


STATISTICS WITH 
COMMON SENSE 

David Kault 

Greenwood Press 
Westport, Connecticut • London 



Library of Congress Cataloging-in-Publication Data 

Kault, David. 
Statistics with common sense / David Kault. 

p. cm. 
Includes bibliographical references and index. 
ISBN 0-313-32209-0 (alk. paper) 
1. Statistics. I. Title. 

QA276.12.K38 2003 
519.5—dc21 2002075322 

British Library Cataloguing in Publication Data is available. 

Copyright © 2003 by David Kault 

All rights reserved. No portion of this book may be 
reproduced, by any process or technique, without the 
express written consent of the publisher. 

Library of Congress Catalog Card Number: 2002075322 
ISBN: 0-313-32209-0 

First published in 2003 

Greenwood Press, 88 Post Road West, Westport, CT 06881 
An imprint of Greenwood Publishing Group, Inc. 
www.greenwood.com 

Printed in the United States of America 

The paper used in this book complies with the 
Permanent Paper Standard issued by the National 
Information Standards Organization (Z39.48-1984). 

10 9 8 7 6 5 4 3 2 

www.greenwood.com


Contents 

Preface vii 

Acknowledgments ix 

Glossaries xi 

Statistical Computer Program xiii 

1 Statistics: The Science of Dealing with Variability and Uncertainty 1 

2 Descriptive Statistics 9 

3 Basic Probability and Fisher's Exact Test 33 

4 Discrete Random Variables and Some Statistical Tests Based on Them 63 

5 Continuous Random Variables and Some Statistical Tests 
Based on Them 97

6 General Issues in Hypothesis Testing 141

7 Causality: Interventions and Observational Studies
 167

8 Categorical Measurements on Two or More Groups 175

9 Statistics on More Than Two Groups
 197

10 Miscellaneous Topics
 227

Appendix: Table of the Standard Normal Distribution
 239

Answers
 241

Annotated Bibliography
 253

Index 255



This page intentionally left blank 



Preface 

Statistics is primarily a way of making decisions in the face of variability and 
uncertainty. Often some new treatment is first tried on a few individuals and 
there seems to be some improvement. We want to decide whether we should 
believe the improvement is "for real" or just the result of chance variation. 
The treatment may be some actual medical treatment, or it may be the applica
tion of a new fertilizer to a crop or an assessment of the effect of particular 
social circumstances on social outcomes. In many professional areas people 
want to answer the same basic question: "Does this make a real difference?" 
In the modern world this question is answered by statistics. 

Statistics is therefore part of the training course for people in a wide range 
of professions. Sadly, though, statistics remains a bit of a mystery to most 
students and even to some of their statistics teachers. Formulas and rules are 
learned that lead to an answer to the question, "Does this make a genuine 
difference?" in various situations. However, when people actually come to 
apply statistics in real life they are generally uneasy. They may be uneasy not 
only because they have forgotten which formula to apply in which situation or 
which button to press on the computer, but also because the formula or the 
computer is using criteria that they never properly understood to make impor
tant decisions that sometimes don't accord with common sense. People in this 
situation are right to be uneasy. Statistics applied correctly but without full 
understanding can lead to the most inappropriate, even bizarre decisions. Com
mon sense without any assistance from statistical analysis will often lead to 
more sensible decisions. Nevertheless, statistics has conquered the world of 
modern decision making. Few people notice that many statisticians don't be
lieve in statistics as it is currently practiced. Statistics can of course be used 
wisely, but this depends on the user properly understanding the meaning of 
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the answers from the formula or the computer and understanding how to com
bine these answers with common sense. 

This book is primarily aimed at people who learned statistics at some stage, 
never properly understood it, and now need to use it wisely in everyday pro
fessional life. However, the book should be equally suitable as an introductory 
text for students learning statistics for the first time. There is a large number of 
introductory statistics texts. This text stands out in three ways: 

• It emphasizes understanding, not formulas. 

• It emphasizes the incorporation of common sense into decision making. 

• It gives the full mathematical derivation of some statistical tests to enhance under
standing. 

The last point requires an immediate qualification to prevent the large num
ber of people with mathematics phobia from shutting the book for good at this 
point. No mathematical background beyond grade 10 is assumed, and the 
mathematics often consists of simply explaining one logical idea. Because 
formulas that can't be fully understood by someone with grade 10 mathemat
ics are omitted, there is less mathematics than in most statistics texts. 

The aim is to show the limited connection between wise decision making 
and statistics as it is conventionally practiced, and to show how this situation 
can be rectified by combining statistics with common sense. 
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Glossaries 

MATHEMATICAL SYMBOLS 

< less than 
^ less than or equal to 
> greater than 
^ greater than or equal to 
7̂  does not equal 
~ approximately equals 

is 
U or (meaning one or the other or both) 
H and 
| given 

4 ! = 4 x 3 x 2 x l = 2 4 

"Ck Number of ways that from n objects k objects can be chosen (from n 
Choose k) 

for example, 

(see Chapter 3). 

n\ n factorial, meaning nx(n-\)x(n-2)x...x3x2x 1; for example,

~
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COMMON ENGLISH EXPRESSIONS USED IN THE 
TEXT TO IMPROVE READABILITY 

The expressions here on the left-hand side are not normally intended to be 
used in an absolutely precise way. However, in certain contexts in this book they 
are used in place of precise quantitative expressions to improve readability. The 
precise meanings that I attach to these expressions are given on the right. 

"hardly ever" with probability ^ 0.05 

"nearly always" with probability ^ 0.95 

"quite often" or "commonly" with probability > 0.05 



Statistical Computer Program 

Many people frequently come across questionable decisions made on the ba
sis of statistical evidence. This book will help them to make their own in
formed judgment about evidence based on statistical analyses. Only some 
people will need to undertake statistical analyses themselves. On the other 
hand, it is just a small step from understanding statistical evidence to being 
able to undertake statistical analyses in many situations. It is a small step be
cause in most cases the actual calculations are performed by a computer. The 
only additional skill to be learned in order for readers to perform statistical 
analyses for themselves is to learn which button on the computer to press. 
Doing helps learning, so this book includes questions, some of which are in
tended to be answered with the assistance of a statistical computer program. 

There are many statistical computer programs or "packages" available. Al
most all would be capable of the calculations covered in this book. However, 
none are ideal. Many are unnecessarily complex for use in straightforward 
situations. The complexity, profusion of options, and graphical output may 
serve to confuse and distract users interested only in straightforward situa
tions. Many contain errors in that they use easy-to-program, approximate 
methods when exact methods are more appropriate. Some contain other er
rors. Few programs are available free of charge, even though most of the intel
lectual effort underpining such programs is ultimately a product of publicly 
funded universities in which academics have worked for the public good. 

In response to these issues, I have written a statistical program to accom
pany this book. I have called the program "pds" for Public Domain Statistics. 
It is designed to run on the Windows operating system (version 95 or later), 
and occupies about 1 Mb. It is available for distribution free of charge with the 
proviso that it is not to be used against the interests of humanity and the envi-
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ronment. It is available on the World Wide Web at <http://www.jcu.edu.au/ 
school/mathphys/mathstats/staff/DAKault.html>. It can also be obtained by 
personal request from the author at the Department of Mathematics & Statis
tics, James Cook University, Townsville, Qld 4811, Australia (please send the 
cost of postage and floppy disc). Source code can be made available to pro
grammers who guarantee that extensions to this work remain within the pub
lic domain. 

This book contains references to pds and brief instructions on its use, but 
the book can be used in conjunction with any other statistical computer pro
gram. Indeed, lack of access to a computer would be only a minimal handicap 
in using this book to gain an understanding of statistics. 

http://www.jcu.edu.au/school/mathphys/mathstats/staff/DAKault.html
http://www.jcu.edu.au/school/mathphys/mathstats/staff/DAKault.html


C H A P T E R 1 

Statistics: The Science of Dealing 
with Variability and Uncertainty 

Statistics can be defined as the science of dealing with variability and uncer
tainty. Almost all measurements made by scientists and people in many other 
fields are uncertain in some way. In particular, most measurement devices 
have limited accuracy, so there is uncertainty about the exact value. Some
times what is being measured varies from individual to individual and from 
time to time, making it impossible to measure the true average exactly. For 
example, it is impossible to know exactly the true average blood pressure of 
the average healthy person. 

Often we have to make a decision against a background of variability. We 
might be interested in a new blood pressure treatment. Should we believe that 
the new treatment works better than the standard treatment? The figures we 
collect after trying out the new treatment and comparing it with the standard 
treatment may slightly favor the new treatment. However, there is so much 
variability in blood pressure from person to person and from day to day that it 
will often be difficult to know whether it would be more reasonable to put 
slight changes in the average down to the effects of variability rather than to 
believe that the new treatment was superior to existing treatments. 

THE QUEST FOR "OBJECTIVE" METHODS 
OF DEALING WITH UNCERTAINTY 

By the early years of the twentieth century, the achievements of science had 
captured the public's imagination. There was a widespread desire to apply 
some scientific method to many areas of knowledge, to measure things, and to 
be "scientific" in how the measurements were interpreted. It no longer seemed 
good enough to simply look at a crop of wheat and note that on the side of the 
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field treated with Bloggs's fertilizer the wheat grew better than on the side 
treated with Jones's fertilizer and conclude that Bloggs makes better fertilizer 
than Jones. Maybe on Bloggs's side of the field the soil was better to start with. 
More measurements were needed and these measurements had to be analyzed 
"scientifically." There was a need for a scientific approach to making decisions 
that took account of the variable nature of many types of measurements. 

One important ingredient in the scientific approach seemed to be objectiv
ity: Scientists were seen as using calculated reason based on hard facts. Mak
ing decisions based on guesswork and intuition did not seem to be part of the 
scientific method. There was therefore pressure to invent an objective method 
of drawing conclusions from uncertain or variable information. A method was 
wanted that did not depend on intuition. As a result, a method of objective 
decision making on the basis of variable data was developed early in the twen
tieth century and is widely used today. This method is properly called frequentist 
statistics. Other mathematically based methods of making decisions in the 
face of uncertainty were also developed and come under the heading statistics, 
but since these other methods are not objective and are often more difficult, 
they are not as well known. Frequentist statistics is so popular and so widely 
used that most people don't even realize that it is just one of a number of 
different varieties of statistics. For most people, frequentist statistics is "statis
tics." This book, too, will usually just use the word "statistics" in place of the 
mouthful "frequentist statistics." 

"OBJECTIVITY": A MISTAKEN GOAL 

Unfortunately, the pressure for an objective method of dealing with data 
was misguided. Most statisticians believe that the best ways of drawing con
clusions in the presence of uncertainty involve methods that are not entirely 
objective. To give the appearance of objectivity, frequentist statistics starts 
with the premise that all decision making should flow from an analysis of the 
measurements that have been made. This approach has the added virtue that a 
computer program can be used to entirely automate the process of decision 
making. But this is often a ridiculous approach. We almost always know more 
about the topic than just the measurements, and surely it is silly to entirely 
ignore this knowledge in the decision-making process. Statistics, as currently 
used by most nonstatisticians, is the product of a mistaken quest for objectiv
ity and simplicity. 

STATISTICAL IMPERIALISM 

Nevertheless, statistics has become the approach that the modern world takes 
to analyzing figures. Anybody who has to deal with making decisions on the 
basis of figures who simply looks at the figures rather than "get stats done on 
them," whether they be a researcher or an administrator, would be regarded as 
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inadequate in their job and unable to cope with the intelligent, modern ap
proach. Statistics has conquered the world of decision making. There is an 
almost religious belief that the modern world knows how to approach all prob
lems and that "stats" is part of this approach. Nobody seems to notice that 
statisticians don't share this unthinking faith in statistics. Statisticians see some 
value in frequentist statistics, but many believe that it is not reasonable to try 
to deal with measurements involving uncertainty or variability in an entirely 
objective way. To base all analyses on figures alone means to abandon com
mon sense, and often common sense can bring more wisdom to a subject than 
a blind analysis of figures. As a result of ignoring common sense, a consider
able part of the world's scientific output is wasted effort. Analysis of experi
ments without the benefit of common sense can lead to misleading and 
sometimes dangerous conclusions. The use of common sense shows that many 
experiments should not have been performed in the first place. 

A FIRST EXAMPLE OF THE CLASH BETWEEN 
STATISTICS AND COMMON SENSE 

Let us look at an example where no great issues are at stake. We will con
sider two small groups of piano students. Say that in the first group the stu
dents got a half-hour lesson per week and in the second group the students got 
an hour lesson per week. Now assume that the results of the students in their 
piano exams showed that there was a lot of individual variation in ability but 
that the students who got the extra tuition time averaged out about 2 percent 
above the students who didn't. A normal person who had not had the "benefit" 
of a statistics "education" would conclude that the extra tuition time helped, 
but perhaps only a little. They might also think that perhaps the benefit may 
have been a bit underestimated due to a fault in the experiment; perhaps the 
experiment should have involved more students. By using common sense, the 
untrained person would come to appropriate conclusions. 

On the other hand, someone who had been through a course in statistics as 
it is commonly taught would type the exam marks for both groups into a com
puter. A figure would come out of the computer. On the basis of this figure 
such a person would be likely to conclude that "there is no evidence of any 
benefit from the half hour extra tuition," or even worse, "statistical tests have 
proven that extra tuition is of no benefit." What the computer actually would 
have told them would be that "looking at the figures alone, the small differ
ence of 2 percent between the groups could reasonably be attributed to indi
vidual variability causing the average of the second group to be a little higher 
just by chance." However, it is silly to look at the figures alone. We know that 
very few students will pass an exam with no tuition. Some tuition enables 
many students to pass. It seems reasonable to believe that additional tuition 
may enable many students to do even better. In other words, common sense 
tells us that, on average, extra tuition will almost certainly help students. Com-
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mon sense here would lead to far better decision making than blind applica
tion of frequentist statistics. 

THE LOGIC USED IN STATISTICS 

Frequentist statistics can be valuable in decision making, provided it is not 
applied blindly. To apply statistics wisely requires an understanding of the 
rather convoluted logic that underlies frequentist statistics. It is the purpose of 
this book to show how statistics can be combined with common sense. The 
logic and philosophy of frequentist statistics are therefore fully explained in 
the next few paragraphs so that statistics can be used with common sense to 
make sensible decisions. Just a few minutes of concentration may be required 
for understanding. However, since the ideas can be awkward to follow, the 
explanation is repeated in the context of various examples throughout the book. 

Let us look again at the example of the piano students receiving half an 
hour versus an hour of tuition per week. Although common sense tells us that 
the extra half hour of tuition will nearly certainly be of some help, the actual 
amount of benefit of 2 percent in exam marks in our figures turned out to be 
quite small. It is still just possible that students get all the tuition that they can 
absorb in one half-hour lesson each week, with the extra lesson being useless. 
If the extra tuition was in fact entirely useless, we could still account for the 
extra 2 percent marks in the extra tuition group by arguing that it was due to 
individual variability and that it was just coincidence that this variability turned 
out to favor the extra tuition group. In other words, it is just possible that the 
extra tuition was useless, but by sheer random chance there happened to be 
rather better students in the extra tuition group who got better marks, not be
cause of the extra half hour, but because they were better students. It is there
fore just possible that we are looking at a chance result that makes it appear 
that the extra tuition helps when in fact it does not. 

Let us look at how a computer could help us here. Ideally, we would want to 
ask the computer, "What is the chance that the difference in the two groups of 
student pianists is not due to the benefit of the extra tuition but is instead due 
to individual variability just happening to favor the students in the group that 
got the extra tuition?" More generally, we often want to ask, "Is it reasonable 
to blame chance for the difference?" Any reasonable answer to such questions 
needs to take into account both the figures we obtain in our experiment and 
our common sense judgments. In the case of piano tuition, common sense 
tells us that it is exceedingly likely that the extra tuition will be of benefit. 
However, the computer can't take account of our common sense judgments 
since we are only telling it about the figures. Therefore, the computer can't 
answer the question, "Is it reasonable to blame chance for the difference?" 
Instead, it answers a related secondary question: "If the differences between 
two groups were entirely due to natural variability alone, how often would it 
turn out that the two groups end up at least as different as these two groups 
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are?" Expressed another way, we want to ask, "Are the differences real or are 
they just due to coincidence?" Instead of answering that question we get a 
reply to the question, "If we were to put the differences down to sheer coinci
dence, what sort of coincidence would we be dealing with?" 

The situation here can be compared with the situation of a biologist study
ing mammals on an island. The biologist may already know that there are cats 
on the island, but she may be interested in whether there are different mam
mals as well. Say the biologist came across some yellow fur. The biologist 
will want to ask, "This animal has yellow fur. Does this mean that there are 
different mammals here and not just cats?" In the analogy with the questions 
asked and the answers given by statistics, the biologist would receive an an
swer to the secondary question, "Do cats often have yellow fur?" 

Question we want answered Question actually answered 
This has yellow fur, so is it a different Do cats often have yellow fur? 

mammal or is it just a cat? 

There is a sizeable difference between Does chance alone often lead to differ-
the two groups, so is there a real ences between two groups at least as 
difference or is it just due to chance? large as the differences we see here? 

Let us say that in the case of the exam results of the student pianists we got 
the reply from the computer, "Chance alone could often lead to a difference of 
2 percent or more between the average of the two groups." From this, if we 
were just looking at the figures and ignoring any background knowledge or 
common sense, we could say, "The figures themselves give no convincing 
evidence of any benefit from the half hour extra tuition." However, it is tradi
tional in frequentist statistics to leave out the important qualifiers "the figures 
themselves" and "convincing" from this sentence and instead state, "There is 
no evidence of any benefit from the half hour extra tuition." Even worse, this 
misleading form of words is sometimes further distorted to become "statisti
cal tests have proven that extra tuition is of no benefit." However, as discussed, 
even if chance could easily account for the difference in the marks, it does not 
accord with common sense to say that we have proven that we should blame 
chance for the difference in the marks of the two groups of students. 

Now let's say we got the opposite message from the computer: "Chance 
alone would hardly ever lead to such a big difference between the two groups." It 
is then traditional in frequentist statistics to make the decision that there is a real 
difference in the progress of the two groups of student pianists. What is meant by 
"hardly ever"? The actual result given by the computer is a probability. Tradition
ally, "hardly ever" is taken to mean less often than one in twenty times. The 
synonyms "/? value less than 0.05," "statistically significant at the 0.05 level," 
"significant at the 0.05 level," or "statistically significant" are often used. If 
this happened in the case of the student pianists, we would be happy to agree 
with the conclusions reached by someone following the tradition of frequentist 
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statistics. In other words, both common sense and frequentist statistics would 
tell us that we should believe that the extra tuition is of some benefit. 

We have seen in the case of the student pianists an example where stats 
could tell us we shouldn't believe something makes a difference when com
mon sense tells us that it does. There are cases where "stats" tells us that we 
should believe that something makes a difference, but common sense tells us 
that it doesn't. In such cases we make the judgment that chance, even a rather 
tiny chance, is a more reasonable explanation for the differences than the ex
planation that there is a real underlying difference. For example, let's say a 
friend claimed to be a clairvoyant. You tested her powers by seeing if she 
could guess some number between 1 and 100 that you had written on a piece 
of paper. If she happened to get the correct number and you were an unthink
ing frequentist statistician, you would now believe that your friend is a clair
voyant. Why? Because chance alone would hardly ever allow her to get the 
correct number. Here, the chance involved would be 1 chance in 100, or/? = 0.01. 
Since this is less than a one-in-twenty chance, it is the sort of chance that hardly 
ever occurs, and so following the strict traditions of frequentist statistics we would 
say that there is statistically significant evidence that your friend is a clairvoyant. 
However, most people are at least a bit skeptical about clairvoyants, or at least 
won't readily believe that their friends are clairvoyants, and so most people 
would not be convinced by one correct guess out of 100 numbers. For these 
people, following the traditions of frequentist statistics would lead to a con
clusion that they felt was not supported by the evidence. Some skeptics might 
want to see your friend correctly choose a nine-digit number—chance alone 
would allow a correct guess only once in a billion times—before they might 
start to believe that genuine powers of clairvoyance is a better explanation 
than chance. For such skeptics in this situation, the p value that is just tiny 
enough to make them change their minds would be one in a billion or/? = 
'A ooo ooo ooo- Here it would be inappropriate for skeptics to use the traditional 
value p - 0.05 as the benchmark for the sort of chance that is unreasonably 
small. Instead, such skeptics should use/? = 0.000000001 as the benchmark. 

Restating, when we see a difference between two groups we might want to 
ask, "Could the difference just be due to coincidence?" Statistics does not 
answer this question, but instead answers the related question, "If we were to 
put the differences down to coincidence, what sort of coincidence would we 
be talking about?" The answer to this second question is the p value. If the p 
value is unreasonably small, smaller than some arbitrary benchmark (the co
incidence is highly unlikely), it is more reasonable to believe the difference is 
"for real." There is a tradition of using a fixed value of 0.05 as the benchmark 
for what is unreasonably small. However, if this tradition is blindly accepted 
and the benchmark is not adopted to suit circumstances and common sense, 
"stats" can lead to unreasonable, even bizarre, decisions. 

This section on the logic used in statistics requires some thought. The logic 
is a bit twisted and difficult. However, the ideas just explained are the main 
ideas underlying introductory statistics. If you understand these ideas, you 
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have understood most of a first course in statistics. Because of its importance, 
the explanation will be repeated in various contexts throughout this book. 

THE ROLE OF MATHEMATICS 

In this book the understanding of statistics is enhanced by giving the com
plete mathematical basis for a few statistical tests. However, mathematical 
knowledge beyond the tenth-grade level is not assumed. Many statistical tests 
are derived using quite complex mathematics and involve a complex series of 
calculations. Other texts go to some length to detail all the mathematical ma
nipulations that are required for these statistical tests. The attitude taken here 
is that if it is not possible to understand the mathematical derivation of the test, 
and if the details of the calculation don't help you to understand how the test 
works, then there is absolutely no point in learning the steps used in the calcu
lations. Computers are now available to do these calculations. (A computer 
program called pds [public domain statistics] was written to accompany this 
book and is available free of charge for nonprofit purposes from <http:// 
www.jcu.edu.au/school/mathphys/mathstats/staff/DAKault.html>.) The impor
tant issue is to understand the philosophy and assumptions behind the test. 
Therefore, if the details of the calculations are not enlightening in some way 
they are entirely omitted. As a result, there is less emphasis on calculation and 
formulas in this text than in most other introductory statistics books. 

On the other hand, there are a few statistical tests for which the full deriva
tion can be understood by anyone who can understand tenth-grade mathemat
ics. These tests are explained in detail to enhance understanding of the nature 
of statistics. 

THE REMAINDER OF THE BOOK 

Before we return to the harder parts of statistics—using statistics to make 
decisions about whether we should believe that there are underlying differ
ences between groups—we will briefly cover the easiest parts of statistics. 
Recall the definition of statistics: the science of dealing with variability and 
uncertainty. The first part of dealing with variability and uncertainty is to de
scribe it. The part of statistics that deals simply with description is covered 
next. People who have any knowledge of statistics could just skim this chap
ter. The book then gives a simple introduction to the mathematics of chance: 
probability theory. This is necessary in order to understand some of the statis
tical tests that are described in full and in order to give you a feeling for situa
tions that can reasonably be blamed on chance. The study of using statistics to 
make decisions occupies the remainder of the book. 

In some places, interesting details and derivations are given that are not 
essential for people who just want the main ideas. Material such as this, which 
is redundant to the reader who does not want to cope with additional complex
ity, can be skipped without losing the main ideas of the book. Parts of the text 

http://www.jcu.edu.au/school/mathphys/mathstats/staff/DAKault.html
http://www.jcu.edu.au/school/mathphys/mathstats/staff/DAKault.html
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containing such information are headed "Optional" and set between rules. In 
some places, these optional sections contain additional examples. 

Answers to the questions at the ends of the chapters are given at the end of 
the book, beginning on page 241. 

S U M M A R Y 

• Statistics is a way of making a decision about whether differences are "for real" or 
just a result of chance. 

• The form of statistics in common use attempts to be entirely objective and so just 
looks at the figures available and entirely ignores any common sense knowledge of 
the area. 

• As a result, statistics cannot directly answer the question, "Is there a real differ
ence?" Instead, it answers an indirectly related question: "If we were to blame 
coincidence for the difference, what sort of coincidence would we be talking about?" 
The answer to this question is called the/? value. If the/? value is smaller than some 
benchmark, the coincidence is regarded as unreasonably long and we conclude that 
there is a real difference. 

• Traditionally, the benchmark p value is taken to be 0.05. 

• Blind adherence to this traditional benchmark can lead to unreasonable decisions 
that defy common sense. 

Put simply, the/? value tells us how easy it is for chance alone to explain differ
ences. It does not tell us how likely it is for chance to be the true explanation. 

QUESTIONS 

1. Think of another situation, like the music students and the extra tuition example, 
where you would believe that the benefits were "for real" regardless of results 
from a statistical analysis telling you that the favorable results could be easily 
explained by chance. 

2. The roulette wheel in a casino can stop in thirty-eight different positions. The 
casino is known to operate the roulette wheel fairly. You notice that the roulette 
wheel hasn't stopped on "36" even once in the last 500 goes, so you place a bet on 
"36." What is the chance that you will lose your money? 

3. Imagine your neighbor claimed to be a clairvoyant and asked you to verify her 
powers by getting you to write down a number between 1 and n (where n stands 
for a number like 10, 20, 100, or 500) that she then correctly guessed. How big 
would n have to be in order to convince you (assuming you can rule out cheating 
or magic tricks)? 

4. Consider the same scenario as in question 3, but this time you are going to get the 
self-declared clairvoyant to perform the number guessing twice in a row and you 
will believe in her powers only if she is correct both times. Again, how big would 
n have to be in order to convince you (assuming you can rule out cheating or 
magic tricks)? 
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Descriptive Statistics 

NUMBER AND TYPE OF MEASUREMENTS 

Generally, our first step in dealing with a situation in which uncertainty or 
variability plays a role is to make some measurements. The first question is 
how many measurements should we make. We could measure all the individu
als in which we were interested, an appreciable proportion of them, or a neg
ligible proportion of them. 

Ideally, we would accurately measure all the individuals. This is called a 
census. Statistics would then just consist of describing the results in a digest
ible manner. Most times a census is not possible. Often the number of indi
viduals we would need to measure is so large that it would not be possible to 
conduct a census with limited time and resources. For example, if we wanted 
to make a statement about the height of women that would always be correct 
we would have to measure all the women that have ever existed or that could 
ever exist in the future. Obviously, this is not possible. 

When it is not feasible to measure all the individuals in which we are inter
ested, we measure a selection of them. Usually the selection is a small or 
infinitesimal fraction of the number of individuals in which we are interested. 
In the case of women's heights, we would measure a small selection of women. 
The statistical term used here is that we take a "sample" from the population. 
The word "population" is used to describe the collection of all the objects we 
could measure, even when we are considering nonliving objects (e.g., the popu
lation of all possible midday temperatures). There are pitfalls in taking a sample. 
If we wanted to know about people's weights and we set up a weight-measuring 
facility outside the door of the Weight-Watchers Association, our sample of 
weights would obviously not fairly represent the weights in the population. 
For a sample to be fair, each member of the population has to have an equal 
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chance of being chosen. A sample chosen this way is said to be a representa
tive sample. A weight-measuring facility outside the door of the Weight-Watchers 
Association would not be representative because overweight people would 
have a greater than average chance of being chosen. There are many more 
subtle ways of obtaining a sample that is not representative of the population. 
Both the theory and the practicalities of obtaining representative samples are 
large areas of study in their own right. However, in most of what follows we 
will simply assume that we have obtained a representative sample. Much of 
statistics consists of calculations about how accurate information about a popu
lation is going to be when this information comes from a representative sample. 

Occasionally the sample may consist of an appreciable proportion of the 
population, as in an opinion poll for the election of a mayor in a small town. 
Such an opinion poll might sample a quarter of the people who can vote. As 
well as simply representing the opinions in the whole population, this sample 
would also give us certain knowledge about an appreciable proportion of the 
population. As discussed in Chapter 10, some modifications to statistical cal
culations are then required. However, in most of what follows we will assume 
that our sample is a negligible fraction of the population and that it gives us 
ideas about the population in a probabilistic way. 

For simplicity, instead of listing all the measurements in our sample we 
often want to describe them more briefly or express them in some summary 
form. The description or summary form can be in terms of summary numbers 
such as averages, or it can be in the form of diagrams. The type of summary 
that is used will depend partly on the type of measurements or data. 

TYPES OF DATA 

Measurements (the words "data" or "information" can be used interchange
ably here) can be of three basic types: continuous, discrete, and categorical. 
Ordinal is a further type which is here described as a subtype of categorical 
data. 

Continuous Data 

In the case of continuous data the thing that is being measured can vary 
continuously. An example is the measurement of height. In practice, height 
measurements are often rounded to the nearest centimeter or millimeter, but it 
is possible for somebody to be, for example, anywhere between 172.3 cm and 
172.4 cm in height. If we could use an infinite number of decimal places in 
measuring height, there would be an infinite number of heights distributed 
continuously between 172.3 and 172.4. Other examples of continuous mea
surement are weight, temperature, and ozone concentration. In the case of 
each of these measurements, the size of the step between one measurement 
and the next biggest measurement can be arbitrarily small, so there need be no 
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cutoff in size between one measurement and the next. Since the size of the 
different measurements are not necessarily cut off from each other by any 
fixed amount, we regard the measurements as continuous data. 

Discrete Data 

In the case of discrete data, the measurement has to fall on separated (or 
discrete) values. Discrete measurements almost always arise from counting. 
An example is the number of accidents the clients of an insurance company 
have in one year. For any client the measurement can be 0 or 1 or 2 or 3 and so 
on. These numbers are discrete in that they are separated by whole units from 
each other. It would make no sense to have the number 1.3 as the number of 
accidents a client had. A second example of a discrete measurement is the 
number of children in a family, since children also come in whole numbers: 
Having 1 child or 2 children in a family makes sense, but no family contains 
1.3 children. 

Categorical and Ordinal Data 

Data can also be categorical. This means that our measurement consists of 
simply classifying the object into one of several categories. An example is 
classifying people by their religion. Here our measurement is simply the clas
sification of each individual as Christian, Buddhist, Moslem, and so on. A 
second example of a categorical measurement is to record the species of plants 
in a field. When there is only two categories possible, categorical data is some
times called dichotomous data. Examples of pairs of dichotomous categories 
are yes-no, better-worse, and alive-dead. 

There is another variant of categorical measurement. Categorical measure
ments are referred to as ordinal if the categories can be sensibly ordered. The 
different religions can't be ordered (except perhaps to some religious bigot it 
would not make sense to put Hinduism above or below Buddhism), so reli
gion is not ordinal data. However, cancer patients can be ordered into those 
with stage I cancer, who have good survival prospects, and those with stage II, 
III, or IV, who have progressively poorer prospects. However, someone with 
stage II is not twice as badly off as a person with stage I or half as badly off as 
someone with stage IV. The numbers I, II, III, and IV make sense as an order
ing, but not as numerical measure. This is the key feature of ordinal data. A 
second example of an ordinal measurement would be the classification of people 
into nonsmokers, light smokers, and heavy smokers. Smoking increases the 
risk of many diseases. Nonsmokers have less risk of these diseases than light 
smokers, and light smokers have less risk than heavy smokers, but it generally 
is not true that the risk for light smokers is halfway between the risk for non-
smokers and the risk for heavy smokers. The ordering nonsmoker, light smoker, 
heavy smoker is therefore useful, but it would not be useful to think of this 
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ordering in the same way as we think of the numbers 1, 2, and 3, with 2 being 
exactly halfway between 1 and 3. A third example could be the classification 
of the age of animals as juvenile, immature, adult, or senescent. 

Most writers regard ordinal data as a separate type from categorical data, so 
the common classification of data types are continuous, discrete, ordinal, and 
categorical. How data are classified also depends on our viewpoint. If we look 
at plants in a field one by one and decide which species each one belongs to, 
we are dealing with categorical data. If we look at the total number of plants 
of a particular species in the field, we can regard that number as one item of 
discrete data. 

As well as classifying data as continuous, discrete, ordinal, or categorical, 
data can also be classified according to how many measurements are made on 
each individual. Where one measurement is made on each individual, the data 
are called univariate. If two measurements are made on each individual, the 
data are bivariate. Where more measurements are made on each individual, 
the data are multivariate. If we were just interested in height and measured the 
height of a number of people, we would have univariate data. If we were 
interested in describing the connection between height and weight and mea
sured these two quantities on each of a number of individuals, we would have 
bivariate data. If we were interested in the connection between students' exam 
results and their home situation we might measure not only each student's 
exam results but also his or her parents' income, parents' educational achieve
ments, number of siblings, number of hours of TV watched each night, and so 
on. This would be multivariate data. 

SUMMARIZING CATEGORICAL AND ORDINAL DATA 
WITH NUMBERS AND DIAGRAMS 

To summarize categorical and ordinal data with numbers we simply give a 
table listing the totals in each category. Such data can also be summarized 
with diagrams. Two sorts of diagrams are used: bar graphs and pie charts. 
These are just the names for the diagrams that many people will have seen in 
newspapers and elsewhere. As an example, say we picked out 100 adults at 
random and classified each person according to whether they were in the cat
egory "single," "married," "widowed," or "separated" or divorced." If the num
bers in the various categories were 15, 45, 10, and 30, respectively, the 
table-form summary would be as follows: 

single 

15 

married 

45 

widowed 

10 

separated/ 
divorced 

30 

The diagrammatic summary would be given by the following bar graph or 
pie chart. In the bar graph, the height of the bars gives the number in each 
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category. In the pie chart, the percentage of people in each group is mirrored 
by the size of each "slice" as a percentage of the entire "pie": 

Exactly the same methods of display apply to ordinal data. If the figures 15, 
45, 10, and 30 referred instead to the number of people with stage I, II, III, and 
IV cancer, replacement of the labels single, married, widowed, and sep/div by 
I, II, III, and IV is all that is needed. However, people concerned that diagrams 
should obey a strictly logical layout would prefer a bar graph rather than a pie 
chart representation for ordinal data. In a bar graph the bars could represent 
people with stage I, II, III, and IV cancer in that order; whereas in a pie chart, 
stage IV cancer would be displayed as lying between stage III and stage I, not 
a logical position for it to be in. 
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SUMMARIZING DISCRETE AND 
CONTINUOUS DATA WITH NUMBERS 

The most obvious method of summarizing a list of measurements of height 
or weight or whatever is to calculate the average. Why then the need for more 
discussion? There are two answers. First, taking the average is not the only 
method of describing where the data are centered. There are other methods of 
describing where the data are centered that in some circumstances give more 
insight than just quoting the average. Second, in addition to a summary mea
surement telling us where the data are centered, we may want a measure of 
how spread out the data are. Summary measures of where data are centered 
and how spread out data are are known as summary statistics. 

Where Are the Data Centered? 

There are three measures of where data are centered (otherwise referred to 
as measurements of central tendency). These are the mean, median, and mode. 

The Mean 

The mean is simply a fancy term for average as learned in primary school. 
Simply add up all the values and divide by the number of values. For example, 
the mean of 11, 10, and 21 is 

The mean of a sample, or sample mean, is often given the symbol x. 

OPTIONAL 

It is useful to write rules, such as the rule for finding the mean, in a way that 
does not depend on examples. However, this requires getting used to a bit of 
mathematical jargon. To spell out the rule for finding the mean using the cor
rect mathematical jargon, we have to replace the numbers in the example with 
symbols. For the first data value we use the symbol *,, for the second x2, for 
the third JC3. In our example, x, = 11, x2 = 10, JC3 = 21. If there were more values, 
we would have an x4, JC5, and so on. If there were n values, our last value would 
be xn. If we want to refer to one particular data value but we don't want to be 
specific that we are dealing with the first, second, third, or nth value, we use 
the symbol x-r If we then said that / was 1, we would be dealing with x,, if / was 
2, we would be dealing with x>, and so on. To find the average, we first add all 
the data values. In symbols, this is JC, + x2 + x3 + . . . + xn where the + . . . + here 
means to keep on adding up all the values in between the third and the ftth. 
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Adding all the data values can be more compactly written as 

The symbol 2 is the Greek equivalent of the English "S" and stands for 
"sum up." The symbolism literally means sum up all the values of x, where / 
takes each of the values in turn between 1 and n\ in other words, x, + x2 + x3 + 
. . . + xn. With this notation, the formula for finding the mean is written 

so we write 

END OPTIONAL 

If we have measured all the individuals in the population, we can calculate 
the true population mean. The formula is the same as for the sample mean, but 
we use the symbol |JL (the Greek letter mu) instead of x. In general, numbers 
describing a population are denoted by a Greek letter and estimates of these 
numbers obtained from a sample are denoted by an English letter. 

The Median 

The median is obtained by writing the data in ascending order and finding 
what the middle value is (in our previous example with the numbers 11, 10, 
and 21, the numbers in ascending order are 10, 11, 21). The middle value 
(here it is 11) is called the median. In other words, the median is halfway 
along the data from smallest to largest. If the data values were 13, 2, 7, 19, 
154, 26, and 38, the median would be 19. 

OPTIONAL 

If there are an odd number of data values, it is always possible to find a middle 
number. If there are 2/7 + 1 data values, the (n + l)th has n values below it and 
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n values above it. If there are an even number of data values, the median is 
taken to be the average of the two numbers closest to the middle. Say the data 
values were 13, 2, 7, 19, 154, and 26; the median is taken to be 16, which is the 
average of 13 and 19, since there are three numbers below 16 and three num
bers above 16 and 16 is halfway between the two middle numbers, 13 and 19. 

END OPTIONAL 

The Mode 

The mode is the most commonly occurring value. If the data values con
sisted of the numbers 10, 10, 11, and 21, then the mode would be 10. If the data 
values were 19,20, 17, 21, 20, 18,20, 154, 19, and 756, the mode would be 20. If 
the data values were 19, 20, 17, 21, 756, 20, 18, 20, 154, 19, 756, and 756, then 
there would be two modes: 20 and 756. The data in this case are said to be 
bimodal. In contrast, data that have just one mode are referred to as unimodal. 

OPTIONAL i t 

The term bimodal is also used, loosely, to describe situations where there are 
two different values that are more common than neighboring values but not 
necessarily just as common as each other. For example, completely clear days 
are more common than days with 1 percent cloud, 2 percent cloud, and so on, 
and completely overcast days are more common than days with 99 percent 
cloud, 98 percent cloud, and so on. In this situation we use the term bimodal to 
describe cloud-cover data. Strictly speaking, the data have two modes only if 
the most common values, 0 percent and 100 percent, occur just as often as 
each other. Nevertheless, the cloud data we have described would be called 
bimodal even though 0-percent cloud days are not exactly as common as 100-
percent cloud days. 

The mode is generally useful when the data are discrete and the number of 
values that are likely to occur are fairly small. For example, the mode is a 
useful measure of the central tendency in family size. The number of children 
in families can take only a relatively small number of discrete values, say 0, 1, 
2, 3, . . . , 20. If families with one child are more common than families with 
any other number of children, we say the modal number of children is 1. As a 
measure of the center of the data it could seem more reasonable to use this 
mode of 1 than to use the mean number of children, which might be 1.83. The 
mean is a valid measure of central tendency, but it doesn't give us an immedi
ate picture of a typical family the way the mode does. The mode would simi
larly be useful if we were talking about weekly earnings rounded to the nearest 
$100. Only the numbers $200, $300, . . . , $2,000 are likely to be particularly 

END OPTIONAL
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common. Numbers like $1,328,400 for weekly earnings, while they may oc
cur, would be very rare. However, this example leads us to the disadvantages 
of the mode. What if we wanted to get the mode more accurately and so asked 
people their weekly earnings specified to the exact number of cents? Then we 
might find that even in a large survey just about everybody was different, at 
least in the cents. If everybody's income was different, this would make 
everybody's income a mode (each value would occur just as commonly as 
every other value), and then the mode wouldn't be very useful. There wouldn't 
be a single mode that would stand out as the center of the data. In general, it is 
not useful to try to precisely locate the mode when dealing with continuous 
data or when dealing with discrete data where the units are tiny (e.g., cents) 
compared to the data values (e.g., hundreds of dollars). As a result, in most 
situations modes are not a commonly used measure of central tendency. 

Reasons for Different Measures of Central Tendency 

We've just discussed the advantages and disadvantages of modes compared 
to means as a measure of central tendency. What are the advantages and disad
vantages of medians compared to means? Which is best? The answer to this 
question is that there is no absolute right way of defining where data values 
are centered. Different definitions have different purposes. Consider income 
for adults in the United States. Very roughly, there are about 200 million adults 
and the combined weekly income is about $400 billion. Dividing 200 million 
into $400 billion gives us a mean weekly income of $2,000. Most people will 
protest about such a figure being declared a measure of where weekly income 
in the United States is centered. Most people would say that they know hardly 
anybody who earns that much. If we were to round income to the nearest $100 
per week, we might find that $500 per week is the most common or modal 
income, but, as discussed, it might not be meaningful to try to define the mode 
much more precisely. Why is this rough mode of $500 so different from the 
mean of $2,000? After all, both are meant to be measuring where the data are 
centered. The answer to why mean and mode can give very different impres
sions of where the data are centered can be understood by drawing a horizon
tal line on a page. The left-hand end of the line could be marked 0 to stand for 
a weekly income of $0, 1 cm to the right denotes an income of $ 100 per week, 
2 cm to the right denotes $200 per week, and so on. Let's imagine we make 
marks on the line corresponding to each person's weekly income. What we 
are making is called a line graph. 

236 meters up the road 

Line graph showing income of a few of the millions who earn under $1,000 per 
week and one "high flyer." Axis labelled in centimeters, with each centimeter 
representing $100 per week. 
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Chances are that just about everybody you and I know would have their 
income marked somewhere along the first 40 cm. However, there are a hand
ful of people with enormous incomes of several million dollars per week. On 
our line graph these people would be marked hundreds of meters off the right 
of the paper. Those data values that are remarkably extreme are referred to as 
"outliers." These sort of data, where values trail out particularly in one direc
tion, are referred to as "skewed data." In particular, we would describe income 
data as being markedly skewed to the right or as having a long right-hand tail. 
The average of a few measures of hundreds of meters, perhaps a few hundred 
measures of tens of meters, a few thousand measures in the meters, along with 
millions of measures of around 5 cm turns out to be about 20 cm. The average 
or mean income is likewise about $2,000, but this measure is not an accurate 
reflection of the financial standards of the vast bulk of people. 

In this situation, whether we regard the mean or the mode as the best mea
sure of where income is centered is really a political decision. If we are inter
ested in the living standards of typical members of the society, the mode is a 
better measure. However, politicians with a vested interest in making figures 
look good or with an ideology that values wealth rather than people might 
regard the mean as a measure that better reflects their purposes. On the other 
hand, those who want to use the mode face the disadvantage of not usually 
being able to define it precisely. The compromise choice is the median. By 
definition, half the population earns below and half above the median, but the 
extreme incomes of the ultrarich do not influence the position of the median. 
In general, with skewed data the median will lie between the mode (to the 
extent that this can be estimated) and the mean. Medians are often regarded as 
a fairer measure of the center of skewed data than means. However, means are 
generally easier to deal with mathematically and are generally regarded as the 
fairest measure of where data are centered when the data are not particularly 
skewed. 

Measures of the Variability, Spread, or "Dispersion" of the Data 

Just as with measures of where the data are centered, there are several measures 
of how spread out the data are, each with its own advantages and disadvantages. 

Range 

The most obvious measure of spread is the range, which is the gap between 
the highest and lowest values. This measure is fine, provided we just want to 
summarize the spread of the data we have at hand. However, often we are 
interested in what the data tell us about the spread of values in the population. 
Say we wanted information on the spread of heights of adult women. If our 
sample consisted of just one woman, the smallest value we had in our sample 
and the largest value we had in our sample would be the same thing, the height 
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of the one woman we had chosen. In this case the range would be 0 cm. If just 
a handful of women are chosen, chances are that all will have a height be
tween 1.50 m and 1.75 m, giving a range of 25 cm or less. However, if a large 
number of women are examined, sooner or later we will come across a woman 
who is exceptionally tall and sooner or later we will also come across a woman 
affected by dwarfism. When we have collected enough data to include such 
exceptional people, the range may turn out to be 75 cm or more. The range 
then reflects how big our sample is as well as reflecting how spread out heights 
are in the population. It would be preferable to find a measure of spread that 
reflects only the spread of the values in the population and that isn't greatly 
influenced by the number in the sample. For this reason, the range is not gen
erally regarded as a satisfactory measure of spread. 

Mean Deviation 

There are several approaches to finding a measure of spread that is not 
substantially affected by the number of data values obtained. One approach is 
to find the average of the spread of the data about the mean. This is called the 
mean deviation. Say we measured the heights of just three women and they 
were 159 cm, 165 cm, and 171 cm. The mean is 165 cm. Two measures are 6 
cm from the mean and the other is 0 cm from the mean. We say that the mea
sures deviate by 6 cm, 0 cm, and 6 cm from the mean. The average of 6, 0, and 
6 is 4. This could be our measure of spread in this case. Clearly a procedure 
like this could be generalized to a case when there are more data values, and 
the average of the deviations from the mean could be used as a measure of 
spread. There is little wrong with this measure of spread, but it is not used 
because of mathematical difficulties. In particular, the value 171 is 6 above the 
mean and the value 159 is 6 below the mean. The average of 6 above (+6), 6 
below (-6), and 0 is 0. In general, since the average is in the middle, there will 
always be values as much above the average as there are below the average, so 
the average of the deviations will always be 0 unless we ignore the minus 
signs that are attached to some of the deviations. The act of ignoring minus 
signs is referred to as taking absolute values. The average of the absolute val
ues of the deviations is then a possible measure of spread. However, absolute 
values are awkward to deal with mathematically. 

OPTIONAL 

Mathematics used in the theory of statistics in effect consists of rules to find 
best answers partly by using a method (calculus) that follows trends. An abrupt 
change of rule so that numbers slightly above 0 keep their correct sign but 
numbers slightly below 0 have their sign reversed, makes for difficulties in 
following trends. 

END OPTIONAL 
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Therefore, the mean deviation is little used as a measure of spread. 

Variance 

Squares of numbers are much more convenient mathematically than abso
lute values. 

OPTIONAL «

In terms of calculus, the function y = x2 is differentiable—that is, it is smooth— 
whereas the function y = the absolute value of x, is not differentiable. The 
graph of this function comes to a sharp point at the origin. 

END OPTIONAL 

Like absolute values, squares also turn a mixture of negative values such as 
-6 and positive values such as 6 into all positive values (-6 x -6 = +36). 
Instead of averaging the absolute values of the deviations from the mean, one 
of the measures of spread commonly used is the average of the squared devia
tions. This measure is called the variance. 

OPTIONAL 

The variance has a nice mathematical property. In particular, it can be shown 
that under some common circumstances variability as measured by variance 
adds up in a straightforward way when variable values are added. For ex
ample, if we knew that the variability of the heights of pony backs as mea
sured by variance was 225 units and we knew that the variability of the heights 
of women as measured by variance was 100 units, then under some common 
circumstances the variability of the distance from the ground to the tops of the 
heads of women standing on pony backs would be 325 (225 + 100). This 
addition of variability as measured by variance applies whenever there is no 
tendency to pair tall women with tall ponies or vice versa, a condition known 
as independence. By contrast, the heights of women and the heights of their 
husbands are unlikely to be independent, as tall women tend to prefer to marry 
even taller men. In this case we would say that the heights of women and the 
heights of their husbands are dependent.1 

* * END OPTIONAL 

Standard Deviation 

Variance as a measure of variability has a major drawback. Because of the 
squaring, the units of measurement don't match up with what has been mea-
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sured. The height of women might be measured in cm, but the variance would 
then be in square cm. To get back to the original units we need to take a square 
root. The square root of the variance is the most widely used measure of the 
spread of data. It is called the standard deviation. The standard deviation is 
then the square root of the average of the squared deviations. The standard 
deviation of a sample is denoted s; the standard deviation of a population is 
denoted by the Greek letter a. 

OPTIONAL 

There is, however, one further minor modification required in the definition of 
the standard deviation. If we had only one data value, the average would be 
the same as the data value. The deviation would then be zero and the square 
root of the average of the squared deviations would also be 0. The standard 
deviation, then, as we have described it, would be zero 

whenever we have just one data value. But this is silly. If we have only one 
data value, we cannot estimate spread. We shouldn't say pony heights have 
zero standard deviation (i.e., don't vary at all) simply because we have only 
measured one pony. Any formula for calculating spread when there is only 
one data value should give the answer "undefined" 

We deal with this difficulty by modifying our method of calculating the aver
age of the squared deviations. We sum all these squared deviations but divide 
by one less than the number of squared deviations instead of dividing by the 
number of squared deviations. Put another way, if there are two data values, 
we really have information about only one deviation even though we can de
fine two deviations from the average. Likewise, if there are n data values, in a 
sense we have only n - 1 measures of the deviations. For this reason, in calcu
lating the average of the squared deviations we should divide by n - 1 rather 
than n. The formula, then, for the standard deviation of a sample is 

If we have measures on the whole population, a census, we calculate the popu
lation standard deviation using the formula 
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where JUL is the population mean. It can be shown that in some sense the for
mula for s involving division by n - 1 is the "best" estimate of the population 
standard deviation a (see Chapter 4). When n is large there will be a negligible 
difference between the results of using the formulae for s and for a. 

Although standard deviations have the advantage of the same units of mea
surement as the original values, one nice mathematical property does not hold. 
Unlike the situation with variances, standard deviations don't add in a straight
forward way. Referring to the example of the heights of ponies and women in 
the discussion about variance, if the standard deviation of the heights of pony 
backs is 15 cm (y 225) and the standard deviation of the heights of women is 
10 cm (v 100), the standard deviation of the heights of women standing on 
pony backs will not be 15 + 10 = 25 cm. Instead, if we want to find the stan
dard deviation of the heights of pony-woman combinations we need to use 
the fact that variances add. We know that the variance of the heights of pony-
woman combinations is 225 + 100, so the standard deviation will be v225 + 100, 
or about 18.03 cm (assuming independence). The fact that standard deviations 
don't add, unlike their squares (variances), is a reflection of the general math
ematical rule v<22 + b2 ¥" a + b. 

END OPTIONAL 

Interquartile Range 

Recall the disadvantage of the mean in dealing with data with a long tail, 
such as income data. If we use the mean as a measure of central tendency, a 
few extreme high fliers gives us a distorted view of where most people are at 
financially. The same sort of disadvantage applies when using standard devia
tion as a measure of spread. With the standard deviation, a few extreme devia
tions give us a distorted view of the size of typical deviations. The interquartile 
range (IQR) is a method of measuring spread that is not unduly sensitive to a 
few extreme deviations. The interquartile range can be roughly described as 
the range of values that contains the middle half of the data, with a quarter of 
the data values being below the interquartile range and a quarter of the data 
values being above the interquartile range. 

To be more precise requires a definition of quartiles and percentiles. The 
first quartile is one-quarter of the way along the data from smallest to largest. 
Likewise, the third quartile is three-quarters of the way along the data from 
smallest to largest. The first quartile can be called the twenty-fifth percentile. 
Other percentiles are defined similarly. The median could be called the second 
quartile or fiftieth percentile. The interquartile range is then the gap between 
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the first and third quartiles. For example, if the data consisted of the numbers 
1,2,2, 7, 8, 9, 9, and 24, the first quartile would be 2, the third quartile would 
be 9, and the interquartile range would be 7. Because of mathematical diffi
culties, the interquartile range is less widely used than standard deviation. 

OPTIONAL 

There are some minor difficulties in deciding exactly which point should be 
regarded as one-quarter of the way through the ordered data. Unless the num
ber of data points is a multiple of 4, it is not possible to divide the ordered data 
exactly into quarters. We can define the first quartile regardless of whether the 
number of data points is an exact multiple of 4 by finding a data value so that 
counting this particular value and those below it we have one-quarter or more 
of all the data values. Yet counting this particular value and those above it we 
have three-quarters or more of all the data values. It is possible for there to be 
two particular values that satisfy this property (this occurs when the number 
of data points is in fact a multiple of 4; if there are An values, both the nih and 
the (n + 1 )th satisfy the property). In this case, we take the average of these two 
values. The third quartile and the various percentiles are defined similarly. 

The mathematical difficulties that restrict the use of the interquartile range 
reflect the fact that the rule for averaging squared deviations and taking the 
square root to give the standard deviation can be stated reasonably simply, 
whereas obtaining the interquartile range involves the more complicated pro
cess of comparing each data value with all others to identify the values one-
quarter way through and three-quarters way through the ordered data. 
Mathematics is needed here to work out the amount of variability likely when 
different samples from the same population are the source of the summary 
statistics. 

END OPTIONAL 

Table 2.1 provides a list of the numbers used to summarize data. 

SUMMARIZING DISCRETE AND CONTINUOUS 
DATA WITH DIAGRAMS 

As with summarizing data by numbers, there is no single method of sum
marizing and displaying data by diagram. Different methods have different 
advantages and disadvantages. 

Line Graphs 

Line graphs, where the location of each data point is marked along a line, 
were mentioned in the discussion of the mode. A line graph was used to dis-
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Table 2.1 
Numbers Used to Summarize Data 

Meaures of 
Central 

Tendency 

Mean 

Median 

Mode 

Definition 

Simple average 

Half way along ordered 
data 

Most common value 

Symbol 

X 

Advantages 

mathematically 
convenient 

more fair 
representation of 
center of highly 

skewed data 

more fair 
representation of 
center of highly 
skewed discrete 

data 

Disadvantages 

unfair 
representation of 
center of highly 

skewed data 

mathematically 
inconvenient 

not meaningful 
when data takes 
continuous or 
finely divided 
discrete values 

Measures of 
Spread 

Range 

Variance 

Standard 
Deviation 

Interquartile 
Range 

Gap between smallest and 
largest 

average of the squares of 
the deviations from the 

mean 
(divide by n - 1 rather than 

n in taking the average) 

square root of variance 

Range of values containing 
the middle half of the data 

var 

s 
(a) 

IQR 

Simple 

Mathematically 
convenient. 

Additive 
property (if there 
is independence) 

Mathematically 
convenient 

Not unduly 
affected by a few 
large deviations 

Reflects size of 
the sample as 

well as the 
underlying 

spread in the 
population 

Unit of measure 
is the square of 

data units. 
Unduly affected 
by a few large 

deviations 

Unduly affected 
by a few large 

deviations 

Mathematically 
inconvenient 

play hypothetical data on income distribution on page 17. This is the simplest 
form of diagrammatic representation of data, though it is not widely used. It 
has the disadvantage that the diagram becomes unclear when the number of 
data points is large. Line graphs also can't display repeated instances of ex
actly the same values. This is a particular problem in the case of discrete data. 

(µ)
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Stem and Leaf Plots 

A stem and leaf plot is a way of arranging the printing of data values on the 
page so that the overall shape of the print gives an impression of the shape of the 
data. It has another use, in being a convenient method of sorting data by hand from 
smallest to largest. It has the disadvantage of only being able to display data to two 
significant figures (e.g., the tens column and the units column). 

The following example explains the idea. Say some pollution measure on 
twenty-five different days were 31,37, 22,4, 19,42, 34, 28,51, 11, 27, 32,47, 
34, 15, 26, 18, 30, 43, 26, 44, 30, 22, 13, and 39. We first see that all data 
values, written in the form of x tens and y units, have an x value of between 0 
and 5 (i.e., all the data values are between the units and the fifties). We then 
write the numbers 0 to 5 down the page, denoting the possible tens column 
values, followed by a vertical line. These numbers are the stems. We then look 
through the data values one by one and write the unit value for each data item 
adjacent to the appropriate tens value, continuing until all the items have been 
written down. These unit values are the leaves (see Figure 2.1). 

Finally, we order the unit numbers to give the completed stem and leaf plot. 
It can be seen that the stem and leaf plot displays all the data that were col
lected to two significant figures, but displays the data in a form that gives a 
visual impression like a histogram on its side (see Figure 2.2). 

Histograms and Ordinate Diagrams 

Histograms are the most widely used way of displaying continuous and 
discrete data in diagrammatic form. The first step in drawing a histogram is 
the preparation of a frequency table. The following frequency table is based 
on the same data as in the stem and leaf plot. It can be obtained by looking 
through all twenty-five data values and noting that there is just one value be
tween 0 and 9 (inclusive), five values between 10 and 19 (inclusive), and so 
on. It can be obtained more easily from the stem and leaf plot by counting the 
number of leaves for each of the stems(see Figures 2.3 and 2.4). 

Histograms represent numbers by area rather than by height. Usually inter
val widths are equal (i.e., the widths 0-10, 10-20, and so on in the histogram 
here are equal). With equal widths, areas and heights are proportional and we 
can think of the histogram as representing numbers by height. However, in 
unusual cases we may want histograms where the interval widths are unequal. 
For example, say we had the information that of 2,000 newborns who died, 
1,000 did so within twenty-four hours of birth and the remaining 1,000 died 
between twenty-four hours and thirty-one days. The death rate per day after 
twenty-four hours is one-thirtieth the death rate in the first twenty-four hours. 
The histogram should then consist of a column one day wide and 1,000 units 
high followed by a column thirty days wide and one-thirtieth the height of the 
first column. The two columns will have equal areas, since there are 1,000 
deaths in each group (see Figure 2.5). 



26 Statistics with Common Sense 

Figure 2.1 
Stem and Leaf Plot 

The boundaries of the columns in a histogram are another source of pos
sible confusion. If we are dealing with continuous data, a figure of 30 will be 
a figure rounded to two significant figures. The figure 30 therefore represents 
a true value somewhere between 29.5 and 30.5. We see that any value be
tween 29.5 and 39.5 would therefore fall into the interval labelled 30 to 40 on 
the histogram presented in Figure 2.4. The boundaries of the intervals should 
therefore be labelled 29.5, 39.5, and so on. The labelling of this histogram is 
therefore in error by 0.5. There is one exception. Ages are generally rounded 
down, not simply to the closest whole number. A person aged forty-nine years 
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Figure 2.2 

Figure 2.3 

Range 
Number 
of values 

0-9 
1 

10-19 
5 

20-29 
6 

30-39 
8 

40-49 
4 

50-59 
1 

Figure 2.4 

and eleven months will tend to give his or her age as forty-nine, not fifty. The 
existing labelling on the histogram is thus valid for age data. 

The last point about histograms is that they are not a strictly logical repre
sentation of discrete data. If we drew a histogram for the number of children 
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Figure 2.5 

in a family, the fact that, say, twenty-three families had two children would be 
represented by an area 23 units high sitting on a base between 1.5 and 2.5. But this 
is a rather silly representation: Values between 1.5 and 2.5 other than the value of 
exactly 2 are not possible. The response to this complaint is to draw what is called 
an ordinate diagram, rather than a histogram. Instead of using an area of some 
width to represent the number in the category, a vertical line or ordinate is 
used and its height represents the number in the category (see Figure 2.6). 

Figure 2.6 



Desc rip ti ve St a ti sties 29 

Boxplots 

Boxplots are diagrams that show the interquartile range and median of the 
data as a rectangular box with a line at the median drawn across the box. "Whis
kers" extend from either end of the box to display the range of data values. There 
is only one logical way of drawing a histogram, but conventions regarding the 
display of the range of values on boxplots are arbitrary and vary from author to 
author. Usually the whiskers extend to the furthest data points within a distance of 
1 or 1.5 IQR on either side of the box with any more extreme points (outliers) 
being marked individually. The boxplot presented here represents the same 
data as in the stem and leaf plot and the first histogram (Figure 2.7). 

Boxplots generally display less information than histograms. A histogram 
with many columns will give a detailed picture of the location of the data 
values to within the width of a narrow column, whereas a boxplot does little 
more than show a division of the data into four quartiles. However, boxplots 
are useful for making a large number of visual comparisons. Imagine that we 
wanted to compare peoples' incomes from twenty different regions. A set of 
twenty histograms to display all the data could not be easily absorbed by the 
eye. However, twenty boxplots could be drawn, one underneath the other down 
the page, and it would be obvious which region had larger overall incomes 
and which region had the greatest amount of inequality in terms of the spread 
of values between rich and poor. 

Figure 2.7 
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SUMMARY 

• Most populations are large or infinite and a census is not feasible. Instead, we select 
a sample of a relatively small number of individuals to give us probabilistic ideas 
about the population. 

• There are pitfalls in trying to select a sample that is representative. 

• Data or measurements are of various types: categorical (including dichotomous), 

ordinal, discrete, and continuous. 

• Different data types are summarized in different ways. 

• Categorical and ordinal data are easily summarized by tables, bar graphs, and pie 
charts. 

• Discrete and continuous data are summarized pictorially by stem and leaf plots, 
histograms, and boxplots. 

• Discrete and continuous data are summarized numerically by measures of central 
tendency and measures of spread, as listed in Table 2.1. 

QUESTIONS 

1. Measure the heights of the people in your class. Make a stem and leaf plot to help 
you both order and display the data. Then create a frequency table, a histogram, 
and a boxplot to display your results (for the boxplot you will need to specify the 
rules you use in its construction; in particular, what rule determines the length of 
the whiskers?). Calculate the mean and standard deviation (you will have already 
calculated the median and interquartile range as a preliminary to drawing the 
boxplot). Note that some or all of the work can be done by a statistical program on 
a computer (although the pds program, written to accompany this book, does not 
do diagrams). However, hand calculations to enhance understanding and to verify 
the accuracy of the computer program are worthwhile initially. Computer calcu
lations may be affected by programming error. Furthermore, the computer may 
not always do the calculation that you expect it to do, for various reasons: The 
data may not be in the format the program expects, you may press the wrong 
button, or the computer may be programmed to base its calculations on slightly 
different definitions from the ones taught here (which is likely in the case of 
interquartile range). 

2. An opinion poll is taken by phoning people whose names are chosen at random 
from the telephone book. Why might this sample not be representative? 

NOTE 

1. This additive property is proven using the definition of variance as the average of 
the squared deviations, and some algebra. The rough outline of the proof follows. If 
the height of the /th woman is xt and the height of the/'1 pony is y., then the deviation of 
the height of the /* woman and/1 pony combination from the average is [(x, + >',) - (x + y)]. 
From the definition, proving that variances add, amounts to proving that the average of 
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the square of deviations, [(x, + y;) - (x + y)]2, over the various combinations of values 
of / and / is the same as the sum of the averages of (x, - x)2 and (yJ - y)2. The algebra 
involves writing [(x, + y.) -(x + y)]2 as [(x, - x) + (y; - y)]2 and expanding this term, but 
there are complications in the algebra here. The expansion gives cross terms, just as 
the expansion of (a + b)2 gives the cross term lab as well as the more obvious terms a2 

+ b2. However, providing we are dealing with all possible combinations of values of/ 
and /*, the cross terms turn out to be zero for the same reason that the average of all 
positive and negative deviations about the average are zero. 
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C H A P T E R 3 

Basic Probability and 
Fisher's Exact Test 

To deal further with the variability and uncertainty that commonly arise whenever 
measurements are made, we need to know a little about the mathematical theory 
of chance: probability. In this chapter we will cover the basic ideas of probability 
and use the ideas to explain our first statistical test: Fisher's exact test. 

DEFINING PROBABILITY 

There are at least three approaches to defining probability, all of which turn 
out to be compatible with each other: 

1. In terms of the long-run proportion of the time that something happens. For ex
ample, the proportion of time "6" appears on throwing a fair die many times is 
one-sixth. We say the probability of throwing a "6" is one-sixth. The expressions 
"the proportion of the time something happens" and "the probability that some
thing happens" are taken to be equivalent. 

2. In terms of a measure of belief. For example, we can state a subjective probability 
about the chance of a nuclear war over the next ten years. A person might believe 
that this probability is one-sixth. This would be a valid statement of belief, even 
though it is clearly not possible to view thousands of worlds just like our own and 
observe that one-sixth of them blow themselves up with nuclear weapons over the 
course often years. 

3. As an abstract mathematical construct from basic rules. The rules say that prob
ability is a number between 0 and 1 that can be attached to any event that might 
occur. A probability of 0 means the event won't occur. A probability of 1 means 
the event will occur with certainty. The probabilities of events that can't both 
occur at the same time add in the ordinary way to give the probability of either 
event occurring. For example, the probability of a die landing on either a "5" or a 
"6" is 1/6+ 1/6= 1/3. 
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As simple as these axioms are, they give rise to a large mathematical theory 
that can be shown to be compatible with both the "proportion of the time" and 
"measure of belief' approach to probability, but the details of this are beyond 
the scope of this book. 

PROBABILITIES OF COMBINATIONS OF EVENTS 

Often it is necessary to deal with the probabilities of combinations of events. 
In dealing with combinations of events, it is sometimes appropriate to add 
their probabilities and sometimes appropriate to multiply them. The rules about 
finding the probabilities of combinations of events can be derived mathemati
cally from the axioms. We will instead just quote the rules, but we will also 
show that the rules are sensible by using examples and diagrams. 

Addition Rule for Probabilities: "or" 

In situations where we want to know the probability that either one event or 
another particular event has occurred but where the two events can't occur to
gether, we simply add the probabilities (this is in fact one of the axioms of 
mathematical probability theory). For example, if the probability that a person has 
one brother is 0.4 and the probability that a person has no brothers is 0.3, then the 
probability that a person has no more than one brother is 0.4 + 0.3 = 0.7. 

There is a pictorial way of describing events and their probabilities and the 
way they combine: Venn diagrams. In these diagrams events are represented 
by patches in a rectangle, with the size of each patch being roughly propor
tional to its chance of occurring. 

The Venn diagram for the addition rule is shown here, where A is the event 
a person has no brothers and B is the event a person has exactly one brother. 
The diagram shows no area of overlap between the areas covered by A and B, 
for it is impossible for both to be true at the same time. We say the events in 
these circumstances are mutually exclusive. The unlabelled area in the dia
gram represents the event that neither the event "has no brothers" nor the 
event "has one brother" is true. In other words, it represents the event that the 
person has more than one brother. 
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The addition rule can be extended to the case of more than two mutually 
exclusive events. In our example, if we were told that the probability of hav
ing exactly two brothers was 0.1 and that the probability of having exactly 
three was 0.08, then the probability of having three or fewer would be 0.4 + 
0.3 + 0.1 +0.08 = 0.88. 

Multiplication Rule for Probabilities: "and" 

In situations where we want to know the probability that both one event and 
another particular event have occurred, and where the occurrence of one event 
does not affect the occurrence of the other event, we simply multiply the prob
abilities. For example, if the probability that a person has one brother is 0.3 and 
there is a probability of 0.2 that the next scratch-it lottery ticket that the person 
buys is a winner, then the combined probability that the person has one brother 
and will win on the next scratch-it ticket is 0.3 x 0.2 = 0.06. The logic of the 
rule may become clear from the Venn diagram for the multiplication rule. 

In the Venn diagram, A is the event a person has one brother and B is the 
event the person's next scratch-it ticket wins. We say that events A and B are 
independent if the chance of B being true, knowing that A is true, is just the 
same as the chance of B being true overall regardless of whether A is true. 
Clearly, knowing a person has one brother doesn't affect his or her chance of 
winning the lottery, so A and B here are independent. This is shown on the 
diagram by drawing the area of overlap (the probability of A and B occurring 
together) in the same ratio to the area of A as the area B is to the whole rect
angle. The area A&B is 20 percent of the area of A, and the area of B is 20 
percent of the area of the entire rectangle. 

Put another way, since 0.2 of the time a person's next scratch-it ticket will 
win and this is true regardless of whether they have exactly one brother or not, 



36 Statistics with Common Sense 

and since their chance of having one brother is 0.3, on 0.2 of the occasions in 
which the 0.3 chance of having one brother eventuates, the person will also 
buy a winning scratch-it ticket. The chance of both events occurring is there
fore 0.2 of 0.3, or 0.2 x 0.3 = 0.06, and this is the area represented by A&B on 
the Venn diagram. 

The multiplication rule for independent events can also be extended to the 
case where there are more than two events. If we toss four fair coins once (or 
toss a single fair coin four times), whether we get a head on one coin cannot 
physically affect the outcomes on other coins, so tosses of coins are indepen
dent. On each toss the probability of a head is Vi. By the extended multiplica
tion rule for a series of independent events, the overall chance of four heads in 
a row is Vi x Vi x Vi x Vi. 

One way of convincing yourself of the sense of this rule is to consider six
teen tosses of four coins at a time. Say the coins are labelled A, B, C, and D. 
Out of the sixteen sets of coin throws we would expect there to be, on average, 
eight sets of throws in which coin A comes up heads. Out of these eight sets of 
throws we would similarly expect there to be, on average, four sets of throws 
in which coin B comes up heads. Out of these four sets of throws we would 
similarly expect there to be, on average, two sets of throws in which coin C 
comes up heads. Out of these two sets of throws we would similarly expect 
there to be, on average, one set of throws in which coin D comes up heads. 
Therefore, on average we would expect just one set of throws of the four coins 
out of sixteen sets of throws to deliver all heads. The probability of all heads is 
therefore 1/16, which matches the result Vi x Vi x Vi x Vi for the extended 
multiplication rule. 

Often events are neither mutually exclusive nor independent. For example, 
knowing that a person is male decreases the chance of that person being short 
(compared to the overall average height of males and females combined), so 
the events "male" and "short" are not independent. On the other hand, the 
events "male" and "short" are not mutually exclusive, since it is possible for a 
person to be both "male" and "short." This situation will be discussed later. 

Probability That an Event Does Not Occur: "not" 

One other basic rule of probability that we will use is that the probability 
that an event does not occur is 1 minus the probability that the event does 
occur. If the probability of having exactly one brother is 0.4, the probability of 
not having exactly one brother is 0.6. 

Venn Diagram Conventions 

Traditionally, Venn diagrams are drawn with ellipses rather than drawn with 
rectangles. 



Basic Probability 37 

However, the use of rectangles rather than the traditional ellipses shows 
whether the area of overlap is in proportion to the area of both rectangles, as 
should be the case for independent events. 

MORE COMPLICATED PROBABILITY RULES 

The Modified Addition Rule 

Often we want to find the probability of a combination of events that do not 
meet the criteria for the addition rule or the multiplication rule. The modified 
addition rule when events are not mutually exclusive is best explained by a 
Venn diagram. 

Consider a lecturer in front of a large class closing her eyes and picking 
someone at random. Say we wanted to find the probability that the person 
picked will either be a woman or someone less than 1.6 m tall (or both). Take 
A to be the event that the chosen person is female and B to be the event that 
the chosen person is less than 1.6 m tall. These events are not mutually exclu
sive, since females less than 1.6 m exist and some such people presumably 
will be part of the class the lecturer is standing in front of. 
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The diagram shows that if we added together the chance of choosing a 
woman (represented by area A, including the area A&B) to the chance of 
choosing a person less than 1.6 m tall (represented by area B, including the 
area A&B) we would be counting the chance of choosing a women less than 
1.6 m tall (represented by area A&B) twice. To allow for this, the rule is "the 
probability of the event A or B or both occurring equals the probability that A 
occurs plus the probability that B occurs take away the probability that both 
occur together." The abbreviation for "or" in algebra is U and the abbreviation 
for "and" is H , so in symbols the rule is written as 

For example, if the probability of A (choosing a female) is 0.5, the prob
ability of B (choosing someone less than 1.6 m tall) is 0.3, and the probability 
of A&B (choosing a woman less than 1.6 m tall) is 0.2, then the probability of 
choosing a person who is either a woman or who is less than 1.6 m tall or both 
is 0.5+ 0 .3 -0 .2 = 0.6. 

This is roughly represented by the Venn diagram. Here the area A (includ
ing the area A&B) is about 50 percent of the total area of the Venn diagram 
rectangle. The area B (including the area A&B) is about 30 percent of the total 
area of the rectangle. The area A&B itself is about 20 percent of the total area. 
We see that the sum of all the shaded areas representing the options of A or B 
or both is about 60 percent of the total area. 

The Modified Multiplication Rule 

The modified multiplication rule when events are not independent can be 
explained by reference to the same diagram. The modified multiplication rule 
gives us the probability of A and B occurring together if we know the prob
ability of B occurring given the information that A has occurred (or vice versa). 
Take A to be the event a person is female and B to be the event that a person is 
less than 1.6 m tall. It makes sense to believe that the probability of finding a 
female person less than 1.6 m tall equals the probability of finding a person 
who is less than 1.6 m tall, knowing that the person is female, times the prob
ability that person is female. 

The abbreviation for "knowing that" (or "given that" or "given the informa
tion that") in algebra is an elongated vertical line, |, so that in symbols we 
write P(A D B) = P(B\A) X P(A). In a Venn diagram, P(B\A) is represented by 
the proportion of area A that is also occupied by B. The jargon for P(B\A) is 
"the conditional probability of B given that A is true." For example, say that 
40 percent of females in the lecture are less than 1.6 m tall (i.e., the condi
tional probability of less than 1.6 m tall, given a female is chosen, is 0.4; this 
is represented on the diagram by the fact that the area A&B represents 40 
percent of the total area of A, where A is taken to include the area A&B). Say 
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also that the probability of choosing a female is 0.5. The probability that a 
person is chosen who is female and less than 1.6 m tall is then 0.4 x 0.5 = 0.2. 

The Extended Modified Multiplication Rule 

There is an extension to the modified multiplication rule to the situation of 
more than two events. Only one simple type of situation will concern us. Say 
we had to choose three balls blindly from a box that contained three red balls 
and one black ball. If each of the three choices were independent of the others, 
we would have a 3A chance of choosing a red ball on each occasion, and by the 
simple rule of multiplication there would be a probability of 3A x % x % = 27/64 
of choosing all red balls. However, unless we replace each ball and shake the 
box after each choice, the three choices aren't independent: If we get a red on 
the first choice there are fewer reds to get on the later choices. To get three red 
balls in three choices, the first choice must be a red ball, but that leaves only 
two red balls to be chosen from three balls, a chance of 2h. The chance of two 
red balls out of the first two choices is then 3A x 2h. So far this just illustrates 
the rule P(A Pi B) = P(A) x P(B\A). When it comes to the third choice we have 
only one red ball left out of two balls, so the probability of this choice giving 
a red ball as well is Vi. The overall probability of all three choices giving red 
balls is then % x 2A x Vi = lA. 

The same idea—the extended rule of multiplication—can be extended to 
the case of choosing a greater number of red balls from a box containing these 
red balls together with any number of black balls. If there are five red balls 
and nine balls in total in the box, the chance that we would get just the five red 
balls when we chose five balls at random from the box is 5/g x Ak x 3h x 2k x 'A. 

If there are k red balls and n balls total in the box, the chance that we would 
get just the k red balls when we chose k balls at random from the box is 

which can be rewritten as 

APPLICATION OF THE EXTENDED MODIFIED 
MULTIPLICATION RULE TO FISHER'S EXACT TEST 

We now have enough probability theory to explain our first statistical test. 
The test is Fisher's exact test. It applies when we have individuals that can be 
categorized by two separate methods and where each method of categoriza-
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tion divides individuals into just two categories. In this situation, we might 
want to know if it is reasonable to believe that the way an individual is catego
rized by one method is linked to the way the individual is categorized by the 
other method. To explain, consider an example. 

Women 

Men 

Totals 

Fired 

3 

0 

3 

Not Fired 

0 

2 

2 

Totals 

3 

2 

5 

Say that a new male manager comes to a workplace and fires three of the 
five workers. Suppose that three of the original five workers were women and 
it turns out that these are the three who get fired. Here one method of catego
rizing an individual is as a woman or a man, and the other method of catego
rizing an individual is as a worker who is fired or as a worker who is not fired. 
This information is most conveniently displayed in a table. In this situation we 
may want to make a decision about whether we believe that being in the cat
egory "women" is linked to the category of "fired." Of course, the categories 
are linked in this particular instance. However, the manager, who is likely to 
be accused of sexism, may argue that this current instance should not be taken 
as a reflection of his general attitude. He may argue that, in general, he is not 
at all biased against women workers and that it was just by chance alone that 
it turned out that in this particular instance the workers who were fired were 
all women (we will assume that all the workers were equally competent and 
diligent and performing the same job, but economic circumstances dictated 
the firing of three of them). Fisher's exact test is designed to answer the ques
tion, "Should we believe the manager is sexist?" 

Fisher's exact test, like other statistical tests, takes as its starting point the 
idea that until we are persuaded otherwise we should believe that there is no 
general linkage between the categorizations, and that the linkage apparent in 
this particular instance is just a chance event. In other words, in applying Fisher's 
exact test we start by believing idea 1: The manager ignored gender when he 
fired the workers and it was just chance that the fired workers were all women." 
Fisher's exact test then asks the question, "What is the size of this chance?" If 
it turns out that the chance is small, the sort of chance that "hardly ever" oc
curs, then statistics says that it is more reasonable not to blame the linkage in 
this particular instance on a chance that "hardly ever" occurs. Instead, it is 
more reasonable to believe idea 2: There is a real reason for the linkage. In 
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other words, if it would hardly ever happen that all three women workers 
would be fired if three workers were chosen blindly from five, then it is rea
sonable to believe that the manager has a gender bias. There is a convention 
that says that the size of the chance that is so small that it "hardly ever" occurs 
is any chance that occurs less often than one time in twenty (in mathematical 
symbols, we write/? < 0.05). 

Our task is then to work out the chance that it would just be the three women 
workers who were fired if the three workers to be fired were chosen blindly 
from the five workers. This is exactly the chance that only the three red balls 
would be picked when choosing three balls blindly from a box containing 
three red balls and two black balls. Using the reasoning already explained, 
this chance is 3/s x 2U x 73 = 7io = 0.1. Since 0.1 is greater than 0.05, according 
to the conventions of statistics and the calculations of Fisher's exact test we 
would conclude that the manager's actions in this instance do not provide 
convincing evidence that he is sexist. Often a distorted form of words is used 
when a statistical test fails to provide convincing evidence, as in this situation. 
In this situation the distorted form of words might be "the figures show no 
evidence of sexism," or, even worse, "statistics show that the manager is just 
as likely to sack male workers as he is to sack female workers" or "statistics 
prove that there is no sexism involved." 

Even the more carefully worded orthodox conclusion that there is no con
vincing evidence that the manager is sexist may not be reasonable. For a start, 
Fisher's exact test, like all statistical tests, started with the assumption that the 
manager should not be regarded as sexist unless convincing evidence was 
found. There is no good reason why this should be regarded as a reasonable 
starting point. There is also no good reason to use the value 0.05 as the size of 
the chance that "hardly ever" occurs. Many people would be reasonably con
vinced that there is a gender bias, given that the only other way we can ac
count for the sackings of just the women workers is to argue that a 0.1 chance 
came off. The issues of an appropriate starting point and an appropriate p 
value arise because we want an answer to the main question: Is the manager 
sexist? But this is not the question we have answered. Instead, we have ob
tained a precise answer to a secondary question: If the manager was not sexist, 
how often would pure chance alone lead to the apparently sexist sackings that 
we observed? We have then leapt from a precise answer to this secondary 
question to a conclusion about the main question. In taking this leap we have 
not used any judgment or common sense appropriate to the situation. We have 
simply used an arbitrary convention that says that if the chance or p value in 
response to the secondary question is < 0.05 we should state we have con
vincing (or "statistically significant" or "statistically significant at the 5% level") 
evidence that the answer to the first question is "yes." Otherwise we should 
state we don't have convincing evidence. Indeed, the phrase "convincing evi
dence" here is generally shortened to "evidence," so if p > 0.05 we state "we 
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have no evidence." Later in this chapter we will determine the precise math
ematical link between the main question, "Is the manager sexist?" and the 
secondary question, "Assuming the manager is not sexist, how easy is it for 
coincidence alone to explain the manager's action?" We will come to a precise 
conclusion about the manager. However, we first need to cover two more rules 
of probability: the law of total probability and Baye's theorem. 

Before continuing, we will consider one practical objection that can be raised 
with our example. Although I stated that we assume that all the workers were 
equally competent and diligent, it must be admitted that unlike balls chosen 
from a box, individual workers are not identical. Firings of individual workers 
are not usually entirely at random. It will therefore be possible for the man
ager to point to some attributes of the workers he fired in order to justify his 
actions: Maybe they had less experience. This does not change the statistical 
analysis, but to the extent that we are willing to believe the justifications of the 
manager it will change how we word our conclusions. If we entirely believe 
his justifications, in place of the possible conclusion "the manager is sexist" 
we should write, "In workplaces supervised by this manager, women tend to 
be less valuable employees." The issue, then, is whether this example pro
vides convincing evidence of this possibility. A way of phrasing a possible 
conclusion that is neutral between "the manager is sexist" and "in workplaces 
supervised by this manager, women tend to be less valuable employees" would 
be to state, "This manager tends to fire women." "The manager is sexist" is the 
formulation used in our example because it allows a concise form of words in 
a lengthy explanation and because it matches my own world view. While I am 
unrepentant about my choice, there is a lesson here: It is easy to load a statis
tical analysis with ideological bias. 

Now consider the scenario discussed in Chapter 1 of music students and 
one-half or one hour tuition per week. Let us say the outcome we observed 
was not the students' actual marks on their music exam, but simply whether 
they passed or failed. Say the outcome is as given in the accompanying table. 

Vi hour lesson 

1 hour lesson 

Totals 

Failed 

3 

0 

3 

Passed 

0 

2 

2 

Totals 

3 

2 

5 

As in the previous example, there are two possible explanations for the 
observed outcome: (1) The longer lessons are of no more use than shorter 
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lessons in helping students pass (it just looks that way purely as a result of 
blind chance) or (2) longer lessons do help students pass. 

Again, as in the previous case, we start by assuming option 1 is the correct 
explanation and using this assumption find out the size of the chance involved. 
The calculation is exactly the same as for the firing of the women, so, as 
before, p = 0.1. Again, since/7 > 0.05, frequentist statistics would want us to 
state, "There is no convincing evidence that one-half-hour lessons are less 
effective than one-hour lessons." This is a strange conclusion, even less appro
priate than the conclusion that statistics tells us we should draw in the case of 
the manager and the firing of the women. This is because the starting point 
that extra music tuition is of no benefit is even more dubious than the starting 
point that the manager is not sexist. Indeed, common sense tells us that the 
starting point that extra music tuition is of no benefit is almost certainly wrong. 
Of course, it is possible to argue that at some point forcing a child to spend 
more time in lessons will be counterproductive and that this point is reached at 
just the right place between half an hour and one hour that the negativity caused 
by the longer lesson exactly balances its positive value. This seems very un
likely. Common sense suggests that there is likely to be an advantage in hav
ing one hour rather than half an hour of tuition per week. Therefore, although 
if we wanted to we could explain the results by arguing that extra tuition makes 
no difference, it just looks that way because a 0.1 chance came off; there is no 
point in putting this argument. 

Strangely, though, many people who use statistics are unaware of the frequent 
conflict between common sense and conclusions based solely on the p < 0.05 
tradition of frequentist statistics. Even many research scientists do not have an 
appreciation of the need to use common sense with statistics. As a result, the 
scientific literature is full of inappropriate conclusions: For example, "There is no 
relationship between domestic violence and social class," "Lowering the speed 
limit by 5 mph has not changed the accident rate," "Greater attention to hygiene 
makes no difference to the chance of infection," "Students in large classes do just 
as well as students in small classes." The list is endless. In most cases the data 
would have shown the expected relationship between the cause and the likely 
effect, despite the bland denials used in the conclusions. The misleading bland 
denials are inappropriately justified by the fact that if one wanted to one could 
explain the relationships seen in the data by arguing that a chance with prob
ability > 0.05 came off, which just happened to give the appearance of the 
expected relationship. If the actual relationships are very strong and the amount 
of data is very large, it is most unlikely that by sheer bad luck we would obtain 
such weak data that the relationship seen in the data could be explained away 
by appeal to a chance occurring with probability > 0.05. Therefore, statistics 
will lead us to appropriate conclusions in such circumstances. 

However, collecting data is expensive. Often the amount of data obtained 
will not be very large and there is no general rule about the amount of data that 
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must be examined before a researcher is able to conclude that there is no 
relationship. Many of the examples I use involve even less data than would 
generally be used in research. These examples are used not only to keep cal
culation simple, but also to emphasize how inappropriate it may be to declare 
that there is no evidence when p > 0.05. The issue of the amount of data that 
should be obtained is discussed further in Chapter 6 and Chapter 10. 

Let us consider another example where Fisher's exact test could be used. 
Say four men and five women are interviewed about butter versus margarine 
preference and all the men prefer butter and all the women prefer margarine. 

Prefer butter 

Prefer marg 

Totals 

Male 

4 

0 

4 

Female 

0 

5 

5 

Totals 

4 

5 

9 

Does this provide convincing evidence of gender bias in butter-margarine 
preferences? In this example no controversial issues are involved. The starting 
point—that there is no gender preference—seems reasonable, though on the 
other hand, since women may be more concerned with nurturing and possibly 
therefore with health issues, it is possible that women more than men will tend 
to avoid butter. We will simply deal with the calculations of the test. 

The philosophical shortcomings of the statistical test are not such an over
whelming issue here, as the starting point seems reasonable. Again, we calcu
late an answer to the secondary question. That is, we assume for the time 
being that there is no particular tendency for men to be butter preferrers, and 
using this assumption we calculate the probability that pure chance alone would 
lead to the observed result. Here we could regard the four men as four red balls in 
the box and the four butter preferrers as the four balls we are choosing from the 
box. The chance that just the red balls (the men) would be chosen (to be butter 
preferrers) is then p = % x 3/s x 2h x 7& ~ 0.008 < 0.05. (Regarding the five 
women as five red balls and the five who are margarine preferrers as five choices 
from the box also gives p - Vg x 4/s x V? x 2/6 x 75 ~ 0.008.) Since both methods 
of calculating the p value are valid they must give the same answer. Since p <" 
0.05, statistics would tell us we should conclude that the figures give convinc
ing evidence that gender influences butter-margarine preferences. 

In the examples so far the calculations have been easy. However, the calcula
tions would be much more difficult if our survey of gender and butter-margarine 
gave us the result in the accompanying table. 
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Prefer butter 

Prefer marg 

Totals 

Male 

10 

10 

20 

Female 

5 

15 

20 

Totals 

15 

25 

40 

The situation is more complicated here because we don't have zeros in the 
diagonal cells. Here, half the men but only a quarter of the women prefer 
butter. How do we calculate the answer to the secondary question now? In 
other words, how do we calculate how often this result would arise when only 
pure chance, not gender preference, is involved? The complications that arise 
when we don't have zeros on the diagonals are dealt with in Chapter 8, but the 
basic philosophical principle behind the calculation is unchanged. For those 
who have already come across various statistical tests, we note that another 
test called the chi-square or x2 test is commonly used in situations similar to 
those in which we have used Fisher's exact test. Again, the philosophical prin
ciples involved in interpreting the/? value are unchanged, but there are slightly 
different assumptions involved in the calculation. 

APPLICATION OF THE EXTENDED MODIFIED 
MULTIPLICATION RULE TO COMBINATIONS 

Let's return to the question of the chance of choosing k red balls from a box 
containing k red balls and a total of n balls. As well as being relevant to Fisher's 
exact test, the problem is relevant to other statistical tests. We already have a 
mathematical formula for the probability of choosing just the k red balls: From 
p. 39 it is 

Another answer is that there is only one particular set of k balls that are all red, 
but there are a number of other sets of k balls where not all the balls are red. If 
k balls are chosen blindly, all possible sets of k balls should be equally likely 
to occur. The chance of choosing the k red balls could then be stated as one 
way out of all the ways there are of choosing k balls from n balls. The number 
of ways there are of choosing k balls from n balls is given the symbol "Ck (the 
C is referred to as the combinations symbol; "Ck can be pronounced as "n 
Choose &"). The chance of choosing the k red balls is then \lnCk. Equating this 
chance with the chance given by the mathematical formula, we have 
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Turning the fractions on both sides of the equality upside down gives us the 
formula for the number of ways of choosing k objects from a collection of n 
objects, "Ck: 

Another method of deriving the formula for "Ck is given at the end of this 
chapter. (Here we use the logic that says that if 7.Y = l/i then x = 2.) 

There is an appreciable branch of mathematics dealing with various com
plexities and relationships satisfied by expressions involving the combinations 
symbol. We will give just one: nCk = "Cn_k. A one-sentence logical proof fol
lows. nCk is the number of ways for a teacher to choose k children from a class 
of n to stand up; logic dictates that this must be the same as the number of 
ways of choosing n-k children to remain seated ("Cn_k) with the remainder of 
the class (k children) to stand up. For example, there are 25C5 ways of choosing 
five children in the class of twenty-five to stand up with the rest to be seated, and 
there are 25C20 ways of choosing twenty to sit down with the remaining five to be 
standing. Logic dictates that since in both cases the result is all the ways of 
having five children standing and twenty sitting down, the number of ways 
this can be done must be the same regardless of whether we call it 25C5 or 25C20. 

OPTIONAL 

Here is another example of the use of Fisher's exact test with a solution 
using the combinations symbol. Imagine there is a survey of n areas in a na
tional park; k of them are near a walking track and the others are not. Say that 
introduced weeds were found only in the k areas near the walking track. Some
one might want to argue that this finding is pure coincidence. There are again 
two possible choices: (1) It is coincidence, in which case the finding must be 
attributed to a \lnCk chance coming off (there are nCk possible choices of k 
areas out of the n surveyed, but just one of those choices consists solely of the 
k areas near the walking track); or (2) the relationship between weeds and 
nearby paths is not due to chance alone. The decision as to which is the most 
reasonable explanation is up to us, but it needs to be guided by the evaluation 
of the chance 1/"Q.. Statistical tradition tells us to believe that option 2 is 
correct if \/"Ck turns out to be < 0.05, and otherwise tells us to state that there 
is no convincing evidence that option 2 is correct, but this tradition does not 
necessarily accord with common sense, so it is important we make up our own 
mind. Say n = 8 and k = 3; then "Ck = 56, and so 1/"Q < 0.05. In this case most 
people using common sense would agree with someone making the decision 
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solely on the basis of statistical convention. It seems almost certain, given 
these figures and using common sense, that weeds in an area have something 
to do with proximity to walking tracks. 

As well as using the formula for nCk, we can use a direct argument to calcu
late the chance l/nCk. We start with the assumption that the distribution of 
weeds is due to random chance, but we are aware that three out of eight areas 
are infested. Then when we look at the first area close to the track we would 
say that it is weed infested because a 3/s chance came off (three weed areas out 
of eight areas in total), when we look at the second area close to the track we 
would say that it is weed infested because a 2h chance came off (two remain
ing weed areas out of seven remaining areas), and when we look at the third 
area close to the track we would say that it is weed infested because a XU 
chance came off (one remaining weed area out of six remaining areas). The 
overall chance is found by multiplying these probabilities: 3k x 2h x ]U = 7s6 
(formally, we are multiplying out conditional probabilities to get the com
bined probability). 

END OPTIONAL 

THE LAW OF TOTAL PROBABILITY 

Often we have a population subdivided into groups and we know the chance 
of something happening (or the proportion of the time something happens) in 
each group. The law of total probability then gives us the overall chance of 
that thing happening (or the overall proportion of the time that something 
happens). 

An important example concerns medical tests. The most accurate medical 
tests often involve direct laboratory examination of a portion of the organ that 
is affected by a disease. These tests are usually invasive; in other words, they 
involve operations and so are expensive and somewhat dangerous. However, 
in most cases there are preliminary tests, such as blood or urine tests, based on 
effects the diseased organ has on ingredients in the blood or urine. These less 
direct indicators of disease are often less reliable, though often these tests are 
worthwhile because the disadvantage of reduced accuracy is outweighed by 
the benefits of the avoidance of an operation. 

The preliminary tests can be unreliable in two ways. They can give the 
wrong answer when the person has the disease and they can give the wrong 
answer when the person doesn't have the disease. There are two terms rel
evant here. The sensitivity of a test is the proportion of the time that a test 
gives the correct answer when the person has the disease. The specificity of a 
test is the proportion of the time that a test gives the correct answer when the 
person doesn't have the disease. Since all positive preliminary tests (i.e., tests 
indicating disease) have to be followed up with more invasive and expensive 
tests, it is often of interest to know how many positive preliminary tests will 
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arise in any testing program. To do the calculation we have to know the sensi
tivity and specificity of the test and the proportion of the population that has 
the disease. Relating this back to the introductory paragraph defining the law 
of total probability, here the groups in the population are those with the dis
ease and those without, and the sensitivity and specificity let us know the 
proportion of time something happens (a positive test) in each group. 

Say the specificity of a test is 0.95. This value for specificity is often used in 
blood tests where the concentration of some ingredient varies from person to 
person. By tradition, those normal people who are unusual enough to have 
concentrations in the highest 5 percent are often considered to need further 
testing to differentiate them from diseased people who also have high levels. 
For brevity, we will summarize this statement by P(T-|ND) = 0.95 and read 
this as the probability that the Test is "-" or negative given No Disease = 0.95. 
Since 95 percent of those with no disease test negative, 5 percent test positive, so 
we can write P(T+|ND) = 0.05. Say also that the sensitivity is 0.8. Then, using 
similar notation and reasoning, we write P(T+|D) = 0.8 and P(T-|D) = 0.2. Let 
us also say that we are testing a population where 10 percent have the disease. 
We write this as P(D) = 0.1 and P(ND) = 0.9. The question, then, is to find out 
the proportion of positive tests that result when we test this population. 

The answer can be obtained using common sense aided by a diagram (see 
Figure 3.1). The proportion who test positive consists of those who don't have 
the disease but test positive and those who do have the disease and test posi
tive. These proportions are 5 percent of 90 percent and 80 percent of 10 per
cent, or 0.045 and 0.08, respectively. The overall proportion who test positive 
is then 0.045 + 0.08 = 0.125, or 12.5 percent. 

The law of total probability here can be stated as follows: The overall prob
ability of a positive test equals the probability of a positive test, knowing that 
there is no disease times the chance that there is no disease plus the probabil
ity of a positive test knowing there is disease times the chance that there is 
disease. In symbols, the law of total probability here can be written as follows: 

The law of total probability can be easily generalized to situations where 
there are more than two groups in the population, but we will not be con
cerned with such situations. 

OPTIONAL 

As a second example of the use of the law of total probability, say a plane 
disappears and it is thought that there is a 1 -percent chance that it has crashed 
in the sea. If so, there is only a 2-percent chance that it will be found. How
ever, if it has crashed on land there is a 90-percent chance that it will be found. 
What is the overall probability that it will be found? 
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Figure 3.1 

In answering this question it is helpful to use obvious notation, such as 
P(FIS) = 0.02 for the 2-percent chance that it will be Found given that it has 
crashed in the Sea. With such notation, the law of total probability gives us 
P(F) = P(FIS) x P(S) + P(FIL) x P(L), so the probability that it will be found is 
0.02 x 0.01 + 0.9 x 0.99 = 0.8912; that is, there is a 89.12-percent chance that 
it will be found. 

END OPTIONAL 
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BAYES'S RULE 

In the first instance, Bayes's rule is just a way of swapping around the events 
in a conditional probability statement. Say we know the sensitivity of a medi
cal test—we know the probability of a positive test for a disease (T+) given 
that a person has the disease (D)—but the problem of interest is the probabil
ity that a person has the disease given that the test is positive; that is, we have 
P(T+|D) but we want P(D|T+). From p. 38 we know that P(T + H D) = 
P(T+ID)P(D) (recall that the symbol Pi means "and," so in words we are stat
ing that the probability of a person having a positive test and having the dis
ease equals the probability of a person having a positive test knowing that the 
person has the disease times the probability of the person having the disease). 
We also know, by symmetry, P(T+ (1D) = P(D|T+)P(T+) (in words, the prob
ability of a person having a positive test and having the disease equals the 
probability of a person having the disease knowing that the person has a posi
tive test times the probability of the person having a positive test), so both 
P(T+ID)P(D) and P(D|T+)P(T+) equal P(T+ n D). We therefore have 

so 

Often the P(T+) in the denominator is expressed in terms of the law of total 
probability: P(T+) = P(T+|ND) x P(ND) + P(T+|D) x P(D). Using this last equa
tion gives us Bayes's rule as it would commonly be written in this situation: 

For example, consider a medical test with a sensitivity of 0.8 and specificity 
of 0.95 applied to a population in which 10 percent have the disease. What is 
the probability that a person has the disease given that they test positive? The 
answer is 

or about 2h. Referring to Figure 3.1, what these calculations are doing is stat
ing that we know that we are dealing with a positive test so we know that dia-
grammatically we are in the shaded area. Knowing that we are within this 
shaded area, we want to know the chance that we are in the left-hand column 
constituting 10 percent of the Venn diagram and corresponding to those who 
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have the disease. The calculations tell us that about 2h of the shaded area is in 
the left hand column corresponding to the disease region. 

Let us see what would happen if only 1 percent of the population had the 
disease (see Figure 3.2). Then P(D|T+) would be or approximately 0.14 or 
about one-seventh. In other words, only about one-seventh of the people who 
tested positive for the disease would actually have the disease. The test is 
surprisingly inaccurate in this situation because the small proportion of false 

Figure 3.2 
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positives in the disease-free population who constitute the vast majority out
weighs the true positives in the tiny minority who do have the disease. In fact, 
they outweigh this tiny minority by about six to one. 

The issues raised in this medical example are of considerable practical im
portance. Screening tests for all but the most common of diseases may often 
be counterproductive because the costs of the initial screening plus the extra 
costs and dangers of the more invasive follow-up testing necessary for those 
who are "false positives" (T+|ND), may well outweigh the benefits of detect
ing the true positives (T+|D). 

As another example, consider the example of the missing aircraft in the sec
tion on the law of total probability. What is the probability that it crashed on 
land given that it was not found? Using obvious notation, we have P(NF|S) = 
0.98, P(NFIL) = 0.1 and P(L) = 0.99. Then 

That is, whereas initially we had the idea that the a priori chance was 99 per
cent that it had crashed on land, now, with the knowledge that it was not found, 
there is about a 91 percent a posteriori chance that it is on land. 

END OPTIONAL 

The same sort of reasoning can be applied in many other situations. In law 
we might know the chance of some piece of evidence (e.g., a particular blood 
group) being associated with someone who is innocent and the chance of that 
particular evidence being associated with the guilty person. If we also have 
some prior estimate of the chance of guilt of the person before the court, then 
knowledge of the presence of the evidence can be used to improve our esti
mate of guilt in a mathematically precise way. Unfortunately, despite several 
hundred years of effort by probability theorists, this quantitative approach to 
assessing guilt has not generally been taken on by the legal profession. 

BAYES'S RULE AND THE ASSESSMENT OF THE 
RESULTS OF STATISTICAL TESTS 

For our purposes, the most important use of Bayes's rule relates to its use in 
incorporating common sense into assessment of the results of statistical tests. 
Let us consider the earlier example of Fisher's exact test in the case of the 
manager who fired all three women in a group of five workers. As we have 
seen, although we may want to know whether the manager is sexist, this is not 

OPTIONAL
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the question directly answered by statistics. Instead, statistics tells us that if 
the manager was not sexist, we could expect that such a result would happen 
with probability 0.1. In other words it would happen by chance alone 10 per
cent of the time. We then use the convention in statistics that 0.1 is more often 
than the "hardly ever" chance of 0.05. The convention then tells us to take a 
leap, so we state that the answer to the original question, "Is the manager 
sexist?" is that "there is no (convincing) evidence." Let us see how Bayes's 
rule could allow us to give a more satisfactory answer. 

We will assume that if the manager is sexist there is a 100-percent chance 
that if he is required to fire three workers he will choose the women workers. 
We will also assume that we believe that 40 percent of managers are sexist. In 
obvious notation, what we have is P(FW|S) = 1.0 (probability of Firing Women 
given Sexist manager = 1). From Fisher's exact test we have P(FW|NS) = 0.1 
(probability of Firing Women given Afon-Sexist manager = 0.1). We also have, 
from our belief, that P(S) = 0.4 (probability of Sexist manager = 0.4), so P(NS) 
= 0.6 (probability of Aton-Sexist manager = 0.6). We can now use Bayes's rule 
to calculate an answer to the question of interest: Do the figures indicate the 
manager is sexist? More precisely, we calculate P(S|FW) (probability of Sex
ist manager given Fired Women). Bayes's rule gives us 

In other words, we now have a precise answer. There is an 87-percent chance 
that the manager is sexist. 

The obvious question here is why not use Bayes's rule all the time, seeing 
that it is such a sensible and precise refinement in decision making using sta
tistics. We will discuss this issue in the context of the example of the women 
firings and the manager, though the same ideas apply generally. The answer is 
that the use of Bayes's rule involves some subjective judgments, whereas no 
subjective judgments are needed in the calculation that P(FW|NS) = 0.1. The 
quest for objectivity led early statisticians to avoid using Bayes's rule explic
itly. Instead, it seemed more reasonable to work out objective values like 
P(FW|NS) and leave readers of the scientific papers to do a rough Bayes's 
rule calculation in their head using their own ideas about values like P(FWIS) 
and P(S). Unfortunately, this turned out to be an unreasonable expectation of 
the readership of scientific papers. The rather awkward mental assessment of 
the implication for P(S|FW) (probability Sexist given Fired Women) of a par
ticular value of P(FW|NS) (probability Fired Women given Not Sexist), then 
became stylized. It became the traditional statistics formula that if P(FW|NS) 
^ 0.05, then believe S (the manager is sexist) given the event FW (Fired 
Women). If P(FW|NS) > 0.05, don't believe S given the event FW (or at least 
state there is no convincing evidence for it). In defense of this frequentist 
statistics approach, it should be pointed out that our prior subjective ideas that 
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P(S) = 0.4 and P(FW|S) = 1 are entirely personal. We have only personal 
belief to specify that P(S) = 0.4. It may also not be reasonable to assume that 
P(FW|S) = 1, since a sexist manager may avoid drawing attention to himself 
by firing only two of the women. Different values inserted by different people 
will result in different values for P(S|FW). 

In many instances calculations using Bayes's rule can also be much more 
difficult. Although, many statisticians favor the use of Bayes's rule in statistics 
(Bayesian statistics) or some related approach, frequentist statistics that stops 
at calculating P(FW|NS) is still by far the main approach to statistics. As we 
have seen, this frequentist statistics, if it is coupled firmly to a rule like "con
vincing evidence of S given FW if P(FW|NS) ^ 0.05, otherwise "no," often 
leads to inappropriate conclusions. 

However, if we are prepared to uncouple ourselves from this rule and use 
common sense to decide the value of P(FW|NS), at which we become con
vinced of S given FW, then we can use frequentist statistics wisely. If we 
assess the value of P(FW|NS) in this way we are in effect using a mental 
calculation of Bayes's rule. This does not mean that we literally perform, as 
mental arithmetic, the calculations involved in Bayes's rule. Instead, what is 
meant is that we should always ask ourselves after a statistical test which idea 
is more reasonable to believe. In the case of the fired women, we should ask 
ourselves, "Is it more reasonable to believe that the manger is not sexist but it 
just looks that way because a one in ten chance came off when he made a 
decision as to which workers should be fired oblivious to gender, or, is it more 
reasonable to believe that the manager is sexist?" In other words, to use statis
tics sensibly, in each situation we should use common sense to decide the p 
values that for us would amount to convincing evidence. 

In the past this may have been thought to be too much to ask of the reader
ship of scientific journals. However, the widespread inappropriate use of sta
tistics in many areas of human activity means that it is important that people 
learn to incorporate common sense into statistics. There has been some lim
ited recognition of the need for this approach. In the past, scientific papers 
often just stated that results were "statistically significant," meaning/? was ^ 
0.05. Now most articles in scientific journals quote p values and so potentially 
allow the readership to make up their own mind about "statistical significance." 

We will continue to emphasize the importance of incorporating common 
sense into statistical decisions. However, in most situations a complete appli
cation of Bayes's rule to analysis of statistical tests is difficult. We will there
fore not explicitly apply the principles of Bayesian statistics to other statistical 
tests. Instead, we will emphasize the need to make our own common-sense 
value judgments in each situation, about the/? values that we can fairly regard 
as convincing evidence. 

In the previous examples of Fisher's exact test we have sometimes disagreed 
with the conclusions that would have been reached using the traditional p 
value benchmark of 0.05 because we have been dealing with situations where 
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it seemed appropriate to be more easily convinced. For example, in the case of 
the manager who fired just his three women workers, my guess is that most 
people would think that the man was sexist, particularly after working out that 
a manager who ignored gender would have only one chance in ten of sacking 
only the women (i.e., p = 0.1). Here, even though p = 0.1 (> 0.05), it would 
still be seen in this context as reasonably convincing evidence. 

We now come to an example where most people would not be convinced, 
even though the/? value is much smaller than 0.05. Say the next-door neighbor's 
child claimed to be a clairvoyant. She produces a box containing sixteen iden
tically shaped balls, three of which are white and the rest red. In particular, she 
claims to be able to pull just the white balls out of the box blindfolded. With
out looking, she chooses three of the balls. In fact, it turns out that she does get 
just the white balls. Should we believe that she is a clairvoyant? 

Chosen 

Not Chosen 

Totals 

Red 

0 

13 

13 

White 

3 

0 

3 

Totals 

3 

13 

16 

There are only two options: (1) result is due to random chance, or (2) result 
is due to clairvoyance (we assume that the possibility of a magic trick has 
been excluded and the difference between red and white balls cannot be de
tected by touch). First we work out the size of the chance, assuming that op
tion 1 is true. Using the same probability rules as before, we see that the 
probability of this happening is 1/I6C3 = Vseo. If we follow the tradition of 
statistics, since 'AGO ^ 0.05 we would believe that the child is a clairvoyant. 
We should, however, use our common sense to decide which of the two op
tions is more likely. My own opinion would be that option 1 is far more plau
sible than option 2. It is my nature to be quite skeptical of phenomena such as 
clairvoyance in general, but even those who consult fortune tellers are likely 
to be dubious about the abilities in this regard of the next-door neighbor's 
child. Here, although/? ~ 0.002 (< 0.05), most of us would disagree with the 
traditions of statistics and not regard this single demonstration as convincing 
evidence. 

Let us apply Bayes's rule explicitly to this situation. Say that prior to seeing 
the child's performance we believed that the probability that the child had the 
ability of Clairvoyance was one in a million, so P(C) = 0.000001, and so the 
probability of Not Clairvoyance or P(NC) = 0.999999. AW denotes the event 
All White balls chosen. We have P(AW|NC) = 'AGO, and we assume that P(AW|C) 
= 1. We can then use Bayes's rule to work out 
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That is, we conclude that there is a 0.056-percent chance that the child is a 
clairvoyant rather than just lucky. If the child got just the white balls again on 
a second go, a repeat application of Bayes's rule would give her a 24-percent 
chance of being a clairvoyant. A third successful go by the child at choosing 
only white balls and another repeat application of Bayes's rule would mean 
that I should now believe that there is a 99.4-percent chance that the child is a 
clairvoyant, although I would tend to suspect a magic trick. 

AN ALTERNATIVE APPROACH TO COMBINATIONS 

Number of Possible Arrangements of n Objects 

Often probability calculations rely on the idea that it is sometimes reason
able to expect that all arrangements are equally likely to occur. For example, if 
ten names are put in a hat, what is the probability that they will be withdrawn 
in alphabetical order? There are ten ways of choosing the first, and for each of 
those ten ways there are nine ways of choosing the second, so there are 10 x 9 
ways of choosing the first two. For each of these ninety ways of choosing the first 
two there are eight possible choices remaining for the third, so there are 10 x 9 x 
8 ways of choosing the first three, and so on. We discover that there are 10 x 9 
X 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1 ways of choosing all ten names. This number 
is denoted 10!, pronounced "ten factorial" (it is 3,628,800). Only one of these 
ways is alphabetical order, so the chance of alphabetical order is lin 3,628,800. 

As another example, say five countries in a region are ranked according to 
their population growth rates and according to their amounts of poverty. It is 
found that the two rankings agree completely: Is it reasonable to believe that 
this agreement is due entirely to chance? To answer, say we were to blame the 
apparent correlation entirely on chance. Then the poorest country would have 
a choice of any of the five ranks for population growth, the next poorest coun
try would have a choice of any of the four remaining ranks, and so on, so that 
the number of possible orderings would be 5 x 4 x . . . x 1 = 5! = 120. There 
is only one of these 120 arrangements where the two rankings agree com
pletely. It is then up to us to decide which is a more reasonable explanation for 
the agreement between the rankings. The choices are (1) that there is no un
derlying reason to explain the connection between the two rankings other than 
a 7i2o chance coming off, or (2) that there is some underlying reason that 
explains why poorer countries tend to be associated with more population 
growth. 

We still have to make a somewhat arbitrary decision between the two choices. 
However, the decision is guided by our calculation of the probability 7120 as
sociated with choice 1. This is another example of a statistical test (in techni-
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cal terms we are testing the null hypothesis that Spearman's rho is 0, but we 
won't bother with this jargon yet). It should be noted that if (as is reasonable) 
we decide to believe that there is an association between poverty and popula
tion growth that cannot fairly be attributed to chance alone, then we still have 
not proven that population growth causes poverty. It may be that poverty causes 
population growth, or some other component of the socioeconomic environ
ment tends to cause poverty and also cause population growth. Probably all 
three factors operate to some degree in this situation. 

Permutations 

Sometimes it is necessary to know how many ways there are of choosing k 
objects in a particular order from a group of n objects. This is denoted "Pk, and 
using the same principles as earlier equals 

say a teacher has a class of twenty students and needs to choose three to be the 
class captain, the blackboard monitor, and the representative on the student 
council. There are 20 x 19 x 18 = 20P3 ways of choosing a set of three children 
for these different jobs. We see that this can be written as: 

There are twenty choices for captain and for each of these twenty choices 
there are nineteen choices for blackboard monitor and then for each of these 
20 x 19 combinations of choices there are eighteen possible students who 
could be chosen as student representative. Note that the situation makes order 
important. The first choice, the second choice, and the third choice are not 
equivalent. They all get different jobs. 

Combinations 

Often it is necessary to know how many ways there are of choosing k ob
jects from a group of n objects when order is irrelevant. For example, three 
students are to be chosen for a committee, but they are not going to get differ
ent jobs as captain, blackboard monitor, and representative just because their 
names are selected in a particular order. Drawing out the names Sue, Mary, 
and John in that order from a hat containing all the names is counted as the 
same as drawing out in order the names John, Sue, and Mary. As stated previ
ously, the number of ways of choosing k objects from n objects is denoted nCk. 

This is n! with the last n - k factors cancelled out by the division. For example,
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It can be calculated by reasoning that for each of the "Ck choices of k objects, 
k\ orderings are possible for these objects. This then gives all possible choices 
of k objects in order, which is "PA.This tells us that nCk xk\- "Pk, so 

For example, say the teacher in the permutation example thought about 
making her choice of students for the three special jobs in the class (captain, 
blackboard monitor, and student rep) in the following way: She thought to 
herself, "How many ways can I choose three students from twenty? Whatever 
number this is, I 'll call it 2()C3. Then, for each of these choices I'll bring the 
three students up to the front of the class. The three students can be assigned 
to the three jobs in 3! ways (three choices for captain and for each of these 
choices, two choices for blackboard monitor, and then just one choice for 
student rep). All up then there will be 20C3 x 3! ways of assigning the three 
special jobs to the students." But this 2()C3 x 3! is counting the same number of 
arrangements as 20P3. Therefore, we have found out indirectly that 

There is just one way of choosing all n children from a group of n children. Our 
notation tells us this number of ways is "C„. Therefore we should have "Cn = 1. The 
formula tells us that 

Mathematicians define 0! to be 1. The formula 

then makes sense and gives us the required result of 1. 

SUMMARY 

Probabilities combine according to rules whose logic can be seen from Venn 
diagrams. The logical rules can be combined to give more complicated prob
ability rules. Two are of particular interest: 

• Fisher's exact test uses probability rules to work out the probabilities of certain 
outcomes when individuals in two groups are assigned at random to one of two 
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possible categories. If those in one particular group tend to be assigned to one par
ticular category and probability rules shows that this outcome has a very low prob
ability when individuals are assigned at random, it suggests that random assignment 
is not the explanation. However, common sense must also be used in each case in 
judging whether random chance is still the best explanation. 

• Bayes's rule uses probability rules to combine prior guesses about alternative expla
nations, and probability calculations about how easily the different alternative ex
planations can result in the observed outcome, to give an overall probability of 
which explanation is correct. In theory, Bayes's rule can be used to combine/? value 
calculations and common sense for better decision making. 

Use Fisher's exact test to obtain a/? value when dealing with a situation of 
two groups and two categories. This is a situation that can be summarized in 
the form of the accompanying table. 

Category A 

Category B 

Group I Group II 

Always use common sense as well as p values in coming to a conclusion 
about whether the groups and categories are associated. 

QUESTIONS 

1. There are eighty women and sixty men in the class. Thirty women and thirty men 
own dogs. The lecturer shuts his or her eyes, spins around, and points to a person 
at random. 

a. What is the probability that the person picked: 

i. Is a woman? 

ii. Owns a dog? 

iii. Is a female dog owner? 

iv. Is either a woman or a dog owner? 

b. Relate your answer in part a to the formula P(E U F) = P(E) + P(F) - P(E n F). 

c. In this situation are the events "being a woman" and "being a dog owner" 
independent, mutually exclusive, or neither? 

2. Human blood can be grouped in several different ways. The rhesus blood groups 
(D+ and D-) and the ABO blood groups are inherited independently of each other. 
About 14 percent of the population has the rhesus blood group D-, the remaining 
having D+, and 3 percent of the population has ABO blood group AB. Inheritance 
of AB blood group and O blood group is mutually exclusive; 55 percent of the 
population has blood group O. 
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a. What proportion of the population has both AB and D-? 

b. What proportion has blood group AB or O? 

c. What proportion has blood group AB and/or blood group D-? 

d. What proportion has blood group O and/or blood group D+? 

3. According to a news report, one-half of all women and one-third of all men over 
the age of seventy suffer from osteoporosis (unduly weak bones). Men make up 
one-quarter of this age group. Find the overall prevalence of osteoporosis in people 
over seventy (take "one-half to mean a proportion of exactly 0.5, etc.). 

4. Assume that you are told that 2 percent of children under the age of twelve are 
anemic, 10 percent of females in the reproductive years twelve to fifty are ane
mic, 1 percent of males in this age group are anemic, and 3 percent of people of 
both sexes over fifty are anemic. Also assume that 15 percent of the population is 
under twelve and 65 percent are aged twelve to fifty, with equal numbers in both 
sexes in all age groups. Find the overall incidence of anemia. 

5. The sensitivity of a medical test is the probability of it giving a positive result 
when the patient actually has the disease. The specificity of a medical test is the 
probability of it giving a negative result when the patient doesn't have the disease. 
The proportion of people who have the disease in a particular community is 3 
percent. The sensitivity of a test for this disease is 96 percent and the specificity is 
92 percent. 

a. Find the proportion of positive tests that will occur when the population is 
tested. 

b. What is the probability that a person who tests positive has the disease? 

c. Repeat the question if instead of being used as a screening test in a population 
with a risk of disease of 3 percent the test is instead used for patients who are 
thought to be 95-percent certain to be suffering from the disease. 

6. A judge initially believes that there is a 50-50 chance that the man before him is 
guilty. Forensic evidence is then produced that shows that the guilty man has 
blood group O. It is known that 50 percent of people in this region have blood 
group O and so does the man on trial. What should the judge now believe about 
the chance of the man's guilt? 

7. A plane has crashed in an unknown location, but it was initially thought that there 
was a 40-percent chance (probability 0.4) that it had crashed over the sea and a 
60-percent chance it had crashed on land. If it crashed on land there is a probabil
ity of 0.8 that a search will find it. If it crashed over the sea there is a probability 
of 0.3 that a search will find it. A search of land and sea has already been con
ducted and has failed to find the plane. What is the probability that it crashed on 
land? On sea? 

8. a. How many ways can the numbers 1, 2, 3, 4, and 5, be arranged? 

b. Five people come into a room in which there is an armchair and a stool. How 
many ways can people be seated? 

c. Five people come into a room in which there are two identical seats. How 
many ways can people be seated? 
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d. Two identical jobs are advertised and two women and three men apply. If there 
is no sex discrimination or affirmative action, what is the probability that the 
two women will get the jobs? 

9. A class often students has five males and five females. Five students are selected 
to give class presentations through the semester. It turns out that only females are 
selected. The teacher is questioned about this but denies any sex bias. 

a. If the teacher selected students entirely at random, how often would it be that 
only girls were selected for presentation? 

b. Do you believe the teacher selected the students at random? 

c. The class is divided at random into two tutorial groups of five students. What 
is the probability that each tutorial group will contain students of one gender? 

10. Consider the following table: 

Second Method 
of 

Categorization 

Category A 
Category B 

Totals 

First Method of 
Categorization 

Category I 
5 
0 

5 

Category II 
0 
5 

5 

Totals 
5 
5 

10 

What is the p value? 

Would you believe that there is an association between the two methods of 
categorization if the following are true (give reasons): 

i. Category I was not using a light while riding a bicycle at night. Category II 
was using a light while riding a bicycle at night. Category A was suffering 
a bicycle accident. Category B was not suffering a bicycle accident. 

ii. Category I was being born in the first half of the month. Category II was 
being born in the second half of the month. Category A was suffering a 
bicycle accident. Category B was not suffering a bicycle accident. 

iii. Category I was being a sports enthusiast. Category II was being uninter
ested in sports. Category A was suffering a bicycle accident. Category B 
was not suffering a bicycle accident. 

a. 

b. 

c. Repeat parts a and b with the number 5 in the table replaced by the number 2.
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C H A P T E R 4 

Discrete Random Variables and 
Some Statistical Tests Based on Them 

Don't be put off by the chapter title. The material here is no more difficult than 
the previous work. Random variables involve just a minor extension of the 
ideas in the previous chapter about probabilities of events that might occur. 
Random variables arise when the events that have various probabilities of oc
curring involve numbers. For example, say we examine three students and count 
the number of mobile phones they carry (assume that there is at most one mobile 
phone per student). We can get any of the numbers 0, 1, 2, or 3 for our result. The 
actual number will depend partly on the underlying average number of stu
dents in the particular social situation at hand who carry mobile phones, but 
the number will also depend partly on random chance. The numbers 0, 1,2, 
and 3 in this experiment therefore have various chances attached to them. 

In this situation we use the letter X to denote the set of numbers 0, 1,2, and 
3 with chances attached, and we call X a random variable. In other words, X 
is used to denote the number of mobile phones we may discover when we 
examine three students, and the various values that X can take have certain 
chances attached to them. Since when we actually perform the experiment we 
have to get just one of the numbers 0, 1, 2, or 3, the sum of all the probabilities 
attached to the numbers must be 1. In the example here, X is called a discrete 
random variable because the values that X can take are values that are sepa
rated or discrete from each other. Discrete random variables generally involve 
just the whole numbers: 0, 1,2, 3, 4, and so on. In rather different examples, 
the values that can be taken by a random variable may shade into each other. 
For instance, in some situations it may make sense for X to sometimes take a 
value such as 13.100, to sometimes take a value of 13.101, and to sometimes 
take any of the values in between the two previous values. In such cases, X is 
called a continuous random variable. 
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THE BINOMIAL RANDOM VARIABLE 

Let us return to the experiment of examining three students for mobile 
phones. Say that the long-run proportion of students carrying mobile phones 
is 9. The proportion that don't carry mobile phones is cj> = 1 — 0. (0 and <\> are 
the Greek letters theta and phi, respectively. Many books use the English let
ters p and q in place of 9 and c(), but the Greek letters are used here to avoid 
confusion with the p in the expression "p value.") The chance that the first, 
second, and third student we examined didn't have mobile phones would be c() x c(> 
x § by the law of multiplication; that is, the chance of getting 0 mobile phones 
would be 4>3. The chance of no mobile phone & no mobile phone & mobile 
phone would be § x cj) x 9 = c))29. Similarly, the chance of no mobile phone & 
mobile phone & no mobile phone would be cj) x 9 x § = c})29 and the chance of 
mobile phone & no mobile phone & no mobile phone would be 9 x § x § = c()29, 
so overall the chance of exactly one mobile phone would be 3c))29. The coeffi
cient 3 in the expression 3c()29 can also be deduced by reasoning that we have 
three slots and must choose one of them to be occupied by mobile phone with 
the remainder being occupied by no mobile phone. This choice of one from 
three can be done in 3C, (= 3) ways (further explanation is given in a later 
example). Similarly, the chance of exactly two mobile phones is 3c|)92 and the 
chance of exactly three mobile phones is 93. The discrete random variable X 
here is then the set of these possible numbers 0, 1,2, and 3, together with their 
associated chances c|)3, 3c()29, 3cj)92, and 93. The discrete random variable X we 
have just described is a particular type known as the binomial random variable 
based on n - 3 and probability 9. This mouthful is abbreviated as X ~ Bi(3,9). 
If we were dealing with ten students, the number of mobile phones we could 
get could be any of the whole numbers 0 to 10, inclusive. The random variable 
would then be Bi(10,9). In general, if there were n students we would have the 
random variable Bi(?z,9). 

Of course, the idea doesn't just apply to students and mobile phones. It 
applies whenever there are n chances and we count the number of chances that 
actually come off. Formally, we say that the idea applies whenever there are n 
"trials" and we count the number of "successes." Extending the reasoning 
used in the case of three students, we can see that if X ~ Bi(n,9), the probabil
ity associated with X taking the value k is nCkQ

k$"~k. We write this as P(X = k) 
= nCkQ

k$"~k, and these probabilities are sometimes called binomial probabili
ties. Of course, once we do the examination of the students we get a definite 
value: The number of mobile phones is no longer one of a range of numbers 
associated with various probabilities. But when we are about to do the experi
ment, the number of mobile phones we may find is X, a random variable. 

OPTIONAL 

For example, say X ~ Bi(10,V4). Such a random variable would arise if we 
were about to perform the experiment of examining ten students and we some-
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how knew that the overall chance that any student had a mobile phone was lA. 
Exactly the same random variable would arise if we were about to survey ten 
people about a political question and we somehow knew that the chance of a 
person giving a favorable response was lA. Let us work out the probability that 
X takes the value 4 [in shorthand, P(X = 4)].X takes the value 4 in a number of 
different circumstances. Let us denote p for mobile phone and n for no mobile 
phone. X takes the value 4 if we get any of the following results: 

Result Probability 

The question that arises here is how many possible arrangements there are 
of the letters p and n with four /?'s and six /I'S. To answer the question, imagine 
that we have ten slots laid out in a row. Into four of the slots we have to put the 
letter/?, with the remaining slots getting the letter n. How many ways can we 
choose the four slots? This is the same question in effect as asking how many 
ways a teacher can choose four children out of her class of ten. In both cases 
the answer is 

as explained in Chapter 3. Therefore, X takes the value 4 on l()C4 or 210 occa
sions, with each occasion occuring with probability (lA)4 x (3A)6. Therefore, 
P(Z = 4) = 10C4 x (V4f x (%)6 0.146. 

END OPTIONAL 

Note that the probability calculations for the binomial random variable use 
the law of multiplication, which is only valid when events are independent. 
Therefore the binomial random variable applies only when finding a mobile 
phone on one student does not affect our chances of finding a mobile phone 
on the next student. This assumption would not be reasonable if all students 
with mobile phones tended to stick together and so were likely to be selected 
together. In the case of asking a political question, the assumption of indepen
dence would not be reasonable if we simply asked ten people in one room 
their opinion. If people are in one room, they presumably have something in 
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common; for example, they may be friends who share similar social back
grounds, which would tend to color their opinions in the same way. Although 
any one person in the room may have a probability of lA of being in favor, 
once we know that one person in the room is in favor, the chances are greater 
than lA that their friends in the same room will also have a similar opinion. In 
the extreme case, where people only ever share a room with others who agree 
on this particular political question, P(X = 0) = %, P(X = 10) = lA, and P(X = 
any number other than 0 or 10) = 0. In contrast, if there is independence be
tween the responses of the ten people, P(X = 0) = (%)10 = 0.056, and, P(X = 
10) = (lA)]0 = 0.0000009. When it is not correct to assume independence, the 
random variable X is not a binomial random variable. 

The Use of the Binomial Random Variable 
in Statistical Tests: The Sign Test 

Where Does the Name of This Test Come From? 

The sign test is the main statistical test based on the binomial random vari
able. The sign test is used when we want to know if there is convincing evi
dence of an improvement or deterioration after some intervention has been 
applied to each of a number of individuals. The sign test gets its name because 
the only information that it uses is the sign of the change after an intervention 
(improvement can be denoted as "+", deterioration as " - " ) . An example will 
be used to explain the philosophical basis of the test and the calculation. 

Example of the Use of the Sign Test 

Say eight people were asked to compare the quality of two nights of sleep 
that they had where one of the nights of sleep occurred prior to listening to a 
relaxation tape and the other night of sleep occurred after listening to the tape. 
Say six out of the eight say that their sleep was improved after listening to the 
tape, whereas the remaining two people say the opposite. Does this constitute 
reasonably convincing evidence that the relaxation tape helps? 

Some Philosophy behind the Sign Test 
and Hypothesis Testing in General 

If we follow the same principles established in the case of Fisher's exact 
test, the way we use statistics to decide the issue is to weigh two ideas: (1) 
"The relaxation tape doesn't generally help sleep, it just looks that way in this 
particular group of people purely because of chance" or (2) "The relaxation 
tape does help sleep." As in the case of Fisher's exact test, we make our deci
sion after calculating the chance referred to in option 1. If the chance is very 
small, it suggests that option 2 is a more reasonable conclusion. 
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However, some more discussion of these ideas is required here, and to fa
cilitate this discussion some jargon needs to be defined. The idea in option 1, 
that the intervention made no difference, is called the null hypothesis and is 
denoted H(). The idea in option 2, that the intervention improves the chances of 
someone having a good quality sleep, is called the alternative hypothesis and is 
denoted Ha. In the case of Fisher's test in the last chapter, we defined a main 
question and a subsidiary question. A similar idea applies in the case of the sign 
test and statistical tests in general. Using the terminology just defined, the main 
question can be rephrased as, "Which is more reasonable to believe, H() or Ha?" 

In the case of the fired-women example of Fisher's test, H() was that there is 
no association between being a woman and getting fired and Ha was that there 
is an association. In the case of the sign test, H() is that the relaxation tape has 
no effect on the chance of someone's sleep after the tape being any better than 
their sleep before the tape. If H() is true and people are forced to decide which 
sleep was better, it is a 50-50 chance that they will say either "better" or 
"worse"; that is, the probability of "better" is Vi. Ha, the alternative hypothesis, 
is that the probability of "better" is greater than Vi. 

However, the main question, "Is it more reasonable to believe Ha than H()?" 
is not answered directly. Instead, a subsidiary question is asked: "If H0 were 
true, how often would pure chance alone lead to results like ours that suggest 
that Ha is true instead?" If the answer is "hardly ever" (where traditionally 
"hardly ever" is taken to mean ^ 0.05 of the time), then frequentist statistics 
tells us that we should leap from this answer to the subsidiary question to a 
response to the main question; namely, that there is convincing evidence for 
Ha. Conversely, if the answer is "quite often" (where traditionally "quite of
ten" is taken to mean > 0.05 of the time), then frequentist statistics tells us that 
we should leap from this answer to the subsidiary question and respond to the 
main question by asserting that there is no (convincing) evidence for Ha. As 
has been repeatedly emphasized, this leap, if it is taken without thought and 
automatically using the traditional benchmark/? value of 0.05, neglects com
mon sense and inappropriate conclusions may result.1 

Contrary to the impression given previously, frequentist statistics does not 
regard it as appropriate to assume that H() is true, simply work out the prob
ability of getting the observed result, and then if this probability is "hardly 
ever" conclude that there is convincing evidence for Ha. Why not? The follow
ing example provides the explanation. Say instead of testing eight people with 
the relaxation tape we tested 1,000. Say also that 500 people said they slept 
better after the relaxation tape and 500 said they slept worse. Clearly, there is 
nothing in this result to suggest that the relaxation tape helps. However, let us 
calculate the chance of getting exactly 500 out of 1,000 under the assumption 
that the tape does nothing for sleep (i.e., the chance of a better or a worse sleep 
is Vi). Using the terminology defined in the section on the binomial random 
variable, we have 1,000 trials, with each trial giving a success with probability 
Vi. This is the chance that the random variable X = 500 where X ~ Bi( 1,000, 
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Vi). Using the same ideas as before, this is the probability 1,000C500 x (V2)500 x 
(Vi)500. This probability turns out to be about 0.025 < 0.05 = "hardly ever" (the 
probability is small because lots of values close to 500 out of 1,000, for ex
ample, values from 480 to 520 will all occur with comparable frequencies and 
so the probability of values "near" 500 out of 1,000 is shared out over quite a 
few numbers). The result of 500 out of 1,000 then "hardly ever" occurs, but 
this result certainly should not be taken as convincing evidence that the chance 
of a better sleep is anything other than Vi. 

The previous example shows that the probability question that must be asked 
needs to be more subtle than simply asking if the observed result would "hardly 
ever" occur if H0 were true. Instead, the probability question asked is one that 
at first sight seems rather complex and obscure. The question is, "Assuming 
that H0 is correct, how often by pure chance alone would we get results that 
look at least as much in favor of the explanation Ha as the results that have 
actually been obtained?" If the answer is "hardly ever," we would tend to 
believe that Ha is a better explanation. In the case of the relaxation tape and the 
eight people, six of whom slept better and two of whom slept worse, we would 
ask, "If the tape made no difference at all, how often by pure chance alone 
would six out of eight or seven out of eight or eight out of eight sleep better 
after listening to the tape?" If this answer is "hardly ever," we should conclude 
that we have reasonably convincing evidence for Ha. The logic behind this 
question is clearer if we state it in reverse. "If it would 'nearly always' happen 
that if H0 were true chance would lead to us getting less than six out of eight 
people to say they slept better, then if our observed result was six out of eight 
this would be reasonably convincing evidence that Ha was true." Here we take 
the probability of "nearly always" to be 1 minus the probability of "hardly 
ever"; so, using the standard tradition of frequentist statistics, "nearly always" 
would mean with probability ^ 0.95 or at least 95 percent of the time. In other 
words, if, assuming "better" or "worse" is a 50-50 choice, and if our probabil
ity calculations show that more than 95 percent of the time less than six people 
out of eight would say "better," then six out of eight is reasonably convincing 
evidence. 

Put another way, we take the attitude before the experiment that the number 
that we get may lie in two regions. One region consists) of the most typical 
value that we would expect if H0 were true and values close by. Values in this 
region will not make us change our minds about the assumed truth of the null 
hypothesis. The other region is a region of more extreme values that will make 
us change our minds. We are then interested in the overall probability of being 
in one or the other region, assuming that the null hypothesis is true, but we are 
not interested in the probability of individual values. 

What is our answer, then, for the particular result here of six out of eight 
sleeping better? We calculate the chance of at least six people out of eight 
saying they slept better when for each person there is a chance of Vi that they 
will say either "better" or "worse." Here we have a binomial random variable 
situation with eight trials and probability of success = Vi. The chance of at 
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least six out of eight is then the chance that the random variable X = 6 or 7 or 
8, where X ~ Bi(8, Vi). Using the same ideas as before, this is the probability 
8C6 x (Vif x (Vi)2 + 8C7 x (Vi)1 x (Vi)] + 8C8 x (Vif x (Vif = (Vif x (8C6 +

 8C7 + 
8C8) = 37/256 ~ 0.14, which is more than the "hardly ever" benchmark of 
traditional statistics. This value, 0.14, is our/? value. Put another way, if H{) 

were true we would "quite often" get a result of six or more out of eight by 
sheer chance, even though the tape was of no benefit (here "quite often" is 
taken to mean a chance of p > 0.05). Traditional statistics therefore says that 
there is no (convincing) evidence that the tape benefits natural sleep, or that 
the evidence in favor of the tape is not statistically significant (or not statisti
cally significant at the 5% level). Making (or inferring) a decision on an issue 
like this on the basis of such probability calculations is called statistical hy
pothesis testing or statistical inference. 

We emphasize that the numbers in our experiment here are small. With 
small numbers, tendencies can easily be explained away as the effects of chance 
affecting just a few outcomes. The issue will be discussed further in Chapters 
6 and 10. Although experiments will in practice generally involve larger num
bers, there is no requirement in statistics to use sufficient numbers so that all 
tendencies of interest will usually be detected. The use of small numbers in 
the experiments discussed here, as well as simplifying calculations, highlights 
the common error of concluding that the experiment "proves" there is no ef
fect when in fact there may well be a worthwhile effect but the numbers in the 
experiment were not sufficiently large for it to be unambiguously detected. 

A person who was inclined to skepticism and had no knowledge of the 
benefits or otherwise of relaxation tapes could reasonably accept the conclu
sion here based on the 0.05 traditional benchmark. There is some evidence in 
favor of the tape if six out of eight say that it helped. But since this evidence 
could easily be mimicked by random chance, the evidence is not sufficiently 
convincing to entice a skeptical person to spend money on purchasing the tape 
unless that person was desperate enough to be prepared to waste money on 
something that may well not work. 

The Problem of Ties 

For the logic behind the sign test to work, we assume here that we don't 
allow people to simply say that the tape made no difference. We don't accept a 
"tied" decision. We insist that no two nights of sleep are exactly the same and our 
subjects have got to make a decision about which night was better. If any of our 
subjects refuse to make a decision, we ignore that person's response. 

OPTIONAL :

It is a philosophical question without an absolute answer whether this ap
proach to ties is completely reasonable. For example, it may seem reasonable 
if we surveyed 1,010 people about the relaxation tapes and ten people refused 
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to say better or worse, to then ignore those ten. But what if we surveyed 1,010 
people and 1,000 of them said that they couldn't decide whether the tapes 
helped or hindered sleep: Would it be fair to entirely ignore all these responses 
and base our conclusions solely on the remaining ten who could make a deci
sion? There are other possible philosophical approaches to dealing with ties. 
One approach involves breaking each tie arbitrarily and doing the p value 
calculation, then repeating the process for all possible combination of ways 
all the ties can be broken. The average of all the/; values obtained is the final 
p value. In the pds computer program written to accompany this book the 
equivalent of the latter approach is used to deal with ties in the case of statis
tical tests discussed later in this chapter. However, in the case of the sign test, 
the approach of ignoring ties is used. 

It is common for populations to consist of equal numbers of males and 
females. Now say that the sex ratio in grey kangaroos had not been studied 
before and so we decided to check whether the sex ratio was 50-50. If we 
caught four kangaroos and found that only one was male, would we be able to 
conclude that the sex ratio in kangaroos tends to favor females? There are two 
options: (1) The null hypothesis that the proportion Ois 0.5 or (2) the alterna
tive hypothesis that the proportion isn't 0.5. To help decide which option 1 or 2 is 
more likely, we pretend at least for the sake of argument that the null hypothesis is 
correct. The outcome one male and three female is therefore regarded as a 
reflection of chance alone. We ask, "What sort of chance? How often would 
we get only one male instead of the two that we would most typically ex
pect?" As explained previously, it is actually more sensible to alter the ques
tion slightly: "Normally we would expect two out of four; is the result one out 
of four so far away from two out of four that results this way out or further 
would rarely occur?" Using the theory of the binomial random variable we 
can calculate that we would get the numbers 0, 1,3, or 4, 5/s of the time. So 
getting a number at least as far out as one out of four, from the "ideal" of two 
out of four, is not at all unusual. Therefore, if it was reasonable to start with 
the hypothesis 6 = 0.5, there still seems little reason to change our ideas. 

If we had examined ten kangaroos and found only one male, we would go 
through the same reasoning. This time P(X = 0) = (Vi)10 and P(X = 1) = 
{()Cx(Vi)\Vif = \0(Vi)l(). The calculations forX= 10 andX = 9 are identical to 
the calculations for X = 0 and X = 1. So assuming the hypothesis 0 = 0.5 is 
true, the chance of being as far as or further than our result of one out of ten 
from the ideal result of five out of ten is 2 x (1 + 10) x (Vi)10 = 22 x (Vi)U) « 
0.021. This is the p value. We might then prefer to believe that option 2 is 
more believable than option 1. In other words, we might prefer to believe that 
the sex ratio in this kangaroo species is not 50-50, but is weighted in favor of 
females. Note again the reasoning: It might be 50-50, but if it is, a pretty small 
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chance has come off to give us the data that make us doubt the 50-50 idea. 
Alternatively, there might be a good reason for the data. It might be this differ
ent from 50-50 not because a long chance came off, but because there is a 
good reason for it to be different, that kangaroos don't in fact have a 50-50 sex 
ratio. Which is the more plausible option is up to us, but we make a decision 
that is informed by a calculation. This is the calculation of the probability that, 
if the null hypothesis was true, by sheer chance we would obtain data at least 
as distant as our data from the most typical value of five out of ten, which the 
null hypothesis leads us to expect. 

END OPTIONAL 

Problems in Applying Bayes ys Rule to the Sign Test 

In the case of Fisher's exact test, after calculating our/? value our next step 
was to apply Bayes's rule to incorporate our prior knowledge or common 
sense into the decision. We stated at the end of Chapter 3 that we would not 
formally apply Bayes's rule to further statistical tests because calculations 
would become too complicated. Let us see why. If the relaxation tapes are of 
some benefit, it would not be reasonable to expect that they would work every 
time. Chance factors may result in more disturbed sleep for some people after 
listening to the tape, even though the tape generally works most of the time. 
Application of Bayes's rule would require that we find out the probability of 
the result six out of eight under a range of scenarios from "the tape makes no 
difference" probability of Vi to "the tape is almost certain to work" probability 
of nearly 1. We would also need to judge how likely each of the scenarios in 
this spectrum was likely to be. Clearly, the Bayesian statistical approach in 
this context is going to be difficult. Instead, we "mentally" apply Bayes's rule. 
In other words, we apply a common-sense judgment to our result that the p 
value was 0.14 in the case of six out of eight sleeping better. As stated before, 
it would be reasonable for a skeptical person who has no knowledge in the 
area of the effects of relaxation tapes on sleep to conclude that the experiment 
has not produced convincing evidence. This would not be a reasonable con
clusion if we were not so skeptical and perhaps common sense or other infor
mation suggested to us that the tapes could well be of some benefit. If the 
tapes were of no benefit the only way to explain a result of more than five out 
of eight is to say a 0.14 chance came off. If we already thought that the tapes 
might be of benefit, we would sensibly regard this as further evidence in their 
favor. It is important to note that the strength of our evidence is based directly 
on the p value. In other words, we judge the strength of our evidence by as
suming H() is true and then asking how often pure chance alone would lead to 
outcomes that instead suggest Ha at least as much as our observed outcome 
does. The result "more than five out of eight" is not the immediate fact on 
which we base our judgment; it is the p value derived from this fact that is the 
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direct evidence. The direct evidence here is that it would only happen 14 per
cent of the time that pure chance alone would result in an entirely useless 
insomnia treatment giving at least as much apparent benefit as was seen in this 
experiment. 

Using p values rather than actual outcomes as a measure of the strength of 
evidence is not only logical, it also enables us to compare the strength of 
evidence when we are looking at outcomes that are otherwise hard to com
pare. For example, which provides the stronger evidence "six or more out of 
eight" or "three out of three"? Both results give roughly similar/? values. Both 
outcomes therefore provide approximately equal strength evidence against H0— 
something that would not be clear by looking at the outcomes themselves. 
Furthermore, without using p values to measure the strength of the evidence, 
we would have no way of knowing that four out of four can fairly be regarded 
as evidence that is twice as convincing as three out of three. 

Note that the smaller the p value, the stronger the evidence against H0. A 
very tiny p value generally means very strong evidence against H0. It becomes 
less reasonable to attribute results to H() rather than Ha when the only way to 
attribute the result to H0 is to argue that a very tiny chance came off that just 
happens by coincidence to make it look like Ha is true. 

There is no correct conclusion. Statistics can help us make wiser decisions 
about situations where there is variability and uncertainty, but there is no method 
for always making a correct decision. Personally, if I had insomnia and some 
spare money, given the evidence of p = 0.14 I would buy the tape. 

Using Numerical Results in the Sign Test 

The sign test can be used in situations where the change as a result of an 
intervention is not classified simply as improvement or deterioration, but where 
actual numerical measures are available for performance before and after an 
intervention. For example, say the length of a night of sleep was somehow 
accurately measured for people before and after listening to a relaxation tape. 
Say that for eight people, A to H, the before and after results in hours and 
minutes were as follows: 

Before 5:37 6:24 4:22 6:53 3:19 5:07 6:48 7:09 

After 5:18 6:47 7:01 6:46 7:31 8:08 7:51 8:11 

We can summarize some of this information by stating that six people slept 
longer after the intervention and two people slept less. We can then perform 
the sign test exactly as before on this summary information. However, in do
ing so we are ignoring some of the original information. In particular, we are 
ignoring the fact that the people who had less sleep after the tape had only 
slightly less sleep, whereas the people who had more sleep had much more 
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sleep. A more sophisticated test using all this information would provide stron
ger evidence against the null hypothesis. 

On the other hand, if we are sure almost every reasonable person would be 
convinced by a/? value of less than 0.001 and we get the result that ten out of 
ten people sleep longer after listening to the tape, there may be little need for 
more sophisticated tests using the actual numbers. If H() were true, a result of 
ten out of ten would occur only (Vi),0= ' /W < 0.001 of the time (i.e.,/? value 
< 0.001). We have said that in this situation nearly all reasonable people would 
prefer to believe that the tapes work rather than believe that they don't work 
and that it just appears that way because a less than 1 in a 1,000 chance came 
off. Therefore, in this situation this simple sign test is all that is necessary to 
convince most people. 

One-Tail and Two-Tail Tests 

Consider a researcher who believes in the old saying "a healthy mind in a 
healthy body" and who believes that sport improves health. Such a researcher 
may wonder whether an after-school sports program improves academic per
formance. Let us put ourselves in the position of this researcher and say that 
we are prepared to believe in H(), that the sports program has no effect on 
academic performance, and that we are prepared to stay with this belief unless 
we are convinced otherwise by a p value at least as small as the traditional 
benchmark value of 0.05. The alternative hypothesis Ha here is that sports 
programs increase academic performance. Now say that we conducted an ex
periment by funding eleven students to participate in an after-school sports 
program. Say that the result was that nine times out of eleven the student in the 
sports program improved in academic performance relative to the remainder 
of the students in the class. If H() were true, then we would have a result of less 
than nine out of eleven with probability 0.967 and a result of nine or more out of 
eleven would occur with probability or/? value of about 0.033, since 11C9(

1/2)9 x 
(Vif + uC[0(Vif° x (Vif + uCn(V2)u x (Vif = (y2)"("C9 + nC1() + »CM) = 672o48 -
0.033. Given our initial decision about the appropriate p value needed to con
vince us of Ha, we would therefore regard this as convincing evidence for Ha. 

The initial viewpoint that a sports program might improve academic perfor
mance may seem unrealistic to some readers. Perhaps many people who dis
like sports would believe that a sports program would, if anything, distract 
from academic pursuits and would therefore, if anything, hinder academic 
performance. Consider someone who believes that this hypothesis is possible, 
but who is yet to be convinced. If that person did not believe that a sports 
program could benefit academic performance but thought it was possible for a 
sports program to cause harm, then the sports program and academic perfor
mance experiment could only involve two possible hypotheses: either H„ as 
before, that the sports program has no effect on academic performance, or Ha 

that a sports program decreases academic performance. The result in the ex-
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periment of nine out of eleven in favor of better academic performance for 
those in the sports program clearly is not ammunition in favor of an argument 
that sports programs detract from academic performance. What would a per
son conclude, who started off with the belief that most likely there was no 
connection between sports programs and academic performance (H0), but if 
there was a connection it would have to be that there was a decrease in aca
demic performance in those in sports programs (Ha)? Such a person would 
conclude that there is no connection (i.e., H() is true) and that pure perverse 
chance had worked to suggest a conclusion opposite to Ha. Even though a 
conclusion opposite to Ha is suggested by the evidence, the person evaluating 
the evidence will believe that the explanation for this evidence must be per
verse chance and not a real effect, because that person believes that a real 
positive effect is simply not possible. 

A more open-minded person might believe that while H() was a reasonable 
starting point, if there was some effect of the sports program on academic 
performance this effect could be in either direction. For this person, Ha would 
be that a sports program affects academic performance, without specifying 
the direction of the effect. To see how this affects our statistical reasoning, 
recall the philosophical basis for making a decision between H0 and Ha. We 
make the decision after answering the question, "Assuming that H() is correct, 
how often by pure chance alone would we get results that look at least as 
much in favor of the explanation Ha as the results that have actually been 
obtained?" If the answer is "hardly ever" then we would tend to believe that 
Ha is a better explanation. For the open-minded person, a result of two out of 
eleven would be pointing toward Ha as much as a result of nine out of eleven 
(recall that Ha is now that academic performance is associated with the sports 
program but the association could be in either direction). Previously we calcu
lated that 0.967 of the time we would get less than nine out of eleven (i.e., 
0.033 of the time we would get a result at least as large as nine out of eleven). 
By symmetry, we see that 0.033 of the time we would get a result at least as 
small as two out of eleven (the chance of getting two heads in eleven tosses of 
a fair coin must be the same as the chance of getting two tails and so nine 
heads). Therefore, 0.066 of the time we get a result outside the range of three 
to eight out of eleven. The probability 0.066 is larger than the traditional "hardly 
ever" benchmark of 0.05, so if we are using this benchmark we cannot now 
say that we have convincing evidence against H(). Put another way, if H0 were 
true, 0.934 of the time we would get results that are closer to the 50-50 mark 
of five or six out of eleven than the outcome (nine out of eleven) here. How
ever, 0.934 doesn't quite amount to "nearly always," so it is still "reasonable" 
to stay with H() even though the experiment gave an outcome outside the range 
of between three and eight out of eleven. The word "reasonable" is in inverted 
commas in the previous sentence because there is no reason other than con
vention to take "nearly always" as at least 95 percent of the time; as always, 
we should temper adherence to convention with common sense. 
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When Ha is that the intervention makes a difference but the difference could 
be in either direction, we say that we have a two-tail test. When Ha is that the 
intervention makes a difference in just one direction, we say that we have a one-
tail test. The example here shows that whether a one-tail or two-tail test is appro
priate and even the direction of the one-tail test are matters of subjective judgment. 
However, often it is clear that a particular intervention can do no harm but may 
or may not be of benefit. In such a case a one-tail test is appropriate. 

The issue of one-tail and two-tail tests is often given considerable attention 
in standard statistical texts, as it is the only area in which some subjective 
judgment is needed in traditional statistics. However, it is a relatively trivial 
issue compared to the general issue of using subjectivity and common sense 
in statistics. Whether the traditional benchmark/? value of 0.05 should be as
sociated with just one end or spread over both ends of the range of possible 
outcomes is trivial compared to the issue of whether common sense would 
suggest an appropriate benchmark/? value of the order of a billionth or close to 1. 
If common sense is giving us prior information that H() is almost certainly true, an 
exceedingly tiny benchmark/? value might be appropriate, whereas if H{) is quite 
likely to be incorrect, a benchmark /? value close to 1 is appropriate. Such 
issues of common sense may then have far more effect on which outcomes are 
going to convince us about Ha than the issue of one-tail or two-tail tests. 

Sign test calculations are often done by computer and the computer is gen
erally programmed to give a/? value assuming that a two-tail test is appropri
ate. If instead a one-tail test is appropriate, then it is often appropriate to halve 
the computed /? value. However, some care is needed. In our example the 
computer would have given the/? value 0.066 for our result "nine out of eleven," 
meaning that this is how often we would have got any of the results "nine or 
ten or eleven out of eleven, or two or one or zero out of eleven" by chance 
alone if H() were true. Half this 0.066 is indeed the required/? value if Ha is that 
"sports programs increase academic performance," for in this case our/? value 
is the probability of chance alone giving us results that look at least as sugges
tive of Ha, as our result does, and only the results "nine or ten or eleven out of 
eleven" are in this category. However, if our alternative to H() was that the 
influence of sports programs, if any, must be bad, then our result of nine out of 
eleven of those in sports programs doing better gives almost no encourage
ment for us to believe in Ha. We would be more encouraged to believe in Ha, 
that sport is bad for academic performance, if we had got the result zero out of 
eleven improved, or one out of eleven improved, or two out of eleven im
proved, and so on, or even if we had got the result eight out of eleven im
proved. Results that are at least as suggestive of Ha as our result of nine out of 
eleven, then, consist of "nine or eight or seven or six or . . . or two or one or 
zero out of eleven." Calculation shows that such results occur 2 036/2,o48 of the 
time. In other words, the /? value is 0.9941. Often it is correct to halve the 
computed two-tail/? value when a one-tail test is appropriate, but some thought 
and common sense are necessary. If the results point in the direction opposite 
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to that anticipated by Ha, the correct/? value will be a number bigger than 0.5, 
not half the two-tail /? value given by the computer. 

The Sign Test and Pairing 

The sign test is mainly used in situations in which there are "before" and 
"after" measurements on the same individual. However, the sign test is also 
used if there is a method of pairing individuals and one individual receives the 
intervention and the other individual doesn't. The "better" or "worse" com
parisons of the outcomes between each of the pairs is then used in the sign 
test. For example, one child in each of a number of pairs of twins may be 
given a possibly beneficial treatment and the treated child can be compared 
with the sibling. 

The Sign Test, McNemarys Test, and the Advantages of Pairing 

The sign test can be used when there are pairs and where just one of each 
pair has the intervention, but the effect of the intervention does not have to be 
the classification "better or worse." Instead of "better or worse," the measure 
on each individual may be in the form of yes or no regarding some other 
attribute. In this situation, the sign test is given the name McNemar's test. 
Traditionally in this situation, p value calculations are derived using a differ
ent philosophical approach, but the calculations are equivalent to those dis
cussed later in the section on large number of comparisons. McNemar's test 
will be discussed again in Chapter 8. 

To explain McNemar's test, consider the following fictitious example. One 
thousand families are identified in which there are two children in early grades 
of schooling. One child in each family is selected to attend a reading apprecia
tion course. Twenty years later, all 2,000 children, now in their late twenties, 
are followed up and asked if they had attended university. McNemar's test 
compares the answer of each person with their sibling. Where they both had 
attended universities or both not attended universities, their answers are re
garded as ties and are ignored. Interest is then focused on those siblings where 
one had attended university and the other didn't. Under H0, that the reading 
appreciation course was ineffective at encouraging university attendance, it 
should be 50-50 whether it was the sibling who attended or the sibling who 
didn't attend the reading appreciation course who later attended university. If 
out of the 1,000 pairs of siblings there were ten such pairs of siblings and in 
only one case was it the sibling who had attended the reading appreciation 
course who did not attend university, then our /? value for a one-tail test is P(Z 
= 0) + P(X= 1) = (Vif0 + mC,(Vif(Vif = ll(Vif° = n/io24 « 0.01 [here, X ~ 
Bi(10, 0.5)]. If we thought that it was appropriate to use the traditional bench
mark /? value of 0.05, we would now state that we have convincing evidence 
that the course is effective in promoting attendance at university. 
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A point to notice here is that most pairs of siblings have been excluded from 
our calculations. There are 990 pairs where both siblings had the same experi
ence of university attendance. This would reflect the fact that family attitudes 
toward education would be likely to have a much more important influence on 
the lives of young people and their ambition to attend university than the in
fluence of a single reading enrichment course. Therefore, pairs of siblings 
having the same family background tended to either both go to university or 
neither go to university. If we had ignored the pairing we could have analyzed 
the situation using Fisher's exact test: There are two groups—those who at
tended the reading enrichment course and those who didn't—and two out
comes—university attendance or not. However, the analysis would be 
"muddied" by the 990 pairs or 1,980 people where family factors, not the 
reading enrichment course, were responsible for whether they had attended 
university. The experiences of the twenty people that the sign test or McNemar's 
test focus on would easily be accounted for in Fisher's exact test as chance 
fluctuations in large numbers. The point is that wherever possible we should 
control variability as much as we can in our experiments. In this example, 
with McNemar's test, this is done by pairing so that family factors are similar 
for both members of a pair. Pairing should be used whenever feasible to re
duce natural variability that may obscure the effects of the experimental inter
vention. Unfortunately, though, pairing is often not possible. 

The Sign Test and Testing Medians 

The sign test can also be used to test whether figures that have been ob
tained come from a population with a known median value. For example, say 
the median house price in one town was known to be $67,000, and all seven 
houses that have been sold in another town (where records of median house 
prices are not available) have been sold for more than $67,000. Here, let H0 be 
the hypothesis that the median house prices in the two towns are the same, and 
Ha be the hypothesis that the town without records has a higher median house 
price. Under H0 there is a 50-50 chance (i.e., probability Vi) that any house 
sold will be either above or below the median. Since seven houses have been 
sold above the median, the p value here is (Vi)7 = ]/m, and we might well 
regard this as convincing evidence in favor of Ha. 

Using the Sign Test When Numbers of Comparisons Are Large 

Clearly the calculations involved in the sign test can be very lengthy if num
bers are large. Say 65 out of 100 comparisons went one way: Is this reason
ably convincing evidence that we are not dealing with a 50-50 situation? We 
are dealing with a binomial random variable X, with n = 100 and 9 = 0.5. For 
a two-tail test we want to know the chance that X is anywhere in the range 0 to 
35, inclusive, or in the range 65 to 100. That is, we want 
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This would be a horrendous calculation by hand or calculator. There is, how
ever, a shortcut approximate method. This method is based on the normal 
random variable, which will be discussed later. However, such calculations 
are usually done by computer (in the pds program written to accompany this 
book, simply click on "statistical tests," then "sign test," then fill in the num
ber of favorable and unfavorable comparisons and click "OK"). 

OPTIONAL 

For example, let's say that we caught a sample of 100 kangaroos and found 
that there were 35 males. Our null hypothesis is again that the sex ratio is 50-
50, with the alternative hypothesis being that it is some other value. The rel
evant probability calculation is to find out, under the assumption that there is a 
50-50 sex ratio, how often we would get results as far out or even further from 
the most typical value of 50 males. We are dealing with a binomial random 
variable X, with n = 100 and 9 = 0.5. We want to know the chance that X is 
anywhere in the range 0 to 35, inclusive, or in the range 65 to 100. As shown, 
this chance is 

Here, the calculation was done by computer. This is the required probability, 
the chance that even though the sex ratio is 50-50, when we catch 100 kanga
roos at random we will actually find that the number of males is so far from 
the 50-50 mark that they are actually somewhere in the range 0 to 35 or 65 to 
100. We have found that this chance is about 0.004, or 1 chance in 250. If we 
really did obtain such data we would probably think it more reasonable to 
believe that we were not dealing with a population with a 50-50 sex ratio, rather 
than believe that our out-of-kilter data are the reflection of a 50-50 sex ratio to
gether with a 1 in 250 chance. To put it another way, if the null hypothesis had 
been true, at least 249 out of 250 times we would have got a value closer to 
50-50 for the number of males than the result 35 males out of 100. Therefore, 
it is reasonable for the result we got, 35, to make us doubt the null hypothesis. 

END OPTIONAL 

A word of caution: For these calculations to be valid, the independence 
assumption underlying the binomial random variable must be satisfied. For 
example, say female kangaroos tended to stay together in an area and we 
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sampled 100 kangaroos in that area. A result of 65 females might not be at all 
unusual, even though over the whole country the sex ratio is 50-50. Independence 
would not be satisfied in this situation. If as we sample, we find that there is a 
higher than expected proportion of females, it makes it likely that we are look
ing in an area where females congregate. If we continue to look in the same 
area, it is more likely than 50-50 that our next kangaroo will also be female. 

Other Statistical Tests Based on the Binomial Random Variable 

Sometimes we have some idea of what the long-run proportion 9 is likely to 
be, based on theory or experience. We can then use our knowledge of bino
mial random variables in a statistical test to help us decide if our ideas are 
correct in the current case. For example, for theoretical reasons (Mendelian 
genetics) some genetic attributes called recessive attributes will occur with 
probability lA in each of the offspring of a particular mating pair. Say we 
observed eight offspring and five had the attribute. Does this mean that the 
attribute is not being passed on as a recessive in this case (i.e., does this mean 
that 9 T̂  lA)l We note here that since, according to the laws of Mendelian 
inheritance for recessive genes, each offspring gets the attribute with prob
ability lA and there are eight offspring, then on average we would expect two 
out of the eight to have the attribute, not the five that were observed. As in 
Chapter 3, it is not possible to answer the main question, "Is this attribute 
inherited with 9 = lAT directly unless we use Bayesian statistics together with 
a priori estimates of how often alternative forms of inheritance occur. Instead, 
we provide an answer to the secondary question, "If 9 was 14, how often would 
we get results at least as far out as five out of eight?" and we use the answer to 
this secondary question to guide us in making a decision about the main ques
tion. For simplicity, we assume that Ha is that 9 > lA. Our /? value, the prob
ability of getting five or more out of eight when the proportion is actually lA, is 
8C5(

14)5 x (34)3 + 8C6(!/4)6 x (34)2 + *C7(
lAf x (3Af + *C,(V4f x (3/4)° = '-78765,536 « 

0.027. If we thought that it was appropriate to use the traditional benchmark/? 
value here of 0.05, we would decide that we had convincing evidence of Ha. In 
other words, since it "hardly ever" happens that we get a result at least as high as 
five out of eight when the true proportion is x4, then this result is convincing evi
dence that the true proportion is more than lA. As noted previously, this state
ment may make more sense expressed in an opposite way: If the true proportion 
is lA, we "nearly always" get results of four or less out of eight; since this 
didn't happen, we have convincing evidence that the true proportion is not XA. 

However, such statistical tests based on the binomial distribution with 9 # Vi 
are not commonly used. The sign test, where 9 = Vi, is used more commonly. 
Taking 9 = Vi represents the null hypothesis that better/worse or yes/no or male/ 
female are 50-50 propositions. The example with 9 ¥" Vi was given to show how 
statistical tests can be based on any random variable appropriate to the situation. 
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IMPROVEMENTS ON THE SIGN TEST: USING ORDINAL 
INFORMATION AND THE WILCOXON SIGNED RANK TEST 

Motivation 

Consider the example of the night of sleep for eight people. The only way 
the numerical information was used was to classify outcomes as "better" or 
"worse." Clearly it should be possible to use the actual numerical changes in a 
more refined test. One such test that is often used (and is perhaps not quite so 
often used appropriately) is called the t test. This will be covered in the next 
chapter with some additional theory. In this section we will cover the Wilcoxon 
signed rank test, which doesn't use the numerical changes themselves, but 
uses their rank or order. 

Explanation by Example 

The test is best explained by an example. Consider again the example con
cerning the length of sleep with and without a relaxation tape. The results of 
hours and minutes of sleep are reprinted here with three extra rows. The first 
additional row is the difference between "before" and "after." The next row 
records the relative size or rank of the differences in the previous row, with a 1 
representing the smallest difference and an 8 representing the largest differ
ence. Signs are ignored in working out these ranks. The last row records the 
signs that were attached to the differences: 

Person 

Before 

After 

Difference 

Rank 

Sign 

A 

5:37 

5:18 

-19 

2 

-

B 

6:24 

6:47 

+23 

3 

+ 

C 

4:22 

7:01 

+2:39 

6 

+ 

D 

6:53 

6:46 

-7 

1 

-

E 

3:19 

7:31 

+4:12 

8 

+ 

F 

5:07 

8:08 

+3:01 

7 

+ 

G 

6:48 

7:51 

+ 1:03 

5 

+ 

H 

7:09 

8:11 

+ 1:02 

4 

+ 

As with the previous statistical tests, we have two alternatives: H0, that the 
intervention doesn't prolong sleep, and Ha, that the intervention does prolong 
sleep. Our primary question is, "Which is more reasonable to believe, H() or 
Ha?" In other words, our primary question is, "Does the relaxation tape really 
work, or does it just look that way in this particular group because of chance 
alone?" As previously, we do not actually ask this question directly, but in
stead we find a precise answer to the secondary question: "If H0 were in fact 
true, how often would pure chance alone lead to results that are at least as 
suggestive of Ha as the outcome observed here?" In other words, the second
ary question is, "If we are going to put the favorable results from the tape 
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down to pure coincidence, what sort of coincidence are we dealing with?" If 
the answer is that we must be dealing with the sort of coincidence that "hardly 
ever" occurs, we conclude that that it is more reasonable to believe Ha. In the 
sign test, we judged whether the results were suggestive of Ha by p value 
calculations after simply counting the number of times we got the outcome 
"better" rather than "worse." With rank information we can do better. We look 
at the sum of all the ranks that are in favor of "better" or the sum of all the 
ranks that are in favor of "worse" (the total of these two sums is simply the 
sum of all the numbers between 1 and 8 [= 36], so once we know one sum we 
know the other). It would suggest that the intervention generally resulted in 
improvements if there were very few "worse" outcomes, and where "worse" 
outcomes did occur they were only slightly worse but when "better" outcomes 
occurred they were much better. This means that the intervention is suggestive 
of general improvement if the sum of the negative ranks is close to 0 or the 
sum of the positive ranks is close to the maximum value of 36. Let us return to 
our secondary question: "If H() were in fact true, how often would pure chance 
alone lead to results that are at least as suggestive of Ha as the outcome ob
served here?" If H() were true and we measure eight differences, the differ
ences will receive the rankings 1 to 8 and each of these differences will be 
equally likely to be positive or negative. 

We could get the sum of the negative ranks to be 0 if by chance all ranks 
were attached to a positive sign: Since under H{) there is a 50-50 chance whether 
any difference is positive or negative, we see that we get the sum 0, (Vif of the 
time. We could get the sum of the negative ranks to be 1 if by chance all but 
the rank 1 were attached to a positive sign and the rank 1 was attached to a 
negative sign: Since under H() it is a 50-50 chance whether any difference is 
positive or negative we see that we get the sum 1, (Vif x (Vif = (Vif of the 
time. Similarly we get the sum of the negative ranks to be 2, (Vif of the time. 
However, there are two ways of getting the sum of the negative ranks to be 3: 
Either we attach a negative sign to the rank 3 alone [this will happen by chance 
(Vif of the time], or as in our data, we attach negative signs to both the ranks 
1 and 2 [this will also happen by chance (Vif of the time]. 

Altogether, we see that assuming H0, that pure chance alone is operating, 
the sum of the negative ranks is 3 or less, 5 x (Vif = V256 ~ 0.02 of the time. 
This is our/? value. If we thought that it was appropriate in the circumstances 
to use the traditional benchmark p value of 0.05 or any other benchmark above 
0.02, we would conclude that we have reasonably convincing evidence that 
Ha is true. Again, the logic of the argument here is perhaps best understood if 
expressed in the negative. If H() (i.e., chance alone) was all that was involved, 
we would "nearly always" get a value for the sum of the negative ranks bigger 
than 3. Since we did not get a value bigger than 3, the alternative explanation— 
that the outcome is not just due to pure chance, but that the relaxation tape 
works—is a more convincing explanation. 
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Practicalities of Using the Wilcoxon Signed Rank Test 

In the example, this test can be seen to be based on a random variable that 
can take values from 0 to 36 with various probabilities. However, it is actually 
quite difficult to work out all these probabilities, particularly when the num
bers of comparisons are large. Unlike the case of the binomial random vari
able, there is no relatively simple formula for the probabilities here. The pds 
computer program written to accompany this book does the exact calculations 
when numbers aren't large; otherwise, it uses an approximate method. Other 
computer programs may use the more easily computed approximation even 
when numbers are small, and the approximation is quite inaccurate. 

The/? value calculated by the program assumes a two-tail test. In our previ
ous example the program would give a p value of 0.04 with the sum of ranks 
of 3, since under H0 the sum of negative ranks or the sum of positive ranks 
would be 3 or less about 0.04 of the time. It is appropriate here to divide this 
figure by 2 to get the p vlaue for a one-tail test. A one-tail test applies to our 
example because we are comparing sleep without any intervention with sleep 
after an intervention that might increase sleep but certainly wouldn't tend to 
reduce sleep. If instead we compared two different interventions that might 
promote sleep—say two different styles of relaxation tapes—a two-tail test 
would be appropriate. The two-tail Ha would be the hypothesis that one tape is 
superior to the other but we're not sure which. As in the case of the sign test, 
some thought is required. If a one-tail test is appropriate but the results point 
in the opposite direction to that expected by the alternative hypothesis, halv
ing the computedp value would be wrong; the/? value in such a case would be 
greater than 0.5. The computer program deals with the problem of any ties in 
the differences, using the principles described in an earlier section of this chap
ter, on pages 69-70. 

USING ORDINAL INFORMATION IN UNPAIRED 
SITUATIONS: THE MANN-WHITNEY TEST 

Motivation 

Instead of comparing pairs of measurements, we often have measurements 
on unrelated individuals in two separate groups. We may then want to know if 
there is reasonably convincing evidence that the outcomes in the two groups 
are so different that the differences cannot reasonably be blamed on pure chance 
alone. We can already deal with this situation using Fisher's exact test. How
ever, to use Fisher's exact test the outcome measured has to be to whether an 
individual belongs to one of two categories. If the outcome is a number, we 
could apply Fisher's exact test by categorizing the numbers as above average 
or below average. Clearly, though, we would be ignoring a lot of the informa
tion generated by the experiment if the only information we used was whether 
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the outcome was above or below average instead of using the actual figures. 
There are methods of using the actual numbers directly in a statistical test. 
These methods will be discussed later. Here we will deal with the Mann-
Whitney test. This test, like the Wilcoxon signed rank test, uses rank informa
tion rather than the actual numbers. Again, explanation will be by example. 

Explanation by Example 

Say we were interested in the relationship between gender and mathemati
cal ability. I would guess that most people in our society would think that a 
reasonable starting point would be to stay with the belief H() that girls and 
boys are equally good at math unless we come across convincing evidence to 
the contrary. The alternative Ha would reasonably be taken to be that girls may 
be more talented at math than boys or vice versa. In other words, a two-tail 
test would be considered reasonable (a male chauvinist, however, may con
sider a one-tail test with Ha being that boys are superior to girls to be the 
appropriate alternative hypothesis). Let us now assume that we have some 
results that point to one gender being superior in math. As previously, our 
main question is, "Which is now more reasonable to believe, H() or Ha?" Once 
again, statistics cannot give a direct answer to this question and instead an
swers a subsidiary question like, "If H() were true, what is the chance that by 
pure coincidence we would get our results that just happen to make it look like 
Ha is true?" As discussed in the case of the sign test, the subsidiary question is 
actually a little more complicated than this. It is, "If H() were true, what is the 
chance that by pure coincidence we would get results that just happen to make 
it look at least as much in favor of the explanation Ha as the results that have 
actually been obtained?" 

Let us now assume that we perform an experiment to test our ideas on gen
der and math ability and we obtain the marks of six boys and four girls of 
similar ages on the same math exam (we assume that our sample of boys and 
girls is a representative sample as discussed near the beginning of Chapter 2). 
Let's say that we obtained the following results: 

Boys 63 72 45 48 27 51 

Girls 96 61 88 86 

These marks can now be combined and arranged in ascending order, with the 
prefix "b" representing the mark for a boy and "g" for a girl: 

b27 b45 b48 b 51 g 61 b 63 b 72 g 86 g 88 g 96 

Dropping the marks, we can simply write bbbbgbbggg. 
If H() is true, any arrangement of the six b symbols and four g symbols can 

occur. In fact, all possible arrangements of the six b symbols and four g sym-
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bols are equally likely. From Chapter 3 we know there are 10C4 = 210 ways of 
positioning four g symbols into ten slots with the remaining slots being occu
pied by b symbols. Most of these arrangements will have the b symbols and 
the g symbols pretty well interspersed, though a few arrangements will tend to 
have most of the b symbols at one end and most of the g symbols at the other. 
These latter arrangements, though, are in favor of Ha. In particular, the ar
rangement that we obtained suggests that the girls are better than the boys. We 
now want to ask the subsidiary question, "If H0 were true, what is the chance 
that by pure coincidence we would get results that just happen to make it look 
at least as much in favor of the explanation Ha as the results that have actually 
been obtained?" Before we can ask this question, though, we have to be able 
to define precisely what we mean when we say that have most of the b sym
bols at one end and most of the g symbols at the other. What we do is come up 
with a rule that gives a number that is 0 if all the b symbols are at one end and 
all the g symbols are at the other (bbbbbbgggg), gives a number that is small 
where there is a strong tendency for the b symbols to be at one end and the g 
symbols to be at the other (as in our current results), and gives a much larger 
number when the symbols are well interspersed (e.g., gbbgbbgbbg or 
ggbbbbbbgg). Once we have such a rule, we can sensibly ask the subsidiary 
question in this form: "If H0 were true, what is the chance that by pure coinci
dence we would get an arrangement that using the rule gives a number at least 
as small as the number obtained from our results?" 

The rule that has been devised is to look along the arrangement bbbbgbbggg 
and for each b symbol that occurs to count the number of g symbols to the left 
of it. Here the rule will give 0 + 0 + 0 + 0 + 1 + 1=2. We can do the same thing 
interchanging the roles of the g symbols and b symbols. This will give 4 + 6 + 
6 + 6 = 22. The rule goes on to tell us to take the smaller of these two numbers, 
and traditionally we call this number U. The smallest out of 2 and 22 is 2, and 
so the rule finally gives us U = 2 as a measure of the extent to which most of 
the b symbols are at one end and most of the g symbols are at the other. By 
contrast, the arrangement gbbgbbgbbg gives U = 12 (counting the number of 
g symbols before each b symbol gives 1 + 1 + 2 + 2 + 3 + 3 = 1 2 and counting 
the number of b symbols before each g symbol gives 0 + 2 + 4 + 6=12, and 12 
is the smaller of the two numbers 12 and 12). We now ask how many of the 
210 possible arrangements of four g symbols and six b symbols give a value 
of 2 or smaller. Let us list some of the 210 possible arrangements together 
with their U values: bbbbbbgggg (0), bbbbbgbggg (1), bbbbbggbgg (2), 
bbbbbgggbg (3), bbbbbggggb (4), bbbbgbbggg (2), bbbbggbbgg (4). Trying 
out all 210 arrangements we find that only bbbbbbgggg, bbbbbgbggg, 
bbbbbggbgg, bbbbgbbggg, ggggbbbbbb, gggbgbbbbb, ggbggbbbbb, and 
gggbbgbbbb have a U value of 2 or less. This is 8 arrangements out of 210 
possible arrangements. Under H(), each arrangement is equally likely, so if H0 

is true, coincidence alone will lead to a result at least as much in favor of one 
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gender as our results here only 8 out of 210 times. Our/? value is then 8/2io, or 
0.038. Using the traditional benchmark of 0.05 to be the upper limit of "hardly 
ever," we could say that if H0 were true, then, although a result of U = 2 is 
possible, we would "hardly ever" obtain such a result and so it is more reason
able to believe Ha. 

In practice, a declaration that one gender was intellectually superior in some 
respects could have major social implications and for this reason I personally 
would look for more convincing evidence before declaring to the world that 
girls are superior in math. After all, the evidence that we have could instead be 
explained by an 8 in 210 chance coming off. In coming to a conclusion, as 
well as weighing up the relative likelihoods of H0 and Ha, it is also reasonable 
to take into account the costs of incorrect conclusions. 

Sometimes an equivalent test to the Mann-Whitney test is referred to as the 
Wilcoxon rank-sum test, but this name can lead to confusion with the Wilcoxon 
signed rank test. 

Practicalities of Using the Mann-Whitney Test 

In the example, the test can be seen to be based on a random variable that 
can take values from 0 to 12 with various probabilities. However, as in the 
case of the Wilcoxon signed rank test, it is actually quite difficult to work out 
all these probabilities, particularly when the amount of data are large. There is 
no relatively simple formula for the probabilities here as there is for the bino
mial random variable. The pds computer program written to accompany this 
book does the exact calculations when numbers aren't large; otherwise it uses 
an approximate method. As in the case of the Wilcoxon signed rank test, the/; 
value calculated by the program assumes a two-tail test and, with the precau
tions discussed on pages 75-76, it may be appropriate to halve this p value 
where a one-tail test is appropriate. Again, ties in the orderings are dealt with 
using the principles described in the section on ties in the sign test on pages 69-70. 

OTHER DISCRETE RANDOM VARIABLES AND 
ASSOCIATED STATISTICAL TESTS 

So far we have covered three discrete random variables. In other words, we 
have covered three situations in which there is a particular pattern of chances 
spread out over a range of whole numbers. These random variables are the 
binomial random variable and the discrete random variables associated with 
the Wilcoxon signed rank test and with the Mann-Whitney test. In fact, there 
are an unlimited number of random variables, since there are an unlimited 
number of ways of dividing up probabilities between various numbers. How
ever, just a few discrete random variables are particularly useful and are given 
names. We will look at just one other discrete random variable. 
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The Poisson Random Variable 

The binomial random variable applies to situations in which there are n 
independent "trials" with probability 0 of "success" at each trial, giving a 
possible number of successes of 0, 1 , 2 , . . . , n. We can't get more than n 
successes in n trials. Often we deal with situations in which there is no theo
retical upper limit to the number of successes. For example, we may know 
that on average there are three beetles of some particular type per square kilo
meter of habitat. We may then reason that since there are 100 hectares in a 
square kilometer, the chance of finding a beetle in any hectare is about 0.03. 
The actual number of beetles (rather than the average three) in the whole square 
kilometer would then be approximately given by a binomial random variable 
based on 100 lots of 0.03 chances (i.e., X ~ Bi[100, 0.03]). Using the rules for 
the binomial random variable, we would be able to work out the probability 
that there were 0 or 1 or 2 or 3 or 4 or 5 or . . . or 100 beetles in the square 
kilometer. 

But why stop at dividing the square kilometer into hectares? Working with 
square meters (1 million to a square kilometer), we would have the total number 
of beetles approximately given by X ~ Bi( 1,000,000, 0.000003) and could simi
larly work out the probability that there were 0 or 1 or 2 or 3 or 4 or 5 or . . . or 
1,000,000 beetles in the square kilometer. Mathematically this process can be 
taken to the limit of an infinite number of infinitesimal chances but arranged 
so that the average remains three beetles per square kilometer. It turns out that 
the rule becomes 

where e is the number close to 2.7183. Note that all the derivation of the rules 
that we have gone through up to now are understandable by anyone with some 
high school math and a logical mind. However, the reason for the rule just 
given requires further mathematics. This is true of most of the rules from now 
on, but the principle remains that these probability rules follow from basic 
logical principles.2 

If, on average, we expect X beetles per square kilometer the rule becomes 

This random variable is known as the Poisson random variable (note that if 
k is 0 the rule will contain the expression 0!. This is taken to be 1. Also note 
that any number to the power 0, like \° , is also 1). The Poisson random vari
able applies to many situations in which the outcome may be any of the num
bers 0, 1,2, 3, 4, and so on without any upper limit. It applies at least 
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approximately in a huge range of situations: number of gold nuggets in a patch 
of ground, number of typo errors in a book, number of hurricanes in a given 
period of time, number of customers walking into a shop, number of patients 
walking into a casualty ward, or number of telephone calls received in a given 
period of time. As it is derived from a binomial, it is implicitly assumed, as in 
the binomial, that the occurrence of one event is independent of the occur
rence of all others. This is reasonable for short telephone calls. It would not be 
reasonable for long telephone calls, as one telephone call might interfere with 
the reception of other calls. It would also not be reasonable for beetles, unless 
they were solitary. 

If we know that the probability of finding a certain number k of gold nug
gets in a certain area is 

then the same principles that led to this rule show that the probability of find
ing k gold nuggets in twice this area is 

(provided the extra area is the same type of gold-nugget-bearing country as 
the original area). The principle extends in an obvious way, so that if we were 
dealing with, say, 2.56 times the original area, we would get a rule telling us 
our chances of getting any particular number of nuggets by replacing X in the 
formula by 2.56 x X. 

As well as being used to deal with questions purely concerning probability, 
the Poisson random variable can be used in statistical hypothesis testing. For 
example, say long-term records show that a town experiences one destructive 
hurricane every fifteen years. How unusual would it be for the town to have at 
least three destructive hurricanes in the next ten years? As it stands, this is just 
a probability question and we will go through the workings shortly. However, 
in ten years time if there had been three destructive hurricanes we may be 
interested in whether this experience could fairly be regarded as convincing 
evidence for an increased hurricane frequency. Other knowledge tells us that 
any increased hurricane frequency would be due to the greenhouse effect. Our 
H(), then, is that the greenhouse effect has not had a perceptible effect on hur
ricane frequency over the ten years, and Ha is that it has. Note that we have the 
same philosophical framework as before. What we really want is an answer to 
the primary question, "Are the increased hurricanes due to a change in climate 
(presumably) from the greenhouse effect, or have they occurred purely be
cause of some unlucky coincidences?" We cannot answer this question di
rectly. Instead, we answer the secondary question, "If we are going to put the 
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frequent hurricanes down to unlucky coincidence, what sort of coincidence 
are we dealing with?" If the answer to this secondary question is that it is the 
sort of coincidence that "hardly ever" occurs, then we infer that the most rea
sonable answer to the primary question is that the frequent hurricanes are due 
to the greenhouse effect. Using the reasoning discussed earlier in this chapter, 
the relevant coincidence is not just the chance of three hurricanes, but the 
chance of three or more. 

To start this problem, we need to know the X to put into the rule for the 
chances for various numbers of hurricanes in ten years. Since we expect on 
average one hurricane per fifteen years, we expect on average 2/3 hurricane 
per ten years, so X = 2/3. We want to know the chance of three or more hurri
canes. We could use the Poisson probability rule to calculate the chance of 
exactly three, exactly four, exactly five, exactly six, and so on. To get the right 
answer for "three or more" we would have to keep going forever. However, 
"three or more" is the same as "not zero, one, or two." We can therefore find 
the probability of zero, one, and two, add them up, and subtract from 1 to give 
the probability of "three or more." The calculation then is 

A calculator shows the probability is about 0.03. 
Note that the Poisson probability rule we have used may in fact not be 

appropriate, as like the binomial rule it implicitly assumes that hurricanes oc
cur independently of each other. The Poisson probability rule would not be 
appropriate if, for example, as a result of an imaginary variant of the el Nino 
effect, we always had no hurricanes for forty-four years and then in the forty-
fifth year we always had three. We would still have on average one hurricane 
every fifteen years, but we would get three hurricanes in a decade whenever 
the decade covered the forty-fifth year, which would happen by chance 10/45 = 22 
percent of the time (compare this with the probability of 0.03 or a 3% chance 
assuming hurricane numbers follow a Poisson random variable). In general, 
remember that calculations based on the Poisson random variable implicitly 
assume that the events, hurricanes, gold nuggets, whatever, occur at random, 
totally independent of each other. Often we can only make an educated guess 
about whether this assumption is reasonable. Presuming the assumption is 
reasonable, we go on to answer the primary question, "Do we believe that the 
excessive number of hurricanes is due to the greenhouse effect?" Here we also 
must make a judgment. Which is the more reasonable option to believe: (1) 
the greenhouse effect hasn't influenced the town's hurricane frequency, it just 
might seem that way as a result of a 3 percent chance coming off (H0), or (2) 
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the greenhouse effect has increased the town's hurricane frequency (Ha)? There 
is no right answer, only a judgment, but a judgment that is informed by the 
probability calculation that gave us the p value 3 percent. 

Statistical tests based on the Poisson random variable are less commonly 
used than the sign test based on the binomial random variable, the Wilcoxon 
signed rank test, and the Mann-Whitney test, each based on their own special 
random variables. In fact, there is no name for the test given in the previous ex
ample other than "a statistical test based on the Poisson random variable." Nev
ertheless, the Poisson random variable comes up reasonably often in statistics. 

SAMPLES, POPULATIONS, AND RANDOM VARIABLES 

We have discussed random variables because of their role in statistical tests. 
They are also used in statistics in a somewhat different context. Random vari
ables are used in the study of what a sample can tell us about a population. 

In a sample, each value we obtain is chosen from a population. For ex
ample, we might have a sample of women recording the number of children 
each has, and with a sample of size 4 we might get a set of values {0, 1, 0, 3}. 
Each value is chosen from the values for the entire population of women. The 
collection of values for the entire population of women could be summarized 
as a collection of several billions of the numbers 0, 1, 2, 3 , . . . , 30 (if 30 is the 
maximum number of children possible). Each of the numbers 0 to 30 occur in 
a certain proportion of the population. Choosing a value from this population 
is similar to choosing a value from a random variable which takes the values 
0, 1, 2, 3 , . . . , 30 with probabilities equal to the proportions in the population. 

In the theory of statistics, we can think of the sample as a set of values 
obtained from a random variable rather than a population. This abstraction is 
useful because it allows some desirable simplification. A random variable is 
usually fully specified by a couple of numbers, or parameters, inserted into a 
short mathematical formula. The probabilities specified by an appropriate ran
dom variable might then give a close match to the proportions in the popula
tion. On the other hand, describing the population without this simplification 
would require us to estimate many proportions. In the example here we would 
need to estimate thirty-one proportions, the proportion of women who have 
zero or one or two or . . . or thirty children. Even a sample of thousands would 
contain very few women with more than twenty children, so many of the thirty-
one proportions required to describe the population could not be accurately 
estimated. The method of using the sample to directly estimate the propor
tions would be inefficient because it fails to take into account that there is a 
pattern in the proportions to be estimated; for example, that past a certain 
number of children (the mode) the proportions of women with progressively 
more children tail off. The information in the sample is used more efficiently 
if we use the sample to estimate the couple of parameters in the mathematical 
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formula that, at least approximately, describe all thirty-one proportions. In
stead of dealing with the actual population, we are then dealing with a theo
retical description of the population by a mathematical formula that specifies 
the chance that a woman chosen at random will have a certain number of 
children. 

In the theory, then, we often think of the population as equivalent to a ran
dom variable. Being interested in the data because of what they tell us about 
the population is then the same as being interested in the data because of what 
they tell us about the underlying random variable that describes, at least ap
proximately, that population. The theory underlying much of statistics is then 
based on what samples can tell us about the underlying random variables. 

When we were dealing with summarizing data we defined the mean, or 
simple average, as one of the measures of where the data were centered, and 
the standard deviation as a measure of how spread out the data were. Now we 
are interested in the data for what they tell us about the population, and we 
have seen that this is equivalent to saying that we are interested in the data for 
what they tell us about the random variable that describes the population. It is 
therefore natural to ask how well the mean of the data and the standard devia
tion reflect where the underlying random variable is centered and how spread 
out it is. This raises the question of what we mean when we ask the question, 
"Where is a random variable centered and how spread out is it?" The defini
tions of center and spread for a sample can't be directly applied to a random 
variable. A random variable is a set of all the possible numbers that might 
occur, with various probabilities attached. The method of calculating the 
mean—adding all the values that actually have occured and dividing by the 
number of values—can't be applied directly to random variables. 

Expected Value 

The equivalent of the mean for a random variable is called the expectation 
or expected value of the random variable. It is the average of the numbers that 
might occur, but it is an average that also takes into account the probabilities 
of the various numbers occurring. The quick way of saying this is to say that it 
is a probability-weighted average of all the values that can occur. In math
ematical symbols, if the possible values of the random variable are x{, x2, x3, 
JC4, . . . , xn and these values occur with probabilities /?,, p2, p3, p4, . . . , pn, 
respectively, then the expected value is xx x px + x2 x p2 + x3 x p3 + x4 x p4 + . 
. . + xn x pn. The expected value of a random variable is often given the symbol 
JLX. For example, consider the random variable X ~ Bi(3, Vi). This takes the 
values 0, 1,2, and 3 with probabilities Vs, Vs, 3/s, and 7s, respectively. The 
expected value is then 0 x Vs + 1 x 3/g + 2 x 3/g + 3 x Vs - Wi. For example, the 
expected number of heads when a fair coin is about to be tossed three times is 
Wi. Likewise, the expected number of girls when a woman anticipates having 
a family of three children is Wi. 
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Variance and Standard Deviation 

The variance of a random variable is the probability-weighted average of 
the squared deviations from its expected value. If the values of the random 
variable that can occur are x{,x2, x3, x4y..., xn and these values occur with prob
abilities /?,, p2, p3, p4, . . . , pn, respectively, and the expected value is p, then the 
variance is (x{ - p)2 x px + (x2 - p)2 x p2 + (x3 - p)2 x p3 + (x4 - p)2 x p4 + . . . + 
(xn - p)2 x pn. For example, consider again the random variable X ~ Bi(3, Vi). 
The variance is (0 - 1 Vif x 78 + (1 - 1 Vif x 78 + (2 - 1 V&)2 x 78 + (3 - 1 Vi)2 x 
78 =

 3A. The standard deviation of a random variable is the square root of the 
variance and is often given the symbol a. 

Expected Value and Standard Deviation of the 
Binomial and Poisson Random Variable 

It can be shown that the expected value of a binomial random variable is n 
x 0. This is reasonable; it says that in some sense the average of what you 
would expect when you take n chances with each chance having probability 6 
of success is n x 0 successes. For example, if the sex ratio of some species was 
50-50 (6 = 0.5) and you examined ten individuals, you would expect five 
individuals to be female. If you looked at eleven individuals the expected num
ber of females would be 5.5. The expected value doesn't have to be a whole 
number, even though the random variable may only take whole number val
ues: The average number of children had by Western women is about 1.7, 
although no woman has exactly this number of children. 

It can be shown that the expected value of a Poisson random variable is X. 
This is reasonable, as X was used as the long-run average in the derivation of 
the rule for a Poisson random variable. The details of the derivation are be
yond the scope of this book. 

It can be shown that the standard deviation of a binomial random variable 
based on n trials with chance 0 of success each timejind a chance c}) = 1 - 0 of 
failure is JnQfy. For a Poisson random variable it is N X. Again, the details of the 
derivations are beyond the scope of this book.3 

Best Estimates 

We now return to the question of how well the mean and standard deviation 
of the data in a sample reflect the expected value and standard deviation of the 
underlying random variable. For example, is the sample mean the best esti
mate of the expected value that the sample can give us? Perhaps the median of 
the sample might be a better estimate? There is no answer to such questions 
that is true for all random variables. However, for most of the random vari
ables mentioned in this book (the lognormal mentioned in Chapter 5 is an 
exception), the mean and standard deviation of the sample are the "best" pos-
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sible indicators of the expected value and standard deviation of the underlying 
random variable. 

OPTIONAL 

This raises yet another question: What do we mean by "best"? There are a 
number of ways in which we can define "best." In many situations it turns out 
that the mean is the best estimate of the expected value of the underlying 
random variable according to all reasonable definitions of "best." The stan
dard deviation 

is the "best" estimate of the standard deviation a of the underlying random 
variable in one sense, but the formula 

gives an estimate that is "better" in another sense. In most situations the first 
formula is more appropriate. However, it is common for scientific calculators 
to have separate buttons for automatic calculation of both. The button for the 
first formula is commonly labelled s or crn_,, and this quantity is properly 
called the "sample standard deviation," and the button for the second formula 
is commonly labelled a or an. In practice, unless n is small there is very little 
difference between s and crn. The former is used to estimate standard deviation 
in the rest of this book. 

Returning to the question of what we mean by "best," there are several 
criteria that are used in deciding which formula gives a better estimate. For 
example, one criterion is that if we were to take many samples and use the 
formula on each sample to make an estimate, then the average of the many 
estimates should be the true value. Another criterion is that if we make many 
such estimates, the scattering of these estimates around the true value should 
be as narrow as possible. 

END OPTIONAL 
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SUMMARY 

• Random variables are sets of numbers with chances attached. 

• The binomial random variable applies when the numbers are the numbers of suc
cesses out of the number of independent trials. 

• The most important application of the binomial random variable is to the sign test, 
where our starting point is that we have a 50-50 chance of success in each trial. 

• The main application of the sign test is to situations in which we ask whether an 
individual is better or worse after an intervention. 

• The sign test can also be applied to pairs where one of each pair gets the interven
tion. In this case it is sometimes known as McNemar's test. 

• Ties are ignored in the sign test. 

• A p value is not the chance of getting our particular result if the null hypothesis, H(), 
is true. It is the chance that if H() is true we would get a result at least as suggestive 
of Ha as the result we actually obtained. 

• A one-tail test applies if we believe the effect of the intervention could only possibly 
be in one direction. If the effect of the intervention could be in either direction, we 
have a two-tail test. 

• The Wilcoxon signed rank test applies to the same situations as the sign test, but 
applies when we have more information than just "better" or "worse." 

• The Mann-Whitney test applies when there are two groups and there is enough 
information to allow the outcomes of all the individuals to be ranked in order. 

• Random variables are also convenient simplified representations of populations. The 
sample mean estimates the expected value of the random variable that represents 
the population. The sample standard deviation estimates the standard deviation of 
the random variable that represents the population. 

In short, statistical tests covered so far are designed to help answer the ques
tion, "Is there a difference?" This question is asked in various contexts ac
cording to the source of the data and the different types of data: 

Dichotomous (e.g., 
Source of data better or worse) data Numerical data 

Two related measures (e.g., Sign test Wilcoxon signed rank 
measures before and after an test 
intervention on the same 
individual; measures on one 
twin who had an intervention 
and the other twin who didn't) 

A single measure on two Fisher's exact test Mann-Whitney test 
unrelated samples (e.g., 
measuring the same quantity 
on men and women) 
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QUESTIONS 

1. Ten asthmatics were asked to compare the effect of salbutamol and fenoterol sprays 
in relieving their asthma attacks. Assume that salbutamol and fenoterol are equal 
in terms of effectiveness and side effects in all people, so that the preferences 
expressed are simply the reflection of a 50-50 random choice. 

a. With this assumption, what is the probability that (i) zero people prefer fenoterol 
to salbutamol? (ii) one prefers fenoterol? (iii) two prefer fenoterol? (iv) three 
prefer fenoterol? (v) four prefer fenoterol? (vi) five prefer fenoterol? 

b. How low would the number prefering fenoterol to salbutamol have to be be
fore you would believe that the results are not simply due to random chance 
but that salbutamol is a better drug? (Note there is no "right" answer.) 

2. It has been claimed that a small machine that releases negative ions into the air in 
the bedroom enhances natural sleep. 

a. Ten people try the machine for one night and nine say that they slept better and 
one person says she slept worse. Do you believe that the presence of the ma
chine enhances sleep? 

b. If thirteen people had tried the machine and nine had slept better, one worse, 
and three didn't find any difference, would you believe that the presence of the 
machine enhances sleep? 

c. If one-hundred ten people had tried the machine and sixty-five had slept better, 
thirty worse, and fifteen didn't find any difference, would you believe that the 
presence of the machine enhances sleep? 

3. Say that in your local hospital at present there are twenty patients with broken 
legs. Sixteen are male and four are female. Do you believe that there is a general 
tendency for more men than women to be hospitalized with broken legs? (As
sume that the sex ratio is 50-50 in your community.) 

4. On two occasions, 1,200 people each run races against a stopwatch. On one of the 
occasions each person does some mental arithmetic exercises just prior to the 
race but does not do so on the other occasion. Say 700 people ran better after 
mental arithmetic. Assuming mental arithmetic is entirely irrelevant to physical 
performance, use a computer to calculate how often you would expect to get re
sults at least this far out from the value of 600 out of 1,200 (the value most likely 
if mental arithmetic exercises are entirely irrelevant to physical performance). If 
you obtained this result, would you be reasonably convinced that prior mental 
arithmetic assists racing performance? 

5. A tour company runs a twenty-four-seat bus. Knowing that 25 percent of people 
don't keep their booking, they only regard their twenty-four-seater as "fully booked" 
when they have twenty-eight booked on the tour. However, they will occasionally 
be caught out by this policy and have to pay compensation when more than twenty-
four people on a "fully booked" tour do arrive to take their seats. In what propor
tion of "fully booked" tours will the company be required to pay compensation? 

a. Assume the tour company caters entirely to individuals who make their choice 
whether to proceed with the tour independently of each other. 
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b. Assume that all the tourists are traveling in family groups, with four in every 
family. Each family is independent of the other families, but if one member of 
a family can't come on the tour neither do any of the others in that family. 

6. Students are randomly assigned to receive individual tuition from teacher A or 
from teacher B. The marks of students attending teacher A are compared with the 
marks of students attending teacher B on a standard test. The marks for the A 
group are 75, 84, 63,42, 91, 87, 69, 73, 78, and 56. The marks for the B group are 
89, 80, 47, 68, 96, 92, 78, 74, 61, 83, 79, and 88. 

a. Perform an appropriate statistical test to determine whether there is convincing 
evidence that the effectiveness of the two teachers is different. 

b. Would your conclusions change if instead of individual tuition the scenario 
involved two classes for the two groups of students taught by teachers A and B? 

7. A group of people who regularly search the beach for lost valuables using metal 
detectors are asked to compare two different brands of metal detectors: brands A 
and B. The time in minutes for each person to find an item of value with each 
metal detector is recorded. 

BrandA 3 17 181 47 3 21 1 61 38 23 

Brand B 19 15 176 93 6 48 26 108 57 29 

Use a statistical test to decide whether there is reasonably convincing evidence 
that the two brands of metal detectors are not of equal effectiveness. 

8. On average, a surgeon sees three cases of acute appendicitis each week. What is 
the probability that over the next week the surgeon will see zero, one, two, three, 
four, and seventeen cases? 

9. On average a hematologist sees two new cases of acute myeloid leukemia each 
year. What is the average number of cases seen in three months? What is the 
chance the hematologist will see exactly four cases or four or more cases in the 
next three months? If, in fact, the hematologist does see four cases in the next 
three months, should he or she conclude that there is likely to be some new envi
ronmental factor responsible for these cases? 

NOTES 

1. This may happen if the amount of data examined by researchers isn't sufficiently 
large, the expected trend is not quite as strong as anticipated, or by sheer bad luck the 
data obtained turns out to be less convincing than it would normally be. The researcher 
may then have data that points in the appropriate direction but not in a completely 
convincing way. If statistics shows that chance alone could relatively easily explain 
the data (p > 0.05), then unthinking researchers would conclude that there is "no evi
dence" for the expected and observed trend. For example we may find statements that 
there is "no evidence" violent video games promote violent behavior, that there is "no 
evidence" that exercise promotes longevity, that there is "no evidence" that in-service 
training improves professional standards, and that there is "no evidence" that intensive 
fishing decreases fish stocks. Other examples in the same vein were given in on page 43. 

Person                1        2        3        4         5        6        7        8         9      10
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2. Those interested in the derivation here should look up the derivation of the expo
nential function in an algebra textbook for senior high school or introductory univer
sity students (for example, Durell, Advanced Algebra, p. 128) and should also look up 
the Poisson distribution in an introductory probability theory book (such as Ross, A 
First Course in Probability Theory, p. 129). A bibliography can be found at the end of 
this book. 

3. See Rice, Mathematical Statistics, pp. 111-113, or Ross, First Course, pp. 246-
248, for the derivations. 



C H A P T E R 5 

Continuous Random Variables and 
Some Statistical Tests Based on Them 

Often data consist not of whole numbers but of values picked from some
where over a continuous range. For example, data on the height of men would 
consist of values mostly picked from somewhere in the range 5' to 6'6". The 
important point is that the values are not generally separated from each other 
by whole numbers. If one man is 5'7.0000" tall, the next talleer man could be 
5'7.3062" tall. Since values are not necessarily separated by any fixed amount, 
the possible range of values is said to be continuous. 

When data were in the form of whole numbers they could be regarded as 
the outcome of a random variable that took whole number values. Such ran
dom variables—discrete random variables—were discussed in Chapter 4. In 
Chapter 4 we dealt with the binomial random variable, the Poisson random 
variable, and the random variables associated with the Wilcoxon sign rank test 
and the Mann-Whitney test. We used the theory of these random variables to 
work out probabilities concerning our data and this led to decisions about 
hypotheses. 

Data that consist of values from anywhere on a continuous range can be 
regarded as the outcomes of a different sort of random variable: a continuous 
random variable. Continuous random variables are a little harder to under
stand. They still comprise a set of numbers with chances attached, but because 
there are an infinitude of close-by numbers, no single number can have a finite 
probability attached to it. Instead, we think of the density of probability around 
values of interest. Probability is smeared out over a range of numbers, but the 
density of the smear varies. For example, it makes no sense to ask the prob
ability that a person is 170 cm tall, for nobody is exactly 170 cm tall if we take 
this to mean 170.0000000 cm tall and not 170.01386294 cm or any other 
number very close to 170.0000000 cm. However it does make sense to say 
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that the probability density for human height at 170 cm is 0.05 per cm, mean
ing that about 5 percent of people are between 170 cm and 171 cm. The about 
is italicized because the 0.05 probability density applies only right at 170 cm. 
By the time we get to 171 cm the value may be something a little different, so 
the 0.05 probability per cm figure won't usually apply across the whole centi
meter from 170 cm to 171 cm. The situation is a bit like speed: At a given 
instant a bicycle may be traveling at 5 meters per second, but if its speed is 
changing it will not cover exactly 5 meters in the next second. 

The situation is perhaps clearer with a graph. Say we have a graph consist
ing of a horizontal axis along which the various possible heights of humans 
are marked, with a curve above describing the distribution of human heights 
(see page 99). This curve is called the probability density function for human 
heights if the area under the curve, between two heights of interest, is the 
proportion of people between those two heights. Equivalently, the area under 
the curve between two heights of interest is the probability that someone cho
sen at random from the population will be between the two heights. 

We will deal with two related continuous random variables: the normal ran
dom variable and the lognormal random variable. The distributions of many 
continuous measurements that can be made in nature approximate either the 
distributions of the normal or lognormal random variables. The normal ran-
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dom variable arises when a large number of chance occurrences add together 
to give the whole. For example, height is determined by many factors added 
together. The factors include genes affecting the length of the various bones 
and nutrition before birth and during childhood, which in turn is the sum of 
many meals: All these influences add together to determine final height. The 
probability density function for human height is displayed here and shows a 
characteristic "bell-shaped" appearance. This is the shape of the probability 
density function of the normal random variable or the "normal probability 
density function" or the "normal curve." 

The lognormal random variable arises when a large number of influences 
are multiplied together. For example, the lognormal random variable describes 
the distribution of grains of sand on the beach. This random variable is the 
result of multiple splits from a larger rock. As discussed later, the final grain 
size is in some sense the result of multiplying together the effects of each split. 

THE NORMAL RANDOM VARIABLE 

Origin 

It is a remarkable fact that the result of adding many, many, small chance 
contributions together gives almost the same underlying pattern of numbers 
and probability density as make up the normal random variable, almost re
gardless of the way chance is attached to each contribution. For example, con-
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sider an animal that is equally likely to get zero, one, two, or three meals on 
any given day. Let's say the animal will grow 0.0 mm that day if it receives 
zero meals, 0.1 mm if it receives one meal, 0.2 mm if it receives two meals, 
and 0.9 mm if it receives three meals. The end result in terms of the animal's 
length in adulthood after several years will be a particular pattern of lengths 
and probabilities. This pattern can be closely approximated by a bell-shaped 
probability density function of a normal random variable. However, any dif
ferent pattern of meal probabilities and meal-related growth per day would 
give an almost identical pattern of lengths and probabilities for the adult ani
mals. For example, if the probabilities of zero, one, two, or three meals in a 
day were instead 72, 76, 76, and 7&, respectively, and the day's growth as a 
result of these meals was instead 0.0 mm, 0.3 mm, 0.6 mm, and 0.9 mm, 
respectively, the pattern of probabilities and lengths of the adult animal would 
be almost identical. The only differences would be in the position and spread 
of the approximating probability density function. No matter what the prob
abilities are for the various number of meals and no matter what the growth is 
for each meal, the end result would still be the bell-shaped probability density 
function of a normal random variable. This bell-shaped probability density 
function of a normal random variable satisfies a certain mathematical for
mula. The formula is a bit complicated and involves two parameters (a param
eter is a dummy letter that can take the place of any particular figure in a 
formula, like the 9 in the formula for the probabilities of the binomial random 
variable). It turns out that one of the parameters in the formula gives the loca
tion of the center, the expected value, of the normal random variable. This 
parameter is usually given the symbol p, the traditional symbol for the ex
pected value of a random variable. The other parameter gives the amount of 
spread of the probability density function as measured by the standard devia
tion. This parameter is usually given the symbol cr, the traditional symbol for 
the standard deviation of a random variable. 

Notation 

The shorthand for stating that the random variable X is a normal random 
variable centered on p and with measure of spread (i.e., standard deviation) a 
is X ~ N(p, a2) (there is a slightly confusing convention to use the symbol for 
variance, cr2, rather than the symbol for standard deviation, a, in the notation 
here). Such a random variable X can take any value from minus infinity (-oc) 
to infinity (o°), but values more than two or three times cr away from p are very 
rare (95% of the time a value from a normal random variable will be within 1.96 x 
a of p). If we are dealing with a situation in which the data that we have obtained 
consist of a scattering of values that are all particular outcomes of the same normal 
random variable X ~ N(p, a2), we say that our data follow a normal distribution 
or that our data are normally distributed with mean p and standard deviation 
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cr. The expressions "X is a normal random variable," "X has a normal distribu
tion," and "X is normally distributed" all have the same meaning. 

The Central Limit Theorem 

The remarkable fact that the end result of the addition of a huge amount of 
randomness generally results in a particular pattern of probability density en
tirely specified by just two parameters can be proved using advanced math
ematics. This result is known as the central limit theorem. In fact mathematicians 
have been so fascinated with the central limit theorem that they have produced 
a number of different proofs. The simplest proofs apply when the chance ef
fects are all of a similar tiny size and occur independently of each other. In the 
case of the length of an animal and the number of meals that it gets each day as 
it grows, the simple proof that the end result should be a normal distribution 
would apply only if two assumptions are true. These assumptions are that the 
chances concerning meals and growth each day are the same every day and 
that having a certain number of meals and growth one day has no effect on the 
chances for meals and growth the next day. There are more complex proofs 
that show that even when these assumptions are not strictly true, the end result 
is often still a normal distribution. 

Central Limit Theorem Exceptions 

The proofs are not valid in all cases. The exceptions include situations in 
which common sense would indicate that there would be limitations to the 
randomness. For example, in the case of the animals growing according to 
whether they had zero, one, two, or three daily meals, if there was extreme 
dependence between the meals for each animal so that any given animal al
ways got the same number of meals every day, then clearly the adult animals 
would all end up as one of just four possible sizes (depending on whether we 
are dealing with an animal that got zero or one or two or three meals each day 
throughout its life) rather than ending up as a scattering of sizes following the 
pattern of the normal random variable. The proof, that the end result of addition of 
a lot of randomness is a normal distribution, is also not valid when some of the 
chance effects are much larger than others. For example, despite the contrived 
example in a previous section, human height is not distributed exactly as a 
normal random variable, because two chance effects—whether we are deal
ing with a male or a female, a child or an adult—have a much larger effect on 
height than how much a person got for breakfast on some particular day of 
their childhood. However, the height of adult humans of one particular gender 
is distributed much closer to the ideal of a normal random variable. If some of 
the chance effects multiply or combine in other ways rather than simply add, 
the end result may also not closely resemble a normal distribution. 
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OPTIONAL 

Finally, as a mathematical curiosity, there are certain unusual random vari
ables or patterns of numbers with probabilities to which the central limit theo
rem doesn't apply. No matter how many such random variables we choose 
independently and sum, we never approach the pattern of a normal random 
variable. One such random variable is known as the Cauchy random variable. 
It applies if we mount a laser pointer on a horizontal wheel near a long straight 
wall, spin the wheel at random, and record the position of the light on the 
(infinitely) long straight wall when the pointer comes to rest pointing to any 
part of the wall. While the pointer will more often point at parts of the wall 
close by, extreme values are not uncommon. It turns out that the extreme val
ues are sufficiently common to prevent the mean of a number of such out
comes averaging out toward the more common values. 

END OPTIONAL 

For most of the remainder of this chapter we will assume that in all the 
examples we are dealing with data that are normally distributed. The last sec
tion of this chapter discusses modifications required when we are dealing with 
the real world, where not all continuous data are normally distributed. 

Calculations Based on the Normal Random Variable: 
The Standard Normal Random Variable Z 

An unfortunate aspect of normal random variables is that there is no neat 
formula giving the exact amount of probability between any two points. How
ever, approximate calculations of probabilities can be done using computers 
or statistical tables, and these calculations are simplified by using the follow
ing idea. The simplifying idea starts by noting that all normal curves have the 
same basic shape, they "look the same," and mathematically they are the same, 
except that they can differ in where they are centered, p, and how spread out 
they are, cr. The amount of area (probability) under the curve between two 
points on one curve is exactly the same as the area between the two equivalent 
points on any other normal curve. 

What do we mean by equivalent points? Say we wanted to know the prob
ability of obtaining a value between 0 and 1 standard deviations to the right of 
the mean from a normal random variable centered on p with standard devia
tion cr. In particular, say we knew that the mean height of women is 5' 6" and 
that the standard deviation is 3". Our question then becomes, "What is the 
probability that a woman chosen at random will have a height between 5' 6" 
and 5' 9"?" The answer is that the probability of such a value is the same as the 
probability of obtaining a value between 0 and 1 standard deviations to the 
right of the mean from any other normal random variable. In particular, if we 



Continuous Random Variables 103 

use as a standard the normal random variable centered on 0 with standard 
deviation a = 1, then the probability of being between 0 and 1 standard devia
tions to the right of the mean is the same as the probability of being between 0 
and 1. The standard normal random variable is therefore defined as the normal 
centered on 0 with measure of spread (or standard deviation) 1. It is usually 
denoted Z, so in symbols, Z ~ N(0, l2). 

Probabilities concerning any normal random variable can therefore be re
lated to probabilities concerning the standard normal random variable, and 
these probabilities can be obtained from tables or a computer. In particular, 
the pds program shows that the probability of a value between 0 and 1 from a 
standard normal distribution is 0.3413, so this is the probability that a woman 
chosen at random will have a height between 5' 6" and 5' 9". Equivalently, we 
can say that 34.13 percent of women are between 5' 6" and 5' 9". Note that the 
pds program doesn't give us this answer in a completely direct way. Instead, if 
we click on "statistical function," then click on "normal," and then type " 1 " in 
the box "z value," we get the answer that there is a probability of 0.8413 of 
obtaining a value less than 1 from a standard normal distribution. Equiva
lently, 84.13 percent of values are less than 1. The standard normal distribu
tion is symmetrical around the value 0, so that 50 percent of the time we get a 
value less than 0. Therefore, if we deduct the 50 percent of values that are less 
than 0 from the 84.13 percent of the values that are less than 1, we find that 
34.13 percent of values are between 0 and 1 (see Figure 5.1). 

Sometimes it will be convenient to turn to tables of the standard normal 
random variable rather than turn on a computer program. These tables can be 
designed in various ways, but often show just probabilities of being less than 
a certain number of standard deviations to the right of the mean. Such a table 
is included as the appendix to this book. We may need to use symmetry to 
obtain the probabilities that we are interested in. For example, say we were 
interested in the chance that a woman chosen at random was between 5' 21/4" 
and 5' 5W. Since the mean is 5' 6", we see that 5' 5 W is 3A" below the mean. 
Since the standard deviation is 3", we see that this W is lA or 0.25 standard 
deviations to the left of the mean. Likewise, 5' 214" is 1.25 standard deviations 
to the left of the mean. The required probability is then the probability of a 
value between 0.25 and 1.25 standard deviations to the left of the mean. This 
is the same as the probability of a value between -0.25 and -1.25 on a stan
dard normal curve. By symmetry, this is the same as the probability of a value 
between +0.25 and +1.25 on a standard normal curve. In turn, this is the prob
ability of being less than +1.25, take away the probability of being less than 
+0.25. To look up the probability of being less than +1.25, turn to the Appen
dix, go down the page until you come to the 1.2 label in the left-hand most 
column, then move across the 1.2 row to the column headed 5. The entry here 
is 8943, indicating that the required probability is 0.8943. Likewise, the prob
ability of being less than 0.25 is 0.5987. The required probability of being 
between 0.25 and 1.25 is then the difference between these two probabilities, 
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Figure 5.1 
Equivalent Points 

0.2956. In other words, if it is true that the mean height of women is 5' 6" and 
women's heights are normally distributed with a standard deviation of 3", then 
the probability that a woman selected at random is between 5' 2V4" and 5' 5 W 
is 0.2956. Equivalently, 29.56 percent of women are in this height range (see 
Figure 5.2). 

More generally, if we want to find the probability of a normal random vari
able X ~ N(p, a2) taking a value between a and b, we find out how far each of 
a and b are from p in terms of units of standard deviations, a, and find the 
probability of being between each of these many units from zero in the case of 
the standard normal random variable. In particular, the distance between a 
and p is a - p, and measured in terms of standard deviations rather than in the 
original units this distance represents 

standard deviations. Likewise, b is 
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Figure 5.2 

standard deviations from p. The probability of Xbeing between a and b is then 
the same as the probability of the standard normal random variable Z being 
between 

In effect, we deal with probability calculations by turning the normal ran
dom variable X, centered at p and with standard deviation or, into a standard 
normal random variable by taking away p from all the values X and dividing 
by a. In symbols, 

where Z is the standard normal random variable. 
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Examples of the Use of a Normal Random Variable 

1. What is the probability of obtaining a value of less than 1 from a standard normal 
random variable? It helps to refer to a diagram of the normal distribution, such as 
Figure 5.1. The probability required here is denoted by all the area under the 
curve to the left of+ 1 standard deviation. This value is given directly as 0.8413 by 
the pds computer program, as explained in the first example of the previous sec
tion. Similarly, looking up the value corresponding to z = 1.0 in the table in the 
Appendix shows the probability 0.8413. Therefore, there is about an 84 percent 
chance that a value obtained from a standard normal random variable will be less 
than 1. 

2. What is the probability of obtaining a value of less than 1.645 from a standard 
normal random variable? The answer can be obtained directly from the computer, 
as previously described. If using the Appendix table, go across the row z = 1.6 
until you get to the column headed 4. The entry here tells us that the probability of 
a number less than 1.64 is 0.9495. The next entry on the right under the column 
headed 5 tells us that the probability of a number less than 1.65 is 0.9505. We can 
then "interpolate" and conclude that the chance of getting a value that is less than 
the halfway point between 1.64 and 1.65 is halfway between 0.9495 and 0.9505, 
or 0.9500 (95%). 

3. What is the probability of obtaining a value between -1.96 and +1.96 from a 
standard normal random variable? From the table we see that 97.5 percent of the 
time we get values below z = 1.96. Therefore, 2.5 percent of the time we get 
values above this. By symmetry, 2.5 percent of the time we get values below -1.96. 
Therefore, we get values in the range -1.96 to +1.96, 95 percent of the time. 

4. If the distribution of the weights of adult humans is described by a normal random 
variable with mean 70 kg and standard deviation 10 kg, what proportion of people 
are between 50 and 90 kg? Asking for the proportion in this range is equivalent to 
asking the chance that any one person, chosen at random, will be in this range. If 
the weights that might occur when we are about to choose someone at random are 
denoted by X, the information in the question tells us that X ~ N(70, 102). We 
convert X to Z by first taking away 70 and then dividing by 10, so that a weight of 
50 is equivalent to a Z value of-2 , and a weight of 90 is equivalent to a Z value of 
+2. In other words, the 50 kg is measured as 2 standard deviation units below the 
mean and the 90 kg is measured as 2 standard deviation units above the mean. 
Using the Appendix table as in example 3, we see that 1 - 0.9772 or 2.28 percent 
of the time we get a Z value above 2; likewise, 2.28 percent of the time we get a 
Z value below -2 . Therefore, 95.44 percent of the time we get a Z value in the 
range -2 to +2. As explained already, this means that 95.44 percent of people 
have weights in the range 50 to 90 kg (this assumes, of course, that it is in fact true 
that weights are distributed as described here). 

5. If the yearly minimum temperature in a town is normally distributed with mean 
9°C and standard deviation 3°C, what is the chance that this winter the town will 
experience a temperature below freezing (0°C). The answer that follows uses the 
same logic as in previous examples, but we use this example to show how the 
logic can be expressed in more compact notation. The compact answer is that 
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In other words, there is a 0.135 percent chance or 1 in 740 chance. Put another 
way, if climate was not changing and yearly minimum temperature truly followed 
a normal distribution, we would expect on average one winter with subzero tem
peratures every 740 years. 

THE LOGNORMAL RANDOM VARIABLE 

As discussed before, the lognormal random variable is the result of the 
multiplication of a large number of chance effects. It can also be obtained by 
taking a normal random variable and using it as an exponent, Y = ex. Con
versely, the lognormal random variable can be changed into a normal random 
variable by taking logs.1 This result is related to the fact that taking logs in 
effect turns multiplications (as in the multiplication of a large number of chance 
effects) into additions (as in the addition of a large number of chance effects). 
Like the normal random variable, the lognormal random variable is deter
mined by two parameters, but its mean and standard deviation are more com
plicated functions of the two parameters. (Note the average of 2 and 4 is 3, but 
the average of 102 [= 100] and 104 [= 10,000] is not 103 [= 1,000]). This simple 
example shows that even though the average of X is p and Y = ex, we should 
not expect the average of Y to be e*.) The lognormal random variable can take 
values from 0 to °°. A noteworthy feature is its very long right-hand tail. Ear
lier, one example of a lognormal random variable that was given was the size 
of grains of sand on a beach. In a sense, the size of a particle of sand depends 
on multiplying out the effects of all the splits in the original rock. For ex
ample, one particular grain of sand comes from a rock that was first split into 
equal halves. Then say that it was the right half that eventually gave rise to the 
grain, and that the right half was split one-third and two-thirds. Then say it 
was the two-thirds fragment of the right fragment that eventually gave the 
grain, and then the two-thirds fragment of the right fragment that eventually 
gave the grain was split into one-quarter and three-quarters. Then say it was 
the one-quarter that eventually gave rise to the grain, and so on many, many 
times. The size of the grain equals the size of the original rock x Vi x 2A x lA 
and so on many, many times. 

A physical manifestation of the fact that the lognormal random variable has 
a very long right-hand tail is that there is an occasional sizeable pebble, even 
on a beach that consists mostly of fine sand. The lognormal distribution with 
this lack of symmetry—a long right-hand tail but a much smaller left-hand 
tail—is said to be positively skewed. In most of our work we will deal with 
normal random variables. Lognormal random variables are most easily dealt 
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with by changing them to normal random variables by taking the log of the 
values; that is, the log of the size of the grains of sand on the beach are nor
mally distributed. 

HYPOTHESIS TESTS BASED ON 
THE NORMAL DISTRIBUTION 

As with our work on discrete random variables, the ultimate purpose is to 
make decisions: Is it reasonable to believe that relaxation tapes really increase 
the duration of sleep, or is it reasonable to believe that girls are better at math 
than boys? In Chapter 4 we made these decisions after making certain prob
ability calculations. However, the calculations took into account only the or
der or ranking of the data values, not the actual values. In this chapter, instead 
of using just the ranking of the data values we will use the actual data values in 
making the relevant probability calculations and, hence, decisions. This ap
proach, though, assumes that the values come from a normal distribution. This 
assumption may be justified by the central limit theorem, but sometimes the 
assumption will not be reasonable. Before coming to the examples of relax
ation tapes and sleep or gender and math ability, we will start with a particu
larly simple situation. We will deal first with making a decision about whether 
just one particular data value comes from a known normal distribution. 

Testing the Null Hypothesis That a Single Data Value 
Comes from a Normal Distribution with 
Known Mean and Standard Deviation: The z Test 

It is unusual for a statistical test to be performed when there is just one data 
value. However, it is perfectly valid to do so. Little calculation is required and 
so it is easy to focus attention on the underlying philosophical principles. One 
example is given to illustrate the procedure and the underlying philosophy. 

Say we were interested in physical anthropology and in particular we were 
interested in whether women from Madagascar were the same height as Ameri
can women. I assume that I am dealing with an American readership that has 
no direct knowledge about the height of Madagascans, but who in the absence 
of any knowledge would assume that Madagascans have the same height dis
tribution as Americans. Our null hypothesis, H0, is just that: Madagascan women 
have the same height distribution as American women, so the average height 
of Madagascan women is the same as the average height of American women. 
Our alternative hypothesis, Ha, is that Madagascan women have a different 
height distribution than American women, so that the average height of 
Madagascan women may be either smaller or larger than the average Ameri
can woman's height. Let us then assume that we know that the height of Ameri
can women is normally distributed with p, = 5' 6" and cr = 3". Let us also 
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assume that we have met our first Madagascan woman, a tourist in the United 
States, and that she is 4' IOV2". We need to also assume that this woman was 
chosen at random, without regard to height, from the Madagascan population. 
In other words, this Madagascan woman was as likely to be measured by us as 
any other Madagascan woman (if shorter people in Madagascar were for some 
reason more keen or more able than average-size Madagascans to obtain trips 
to the United States, the reasoning that follows would not be valid). 

We start our calculation by assuming that H0 is true, so we assume that the 
Madagascan woman has a height that has been chosen at random from a nor
mal distribution with p = 5' 6" and a = 3". The woman we have just met is IV2 
or 2.5 (= IViiy') standard deviations below the mean. Computer programs or 
statistical tables show that 98.76 percent of the time values chosen at random 
from a normal distribution will be closer to the mean than 2.5 standard devia
tions and only 1.24 percent of the time will they be at least as far from the 
mean as is our Madagascan woman (0.0062 is the probability of a value < -2.5 
and 0.0062 is the probability of a value > +2.5, so 2 x 0.0062 = 0.0124 is the 
probability of being outside the range -2.5 to 2.5). We then have to weigh two 
options: "H() is true, Madagascan women have the same average height as 
American women, and our unusual result from our one Madagascan is ex
plained by a 1.24 percent chance coming off," or "Ha is true, the height distri
bution of Madagascan women is different from that of American women, and 
this explains why our Madagascan woman does not have the height of usual 
American women." As in the previous chapter, we make our decision by com
paring our p value of 0.0124 with some benchmark p value. As before, the 
benchmark/? value describes the sort of coincidence that would be just suffi
cient to make us change our minds about whether we were dealing with the 
combination "H0 with coincidence" or whether we were dealing with a real 
difference, Ha. If we believed that it is appropriate to use the traditional bench
mark p value of 0.05, we would note that 0.0124 is less than 0.05 and con
clude that Madagascan women are smaller than American women. Formally, 
we would state that we have statistically significant evidence (or the evidence is 
statistically significant at the 0.05 level) that Madagascan women are smaller than 
American women. It is entirely a matter of personal judgment whether we be
lieve that the 0.05 benchmark/? value is appropriate. However, it seems reason
able to me to use 0.05 here. It would be convenient not to have to store an extra 
fact in our brains that Madagascans have different heights to Americans, so we 
shouldn't discard H0 because of evidence that could very easily be attributed 
to chance. On the other hand, it is clear that there is some racial variation in 
height in some instances so it would be silly to persist with the belief that there 
is no racial differences in height between Americans and Madagascans in the 
face of evidence that was difficult to explain by chance alone. With no great 
concern involved about the relative likelihoods of H() and Ha and no great 
concern about the costs of making an error in either direction, it would seem 
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reasonable to me to use the traditional 0.05 benchmark/? value and so I would 
conclude that Madagascan women are shorter than American women. 

Many people learning statistics seem to be upset by this type of example: 
There is a feeling that a single case constitutes evidence that is far too flimsy 
to justify any conclusion. There are several points to be made here: 

The first point is that it is not the number of cases that constitutes the strength 
of the evidence. The strength of the evidence is given by the probability calcu
lation made on the assumption that H0 is true. The result of this probability 
calculation is the p value, which tells us how easy or how hard it would be for 
coincidence alone to explain the result. A difference in heights with a/? value 
of 0.0124 with one case is just as likely to be a real difference as a difference 
in heights with a/; value of 0.0124 based on 100 cases. The value in taking 
100 cases instead of one case is that smaller real differences will show up as 
being too big to be reasonably blamed on chance. If we had 100 cases we 
would get a p value of 0.0124 when the average height of the 100 Madagascans 
was only 3A" less than the average height of the Americans. The calculation 
here is explained later. Conversely, although this single case gave us reason
ably convincing evidence that Madagascans differ from Americans, it would 
probably not have done so if Madagascans were only slightly smaller than 
Americans. 

The second point is that even after taking on board the first point many 
people might still regard the evidence on which we are making a decision 
between H() and Ha as unreasonably flimsy. It could well be that we are con
cluding that Madagascan women are smaller than American women simply 
because the one Madagascan we happened to meet was one of the five out of 
every hundred Madagascans who have heights that are uncommon in both 
Madagascar and the United States. However, in this example we have used the 
same strength of evidence (p - 0.05 benchmark) that is used throughout the 
scientific world. In the real world we often have only flimsy evidence and we 
have to decide on that basis what is reasonable to believe. If we had more solid 
evidence we wouldn't need to use statistics. Unfortunately, many phenomena 
in the real world are subject to great variability and uncertainty, yet we still 
have to make decisions about factors that may have some influence on the 
phenomena. We have to do this even though the size of the influence is so 
small that it could easily be mistaken for the result of random variation. For 
example, many lifestyle and dietary changes and preventive medical interven
tions may only make a small amount of difference to the number of initially 
healthy people who are likely to die in five years. However, we will want to 
decide whether any differences in the death rate at five years are "for real" or 
just due to chance so we can decide what lifestyle and other interventions are 
worthwhile recommending. In this situation we are likely to be content to 
make a decision with evidence no more convincing (as assessed by p values) 
than our decision in the case of Madagascan women. To wait for the evidence 
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to become much more convincing would require that we wait until most of the 
people trying out the different lifestyles that we are interested in have lived out 
their lives. It would require us to wait for a lifetime to get answers. 

Some may continue to protest that statistical analysis is only valid if we 
have a representative sample, and they may argue that the height of one person 
cannot fairly represent heights in a whole nation. However, this protest is not 
valid. Statistical analysis requires representative samples, but the term "repre
sentative" here does not imply the usual full literal meaning of the word; it 
does not require that any individual in the sample be a typical representative 
of her nation. All that is required for our analysis to be valid is that each 
person in the sample is chosen entirely at random so that every person in the 
population has an equal chance of being chosen. If Madagascans are the same 
as Americans, then a randomly chosen Madagascan woman will have a 95 
percent chance of being in the same height range as 95 percent of American 
women. If she is not in this height range, then using the benchmark/? value of 
0.05 we would regard this outcome under H() as too much of an unlikely coin
cidence and would rather believe that Madagascan women are different. We 
see that a sample of one is representative in the sense required by statistics, 
provided the single person has been chosen entirely at random. 

It should also be noted that although we have only one piece of information 
about Madagascan women, we are comparing this information with complete 
knowledge of American women, knowledge that would have required a large 
number of measurements. 

SAMPLING DISTRIBUTIONS 

It is unusual for only one measurement to be available. More commonly a 
number of measurements are made of the same phenomenon. We measure the 
values from a sample of individuals obtained from the same population. We may 
measure the heights of a number of Madagascan women. We then want to use 
information from all these measurements to test the hypothesis that Madagascan 
women have the same height on average as American women. What sort of in
formation should we use? The most obvious answer is that we should use the 
average of the measurements. Provided the underlying distribution is normal, 
mathematical theory agrees that this obvious answer is also the "best" answer. 

We are then faced with a problem. We know that according to the null hy
pothesis individual measurements come from a particular normal distribution, 
and we have seen how to use this fact to obtain /? values to help make sensible 
decisions about the truth of the null hypothesis. We are now dealing with an 
average, but it is the average of numbers that are subject to variation; hence, 
the average is subject to variation. We then need to know the distribution of 
the average of a number of measurements in order to use a group average to 
test a hypothesis in the same way as we used an individual measurement to 
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test a hypothesis. Although the proof is beyond the scope of this book, the 
answer turns out to be simple (for proofs, see the probability and statistics 
texts in the bibliography). If the individual measurements are chosen indepen
dently of each other and come from a normal distribution with parameters p 
and a, then the average of n measurements comes from a normal distribution 
with parameters p and 

Even if the individual measurements don't come from a normal distribution 
but come from some other distribution with expected value p and standard 
deviation CT, then usually, if n is large (say 20 or more), the average of n mea
surements will usually have a distribution very similar to a normal distribution 
with parameter p and standard deviation 

This result is a consequence of the central limit theorem. 
This distribution of sample averages is known as a sampling distribution. In 

colloquial language, the sampling distribution tells us that the average of a 
whole lot of things that vary a fair bit about some central value will be some
thing that varies about the same central value, but the amount of variation is 
reduced by a factor of the square root of the number of things used in calculat
ing the average. This matches our intuitive idea that the average of a whole lot 
of measurements will be close to the true long-run average, but goes further 
and tells us how close to the true average we are likely to be. The fact that the 
factor by which standard deviation is reduced in going from individuals to 
groups is Jn requires some mathematics to prove, but it is related to the square 
root sign in the definition of standard deviation. Further explanation is beyond 
the scope of this book. 

For some of the work that follows, translation of these statements into math
ematical symbolism is useful, because once people get used to the symbolism, 
reasoning can be expressed more simply and precisely. In symbols, let X, 
describe the value we may obtain on our first measurement, and X2 describe 
the value we may obtain on our second measurement, Z3 the third measure
ment, and so on. The result of averaging lots of random variables (sets of 
numbers with chances attached) is another random variable (set of numbers 
with chances attached). This average random variable is denoted 
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If Xl ~ N(p, cr2) where the subscript / denotes the /th measurement and the X, 
are independent of each other so that each, of the n values are to be chosen 
independently from the same normal distribution, then 

or, equivalently, 

Therefore, noting the argument on p. 105, we have 

where Z is the standard normal random value. In other words, 

Briefly, we can say that if the individual measurements come from a normal 
distribution with parameters p and cr, then the average of n measurements 
comes from a normal distribution with parameters p and ^/Jn- However, 
we need to keep in mind the important proviso in the more careful state
ment in the previous paragraph. The distribution with parameters p and °V^ 
for the average of n measurements is only true if the individual measure
ments are chosen randomly and independently of each other. While this 
may seem an obscure requirement, failure to satisfy this requirement is in 
fact a major pitfall in practical statistics. If to save time we measured heights 
of a group of people in the same household instead of choosing each per
son in the sample for measurement independently, then it would not be so 
surprising to end up with a group of people who are all dwarves, since people 
in the same household tend to be related and may all have dwarfism for 
genetic reasons. If we chose people from separate households, obtaining a 
dwarf from every one would be most unlikely. The average height of house
hold groups will be more variable than the average height of groups of 
individuals who have been selected independently of each other. It is not 
possible to predict the variability of groups where the individuals are not cho
sen independently. 
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Example of Use of Sampling Distributions in Calculations 

Problem: Intelligence as measured by IQ testing is said to be N(100, 152). 
According to the normal distribution table, a proportion of 0.1587 of all people, 
or 15.87 percent, have an IQ at least one standard deviation or 15 above the 
mean of 100. In other words, an IQ of 115 is the dividing line between the 
cleverest 15.87 percent of people and the rest of us. Now assume that for some 
reason many groups of four people have been formed in which each member 
of each group has been chosen randomly and independently of the others and 
the average IQ of the group of four is measured. What IQ level is the dividing 
line between the cleverest 15.87 percent of the groups of four and all the oth
ers? Equivalently, find the IQ level such that there is a 15.87 percent chance of 
the average IQ of the group being above this level. 

Solution: If the standard deviation of individuals is 15, the standard devia
tion of the average of such groups of four is 

We are dealing with a normal distribution with mean 100 and standard devia
tion 7.5. The required value is one standard deviation above the mean. It is 
therefore 100 + 7.5, or 107.5. If we repeat the question for the average IQ of a 
group of thirty-six individuals each randomly chosen independently of each 
other, the standard deviation for the group average is 

The answer is then that the required IQ level is 102.5. 
If we repeat the question for a randomly chosen class of thirty-six children, 

no solution is possible. If the class has been chosen randomly, any child is as 
likely to be chosen as any other child in the population, so it is true to say that 
each child is chosen randomly. However, the children are not chosen indepen
dently of each other: They are all in the same class. If the first child we mea
sured was well below average, it would be likely that some socioeconomic 
disadvantage may have contributed to his or her poor performance, and if so 
this socioeconomic disadvantage would be likely to be shared by other chil
dren in the same class who would probably come from the same locality. The 
average of classrooms of thirty-six children will therefore be more variable 
than the average of groups of thirty-six unconnected (i.e., independently ran
domly selected) children. Exactly how much more variable would be impos
sible to predict without further information. 
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Testing the Null Hypothesis That the Mean of the Data 
Comes from a Normal Distribution with 
Known Mean and Standard Deviation: The z Test Again 

Most times we are interested in the possibility of changes that are not so 
convincing that they stand out with a single measurement. If we measured the 
heights of 100 Madagascan women and the average height was 5' 5VA\ should 
we believe that Madagascan women are smaller than American women? Again 
we assume that we know that American women have heights described by a 
normal distribution with p = 5' 6" and CT = 3". Here the null hypothesis is the 
same as in the case of the height of a single Madagascan woman. In other 
words, we start with the belief that Madagascan women have the same height 
distribution as American women and that it is appropriate to maintain this 
belief and attribute any difference that we find to coincidence unless the coin
cidence is of the sort that "hardly ever" occurs. As in the previous example 
regarding the height of Madagascan women, I would regard it as reasonable to 
use the traditional benchmark p value of 0.05 or 5 percent as an appropriate 
specification of "hardly ever" in this situation. We will assume that each woman 
is selected randomly so that each woman chosen yields a value randomly se
lected from the normal distribution. We will also assume that the women have 
all been chosen independently of each other. From the previous section, we 
know that the average of 100 values from a normal distribution with p = 5 '6" 
and cr = 3" will be a value from a normal distribution with p = 5'6" and stan
dard deviation - 37v 100 = 3710 = 0.3". Our value of 5'5lA" is %" or 2.5 (= 
0.7570.3") standard deviations below the mean. This is the same number of 
standard deviations as in the case of the single Madagascan woman of 4' lOW. 
As previously, computer programs or statistical tables show that 98.76 percent 
of the time values chosen at random from a normal distribution will be closer 
to the mean than 2.5 standard deviations. Since average heights would be at 
least as far out as 2.5 standard deviations less than 5 percent of the time, we 
conclude that there is evidence that Madagascan women are shorter than Ameri
can women that is statistically significant at the 5 percent level. 

We assess the strength of our evidence against the null hypothesis by find
ing out how small the chance is of obtaining results at least as extreme as ours 
by sheer coincidence. Therefore, we can say that the evidence we have ob
tained from 100 Madagascan women is exactly the same strength as the evi
dence we obtained from 1 Madagascan woman, since in both cases p = 0.0124. 
Why then bother measuring 100 Madagascan women when one would do? 
The answer is suggested by the examples. When measuring one Madagascan 
woman we would have a 50-50 chance of getting a woman as small as we did 
only if the average Madagascan woman was 4' IOV2"; that is, IV2 smaller than 
American women. So with one Madagascan woman we would have a 50-50 
chance of getting evidence against the null hypothesis that was less convinc-



116 Statistics with Common Sense 

ing than the evidence we obtained, even though the mean height of 
Madagascans was IVi" shorter than Americans. When measuring 100 
Madagascans the same calculations apply when the height difference is only 
%". In general, the more data values we have, the more likely we are to come 
to correct conclusions about small but real differences. 

One extra bit of jargon is useful here. In the calculations there are two dif
ferent standard deviations that are relevant. There is the standard deviation of 
individual values, CT. There is also the standard deviation of the average value 
of a group of individual values, 

To reduce confusion, the latter is given a separate name. It is called the stan
dard error of the mean or simply the standard error. 

Here is a second example, using some mathematical symbolism in place of 
words. It is believed that radioactive particles in the atmosphere are a factor in 
causing leukemia. With many poisons there is a safe dose, in the sense that a 
small enough dose will cause no harm at all. However, radiation biology sug
gests that in the case of atmospheric radiation there is no safe dose: Small 
increases in atmospheric radiation will cause a small increase in risk. How
ever, this small risk applied to each of a large number of people will result in 
small increases in leukemia incidence and hence deaths. The example then 
concerns radiation levels after a minor nuclear accident. Say we knew that radia
tion levels over a city used to be normally distributed with a mean of 100 and 
standard deviation of 30. Let's say that after an accident at a nearby nuclear plant 
we took twenty-five measurements of atmospheric radiation and we obtained an 
average level of 124. Does this provide evidence of increased radiation? 

We follow the traditional statistical approach to answering this question by 
starting with the null hypothesis H0, that the postaccident radiation levels are 
distributed in the same way as the preaccident radiation levels, with a normal 
distribution centered on 100 and a standard deviation of 30. Note that the 
reasoning we are using in this particular example would, for most fair-minded 
people, not be credible. To convince those who would want to believe that the 
accident has caused no pollution, we are saying that, in the first instance, we are 
happy to pretend that there is no increase in atmospheric radiation as a result of the 
accident even though we know that nuclear accidents often release radioactive 
particles into the air. We are going even further and are saying that we will be 
persuaded that there is a real increase only if whatever increase we actually en
counter can't easily be put down to a coincidence. Perhaps there is some reason to 
believe that in the case of this particular accident absolutely no radiation has 
been released into the air or that a strong wind had blown all radioactive par
ticles away from all population centers and all radioactive particles have been 
deposited where they will not encounter humans until they have decayed. Oth-
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erwise, our starting point, our null hypothesis or H0, is an abuse of statistics 
and we really should not consent to such a null hypothesis. We note that the 
question, "Is there evidence that the nuclear accident has increased atmospheric 
radiation?" would be more rational if it were rephrased as, "Say we were to 
completely ignore the common sense that tells us that a nuclear accident is of 
itself evidence of increased atmospheric radiation and instead we were to look 
at the figures alone, would these figures give us convincing evidence of in
creased atmospheric radiation?" The null hypothesis that there is no increase 
in atmospheric radiation is employed here to illustrate the calculations, but its 
unreasonable use here also illustrates the widespread misuse of statistics. 

In general, if the null hypothesis tells us that individual values Xt are N(p, cr2) 
(i.e., normally distributed with mean p and standard deviation CT), then under 
H() the average of our data, X, will be 

and we can judge the probabilities of various values of X by using the fact that 

will then have a standard normal distribution. 
If we start with Xl ~ N(100, 302), then the theory tells us that the random 

variable describing the average of twenty-five such measurements has stan
dard error30/& = 6, so X ~ N(100, 62). Then 

Another way of expressing this result is to say that an x value of 124 is equiva
lent to a z value of 4 and that z values at least as large as 4 occur only 0.0032 
percent of the time. Here we have introduced new jargon. X as before is a 
random variable, as it is the set of values that we might obtain when we take 
our measurements and average them. Now we use x to represent the particular 
value of the random variable X that we actually do obtain when we take our 
sample and calculate the mean, and we use the lower-case letter z to represent 
a particular value obtained from a standard normal random variable (the latter 
is usually denoted Z). The value 0.000032 or 0.0032 percent that we get is 
again our p value. If we were to use p = 0.05 as our benchmark, we would 
reject H() that "radiation levels after the nuclear accident are unchanged." The 
increase in radiation is "statistically significant." Happily, on the figures pro
vided, statistics tells us to reject a null hypothesis that common sense told us 
was inappropriate in the first place. 
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We note that a figure of 124 as a single measurement rather than an average 
would not make us reject H() at the/? = 0.05 benchmark: It is only 24/3o standard 
deviations above the mean, so it is less than the 1.645 standard deviations 
above the mean that is required for a one-tail test to be significant at the 5 
percent level. Because we have twenty-five measurements, smaller variations 
from the long-run average of 100 show up as statistically significant. In collo
quial language, the fact that taking averages allows us to reject the null hy
pothesis even though the changes in the values are not so marked reflects the 
fact that averages of twenty-five figures are five times less "wobbly" or vari
able or uncertain than a single figure. If the data average is some way away 
from what would be the central value according to the null hypothesis and the 
data average is not very "wobbly," the difference is likely to be real. 

However, say the average value of the radiation level was 109 = x. This x 
value would be equivalent to a z value of 

and z values at least this big occur 0.0668 of the time. Since this is bigger than 
0.05, the conclusion of the statistical analysis would classically be stated as, 
"There is no evidence that the nuclear accident has increased radiation." This 
conclusion would of course be inappropriate: We already know that there has 
been a nuclear accident likely to have emitted some radiation and we now see 
average measurements that have gone up so much above the previous average 
value of 100 that blaming the increase purely on variability means blaming 
the increase on a chance that occurs only 6.68 percent of the time. As previ
ously, the conclusion here would be more sensible if it were stated as "looking 
at the figures alone, an average over twenty-five measures of 109 is not con
vincing evidence of an increase from the long-run average of 100 because the 
natural variability here could easily account for such an increase."2 Of course, 
in this situation it is not sensible to look at the figures alone. 

There is another important problem here. Our calculations assume that we 
have taken the average of twenty-five independent measurements. In environ
mental statistics it is often not completely true that each measurement is inde
pendent of all others. The most extreme example of lack of independence 
would arise if all twenty-five measures were performed on the one sample of 
air divided into twenty-five parts. While something like this might be neces
sary at some stage to check on the reliability of our measuring devices, it 
would only give us one effective measurement of the quality of the air. Less 
extreme examples would arise if many of the measurements were taken close 
together in time or space. Twenty-five such measures would give us less than 
the equivalent of twenty-five independent bits of information about the state 
of the air over all the time and space of interest. A lot more theory is required 
in order to know how to deal with such problems. 
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TESTING THE NULL HYPOTHESIS THAT THE DATA COME 
FROM A NORMAL DISTRIBUTION WITH KNOWN 
MEAN AND UNKNOWN STANDARD DEVIATION: 

THE t DISTRIBUTION AND THE SINGLE SAMPLE t TEST 

Most times when we want to test an hypothesis about a mean from a normal 
distribution we do not have information about standard deviation. In our height 
example we may have good information that the true average height of Ameri
can women is 5'6", but we may not know that CT = 3". At this stage we recall 
that our null hypothesis is that the sample values that we have obtained from 
Madagascan women are distributed in the same way as the heights of Ameri
can women. Therefore, if we assume that H() is true and we estimate the stan
dard deviation of our sample, we have an estimate of the standard deviation of 
the heights of American women. We estimate this standard deviation CT by the 
sample standard deviation s in the data we collect (this can, of course, only be 
done if there is more than one measurement). We then replace the CT in our 
calculations by this s. In particular, we work out how far our average x is from 
the mean p in terms of estimated standard deviations of the mean (i.e., esti
mated standard errors). How far x is from the mean p is x - p. The estimated 
standard error (or standard deviation of the mean) is V/rc, SO the distance of x 
from the mean p in terms of estimated standard errors of the mean is 

If H0 were true and we had used CT instead of s, our result would be a z value 
(i.e., a value from a standard normal distribution). Because we use s in place 
of CT, the result is not a z value. It is called a t value. It is the result of a choice 
from a particular random variable known as the t random variable. The pattern 
of chances and values for t (i.e., the t distribution) will depend on the pattern 
of chances and values of the normal random variables that make up our sample. 
Since each of these normal random variables depend on parameters p and cr, 
we might expect the t distribution to depend on p and CT. However, t is defined 
so that it is standardized regardless of p and CT, in the same way as a general 
normal random variable with parameters p and cr can be standardized to the 
standard normal random variable Z. On the other hand, there is a different t 
distribution for samples of different sizes. If we have a sample that consists of 
just one value, we cannot have a t distribution, because from one value we 
cannot estimate the spread of values, 5". If we have a sample consisting of just 
two values, we have one measure of spread. The value 
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with n = 2 is then a value from a tl distribution. With a sample of three values 
there is in some sense two measures of spread and the value 

with n = 3 is a value from a £2 distribution. With a sample of n values there is in 
some sense n - 1 measures of spread and the value 

is a value from & tn_1 distribution. The subscript n - 1 here is sometimes 
referred to as the "degrees of freedom," so instead of saying something has a tn _ l 

distribution we might say it has a t distribution with n-\ degrees of freedom. 
When n is large, our estimate of variability s is based on a large number of 
measures of spread, and so s should be a fairly accurate estimate of cr. There
fore with n large there should be very little difference between 

and 

Therefore, if n is large, the tn_x distribution will be close to the standard nor
mal distribution. Differences between the two distributions are very minor 
when n is more than about 20. 

Let us examine again what we are doing when we calculate 

We first calculate s, which is an estimate of how variable our data are. We then 
calculate S/Jn, which is an estimate of how much variability we would expect 
in our sample mean given the variability of the individual data values. We then 
see how big the distance between the sample mean and the hypothesized true 
mean is (x - p) in comparison to the amount of variability we can expect in our 
sample mean. This is the quantity 
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Values outside a certain range will occur rarely. For instance, for a t5 distribu
tion, tables show that values outside the range -2.571 to +2.571 occur just 5 
percent of the time. In other words, 95 percent of the time the sample mean is 
within 2.571 estimated standard errors of the true central value, p. If we get a 
value outside this range we have to conclude that either we are dealing with a 
rare chance coming off or the hypothesized mean, p, is incorrect. Tradition
ally, statistics tells us to use the 0.05 benchmark and so choose the second of 
these options, though, as has been repeatedly emphasized, we should always 
use common sense in deciding between such options rather than blindly fol
lowing the traditions of statistics. 

For example, say we measured the height of six randomly and indepen
dently selected Madagascan women and obtained the values 161, 169, 153, 
165, 157, and 149 cm. Again, let H() be that Madagascan women have the 
same height distribution as American women, who let us say are known to 
have average height p = 170 cm. As before, I believe it is reasonable in this 
situation to use the conventional benchmark/? value of 0.05 in deciding whether 
to reject H0. Calculations now give x= 159 and s = 7.483, so here 

Since 95 percent of the time when H0 is true we would get a t value in the 
range -2.571 to +2.571 and we would "hardly ever" get a value of t at least as 
far out from 0 as -3.60, we reject the null hypothesis that Madagascan women 
have the same average height as American women. The sort of hypothesis test 
described in this example is sometimes called the single sample / test. 

The Paired Sample t Test: Testing the Null Hypothesis That the 
Differences between Paired Data Points Comes from a Normal 
Distribution with Mean 0 and Unknown Standard Deviation 

The statistical tests based on the normal distribution that have been de
scribed so far are not used that often. The main point in discussing them is to 
give some insight into principles underlying two common tests. The first of 
these two common tests is called the paired sample t test. This test is used in 
the same situation as the Wilcoxon signed rank test, which we discussed in 
Chapter 4. Both the Wilcoxon signed rank test and the paired sample t test 
apply where there is some pairing. Pairs of measurements are made. One mea
surement of each pair is made without the intervention and the other measure
ment is made with the intervention. Unlike the Wilcoxon signed rank test, the 
paired sample t test assumes that there is an underlying normal distribution. 
Both tests are used in obtaining an answer to the question, "Does some inter
vention affect the outcome?" The requirement of some pairing of the mea
surements applies if we have individuals and we measure outcomes before 
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and after some intervention. Pairing also applies if we have pairs of similar 
individuals and measurement is made on the one of the pair who has received 
the intervention and the other who has not. The pairs of individuals could be 
pairs of twins, siblings, or even unrelated individuals who form pairs in that 
they are similar in age and other attributes. The difference between the mea
surement with and without the intervention is the value of interest. We recall 
that pairing is desirable to reduce the effect of variation from individual to 
individual, which may otherwise overwhelm the detection of real changes (see 
the discussion, pages 76 and 77, on the sign test, McNemar's test, and the 
advantages of pairing). The effect of individual variation is reduced because 
we are comparing each individual with himself or herself or with his or her 
pair. For example, the intervention might be supplying a relaxation tape and 
the value of interest would be the difference in the amount of sleep an indi
vidual got on the first night the tape was used in comparison to the amount of 
sleep the previous night. As another example, if we were interested in the 
effect of sports on academic performance, we might deal with human twins 
and the intervention might be an extra hour per day of sports for one of each 
pair of twins and the value of interest for each of the pair of twins would be the 
difference in their academic marks at school. 

The necessary assumption of a normal distribution for the t test to be valid 
is often taken for granted. This assumption of a normal distribution is often a 
reasonable approximation, particularly where each measurement is a continu
ous value that is the end result of a large number of chance effects. Recall that 
the central limit theorem says that in many circumstances the end result of add
ing a large number of chance effects is a normal distribution. The average of a 
number of differences between two measurements will in turn be the end result of 
the addition of a number of chance effects. The issue of assuming a normal 
distribution is discussed further at the end of this chapter. However, in each 
situation, some thought is needed and if the assumption of a normal distribu
tion is unreasonable, the Wilcoxon signed rank test should be used instead. 

The null hypothesis H0 in this paired situation will be that the intervention 
is entirely irrelevant to the outcome being measured: The differences in each 
of the pairs of measurements will be entirely due to chance alone. The differ
ences will then be values randomly scattered about zero. In the paired sample 
t test, we are assuming that this random scatter follows a normal distribution. Our 
H0 is therefore that the differences are values from a normal distribution centered 
on zero but with unknown standard deviation. In the previous section we dealt 
with testing whether data come from a normal distribution with known mean 
and unknown standard deviation. This is exactly the situation here. We test 
whether H0 is reasonable by using the individual differences to find the amount 
of scatter in the system as estimated by s, the sample standard deviation. We 
then use this s to derive a measure of how much variability should be expected 
in the average of the differences. If there are n pairs of measurements we have 
n differences. The standard deviation of an average of n values is s/fn, the 
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standard error, so this is the measure of the variability of the average of the 
differences. The null hypothesis is that the differences are randomly scattered 
about zero, but a sample of differences will not generally average out at ex
actly zero. Whether the average of our sample of differences is unreasonably 
far from zero is judged by comparing how far out from zero it is with how 
much variability could be expected of such an average. This is the quantity 

As before, if H0 is correct, t is a value from a tn_, distribution. If we get a 
value outside the range that is common for such t values, then we have to 
decide between two options. One option is that we believe that H() is still true 
and it is coincidence alone that has led to an average difference that is surpris
ingly far from zero given the amount of variability that appeared to be in the 
system. The other option is that H() is not true: The average difference in the 
pairs of measurements is not zero because the intervention does affect the 
outcome measured. As in the statistical tests discussed previously, we use the 
size of the coincidence given by the p value associated with the t value in 
making the decision between the two options. If we have a tiny p value, the 
only way to maintain our belief in H() is to argue that the results are the product 
of a very long coincidence. As always, we should also use common sense in 
deciding between the two options. 

Readers may be a little confused about a small technicality here, in that we 
divided s by Jn but later used n - 1 in specifying the relevant t distribution. 
The n is used because the average oin measurements is less variable than the 
individual measurements by a factor of /«. The n - 1 is used in the calculation 
of\v, the estimated standard deviation, because with the measurement of one 
difference we have no measurements of deviation of differences from the av
erage difference, with measurement of two differences we have in effect one 
measure of deviation from the average difference, and with measurement of n 
differences we have in effect n - 1 measures of deviation from the average 
difference. These considerations lead, after some mathematics beyond the scope 
of this book, to the tn_{ distribution being relevant. 

For example, let us return to the relaxation tape example, where we mea
sured the amount of sleep had by eight individuals on a night without and on a 
night with the relaxation tape. The table of values is reprinted here for conve
nience. The differences are all given in minutes: 

Person 

Before 

After 

Difference 

A 

5:37 

5:18 

-19 

B 

6:24 

6:47 

+23 

C 

4:22 

7:01 

+ 159 

D 

6:53 

6:46 

-7 

E 

3:19 

7:31 

+252 

F 

5:07 

8:08 

+ 181 

G 

6:48 

7:51 

+63 

H 

7:09 

8:11 

+62 
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Here our average difference x is 89.25 and s is 97.52. Therefore, 

With eight values we have the equivalent of seven measures of deviation, 
and so if H0 is correct this is a value from a t1 distribution. A one-tail test is 
appropriate here, since if the relaxation tapes do anything for sleep they will 
lengthen it. Lengthening corresponds to a bigger value for x and hence a big
ger t. A computer program will show that 98.2 percent of the time values from 
a t7 distribution are in the range -oo to +2.589 and only 1.8 percent of the time 
are values 2.589 or more. Therefore, we are either dealing with a true H0 and 
a coincidence of a sort that occurs less than 5 percent of the time, or H0 is 
incorrect. If we use p = 0.05 as our benchmark p value, we reject H0. It is 
appropriate here to note the discussion in Chapter 4 suggesting that it may be 
being unreasonably cynical to require such a small p value before believing in 
this Hfl. However, the choice of a benchmark p value above 0.05 would not 
change our conclusion here. If our benchmark for rejecting H0 is a coinci
dence that points toward the truth of Ha and would occur 5 percent or less of 
the time if H0 were true, then the computer or tables show that this will corre
spond to a t value of +1.895 or larger. 

The Independent Samples t Test: Testing the Null Hypothesis That 
Means of Data Values from Normal Distributions Are the Same 

Often we deal with situations where there is no natural pairing and where 
before and after measurement is not possible. For example, we may be com
paring the length of sleep in men and women. Although before and after mea
surement is desirable to reduce the effects of individual variability, we obviously 
couldn't very well measure the length of sleep in people of one gender, per
form sex-change operations on them, and then measure the amount of sleep 
again.3 The null hypothesis here is that on average there is no difference be
tween the amount of sleep in people of either gender. We could deal with this 
situation by a Mann-Whitney test, but this test only uses the order of the data 
values and ignores the extra information that could be gleaned by using the 
actual values. To use the actual values we must assume that these values come 
from some probability distribution. The most common distribution in nature is 
the normal distribution. This is a consequence of the central limit theorem, so this 
is the distribution generally assumed (however, there is further discussion of this 
issue at the end of this chapter). The test, assuming that the data come from two 
independent samples and that there is an underlying normal distribution with 
unknown standard deviation, is referred to as an independent samples t test. 

The calculations are a little more complicated than they are in the case of 
paired data, so instead of giving enough information to do the calculation 
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using a calculator and tables, we will just give an outline of the calculation 
that the computer performs. Say that there are m values in one group and n 
values in the other. We will refer to the two groups as group 1 and group 2, 
respectively. Let us now examine the philosophy behind the calculations made 
by the computer. 

There are four interrelated factors that complicate matters. First, the null 
hypothesis H0 states that all m + n values are drawn from the same unknown 
normal distribution. However there are three alternatives to the null hypothesis: 

Ha(i): It may be that groups 1 and 2 have the same means but have different standard 
deviations. 

Ha(ii): It may be that groups 1 and 2 have the same standard deviations but have 
different means. 

Ha(iii): It may be that groups 1 and 2 have both different means and standard deviations. 

Second, it is hard to imagine any influence that affects the mean that would 
not also affect the standard deviation, at least slightly. Conversely, almost any 
influence that affects the standard deviation would at least slightly affect the 
mean as well. Therefore, if the words "the same" in the definitions of Ha(i) 
and Ha(ii) are interpreted strictly, these options are implausible. The only plau
sible choice then is between H0 and Ha(iii). Nevertheless, it is conventional to 
ignore this consideration and regard all four hypotheses as feasible. 

Third, most of the time our main interest is in whether the means are differ
ent regardless of any differences in standard deviations. We are therefore pri
marily interested in whether the data provide convincing evidence that means 
are different regardless of whether the standard deviations are equal. In other 
words, we start with either H0 or Ha(i), both of which state that the means are 
the same, and then see if there is convincing evidence against either of these 
hypotheses. In other words, we want to calculate a p value to see if there is con
vincing evidence that means are different, regardless of whether we provision
ally assume standard deviations are equal or unequal, respectively. However, 
these two provisional assumptions lead to slightly different tests [note that if 
Ha(i) is our provisional assumption, we are using Ha(i) as a null hypothesis]. 

Fourth, the theory used to see if there is convincing evidence against Ha(i) 
involves approximations and is less satisfactory than the theory used to see if 
there is convincing evidence against H0. Classically, it is recommended that 
we use Ha(i) (means equal, standard deviations unequal) as our null hypoth
esis if there is convincing evidence that H0 is incorrect regarding equal stan
dard deviations. This recommendation then requires a preliminary test known 
as an Ftest. This test looks to see if the standard deviations of the two groups 
are so different that chance alone would "hardly ever" lead to a difference in 
standard deviations at least as large as that observed.4 

If calculations are being done by hand, we often perform just the statistical 
test to see if there is convincing evidence against H0 in terms of different means. 
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The pds computer program gives the p value of this test as its one-line result, 
but like other computer programs performs all three statistical tests mentioned 
in the third and fourth alternatives. It gives the results of these tests on clicking 
on "moreinfo." 

An additional approach suggests itself and is also performed by the pds 
computer program. If two groups are different in standard deviations they are 
not groups drawn from the same population and so are almost certainly at 
least slightly different in means. Therefore, both the test to see if there is con
vincing evidence against H() in terms of equal means and the test to see if there 
is convincing evidence against H0 in terms of equal standard deviations are 
separate (in fact, independent) tests of whether we should believe the two 
groups come from the same population and so have the same mean. The mini
mum of the two separate /; values from these tests is taken. An adjustment 
then has to be made. The adjustment takes account of the fact that by doing 
two tests we are giving ourselves two chances of rejecting H(). If it were pos
sible to do twenty tests to see if we should reject H() and our criterion for 
rejection was p < 0.05 on any test, then with twenty chances, each with prob
ability 1 in 20 of occuring even when H0 is true, we probably would end up 
incorrectly rejecting a true H() most of the time. In such a situation an adjust
ment is necessary so that the overall chance of rejecting a true H0 will be 0.05. 
The same applies to a lesser degree when, instead of twenty tests, we perform 
two separate tests of H0 (the test concerning equality of means and the test 
concerning equality of standard deviations). The pds computer program makes 
the appropriate adjustment to arrive at an overall p value. This approach can 
be summarized by saying that if the populations from which the samples are 
drawn are different in any way they are almost certainly at least a little bit 
different in all ways. This is an approach not favored by classical frequentist 
statistics. Instead, according to the classical approach, even if we must con
cede that there are differences in one aspect, such as standard deviations, we 
should wait to be convinced by the figures of differences in another aspect, 
such as means. 

This discussion has concerned philosophical ideas underlying hypothesis 
testing in the case of two independent samples. We now deal with the issues in 
a more practical way. To test if there is convincing evidence against H0 in 
terms of means, the computer averages the two sample standard deviations to 
give an overall best estimate of the standard deviation, usually denoted s where 
p stands for pooled.5 Even if the samples are really both drawn from the same 
population, because of chance the means will not usually be exactly the same. 
However, theory tells us that in this case 

the difference between the two means 

should be a figure from a tn + lu_2 distribution. 
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The components of this formula will be explained in a qualitative way, item 
by item: 

The n + m - 2 reflects the fact that we do not know the true spread of values from this 
distribution, but we have in effect m - 1 estimates of spread about the mean from the 
first sample and n - 1 estimates from the second sample, giving n + m - 2 estimates 
of variation altogether. As before, the quantity n + m - 2 is often referred to as the 
degrees of freedom. 

The V'7/H reflects the fact that the variation of an average of m values is v '//»th as vari
able as a single value. 

The 'A// + 7« reflects the fact that we are adding two sources of variation: variation in 
the average of the first m values and variation in the average of the remaining n 
values. 

Overall, s ^\lm + \ln is a measure of how much variability could be expected in the 
difference of the two means, so 

the difference between the two means 

is a measure of the size of the gap between the two means in comparison to how 
much variability should be expected in this gap. 

Again there is a range of "likely" results for the 

the difference between the two means 

o r Ki + m-i values. As before, we can decide on a range of values so that 95 
percent or 99 percent or whatever percentage of the time we will get a value 
for tn + m_2 within this range. If we get a value outside this range we will say to 
ourselves we would "hardly ever" get such a value if the true means of the 
populations were really the same, and so we therefore no longer believe that 
the true means are the same (i.e., we reject the null hypothesis that the means 
are the same). As always, we should if possible use our own judgment as to 
what constitutes "hardly ever." Is this something that happens only 20 percent 
of the time or only 1 in 1,000,000 times? This is our benchmark p value. If we 
have no strong feelings on the issue, we may use the conventional benchmark 
p value of 0.05. The computer gives us the p value of results as extreme or 
more extreme than the value obtained and we compare this with our bench
mark p value. The computer generally gives the p value assuming a two-tail 
test. This should be halved if a one-tail test is appropriate. This halving should 
not be done blindly. If a one-tail test is appropriate but results point in the 
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direction opposite to those favorable to Ha, then the correct/? value is 1 minus 
half the two-tail p value (see the discussion in the section on one-tail and two-
tail tests on pages 75 and 76). 

We now consider the possibility that we have decided that the standard 
deviations are different and want to know whether we should believe that the 
means are different as well. The underlying theory used here leads to similar 
calculations to those already discussed, but the value obtained for 

the difference between the two means 

turns out to be approximately a value from a r? distribution where "?" is worked 
out using a complicated formula. From this a p value is obtained and inter
preted as before. 

Overall, what we do can be summarized in simple language as follows. We 
make a judgment about whether the two group averages are so far apart that 
the difference between their averages cannot be reasonably put down to chance. 
We can judge this chance, the p value, from the overall amount of scatter in 
the values in the two groups. 

For example, say that the hours and minutes of sleep were the same as 
given in the example used in the previous section on the paired sample t test. 
However, we interpret the values differently, so that the first row of numbers is 
the amount of sleep for a representative sample of eight women and the sec
ond row of numbers is the amount of sleep for eight men. In general, there 
would be no need for the number of women and the number of men to be the 
same. After selecting a file containing the data and clicking on "Independent 
samples t-test," the pds computer program performs the classical tests. The 
one-line output is that the/? value is 0.024077. Clicking on "moreinfo" tells us 
that the p value for the test of equality of variances is 0.36639, the p value for 
the test of equality of means assuming equal variances is 0.024077, and the/? 
value for the test of equality of means assuming unequal variances is 0.025756. 
The program then uses the logic described earlier based on the idea that the 
first two of these/? values are both independent tests of whether the two groups 
come from the same population. This results in an overall/? value of 0.047575. 
All/? values assume two-tail tests. The program also gives further information 
about the average difference in sleep. 

Which of these /? values is pertinent depends on our precise philosophical 
approach to the situation. If the idea that we provisionally start with is that all 
m + n values are drawn from the same unknown normal distribution and that 
we are prepared to do just one test of the equality of means of the two groups 
to see if we have convincing evidence against this idea, then the p value of 
0.024077 is relevant. If the idea that we provisionally start with is that we are 
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happy to concede that the standard deviations of the two groups are different 
but we would still look for convincing evidence before deciding that the means 
were different, then the/? value of 0.025756 would be relevant. However, we 
should note that there is no compelling reason to concede that the standard 
deviations are different, for the computer also tells us that if two samples were 
drawn from two populations with the same underlying standard deviation, 
then 36.639 percent of the time the pair of sample standard deviations would 
be more different than the pair calculated here. If the idea that we provision
ally start with is that all m + n values are drawn from the same unknown 
normal distribution and that we are going to do two tests, one on means and 
the other on standard deviations, to see if we have convincing evidence against 
this idea, then the p value of 0.047575 is relevant. 

It is left to us to come to our own conclusions. It might be reasonable to use 
the traditional 0.05 benchmark here, as H0 is convenient, but the alternatives 
are not implausible. For me, it seems quite reasonable to start with the belief 
that men and women get the same amount of sleep on average, and the bench
mark 0.05 may be appropriate because I would not want to be talked out of 
this belief by very weak evidence; nor would I require very strong evidence to 
talk me out of it. On the other hand, given the contentious nature of arguments 
between the sexes, it may be reasonable to want stronger evidence (in other 
words, a smaller/? value) before making a pronouncement about differences 
between the sexes. If we accept the 0.05 benchmark it doesn't matter which of 
the/? values we look at—0.024077, 0.025756, or 0.047575—they are all val
ues that satisfy our criterion for rejecting H0. If we accept the conventional 
benchmark p value of 0.05, then on the basis of this experiment we should 
now believe that there are differences in the length of time men and women 
sleep. However, is it indeed reasonable to now believe that there is a differ
ence in sleep between the sexes? The figures we have analyzed could be ex
plained by saying, "There is no difference, it just looks that way on these 
figures because a chance that would happen anyway a few percent of the time 
actually came off in our experiment." There is no objective answer to this 
question. The p value calculation informs our assessment of whether the dif
ference in sleep between the two sexes is "for real" by telling us how hard it 
would be for coincidence to explain our results, but our decision is still sub
jective. Statistical tests cannot give absolute, objective results. 

DATA TRANSFORMATIONS AND PARAMETRIC 
AND NONPARAMETRIC STATISTICS 

The normal random variable results from adding many small chance contri
butions. It does not result from multiplying chance effects or from other inter
actions between chance effects. In nature, however, outcomes may be the result 
of a mixture of some random effects that add in combination with other effects 
that multiply or combine in more complicated ways, together with some ran-
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dom effects that are very large in comparison to most of the others. In such 
situations, the end result in terms of the pattern of randomness may not be 
particularly close to the pattern of a normal distribution. However, the normal 
distribution often seems to be a good approximation to many common situa
tions where a continuous spectrum of numbers is possible, with values toward 
the middle of the range being much more likely than values toward either 
extreme. The common tests discussed in this chapter focus on the values likely 
to be taken by a sample average, and the central limit theorem tells us that 
such sample averages will generally give a much better approximation to a 
normal random variable than the original data. 

Nevertheless, it is almost never possible to be sure that we are dealing with 
a situation in which the data values or even the sample mean come from an 
underlying distribution that is close to a normal distribution. If we were pur
ists, we might avoid assumptions about the underlying distribution and use the 
statistical methods of the sort introduced in Chapter 4, which depend on just 
the order or ranks of the data and not on their actual values. These methods, 
such as the sign test, the Wilcoxon signed rank test, and the Mann-Whitney 
test, are valid regardless of the underlying distribution. However, since these 
methods ignore the actual values they do not use all the information in the 
data. This means that when there is an underlying normal distribution these 
methods are less efficient at detecting real differences. Since these methods 
do not depend on assuming that there is a particular distribution underlying 
the data and do not concern themselves with the normal distribution and its 
parameters p and cr, these methods are often referred to as distribution-free 
statistics or, most commonly, as nonparametric statistics. 

While a purist might want to always use nonparametric statistics at the cost 
of some efficiency, the opposite approach is to always use tests based on the 
normal distribution. When there really is an underlying normal distribution, 
the tests based on the normal distribution are more efficient because they take 
into account the actual data values, not just the ranks. However, these tests are 
only valid if there is an underlying normal distribution. For reasons already 
discussed, in many situations there is, at least approximately, an underlying 
normal distribution, and tests based on the normal distribution will give p 
values that would be close to the true /? values. However, it is not valid to 
blindly assume that if we are dealing with a continuous random variable we 
are always dealing with a normal distribution. Such an approach is wrong. It 
can lead to very inaccurate/? values and hence wrong decisions. 

Checking Whether Data Come from a Normal Distribution 

The widely used compromise approach is to check that it may be reason
able to assume that the data come from an underlying normal distribution 
before applying the statistical tests based on the normal distribution. This can 
be done in various ways. 
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Simple Display of the Data 

If line plots, box plots, or histograms show that the data seem clustered 
more or less symmetrically about a central value with values toward the ex
tremes being increasingly rare, the assumption of a normal distribution may 
be reasonable. Often, this is the only method of checking normality used in 
practice. 

In the example here, the values were actually obtained from a normal distri
bution. Superimposed on the histogram is the curve of a normal distribution 
with the same mean and standard deviation as the data. 

More Sophisticated Visual Indicators of Normality 

There are more sophisticated visual indicators of normality that go under 
the headings of P-P plot and Q-Q plot and that provide a visual comparison 
of the spacing of data values compared to the spacing of values obtained evenly 
in probability terms through a normal distribution. Normality is indicated by 
an approximate straight line on these plots (see Figure 5.3). 

OPTIONAL 

To explain Q-Q plots further, imagine we have chosen 100 values from a 
normal distribution. Place these values in ascending order. Going along this 
list should be like going along a normal distribution in the sense that halfway 
along the list of values should be roughly equivalent to halfway along the 
normal distribution in terms of probability. Similarly, the 86th value should be 
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Figure 5.3 
Illustration of P-P and Q-Q Plots 

Normal P-P Plot of Normal Random Variable 

100 values chosen randomly from a normal distribution 

Normal Q-Q Plot of Normal Random Variable 

100 values - same as those in PP plot 

roughly equivalent to 86 percent of the way along the normal distribution in 
terms of probability, or in general, y percent of the way through the values 
should be roughly equivalent to y percent of the way along the normal distri
bution in terms of probability. We can use this principle to find a value from 
the normal distribution, z{ that corresponds in terms of amount of probability 
behind it, to each data value x-r If the data come from a normal distribution and 
we subtract an estimate of the mean from the data values and divide by the 
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Figure 53 (continued) 

Normal P-P Plot of Uniform Random Variable 

100 values equally likely to be anywhere in an interval 

Normal Q-Q Plot of Uniform Random Variable 

100 values - same as those in PP plot 

estimated standard deviation, we will have roughly converted the data values 
into values chosen from a standard normal distribution. Therefore, there should 
be a rough match between values of 

and corresponding values of z-r For example, the 86th biggest of 100 data 
points should correspond to the z86 value of 1.08 since this is 86 percent of the 
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way through the standard normal distribution. Therefore our 86th data value 
should roughly satisfy the equation 

This equation can be rearranged to give x86 = ^ x l .08 + x. This manipulation 
can be performed for each data value to give xt~ s x z-x + i o r i ( ~ ( j x zt + p. 
Since this is the equation of a straight line, plotting the values of x{ and the 
corresponding z, should give an approximate straight line. This plot is known 
as a Q-Q plot. If the x-t do not come from a normal distribution, the Q-Q plot 
will tend to deviate from a straight line. 

The P-P plot is based on the same principle, but the axes are marked in 
terms of proportions along the sample and the best matching normal distribu
tion. In the P-P plot, the horizontal position of a data point gives the propor
tion of values up to the given point, whereas the vertical position gives the 
probability of obtaining less than the data value when selecting a number from 
a normal distribution with the same mean and standard deviation. 

A further issue here is in the detail of how we should define how far along 
the distribution we are. We could be tempted to define the first or the last value 
of the distribution to be 0 percent or 100 percent of the way along, but 0 
percent and 100 percent of the way along a normal distribution is -o° and +o°, 
respectively. We see that defining starting or finishing percentages of the way 
through the sample distribution as 0 percent or 100 percent and then trying to 
get these to correspond to positions in a normal distribution won't be sensible. 
There is no best answer here. One method is based on the idea that in some 
sense a single value will "ideally" cut a distribution into two equal parts, two 
values will "ideally" cut a distribution into three equal parts, and so on. This 
principle applied to P-P and Q-Q plots is called Van der Warden's method. 

In the illustration of P-P and Q-Q plots, the two plots on page 133 represent 
100 values that were selected by a method that ensures that all values between 
50 and 60 are equally likely to be selected. Values chosen this way are said to 
be values of a uniform random variable on the interval 50 to 60. For the 100 
points from the uniform random variable on the interval 50 to 60, no observed 
probability accumulates until we get to just over 50, whereas the matching 
normal distribution "expects" some values here. The left-most point on the P -
P plot therefore has a higher expected value than an observed value. Values in 
the very low 50s (more than two standard deviations away from the mean), 
however, are more crowded than are "expected" by the matching normal dis
tribution. Observed probability here therefore accumulates more rapidly than 
expected probability and the line of points therefore increases in height rela

tively slow. Conversely, the normal distribution "expects" points around the 
mean of 55 to be relatively crowded compared to points from a uniform distri
bution and so the line of points here increases in height relatively rapidly. The 
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situation for the points in the very high 50s mirrors the situation in the very 
low 50s. These considerations give the P-P plot its overall elongated "S" shape. 
Similar considerations explain the shape of the Q-Q plot. By comparison, the 
two plots on page 132 show values chosen at random from a normal distribu
tion with the same mean and standard deviation as those from the uniform 
distribution. These values give plots almost on the ideal diagonal straight line. 

END OPTIONAL 

Statistical Tests for Normality 

There are statistical tests (e.g., the Kolmogoroff-Smirnoff test or Lilliefors 
test) to see if it may be reasonable to believe that data come from a normal 
distribution. The underlying philosophy of these tests is similar to previous 
tests that we have covered. They do not answer the main question, "Do these 
data come from a normal distribution?" Instead, they answer the secondary ques
tion, "Could a data set coming from some normal distribution easily have the 
same single measure of its overall pattern as this data set?" If the answer to this 
secondary question is "yes," it is conventional to assume that it is reasonable to 
believe that the data do come from a normal distribution. Of course, in particular 
circumstances this convention may not actually be reasonable. The Komogoroff-
Smirnoff test can be related pictorially to P-P plots. It is, roughly speaking, 
based on the greatest deviation of the P-P plot from the ideal straight line. 

Using Common Sense 

Finally, logic alone can tell us that certain data cannot be normally distrib
uted. According to the normal distribution, values are centered around p and 
values extending out more than one or two standard deviations on either side 
are unusual, but it is possible, though very unlikely, for values to occur many 
standard deviations on either side of p,. Indeed, it is possible for values to 
occur anywhere between -oo and +°°. However, in many physical situations it 
is absolutely impossible for values to occur outside a certain range. For ex
ample, human height has to be a value greater than zero. If p for human height 
was 170 cm and cr for human height was 10 cm, there would be probability of 
exactly zero of a person having a height smaller than 17a below the mean, whereas 
the normal distribution says that there is a probability greater than zero (but ex
ceedingly small) of such a height. In practice, height of adult humans of one gen
der could have a distribution so close to the normal distribution that there is no 
practical reason for assuming another distribution. However, this is not so true of 
human weight, where the mean may only be three or four standard deviations 
above zero: People 200 pounds above average weight are fairly unusual but not 
impossible, whereas people 200 pounds below average weight cannot occur. It 
would generally be inappropriate to assume that a normal distribution is a rea-



136 Statistics with Common Sense 

sonable approximation when the mean is less than two standard deviations 
above zero and values below zero are physically impossible. 

Procedure if Data Are Assumed to Be Normally Distributed 

If the data consist of values of continuous variables and there is no good 
reason to think that the data do not at least approximately come from a normal 
distribution, statistical tests based on the normal distribution are generally used. 
The normal distribution is assumed for two reasons. It is at least approxi
mately true that many sorts of measurements are approximately normally dis
tributed. This is a consequence of the central limit theorem. The alternative to 
assuming a particular distribution, such as the normal distribution, is to use 
nonparametric tests of the sort discussed in Chapter 4, but this wastes a lot of 
information, using only the rank order of the data and not the actual values. 
Ideally, interpretation of the probabilities obtained from tests based on the 
normal distribution should then be tempered by some knowledge about the 
size of the inaccuracies that are likely to arise if, despite appearances, the 
underlying distribution is not normal. 

Procedure If Data Are Assumed Not to Be Normally Distributed 

If the data do not appear to come from an underlying normal distribution, 
there are two approaches to choose from. The first approach is to use nonpara
metric statistics. The second approach takes its inspiration from the observa
tion that the lognormal distribution can be turned into a normal distribution by 
taking logs and from the observation that whereas the normal distribution or at 
least a close approximation to it seems to be the most common distribution in 
nature, the second most common distribution in nature is the lognormal distri
bution. The second approach is then to try taking the logs of the data to see if 
it might be reasonable to assume that the logs of the data values come from a 
normal distribution. If so, statistical tests based on the normal distribution are 
performed on the logs of the data values. This second approach can be taken 
further. If it is not reasonable to believe that either the original data or the logs 
of the data values have an underlying normal distribution, other mathematical 
manipulations of the data values are used. For example, we can look to see if 
square roots of all the data values could be reasonably regarded as normally 
distributed, do the same with reciprocals of each of the data values, or use 
some other mathematical manipulation of all the data values. This process is 
called data transformation. The aim is to find a transformation that makes it 
"look like" the transformed data are normally distributed. Once this is achieved, 
it is assumed that the transformed data are in fact normally distributed and 
statistical tests based on the normal distribution are applied to the transformed 
data. This approach may seem rather contrived, but nevertheless is quite com
monly used. 
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SUMMARY OF STATISTICAL TESTS SO FAR 

This section summarizes the situations in which the various statistical tests 
that we have described up until this point should be used. Most of the statisti
cal tests covered so far are designed to help answer the question, "Is there a 
difference?" This question is asked in various contexts according to the source 
of the data and the different types of data: 

Dichotomous 
(e.g., better 
or worse) 
data 

Sign test 

Numerical Numerical 
but not and normal 
necessarily data 
normal data 

Wilcoxon Paired samples 
signed rank t test 
test 

Fisher's exact 
test 

Mann-
Whitney test 

Independent 
samples 
rtest 

Source of data 

Two related measures (e.g., 
measures before and after an 
intervention on the same 
individual, or measures on one 
twin who had an intervention 
and the other twin who didn't) 

A single measure on two 
unrelated samples (e.g., 
measuring the same quantity 
on men and women) 

These tests are perhaps the main tests in basic statistics. However, in devel
oping the theory of these tests we have also dealt with other tests. These in
clude the following: 

• The use of the binomial random variable to test an hypothesis about the proportion 
in the population. 

• The use of the Poisson random variable to test an hypothesis about the value of the 
parameter X or the average rate at which something happens. 

• The use of the z test to test whether a single value or the average of a number of 
values comes from a normal distribution with p and a specified. 

• The use of the single sample t test to test whether the average of a number of values 
comes from a normal distribution with just p specified. 

• The use of the Komogoroff-Smirnoff test to test whether data are normally distributed. 

Once again, note that none of these tests directly answer the relevant question, 
"Is there a difference?" Instead, they answer the question, "Assuming there is no 
difference, how hard would it be for chance alone to explain the data?" 

QUESTIONS 

1. The demand for electricity in megawatts at peak load on any given day is said to 
be described by a normal random variable with expected value 90 megawatts and 



138 Statistics with Common Sense 

standard deviation 10 megawatts (variance 100 megawatts squared). If this de
scription of the demand for electricity is correct, what generating capacity must 
be available in order that the load be met 99.5 percent of the time? 

2. All senior high school students in a certain state take a test on which the statewide 
results are approximately normally distributed with mean 60 and standard devia
tion 10. A random selection of sixty-four test results is chosen. 

a. What is the probability that the average of the sixty-four test results will be 
below 57? 

b. What is the probability that a school with sixty-four senior students will score 
an average result of less than 57? 

3. Assume that in healthy American men the level of hemoglobin is normally dis
tributed with mean p = 14 and standard deviation CT = 1.1. 

a. What is the probability that a healthy man chosen at random will have a hemo
globin of (i) exactly 14, (ii) between 14 and 15, or (iii) over 16. 

b. A laboratory wants to check the accuracy of its hemoglobin measurements. It 
therefore measures the hemoglobin of 400 healthy men, reasoning that the av
erage of these measurements should be very close to the long-run average, which 
is known to be p = 14. If their method of measurement is accurate and the 
assumption that p = 14 and the standard deviation a = 1.1 is also accurate, what 
is the probability that the average hemoglobin of 400 healthy men will be less 
than 13.9? 

c. Blood is obtained from a single randomly selected healthy man from Papua 
New Guinea (PNG). The hemoblobin level is 10.7. Do you now believe healthy 
men in PNG have lower hemoglobin levels? 

4. Two different brands of racing bicycles are tested by five cyclists. The top speeds 
attained are given in the following list. Is there convincing evidence that one 
brand is superior? 

cyclist 1 cyclist 2 cyclist 3 cyclist 4 cyclist 5 cyclist 6 

Brand A 30.5 41.2 29.8 35.9 25.7 40.3 

Brand B 30.3 46.3 36.1 40.1 35.2 40.0 

5. The time from purchase until major repairs are required is recorded for eight cheap 
bicycles and five expensive bicycles with the following results in days: cheap 
bikes—39, 117, 561, 57, 3, 27, 8, 2; expensive bikes—289, 641, 105, 111, 903. 

a. Is it reasonable to perform a parametric test (test based on a normal distribu
tion) on these figures? 

b. Regardless of your answer to a, perform a parametric test; in addition, perform 
a nonparametric test. 

c. Do you believe that cheap bikes last as long as expensive bikes? Discuss. 

NOTES 

1. The terms and symbols here may be unfamiliar to those who have not completed 
high school mathematics. Exponentials and logs are ways of turning one number into 



Continuous Random Variables 139 

another and back again, just as squares and square roots turn one number into another 
and back again according to some rule. In the case of squares, the rule is "multiply the 
number by itself." In the case of exponential to base 10, the rule to convert, say, the 
number 5 would be to write down five "10s" in a row and put multiply signs between 
them. Exponential to base 10 of 5 is therefore 10 x 10 x 10 x 10 x 10 or 105 or 100,000. 
Log to the base 10 is the reverse procedure, so it will turn the number 100,000 back 
into 5. For reasons that are beyond the scope of this book, it is often convenient to use 
a number e, which is approximately 2.718, in place of the simple number 10 in these 
procedures. When we simply write "exponential" and "log" and don't specify to base 
something, it is assumed that we mean to base e. 

2. The expression "could easily" is taken as referring to a chance of more than 5 
percent. 

3. We could, however, use pairing, in that we could examine the length of sleep of 
men and women who form married couples. However, married couples may not be 
representative of the whole population of men and women. We could also match men 
and women who have been randomly selected so as to obtain pairs of men and women 
who are similar in age or some other attribute that might affect sleep, but we will 
assume that it is not convenient to do this. 

4. More precisely, the F test is based on the figure/, which is the ratio of the sample 
variances of the two groups. If standard deviations are the same,/should be a figure 
near 1, but values away from 1 will occur by chance. The F test calculates the prob
ability or/7 value for obtaining a value of/at least as far away from 1 as the observed 
value, assuming the underlying population variances of the two groups are in fact 
equal. 

5. A special weighted form of averaging or pooling is used: s is obtained from a 
weighted average of the sample variances where the weightings used depend on the 
number of measures of spread in each of the samples. Other methods of estimating the 
amount of spread in the system could be used (e.g., the overall sample standard devia
tion could be calculated), but theory shows that it is only the use of s that will lead to 
values from a t distribution. 
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C H A P T E R 6 

General Issues 
in Hypothesis Testing 

The preceding chapters, as well as explaining the basis of the most common 
statistical tests, have strongly criticized the unthinking use of these tests in 
decision making. This chapter goes into more detail about general issues with 
hypothesis testing. 

SELF-CONTRADICTORY IDEAS 
UNDERLYING THE NULL HYPOTHESIS 

Hypothesis testing starts with a null hypothesis: the hypothesis that the inter
vention has no effect on what is being measured. The figures are then examined to 
see if they provide evidence against the null hypothesis. This is the basis of an 
approach to scientific decision making that is entirely objective. It lets the figures 
alone provide the evidence. Recall that an objective approach to decision mak
ing was the fundamental aim of the inventors of statistics. However, the null 
hypothesis raises a set of ideas that are almost self-contradictory: 

1. The null hypothesis is what we would prefer to believe in the absence of any 
evidence to the contrary. 

2. The null hypothesis is something that we often hope is not true, for the way statis
tics tells us to "prove" that our new treatment works is to tell us to pretend that it 
doesn't work and then to see if the evidence talks us out of this null idea. 

3. The null hypothesis is that the intervention has had absolutely zero effect, for 
apart from zero what other size effect would be natural to choose in any situation? 
Choose we must, for we use the null hypothesis to calculate a/7 value. 

4. The null hypothesis is almost always a fiction. Almost all interventions will have 
some effect. The effect may be very small, or not worth having, but it will rarely 
be exactly zero. 
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Given these almost self-contradictory ideas involved in the null hypothesis, 
it seems odd to base scientific decision making on this hypothesis testing ap
proach. The developers of statistics proposed a range of responses to cope 
with this criticism. Some of the responses are easy, perhaps too easy, and 
don't properly address the difficulties. 

Responses to the Self-Contradictory Ideas 
Underlying the Null Hypothesis 

Prudent Conservatism 

The easy response to the near contradiction between ideas 1 and 2 is that 
hypothesis testing leads to a conservative approach to assessing the benefits of 
new treatment, the approach of "don't believe in anything new until you have 
to." Perhaps this is a wise approach, as there has been a history of overenthu-
siastic adoption of new treatments that haven't lived up to expectations and 
have sometimes turned out to be dangerous. 

By good fortune there have been other benefits in the medical area from an 
unthinking blind adherence to the conservatism inherent in the use of null 
hypotheses. It has enabled ethics committees that have unthinkingly accepted 
the null hypothesis approach to declare as ethical some ethically doubtful clini
cal trials of new treatments and so has allowed these trials to proceed. This has 
led to more certain knowledge of the effectiveness of the new treatments. For 
example, say that there is a disease that is known to have a probability of Vi of 
killing someone using the standard treatment. A new treatment has been pro
duced and it has been tried out on four people with the disease, all of whom 
survived. Now you find that you have the disease. Which treatment would you 
want? I think any person whose common sense hadn't been misled by an 
inappropriate statistics "education" would want the new treatment. However, 
those on the ethics committees have had some statistics "education." They 
will calculate the p value for the new treatment from the information that four 
out of four got better. If the new treatment was no better than the standard 
treatment, this result would occur Vi x Vi x Vi x Vi = 0.0625 of the time, so this 
is the p value (assuming a one-tail test) (in the terminology of Chapter 4, we 
have found the probability that a binomial random variable Bi[4, Vi\ takes the 
value 4). Since 0.0625 is greater than 0.05, the ethics committee would de
clare that although it is clear the new treatment deserves further study, there is 
"no evidence" that the new treatment is worthwhile. Of course, the "no evi
dence" here should be replaced by "no convincing evidence," or even more 
appropriately by "some evidence, but not really convincing evidence." With 
this misunderstanding of the logic of statistics, it is then possible for the ethics 
committee to authorize a study on a larger number of humans with the dis
ease, comparing some who get the new treatment with some who don't, with
out feeling guilty that those assigned to get the standard treatment may well be 
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getting inferior treatment. The end result may be unfortunate for those pa
tients in clinical trials who get the inferior treatment when there was already 
some evidence that it really was inferior treatment. On the other hand, there 
will be a long-term benefit in terms of the overall certainty of knowledge in 
medical practice. 

However, there is another side to the story regarding the long-term benefits 
to medicine of statistical dogma. There are a huge variety of medical condi
tions and a large number of interventions that could be used with any of them. 
It would be almost impossible to do proper research studies and statistical 
analyses to check the effect of each possible intervention on each possible 
condition. Apart from the problem of the large number of studies required, 
there would be difficulties because of the amount of individual variability in 
the patients. This variability means that large numbers of patients would often 
need to be studied before interventions that have only small benefit stand out 
unequivocally as having an effect. Getting permission from ethics committees 
and permission from sufficient numbers of patients would be a problem, par
ticularly in situations where it may be clear to both the ethics committees and 
the patients that common sense dictates that the intervention must be of some 
benefit. As a result, many interventions that common sense indicates almost 
certainly work have not been studied or have been studied using an insuffi
cient number of patients. Since these interventions have not produced a/7 value 
less than 0.05, they are, at best, labelled as unproved. At worst it is declared 
that such interventions are of no value. 

This is a huge practical problem in medicine. For almost every medical 
condition there will be a number of interventions that have been traditionally 
used and that common sense would indicate would be likely to be of at least 
some small benefit, but which have not resulted in a/7 value of less than 0.05 
in research studies. Throughout medicine, "scholarly" education material for 
doctors contains simple assertions that such interventions are of no value. As 
a result, throughout medicine it becomes almost impossible to learn what an 
expert who used both common sense and a knowledge of the data from re
search studies would think was appropriate treatment. 

A particularly dramatic example of the obsession with p values at the ex
pense of common sense is the issue of hygiene in medicine. It has become 
commonplace for doctors to neglect cleaning the skin prior to injections. This 
neglect of basic hygiene is the result of the publication of recent statistical 
studies that have shown "no difference" in the infection rate between injec
tions given into skin that has been cleaned and skin that hasn't been cleaned. 
However, we have known that cleaning prevents infection in other situations 
since 1848. In that year an obstetrician, Semmelweiss, convinced his colleagues 
that washing hands between the time of doing an autopsy on a woman who 
died of infection following childbirth and the time of delivering a baby from 
another woman prevented deaths from postchildbirth infection. Semmelweiss 
convinced his colleagues of this by cleaning his hands on a number of occa-
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sions between the postmortem room and the labor ward and deliberately not 
cleaning his hands on other occasions. At a considerable cost in women's 
lives, he thereby gathered enough evidence to convince his colleagues (this 
cost in lives is discussed in more detail later). Since Semmelweiss's time the 
discovery of germs has also provided a theoretical understanding of why clean
ing ought to be useful in preventing infection in any situation. It should therefore 
be unnecessary to test the null hypothesis that in the situation of needle pricks, 
cleaning has no effect on the chance of infection. This really is a totally inappro
priate null hypothesis, so the recent studies should not have been done. Those 
involved in such studies have divorced themselves totally from common sense. 

Common sense since the nineteenth century had dictated that cleaning in 
any situation almost certainly helps prevent infection. In some situations it 
may make only slight differences. A slight increase in the rate of infection 
might not show up as "statistically significant," even in an experiment involv
ing several thousand injections. Since infections are rare even following injec
tions into uncleaned skin, there will be only a few infections in an experiment 
involving thousands and it may well be possible to blame the difference in the 
infection rate with and without cleaning on the sort of chance that occurs 
more often than 5 percent of the time. But infections can be extremely serious. 
Even a very small increase in the infection rate justifies the trivial costs of 
cleanliness. It is certainly not positive for knowledge in medicine that we should 
regard this common sense as unproved and of no value until a p value of less 
than 0.05 has been obtained in testing a null hypothesis. 

The letters pages of the September 2001 issue of the Medical Journal of 
Australia (175: 341-342) gives an example of the breadth of misunderstand
ing regarding the use of statistics to make decisions about the value of clean 
injecting techniques. 

Convenient Fiction 

The near contradiction between ideas 3 and 4 concerning a null hypoth
esis—that the null hypothesis is the hypothesis of zero effect but an interven
tion will almost always have at least some tiny effect—can be brushed aside 
by saying that the null hypothesis is a convenient fiction. Almost all interven
tions may have at least some tiny effect, but in some cases the effect will be 
negligible and not worth knowing about and in other cases the effect will be 
important. We can hope that often an experiment will not find convincing 
evidence against the null hypothesis where the effect is negligible, but will 
find convincing evidence when the effect is important. How easy it is for an 
experiment to find convincing evidence that an intervention makes a differ
ence depends on the background variability, the size of the difference made by 
the intervention, and the number of measurements. This is discussed in more 
detail later. For the moment, we note that our hope that our experiments will 
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pick up large, important differences and overlook trivial unimportant differ
ences will partly depend on the number of measurements made. Hopefully, 
most experiments involve numbers of measurements that will usually allow 
important differences to be detected but will usually miss unimportant differ
ences. However, no general rule about the appropriate numbers of measurements 
is possible because the background variability and the size of the difference that 
we regard as important will affect the requirements. Therefore, there is no 
insistence in the philosophy of statistics about using appropriate numbers of 
measurements before arriving at conclusions about the null hypothesis. 

We started with the criticism that the ideas behind a null hypothesis are 
almost self-contradictory, so starting with a null hypothesis seems an odd ap
proach to scientific decision making. We have seen two easy responses to this 
criticism. The first response is that this approach to decision making leads to a 
conservative approach to assessing whether we should believe in the effec
tiveness of new interventions and that a conservative approach is often a good 
thing in the long run. The second response is that although the null hypothesis 
is a convenient fiction, experiments of the right size will often lead to useful 
conclusions about which effects really matter. However, we have seen that 
these responses are rather too easy. In the case of the first response we have 
seen that conservatism doesn't always match common sense, and in the case 
of the second response we have seen that there is no guarantee that our experi
ments will be of an appropriate size. 

Don yt Believe in Hypothesis Testing 

The inventors of statistics prepared two more responses. The last of these 
responses is the topic of a following section: confidence intervals. The other 
response can be summed up as, "Don't believe in hypothesis testing!" Some 
elaboration is required here, of course. In hypothesis testing we start with the 
null hypothesis H() and see if there is sufficient evidence to talk us out of this 
null hypothesis. If there isn't, the correct conclusion, according to the advo
cates of statistics, is not to say "we believe in H()"; instead, the form of words 
we should use is "we have insufficient evidence to reject H()." If, on the other 
hand, we do have sufficient evidence to talk us out of the null hypothesis, 
evidence in the form of a/7 value of less than 0.05, we do state "we reject H()." 
However, the founders of statistics were keen to point out that this is still just 
a provisional statement. An outcome from the experiment has occurred that, if 
H0 were true, would be regarded as exceptional, something that occurs less 
than one in twenty times. However, something that occurs only one in twenty 
times will still sometimes occur, so our conclusion that this is evidence to 
reject H0 should be regarded as only provisional. Unfortunately, the caution 
advocated here is often forgotten, and firm conclusions are instead drawn on 
the basis of whether p is greater or less than 0.05. 
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ERRORS 

Since hypothesis testing consists of deciding between H0 and Ha in the face 
of a background of variability and with a limited number of measurements, 
wrong decisions are inevitable. A more detailed discussion of these wrong 
decisions or errors is useful here. 

There are two types of errors. A Type I error occurs when we conclude that 
Ha is true when really H0 is true. A Type II error occurs when we conclude that 
H0 is true when really Ha is true. The size of the Type I error is up to us, and 
conventionally we set the size of the Type I error as 0.05. This is equivalent to 
stating our benchmark p value is 0.05 (other terminology sometimes used is 
that the significance of the test is 0.05 or that the a level is 0.05). Why not set 
the Type I error to be zero? After all, we don't want to make any errors. A 
Type I error of 0.05 means that we will blame chance for any evidence that 
points toward the truth of Ha unless it is the sort of chance that occurs less than 
0.05 of the time. If we set zero as our Type I error it would mean that we 
would blame chance for any evidence that points toward the truth of Ha unless 
it is the sort of chance that occurs less than zero of the time. In other words, no 
matter what the evidence, we would always believe in H0. When H() happened 
to be true we would always get it right. However, when H0 happened to be 
false the evidence that it was false would always be explained away by saying 
H0 is true, but it just doesn't look that way because a series of coincidences 
came off. When Ha is true, we would always be making a Type II error. In the 
presence of uncertainty, we have to allow ourselves to sometimes be wrong 
when H0 turns out to be true so as to allow the possibility that we can be right 
when H0 turns out to be false. In general, the more we want to make a smaller 
Type I error (i.e., when there are no real long-run differences, we want to 
blame chance for all but the most extreme differences in our samples), the 
more likely we are to make a Type II error (i.e., when there are real differ
ences, we will be more likely to wrongly believe that there is no real long-run 
difference and blame chance for the differences seen in our samples). There is 
a trade-off between the two types of errors. 

The size we set for the Type I error is one of the factors determining the 
probability of a Type II error. There are three other factors: the background 
variability, the number of measurements, and the size of the difference made 
by the intervention. Why? Recall that a Type II error is made when Ha is true 
but starting from an initial assumption that H0 is true we find insufficient evi
dence to talk us out of this incorrect belief. This can occur if there is a lot of 
background variability so that the evidence being obtained can easily be ascribed 
to chance effects. It can occur if only a few measurements are made so we can 
easily blame results in favor of Ha on a combination of just a few odd chances. 
Third, it can occur if Ha is not very different from H0, so that results produced 
as a result of Ha being true will not be convincingly different from those that 
would have been produced if H() had been true. In general, the only factor we 
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can control here is the number of measurements. Usually, the only way to 
lower both Type I and Type II errors simultaneously is to use more data. 

Other terminology is sometimes used here. The size of the Type II error is 
sometimes given the symbol p, and 1 — (3 is called the "power" of the test. The 
power of the test is its chance of giving the answer that Ha is true when in fact 
Ha really is true. It follows that the power of the test is improved in the follow
ing situations: 

1. If we are prepared to accept a larger Type I error (for example, we may set the 
benchmark/? value to be larger than 0.05). 

2. If there is less natural variability. 

3. If there is a greater number of measurements. 

4. If the effect of the intervention is large. 

Ideally, experiments should be designed so that they have the power to gen
erally detect differences that matter. On the other hand, for the sake of economy 
the numbers in the experiment should be limited so that the experiment need 
not have the power to usually detect differences that do not matter. Where the 
effect of the intervention is minimal, we will get results that make us reject H0 

hardly any more often than would have occurred if H0 really had been true, 
since our true Ha is almost identical to our assumed H0. In other words, the 
minimum power occurs when the intervention is of minimal effectiveness and 
this minimum power is the value of the Type I error or a. The power increases 
as the distance between H0 and Ha increases until, when they are so far apart 
that they give unmistakably different results, the power is 1. 

These definitions can be summarized in the following way: 

Decide H() is correct Decide Ha is correct 

H0 truly correct (1 - a) Type 1 error (a) 

Ha truly correct Type II error (p) Power ( 1 - P ) 

There is a direct analogy here between hypothesis testing and medical test
ing. Specificity is the chance of a test telling us the person doesn't have the 
disease when in fact the person doesn't have the disease. In other words, it is 
the probability of the test indicating the correct decision when there is no 
disease. This is equivalent to the chance of not making a Type I error (i.e., 
specificity is equivalent to 1 - a). Sensitivity is the chance of a test telling us 
a person does have the disease when in fact it is true that the person does have 
the disease. Sensitivity is equivalent to the power of the test: 

Test indicates patient has Test indicates patient has 
no disease the disease 

Patient truly has no disease Specificity 
Patient truly has the disease Sensitivity 
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THE USE OF P VALUES AND COMMON SENSE IN 
HYPOTHESIS TESTING 

The end result of all our statistical calculations to date has been a/7 value. 
Recall that our main question goes something like this: "Here are two groups. 
One group has had an intervention and the other group hasn't. The measure
ments on the two groups are not exactly the same. It looks like the interven
tion could have made a difference, but on the other hand the difference could 
be accounted for just by coincidence. What then is the cause of the difference? 
Is it for real, or does it just look that way because of coincidence?" The p 
value does not give us an answer to this main question. Instead, it gives an 
answer to the secondary question: "If we're going to blame coincidence for 
the difference, what sort of coincidence are we talking about?" 

If we assume that it is coincidence alone that accounts for the difference 
and we then calculate that it is a very long coincidence that is needed to ac
count for the difference between the two groups, it may be more reasonable to 
stop assuming that it is coincidence alone. Instead, we should now decide that 
the difference is there because the intervention makes a difference. A long 
coincidence here is traditionally taken to be the sort of coincidence that would 
occur less often than one in twenty times (i.e., p ^ 0.05). 

However, it has been repeatedly emphasized that it is not always reasonable 
to use the traditional p value of 0.05 as a benchmark in deciding the answer to 
the main question. Sometimes the main question is stupid, as in the case of 
infection and cleaning the skin. We should never allow ourselves to blame 
chance for any difference in the infection rate after injections into cleaned 
skin compared to injections into uncleaned skin. Sometimes, while we may be 
prepared to believe in the null hypothesis initially, we may require only very 
weak evidence before giving it away. If I was only a bit skeptical about the 
ability of a relaxation tape to enhance sleep and I gave the tape to three people, 
all of whom said it improved their sleep the night they listened, then I would 
prefer to believe that the tape worked. Here, the p value is Vi x Vi x Vi = 0.125 
(to calculate p we are assuming that H0 is true—that the tape doesn't work at 
all—so it is a 50-50 chance [a probability of Vi] that each person will say 
better, and this chance has to come off three times in a row; hence, Vi x Vi x 
Vi). While without any evidence my best guess is that the tape doesn't work, 
I'm not strongly of that view. After seeing the result of a/? value of 0.125,1 
think it would be more reasonable to believe that the tape works to improve 
sleep rather than thinking that it just seems that way because of a 0.125 chance 
coming off. On the other hand, sometimes I may believe strongly in H0. Even 
if the next-door neighbor's child correctly guessed a number between 1 and 
1,000 that I had written down in secret, I would rather believe that it was a 
fluke and not that the child is clairvoyant. Therefore, the benchmark p value 
for me to change my mind in this situation would be less than 0.001. We 
therefore see that one of the factors in choosing the benchmarkp value (the/7 
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value that is just sufficient to convince a person about the alternative hypoth
esis) is our prior ideas about the relative chance of H0 being correct versus Ha 

being correct. 
Another factor we should consider is the consequences of being right or 

wrong. Recall that there are two ways we can be right and two ways we can be 
wrong, depending on whether H0 or Ha is actually correct or incorrect (see the 
previous section). Now consider Semmelweiss and the washing of hands and 
imagine we are living in the mid-nineteenth century. If hand washing had 
really turned out to be of no benefit but in error (Type I) we decided it was of 
benefit, then we would be forcing doctors to wash their hands unnecessarily: 
This is a rather trivial cost. If, however, hand washing turned out, as we now 
know it has, to be of great benefit and we had decided in error (Type II) that it 
was not of benefit, then we would have incurred a great cost in human life. In 
the situation of Semmelweiss, the cost of making a Type II error was much 
greater than the cost of a Type I error. 

Semmelweiss's colleagues should have taken this into account and should 
not have done as they did and forced Semmelweiss into prolonged human 
experimentation at considerable cost in human life before accepting that hand 
washing was worthwhile. We see from this example that in judging the evi
dence, as well as taking account of the p value and our prior ideas of the relative 
likelihood of H() and Ha, we should also take into account the costs of errors of 
both types. In general, we will do this in a subjective way. However, there is a 
branch of mathematics called decision theory that allows us to make the best 
decision on the basis of estimates of probabilities and costs and benefits. 

CONFIDENCE INTERVALS 

Hypothesis testing was the first approach of the founders of statistics to an 
objective method of decision making. However, we have seen that there are 
philosophical difficulties to this approach, in that the null hypothesis has to 
satisfy a near contradictory set of ideas. The various responses to these philo
sophical difficulties that we have discussed so far are not completely satisfac
tory. There are also serious practical problems in making decisions using 
hypothesis testing if p values are not properly understood and interpreted in 
light of a lot of common sense. A more comprehensive response to the philo
sophical problems of hypothesis testing is provided by the idea of confidence 
intervals. The theory and the calculations of confidence intervals follow di
rectly from hypothesis testing, but the confidence interval approach does away 
with the null hypothesis and its attendant philosophical problems. Unfortu
nately, though, serious problems of interpretation remain if the confidence 
interval approach is used in making decisions without incorporating under
standing and common sense. 

To explain confidence intervals, consider the single sample t test. We will 
look at an example where we use this test in decisions concerning the average 
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height of adult American women. We will compare the hypothesis testing ap
proach and the confidence interval approach for the same data. For example, 
our hypothesis might be that the average height of American women is 170 
cm and we may use the benchmark p value of 0.05 as our measure of how 
strongly we should hold on to this hypothesis. We note the arbitrary nature of 
both the hypothesis and the benchmark/7 value without further comment here. 
Let us say that we now choose two women at random from the population and 
find that their heights are 139 cm and 141 cm, so that the average height of our 
sample is 140 cm. We first look at the hypothesis testing approach. From Chap
ter 5 we know that under certain common circumstances, the formula 

gives us a value chosen from a t distribution. In effect, this tells us to calculate 
the distance of the sample average from the hypothesized true average (x- p) 
and compare this to the estimated variability of our sample average 

With two data values in our sample, theory tells us that the formula gives a 
value from a t} distribution. The estimated standard deviation of the numbers 
in this sample is 

so the estimated variability of our average (or estimated standard error or esti
mated standard deviation of the mean) is 

Therefore, we can see that our sample average of 140 is 30 estimated standard 
errors from the hypothesized mean of 170. The tx distribution shows that 95 
percent of the time the average of samples of two values will be within 12.71 
estimated standard errors of the true mean. We would therefore reject the hy
pothesis that the true average is 170 cm using the p - 0.05 benchmark, since, 
if 170 cm was the true average height of women, then 95 percent of the time 
we would get an average for our sample of two in the range 170, give or take 
12.71 estimated standard deviations of the mean, whereas our result of 140 is 
30 estimated standard deviations of the mean away from 170. In other words, 
in light of the variability we see in the sample, our average of 140 is the sort of 
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average that would "hardly ever" occur if the true mean was 170 and so we 
reject the hypothesis that the true mean is 170. 

In the confidence interval approach we start with the same formula 

and the information that 95 percent of the time this gives a value in the range 
-12.71 to +12.71. In our particular case, with 

we see that 95 percent of the time we would get a value of x such that x - p will 
be in the range -12.71 to +12.71. Since in our case x = 140, we see that if p 
was in the range 140 - 12.71 to 140 + 12.71 (or 127.29 to 152.71) then our 
value of 140 for x would not be unusual. It would not be unusual in the sense 
that if p was in the range 127.29 to 152.71, the value 140 for x would be a 
value in the range of the more common values of x that can occur for such a p. 
With one of these values for p, our formula 

gives a t value in the range -12.71 to +12.71, the sort of t values that occur 95 
percent of the time. The range 127.29 to 152.71 is then referred to as a 95 
percent confidence interval. 

However, the terminology "confidence" is misleading. It almost implies 
"probability" without actually using the word. But probability it is not. The 
confidence interval calculation has used only part of the information that we 
would need to be truly confident about where p might be. In the particular 
example here, one would have to have no concept of measurement or Ameri
can women to believe that there is a 95 percent chance that the true average 
height of American women is in the range from 127 tol53 cm. Almost every
one knows that the true average height for American women is going to be a 
figure much closer to 170 cm. By sheer chance, our sample happened to give 
us a misleading idea of the average height of American women. Coincidence 
has led us to pick a sample of two dwarves. 

The occurrence of such coincidences should not completely override our 
prior common sense ideas. Just because such a coincidence has occurred does 
not mean that we should now believe that there is a 95 percent chance that the 
average woman is between 127 and 153 cm tall. It would be more honest to 
refer to 95 percent confidence intervals as 5 percent compatibility intervals, as 
this terminology would emphasize that all that we have obtained is a range of 
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possible values for p that are compatible with the data. By compatibility, we 
mean that the data would not lead us to reject an hypothesis that p was one of 
the values in the range if we used a benchmark p value of 0.05 or 5 percent. 
We need to take into account prior knowledge, if available, as well as compat
ibility with the data before we can make a sensible statement about a probable 
range for p. Unfortunately, defining our prior knowledge in precise terms and 
incorporating this with the data is difficult. It also involves subjectivity: Dif
ferent people are going to have slightly different prior ideas about likely val
ues for the average height of women. Undertaking these tasks is the subject of 
Bayesian statistics. Conventional or frequentist statistics leaves us with confi
dence intervals. These should be understood as a range of values that is readily 
compatible with the data, but confidence intervals are commonly misunder
stood as representing probability intervals. 

Let us now look in more detail at the method for calculating confidence 
intervals in various situations. Consider our first and simplest test based on the 
normal distribution. This was the test of whether we should believe that 
Madagascans have the same height distribution as Americans based on the 
observation of one Madagascan. Recall that our Madagascan was 150 cm and 
that we were testing the hypothesis that the height of the Madagascan was a 
figure chosen at random from the distribution that describes the heights of the 
American population (i.e., N[ 170, 82]). Our hypothesis testing approach asked 
whether the figure of 150 was the sort of figure we could "easily" get from 
this normal distribution. We answered this question by noting that 150 would 
come from a N(170, 82) distribution as often as 

would come from a standard normal or Z distribution and then noting that we 
"hardly ever" (5% of the time) get figures from a Z distribution outside the 
range -1.96 to +1.96. The confidence interval approach here does not assume 
a particular value of 170 for p, but we use the value 8 for a. We then ask what 
values of p would allow our figure of 150 to be "easily" obtained. Using the 
same manipulation as we used in hypothesis testing, this is equivalent to say
ing that we want p so that 

is the sort of figure that is "easily" obtained from a Z distribution. The figures 
that are "easily" obtained from the Z distribution are figures in the range -1.96 
to +1.96 in the sense that 95 percent of the time a figure chosen from a Z 
distribution will be in this range. Therefore, saying that we want p so that 
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is the sort of figure that is "easily" obtained from a Z distribution amounts to 
saying that we want p so that 

is in the range -1.96 to +1.96. Mathematically, this can be written as 

To deal with this, note that if two things are unequal, then if the two things are 
multiplied by 8 they will still be unequal in the same way. This will also be 
true if 150 is subtracted from both of them. Therefore 

can be rewritten as -1.96 x 8 - 150 < -p < 1.96 x 8 - 150; that is, -165.68 < 
-p < -134.32. Now note that cancelling out minus signs from both sides of an 
inequality reverses the inequality: -4 is less than (on the negative side of) - 3 , but 
4 is greater than 3. Using this principle, our statement-165.68 < -p < -134.32 
becomes 134.32 < p < 165.68. The range of values 134.32 to 165.68 is then 
our 95 percent confidence interval for the true long-run average height of 
Madagascans based on our observation of a single Madagascan and our as
sumption that the heights of all human populations are normally distributed 
with a = 8. If we wanted 99 percent confidence intervals, in these calculations 
we would simply replace 1.96 by 2.576, as tables show that 99 percent of the 
time figures we get from a Z distribution are inside the range -2.576 to +2.576. 

These calculations can be written as 

Therefore 

If it is known that the value of X in our experiment is x, there is then the 
temptation to write 
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The range of values specified in the brackets in statement (2), x - 1.96a < p < 
x + 1.96a), is the 95 percent confidence interval for p. However, statement (2) 
incorrectly states that there is a 95 percent chance that the value of p is in this 
interval. Statement (2) does not follow from statement (1). Statement (1) is 
valid in telling us where values of X are likely to be knowing p has a particular 
value. It is not valid to twist this around to statement (2) about where p is 
likely to be given a particular value of X. The incorrect jump in logic here is 
analogous to a jump from a statement that "where there is smoke, there is a 95 
percent chance of fire" to a statement "where there is fire, there is a 95 percent 
chance of smoke." In general, we cannot say that there is a 95 percent chance 
of p being in the 95 percent confidence interval. 

OPTIONAL 

The reason the leap from statement (1) to statement (2) is not valid can be 
explained in other ways. Consider a number of drawers, each of which con
tains some red marbles and some black marbles. Let us say that it is known 
that in the first drawer 95 percent of the marbles are red. The statement, "Given 
that we are choosing marbles from drawer 1, there is a 95 percent chance the 
marble will be red," is equivalent to statement (1). Now let us say we opened 
an unknown drawer blindfolded and chose a marble and then found that it was 
red. The equivalent to statement (2) would be the statement, "Given that we 
have chosen a red marble there is a 95 percent chance that we have opened the 
first drawer." However, this statement would generally be wrong. The state
ment would certainly be wrong if there were lots of drawers to choose from 
and all but the first contained only red marbles. 

Using the language and notation of Chapter 3, the difference between state
ment (1) and statement (2) is the same as the difference between the probabil
ity of A given B and the probability of B given A; that is, P(A\B) and P(B\A). 
The relationship between these two quantities was given in the development 
of Bayes's rule. It is 

is a statement about where p is likely to be and B is a statement about where 
data values are likely to be. P(A\B) is a statement about the probability of p 
being in the 95 percent confidence interval knowing the data values. P(B\A) is 
a statement about the chance of data values being in a certain range given a 
value of p, and in this context its value is 0.95. Therefore, the statement P(A\B) 
= P(B\A) will in effect be a statement that the 95 percent confidence interval 
has a 95 percent chance of containing the value of p. We see from the earlier 
work that this last statement will only be true if P(A) = P(B). In this context, 

We will therefore have P(B|A) only if P(A) = P(B). In this context, A
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P(A) will generally only equal P(B) if the location of the data and the location 
of the parameter p are both equally likely to be anywhere. If we have some 
prior common sense ideas about where these values are likely to be, it will not 
generally be true that the 95 percent confidence interval has a 95 percent chance 
of containing the value of p. Instead, we should think of a 95 percent confidence 
interval as the range of values for the parameter p that could "easily" have 
resulted in the observed data. Here, "easily" means that the data would not lead 
us to reject a hypothesis about the value of p when our criterion for rejection is 
that the data are outside the range that would occur 95 percent of the time. 

Unfortunately, most statistics texts do not go through an explanation like 
this to show why a 95 percent confidence interval does not necessarily have a 
95 percent chance of containing the unknown parameter value p. Explanation 
is omitted because it would involve statements about the likely location of the 
parameter p. In the absence of data, this necessarily brings in statements about 
the location of p that are not objective; that is, not based on data. The follow
ers of frequentist statistics are so committed to objectivity that they won't use 
any explanation that brings in any hint of nonobjective ideas. 

A practical example may make these ideas clearer. Say a chocolate manu
facturer knows that he will be breaking the law and may get into trouble if the 
machinery that produces his 100-gm chocolate blocks is set to produce blocks 
that in the long-run average have a weight less than 100 gm. Let us say that he 
wants to check on his chance that he is breaking the law and so measures four 
chocolate blocks. These weigh 101, 105, 102, and 100 gm. This gives the 
mean x = 102 and s = 2.16. The theory discussed in Chapter 5 on the single 
sample t test tells us that 

is a figure from a t3 distribution. If the machinery was set so that he just failed 
to comply with the law, then p might be 99.999 and 

would then be 

Figures as large as this from a t3 distribution occur about 8 percent of the time. 
We could therefore say that if he was only just breaking the law he would get 
data that were misleading, in the sense of being at least as favorable as the data 
he got, 8 percent of the time. Similar calculations show that if he was breaking 
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the law to the extent that his p was 98.6 rather than 100, he could still get data 
at least as favorable as the data he got 2.5 percent of the time. 

However, it is not logical to reverse these statements. The manufacturer 
can't look at these figures and say that there is an 8 percent chance that he is 
just breaking the law and a 2.5 percent chance that he is breaking it to the 
extent of having his machine set to 98.6. This would be illogical in the same 
way that the reasoning described earlier is illogical in the experiment in which 
a random drawer is selected and a random marble chosen. Knowing that 8 
percent of the marbles in one particular drawer are red does not mean that if a 
red marble is obtained then there is an 8 percent chance that particular drawer 
has been chosen. More generally, the manufacturer could note that 95 percent 
of values from a t3 distribution are between -3.182 and +3.182. The 95 per
cent confidence interval here is then given by the inequality 

However, all this is answering the wrong question for the manufacturer. He 
wants to know, given the data, what the chances are that he is breaking the 
law. All that frequentist statistics can give him is the answer to the reverse 
question, "If he is breaking the law by a certain amount, what are his chances 
of getting the misleadingly favorable data he got?" Frequentist statistics does 
not allow him to jump from an answer to the reverse question to an answer to 
the original question. He could do so only if he had some prior idea about how 
badly he may have broken the law. 

In particular, suppose that somehow the manufacturer, prior to measuring 
the sample, had reason to believe that there was a 90 percent chance that his 
machine was set to give an average block size of 99.999 ("av99999") and a 10 
percent chance that it was set to give an average block size of 102.0 ("avl02"). 
Maybe the manufacturer has just bought the chocolate factory from another 
businessman. Maybe there is a switch deep in the machinery and very hard to 
access that can be set so that the long-run average chocolate block size is 
either 99.999 or 102.0. The current manufacturer knows that the switch is 
there, though he is not yet able to check its setting, but he is 90 percent certain 
that the previous owner would have favored the illegal 99.999 setting. The 
manufacturer now also knows that the probability of a sample that averages at 
least 102 given the setting 99.999 is 0.08. In symbols we write P(sl02|av99999) 
= 0.08. Using similar notation, we also know that P(sl02|avl02) = 0.5 (half 
the time the sample average will be at least as heavy as the set machine aver
age). Bayes's theorem as discussed in Chapter 3, then gives us 
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so that 

Therefore, the manufacturer after measuring the sample should revise his prior 
belief that there was a 90 percent chance the machine is on the lower illegal 
setting. He should now believe that there is a 59 percent chance that the ma
chine is on the lower illegal setting. 

On the other hand, say that somehow the manufacturer knew that there was a 
90 percent chance that his machine was set to give an average block size of 98.6 
and a 10 percent chance that it was set to give an average block size of 102.0. 
Then, after obtaining the sample with average 102, the calculations can be re
peated with P(sl02|av986) = 0.025 in place of P(sl02|av99999) - 0.08. The result 
will be that the manufacturer, after measuring the sample, should now believe 
there is a 31 percent chance that the machine is on the lower illegal setting. We 
see that the same data with the same confidence interval but combined with 
different prior ideas lead to different conclusions about probabilities. 

In practice, the manufacturer's ideas about the machine setting prior to 
measuring the sample are usually going to be more complicated than a prob
ability regarding a simple choice between the value 102.0 and one other value. 
The possible machine setting will be a continuous variable and the manufac
turers prior ideas about likely settings would be represented by probabilities 
"smeared out" over a continuous range of values. Also note that the actual out
come is known not to be "102.0 or above," but "exactly 102.0." Taking all these 
factors into account, calculations like those here become very complicated 
and are the subject of Bayesian statistics. Even obtaining a reasonable math
ematical representation of the manufacturer's prior ideas is a major challenge. 

In frequentist statistics all that can be calculated is confidence intervals. As 
we have seen, it is not correct to think of the confidence interval as a probabil
ity that the manufacturer's p is in the given range. There is no answer to the 
manufacturer's question in frequentist statistics. He cannot use the data to give 
him a probable range for p. Statistics only answers the reverse question about 
how compatible the data are with various possible values of p. In practice, 
though, he would be more confident that he was complying with the law if all 
of the 95 percent confidence interval for p was above the legal value of 100. 

END OPTIONAL 

The single sample t test and z test examples are a bit different from most of 
our other tests in that they test an arbitrary hypothesis such as p = 170 rather 
than a null hypothesis H(). Let us now look at how confidence intervals apply 
in situations where there is a null hypothesis. Consider the situation of two 
groups of people where one group has an intervention and the other group 
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does not, and assume that we are measuring some outcome that is a value 
from a normal distribution. In the hypothesis testing approach we would look 
at the difference in the averages for the two groups and assess the variability in 
the system. Calculations would then allow us to answer the question, "Given 
this much variability in the system, how often would chance alone result in 
two group averages at least as different as these two group averages are?" The 
answer to this question is the p value and is the basis for our decision about 
whether the intervention makes a difference. The confidence interval approach 
instead works out that if the true long-run average difference as a result of the 
intervention was any figure out of some range of values then we could have 
easily obtained the average difference between the two groups that we have 
observed. 

What do we mean by "we could have easily obtained"? To explain, assume 
that in place of the null hypothesis that there is no difference between the two 
groups we have a d hypothesis that there is a difference of some value d be
tween the two groups. With a slight modification of the hypothesis testing 
calculations, we can test this d hypothesis. To test the d hypothesis, use the 
rule that we reject the d hypothesis if the actual difference in group averages 
are too far from the value d. By "too far" we mean that calculations show that 
if the d hypothesis were true then chance alone would lead to a group average 
difference at least as extreme as our observed difference less than 5 percent of 
the time. Such calculations would lead us to reject the d hypothesis where d is 
a long way from the observed average difference between the two groups, but 
we would not reject the d hypothesis when we chose d to be a value close to 
the observed difference in average between the two groups. There would be a 
range of values of d where we would not reject the d hypothesis. This range of 
values is the 95 percent confidence interval. If the true long-run average dif
ference made by the intervention was any value in the 95 percent confidence 
interval, we could easily get the observed difference between the group aver
ages in the sense that these observed values are not so far out from d as to 
make us think that we have convincing evidence against the value of d. 

In place of a/7 value of 0.05 we could use any other p value as our rule for 
rejecting our d hypothesis. If we used a/? value of 0.10, we would obtain 90 
percent confidence intervals. If we used a/7 value of a, we would obtain 100 x 
(1 - a) percent confidence intervals. 

Confidence intervals are a widely used extension to the analyses of paired 
sample and independent samples t tests. Recall that the paired sample t test is 
used when we make measurements before and after an intervention or when 
we treat one of a pair and not the other and compare measurements of out
comes. In the paired sample t test, under the null hypothesis the differences xt 

between the items in each pair are figures drawn from a normal distribution 
centered on zero and with unknown standard deviation. This leads to the con
clusion that 
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is a figure from a t distribution. With the confidence interval approach we 
would have a d hypothesis that the difference between the items in each pair is 
a figure drawn from a normal distribution centered on d. Then 

would be a figure from a t distribution. If the computer or statistical tables told 
us that 95 percent of the time figures from the appropriate t distribution are 
between - T and T, then the 95 percent confidence interval for the difference d 
is given by the inequalities 

This can be rearranged to 

Similarly, in the independent sample / test the null hypothesis leads to the 
result that the expression 

the difference between the two means 

will be a figure from an appropriate t distribution. Say one mean is x and the 
other is y; this expression can then be written as 

The equivalent d hypothesis is that 
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is a figure from a t distribution. This then leads to a confidence interval of the 
form 

for the difference d made by the intervention. This rather messy expression is 
saying that the confidence interval for dy the true average difference between 
the groups, is within an amount 

of the observed average difference in our two samples, x-y. Different per
centage confidence intervals are obtained by using different values for T. Here 
r is a figure from the appropriate t distribution such that values between - r 
and +r occur the required percentage of the time. These calculations are gen
erally made by computer. Note that if the 95 percent confidence interval in
cludes zero difference, then by definition we would not reject the null hypothesis 
that the difference is zero at the 5 percent significance level (i.e., p > 0.05). 

For an example emphasizing the need to use common sense with interpreta
tion of confidence intervals, consider the experiment mentioned in Chapter 1 
on whether two half-hour music lessons per week are of more benefit than a 
single half-hour music lesson per week. In Chapter 1 we said that the experi
ment involved only small numbers and showed a surprisingly small 2 percent 
improvement in those who had more lessons. We will assume that the percent
age units refer to marks out of 100 on an exam and it is reasonable to believe 
that these are approximately normally distributed (of course, values below 0% 
and above 100% are impossible, so the assumption of a normal distribution is 
at best approximate). We discussed how silly it would be to start with the null 
hypothesis, as it is not reasonable to believe, in the absence of evidence, that 
the extra tuition is of exactly zero benefit. If we looked at confidence intervals 
in some computer analysis of the figures, it might tell us that the 95 percent 
confidence interval for the amount of improvement was -18 to +22 percent. 
This would be telling us that if the true difference made by the tuition was 
anywhere between -18 and +22 percent we could "easily" get our figures. By 
"easily" we mean that our figures would not contradict a d hypothesis with d 
in this range when we used the benchmark p value of 0.05. The confidence 
interval would be wide like this, if there were very little data and what data 
there were indicated considerable variability. The confidence interval is sym
metric around the observed mean of 2 percent improvement. This means that 
an actual improvement of zero (the null hypothesis) could give the observed 
figures just as easily as a long run improvement of 4 percent. 

However, this does not mean that the null hypothesis that there is no im
provement is just as likely as the hypothesis that there is a 4 percent improve-



General Issues in Hypothesis Testing 161 

ment in marks of students who have an extra lesson each week. Common 
sense tells us that an extra lesson will almost certainly be of some positive 
value, not zero or negative value. The width of the confidence interval also 
tells us indirectly that our experiment was not very powerful. Even if the long-
run improvement was as large as 22 percent, the confidence interval shows us 
that we could still "easily" have obtained our data that show only a 2 percent 
average improvement. If prior to the experiment I had been very uncertain 
about how much improvement could have been expected from an extra half-
hour of tuition per week but I had guessed that it would probably make a 
difference on average of somewhere between 10 and 40 percent, then after 
seeing the confidence intervals given by the experiment I would reassess my 
guess. I might perhaps now guess that the true average long-run improvement 
from an extra half-hour per week of tuition would be a figure very likely to be 
in the range from 5 to 25 percent. Note that if the long-run average improvement 
was a figure bigger than 22 percent the confidence interval tells us it would be 
unusual to obtain data like ours with only 2 percent average improvement. How
ever, this does not rule out the possibility that the long-mn average improvement is 
more than 22 percent, and we must balance this against our feeling that 25 percent 
(the average of 10% and 40%) was our best guess prior to the experiment. On the 
other hand, I would continue to rule out the null hypothesis and negative val
ues for the true long-run average improvement, even though the null hypoth
esis can give rise to our figure of a 2 percent average improvement more easily 
than a hypothesis that the true long-run average improvement is more than 5 
percent. Common sense tells me that it is exceedingly unlikely that an extra 
half-hour of tuition can have no effect or a negative effect on performance. 

Readers may be very unhappy with the amount of guesswork here. How
ever, guesswork is unavoidable in attempting to make estimates in the face of 
limited and variable information. It is true that confidence intervals are based 
solely on calculation and do not require guesswork, but avoiding guesswork 
by stopping at a quote of the confidence intervals may not be a satisfactory 
solution. For example, 95 percent confidence intervals are widely misunderstood 
as being the range of numbers 95 percent certain to contain the true average value. 
If the situation allows any common-sense guessing or there is any prior knowl
edge, 95 percent confidence intervals cannot be thought of as being the range 
of numbers 95 percent certain to contain the true average value. The common 
sense and prior ideas have to be taken into account in deciding where the true 
average value is likely to be. This is a point that deserves emphasis. 

Those who resent the speculation used in this example are, however, cor
rect in some respects. We arbitrarily condensed our common sense into the 
guess that the extra tuition "probably" makes an average difference of some
where between 10 and 40 percent. We then simply used another guess to com
bine our prior guess of 10 to 40 percent with our calculated 95 percent 
confidence interval of -18 to 22 percent to give our final guess of 5 to 25 
percent as the range very likely to contain the unknown figure for true long-
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run average improvement. The proper method of assessing and combining the 
prior information with the information in the data is to use Bayesian statistics. 
Unfortunately, Bayesian statistics is more difficult and less amenable to automated 
calculation. It was briefly discussed in the chocolate manufacturer example in 
the optional material discussed earlier, but is not dealt with further here. 

We can conclude by stating that confidence intervals are a useful extension 
to hypothesis testing. They sidestep the problem that the null hypothesis is 
almost certainly a fiction in most cases. In addition, statements about rejection 
or nonrejection of the null hypothesis give us no clue as to the sort of differ
ences the experiment had the power to show, whereas the width of confidence 
intervals give us an idea of what sort of effects could be present and readily 
compatible with the data. However, just as in the case of hypothesis testing, 
confidence intervals must be interpreted with the assistance of common sense. 

SUMMARY 

• Hypothesis testing is objective, but it is not a logically satisfying approach to deci
sion making. 

• Hypothesis testing implies conservatism: not believing effects are real until the evi
dence is strong. 

• Hypothesis testing will frequently fail to detect real differences when the differ
ences are small, when numbers in the experiment are small, or when there is a lot of 
variability. 

• The results of hypothesis testing should always be regarded as tentative. 
• Hypothesis testing should always be interpreted in light of common sense and should 

take into account the chances of Type I and Type II errors and the costs of these 
errors. 

• Confidence intervals give us a range of possible values for the long-run average 
difference caused by an intervention that are easily compatible with the data. They 
do not directly tell us the chance that the average difference is in some range. If we 
have no preconception about what difference is to be expected, the distinction be
tween confidence intervals and probability intervals is not relevant. Otherwise, con
fidence intervals have to be interpreted with common sense. 

In short, confidence intervals are a more satisfactory approach than hypoth
esis testing in decision making as they indicate the range of effects easily 
compatible with the data. However, confidence intervals also have to be inter
preted in the light of common sense. 

QUESTIONS 

1. It is suspected that watching violence on television may have an adverse impact 
on human emotional development and social interaction. As part of a study on the 
issue, a number of young children are shown a nonviolent cartoon on one occa-
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sion and a cartoon containing violence on another occasion. After each cartoon 
viewing, each child was introduced to a group of children of similar age (who 
watched neither cartoon) and their interaction with the group was studied. The 
number of times in which it was judged that a child socialized more construc
tively after the nonviolent cartoon than after the violent cartoon was assessed by 
an assessor who had no knowledge of the type of cartoon that had been shown. 

a. What is the null hypothesis in this experiment? Is the null hypothesis appro
priate? What is the alternative hypothesis in this experiment? Is a one-tail or 
two-tail test appropriate? 

b. How plausible do you personally feel each of these hypotheses are? 

c. In making a decision between these hypotheses, what do you see as the 
costs in making a Type I error? What do you see as the costs in making a 
Type II error? 

d. What p value do you feel is appropriate to just make you change your mind 
between the two hypotheses? 

e. Say that the experiment was actually performed on twelve children with the 
following results: Five children socialized equally well after both cartoons, 
six children socialized better after the nonviolent cartoon than after the vio
lent cartoon, and one child socialized better after the violent cartoon than 
after the nonviolent cartoon. Perform an appropriate statistical test and find 
the p value. Do you now believe in H0 or Ha? 

2. In each of the following cases decide whether the hypothesis listed is appropriate 
as a null hypothesis that could be tested by collecting appropriate data. If you 
decide the hypothesis is not appropriate as a null hypothesis, state why not. If you 
believe that the null hypothesis is appropriate, state how strongly attached you are 
to the null hypothesis. How strongly attached you are to the null hypothesis should 
be expressed in terms of the rarity of event that would make you reject the null 
hypothesis. In other words, for certain moderate values of x you would not reject 
the null hypothesis if an event occurs that has 1 chance in x of occuring when the 
null hypothesis is true, even though the event is more likely to occur when the null 
hypothesis is false. The question is how big would x have to be before it was just 
enough to force you to change your mind and reject the null hypothesis. Give 
brief reasons for your opinions. 

a. A rubber strip hanging between a car bumper and the road surface has no 
effect on motion sickness associated with car travel. 

b. Short and tall people are equally good at basketball. 

c. Male and female students are equally good at statistics. 

d. The astrology column in a weekly magazine does not predict peoples' fu
tures. 

e. Vaccination against measles does not reduce your chance of catching measles. 

f. Students learn just as well when lecture notes are written on a blackboard as 
when they are presented in the form of transparencies displayed with over
head projectors. 

g. Motorcyclists and car drivers have equal chances of fatal road accidents. 
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h. New drug A is no more effective than aspirin at relieving a headache. 

i. Gastroenteritis is as likely to spread in households where all members al
ways wash their hands after using the toilet as it is in households where this 
is not the common practice. 

j . Reticulated water is as good for plant growth as rainwater. 

k. Small primary school classes have no educational advantage over large 
classes. 

1. Drivers of four-cylinder cars have the same rate of fatal car accidents as 
drivers of six-cylinder cars. 

m. There is no relationship between poverty and crime. 

n. People who are blind in one eye are as good at distance perception as people 
who can see through both eyes. 

o. Students from well-resourced government schools get as good an education 
as students from comparable private schools. 

p. Beer stored in wooden kegs tastes the same as beer stored in metal kegs. 

q. Forest regenerating after logging has as many different species of wildlife 
as old-growth forest. 

r. Physically fit students have no academic advantage over unfit students. 

s. The taste of equivalent amounts of sugar and saccharine in foods is indistin
guishable. 

t. Blackboards and whiteboards are equally popular among students. 

u. Intensive fishing does not reduce the number of fish in the sea. 

v. People who are deaf in one ear are as good as people with normal hearing in 
determining the direction of sound. 

w. Brand A and brand B paints are equally long-lasting. 

x. Numbers that have not appeared in the last 100 spins of the roulette wheel 
are no more likely to occur on the next spin. 

y. Dalmatian dogs do not learn tricks more readily than golden retrievers. 

z. Smokers and nonsmokers are equally likely to die prematurely. 

aa. Men and women are equally likely to be victims of domestic violence. 

bb. Stutterers are just as likely as those with fluent speech to gain employment 
in the public relations area. 

cc. Toothbrushing does not protect against tooth decay. 

dd. A medical history of heart attack does not affect longevity. 

ee. Sanitary disposal of sewage does not necessarilyreduce the incidence of 
diarrheal disease. 

ff. Male and female cyclists are equally likely to have bike accidents requiring 
hospitalization. 

gg. Marks on a statistics exam are not affected by additional tutoring. 

hh. Marks on a statistics exam are not affected by an exercise program. 
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ii. Marks on a statistics exam are not affected by a carrot juice diet. 

j j . Marks on a statistics exam are not affected by an ointment purchased from a 
traveling fair and rubbed into the forehead once per day for two weeks. 

kk. Rich people and poor people are equally likely to steal food to eat. 

11. Rich people and poor people are equally likely to have surnames starting 
with the early letters of the alphabet. 

mm. People who use sunscreen regularly are just as likely as people who don't 
use sunscreen to suffer from skin cancer later in life. 

nn. Infants who display considerable enthusiasm for music are just as likely as 
other infants to show ability in mathematics in later life. 

oo. Sagittarians have just average luck in terms of winning raffles. 

pp. Clairvoyants who are consulted by strangers are not able to guess the birth 
dates of the strangers any more often than would be expected by chance. 

qq. Consumption of fatty foods is not related to the later onset of rheumatoid 
arthritis. 

rr. Possession of a beard is in men is not related to the later onset of rheumatoid 
arthritis. 

ss. The day of the week on which you are born is not related to the later onset of 
rheumatoid arthritis. 

tt. Family history of rheumatoid arthritis is not related to the later onset of 
rheumatoid arthritis. 

uu. Potted plants exposed to the music of the Beatles grow just as well as potted 
plants exposed to the music of the Rolling Stones. 

vv. A twenty-minute session of vigorous physical exercise in the late afternoon 
does not lead to improvement in sleep for people suffering from insomnia. 

3. Consider each of the following null hypotheses and decide whether in testing each 
of these hypotheses you would use a one-tail test or a two-tail test. In each case 
give brief reasons for your choice. 

a. Students who are provided with a private tutor visiting their home are as 
likely to get good results as students who are not provided with this service. 

b. High school students whose main outside interest is sports are as likely to 
do well at school as students whose main outside interest is computer games. 

c. Plants that are watered three times a week grow just as rapidly as plants that 
are watered daily. 

d. Patients having major surgical procedures fare equally well regardless of 
whether the surgery is performed by general practitioner surgeons or fully 
trained specialist surgeons. 

e. Cyclists wearing white clothes are just as likely to be hit by a car at night as 
cyclists wearing clothes of other colors. 

f. People with blood group A are just as likely as people with blood group B to 
contract rheumatoid arthritis. 
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g. Blue-eyed and brown-eyed people are equally likely to suffer from rheuma
toid arthritis. 

h. Scuba divers who have been given a six-week training course are just as 
likely to have accidents as scuba divers who have been given a twelve-week 
training course. 

i. Laboratory rats provided with unlimited quantities of wheat grain grow just 
as fast as rats provided with a variety of dinner table scraps in addition to 
unlimited quantities of wheat grain. 

j . People whose surname starts with "A" are just as introverted as people whose 
surname starts with "Z." 

k. Diabetics who have a weekly medical check suffer diabetic complications 
at the same rate as diabetics who have monthly medical checks. 

4. A sample of chocolate bars from a factory are weighed and the results are 201.3, 
201.7, 202.0, 202.4, 202.8, and 203.0 grams. Find 

a. the 90 percent confidence interval for the population mean of the weight of 
a chocolate bar. 

b. the 95 percent confidence interval for the population mean of the weight of 
a chocolate bar. 

c. the 99 percent confidence interval for the population mean of the weight of 
a chocolate bar. 

d. Is it unreasonable to believe, given these data, that the population mean of 
the weight of a chocolate bar is 200 grams? 



C H A P T E R 7 

Causality: Interventions and 
Observational Studies 

Up until now we have often referred to interventions. We have often talked 
about comparing two groups. One has been a comparison or control group. 
The other group has been subjected to some intervention. In the first example 
in this book the intervention was an additional half-hour of music tuition per 
week, but we could imagine an endless variety of interventions that we might 
want to test in various circumstances. In such cases, provided the subjects for 
both groups are chosen at random from the same population, there can be only 
two explanations for any differences between the two groups: chance and the 
effects of the intervention. Because there is variability, the response of the 
subjects selected for the control group may just by coincidence be different 
enough from the subjects selected for the intervention group to make the aver
age of measurements of the two groups appreciably different from each other 
even though the intervention itself was entirely useless. On the other hand, the 
average of measurements of the two groups would be likely to be different if 
the intervention has a real effect. If we denote the intervention by the symbol 
A and the difference by the symbol B, then we can summarize these two 
possible explanations as 

• chance 
• A implies B (in symbols we write A => B). 

Often, however, the comparisons that we want to make are between two 
groups that are different by nature. For example, we might want to compare 
measurements of the lung function of drinkers and nondrinkers of alcohol. 
The difference between the two groups here is in whether the individuals drink. 
In a sense, this is the intervention. However, we did not create this interven-
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tion. We just observe its effect, so this is called an observational study. An 
intervention is often not ethical or feasible. Clearly we could not collect a 
large number of people who didn't care either way about whether they took up 
drinking, tell half of them to start drinking and the other half not to, and then 
later measure their lung function. Instead, we choose two groups of people 
who have made the different decisions for themselves about drinking. The 
two groups may then be consistently different from each other in more than 
just their drinking habits. In that sense, the two groups do not come from the 
same population. This has important implications for causality. Say we find 
poorer average lung function measurements in the drinkers compared to the 
nondrinkers. There are now four possible explanations: 

• chance. 
• drinking (A) causes poorer lung function (B). 

• poorer lung function (B) causes drinking (A). 

• some third factor (C) causes poorer lung function (B) and separately causes people 
to drink (A). 

In symbols, the four possible explanations are 

• chance. 

• A=»B. 
• B=»A. 
• C => both A and B. 

The last possibility, where some third factor causes poorer lung function 
and separately causes people to drink, requires more explanation. Perhaps a 
smoking habit tends to induce people to go to bars more frequently to pur
chase cigarettes. Consequently, these people then tend to become drinkers. 
The smoking also directly affects their lung function. Hence, even though 
drinking may do nothing to cause lung damage directly, drinking and lung 
damage will be associated because smoking has tended to cause both drinking 
and lung damage. There is a more realistic but less direct version of this sce
nario that will give a similar result. Certain social and personality factors re
sult in some people being more concerned with immediate gratification than 
with long-term consequences. Many such people will tend to become both 
smokers and drinkers, so smoking and drinking are associated. We would again 
have an association between poorer lung function and alcohol because of the 
third factor, smoking. 

It should be noted that we have used the word "intervention" without com
ment when we have been dealing with observational studies in a few of the 
previous examples. The statistical analysis is the same regardless of whether 
the intervention is one we create in an experiment or one we observe. How-
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ever, in an observational study, when we decide that the differences between 
two groups are too big to reasonably be put down to chance we have to con
sider the options B =» A or C => both A and B, as well as the most obvious 
possibility that A => B. Common sense, not statistics, can help sort out these 
options. 

Often we can rule out one of A =• B or B =• A by looking at which came 
first in time. Reasonable people believe that smoking is a cause of lung can
cer. The smoking habit usually precedes the lung cancer by many years. A few 
diehard smokers have argued that an intuitive knowledge that one is doomed 
to lung cancer induces people to take up smoking, a habit that they argue 
protects the lungs from cancer. They continue their argument by stating that 
although smoking is protective to some extent, it is only partly successful in 
preventing the otherwise inevitable lung cancer: hence the association between 
smoking and lung cancer. There are at least three findings that do not fit this 
explanation: Dogs attached to smoking machines develop lung cancer, there 
are known cancer-causing chemicals in cigarette smoke, and there is a propor
tionality between lung cancer incidence and prevalence of smoking in popula
tions in various parts of the world and at various times. However, even if a 
person knew nothing about any of these findings, the arguments of the diehard 
smokers would still seem far-fetched. The argument seems far-fetched be
cause what is to happen in the future, the lung cancer, must affect the decision 
on whether to take up smoking in the past. This then requires the invention of 
a possible mechanism to explain how this time reversal could happen. Rather 
than invent such mechanisms, it will generally be more satisfactory to simply 
concede that A and B are associated for reasons other than B =• A. 

It is also relevant to note that the word "cause" is a loose word that has the 
precise meaning of either "contributory cause" or "absolute cause." Smoking 
is a contributory cause of lung cancer. Not everyone who smokes gets lung 
cancer, but smoking increases the chance that a person will get lung cancer. 
There are other factors involved in lung cancer, such as exposure to asbestos, 
radioactive particles, industrial pollution, aging, and unknown factors that can 
be lumped together as "bad luck." On the other hand, destroying a forest is an 
absolute cause of the death of animals in the forest, assuming it is known that 
these animals are totally unable to survive without the habitat provided by the 
forest. A person who objects to the bland statement that "smoking causes lung 
cancer" on the grounds that not everyone who smokes automatically gets lung 
cancer is interpreting "cause" as "absolute cause," whereas most people would 
gather from the context that "contributory cause" is meant. In statistics we are 
generally interested in contributory causes. Absolute causes usually cannot be 
confused with chance effects; therefore it is not necessary to use statistics to 
assess them. 

The problem of eliminating the possibility that C ==> both A and B is much 
more difficult. For example, it is known from observational studies that older 
women who take hormone replacement therapy (HRT) have fewer heart attacks 
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than women who don't. However, at the time of writing there is considerable 
controversy between those who conclude that A =» B (i.e., HRT causes a decrease 
in heart attacks) and those who argue C =» both A and B. Those who argue C => 
both A and B believe some other factor causes some women to take HRT and 
separately causes a decrease in heart attacks. The other factor could well be 
attention to health. Women who are focused on their health are more likely to 
attend doctors for the distress caused by menopausal symptoms and will then 
receive HRT, and are also more likely to avoid heart attacks by living a generally 
healthier life. It is necessary to await studies in which women are assigned at 
random to a HRT group and a non-HRT group instead of allowing women to self-
select into these groups in order to be certain about causality here.1 

DOUBLE BLIND PLACEBO-CONTROLLED TRIALS 

In the medical setting, to decide between the options of A => B, or C => 
both A and B experiments are preferable to observational studies where pa
tients self-select. In an experiment, unlike a study where patients self-select 
their treatment, there should be no difference between patients assigned to 
various treatments other than that due to random chance. However, further 
care is often needed before an experiment on humans can properly assess the 
benefit of any new treatment. The ideal form for such experiments is known as 
a double blind placebo-controlled clinical trial. A placebo is a dummy treat
ment. If patients in a study are aware that they are getting a new treatment that 
may turn out to be more effective than basic care, the power of positive think
ing may affect the results. The power of positive thinking is often enough to 
give those who think that they have received the new treatment a better out
come than those who think they have received no treatment. Positive thinking 
is known to have some effectiveness in a wide range of medical conditions, 
from perception of pain and depression to skin rashes and warts. To ensure 
that the power of positive thinking works equally for people in both groups, a 
placebo is given to one group and both groups are kept ignorant of whether 
they are receiving the new treatment or the placebo. So powerful and conta
gious is the power of positive thinking that it is necessary to prevent the doctor 
administering the treatments from knowing which is the new treatment and 
which is the dummy treatment or placebo. 

Since both patient and doctor are blind to the nature of the treatment, we have 
the name "double blind placebo-controlled trial." The term "controlled" here 
implies the existence of a comparison group. Double blind placebo-controlled 
trials are easy to arrange if the treatment consists of a drug that can be taken as 
a tasteless coated tablet and has no immediate side effects that would make it 
clear to the patient that they were receiving active treatment. The placebo can 
then be a similar tasteless coated tablet containing only sugar. A double blind 
placebo-controlled trial with such sugar tablets would be used for the assess
ment of a new headache tablet, for example. However, double blind placebo-
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controlled trials may be difficult or impossible in the case of treatments such 
as acupuncture or surgery. A double blind placebo-controlled trial in the case 
of surgery would need to involve a surgeon not in communication with the 
patient or the experimenter. That surgeon would then make a cut through the 
anaesthetized patient's skin but not perform the internal surgery. Such studies 
have actually been done, but there are obvious ethical difficulties: The placebo is 
not harmless like a sugar pill; it involves an anaesthetic and an incision. Double 
blind placebo-controlled surgery is a rarity. Instead, the placebo effect is usu
ally ignored in the case of surgery and experiments of new surgical approaches 
consist of "trials" in which one group receives the new surgery and the other 
group, the "controls," receives the old standard care. 

PROSPECTIVE AND RETROSPECTIVE STUDIES 

There are many situations other than surgery in which double blind placebo-
controlled trials are not possible. Often we want to assess the effect of differ
ences in lifestyles where patients have self-selected into two major groups. 
Usually it will not be feasible for the experimenter to impose these differences 
on two groups chosen from a single population. For example, it is not feasible 
to use a controlled trial to assess the effects on health of lifetime dietary pref
erences. In such situations we must use observational studies. There are two 
major sorts of observational study in the medical context: prospective studies 
and retrospective studies. 

In a prospective study, people who have self-selected into two groups are 
followed over a period of time to see if they develop a particular condition. 
For example, smokers and nonsmokers have been followed over a long time 
to study the incidence of lung cancer in both groups. In such a prospective 
study we know for certain that the smoking precedes the lung cancer, so if we 
find that there is an association between smoking and cancer that is too strong 
to be reasonably put down to coincidence we can virtually eliminate the pos
sibility that lung cancer causes smoking because the smoking came first. How
ever, other information (such as knowing that smoke contains cancer-causing 
chemicals) is needed to eliminate the possibility that C => both A and B and 
so conclude that A => B (i.e., smoking causes lung cancer). Prospective stud
ies are expensive, particularly for less common diseases, for they involve fol
lowing a large number of people for a long time until sufficient numbers of 
cases of the disease develop. 

In a retrospective study, those who already have contracted a disease are 
asked about their previous exposure to a possible risk factor and their answers 
are compared to answers from a control group who don't have the disease. 
Although retrospective studies are cheaper than prospective studies, there are 
more pitfalls. We can no longer ignore the possibility that any association is 
due to B => A. Those who are victims of a disease may be more likely to recall 
exposure to possible risk factors, so by selective recall the disease can in effect 
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cause the preceding risk factor. In addition, there are major problems in se
lecting the control group for comparison. In the case of lung cancer and smok
ing, if a control group was selected at random from the total population the 
most striking difference between the two groups would probably be age. The 
average age of a sample from the total population is likely to be in the twen
ties, whereas the average age of lung cancer cases is likely to be several de
cades older. This difference in age would not be telling us anything we did not 
know before, but on the other hand, the difference in age could account for 
many differences between the two groups that had nothing to do with the real 
risk factors for lung cancer. To overcome this problem, some matching by age 
and perhaps other factors is necessary. In other words, the control group should 
be selected so that they are similar in age and perhaps similar in some other 
ways to the lung cancer group. However, overmatching is then a problem. If a 
study matched lung cancer sufferers and non-lung cancer sufferers according 
to smoking habit, the study would have excluded the possibility of assessing 
the most important risk factor for lung cancer: smoking. 

There is a further problem. In practice, control groups are likely to consist 
of people who have the time and generosity to cooperate with a medical study 
even though they will not benefit personally. They are therefore likely to have, 
on average, different personalities from the general population and from suf
ferers. Differences in exposure to various factors between the control group 
and the sufferers may therefore reflect the differences in personality and not 
be due to the factors being risk factors for the disease. Ideally, the control 
group should be chosen so that if one of the sufferers had somehow not caught 
the disease that person would have the same chance of being included in the 
control group as others in the population from which the control group is 
selected. This is a difficult criterion to specify or even understand properly. It 
is almost impossible to put into practice. Hence, retrospective studies are less 
reliable than prospective studies. 

SUMMARY 

• In an experimental study two groups of individuals are chosen from the same popu
lation. One group is subjected to an intervention and the other group is kept as a 
control group for comparison. 

• In an experimental study there are only two possible explanations for differences 
between the two groups: chance or the effect of the intervention (chance or A=>B). 

• In medical studies it is desirable to distinguish between the effect of an intervention 
that is due to the power of positive thinking and the underlying physiological effect 
of the intervention. This is achieved by an experimental format known as the double 
blind placebo-controlled clinical trial, where neither experimenter nor patient are 
aware of who is getting the active treatment and who is getting the dummy. 

• In an observational study people self-select into two groups, with one group ex
posed to some factor of interest and the other group not exposed. The two groups 
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will generally be different from each other in other ways as well. In an observa
tional study there are four possible explanations for differences between the two 
groups: chance, A => B, B => A, or C => both A and B. 

• Observational studies are of two main types. Prospective studies are more expensive 
but are more reliable in establishing the direction of causality. Retrospective studies 
are cheaper but are less reliable. 

QUESTIONS 

1. Think of an example where all three possible directions of causality—A ==• B, 
B =» A, and C =• both A and B—are likely to be operating simultaneously. 

2. A retrospective study is set up to examine the risk factors for suffering a broken 
right leg, A control group is obtained that consists of those who have suffered a 
broken left leg. Would this study reveal that motor bike accidents are the main 
cause of suffering a broken right leg? 

3. A prospective study of heart attacks in a certain city enrolled 250 randomly se
lected men aged fifty to fifty-five with no history of heart trouble. In other words, 
these men were identified as living in the city in which the study was carried out 
and a check was made that they fell into the required age group and had not had 
heart trouble. It was noted that 200 of the 250 men frequently attended football 
matches as part of their Saturday entertainment, whereas the 50 remaining men 
preferred classical music concerts for Saturday entertainment and rarely attended 
football matches. After ten years it was found that forty of the football goers had 
suffered heart attacks, whereas only three of the concert goers had suffered heart 
attacks. Fisher's exact test (two-tail) performed on these data show thatp = 0.020. 
Do you believe that this study provides reasonably convincing evidence that men 
who prefer classical music to football are less likely to suffer heart attacks? Do 
you believe that this study provides reasonably convincing evidence that attend
ing football matches tends to increase a man's chance of having a heart attack? 
Discuss. 

4. A sample of 2,000 people had their serum cholesterol level measured and were 
then followed up for five years. At the end of the five years it was found that 20 of 
the 2,000 had met a violent death. Seventeen of the twenty were those who had a 
below median level of cholesterol. Discuss the p value you would use to make a 
decision between the hypotheses here. Perform an appropriate statistical test. Do 
you believe that a low cholesterol predisposes people to violent death? Would 
your decision be changed if you were told that 200 of the original 2,000 had died 
of a range of causes and statistical tests looking for an association on each cause 
of death had been performed separately? Would your decision be changed if you 
were told that the study had been conducted over thirty years rather than five 
years and that by the time the results were analyzed, in addition to the 20 who had 
died violent deaths, 1,800 had died of other causes? 

5. A retrospective study is set up to examine the risk factors for parenting a mentally 
retarded child. The parents of all children with mental retardation in a given re
gion all agree to cooperate in answering an extensive questionaire covering a 
large range of factors that could possibly be relevant to mental retardation. Neigh-
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bors of the families with retarded children are given the same questionaire. If the 
nearest neighbor is not prepared to cooperate and/or has no children, the 
questionaire is given to the nearest neighbor who will cooperate and has children. 
Would this study be capable of detecting the following possible causes of mental 
retardation? 

a. Mother suffering from rubella (German measles) in pregnancy. 

b. Parents having many children. 

c. Age of parents. 

d. Mother suffering from poverty and malnutrition. 

e. Residence near a lead smelter. 

NOTE 

1. As this book goes to press, the result of the HERS randomized controlled trial 
on HRT has just been released. Surprisingly, it shows that the indidence of heart at
tacks in women on HRT is greater than the indidence in women not on HRT. If this 
finding is "for real" and not the result of chance, it tells us that a real but small negative 
effect of HRT on health was so overwhelmend by the tendency discussed here, where 
"C =>• both A and B," that doctors had gained the opposite impression from observa
tional studies. 



C H A P T E R 8 

Categorical Measurements on 
Two or More Groups 

The very first statistical test discussed in this book was Fisher's exact test. 
This test applies when we have two groups and we can categorize the out
comes in these two groups in two ways. For example, the groups could be 
"fired workers" and "not fired workers" and the categorization could be "fe
male" and "male." Since this was our first test, we did not have the back
ground to fully explain a number of features of this test. We will do so now 
before studying other tests where the outcome is a category rather than a nu
merical measurement. 

MORE ON FISHER'S EXACT TEST 

We first note that a table displaying the results is called a 2 x 2 contingency 
table (the 2s here refer to the fact that—excluding the headings and totals— 
there are two rows and two columns. The table contains 2 x 2 = 4 "boxes" of 
data). We also note that the data can be viewed in two equivalent ways. In our 
first example, the groups were "fired" and "not fired" and the categories were 
"female" and "male," but the groupings and categorization can be swapped around. 
The two groups could be "female" and "male" and the categories could be 
"fired" and "not fired." There is a symmetry here. Most methods of analyzing 
data are not affected by swapping the definition of groups and categories. 

In Chapter 3 we explained how the contingency table on page 176 led to the 
p value calculation 
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This calculation was based on the reasoning that with nine people, four of 
them men, we had a 4/9 chance of obtaining a man for our first butter preferrer. 
Then, with three men and eight people remaining, we had a 3/8 chance of 
obtaining a man for our second butter preferrer, and so on. We did not deal 
with contingency tables where there are all non-zero entries in the table. The 
calculations then become complicated, involving more extensive use of the 
theory of combinations (see Chapter 3). 

Prefer butter 

Prefer marg 

Totals 

Male 

4 

0 

4 

Female 

0 

5 

5 

Totals 

4 

5 

9 

For those who want it, the theory is given here, though it is not essential for 
our purposes to go through the details. While the theory is not essential, the 
discussion afterward is necessary for a proper understanding of the p value 
when the 2 x 2 contingency table doesn't have zeros on the diagonal. 

OPTIONAL 

For those who are interested in the theory, given the accompanying table we 
reason that there are a + h + c + dCa + c. ways of choosing a + c people out of the 
total ofa + b + c + d people to be in Category A. 

Category A 

Category B 

Totals 

Group I 

a 

b 

a+b 

Group II 

c 

d 

c+d 

Totals 

a+c 

b+d 

a+b+c+d 

The number of ways of choosing a Group I people to be in Category A and c 
Group II people to be in Category A isa+ bCa x ' + dCc. We compare this number 
of ways of obtaining a in the top left box of the 2 x 2 contingency table and c 
in the top right box of the table with the a + b + c + dCa +1. ways of obtaining the 
total a + c for the sum of the top two boxes in the table. The probability that 
the a + c in Category A will be made up of this particular choice from the two 
groups is then 



Categorical Measurements on Two or More Groups 111 

With the totals fixed, once we have fixed the number a in the top left box of 
the 2 x 2 contingency table the numbers in the remaining three boxes are fixed 
also. The expression 

is therefore the probability of this particular allocation of data to the four boxes 
of the 2 x 2 contingency table when the totals are as specified. 

Those who have made the effort to have understood the logic in the previ
ous paragraph will now be disappointed to learn that there is a subtle philo
sophical objection to Fisher's exact test. The question that is usually most 
appropriate is, "What is the chance of getting a Group I people in Category A 
and c Group II people in Category A given that the chance of a person of 
either group being in Category A is unknown?" whereas the question that we 
have answered with the Fisher's exact test calculation is, "What is the chance 
of getting a Group I people in Category A and c Group II people in Category 
A given that a + c people out of the entire sample are in Category A?" For 
either question we want an answer based on the null hypothesis assumption 
that there is no preference for those in a particular group to tend toward a 
particular category. The latter question, which we have answered exactly, would 
be completely appropriate only if we had selected a + b Group I people and c 
+ d Group II people, all of whom were initially in just one of the categories. 
We then waited for a disease or some other process over time to change people's 
categories until we knew that there were exactly a + c people out of the entire 
sample in Category A. Usually, though, we do not predetermine the total num
bers in the categories and so the question that we have answered is not quite 
the appropriate question. We cannot obtain an exact answer to the more ap
propriate question, "What is the chance of getting a Group I people in Cat
egory A and c Group II people in Category A given that the chance of a person 
being in Category A is unknown (but not affected by which group the person 
is in)?" An exact answer is unobtainable because it is based on the unknown 
chance that someone will be in category A, and we cannot do calculations 
when the underlying chance for an individual is unknown. However, when 
numbers are large the proportion in the two groups combined that we actually 
see in a category is a good guide to the underlying chance of an individual of 
either group being in a category. Some rather difficult theory based partly on 
this idea allows an approximate answer to the more appropriate question when 
numbers are large. The approximate answer is in the form of a statistical test 
called the chi-square test, which is discussed later in this chapter. 

END OPTIONAL 

We now return to the issue of what the/? value actually measures when we are 
dealing with a 2 x 2 contingency table that doesn't have zeros on the diagonal. 
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Say that we suspected that there might be a tendency for females to have 
different butter-margarine preferences compared to men, and instead of the 
results in the first table of the chapter we obtained the accompanying results. 

Prefer butter 

Prefer marg 

Totals 

Male 

5 

1 

6 

Female 

2 

5 

7 

Totals 

7 

6 

13 

We will assume that the null hypothesis is reasonable here. In other words, in 
the absence of data we are happy to take as our starting point that there are no 
gender differences between men and women in terms of butter-margarine pref
erences. We want to ask the primary question, "Given the results in the ac
companying table, how likely is it that there is a gender difference between 
men and women in terms of butter-margarine preferences?" As always, statis
tics doesn't directly answer this question but instead answers a secondary ques
tion. This secondary question is something like, "If there was no gender 
difference in butter-margarine preferences, how often would pure coincidence 
lead to the results here that make it look like there is a gender difference in 
butter-margarine preferences?" 

However, the secondary question is actually one step more complicated 
than this. As explained later (and previously on pages 67 and 68), it is neces
sary to not just ask about how likely our particular results are under H0. In
stead, we need to ask about the combined likelihood of all the outcomes that 
are at least as extreme in favor of Ha as our particular result. In doing so, we 
are thinking that there are a range of possible outcomes that would be most 
likely if H0 were correct, and outcomes in this range commonly occur. We are 
content to continue to believe in H0 if we get one of these results. Outcomes 
outside this range "hardly ever" occur and make us reject H0. We define "com
monly" occur and "hardly ever" occur by a benchmark p value that we will 
denote pb. Outcomes that occur "commonly" are part of a range of outcomes 
that occur 1 -ph of the time, whereas the remaining outcomes that occur "hardly 
ever" are part of a range that occurs ph of the time. When we get a particular 
outcome from an experiment, we ask what the combined probability is of all 
the outcomes that are at least as extreme as this outcome: The answer will tell 
us whether we are dealing with the sort of outcome that occurs "commonly" 
or "hardly ever," assuming H0 is true. In the context of Fisher's exact test, 
recall that under H() we are assuming that it is a given fact that we have se
lected a certain number of men and women and a certain number of butter 
preferrers and margarine preferrers and that chance then allocates the num-
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bers in the various categories. Overall, about half of the people prefer butter 
and about half are women, so if H0 were true overall we would expect about 
half the women and half the men to be butter preferrers. We would therefore 
expect about three men and three women to be butter preferrers, but we see 
that we have fewer women and more men than we would expect. The set of 
outcomes that are at least as extreme as those we have obtained are, the out
come we have actually obtained and all possible outcomes with even fewer 
women and even more men in the butter-preferrer category. In working out 
what these outcomes are, we must remember that we are taking it as a given 
that we have selected six men, seven women, seven butter preferrers, and six 
margarine preferrers, and that the allocation of the men and women into the 
butter or margarine category has occurred purely by chance. The table giving 
a more extreme possible outcome is given here. 

Prefer butter 

Prefer marg 

Totals 

Male 

6 

0 

6 

Female 

1 

6 

7 

Totals 

7 

6 

13 

More extreme outcomes than this are not possible, as we are assuming the 
numbers in the categories are fixed and we have used up all our males in the 
butter-preferrer category. Calculation shows that the probability of the out
come given in the table on page 178 is 126/i,7i6. This calculation can be done by 
those who go to the effort of reading and understanding the optional section 
on theory, but it is sufficient to accept that the calculation can be done. The 
probability of the outcome given in the table on this page is 7/ui6. Overall, the 
combined probability of an outcome at least as extreme as ours in favor of 
women preferring margarine is then 126/ui6 + V\j\6 or l33/ui6. This is then our/? 
value. However, there is a further complication here. This is the p value for a 
one-tail test. It is the/? value if H0 was as it was before, but Ha was that women 
tended to be margarine preferrers. These hypotheses would be valid if we 
believed that a reasonable starting point was that there was no gender distinc
tion in these preferences, but that if this was in fact incorrect it would have to 
be in favor of women preferring margarine. Such an Ha might be appropriate 
if we believed that the only possible connection between gender and butter 
preferences was that women are associated with nurturing and are therefore 
perhaps more health conscious and hence into healthier, lower-cholesterol food. 

If, however, our Ha was simply that there could be gender differences in 
either direction, then our p value would have to take into account the prob
abilities of all the outcomes at least as extreme as the outcome obtained, in-
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eluding outcomes where instead of too few there are too many females (and 
hence too few males) in the butter-preferrer category compared to the num
bers we expect from the fact that about half of all the people are butter preferrers. 
Calculation shows that the outcome with two male and five female butter 
preferrers out of six men and seven women occurs more commonly than the 
outcome we actually obtained of five male and two female butter preferrers. 
We therefore don't count the probability of the outcome with two male and 
five female butter preferrers: It is not as extreme a result as the one we actually 
obtained. However, the outcome with one male and six female butter preferrers 
is a less common outcome than the outcome we actually obtained, as is the 
even more extreme zero male and seven female butter preferrers. Calculation 
shows that these latter two outcomes have probabilities under H0 of 42/i,7i6 and 
Vi,7i6. The two-tail p value is then the sum of all the probabilities of all indi
vidual outcomes at least as way out and unlikely as our actual outcome of five 
male and two female butter preferrers out of six men and seven women. It is 
therefore 133/i,7i6 + 42/iji6 + Vi,7i6 or 176/ui6. In practice, it is not necessary to 
calculate all these individual probabilities: A computer program does all the 
work automatically. 

However, leaving everything to the computer can lead to mistakes. There 
can be problems to do with computer calculation of the p value for one-tail 
tests. You can be stung by the tail, so to speak. Consider the following ex
ample from real life where an experiment or "clinical trial" was carried out to 
assess the value of antibiotics in preventing infection after a certain surgical 
procedure. The results were that eight out of fifty-three people who received 
antibiotics got infections and three out of fifty-seven who did not receive anti
biotics got infections. The computer analysis of this clinical trial gave a one-
tail p value of 0.080 and a two-tail p value of 0.115. Since antibiotics are 
known to be effective against many infections, we might not want to strongly 
hold on to the idea H0 that they are of no benefit. We therefore might set our 
benchmark/? value here above the traditional 0.05. We also note that a one-tail 
test seems appropriate here. If antibiotics make a difference, it would be ex
pected to be a positive difference. Therefore, at first sight the result 0.080 for 
the one-tail p value might make us think that we have reasonably convincing 
evidence that antibiotics are effective in this situation. However, in doing this 
calculation the computer automatically assumes that the appropriate/? value is 
less than half. In particular, the computer is working out the combined prob
ability under HQ that with a total of eleven people getting infections it would 
be three or fewer of the nonantibiotic people who got infections. This is, of 
course, an answer to the wrong question. Our Ha is that if antibiotics do any
thing they will be of benefit in preventing infection. The computer is implic
itly responding to the Ha that if freedom from antibiotics does anything it will 
be of benefit in preventing infection. Our question instead should be, "How 
often would chance alone lead us to getting as few infections as we actually 
did or even fewer infections in the antibiotic group compared to the nonantibi
otic group?" Since we actually got more infections in the antibiotic group 
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despite the fact that this group was a bit smaller than the nonantibiotic group, 
our answer to this question should be more than half the time. Put another 
way, we see that about 10 percent of the patients get an infection, but infection 
happens to about 15 percent in the antibiotic group and about 5 percent in the 
nonantibiotic group. Even if antibiotics were entirely useless, we should usu
ally get results that look much better than these results. Calculation shows that 
98.1 percent of the time, if antibiotics were entirely useless, we would get a result 
that looked as favorable or more favorable for antibiotics than our result. Our p 
value should therefore be 0.981, not 0.080. There is certainly no evidence in 
this result in favor of antibiotics, but if we entirely ignored common sense, did 
not bother to look at our figures, and simply looked at the /? value, we might 
think that the experiment had come close to the "magical" 5 percent statistical 
significance value "proving" that antibiotics are worthwhile. 

THE CHI-SQUARE TEST OF ASSOCIATION 

The calculations involved in Fisher's exact test are difficult even for a com
puter when dealing with numbers greater than a few hundred. For this reason, 
and also because of the subtle philosophical objection discussed in the earlier 
optional section, an approximate test was developed. The test is called the chi-
square test of association or simply the chi-square test (also written as the x2 

test). The test has the advantage of applying not just to 2 x 2 contingency 
tables, but also to situations where there are more than two groups and/or 
categories. There is no widely used equivalent to Fisher's exact test in such 
situations. This use of the x2 test is dealt with later. 

The detailed theory underlying the x2 test is complicated, but the actual 
calculations are simple. To explain the calculations, assume that one-third of 
all people surveyed are women and one-quarter of all people surveyed are 
butter preferrers. Our null hypothesis is that there is no gender effect on but
ter-margarine preferences. In that case, we would ideally expect that one-
quarter of the women would be butter preferrers. Since one-third of all people 
in the sample are women, this would mean that a quarter of this third of the 
total or one-twelfth of the total should ideally be in the box "female and butter 
preferrer." This is just an ideal. Even if the null hypothesis is correct, chance 
alone will often mean that the number will not be exactly one-twelfth of the 
total. Indeed, if the total was not a number divisible by twelve we couldn't 
possibly achieve this ideal. Regardless of this, we call this ideal number the 
expected value and we denote it by E. The actual observed number we denote 
by O. We then calculate the quantity 

We can repeat this calculation until we have dealt with all four entries in the 2 
x 2 contingency table (male and butter preferrer, female and butter preferrer, 
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male and margarine preferrer, female and margarine preferrer). We then add 
together all four quantities 

There is theory that tells us that if H0 is correct, the value we have obtained is 
approximately a value from a probability distribution known as a x2i distribu
tion (pronounced "chi-squared distribution with 1 degree of freedom"). If the 
observed values are suspiciously far from the expected values (remembering 
that we expect O to be close to E under H()), then (O - E)2 will be large and we 
will get a suspiciously large number from a x2i distribution. More precisely, if 
the sum of the values 

for all four boxes is x, then the p value is approximately the chance of obtain
ing the value x or larger from a x2i distribution. In other words, if H0 were 
correct, 1 - p of the time our Os would be a closer match to our Es than we 
have found in our case. If/? is tiny, so that 1 - /? means "nearly always," we 
could say that if H0 were true we would "nearly always" get our Os matching 
our Es better than we have. This would suggest that H() is not true, though, as 
always, we would have to judge the appropriate benchmark p value in light of 
common sense. It should also be noted that the theory on which the test is 
based is only approximate and the approximation is regarded as inadequate 
when the expected number in any box is less than 5. When numbers are large, 
the x2 test and Fisher's exact test give similar/? values. The/? values obtained 
from a x2 test are those for a two-tail test and need to be halved if a one-tail test 
is appropriate. Note again the caution givenon pages 180 and 181 and in the 
section on one-tail and two-tail tests on pages 75 and 76 regarding/? values for 
one-tail tests when the data point in an unexpected direction. 

For example, let us apply the x2 test to our gender butter-margarine prefer
ence example from page 178. Since 7/B of the sample are butter preferrers and 
6/i3 are male, we ideally would expect 7/B of 6/i3 of the total of thirteen people 
to be male butter preferrers. This is about 3.23 people (more briefly, the for
mula for expected value is 

row total x column total 

overall total 

Similarly, we would expect 3.77 to be female, and among the margarine 
preferrers there would be 2.77 males and 3.23 females (note that once we have 
calculated one of the expected values, we can get all the other expected values 
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using the fact that the expected values have the same group and category totals 
as the observed values). We then calculate 

The computer or a table of x2i values shows that numbers at least this large from a 
X2, distribution occur a little less often than 5 percent of the time (/? = 0.0484). We 
could then say, "We have evidence that is statistically significant at the 5 percent 
level that there is a gender difference in butter-margarine preferences." We can 
compare this result with our two-tail p value of m/\j\e or 0.103 obtained from 
Fisher's exact test. Unfortunately, though, our x2 test calculations are not valid 
because some (in fact all) of our expected values are less than 5. The approxi
mations underlying the x2 test make it unreliable with these small numbers. 
We should therefore use the/? value obtained from Fisher's exact test. 

ODDS RATIO AND RELATIVE RISK 

Fisher's exact test and the chi-square test of association test the null hypoth
esis that there is no relationship between which group a person is in and which 
category that person belongs to. If we decide to reject this null hypothesis, it is 
desirable to have some measure of the strength of the association between 
being in a particular group and having a particular category. There are two 
such measures: the odds ratio and the relative risk. The /? value is also an 
indicator of the strength of the association, but it is also affected by the num
bers in our sample. For example, a /? value may be 0.01 because we have a 
large sample and there is a weak association, or because we have a small 
sample and there is a strong association. 

The relative risk measure comes from consideration of a contingency table 
of the accompanying form. A table with such headings could apply in two 
medical research situations. 

Factor present 

Factor absent 

Totals 

Disease 

a 

c 

a+c 

No 

Disease 

b 

d 

b+d 

Totals 

a+b 

c+d 

a+b+c+d 

One situation is that of a prospective trial in which people who are all ini
tially disease free are followed until a certain number contract the disease. 
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Some of the people have some possible risk factor (or protective factor) and 
others do not. The estimate of the risk of disease over this time in those who 
have the factor is then al(a+b) and in those who don't have the factor is c/(c+d). 
A summary measure that will be of interest in judging the importance of the 
factor in the risk of the disease is a measure of how big the risk of disease is in 
those who have the factor in comparison to how big the risk of disease is in 
those who don't have the factor. This is the quantity 

called the relative risk. The relative risk gives a good summary of the results 
of a prospective trial. 

The other medical research situation giving rise to a contingency table with 
these headings is a retrospective trial. In the retrospective trial some diseased 
people are chosen and some nondiseased people or "controls" are chosen for 
comparison. All the people are then asked about their previous exposure to 
some possible risk factor or protective factor. While the table may look the same 
as a table giving the results from a prospective trial, there is a major difference. It 
is not possible to calculate risk in this situation. Risk in a prospective trial is the 
proportion of diseased people out of the total of diseased and nondiseased people, 
but in a retrospective trial the numbers in these two groups is entirely arbitrary. 
Even the ratio of the "risks" according to exposure to some factor, the relative 
risk, is not valid. If we choose few controls, then the diseased people may 
form a very large majority in the group exposed to the risk factor but may also 
form quite a large majority even in the group not exposed to the risk factor. 
The two "risks" will then both be close to 1, and so the relative risk measure 
will be close to 1. On the other hand, we could gain a different impression if 
we choose a large number of controls. For example, say we choose 20 con
trols, with the remaining figures as given in the accompanying table. 

Factor present 

Factor absent 

Totals 

Disease 

100 

50 

150 

No 

Disease 

10 

10 

20 

Totals 

110 

60 

170 

The "relative risk" would be 
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If instead we choose 2,000 controls and the numbers were otherwise in the 
same proportion, we would have the accompanying table and the "relative 
risk" would be 

Factor 

No Factor 

Totals 

Disease 

100 

50 

150 

No 

Disease 

1000 

1000 

2000 

Totals 

1100 

1050 

2150 

For a retrospective trial what we need in place of relative risk is a measure 
of the relationship between disease state and factor exposure that doesn't de
pend on the proportion of controls that we use. The measure that fits the bill is 
called the odds ratio. 

To explain the odds ratio, we first must explain "odds." Odds are an old 
measure of probability still used in gambling, particularly gambling on horse 
races. The odds are 5 to 1 against a horse winning, or Vi, if it is five times more 
likely that the horse will lose than it will win. Some thought shows that this means 
that the chance of losing is 5k and the chance of winning is '/G. In the case of the 
table on page 184, the odds of disease are 10%o for those with the factor and 5%o 
for those without the factor. The ratio of these two is the odds ratio. It is 

For the case of the table at the top of this page, the case of 2,000 controls, the 
odds ratio is 

which again equals 2.00. 
After simplification, the odds ratio for the 2 x 2 table on page 183 is 

a 

c 

b 

d 
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An odds ratio of 1 means that there is no relationship between classification 
into rows and classification into columns: The odds of being in a particular 
column are not affected by which row a person is in. 

The odds ratio has some additional advantages. We have previously noted 
that there is a symmetry in a 2 x 2 contingency table in that it may be arbitrary 
whether we define the groups or categories as the rows or as the columns. The 
odds ratio gives the same value for the relationship in a table regardless of 
whether we define either the groups or the categories to be the rows or the 
columns. The odds ratio makes sense as a measure of the relationship between 
the classification into rows and columns regardless of the context of the table. 
It applies to all 2 x 2 contingency tables, not just tables of the results of a 
medical trial on disease and risk-factor exposure. There is theory that allows 
us to apply confidence intervals to measures of the relationship between the 
classification into rows and columns in a 2 x 2 contingency table. This theory 
leads to fairly simple formulae when the relationship is expressed in terms of 
odds ratios. 

Confidence Intervals on the Odds Ratio 

Theory that is beyond the scope of this text shows that if the numbers in the 
boxes are sufficiently large, approximate confidence intervals can be worked 
out for the odds ratio. Recall that a confidence interval is the range of values 
of some underlying population parameter that could "easily" give rise to a 
sample with the observed data. By "easily" we mean that we would not reject 
a hypothesis that the underlying parameter was somewhere in the range. We 
define "easily" in terms of the p value that would make us reject the hypoth
esis. Here, a 95 percent confidence interval is the range of the underlying odds 
ratio that might exist in the population that could "easily give" the sample 
odds ratio. By "easily give" we mean that if we know the population odds 
ratio, our sample odds ratio is not unusual in the sense that odds ratios at least 
as far out as ours from the population odds ratio will occur by pure chance 
more than 5 percent of the time. 

OPTIONAL 

To give the formula for the confidence interval for an odds ratio, some further 
notation is necessary. Let zq be a number such that the probability of a value cho
sen from a standard normal distribution being between -zq and +zq is q. For ex
ample, if q is 0.95, zq is 1.96 because 95 percent of the probability in a standard 
normal distribution is between -1.96 and +1.96. The 100 x ^-percent confi
dence interval for the odds ratio is then given by the following formula: 
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The symbols exp and In stand for the mathematical functions of exponentia
tion and taking natural logarithms, functions that are standard on scientific 
calculators. For example, the 95 percent confidence interval is given by 

In particular, say we were dealing with the table on page 184. The odds ratio, 
as we have seen, is 2.00. The formula tells us that the 95 percent confidence 
interval on this odds ratio is 

Previously our confidence intervals have been symmetrical about the estimate 
from the data. The nature of the calculations means that this is not the case for 
odds ratios, so 2.00 is not in the middle of the range 0.781 to 5.12. 

END OPTIONAL 

CLASSIFICATION IN MORE THAN TWO DIRECTIONS 
AND SIMPSON'S PARADOX 

Imagine we tried out a new treatment for a serious disease in two hospitals, 
A and B, with the following results. 

new 

old 

died 

100 

10 

lived 

100 

1 

Results from hospital A 

new 

old 

died 

1 

100 

lived 

100 

1000 

Results from hospital B 
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At hospital A the odds of living with the new treatment are 1/1 and with the 
old treatment are 1/10, so that the odds ratio is 10 in favor of the new treat
ment. When the experiment was repeated in hospital B, the odds of living with 
the new treatment are 100/1 and with the old treatment are 10/1, so that again 
the odds ratio is 10 in favor of the new treatment. So far, so good, but then 
someone suggests combining the results of the two treatment trials to present 
the figures in an overall form, as shown here. 

new 

old 

died 

101 

110 

lived 

200 

1001 

Results from A and B combined 

The odds of living with the new treatment are 200/101 and the odds of living 
with the old treatment are 1,001/110. This is an odds ratio of 0.22 in favor of 
the new treatment. In other words, it is an odds ratio of 1/0.22 or 4.6 against 
the new treatment. Which treatment would you rather have? Both sets of indi
vidual hospital figures are strongly in favor of the new treatment, yet the com
bined figures are strongly against. Which should be believed? 

This is Simpson's paradox. The resolution of Simpson's paradox is to note 
that hospital B has a far better success rate overall. We will assume that they 
deal only with mild cases of the disease. Hospital B is also far more likely to 
be using the old treatment than hospital A. By combining the two tables, we 
would then be comparing the results of applying mainly the old treatment to 
mild cases of the disease with the results of applying mainly the new treat
ment to severe cases of the disease. The combined table is misleading. The 
new treatment is better. 

Simpson's paradox can arise whenever along with classification into group 
(live or die) and category (new or old treatment) there is a third direction of clas
sification (e.g., severe or mild disease) that is ignored in combining information. 
The third direction of classification is sometimes referred to as a confounding 
variable. A similar effect of confounding variables can occur in the situation of 
continuous measurements on two groups. In general, things become more com
plicated when there are more than two directions of classification or confounding 
variables. Dealing properly with such situations is beyond the scope of this 
text, but involves the topic of log-linear models and the Mantel-Haenzel test. 

THE x2 TEST WITH MORE THAN TWO 
GROUPS OR CATEGORIES 

The x2 test generalizes easily to the situation where there are more than two 
groups and/or categories. We might have m groups and n categories. We could 
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then summarize our results in an m x n contingency table. The x2 test is ap
plied in a similar way to the way it is applied in the case of a 2 x 2 contingency 
table. We use the same principle as in the 2 x 2 case to find the expected value 
in each box of the contingency table and then calculate the value of 

for each box and sum all these values. Under H() the number we obtain comes 
from a x \ distribution, and this gives us our/? value as before. Here k is given 
by the formula (number of groups - 1) x (number of categories - 1) or (rows 
- 1) x (columns - 1). This formula relates to the number of entries we could 
alter independently of each other and still keep all the row totals and column 
totals fixed. This k is sometimes called the "degrees of freedom." As before, 
the test is approximate and should not be used if any E is less than 5. Where 
there are E values less than 5 it may be possible to avoid the problem by 
combining rows or combining columns. 

For example, say we were interested in whether there was some relation
ship between women and men who form couples in terms of favorite primary 
colors. The results of this survey are given in the table. 

Observed 

m 

e 

n 

red 

yellow 

blue 

totals 

women 

red 

25 

9 

6 

40 

yellow 

10 

11 

4 

25 

blue 

5 

10 

10 

25 

totals 

40 

30 

20 

90 

To test this, we might choose ninety women who have male partners and 
ask each of the women and each of their partners to specify which was their 
favorite color as displayed on a test sheet painted with the three primary col
ors. If four-ninths of the women chose red and one-third of the men chose 
yellow, we would expect one-third of the four-ninths of all women who chose 
red to have partners who chose yellow. This would mean that Aln of the total 
(i.e., 13.33 couples) would be in the box "woman likes red and her man likes 
yellow" (the calculations are performed ignoring the impossibility of frac
tions, but we have rounded to two decimal places). 
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This is our expected value E: 

Expected 

m 

e 

n 

red 

yellow 

blue 

totals 

women 

red 

17.78 

13.33 

8.89 

40 

yellow 

11.11 

8.33 

5.56 

25 

blue 

11.11 

8.33 

5.56 

25 

totals 

40 

30 

20 

90 

The survey gives us our O or observed value. We calculate 

for all nine boxes similarly and add to give a number x. If there is no relation
ship between partners in terms of primary-color preference, this figure x would 
ideally be zero, for the Os would match all the Es, but simply as a result of 
random chance we will usually not have all the Os matching all the Es exactly. 

Nevertheless, if there is no relationship between partners in terms of primary-
color preference, the Os and the Es are not usually a bad match, so the sum of 
the 

for the nine boxes is not usually a large figure. The theory says that if there is 
no relationship, the value obtained for x will be approximately a value from a 
X2

k distribution. Here k is 4, as there are three rows and three columns: (3 - 1) 
x (3 - 1) = 4. Tables or a computer will show values as large as x or larger 
occur only p of the time. This is then our p value. It is telling us that if there 
was no relationship between color preferences of partners and it were chance 
alone leading to the mismatch between Os and Es, there is probability p that 
the mismatch would be at least as bad as the observed mismatch. If this p 
value is small, a better explanation for the mismatch between the Os and the 
Es might be that it is not just random chance that is operating but that there is 
a real relationship between the color preferences of partners. Straightforward 
calculation (tedious by hand, easy by computer) shows that the sum of the 
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for the nine boxes is 13.93. The computer or tables then tell us that 99.248 
percent of the time values chosen from a x2

4 distribution are smaller than 13.93. 
In other words, our p value is 0.00752. Then, as always, we have a choice. 
Either we believe that there is no relationship between the color preferences of 
partners—it just looks that way (in the sense of the Os being a particularly bad 
match to the Es) because a less than 1 in 100 chance came off—or else there is 
an underlying reason for the Os not to match the Es. The underlying reason is 
that there is some connection between color preferences among partners. 

As a second example using the same data, let us assume that our ninety 
couples are representative of all men and women. We can then use the same 
data to ask whether color preferences in women are different from color pref
erences in men. Here are the relevant figures: 

women 

men 

red 

40 

(40) 

40 

(40) 

80 

yellow 

25 

(27.5) 

30 

(27.5) 

55 

blue 

25 

(22.5) 

20 

(22.5) 

45 

90 

90 

180 

The expected values have been calculated and are given in parentheses. This 
gives a value of 1.01 for the sum of the 

for the six boxes. We say that we have a x2 value of 1.01. The degree of free
dom k is (3 - 1) x (2 - 1) = 2. A computer or tables shows us that 1.01 is not an 
unusual value from a x2

2 distribution (p - 0.603), so we can conclude that the 
figures here give no convincing evidence that men and women differ in their 
color preferences. The differences from the ideal or expected values can eas
ily be explained by chance, and, indeed, 60 percent of the time chance alone 
would lead to bigger differences than those seen here. 

As a third example, say we were relating the four blood groups (O, A, B, 
AB) to eye color and we had the eye colors blue, green, hazel, and brown. 
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Now say one-tenth of the population had green eyes and one-thirtieth of the 
population had blood group AB, and say also that we had 1,000 people in our 
survey. The expected number of green-eyed people with blood group AB is 
then Vio x 'Ao x 1,000 = 3.333. This expected number is too small. The x2 test 
will not be valid with fewer than 5 for any expected value. We could then 
"collapse" our categories "green" and "hazel" eye color. Instead of four eye 
colors we would have only three: blue, brown, and hazel or green. If one-tenth 
of the population had hazel eyes we would have two-tenths in the combined 
category "green or hazel," so then we would expect 2/io x V30 x 1,000 = 6.667 
to be in the category "green or hazel" eye color and blood group AB. Our 
calculations would then be valid, as the expected value in this box is more 
than 5 (assuming there were also more than 5 in all the other remaining boxes). 

SIMILAR TESTS BASED ON THE x2 DISTRIBUTION 

There are several other tests that use the chi-square distribution in a similar 
way to the chi-square test of association. However, these tests apply to situa
tions that are rather different from the situation of multiple groups and catego
ries that applies in the case of the chi-square test of association. 

McNemar's Test 

One such test is McNemar's test. This test was previously described as part 
of the description of the sign test in Chapter 4. McNemar's test applies when 
we have pairs and each member of the pair can fit into one of two categories. 
In the case of the straightforward sign test, the pairs are usually pairs of mea
surements made on the same individual before and after an intervention and 
the categories are "better" or "worse." In the case of McNemar's test, the pairs 
are usually separate but related individuals and the two categories are some
thing other than "better" or "worse." The ordinary simple calculations of the 
sign test can be applied directly to give an exact p value. However, the same 
theoretical approach alluded to in the optional discussion of the theory of 
Fisher's exact test can be applied to give an approximate p value in the case of 
McNemar's test. This approximate p value is obtained via a calculation that 
gives a number from a x2i distribution. 

For example, say we wanted to know whether an antismoking program is 
more effective against smoking in women rather than men or vice versa. Our 
H0 is that men and women respond to the program equally. We will assume 
that there is a lot of variation in people's ability to give up smoking and that a 
lot of this variation depends on people's social situation. We will then use a 
strategy that will minimize the tendency of this variation in social situation to 
swamp the effect we are looking for, the possible differences in the effective
ness of the campaign on men and women. In particular, we will look at hus
band and wife pairs, for both partners share the same social situation. Say that 
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1,920 husband and wife pairs, all of whom smoked, were given the antismok-
ing program. Assume that the result was that in 1,000 pairs both husband and 
wife continued to smoke, in 900 pairs neither continued to smoke, in 15 pairs 
the wife stopped but the husband didn't, and in 5 pairs the husband stopped 
but the wife didn't. This scenario can be presented in the form of a table: 

w 
i 
f 
e 

smokes 

no 
smokes 

husband 
smokes 

1000 

15 

1015 

no 
smokes 
5 

900 

905 

1005 

915 

1920 

According to the theory behind McNemar's test, if H0 is true then the quantity 

(15 -5 ) 2 

15 + 5 

is approximately a number from a x2i distribution. This quantity is 5 and the 
computer or tables show that values at least this large in a x2i distribution 
occur 0.0253 of the time. The conventional benchmark/? value of 0.05 seems 
to me to be reasonable here, so I would conclude that it is reasonable to be
lieve that the antismoking program is more effective in women than in men. 
Note that the calculation ignores the 1,900 cases where there was no differ
ence between the men and the women in a partnership. Also note that the 
exact p value can be obtained by reasoning that if men and women are equally 
likely to give up smoking, then in those cases where just one of the pair gives 
up it is equally likely to be the man or the woman. In other words, we are 
dealing with the binomial random variable based on twenty cases and a prob
ability of 0.5 of a case going one way or another; equivalently, we can say that 
we are dealing with a two-tail sign test based on twenty cases. Since we have 
obtained the value of 5 going one way and 15 going the other, the computer or 
direct calculation (see the sign test in Chapter 4) shows that the p value is 
0.04139. We see that the figure we obtained using the traditional approach to 
McNemar's test with the x2i distribution is a rough approximation to the exact 
probability obtained by the conventional sign test. 

For interest, let us look at the result of a statistical test that uses the same 
data but ignores the pairing. The data tell us that there are 1,015 men who 
continued to smoke and 905 who gave up, and 1,005 women who continued 
to smoke and 915 who gave up. These data can be analyzed by an ordinary 
chi-square test of association with the help of the table on p. 194 (the numbers 
in parentheses are the calculated expected numbers). 
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smoke 

no smoke 

men 
1015 
(1010) 

905 
(910) 
1920 

women 
1005 
(1010) 
915 
(910) 
1920 

2020 

1820 

3840 

Note that the numbers in this table are numbers of individuals, whereas the 
numbers in the table for McNemar's test are numbers of couples. The ex
pected value in both the boxes in the top row is 1,010, since half of the popu
lation is of each sex so ideally we would expect half the smokers to be of 
either sex. Similarly, the expected value in both the boxes in the bottom row is 
910. Calculation then gives a x2i valueof 0.1045 andhencea/? value of 0.747. 
Unlike our previous result, this is certainly not convincing evidence of a sex 
difference in the effectiveness of the antismoking campaign. We see that ig
noring the pairing obscures our previous finding. By focusing on the variabil
ity in smoking status within couples, McNemar's test tells us that there is 
greater effectiveness of the antismoking campaign in women than in men. If 
we ignore pairing, this finding is overwhelmed by the factors that tend to 
make people change smoking status as a couple. 

Chi-Square Test of Goodness of Fit 

Sometimes we have theoretical reasons for believing that the data should 
follow a certain pattern and we want a test that tells us if it is reasonable to 
hold on to this belief when we obtain actual data. As a simple example, we 
may for some reason believe that all three primary colors should be equally 
likely to be a favorite color. Using the data on color preference from our ear
lier example, we see that red, yellow, and blue are favorites for a total of 80, 
55, and 45 people, respectively. The theory of equal favorites would give us 
that 60 people each out of the 180 total would select red, yellow, and blue. 
This is an ideal or expected set of results. We want to know whether our actual 
figures are so far out from this ideal that it is not reasonable to put the differ
ence down to chance. There is theory that tells us that under the null hypoth
esis of equal favorites, the sum of 

for the three boxes will be a figure from a x2* distribution. Here k, the degree 
of freedom, is the number of boxes - 1. 
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The computer or tables of a x2
2 distribution show that if the null hypothesis is 

true we will obtain a smaller number than this about 99.56 percent of the time. 
In other words, our/? value is about 0.0044. It seems more reasonable there
fore to believe that the primary colors are not all equally attractive. This is an 
example of the chi-square goodness of fit test. 

The chi-square goodness of fit test can be used in more complicated cases. 
For example, we may know that if data come from a certain normal distribu
tion, then a certain proportion of the sample should be in various categories 
defined by a range of values. For example, if we thought we knew there was a 
normal distribution with certain parameters describing the heights of people, 
then we would believe that certain proportions of people should have heights 
in the ranges 130 to 150 cm, 150 to 170 cm, 170 to 190 cm, or 190 to 210 cm. 
These give the expected numbers in the various categories, and we can com
pare these with observed numbers using the chi-square goodness of fit test. If 
the test yields a smallp value, there are two possible explanations. On the one 
hand, our assumed normal distribution may be correct, but as a result of a 
chance that occurs a proportion p of the time we obtained observations that 

were a poor match to the true distribution. On the other hand, it may be more 
reasonable to believe that the population from which we have made our obser
vations does not have a distribution of heights that matches our assumed nor
mal distribution. As for the chi-square test of association, the calculation is not 
valid if the expected numbers in any of the boxes is less than 5. If we do 
not know the parameters of the normal distribution and our hypothesis is 
simply that it is a normal distribution with parameters to be estimated from 
the data, the theory tells us to deduct a degree of freedom for every parameter 
estimated. With four height categories, two parameters to be estimated from 
the data to describe the normal distribution, and a further degree of freedom to 
be deducted (to allow for fixed totals), we would be dealing here with a x2i 
distribution. 

SUMMARY 

• Fisher's exact test gives ap value that tells us how difficult it would be for chance 
alone to lead to an apparent association between two methods of classifying indi
viduals that is at least as strong as the association present in our sample. 

• The odds ratio measures the strength of the association evident in the sample, and 
confidence intervals can be calculated for the population odds ratio. 

• The x2 test involves approximations, but can be used in place of Fisher's exact test 
when expected values in every box are greater than 5. It has some theoretical and 
practical advantages in comparison to Fisher's exact test. 

• Unlike Fisher's exact test, the x2 test generalizes to situations in which there are 
more than two groups and/or categories. 

• A test based on the x2 distribution can be used to assess goodness of fit to some 
theoretical distribution. 
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In short, with two groups and two categories and small numbers, use Fisher's 
exact test to see if there is convincing evidence that being in a particular group 
affects which category an individual is assigned to. With more than two groups 
or more than two categories or if numbers are large, use the x2 test. 

QUESTIONS 

1. The careers of 50 males who at the age of eighteen years were over 180 cm tall 
were compared with those of 100 males who at the age of eighteen years were 
under 170 cm tall. It was found that 12 men in both groups became administra
tors. Do you believe that this study provides reasonably convincing evidence that 
height is a factor in determining a man's chance of becoming an administrator? 

2. A number of farms are selected at random from a list of farms. Thirty are family 
farms, and of these, ten are classified as being severely eroded. Twenty farms are 
owned by absentee landlords, and of these, fifteen are classified as being severely 
eroded. Does this data provide reasonably convincing evidence for an association 
between absentee ownership and erosion? 

3. A drug thought to increase strength was given to three men, with nine other men 
acting as controls. The results in arbitrary units were 19, 20, and 21 for the men 
with the drug and 10, 11, 12, 13, 14, 15, 16, 17, and 18 for the men without the 
drug. The drug was also tried on nine women, with three women acting as con
trols. The results were 5.5,6.0,6.5,7.0,7.5, 8.0, 8.5,9.0, and 9.5 for women with 
the drug and 4.0, 4.5, and 5.0 for women without the drug. Perform appropriate 
tests to see if there is convincing evidence that the drug works for men and for 
women. Combine the results for both men and women and repeat your statistical 
test. Explain your result. 

4. A survey was conducted in which people were asked their religious affiliations 
and also asked whether they regarded preservation of the natural environment as 
a top-priority issue. Of thirty-three protestants surveyed, ten rated the environ
ment as a top priority; the same was true of nine out of nineteen catholics, four 
out of ten moslems, and twenty-eight out of forty-one atheists. Does this survey 
provide reasonably convincing evidence that the priority accorded to the environ
ment is related to religious affiliation? 

5. A researcher is interested in a possible association between having a carpeted 
bedroom and asthma. Accordingly, she identifies 200 families, each with two 
children where just one of the children has asthma. She records the information 
that in 130 families both children's bedrooms are carpeted and in 40 cases neither 
children's bedroom is carpeted. In the remaining cases only one child's bedroom 
is carpeted and in 8 of these it is the nonasthmatic child's bedroom that is car
peted. Perform the most appropriate test on these data. Do you believe there is an 
association between asthma and carpet in the bedroom? Perform a Fisher's exact 
test (or chi-square test of association) on these data. Why are the results different? 

6. To test if a die is fair, it is thrown 600 times. It lands on the numbers one to six, 93, 
98, 107, 102, 91, and 109 times, respectively. Perform an appropriate test and 
discuss whether you believe that the die is fair. 



C H A P T E R 9 

Statistics on More Than 
Two Groups 

Most of the work on statistical tests so far has concerned comparing measure
ments between two groups. The last chapter considered situations where there 
were more than two groups, but only dealt with categorical measurements, 
deciding which category each member of each group belonged to. In this chapter 
we consider situations in which there are more than two groups and continu
ous measurements are made on each of the members of the groups. In the first 
part of this chapter we consider situations in which there are a limited number 
of groups and there is no natural ordering of the groups. The groups might 
correspond to people with a disease who are grouped according to which of 
several different medications they have received, or plots in a field grouped 
according to the type of fertilizer they have been treated with, or people grouped 
according to their eye color. This is the topic of ANOVA. 

In the second part of this chapter we consider a situation in which the num
ber of groups can in a sense be infinite. An example where the number of 
groups are in a sense infinite occurs when we ask about the relationship be
tween weight and height. To answer this question we could divide people up into 
groups according to whether their heights are in the range 130 to 150 cm, 150 to 
170 cm, 170 to 190 cm, or 190 to 210 cm and then measure their weights. How
ever, we would do better if we divided height more finely than into groups of 
20 cm. The best approach is to go further and deal with all the heights that 
occur separately. Since the number of possible heights are unlimited, we are 
in a sense dealing with an infinite number of groups. As well as the number of 
potential groups being infinite, another feature of this problem is that the groups 
are not separate unrelated categories but have a natural order. This work will 
be dealt with later in the chapter under the heading, "Regression." 
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ANOVA: TESTING THE NULL HYPOTHESIS THAT 
THE MEANS OF MORE THAN TWO 

NORMALLY DISTRIBUTED GROUPS ARE THE SAME 

Motivation 

We may be interested in comparing the effect on the growth rate of plants of 
more than two different types of fertilizer. To be specific, imagine that we 
wanted to examine the effect of eight different types of fertilizer, which we 
will call A, B, . . . , H. We could deal with this problem by reducing it to a 
number of different comparisons between the effects of two different types of 
fertilizer. We know how to do this: Use the independent samples t test. We 
could then make every possible pairwise comparison. In other words, we would 
compare A with B, A with C, A with D, A with E, A with F, A with G, A with 
H, B with C, B with D, . . . , G with H. However, this would be tedious: 8C2 = 
28 pairwise comparisons are possible. 

There would be another problem with this approach. Traditionally, we de
cide if a difference is "statistically significant" by asking how easy would it be 
for coincidence alone to explain differences in the averages of two groups. If 
we have to rely on a long coincidence to explain differences, we decide that 
coincidence is not a good explanation, but instead there are real differences 
due to the different fertilizers and not just due to chance. Our examination of 
twenty-eight comparisons between pairs of fertilizer becomes in effect twenty-
eight different searches for a long coincidence. In the presence of randomness, if 
we look long enough for a long coincidence we will find it. If here we take a long 
coincidence to mean the traditional benchmark p value of 0.05 or 1 in 20, we are 
giving ourselves twenty-eight attempts at finding a 1 in 20 coincidence. It seems 
likely that chance alone would lead us to find such a coincidence, and using the 
benchmark of p = 0.05 we would then unjustifiably declare the coincidence to be 
"statistically significant." One approach to dealing with this situation is to 
lengthen what we consider to be a sufficiently long coincidence for statistical 
significance when we make each comparison. In other words, we reduce the 
benchmark p value used in each comparison so that overall, by the time we 
have finished twenty-eight comparisons, if random chance alone is operating 
we have the required small probability (e.g., 0.05) of finding a statistically 
significant difference for one or more of the comparisons. Unfortunately, it is 
difficult to calculate how much the benchmark p value used for each indi
vidual comparison should be reduced. The calculation is made difficult by the 
fact that the various comparisons are not independent of each other. If it has 
been found that chance alone could very easily explain differences between 

group A and each of the other groups B to H, then it is more likely that each of 
the groups B to H are similar enough to each other for chance to very easily 
explain their differences. One approach is to use a very rough approximation 
that ignores such difficulties. In the situation here of twenty-eight compari-
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sons this rough approximation tells us to require that each comparison be tested 
for statistical significance using a benchmark p value of 0.05/28. The name 
Bonferroni is attached to this approach, though Bonferroni showed that this 
approach would lead to an overall p value of less than 0.05. 

Philosophy of ANOVA 

The pairwise comparisons approach is awkward. A better approach is a 
method that deals with all the data at once. The method is called A/Valysis Of 
VAriance or ANOVA. We start with the null hypothesis that all the data in the 
various groups come from the same normal distribution. Figuratively, we can 
think of numbers chosen at random from a normal distribution being written 
down on pieces of paper and then placed in a hat. There are other hats contain
ing numbers drawn from different normal distributions. A hat is chosen and 
some pieces of paper are pulled from this hat and piled into a group. The 
process is repeated several times to create several groups. It is quite likely, but 
not certain, that in choosing a hat to make each group we keep on choosing the 
same hat. Our question is, "Do all the numbers in all the different groups 
come from the same hat?" Our null hypothesis is that they do. We look for 
evidence against this null hypothesis. To do this we start by assuming that the 
null hypothesis is true (all the numbers in each of the groups all come from the 
same hat). We then focus on measuring the variability of the individual num
bers (How scattered are the numbers in the hat?). 

We use two different methods of estimating this variability. The first method 
is to estimate the variability within each group and form a pooled estimate of 
the underlying variability of the individual values. The second method is to 
estimate individual variability from the amount of variability of the group 
means. If the null hypothesis is correct, the results of the second method di
vided by the first gives a value which should be about 1, since both methods 
are methods of measuring the same quantity: the individual variability. How
ever, if the group means are scattered, not only as a reflection of random vari
ability of the individual values but also because of real differences between 
the true means of the various groups (the numbers in the different groups 
come from different hats), then estimating the individual variability using group 
means will generally give an overestimate. The individual variability overesti
mated from the scatter of group means divided by the individual variability as 
estimated by the scatter of individual values within groups is then likely to be 
considerably larger than 1. This ratio of the two measures of individual vari
ability is known as an/ratio. If we had thought that all the numbers came from 
the same hat, an/ratio of more than 1 tells us that the group means are more 
widely scattered than we would have expected given the amount of variability 
we see within the groups. 

Theory that is too complicated to be described here tells us that if the null 
hypothesis is true, the/ratio is a value from a particular probability distribu-
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tion known as an F distribution. If the/ratio we obtain is a value so far above 
1 that the F distribution shows values this big or bigger "hardly ever" occur, 
then we reject the null hypothesis that the group means are all the same. What 
we actually obtain here is a probability of obtaining a value at least as large as 
our/if H0 is true. This is ourp value. If our/? value is a probability that "hardly 
ever" occurs, it may be more reasonable to believe that the variability of the 
means overestimates the individual variability not because of a chance that 
"hardly ever" occurs but because there are real differences between the true 
means of the various groups. Once again, "hardly ever" is quantified by our 
benchmark p value. 

There are a whole family of different F distributions appropriate here, de
pending on the number of values used in both of the estimates of variability 
(the degrees of freedom). The notation used is Fpx p2. Here, px is the degrees of 
freedom (number of estimates of variability) used in the numerator of the ratio 
of the two estimates of individual variability and equals the number of groups 
minus 1, and p2 is the degrees of freedom (number of estimates of variability) 
used in the denominator and equals the sum of numbers minus 1 in each of the 
groups. In practice, the calculations are lengthy and usually performed on a 
computer, and the computer attends to details about these degrees of freedom. 

ANOVA Assumptions 

ANOVA is a good method for making a decision between two hypotheses. 
One hypothesis H0 is that all the values in all the groups are chosen from the 
same normal distribution. The other hypothesis is that all the values in all the 
groups are chosen from normal distributions with different means but all shar
ing the same value for their standard deviation. These two options can be 
called the ANOVA assumptions. Often, though, we do not want to make a 
decision between these two rather restrictive options. We often just want to 
decide whether or not it is reasonable to believe that the means of all the 
groups are the same, regardless of assumptions about normality and equal 
variances. Applying ANOVA when the assumptions are not met can give mis
leading results, as the two examples in the following optional sections show. 

OPTIONAL

Violation of the Normality Assumption 

If the numbers in each of the groups are not normally distributed, the ANOVA 
calculation of a p value will not be valid. For example, if the numbers in all the 
groups are drawn "from the same hat" but came from a distribution that only 
took the values 0 and 1 with equal probability, then the basic probability laws 
of Chapter 3 can be used to work out how often the between-group variance 
will be positive but the within-group variance will be zero. In particular, there 
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are 2y or 512 ways of choosing a 0 or a 1 nine times in a row, with all these 
ways equally likely. The first three choices, the second three choices, and the 
third three choices can be taken to be the groups. Simple counting then shows 
that there is a 6 in 512 chance that the between-group variance will be positive 
but the within-group variance will be zero. The two estimates of individual 
variability, one based on variability among group averages and the other based 
on variability within each of the groups, will therefore be positive and zero, 
respectively. The/ratio is then a positive divided by zero; in effect, it is infinity. 
In other words, with this distribution the/7 value corresponding to what is in effect 
an infinite/ratio would be 6/512 or about 0.012, whereas the p value of an infinite 
/ratio if the numbers all came from a normal distribution would be zero. Simi
larly, it can be shown that if the numbers are drawn from the distribution that 
gives Os and Is with equal probability, the/? value associated with an/ratio of 
7.0 is 42/512 or about 0.082. If instead the numbers are drawn from a normal 
distribution, an/ratio of 7.0 would correspond to a/? value of 0.027. In this 
example, if we incorrectly assume normality, we may decide more easily than 
we had intended to reject the null hypothesis when it is true. 

Violation of the Equal Variance Assumption 

In this example we show that if the different groups are normally distrib
uted but are different in both means and variances, the ANOVA calculations 
may lead us to not choose the alternative hypothesis that the groups are differ
ent when it is clearly appropriate to believe that they are different. For ex
ample, say one group was widely scattered but with values centered on 60, 
and there were two other groups with very little scattering and one of these 
consisted of numbers very close to 40 and the other consisted of numbers very 
close to 80. If we round the numbers to two significant figures, a sample of 
three values from each of these three groups might then consist of the num
bers 0, 60, 120 for the first group; 40, 40, 40 for the second group; and 80, 80, 
80 for the third group. It is obvious to anybody looking at these figures that the 
three groups do not look like three groups of numbers drawn out of the same 
hat. Any sensible method of assessing group differences should find evidence 
that the groups are different. However, it turns out that in the ANOVA calcula
tions both methods of estimating individual variation (with one method based 
on variation within groups and the other based on the variation of group aver
ages) give exactly the same answer. In other words, the/ratio is 1.0 and the p 
value corresponding to this is 0.42, so according to ANOVA there is no evi
dence that the numbers come from different hats.1 

Checks of the Assumptions 

Since applying ANOVA when the assumptions are not met can give mis
leading results, it is desirable to check to see if there is evidence against the 
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ANOVA assumptions using box plots and preliminary statistical tests. Such 
tests are available, but are often omitted. In the two examples here it was the 
example in which there was violation of the equal variances assumption where 
the ANOVA analysis seemed to be most misleading. In this example we ob
tained a p value of 0.42 where common sense suggested that we should have 
obtained a p value indicating strong evidence against the null hypothesis. In 
the example where there was violation of the normality assumption, the ANOVA 
calculations underestimated the true p value, but the true p value and the p 
value calculated using ANOVA were both small. This suggests that it is the 
violation of the equal variances assumption that can lead to decisions about 
hypotheses that are more obviously inappropriate. In practice, checks to see if 
there is evidence against the equal variance assumptions are sometimes per
formed, but tests to see if there is evidence against the assumption of the nor
mality of each group are rarely done. 

The common test for equal variance is called the Levene test. This test uses 
the principle that equal variances within each group by definition means equal 
values for the average of the square of the differences between each value and 
the group average. This then implies equal values on average for the size— 
disregarding plus and minus signs—of the difference between a value and its 
group average. The Levene test then does a preliminary ANOVA to see if 
there is evidence against the assumption that the size of the difference be
tween a value and its group average is on average the same in every group. If 
a Levene test shows that it is not reasonable to believe that the groups have the 
same variance, then we have two options: 

1. The most commonly used option is to hang on desperately to the ideas of testing 
null hypotheses. With this option we admit that the variability in the different 
groups are different. We dismiss our null hypothesis that the group variances and 
averages are the same and instead produce another null hypothesis that states that 
the group averages are the same but we don't know anything about the group 
variances. We then look for convincing evidence against this new null hypothesis. 
We can no longer use the standard ANOVA on the data as it stands. Instead we 
can use data transformation as described at the end of Chapter 5 or we can use a 
nonparametric equivalent to ANOVA known as the Kruskal-Wallis test. This test 
does not assume equal variances. It also does not use the actual data values, but 
only uses their rank order. Since it does not use all the information we have avail
able it is a less powerful test. 

2. The alternative option is to argue that if we are convinced that the groups have 
different measures of variability it is hardly reasonable to believe that they all 
have exactly the same means. Almost any intervention that affects variability could 
be expected to have at least some effect on means. We can therefore finish at this 
stage and say that we believe that the numbers in the different groups come from 
different hats and so can be presumed to have different averages. Although this 
option accords more with common sense, it is not the one commonly used. 

END OPTIONAL 
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ANOVA without Checks of the Assumptions 

Often checks of the assumptions underlying ANOVA are omitted. ANOVA 
is then applied in ignorance of whether the required assumptions are met. 
While this approach isn't ideal, it is commonly used in practice (see the fertil
izer example later in this chapter for a typical application of ANOVA). Per
haps the difficulties in the philosophy of hypothesis testing justify not adhering 
closely to ideals. Alternatively, the equivalent nonparametric test can be used. 
As mentioned in the optional sectional earlier, the equivalent nonparametric 
test is known as the Kruskal-Wallis test and does not require the assumptions 
required by ANOVA. 

Contrasts and Post-Hoc Tests 

If the end result of an ANOVA is that there is evidence that there are real 
differences between the groups, there are further questions that we can ask. 
For instance, in the case of the eight different fertilizers, we may want to know 
if just one of the fertilizers gave an outstanding result and if it would be rea
sonable to believe that the other seven fertilizers all gave the same growth rate. 
There is a philosophical problem here. If we ask this question before doing the 
experiment and we have a particular fertilizer in mind, the correct approach is 
an independent samples t test, testing this fertilizer against the average of all 
the others. In the language used in ANOVA such testing is called a "contrast." 
If we ask this question after seeing the results and without having a particular 
fertilizer in mind, we need to remember that with eight groups, one is bound 
to be the biggest and the biggest of eight could easily be outstanding mainly as 
a result of chance factors. ANOVA may have told us that the groups are too 
different in their averages for these differences to be put down to variability of 
individual plants. This does not necessarily mean that the biggest is the one 
that is different. For example, it could be that the eight different fertilizers are 
in two groups of four, a group of inferior fertilizers that all have identical 
small effects on plant growth rates and another group of superior fertilizers 
that all have identical big effects on plant growth rates. The fertilizer with the 
biggest effect may stand out simply because, by chance alone, the biggest of 
four is likely to be unusually big. To try and tease out answers to questions 
like this is the subject of post-hoc tests (in other words, tests after the event of 
deciding that there are real differences somewhere between the fertilizers). 

There is a variety of post-hoc tests with different philosophical approaches. 
The simplest approach is multiple t tests of all possible comparisons with the 
use of Bonferroni adjustment to the benchmark p value to choose which 
pairwise comparisons are "significantly" different. However, in many situa
tions the use of post-hoc tests would come close to ignoring common sense. 
Our null hypothesis that eight different fertilizers all had the same effect on 
growth rate was already close to the absurd. If fertilizers are different then 
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they should have different effects on plant growth rates. If we have found that 
chance alone cannot reasonably explain the differences in the performance of 
the eight different fertilizers, why should we have fallback positions? By 
fallback positions we mean retreating to the belief that, say, seven of them are 
the same and just one is outstanding, or that they are in two groups of four and 
performance within each group is identical. We might be able to have one or 
other or both of these fallback positions because post-hoc tests show that chance 
could then easily explain the remaining differences. If we are forced to drop a 
null hypothesis that was barely reasonable, that the different fertilizers all had 
identical effects, it seems more reasonable to now believe that different fertil
izers all have different effects rather than believe in groupings simply because 
chance could then easily explain remaining differences. 

ANOVA Example 

ANOVA calculations are generally lengthy and most conveniently performed 
by computer. The computer was given data on the growth rate of plants treated 
with different fertilizers. The growth rates are expressed in arbitrary units and 
are given in the accompanying table. 

Fertilizer A 

71.5,72.3, 

68.2,81.1, 

69.7,71.8, 

65.1, 66.4 

Fertilizer B 

70.2, 62.7, 

63.2, 70.4 

Fertilizer C 

66.4, 70.8, 

69.6 

Fertilizer D 

83.8,75.9, 

75.4 

Fertilizer E 

80.1,78.7, 

77.9 

Fertilizer F 

76.1,71.6, 

83.6,74.7, 

75.8 

Fertilizer G 

81.2,72.1, 

71.4 

Fertilizer H 

81.5,73.1, 

78.0 

The pds computer program written to accompany this book gives the one-
line result p - 0.003466. In other words, if all the numbers for all the fertiliz
ers were "pulled out of the same hat," then 99.6534 percent of the time the 
averages of the numbers for each fertilizer would be less widely scattered than 
the averages here. This can be predicted from the observed amount of scatter
ing of the numbers for each fertilizer. The prediction is valid if all the numbers 
are drawn from the same normal distribution. It seems more reasonable to 
believe that the type of fertilizer affects growth rate rather than to believe that 
we got a suggestive result by sheer coincidence, the sort of coincidence which 
occurs only 0.003466 of the time. The "more information" button in the com
puter program gives means and confidence intervals for the means for each 
type of fertilizer. It also gives some intermediate results from the calculation 
and gives the result of the Levene test, which indicates that chance could "eas
ily" account for observed differences in standard deviations in each group (p = 
0.66). A separate Kruskal-Wallis test gives a/? value of 0.00778. This tells us 
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that even if we ignore the actual numbers and only look at the ordering of the 
thirty-two numbers from the eight groups, the results are still strongly sugges
tive of differences between the groups. The results are suggestive in that 99.222 
percent of the time the ordered values would have values from the various 
groups more interspersed than they are here. The amount of interspersion is 
judged by a single figure calculated from each possible ordering, much like 
the Mann-Whitney U value is calculated in the case of just two groups. 

Once again, we should note that the null hypothesis is close to absurd. Of 
course different fertilizers are going to have different effects on growth rates. 
The null hypothesis would only make sense if the different fertilizers were 
intended to have the same concentration of the same ingredients but were 
made in different factories whose production standards may or may not differ. 

REGRESSION 

Motivation 

Often data consist of pairs of figures measured on each individual (e.g., 
weight and height), and we want to see if there is a relationship between the 
figures in each of the pairs. For the time being we assume that we are looking 
for a linear or straight-line relationship. In other words, we are assuming the 
following: 

• If we are dealing with people who have average height, then on average they have 
average weight. 

• If we are dealing with people who are 1 cm taller than average height, then on 
average they are (3 kg heavier than average weight where (3 is some constant. 

• If we are dealing with people who are 2 cm taller than average height, then on 
average they are 2 x (3 kg heavier than average weight. 

• If we are dealing with people who are 3 cm taller than average height, then on 
average they are 3 x (3 kg heavier than average weight. 

• And so on. 

In other words, we assume that for each extra cm in height, average weight 
goes up (3 kg, where (3 is some unspecified constant. This is the same as say
ing that plotting average weight against height on a graph gives a straight-line 
relationship. If average height is, say, 175 cm and average weight is 65 kg, a 
height of h cm is h - 175 above average and a weight of w kg is w - 65 above 
average. The relationship described here can then be written mathematically 
as w - 65 = (3 x (h - 175). This equation can be rearranged as w - 65 - 175 x 
(3 + (3 x h, which can be further simplified by writing the one symbol a in 
place of the constant 65 - 175 x (3. The equation is then w = a + (3 x h. This is 
the normal way of writing an equation for the graph of a straight line where w 
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is the measure on the vertical axis and h is the measure on the horizontal axis. 
Traditionally, though, we use the symbols y and x for the dependent and inde
pendent variable, respectively, so traditionally the equation for a straight line 
is written y = a + (3x. 

Independent and Dependent Variables 

Often we control one of the variables in that we make deliberate choices 
about the values that we are interested in. For example, if we are interested in 
the relationship between peoples' height and weight, rather than just choosing 
people at random and then measuring both height and weight we may choose 
people of particular heights and then measure their weights. We then think of 
height as the independent variable and weight as the dependent variable. Of
ten, as here, the choice of independent variable is arbitrary: We could have 
just as easily chosen people by weight and then measured height. 

Sometimes, though, one of the variables is something obvious, such as 
weight, and we choose people so that we have people with a range of different 
weights. We then make measurements of something that isn't externally obvi
ous on the people of different weights. For example, we might measure their 
cholesterol levels. In this situation, weight is the independent variable; it de
pends on nothing but our choice. Cholesterol level is the dependent variable. 
It may depend on the weight of the people who were chosen. 

We are dealing with situations in which there is variability and we assume 
that as well as a straight-line relationship there is additional variability or un
certainty. We incorporate uncertainty into our model by adding an "error term" 
e that takes different values for different individuals. If we use the term xt for 
the measure of the independent variable on the /th individual, the term y, for 
the measure of the dependent variable on the /th individual, and et for the error 
term here, we have the equation yi = a + (3x, + er 
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Figure 9.1 

  
 

In this equation, xi might be the height of the /th person we looked at, y, 
might be their weight, and e{ is the error term appropriate for the /th person. In 
the theory that follows, we assume that the value taken by et is a value chosen 
from a normal distribution centered on zero. The error term ei gives the verti
cal distance of the point on the graph from the "ideal" straight line. Figure 9.1 
illustrates these ideas. Finding the ideal straight line is a process known as 
regression for reasons that will be explained later. 

Why Use a Straight Line to Model the 
Relationship between the Variables? 

Note that we don't know that the straight-line relationship is the correct 
relationship between height and weight. However, a straight-line relationship 
is a simple and plausible connection between the two variables in that an in
crease in one variable results in a proportionate increase in the other. 

Even if the relationship is more complicated, so that the best fit to the data 
is given by a curve rather than a straight line, if we look at just a small part of this 
curve and magnify it it will look very similar to a straight line (see Figure 9.2). 

A straight-line relationship may then be a reasonable description of the data 
over a limited range. Conversely, if we apply the formula for the fitted straight 
line to extreme values, it may well not be valid, since the true relationship 
between the two variables may only approximate a straight-line relationship 
over a limited range. Application of a formula that fits data over a limited 
range to values beyond that range is known as extrapolation. Extrapolation is 
unlikely to be valid, because the true average relationship between the two 
values, say height and weight, is unlikely to be exactly a straight line. Over a 
limited range the deviation from the straight line may be imperceptible, but it 
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Figure 9.2 
Section of Curve under Extreme Magnification 

5.0 

may become appreciable for extreme values. Unless we have data showing 
that the relationship is valid for extreme values, we should not assume that 
extrapolation is reliable. For example, in the weight versus height graph (Fig
ure 9.1) the equation of the fitted straight line is w = -25.48 + 0.52 x h, with w 
in kilogram and h in centimeters. Applying this formula to human children 
less than 49 cm in height would give the prediction that on average they have 
negative weight, which is of course impossible. 

Defining the Straight Line of Best Fit 
and Assessing Its Accuracy 

If we believe that the connection between the two measurements on indi
viduals can be reasonably described by the equation yi - a + (3x, + er we can 
ask some further questions. For example, how do we draw the straight line 
that best fits the data? Your first thought may be to simply draw, by eye and 
ruler, the straight line that looks like it gives the best fit. Compare this to the 
situation of a single measurement on each of a large number of individuals. In 
such a case we could mark the value for each individual along a line (a line 



Statistics on More Than Two Groups 209 

graph; see Chapter 2) and then by eye put a mark where the values are cen
tered. But we know how to do better than that with single measurements on 
individuals. Rather than just using our eye, we use calculations to find the 
mean (or some other measure of central tendency). We can then go further and 
obtain a measure of the reliability of the estimate of the mean. This is done by 
taking into account the number of data values and the variability of the data 
about the calculated mean. The end result is a confidence interval for the mean. 
Similarly, if we are given pairs of measurements on a sample of individuals we 
can obtain estimates for a and (3 by calculation, rather than by drawing, and so we 
define the line of best fit. Having obtained the estimates of a and (3, we can obtain 
a measure of how reliable the estimates are in the form of confidence intervals. 
It can be shown that the line of best fit goes through the point representing the 
average of the x values and the average of the y values. The calculation of the 
slope of the line is rather lengthy and is usually done by computer. 

The complete rules for calculating a and (3 will not be described here. In
stead, the focus here is on interpreting the results of the computer calcula
tions. A question that is of particular interest is, "Would it be reasonable to 
believe that (3 is zero?" If (3 is zero, our equation y = OL + (3x for the straight-
line fit becomes y = a. In other words, the value of x has no effect on the value 
of y. In the case of height and weight, this would mean that height has no 
effect on weight. In general, if |3 = 0, changes in the independent variable have 
no effect on the dependent variable. 

Further Analogy with the Case of the Single Variable 

The situation here is similar to our first example of continuous variables 
dealing with the height of Madagascans. We go back to the height of the 
Madagascans now and fill in some ideas that we glossed over. We then draw 
analogies with the calculations used in regression. 

Our ideas on the height of Madagascans could be expressed by stating that 
the height of the /th Madagascan is p + et, where we assume that e{ is some 
error term obtained randomly from a normal distribution centered about zero. 
For valid calculation of an estimate of p and the confidence interval for p, we 
also need to assume the value et for every individual is drawn from the same 
normal distribution and that the value of ei for any one individual has no effect 
on the value of e{ for any other individual. (If people of similar heights tended 
to mix with each other, then if the /th measurement was on an unusually tall 
person [=• e{ > 0] this person's friend would also tend to be unusually tall and 
if the friend was the / + \th person sampled we would have a tendency for ej+, 
to be greater than 0. This sort of problem would invalidate our calculations.) 
In brief, we state that our calculations will be valid if the ei values are normal and 
identically and independently distributed. We don't know in practice if the e{ val
ues meet these requirements. However, both experience and the central limit 
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theorem suggest that often the ei values won't be too far from normal, and 
unless we do something silly like take all of our sample from the one location 
that might happen to be the doorstep of the Madagascan dwarves association, 
the e{ values are likely to be identically and independently distributed. 

If the heights of Madagascans are accurately described by the model p + ei 

with the ei values normal and identically and independently distributed about 
zero, we first estimate p by the mean of the sample and then we can go further 
and obtain a confidence interval for our estimate of p. Finding a confidence 
interval is in effect an indirect answer to the question, "In light of the variation 
we see in individual values about our estimate of the mean, how reliable is this 
estimate of the mean?" The confidence interval doesn't answer this question 
directly, but gives the range of values that could be taken by the true value of 
p that, given the individual variability, could still "easily" lead to our observed 
value of the mean. When there are n data values the calculation of the confi
dence interval involves the tn_x distribution. The subscript n-\ relates to the 
fact that with two data values there is just one measure of variability and with 
n data values there are in effect n - 1 measures of variability. 

The situation with the calculation of a and (3 in regression is analogous to 
the calculations of p, for the Madagascans. The calculations give the best esti
mates of a and (3 from the data and valid confidence intervals, provided that 
the model yt; = a + (3^ + ei is correct and the ei values are normal and identi
cally and independently distributed about zero. Confidence intervals can be 
found for a and (3 based on the same philosophy as finding confidence inter
vals for p. We assess individual variability by measuring how much the data 
are scattered about the fitted line and use this to give an indirect answer to the 
question of the reliability of our estimates of the parameters of the line, the a 
and p. When there are n data values, the calculation of the confidence interval 
involves the tn_2 distribution. The subscript n-2 relates to the fact that with 
two data values there is no measure of variability about a straight line: A straight 
line can be drawn to fit exactly to any two points. With three data values there 
is in effect one measure of variability about the fitted line, and with n data 
values there are in effect n-2 measures of variability. 

Asking if p for Madagascans could be the same as the average American 
height involves hypothesis testing and the use of the tn_x distribution. In the 
same way, the question "Is (3 = 0?" is answered by hypothesis testing and the 
use of the tn_2 distribution (recall that (3 = 0 implies the dependent variable is 
not affected by the values of the independent variable, as can be seen from the 
equation y. = a + (3x- + et). 

As previously, the answers we can get are not quite the answers to the ques
tions we really want to ask. The hypothesis test on the question, "Is [3 = 0?" 
gives a p value. This p value actually answers the question, "If the true value 
of P in the population were 0, how often would it happen that chance alone 
would lead to an estimated value of (3 from a sample at least as big as the P 
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found here?" We judge this chance by the variability in the data about the best 
straight-line fit and by the number of data points. As always, we need to use 
common sense, since we are not directly answering the primary question, "Is 
P = 0?" but instead obtaining an answer to a secondary, indirectly related 
question in the form of a p value. 

If in our height and weight example we had a small sample, or a sample that 
just happened to contain a few very skinny giants and a few very fat dwarves, 
or a sample in which there was an unusual amount of variation in weight even 
after allowing for height differences, our test of the hypothesis P = 0 could give us 
a large p value, even as large as 1. The hypothesis test would be telling us that if p 
were 0, chance alone could easily explain any tendency seen in the sample for 
weight to increase with height. Of course, this does not mean that we should 
now believe that on average weight does not increase with height. Just be
cause chance could "easily" explain any tendency for weight to increase with 
height does not mean that we should believe that chance is the explanation. To 
do so would defy common sense and the work of all those who have produced 
tables or graphs of average weights for people of various heights. 

On the other hand, if H() is almost certainly true and Ha is almost certainly 
false, we should require an extraordinarily low p value before we start to be
lieve that there is an association between the two variables. One study gave a 
p value of 0.000001 when a regression line was fitted to data over many years 
where one of the variables was the number of graduating Anglican ministers 
of religion and the other variable was the level of imports of Jamaican rum in 
the same year. Of course, common sense suggests that the explanation is likely 
to be that this is an instance where a 0.000001 chance actually occurred and if 
we were to continue observing these variables in future years we would find 
no relationship. My benchmark/? value for believing that there was anything 
other than a chance association in the years observed would be smaller than 
0.000001. However, this example also illustrates a further important point. If 
there was a real association it would almost certainly not be a result of Angli
can ministers importing large amounts of Jamaican rum for their graduation 
parties, and it would almost certainly not be that the consumption of Jamaican 
rum induced Anglicans to take up a religious vocation, but it could conceiv
ably be that the socioeconomic circumstances that somehow affect the num
ber of graduating Anglican ministers also somehow affect the importation of 
Jamaican rum. Perhaps this possible connection is not so far-fetched. General 
economic circumstances could well affect both religious participation and 
importation of alcohol. In view of this, perhaps my suggestion about the bench
mark p value is too extreme and we should allow the data to convince us of an 
association somewhat more easily. The important point here is that if it is 
decided that an association between two variables is too convincing to be put 
down to chance, then as explained in Chapter 7 on causality, the association 
may be because A=>B/ B=>A, or C=>both A and B. 
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Complications That Do Not Have 
an Analogy to the Single Variable Case 

Violation of Assumptions 

All the calculations in regression are only valid if the model yi - a + Px, + ei 

is correct and the et values are normal and identically and independently dis
tributed about zero. Since this model dealing with two variables measured on 
each individual is more complicated than the model p + el for a single mea
surement on each individual, there is more chance that the model is not rea
sonably accurate and so there is more chance that the calculation of the best 
estimates of a and P and their confidence intervals are not accurate. For a 
start, we can have all the violations of the assumptions that can occur with the 
model p + er In addition, the relationship between the average value of y and 
x, which is assumed to be a straight line, may in fact be a curve that differs 
appreciably from a straight line. The ei values may also not be identically 
distributed. In fact, it is common for the size of e{ to depend on the size of x,. In 
terms of kilograms, there is more variation in the weight of adult humans than 
in the weight of baby humans. Newborn humans vary from the tiniest prema
ture babies that weigh less than 1 kg to exceedingly plump babies up to 5 kg or 
so. The mean, give or take 2 kg, covers the vast majority of newborns. On the 
other hand, only a relatively small minority of adults are within just 2 kg of 
average weight. This type of situation, in which the amount of variability in 
the dependent variable depends on the value of the independent variable, is 
said to be heteroscedastic. 

If we are not dealing with a straight-line relationship or we are dealing with 
a heteroscedastic situation, then our calculations will not be valid. Inspection 
of graphs of our data and further analysis of the estimated e{ values obtained 
after fitting our straight line can indicate that the assumptions on which our 
calculations are based are unreasonable. We will consider only a few pitfalls 
that can be revealed by inspection of the graph. 

Consider the four graphs in Figure 9.3. The data in all four graphs consist of 
the same number of points and give rise to the same regression line with the 
same confidence intervals for the parameters of the line. The top left graph 
portrays the ideal situation, with points scattered at random about a sloping 
line. The top right graph displays data points that fit perfectly to a parabolic 
arc. The bottom left graph displays data points, where all the points but one fit 
perfectly to a straight line that is not the regression line. The bottom right 
graph displays data in which all points but one have identical x values. Clearly, 
regression should only be used for the first graph. It is only for this graph that 
it is reasonable to believe that there is a general tendency for a straight-line fit 
but that individual points have random amounts of deviation about the straight-
line fit. The assumptions underlying the calculation of the best straight-line fit 
do not seem reasonable in the case of the other three graphs. Instead, it is more 
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Figure 9.3 
Graphs Illustrating Violations of Regression Assumptions 

reasonable to believe that for the second graph we are dealing with an exact 
parabolic relationship, not an approximate relationship to a straight line. For 
the third graph it is more reasonable to believe that the anomalous point is an 
error, since the data otherwise fit exactly to a straight line. In the case of the 
fourth graph there is not enough information to give any check for the as
sumption that the variability of a point does not depend on its x value. 

Procedure if Assumptions Are Violated 

If examination of the graph of the data with the fitted straight line indicates 
that the assumptions are not valid but inspection does not suggest an obvious 
alternative such as a parabolic fit, we have two choices. First, we can use a 
nonparametric test for assessing the strength of the association between the 
values x, and y> The most commonly used nonparametric test is known as 
Spearman's rho. It will be described later. The other option is to make arbi
trary transformations of the xi or y{ or both and repeat the regression calcula
tions and graphing until it appears that with some transformation there is no 
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evidence that the assumptions are violated. In other words, it may be possible 
to distort the x or y values or both in some way (e.g., by taking logs, squares, 
square roots, or whatever) so that a nonlinear relationship will "look like" a 
straight-line relationship and the estimated errors "look like" they are cor
rectly behaved. If so, a straight-line fit to the transformed values of x and y can 
be calculated. This approach may seem rather contrived and one may be dubi
ous about its validity. Nevertheless, it is quite commonly used. 

Dependence of Estimates and Confidence Intervals for a and P 

One problem with confidence intervals in regression is that the confidence 
intervals for a and p are not independent of each other. The value of a tells us 
how far up the vertical axis to start drawing the line (it is the value of y when 
x is 0). The value of p tells us the slope of the line. If in the weight versus 
height graph we thought that a value of a in the upper part of the confidence 
interval was more appropriate, the data would then suggest that the upward 
slope, the value of p, ought to be in the lower part of the confidence interval; 
if the line started higher up it would have to have a reduced slope to be a 
reasonable fit to the data. In particular, say we had confidence intervals for the 
estimate a = -25.48 and p = 0.52 in the equation w = -25.48 + 0.52 x h. Let us 
also say we looked at this equation and decided that it didn't make sense with 
a = -25.48: A zero-height person ought to have zero weight, not negative 
weight. Particularly if 0 was in some reasonable confidence interval for a we 
might want to rewrite the equation as w = 0.52 x h. Because the estimates and 
confidence intervals for a and p are not independent of each other, we would 
have to recalculate P and its confidence interval on the condition that a = 0. It 
turns out that the best fitting line of the form w =$xh is w = 0.37 h. This is 
illustrated in Figure 9.4. 

Figure 9.4 
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Figure 9.4 displays the same weight versus height data shown in Figure 9.1. 
Also displayed as a solid line is the previously calculated regression line 

However, the axes have been rescaled to show zero. The dashed line is a new 
regression line calculated on the basis that a person of zero height has zero 
weight. It can be seen that moving the start of the regression line up the verti
cal axis by 25.48 units necessitates a decrease in the slope in order for the new 
line to give a reasonable fit to the data. This illustrates the fact that the esti
mates of a and P in the equation of the regression line w = a + P x h, are not 
independent. Reassessment of one requires reassessment of the other. 

Asymmetry between the Role of Independent and 
Dependent Variables and the Regression Effect 

One problem with regression arises because the two variables are not treated 
equally. One of the two variables is taken to be the independent variable and 
the distance of the dependent variable from the fitted straight line is measured 
in terms of the vertical distance to the straight line. This definition is chosen 
because it is appropriate if we want to find the average value of the dependent 
variable that relates to one particular measure of the independent variable. We 
are then looking at all possible values of the dependent variable that have that 
particular value for the independent variable: The x value is fixed and we are 
considering all possible y values for that x value; that is, we are moving verti
cally, varying the y with the x fixed. However, this use of the vertical distance 
(as opposed, for example, to the use of a horizontal distance) introduces an 
asymmetry. This asymmetry can cause a number of problems. 

For example, the regression formula fitted to the data displayed in Figures 
9.1 and 9.4 has the formula for the relationship between average weight and 
height as w = -25.48 + 0.52 x h. This formula tells us that the average weight 
of those exceedingly tall and rare individuals who have a height of 210 cm is 
about 84 kg. However, the converse is not true. The formula that relates aver
age weight to a particular height cannot simply be put into reverse to give the 
average height for a particular weight. The average height of people who have 
a weight of 84 kg is not 210 cm: Overly wide normal-height people are much 
more common than properly proportioned exceedingly tall people. The aver
age height of 84 kg people will be somewhat taller than average, but will be 
nowhere near 210 cm. These ideas lead to the regression effect. 

Figure 9.5 may assist in understanding the problem. The concentric ellipses 
represent the density of points in a huge sample of people who have heights 
(h) and weights (w) measured. The more central the ellipse, the greater the 
density of sample points within it. The line marked "regression of w on h" is 
the line giving average weights of people of various heights. The vertical dashed 
line that almost touches the second-most outer contour shows that for the par
ticular height 196 cm the numbers whose weights differ from the average for 
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Figure 9.5 
The Regression Effect 

196 cm people fall off equally as we move away from the regression line in 
either direction. This is shown by the fact that it is the same distance to the 
outermost contour whether we go up in weight or down in weight. The line 
marked "regression of h on w" is the line giving average heights of people of 
various weights. The horizontal dashed line that just touches the second-most 
outer contour shows that for the particular weight 86 kg the numbers whose 
heights differ from the average for 86 kg people fall off equally as we move 
away from the regression line in either direction. This is shown by the fact that 
it is the same distance to the outermost contour whether we increase (go right) 
in height or decrease (go left) in height. 

The regression effect is a consequence of the asymmetry between depen
dent and independent variables in regression calculations. For example, it was 
first noted in the nineteenth century that the sons of very tall fathers were on 
average only moderately tall. This phenomenon was referred to as "regression 
towards mediocrity," hence the name "regression" for this general area of sta
tistics. A visual explanation can be obtained from Figure 9.5 by mentally rela
belling and rescaling the axes. The horizontal axis could be labelled "height of 
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the fathers" and the vertical axis could be labelled "height of the sons." Both 
axes would have the same scale. The graph would then show that the average 
son of a very tall father tended to be smaller than the father, though there 
would be just as many very tall sons as there were very tall fathers. The verbal 
explanation is as follows: Assume that both genes and environment or genes 
and "luck" together determine height. Very tall fathers are mostly the result of 
"ordinarily tall" genes combined with luck ("very tall" genes are very rare, 
much rarer than the combination of ordinarily tall genes and luck). The very 
tall fathers pass on their mostly ordinarily tall genes to their sons. On average, 
the sons have average luck so end up merely tall rather than very tall. Put more 
simply, the association between the heights of father and son is not perfect: 
The father's height is only part of the explanation of the son's height; the other 
part of the explanation is chance. 

OPTIONAL 

As another example, say a casino puts on a new game. For a fee of just over 
$50, gamblers get to toss 100 coins. They get a return in dollars equal to the 
number of "heads" they throw. A number of gamblers who have tried the game 
once are concerned because they received an unusually low number of heads and 
hence dollars. Somehow a rumor starts that drinking orange juice will improve 
their luck. Amazingly enough, after drinking orange juice they all find that on 
trying the game again their scores have improved. Their results are listed here: 

Gambler a b c d e f g h j k
Heads before orange juice 39 37 35 39 38 39 36 34 39 37 

Heads after orange juice 54 43 49 52 51 48 50 56 45 51 

Soon afterward, a number of gamblers who did very well on their first round 
of the game come back to the gaming table. They are very concerned to learn that 
the casino regards them as too lucky with heads to play the game in its current 
form. Instead, they will be given in dollars the number of "tails" that they throw. 
Again, somehow a rumor starts that drinking tomato juice will improve their luck 
by decreasing their heads score, conversely increasing their tails score. Amazingly 
enough, after tomato juice they all find that on trying the game again their 
heads scores have decreased as desired. Their results are listed here: 

Gambler l m n p q r s t u v
Heads before tomato juice 67 61 62 65 61 63 61 62 64 57 

Heads after tomato juice 49 47 53 52 55 46 48 54 49 50 

A statistics student who witnesses all this is astounded by these results. He 
performs a sign test and a Wilcoxon signed rank test on both tables. All four 
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tests give ap value of 0.00195. Furthermore, a t test on the first table gives a/? 
value of 0.0000143 and a t test on the second table gives an even more con
vincing result of 0.00000898. The statistics student believes that, despite his 
prior expectations, there is now good evidence that there is a connection be
tween beverage drunk and coin-tossing scores. The question is, Should the 
statistics student pass his statistics course? 

Unfortunately, the answer is that both the statistics student and the gam
blers have been misled by the regression effect. The regression effect here 
concerns the possible relationship between a person's initial coin-tossing score 
and their postdrinking coin-tossing score. Common sense dictates that there is 
no relationship between coin-tossing results and beverage drunk. This, then, 
is the regression effect seen here in its purest form. It is the regression effect 
when in fact there is no relationship between the two variables: the number of 
heads in the first toss of 100 coins and the number of heads in the second toss 
of 100 coins. Those who score fewer heads than average in the first toss of 100 
will tend to perform about average on the second. Those who score more 
heads than average in the first toss of 100 will also tend to perform about 
average on the second. 

END OPTIONAL 

Correlation 

We know that p, the slope of the regression line, is a method of measuring 
the strength of the association between the x values and corresponding y val
ues. However, it seems desirable to have another measure that avoids the asym
metry between the variables inherent in fitting the regression line. 

A statistical measure that avoids making an arbitrary distinction between 
the independent and dependent variable is known as the "sample correlation 
coefficient" (or Pearson's correlation coefficient). The sample correlation co
efficient is usually denoted r and the equivalent true value for the population is 
denoted p (Greek letter rho), just as the sample standard deviation is denoted s 
and it estimates the true population standard deviation, denoted cr. The corre
lation coefficient (sample or population, r or p) takes values between -1 and 
+ 1. The further the correlation coefficient is from 0, the stronger the associa
tion between the two variables. A correlation coefficient close to +1 means 
that higher values of x, are almost always associated with higher values of y,. A 
correlation coefficient close to -1 means that higher values of x; are almost 
always associated with lower values of y{. A correlation coefficient of zero 
means that knowing the x value gives us no information about the correspond
ing y value. 

Complicated formulas and mathematical instructions have been avoided in 
this book unless they give particular insight. The formula for the sample cor-
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relation coefficient is not too frightening and is perhaps a little bit enlighten
ing and so is included for those who are interested. It is 

The average of all terms of the form (x, - x)(y, - y) 

std dev of x x std dev of y 

or, more precisely, 

If an above-average x value is likely to have its accompanying y value also 
above average, we see the term (x, - x){yi - y) is likely to be positive. If a 
below-average x value is likely to have its accompanying y value also below 
average, we see the term (xi - x)(y, - y) is also likely to be positive because a 
negative times a negative is a positive. The denominator standardizes things 
so that the maximum value of the sum of these terms is 1. Hence, we see that 
a strong tendency for the y value to be large (small) when the x value is large 
(small) gives a correlation coefficient close to 1. If knowing the x value had no 
bearing on the associatedy value, the terms that are averaged are equally likely 
to be positive or negative and so we would obtain a sample correlation coeffi
cient close to 0. 

For example, since greater than average height tends to be associated with 
greater than average weight and, conversely, lower than average height tends 
to be associated with lower than average weight, height and weight are posi
tively correlated: The correlation coefficient will be above 0. The coefficient 
would be 1 exactly if being a certain amount taller than average always meant 
being a proportionate amount heavier than average so that the relationship 
between height and weight was given exactly by the equation w = a + (3 x h, 
the equation for a straight-line relationship. Of course, weight and height are 
not related exactly in this way; there is some additional random scatter so that 
people of the same height may have different weights. As a result, the correla
tion coefficient for the association between height and weight is less than 1. 
An example of variables that are likely to be negatively correlated are number 
of hours of TV watched per week and exam marks. More television will often 
mean less time for study and this will tend to result in lower exam marks. 

It should be noted that both the slope of the regression line and the correla
tion coefficient are valid measures of the strength of an association only on the 
assumption that the association of interest is in the form of a scattering about 
a straight line on a graph of the two variables: The variables are associated 
linearly. If for some unknown reason we plotted the horizontal and vertical 
position of a playground swing at random times, then the data we obtained 
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would have a correlation coefficient close to zero. The plotted data would 
consist of points on a circular arc. There would be no tendency for high verti
cal values to be associated with large positive horizontal values, for high ver
tical values are just as likely to be associated with large negative horizontal 
values. There is a strong, almost perfect association between vertical and hori
zontal position—knowing the vertical position tells us that the horizontal po
sition must be one of two possibilities—but this association is not linear. 

The correlation coefficient r has a number of advantages compared to (3, 
the slope of the regression line, as a measure of the association between two 
measurements such as height and weight. As already stated, the correlation 
coefficient is not affected by any arbitrary choice of one variable to be an 
independent variable and the other to be a dependent variable; the method of 
calculating the correlation coefficient treats both variables equally. Another 
disadvantage of (3 compared to r is that the value of (3 is affected by the units 
of measurement. If we measure height in meters, the slope of the line relating 
weight to height is 100 times steeper than if we measure height in centimeters. 
However, the strength of the association between height and weight is obvi
ously not affected by our choice of measurement units. Reflecting this, the 
correlation coefficient is not affected by the choice of units. A third advantage 
for the correlation coefficient, or at least the square of its value, is that it has a 
nice physical interpretation: The square of the correlation coefficient is a mea
sure of the proportion of the variability of the y values (as measured by vari
ance) that is explained by the variation in the x values. On the other hand, the 
correlation coefficient has a disadvantage. Unlike [3, it does not immediately 
slot into a formula for predicting the average value of y given a particular 
value of x. Both (3 and r are useful as measures of association between pairs of 
variables and each has its particular advantages. 

If the slope of the regression line is zero (i.e., (3 = 0), it indicates that there 
is no linear relationship between x values and y values. As a possible relation
ship between the x values and y values is often a question of interest, there is 
theory to test the hypothesis that (3 = 0 (and to obtain confidence limits for (3). 
Similarly, there is a test of the hypothesis that the correlation coefficient r is 0 
(and confidence intervals can also be obtained). The tests on (3 and r are equiva
lent to each other in helping to decide whether an apparent association be
tween two variables is "for real" or just due to chance. Both tests are valid 
only if we have the situation where there is a certain type of randomness. In 
particular, it is assumed there is an underlying straight-line relationship (the 
null hypothesis is that this straight line is horizontal), and for all points the 
vertical variability about this straight line is given by figures obtained inde
pendently from identical normal distributions. 

There is a further use in statistics for the correlation coefficient r in describ
ing the population of pairs of values on the basis of the scatter of a sample of 
pairs of values. This use requires more assumptions about the data and the 
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underlying population. The term "bivariate normality" is used here, but fur
ther discussion is beyond the scope of this book. 

The sample correlation coefficient (or Pearson's correlation coefficient) is 
defined by a formula on page 218 using the actual values of x, and y.r There is 
also a nonparametric correlation coefficient that is given the name Spearman's 
p. It is calculated by replacing the values of the x; and y{ by their ranks. For 
example, if the /th person was 176 cm tall and weighed 75 kg and this person 
was ranked the thirtieth tallest and the nineteenth heaviest in the sample, then 
in place of x, = 176 and yi = 75 we would use the values 30 for x, and 19 for y{. 
By throwing away the exact value and only using the ranks, we are losing 
some information. However, hypothesis tests about the correlation coefficient 
depend on the assumption of an underlying normal distribution. If this as
sumption is not reasonable, we can use hypothesis tests on Spearman's rho. 

The Principles of Hypothesis Testing 
Applied to Spearman's Rho 

In some cases/? value calculations using Spearman's rho are a good reminder 
of the principles underlying such calculations. One example of calculating a p 
value associated with Spearman's rho was given in the section on the number of 
possible arrangements of n objects on pages 56 and 57. We now give another 
example and use it to revise much of the earlier material in this book. 

OPTIONAL 

Say we wished to test the null hypothesis that there is no relationship between 
a person's athletic ability and his or her ability in statistics against the alterna
tive hypothesis that the skills are positively correlated. Let us suppose that we 
gave four people tests in both athletics and in statistics and the result was that 
they have the same ordering in both areas (i.e., the person who came first in 
athletics also came first in statistics, and so on). We do not have to calculate 
Spearman's rho here using a formula: It must have the value 1, signifying 
perfect agreement in the ranking of abilities in the two areas. To determine the 
p value, we now ask, "How often would we obtain this perfect agreement by 
pure chance?" To answer this question, let us assign the letters A, B, C, and D 
to the people who came first, second, third, and fourth in athletics, respec
tively. We now ask, "What is the probability that the performance in the statis
tics test will also be in the order A, B, C, D?" We have four choices for the first 
position in statistics and for each of these four choices we then have three 
choices for the second position, and for each of these 4 x 3 combinations of 
choices for the first two positions we have two choices for the third position 
and just one for the fourth, so we have 4 x 3 x 2 x 1 = 4 ! = 24 combinations of 
choices. Under the null hypothesis there is no relationship between statistical 
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ability and athletic ability, so all combinations of choices are equally likely. 
Therefore, the probability agreement in rankings at least as good as the agree
ment seen here—perfect agreement—is V24. If (and it is a big " i f ) we be
lieved that in this case it was appropriate to use the traditional benchmark p 
value of 0.05 or '/2o, we would now prefer the alternative hypothesis that there 
is a positive association between abilities in athletics and statistics. 

We should now write a paper for a learned journal reporting these findings 
and when the paper is published we should perhaps put out a press release 
telling the world at large that we have found reasonably convincing evidence 
that ability in statistics and athletics are positively correlated. Readers here 
may object on the grounds that our conclusion is based on results from just 4 
people. This is not a valid objection, provided the 4 people were chosen ran
domly. Our conclusions here are just as valid as if we had 4,000 people and 
found that this large sample led to a positive correlation that under the null 
hypothesis gave a/? value of V24. The convincing evidence is not the numbers 
involved in the study. The convincing evidence is that it is not easy for chance 
alone to explain the positive correlation and we have decided that relying on a 
724 chance (or any chance less than 0.05) as an explanation for our results is 
less satisfactory than believing that there is a real correlation. The difference 
between a study of 4 people and a study of 4,000 people is that in the 4,000-
people study ap value of 724 will result from a much weaker association be
tween abilities in athletics and statistics. Those readers who still object to the 
conclusions based on just 4 people should understand that the only logical 
source of objection is that they intuitively don't regard a p value of 724 as 
providing reasonably convincing evidence. In other words, such objectors 
should logically use a benchmark p value much smaller than the conventional 
0.05. This may well be reasonable given that the alternative hypothesis may 
not be easy to accept. However, all should understand that this 0.05 is the 
benchmark that is widely used as the criterion for making decisions about 
hypotheses in many areas of human knowledge. Clearly, it is inappropriate to 
use this benchmark without considering the plausibility of the hypotheses and 
the costs of error. 

If, however, instead of the one-tail alternative hypothesis that abilities are 
positively correlated we had the two-tail alternative hypothesis that abilities 
are correlated either positively or negatively, we would not reject the null hy
pothesis using the benchmark p value of 0.05. This is because both the rank
ing we obtained—A, B, C, D—and another ranking—D, C, B, A—lead to a 
Spearman's rho equally far from the null hypothesis ideal Spearman's rho of 
0. In other words, two of the twenty-four equally likely rankings (including 
the one we actually obtained) are at least as far as our ranking from the ideal 
under the null hypothesis. Therefore, if the null hypothesis is true and pure 
chance alone is operating, the probability of being this far away in the rankings 
from the ideal situation of Spearman's rho = 0 in this two-tail test is 2IIA or V12. 
Since V12 is greater than 0.05 or 720, we will not think that we are holding onto 
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the null hypothesis in the face of an unreasonably small chance. We see that 
using four people, a two-tailed test, a benchmark p value of 0.05, and 
Spearman's rho as our test of association, it will never be possible to reject the 
null hypothesis. If, in fact, the null hypothesis is incorrect, we will inevitably 
make a Type II error. Using the term "power" as defined in Chapter 6, we can 
say that this experiment has no power. 

END OPTIONAL 

The ideas used to calculate/? values for the null hypothesis Spearman's p = 0 
in this example can in principle easily be extended. If n individuals each have 
two variables measured on them, simply calculate the Spearman's p for the 
measure of the extent to which the rankings match. Then write down all n x (n - 1 ) 
x (n - 2) x (n - 3) x . . . x 3 x 2 x 1 = n\ possibilities for how the rankings 
could match. For each of these possibilities calculate Spearman's p. Under the 
null hypothesis each of these possibilities is equally likely: Each occurs 7„i of 
the time. For the/? value, simply count up the number that give a Spearman's 
p at least as big as the one obtained from the sample and divide by n\. This is 
the p value: It answers the question, "How easy is it for chance alone to ex
plain results that are at least as extreme as the results in our sample?" In prac
tice, this approach is too tedious even for a computer unless n is a small number. 
Unless n is small, some clever theory based on the central limit theorem and 
the normal distribution is used to calculate an approximate/? value for various 
values of Spearman's p. 

SUMMARY 

• ANOVA is used to see if there is convincing evidence that the numbers in different 
groups come "from different hats." ANOVA actually starts by assuming that the 
numbers in all groups all come "from the same hat." It then tells us how often the 
means of the different groups chosen from the same hat would be at least as widely 
scattered as they are with our data. This can be calculated from the observed vari
ability of the individuals within each of the groups. This is the p value. ANOVA 
assumes that we are dealing with a situation in which numbers in all the different 
hats are normally distributed with the same variance. If these assumptions are vio
lated, use the Kruskal-Wallis test. 

• Regression is used to assess any straight-line relationships or association between 
two variables measured on each of a number of individuals. If the slope of the 
straight line, (3, is zero, then the independent variable has no effect on the depen
dent variable. There is a test to see if (3 calculated from a sample provides reason
ably convincing evidence that the true (3 for the population is not zero. The evidence 
is provided in the form of a p value (this test indicates that there is an association 
between the variables in the population). Confidence intervals can be obtained for 
the true (3 for the population. Certain assumptions must be met for this test to be 
valid. Deciding that an association is real still leaves open the issue of causality, as 
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in Chapter 7. The asymmetry between independent variables and dependent vari
ables causes a difficulty known as the regression effect that reflects the fact that one 
variable only partly explains the other variable and chance is also involved. 

• Correlation also measures the amount of linear association. Correlation, unlike the 
slope of the regression line, is not affected by units of measurement and does not 
distinguish between dependent and independent variables. However, it is not as 
convenient as (3 in obtaining a formula relating two variables. It takes values be
tween -1 and +1, with 0 indicating no linear association. As in the case of |3, the 
sample correlation coefficient can be used for an hypothesis test that the population 
correlation coefficient is zero and to obtain confidence intervals. There is a non
parametric version of the sample correlation coefficient known as Spearman's p. 
The method of finding/? values testing the hypothesis that Spearman's p = 0 in
volves very simple mathematical ideas. 

In short, use ANOVA to see if there is reasonably convincing evidence that 
a number of different groups have different means. Use regression or correla
tion to see if there is reasonably convincing evidence that a larger than average 
value for one variable is associated with a larger (or smaller) than average 
value for another variable measured on the same individual. Use regression if 
the aim is a formula connecting the two variables. Use correlation if a formula 
is not the aim and a measure of the closeness of the association in terms of a 
number between -1 and +1 is required. 

QUESTIONS 

1. The day of the week on which a number of statistics students were born was recorded 
along with their marks for a statistics course. The results are displayed here: 

Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

58 6 21 71 39 62 81 

97 19 58 86 58 31 94 

43 55 23 51 26 37 65 

Perform an appropriate statistical test and state with reasons whether you believe 
that there is a relationship between the day of birth and performance in statistics. 

2. A skeptical farmer wonders whether there is really any benefit in terms of yield in 
the various high-yield varieties of wheat produced by agricultural researchers. 
Accordingly, he keeps a record over the years of the yield with various varieties. 
His results are as follows: 

Traditional variety 2.7 1.9 3.6 

Improved variety type 1 2.3 3.1 4.0 

Improved variety type 2 4.4 2.7 3.5 

The farmer uses a statistical package to analyze these results using ANOVA and 
concludes that there is no evidence that the improved varieties are better. Do you 
agree with the farmer? Discuss. 
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3. In a study of geographical temperature variation, research assistants in Townsville 
(latitude 19°30'), Brisbane (latitude 27°30'), Sydney (latitude 34°00'), and 
Melbourne (latitude 37°45') were each asked to choose, at random, two days in 
May and record the maximum temperatures on those days. The results are as 
follows: 

Townsville 27 31 

Brisbane 24 18 

Sydney 16 22 

Melbourne 13 21 

Perform an ANOVA test on these data. Comment on the null hypothesis and the 
test used. In light of these results, is it reasonable to believe that the maximum 
daytime temperatures in May in these various cities are the same? 

4. The following list gives the rainfall in centimeters in Brisbane, Australia, in April 
of each year and the number of books imported into the United States in Decem
ber of the same year. Data from the years 1995 to 2000 are given. Use an appro
priate statistical method to test the null hypothesis that there is no relationship 
between Brisbane rainfall and U.S. book imports. Do you believe that knowing 
Brisbane's rainfall in April this year will assist you in predicting the book imports 
in the United States in December? Discuss. 

Year 1995 1996 1997 1998 1999 2000 

Rainfall 10.1 3.9 15.7 9.1 6.3 12.9 

Books 150,060 90,210 197,300 137,980 121,100 181,600 

5. In the following list the row marked x gives the prices paid by the previous owners 
to purchase houses in a particular town in 1990; the row marked y gives the price 
paid by the current owners to purchase the same houses in 2000. 

x 33 37 38 39 41 36 

y 67 73 74 75 97 84 

Comment on the null hypothesis H() that there is no relationship between the pur
chase price paid by the current owner and the purchase price paid by the previous 
owner and use the results given to complete an appropriate statistical test of the 
null hypothesis. Do you believe that knowledge of the previous purchase price of 
a house will be of no use in predicting the current purchase price? Discuss. 

6. Six people are questioned by a researcher and are ranked according to the amount 
of daily exercise that they undertake. The same six people also have a blood cho
lesterol test. It turns out that the person who undertakes the most exercise also has 
the lowest cholesterol level. The person who undertakes the second greatest amount 
of exercise also has the second lowest cholesterol level, and so on, so that the 
person with the least exercise has the highest cholesterol. Say this experiment 
was repeated many times. Find how often on average this inverse matching of 
rankings of cholesterol level and exercise would occur if in fact there were no 
connections between cholesterol and exercise. If the experiment is in fact carried 
out only once and gives the results described, would you be reasonably convinced 
that there is an inverse association between exercise and cholesterol levels? 
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7. A researcher looking for evidence of climate change notes the ten localities in 
America with the highest rainfall totals for the twenty-four hours ending at mid
night, January 2-3, 2001. The following year he checks the rainfall in the same 
ten localities over the same twenty-four-hour period. He finds that in all cases the 
rainfall in these localities on January 2, 2002, is less than it was on January 2, 
2001. The researcher argues that even a simple sign test of these results gives a/? 
value of 1/1,024 (one-tail), providing strong evidence against the null hypothesis 
that America's rainfall is not changing. Discuss any flaws that you may see in this 
researcher's experiment and conclusion. 

8. The rabbit populations of 100 fields were estimated and the 9 fields with the high
est estimated rabbit populations were selected for a rabbit inhibition experiment. 
The inhibition experiment consisted of erecting gruesome pictures in the middle 
of each field portraying farmers killing rabbits. After three years these nine fields 
were revisited and rabbit numbers were again assessed. In all nine cases the rab
bit population had fallen. Assuming the experimental method is valid, perform an 
appropriate test to determine the probability of an improvement in nine out of 
nine cases being achieved if in fact the gruesome pictures had no effect on the 
rabbits. Are you reasonably convinced that gruesome pictures inhibit the rabbit 
population? What major flaws are there in the experimental method here? 

NOTE 

1. An/ratio of 1.0 corresponds to the ideal situation, when the null hypothesis is 
true, of both estimates of individual variability being equal. It may therefore be thought 
that the/rat io will exceed 1.0 exactly half the time; that is, the associated p value 
should be 0.50. However, asymmetry in the / distribution means that there is a less 
than 50 percent chance of exceeding the value of 1.0. 
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Miscellaneous Topics 

FINITE POPULATION CORRECTION 

Often in statistics we are dealing with a population that is effectively infinite 
and we want to learn about the population by taking a sample comprising a 
limited number of values drawn from this virtually infinite population. For 
example, if we want to learn something about the effect of a disease and we 
examine some people with the disease, we are generally sampling an almost 
infinitesimal proportion of the population of all those people who now have or 
might ever have the disease. If we want to learn something about the pollution 
levels in a town's air over time, the amount of air we sample would be an 
almost infinitesimal proportion of the air that circulates over the town during a 
period of time. The sample is useful, not directly because it gives us knowl
edge about some appreciable fraction of the population, but because it gives 
us probabilistic ideas about the entire population. 

Sometimes, however, we will deal with a population that is not particularly 
large in comparison to the size of our sample. For example, we might be inter
ested in environmental attitudes of the mayors of all the local authorities in 
Australia. The question then arises, Why not do a complete census? With a 
complete census there is no need for statistics in the sense that there is no 
uncertainty: Confidence intervals and hypothesis tests regarding the true lev
els of environmental awareness, should all the mayors be questioned, are ir
relevant, as they all have been questioned. 

Sometimes we will do a complete census, but often we won't, for two rea
sons. The first reason is that it may be too expensive. The second reason is that 
with limited resources we may get more accuracy by concentrating our re
sources on a sample rather than spreading them out over the whole popula
tion. Returning to the example of the environmental attitudes of the mayors, if 
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we were to conduct a census of all of them, our resources might limit us to a 
postal survey that might then be filled out in haste by the mayors' aides. If, 
however, we were to concentrate our resources on a sample, we might be able 
to get much more thoughtful responses from all the mayors in the sample 
using face-to-face interviews. 

However, if our sample consists of an appreciable proportion of the entire 
population, our statistical analysis has to be modified. The modification re
flects the fact that our sample not only gives us a probabilistic idea of what we 
would expect from the rest of the population, but it also gives us precise infor
mation about an appreciable proportion of the whole population. Mathemati
cal theory we will not cover shows that the appropriate modification is quite 
straightforward. Our ideas on how uncertain our estimate of the population 
mean is—the standard error of the mean-^have to be reduced by multiplying 
the standard error of the mean by v/l - / , where / i s the proportion of the 
population in the sample. This adjustment is known as the finite population 
correction. The statistical analysis then proceeds as usual. If we are using a 
computer program in our analysis, the program may display the standard error 
of the mean so that we can factor in a finite population correction manually, if 
appropriate. For example, say we sampled a random sample often of the may
ors of Australia's twenty largest cities and found the following results on some 
numerical environmental awareness scale: 5, 6, 9, 4, 8, 10, 7, 3, 1, 2. We will 
assume here that it reasonable to analyze these figures as though they came 
from a normal distribution and so use the methods described in Chapter 5. The 
mean score is 5.5. The sample standard deviation is 3.027. The standard error 
of the mean without using the finite population correction is 3.027/^10 = 0.957, 
but with the finite population correction it is 0.957 x ^1 - ]0/2o = 0.677. If we 
wanted 95 percent confidence intervals for the true mean of the scores of the 
mayors on this environmental awareness scale, it would be 5.5 ± 0.677 x 
2.262 where ±2.262 is the range of values from the t9 distribution that contains 
95 percent of values. In other words, the 95 percent confidence interval would 
be (4.0, 7.0). If we had not used the finite population correction we would 
have (3.3,7.7). The latter calculation would ignore the fact that not only do we 
have an impression of what all the mayors are like from interviewing ten of 
them, but we also have certain knowledge about what half of them are like. In 
general, the (100 - a) percent confidence interval for the mean as a result of a 
survey from a finite population is given by 

where n is the number surveyed,/is the proportion of the finite population 
surveyed, and T is the figure from the tn_, distribution such that (100 - a) 
percent of the values from this distribution are in the range - T to +T (it is 
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assumed here that the values that occur in this finite population are values that 
are chosen from a normal distribution). 

Sometimes there is a philosophical difficulty here. If we want to know about 
the actual mayors of large Australian cities, we would use the finite popula
tion correction factor as in the preceding paragraph. However, if we were 
thinking of these mayors as a representative sample of all the mayors who 
could ever exist given the same social circumstances as exist in Australia, we 
would regard our population as infinite and not use the population correction 
factor. In the same way, if we have a statistics class with male and female 
students, we may find that the average mark of the females on the examination 
is 1 percent better than the average mark of the males. We could then ask the 
question, "Is this due to chance?" From one point of view, this is a meaning
less question. Our sample is the population. We know precisely the mark of 
everyone in the class. Knowing these marks, there is no chance that these 
results for the population, the class, could be anything other than the results 
that we have in front of us. We can say, dogmatically, that in this class we are 
absolutely sure that, on these marks, women are better on average than men. 
From another point of view, we can think of this class as just a sample of all 
the billions of men and women who could potentially enroll in a class such as 
ours. Assuming the class is not large and that there is considerable individual 
variation in marks and noting the small difference in the average mark, after a 
statistical analysis we could conclude, "There is no (convincing) evidence 
that women are better than men." 

DETERMINING THE NUMBER OF 
SAMPLE VALUES REQUIRED 

The amount of data required depends on how accurate we want our esti
mate to be and how variable the individual values are. We will consider two 
cases: estimating a proportion and estimating the mean of values that are nor
mally distributed. 

Estimating a Proportion 

Say we wanted to find out the proportion of people intending to vote for a 
particular political party. This involves the binomial random variable (Chapter 4). 
When the sample is of considerable size (e.g., twenty or more), the binomial 
distribution "looks" like a normal distribution, as it is the result of adding a 
considerable number of chances (this is the central limit theorem; see Chapter 5). 
If the true proportion in the population is 6, then the expected (anticipated 
average) number of successes in a sample of size n is nd and the standard 
deviation is JnQfy (see Chapter 4 and recall that in the notation used there ()) = 
1 - 0). Then, by the central limit theorem, the actual number of successes in 
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the sample will be approximately a value chosen from a normal distribution 
centered on nd and with standard deviation JnQ$. The proportion of successes 
in the sample will be 7wth of this, so the proportion of successes in the sample 
will be chosen from a normal distribution centered on 6 and with standard 
deviation 

Therefore, 95 percent of the time the proportion 9 that will be obtained will be 
in the range 

We see that if we want a 95 percent chance of being no further than 1 percent 
away from the true value of 9, we should take n so that 

Rearranging this equation gives 

Now cf) = 1 - 9, and high school algebra shows that the biggest value that 9(1-9) 
can take is lA (this value occurs when 9 = Vi). Approximating 1.96 by 2 and taking 
the largest possible value of 9c() of XA shows that if we take n = lAx (2/o.oi)2 = 10,000 
we will have at least a 95 percent chance of obtaining a proportion that is within 1 
percent of the true proportion 9. Public-opinion surveys are often done using n = 
500, not 10,000. Calculations using this theory show that these surveys can 
have about a 1 in 20 chance of being inaccurate by more than 4 percent. 

The Number of Values Required for Estimation of the Mean 
of a Continuous Variable to within a Given Accuracy 

The formula for the amount of data required in this situation is worked out 
using similar reasoning. This time, however, we have to have some prelimi
nary estimate of the variability in order to make an estimate of n. We assume 
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that we have an estimate s of the standard deviation. The formula, by similar 
reasoning to that shown earlier, turns out to be 

where we are prepared to be in error by an amount of d or more with a chance 
of a, and u is the value from a t distribution such that the chance of being 
above u is a/i. Ifn turns out to be reasonably large (e.g., greater than 20), the 
standard normal distribution usually is used, as it is a good approximation to 
the corresponding t distribution. For example, if we had a variable for which 
preliminary information indicated that the standard deviation was 10.0 and we 
wanted to be 99 percent sure that our estimate of the mean was within 2.0 
units of the true value, we would need 

The figure 2.57 is used here because the range ±2.57 from the standard nor
mal distribution contains 99 percent of values. 

Our considerations here can lead to the issues raised in dealing with confi
dence intervals. If, with s = 10, we are about to examine a sample of 165, then 
there will be a 99 percent chance that the mean of the sample will be within 
2.0 units of the mean. However, once we have obtained a particular sample 
mean we cannot generally say there is a 99 percent chance that the true popu
lation mean p will lie within 2.0 units of the sample mean. Our 99 percent 
confidence interval will, however, be the sample mean ±2.0 units. For ex
ample, if we are dealing with the heights of women, although 99 percent of 
samples of 165 women may give sample means in the range 170 to 174 cm, by 
a very long coincidence we may have obtained a sample with a mean of 150 
cm. We have prior knowledge about the likely average height of women and 
so it would not be correct for us to believe on the basis of our sample that there 
is a 99 percent chance that the average woman is between 148 and 152 cm. 
Ideas about where the sample mean is likely to be knowing the population 
mean cannot generally be inverted to ideas about where the population mean 
is likely to be knowing a sample mean (see the material on confidence inter
vals in Chapter 6 for more explanation of this issue). 

TOPICS COVERED IN 
MORE ADVANCED STATISTICS TEXTS 

The topics covered in this text give the reader sufficient knowledge to apply 
statistics to most straightforward situations where only one or two measure
ments are made on each individual. Hopefully, this text, with its emphasis on 
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understanding the philosophy, will enable the reader to apply statistics with 
common sense in such situations. 

However, there are many parts of the subject of statistics that have not been 
covered and it seems appropriate in this last chapter to give an indication of 
the scope of the subject. This will be given in the form of the following list of 
randomly selected topics in random order: 

• We have covered the common tests appropriate to certain combinations of sources 
of data and types of data as described at the end of Chapter 5 and expanded at the 
end of this chapter. However, there are many more tests applicable in circumstances 
we haven't considered. For example, we haven't considered the situation where 
there is a measure on each individual performed after each of a number of different 
interventions where that number is more than one. 

• Mathematical statistics is a large subject. Among many other things it delves into 
questions of being precise about what we mean when we say things like "s as de
fined in Chapter 2 is a "good" estimate of a." What are the mathematical properties 
of a "good" or "best" method of estimating a parameter value? Are there math
ematical methods for finding the "best" method of estimation? 

• Throughout this text the need to incorporate common sense into statistics has been 
emphasized. The reader has been urged to do this by modifying their benchmark p 
value according to circumstances. There are also mathematical ways of incorporat
ing common sense into statistics. The subject of Bayesian statistics is one of a 
number of mathematical approaches to incorporating common sense into statistics. 

• Decision theory is a further attempt to refine the use of statistics. It is a method of 
using objective and subjective information about probabilities and explicitly taking 
into account the costs of errors. 

• The previous section gave some information on calculating how many sample val
ues would be needed for a certain amount of accuracy in two simple situations. 
There is a lot more to the topic of finding the sample numbers necessary for a 
statistical analysis to have some required power. A related topic is the topic of strati
fied sampling. If we wanted an estimate of total amount of soil lost to erosion in Austra
lia each year, positioning test areas at randomly chosen spots throughout Australia 
would not be optimal. To improve accuracy, we would be best off focusing more 
sampling effort on geographic regions where erosion levels were more variable. 

• Being as economical as possible in terms of number of subjects in an experiment is 
particularly important when the decision about the best treatment is a matter of life 
and death. There are special methods known as sequential analysis for continually 
checking the data to decide when sufficient people have undergone the experimen
tal treatment for a decision about it to be made. 

• Survival analysis is a related area. In medicine, the final endpoint for many studies 
is death. However, as people, even sick ones, often live a very long time, we would 
often have to wait a very long time before everybody in a study died and we had 
complete results to use in comparing the benefits of different methods of delaying 
death. Using incomplete results when only some people have died is the subject of 
survival analysis. 
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• The practicalities of sampling, particularly sampling humans, is another large topic. 
For example, phone surveys don't represent people in households without a phone, 
but, less obviously, they underrepresent those in large households with only one 
phone per household (see the answer to question 2 of Chapter 2). 

• Most of this book has dealt with samples in which the individuals have been chosen 
at random. In spatial statistics, though, the equivalent to our individuals are points 
we choose to sample in space. Points in space are not independent: They are related 
according to how physically close they are. Spatial statistics is an important com
ponent of environmental science and of geology. It is required, for example, in 
order to use limited information to draw maps of pollution levels, assess the popu
lation of endangered species, and assess the amount of ore in a mine. 

• Just as points can't be independent in space, they can't be independent in time. 
Special statistical methods are required for analysis of fluctuating data through time. 
This is the subject of time series. Physicists looking at sunspots, meteorologists 
looking at weather patterns, and economists looking at fluctuations in the capitalist 
economies are all interested in time series. 

• In biology and medicine we are often interested in a number of factors that may all 
be operating simultaneously in one individual to have an effect on what is being 
measured. We may want to know if the effect of a new drug taken for blood pressure 
is affected by gender, age, preexisting blood pressure level, dietary salt intake, and 
coprescription of certain other drugs. Furthermore, we may want to compare how 
the new drug and the standard drug interacts with these factors. Teasing out 
answers to such questions constitutes the majority of many second-level applied 
statistics courses for biologists. These answers come under headings such as ad
vanced regression and multiway ANOVA or ANOVA models. These topics, in turn, 
are derived from a branch of mathematical statistics known as generalized linear 
models. 

• Often more than one or two measurements are made on an individual. Particularly in 
psychology, vast numbers of measurements are made on each individual in the form 
of responses to a questionnaire containing hundreds of questions. In biology and 
medicine as well, it is common to take many measurements of various aspects of 
each individual. Making sense of all this information is the subject of multivariate 
analysis. Multivariate analysis includes a number of topics. For instance, principal 
component analysis, factor analysis, and cluster analysis can deal with condensing 
the mass of information from psychology questionnaires into a more manageable 
form. These topics give methods of answering questions about whether people's 
personalities tend to fall into a limited number of types or about how much of the 
variation between people can be summarized by, say, three figures (for example, the 
three figures might give a measure of intelligence, a position on a scale of introver
sion-extroversion, and a position on a scale of conservatism-radicalism). There are 
also many other uses for these techniques. In medicine, the topic of discriminant 
analysis is used to find a method of combining a number of indirect measures to 
obtain a score that is best able to discriminate between the presence or absence of a 
serious disease. This can avoid the need for expensive or dangerous operative treat
ment to decide the issue beyond doubt. There are many other topics within the area 
of multivariate analysis and many other uses for this branch of statistics. 
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SUMMARY 

Occasionally, our sample constitutes an appreciable proportion of the population of 
interest. In such cases, confidence intervals for means have to be reduced in width 
by a factor of V1 - / , reflecting the fact that we are certain in our knowledge of an 
appreciable proportion of the population. 

We can determine the number of measurements required for a statistical test to have 
a certain level of accuracy. 

This text covers most straightforward statistical tests, but the scope of advanced 
statistics is huge. 

SUMMARY OF STATISTICAL TESTS 

All the statistical tests covered in this book are designed to help answer the 
question, "Are the differences we see Tor real' or are they just the result of chance?" 
The results from the statistical tests are not a direct answer to this question, but 
instead tell us how easy it would be for chance to explain the results. 

The term "differences" in this context has several shades of meaning: 

1. We may be interested in the possibility of a difference of an appreciable size 
caused by a definite intervention or membership of a definite group. We have 
covered a number of such tests. Different tests apply in different situations, depend
ing on the source of data and the type of data. These tests were shown at the end of 
Chapter 5, and the list is repeated here with the addition of tests covered later: 

Source of data 

Two related measures (e.g., 
measures before and after an 
intervention on the same 
individual; measures on one 
twin who had an intervention 
and the other twin who didn 't) 

A single measure on two unrelated 
samples (e.g., measuring the 
same quantity on men and 
women) 

A single measure on more than 
two unrelated samples 

Dichotomous 
(e.g., better 
or worse) 
data 

Sign test 

Numerical 
but not 
necessarily 
normal data 

Wilcoxon 
signed rank 
test 

Numerical and 
normal data 

Paired samples 
nest 

Fisher's exact 
test 

X2 test of 
association 
(applies to 
nominal not 
just dichoto
mous 
outcomes) 

Mann-Whitney Independent 
test samples t test 

Kruskal-Wallis ANOVA 
test 

•

•

•
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2. We may be interested in shades of difference where there is no distinct group as 
such but individual measures are at different points along a continuous range of 
values. In this case, we usually use the word "association" and ask if variation in 
one measure is associated with variation in another measure. Here we use corre
lation and regression. Valid p values can be calculated for the measures that we 
obtain from correlation and regression when the association is linear and the ap
propriate test is used. There are several types of data: 

• Both measures are numerical but not normal. 

Test: Spearman's p (rho) 

• At least one of the measures is normally distributed as the dependent variable scat
tered about a regression line. 
Test: to see if the slope of the regression line ((3) or Pearson's correlation coefficient 
(r) is zero 

• The two measures have a bivariate normal distribution. 

Test: (Pearson's) correlation coefficient 

3. We may be interested in the possibility of a difference between the population 
from which we have drawn our sample and some theoretical distribution. 

The relevant tests that we have covered include the following: 

• the use of the binomial random variable to test an hypothesis about the value of the 
parameter 6 or the proportion in the population, based on knowledge about a sample. 

• the use of the Poisson random variable to test an hypothesis about the value of the 
parameter X or the average rate at which something happens. 

• the use of the z test to test whether a single value or the average of a number of 
values comes from a normal distribution with p and a specified. 

• the use of the single sample t test to test whether the average of a number of values 
comes from a normal distribution with just p specified. 

• the use of the Komogoroff-Smirnoff test, mentioned in this book as a test of the data 
fitting a normal distribution, but with wider applicability. 

• the use of the chi-square goodness of fit test to test whether the proportions of the 
data in various categories are a reasonable match to those expected by the theoreti
cal distribution. 

Most of the tests under (1) and (2) can also be used to define confidence 
intervals. Confidence intervals are a way of using the measures on the sample 
to obtain information on the likely position of some unknown parameter that 
describes the population or describes the average difference made by some 
treatment. Again, note that a confidence interval does not directly tell us that 
the unknown parameter is in a certain interval with a certain probability. In
stead, the confidence interval tells us that if the parameter was in this interval 
it could "easily" have given the underlying data. The term "easily" refers to 
calculations with a given value of the parameter, giving a/7 value for the data 
larger than the benchmarkp value. 
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QUESTIONS 

1. Say that the entire adult population of northern hairy-nose wombats consists of 
180 individuals and that we survey a randomly selected sample of 100 of these 
individuals and measure their weights. If the results are that the mean is 27 kg and 
the standard deviation is 2 kg, find the 95 percent confidence interval for the 
mean weight of adult northern hairy-nosed wombats. 

2. On a test in a statistics class the mean mark was 69.71 and the standard deviation 
was 11.65. However, only twenty-one of the twenty-two students now enrolled 
took the test, as one student was unable to take it because of ill health. 

a. Assume this one student has been attending class as much as the other twenty-
one students until the time of the test. Find the 95 percent confidence interval 
for the mean mark that would have been obtained in the first test had all twenty-
two students been able to take it. 

b. The absent student's health deteriorates further and she withdraws from the 
class. What now is the 95 percent confidence interval for the mean mark of the 
class? 

3. Consider a survey on an issue in which the American population is thought to be 
approximately evenly divided. 

a. How many people would we need to survey for us to have a 99 percent chance 
of obtaining a value that differs from the true percentage by no more than 1 
percentage point? 

b. After taking our survey using an appropriately chosen representative sample 
and with the appropriate numbers obtained from part a, we find that 40 percent 
of the sample is positive about the issue under consideration. Does this mean 
that we can be 99 percent certain that the true proportion of the whole of the 
American population who are positive about this issue is between 39 and 41 
percent? Discuss. 

4. For each of the following scenarios state the most appropriate statistical test. 

a. People are classified into two groups depending on whether they were abused 
as children and the recorded outcome is whether they have had a conviction 
for theft. 

b. Groups of people in four different industries are selected at random and their 
blood pressures are measured, as the investigators are interested in a possible 
association between blood pressure and type of workplace. 

c. It is thought that the position of a person's surname in the alphabet may, as a 
result of childhood experiences of waiting for names to be announced in al
phabetical lists, lead to personality differences. Accordingly, a psychological 
test that gives a numerical score on an introversion-extroversion scale is ad
ministered to a group of people. About half the people in the group have sur
names starting with the first four letters of the alphabet and the remainder have 
surnames starting with the last four letters of the alphabet. The introversion-
extroversion score of all these people is assessed. Assume that inspection of 
the figures suggests that it is reasonable to believe that the data come from a 
normal distribution. 
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d. Consider the same scenario as in c, with names starting with letters at different 
ends of the alphabet and measurement of an introversion-extroversion score. 
What test should we use to assess the results if inspection of the figures sug
gests that it is not reasonable to believe that the data come from a normal 
distribution? 

e. A piped-music system is installed in a hospital for long-stay patients and the 
recorded outcome is whether patients felt better or worse on a day when they had 
access to the music than on a day when they didn't have access to the music. 

f. A piped-music system is installed in a gym and the recorded outcomes are the 
amount of weight each member of the gym could lift on a day without piped 
music and the amount of weight each member could lift on a day with piped 
music. Assume that inspection of the figures suggests that it is reasonable to 
believe that the data come from a normal distribution. 

g. Consider the same scenario with the gym and piped music as in f, but this time 
assume that inspection of the figures suggests that it is not reasonable to be
lieve that the data come from a normal distribution. 

h. People are classified into two groups, depending on whether they grew up in a 
rural or urban setting, and the recorded outcome is whether they are vegetarian. 

i. Groups of women, all age twenty, who adhere to four different religions are 
selected at random and their time for a 100-meter sprint race is recorded, as 
the investigators are interested in a possible association between athletic per
formance and religion. 

j . We are interested in the possibility of an association between religion and oc
cupational group. 

k. People of varying incomes are selected and their IQs are measured, as the 
investigators are interested in a possible association between income and IQ. 
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Appendix: Table of the 
Standard Normal Distribution 



z 
0.0 
0.1 
0.2 
0.3 
0.4 

0 
5000 
5398 
5793 
6179 
6554 

1 
5040 
5438 
5832 
6217 
6591 

2 
5080 
5478 
5871 
6255 
6628 

3 
5120 
5517 
5910 
6293 
6664 

4 
5160 
5557 
5948 
6331 
6700 

5 
5199 
5596 
5987 
6368 
6736 

6 
5239 
5636 
6026 
6406 
6772 

7 
5279 
5675 
6064 
6443 
6808 

8 
5319 
5714 
6103 
6480 
6844 

9 
5359 
5753 
6141 
6517 
6879 

0.5 
0.6 
0.7 
0.8 
0.9 

6915 
7257 
7580 
7881 
8159 

6950 
7291 
7611 
7910 
8186 

6985 
7324 
7642 
7939 
8212 

7019 
7357 
7673 
7967 
8238 

7054 
7389 
7703 
7995 
8264 

7088 
7422 
7734 
8023 
8289 

7123 
7454 
7764 
8051 
8315 

7157 
7486 
7793 
8078 
8340 

7190 
7517 
7823 
8106 
8365 

7224 
7549 
7852 
8133 
8389 

1.0 
1.1 
1.2 
1.3 
1.4 

8413 
8643 
8849 
9032 
9192 

8438 
8665 
8869 
9049 
9207 

8461 
8686 
8888 
9066 
9222 

8485 
8708 
8907 
9082 
9236 

8508 
8729 
8925 
9099 
9251 

8531 
8749 
8943 
9115 
9265 

8554 
8770 
8962 
9131 
9279 

8577 
8790 
8980 
9147 
9292 

8599 
8810 
8997 
9162 
9306 

8621 
8830 
9015 
9177 
9319 

1.5 
1.6 
1.7 
1.8 
1.9 

9332 
9452 
9554 
9641 
9713 

9345 
9463 
9564 
9649 
9719 

9357 
9474 
9573 
9656 
9726 

9370 
9484 
9582 
9664 
9732 

9382 
9495 
9591 
9671 
9738 

9394 
9505 
9599 
9678 
9744 

9406 
9515 
9608 
9686 
9750 

9418 
9525 
9616 
9693 
9756 

9429 
9535 
9625 
9699 
9761 

9441 
9545 
9633 
9706 
9767 

2.0 
2.1 
2.2 
2.3 
2.4 

9772 
9821 
9861 
9893 
9918 

9778 
9826 
9864 
9896 
9920 

9783 
9830 
9868 
9898 
9922 

9788 
9834 
9871 
9901 
9925 

9793 
9838 
9875 
9904 
9927 

9798 
9842 
9878 
9906 
9929 

9803 
9846 
9881 
9909 
9931 

9808 
9850 
9884 
9911 
9932 

9812 
9854 
9887 
9913 
9934 

9817 
9857 
9890 
9916 
9936 

2.5 
2.6 
2.7 
2.8 
2.9 

9938 
9953 
9965 
9974 
9981 

9940 
9955 
9966 
9975 
9982 

9941 
9956 
9967 
9976 
9982 

9943 
9957 
9968 
9977 
9983 

9945 
9959 
9969 
9977 
9984 

9946 
9960 
9970 
9978 
9984 

9948 
9961 
9971 
9979 
9985 

9949 
9962 
9972 
9979 
9985 

9951 
9963 
9973 
9980 
9986 

9952 
9964 
9974 
9981 
9986 

3.0 
3.1 
3.2 
3.3 
3.4 

9987 
9990 
9993 
9995 
9997 

9987 
9991 
9993 
9995 
9997 

9987 
9991 
9994 
9995 
9997 

9988 
9991 
9994 
9996 
9997 

9988 
9992 
9994 
9996 
9997 

9989 
9992 
9994 
9996 
9997 

9989 
9992 
9994 
9996 
9997 

9989 
9992 
9995 
9996 
9997 

9990 
9993 
9995 
9996 
9997 

9990 
9993 
9995 
9997 
9998 

Note: The decimal point at the start of each probability is suppressed for readability. Probabilities 
corresponding to larger values of z can be calculated using the following approximation: 
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CHAPTER 1 

1. There are innumerable possible examples. One used later in this book concerns 
attention to hygiene and a decrease in the chance of infection. 

2. The roulette has no way of "remembering" what it did the last 500 times. There
fore, the only relevant details are that it is fair and so has thirty-eight equally 
likely places where it can land. The answer, then, is that the probability of landing 
on a "36" is 1/38, so the probability of losing is 37/38. 

3. There is no answer that is right for everyone. This is the point: Most decision 
making cannot be entirely objective. Someone who believes that clairvoyance 
exists and is not uncommon may well be convinced by a correct guess of a num
ber between 1 and 10, whereas the skeptic referred to in the text would want a 
correct guess of a number between 1 and 1,000,000,000. 

4. If you are being logically consistent, your answer to question 4 should be about 
the square root of the number you gave as the answer to question 3 (note that m is 
the square root of n if m x m = n, so, for example, 10 is the square root of 100 
because 10 x 10 = 100). For example, if you think that a correct response would 
be just sufficient to convince you if there was only 1 chance in 100 of getting the 
right answer by guessing alone, then two correct guesses of a number between 1 
and 10 should be just sufficient to convince you. To see this, reason that for each 
of the ten possibilities for the first guess there are ten possibilities for the second 
guess, so with two guesses of a number between 1 and 10 there are 10 x 10 
possible combinations for the two guesses. Another way of seeing this is to change 
the problem slightly so that the numbers to be guessed can be any of the ten 
numbers 0 to 9. Then guessing any of the 100 two-digit numbers 00 (or 0) to 99 is 
the same as using the first guess to guess the first digit of the two-digit number 
and the second guess to guess the second digit of the two-digit number. 
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CHAPTER 2 

2. There are several answers: 

• How were the names "chosen at random"? If the person performing the poll chose 
names "at random" by eye from the phone book, he or she might unconsciously 
tend to choose surnames that are likely to belong to his or her own ethnic group. 
Other ethnic groups may tend to have a different opinion, and they will not be fairly 
represented. 

• Opinions of people too poor to own phones will not be represented. The same is true 
of people who choose to have "unlisted" numbers. Both these groups may tend to 
have different opinions from those who have listed phone numbers. 

• People who live in crowded households will be underrepresented by this polling 
method. To see this, imagine a village of 100 people where 10 people live on their 
own in single households and all the others live in households of 9 people. If every 
household in the village has a phone and one person from each household answers 
the opinion-poll phone call, half the opinions obtained from the twenty phones in 
the village will be from people in single households whereas only 10 percent of 
people in the village live in such households. 

• If those who don't answer the phone are not pursued, then the opinion poll will tend 
to underrepresent the opinions of people who have lives that take them out of reach 
of the telephone and conversely may tend to overrepresent the opinions of people, 
such as elderly retirees or mothers of young children, who may tend to spend more 
time at home. 

• The opinions of those who refuse to give their opinions to opinion pollsters will not 
be represented. 

CHAPTER 3 

1. (a) (i) 80/140 or 4/7 (ii) 60/140 (iii) 30/140 (iv) 110/140 

(b) 110/140 = 80/140 + 60/140 - 30/140 

(c) neither 

2. (a) 42/10,000or0.42% (b)58% (c)3% +14%-0.42%= 16.58% (d)93.7% 

3. 1/2 x 3/4 + 1/3 x 1/4 = 11/24 - 45.83% 

4. 4.475% 

5. (a) 0.1064 or 10.64% (b) 0.0288/0.1064 = 0.2707 or 27.07% 

(c) 0.916 or 91.6% and 0.912/0.916 = 0.9956 or 99.56% 

6. 2/3 «* 66.67% 

7. Probability land, 0.3 or 30%; probability sea, 70% 

8. (a) 5! = 120 (b) 20 (c) 10 (d)0.1 

9. (a) 1/252 or about 0.003968 or 0.3968% 

(b) As in all decision making informed by statistics, there is no absolutely correct 
answer. However, to me it would seem more reasonable to believe that the expla
nation for the selection of all girls is that the teacher has a sex bias rather than to 
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believe that the teacher is unbiased and the selection is explained by a 1/252 
chance coming off. 

(c) 2/252 

10. (a) 1/252- 0.00398 

(b) The comment given as answer to 9 (b) applies. My benchmark p value (i.e., 
the value just sufficient to convince me that the association is real and not just due 
to chance) would be 1.0 for (i), 0.000000001 or smaller for (ii), and 0.05 for (iii). 
This is because I would reason that (i) riding without lights at night is bound to be 
more risky, (ii) it is almost impossible to imagine how birthdate could affect li
ability for accident, and (iii) sports enthusiasts may have more skill but also may 
take more risks when commuting by bike. On the other hand, neither of these 
factors may apply to their commuting. In the absence of moderately convincing 
evidence to the contrary, I would not want to make a decision that sports enthusi
asm makes a difference to risk. Accordingly, my answers to (b) (i), (ii), and (iii) 
are yes, no, and yes, respectively. 

(c)/7 value 1/6 ~ 0.167. Accordingly, my answers to (i), (ii), and (iii) are yes, no, 
and no, respectively. 

CHAPTER 4 

1. (a) (i) 7i.o24 (ii) ,0/i,o24 (iii) 47i,o24 (iv) ,2%,o24 (v) 2,%.o24 (vi) 252/i,<>24 

(b) It seems reasonable to me here to use the conventional benchmark p value of 
0.05. This choice of benchmark p value might be reasonable for a doctor who 
doesn't want to have to store an extra fact in his or her head regarding the relative 
effectiveness of drugs without moderately convincing evidence. Others are en
titled to a different opinion: An asthmatic may want to choose the drug favored by 
even the weakest evidence and so may use a benchmark p value close to 1. An 
asthmatic with this opinion would want the drug favored by even a slim majority. 
A two-tail test is reasonable (either drug could be superior). With these consider
ations, there would have to be 1 or fewer (i.e., 1 or 0) preferring fenoterol (or 
preferring salbutamol) to convince a doctor whose benchmark p value is 0.05. 
The p value for this result is 2 x (1/1,024 + 10/1,024) 0.0215. A result of two or 
fewer favoring either drug would occur more than 5 percent of the time, asp = 2 
X (Vl,024 + ,0/,,024 + 47l,024) « 0.109. 

2. (a) p (one-tail test) = n/i,o24 ~ 0.0107. A one-tail test may be appropriate, since 
presumably there is a preexisting sentiment that if the machines do anything for 
sleep, they will enhance it. This p value could well be convincing to some people, 
but since I know of no medical mechanism by which the machine could work, I 
would remain dubious and I would require a more stringent benchmarkp value of 
say 0.001 to convince me. 

(b) As for part (a), the "ideal" treatment of the "don't knows" is debatable; many 
think that it is okay to simply ignore them. 

(c) Ignoring the "don't knows," the computer gives a two-tail/? value of 0.000425. 
The one-tail p value is half of this. Given my benchmark p value of 0.001,1 am 
convinced. Note this question illustrates a major advantage of using p values rather 
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than the actual numbers to assess the evidence: The strength of the evidence of "1 
out of 10" could not be compared with the strength of the evidence provided by 
"65 out of 95" without a p value approach. 

3. p = 0.0118 (two-tail). I would regard this as convincing evidence for more men 
with broken legs. 

4. p <0.000001 (two-tail). Convincing evidence. 

5. (a) 28C0(y4)
28(1/4)() + 2 8 C , ( % ) 2 W + 2*C^A)2%VA)2 + 28C3(%)25(1/4)3 = 4689 x (3/4)

25 x 
(V4)3« 0.05514 

(b)(3 /4)7-0.1335 

6. (a) Mann-Whitney two-tail p value of 0.29828 (exact calculation using pds com
puter program; 0.27647 using approximate calculation on computer). While teach
ers are unlikely to be of exactly the same effectiveness, it would seeem unfair to 
declare one teacher superior with evidence that could be explained by chance this 
easily. I would use the conventional 0.05 benchmark p value here. 

(b) No p value calculation is possible in the classroom situation, as the performances 
of the students will not be independent. For example, one very disruptive student 
in one teacher's class could affect the performance of the whole class. 

7. Wilcoxon signed rank two-tail p value of 14/1,024 (exact calculation using pds) ~ 
0.01367. Reasonably convincing evidence for me. 

8. 0.0498,0.149,0.224,0.224,0.168, 1.81 x 10 8 

9. 0.5 cases per three months; exactly four cases, 0.00158; four or more cases, 0.00175. 
Knowing that new factors in the environment can trigger disease, it seems reason
able to use a benchmark/; value that on the one hand does not demand an extreme 
coincidence before conceding a new environmental factor is operating but on the 
other hand does not provoke unnecessary alarm when events occur that could 
easily be due to coincidence. Perhaps the traditional 0.05 benchmark/? value would 
then be appropriate. The hematologist using this traditional benchmark p value 
would conclude that a new environmental factor is responsible for these cases, as 
the p value here is 0.00175. 

CHAPTER 5 

1. 115.76 megawatts. In pds, click on "Statistical functions" and "Normal distribu
tion" and enter 0.995 under the heading "Probability Z < z." Click "OK." This 
gives 2.576 standard deviations. Since each standard deviation is 10, the answer 
is 90+ 10x2.576. 

2. (a) 0.008198. The standard error for a group of sixty-four i s '% or 1.25, so 57 is V1.25 
or 2.4 standard deviations below the mean of 60. In pds, click on "Statistical 
functions" and "Normal distribution" and enter -2.4 under the heading "z value." 
Click "OK" to give the answer. 

(b) No calculation is possible, as students are not selected independently of each 
other. 

3. (a) (i) zero; no one will be absolutely exactly any specified value, (ii) 0.3183 

(iii) 0.0345 
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(b) 0.0345 

(c) p = 0.0027 (two-tail). This is sufficiently convincing evidence for me, as it is 
quite plausible that the environments of different countries will have effects on 
physiological measurements. 

4. A paired sample t test may be reasonable here, particularly as the standard devia
tion of the differences is small (3.817) compared to the speeds we are dealing 
with. This test gives p = 0.0465. The Wilcoxon signed rank test, using less infor
mation, gives p - 0.1563. It seems reasonable to use the result from the paired 
sample t test and the traditional benchmark p value here and so conclude that 
there is reasonably convincing evidence that brand B, on which our sample of 
cyclists travel faster by an average of 4.1, is superior. 

5. (a) It is not reasonable to perform a test based on the normal distribution on these 
figures. In each group many of the figures are less than 1 standard deviation above 
the minimum possible value of 0. The assumption of a normal distribution would 
be a distortion of the reality and the/7 value should not be believed. 

(b) independent samples t test p value 0.0620 and Mann-Whitney test p value 
0.0295. Both these values assume a two-tail test, whereas a one-tail test seems 
more reasonable in that one would expect that any difference would act in favor of 
one group (the more expensive bikes). 

(c) In the absence of any strong feelings, it seems reasonable to use the conven
tional benchmark p value of 0.05 (it may be argued that this is too restrictive in 
that one would expect a priori expensive bikes to be better, but it could also be 
that they are more delicate). Using the traditional benchmark and half the/? value 
obtained from the two-tail Mann-Whitney test, it is reasonable to conclude that 
expensive bikes last longer. 

CHAPTER 6 

1. (a) H(): Violent cartoons do not encourage antisocial behavior. In my opinion this 
is a very dubious null hypothesis, but some would regard it as appropriate. Ha: 
Violent cartoons encourage antisocial behavior. A one-tail test is appropriate. 

(b)H0: Barely plausible for me, others may find it quite believable. Ha: Very plau
sible for me. 

(c) Cost of Type I error: Provides ammunition in favor of unnecessary restriction 
on civil liberties (censorship of violent cartoons). Cost of Type II error: Results in 
missing an opportunity to argue for effective intervention (censorship of violent 
cartoons) that will reduce antisocial behavior in the next generation. 

(d) For me, the benchmark p value would be 1. Since I believe that Ha is more 
plausible than H(), I am going to believe in Ha even if results can be readily ex
plained by H0. My belief that the costs associated with a Type I error are less 
important than the costs associated with a Type II error reinforces my decision to 
adopt a benchmark p value of 1. Others may believe that the traditional bench
mark/7 value of 0.05 is appropriate. 

(e) p = 1/16 = 0.0625. I am already convinced of Ha. Others may still be 
unconvinced, but some who were initially skeptical should be convinced by this. 
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2. Answers are subjective. I give those from my own world view. The following 
hypotheses are inappropriate: b, e, g, i, k, m, n, q, u, v, z through to ee, gg, kk, and 
mm. I believe a priori that these null hypotheses are probably false, some almost 
certainly so. All the other null hypotheses are appropriate in my opinion. The 
following hypotheses are in my opinion a priori highly believable and so I would 
require a very small p value to talk me out of them. In terms of the question, I 
would require a large value for x, as in 1 chance in x (for example, 1 chance in 
1,000,000 or p = 0.000001). Note that I express opinions from a skeptical point of 
view. Believers in astrology, for example, may have quite a different and valid 
viewpoint about including answers d and oo in the following list. Believers should 
go further and regard it as inappropriate to test hypotheses about astrology from 
the starting point that they don't work. However, believers may still consent to 
these null hypotheses to present evidence to convince skeptics. My list is a, d, x, 
ii, j j , oo, pp, rr, ss, and uu. Opinions regarding an appropriate/7 value may vary for 
many of the other null hypotheses. 

3. Note that some would regard many of the H0s listed in this answer as being suit
able for a one-tail test to be inappropriate H()s, as they would have a priori ideas 
that the H()s were almost certainly false. If one did not believe testing was inap
propriate, a one-tail test would be used for a, c, d, e, h, i, and k. A two-tail test 
would apply to the remainder. 

4. Std error 0.2670; t5 values corresponding to 5%, 2.5%, and 0.5% probabilities in a 
single tail are 2.015, 2.571, and 4.032, respectively. Hence, (a) 90% confidence 
interval (201.662, 202.738), (b) 95% confidence interval (201.513,202.886), (c) 
99% confidence interval (201.123, 203.277), and (d) it seems more reasonable to 
believe that the bars are on average heavier than 200 unless there are strong a 
priori reasons to believe they are not. In any case, while it may be necessary to 
use 200.0 or some other single figure for the mean, we should recognize that there 
is zero probability that the true population mean exactly equals a single nomi
nated figure. 

CHAPTER 7 

1. Many examples are possible. For example, obesity and lack of exercise are likely 
to be associated because lack of exercise results in obesity: Food eaten is not 
needed to fuel muscle power and so is stored as fat. But obesity also makes it 
uncomfortable to perform exercise, and social factors may also make the same 
person less motivated to look after his or her health, both in terms of maintaining 
normal weight and in terms of keeping fit. Other examples include many circum
stances where the expression "vicious cycle" is applicable. 

2. No. There is overmatching. 

3. The possibility that looking at football rather than music causes heart attacks seems 
farfetched. On the other hand, it may well be reasonable to believe that the two 
are associated as an example of a case of C causing both A and B. The social 
position and lifestyle of a football enthusiast is likely to be very different from 
that of a classical music enthusiast, and the former may tend to smoke more, eat 
more fatty food, or have more of other risk factors for heart attacks than the latter. 
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4. Knowing of no reason why there would be an association between cholesterol and 
violence, I would want more compelling evidence than the benchmark p value of 
0.05. On the other hand, the brain is presumably affected by blood chemistry and 
so I would not want to blame evidence of an association on chance when it is 
exceedingly hard for chance to explain the results. I'll compromise and choose a 
p value of 0.01. Sign test/7 value (two-tail) gives 0.0026. Therefore, I now prefer 
to believe that low cholesterol is associated with a violent death. 

Learning that the test for an association with violence was just one of many statis
tical tests that were conducted causes me to revoke my original opinion. If one 
looks for long coincidences for long enough, one is bound to find them. In other 
words, finding one long coincidence during a search of many possible coinci
dences is no long coincidence. Given that the criteria for deciding that an effect is 
"for real" is the occurrence of a genuine long coincidence, it is appropriate to now 
not believe the effect is "for real." 

Note, the wording of the question taken together with the material in Chapter 4 
would suggest the use of the sign test. However, the sign test is not quite appropri
ate here. The null hypothesis used in the sign test assumes that the probability of 
above or below median cholesterol is 0.5000 for each person counted as a violent 
death. This is true for the first person counted here. However, if the last person to 
be counted has a below median cholesterol, they would have been chosen from a 
group of 1,981, 984 of whom had below median cholesterol (19 people out of the 
original 2,000 having already been eliminated). The probability of choosing this last 
below median cholesterol person is then 0.4967, not 0.5000. The more appropriate 
test is Fisher's exact test, mentioned in the previous question and in Chapter 3 and 
discussed further in Chapter 8. However, with an experimental group of 2,000, of 
whom only 20 are removed, there is little difference between the/7 value 0.00258 
given by the sign test and the/7 value 0.00246 given by Fisher's exact test. 

If 1,800 have died, our analysis is not changed but the interpretation is. Since high 
cholesterol is associated with premature death from heart disease and nearly ev
eryone has died, it may well be that those who died from violence died that way 
because they had lived a long time and so had longer exposure to risk of violence 
than those with high cholesterol who were likely to have died prematurely. Low 
cholesterol then causes a long life, which causes increased risk of violent death, 
but cholesterol itself does not increase the risk of violence. 

5. (a) One may detect rubella as a cause, but there is concern that false associations 
will be detected because mothers of retarded babies might be more introspective 
about their pregnancies and recall more incidences, whether they are relevant or not. 

(b) The study should be able to detect that having many children is a risk factor 
for parenting a mentally retarded child. Note that it is logical to expect that the 
mothers of retarded children will have more children on average than their neigh
bors and the rest of the female population. This is true even if being one of many 
children is not a risk factor for retardation, simply because a mother of ten, say, 
has given herself ten chances of producing a retarded child whereas a mother of 
one has only given herself one chance. 

(c) Age effects may be detected by this study design. However, there are at some 
complicating factors. As explained in (b), mothers of retarded children are more 



248 Answers 

likely to be mothers of many children. It takes time to produce many children, so 
these mothers may be older. It is also possible that there are problems with the 
control group. These are the altruistic neighbors. There could be a tendency for 
the amount of altruism in the control group to be associated with their age, so 
perhaps the control group might differ in age from the "ideal" control group. 

(d) and (e) There is overmatching. If one house is poor or near a smelter, the same 
is likely to apply to the neighbors. 

CHAPTER 8 

1. Fisher's exact test/7 = 0.0961 (two-tail), 0.0514 (one-tail). Since I wouldn't need 
much convincing that an imposing stature is an advantage in administering oth
ers, I would set my benchmark p value somewhat higher than the conventional 
0.05 and use a one-tail test. I therefore would now be reasonably convinced that 
tall stature is a factor in becoming an administrator. 

2. Fisher's exact test/7 = 0.00858 (two-tail), 0.00429 (one-tail). Since Ha is not im
plausible, it now seems reasonable to believe that absentee ownership is associ
ated with erosion. 

3. Mann-Whitney two-tail test p = 0.00909. Using half this value, the result of the 
one-tail test is appropriate, because a drug designed to strengthen may not work 
but would be most unlikely to weaken. An independent samples t test is inappro
priate because the values seem unlikely to be even approximately normally dis
tributed, but this test gives a similar result. There is the same result for men and 
women: The drug strengthens both. The combined result for men and women is 
entirely unconvincing, with a (two-tail) p value of 0.6033 (approximate method; 
p = 0.6297 by the exact method). This is an example of Simpson's paradox, but 
where the outcomes are numerical measures rather than categories. All men are 
stronger than women (in this example). The drug makes both men and women 
stronger, but women with the drug are still weaker than men without the drug, and 
most women get the drug and most men do not. The combined result reflects the 
fact that the advantage of the drug to both sexes is swamped by the tendency of 
the weaker sex to get the drug. 

4. Chi-square test of association p = 0.0114. It seems plausible to think that people 
with different belief systems may have different priorities. On the other hand, one 
wouldn't want to make generalizations about this on flimsy evidence. The con
ventional 0.05 benchmark seems reasonable to me here. Therefore, after seeing 
this calculation I would believe that there is a real association here. 

5. McNemar's test (calculated as a sign test with eight in "favor" and twenty-two 
"against" comparisons) p = 0.0161 (two-tail). Halving this p value to give the 
results of a one-tail test would be appropriate if one knew that there were biologi
cal reasons to suspect carpet in causing asthma, or if one was aware of a cam
paign to persuade the parents of asthmatic children to remove carpet from the 
child's bedroom. This is convincing evidence of an association between carpet 
and asthma. Fisher's exact test of 152 asthmatics with carpet, 48 asthmatics with
out carpet, 138 nonasthmatics with carpet, and 62 nonasthmatics without carpet 
gives p = 0.1453 (two-tail); x2 test on same figures gives p - 0.117. The signifi-
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cance of carpet is partly submerged under the weight of the many cases where 
both children or neither child has carpet as part of the family lifestyle. Figures of 
8 and 22 added to these much larger numbers will give results that can easily be 
explained away as chance fluctuations in large numbers. 

6. Use the chi-square goodness of fit test with expected values of 100 for each of the 
six outcomes. The chi-square value is 2.68, and values at least this far away from 
0 in a chi-square distribution with 5 degrees of freedom occur 0.75 of the time 
(i.e., p = 0.75). There is no convincing evidence that the die is unfair. 

CHAPTER 9 

1. ANOVA gives a p value of 0.0451. If we were to use the conventional benchmark 
p value of 0.05, we would say that there is evidence that marks in statistics are 
related to the day of birth. Of course, this is silly. If I were offered the choice of 
believing that there was a mysterious reason at work that linked day of birth to 
statistics performance or instead believing that a 4.5-percent chance had eventu
ated, I would certainly take the latter. In other words, my benchmark p value 
would be much lower than the traditional 0.05. 

2. ANOVA gives a/7 value of 0.549. If we were to use the conventional benchmark p 
value of 0.05, we would say that there is no convincing evidence that the im
proved varieties have a yield any different from the traditional variety. However, 
if we look at the means of the three varieties, we see that the improved varieties 
have higher mean yields than the traditional variety. It is true that these additional 
yields could easily be accounted for by chance given the amount of variation here, 
but it may be unfair to blame chance for the result when we know that the im
proved varieties have been produced to give higher yields. It would certainly be 
untrue to conclude that the figures show no evidence of improved yields: They 
provide some evidence, but it is evidence that could be easily accounted for by 
chance. It should be noted that the farmer's misleading words "no evidence" here 
are used in similar situations by many who use statistics. It is noted that the amount 
of data is small and it seems likely that if the farmer was to obtain more data he 
would eventually obtain enough to give a convincing p value. However, there is 
no obligation on the farmer or others who present conclusions based on statistics 
to use enough data for all worthwhile differences to emerge. 

3. ANOVA gives a/7 value of 0.164. The same argument applies here as in the an
swer to question 2, but even more strongly. This really is an inappropriate null hy
pothesis. It is general knowledge that locations further from the equator are colder on 
average. We should be convinced of this no matter how easy it is for chance to explain 
results on the assumption that all four locations have the same average temperature. 
However, there is a further point here. ANOVA is not the optimum method for analyz
ing these data. It doesn't use the information given about latitude. This informa
tion can be used if we think of the data in the form of the following list: 

Latitude 19.5 19.5 27.5 27.5 34 34 37.75 37.75 

Temperature 27 31 24 18 16 22 13 21 

Regression can be applied and it gives a/7 value of 0.0165 for the hypothesis that 
there is no relationship between latitude and temperature. Although we should 
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already have been convinced that there was a relationship between temperature 
and latitude, we can be convinced yet again by this analysis. 

4. Regression p = 0.0000664. It still seems more likely that what we are seeing in 
these figures is the outcome of a 6 in 100,000 chance rather than evidence that a 
mysterious force stemming from faraway Brisbane's rainfall is having influence 
on American book importers. In other words, in these circumstances my bench
mark/7 value is way below the conventional 0.05 and would be considerably less 
than 6 in 100,000. 

5. Regression p = 0.114. This tells us that the variation in house prices in 2000 could 
"quite easily" be explained by chance without any relationship to the value of the 
houses ten years earlier. However, I would be surprised if the value of the houses 
previously had no bearing on their value now. I would either regard this as an 
inappropriate null hypothesis or else allow myself to be talked out of this null 
hypothesis very easily. Noting that the (3 is positive, indicating that as the original 
price tends to increase the recent price tends to increase, I would think it far more 
believable to think that this was a real relationship rather than the product of a 
chance that happens 11 out of 100 times. 

6. 1 time in 6! = 720 times. Yes, convinced by Spearman's rho of-1 with/7 = 7720 ~ 
0.0014. 

7. The regression effect. The very wettest places one day might often be wet, but are 
not that likely to be the wettest places another day. 

8. Sign test/7 = 7512 ~ 0.002. The regression effect again. The places with the high
est number of rabbits one year may well tend to have a rather high number of 
rabbits most of the time but will not usually be the places with the highest num
bers every time. They were the highest on the first occasion presumably not only 
because they provided good habitat for rabbits, but also because chance factors 
had particularly favored the rabbits at those places in that year. These chance 
factors will normally not boost rabbit numbers to the highest levels in other years. 

There is another issue that applies to questions (7) and (8). The data will not 
generally be independent, as is assumed by our statistical tests. Rabbit numbers 
everywhere at the time of the second measurement might be down because the 
second measurement might be taken during a drier year than the first. 

CHAPTER 10 

1. (26.739, 27.261) using the normal distribution as an approximation to the t99 dis
tribution; (26.735, 27.265) using t99 distribution itself. 

2. (a) (68.579, 70.841). (b) The confidence interval is of zero width about the point 
69.71, since we know the average of the marks of this class with certainty. 

3. (a) 16,587. 

(b) It is true that when we are about to take our sample we will have at least a 99-
percent chance of obtaining a value within 1 percent of the true value ("at least" 
applies because we use the largest possible value of the product 0c|> in our theory). 
It is not true that a particular value obtained necessarily has a 99-percent chance 
of being within 1 percent of the true value. After obtaining a particular outcome 
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we can't reverse the probability statement made prior to the survey to give a prob
ability statement about the location of the true mean. Instead, we will have a 
confidence interval (here it is [39%, 41%]). As explained in the section on confi
dence intervals, confusing confidence intervals with probability statements is like 
confusing the statement, "Where there is smoke there is a 99-percent chance of 
fire," with the statement, "Where there is fire there is a 99-percent chance of 
smoke." The range from 39 percent to 41 percent consists of those numbers for 
the true proportion that are compatible with our findings in terms of a p value of 
0.01. However, we may feel that sheer bad luck has given us a misleading result 
and we need to take this into account. If we feel our survey has underestimated or 
overestimated the true proportion, then there is not a 99-percent chance that our 
range contains the true proportion. Only in the absence of a prior opinion about 
the true value is it reasonable to equate confidence intervals with probability in
tervals. 

4. (a) Fisher's exact test or chi-square test of association 

(b) ANOVA 

(c) Independent samples t test 

(d) Mann-Whitney test 

(e) Sign test 

(f) Paired samples t test 

(g) Wilcoxon signed rank test 

(h) Fisher's exact test or chi-square test of association 

(i) ANOVA 

(]) Chi-square test of association 

(k) Regression 
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There are many books that can be read by people seeking further information 
in this field. There are several main areas: Books that give more general math
ematical background, books that give more of the theory of probability and 
statistics, and books on applications of statistics. What follows are a few books 
I have found helpful in these areas. 

C. V. Durell. Advanced Algebra. Vol. 1. London: G. Bell and Sons (first published 
1932 and reprinted numerous times). My book started with a promise that there 
would be no mathematics beyond the tenth grade level. I believe I have kept 
that promise, though there are places in the book where I indicate that a deeper 
knowledge of mathematics would enable a more complete understanding of the 
details of the statistical techniques. There is a great deal that would have to be 
covered for a complete mathematical understanding of all the steps used in 
deriving all the statistical techniques covered in this book. However, as a start, 
some twelfth grade mathematics would give readers more insight in parts of 
this book where I have referred to logs and exponentials and the number e. 
There are many texts on twelfth grade mathematics. Different readers have 
different learning styles and so there is no such thing as an ideal book for 
everybody. Personally, I have found this little old book by Durell to be very 
useful. Its clear but very concise explanations appeal to me. 

Stephen Jay Gould. The Mismeasure of Man. London: Penguin Books, 1996. This is a 
general-interest book rather than a textbook. It deals with one major area in 
which statistics has been misapplied. This is the ranking of humans and groups 
of humans according to mental ability. It contains numerous examples where 
statistics are flawed at various stages, ranging from the selection of a sample 
to the interpretation of the results. However, these flawed statistics deeply in
fluenced much of the social policy and education system of the Western world 
over the last century. The book contains an interesting discussion that hints at 



254 Annotated Bibliography 

the richness as well as the potential for misuse of more advanced statistical 
theory. 

J. A. Rice. Mathematical Statistics and Data Analysis. 2d ed. Belmont, Calif.: Duxbury 
Press, 1995. This book covers more briefly the material on probability relevant 
to statistics that is covered by S. Ross. It then goes on to give an almost com
plete mathematical understanding of all the steps used in deriving all the sta
tistical techniques covered here. However, the book assumes knowledge of 
calculus and the theory of matrices at the first- or second-year university level. 

Sheldon Ross. A First Course in Probability Theory. 3d ed. New York: Macmillan, 
1988. This reasonably slim book gives a more complete understanding of prob
ability theory and random variables. Some knowledge of calculus at the twelfth 
grade level is necessary for understanding some sections in the latter parts of 
the book. In one section more advanced knowledge of calculus is required. 
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Mann-Whitney test, 82-85 
Matching, 172 
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Power (of a test), 147, 161, 162,223 
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Probability density, 97, 98 
Probability density function (pdf), 98 
Probability weighted averaging, 90 
Proportion of the time, 33, 34 
Prospective studies, 171 

Q-Q plots, 131-135 
Quartiles, 22, 23 

Random variables, 63-139; binomial, 
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Regression, 197,205-218 
Relative risk, 183-185 
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Retrospective studies, 171 

s, cr, standard deviation, 20-22, 91, 92 
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Sampling distributions, 111-114 
Sensitivity, 47, 48, 50, 147 
Sequential analysis, 232 
Sign test, 66-79 
Significance, 5, 146 
Simpson's paradox, 187-188 
Single sample t test, 119-121 
Skewed data, 18, 107 
Spatial statistics, 233 
Spearman's rho (p), 57, 221-223 
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Ties, 69-70, 82, 85 
Time series, 233 
Transformations, 129, 136, 202 
Trial: binomial, 64; clinical, 170 

Uniform random variable, 134 

Van der Warden's method, 134 
Variance, 20, 91 
Venn diagrams, 34-37 

Wilcoxon rank sum test, 85 
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This page intentionally left blank 



ABOUT THE AUTHOR 

David Kault is a medical practitioner and an adjunct lecturer in mathematics 
at James Cook University, Queensland, Australia. He has taught a number of 
introductory statistics courses, both general and applied to such areas as envi
ronmental science and medicine. 


	Contents
	Preface
	Acknowledgments
	Glossaries
	Statistical Computer Program
	1 Statistics: The Science of Dealing with Variability and Uncertainty
	2 Descriptive Statistics
	3 Basic Probability and Fisher's Exact Test
	4 Discrete Random Variables and Some Statistical Tests Based on Them
	5 Continuous Random Variables and Some Statistical Tests Based on Them
	6 General Issues in Hypothesis Testing
	7 Causality: Interventions and Observational Studies
	8 Categorical Measurements on Two or More Groups
	9 Statistics on More Than Two Groups
	10 Miscellaneous Topics 
	Appendix: Table of the Standard Normal Distribution
	Answers 
	Annotated Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z




