) 127
Mean square error (MSE) 75
Measured output signal 32
Measurement disturbance signal 32
Measurement noise 166
Measurement-update equations 169
Median filter 95-99
Meggit decoders 227
Membership functions 122
Message 180
Message table 264
Meyer wavelet 144
M-files (in MATLAB™) 328
Million floating point operations per

second (MFLOPS) 243
Million instructions per second (MIPS)

243
Minimum shift keying (MSK) 151
Minimum variance 167
/n-law 46-41
Missing codes 60
Model filter 140

Index 355

Modeling 176
Modified discrete cosine transform

(MDCT) 200
Modified Huffman code (MHC) 197
Modified periodogram 139
Modified Read code (MRC) 197
Modular addressing 258
Modular programming 269
Monotonicity 48, 59
Moore-Penrose-inverse 164
Morlet wavelet 144
Morse code 186
Mother wavelet 143
Moving average model (MA) 141
Moving Pictures Expert Group (MPEG)

199-200
MP3, 200-201
Multi-input multi-output (MIMO) 123
Multi-input single-output (MISO) 123
Multi-path propagation 88
Multiple instruction multiple data

(MIMD) 246
Multiply add accumulate instruction

(MAC) 243, 250, 254, 269
Multiplying D/A converter 49-53
Multipulse excited linear predictive

coding (MLPC) 196
Multi-rate sampled systems 254
Mutual information 182, 210

Narrowband passband signal 154
Neocognitron 102
Neural network 2, 100
Neuromorphic systems 100
Neuron computers 100
Newton's method 81-83
Noise shaping feedback loop 55
Non-casual filter 8
Non-coherent detection 149
Non-recursive filter 18
Non-uniform quantization 45
Nyquist frequency 6

Observation matrix 166
Off-line system 241
Offset 257
Offset binary 44-45
Offset error 47, 59
Offset register 257
On-line system 241
Open-loop transfer function 34
Optimization 115
Orthogonal 108, 151
Overflow 251
Oversampling 54, 60
Oversampling filter 55
Oversampling ratio (OSR) 55

Parallel A/D converter 61-62
Parallel distributed system (PDS) 100
Parallel execution 272
Parallel mode PCM 42
Parametric spectrum analysis 140-143
Parity bits 215
Parity matrix 219
Parity polynomial 224
Parseval's relation 135
Passband 23
Pattern associator 111
Pattern classification 110
Pattern completion 115
Pattern recognition 110, 204
Pattern restoration 110
Perceptron 101
Perceptron learning rule 109-110
Performance function 74, 77-80
Periodogram 135
Periodogram averaging 138-140
Phantom output 273
Phase linearity 24
Phase modulation (PM) 146
Phase shift function 17
Phase shift keying (PSK) 146, 151-154
Phasors 152
Phonemes 205
Pipe-lining 247, 249
Plant 32, 165
Poles 15
Pole placement controller 36
Pole-zero plot 16
Polyphase sub-band (SB) filter 200
Postincrement 257
Power spectrum 134
Prediction 175
Predictor 188-189, 191
Predictive compression 198
Prefix free code 185
Preincrement 257
Pre-warping 28
Prewitt operator 206
Principal component analysis (PCA) 204
Principle of superposition 9
Process 32
Process disturbance signal 32
Process error signal 32
Process identification 176
Process model 165
Process noise 166
Processor 74
Process output signal 32
Process table 264
Program counter (PC) 247
Proportional-integral-derivative (PID)

controller 35-36
Pseudoinverse 163-164

Pulse amplitude modulation (PAM) 43
Pulse code modulation (PCM) 42
Pulse density modulation (PDM) 43^4
Pulse number modulation (PNM) 43
Pulse position modulation (PPM) 43
Pulse width modulation (PWM) 43

Quadrature amplitude modulation
(QAM) 156

Quadrature components 154
Quadrature filter 91, 156
Quadrature phase 154
Quadruple phase shift keying (QPSK)

153
Quantization 8
Quantization noise 9
Quantizer 55
Quick sort 99

R-2R ladder 50-51
Radio technology 275
Ramp invariance method 27
Rate distortion theorem 179
Real time system 241
Reconstruction 5
Reconstruction filter 7, 57
Rectangular window 132, 136
Recurrent network 112
Recursive filter 18-21
Recursive least square (RLS) 160-163
Recursive systematic convolutional

(RSC) code 237
Reduced instruction set computer (RISC)

248
Redundancy 182, 187
Redundant information 182
Reference signal 32
Regularity detector 111
Relative frequency 6
Remez exchange algorithm 32
Repetition code 215-217
Residual excited linear prediction

(RELP) 195
Resolution 8
Resonant peak 273
Riccatti equation 170
Ripple 24
Root locus 15
Root signal 96
Rounding 256
Rule data base 121
Run length code 197

Sample and hold (S/H) 56, 60
Sampling 5-8
Sampling frequency 5
Sampling period 5
Sampling rate 5

Saturation arithmetic 250, 256
Scripts (in MATLAB™) 329
Serial peripheral interface (SPI) 248
Serial mode PCM 42
Set point 32
Settling time 49
Shannon's sampling theorem 7
Sigma-delta A/D converter 68-70
Sigmoid (logistic function) 103
Sign and magnitude 44-45
Signal constellation 153
Signal model 165
Signal points 146, 156
Signal to noise ratio (SNR) 44, 214
Simulated annealing 102, 115
Simulation method 31
SIMULINK™ 338-340
Single instruction multiple data (SIMD)

246
Single sideband (SSB) 156-157
Slope 23
Slope overload 189
Smoothing filter 57, 176
Soft limiter 103
Software defined radio (SDR) 276
Source coding 184-203
Source coding theorem 179
Spatial domain 89
Spectral analysis 134-143
Spectral density 135
Spectral power density 134
Speech recognition 205
Squashing function 103
Stability 15, 34
Stacked filter 98
Stack pointer (SP) 247
Start-of-list pointer 258
State machine 259-265
States 260
State-space model 12, 165
State transition diagram 232, 260
State variable 260
State vector 165
Static list 258, 266
Steepest descent 80-81
Step invariance method 27
Stochastic node functions 114
Stochastic representation of variables 44
Stopband 23
Stream data system 242
Sub-band coding (SBC) 192-193
Successive approximation A/D converter

62-64
Successive approximation register (SAR)

62
Supervised training 108
Symbols 180

Index 357

Synchronous programming 248
Syndrome polynomial 224
Syndrome vector 219
Systematic form 216

Tail (convolution code) 230
Tapped delay line filter 18
Taylor series 11
Threshold decomposition 96-98
Timed loop 253
Time domain 17
Time-update equations 169
Tracking type A/D converter 65
Training set 108
Training signal 77
Transcoder 192
Transducer 32
Transfer function 9, 14, 265, 272
Transform compression 198
Transition diagram 260
Transition matrix 165
Transition probability 211
Transition table 264
Translation 143
Transversal filter 18
Triangular window 136
Truncation 251, 256
Truncator 55
Turbo codes 236-238
Tustin's approximation 28
Twiddle factor 132

Ultra Wideband (UWB) 276
Uniform quantization 45
Unsupervised training 108

Variable length code 141
Variance 185
Vector processor 246

Vector sum excited linear prediction
(VSELP) 196

Very high speed integrated circuit
hardware description language
(VHDL) 245

Viterbi decoding 230-234
Vocoder 193-194
Voice 144
von Neumann architecture 246-247

Walsh-Hadamard transform 198
Waveform coding 192
Wavelet analysis 143-146
Wavelets 143
Wavelet theory 143
Weighted least-square 162
Welch estimate 139
Welch's method 139
Wideband code division multiple access

(WCDMA) 276
Wide-sense stationary 137
Widrow-HorT algorithm 101, 109,118,

130
Wiener-Hopf equation 79
Wiener-Khintchine theorem 138
Window method 30
Windowing sequence 131,136-137
Wordslice 245
Workspace (in MATLAB™) 328
Wraparound arithmetic 250

XOR function 105

Yule-Walker equations 142

Zero forcing filter 86
Zeropadding 136
Zero order hold (ZOH) 8, 56
Zeros 15
z-transform 14-15

